]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/optabs.c
except.c (start_catch_handler): Use emit_cmp_and_jump_insns.
[thirdparty/gcc.git] / gcc / optabs.c
1 /* Expand the basic unary and binary arithmetic operations, for GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 #include "config.h"
23 #include "system.h"
24 #include "rtl.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "insn-flags.h"
28 #include "insn-codes.h"
29 #include "expr.h"
30 #include "insn-config.h"
31 #include "recog.h"
32 #include "reload.h"
33
34 /* Each optab contains info on how this target machine
35 can perform a particular operation
36 for all sizes and kinds of operands.
37
38 The operation to be performed is often specified
39 by passing one of these optabs as an argument.
40
41 See expr.h for documentation of these optabs. */
42
43 optab add_optab;
44 optab sub_optab;
45 optab smul_optab;
46 optab smul_highpart_optab;
47 optab umul_highpart_optab;
48 optab smul_widen_optab;
49 optab umul_widen_optab;
50 optab sdiv_optab;
51 optab sdivmod_optab;
52 optab udiv_optab;
53 optab udivmod_optab;
54 optab smod_optab;
55 optab umod_optab;
56 optab flodiv_optab;
57 optab ftrunc_optab;
58 optab and_optab;
59 optab ior_optab;
60 optab xor_optab;
61 optab ashl_optab;
62 optab lshr_optab;
63 optab ashr_optab;
64 optab rotl_optab;
65 optab rotr_optab;
66 optab smin_optab;
67 optab smax_optab;
68 optab umin_optab;
69 optab umax_optab;
70
71 optab mov_optab;
72 optab movstrict_optab;
73
74 optab neg_optab;
75 optab abs_optab;
76 optab one_cmpl_optab;
77 optab ffs_optab;
78 optab sqrt_optab;
79 optab sin_optab;
80 optab cos_optab;
81
82 optab cmp_optab;
83 optab ucmp_optab; /* Used only for libcalls for unsigned comparisons. */
84 optab tst_optab;
85
86 optab strlen_optab;
87
88 /* Tables of patterns for extending one integer mode to another. */
89 enum insn_code extendtab[MAX_MACHINE_MODE][MAX_MACHINE_MODE][2];
90
91 /* Tables of patterns for converting between fixed and floating point. */
92 enum insn_code fixtab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
93 enum insn_code fixtrunctab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
94 enum insn_code floattab[NUM_MACHINE_MODES][NUM_MACHINE_MODES][2];
95
96 /* Contains the optab used for each rtx code. */
97 optab code_to_optab[NUM_RTX_CODE + 1];
98
99 /* SYMBOL_REF rtx's for the library functions that are called
100 implicitly and not via optabs. */
101
102 rtx extendsfdf2_libfunc;
103 rtx extendsfxf2_libfunc;
104 rtx extendsftf2_libfunc;
105 rtx extenddfxf2_libfunc;
106 rtx extenddftf2_libfunc;
107
108 rtx truncdfsf2_libfunc;
109 rtx truncxfsf2_libfunc;
110 rtx trunctfsf2_libfunc;
111 rtx truncxfdf2_libfunc;
112 rtx trunctfdf2_libfunc;
113
114 rtx memcpy_libfunc;
115 rtx bcopy_libfunc;
116 rtx memcmp_libfunc;
117 rtx bcmp_libfunc;
118 rtx memset_libfunc;
119 rtx bzero_libfunc;
120
121 rtx throw_libfunc;
122 rtx rethrow_libfunc;
123 rtx sjthrow_libfunc;
124 rtx sjpopnthrow_libfunc;
125 rtx terminate_libfunc;
126 rtx setjmp_libfunc;
127 rtx longjmp_libfunc;
128 rtx eh_rtime_match_libfunc;
129
130 rtx eqhf2_libfunc;
131 rtx nehf2_libfunc;
132 rtx gthf2_libfunc;
133 rtx gehf2_libfunc;
134 rtx lthf2_libfunc;
135 rtx lehf2_libfunc;
136
137 rtx eqsf2_libfunc;
138 rtx nesf2_libfunc;
139 rtx gtsf2_libfunc;
140 rtx gesf2_libfunc;
141 rtx ltsf2_libfunc;
142 rtx lesf2_libfunc;
143
144 rtx eqdf2_libfunc;
145 rtx nedf2_libfunc;
146 rtx gtdf2_libfunc;
147 rtx gedf2_libfunc;
148 rtx ltdf2_libfunc;
149 rtx ledf2_libfunc;
150
151 rtx eqxf2_libfunc;
152 rtx nexf2_libfunc;
153 rtx gtxf2_libfunc;
154 rtx gexf2_libfunc;
155 rtx ltxf2_libfunc;
156 rtx lexf2_libfunc;
157
158 rtx eqtf2_libfunc;
159 rtx netf2_libfunc;
160 rtx gttf2_libfunc;
161 rtx getf2_libfunc;
162 rtx lttf2_libfunc;
163 rtx letf2_libfunc;
164
165 rtx floatsisf_libfunc;
166 rtx floatdisf_libfunc;
167 rtx floattisf_libfunc;
168
169 rtx floatsidf_libfunc;
170 rtx floatdidf_libfunc;
171 rtx floattidf_libfunc;
172
173 rtx floatsixf_libfunc;
174 rtx floatdixf_libfunc;
175 rtx floattixf_libfunc;
176
177 rtx floatsitf_libfunc;
178 rtx floatditf_libfunc;
179 rtx floattitf_libfunc;
180
181 rtx fixsfsi_libfunc;
182 rtx fixsfdi_libfunc;
183 rtx fixsfti_libfunc;
184
185 rtx fixdfsi_libfunc;
186 rtx fixdfdi_libfunc;
187 rtx fixdfti_libfunc;
188
189 rtx fixxfsi_libfunc;
190 rtx fixxfdi_libfunc;
191 rtx fixxfti_libfunc;
192
193 rtx fixtfsi_libfunc;
194 rtx fixtfdi_libfunc;
195 rtx fixtfti_libfunc;
196
197 rtx fixunssfsi_libfunc;
198 rtx fixunssfdi_libfunc;
199 rtx fixunssfti_libfunc;
200
201 rtx fixunsdfsi_libfunc;
202 rtx fixunsdfdi_libfunc;
203 rtx fixunsdfti_libfunc;
204
205 rtx fixunsxfsi_libfunc;
206 rtx fixunsxfdi_libfunc;
207 rtx fixunsxfti_libfunc;
208
209 rtx fixunstfsi_libfunc;
210 rtx fixunstfdi_libfunc;
211 rtx fixunstfti_libfunc;
212
213 rtx chkr_check_addr_libfunc;
214 rtx chkr_set_right_libfunc;
215 rtx chkr_copy_bitmap_libfunc;
216 rtx chkr_check_exec_libfunc;
217 rtx chkr_check_str_libfunc;
218
219 rtx profile_function_entry_libfunc;
220 rtx profile_function_exit_libfunc;
221
222 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
223 gives the gen_function to make a branch to test that condition. */
224
225 rtxfun bcc_gen_fctn[NUM_RTX_CODE];
226
227 /* Indexed by the rtx-code for a conditional (eg. EQ, LT,...)
228 gives the insn code to make a store-condition insn
229 to test that condition. */
230
231 enum insn_code setcc_gen_code[NUM_RTX_CODE];
232
233 #ifdef HAVE_conditional_move
234 /* Indexed by the machine mode, gives the insn code to make a conditional
235 move insn. This is not indexed by the rtx-code like bcc_gen_fctn and
236 setcc_gen_code to cut down on the number of named patterns. Consider a day
237 when a lot more rtx codes are conditional (eg: for the ARM). */
238
239 enum insn_code movcc_gen_code[NUM_MACHINE_MODES];
240 #endif
241
242 static int add_equal_note PROTO((rtx, rtx, enum rtx_code, rtx, rtx));
243 static rtx widen_operand PROTO((rtx, enum machine_mode,
244 enum machine_mode, int, int));
245 static enum insn_code can_fix_p PROTO((enum machine_mode, enum machine_mode,
246 int, int *));
247 static enum insn_code can_float_p PROTO((enum machine_mode, enum machine_mode,
248 int));
249 static rtx ftruncify PROTO((rtx));
250 static optab init_optab PROTO((enum rtx_code));
251 static void init_libfuncs PROTO((optab, int, int, char *, int));
252 static void init_integral_libfuncs PROTO((optab, char *, int));
253 static void init_floating_libfuncs PROTO((optab, char *, int));
254 #ifdef HAVE_conditional_trap
255 static void init_traps PROTO((void));
256 #endif
257 \f
258 /* Add a REG_EQUAL note to the last insn in SEQ. TARGET is being set to
259 the result of operation CODE applied to OP0 (and OP1 if it is a binary
260 operation).
261
262 If the last insn does not set TARGET, don't do anything, but return 1.
263
264 If a previous insn sets TARGET and TARGET is one of OP0 or OP1,
265 don't add the REG_EQUAL note but return 0. Our caller can then try
266 again, ensuring that TARGET is not one of the operands. */
267
268 static int
269 add_equal_note (seq, target, code, op0, op1)
270 rtx seq;
271 rtx target;
272 enum rtx_code code;
273 rtx op0, op1;
274 {
275 rtx set;
276 int i;
277 rtx note;
278
279 if ((GET_RTX_CLASS (code) != '1' && GET_RTX_CLASS (code) != '2'
280 && GET_RTX_CLASS (code) != 'c' && GET_RTX_CLASS (code) != '<')
281 || GET_CODE (seq) != SEQUENCE
282 || (set = single_set (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))) == 0
283 || GET_CODE (target) == ZERO_EXTRACT
284 || (! rtx_equal_p (SET_DEST (set), target)
285 /* For a STRICT_LOW_PART, the REG_NOTE applies to what is inside the
286 SUBREG. */
287 && (GET_CODE (SET_DEST (set)) != STRICT_LOW_PART
288 || ! rtx_equal_p (SUBREG_REG (XEXP (SET_DEST (set), 0)),
289 target))))
290 return 1;
291
292 /* If TARGET is in OP0 or OP1, check if anything in SEQ sets TARGET
293 besides the last insn. */
294 if (reg_overlap_mentioned_p (target, op0)
295 || (op1 && reg_overlap_mentioned_p (target, op1)))
296 for (i = XVECLEN (seq, 0) - 2; i >= 0; i--)
297 if (reg_set_p (target, XVECEXP (seq, 0, i)))
298 return 0;
299
300 if (GET_RTX_CLASS (code) == '1')
301 note = gen_rtx_fmt_e (code, GET_MODE (target), copy_rtx (op0));
302 else
303 note = gen_rtx_fmt_ee (code, GET_MODE (target), copy_rtx (op0), copy_rtx (op1));
304
305 REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1))
306 = gen_rtx_EXPR_LIST (REG_EQUAL, note,
307 REG_NOTES (XVECEXP (seq, 0, XVECLEN (seq, 0) - 1)));
308
309 return 1;
310 }
311 \f
312 /* Widen OP to MODE and return the rtx for the widened operand. UNSIGNEDP
313 says whether OP is signed or unsigned. NO_EXTEND is nonzero if we need
314 not actually do a sign-extend or zero-extend, but can leave the
315 higher-order bits of the result rtx undefined, for example, in the case
316 of logical operations, but not right shifts. */
317
318 static rtx
319 widen_operand (op, mode, oldmode, unsignedp, no_extend)
320 rtx op;
321 enum machine_mode mode, oldmode;
322 int unsignedp;
323 int no_extend;
324 {
325 rtx result;
326
327 /* If we must extend do so. If OP is either a constant or a SUBREG
328 for a promoted object, also extend since it will be more efficient to
329 do so. */
330 if (! no_extend
331 || GET_MODE (op) == VOIDmode
332 || (GET_CODE (op) == SUBREG && SUBREG_PROMOTED_VAR_P (op)))
333 return convert_modes (mode, oldmode, op, unsignedp);
334
335 /* If MODE is no wider than a single word, we return a paradoxical
336 SUBREG. */
337 if (GET_MODE_SIZE (mode) <= UNITS_PER_WORD)
338 return gen_rtx_SUBREG (mode, force_reg (GET_MODE (op), op), 0);
339
340 /* Otherwise, get an object of MODE, clobber it, and set the low-order
341 part to OP. */
342
343 result = gen_reg_rtx (mode);
344 emit_insn (gen_rtx_CLOBBER (VOIDmode, result));
345 emit_move_insn (gen_lowpart (GET_MODE (op), result), op);
346 return result;
347 }
348 \f
349 /* Generate code to perform an operation specified by BINOPTAB
350 on operands OP0 and OP1, with result having machine-mode MODE.
351
352 UNSIGNEDP is for the case where we have to widen the operands
353 to perform the operation. It says to use zero-extension.
354
355 If TARGET is nonzero, the value
356 is generated there, if it is convenient to do so.
357 In all cases an rtx is returned for the locus of the value;
358 this may or may not be TARGET. */
359
360 rtx
361 expand_binop (mode, binoptab, op0, op1, target, unsignedp, methods)
362 enum machine_mode mode;
363 optab binoptab;
364 rtx op0, op1;
365 rtx target;
366 int unsignedp;
367 enum optab_methods methods;
368 {
369 enum optab_methods next_methods
370 = (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN
371 ? OPTAB_WIDEN : methods);
372 enum mode_class class;
373 enum machine_mode wider_mode;
374 register rtx temp;
375 int commutative_op = 0;
376 int shift_op = (binoptab->code == ASHIFT
377 || binoptab->code == ASHIFTRT
378 || binoptab->code == LSHIFTRT
379 || binoptab->code == ROTATE
380 || binoptab->code == ROTATERT);
381 rtx entry_last = get_last_insn ();
382 rtx last;
383
384 class = GET_MODE_CLASS (mode);
385
386 op0 = protect_from_queue (op0, 0);
387 op1 = protect_from_queue (op1, 0);
388 if (target)
389 target = protect_from_queue (target, 1);
390
391 if (flag_force_mem)
392 {
393 op0 = force_not_mem (op0);
394 op1 = force_not_mem (op1);
395 }
396
397 /* If subtracting an integer constant, convert this into an addition of
398 the negated constant. */
399
400 if (binoptab == sub_optab && GET_CODE (op1) == CONST_INT)
401 {
402 op1 = negate_rtx (mode, op1);
403 binoptab = add_optab;
404 }
405
406 /* If we are inside an appropriately-short loop and one operand is an
407 expensive constant, force it into a register. */
408 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
409 && rtx_cost (op0, binoptab->code) > 2)
410 op0 = force_reg (mode, op0);
411
412 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
413 && ! shift_op && rtx_cost (op1, binoptab->code) > 2)
414 op1 = force_reg (mode, op1);
415
416 /* Record where to delete back to if we backtrack. */
417 last = get_last_insn ();
418
419 /* If operation is commutative,
420 try to make the first operand a register.
421 Even better, try to make it the same as the target.
422 Also try to make the last operand a constant. */
423 if (GET_RTX_CLASS (binoptab->code) == 'c'
424 || binoptab == smul_widen_optab
425 || binoptab == umul_widen_optab
426 || binoptab == smul_highpart_optab
427 || binoptab == umul_highpart_optab)
428 {
429 commutative_op = 1;
430
431 if (((target == 0 || GET_CODE (target) == REG)
432 ? ((GET_CODE (op1) == REG
433 && GET_CODE (op0) != REG)
434 || target == op1)
435 : rtx_equal_p (op1, target))
436 || GET_CODE (op0) == CONST_INT)
437 {
438 temp = op1;
439 op1 = op0;
440 op0 = temp;
441 }
442 }
443
444 /* If we can do it with a three-operand insn, do so. */
445
446 if (methods != OPTAB_MUST_WIDEN
447 && binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
448 {
449 int icode = (int) binoptab->handlers[(int) mode].insn_code;
450 enum machine_mode mode0 = insn_operand_mode[icode][1];
451 enum machine_mode mode1 = insn_operand_mode[icode][2];
452 rtx pat;
453 rtx xop0 = op0, xop1 = op1;
454
455 if (target)
456 temp = target;
457 else
458 temp = gen_reg_rtx (mode);
459
460 /* If it is a commutative operator and the modes would match
461 if we would swap the operands, we can save the conversions. */
462 if (commutative_op)
463 {
464 if (GET_MODE (op0) != mode0 && GET_MODE (op1) != mode1
465 && GET_MODE (op0) == mode1 && GET_MODE (op1) == mode0)
466 {
467 register rtx tmp;
468
469 tmp = op0; op0 = op1; op1 = tmp;
470 tmp = xop0; xop0 = xop1; xop1 = tmp;
471 }
472 }
473
474 /* In case the insn wants input operands in modes different from
475 the result, convert the operands. */
476
477 if (GET_MODE (op0) != VOIDmode
478 && GET_MODE (op0) != mode0
479 && mode0 != VOIDmode)
480 xop0 = convert_to_mode (mode0, xop0, unsignedp);
481
482 if (GET_MODE (xop1) != VOIDmode
483 && GET_MODE (xop1) != mode1
484 && mode1 != VOIDmode)
485 xop1 = convert_to_mode (mode1, xop1, unsignedp);
486
487 /* Now, if insn's predicates don't allow our operands, put them into
488 pseudo regs. */
489
490 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0)
491 && mode0 != VOIDmode)
492 xop0 = copy_to_mode_reg (mode0, xop0);
493
494 if (! (*insn_operand_predicate[icode][2]) (xop1, mode1)
495 && mode1 != VOIDmode)
496 xop1 = copy_to_mode_reg (mode1, xop1);
497
498 if (! (*insn_operand_predicate[icode][0]) (temp, mode))
499 temp = gen_reg_rtx (mode);
500
501 pat = GEN_FCN (icode) (temp, xop0, xop1);
502 if (pat)
503 {
504 /* If PAT is a multi-insn sequence, try to add an appropriate
505 REG_EQUAL note to it. If we can't because TEMP conflicts with an
506 operand, call ourselves again, this time without a target. */
507 if (GET_CODE (pat) == SEQUENCE
508 && ! add_equal_note (pat, temp, binoptab->code, xop0, xop1))
509 {
510 delete_insns_since (last);
511 return expand_binop (mode, binoptab, op0, op1, NULL_RTX,
512 unsignedp, methods);
513 }
514
515 emit_insn (pat);
516 return temp;
517 }
518 else
519 delete_insns_since (last);
520 }
521
522 /* If this is a multiply, see if we can do a widening operation that
523 takes operands of this mode and makes a wider mode. */
524
525 if (binoptab == smul_optab && GET_MODE_WIDER_MODE (mode) != VOIDmode
526 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
527 ->handlers[(int) GET_MODE_WIDER_MODE (mode)].insn_code)
528 != CODE_FOR_nothing))
529 {
530 temp = expand_binop (GET_MODE_WIDER_MODE (mode),
531 unsignedp ? umul_widen_optab : smul_widen_optab,
532 op0, op1, NULL_RTX, unsignedp, OPTAB_DIRECT);
533
534 if (temp != 0)
535 {
536 if (GET_MODE_CLASS (mode) == MODE_INT)
537 return gen_lowpart (mode, temp);
538 else
539 return convert_to_mode (mode, temp, unsignedp);
540 }
541 }
542
543 /* Look for a wider mode of the same class for which we think we
544 can open-code the operation. Check for a widening multiply at the
545 wider mode as well. */
546
547 if ((class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
548 && methods != OPTAB_DIRECT && methods != OPTAB_LIB)
549 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
550 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
551 {
552 if (binoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing
553 || (binoptab == smul_optab
554 && GET_MODE_WIDER_MODE (wider_mode) != VOIDmode
555 && (((unsignedp ? umul_widen_optab : smul_widen_optab)
556 ->handlers[(int) GET_MODE_WIDER_MODE (wider_mode)].insn_code)
557 != CODE_FOR_nothing)))
558 {
559 rtx xop0 = op0, xop1 = op1;
560 int no_extend = 0;
561
562 /* For certain integer operations, we need not actually extend
563 the narrow operands, as long as we will truncate
564 the results to the same narrowness. */
565
566 if ((binoptab == ior_optab || binoptab == and_optab
567 || binoptab == xor_optab
568 || binoptab == add_optab || binoptab == sub_optab
569 || binoptab == smul_optab || binoptab == ashl_optab)
570 && class == MODE_INT)
571 no_extend = 1;
572
573 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp, no_extend);
574
575 /* The second operand of a shift must always be extended. */
576 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
577 no_extend && binoptab != ashl_optab);
578
579 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
580 unsignedp, OPTAB_DIRECT);
581 if (temp)
582 {
583 if (class != MODE_INT)
584 {
585 if (target == 0)
586 target = gen_reg_rtx (mode);
587 convert_move (target, temp, 0);
588 return target;
589 }
590 else
591 return gen_lowpart (mode, temp);
592 }
593 else
594 delete_insns_since (last);
595 }
596 }
597
598 /* These can be done a word at a time. */
599 if ((binoptab == and_optab || binoptab == ior_optab || binoptab == xor_optab)
600 && class == MODE_INT
601 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
602 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
603 {
604 int i;
605 rtx insns;
606 rtx equiv_value;
607
608 /* If TARGET is the same as one of the operands, the REG_EQUAL note
609 won't be accurate, so use a new target. */
610 if (target == 0 || target == op0 || target == op1)
611 target = gen_reg_rtx (mode);
612
613 start_sequence ();
614
615 /* Do the actual arithmetic. */
616 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
617 {
618 rtx target_piece = operand_subword (target, i, 1, mode);
619 rtx x = expand_binop (word_mode, binoptab,
620 operand_subword_force (op0, i, mode),
621 operand_subword_force (op1, i, mode),
622 target_piece, unsignedp, next_methods);
623
624 if (x == 0)
625 break;
626
627 if (target_piece != x)
628 emit_move_insn (target_piece, x);
629 }
630
631 insns = get_insns ();
632 end_sequence ();
633
634 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
635 {
636 if (binoptab->code != UNKNOWN)
637 equiv_value
638 = gen_rtx_fmt_ee (binoptab->code, mode,
639 copy_rtx (op0), copy_rtx (op1));
640 else
641 equiv_value = 0;
642
643 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
644 return target;
645 }
646 }
647
648 /* Synthesize double word shifts from single word shifts. */
649 if ((binoptab == lshr_optab || binoptab == ashl_optab
650 || binoptab == ashr_optab)
651 && class == MODE_INT
652 && GET_CODE (op1) == CONST_INT
653 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
654 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
655 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
656 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
657 {
658 rtx insns, inter, equiv_value;
659 rtx into_target, outof_target;
660 rtx into_input, outof_input;
661 int shift_count, left_shift, outof_word;
662
663 /* If TARGET is the same as one of the operands, the REG_EQUAL note
664 won't be accurate, so use a new target. */
665 if (target == 0 || target == op0 || target == op1)
666 target = gen_reg_rtx (mode);
667
668 start_sequence ();
669
670 shift_count = INTVAL (op1);
671
672 /* OUTOF_* is the word we are shifting bits away from, and
673 INTO_* is the word that we are shifting bits towards, thus
674 they differ depending on the direction of the shift and
675 WORDS_BIG_ENDIAN. */
676
677 left_shift = binoptab == ashl_optab;
678 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
679
680 outof_target = operand_subword (target, outof_word, 1, mode);
681 into_target = operand_subword (target, 1 - outof_word, 1, mode);
682
683 outof_input = operand_subword_force (op0, outof_word, mode);
684 into_input = operand_subword_force (op0, 1 - outof_word, mode);
685
686 if (shift_count >= BITS_PER_WORD)
687 {
688 inter = expand_binop (word_mode, binoptab,
689 outof_input,
690 GEN_INT (shift_count - BITS_PER_WORD),
691 into_target, unsignedp, next_methods);
692
693 if (inter != 0 && inter != into_target)
694 emit_move_insn (into_target, inter);
695
696 /* For a signed right shift, we must fill the word we are shifting
697 out of with copies of the sign bit. Otherwise it is zeroed. */
698 if (inter != 0 && binoptab != ashr_optab)
699 inter = CONST0_RTX (word_mode);
700 else if (inter != 0)
701 inter = expand_binop (word_mode, binoptab,
702 outof_input,
703 GEN_INT (BITS_PER_WORD - 1),
704 outof_target, unsignedp, next_methods);
705
706 if (inter != 0 && inter != outof_target)
707 emit_move_insn (outof_target, inter);
708 }
709 else
710 {
711 rtx carries;
712 optab reverse_unsigned_shift, unsigned_shift;
713
714 /* For a shift of less then BITS_PER_WORD, to compute the carry,
715 we must do a logical shift in the opposite direction of the
716 desired shift. */
717
718 reverse_unsigned_shift = (left_shift ? lshr_optab : ashl_optab);
719
720 /* For a shift of less than BITS_PER_WORD, to compute the word
721 shifted towards, we need to unsigned shift the orig value of
722 that word. */
723
724 unsigned_shift = (left_shift ? ashl_optab : lshr_optab);
725
726 carries = expand_binop (word_mode, reverse_unsigned_shift,
727 outof_input,
728 GEN_INT (BITS_PER_WORD - shift_count),
729 0, unsignedp, next_methods);
730
731 if (carries == 0)
732 inter = 0;
733 else
734 inter = expand_binop (word_mode, unsigned_shift, into_input,
735 op1, 0, unsignedp, next_methods);
736
737 if (inter != 0)
738 inter = expand_binop (word_mode, ior_optab, carries, inter,
739 into_target, unsignedp, next_methods);
740
741 if (inter != 0 && inter != into_target)
742 emit_move_insn (into_target, inter);
743
744 if (inter != 0)
745 inter = expand_binop (word_mode, binoptab, outof_input,
746 op1, outof_target, unsignedp, next_methods);
747
748 if (inter != 0 && inter != outof_target)
749 emit_move_insn (outof_target, inter);
750 }
751
752 insns = get_insns ();
753 end_sequence ();
754
755 if (inter != 0)
756 {
757 if (binoptab->code != UNKNOWN)
758 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
759 else
760 equiv_value = 0;
761
762 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
763 return target;
764 }
765 }
766
767 /* Synthesize double word rotates from single word shifts. */
768 if ((binoptab == rotl_optab || binoptab == rotr_optab)
769 && class == MODE_INT
770 && GET_CODE (op1) == CONST_INT
771 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
772 && ashl_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
773 && lshr_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
774 {
775 rtx insns, equiv_value;
776 rtx into_target, outof_target;
777 rtx into_input, outof_input;
778 rtx inter;
779 int shift_count, left_shift, outof_word;
780
781 /* If TARGET is the same as one of the operands, the REG_EQUAL note
782 won't be accurate, so use a new target. */
783 if (target == 0 || target == op0 || target == op1)
784 target = gen_reg_rtx (mode);
785
786 start_sequence ();
787
788 shift_count = INTVAL (op1);
789
790 /* OUTOF_* is the word we are shifting bits away from, and
791 INTO_* is the word that we are shifting bits towards, thus
792 they differ depending on the direction of the shift and
793 WORDS_BIG_ENDIAN. */
794
795 left_shift = (binoptab == rotl_optab);
796 outof_word = left_shift ^ ! WORDS_BIG_ENDIAN;
797
798 outof_target = operand_subword (target, outof_word, 1, mode);
799 into_target = operand_subword (target, 1 - outof_word, 1, mode);
800
801 outof_input = operand_subword_force (op0, outof_word, mode);
802 into_input = operand_subword_force (op0, 1 - outof_word, mode);
803
804 if (shift_count == BITS_PER_WORD)
805 {
806 /* This is just a word swap. */
807 emit_move_insn (outof_target, into_input);
808 emit_move_insn (into_target, outof_input);
809 inter = const0_rtx;
810 }
811 else
812 {
813 rtx into_temp1, into_temp2, outof_temp1, outof_temp2;
814 rtx first_shift_count, second_shift_count;
815 optab reverse_unsigned_shift, unsigned_shift;
816
817 reverse_unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
818 ? lshr_optab : ashl_optab);
819
820 unsigned_shift = (left_shift ^ (shift_count < BITS_PER_WORD)
821 ? ashl_optab : lshr_optab);
822
823 if (shift_count > BITS_PER_WORD)
824 {
825 first_shift_count = GEN_INT (shift_count - BITS_PER_WORD);
826 second_shift_count = GEN_INT (2*BITS_PER_WORD - shift_count);
827 }
828 else
829 {
830 first_shift_count = GEN_INT (BITS_PER_WORD - shift_count);
831 second_shift_count = GEN_INT (shift_count);
832 }
833
834 into_temp1 = expand_binop (word_mode, unsigned_shift,
835 outof_input, first_shift_count,
836 NULL_RTX, unsignedp, next_methods);
837 into_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
838 into_input, second_shift_count,
839 into_target, unsignedp, next_methods);
840
841 if (into_temp1 != 0 && into_temp2 != 0)
842 inter = expand_binop (word_mode, ior_optab, into_temp1, into_temp2,
843 into_target, unsignedp, next_methods);
844 else
845 inter = 0;
846
847 if (inter != 0 && inter != into_target)
848 emit_move_insn (into_target, inter);
849
850 outof_temp1 = expand_binop (word_mode, unsigned_shift,
851 into_input, first_shift_count,
852 NULL_RTX, unsignedp, next_methods);
853 outof_temp2 = expand_binop (word_mode, reverse_unsigned_shift,
854 outof_input, second_shift_count,
855 outof_target, unsignedp, next_methods);
856
857 if (inter != 0 && outof_temp1 != 0 && outof_temp2 != 0)
858 inter = expand_binop (word_mode, ior_optab,
859 outof_temp1, outof_temp2,
860 outof_target, unsignedp, next_methods);
861
862 if (inter != 0 && inter != outof_target)
863 emit_move_insn (outof_target, inter);
864 }
865
866 insns = get_insns ();
867 end_sequence ();
868
869 if (inter != 0)
870 {
871 if (binoptab->code != UNKNOWN)
872 equiv_value = gen_rtx_fmt_ee (binoptab->code, mode, op0, op1);
873 else
874 equiv_value = 0;
875
876 /* We can't make this a no conflict block if this is a word swap,
877 because the word swap case fails if the input and output values
878 are in the same register. */
879 if (shift_count != BITS_PER_WORD)
880 emit_no_conflict_block (insns, target, op0, op1, equiv_value);
881 else
882 emit_insns (insns);
883
884
885 return target;
886 }
887 }
888
889 /* These can be done a word at a time by propagating carries. */
890 if ((binoptab == add_optab || binoptab == sub_optab)
891 && class == MODE_INT
892 && GET_MODE_SIZE (mode) >= 2 * UNITS_PER_WORD
893 && binoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
894 {
895 int i;
896 rtx carry_tmp = gen_reg_rtx (word_mode);
897 optab otheroptab = binoptab == add_optab ? sub_optab : add_optab;
898 int nwords = GET_MODE_BITSIZE (mode) / BITS_PER_WORD;
899 rtx carry_in, carry_out;
900 rtx xop0, xop1;
901
902 /* We can handle either a 1 or -1 value for the carry. If STORE_FLAG
903 value is one of those, use it. Otherwise, use 1 since it is the
904 one easiest to get. */
905 #if STORE_FLAG_VALUE == 1 || STORE_FLAG_VALUE == -1
906 int normalizep = STORE_FLAG_VALUE;
907 #else
908 int normalizep = 1;
909 #endif
910
911 /* Prepare the operands. */
912 xop0 = force_reg (mode, op0);
913 xop1 = force_reg (mode, op1);
914
915 if (target == 0 || GET_CODE (target) != REG
916 || target == xop0 || target == xop1)
917 target = gen_reg_rtx (mode);
918
919 /* Indicate for flow that the entire target reg is being set. */
920 if (GET_CODE (target) == REG)
921 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
922
923 /* Do the actual arithmetic. */
924 for (i = 0; i < nwords; i++)
925 {
926 int index = (WORDS_BIG_ENDIAN ? nwords - i - 1 : i);
927 rtx target_piece = operand_subword (target, index, 1, mode);
928 rtx op0_piece = operand_subword_force (xop0, index, mode);
929 rtx op1_piece = operand_subword_force (xop1, index, mode);
930 rtx x;
931
932 /* Main add/subtract of the input operands. */
933 x = expand_binop (word_mode, binoptab,
934 op0_piece, op1_piece,
935 target_piece, unsignedp, next_methods);
936 if (x == 0)
937 break;
938
939 if (i + 1 < nwords)
940 {
941 /* Store carry from main add/subtract. */
942 carry_out = gen_reg_rtx (word_mode);
943 carry_out = emit_store_flag_force (carry_out,
944 (binoptab == add_optab
945 ? LTU : GTU),
946 x, op0_piece,
947 word_mode, 1, normalizep);
948 }
949
950 if (i > 0)
951 {
952 /* Add/subtract previous carry to main result. */
953 x = expand_binop (word_mode,
954 normalizep == 1 ? binoptab : otheroptab,
955 x, carry_in,
956 target_piece, 1, next_methods);
957 if (x == 0)
958 break;
959 else if (target_piece != x)
960 emit_move_insn (target_piece, x);
961
962 if (i + 1 < nwords)
963 {
964 /* THIS CODE HAS NOT BEEN TESTED. */
965 /* Get out carry from adding/subtracting carry in. */
966 carry_tmp = emit_store_flag_force (carry_tmp,
967 binoptab == add_optab
968 ? LTU : GTU,
969 x, carry_in,
970 word_mode, 1, normalizep);
971
972 /* Logical-ior the two poss. carry together. */
973 carry_out = expand_binop (word_mode, ior_optab,
974 carry_out, carry_tmp,
975 carry_out, 0, next_methods);
976 if (carry_out == 0)
977 break;
978 }
979 }
980
981 carry_in = carry_out;
982 }
983
984 if (i == GET_MODE_BITSIZE (mode) / BITS_PER_WORD)
985 {
986 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
987 {
988 rtx temp = emit_move_insn (target, target);
989
990 REG_NOTES (temp)
991 = gen_rtx_EXPR_LIST (REG_EQUAL,
992 gen_rtx_fmt_ee (binoptab->code, mode,
993 copy_rtx (xop0),
994 copy_rtx (xop1)),
995 REG_NOTES (temp));
996 }
997 return target;
998 }
999 else
1000 delete_insns_since (last);
1001 }
1002
1003 /* If we want to multiply two two-word values and have normal and widening
1004 multiplies of single-word values, we can do this with three smaller
1005 multiplications. Note that we do not make a REG_NO_CONFLICT block here
1006 because we are not operating on one word at a time.
1007
1008 The multiplication proceeds as follows:
1009 _______________________
1010 [__op0_high_|__op0_low__]
1011 _______________________
1012 * [__op1_high_|__op1_low__]
1013 _______________________________________________
1014 _______________________
1015 (1) [__op0_low__*__op1_low__]
1016 _______________________
1017 (2a) [__op0_low__*__op1_high_]
1018 _______________________
1019 (2b) [__op0_high_*__op1_low__]
1020 _______________________
1021 (3) [__op0_high_*__op1_high_]
1022
1023
1024 This gives a 4-word result. Since we are only interested in the
1025 lower 2 words, partial result (3) and the upper words of (2a) and
1026 (2b) don't need to be calculated. Hence (2a) and (2b) can be
1027 calculated using non-widening multiplication.
1028
1029 (1), however, needs to be calculated with an unsigned widening
1030 multiplication. If this operation is not directly supported we
1031 try using a signed widening multiplication and adjust the result.
1032 This adjustment works as follows:
1033
1034 If both operands are positive then no adjustment is needed.
1035
1036 If the operands have different signs, for example op0_low < 0 and
1037 op1_low >= 0, the instruction treats the most significant bit of
1038 op0_low as a sign bit instead of a bit with significance
1039 2**(BITS_PER_WORD-1), i.e. the instruction multiplies op1_low
1040 with 2**BITS_PER_WORD - op0_low, and two's complements the
1041 result. Conclusion: We need to add op1_low * 2**BITS_PER_WORD to
1042 the result.
1043
1044 Similarly, if both operands are negative, we need to add
1045 (op0_low + op1_low) * 2**BITS_PER_WORD.
1046
1047 We use a trick to adjust quickly. We logically shift op0_low right
1048 (op1_low) BITS_PER_WORD-1 steps to get 0 or 1, and add this to
1049 op0_high (op1_high) before it is used to calculate 2b (2a). If no
1050 logical shift exists, we do an arithmetic right shift and subtract
1051 the 0 or -1. */
1052
1053 if (binoptab == smul_optab
1054 && class == MODE_INT
1055 && GET_MODE_SIZE (mode) == 2 * UNITS_PER_WORD
1056 && smul_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1057 && add_optab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing
1058 && ((umul_widen_optab->handlers[(int) mode].insn_code
1059 != CODE_FOR_nothing)
1060 || (smul_widen_optab->handlers[(int) mode].insn_code
1061 != CODE_FOR_nothing)))
1062 {
1063 int low = (WORDS_BIG_ENDIAN ? 1 : 0);
1064 int high = (WORDS_BIG_ENDIAN ? 0 : 1);
1065 rtx op0_high = operand_subword_force (op0, high, mode);
1066 rtx op0_low = operand_subword_force (op0, low, mode);
1067 rtx op1_high = operand_subword_force (op1, high, mode);
1068 rtx op1_low = operand_subword_force (op1, low, mode);
1069 rtx product = 0;
1070 rtx op0_xhigh;
1071 rtx op1_xhigh;
1072
1073 /* If the target is the same as one of the inputs, don't use it. This
1074 prevents problems with the REG_EQUAL note. */
1075 if (target == op0 || target == op1
1076 || (target != 0 && GET_CODE (target) != REG))
1077 target = 0;
1078
1079 /* Multiply the two lower words to get a double-word product.
1080 If unsigned widening multiplication is available, use that;
1081 otherwise use the signed form and compensate. */
1082
1083 if (umul_widen_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1084 {
1085 product = expand_binop (mode, umul_widen_optab, op0_low, op1_low,
1086 target, 1, OPTAB_DIRECT);
1087
1088 /* If we didn't succeed, delete everything we did so far. */
1089 if (product == 0)
1090 delete_insns_since (last);
1091 else
1092 op0_xhigh = op0_high, op1_xhigh = op1_high;
1093 }
1094
1095 if (product == 0
1096 && smul_widen_optab->handlers[(int) mode].insn_code
1097 != CODE_FOR_nothing)
1098 {
1099 rtx wordm1 = GEN_INT (BITS_PER_WORD - 1);
1100 product = expand_binop (mode, smul_widen_optab, op0_low, op1_low,
1101 target, 1, OPTAB_DIRECT);
1102 op0_xhigh = expand_binop (word_mode, lshr_optab, op0_low, wordm1,
1103 NULL_RTX, 1, next_methods);
1104 if (op0_xhigh)
1105 op0_xhigh = expand_binop (word_mode, add_optab, op0_high,
1106 op0_xhigh, op0_xhigh, 0, next_methods);
1107 else
1108 {
1109 op0_xhigh = expand_binop (word_mode, ashr_optab, op0_low, wordm1,
1110 NULL_RTX, 0, next_methods);
1111 if (op0_xhigh)
1112 op0_xhigh = expand_binop (word_mode, sub_optab, op0_high,
1113 op0_xhigh, op0_xhigh, 0,
1114 next_methods);
1115 }
1116
1117 op1_xhigh = expand_binop (word_mode, lshr_optab, op1_low, wordm1,
1118 NULL_RTX, 1, next_methods);
1119 if (op1_xhigh)
1120 op1_xhigh = expand_binop (word_mode, add_optab, op1_high,
1121 op1_xhigh, op1_xhigh, 0, next_methods);
1122 else
1123 {
1124 op1_xhigh = expand_binop (word_mode, ashr_optab, op1_low, wordm1,
1125 NULL_RTX, 0, next_methods);
1126 if (op1_xhigh)
1127 op1_xhigh = expand_binop (word_mode, sub_optab, op1_high,
1128 op1_xhigh, op1_xhigh, 0,
1129 next_methods);
1130 }
1131 }
1132
1133 /* If we have been able to directly compute the product of the
1134 low-order words of the operands and perform any required adjustments
1135 of the operands, we proceed by trying two more multiplications
1136 and then computing the appropriate sum.
1137
1138 We have checked above that the required addition is provided.
1139 Full-word addition will normally always succeed, especially if
1140 it is provided at all, so we don't worry about its failure. The
1141 multiplication may well fail, however, so we do handle that. */
1142
1143 if (product && op0_xhigh && op1_xhigh)
1144 {
1145 rtx product_high = operand_subword (product, high, 1, mode);
1146 rtx temp = expand_binop (word_mode, binoptab, op0_low, op1_xhigh,
1147 NULL_RTX, 0, OPTAB_DIRECT);
1148
1149 if (temp != 0)
1150 temp = expand_binop (word_mode, add_optab, temp, product_high,
1151 product_high, 0, next_methods);
1152
1153 if (temp != 0 && temp != product_high)
1154 emit_move_insn (product_high, temp);
1155
1156 if (temp != 0)
1157 temp = expand_binop (word_mode, binoptab, op1_low, op0_xhigh,
1158 NULL_RTX, 0, OPTAB_DIRECT);
1159
1160 if (temp != 0)
1161 temp = expand_binop (word_mode, add_optab, temp,
1162 product_high, product_high,
1163 0, next_methods);
1164
1165 if (temp != 0 && temp != product_high)
1166 emit_move_insn (product_high, temp);
1167
1168 if (temp != 0)
1169 {
1170 if (mov_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1171 {
1172 temp = emit_move_insn (product, product);
1173 REG_NOTES (temp)
1174 = gen_rtx_EXPR_LIST (REG_EQUAL,
1175 gen_rtx_fmt_ee (MULT, mode,
1176 copy_rtx (op0),
1177 copy_rtx (op1)),
1178 REG_NOTES (temp));
1179 }
1180 return product;
1181 }
1182 }
1183
1184 /* If we get here, we couldn't do it for some reason even though we
1185 originally thought we could. Delete anything we've emitted in
1186 trying to do it. */
1187
1188 delete_insns_since (last);
1189 }
1190
1191 /* We need to open-code the complex type operations: '+, -, * and /' */
1192
1193 /* At this point we allow operations between two similar complex
1194 numbers, and also if one of the operands is not a complex number
1195 but rather of MODE_FLOAT or MODE_INT. However, the caller
1196 must make sure that the MODE of the non-complex operand matches
1197 the SUBMODE of the complex operand. */
1198
1199 if (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT)
1200 {
1201 rtx real0 = 0, imag0 = 0;
1202 rtx real1 = 0, imag1 = 0;
1203 rtx realr, imagr, res;
1204 rtx seq;
1205 rtx equiv_value;
1206 int ok = 0;
1207
1208 /* Find the correct mode for the real and imaginary parts */
1209 enum machine_mode submode
1210 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1211 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1212 0);
1213
1214 if (submode == BLKmode)
1215 abort ();
1216
1217 if (! target)
1218 target = gen_reg_rtx (mode);
1219
1220 start_sequence ();
1221
1222 realr = gen_realpart (submode, target);
1223 imagr = gen_imagpart (submode, target);
1224
1225 if (GET_MODE (op0) == mode)
1226 {
1227 real0 = gen_realpart (submode, op0);
1228 imag0 = gen_imagpart (submode, op0);
1229 }
1230 else
1231 real0 = op0;
1232
1233 if (GET_MODE (op1) == mode)
1234 {
1235 real1 = gen_realpart (submode, op1);
1236 imag1 = gen_imagpart (submode, op1);
1237 }
1238 else
1239 real1 = op1;
1240
1241 if (real0 == 0 || real1 == 0 || ! (imag0 != 0|| imag1 != 0))
1242 abort ();
1243
1244 switch (binoptab->code)
1245 {
1246 case PLUS:
1247 /* (a+ib) + (c+id) = (a+c) + i(b+d) */
1248 case MINUS:
1249 /* (a+ib) - (c+id) = (a-c) + i(b-d) */
1250 res = expand_binop (submode, binoptab, real0, real1,
1251 realr, unsignedp, methods);
1252
1253 if (res == 0)
1254 break;
1255 else if (res != realr)
1256 emit_move_insn (realr, res);
1257
1258 if (imag0 && imag1)
1259 res = expand_binop (submode, binoptab, imag0, imag1,
1260 imagr, unsignedp, methods);
1261 else if (imag0)
1262 res = imag0;
1263 else if (binoptab->code == MINUS)
1264 res = expand_unop (submode, neg_optab, imag1, imagr, unsignedp);
1265 else
1266 res = imag1;
1267
1268 if (res == 0)
1269 break;
1270 else if (res != imagr)
1271 emit_move_insn (imagr, res);
1272
1273 ok = 1;
1274 break;
1275
1276 case MULT:
1277 /* (a+ib) * (c+id) = (ac-bd) + i(ad+cb) */
1278
1279 if (imag0 && imag1)
1280 {
1281 rtx temp1, temp2;
1282
1283 /* Don't fetch these from memory more than once. */
1284 real0 = force_reg (submode, real0);
1285 real1 = force_reg (submode, real1);
1286 imag0 = force_reg (submode, imag0);
1287 imag1 = force_reg (submode, imag1);
1288
1289 temp1 = expand_binop (submode, binoptab, real0, real1, NULL_RTX,
1290 unsignedp, methods);
1291
1292 temp2 = expand_binop (submode, binoptab, imag0, imag1, NULL_RTX,
1293 unsignedp, methods);
1294
1295 if (temp1 == 0 || temp2 == 0)
1296 break;
1297
1298 res = expand_binop (submode, sub_optab, temp1, temp2,
1299 realr, unsignedp, methods);
1300
1301 if (res == 0)
1302 break;
1303 else if (res != realr)
1304 emit_move_insn (realr, res);
1305
1306 temp1 = expand_binop (submode, binoptab, real0, imag1,
1307 NULL_RTX, unsignedp, methods);
1308
1309 temp2 = expand_binop (submode, binoptab, real1, imag0,
1310 NULL_RTX, unsignedp, methods);
1311
1312 if (temp1 == 0 || temp2 == 0)
1313 break;
1314
1315 res = expand_binop (submode, add_optab, temp1, temp2,
1316 imagr, unsignedp, methods);
1317
1318 if (res == 0)
1319 break;
1320 else if (res != imagr)
1321 emit_move_insn (imagr, res);
1322
1323 ok = 1;
1324 }
1325 else
1326 {
1327 /* Don't fetch these from memory more than once. */
1328 real0 = force_reg (submode, real0);
1329 real1 = force_reg (submode, real1);
1330
1331 res = expand_binop (submode, binoptab, real0, real1,
1332 realr, unsignedp, methods);
1333 if (res == 0)
1334 break;
1335 else if (res != realr)
1336 emit_move_insn (realr, res);
1337
1338 if (imag0 != 0)
1339 res = expand_binop (submode, binoptab,
1340 real1, imag0, imagr, unsignedp, methods);
1341 else
1342 res = expand_binop (submode, binoptab,
1343 real0, imag1, imagr, unsignedp, methods);
1344
1345 if (res == 0)
1346 break;
1347 else if (res != imagr)
1348 emit_move_insn (imagr, res);
1349
1350 ok = 1;
1351 }
1352 break;
1353
1354 case DIV:
1355 /* (a+ib) / (c+id) = ((ac+bd)/(cc+dd)) + i((bc-ad)/(cc+dd)) */
1356
1357 if (imag1 == 0)
1358 {
1359 /* (a+ib) / (c+i0) = (a/c) + i(b/c) */
1360
1361 /* Don't fetch these from memory more than once. */
1362 real1 = force_reg (submode, real1);
1363
1364 /* Simply divide the real and imaginary parts by `c' */
1365 if (class == MODE_COMPLEX_FLOAT)
1366 res = expand_binop (submode, binoptab, real0, real1,
1367 realr, unsignedp, methods);
1368 else
1369 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1370 real0, real1, realr, unsignedp);
1371
1372 if (res == 0)
1373 break;
1374 else if (res != realr)
1375 emit_move_insn (realr, res);
1376
1377 if (class == MODE_COMPLEX_FLOAT)
1378 res = expand_binop (submode, binoptab, imag0, real1,
1379 imagr, unsignedp, methods);
1380 else
1381 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1382 imag0, real1, imagr, unsignedp);
1383
1384 if (res == 0)
1385 break;
1386 else if (res != imagr)
1387 emit_move_insn (imagr, res);
1388
1389 ok = 1;
1390 }
1391 else
1392 {
1393 /* Divisor is of complex type:
1394 X/(a+ib) */
1395 rtx divisor;
1396 rtx real_t, imag_t;
1397 rtx temp1, temp2;
1398
1399 /* Don't fetch these from memory more than once. */
1400 real0 = force_reg (submode, real0);
1401 real1 = force_reg (submode, real1);
1402
1403 if (imag0 != 0)
1404 imag0 = force_reg (submode, imag0);
1405
1406 imag1 = force_reg (submode, imag1);
1407
1408 /* Divisor: c*c + d*d */
1409 temp1 = expand_binop (submode, smul_optab, real1, real1,
1410 NULL_RTX, unsignedp, methods);
1411
1412 temp2 = expand_binop (submode, smul_optab, imag1, imag1,
1413 NULL_RTX, unsignedp, methods);
1414
1415 if (temp1 == 0 || temp2 == 0)
1416 break;
1417
1418 divisor = expand_binop (submode, add_optab, temp1, temp2,
1419 NULL_RTX, unsignedp, methods);
1420 if (divisor == 0)
1421 break;
1422
1423 if (imag0 == 0)
1424 {
1425 /* ((a)(c-id))/divisor */
1426 /* (a+i0) / (c+id) = (ac/(cc+dd)) + i(-ad/(cc+dd)) */
1427
1428 /* Calculate the dividend */
1429 real_t = expand_binop (submode, smul_optab, real0, real1,
1430 NULL_RTX, unsignedp, methods);
1431
1432 imag_t = expand_binop (submode, smul_optab, real0, imag1,
1433 NULL_RTX, unsignedp, methods);
1434
1435 if (real_t == 0 || imag_t == 0)
1436 break;
1437
1438 imag_t = expand_unop (submode, neg_optab, imag_t,
1439 NULL_RTX, unsignedp);
1440 }
1441 else
1442 {
1443 /* ((a+ib)(c-id))/divider */
1444 /* Calculate the dividend */
1445 temp1 = expand_binop (submode, smul_optab, real0, real1,
1446 NULL_RTX, unsignedp, methods);
1447
1448 temp2 = expand_binop (submode, smul_optab, imag0, imag1,
1449 NULL_RTX, unsignedp, methods);
1450
1451 if (temp1 == 0 || temp2 == 0)
1452 break;
1453
1454 real_t = expand_binop (submode, add_optab, temp1, temp2,
1455 NULL_RTX, unsignedp, methods);
1456
1457 temp1 = expand_binop (submode, smul_optab, imag0, real1,
1458 NULL_RTX, unsignedp, methods);
1459
1460 temp2 = expand_binop (submode, smul_optab, real0, imag1,
1461 NULL_RTX, unsignedp, methods);
1462
1463 if (temp1 == 0 || temp2 == 0)
1464 break;
1465
1466 imag_t = expand_binop (submode, sub_optab, temp1, temp2,
1467 NULL_RTX, unsignedp, methods);
1468
1469 if (real_t == 0 || imag_t == 0)
1470 break;
1471 }
1472
1473 if (class == MODE_COMPLEX_FLOAT)
1474 res = expand_binop (submode, binoptab, real_t, divisor,
1475 realr, unsignedp, methods);
1476 else
1477 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1478 real_t, divisor, realr, unsignedp);
1479
1480 if (res == 0)
1481 break;
1482 else if (res != realr)
1483 emit_move_insn (realr, res);
1484
1485 if (class == MODE_COMPLEX_FLOAT)
1486 res = expand_binop (submode, binoptab, imag_t, divisor,
1487 imagr, unsignedp, methods);
1488 else
1489 res = expand_divmod (0, TRUNC_DIV_EXPR, submode,
1490 imag_t, divisor, imagr, unsignedp);
1491
1492 if (res == 0)
1493 break;
1494 else if (res != imagr)
1495 emit_move_insn (imagr, res);
1496
1497 ok = 1;
1498 }
1499 break;
1500
1501 default:
1502 abort ();
1503 }
1504
1505 seq = get_insns ();
1506 end_sequence ();
1507
1508 if (ok)
1509 {
1510 if (binoptab->code != UNKNOWN)
1511 equiv_value
1512 = gen_rtx_fmt_ee (binoptab->code, mode,
1513 copy_rtx (op0), copy_rtx (op1));
1514 else
1515 equiv_value = 0;
1516
1517 emit_no_conflict_block (seq, target, op0, op1, equiv_value);
1518
1519 return target;
1520 }
1521 }
1522
1523 /* It can't be open-coded in this mode.
1524 Use a library call if one is available and caller says that's ok. */
1525
1526 if (binoptab->handlers[(int) mode].libfunc
1527 && (methods == OPTAB_LIB || methods == OPTAB_LIB_WIDEN))
1528 {
1529 rtx insns;
1530 rtx op1x = op1;
1531 enum machine_mode op1_mode = mode;
1532 rtx value;
1533
1534 start_sequence ();
1535
1536 if (shift_op)
1537 {
1538 op1_mode = word_mode;
1539 /* Specify unsigned here,
1540 since negative shift counts are meaningless. */
1541 op1x = convert_to_mode (word_mode, op1, 1);
1542 }
1543
1544 if (GET_MODE (op0) != VOIDmode
1545 && GET_MODE (op0) != mode)
1546 op0 = convert_to_mode (mode, op0, unsignedp);
1547
1548 /* Pass 1 for NO_QUEUE so we don't lose any increments
1549 if the libcall is cse'd or moved. */
1550 value = emit_library_call_value (binoptab->handlers[(int) mode].libfunc,
1551 NULL_RTX, 1, mode, 2,
1552 op0, mode, op1x, op1_mode);
1553
1554 insns = get_insns ();
1555 end_sequence ();
1556
1557 target = gen_reg_rtx (mode);
1558 emit_libcall_block (insns, target, value,
1559 gen_rtx_fmt_ee (binoptab->code, mode, op0, op1));
1560
1561 return target;
1562 }
1563
1564 delete_insns_since (last);
1565
1566 /* It can't be done in this mode. Can we do it in a wider mode? */
1567
1568 if (! (methods == OPTAB_WIDEN || methods == OPTAB_LIB_WIDEN
1569 || methods == OPTAB_MUST_WIDEN))
1570 {
1571 /* Caller says, don't even try. */
1572 delete_insns_since (entry_last);
1573 return 0;
1574 }
1575
1576 /* Compute the value of METHODS to pass to recursive calls.
1577 Don't allow widening to be tried recursively. */
1578
1579 methods = (methods == OPTAB_LIB_WIDEN ? OPTAB_LIB : OPTAB_DIRECT);
1580
1581 /* Look for a wider mode of the same class for which it appears we can do
1582 the operation. */
1583
1584 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1585 {
1586 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1587 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1588 {
1589 if ((binoptab->handlers[(int) wider_mode].insn_code
1590 != CODE_FOR_nothing)
1591 || (methods == OPTAB_LIB
1592 && binoptab->handlers[(int) wider_mode].libfunc))
1593 {
1594 rtx xop0 = op0, xop1 = op1;
1595 int no_extend = 0;
1596
1597 /* For certain integer operations, we need not actually extend
1598 the narrow operands, as long as we will truncate
1599 the results to the same narrowness. */
1600
1601 if ((binoptab == ior_optab || binoptab == and_optab
1602 || binoptab == xor_optab
1603 || binoptab == add_optab || binoptab == sub_optab
1604 || binoptab == smul_optab || binoptab == ashl_optab)
1605 && class == MODE_INT)
1606 no_extend = 1;
1607
1608 xop0 = widen_operand (xop0, wider_mode, mode,
1609 unsignedp, no_extend);
1610
1611 /* The second operand of a shift must always be extended. */
1612 xop1 = widen_operand (xop1, wider_mode, mode, unsignedp,
1613 no_extend && binoptab != ashl_optab);
1614
1615 temp = expand_binop (wider_mode, binoptab, xop0, xop1, NULL_RTX,
1616 unsignedp, methods);
1617 if (temp)
1618 {
1619 if (class != MODE_INT)
1620 {
1621 if (target == 0)
1622 target = gen_reg_rtx (mode);
1623 convert_move (target, temp, 0);
1624 return target;
1625 }
1626 else
1627 return gen_lowpart (mode, temp);
1628 }
1629 else
1630 delete_insns_since (last);
1631 }
1632 }
1633 }
1634
1635 delete_insns_since (entry_last);
1636 return 0;
1637 }
1638 \f
1639 /* Expand a binary operator which has both signed and unsigned forms.
1640 UOPTAB is the optab for unsigned operations, and SOPTAB is for
1641 signed operations.
1642
1643 If we widen unsigned operands, we may use a signed wider operation instead
1644 of an unsigned wider operation, since the result would be the same. */
1645
1646 rtx
1647 sign_expand_binop (mode, uoptab, soptab, op0, op1, target, unsignedp, methods)
1648 enum machine_mode mode;
1649 optab uoptab, soptab;
1650 rtx op0, op1, target;
1651 int unsignedp;
1652 enum optab_methods methods;
1653 {
1654 register rtx temp;
1655 optab direct_optab = unsignedp ? uoptab : soptab;
1656 struct optab wide_soptab;
1657
1658 /* Do it without widening, if possible. */
1659 temp = expand_binop (mode, direct_optab, op0, op1, target,
1660 unsignedp, OPTAB_DIRECT);
1661 if (temp || methods == OPTAB_DIRECT)
1662 return temp;
1663
1664 /* Try widening to a signed int. Make a fake signed optab that
1665 hides any signed insn for direct use. */
1666 wide_soptab = *soptab;
1667 wide_soptab.handlers[(int) mode].insn_code = CODE_FOR_nothing;
1668 wide_soptab.handlers[(int) mode].libfunc = 0;
1669
1670 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1671 unsignedp, OPTAB_WIDEN);
1672
1673 /* For unsigned operands, try widening to an unsigned int. */
1674 if (temp == 0 && unsignedp)
1675 temp = expand_binop (mode, uoptab, op0, op1, target,
1676 unsignedp, OPTAB_WIDEN);
1677 if (temp || methods == OPTAB_WIDEN)
1678 return temp;
1679
1680 /* Use the right width lib call if that exists. */
1681 temp = expand_binop (mode, direct_optab, op0, op1, target, unsignedp, OPTAB_LIB);
1682 if (temp || methods == OPTAB_LIB)
1683 return temp;
1684
1685 /* Must widen and use a lib call, use either signed or unsigned. */
1686 temp = expand_binop (mode, &wide_soptab, op0, op1, target,
1687 unsignedp, methods);
1688 if (temp != 0)
1689 return temp;
1690 if (unsignedp)
1691 return expand_binop (mode, uoptab, op0, op1, target,
1692 unsignedp, methods);
1693 return 0;
1694 }
1695 \f
1696 /* Generate code to perform an operation specified by BINOPTAB
1697 on operands OP0 and OP1, with two results to TARG1 and TARG2.
1698 We assume that the order of the operands for the instruction
1699 is TARG0, OP0, OP1, TARG1, which would fit a pattern like
1700 [(set TARG0 (operate OP0 OP1)) (set TARG1 (operate ...))].
1701
1702 Either TARG0 or TARG1 may be zero, but what that means is that
1703 the result is not actually wanted. We will generate it into
1704 a dummy pseudo-reg and discard it. They may not both be zero.
1705
1706 Returns 1 if this operation can be performed; 0 if not. */
1707
1708 int
1709 expand_twoval_binop (binoptab, op0, op1, targ0, targ1, unsignedp)
1710 optab binoptab;
1711 rtx op0, op1;
1712 rtx targ0, targ1;
1713 int unsignedp;
1714 {
1715 enum machine_mode mode = GET_MODE (targ0 ? targ0 : targ1);
1716 enum mode_class class;
1717 enum machine_mode wider_mode;
1718 rtx entry_last = get_last_insn ();
1719 rtx last;
1720
1721 class = GET_MODE_CLASS (mode);
1722
1723 op0 = protect_from_queue (op0, 0);
1724 op1 = protect_from_queue (op1, 0);
1725
1726 if (flag_force_mem)
1727 {
1728 op0 = force_not_mem (op0);
1729 op1 = force_not_mem (op1);
1730 }
1731
1732 /* If we are inside an appropriately-short loop and one operand is an
1733 expensive constant, force it into a register. */
1734 if (CONSTANT_P (op0) && preserve_subexpressions_p ()
1735 && rtx_cost (op0, binoptab->code) > 2)
1736 op0 = force_reg (mode, op0);
1737
1738 if (CONSTANT_P (op1) && preserve_subexpressions_p ()
1739 && rtx_cost (op1, binoptab->code) > 2)
1740 op1 = force_reg (mode, op1);
1741
1742 if (targ0)
1743 targ0 = protect_from_queue (targ0, 1);
1744 else
1745 targ0 = gen_reg_rtx (mode);
1746 if (targ1)
1747 targ1 = protect_from_queue (targ1, 1);
1748 else
1749 targ1 = gen_reg_rtx (mode);
1750
1751 /* Record where to go back to if we fail. */
1752 last = get_last_insn ();
1753
1754 if (binoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1755 {
1756 int icode = (int) binoptab->handlers[(int) mode].insn_code;
1757 enum machine_mode mode0 = insn_operand_mode[icode][1];
1758 enum machine_mode mode1 = insn_operand_mode[icode][2];
1759 rtx pat;
1760 rtx xop0 = op0, xop1 = op1;
1761
1762 /* In case this insn wants input operands in modes different from the
1763 result, convert the operands. */
1764 if (GET_MODE (op0) != VOIDmode && GET_MODE (op0) != mode0)
1765 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1766
1767 if (GET_MODE (op1) != VOIDmode && GET_MODE (op1) != mode1)
1768 xop1 = convert_to_mode (mode1, xop1, unsignedp);
1769
1770 /* Now, if insn doesn't accept these operands, put them into pseudos. */
1771 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
1772 xop0 = copy_to_mode_reg (mode0, xop0);
1773
1774 if (! (*insn_operand_predicate[icode][2]) (xop1, mode1))
1775 xop1 = copy_to_mode_reg (mode1, xop1);
1776
1777 /* We could handle this, but we should always be called with a pseudo
1778 for our targets and all insns should take them as outputs. */
1779 if (! (*insn_operand_predicate[icode][0]) (targ0, mode)
1780 || ! (*insn_operand_predicate[icode][3]) (targ1, mode))
1781 abort ();
1782
1783 pat = GEN_FCN (icode) (targ0, xop0, xop1, targ1);
1784 if (pat)
1785 {
1786 emit_insn (pat);
1787 return 1;
1788 }
1789 else
1790 delete_insns_since (last);
1791 }
1792
1793 /* It can't be done in this mode. Can we do it in a wider mode? */
1794
1795 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1796 {
1797 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1798 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1799 {
1800 if (binoptab->handlers[(int) wider_mode].insn_code
1801 != CODE_FOR_nothing)
1802 {
1803 register rtx t0 = gen_reg_rtx (wider_mode);
1804 register rtx t1 = gen_reg_rtx (wider_mode);
1805
1806 if (expand_twoval_binop (binoptab,
1807 convert_modes (wider_mode, mode, op0,
1808 unsignedp),
1809 convert_modes (wider_mode, mode, op1,
1810 unsignedp),
1811 t0, t1, unsignedp))
1812 {
1813 convert_move (targ0, t0, unsignedp);
1814 convert_move (targ1, t1, unsignedp);
1815 return 1;
1816 }
1817 else
1818 delete_insns_since (last);
1819 }
1820 }
1821 }
1822
1823 delete_insns_since (entry_last);
1824 return 0;
1825 }
1826 \f
1827 /* Generate code to perform an operation specified by UNOPTAB
1828 on operand OP0, with result having machine-mode MODE.
1829
1830 UNSIGNEDP is for the case where we have to widen the operands
1831 to perform the operation. It says to use zero-extension.
1832
1833 If TARGET is nonzero, the value
1834 is generated there, if it is convenient to do so.
1835 In all cases an rtx is returned for the locus of the value;
1836 this may or may not be TARGET. */
1837
1838 rtx
1839 expand_unop (mode, unoptab, op0, target, unsignedp)
1840 enum machine_mode mode;
1841 optab unoptab;
1842 rtx op0;
1843 rtx target;
1844 int unsignedp;
1845 {
1846 enum mode_class class;
1847 enum machine_mode wider_mode;
1848 register rtx temp;
1849 rtx last = get_last_insn ();
1850 rtx pat;
1851
1852 class = GET_MODE_CLASS (mode);
1853
1854 op0 = protect_from_queue (op0, 0);
1855
1856 if (flag_force_mem)
1857 {
1858 op0 = force_not_mem (op0);
1859 }
1860
1861 if (target)
1862 target = protect_from_queue (target, 1);
1863
1864 if (unoptab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
1865 {
1866 int icode = (int) unoptab->handlers[(int) mode].insn_code;
1867 enum machine_mode mode0 = insn_operand_mode[icode][1];
1868 rtx xop0 = op0;
1869
1870 if (target)
1871 temp = target;
1872 else
1873 temp = gen_reg_rtx (mode);
1874
1875 if (GET_MODE (xop0) != VOIDmode
1876 && GET_MODE (xop0) != mode0)
1877 xop0 = convert_to_mode (mode0, xop0, unsignedp);
1878
1879 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
1880
1881 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
1882 xop0 = copy_to_mode_reg (mode0, xop0);
1883
1884 if (! (*insn_operand_predicate[icode][0]) (temp, mode))
1885 temp = gen_reg_rtx (mode);
1886
1887 pat = GEN_FCN (icode) (temp, xop0);
1888 if (pat)
1889 {
1890 if (GET_CODE (pat) == SEQUENCE
1891 && ! add_equal_note (pat, temp, unoptab->code, xop0, NULL_RTX))
1892 {
1893 delete_insns_since (last);
1894 return expand_unop (mode, unoptab, op0, NULL_RTX, unsignedp);
1895 }
1896
1897 emit_insn (pat);
1898
1899 return temp;
1900 }
1901 else
1902 delete_insns_since (last);
1903 }
1904
1905 /* It can't be done in this mode. Can we open-code it in a wider mode? */
1906
1907 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
1908 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
1909 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
1910 {
1911 if (unoptab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
1912 {
1913 rtx xop0 = op0;
1914
1915 /* For certain operations, we need not actually extend
1916 the narrow operand, as long as we will truncate the
1917 results to the same narrowness. */
1918
1919 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
1920 (unoptab == neg_optab
1921 || unoptab == one_cmpl_optab)
1922 && class == MODE_INT);
1923
1924 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
1925 unsignedp);
1926
1927 if (temp)
1928 {
1929 if (class != MODE_INT)
1930 {
1931 if (target == 0)
1932 target = gen_reg_rtx (mode);
1933 convert_move (target, temp, 0);
1934 return target;
1935 }
1936 else
1937 return gen_lowpart (mode, temp);
1938 }
1939 else
1940 delete_insns_since (last);
1941 }
1942 }
1943
1944 /* These can be done a word at a time. */
1945 if (unoptab == one_cmpl_optab
1946 && class == MODE_INT
1947 && GET_MODE_SIZE (mode) > UNITS_PER_WORD
1948 && unoptab->handlers[(int) word_mode].insn_code != CODE_FOR_nothing)
1949 {
1950 int i;
1951 rtx insns;
1952
1953 if (target == 0 || target == op0)
1954 target = gen_reg_rtx (mode);
1955
1956 start_sequence ();
1957
1958 /* Do the actual arithmetic. */
1959 for (i = 0; i < GET_MODE_BITSIZE (mode) / BITS_PER_WORD; i++)
1960 {
1961 rtx target_piece = operand_subword (target, i, 1, mode);
1962 rtx x = expand_unop (word_mode, unoptab,
1963 operand_subword_force (op0, i, mode),
1964 target_piece, unsignedp);
1965 if (target_piece != x)
1966 emit_move_insn (target_piece, x);
1967 }
1968
1969 insns = get_insns ();
1970 end_sequence ();
1971
1972 emit_no_conflict_block (insns, target, op0, NULL_RTX,
1973 gen_rtx_fmt_e (unoptab->code, mode,
1974 copy_rtx (op0)));
1975 return target;
1976 }
1977
1978 /* Open-code the complex negation operation. */
1979 else if (unoptab == neg_optab
1980 && (class == MODE_COMPLEX_FLOAT || class == MODE_COMPLEX_INT))
1981 {
1982 rtx target_piece;
1983 rtx x;
1984 rtx seq;
1985
1986 /* Find the correct mode for the real and imaginary parts */
1987 enum machine_mode submode
1988 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
1989 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
1990 0);
1991
1992 if (submode == BLKmode)
1993 abort ();
1994
1995 if (target == 0)
1996 target = gen_reg_rtx (mode);
1997
1998 start_sequence ();
1999
2000 target_piece = gen_imagpart (submode, target);
2001 x = expand_unop (submode, unoptab,
2002 gen_imagpart (submode, op0),
2003 target_piece, unsignedp);
2004 if (target_piece != x)
2005 emit_move_insn (target_piece, x);
2006
2007 target_piece = gen_realpart (submode, target);
2008 x = expand_unop (submode, unoptab,
2009 gen_realpart (submode, op0),
2010 target_piece, unsignedp);
2011 if (target_piece != x)
2012 emit_move_insn (target_piece, x);
2013
2014 seq = get_insns ();
2015 end_sequence ();
2016
2017 emit_no_conflict_block (seq, target, op0, 0,
2018 gen_rtx_fmt_e (unoptab->code, mode,
2019 copy_rtx (op0)));
2020 return target;
2021 }
2022
2023 /* Now try a library call in this mode. */
2024 if (unoptab->handlers[(int) mode].libfunc)
2025 {
2026 rtx insns;
2027 rtx value;
2028
2029 start_sequence ();
2030
2031 /* Pass 1 for NO_QUEUE so we don't lose any increments
2032 if the libcall is cse'd or moved. */
2033 value = emit_library_call_value (unoptab->handlers[(int) mode].libfunc,
2034 NULL_RTX, 1, mode, 1, op0, mode);
2035 insns = get_insns ();
2036 end_sequence ();
2037
2038 target = gen_reg_rtx (mode);
2039 emit_libcall_block (insns, target, value,
2040 gen_rtx_fmt_e (unoptab->code, mode, op0));
2041
2042 return target;
2043 }
2044
2045 /* It can't be done in this mode. Can we do it in a wider mode? */
2046
2047 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2048 {
2049 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2050 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2051 {
2052 if ((unoptab->handlers[(int) wider_mode].insn_code
2053 != CODE_FOR_nothing)
2054 || unoptab->handlers[(int) wider_mode].libfunc)
2055 {
2056 rtx xop0 = op0;
2057
2058 /* For certain operations, we need not actually extend
2059 the narrow operand, as long as we will truncate the
2060 results to the same narrowness. */
2061
2062 xop0 = widen_operand (xop0, wider_mode, mode, unsignedp,
2063 (unoptab == neg_optab
2064 || unoptab == one_cmpl_optab)
2065 && class == MODE_INT);
2066
2067 temp = expand_unop (wider_mode, unoptab, xop0, NULL_RTX,
2068 unsignedp);
2069
2070 if (temp)
2071 {
2072 if (class != MODE_INT)
2073 {
2074 if (target == 0)
2075 target = gen_reg_rtx (mode);
2076 convert_move (target, temp, 0);
2077 return target;
2078 }
2079 else
2080 return gen_lowpart (mode, temp);
2081 }
2082 else
2083 delete_insns_since (last);
2084 }
2085 }
2086 }
2087
2088 /* If there is no negate operation, try doing a subtract from zero.
2089 The US Software GOFAST library needs this. */
2090 if (unoptab == neg_optab)
2091 {
2092 rtx temp;
2093 temp = expand_binop (mode, sub_optab, CONST0_RTX (mode), op0,
2094 target, unsignedp, OPTAB_LIB_WIDEN);
2095 if (temp)
2096 return temp;
2097 }
2098
2099 return 0;
2100 }
2101 \f
2102 /* Emit code to compute the absolute value of OP0, with result to
2103 TARGET if convenient. (TARGET may be 0.) The return value says
2104 where the result actually is to be found.
2105
2106 MODE is the mode of the operand; the mode of the result is
2107 different but can be deduced from MODE.
2108
2109 UNSIGNEDP is relevant if extension is needed. */
2110
2111 rtx
2112 expand_abs (mode, op0, target, unsignedp, safe)
2113 enum machine_mode mode;
2114 rtx op0;
2115 rtx target;
2116 int unsignedp;
2117 int safe;
2118 {
2119 rtx temp, op1;
2120
2121 /* First try to do it with a special abs instruction. */
2122 temp = expand_unop (mode, abs_optab, op0, target, 0);
2123 if (temp != 0)
2124 return temp;
2125
2126 /* If this machine has expensive jumps, we can do integer absolute
2127 value of X as (((signed) x >> (W-1)) ^ x) - ((signed) x >> (W-1)),
2128 where W is the width of MODE. */
2129
2130 if (GET_MODE_CLASS (mode) == MODE_INT && BRANCH_COST >= 2)
2131 {
2132 rtx extended = expand_shift (RSHIFT_EXPR, mode, op0,
2133 size_int (GET_MODE_BITSIZE (mode) - 1),
2134 NULL_RTX, 0);
2135
2136 temp = expand_binop (mode, xor_optab, extended, op0, target, 0,
2137 OPTAB_LIB_WIDEN);
2138 if (temp != 0)
2139 temp = expand_binop (mode, sub_optab, temp, extended, target, 0,
2140 OPTAB_LIB_WIDEN);
2141
2142 if (temp != 0)
2143 return temp;
2144 }
2145
2146 /* If that does not win, use conditional jump and negate. */
2147
2148 /* It is safe to use the target if it is the same
2149 as the source if this is also a pseudo register */
2150 if (op0 == target && GET_CODE (op0) == REG
2151 && REGNO (op0) >= FIRST_PSEUDO_REGISTER)
2152 safe = 1;
2153
2154 op1 = gen_label_rtx ();
2155 if (target == 0 || ! safe
2156 || GET_MODE (target) != mode
2157 || (GET_CODE (target) == MEM && MEM_VOLATILE_P (target))
2158 || (GET_CODE (target) == REG
2159 && REGNO (target) < FIRST_PSEUDO_REGISTER))
2160 target = gen_reg_rtx (mode);
2161
2162 emit_move_insn (target, op0);
2163 NO_DEFER_POP;
2164
2165 /* If this mode is an integer too wide to compare properly,
2166 compare word by word. Rely on CSE to optimize constant cases. */
2167 if (GET_MODE_CLASS (mode) == MODE_INT && ! can_compare_p (mode))
2168 do_jump_by_parts_greater_rtx (mode, 0, target, const0_rtx,
2169 NULL_RTX, op1);
2170 else
2171 {
2172 temp = compare_from_rtx (target, CONST0_RTX (mode), GE, 0, mode,
2173 NULL_RTX, 0);
2174 if (temp == const1_rtx)
2175 return target;
2176 else if (temp != const0_rtx)
2177 {
2178 if (bcc_gen_fctn[(int) GET_CODE (temp)] != 0)
2179 emit_jump_insn ((*bcc_gen_fctn[(int) GET_CODE (temp)]) (op1));
2180 else
2181 abort ();
2182 }
2183 }
2184
2185 op0 = expand_unop (mode, neg_optab, target, target, 0);
2186 if (op0 != target)
2187 emit_move_insn (target, op0);
2188 emit_label (op1);
2189 OK_DEFER_POP;
2190 return target;
2191 }
2192 \f
2193 /* Emit code to compute the absolute value of OP0, with result to
2194 TARGET if convenient. (TARGET may be 0.) The return value says
2195 where the result actually is to be found.
2196
2197 MODE is the mode of the operand; the mode of the result is
2198 different but can be deduced from MODE.
2199
2200 UNSIGNEDP is relevant for complex integer modes. */
2201
2202 rtx
2203 expand_complex_abs (mode, op0, target, unsignedp)
2204 enum machine_mode mode;
2205 rtx op0;
2206 rtx target;
2207 int unsignedp;
2208 {
2209 enum mode_class class = GET_MODE_CLASS (mode);
2210 enum machine_mode wider_mode;
2211 register rtx temp;
2212 rtx entry_last = get_last_insn ();
2213 rtx last;
2214 rtx pat;
2215
2216 /* Find the correct mode for the real and imaginary parts. */
2217 enum machine_mode submode
2218 = mode_for_size (GET_MODE_UNIT_SIZE (mode) * BITS_PER_UNIT,
2219 class == MODE_COMPLEX_INT ? MODE_INT : MODE_FLOAT,
2220 0);
2221
2222 if (submode == BLKmode)
2223 abort ();
2224
2225 op0 = protect_from_queue (op0, 0);
2226
2227 if (flag_force_mem)
2228 {
2229 op0 = force_not_mem (op0);
2230 }
2231
2232 last = get_last_insn ();
2233
2234 if (target)
2235 target = protect_from_queue (target, 1);
2236
2237 if (abs_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2238 {
2239 int icode = (int) abs_optab->handlers[(int) mode].insn_code;
2240 enum machine_mode mode0 = insn_operand_mode[icode][1];
2241 rtx xop0 = op0;
2242
2243 if (target)
2244 temp = target;
2245 else
2246 temp = gen_reg_rtx (submode);
2247
2248 if (GET_MODE (xop0) != VOIDmode
2249 && GET_MODE (xop0) != mode0)
2250 xop0 = convert_to_mode (mode0, xop0, unsignedp);
2251
2252 /* Now, if insn doesn't accept our operand, put it into a pseudo. */
2253
2254 if (! (*insn_operand_predicate[icode][1]) (xop0, mode0))
2255 xop0 = copy_to_mode_reg (mode0, xop0);
2256
2257 if (! (*insn_operand_predicate[icode][0]) (temp, submode))
2258 temp = gen_reg_rtx (submode);
2259
2260 pat = GEN_FCN (icode) (temp, xop0);
2261 if (pat)
2262 {
2263 if (GET_CODE (pat) == SEQUENCE
2264 && ! add_equal_note (pat, temp, abs_optab->code, xop0, NULL_RTX))
2265 {
2266 delete_insns_since (last);
2267 return expand_unop (mode, abs_optab, op0, NULL_RTX, unsignedp);
2268 }
2269
2270 emit_insn (pat);
2271
2272 return temp;
2273 }
2274 else
2275 delete_insns_since (last);
2276 }
2277
2278 /* It can't be done in this mode. Can we open-code it in a wider mode? */
2279
2280 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2281 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2282 {
2283 if (abs_optab->handlers[(int) wider_mode].insn_code != CODE_FOR_nothing)
2284 {
2285 rtx xop0 = op0;
2286
2287 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2288 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2289
2290 if (temp)
2291 {
2292 if (class != MODE_COMPLEX_INT)
2293 {
2294 if (target == 0)
2295 target = gen_reg_rtx (submode);
2296 convert_move (target, temp, 0);
2297 return target;
2298 }
2299 else
2300 return gen_lowpart (submode, temp);
2301 }
2302 else
2303 delete_insns_since (last);
2304 }
2305 }
2306
2307 /* Open-code the complex absolute-value operation
2308 if we can open-code sqrt. Otherwise it's not worth while. */
2309 if (sqrt_optab->handlers[(int) submode].insn_code != CODE_FOR_nothing)
2310 {
2311 rtx real, imag, total;
2312
2313 real = gen_realpart (submode, op0);
2314 imag = gen_imagpart (submode, op0);
2315
2316 /* Square both parts. */
2317 real = expand_mult (submode, real, real, NULL_RTX, 0);
2318 imag = expand_mult (submode, imag, imag, NULL_RTX, 0);
2319
2320 /* Sum the parts. */
2321 total = expand_binop (submode, add_optab, real, imag, NULL_RTX,
2322 0, OPTAB_LIB_WIDEN);
2323
2324 /* Get sqrt in TARGET. Set TARGET to where the result is. */
2325 target = expand_unop (submode, sqrt_optab, total, target, 0);
2326 if (target == 0)
2327 delete_insns_since (last);
2328 else
2329 return target;
2330 }
2331
2332 /* Now try a library call in this mode. */
2333 if (abs_optab->handlers[(int) mode].libfunc)
2334 {
2335 rtx insns;
2336 rtx value;
2337
2338 start_sequence ();
2339
2340 /* Pass 1 for NO_QUEUE so we don't lose any increments
2341 if the libcall is cse'd or moved. */
2342 value = emit_library_call_value (abs_optab->handlers[(int) mode].libfunc,
2343 NULL_RTX, 1, submode, 1, op0, mode);
2344 insns = get_insns ();
2345 end_sequence ();
2346
2347 target = gen_reg_rtx (submode);
2348 emit_libcall_block (insns, target, value,
2349 gen_rtx_fmt_e (abs_optab->code, mode, op0));
2350
2351 return target;
2352 }
2353
2354 /* It can't be done in this mode. Can we do it in a wider mode? */
2355
2356 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2357 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2358 {
2359 if ((abs_optab->handlers[(int) wider_mode].insn_code
2360 != CODE_FOR_nothing)
2361 || abs_optab->handlers[(int) wider_mode].libfunc)
2362 {
2363 rtx xop0 = op0;
2364
2365 xop0 = convert_modes (wider_mode, mode, xop0, unsignedp);
2366
2367 temp = expand_complex_abs (wider_mode, xop0, NULL_RTX, unsignedp);
2368
2369 if (temp)
2370 {
2371 if (class != MODE_COMPLEX_INT)
2372 {
2373 if (target == 0)
2374 target = gen_reg_rtx (submode);
2375 convert_move (target, temp, 0);
2376 return target;
2377 }
2378 else
2379 return gen_lowpart (submode, temp);
2380 }
2381 else
2382 delete_insns_since (last);
2383 }
2384 }
2385
2386 delete_insns_since (entry_last);
2387 return 0;
2388 }
2389 \f
2390 /* Generate an instruction whose insn-code is INSN_CODE,
2391 with two operands: an output TARGET and an input OP0.
2392 TARGET *must* be nonzero, and the output is always stored there.
2393 CODE is an rtx code such that (CODE OP0) is an rtx that describes
2394 the value that is stored into TARGET. */
2395
2396 void
2397 emit_unop_insn (icode, target, op0, code)
2398 int icode;
2399 rtx target;
2400 rtx op0;
2401 enum rtx_code code;
2402 {
2403 register rtx temp;
2404 enum machine_mode mode0 = insn_operand_mode[icode][1];
2405 rtx pat;
2406
2407 temp = target = protect_from_queue (target, 1);
2408
2409 op0 = protect_from_queue (op0, 0);
2410
2411 /* Sign and zero extension from memory is often done specially on
2412 RISC machines, so forcing into a register here can pessimize
2413 code. */
2414 if (flag_force_mem && code != SIGN_EXTEND && code != ZERO_EXTEND)
2415 op0 = force_not_mem (op0);
2416
2417 /* Now, if insn does not accept our operands, put them into pseudos. */
2418
2419 if (! (*insn_operand_predicate[icode][1]) (op0, mode0))
2420 op0 = copy_to_mode_reg (mode0, op0);
2421
2422 if (! (*insn_operand_predicate[icode][0]) (temp, GET_MODE (temp))
2423 || (flag_force_mem && GET_CODE (temp) == MEM))
2424 temp = gen_reg_rtx (GET_MODE (temp));
2425
2426 pat = GEN_FCN (icode) (temp, op0);
2427
2428 if (GET_CODE (pat) == SEQUENCE && code != UNKNOWN)
2429 add_equal_note (pat, temp, code, op0, NULL_RTX);
2430
2431 emit_insn (pat);
2432
2433 if (temp != target)
2434 emit_move_insn (target, temp);
2435 }
2436 \f
2437 /* Emit code to perform a series of operations on a multi-word quantity, one
2438 word at a time.
2439
2440 Such a block is preceded by a CLOBBER of the output, consists of multiple
2441 insns, each setting one word of the output, and followed by a SET copying
2442 the output to itself.
2443
2444 Each of the insns setting words of the output receives a REG_NO_CONFLICT
2445 note indicating that it doesn't conflict with the (also multi-word)
2446 inputs. The entire block is surrounded by REG_LIBCALL and REG_RETVAL
2447 notes.
2448
2449 INSNS is a block of code generated to perform the operation, not including
2450 the CLOBBER and final copy. All insns that compute intermediate values
2451 are first emitted, followed by the block as described above.
2452
2453 TARGET, OP0, and OP1 are the output and inputs of the operations,
2454 respectively. OP1 may be zero for a unary operation.
2455
2456 EQUIV, if non-zero, is an expression to be placed into a REG_EQUAL note
2457 on the last insn.
2458
2459 If TARGET is not a register, INSNS is simply emitted with no special
2460 processing. Likewise if anything in INSNS is not an INSN or if
2461 there is a libcall block inside INSNS.
2462
2463 The final insn emitted is returned. */
2464
2465 rtx
2466 emit_no_conflict_block (insns, target, op0, op1, equiv)
2467 rtx insns;
2468 rtx target;
2469 rtx op0, op1;
2470 rtx equiv;
2471 {
2472 rtx prev, next, first, last, insn;
2473
2474 if (GET_CODE (target) != REG || reload_in_progress)
2475 return emit_insns (insns);
2476 else
2477 for (insn = insns; insn; insn = NEXT_INSN (insn))
2478 if (GET_CODE (insn) != INSN
2479 || find_reg_note (insn, REG_LIBCALL, NULL_RTX))
2480 return emit_insns (insns);
2481
2482 /* First emit all insns that do not store into words of the output and remove
2483 these from the list. */
2484 for (insn = insns; insn; insn = next)
2485 {
2486 rtx set = 0;
2487 int i;
2488
2489 next = NEXT_INSN (insn);
2490
2491 if (GET_CODE (PATTERN (insn)) == SET)
2492 set = PATTERN (insn);
2493 else if (GET_CODE (PATTERN (insn)) == PARALLEL)
2494 {
2495 for (i = 0; i < XVECLEN (PATTERN (insn), 0); i++)
2496 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
2497 {
2498 set = XVECEXP (PATTERN (insn), 0, i);
2499 break;
2500 }
2501 }
2502
2503 if (set == 0)
2504 abort ();
2505
2506 if (! reg_overlap_mentioned_p (target, SET_DEST (set)))
2507 {
2508 if (PREV_INSN (insn))
2509 NEXT_INSN (PREV_INSN (insn)) = next;
2510 else
2511 insns = next;
2512
2513 if (next)
2514 PREV_INSN (next) = PREV_INSN (insn);
2515
2516 add_insn (insn);
2517 }
2518 }
2519
2520 prev = get_last_insn ();
2521
2522 /* Now write the CLOBBER of the output, followed by the setting of each
2523 of the words, followed by the final copy. */
2524 if (target != op0 && target != op1)
2525 emit_insn (gen_rtx_CLOBBER (VOIDmode, target));
2526
2527 for (insn = insns; insn; insn = next)
2528 {
2529 next = NEXT_INSN (insn);
2530 add_insn (insn);
2531
2532 if (op1 && GET_CODE (op1) == REG)
2533 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op1,
2534 REG_NOTES (insn));
2535
2536 if (op0 && GET_CODE (op0) == REG)
2537 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_NO_CONFLICT, op0,
2538 REG_NOTES (insn));
2539 }
2540
2541 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2542 != CODE_FOR_nothing)
2543 {
2544 last = emit_move_insn (target, target);
2545 if (equiv)
2546 REG_NOTES (last)
2547 = gen_rtx_EXPR_LIST (REG_EQUAL, equiv, REG_NOTES (last));
2548 }
2549 else
2550 last = get_last_insn ();
2551
2552 if (prev == 0)
2553 first = get_insns ();
2554 else
2555 first = NEXT_INSN (prev);
2556
2557 /* Encapsulate the block so it gets manipulated as a unit. */
2558 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2559 REG_NOTES (first));
2560 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2561
2562 return last;
2563 }
2564 \f
2565 /* Emit code to make a call to a constant function or a library call.
2566
2567 INSNS is a list containing all insns emitted in the call.
2568 These insns leave the result in RESULT. Our block is to copy RESULT
2569 to TARGET, which is logically equivalent to EQUIV.
2570
2571 We first emit any insns that set a pseudo on the assumption that these are
2572 loading constants into registers; doing so allows them to be safely cse'ed
2573 between blocks. Then we emit all the other insns in the block, followed by
2574 an insn to move RESULT to TARGET. This last insn will have a REQ_EQUAL
2575 note with an operand of EQUIV.
2576
2577 Moving assignments to pseudos outside of the block is done to improve
2578 the generated code, but is not required to generate correct code,
2579 hence being unable to move an assignment is not grounds for not making
2580 a libcall block. There are two reasons why it is safe to leave these
2581 insns inside the block: First, we know that these pseudos cannot be
2582 used in generated RTL outside the block since they are created for
2583 temporary purposes within the block. Second, CSE will not record the
2584 values of anything set inside a libcall block, so we know they must
2585 be dead at the end of the block.
2586
2587 Except for the first group of insns (the ones setting pseudos), the
2588 block is delimited by REG_RETVAL and REG_LIBCALL notes. */
2589
2590 void
2591 emit_libcall_block (insns, target, result, equiv)
2592 rtx insns;
2593 rtx target;
2594 rtx result;
2595 rtx equiv;
2596 {
2597 rtx prev, next, first, last, insn;
2598
2599 /* look for any CALL_INSNs in this sequence, and attach a REG_EH_REGION
2600 reg note to indicate that this call cannot throw. (Unless there is
2601 already a REG_EH_REGION note.) */
2602
2603 for (insn = insns; insn; insn = NEXT_INSN (insn))
2604 {
2605 if (GET_CODE (insn) == CALL_INSN)
2606 {
2607 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
2608 if (note == NULL_RTX)
2609 REG_NOTES (insn) = gen_rtx_EXPR_LIST (REG_EH_REGION, GEN_INT (0),
2610 REG_NOTES (insn));
2611 }
2612 }
2613
2614 /* First emit all insns that set pseudos. Remove them from the list as
2615 we go. Avoid insns that set pseudos which were referenced in previous
2616 insns. These can be generated by move_by_pieces, for example,
2617 to update an address. Similarly, avoid insns that reference things
2618 set in previous insns. */
2619
2620 for (insn = insns; insn; insn = next)
2621 {
2622 rtx set = single_set (insn);
2623
2624 next = NEXT_INSN (insn);
2625
2626 if (set != 0 && GET_CODE (SET_DEST (set)) == REG
2627 && REGNO (SET_DEST (set)) >= FIRST_PSEUDO_REGISTER
2628 && (insn == insns
2629 || (! reg_mentioned_p (SET_DEST (set), PATTERN (insns))
2630 && ! reg_used_between_p (SET_DEST (set), insns, insn)
2631 && ! modified_in_p (SET_SRC (set), insns)
2632 && ! modified_between_p (SET_SRC (set), insns, insn))))
2633 {
2634 if (PREV_INSN (insn))
2635 NEXT_INSN (PREV_INSN (insn)) = next;
2636 else
2637 insns = next;
2638
2639 if (next)
2640 PREV_INSN (next) = PREV_INSN (insn);
2641
2642 add_insn (insn);
2643 }
2644 }
2645
2646 prev = get_last_insn ();
2647
2648 /* Write the remaining insns followed by the final copy. */
2649
2650 for (insn = insns; insn; insn = next)
2651 {
2652 next = NEXT_INSN (insn);
2653
2654 add_insn (insn);
2655 }
2656
2657 last = emit_move_insn (target, result);
2658 if (mov_optab->handlers[(int) GET_MODE (target)].insn_code
2659 != CODE_FOR_nothing)
2660 REG_NOTES (last) = gen_rtx_EXPR_LIST (REG_EQUAL, copy_rtx (equiv),
2661 REG_NOTES (last));
2662
2663 if (prev == 0)
2664 first = get_insns ();
2665 else
2666 first = NEXT_INSN (prev);
2667
2668 /* Encapsulate the block so it gets manipulated as a unit. */
2669 REG_NOTES (first) = gen_rtx_INSN_LIST (REG_LIBCALL, last,
2670 REG_NOTES (first));
2671 REG_NOTES (last) = gen_rtx_INSN_LIST (REG_RETVAL, first, REG_NOTES (last));
2672 }
2673 \f
2674 /* Generate code to store zero in X. */
2675
2676 void
2677 emit_clr_insn (x)
2678 rtx x;
2679 {
2680 emit_move_insn (x, const0_rtx);
2681 }
2682
2683 /* Generate code to store 1 in X
2684 assuming it contains zero beforehand. */
2685
2686 void
2687 emit_0_to_1_insn (x)
2688 rtx x;
2689 {
2690 emit_move_insn (x, const1_rtx);
2691 }
2692
2693 /* Generate code to compare X with Y
2694 so that the condition codes are set.
2695
2696 MODE is the mode of the inputs (in case they are const_int).
2697 UNSIGNEDP nonzero says that X and Y are unsigned;
2698 this matters if they need to be widened.
2699
2700 If they have mode BLKmode, then SIZE specifies the size of both X and Y,
2701 and ALIGN specifies the known shared alignment of X and Y.
2702
2703 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.).
2704 It is ignored for fixed-point and block comparisons;
2705 it is used only for floating-point comparisons. */
2706
2707 void
2708 emit_cmp_insn (x, y, comparison, size, mode, unsignedp, align)
2709 rtx x, y;
2710 enum rtx_code comparison;
2711 rtx size;
2712 enum machine_mode mode;
2713 int unsignedp;
2714 int align;
2715 {
2716 enum mode_class class;
2717 enum machine_mode wider_mode;
2718
2719 class = GET_MODE_CLASS (mode);
2720
2721 /* They could both be VOIDmode if both args are immediate constants,
2722 but we should fold that at an earlier stage.
2723 With no special code here, this will call abort,
2724 reminding the programmer to implement such folding. */
2725
2726 if (mode != BLKmode && flag_force_mem)
2727 {
2728 x = force_not_mem (x);
2729 y = force_not_mem (y);
2730 }
2731
2732 /* If we are inside an appropriately-short loop and one operand is an
2733 expensive constant, force it into a register. */
2734 if (CONSTANT_P (x) && preserve_subexpressions_p () && rtx_cost (x, COMPARE) > 2)
2735 x = force_reg (mode, x);
2736
2737 if (CONSTANT_P (y) && preserve_subexpressions_p () && rtx_cost (y, COMPARE) > 2)
2738 y = force_reg (mode, y);
2739
2740 #ifdef HAVE_cc0
2741 /* Abort if we have a non-canonical comparison. The RTL documentation
2742 states that canonical comparisons are required only for targets which
2743 have cc0. */
2744 if (CONSTANT_P (x) && ! CONSTANT_P (y))
2745 abort();
2746 #endif
2747
2748 /* Don't let both operands fail to indicate the mode. */
2749 if (GET_MODE (x) == VOIDmode && GET_MODE (y) == VOIDmode)
2750 x = force_reg (mode, x);
2751
2752 /* Handle all BLKmode compares. */
2753
2754 if (mode == BLKmode)
2755 {
2756 emit_queue ();
2757 x = protect_from_queue (x, 0);
2758 y = protect_from_queue (y, 0);
2759
2760 if (size == 0)
2761 abort ();
2762 #ifdef HAVE_cmpstrqi
2763 if (HAVE_cmpstrqi
2764 && GET_CODE (size) == CONST_INT
2765 && INTVAL (size) < (1 << GET_MODE_BITSIZE (QImode)))
2766 {
2767 enum machine_mode result_mode
2768 = insn_operand_mode[(int) CODE_FOR_cmpstrqi][0];
2769 rtx result = gen_reg_rtx (result_mode);
2770 emit_insn (gen_cmpstrqi (result, x, y, size, GEN_INT (align)));
2771 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2772 result_mode, 0, 0);
2773 }
2774 else
2775 #endif
2776 #ifdef HAVE_cmpstrhi
2777 if (HAVE_cmpstrhi
2778 && GET_CODE (size) == CONST_INT
2779 && INTVAL (size) < (1 << GET_MODE_BITSIZE (HImode)))
2780 {
2781 enum machine_mode result_mode
2782 = insn_operand_mode[(int) CODE_FOR_cmpstrhi][0];
2783 rtx result = gen_reg_rtx (result_mode);
2784 emit_insn (gen_cmpstrhi (result, x, y, size, GEN_INT (align)));
2785 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2786 result_mode, 0, 0);
2787 }
2788 else
2789 #endif
2790 #ifdef HAVE_cmpstrsi
2791 if (HAVE_cmpstrsi)
2792 {
2793 enum machine_mode result_mode
2794 = insn_operand_mode[(int) CODE_FOR_cmpstrsi][0];
2795 rtx result = gen_reg_rtx (result_mode);
2796 size = protect_from_queue (size, 0);
2797 emit_insn (gen_cmpstrsi (result, x, y,
2798 convert_to_mode (SImode, size, 1),
2799 GEN_INT (align)));
2800 emit_cmp_insn (result, const0_rtx, comparison, NULL_RTX,
2801 result_mode, 0, 0);
2802 }
2803 else
2804 #endif
2805 {
2806 rtx result;
2807
2808 #ifdef TARGET_MEM_FUNCTIONS
2809 emit_library_call (memcmp_libfunc, 0,
2810 TYPE_MODE (integer_type_node), 3,
2811 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2812 convert_to_mode (TYPE_MODE (sizetype), size,
2813 TREE_UNSIGNED (sizetype)),
2814 TYPE_MODE (sizetype));
2815 #else
2816 emit_library_call (bcmp_libfunc, 0,
2817 TYPE_MODE (integer_type_node), 3,
2818 XEXP (x, 0), Pmode, XEXP (y, 0), Pmode,
2819 convert_to_mode (TYPE_MODE (integer_type_node),
2820 size,
2821 TREE_UNSIGNED (integer_type_node)),
2822 TYPE_MODE (integer_type_node));
2823 #endif
2824
2825 /* Immediately move the result of the libcall into a pseudo
2826 register so reload doesn't clobber the value if it needs
2827 the return register for a spill reg. */
2828 result = gen_reg_rtx (TYPE_MODE (integer_type_node));
2829 emit_move_insn (result,
2830 hard_libcall_value (TYPE_MODE (integer_type_node)));
2831 emit_cmp_insn (result,
2832 const0_rtx, comparison, NULL_RTX,
2833 TYPE_MODE (integer_type_node), 0, 0);
2834 }
2835 return;
2836 }
2837
2838 /* Handle some compares against zero. */
2839
2840 if (y == CONST0_RTX (mode)
2841 && tst_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2842 {
2843 int icode = (int) tst_optab->handlers[(int) mode].insn_code;
2844
2845 emit_queue ();
2846 x = protect_from_queue (x, 0);
2847 y = protect_from_queue (y, 0);
2848
2849 /* Now, if insn does accept these operands, put them into pseudos. */
2850 if (! (*insn_operand_predicate[icode][0])
2851 (x, insn_operand_mode[icode][0]))
2852 x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
2853
2854 emit_insn (GEN_FCN (icode) (x));
2855 return;
2856 }
2857
2858 /* Handle compares for which there is a directly suitable insn. */
2859
2860 if (cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
2861 {
2862 int icode = (int) cmp_optab->handlers[(int) mode].insn_code;
2863
2864 emit_queue ();
2865 x = protect_from_queue (x, 0);
2866 y = protect_from_queue (y, 0);
2867
2868 /* Now, if insn doesn't accept these operands, put them into pseudos. */
2869 if (! (*insn_operand_predicate[icode][0])
2870 (x, insn_operand_mode[icode][0]))
2871 x = copy_to_mode_reg (insn_operand_mode[icode][0], x);
2872
2873 if (! (*insn_operand_predicate[icode][1])
2874 (y, insn_operand_mode[icode][1]))
2875 y = copy_to_mode_reg (insn_operand_mode[icode][1], y);
2876
2877 emit_insn (GEN_FCN (icode) (x, y));
2878 return;
2879 }
2880
2881 /* Try widening if we can find a direct insn that way. */
2882
2883 if (class == MODE_INT || class == MODE_FLOAT || class == MODE_COMPLEX_FLOAT)
2884 {
2885 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
2886 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
2887 {
2888 if (cmp_optab->handlers[(int) wider_mode].insn_code
2889 != CODE_FOR_nothing)
2890 {
2891 x = protect_from_queue (x, 0);
2892 y = protect_from_queue (y, 0);
2893 x = convert_modes (wider_mode, mode, x, unsignedp);
2894 y = convert_modes (wider_mode, mode, y, unsignedp);
2895 emit_cmp_insn (x, y, comparison, NULL_RTX,
2896 wider_mode, unsignedp, align);
2897 return;
2898 }
2899 }
2900 }
2901
2902 /* Handle a lib call just for the mode we are using. */
2903
2904 if (cmp_optab->handlers[(int) mode].libfunc
2905 && class != MODE_FLOAT)
2906 {
2907 rtx libfunc = cmp_optab->handlers[(int) mode].libfunc;
2908 rtx result;
2909
2910 /* If we want unsigned, and this mode has a distinct unsigned
2911 comparison routine, use that. */
2912 if (unsignedp && ucmp_optab->handlers[(int) mode].libfunc)
2913 libfunc = ucmp_optab->handlers[(int) mode].libfunc;
2914
2915 emit_library_call (libfunc, 1,
2916 word_mode, 2, x, mode, y, mode);
2917
2918 /* Immediately move the result of the libcall into a pseudo
2919 register so reload doesn't clobber the value if it needs
2920 the return register for a spill reg. */
2921 result = gen_reg_rtx (word_mode);
2922 emit_move_insn (result, hard_libcall_value (word_mode));
2923
2924 /* Integer comparison returns a result that must be compared against 1,
2925 so that even if we do an unsigned compare afterward,
2926 there is still a value that can represent the result "less than". */
2927 emit_cmp_insn (result, const1_rtx,
2928 comparison, NULL_RTX, word_mode, unsignedp, 0);
2929 return;
2930 }
2931
2932 if (class == MODE_FLOAT)
2933 emit_float_lib_cmp (x, y, comparison);
2934
2935 else
2936 abort ();
2937 }
2938
2939 /* Generate code to compare X with Y so that the condition codes are
2940 set and to jump to LABEL if the condition is true. If X is a
2941 constant and Y is not a constant, then the comparison is swapped to
2942 ensure that the comparison RTL has the canonical form.
2943
2944 UNSIGNEDP nonzero says that X and Y are unsigned; this matters if they
2945 need to be widened by emit_cmp_insn. UNSIGNEDP is also used to select
2946 the proper branch condition code.
2947
2948 If X and Y have mode BLKmode, then SIZE specifies the size of both X and Y,
2949 and ALIGN specifies the known shared alignment of X and Y.
2950
2951 MODE is the mode of the inputs (in case they are const_int).
2952
2953 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). It will
2954 be passed unchanged to emit_cmp_insn, then potentially converted into an
2955 unsigned variant based on UNSIGNEDP to select a proper jump instruction. */
2956
2957 void
2958 emit_cmp_and_jump_insns (x, y, comparison, size, mode, unsignedp, align, label)
2959 rtx x, y;
2960 enum rtx_code comparison;
2961 rtx size;
2962 enum machine_mode mode;
2963 int unsignedp;
2964 int align;
2965 rtx label;
2966 {
2967 rtx op0;
2968 rtx op1;
2969
2970 if (CONSTANT_P (x))
2971 {
2972 /* Swap operands and condition to ensure canonical RTL. */
2973 op0 = y;
2974 op1 = x;
2975 comparison = swap_condition (comparison);
2976 }
2977 else
2978 {
2979 op0 = x;
2980 op1 = y;
2981 }
2982 emit_cmp_insn (op0, op1, comparison, size, mode, unsignedp, align);
2983
2984 if (unsignedp)
2985 comparison = unsigned_condition (comparison);
2986 emit_jump_insn ((*bcc_gen_fctn[(int) comparison]) (label));
2987 }
2988
2989
2990 /* Nonzero if a compare of mode MODE can be done straightforwardly
2991 (without splitting it into pieces). */
2992
2993 int
2994 can_compare_p (mode)
2995 enum machine_mode mode;
2996 {
2997 do
2998 {
2999 if (cmp_optab->handlers[(int)mode].insn_code != CODE_FOR_nothing)
3000 return 1;
3001 mode = GET_MODE_WIDER_MODE (mode);
3002 } while (mode != VOIDmode);
3003
3004 return 0;
3005 }
3006 \f
3007 /* Emit a library call comparison between floating point X and Y.
3008 COMPARISON is the rtl operator to compare with (EQ, NE, GT, etc.). */
3009
3010 void
3011 emit_float_lib_cmp (x, y, comparison)
3012 rtx x, y;
3013 enum rtx_code comparison;
3014 {
3015 enum machine_mode mode = GET_MODE (x);
3016 rtx libfunc = 0;
3017 rtx result;
3018
3019 if (mode == HFmode)
3020 switch (comparison)
3021 {
3022 case EQ:
3023 libfunc = eqhf2_libfunc;
3024 break;
3025
3026 case NE:
3027 libfunc = nehf2_libfunc;
3028 break;
3029
3030 case GT:
3031 libfunc = gthf2_libfunc;
3032 break;
3033
3034 case GE:
3035 libfunc = gehf2_libfunc;
3036 break;
3037
3038 case LT:
3039 libfunc = lthf2_libfunc;
3040 break;
3041
3042 case LE:
3043 libfunc = lehf2_libfunc;
3044 break;
3045
3046 default:
3047 break;
3048 }
3049 else if (mode == SFmode)
3050 switch (comparison)
3051 {
3052 case EQ:
3053 libfunc = eqsf2_libfunc;
3054 break;
3055
3056 case NE:
3057 libfunc = nesf2_libfunc;
3058 break;
3059
3060 case GT:
3061 libfunc = gtsf2_libfunc;
3062 break;
3063
3064 case GE:
3065 libfunc = gesf2_libfunc;
3066 break;
3067
3068 case LT:
3069 libfunc = ltsf2_libfunc;
3070 break;
3071
3072 case LE:
3073 libfunc = lesf2_libfunc;
3074 break;
3075
3076 default:
3077 break;
3078 }
3079 else if (mode == DFmode)
3080 switch (comparison)
3081 {
3082 case EQ:
3083 libfunc = eqdf2_libfunc;
3084 break;
3085
3086 case NE:
3087 libfunc = nedf2_libfunc;
3088 break;
3089
3090 case GT:
3091 libfunc = gtdf2_libfunc;
3092 break;
3093
3094 case GE:
3095 libfunc = gedf2_libfunc;
3096 break;
3097
3098 case LT:
3099 libfunc = ltdf2_libfunc;
3100 break;
3101
3102 case LE:
3103 libfunc = ledf2_libfunc;
3104 break;
3105
3106 default:
3107 break;
3108 }
3109 else if (mode == XFmode)
3110 switch (comparison)
3111 {
3112 case EQ:
3113 libfunc = eqxf2_libfunc;
3114 break;
3115
3116 case NE:
3117 libfunc = nexf2_libfunc;
3118 break;
3119
3120 case GT:
3121 libfunc = gtxf2_libfunc;
3122 break;
3123
3124 case GE:
3125 libfunc = gexf2_libfunc;
3126 break;
3127
3128 case LT:
3129 libfunc = ltxf2_libfunc;
3130 break;
3131
3132 case LE:
3133 libfunc = lexf2_libfunc;
3134 break;
3135
3136 default:
3137 break;
3138 }
3139 else if (mode == TFmode)
3140 switch (comparison)
3141 {
3142 case EQ:
3143 libfunc = eqtf2_libfunc;
3144 break;
3145
3146 case NE:
3147 libfunc = netf2_libfunc;
3148 break;
3149
3150 case GT:
3151 libfunc = gttf2_libfunc;
3152 break;
3153
3154 case GE:
3155 libfunc = getf2_libfunc;
3156 break;
3157
3158 case LT:
3159 libfunc = lttf2_libfunc;
3160 break;
3161
3162 case LE:
3163 libfunc = letf2_libfunc;
3164 break;
3165
3166 default:
3167 break;
3168 }
3169 else
3170 {
3171 enum machine_mode wider_mode;
3172
3173 for (wider_mode = GET_MODE_WIDER_MODE (mode); wider_mode != VOIDmode;
3174 wider_mode = GET_MODE_WIDER_MODE (wider_mode))
3175 {
3176 if ((cmp_optab->handlers[(int) wider_mode].insn_code
3177 != CODE_FOR_nothing)
3178 || (cmp_optab->handlers[(int) wider_mode].libfunc != 0))
3179 {
3180 x = protect_from_queue (x, 0);
3181 y = protect_from_queue (y, 0);
3182 x = convert_to_mode (wider_mode, x, 0);
3183 y = convert_to_mode (wider_mode, y, 0);
3184 emit_float_lib_cmp (x, y, comparison);
3185 return;
3186 }
3187 }
3188 abort ();
3189 }
3190
3191 if (libfunc == 0)
3192 abort ();
3193
3194 emit_library_call (libfunc, 1,
3195 word_mode, 2, x, mode, y, mode);
3196
3197 /* Immediately move the result of the libcall into a pseudo
3198 register so reload doesn't clobber the value if it needs
3199 the return register for a spill reg. */
3200 result = gen_reg_rtx (word_mode);
3201 emit_move_insn (result, hard_libcall_value (word_mode));
3202
3203 emit_cmp_insn (result, const0_rtx, comparison,
3204 NULL_RTX, word_mode, 0, 0);
3205 }
3206 \f
3207 /* Generate code to indirectly jump to a location given in the rtx LOC. */
3208
3209 void
3210 emit_indirect_jump (loc)
3211 rtx loc;
3212 {
3213 if (! ((*insn_operand_predicate[(int)CODE_FOR_indirect_jump][0])
3214 (loc, Pmode)))
3215 loc = copy_to_mode_reg (Pmode, loc);
3216
3217 emit_jump_insn (gen_indirect_jump (loc));
3218 emit_barrier ();
3219 }
3220 \f
3221 #ifdef HAVE_conditional_move
3222
3223 /* Emit a conditional move instruction if the machine supports one for that
3224 condition and machine mode.
3225
3226 OP0 and OP1 are the operands that should be compared using CODE. CMODE is
3227 the mode to use should they be constants. If it is VOIDmode, they cannot
3228 both be constants.
3229
3230 OP2 should be stored in TARGET if the comparison is true, otherwise OP3
3231 should be stored there. MODE is the mode to use should they be constants.
3232 If it is VOIDmode, they cannot both be constants.
3233
3234 The result is either TARGET (perhaps modified) or NULL_RTX if the operation
3235 is not supported. */
3236
3237 rtx
3238 emit_conditional_move (target, code, op0, op1, cmode, op2, op3, mode,
3239 unsignedp)
3240 rtx target;
3241 enum rtx_code code;
3242 rtx op0, op1;
3243 enum machine_mode cmode;
3244 rtx op2, op3;
3245 enum machine_mode mode;
3246 int unsignedp;
3247 {
3248 rtx tem, subtarget, comparison, insn;
3249 enum insn_code icode;
3250
3251 /* If one operand is constant, make it the second one. Only do this
3252 if the other operand is not constant as well. */
3253
3254 if ((CONSTANT_P (op0) && ! CONSTANT_P (op1))
3255 || (GET_CODE (op0) == CONST_INT && GET_CODE (op1) != CONST_INT))
3256 {
3257 tem = op0;
3258 op0 = op1;
3259 op1 = tem;
3260 code = swap_condition (code);
3261 }
3262
3263 if (cmode == VOIDmode)
3264 cmode = GET_MODE (op0);
3265
3266 if (((CONSTANT_P (op2) && ! CONSTANT_P (op3))
3267 || (GET_CODE (op2) == CONST_INT && GET_CODE (op3) != CONST_INT))
3268 && (GET_MODE_CLASS (GET_MODE (op1)) != MODE_FLOAT
3269 || TARGET_FLOAT_FORMAT != IEEE_FLOAT_FORMAT || flag_fast_math))
3270 {
3271 tem = op2;
3272 op2 = op3;
3273 op3 = tem;
3274 code = reverse_condition (code);
3275 }
3276
3277 if (mode == VOIDmode)
3278 mode = GET_MODE (op2);
3279
3280 icode = movcc_gen_code[mode];
3281
3282 if (icode == CODE_FOR_nothing)
3283 return 0;
3284
3285 if (flag_force_mem)
3286 {
3287 op2 = force_not_mem (op2);
3288 op3 = force_not_mem (op3);
3289 }
3290
3291 if (target)
3292 target = protect_from_queue (target, 1);
3293 else
3294 target = gen_reg_rtx (mode);
3295
3296 subtarget = target;
3297
3298 emit_queue ();
3299
3300 op2 = protect_from_queue (op2, 0);
3301 op3 = protect_from_queue (op3, 0);
3302
3303 /* If the insn doesn't accept these operands, put them in pseudos. */
3304
3305 if (! (*insn_operand_predicate[icode][0])
3306 (subtarget, insn_operand_mode[icode][0]))
3307 subtarget = gen_reg_rtx (insn_operand_mode[icode][0]);
3308
3309 if (! (*insn_operand_predicate[icode][2])
3310 (op2, insn_operand_mode[icode][2]))
3311 op2 = copy_to_mode_reg (insn_operand_mode[icode][2], op2);
3312
3313 if (! (*insn_operand_predicate[icode][3])
3314 (op3, insn_operand_mode[icode][3]))
3315 op3 = copy_to_mode_reg (insn_operand_mode[icode][3], op3);
3316
3317 /* Everything should now be in the suitable form, so emit the compare insn
3318 and then the conditional move. */
3319
3320 comparison
3321 = compare_from_rtx (op0, op1, code, unsignedp, cmode, NULL_RTX, 0);
3322
3323 /* ??? Watch for const0_rtx (nop) and const_true_rtx (unconditional)? */
3324 if (GET_CODE (comparison) != code)
3325 /* This shouldn't happen. */
3326 abort ();
3327
3328 insn = GEN_FCN (icode) (subtarget, comparison, op2, op3);
3329
3330 /* If that failed, then give up. */
3331 if (insn == 0)
3332 return 0;
3333
3334 emit_insn (insn);
3335
3336 if (subtarget != target)
3337 convert_move (target, subtarget, 0);
3338
3339 return target;
3340 }
3341
3342 /* Return non-zero if a conditional move of mode MODE is supported.
3343
3344 This function is for combine so it can tell whether an insn that looks
3345 like a conditional move is actually supported by the hardware. If we
3346 guess wrong we lose a bit on optimization, but that's it. */
3347 /* ??? sparc64 supports conditionally moving integers values based on fp
3348 comparisons, and vice versa. How do we handle them? */
3349
3350 int
3351 can_conditionally_move_p (mode)
3352 enum machine_mode mode;
3353 {
3354 if (movcc_gen_code[mode] != CODE_FOR_nothing)
3355 return 1;
3356
3357 return 0;
3358 }
3359
3360 #endif /* HAVE_conditional_move */
3361 \f
3362 /* These three functions generate an insn body and return it
3363 rather than emitting the insn.
3364
3365 They do not protect from queued increments,
3366 because they may be used 1) in protect_from_queue itself
3367 and 2) in other passes where there is no queue. */
3368
3369 /* Generate and return an insn body to add Y to X. */
3370
3371 rtx
3372 gen_add2_insn (x, y)
3373 rtx x, y;
3374 {
3375 int icode = (int) add_optab->handlers[(int) GET_MODE (x)].insn_code;
3376
3377 if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
3378 || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
3379 || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
3380 abort ();
3381
3382 return (GEN_FCN (icode) (x, x, y));
3383 }
3384
3385 int
3386 have_add2_insn (mode)
3387 enum machine_mode mode;
3388 {
3389 return add_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3390 }
3391
3392 /* Generate and return an insn body to subtract Y from X. */
3393
3394 rtx
3395 gen_sub2_insn (x, y)
3396 rtx x, y;
3397 {
3398 int icode = (int) sub_optab->handlers[(int) GET_MODE (x)].insn_code;
3399
3400 if (! (*insn_operand_predicate[icode][0]) (x, insn_operand_mode[icode][0])
3401 || ! (*insn_operand_predicate[icode][1]) (x, insn_operand_mode[icode][1])
3402 || ! (*insn_operand_predicate[icode][2]) (y, insn_operand_mode[icode][2]))
3403 abort ();
3404
3405 return (GEN_FCN (icode) (x, x, y));
3406 }
3407
3408 int
3409 have_sub2_insn (mode)
3410 enum machine_mode mode;
3411 {
3412 return sub_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing;
3413 }
3414
3415 /* Generate the body of an instruction to copy Y into X.
3416 It may be a SEQUENCE, if one insn isn't enough. */
3417
3418 rtx
3419 gen_move_insn (x, y)
3420 rtx x, y;
3421 {
3422 register enum machine_mode mode = GET_MODE (x);
3423 enum insn_code insn_code;
3424 rtx seq;
3425
3426 if (mode == VOIDmode)
3427 mode = GET_MODE (y);
3428
3429 insn_code = mov_optab->handlers[(int) mode].insn_code;
3430
3431 /* Handle MODE_CC modes: If we don't have a special move insn for this mode,
3432 find a mode to do it in. If we have a movcc, use it. Otherwise,
3433 find the MODE_INT mode of the same width. */
3434
3435 if (GET_MODE_CLASS (mode) == MODE_CC && insn_code == CODE_FOR_nothing)
3436 {
3437 enum machine_mode tmode = VOIDmode;
3438 rtx x1 = x, y1 = y;
3439
3440 if (mode != CCmode
3441 && mov_optab->handlers[(int) CCmode].insn_code != CODE_FOR_nothing)
3442 tmode = CCmode;
3443 else
3444 for (tmode = QImode; tmode != VOIDmode;
3445 tmode = GET_MODE_WIDER_MODE (tmode))
3446 if (GET_MODE_SIZE (tmode) == GET_MODE_SIZE (mode))
3447 break;
3448
3449 if (tmode == VOIDmode)
3450 abort ();
3451
3452 /* Get X and Y in TMODE. We can't use gen_lowpart here because it
3453 may call change_address which is not appropriate if we were
3454 called when a reload was in progress. We don't have to worry
3455 about changing the address since the size in bytes is supposed to
3456 be the same. Copy the MEM to change the mode and move any
3457 substitutions from the old MEM to the new one. */
3458
3459 if (reload_in_progress)
3460 {
3461 x = gen_lowpart_common (tmode, x1);
3462 if (x == 0 && GET_CODE (x1) == MEM)
3463 {
3464 x = gen_rtx_MEM (tmode, XEXP (x1, 0));
3465 RTX_UNCHANGING_P (x) = RTX_UNCHANGING_P (x1);
3466 MEM_COPY_ATTRIBUTES (x, x1);
3467 copy_replacements (x1, x);
3468 }
3469
3470 y = gen_lowpart_common (tmode, y1);
3471 if (y == 0 && GET_CODE (y1) == MEM)
3472 {
3473 y = gen_rtx_MEM (tmode, XEXP (y1, 0));
3474 RTX_UNCHANGING_P (y) = RTX_UNCHANGING_P (y1);
3475 MEM_COPY_ATTRIBUTES (y, y1);
3476 copy_replacements (y1, y);
3477 }
3478 }
3479 else
3480 {
3481 x = gen_lowpart (tmode, x);
3482 y = gen_lowpart (tmode, y);
3483 }
3484
3485 insn_code = mov_optab->handlers[(int) tmode].insn_code;
3486 return (GEN_FCN (insn_code) (x, y));
3487 }
3488
3489 start_sequence ();
3490 emit_move_insn_1 (x, y);
3491 seq = gen_sequence ();
3492 end_sequence ();
3493 return seq;
3494 }
3495 \f
3496 /* Return the insn code used to extend FROM_MODE to TO_MODE.
3497 UNSIGNEDP specifies zero-extension instead of sign-extension. If
3498 no such operation exists, CODE_FOR_nothing will be returned. */
3499
3500 enum insn_code
3501 can_extend_p (to_mode, from_mode, unsignedp)
3502 enum machine_mode to_mode, from_mode;
3503 int unsignedp;
3504 {
3505 return extendtab[(int) to_mode][(int) from_mode][unsignedp];
3506 }
3507
3508 /* Generate the body of an insn to extend Y (with mode MFROM)
3509 into X (with mode MTO). Do zero-extension if UNSIGNEDP is nonzero. */
3510
3511 rtx
3512 gen_extend_insn (x, y, mto, mfrom, unsignedp)
3513 rtx x, y;
3514 enum machine_mode mto, mfrom;
3515 int unsignedp;
3516 {
3517 return (GEN_FCN (extendtab[(int) mto][(int) mfrom][unsignedp]) (x, y));
3518 }
3519 \f
3520 /* can_fix_p and can_float_p say whether the target machine
3521 can directly convert a given fixed point type to
3522 a given floating point type, or vice versa.
3523 The returned value is the CODE_FOR_... value to use,
3524 or CODE_FOR_nothing if these modes cannot be directly converted.
3525
3526 *TRUNCP_PTR is set to 1 if it is necessary to output
3527 an explicit FTRUNC insn before the fix insn; otherwise 0. */
3528
3529 static enum insn_code
3530 can_fix_p (fixmode, fltmode, unsignedp, truncp_ptr)
3531 enum machine_mode fltmode, fixmode;
3532 int unsignedp;
3533 int *truncp_ptr;
3534 {
3535 *truncp_ptr = 0;
3536 if (fixtrunctab[(int) fltmode][(int) fixmode][unsignedp] != CODE_FOR_nothing)
3537 return fixtrunctab[(int) fltmode][(int) fixmode][unsignedp];
3538
3539 if (ftrunc_optab->handlers[(int) fltmode].insn_code != CODE_FOR_nothing)
3540 {
3541 *truncp_ptr = 1;
3542 return fixtab[(int) fltmode][(int) fixmode][unsignedp];
3543 }
3544 return CODE_FOR_nothing;
3545 }
3546
3547 static enum insn_code
3548 can_float_p (fltmode, fixmode, unsignedp)
3549 enum machine_mode fixmode, fltmode;
3550 int unsignedp;
3551 {
3552 return floattab[(int) fltmode][(int) fixmode][unsignedp];
3553 }
3554 \f
3555 /* Generate code to convert FROM to floating point
3556 and store in TO. FROM must be fixed point and not VOIDmode.
3557 UNSIGNEDP nonzero means regard FROM as unsigned.
3558 Normally this is done by correcting the final value
3559 if it is negative. */
3560
3561 void
3562 expand_float (to, from, unsignedp)
3563 rtx to, from;
3564 int unsignedp;
3565 {
3566 enum insn_code icode;
3567 register rtx target = to;
3568 enum machine_mode fmode, imode;
3569
3570 /* Crash now, because we won't be able to decide which mode to use. */
3571 if (GET_MODE (from) == VOIDmode)
3572 abort ();
3573
3574 /* Look for an insn to do the conversion. Do it in the specified
3575 modes if possible; otherwise convert either input, output or both to
3576 wider mode. If the integer mode is wider than the mode of FROM,
3577 we can do the conversion signed even if the input is unsigned. */
3578
3579 for (imode = GET_MODE (from); imode != VOIDmode;
3580 imode = GET_MODE_WIDER_MODE (imode))
3581 for (fmode = GET_MODE (to); fmode != VOIDmode;
3582 fmode = GET_MODE_WIDER_MODE (fmode))
3583 {
3584 int doing_unsigned = unsignedp;
3585
3586 icode = can_float_p (fmode, imode, unsignedp);
3587 if (icode == CODE_FOR_nothing && imode != GET_MODE (from) && unsignedp)
3588 icode = can_float_p (fmode, imode, 0), doing_unsigned = 0;
3589
3590 if (icode != CODE_FOR_nothing)
3591 {
3592 to = protect_from_queue (to, 1);
3593 from = protect_from_queue (from, 0);
3594
3595 if (imode != GET_MODE (from))
3596 from = convert_to_mode (imode, from, unsignedp);
3597
3598 if (fmode != GET_MODE (to))
3599 target = gen_reg_rtx (fmode);
3600
3601 emit_unop_insn (icode, target, from,
3602 doing_unsigned ? UNSIGNED_FLOAT : FLOAT);
3603
3604 if (target != to)
3605 convert_move (to, target, 0);
3606 return;
3607 }
3608 }
3609
3610 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3611
3612 /* Unsigned integer, and no way to convert directly.
3613 Convert as signed, then conditionally adjust the result. */
3614 if (unsignedp)
3615 {
3616 rtx label = gen_label_rtx ();
3617 rtx temp;
3618 REAL_VALUE_TYPE offset;
3619
3620 emit_queue ();
3621
3622 to = protect_from_queue (to, 1);
3623 from = protect_from_queue (from, 0);
3624
3625 if (flag_force_mem)
3626 from = force_not_mem (from);
3627
3628 /* Look for a usable floating mode FMODE wider than the source and at
3629 least as wide as the target. Using FMODE will avoid rounding woes
3630 with unsigned values greater than the signed maximum value. */
3631
3632 for (fmode = GET_MODE (to); fmode != VOIDmode;
3633 fmode = GET_MODE_WIDER_MODE (fmode))
3634 if (GET_MODE_BITSIZE (GET_MODE (from)) < GET_MODE_BITSIZE (fmode)
3635 && can_float_p (fmode, GET_MODE (from), 0) != CODE_FOR_nothing)
3636 break;
3637
3638 if (fmode == VOIDmode)
3639 {
3640 /* There is no such mode. Pretend the target is wide enough. */
3641 fmode = GET_MODE (to);
3642
3643 /* Avoid double-rounding when TO is narrower than FROM. */
3644 if ((significand_size (fmode) + 1)
3645 < GET_MODE_BITSIZE (GET_MODE (from)))
3646 {
3647 rtx temp1;
3648 rtx neglabel = gen_label_rtx ();
3649
3650 /* Don't use TARGET if it isn't a register, is a hard register,
3651 or is the wrong mode. */
3652 if (GET_CODE (target) != REG
3653 || REGNO (target) < FIRST_PSEUDO_REGISTER
3654 || GET_MODE (target) != fmode)
3655 target = gen_reg_rtx (fmode);
3656
3657 imode = GET_MODE (from);
3658 do_pending_stack_adjust ();
3659
3660 /* Test whether the sign bit is set. */
3661 emit_cmp_insn (from, const0_rtx, GE, NULL_RTX, imode, 0, 0);
3662 emit_jump_insn (gen_blt (neglabel));
3663
3664 /* The sign bit is not set. Convert as signed. */
3665 expand_float (target, from, 0);
3666 emit_jump_insn (gen_jump (label));
3667 emit_barrier ();
3668
3669 /* The sign bit is set.
3670 Convert to a usable (positive signed) value by shifting right
3671 one bit, while remembering if a nonzero bit was shifted
3672 out; i.e., compute (from & 1) | (from >> 1). */
3673
3674 emit_label (neglabel);
3675 temp = expand_binop (imode, and_optab, from, const1_rtx,
3676 NULL_RTX, 1, OPTAB_LIB_WIDEN);
3677 temp1 = expand_shift (RSHIFT_EXPR, imode, from, integer_one_node,
3678 NULL_RTX, 1);
3679 temp = expand_binop (imode, ior_optab, temp, temp1, temp, 1,
3680 OPTAB_LIB_WIDEN);
3681 expand_float (target, temp, 0);
3682
3683 /* Multiply by 2 to undo the shift above. */
3684 temp = expand_binop (fmode, add_optab, target, target,
3685 target, 0, OPTAB_LIB_WIDEN);
3686 if (temp != target)
3687 emit_move_insn (target, temp);
3688
3689 do_pending_stack_adjust ();
3690 emit_label (label);
3691 goto done;
3692 }
3693 }
3694
3695 /* If we are about to do some arithmetic to correct for an
3696 unsigned operand, do it in a pseudo-register. */
3697
3698 if (GET_MODE (to) != fmode
3699 || GET_CODE (to) != REG || REGNO (to) < FIRST_PSEUDO_REGISTER)
3700 target = gen_reg_rtx (fmode);
3701
3702 /* Convert as signed integer to floating. */
3703 expand_float (target, from, 0);
3704
3705 /* If FROM is negative (and therefore TO is negative),
3706 correct its value by 2**bitwidth. */
3707
3708 do_pending_stack_adjust ();
3709 emit_cmp_and_jump_insns (from, const0_rtx, GE, NULL_RTX, GET_MODE (from),
3710 0, 0, label);
3711
3712 /* On SCO 3.2.1, ldexp rejects values outside [0.5, 1).
3713 Rather than setting up a dconst_dot_5, let's hope SCO
3714 fixes the bug. */
3715 offset = REAL_VALUE_LDEXP (dconst1, GET_MODE_BITSIZE (GET_MODE (from)));
3716 temp = expand_binop (fmode, add_optab, target,
3717 CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode),
3718 target, 0, OPTAB_LIB_WIDEN);
3719 if (temp != target)
3720 emit_move_insn (target, temp);
3721
3722 do_pending_stack_adjust ();
3723 emit_label (label);
3724 goto done;
3725 }
3726 #endif
3727
3728 /* No hardware instruction available; call a library routine to convert from
3729 SImode, DImode, or TImode into SFmode, DFmode, XFmode, or TFmode. */
3730 {
3731 rtx libfcn;
3732 rtx insns;
3733 rtx value;
3734
3735 to = protect_from_queue (to, 1);
3736 from = protect_from_queue (from, 0);
3737
3738 if (GET_MODE_SIZE (GET_MODE (from)) < GET_MODE_SIZE (SImode))
3739 from = convert_to_mode (SImode, from, unsignedp);
3740
3741 if (flag_force_mem)
3742 from = force_not_mem (from);
3743
3744 if (GET_MODE (to) == SFmode)
3745 {
3746 if (GET_MODE (from) == SImode)
3747 libfcn = floatsisf_libfunc;
3748 else if (GET_MODE (from) == DImode)
3749 libfcn = floatdisf_libfunc;
3750 else if (GET_MODE (from) == TImode)
3751 libfcn = floattisf_libfunc;
3752 else
3753 abort ();
3754 }
3755 else if (GET_MODE (to) == DFmode)
3756 {
3757 if (GET_MODE (from) == SImode)
3758 libfcn = floatsidf_libfunc;
3759 else if (GET_MODE (from) == DImode)
3760 libfcn = floatdidf_libfunc;
3761 else if (GET_MODE (from) == TImode)
3762 libfcn = floattidf_libfunc;
3763 else
3764 abort ();
3765 }
3766 else if (GET_MODE (to) == XFmode)
3767 {
3768 if (GET_MODE (from) == SImode)
3769 libfcn = floatsixf_libfunc;
3770 else if (GET_MODE (from) == DImode)
3771 libfcn = floatdixf_libfunc;
3772 else if (GET_MODE (from) == TImode)
3773 libfcn = floattixf_libfunc;
3774 else
3775 abort ();
3776 }
3777 else if (GET_MODE (to) == TFmode)
3778 {
3779 if (GET_MODE (from) == SImode)
3780 libfcn = floatsitf_libfunc;
3781 else if (GET_MODE (from) == DImode)
3782 libfcn = floatditf_libfunc;
3783 else if (GET_MODE (from) == TImode)
3784 libfcn = floattitf_libfunc;
3785 else
3786 abort ();
3787 }
3788 else
3789 abort ();
3790
3791 start_sequence ();
3792
3793 value = emit_library_call_value (libfcn, NULL_RTX, 1,
3794 GET_MODE (to),
3795 1, from, GET_MODE (from));
3796 insns = get_insns ();
3797 end_sequence ();
3798
3799 emit_libcall_block (insns, target, value,
3800 gen_rtx_FLOAT (GET_MODE (to), from));
3801 }
3802
3803 done:
3804
3805 /* Copy result to requested destination
3806 if we have been computing in a temp location. */
3807
3808 if (target != to)
3809 {
3810 if (GET_MODE (target) == GET_MODE (to))
3811 emit_move_insn (to, target);
3812 else
3813 convert_move (to, target, 0);
3814 }
3815 }
3816 \f
3817 /* expand_fix: generate code to convert FROM to fixed point
3818 and store in TO. FROM must be floating point. */
3819
3820 static rtx
3821 ftruncify (x)
3822 rtx x;
3823 {
3824 rtx temp = gen_reg_rtx (GET_MODE (x));
3825 return expand_unop (GET_MODE (x), ftrunc_optab, x, temp, 0);
3826 }
3827
3828 void
3829 expand_fix (to, from, unsignedp)
3830 register rtx to, from;
3831 int unsignedp;
3832 {
3833 enum insn_code icode;
3834 register rtx target = to;
3835 enum machine_mode fmode, imode;
3836 int must_trunc = 0;
3837 rtx libfcn = 0;
3838
3839 /* We first try to find a pair of modes, one real and one integer, at
3840 least as wide as FROM and TO, respectively, in which we can open-code
3841 this conversion. If the integer mode is wider than the mode of TO,
3842 we can do the conversion either signed or unsigned. */
3843
3844 for (imode = GET_MODE (to); imode != VOIDmode;
3845 imode = GET_MODE_WIDER_MODE (imode))
3846 for (fmode = GET_MODE (from); fmode != VOIDmode;
3847 fmode = GET_MODE_WIDER_MODE (fmode))
3848 {
3849 int doing_unsigned = unsignedp;
3850
3851 icode = can_fix_p (imode, fmode, unsignedp, &must_trunc);
3852 if (icode == CODE_FOR_nothing && imode != GET_MODE (to) && unsignedp)
3853 icode = can_fix_p (imode, fmode, 0, &must_trunc), doing_unsigned = 0;
3854
3855 if (icode != CODE_FOR_nothing)
3856 {
3857 to = protect_from_queue (to, 1);
3858 from = protect_from_queue (from, 0);
3859
3860 if (fmode != GET_MODE (from))
3861 from = convert_to_mode (fmode, from, 0);
3862
3863 if (must_trunc)
3864 from = ftruncify (from);
3865
3866 if (imode != GET_MODE (to))
3867 target = gen_reg_rtx (imode);
3868
3869 emit_unop_insn (icode, target, from,
3870 doing_unsigned ? UNSIGNED_FIX : FIX);
3871 if (target != to)
3872 convert_move (to, target, unsignedp);
3873 return;
3874 }
3875 }
3876
3877 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
3878 /* For an unsigned conversion, there is one more way to do it.
3879 If we have a signed conversion, we generate code that compares
3880 the real value to the largest representable positive number. If if
3881 is smaller, the conversion is done normally. Otherwise, subtract
3882 one plus the highest signed number, convert, and add it back.
3883
3884 We only need to check all real modes, since we know we didn't find
3885 anything with a wider integer mode. */
3886
3887 if (unsignedp && GET_MODE_BITSIZE (GET_MODE (to)) <= HOST_BITS_PER_WIDE_INT)
3888 for (fmode = GET_MODE (from); fmode != VOIDmode;
3889 fmode = GET_MODE_WIDER_MODE (fmode))
3890 /* Make sure we won't lose significant bits doing this. */
3891 if (GET_MODE_BITSIZE (fmode) > GET_MODE_BITSIZE (GET_MODE (to))
3892 && CODE_FOR_nothing != can_fix_p (GET_MODE (to), fmode, 0,
3893 &must_trunc))
3894 {
3895 int bitsize;
3896 REAL_VALUE_TYPE offset;
3897 rtx limit, lab1, lab2, insn;
3898
3899 bitsize = GET_MODE_BITSIZE (GET_MODE (to));
3900 offset = REAL_VALUE_LDEXP (dconst1, bitsize - 1);
3901 limit = CONST_DOUBLE_FROM_REAL_VALUE (offset, fmode);
3902 lab1 = gen_label_rtx ();
3903 lab2 = gen_label_rtx ();
3904
3905 emit_queue ();
3906 to = protect_from_queue (to, 1);
3907 from = protect_from_queue (from, 0);
3908
3909 if (flag_force_mem)
3910 from = force_not_mem (from);
3911
3912 if (fmode != GET_MODE (from))
3913 from = convert_to_mode (fmode, from, 0);
3914
3915 /* See if we need to do the subtraction. */
3916 do_pending_stack_adjust ();
3917 emit_cmp_and_jump_insns (from, limit, GE, NULL_RTX, GET_MODE (from),
3918 0, 0, lab1);
3919
3920 /* If not, do the signed "fix" and branch around fixup code. */
3921 expand_fix (to, from, 0);
3922 emit_jump_insn (gen_jump (lab2));
3923 emit_barrier ();
3924
3925 /* Otherwise, subtract 2**(N-1), convert to signed number,
3926 then add 2**(N-1). Do the addition using XOR since this
3927 will often generate better code. */
3928 emit_label (lab1);
3929 target = expand_binop (GET_MODE (from), sub_optab, from, limit,
3930 NULL_RTX, 0, OPTAB_LIB_WIDEN);
3931 expand_fix (to, target, 0);
3932 target = expand_binop (GET_MODE (to), xor_optab, to,
3933 GEN_INT ((HOST_WIDE_INT) 1 << (bitsize - 1)),
3934 to, 1, OPTAB_LIB_WIDEN);
3935
3936 if (target != to)
3937 emit_move_insn (to, target);
3938
3939 emit_label (lab2);
3940
3941 if (mov_optab->handlers[(int) GET_MODE (to)].insn_code
3942 != CODE_FOR_nothing)
3943 {
3944 /* Make a place for a REG_NOTE and add it. */
3945 insn = emit_move_insn (to, to);
3946 REG_NOTES (insn)
3947 = gen_rtx_EXPR_LIST (REG_EQUAL,
3948 gen_rtx_fmt_e (UNSIGNED_FIX,
3949 GET_MODE (to),
3950 copy_rtx (from)),
3951 REG_NOTES (insn));
3952 }
3953 return;
3954 }
3955 #endif
3956
3957 /* We can't do it with an insn, so use a library call. But first ensure
3958 that the mode of TO is at least as wide as SImode, since those are the
3959 only library calls we know about. */
3960
3961 if (GET_MODE_SIZE (GET_MODE (to)) < GET_MODE_SIZE (SImode))
3962 {
3963 target = gen_reg_rtx (SImode);
3964
3965 expand_fix (target, from, unsignedp);
3966 }
3967 else if (GET_MODE (from) == SFmode)
3968 {
3969 if (GET_MODE (to) == SImode)
3970 libfcn = unsignedp ? fixunssfsi_libfunc : fixsfsi_libfunc;
3971 else if (GET_MODE (to) == DImode)
3972 libfcn = unsignedp ? fixunssfdi_libfunc : fixsfdi_libfunc;
3973 else if (GET_MODE (to) == TImode)
3974 libfcn = unsignedp ? fixunssfti_libfunc : fixsfti_libfunc;
3975 else
3976 abort ();
3977 }
3978 else if (GET_MODE (from) == DFmode)
3979 {
3980 if (GET_MODE (to) == SImode)
3981 libfcn = unsignedp ? fixunsdfsi_libfunc : fixdfsi_libfunc;
3982 else if (GET_MODE (to) == DImode)
3983 libfcn = unsignedp ? fixunsdfdi_libfunc : fixdfdi_libfunc;
3984 else if (GET_MODE (to) == TImode)
3985 libfcn = unsignedp ? fixunsdfti_libfunc : fixdfti_libfunc;
3986 else
3987 abort ();
3988 }
3989 else if (GET_MODE (from) == XFmode)
3990 {
3991 if (GET_MODE (to) == SImode)
3992 libfcn = unsignedp ? fixunsxfsi_libfunc : fixxfsi_libfunc;
3993 else if (GET_MODE (to) == DImode)
3994 libfcn = unsignedp ? fixunsxfdi_libfunc : fixxfdi_libfunc;
3995 else if (GET_MODE (to) == TImode)
3996 libfcn = unsignedp ? fixunsxfti_libfunc : fixxfti_libfunc;
3997 else
3998 abort ();
3999 }
4000 else if (GET_MODE (from) == TFmode)
4001 {
4002 if (GET_MODE (to) == SImode)
4003 libfcn = unsignedp ? fixunstfsi_libfunc : fixtfsi_libfunc;
4004 else if (GET_MODE (to) == DImode)
4005 libfcn = unsignedp ? fixunstfdi_libfunc : fixtfdi_libfunc;
4006 else if (GET_MODE (to) == TImode)
4007 libfcn = unsignedp ? fixunstfti_libfunc : fixtfti_libfunc;
4008 else
4009 abort ();
4010 }
4011 else
4012 abort ();
4013
4014 if (libfcn)
4015 {
4016 rtx insns;
4017 rtx value;
4018
4019 to = protect_from_queue (to, 1);
4020 from = protect_from_queue (from, 0);
4021
4022 if (flag_force_mem)
4023 from = force_not_mem (from);
4024
4025 start_sequence ();
4026
4027 value = emit_library_call_value (libfcn, NULL_RTX, 1, GET_MODE (to),
4028
4029 1, from, GET_MODE (from));
4030 insns = get_insns ();
4031 end_sequence ();
4032
4033 emit_libcall_block (insns, target, value,
4034 gen_rtx_fmt_e (unsignedp ? UNSIGNED_FIX : FIX,
4035 GET_MODE (to), from));
4036 }
4037
4038 if (target != to)
4039 {
4040 if (GET_MODE (to) == GET_MODE (target))
4041 emit_move_insn (to, target);
4042 else
4043 convert_move (to, target, 0);
4044 }
4045 }
4046 \f
4047 static optab
4048 init_optab (code)
4049 enum rtx_code code;
4050 {
4051 int i;
4052 optab op = (optab) xmalloc (sizeof (struct optab));
4053 op->code = code;
4054 for (i = 0; i < NUM_MACHINE_MODES; i++)
4055 {
4056 op->handlers[i].insn_code = CODE_FOR_nothing;
4057 op->handlers[i].libfunc = 0;
4058 }
4059
4060 if (code != UNKNOWN)
4061 code_to_optab[(int) code] = op;
4062
4063 return op;
4064 }
4065
4066 /* Initialize the libfunc fields of an entire group of entries in some
4067 optab. Each entry is set equal to a string consisting of a leading
4068 pair of underscores followed by a generic operation name followed by
4069 a mode name (downshifted to lower case) followed by a single character
4070 representing the number of operands for the given operation (which is
4071 usually one of the characters '2', '3', or '4').
4072
4073 OPTABLE is the table in which libfunc fields are to be initialized.
4074 FIRST_MODE is the first machine mode index in the given optab to
4075 initialize.
4076 LAST_MODE is the last machine mode index in the given optab to
4077 initialize.
4078 OPNAME is the generic (string) name of the operation.
4079 SUFFIX is the character which specifies the number of operands for
4080 the given generic operation.
4081 */
4082
4083 static void
4084 init_libfuncs (optable, first_mode, last_mode, opname, suffix)
4085 register optab optable;
4086 register int first_mode;
4087 register int last_mode;
4088 register char *opname;
4089 register int suffix;
4090 {
4091 register int mode;
4092 register unsigned opname_len = strlen (opname);
4093
4094 for (mode = first_mode; (int) mode <= (int) last_mode;
4095 mode = (enum machine_mode) ((int) mode + 1))
4096 {
4097 register char *mname = mode_name[(int) mode];
4098 register unsigned mname_len = strlen (mname);
4099 register char *libfunc_name
4100 = (char *) xmalloc (2 + opname_len + mname_len + 1 + 1);
4101 register char *p;
4102 register char *q;
4103
4104 p = libfunc_name;
4105 *p++ = '_';
4106 *p++ = '_';
4107 for (q = opname; *q; )
4108 *p++ = *q++;
4109 for (q = mname; *q; q++)
4110 *p++ = tolower ((unsigned char)*q);
4111 *p++ = suffix;
4112 *p++ = '\0';
4113 optable->handlers[(int) mode].libfunc
4114 = gen_rtx_SYMBOL_REF (Pmode, libfunc_name);
4115 }
4116 }
4117
4118 /* Initialize the libfunc fields of an entire group of entries in some
4119 optab which correspond to all integer mode operations. The parameters
4120 have the same meaning as similarly named ones for the `init_libfuncs'
4121 routine. (See above). */
4122
4123 static void
4124 init_integral_libfuncs (optable, opname, suffix)
4125 register optab optable;
4126 register char *opname;
4127 register int suffix;
4128 {
4129 init_libfuncs (optable, SImode, TImode, opname, suffix);
4130 }
4131
4132 /* Initialize the libfunc fields of an entire group of entries in some
4133 optab which correspond to all real mode operations. The parameters
4134 have the same meaning as similarly named ones for the `init_libfuncs'
4135 routine. (See above). */
4136
4137 static void
4138 init_floating_libfuncs (optable, opname, suffix)
4139 register optab optable;
4140 register char *opname;
4141 register int suffix;
4142 {
4143 init_libfuncs (optable, SFmode, TFmode, opname, suffix);
4144 }
4145
4146
4147 /* Call this once to initialize the contents of the optabs
4148 appropriately for the current target machine. */
4149
4150 void
4151 init_optabs ()
4152 {
4153 int i;
4154 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4155 int j;
4156 #endif
4157
4158 enum insn_code *p;
4159
4160 /* Start by initializing all tables to contain CODE_FOR_nothing. */
4161
4162 for (p = fixtab[0][0];
4163 p < fixtab[0][0] + sizeof fixtab / sizeof (fixtab[0][0][0]);
4164 p++)
4165 *p = CODE_FOR_nothing;
4166
4167 for (p = fixtrunctab[0][0];
4168 p < fixtrunctab[0][0] + sizeof fixtrunctab / sizeof (fixtrunctab[0][0][0]);
4169 p++)
4170 *p = CODE_FOR_nothing;
4171
4172 for (p = floattab[0][0];
4173 p < floattab[0][0] + sizeof floattab / sizeof (floattab[0][0][0]);
4174 p++)
4175 *p = CODE_FOR_nothing;
4176
4177 for (p = extendtab[0][0];
4178 p < extendtab[0][0] + sizeof extendtab / sizeof extendtab[0][0][0];
4179 p++)
4180 *p = CODE_FOR_nothing;
4181
4182 for (i = 0; i < NUM_RTX_CODE; i++)
4183 setcc_gen_code[i] = CODE_FOR_nothing;
4184
4185 #ifdef HAVE_conditional_move
4186 for (i = 0; i < NUM_MACHINE_MODES; i++)
4187 movcc_gen_code[i] = CODE_FOR_nothing;
4188 #endif
4189
4190 add_optab = init_optab (PLUS);
4191 sub_optab = init_optab (MINUS);
4192 smul_optab = init_optab (MULT);
4193 smul_highpart_optab = init_optab (UNKNOWN);
4194 umul_highpart_optab = init_optab (UNKNOWN);
4195 smul_widen_optab = init_optab (UNKNOWN);
4196 umul_widen_optab = init_optab (UNKNOWN);
4197 sdiv_optab = init_optab (DIV);
4198 sdivmod_optab = init_optab (UNKNOWN);
4199 udiv_optab = init_optab (UDIV);
4200 udivmod_optab = init_optab (UNKNOWN);
4201 smod_optab = init_optab (MOD);
4202 umod_optab = init_optab (UMOD);
4203 flodiv_optab = init_optab (DIV);
4204 ftrunc_optab = init_optab (UNKNOWN);
4205 and_optab = init_optab (AND);
4206 ior_optab = init_optab (IOR);
4207 xor_optab = init_optab (XOR);
4208 ashl_optab = init_optab (ASHIFT);
4209 ashr_optab = init_optab (ASHIFTRT);
4210 lshr_optab = init_optab (LSHIFTRT);
4211 rotl_optab = init_optab (ROTATE);
4212 rotr_optab = init_optab (ROTATERT);
4213 smin_optab = init_optab (SMIN);
4214 smax_optab = init_optab (SMAX);
4215 umin_optab = init_optab (UMIN);
4216 umax_optab = init_optab (UMAX);
4217 mov_optab = init_optab (UNKNOWN);
4218 movstrict_optab = init_optab (UNKNOWN);
4219 cmp_optab = init_optab (UNKNOWN);
4220 ucmp_optab = init_optab (UNKNOWN);
4221 tst_optab = init_optab (UNKNOWN);
4222 neg_optab = init_optab (NEG);
4223 abs_optab = init_optab (ABS);
4224 one_cmpl_optab = init_optab (NOT);
4225 ffs_optab = init_optab (FFS);
4226 sqrt_optab = init_optab (SQRT);
4227 sin_optab = init_optab (UNKNOWN);
4228 cos_optab = init_optab (UNKNOWN);
4229 strlen_optab = init_optab (UNKNOWN);
4230
4231 for (i = 0; i < NUM_MACHINE_MODES; i++)
4232 {
4233 movstr_optab[i] = CODE_FOR_nothing;
4234 clrstr_optab[i] = CODE_FOR_nothing;
4235
4236 #ifdef HAVE_SECONDARY_RELOADS
4237 reload_in_optab[i] = reload_out_optab[i] = CODE_FOR_nothing;
4238 #endif
4239 }
4240
4241 /* Fill in the optabs with the insns we support. */
4242 init_all_optabs ();
4243
4244 #ifdef FIXUNS_TRUNC_LIKE_FIX_TRUNC
4245 /* This flag says the same insns that convert to a signed fixnum
4246 also convert validly to an unsigned one. */
4247 for (i = 0; i < NUM_MACHINE_MODES; i++)
4248 for (j = 0; j < NUM_MACHINE_MODES; j++)
4249 fixtrunctab[i][j][1] = fixtrunctab[i][j][0];
4250 #endif
4251
4252 #ifdef EXTRA_CC_MODES
4253 init_mov_optab ();
4254 #endif
4255
4256 /* Initialize the optabs with the names of the library functions. */
4257 init_integral_libfuncs (add_optab, "add", '3');
4258 init_floating_libfuncs (add_optab, "add", '3');
4259 init_integral_libfuncs (sub_optab, "sub", '3');
4260 init_floating_libfuncs (sub_optab, "sub", '3');
4261 init_integral_libfuncs (smul_optab, "mul", '3');
4262 init_floating_libfuncs (smul_optab, "mul", '3');
4263 init_integral_libfuncs (sdiv_optab, "div", '3');
4264 init_integral_libfuncs (udiv_optab, "udiv", '3');
4265 init_integral_libfuncs (sdivmod_optab, "divmod", '4');
4266 init_integral_libfuncs (udivmod_optab, "udivmod", '4');
4267 init_integral_libfuncs (smod_optab, "mod", '3');
4268 init_integral_libfuncs (umod_optab, "umod", '3');
4269 init_floating_libfuncs (flodiv_optab, "div", '3');
4270 init_floating_libfuncs (ftrunc_optab, "ftrunc", '2');
4271 init_integral_libfuncs (and_optab, "and", '3');
4272 init_integral_libfuncs (ior_optab, "ior", '3');
4273 init_integral_libfuncs (xor_optab, "xor", '3');
4274 init_integral_libfuncs (ashl_optab, "ashl", '3');
4275 init_integral_libfuncs (ashr_optab, "ashr", '3');
4276 init_integral_libfuncs (lshr_optab, "lshr", '3');
4277 init_integral_libfuncs (smin_optab, "min", '3');
4278 init_floating_libfuncs (smin_optab, "min", '3');
4279 init_integral_libfuncs (smax_optab, "max", '3');
4280 init_floating_libfuncs (smax_optab, "max", '3');
4281 init_integral_libfuncs (umin_optab, "umin", '3');
4282 init_integral_libfuncs (umax_optab, "umax", '3');
4283 init_integral_libfuncs (neg_optab, "neg", '2');
4284 init_floating_libfuncs (neg_optab, "neg", '2');
4285 init_integral_libfuncs (one_cmpl_optab, "one_cmpl", '2');
4286 init_integral_libfuncs (ffs_optab, "ffs", '2');
4287
4288 /* Comparison libcalls for integers MUST come in pairs, signed/unsigned. */
4289 init_integral_libfuncs (cmp_optab, "cmp", '2');
4290 init_integral_libfuncs (ucmp_optab, "ucmp", '2');
4291 init_floating_libfuncs (cmp_optab, "cmp", '2');
4292
4293 #ifdef MULSI3_LIBCALL
4294 smul_optab->handlers[(int) SImode].libfunc
4295 = gen_rtx_SYMBOL_REF (Pmode, MULSI3_LIBCALL);
4296 #endif
4297 #ifdef MULDI3_LIBCALL
4298 smul_optab->handlers[(int) DImode].libfunc
4299 = gen_rtx_SYMBOL_REF (Pmode, MULDI3_LIBCALL);
4300 #endif
4301
4302 #ifdef DIVSI3_LIBCALL
4303 sdiv_optab->handlers[(int) SImode].libfunc
4304 = gen_rtx_SYMBOL_REF (Pmode, DIVSI3_LIBCALL);
4305 #endif
4306 #ifdef DIVDI3_LIBCALL
4307 sdiv_optab->handlers[(int) DImode].libfunc
4308 = gen_rtx_SYMBOL_REF (Pmode, DIVDI3_LIBCALL);
4309 #endif
4310
4311 #ifdef UDIVSI3_LIBCALL
4312 udiv_optab->handlers[(int) SImode].libfunc
4313 = gen_rtx_SYMBOL_REF (Pmode, UDIVSI3_LIBCALL);
4314 #endif
4315 #ifdef UDIVDI3_LIBCALL
4316 udiv_optab->handlers[(int) DImode].libfunc
4317 = gen_rtx_SYMBOL_REF (Pmode, UDIVDI3_LIBCALL);
4318 #endif
4319
4320 #ifdef MODSI3_LIBCALL
4321 smod_optab->handlers[(int) SImode].libfunc
4322 = gen_rtx_SYMBOL_REF (Pmode, MODSI3_LIBCALL);
4323 #endif
4324 #ifdef MODDI3_LIBCALL
4325 smod_optab->handlers[(int) DImode].libfunc
4326 = gen_rtx_SYMBOL_REF (Pmode, MODDI3_LIBCALL);
4327 #endif
4328
4329 #ifdef UMODSI3_LIBCALL
4330 umod_optab->handlers[(int) SImode].libfunc
4331 = gen_rtx_SYMBOL_REF (Pmode, UMODSI3_LIBCALL);
4332 #endif
4333 #ifdef UMODDI3_LIBCALL
4334 umod_optab->handlers[(int) DImode].libfunc
4335 = gen_rtx_SYMBOL_REF (Pmode, UMODDI3_LIBCALL);
4336 #endif
4337
4338 /* Use cabs for DC complex abs, since systems generally have cabs.
4339 Don't define any libcall for SCmode, so that cabs will be used. */
4340 abs_optab->handlers[(int) DCmode].libfunc
4341 = gen_rtx_SYMBOL_REF (Pmode, "cabs");
4342
4343 /* The ffs function operates on `int'. */
4344 #ifndef INT_TYPE_SIZE
4345 #define INT_TYPE_SIZE BITS_PER_WORD
4346 #endif
4347 ffs_optab->handlers[(int) mode_for_size (INT_TYPE_SIZE, MODE_INT, 0)] .libfunc
4348 = gen_rtx_SYMBOL_REF (Pmode, "ffs");
4349
4350 extendsfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__extendsfdf2");
4351 extendsfxf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__extendsfxf2");
4352 extendsftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__extendsftf2");
4353 extenddfxf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__extenddfxf2");
4354 extenddftf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__extenddftf2");
4355
4356 truncdfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__truncdfsf2");
4357 truncxfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__truncxfsf2");
4358 trunctfsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__trunctfsf2");
4359 truncxfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__truncxfdf2");
4360 trunctfdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__trunctfdf2");
4361
4362 memcpy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "memcpy");
4363 bcopy_libfunc = gen_rtx_SYMBOL_REF (Pmode, "bcopy");
4364 memcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "memcmp");
4365 bcmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gcc_bcmp");
4366 memset_libfunc = gen_rtx_SYMBOL_REF (Pmode, "memset");
4367 bzero_libfunc = gen_rtx_SYMBOL_REF (Pmode, "bzero");
4368
4369 throw_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__throw");
4370 rethrow_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__rethrow");
4371 sjthrow_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__sjthrow");
4372 sjpopnthrow_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__sjpopnthrow");
4373 terminate_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__terminate");
4374 eh_rtime_match_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eh_rtime_match");
4375 #ifndef DONT_USE_BUILTIN_SETJMP
4376 setjmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__builtin_setjmp");
4377 longjmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__builtin_longjmp");
4378 #else
4379 setjmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "setjmp");
4380 longjmp_libfunc = gen_rtx_SYMBOL_REF (Pmode, "longjmp");
4381 #endif
4382
4383 eqhf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eqhf2");
4384 nehf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__nehf2");
4385 gthf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gthf2");
4386 gehf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gehf2");
4387 lthf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__lthf2");
4388 lehf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__lehf2");
4389
4390 eqsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eqsf2");
4391 nesf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__nesf2");
4392 gtsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gtsf2");
4393 gesf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gesf2");
4394 ltsf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__ltsf2");
4395 lesf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__lesf2");
4396
4397 eqdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eqdf2");
4398 nedf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__nedf2");
4399 gtdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gtdf2");
4400 gedf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gedf2");
4401 ltdf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__ltdf2");
4402 ledf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__ledf2");
4403
4404 eqxf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eqxf2");
4405 nexf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__nexf2");
4406 gtxf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gtxf2");
4407 gexf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gexf2");
4408 ltxf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__ltxf2");
4409 lexf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__lexf2");
4410
4411 eqtf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__eqtf2");
4412 netf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__netf2");
4413 gttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__gttf2");
4414 getf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__getf2");
4415 lttf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__lttf2");
4416 letf2_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__letf2");
4417
4418 floatsisf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatsisf");
4419 floatdisf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatdisf");
4420 floattisf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floattisf");
4421
4422 floatsidf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatsidf");
4423 floatdidf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatdidf");
4424 floattidf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floattidf");
4425
4426 floatsixf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatsixf");
4427 floatdixf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatdixf");
4428 floattixf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floattixf");
4429
4430 floatsitf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatsitf");
4431 floatditf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floatditf");
4432 floattitf_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__floattitf");
4433
4434 fixsfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixsfsi");
4435 fixsfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixsfdi");
4436 fixsfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixsfti");
4437
4438 fixdfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixdfsi");
4439 fixdfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixdfdi");
4440 fixdfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixdfti");
4441
4442 fixxfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixxfsi");
4443 fixxfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixxfdi");
4444 fixxfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixxfti");
4445
4446 fixtfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixtfsi");
4447 fixtfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixtfdi");
4448 fixtfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixtfti");
4449
4450 fixunssfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunssfsi");
4451 fixunssfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunssfdi");
4452 fixunssfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunssfti");
4453
4454 fixunsdfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsdfsi");
4455 fixunsdfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsdfdi");
4456 fixunsdfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsdfti");
4457
4458 fixunsxfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsxfsi");
4459 fixunsxfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsxfdi");
4460 fixunsxfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunsxfti");
4461
4462 fixunstfsi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunstfsi");
4463 fixunstfdi_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunstfdi");
4464 fixunstfti_libfunc = gen_rtx_SYMBOL_REF (Pmode, "__fixunstfti");
4465
4466 /* For check-memory-usage. */
4467 chkr_check_addr_libfunc = gen_rtx_SYMBOL_REF (Pmode, "chkr_check_addr");
4468 chkr_set_right_libfunc = gen_rtx_SYMBOL_REF (Pmode, "chkr_set_right");
4469 chkr_copy_bitmap_libfunc = gen_rtx_SYMBOL_REF (Pmode, "chkr_copy_bitmap");
4470 chkr_check_exec_libfunc = gen_rtx_SYMBOL_REF (Pmode, "chkr_check_exec");
4471 chkr_check_str_libfunc = gen_rtx_SYMBOL_REF (Pmode, "chkr_check_str");
4472
4473 /* For function entry/exit instrumentation. */
4474 profile_function_entry_libfunc
4475 = gen_rtx_SYMBOL_REF (Pmode, "__cyg_profile_func_enter");
4476 profile_function_exit_libfunc
4477 = gen_rtx_SYMBOL_REF (Pmode, "__cyg_profile_func_exit");
4478
4479 #ifdef HAVE_conditional_trap
4480 init_traps ();
4481 #endif
4482
4483 #ifdef INIT_TARGET_OPTABS
4484 /* Allow the target to add more libcalls or rename some, etc. */
4485 INIT_TARGET_OPTABS;
4486 #endif
4487 }
4488 \f
4489 #ifdef BROKEN_LDEXP
4490
4491 /* SCO 3.2 apparently has a broken ldexp. */
4492
4493 double
4494 ldexp(x,n)
4495 double x;
4496 int n;
4497 {
4498 if (n > 0)
4499 while (n--)
4500 x *= 2;
4501
4502 return x;
4503 }
4504 #endif /* BROKEN_LDEXP */
4505 \f
4506 #ifdef HAVE_conditional_trap
4507 /* The insn generating function can not take an rtx_code argument.
4508 TRAP_RTX is used as an rtx argument. Its code is replaced with
4509 the code to be used in the trap insn and all other fields are
4510 ignored.
4511
4512 ??? Will need to change to support garbage collection. */
4513 static rtx trap_rtx;
4514
4515 static void
4516 init_traps ()
4517 {
4518 if (HAVE_conditional_trap)
4519 trap_rtx = gen_rtx_fmt_ee (EQ, VOIDmode, NULL_RTX, NULL_RTX);
4520 }
4521 #endif
4522
4523 /* Generate insns to trap with code TCODE if OP1 and OP2 satisfy condition
4524 CODE. Return 0 on failure. */
4525
4526 rtx
4527 gen_cond_trap (code, op1, op2, tcode)
4528 enum rtx_code code ATTRIBUTE_UNUSED;
4529 rtx op1, op2 ATTRIBUTE_UNUSED, tcode ATTRIBUTE_UNUSED;
4530 {
4531 enum machine_mode mode = GET_MODE (op1);
4532
4533 if (mode == VOIDmode)
4534 return 0;
4535
4536 #ifdef HAVE_conditional_trap
4537 if (HAVE_conditional_trap
4538 && cmp_optab->handlers[(int) mode].insn_code != CODE_FOR_nothing)
4539 {
4540 rtx insn;
4541 emit_insn (GEN_FCN (cmp_optab->handlers[(int) mode].insn_code) (op1, op2));
4542 PUT_CODE (trap_rtx, code);
4543 insn = gen_conditional_trap (trap_rtx, tcode);
4544 if (insn)
4545 return insn;
4546 }
4547 #endif
4548
4549 return 0;
4550 }