]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
153c284ff1d4ea499136d3c55ce25ec4d06fecca
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24
25 #include "machmode.h"
26 #include "hard-reg-set.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "obstack.h"
30 #include "insn-config.h"
31 #include "ggc.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "optabs.h"
36 #include "regs.h"
37 #include "addresses.h"
38 #include "basic-block.h"
39 #include "df.h"
40 #include "reload.h"
41 #include "recog.h"
42 #include "except.h"
43 #include "tree.h"
44 #include "ira.h"
45 #include "target.h"
46 #include "emit-rtl.h"
47 #include "dumpfile.h"
48 #include "rtl-iter.h"
49
50 /* This file contains the reload pass of the compiler, which is
51 run after register allocation has been done. It checks that
52 each insn is valid (operands required to be in registers really
53 are in registers of the proper class) and fixes up invalid ones
54 by copying values temporarily into registers for the insns
55 that need them.
56
57 The results of register allocation are described by the vector
58 reg_renumber; the insns still contain pseudo regs, but reg_renumber
59 can be used to find which hard reg, if any, a pseudo reg is in.
60
61 The technique we always use is to free up a few hard regs that are
62 called ``reload regs'', and for each place where a pseudo reg
63 must be in a hard reg, copy it temporarily into one of the reload regs.
64
65 Reload regs are allocated locally for every instruction that needs
66 reloads. When there are pseudos which are allocated to a register that
67 has been chosen as a reload reg, such pseudos must be ``spilled''.
68 This means that they go to other hard regs, or to stack slots if no other
69 available hard regs can be found. Spilling can invalidate more
70 insns, requiring additional need for reloads, so we must keep checking
71 until the process stabilizes.
72
73 For machines with different classes of registers, we must keep track
74 of the register class needed for each reload, and make sure that
75 we allocate enough reload registers of each class.
76
77 The file reload.c contains the code that checks one insn for
78 validity and reports the reloads that it needs. This file
79 is in charge of scanning the entire rtl code, accumulating the
80 reload needs, spilling, assigning reload registers to use for
81 fixing up each insn, and generating the new insns to copy values
82 into the reload registers. */
83 \f
84 struct target_reload default_target_reload;
85 #if SWITCHABLE_TARGET
86 struct target_reload *this_target_reload = &default_target_reload;
87 #endif
88
89 #define spill_indirect_levels \
90 (this_target_reload->x_spill_indirect_levels)
91
92 /* During reload_as_needed, element N contains a REG rtx for the hard reg
93 into which reg N has been reloaded (perhaps for a previous insn). */
94 static rtx *reg_last_reload_reg;
95
96 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
97 for an output reload that stores into reg N. */
98 static regset_head reg_has_output_reload;
99
100 /* Indicates which hard regs are reload-registers for an output reload
101 in the current insn. */
102 static HARD_REG_SET reg_is_output_reload;
103
104 /* Widest width in which each pseudo reg is referred to (via subreg). */
105 static unsigned int *reg_max_ref_width;
106
107 /* Vector to remember old contents of reg_renumber before spilling. */
108 static short *reg_old_renumber;
109
110 /* During reload_as_needed, element N contains the last pseudo regno reloaded
111 into hard register N. If that pseudo reg occupied more than one register,
112 reg_reloaded_contents points to that pseudo for each spill register in
113 use; all of these must remain set for an inheritance to occur. */
114 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
115
116 /* During reload_as_needed, element N contains the insn for which
117 hard register N was last used. Its contents are significant only
118 when reg_reloaded_valid is set for this register. */
119 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
120
121 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
122 static HARD_REG_SET reg_reloaded_valid;
123 /* Indicate if the register was dead at the end of the reload.
124 This is only valid if reg_reloaded_contents is set and valid. */
125 static HARD_REG_SET reg_reloaded_dead;
126
127 /* Indicate whether the register's current value is one that is not
128 safe to retain across a call, even for registers that are normally
129 call-saved. This is only meaningful for members of reg_reloaded_valid. */
130 static HARD_REG_SET reg_reloaded_call_part_clobbered;
131
132 /* Number of spill-regs so far; number of valid elements of spill_regs. */
133 static int n_spills;
134
135 /* In parallel with spill_regs, contains REG rtx's for those regs.
136 Holds the last rtx used for any given reg, or 0 if it has never
137 been used for spilling yet. This rtx is reused, provided it has
138 the proper mode. */
139 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
140
141 /* In parallel with spill_regs, contains nonzero for a spill reg
142 that was stored after the last time it was used.
143 The precise value is the insn generated to do the store. */
144 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
145
146 /* This is the register that was stored with spill_reg_store. This is a
147 copy of reload_out / reload_out_reg when the value was stored; if
148 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
149 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
150
151 /* This table is the inverse mapping of spill_regs:
152 indexed by hard reg number,
153 it contains the position of that reg in spill_regs,
154 or -1 for something that is not in spill_regs.
155
156 ?!? This is no longer accurate. */
157 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
158
159 /* This reg set indicates registers that can't be used as spill registers for
160 the currently processed insn. These are the hard registers which are live
161 during the insn, but not allocated to pseudos, as well as fixed
162 registers. */
163 static HARD_REG_SET bad_spill_regs;
164
165 /* These are the hard registers that can't be used as spill register for any
166 insn. This includes registers used for user variables and registers that
167 we can't eliminate. A register that appears in this set also can't be used
168 to retry register allocation. */
169 static HARD_REG_SET bad_spill_regs_global;
170
171 /* Describes order of use of registers for reloading
172 of spilled pseudo-registers. `n_spills' is the number of
173 elements that are actually valid; new ones are added at the end.
174
175 Both spill_regs and spill_reg_order are used on two occasions:
176 once during find_reload_regs, where they keep track of the spill registers
177 for a single insn, but also during reload_as_needed where they show all
178 the registers ever used by reload. For the latter case, the information
179 is calculated during finish_spills. */
180 static short spill_regs[FIRST_PSEUDO_REGISTER];
181
182 /* This vector of reg sets indicates, for each pseudo, which hard registers
183 may not be used for retrying global allocation because the register was
184 formerly spilled from one of them. If we allowed reallocating a pseudo to
185 a register that it was already allocated to, reload might not
186 terminate. */
187 static HARD_REG_SET *pseudo_previous_regs;
188
189 /* This vector of reg sets indicates, for each pseudo, which hard
190 registers may not be used for retrying global allocation because they
191 are used as spill registers during one of the insns in which the
192 pseudo is live. */
193 static HARD_REG_SET *pseudo_forbidden_regs;
194
195 /* All hard regs that have been used as spill registers for any insn are
196 marked in this set. */
197 static HARD_REG_SET used_spill_regs;
198
199 /* Index of last register assigned as a spill register. We allocate in
200 a round-robin fashion. */
201 static int last_spill_reg;
202
203 /* Record the stack slot for each spilled hard register. */
204 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
205
206 /* Width allocated so far for that stack slot. */
207 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
208
209 /* Record which pseudos needed to be spilled. */
210 static regset_head spilled_pseudos;
211
212 /* Record which pseudos changed their allocation in finish_spills. */
213 static regset_head changed_allocation_pseudos;
214
215 /* Used for communication between order_regs_for_reload and count_pseudo.
216 Used to avoid counting one pseudo twice. */
217 static regset_head pseudos_counted;
218
219 /* First uid used by insns created by reload in this function.
220 Used in find_equiv_reg. */
221 int reload_first_uid;
222
223 /* Flag set by local-alloc or global-alloc if anything is live in
224 a call-clobbered reg across calls. */
225 int caller_save_needed;
226
227 /* Set to 1 while reload_as_needed is operating.
228 Required by some machines to handle any generated moves differently. */
229 int reload_in_progress = 0;
230
231 /* This obstack is used for allocation of rtl during register elimination.
232 The allocated storage can be freed once find_reloads has processed the
233 insn. */
234 static struct obstack reload_obstack;
235
236 /* Points to the beginning of the reload_obstack. All insn_chain structures
237 are allocated first. */
238 static char *reload_startobj;
239
240 /* The point after all insn_chain structures. Used to quickly deallocate
241 memory allocated in copy_reloads during calculate_needs_all_insns. */
242 static char *reload_firstobj;
243
244 /* This points before all local rtl generated by register elimination.
245 Used to quickly free all memory after processing one insn. */
246 static char *reload_insn_firstobj;
247
248 /* List of insn_chain instructions, one for every insn that reload needs to
249 examine. */
250 struct insn_chain *reload_insn_chain;
251
252 /* TRUE if we potentially left dead insns in the insn stream and want to
253 run DCE immediately after reload, FALSE otherwise. */
254 static bool need_dce;
255
256 /* List of all insns needing reloads. */
257 static struct insn_chain *insns_need_reload;
258 \f
259 /* This structure is used to record information about register eliminations.
260 Each array entry describes one possible way of eliminating a register
261 in favor of another. If there is more than one way of eliminating a
262 particular register, the most preferred should be specified first. */
263
264 struct elim_table
265 {
266 int from; /* Register number to be eliminated. */
267 int to; /* Register number used as replacement. */
268 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
269 int can_eliminate; /* Nonzero if this elimination can be done. */
270 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
271 target hook in previous scan over insns
272 made by reload. */
273 HOST_WIDE_INT offset; /* Current offset between the two regs. */
274 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
275 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
276 rtx from_rtx; /* REG rtx for the register to be eliminated.
277 We cannot simply compare the number since
278 we might then spuriously replace a hard
279 register corresponding to a pseudo
280 assigned to the reg to be eliminated. */
281 rtx to_rtx; /* REG rtx for the replacement. */
282 };
283
284 static struct elim_table *reg_eliminate = 0;
285
286 /* This is an intermediate structure to initialize the table. It has
287 exactly the members provided by ELIMINABLE_REGS. */
288 static const struct elim_table_1
289 {
290 const int from;
291 const int to;
292 } reg_eliminate_1[] =
293
294 /* If a set of eliminable registers was specified, define the table from it.
295 Otherwise, default to the normal case of the frame pointer being
296 replaced by the stack pointer. */
297
298 #ifdef ELIMINABLE_REGS
299 ELIMINABLE_REGS;
300 #else
301 {{ FRAME_POINTER_REGNUM, STACK_POINTER_REGNUM}};
302 #endif
303
304 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
305
306 /* Record the number of pending eliminations that have an offset not equal
307 to their initial offset. If nonzero, we use a new copy of each
308 replacement result in any insns encountered. */
309 int num_not_at_initial_offset;
310
311 /* Count the number of registers that we may be able to eliminate. */
312 static int num_eliminable;
313 /* And the number of registers that are equivalent to a constant that
314 can be eliminated to frame_pointer / arg_pointer + constant. */
315 static int num_eliminable_invariants;
316
317 /* For each label, we record the offset of each elimination. If we reach
318 a label by more than one path and an offset differs, we cannot do the
319 elimination. This information is indexed by the difference of the
320 number of the label and the first label number. We can't offset the
321 pointer itself as this can cause problems on machines with segmented
322 memory. The first table is an array of flags that records whether we
323 have yet encountered a label and the second table is an array of arrays,
324 one entry in the latter array for each elimination. */
325
326 static int first_label_num;
327 static char *offsets_known_at;
328 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
329
330 vec<reg_equivs_t, va_gc> *reg_equivs;
331
332 /* Stack of addresses where an rtx has been changed. We can undo the
333 changes by popping items off the stack and restoring the original
334 value at each location.
335
336 We use this simplistic undo capability rather than copy_rtx as copy_rtx
337 will not make a deep copy of a normally sharable rtx, such as
338 (const (plus (symbol_ref) (const_int))). If such an expression appears
339 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
340 rtx expression would be changed. See PR 42431. */
341
342 typedef rtx *rtx_p;
343 static vec<rtx_p> substitute_stack;
344
345 /* Number of labels in the current function. */
346
347 static int num_labels;
348 \f
349 static void replace_pseudos_in (rtx *, enum machine_mode, rtx);
350 static void maybe_fix_stack_asms (void);
351 static void copy_reloads (struct insn_chain *);
352 static void calculate_needs_all_insns (int);
353 static int find_reg (struct insn_chain *, int);
354 static void find_reload_regs (struct insn_chain *);
355 static void select_reload_regs (void);
356 static void delete_caller_save_insns (void);
357
358 static void spill_failure (rtx_insn *, enum reg_class);
359 static void count_spilled_pseudo (int, int, int);
360 static void delete_dead_insn (rtx_insn *);
361 static void alter_reg (int, int, bool);
362 static void set_label_offsets (rtx, rtx_insn *, int);
363 static void check_eliminable_occurrences (rtx);
364 static void elimination_effects (rtx, enum machine_mode);
365 static rtx eliminate_regs_1 (rtx, enum machine_mode, rtx, bool, bool);
366 static int eliminate_regs_in_insn (rtx_insn *, int);
367 static void update_eliminable_offsets (void);
368 static void mark_not_eliminable (rtx, const_rtx, void *);
369 static void set_initial_elim_offsets (void);
370 static bool verify_initial_elim_offsets (void);
371 static void set_initial_label_offsets (void);
372 static void set_offsets_for_label (rtx_insn *);
373 static void init_eliminable_invariants (rtx_insn *, bool);
374 static void init_elim_table (void);
375 static void free_reg_equiv (void);
376 static void update_eliminables (HARD_REG_SET *);
377 static bool update_eliminables_and_spill (void);
378 static void elimination_costs_in_insn (rtx_insn *);
379 static void spill_hard_reg (unsigned int, int);
380 static int finish_spills (int);
381 static void scan_paradoxical_subregs (rtx);
382 static void count_pseudo (int);
383 static void order_regs_for_reload (struct insn_chain *);
384 static void reload_as_needed (int);
385 static void forget_old_reloads_1 (rtx, const_rtx, void *);
386 static void forget_marked_reloads (regset);
387 static int reload_reg_class_lower (const void *, const void *);
388 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
389 enum machine_mode);
390 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
391 enum machine_mode);
392 static int reload_reg_free_p (unsigned int, int, enum reload_type);
393 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
394 rtx, rtx, int, int);
395 static int free_for_value_p (int, enum machine_mode, int, enum reload_type,
396 rtx, rtx, int, int);
397 static int allocate_reload_reg (struct insn_chain *, int, int);
398 static int conflicts_with_override (rtx);
399 static void failed_reload (rtx_insn *, int);
400 static int set_reload_reg (int, int);
401 static void choose_reload_regs_init (struct insn_chain *, rtx *);
402 static void choose_reload_regs (struct insn_chain *);
403 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
404 rtx, int);
405 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
406 int);
407 static void do_input_reload (struct insn_chain *, struct reload *, int);
408 static void do_output_reload (struct insn_chain *, struct reload *, int);
409 static void emit_reload_insns (struct insn_chain *);
410 static void delete_output_reload (rtx_insn *, int, int, rtx);
411 static void delete_address_reloads (rtx_insn *, rtx_insn *);
412 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
413 static void inc_for_reload (rtx, rtx, rtx, int);
414 #ifdef AUTO_INC_DEC
415 static void add_auto_inc_notes (rtx_insn *, rtx);
416 #endif
417 static void substitute (rtx *, const_rtx, rtx);
418 static bool gen_reload_chain_without_interm_reg_p (int, int);
419 static int reloads_conflict (int, int);
420 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
421 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
422 \f
423 /* Initialize the reload pass. This is called at the beginning of compilation
424 and may be called again if the target is reinitialized. */
425
426 void
427 init_reload (void)
428 {
429 int i;
430
431 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
432 Set spill_indirect_levels to the number of levels such addressing is
433 permitted, zero if it is not permitted at all. */
434
435 rtx tem
436 = gen_rtx_MEM (Pmode,
437 gen_rtx_PLUS (Pmode,
438 gen_rtx_REG (Pmode,
439 LAST_VIRTUAL_REGISTER + 1),
440 gen_int_mode (4, Pmode)));
441 spill_indirect_levels = 0;
442
443 while (memory_address_p (QImode, tem))
444 {
445 spill_indirect_levels++;
446 tem = gen_rtx_MEM (Pmode, tem);
447 }
448
449 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
450
451 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
452 indirect_symref_ok = memory_address_p (QImode, tem);
453
454 /* See if reg+reg is a valid (and offsettable) address. */
455
456 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
457 {
458 tem = gen_rtx_PLUS (Pmode,
459 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
460 gen_rtx_REG (Pmode, i));
461
462 /* This way, we make sure that reg+reg is an offsettable address. */
463 tem = plus_constant (Pmode, tem, 4);
464
465 if (memory_address_p (QImode, tem))
466 {
467 double_reg_address_ok = 1;
468 break;
469 }
470 }
471
472 /* Initialize obstack for our rtl allocation. */
473 if (reload_startobj == NULL)
474 {
475 gcc_obstack_init (&reload_obstack);
476 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
477 }
478
479 INIT_REG_SET (&spilled_pseudos);
480 INIT_REG_SET (&changed_allocation_pseudos);
481 INIT_REG_SET (&pseudos_counted);
482 }
483
484 /* List of insn chains that are currently unused. */
485 static struct insn_chain *unused_insn_chains = 0;
486
487 /* Allocate an empty insn_chain structure. */
488 struct insn_chain *
489 new_insn_chain (void)
490 {
491 struct insn_chain *c;
492
493 if (unused_insn_chains == 0)
494 {
495 c = XOBNEW (&reload_obstack, struct insn_chain);
496 INIT_REG_SET (&c->live_throughout);
497 INIT_REG_SET (&c->dead_or_set);
498 }
499 else
500 {
501 c = unused_insn_chains;
502 unused_insn_chains = c->next;
503 }
504 c->is_caller_save_insn = 0;
505 c->need_operand_change = 0;
506 c->need_reload = 0;
507 c->need_elim = 0;
508 return c;
509 }
510
511 /* Small utility function to set all regs in hard reg set TO which are
512 allocated to pseudos in regset FROM. */
513
514 void
515 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
516 {
517 unsigned int regno;
518 reg_set_iterator rsi;
519
520 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
521 {
522 int r = reg_renumber[regno];
523
524 if (r < 0)
525 {
526 /* reload_combine uses the information from DF_LIVE_IN,
527 which might still contain registers that have not
528 actually been allocated since they have an
529 equivalence. */
530 gcc_assert (ira_conflicts_p || reload_completed);
531 }
532 else
533 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
534 }
535 }
536
537 /* Replace all pseudos found in LOC with their corresponding
538 equivalences. */
539
540 static void
541 replace_pseudos_in (rtx *loc, enum machine_mode mem_mode, rtx usage)
542 {
543 rtx x = *loc;
544 enum rtx_code code;
545 const char *fmt;
546 int i, j;
547
548 if (! x)
549 return;
550
551 code = GET_CODE (x);
552 if (code == REG)
553 {
554 unsigned int regno = REGNO (x);
555
556 if (regno < FIRST_PSEUDO_REGISTER)
557 return;
558
559 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
560 if (x != *loc)
561 {
562 *loc = x;
563 replace_pseudos_in (loc, mem_mode, usage);
564 return;
565 }
566
567 if (reg_equiv_constant (regno))
568 *loc = reg_equiv_constant (regno);
569 else if (reg_equiv_invariant (regno))
570 *loc = reg_equiv_invariant (regno);
571 else if (reg_equiv_mem (regno))
572 *loc = reg_equiv_mem (regno);
573 else if (reg_equiv_address (regno))
574 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
575 else
576 {
577 gcc_assert (!REG_P (regno_reg_rtx[regno])
578 || REGNO (regno_reg_rtx[regno]) != regno);
579 *loc = regno_reg_rtx[regno];
580 }
581
582 return;
583 }
584 else if (code == MEM)
585 {
586 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
587 return;
588 }
589
590 /* Process each of our operands recursively. */
591 fmt = GET_RTX_FORMAT (code);
592 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
593 if (*fmt == 'e')
594 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
595 else if (*fmt == 'E')
596 for (j = 0; j < XVECLEN (x, i); j++)
597 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
598 }
599
600 /* Determine if the current function has an exception receiver block
601 that reaches the exit block via non-exceptional edges */
602
603 static bool
604 has_nonexceptional_receiver (void)
605 {
606 edge e;
607 edge_iterator ei;
608 basic_block *tos, *worklist, bb;
609
610 /* If we're not optimizing, then just err on the safe side. */
611 if (!optimize)
612 return true;
613
614 /* First determine which blocks can reach exit via normal paths. */
615 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
616
617 FOR_EACH_BB_FN (bb, cfun)
618 bb->flags &= ~BB_REACHABLE;
619
620 /* Place the exit block on our worklist. */
621 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
622 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
623
624 /* Iterate: find everything reachable from what we've already seen. */
625 while (tos != worklist)
626 {
627 bb = *--tos;
628
629 FOR_EACH_EDGE (e, ei, bb->preds)
630 if (!(e->flags & EDGE_ABNORMAL))
631 {
632 basic_block src = e->src;
633
634 if (!(src->flags & BB_REACHABLE))
635 {
636 src->flags |= BB_REACHABLE;
637 *tos++ = src;
638 }
639 }
640 }
641 free (worklist);
642
643 /* Now see if there's a reachable block with an exceptional incoming
644 edge. */
645 FOR_EACH_BB_FN (bb, cfun)
646 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
647 return true;
648
649 /* No exceptional block reached exit unexceptionally. */
650 return false;
651 }
652
653 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
654 zero elements) to MAX_REG_NUM elements.
655
656 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
657 void
658 grow_reg_equivs (void)
659 {
660 int old_size = vec_safe_length (reg_equivs);
661 int max_regno = max_reg_num ();
662 int i;
663 reg_equivs_t ze;
664
665 memset (&ze, 0, sizeof (reg_equivs_t));
666 vec_safe_reserve (reg_equivs, max_regno);
667 for (i = old_size; i < max_regno; i++)
668 reg_equivs->quick_insert (i, ze);
669 }
670
671 \f
672 /* Global variables used by reload and its subroutines. */
673
674 /* The current basic block while in calculate_elim_costs_all_insns. */
675 static basic_block elim_bb;
676
677 /* Set during calculate_needs if an insn needs register elimination. */
678 static int something_needs_elimination;
679 /* Set during calculate_needs if an insn needs an operand changed. */
680 static int something_needs_operands_changed;
681 /* Set by alter_regs if we spilled a register to the stack. */
682 static bool something_was_spilled;
683
684 /* Nonzero means we couldn't get enough spill regs. */
685 static int failure;
686
687 /* Temporary array of pseudo-register number. */
688 static int *temp_pseudo_reg_arr;
689
690 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
691 If that insn didn't set the register (i.e., it copied the register to
692 memory), just delete that insn instead of the equivalencing insn plus
693 anything now dead. If we call delete_dead_insn on that insn, we may
694 delete the insn that actually sets the register if the register dies
695 there and that is incorrect. */
696 static void
697 remove_init_insns ()
698 {
699 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
700 {
701 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
702 {
703 rtx list;
704 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
705 {
706 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
707
708 /* If we already deleted the insn or if it may trap, we can't
709 delete it. The latter case shouldn't happen, but can
710 if an insn has a variable address, gets a REG_EH_REGION
711 note added to it, and then gets converted into a load
712 from a constant address. */
713 if (NOTE_P (equiv_insn)
714 || can_throw_internal (equiv_insn))
715 ;
716 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
717 delete_dead_insn (equiv_insn);
718 else
719 SET_INSN_DELETED (equiv_insn);
720 }
721 }
722 }
723 }
724
725 /* Return true if remove_init_insns will delete INSN. */
726 static bool
727 will_delete_init_insn_p (rtx_insn *insn)
728 {
729 rtx set = single_set (insn);
730 if (!set || !REG_P (SET_DEST (set)))
731 return false;
732 unsigned regno = REGNO (SET_DEST (set));
733
734 if (can_throw_internal (insn))
735 return false;
736
737 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
738 return false;
739
740 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
741 {
742 rtx equiv_insn = XEXP (list, 0);
743 if (equiv_insn == insn)
744 return true;
745 }
746 return false;
747 }
748
749 /* Main entry point for the reload pass.
750
751 FIRST is the first insn of the function being compiled.
752
753 GLOBAL nonzero means we were called from global_alloc
754 and should attempt to reallocate any pseudoregs that we
755 displace from hard regs we will use for reloads.
756 If GLOBAL is zero, we do not have enough information to do that,
757 so any pseudo reg that is spilled must go to the stack.
758
759 Return value is TRUE if reload likely left dead insns in the
760 stream and a DCE pass should be run to elimiante them. Else the
761 return value is FALSE. */
762
763 bool
764 reload (rtx_insn *first, int global)
765 {
766 int i, n;
767 rtx_insn *insn;
768 struct elim_table *ep;
769 basic_block bb;
770 bool inserted;
771
772 /* Make sure even insns with volatile mem refs are recognizable. */
773 init_recog ();
774
775 failure = 0;
776
777 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
778
779 /* Make sure that the last insn in the chain
780 is not something that needs reloading. */
781 emit_note (NOTE_INSN_DELETED);
782
783 /* Enable find_equiv_reg to distinguish insns made by reload. */
784 reload_first_uid = get_max_uid ();
785
786 #ifdef SECONDARY_MEMORY_NEEDED
787 /* Initialize the secondary memory table. */
788 clear_secondary_mem ();
789 #endif
790
791 /* We don't have a stack slot for any spill reg yet. */
792 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
793 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
794
795 /* Initialize the save area information for caller-save, in case some
796 are needed. */
797 init_save_areas ();
798
799 /* Compute which hard registers are now in use
800 as homes for pseudo registers.
801 This is done here rather than (eg) in global_alloc
802 because this point is reached even if not optimizing. */
803 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
804 mark_home_live (i);
805
806 /* A function that has a nonlocal label that can reach the exit
807 block via non-exceptional paths must save all call-saved
808 registers. */
809 if (cfun->has_nonlocal_label
810 && has_nonexceptional_receiver ())
811 crtl->saves_all_registers = 1;
812
813 if (crtl->saves_all_registers)
814 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
815 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
816 df_set_regs_ever_live (i, true);
817
818 /* Find all the pseudo registers that didn't get hard regs
819 but do have known equivalent constants or memory slots.
820 These include parameters (known equivalent to parameter slots)
821 and cse'd or loop-moved constant memory addresses.
822
823 Record constant equivalents in reg_equiv_constant
824 so they will be substituted by find_reloads.
825 Record memory equivalents in reg_mem_equiv so they can
826 be substituted eventually by altering the REG-rtx's. */
827
828 grow_reg_equivs ();
829 reg_old_renumber = XCNEWVEC (short, max_regno);
830 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
831 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
832 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
833
834 CLEAR_HARD_REG_SET (bad_spill_regs_global);
835
836 init_eliminable_invariants (first, true);
837 init_elim_table ();
838
839 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
840 stack slots to the pseudos that lack hard regs or equivalents.
841 Do not touch virtual registers. */
842
843 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
844 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
845 temp_pseudo_reg_arr[n++] = i;
846
847 if (ira_conflicts_p)
848 /* Ask IRA to order pseudo-registers for better stack slot
849 sharing. */
850 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_width);
851
852 for (i = 0; i < n; i++)
853 alter_reg (temp_pseudo_reg_arr[i], -1, false);
854
855 /* If we have some registers we think can be eliminated, scan all insns to
856 see if there is an insn that sets one of these registers to something
857 other than itself plus a constant. If so, the register cannot be
858 eliminated. Doing this scan here eliminates an extra pass through the
859 main reload loop in the most common case where register elimination
860 cannot be done. */
861 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
862 if (INSN_P (insn))
863 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
864
865 maybe_fix_stack_asms ();
866
867 insns_need_reload = 0;
868 something_needs_elimination = 0;
869
870 /* Initialize to -1, which means take the first spill register. */
871 last_spill_reg = -1;
872
873 /* Spill any hard regs that we know we can't eliminate. */
874 CLEAR_HARD_REG_SET (used_spill_regs);
875 /* There can be multiple ways to eliminate a register;
876 they should be listed adjacently.
877 Elimination for any register fails only if all possible ways fail. */
878 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
879 {
880 int from = ep->from;
881 int can_eliminate = 0;
882 do
883 {
884 can_eliminate |= ep->can_eliminate;
885 ep++;
886 }
887 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
888 if (! can_eliminate)
889 spill_hard_reg (from, 1);
890 }
891
892 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
893 if (frame_pointer_needed)
894 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
895 #endif
896 finish_spills (global);
897
898 /* From now on, we may need to generate moves differently. We may also
899 allow modifications of insns which cause them to not be recognized.
900 Any such modifications will be cleaned up during reload itself. */
901 reload_in_progress = 1;
902
903 /* This loop scans the entire function each go-round
904 and repeats until one repetition spills no additional hard regs. */
905 for (;;)
906 {
907 int something_changed;
908 int did_spill;
909 HOST_WIDE_INT starting_frame_size;
910
911 starting_frame_size = get_frame_size ();
912 something_was_spilled = false;
913
914 set_initial_elim_offsets ();
915 set_initial_label_offsets ();
916
917 /* For each pseudo register that has an equivalent location defined,
918 try to eliminate any eliminable registers (such as the frame pointer)
919 assuming initial offsets for the replacement register, which
920 is the normal case.
921
922 If the resulting location is directly addressable, substitute
923 the MEM we just got directly for the old REG.
924
925 If it is not addressable but is a constant or the sum of a hard reg
926 and constant, it is probably not addressable because the constant is
927 out of range, in that case record the address; we will generate
928 hairy code to compute the address in a register each time it is
929 needed. Similarly if it is a hard register, but one that is not
930 valid as an address register.
931
932 If the location is not addressable, but does not have one of the
933 above forms, assign a stack slot. We have to do this to avoid the
934 potential of producing lots of reloads if, e.g., a location involves
935 a pseudo that didn't get a hard register and has an equivalent memory
936 location that also involves a pseudo that didn't get a hard register.
937
938 Perhaps at some point we will improve reload_when_needed handling
939 so this problem goes away. But that's very hairy. */
940
941 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
942 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
943 {
944 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
945 NULL_RTX);
946
947 if (strict_memory_address_addr_space_p
948 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
949 MEM_ADDR_SPACE (x)))
950 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
951 else if (CONSTANT_P (XEXP (x, 0))
952 || (REG_P (XEXP (x, 0))
953 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
954 || (GET_CODE (XEXP (x, 0)) == PLUS
955 && REG_P (XEXP (XEXP (x, 0), 0))
956 && (REGNO (XEXP (XEXP (x, 0), 0))
957 < FIRST_PSEUDO_REGISTER)
958 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
959 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
960 else
961 {
962 /* Make a new stack slot. Then indicate that something
963 changed so we go back and recompute offsets for
964 eliminable registers because the allocation of memory
965 below might change some offset. reg_equiv_{mem,address}
966 will be set up for this pseudo on the next pass around
967 the loop. */
968 reg_equiv_memory_loc (i) = 0;
969 reg_equiv_init (i) = 0;
970 alter_reg (i, -1, true);
971 }
972 }
973
974 if (caller_save_needed)
975 setup_save_areas ();
976
977 if (starting_frame_size && crtl->stack_alignment_needed)
978 {
979 /* If we have a stack frame, we must align it now. The
980 stack size may be a part of the offset computation for
981 register elimination. So if this changes the stack size,
982 then repeat the elimination bookkeeping. We don't
983 realign when there is no stack, as that will cause a
984 stack frame when none is needed should
985 STARTING_FRAME_OFFSET not be already aligned to
986 STACK_BOUNDARY. */
987 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
988 }
989 /* If we allocated another stack slot, redo elimination bookkeeping. */
990 if (something_was_spilled || starting_frame_size != get_frame_size ())
991 {
992 update_eliminables_and_spill ();
993 continue;
994 }
995
996 if (caller_save_needed)
997 {
998 save_call_clobbered_regs ();
999 /* That might have allocated new insn_chain structures. */
1000 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1001 }
1002
1003 calculate_needs_all_insns (global);
1004
1005 if (! ira_conflicts_p)
1006 /* Don't do it for IRA. We need this info because we don't
1007 change live_throughout and dead_or_set for chains when IRA
1008 is used. */
1009 CLEAR_REG_SET (&spilled_pseudos);
1010
1011 did_spill = 0;
1012
1013 something_changed = 0;
1014
1015 /* If we allocated any new memory locations, make another pass
1016 since it might have changed elimination offsets. */
1017 if (something_was_spilled || starting_frame_size != get_frame_size ())
1018 something_changed = 1;
1019
1020 /* Even if the frame size remained the same, we might still have
1021 changed elimination offsets, e.g. if find_reloads called
1022 force_const_mem requiring the back end to allocate a constant
1023 pool base register that needs to be saved on the stack. */
1024 else if (!verify_initial_elim_offsets ())
1025 something_changed = 1;
1026
1027 if (update_eliminables_and_spill ())
1028 {
1029 did_spill = 1;
1030 something_changed = 1;
1031 }
1032
1033 select_reload_regs ();
1034 if (failure)
1035 goto failed;
1036
1037 if (insns_need_reload != 0 || did_spill)
1038 something_changed |= finish_spills (global);
1039
1040 if (! something_changed)
1041 break;
1042
1043 if (caller_save_needed)
1044 delete_caller_save_insns ();
1045
1046 obstack_free (&reload_obstack, reload_firstobj);
1047 }
1048
1049 /* If global-alloc was run, notify it of any register eliminations we have
1050 done. */
1051 if (global)
1052 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1053 if (ep->can_eliminate)
1054 mark_elimination (ep->from, ep->to);
1055
1056 remove_init_insns ();
1057
1058 /* Use the reload registers where necessary
1059 by generating move instructions to move the must-be-register
1060 values into or out of the reload registers. */
1061
1062 if (insns_need_reload != 0 || something_needs_elimination
1063 || something_needs_operands_changed)
1064 {
1065 HOST_WIDE_INT old_frame_size = get_frame_size ();
1066
1067 reload_as_needed (global);
1068
1069 gcc_assert (old_frame_size == get_frame_size ());
1070
1071 gcc_assert (verify_initial_elim_offsets ());
1072 }
1073
1074 /* If we were able to eliminate the frame pointer, show that it is no
1075 longer live at the start of any basic block. If it ls live by
1076 virtue of being in a pseudo, that pseudo will be marked live
1077 and hence the frame pointer will be known to be live via that
1078 pseudo. */
1079
1080 if (! frame_pointer_needed)
1081 FOR_EACH_BB_FN (bb, cfun)
1082 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1083
1084 /* Come here (with failure set nonzero) if we can't get enough spill
1085 regs. */
1086 failed:
1087
1088 CLEAR_REG_SET (&changed_allocation_pseudos);
1089 CLEAR_REG_SET (&spilled_pseudos);
1090 reload_in_progress = 0;
1091
1092 /* Now eliminate all pseudo regs by modifying them into
1093 their equivalent memory references.
1094 The REG-rtx's for the pseudos are modified in place,
1095 so all insns that used to refer to them now refer to memory.
1096
1097 For a reg that has a reg_equiv_address, all those insns
1098 were changed by reloading so that no insns refer to it any longer;
1099 but the DECL_RTL of a variable decl may refer to it,
1100 and if so this causes the debugging info to mention the variable. */
1101
1102 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1103 {
1104 rtx addr = 0;
1105
1106 if (reg_equiv_mem (i))
1107 addr = XEXP (reg_equiv_mem (i), 0);
1108
1109 if (reg_equiv_address (i))
1110 addr = reg_equiv_address (i);
1111
1112 if (addr)
1113 {
1114 if (reg_renumber[i] < 0)
1115 {
1116 rtx reg = regno_reg_rtx[i];
1117
1118 REG_USERVAR_P (reg) = 0;
1119 PUT_CODE (reg, MEM);
1120 XEXP (reg, 0) = addr;
1121 if (reg_equiv_memory_loc (i))
1122 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1123 else
1124 MEM_ATTRS (reg) = 0;
1125 MEM_NOTRAP_P (reg) = 1;
1126 }
1127 else if (reg_equiv_mem (i))
1128 XEXP (reg_equiv_mem (i), 0) = addr;
1129 }
1130
1131 /* We don't want complex addressing modes in debug insns
1132 if simpler ones will do, so delegitimize equivalences
1133 in debug insns. */
1134 if (MAY_HAVE_DEBUG_INSNS && reg_renumber[i] < 0)
1135 {
1136 rtx reg = regno_reg_rtx[i];
1137 rtx equiv = 0;
1138 df_ref use, next;
1139
1140 if (reg_equiv_constant (i))
1141 equiv = reg_equiv_constant (i);
1142 else if (reg_equiv_invariant (i))
1143 equiv = reg_equiv_invariant (i);
1144 else if (reg && MEM_P (reg))
1145 equiv = targetm.delegitimize_address (reg);
1146 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1147 equiv = reg;
1148
1149 if (equiv == reg)
1150 continue;
1151
1152 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1153 {
1154 insn = DF_REF_INSN (use);
1155
1156 /* Make sure the next ref is for a different instruction,
1157 so that we're not affected by the rescan. */
1158 next = DF_REF_NEXT_REG (use);
1159 while (next && DF_REF_INSN (next) == insn)
1160 next = DF_REF_NEXT_REG (next);
1161
1162 if (DEBUG_INSN_P (insn))
1163 {
1164 if (!equiv)
1165 {
1166 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1167 df_insn_rescan_debug_internal (insn);
1168 }
1169 else
1170 INSN_VAR_LOCATION_LOC (insn)
1171 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1172 reg, equiv);
1173 }
1174 }
1175 }
1176 }
1177
1178 /* We must set reload_completed now since the cleanup_subreg_operands call
1179 below will re-recognize each insn and reload may have generated insns
1180 which are only valid during and after reload. */
1181 reload_completed = 1;
1182
1183 /* Make a pass over all the insns and delete all USEs which we inserted
1184 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1185 notes. Delete all CLOBBER insns, except those that refer to the return
1186 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1187 from misarranging variable-array code, and simplify (subreg (reg))
1188 operands. Strip and regenerate REG_INC notes that may have been moved
1189 around. */
1190
1191 for (insn = first; insn; insn = NEXT_INSN (insn))
1192 if (INSN_P (insn))
1193 {
1194 rtx *pnote;
1195
1196 if (CALL_P (insn))
1197 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1198 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1199
1200 if ((GET_CODE (PATTERN (insn)) == USE
1201 /* We mark with QImode USEs introduced by reload itself. */
1202 && (GET_MODE (insn) == QImode
1203 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1204 || (GET_CODE (PATTERN (insn)) == CLOBBER
1205 && (!MEM_P (XEXP (PATTERN (insn), 0))
1206 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1207 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1208 && XEXP (XEXP (PATTERN (insn), 0), 0)
1209 != stack_pointer_rtx))
1210 && (!REG_P (XEXP (PATTERN (insn), 0))
1211 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1212 {
1213 delete_insn (insn);
1214 continue;
1215 }
1216
1217 /* Some CLOBBERs may survive until here and still reference unassigned
1218 pseudos with const equivalent, which may in turn cause ICE in later
1219 passes if the reference remains in place. */
1220 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1221 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1222 VOIDmode, PATTERN (insn));
1223
1224 /* Discard obvious no-ops, even without -O. This optimization
1225 is fast and doesn't interfere with debugging. */
1226 if (NONJUMP_INSN_P (insn)
1227 && GET_CODE (PATTERN (insn)) == SET
1228 && REG_P (SET_SRC (PATTERN (insn)))
1229 && REG_P (SET_DEST (PATTERN (insn)))
1230 && (REGNO (SET_SRC (PATTERN (insn)))
1231 == REGNO (SET_DEST (PATTERN (insn)))))
1232 {
1233 delete_insn (insn);
1234 continue;
1235 }
1236
1237 pnote = &REG_NOTES (insn);
1238 while (*pnote != 0)
1239 {
1240 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1241 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1242 || REG_NOTE_KIND (*pnote) == REG_INC)
1243 *pnote = XEXP (*pnote, 1);
1244 else
1245 pnote = &XEXP (*pnote, 1);
1246 }
1247
1248 #ifdef AUTO_INC_DEC
1249 add_auto_inc_notes (insn, PATTERN (insn));
1250 #endif
1251
1252 /* Simplify (subreg (reg)) if it appears as an operand. */
1253 cleanup_subreg_operands (insn);
1254
1255 /* Clean up invalid ASMs so that they don't confuse later passes.
1256 See PR 21299. */
1257 if (asm_noperands (PATTERN (insn)) >= 0)
1258 {
1259 extract_insn (insn);
1260 if (!constrain_operands (1))
1261 {
1262 error_for_asm (insn,
1263 "%<asm%> operand has impossible constraints");
1264 delete_insn (insn);
1265 continue;
1266 }
1267 }
1268 }
1269
1270 /* If we are doing generic stack checking, give a warning if this
1271 function's frame size is larger than we expect. */
1272 if (flag_stack_check == GENERIC_STACK_CHECK)
1273 {
1274 HOST_WIDE_INT size = get_frame_size () + STACK_CHECK_FIXED_FRAME_SIZE;
1275 static int verbose_warned = 0;
1276
1277 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1278 if (df_regs_ever_live_p (i) && ! fixed_regs[i] && call_used_regs[i])
1279 size += UNITS_PER_WORD;
1280
1281 if (size > STACK_CHECK_MAX_FRAME_SIZE)
1282 {
1283 warning (0, "frame size too large for reliable stack checking");
1284 if (! verbose_warned)
1285 {
1286 warning (0, "try reducing the number of local variables");
1287 verbose_warned = 1;
1288 }
1289 }
1290 }
1291
1292 free (temp_pseudo_reg_arr);
1293
1294 /* Indicate that we no longer have known memory locations or constants. */
1295 free_reg_equiv ();
1296
1297 free (reg_max_ref_width);
1298 free (reg_old_renumber);
1299 free (pseudo_previous_regs);
1300 free (pseudo_forbidden_regs);
1301
1302 CLEAR_HARD_REG_SET (used_spill_regs);
1303 for (i = 0; i < n_spills; i++)
1304 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1305
1306 /* Free all the insn_chain structures at once. */
1307 obstack_free (&reload_obstack, reload_startobj);
1308 unused_insn_chains = 0;
1309
1310 inserted = fixup_abnormal_edges ();
1311
1312 /* We've possibly turned single trapping insn into multiple ones. */
1313 if (cfun->can_throw_non_call_exceptions)
1314 {
1315 sbitmap blocks;
1316 blocks = sbitmap_alloc (last_basic_block_for_fn (cfun));
1317 bitmap_ones (blocks);
1318 find_many_sub_basic_blocks (blocks);
1319 sbitmap_free (blocks);
1320 }
1321
1322 if (inserted)
1323 commit_edge_insertions ();
1324
1325 /* Replacing pseudos with their memory equivalents might have
1326 created shared rtx. Subsequent passes would get confused
1327 by this, so unshare everything here. */
1328 unshare_all_rtl_again (first);
1329
1330 #ifdef STACK_BOUNDARY
1331 /* init_emit has set the alignment of the hard frame pointer
1332 to STACK_BOUNDARY. It is very likely no longer valid if
1333 the hard frame pointer was used for register allocation. */
1334 if (!frame_pointer_needed)
1335 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1336 #endif
1337
1338 substitute_stack.release ();
1339
1340 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1341
1342 reload_completed = !failure;
1343
1344 return need_dce;
1345 }
1346
1347 /* Yet another special case. Unfortunately, reg-stack forces people to
1348 write incorrect clobbers in asm statements. These clobbers must not
1349 cause the register to appear in bad_spill_regs, otherwise we'll call
1350 fatal_insn later. We clear the corresponding regnos in the live
1351 register sets to avoid this.
1352 The whole thing is rather sick, I'm afraid. */
1353
1354 static void
1355 maybe_fix_stack_asms (void)
1356 {
1357 #ifdef STACK_REGS
1358 const char *constraints[MAX_RECOG_OPERANDS];
1359 enum machine_mode operand_mode[MAX_RECOG_OPERANDS];
1360 struct insn_chain *chain;
1361
1362 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1363 {
1364 int i, noperands;
1365 HARD_REG_SET clobbered, allowed;
1366 rtx pat;
1367
1368 if (! INSN_P (chain->insn)
1369 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1370 continue;
1371 pat = PATTERN (chain->insn);
1372 if (GET_CODE (pat) != PARALLEL)
1373 continue;
1374
1375 CLEAR_HARD_REG_SET (clobbered);
1376 CLEAR_HARD_REG_SET (allowed);
1377
1378 /* First, make a mask of all stack regs that are clobbered. */
1379 for (i = 0; i < XVECLEN (pat, 0); i++)
1380 {
1381 rtx t = XVECEXP (pat, 0, i);
1382 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1383 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1384 }
1385
1386 /* Get the operand values and constraints out of the insn. */
1387 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1388 constraints, operand_mode, NULL);
1389
1390 /* For every operand, see what registers are allowed. */
1391 for (i = 0; i < noperands; i++)
1392 {
1393 const char *p = constraints[i];
1394 /* For every alternative, we compute the class of registers allowed
1395 for reloading in CLS, and merge its contents into the reg set
1396 ALLOWED. */
1397 int cls = (int) NO_REGS;
1398
1399 for (;;)
1400 {
1401 char c = *p;
1402
1403 if (c == '\0' || c == ',' || c == '#')
1404 {
1405 /* End of one alternative - mark the regs in the current
1406 class, and reset the class. */
1407 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1408 cls = NO_REGS;
1409 p++;
1410 if (c == '#')
1411 do {
1412 c = *p++;
1413 } while (c != '\0' && c != ',');
1414 if (c == '\0')
1415 break;
1416 continue;
1417 }
1418
1419 switch (c)
1420 {
1421 case 'g':
1422 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1423 break;
1424
1425 default:
1426 enum constraint_num cn = lookup_constraint (p);
1427 if (insn_extra_address_constraint (cn))
1428 cls = (int) reg_class_subunion[cls]
1429 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1430 ADDRESS, SCRATCH)];
1431 else
1432 cls = (int) reg_class_subunion[cls]
1433 [reg_class_for_constraint (cn)];
1434 break;
1435 }
1436 p += CONSTRAINT_LEN (c, p);
1437 }
1438 }
1439 /* Those of the registers which are clobbered, but allowed by the
1440 constraints, must be usable as reload registers. So clear them
1441 out of the life information. */
1442 AND_HARD_REG_SET (allowed, clobbered);
1443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1444 if (TEST_HARD_REG_BIT (allowed, i))
1445 {
1446 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1447 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1448 }
1449 }
1450
1451 #endif
1452 }
1453 \f
1454 /* Copy the global variables n_reloads and rld into the corresponding elts
1455 of CHAIN. */
1456 static void
1457 copy_reloads (struct insn_chain *chain)
1458 {
1459 chain->n_reloads = n_reloads;
1460 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1461 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1462 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1463 }
1464
1465 /* Walk the chain of insns, and determine for each whether it needs reloads
1466 and/or eliminations. Build the corresponding insns_need_reload list, and
1467 set something_needs_elimination as appropriate. */
1468 static void
1469 calculate_needs_all_insns (int global)
1470 {
1471 struct insn_chain **pprev_reload = &insns_need_reload;
1472 struct insn_chain *chain, *next = 0;
1473
1474 something_needs_elimination = 0;
1475
1476 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1477 for (chain = reload_insn_chain; chain != 0; chain = next)
1478 {
1479 rtx_insn *insn = chain->insn;
1480
1481 next = chain->next;
1482
1483 /* Clear out the shortcuts. */
1484 chain->n_reloads = 0;
1485 chain->need_elim = 0;
1486 chain->need_reload = 0;
1487 chain->need_operand_change = 0;
1488
1489 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1490 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1491 what effects this has on the known offsets at labels. */
1492
1493 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1494 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1495 set_label_offsets (insn, insn, 0);
1496
1497 if (INSN_P (insn))
1498 {
1499 rtx old_body = PATTERN (insn);
1500 int old_code = INSN_CODE (insn);
1501 rtx old_notes = REG_NOTES (insn);
1502 int did_elimination = 0;
1503 int operands_changed = 0;
1504
1505 /* Skip insns that only set an equivalence. */
1506 if (will_delete_init_insn_p (insn))
1507 continue;
1508
1509 /* If needed, eliminate any eliminable registers. */
1510 if (num_eliminable || num_eliminable_invariants)
1511 did_elimination = eliminate_regs_in_insn (insn, 0);
1512
1513 /* Analyze the instruction. */
1514 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1515 global, spill_reg_order);
1516
1517 /* If a no-op set needs more than one reload, this is likely
1518 to be something that needs input address reloads. We
1519 can't get rid of this cleanly later, and it is of no use
1520 anyway, so discard it now.
1521 We only do this when expensive_optimizations is enabled,
1522 since this complements reload inheritance / output
1523 reload deletion, and it can make debugging harder. */
1524 if (flag_expensive_optimizations && n_reloads > 1)
1525 {
1526 rtx set = single_set (insn);
1527 if (set
1528 &&
1529 ((SET_SRC (set) == SET_DEST (set)
1530 && REG_P (SET_SRC (set))
1531 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1532 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1533 && reg_renumber[REGNO (SET_SRC (set))] < 0
1534 && reg_renumber[REGNO (SET_DEST (set))] < 0
1535 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1536 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1537 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1538 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1539 {
1540 if (ira_conflicts_p)
1541 /* Inform IRA about the insn deletion. */
1542 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1543 REGNO (SET_SRC (set)));
1544 delete_insn (insn);
1545 /* Delete it from the reload chain. */
1546 if (chain->prev)
1547 chain->prev->next = next;
1548 else
1549 reload_insn_chain = next;
1550 if (next)
1551 next->prev = chain->prev;
1552 chain->next = unused_insn_chains;
1553 unused_insn_chains = chain;
1554 continue;
1555 }
1556 }
1557 if (num_eliminable)
1558 update_eliminable_offsets ();
1559
1560 /* Remember for later shortcuts which insns had any reloads or
1561 register eliminations. */
1562 chain->need_elim = did_elimination;
1563 chain->need_reload = n_reloads > 0;
1564 chain->need_operand_change = operands_changed;
1565
1566 /* Discard any register replacements done. */
1567 if (did_elimination)
1568 {
1569 obstack_free (&reload_obstack, reload_insn_firstobj);
1570 PATTERN (insn) = old_body;
1571 INSN_CODE (insn) = old_code;
1572 REG_NOTES (insn) = old_notes;
1573 something_needs_elimination = 1;
1574 }
1575
1576 something_needs_operands_changed |= operands_changed;
1577
1578 if (n_reloads != 0)
1579 {
1580 copy_reloads (chain);
1581 *pprev_reload = chain;
1582 pprev_reload = &chain->next_need_reload;
1583 }
1584 }
1585 }
1586 *pprev_reload = 0;
1587 }
1588 \f
1589 /* This function is called from the register allocator to set up estimates
1590 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1591 an invariant. The structure is similar to calculate_needs_all_insns. */
1592
1593 void
1594 calculate_elim_costs_all_insns (void)
1595 {
1596 int *reg_equiv_init_cost;
1597 basic_block bb;
1598 int i;
1599
1600 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1601 init_elim_table ();
1602 init_eliminable_invariants (get_insns (), false);
1603
1604 set_initial_elim_offsets ();
1605 set_initial_label_offsets ();
1606
1607 FOR_EACH_BB_FN (bb, cfun)
1608 {
1609 rtx_insn *insn;
1610 elim_bb = bb;
1611
1612 FOR_BB_INSNS (bb, insn)
1613 {
1614 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1615 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1616 what effects this has on the known offsets at labels. */
1617
1618 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1619 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1620 set_label_offsets (insn, insn, 0);
1621
1622 if (INSN_P (insn))
1623 {
1624 rtx set = single_set (insn);
1625
1626 /* Skip insns that only set an equivalence. */
1627 if (set && REG_P (SET_DEST (set))
1628 && reg_renumber[REGNO (SET_DEST (set))] < 0
1629 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1630 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1631 {
1632 unsigned regno = REGNO (SET_DEST (set));
1633 rtx init = reg_equiv_init (regno);
1634 if (init)
1635 {
1636 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1637 false, true);
1638 int cost = set_src_cost (t, optimize_bb_for_speed_p (bb));
1639 int freq = REG_FREQ_FROM_BB (bb);
1640
1641 reg_equiv_init_cost[regno] = cost * freq;
1642 continue;
1643 }
1644 }
1645 /* If needed, eliminate any eliminable registers. */
1646 if (num_eliminable || num_eliminable_invariants)
1647 elimination_costs_in_insn (insn);
1648
1649 if (num_eliminable)
1650 update_eliminable_offsets ();
1651 }
1652 }
1653 }
1654 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1655 {
1656 if (reg_equiv_invariant (i))
1657 {
1658 if (reg_equiv_init (i))
1659 {
1660 int cost = reg_equiv_init_cost[i];
1661 if (dump_file)
1662 fprintf (dump_file,
1663 "Reg %d has equivalence, initial gains %d\n", i, cost);
1664 if (cost != 0)
1665 ira_adjust_equiv_reg_cost (i, cost);
1666 }
1667 else
1668 {
1669 if (dump_file)
1670 fprintf (dump_file,
1671 "Reg %d had equivalence, but can't be eliminated\n",
1672 i);
1673 ira_adjust_equiv_reg_cost (i, 0);
1674 }
1675 }
1676 }
1677
1678 free (reg_equiv_init_cost);
1679 free (offsets_known_at);
1680 free (offsets_at);
1681 offsets_at = NULL;
1682 offsets_known_at = NULL;
1683 }
1684 \f
1685 /* Comparison function for qsort to decide which of two reloads
1686 should be handled first. *P1 and *P2 are the reload numbers. */
1687
1688 static int
1689 reload_reg_class_lower (const void *r1p, const void *r2p)
1690 {
1691 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1692 int t;
1693
1694 /* Consider required reloads before optional ones. */
1695 t = rld[r1].optional - rld[r2].optional;
1696 if (t != 0)
1697 return t;
1698
1699 /* Count all solitary classes before non-solitary ones. */
1700 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1701 - (reg_class_size[(int) rld[r1].rclass] == 1));
1702 if (t != 0)
1703 return t;
1704
1705 /* Aside from solitaires, consider all multi-reg groups first. */
1706 t = rld[r2].nregs - rld[r1].nregs;
1707 if (t != 0)
1708 return t;
1709
1710 /* Consider reloads in order of increasing reg-class number. */
1711 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1712 if (t != 0)
1713 return t;
1714
1715 /* If reloads are equally urgent, sort by reload number,
1716 so that the results of qsort leave nothing to chance. */
1717 return r1 - r2;
1718 }
1719 \f
1720 /* The cost of spilling each hard reg. */
1721 static int spill_cost[FIRST_PSEUDO_REGISTER];
1722
1723 /* When spilling multiple hard registers, we use SPILL_COST for the first
1724 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1725 only the first hard reg for a multi-reg pseudo. */
1726 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1727
1728 /* Map of hard regno to pseudo regno currently occupying the hard
1729 reg. */
1730 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1731
1732 /* Update the spill cost arrays, considering that pseudo REG is live. */
1733
1734 static void
1735 count_pseudo (int reg)
1736 {
1737 int freq = REG_FREQ (reg);
1738 int r = reg_renumber[reg];
1739 int nregs;
1740
1741 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1742 if (ira_conflicts_p && r < 0)
1743 return;
1744
1745 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1746 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1747 return;
1748
1749 SET_REGNO_REG_SET (&pseudos_counted, reg);
1750
1751 gcc_assert (r >= 0);
1752
1753 spill_add_cost[r] += freq;
1754 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1755 while (nregs-- > 0)
1756 {
1757 hard_regno_to_pseudo_regno[r + nregs] = reg;
1758 spill_cost[r + nregs] += freq;
1759 }
1760 }
1761
1762 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1763 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1764
1765 static void
1766 order_regs_for_reload (struct insn_chain *chain)
1767 {
1768 unsigned i;
1769 HARD_REG_SET used_by_pseudos;
1770 HARD_REG_SET used_by_pseudos2;
1771 reg_set_iterator rsi;
1772
1773 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1774
1775 memset (spill_cost, 0, sizeof spill_cost);
1776 memset (spill_add_cost, 0, sizeof spill_add_cost);
1777 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1778 hard_regno_to_pseudo_regno[i] = -1;
1779
1780 /* Count number of uses of each hard reg by pseudo regs allocated to it
1781 and then order them by decreasing use. First exclude hard registers
1782 that are live in or across this insn. */
1783
1784 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1785 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1786 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1787 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1788
1789 /* Now find out which pseudos are allocated to it, and update
1790 hard_reg_n_uses. */
1791 CLEAR_REG_SET (&pseudos_counted);
1792
1793 EXECUTE_IF_SET_IN_REG_SET
1794 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1795 {
1796 count_pseudo (i);
1797 }
1798 EXECUTE_IF_SET_IN_REG_SET
1799 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1800 {
1801 count_pseudo (i);
1802 }
1803 CLEAR_REG_SET (&pseudos_counted);
1804 }
1805 \f
1806 /* Vector of reload-numbers showing the order in which the reloads should
1807 be processed. */
1808 static short reload_order[MAX_RELOADS];
1809
1810 /* This is used to keep track of the spill regs used in one insn. */
1811 static HARD_REG_SET used_spill_regs_local;
1812
1813 /* We decided to spill hard register SPILLED, which has a size of
1814 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1815 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1816 update SPILL_COST/SPILL_ADD_COST. */
1817
1818 static void
1819 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1820 {
1821 int freq = REG_FREQ (reg);
1822 int r = reg_renumber[reg];
1823 int nregs;
1824
1825 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1826 if (ira_conflicts_p && r < 0)
1827 return;
1828
1829 gcc_assert (r >= 0);
1830
1831 nregs = hard_regno_nregs[r][PSEUDO_REGNO_MODE (reg)];
1832
1833 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1834 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1835 return;
1836
1837 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1838
1839 spill_add_cost[r] -= freq;
1840 while (nregs-- > 0)
1841 {
1842 hard_regno_to_pseudo_regno[r + nregs] = -1;
1843 spill_cost[r + nregs] -= freq;
1844 }
1845 }
1846
1847 /* Find reload register to use for reload number ORDER. */
1848
1849 static int
1850 find_reg (struct insn_chain *chain, int order)
1851 {
1852 int rnum = reload_order[order];
1853 struct reload *rl = rld + rnum;
1854 int best_cost = INT_MAX;
1855 int best_reg = -1;
1856 unsigned int i, j, n;
1857 int k;
1858 HARD_REG_SET not_usable;
1859 HARD_REG_SET used_by_other_reload;
1860 reg_set_iterator rsi;
1861 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1862 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1863
1864 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1865 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1866 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1867
1868 CLEAR_HARD_REG_SET (used_by_other_reload);
1869 for (k = 0; k < order; k++)
1870 {
1871 int other = reload_order[k];
1872
1873 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1874 for (j = 0; j < rld[other].nregs; j++)
1875 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1876 }
1877
1878 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1879 {
1880 #ifdef REG_ALLOC_ORDER
1881 unsigned int regno = reg_alloc_order[i];
1882 #else
1883 unsigned int regno = i;
1884 #endif
1885
1886 if (! TEST_HARD_REG_BIT (not_usable, regno)
1887 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1888 && HARD_REGNO_MODE_OK (regno, rl->mode))
1889 {
1890 int this_cost = spill_cost[regno];
1891 int ok = 1;
1892 unsigned int this_nregs = hard_regno_nregs[regno][rl->mode];
1893
1894 for (j = 1; j < this_nregs; j++)
1895 {
1896 this_cost += spill_add_cost[regno + j];
1897 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1898 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1899 ok = 0;
1900 }
1901 if (! ok)
1902 continue;
1903
1904 if (ira_conflicts_p)
1905 {
1906 /* Ask IRA to find a better pseudo-register for
1907 spilling. */
1908 for (n = j = 0; j < this_nregs; j++)
1909 {
1910 int r = hard_regno_to_pseudo_regno[regno + j];
1911
1912 if (r < 0)
1913 continue;
1914 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1915 regno_pseudo_regs[n++] = r;
1916 }
1917 regno_pseudo_regs[n++] = -1;
1918 if (best_reg < 0
1919 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1920 best_regno_pseudo_regs,
1921 rl->in, rl->out,
1922 chain->insn))
1923 {
1924 best_reg = regno;
1925 for (j = 0;; j++)
1926 {
1927 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1928 if (regno_pseudo_regs[j] < 0)
1929 break;
1930 }
1931 }
1932 continue;
1933 }
1934
1935 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1936 this_cost--;
1937 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1938 this_cost--;
1939 if (this_cost < best_cost
1940 /* Among registers with equal cost, prefer caller-saved ones, or
1941 use REG_ALLOC_ORDER if it is defined. */
1942 || (this_cost == best_cost
1943 #ifdef REG_ALLOC_ORDER
1944 && (inv_reg_alloc_order[regno]
1945 < inv_reg_alloc_order[best_reg])
1946 #else
1947 && call_used_regs[regno]
1948 && ! call_used_regs[best_reg]
1949 #endif
1950 ))
1951 {
1952 best_reg = regno;
1953 best_cost = this_cost;
1954 }
1955 }
1956 }
1957 if (best_reg == -1)
1958 return 0;
1959
1960 if (dump_file)
1961 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1962
1963 rl->nregs = hard_regno_nregs[best_reg][rl->mode];
1964 rl->regno = best_reg;
1965
1966 EXECUTE_IF_SET_IN_REG_SET
1967 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1968 {
1969 count_spilled_pseudo (best_reg, rl->nregs, j);
1970 }
1971
1972 EXECUTE_IF_SET_IN_REG_SET
1973 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1974 {
1975 count_spilled_pseudo (best_reg, rl->nregs, j);
1976 }
1977
1978 for (i = 0; i < rl->nregs; i++)
1979 {
1980 gcc_assert (spill_cost[best_reg + i] == 0);
1981 gcc_assert (spill_add_cost[best_reg + i] == 0);
1982 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1983 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1984 }
1985 return 1;
1986 }
1987
1988 /* Find more reload regs to satisfy the remaining need of an insn, which
1989 is given by CHAIN.
1990 Do it by ascending class number, since otherwise a reg
1991 might be spilled for a big class and might fail to count
1992 for a smaller class even though it belongs to that class. */
1993
1994 static void
1995 find_reload_regs (struct insn_chain *chain)
1996 {
1997 int i;
1998
1999 /* In order to be certain of getting the registers we need,
2000 we must sort the reloads into order of increasing register class.
2001 Then our grabbing of reload registers will parallel the process
2002 that provided the reload registers. */
2003 for (i = 0; i < chain->n_reloads; i++)
2004 {
2005 /* Show whether this reload already has a hard reg. */
2006 if (chain->rld[i].reg_rtx)
2007 {
2008 int regno = REGNO (chain->rld[i].reg_rtx);
2009 chain->rld[i].regno = regno;
2010 chain->rld[i].nregs
2011 = hard_regno_nregs[regno][GET_MODE (chain->rld[i].reg_rtx)];
2012 }
2013 else
2014 chain->rld[i].regno = -1;
2015 reload_order[i] = i;
2016 }
2017
2018 n_reloads = chain->n_reloads;
2019 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
2020
2021 CLEAR_HARD_REG_SET (used_spill_regs_local);
2022
2023 if (dump_file)
2024 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
2025
2026 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
2027
2028 /* Compute the order of preference for hard registers to spill. */
2029
2030 order_regs_for_reload (chain);
2031
2032 for (i = 0; i < n_reloads; i++)
2033 {
2034 int r = reload_order[i];
2035
2036 /* Ignore reloads that got marked inoperative. */
2037 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
2038 && ! rld[r].optional
2039 && rld[r].regno == -1)
2040 if (! find_reg (chain, i))
2041 {
2042 if (dump_file)
2043 fprintf (dump_file, "reload failure for reload %d\n", r);
2044 spill_failure (chain->insn, rld[r].rclass);
2045 failure = 1;
2046 return;
2047 }
2048 }
2049
2050 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2051 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2052
2053 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2054 }
2055
2056 static void
2057 select_reload_regs (void)
2058 {
2059 struct insn_chain *chain;
2060
2061 /* Try to satisfy the needs for each insn. */
2062 for (chain = insns_need_reload; chain != 0;
2063 chain = chain->next_need_reload)
2064 find_reload_regs (chain);
2065 }
2066 \f
2067 /* Delete all insns that were inserted by emit_caller_save_insns during
2068 this iteration. */
2069 static void
2070 delete_caller_save_insns (void)
2071 {
2072 struct insn_chain *c = reload_insn_chain;
2073
2074 while (c != 0)
2075 {
2076 while (c != 0 && c->is_caller_save_insn)
2077 {
2078 struct insn_chain *next = c->next;
2079 rtx_insn *insn = c->insn;
2080
2081 if (c == reload_insn_chain)
2082 reload_insn_chain = next;
2083 delete_insn (insn);
2084
2085 if (next)
2086 next->prev = c->prev;
2087 if (c->prev)
2088 c->prev->next = next;
2089 c->next = unused_insn_chains;
2090 unused_insn_chains = c;
2091 c = next;
2092 }
2093 if (c != 0)
2094 c = c->next;
2095 }
2096 }
2097 \f
2098 /* Handle the failure to find a register to spill.
2099 INSN should be one of the insns which needed this particular spill reg. */
2100
2101 static void
2102 spill_failure (rtx_insn *insn, enum reg_class rclass)
2103 {
2104 if (asm_noperands (PATTERN (insn)) >= 0)
2105 error_for_asm (insn, "can%'t find a register in class %qs while "
2106 "reloading %<asm%>",
2107 reg_class_names[rclass]);
2108 else
2109 {
2110 error ("unable to find a register to spill in class %qs",
2111 reg_class_names[rclass]);
2112
2113 if (dump_file)
2114 {
2115 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2116 debug_reload_to_stream (dump_file);
2117 }
2118 fatal_insn ("this is the insn:", insn);
2119 }
2120 }
2121 \f
2122 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2123 data that is dead in INSN. */
2124
2125 static void
2126 delete_dead_insn (rtx_insn *insn)
2127 {
2128 rtx_insn *prev = prev_active_insn (insn);
2129 rtx prev_dest;
2130
2131 /* If the previous insn sets a register that dies in our insn make
2132 a note that we want to run DCE immediately after reload.
2133
2134 We used to delete the previous insn & recurse, but that's wrong for
2135 block local equivalences. Instead of trying to figure out the exact
2136 circumstances where we can delete the potentially dead insns, just
2137 let DCE do the job. */
2138 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2139 && GET_CODE (PATTERN (prev)) == SET
2140 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2141 && reg_mentioned_p (prev_dest, PATTERN (insn))
2142 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2143 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2144 need_dce = 1;
2145
2146 SET_INSN_DELETED (insn);
2147 }
2148
2149 /* Modify the home of pseudo-reg I.
2150 The new home is present in reg_renumber[I].
2151
2152 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2153 or it may be -1, meaning there is none or it is not relevant.
2154 This is used so that all pseudos spilled from a given hard reg
2155 can share one stack slot. */
2156
2157 static void
2158 alter_reg (int i, int from_reg, bool dont_share_p)
2159 {
2160 /* When outputting an inline function, this can happen
2161 for a reg that isn't actually used. */
2162 if (regno_reg_rtx[i] == 0)
2163 return;
2164
2165 /* If the reg got changed to a MEM at rtl-generation time,
2166 ignore it. */
2167 if (!REG_P (regno_reg_rtx[i]))
2168 return;
2169
2170 /* Modify the reg-rtx to contain the new hard reg
2171 number or else to contain its pseudo reg number. */
2172 SET_REGNO (regno_reg_rtx[i],
2173 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2174
2175 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2176 allocate a stack slot for it. */
2177
2178 if (reg_renumber[i] < 0
2179 && REG_N_REFS (i) > 0
2180 && reg_equiv_constant (i) == 0
2181 && (reg_equiv_invariant (i) == 0
2182 || reg_equiv_init (i) == 0)
2183 && reg_equiv_memory_loc (i) == 0)
2184 {
2185 rtx x = NULL_RTX;
2186 enum machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2187 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2188 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2189 unsigned int total_size = MAX (inherent_size, reg_max_ref_width[i]);
2190 unsigned int min_align = reg_max_ref_width[i] * BITS_PER_UNIT;
2191 int adjust = 0;
2192
2193 something_was_spilled = true;
2194
2195 if (ira_conflicts_p)
2196 {
2197 /* Mark the spill for IRA. */
2198 SET_REGNO_REG_SET (&spilled_pseudos, i);
2199 if (!dont_share_p)
2200 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2201 }
2202
2203 if (x)
2204 ;
2205
2206 /* Each pseudo reg has an inherent size which comes from its own mode,
2207 and a total size which provides room for paradoxical subregs
2208 which refer to the pseudo reg in wider modes.
2209
2210 We can use a slot already allocated if it provides both
2211 enough inherent space and enough total space.
2212 Otherwise, we allocate a new slot, making sure that it has no less
2213 inherent space, and no less total space, then the previous slot. */
2214 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2215 {
2216 rtx stack_slot;
2217
2218 /* No known place to spill from => no slot to reuse. */
2219 x = assign_stack_local (mode, total_size,
2220 min_align > inherent_align
2221 || total_size > inherent_size ? -1 : 0);
2222
2223 stack_slot = x;
2224
2225 /* Cancel the big-endian correction done in assign_stack_local.
2226 Get the address of the beginning of the slot. This is so we
2227 can do a big-endian correction unconditionally below. */
2228 if (BYTES_BIG_ENDIAN)
2229 {
2230 adjust = inherent_size - total_size;
2231 if (adjust)
2232 stack_slot
2233 = adjust_address_nv (x, mode_for_size (total_size
2234 * BITS_PER_UNIT,
2235 MODE_INT, 1),
2236 adjust);
2237 }
2238
2239 if (! dont_share_p && ira_conflicts_p)
2240 /* Inform IRA about allocation a new stack slot. */
2241 ira_mark_new_stack_slot (stack_slot, i, total_size);
2242 }
2243
2244 /* Reuse a stack slot if possible. */
2245 else if (spill_stack_slot[from_reg] != 0
2246 && spill_stack_slot_width[from_reg] >= total_size
2247 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2248 >= inherent_size)
2249 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2250 x = spill_stack_slot[from_reg];
2251
2252 /* Allocate a bigger slot. */
2253 else
2254 {
2255 /* Compute maximum size needed, both for inherent size
2256 and for total size. */
2257 rtx stack_slot;
2258
2259 if (spill_stack_slot[from_reg])
2260 {
2261 if (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2262 > inherent_size)
2263 mode = GET_MODE (spill_stack_slot[from_reg]);
2264 if (spill_stack_slot_width[from_reg] > total_size)
2265 total_size = spill_stack_slot_width[from_reg];
2266 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2267 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2268 }
2269
2270 /* Make a slot with that size. */
2271 x = assign_stack_local (mode, total_size,
2272 min_align > inherent_align
2273 || total_size > inherent_size ? -1 : 0);
2274 stack_slot = x;
2275
2276 /* Cancel the big-endian correction done in assign_stack_local.
2277 Get the address of the beginning of the slot. This is so we
2278 can do a big-endian correction unconditionally below. */
2279 if (BYTES_BIG_ENDIAN)
2280 {
2281 adjust = GET_MODE_SIZE (mode) - total_size;
2282 if (adjust)
2283 stack_slot
2284 = adjust_address_nv (x, mode_for_size (total_size
2285 * BITS_PER_UNIT,
2286 MODE_INT, 1),
2287 adjust);
2288 }
2289
2290 spill_stack_slot[from_reg] = stack_slot;
2291 spill_stack_slot_width[from_reg] = total_size;
2292 }
2293
2294 /* On a big endian machine, the "address" of the slot
2295 is the address of the low part that fits its inherent mode. */
2296 if (BYTES_BIG_ENDIAN && inherent_size < total_size)
2297 adjust += (total_size - inherent_size);
2298
2299 /* If we have any adjustment to make, or if the stack slot is the
2300 wrong mode, make a new stack slot. */
2301 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2302
2303 /* Set all of the memory attributes as appropriate for a spill. */
2304 set_mem_attrs_for_spill (x);
2305
2306 /* Save the stack slot for later. */
2307 reg_equiv_memory_loc (i) = x;
2308 }
2309 }
2310
2311 /* Mark the slots in regs_ever_live for the hard regs used by
2312 pseudo-reg number REGNO, accessed in MODE. */
2313
2314 static void
2315 mark_home_live_1 (int regno, enum machine_mode mode)
2316 {
2317 int i, lim;
2318
2319 i = reg_renumber[regno];
2320 if (i < 0)
2321 return;
2322 lim = end_hard_regno (mode, i);
2323 while (i < lim)
2324 df_set_regs_ever_live (i++, true);
2325 }
2326
2327 /* Mark the slots in regs_ever_live for the hard regs
2328 used by pseudo-reg number REGNO. */
2329
2330 void
2331 mark_home_live (int regno)
2332 {
2333 if (reg_renumber[regno] >= 0)
2334 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2335 }
2336 \f
2337 /* This function handles the tracking of elimination offsets around branches.
2338
2339 X is a piece of RTL being scanned.
2340
2341 INSN is the insn that it came from, if any.
2342
2343 INITIAL_P is nonzero if we are to set the offset to be the initial
2344 offset and zero if we are setting the offset of the label to be the
2345 current offset. */
2346
2347 static void
2348 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2349 {
2350 enum rtx_code code = GET_CODE (x);
2351 rtx tem;
2352 unsigned int i;
2353 struct elim_table *p;
2354
2355 switch (code)
2356 {
2357 case LABEL_REF:
2358 if (LABEL_REF_NONLOCAL_P (x))
2359 return;
2360
2361 x = XEXP (x, 0);
2362
2363 /* ... fall through ... */
2364
2365 case CODE_LABEL:
2366 /* If we know nothing about this label, set the desired offsets. Note
2367 that this sets the offset at a label to be the offset before a label
2368 if we don't know anything about the label. This is not correct for
2369 the label after a BARRIER, but is the best guess we can make. If
2370 we guessed wrong, we will suppress an elimination that might have
2371 been possible had we been able to guess correctly. */
2372
2373 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2374 {
2375 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2376 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2377 = (initial_p ? reg_eliminate[i].initial_offset
2378 : reg_eliminate[i].offset);
2379 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2380 }
2381
2382 /* Otherwise, if this is the definition of a label and it is
2383 preceded by a BARRIER, set our offsets to the known offset of
2384 that label. */
2385
2386 else if (x == insn
2387 && (tem = prev_nonnote_insn (insn)) != 0
2388 && BARRIER_P (tem))
2389 set_offsets_for_label (insn);
2390 else
2391 /* If neither of the above cases is true, compare each offset
2392 with those previously recorded and suppress any eliminations
2393 where the offsets disagree. */
2394
2395 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2396 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2397 != (initial_p ? reg_eliminate[i].initial_offset
2398 : reg_eliminate[i].offset))
2399 reg_eliminate[i].can_eliminate = 0;
2400
2401 return;
2402
2403 case JUMP_TABLE_DATA:
2404 set_label_offsets (PATTERN (insn), insn, initial_p);
2405 return;
2406
2407 case JUMP_INSN:
2408 set_label_offsets (PATTERN (insn), insn, initial_p);
2409
2410 /* ... fall through ... */
2411
2412 case INSN:
2413 case CALL_INSN:
2414 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2415 to indirectly and hence must have all eliminations at their
2416 initial offsets. */
2417 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2418 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2419 set_label_offsets (XEXP (tem, 0), insn, 1);
2420 return;
2421
2422 case PARALLEL:
2423 case ADDR_VEC:
2424 case ADDR_DIFF_VEC:
2425 /* Each of the labels in the parallel or address vector must be
2426 at their initial offsets. We want the first field for PARALLEL
2427 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2428
2429 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2430 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2431 insn, initial_p);
2432 return;
2433
2434 case SET:
2435 /* We only care about setting PC. If the source is not RETURN,
2436 IF_THEN_ELSE, or a label, disable any eliminations not at
2437 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2438 isn't one of those possibilities. For branches to a label,
2439 call ourselves recursively.
2440
2441 Note that this can disable elimination unnecessarily when we have
2442 a non-local goto since it will look like a non-constant jump to
2443 someplace in the current function. This isn't a significant
2444 problem since such jumps will normally be when all elimination
2445 pairs are back to their initial offsets. */
2446
2447 if (SET_DEST (x) != pc_rtx)
2448 return;
2449
2450 switch (GET_CODE (SET_SRC (x)))
2451 {
2452 case PC:
2453 case RETURN:
2454 return;
2455
2456 case LABEL_REF:
2457 set_label_offsets (SET_SRC (x), insn, initial_p);
2458 return;
2459
2460 case IF_THEN_ELSE:
2461 tem = XEXP (SET_SRC (x), 1);
2462 if (GET_CODE (tem) == LABEL_REF)
2463 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2464 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2465 break;
2466
2467 tem = XEXP (SET_SRC (x), 2);
2468 if (GET_CODE (tem) == LABEL_REF)
2469 set_label_offsets (XEXP (tem, 0), insn, initial_p);
2470 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2471 break;
2472 return;
2473
2474 default:
2475 break;
2476 }
2477
2478 /* If we reach here, all eliminations must be at their initial
2479 offset because we are doing a jump to a variable address. */
2480 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2481 if (p->offset != p->initial_offset)
2482 p->can_eliminate = 0;
2483 break;
2484
2485 default:
2486 break;
2487 }
2488 }
2489 \f
2490 /* This function examines every reg that occurs in X and adjusts the
2491 costs for its elimination which are gathered by IRA. INSN is the
2492 insn in which X occurs. We do not recurse into MEM expressions. */
2493
2494 static void
2495 note_reg_elim_costly (const_rtx x, rtx insn)
2496 {
2497 subrtx_iterator::array_type array;
2498 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2499 {
2500 const_rtx x = *iter;
2501 if (MEM_P (x))
2502 iter.skip_subrtxes ();
2503 else if (REG_P (x)
2504 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2505 && reg_equiv_init (REGNO (x))
2506 && reg_equiv_invariant (REGNO (x)))
2507 {
2508 rtx t = reg_equiv_invariant (REGNO (x));
2509 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2510 int cost = set_src_cost (new_rtx, optimize_bb_for_speed_p (elim_bb));
2511 int freq = REG_FREQ_FROM_BB (elim_bb);
2512
2513 if (cost != 0)
2514 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2515 }
2516 }
2517 }
2518
2519 /* Scan X and replace any eliminable registers (such as fp) with a
2520 replacement (such as sp), plus an offset.
2521
2522 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2523 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2524 MEM, we are allowed to replace a sum of a register and the constant zero
2525 with the register, which we cannot do outside a MEM. In addition, we need
2526 to record the fact that a register is referenced outside a MEM.
2527
2528 If INSN is an insn, it is the insn containing X. If we replace a REG
2529 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2530 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2531 the REG is being modified.
2532
2533 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2534 That's used when we eliminate in expressions stored in notes.
2535 This means, do not set ref_outside_mem even if the reference
2536 is outside of MEMs.
2537
2538 If FOR_COSTS is true, we are being called before reload in order to
2539 estimate the costs of keeping registers with an equivalence unallocated.
2540
2541 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2542 replacements done assuming all offsets are at their initial values. If
2543 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2544 encounter, return the actual location so that find_reloads will do
2545 the proper thing. */
2546
2547 static rtx
2548 eliminate_regs_1 (rtx x, enum machine_mode mem_mode, rtx insn,
2549 bool may_use_invariant, bool for_costs)
2550 {
2551 enum rtx_code code = GET_CODE (x);
2552 struct elim_table *ep;
2553 int regno;
2554 rtx new_rtx;
2555 int i, j;
2556 const char *fmt;
2557 int copied = 0;
2558
2559 if (! current_function_decl)
2560 return x;
2561
2562 switch (code)
2563 {
2564 CASE_CONST_ANY:
2565 case CONST:
2566 case SYMBOL_REF:
2567 case CODE_LABEL:
2568 case PC:
2569 case CC0:
2570 case ASM_INPUT:
2571 case ADDR_VEC:
2572 case ADDR_DIFF_VEC:
2573 case RETURN:
2574 return x;
2575
2576 case REG:
2577 regno = REGNO (x);
2578
2579 /* First handle the case where we encounter a bare register that
2580 is eliminable. Replace it with a PLUS. */
2581 if (regno < FIRST_PSEUDO_REGISTER)
2582 {
2583 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2584 ep++)
2585 if (ep->from_rtx == x && ep->can_eliminate)
2586 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2587
2588 }
2589 else if (reg_renumber && reg_renumber[regno] < 0
2590 && reg_equivs
2591 && reg_equiv_invariant (regno))
2592 {
2593 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2594 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2595 mem_mode, insn, true, for_costs);
2596 /* There exists at least one use of REGNO that cannot be
2597 eliminated. Prevent the defining insn from being deleted. */
2598 reg_equiv_init (regno) = NULL_RTX;
2599 if (!for_costs)
2600 alter_reg (regno, -1, true);
2601 }
2602 return x;
2603
2604 /* You might think handling MINUS in a manner similar to PLUS is a
2605 good idea. It is not. It has been tried multiple times and every
2606 time the change has had to have been reverted.
2607
2608 Other parts of reload know a PLUS is special (gen_reload for example)
2609 and require special code to handle code a reloaded PLUS operand.
2610
2611 Also consider backends where the flags register is clobbered by a
2612 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2613 lea instruction comes to mind). If we try to reload a MINUS, we
2614 may kill the flags register that was holding a useful value.
2615
2616 So, please before trying to handle MINUS, consider reload as a
2617 whole instead of this little section as well as the backend issues. */
2618 case PLUS:
2619 /* If this is the sum of an eliminable register and a constant, rework
2620 the sum. */
2621 if (REG_P (XEXP (x, 0))
2622 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2623 && CONSTANT_P (XEXP (x, 1)))
2624 {
2625 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2626 ep++)
2627 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2628 {
2629 /* The only time we want to replace a PLUS with a REG (this
2630 occurs when the constant operand of the PLUS is the negative
2631 of the offset) is when we are inside a MEM. We won't want
2632 to do so at other times because that would change the
2633 structure of the insn in a way that reload can't handle.
2634 We special-case the commonest situation in
2635 eliminate_regs_in_insn, so just replace a PLUS with a
2636 PLUS here, unless inside a MEM. */
2637 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2638 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2639 return ep->to_rtx;
2640 else
2641 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2642 plus_constant (Pmode, XEXP (x, 1),
2643 ep->previous_offset));
2644 }
2645
2646 /* If the register is not eliminable, we are done since the other
2647 operand is a constant. */
2648 return x;
2649 }
2650
2651 /* If this is part of an address, we want to bring any constant to the
2652 outermost PLUS. We will do this by doing register replacement in
2653 our operands and seeing if a constant shows up in one of them.
2654
2655 Note that there is no risk of modifying the structure of the insn,
2656 since we only get called for its operands, thus we are either
2657 modifying the address inside a MEM, or something like an address
2658 operand of a load-address insn. */
2659
2660 {
2661 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2662 for_costs);
2663 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2664 for_costs);
2665
2666 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2667 {
2668 /* If one side is a PLUS and the other side is a pseudo that
2669 didn't get a hard register but has a reg_equiv_constant,
2670 we must replace the constant here since it may no longer
2671 be in the position of any operand. */
2672 if (GET_CODE (new0) == PLUS && REG_P (new1)
2673 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2674 && reg_renumber[REGNO (new1)] < 0
2675 && reg_equivs
2676 && reg_equiv_constant (REGNO (new1)) != 0)
2677 new1 = reg_equiv_constant (REGNO (new1));
2678 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2679 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2680 && reg_renumber[REGNO (new0)] < 0
2681 && reg_equiv_constant (REGNO (new0)) != 0)
2682 new0 = reg_equiv_constant (REGNO (new0));
2683
2684 new_rtx = form_sum (GET_MODE (x), new0, new1);
2685
2686 /* As above, if we are not inside a MEM we do not want to
2687 turn a PLUS into something else. We might try to do so here
2688 for an addition of 0 if we aren't optimizing. */
2689 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2690 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2691 else
2692 return new_rtx;
2693 }
2694 }
2695 return x;
2696
2697 case MULT:
2698 /* If this is the product of an eliminable register and a
2699 constant, apply the distribute law and move the constant out
2700 so that we have (plus (mult ..) ..). This is needed in order
2701 to keep load-address insns valid. This case is pathological.
2702 We ignore the possibility of overflow here. */
2703 if (REG_P (XEXP (x, 0))
2704 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2705 && CONST_INT_P (XEXP (x, 1)))
2706 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2707 ep++)
2708 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2709 {
2710 if (! mem_mode
2711 /* Refs inside notes or in DEBUG_INSNs don't count for
2712 this purpose. */
2713 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2714 || GET_CODE (insn) == INSN_LIST
2715 || DEBUG_INSN_P (insn))))
2716 ep->ref_outside_mem = 1;
2717
2718 return
2719 plus_constant (Pmode,
2720 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2721 ep->previous_offset * INTVAL (XEXP (x, 1)));
2722 }
2723
2724 /* ... fall through ... */
2725
2726 case CALL:
2727 case COMPARE:
2728 /* See comments before PLUS about handling MINUS. */
2729 case MINUS:
2730 case DIV: case UDIV:
2731 case MOD: case UMOD:
2732 case AND: case IOR: case XOR:
2733 case ROTATERT: case ROTATE:
2734 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2735 case NE: case EQ:
2736 case GE: case GT: case GEU: case GTU:
2737 case LE: case LT: case LEU: case LTU:
2738 {
2739 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2740 for_costs);
2741 rtx new1 = XEXP (x, 1)
2742 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2743 for_costs) : 0;
2744
2745 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2746 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2747 }
2748 return x;
2749
2750 case EXPR_LIST:
2751 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2752 if (XEXP (x, 0))
2753 {
2754 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2755 for_costs);
2756 if (new_rtx != XEXP (x, 0))
2757 {
2758 /* If this is a REG_DEAD note, it is not valid anymore.
2759 Using the eliminated version could result in creating a
2760 REG_DEAD note for the stack or frame pointer. */
2761 if (REG_NOTE_KIND (x) == REG_DEAD)
2762 return (XEXP (x, 1)
2763 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2764 for_costs)
2765 : NULL_RTX);
2766
2767 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2768 }
2769 }
2770
2771 /* ... fall through ... */
2772
2773 case INSN_LIST:
2774 case INT_LIST:
2775 /* Now do eliminations in the rest of the chain. If this was
2776 an EXPR_LIST, this might result in allocating more memory than is
2777 strictly needed, but it simplifies the code. */
2778 if (XEXP (x, 1))
2779 {
2780 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2781 for_costs);
2782 if (new_rtx != XEXP (x, 1))
2783 return
2784 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2785 }
2786 return x;
2787
2788 case PRE_INC:
2789 case POST_INC:
2790 case PRE_DEC:
2791 case POST_DEC:
2792 /* We do not support elimination of a register that is modified.
2793 elimination_effects has already make sure that this does not
2794 happen. */
2795 return x;
2796
2797 case PRE_MODIFY:
2798 case POST_MODIFY:
2799 /* We do not support elimination of a register that is modified.
2800 elimination_effects has already make sure that this does not
2801 happen. The only remaining case we need to consider here is
2802 that the increment value may be an eliminable register. */
2803 if (GET_CODE (XEXP (x, 1)) == PLUS
2804 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2805 {
2806 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2807 insn, true, for_costs);
2808
2809 if (new_rtx != XEXP (XEXP (x, 1), 1))
2810 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2811 gen_rtx_PLUS (GET_MODE (x),
2812 XEXP (x, 0), new_rtx));
2813 }
2814 return x;
2815
2816 case STRICT_LOW_PART:
2817 case NEG: case NOT:
2818 case SIGN_EXTEND: case ZERO_EXTEND:
2819 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2820 case FLOAT: case FIX:
2821 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2822 case ABS:
2823 case SQRT:
2824 case FFS:
2825 case CLZ:
2826 case CTZ:
2827 case POPCOUNT:
2828 case PARITY:
2829 case BSWAP:
2830 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2831 for_costs);
2832 if (new_rtx != XEXP (x, 0))
2833 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2834 return x;
2835
2836 case SUBREG:
2837 /* Similar to above processing, but preserve SUBREG_BYTE.
2838 Convert (subreg (mem)) to (mem) if not paradoxical.
2839 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2840 pseudo didn't get a hard reg, we must replace this with the
2841 eliminated version of the memory location because push_reload
2842 may do the replacement in certain circumstances. */
2843 if (REG_P (SUBREG_REG (x))
2844 && !paradoxical_subreg_p (x)
2845 && reg_equivs
2846 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2847 {
2848 new_rtx = SUBREG_REG (x);
2849 }
2850 else
2851 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2852
2853 if (new_rtx != SUBREG_REG (x))
2854 {
2855 int x_size = GET_MODE_SIZE (GET_MODE (x));
2856 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2857
2858 if (MEM_P (new_rtx)
2859 && ((x_size < new_size
2860 #ifdef WORD_REGISTER_OPERATIONS
2861 /* On these machines, combine can create rtl of the form
2862 (set (subreg:m1 (reg:m2 R) 0) ...)
2863 where m1 < m2, and expects something interesting to
2864 happen to the entire word. Moreover, it will use the
2865 (reg:m2 R) later, expecting all bits to be preserved.
2866 So if the number of words is the same, preserve the
2867 subreg so that push_reload can see it. */
2868 && ! ((x_size - 1) / UNITS_PER_WORD
2869 == (new_size -1 ) / UNITS_PER_WORD)
2870 #endif
2871 )
2872 || x_size == new_size)
2873 )
2874 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2875 else
2876 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2877 }
2878
2879 return x;
2880
2881 case MEM:
2882 /* Our only special processing is to pass the mode of the MEM to our
2883 recursive call and copy the flags. While we are here, handle this
2884 case more efficiently. */
2885
2886 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2887 for_costs);
2888 if (for_costs
2889 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2890 && !memory_address_p (GET_MODE (x), new_rtx))
2891 note_reg_elim_costly (XEXP (x, 0), insn);
2892
2893 return replace_equiv_address_nv (x, new_rtx);
2894
2895 case USE:
2896 /* Handle insn_list USE that a call to a pure function may generate. */
2897 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2898 for_costs);
2899 if (new_rtx != XEXP (x, 0))
2900 return gen_rtx_USE (GET_MODE (x), new_rtx);
2901 return x;
2902
2903 case CLOBBER:
2904 case ASM_OPERANDS:
2905 gcc_assert (insn && DEBUG_INSN_P (insn));
2906 break;
2907
2908 case SET:
2909 gcc_unreachable ();
2910
2911 default:
2912 break;
2913 }
2914
2915 /* Process each of our operands recursively. If any have changed, make a
2916 copy of the rtx. */
2917 fmt = GET_RTX_FORMAT (code);
2918 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2919 {
2920 if (*fmt == 'e')
2921 {
2922 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2923 for_costs);
2924 if (new_rtx != XEXP (x, i) && ! copied)
2925 {
2926 x = shallow_copy_rtx (x);
2927 copied = 1;
2928 }
2929 XEXP (x, i) = new_rtx;
2930 }
2931 else if (*fmt == 'E')
2932 {
2933 int copied_vec = 0;
2934 for (j = 0; j < XVECLEN (x, i); j++)
2935 {
2936 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2937 for_costs);
2938 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2939 {
2940 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2941 XVEC (x, i)->elem);
2942 if (! copied)
2943 {
2944 x = shallow_copy_rtx (x);
2945 copied = 1;
2946 }
2947 XVEC (x, i) = new_v;
2948 copied_vec = 1;
2949 }
2950 XVECEXP (x, i, j) = new_rtx;
2951 }
2952 }
2953 }
2954
2955 return x;
2956 }
2957
2958 rtx
2959 eliminate_regs (rtx x, enum machine_mode mem_mode, rtx insn)
2960 {
2961 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2962 }
2963
2964 /* Scan rtx X for modifications of elimination target registers. Update
2965 the table of eliminables to reflect the changed state. MEM_MODE is
2966 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2967
2968 static void
2969 elimination_effects (rtx x, enum machine_mode mem_mode)
2970 {
2971 enum rtx_code code = GET_CODE (x);
2972 struct elim_table *ep;
2973 int regno;
2974 int i, j;
2975 const char *fmt;
2976
2977 switch (code)
2978 {
2979 CASE_CONST_ANY:
2980 case CONST:
2981 case SYMBOL_REF:
2982 case CODE_LABEL:
2983 case PC:
2984 case CC0:
2985 case ASM_INPUT:
2986 case ADDR_VEC:
2987 case ADDR_DIFF_VEC:
2988 case RETURN:
2989 return;
2990
2991 case REG:
2992 regno = REGNO (x);
2993
2994 /* First handle the case where we encounter a bare register that
2995 is eliminable. Replace it with a PLUS. */
2996 if (regno < FIRST_PSEUDO_REGISTER)
2997 {
2998 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2999 ep++)
3000 if (ep->from_rtx == x && ep->can_eliminate)
3001 {
3002 if (! mem_mode)
3003 ep->ref_outside_mem = 1;
3004 return;
3005 }
3006
3007 }
3008 else if (reg_renumber[regno] < 0
3009 && reg_equivs
3010 && reg_equiv_constant (regno)
3011 && ! function_invariant_p (reg_equiv_constant (regno)))
3012 elimination_effects (reg_equiv_constant (regno), mem_mode);
3013 return;
3014
3015 case PRE_INC:
3016 case POST_INC:
3017 case PRE_DEC:
3018 case POST_DEC:
3019 case POST_MODIFY:
3020 case PRE_MODIFY:
3021 /* If we modify the source of an elimination rule, disable it. */
3022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3023 if (ep->from_rtx == XEXP (x, 0))
3024 ep->can_eliminate = 0;
3025
3026 /* If we modify the target of an elimination rule by adding a constant,
3027 update its offset. If we modify the target in any other way, we'll
3028 have to disable the rule as well. */
3029 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3030 if (ep->to_rtx == XEXP (x, 0))
3031 {
3032 int size = GET_MODE_SIZE (mem_mode);
3033
3034 /* If more bytes than MEM_MODE are pushed, account for them. */
3035 #ifdef PUSH_ROUNDING
3036 if (ep->to_rtx == stack_pointer_rtx)
3037 size = PUSH_ROUNDING (size);
3038 #endif
3039 if (code == PRE_DEC || code == POST_DEC)
3040 ep->offset += size;
3041 else if (code == PRE_INC || code == POST_INC)
3042 ep->offset -= size;
3043 else if (code == PRE_MODIFY || code == POST_MODIFY)
3044 {
3045 if (GET_CODE (XEXP (x, 1)) == PLUS
3046 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3047 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3048 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3049 else
3050 ep->can_eliminate = 0;
3051 }
3052 }
3053
3054 /* These two aren't unary operators. */
3055 if (code == POST_MODIFY || code == PRE_MODIFY)
3056 break;
3057
3058 /* Fall through to generic unary operation case. */
3059 case STRICT_LOW_PART:
3060 case NEG: case NOT:
3061 case SIGN_EXTEND: case ZERO_EXTEND:
3062 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3063 case FLOAT: case FIX:
3064 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3065 case ABS:
3066 case SQRT:
3067 case FFS:
3068 case CLZ:
3069 case CTZ:
3070 case POPCOUNT:
3071 case PARITY:
3072 case BSWAP:
3073 elimination_effects (XEXP (x, 0), mem_mode);
3074 return;
3075
3076 case SUBREG:
3077 if (REG_P (SUBREG_REG (x))
3078 && (GET_MODE_SIZE (GET_MODE (x))
3079 <= GET_MODE_SIZE (GET_MODE (SUBREG_REG (x))))
3080 && reg_equivs
3081 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3082 return;
3083
3084 elimination_effects (SUBREG_REG (x), mem_mode);
3085 return;
3086
3087 case USE:
3088 /* If using a register that is the source of an eliminate we still
3089 think can be performed, note it cannot be performed since we don't
3090 know how this register is used. */
3091 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3092 if (ep->from_rtx == XEXP (x, 0))
3093 ep->can_eliminate = 0;
3094
3095 elimination_effects (XEXP (x, 0), mem_mode);
3096 return;
3097
3098 case CLOBBER:
3099 /* If clobbering a register that is the replacement register for an
3100 elimination we still think can be performed, note that it cannot
3101 be performed. Otherwise, we need not be concerned about it. */
3102 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3103 if (ep->to_rtx == XEXP (x, 0))
3104 ep->can_eliminate = 0;
3105
3106 elimination_effects (XEXP (x, 0), mem_mode);
3107 return;
3108
3109 case SET:
3110 /* Check for setting a register that we know about. */
3111 if (REG_P (SET_DEST (x)))
3112 {
3113 /* See if this is setting the replacement register for an
3114 elimination.
3115
3116 If DEST is the hard frame pointer, we do nothing because we
3117 assume that all assignments to the frame pointer are for
3118 non-local gotos and are being done at a time when they are valid
3119 and do not disturb anything else. Some machines want to
3120 eliminate a fake argument pointer (or even a fake frame pointer)
3121 with either the real frame or the stack pointer. Assignments to
3122 the hard frame pointer must not prevent this elimination. */
3123
3124 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3125 ep++)
3126 if (ep->to_rtx == SET_DEST (x)
3127 && SET_DEST (x) != hard_frame_pointer_rtx)
3128 {
3129 /* If it is being incremented, adjust the offset. Otherwise,
3130 this elimination can't be done. */
3131 rtx src = SET_SRC (x);
3132
3133 if (GET_CODE (src) == PLUS
3134 && XEXP (src, 0) == SET_DEST (x)
3135 && CONST_INT_P (XEXP (src, 1)))
3136 ep->offset -= INTVAL (XEXP (src, 1));
3137 else
3138 ep->can_eliminate = 0;
3139 }
3140 }
3141
3142 elimination_effects (SET_DEST (x), VOIDmode);
3143 elimination_effects (SET_SRC (x), VOIDmode);
3144 return;
3145
3146 case MEM:
3147 /* Our only special processing is to pass the mode of the MEM to our
3148 recursive call. */
3149 elimination_effects (XEXP (x, 0), GET_MODE (x));
3150 return;
3151
3152 default:
3153 break;
3154 }
3155
3156 fmt = GET_RTX_FORMAT (code);
3157 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3158 {
3159 if (*fmt == 'e')
3160 elimination_effects (XEXP (x, i), mem_mode);
3161 else if (*fmt == 'E')
3162 for (j = 0; j < XVECLEN (x, i); j++)
3163 elimination_effects (XVECEXP (x, i, j), mem_mode);
3164 }
3165 }
3166
3167 /* Descend through rtx X and verify that no references to eliminable registers
3168 remain. If any do remain, mark the involved register as not
3169 eliminable. */
3170
3171 static void
3172 check_eliminable_occurrences (rtx x)
3173 {
3174 const char *fmt;
3175 int i;
3176 enum rtx_code code;
3177
3178 if (x == 0)
3179 return;
3180
3181 code = GET_CODE (x);
3182
3183 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3184 {
3185 struct elim_table *ep;
3186
3187 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3188 if (ep->from_rtx == x)
3189 ep->can_eliminate = 0;
3190 return;
3191 }
3192
3193 fmt = GET_RTX_FORMAT (code);
3194 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3195 {
3196 if (*fmt == 'e')
3197 check_eliminable_occurrences (XEXP (x, i));
3198 else if (*fmt == 'E')
3199 {
3200 int j;
3201 for (j = 0; j < XVECLEN (x, i); j++)
3202 check_eliminable_occurrences (XVECEXP (x, i, j));
3203 }
3204 }
3205 }
3206 \f
3207 /* Scan INSN and eliminate all eliminable registers in it.
3208
3209 If REPLACE is nonzero, do the replacement destructively. Also
3210 delete the insn as dead it if it is setting an eliminable register.
3211
3212 If REPLACE is zero, do all our allocations in reload_obstack.
3213
3214 If no eliminations were done and this insn doesn't require any elimination
3215 processing (these are not identical conditions: it might be updating sp,
3216 but not referencing fp; this needs to be seen during reload_as_needed so
3217 that the offset between fp and sp can be taken into consideration), zero
3218 is returned. Otherwise, 1 is returned. */
3219
3220 static int
3221 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3222 {
3223 int icode = recog_memoized (insn);
3224 rtx old_body = PATTERN (insn);
3225 int insn_is_asm = asm_noperands (old_body) >= 0;
3226 rtx old_set = single_set (insn);
3227 rtx new_body;
3228 int val = 0;
3229 int i;
3230 rtx substed_operand[MAX_RECOG_OPERANDS];
3231 rtx orig_operand[MAX_RECOG_OPERANDS];
3232 struct elim_table *ep;
3233 rtx plus_src, plus_cst_src;
3234
3235 if (! insn_is_asm && icode < 0)
3236 {
3237 gcc_assert (DEBUG_INSN_P (insn)
3238 || GET_CODE (PATTERN (insn)) == USE
3239 || GET_CODE (PATTERN (insn)) == CLOBBER
3240 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3241 if (DEBUG_INSN_P (insn))
3242 INSN_VAR_LOCATION_LOC (insn)
3243 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3244 return 0;
3245 }
3246
3247 if (old_set != 0 && REG_P (SET_DEST (old_set))
3248 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3249 {
3250 /* Check for setting an eliminable register. */
3251 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3252 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3253 {
3254 #if !HARD_FRAME_POINTER_IS_FRAME_POINTER
3255 /* If this is setting the frame pointer register to the
3256 hardware frame pointer register and this is an elimination
3257 that will be done (tested above), this insn is really
3258 adjusting the frame pointer downward to compensate for
3259 the adjustment done before a nonlocal goto. */
3260 if (ep->from == FRAME_POINTER_REGNUM
3261 && ep->to == HARD_FRAME_POINTER_REGNUM)
3262 {
3263 rtx base = SET_SRC (old_set);
3264 rtx_insn *base_insn = insn;
3265 HOST_WIDE_INT offset = 0;
3266
3267 while (base != ep->to_rtx)
3268 {
3269 rtx_insn *prev_insn;
3270 rtx prev_set;
3271
3272 if (GET_CODE (base) == PLUS
3273 && CONST_INT_P (XEXP (base, 1)))
3274 {
3275 offset += INTVAL (XEXP (base, 1));
3276 base = XEXP (base, 0);
3277 }
3278 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3279 && (prev_set = single_set (prev_insn)) != 0
3280 && rtx_equal_p (SET_DEST (prev_set), base))
3281 {
3282 base = SET_SRC (prev_set);
3283 base_insn = prev_insn;
3284 }
3285 else
3286 break;
3287 }
3288
3289 if (base == ep->to_rtx)
3290 {
3291 rtx src = plus_constant (Pmode, ep->to_rtx,
3292 offset - ep->offset);
3293
3294 new_body = old_body;
3295 if (! replace)
3296 {
3297 new_body = copy_insn (old_body);
3298 if (REG_NOTES (insn))
3299 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3300 }
3301 PATTERN (insn) = new_body;
3302 old_set = single_set (insn);
3303
3304 /* First see if this insn remains valid when we
3305 make the change. If not, keep the INSN_CODE
3306 the same and let reload fit it up. */
3307 validate_change (insn, &SET_SRC (old_set), src, 1);
3308 validate_change (insn, &SET_DEST (old_set),
3309 ep->to_rtx, 1);
3310 if (! apply_change_group ())
3311 {
3312 SET_SRC (old_set) = src;
3313 SET_DEST (old_set) = ep->to_rtx;
3314 }
3315
3316 val = 1;
3317 goto done;
3318 }
3319 }
3320 #endif
3321
3322 /* In this case this insn isn't serving a useful purpose. We
3323 will delete it in reload_as_needed once we know that this
3324 elimination is, in fact, being done.
3325
3326 If REPLACE isn't set, we can't delete this insn, but needn't
3327 process it since it won't be used unless something changes. */
3328 if (replace)
3329 {
3330 delete_dead_insn (insn);
3331 return 1;
3332 }
3333 val = 1;
3334 goto done;
3335 }
3336 }
3337
3338 /* We allow one special case which happens to work on all machines we
3339 currently support: a single set with the source or a REG_EQUAL
3340 note being a PLUS of an eliminable register and a constant. */
3341 plus_src = plus_cst_src = 0;
3342 if (old_set && REG_P (SET_DEST (old_set)))
3343 {
3344 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3345 plus_src = SET_SRC (old_set);
3346 /* First see if the source is of the form (plus (...) CST). */
3347 if (plus_src
3348 && CONST_INT_P (XEXP (plus_src, 1)))
3349 plus_cst_src = plus_src;
3350 else if (REG_P (SET_SRC (old_set))
3351 || plus_src)
3352 {
3353 /* Otherwise, see if we have a REG_EQUAL note of the form
3354 (plus (...) CST). */
3355 rtx links;
3356 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3357 {
3358 if ((REG_NOTE_KIND (links) == REG_EQUAL
3359 || REG_NOTE_KIND (links) == REG_EQUIV)
3360 && GET_CODE (XEXP (links, 0)) == PLUS
3361 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3362 {
3363 plus_cst_src = XEXP (links, 0);
3364 break;
3365 }
3366 }
3367 }
3368
3369 /* Check that the first operand of the PLUS is a hard reg or
3370 the lowpart subreg of one. */
3371 if (plus_cst_src)
3372 {
3373 rtx reg = XEXP (plus_cst_src, 0);
3374 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3375 reg = SUBREG_REG (reg);
3376
3377 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3378 plus_cst_src = 0;
3379 }
3380 }
3381 if (plus_cst_src)
3382 {
3383 rtx reg = XEXP (plus_cst_src, 0);
3384 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3385
3386 if (GET_CODE (reg) == SUBREG)
3387 reg = SUBREG_REG (reg);
3388
3389 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3390 if (ep->from_rtx == reg && ep->can_eliminate)
3391 {
3392 rtx to_rtx = ep->to_rtx;
3393 offset += ep->offset;
3394 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3395
3396 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3397 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3398 to_rtx);
3399 /* If we have a nonzero offset, and the source is already
3400 a simple REG, the following transformation would
3401 increase the cost of the insn by replacing a simple REG
3402 with (plus (reg sp) CST). So try only when we already
3403 had a PLUS before. */
3404 if (offset == 0 || plus_src)
3405 {
3406 rtx new_src = plus_constant (GET_MODE (to_rtx),
3407 to_rtx, offset);
3408
3409 new_body = old_body;
3410 if (! replace)
3411 {
3412 new_body = copy_insn (old_body);
3413 if (REG_NOTES (insn))
3414 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3415 }
3416 PATTERN (insn) = new_body;
3417 old_set = single_set (insn);
3418
3419 /* First see if this insn remains valid when we make the
3420 change. If not, try to replace the whole pattern with
3421 a simple set (this may help if the original insn was a
3422 PARALLEL that was only recognized as single_set due to
3423 REG_UNUSED notes). If this isn't valid either, keep
3424 the INSN_CODE the same and let reload fix it up. */
3425 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3426 {
3427 rtx new_pat = gen_rtx_SET (VOIDmode,
3428 SET_DEST (old_set), new_src);
3429
3430 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3431 SET_SRC (old_set) = new_src;
3432 }
3433 }
3434 else
3435 break;
3436
3437 val = 1;
3438 /* This can't have an effect on elimination offsets, so skip right
3439 to the end. */
3440 goto done;
3441 }
3442 }
3443
3444 /* Determine the effects of this insn on elimination offsets. */
3445 elimination_effects (old_body, VOIDmode);
3446
3447 /* Eliminate all eliminable registers occurring in operands that
3448 can be handled by reload. */
3449 extract_insn (insn);
3450 for (i = 0; i < recog_data.n_operands; i++)
3451 {
3452 orig_operand[i] = recog_data.operand[i];
3453 substed_operand[i] = recog_data.operand[i];
3454
3455 /* For an asm statement, every operand is eliminable. */
3456 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3457 {
3458 bool is_set_src, in_plus;
3459
3460 /* Check for setting a register that we know about. */
3461 if (recog_data.operand_type[i] != OP_IN
3462 && REG_P (orig_operand[i]))
3463 {
3464 /* If we are assigning to a register that can be eliminated, it
3465 must be as part of a PARALLEL, since the code above handles
3466 single SETs. We must indicate that we can no longer
3467 eliminate this reg. */
3468 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3469 ep++)
3470 if (ep->from_rtx == orig_operand[i])
3471 ep->can_eliminate = 0;
3472 }
3473
3474 /* Companion to the above plus substitution, we can allow
3475 invariants as the source of a plain move. */
3476 is_set_src = false;
3477 if (old_set
3478 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3479 is_set_src = true;
3480 in_plus = false;
3481 if (plus_src
3482 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3483 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3484 in_plus = true;
3485
3486 substed_operand[i]
3487 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3488 replace ? insn : NULL_RTX,
3489 is_set_src || in_plus, false);
3490 if (substed_operand[i] != orig_operand[i])
3491 val = 1;
3492 /* Terminate the search in check_eliminable_occurrences at
3493 this point. */
3494 *recog_data.operand_loc[i] = 0;
3495
3496 /* If an output operand changed from a REG to a MEM and INSN is an
3497 insn, write a CLOBBER insn. */
3498 if (recog_data.operand_type[i] != OP_IN
3499 && REG_P (orig_operand[i])
3500 && MEM_P (substed_operand[i])
3501 && replace)
3502 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3503 }
3504 }
3505
3506 for (i = 0; i < recog_data.n_dups; i++)
3507 *recog_data.dup_loc[i]
3508 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3509
3510 /* If any eliminable remain, they aren't eliminable anymore. */
3511 check_eliminable_occurrences (old_body);
3512
3513 /* Substitute the operands; the new values are in the substed_operand
3514 array. */
3515 for (i = 0; i < recog_data.n_operands; i++)
3516 *recog_data.operand_loc[i] = substed_operand[i];
3517 for (i = 0; i < recog_data.n_dups; i++)
3518 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3519
3520 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3521 re-recognize the insn. We do this in case we had a simple addition
3522 but now can do this as a load-address. This saves an insn in this
3523 common case.
3524 If re-recognition fails, the old insn code number will still be used,
3525 and some register operands may have changed into PLUS expressions.
3526 These will be handled by find_reloads by loading them into a register
3527 again. */
3528
3529 if (val)
3530 {
3531 /* If we aren't replacing things permanently and we changed something,
3532 make another copy to ensure that all the RTL is new. Otherwise
3533 things can go wrong if find_reload swaps commutative operands
3534 and one is inside RTL that has been copied while the other is not. */
3535 new_body = old_body;
3536 if (! replace)
3537 {
3538 new_body = copy_insn (old_body);
3539 if (REG_NOTES (insn))
3540 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3541 }
3542 PATTERN (insn) = new_body;
3543
3544 /* If we had a move insn but now we don't, rerecognize it. This will
3545 cause spurious re-recognition if the old move had a PARALLEL since
3546 the new one still will, but we can't call single_set without
3547 having put NEW_BODY into the insn and the re-recognition won't
3548 hurt in this rare case. */
3549 /* ??? Why this huge if statement - why don't we just rerecognize the
3550 thing always? */
3551 if (! insn_is_asm
3552 && old_set != 0
3553 && ((REG_P (SET_SRC (old_set))
3554 && (GET_CODE (new_body) != SET
3555 || !REG_P (SET_SRC (new_body))))
3556 /* If this was a load from or store to memory, compare
3557 the MEM in recog_data.operand to the one in the insn.
3558 If they are not equal, then rerecognize the insn. */
3559 || (old_set != 0
3560 && ((MEM_P (SET_SRC (old_set))
3561 && SET_SRC (old_set) != recog_data.operand[1])
3562 || (MEM_P (SET_DEST (old_set))
3563 && SET_DEST (old_set) != recog_data.operand[0])))
3564 /* If this was an add insn before, rerecognize. */
3565 || GET_CODE (SET_SRC (old_set)) == PLUS))
3566 {
3567 int new_icode = recog (PATTERN (insn), insn, 0);
3568 if (new_icode >= 0)
3569 INSN_CODE (insn) = new_icode;
3570 }
3571 }
3572
3573 /* Restore the old body. If there were any changes to it, we made a copy
3574 of it while the changes were still in place, so we'll correctly return
3575 a modified insn below. */
3576 if (! replace)
3577 {
3578 /* Restore the old body. */
3579 for (i = 0; i < recog_data.n_operands; i++)
3580 /* Restoring a top-level match_parallel would clobber the new_body
3581 we installed in the insn. */
3582 if (recog_data.operand_loc[i] != &PATTERN (insn))
3583 *recog_data.operand_loc[i] = orig_operand[i];
3584 for (i = 0; i < recog_data.n_dups; i++)
3585 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3586 }
3587
3588 /* Update all elimination pairs to reflect the status after the current
3589 insn. The changes we make were determined by the earlier call to
3590 elimination_effects.
3591
3592 We also detect cases where register elimination cannot be done,
3593 namely, if a register would be both changed and referenced outside a MEM
3594 in the resulting insn since such an insn is often undefined and, even if
3595 not, we cannot know what meaning will be given to it. Note that it is
3596 valid to have a register used in an address in an insn that changes it
3597 (presumably with a pre- or post-increment or decrement).
3598
3599 If anything changes, return nonzero. */
3600
3601 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3602 {
3603 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3604 ep->can_eliminate = 0;
3605
3606 ep->ref_outside_mem = 0;
3607
3608 if (ep->previous_offset != ep->offset)
3609 val = 1;
3610 }
3611
3612 done:
3613 /* If we changed something, perform elimination in REG_NOTES. This is
3614 needed even when REPLACE is zero because a REG_DEAD note might refer
3615 to a register that we eliminate and could cause a different number
3616 of spill registers to be needed in the final reload pass than in
3617 the pre-passes. */
3618 if (val && REG_NOTES (insn) != 0)
3619 REG_NOTES (insn)
3620 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3621 false);
3622
3623 return val;
3624 }
3625
3626 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3627 register allocator. INSN is the instruction we need to examine, we perform
3628 eliminations in its operands and record cases where eliminating a reg with
3629 an invariant equivalence would add extra cost. */
3630
3631 static void
3632 elimination_costs_in_insn (rtx_insn *insn)
3633 {
3634 int icode = recog_memoized (insn);
3635 rtx old_body = PATTERN (insn);
3636 int insn_is_asm = asm_noperands (old_body) >= 0;
3637 rtx old_set = single_set (insn);
3638 int i;
3639 rtx orig_operand[MAX_RECOG_OPERANDS];
3640 rtx orig_dup[MAX_RECOG_OPERANDS];
3641 struct elim_table *ep;
3642 rtx plus_src, plus_cst_src;
3643 bool sets_reg_p;
3644
3645 if (! insn_is_asm && icode < 0)
3646 {
3647 gcc_assert (DEBUG_INSN_P (insn)
3648 || GET_CODE (PATTERN (insn)) == USE
3649 || GET_CODE (PATTERN (insn)) == CLOBBER
3650 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3651 return;
3652 }
3653
3654 if (old_set != 0 && REG_P (SET_DEST (old_set))
3655 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3656 {
3657 /* Check for setting an eliminable register. */
3658 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3659 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3660 return;
3661 }
3662
3663 /* We allow one special case which happens to work on all machines we
3664 currently support: a single set with the source or a REG_EQUAL
3665 note being a PLUS of an eliminable register and a constant. */
3666 plus_src = plus_cst_src = 0;
3667 sets_reg_p = false;
3668 if (old_set && REG_P (SET_DEST (old_set)))
3669 {
3670 sets_reg_p = true;
3671 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3672 plus_src = SET_SRC (old_set);
3673 /* First see if the source is of the form (plus (...) CST). */
3674 if (plus_src
3675 && CONST_INT_P (XEXP (plus_src, 1)))
3676 plus_cst_src = plus_src;
3677 else if (REG_P (SET_SRC (old_set))
3678 || plus_src)
3679 {
3680 /* Otherwise, see if we have a REG_EQUAL note of the form
3681 (plus (...) CST). */
3682 rtx links;
3683 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3684 {
3685 if ((REG_NOTE_KIND (links) == REG_EQUAL
3686 || REG_NOTE_KIND (links) == REG_EQUIV)
3687 && GET_CODE (XEXP (links, 0)) == PLUS
3688 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3689 {
3690 plus_cst_src = XEXP (links, 0);
3691 break;
3692 }
3693 }
3694 }
3695 }
3696
3697 /* Determine the effects of this insn on elimination offsets. */
3698 elimination_effects (old_body, VOIDmode);
3699
3700 /* Eliminate all eliminable registers occurring in operands that
3701 can be handled by reload. */
3702 extract_insn (insn);
3703 for (i = 0; i < recog_data.n_dups; i++)
3704 orig_dup[i] = *recog_data.dup_loc[i];
3705
3706 for (i = 0; i < recog_data.n_operands; i++)
3707 {
3708 orig_operand[i] = recog_data.operand[i];
3709
3710 /* For an asm statement, every operand is eliminable. */
3711 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3712 {
3713 bool is_set_src, in_plus;
3714
3715 /* Check for setting a register that we know about. */
3716 if (recog_data.operand_type[i] != OP_IN
3717 && REG_P (orig_operand[i]))
3718 {
3719 /* If we are assigning to a register that can be eliminated, it
3720 must be as part of a PARALLEL, since the code above handles
3721 single SETs. We must indicate that we can no longer
3722 eliminate this reg. */
3723 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3724 ep++)
3725 if (ep->from_rtx == orig_operand[i])
3726 ep->can_eliminate = 0;
3727 }
3728
3729 /* Companion to the above plus substitution, we can allow
3730 invariants as the source of a plain move. */
3731 is_set_src = false;
3732 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3733 is_set_src = true;
3734 if (is_set_src && !sets_reg_p)
3735 note_reg_elim_costly (SET_SRC (old_set), insn);
3736 in_plus = false;
3737 if (plus_src && sets_reg_p
3738 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3739 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3740 in_plus = true;
3741
3742 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3743 NULL_RTX,
3744 is_set_src || in_plus, true);
3745 /* Terminate the search in check_eliminable_occurrences at
3746 this point. */
3747 *recog_data.operand_loc[i] = 0;
3748 }
3749 }
3750
3751 for (i = 0; i < recog_data.n_dups; i++)
3752 *recog_data.dup_loc[i]
3753 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3754
3755 /* If any eliminable remain, they aren't eliminable anymore. */
3756 check_eliminable_occurrences (old_body);
3757
3758 /* Restore the old body. */
3759 for (i = 0; i < recog_data.n_operands; i++)
3760 *recog_data.operand_loc[i] = orig_operand[i];
3761 for (i = 0; i < recog_data.n_dups; i++)
3762 *recog_data.dup_loc[i] = orig_dup[i];
3763
3764 /* Update all elimination pairs to reflect the status after the current
3765 insn. The changes we make were determined by the earlier call to
3766 elimination_effects. */
3767
3768 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3769 {
3770 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3771 ep->can_eliminate = 0;
3772
3773 ep->ref_outside_mem = 0;
3774 }
3775
3776 return;
3777 }
3778
3779 /* Loop through all elimination pairs.
3780 Recalculate the number not at initial offset.
3781
3782 Compute the maximum offset (minimum offset if the stack does not
3783 grow downward) for each elimination pair. */
3784
3785 static void
3786 update_eliminable_offsets (void)
3787 {
3788 struct elim_table *ep;
3789
3790 num_not_at_initial_offset = 0;
3791 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3792 {
3793 ep->previous_offset = ep->offset;
3794 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3795 num_not_at_initial_offset++;
3796 }
3797 }
3798
3799 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3800 replacement we currently believe is valid, mark it as not eliminable if X
3801 modifies DEST in any way other than by adding a constant integer to it.
3802
3803 If DEST is the frame pointer, we do nothing because we assume that
3804 all assignments to the hard frame pointer are nonlocal gotos and are being
3805 done at a time when they are valid and do not disturb anything else.
3806 Some machines want to eliminate a fake argument pointer with either the
3807 frame or stack pointer. Assignments to the hard frame pointer must not
3808 prevent this elimination.
3809
3810 Called via note_stores from reload before starting its passes to scan
3811 the insns of the function. */
3812
3813 static void
3814 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3815 {
3816 unsigned int i;
3817
3818 /* A SUBREG of a hard register here is just changing its mode. We should
3819 not see a SUBREG of an eliminable hard register, but check just in
3820 case. */
3821 if (GET_CODE (dest) == SUBREG)
3822 dest = SUBREG_REG (dest);
3823
3824 if (dest == hard_frame_pointer_rtx)
3825 return;
3826
3827 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3828 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3829 && (GET_CODE (x) != SET
3830 || GET_CODE (SET_SRC (x)) != PLUS
3831 || XEXP (SET_SRC (x), 0) != dest
3832 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3833 {
3834 reg_eliminate[i].can_eliminate_previous
3835 = reg_eliminate[i].can_eliminate = 0;
3836 num_eliminable--;
3837 }
3838 }
3839
3840 /* Verify that the initial elimination offsets did not change since the
3841 last call to set_initial_elim_offsets. This is used to catch cases
3842 where something illegal happened during reload_as_needed that could
3843 cause incorrect code to be generated if we did not check for it. */
3844
3845 static bool
3846 verify_initial_elim_offsets (void)
3847 {
3848 HOST_WIDE_INT t;
3849
3850 if (!num_eliminable)
3851 return true;
3852
3853 #ifdef ELIMINABLE_REGS
3854 {
3855 struct elim_table *ep;
3856
3857 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3858 {
3859 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3860 if (t != ep->initial_offset)
3861 return false;
3862 }
3863 }
3864 #else
3865 INITIAL_FRAME_POINTER_OFFSET (t);
3866 if (t != reg_eliminate[0].initial_offset)
3867 return false;
3868 #endif
3869
3870 return true;
3871 }
3872
3873 /* Reset all offsets on eliminable registers to their initial values. */
3874
3875 static void
3876 set_initial_elim_offsets (void)
3877 {
3878 struct elim_table *ep = reg_eliminate;
3879
3880 #ifdef ELIMINABLE_REGS
3881 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3882 {
3883 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3884 ep->previous_offset = ep->offset = ep->initial_offset;
3885 }
3886 #else
3887 INITIAL_FRAME_POINTER_OFFSET (ep->initial_offset);
3888 ep->previous_offset = ep->offset = ep->initial_offset;
3889 #endif
3890
3891 num_not_at_initial_offset = 0;
3892 }
3893
3894 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3895
3896 static void
3897 set_initial_eh_label_offset (rtx label)
3898 {
3899 set_label_offsets (label, NULL, 1);
3900 }
3901
3902 /* Initialize the known label offsets.
3903 Set a known offset for each forced label to be at the initial offset
3904 of each elimination. We do this because we assume that all
3905 computed jumps occur from a location where each elimination is
3906 at its initial offset.
3907 For all other labels, show that we don't know the offsets. */
3908
3909 static void
3910 set_initial_label_offsets (void)
3911 {
3912 memset (offsets_known_at, 0, num_labels);
3913
3914 for (rtx_insn_list *x = forced_labels; x; x = x->next ())
3915 if (x->insn ())
3916 set_label_offsets (x->insn (), NULL, 1);
3917
3918 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3919 if (x->insn ())
3920 set_label_offsets (x->insn (), NULL, 1);
3921
3922 for_each_eh_label (set_initial_eh_label_offset);
3923 }
3924
3925 /* Set all elimination offsets to the known values for the code label given
3926 by INSN. */
3927
3928 static void
3929 set_offsets_for_label (rtx_insn *insn)
3930 {
3931 unsigned int i;
3932 int label_nr = CODE_LABEL_NUMBER (insn);
3933 struct elim_table *ep;
3934
3935 num_not_at_initial_offset = 0;
3936 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3937 {
3938 ep->offset = ep->previous_offset
3939 = offsets_at[label_nr - first_label_num][i];
3940 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3941 num_not_at_initial_offset++;
3942 }
3943 }
3944
3945 /* See if anything that happened changes which eliminations are valid.
3946 For example, on the SPARC, whether or not the frame pointer can
3947 be eliminated can depend on what registers have been used. We need
3948 not check some conditions again (such as flag_omit_frame_pointer)
3949 since they can't have changed. */
3950
3951 static void
3952 update_eliminables (HARD_REG_SET *pset)
3953 {
3954 int previous_frame_pointer_needed = frame_pointer_needed;
3955 struct elim_table *ep;
3956
3957 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3958 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3959 && targetm.frame_pointer_required ())
3960 #ifdef ELIMINABLE_REGS
3961 || ! targetm.can_eliminate (ep->from, ep->to)
3962 #endif
3963 )
3964 ep->can_eliminate = 0;
3965
3966 /* Look for the case where we have discovered that we can't replace
3967 register A with register B and that means that we will now be
3968 trying to replace register A with register C. This means we can
3969 no longer replace register C with register B and we need to disable
3970 such an elimination, if it exists. This occurs often with A == ap,
3971 B == sp, and C == fp. */
3972
3973 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3974 {
3975 struct elim_table *op;
3976 int new_to = -1;
3977
3978 if (! ep->can_eliminate && ep->can_eliminate_previous)
3979 {
3980 /* Find the current elimination for ep->from, if there is a
3981 new one. */
3982 for (op = reg_eliminate;
3983 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3984 if (op->from == ep->from && op->can_eliminate)
3985 {
3986 new_to = op->to;
3987 break;
3988 }
3989
3990 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3991 disable it. */
3992 for (op = reg_eliminate;
3993 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3994 if (op->from == new_to && op->to == ep->to)
3995 op->can_eliminate = 0;
3996 }
3997 }
3998
3999 /* See if any registers that we thought we could eliminate the previous
4000 time are no longer eliminable. If so, something has changed and we
4001 must spill the register. Also, recompute the number of eliminable
4002 registers and see if the frame pointer is needed; it is if there is
4003 no elimination of the frame pointer that we can perform. */
4004
4005 frame_pointer_needed = 1;
4006 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4007 {
4008 if (ep->can_eliminate
4009 && ep->from == FRAME_POINTER_REGNUM
4010 && ep->to != HARD_FRAME_POINTER_REGNUM
4011 && (! SUPPORTS_STACK_ALIGNMENT
4012 || ! crtl->stack_realign_needed))
4013 frame_pointer_needed = 0;
4014
4015 if (! ep->can_eliminate && ep->can_eliminate_previous)
4016 {
4017 ep->can_eliminate_previous = 0;
4018 SET_HARD_REG_BIT (*pset, ep->from);
4019 num_eliminable--;
4020 }
4021 }
4022
4023 /* If we didn't need a frame pointer last time, but we do now, spill
4024 the hard frame pointer. */
4025 if (frame_pointer_needed && ! previous_frame_pointer_needed)
4026 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
4027 }
4028
4029 /* Call update_eliminables an spill any registers we can't eliminate anymore.
4030 Return true iff a register was spilled. */
4031
4032 static bool
4033 update_eliminables_and_spill (void)
4034 {
4035 int i;
4036 bool did_spill = false;
4037 HARD_REG_SET to_spill;
4038 CLEAR_HARD_REG_SET (to_spill);
4039 update_eliminables (&to_spill);
4040 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
4041
4042 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4043 if (TEST_HARD_REG_BIT (to_spill, i))
4044 {
4045 spill_hard_reg (i, 1);
4046 did_spill = true;
4047
4048 /* Regardless of the state of spills, if we previously had
4049 a register that we thought we could eliminate, but now can
4050 not eliminate, we must run another pass.
4051
4052 Consider pseudos which have an entry in reg_equiv_* which
4053 reference an eliminable register. We must make another pass
4054 to update reg_equiv_* so that we do not substitute in the
4055 old value from when we thought the elimination could be
4056 performed. */
4057 }
4058 return did_spill;
4059 }
4060
4061 /* Return true if X is used as the target register of an elimination. */
4062
4063 bool
4064 elimination_target_reg_p (rtx x)
4065 {
4066 struct elim_table *ep;
4067
4068 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4069 if (ep->to_rtx == x && ep->can_eliminate)
4070 return true;
4071
4072 return false;
4073 }
4074
4075 /* Initialize the table of registers to eliminate.
4076 Pre-condition: global flag frame_pointer_needed has been set before
4077 calling this function. */
4078
4079 static void
4080 init_elim_table (void)
4081 {
4082 struct elim_table *ep;
4083 #ifdef ELIMINABLE_REGS
4084 const struct elim_table_1 *ep1;
4085 #endif
4086
4087 if (!reg_eliminate)
4088 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4089
4090 num_eliminable = 0;
4091
4092 #ifdef ELIMINABLE_REGS
4093 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4094 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4095 {
4096 ep->from = ep1->from;
4097 ep->to = ep1->to;
4098 ep->can_eliminate = ep->can_eliminate_previous
4099 = (targetm.can_eliminate (ep->from, ep->to)
4100 && ! (ep->to == STACK_POINTER_REGNUM
4101 && frame_pointer_needed
4102 && (! SUPPORTS_STACK_ALIGNMENT
4103 || ! stack_realign_fp)));
4104 }
4105 #else
4106 reg_eliminate[0].from = reg_eliminate_1[0].from;
4107 reg_eliminate[0].to = reg_eliminate_1[0].to;
4108 reg_eliminate[0].can_eliminate = reg_eliminate[0].can_eliminate_previous
4109 = ! frame_pointer_needed;
4110 #endif
4111
4112 /* Count the number of eliminable registers and build the FROM and TO
4113 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4114 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4115 We depend on this. */
4116 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4117 {
4118 num_eliminable += ep->can_eliminate;
4119 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4120 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4121 }
4122 }
4123
4124 /* Find all the pseudo registers that didn't get hard regs
4125 but do have known equivalent constants or memory slots.
4126 These include parameters (known equivalent to parameter slots)
4127 and cse'd or loop-moved constant memory addresses.
4128
4129 Record constant equivalents in reg_equiv_constant
4130 so they will be substituted by find_reloads.
4131 Record memory equivalents in reg_mem_equiv so they can
4132 be substituted eventually by altering the REG-rtx's. */
4133
4134 static void
4135 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4136 {
4137 int i;
4138 rtx_insn *insn;
4139
4140 grow_reg_equivs ();
4141 if (do_subregs)
4142 reg_max_ref_width = XCNEWVEC (unsigned int, max_regno);
4143 else
4144 reg_max_ref_width = NULL;
4145
4146 num_eliminable_invariants = 0;
4147
4148 first_label_num = get_first_label_num ();
4149 num_labels = max_label_num () - first_label_num;
4150
4151 /* Allocate the tables used to store offset information at labels. */
4152 offsets_known_at = XNEWVEC (char, num_labels);
4153 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4154
4155 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4156 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4157 find largest such for each pseudo. FIRST is the head of the insn
4158 list. */
4159
4160 for (insn = first; insn; insn = NEXT_INSN (insn))
4161 {
4162 rtx set = single_set (insn);
4163
4164 /* We may introduce USEs that we want to remove at the end, so
4165 we'll mark them with QImode. Make sure there are no
4166 previously-marked insns left by say regmove. */
4167 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4168 && GET_MODE (insn) != VOIDmode)
4169 PUT_MODE (insn, VOIDmode);
4170
4171 if (do_subregs && NONDEBUG_INSN_P (insn))
4172 scan_paradoxical_subregs (PATTERN (insn));
4173
4174 if (set != 0 && REG_P (SET_DEST (set)))
4175 {
4176 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4177 rtx x;
4178
4179 if (! note)
4180 continue;
4181
4182 i = REGNO (SET_DEST (set));
4183 x = XEXP (note, 0);
4184
4185 if (i <= LAST_VIRTUAL_REGISTER)
4186 continue;
4187
4188 /* If flag_pic and we have constant, verify it's legitimate. */
4189 if (!CONSTANT_P (x)
4190 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4191 {
4192 /* It can happen that a REG_EQUIV note contains a MEM
4193 that is not a legitimate memory operand. As later
4194 stages of reload assume that all addresses found
4195 in the reg_equiv_* arrays were originally legitimate,
4196 we ignore such REG_EQUIV notes. */
4197 if (memory_operand (x, VOIDmode))
4198 {
4199 /* Always unshare the equivalence, so we can
4200 substitute into this insn without touching the
4201 equivalence. */
4202 reg_equiv_memory_loc (i) = copy_rtx (x);
4203 }
4204 else if (function_invariant_p (x))
4205 {
4206 enum machine_mode mode;
4207
4208 mode = GET_MODE (SET_DEST (set));
4209 if (GET_CODE (x) == PLUS)
4210 {
4211 /* This is PLUS of frame pointer and a constant,
4212 and might be shared. Unshare it. */
4213 reg_equiv_invariant (i) = copy_rtx (x);
4214 num_eliminable_invariants++;
4215 }
4216 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4217 {
4218 reg_equiv_invariant (i) = x;
4219 num_eliminable_invariants++;
4220 }
4221 else if (targetm.legitimate_constant_p (mode, x))
4222 reg_equiv_constant (i) = x;
4223 else
4224 {
4225 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4226 if (! reg_equiv_memory_loc (i))
4227 reg_equiv_init (i) = NULL_RTX;
4228 }
4229 }
4230 else
4231 {
4232 reg_equiv_init (i) = NULL_RTX;
4233 continue;
4234 }
4235 }
4236 else
4237 reg_equiv_init (i) = NULL_RTX;
4238 }
4239 }
4240
4241 if (dump_file)
4242 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4243 if (reg_equiv_init (i))
4244 {
4245 fprintf (dump_file, "init_insns for %u: ", i);
4246 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4247 fprintf (dump_file, "\n");
4248 }
4249 }
4250
4251 /* Indicate that we no longer have known memory locations or constants.
4252 Free all data involved in tracking these. */
4253
4254 static void
4255 free_reg_equiv (void)
4256 {
4257 int i;
4258
4259 free (offsets_known_at);
4260 free (offsets_at);
4261 offsets_at = 0;
4262 offsets_known_at = 0;
4263
4264 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4265 if (reg_equiv_alt_mem_list (i))
4266 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4267 vec_free (reg_equivs);
4268 }
4269 \f
4270 /* Kick all pseudos out of hard register REGNO.
4271
4272 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4273 because we found we can't eliminate some register. In the case, no pseudos
4274 are allowed to be in the register, even if they are only in a block that
4275 doesn't require spill registers, unlike the case when we are spilling this
4276 hard reg to produce another spill register.
4277
4278 Return nonzero if any pseudos needed to be kicked out. */
4279
4280 static void
4281 spill_hard_reg (unsigned int regno, int cant_eliminate)
4282 {
4283 int i;
4284
4285 if (cant_eliminate)
4286 {
4287 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4288 df_set_regs_ever_live (regno, true);
4289 }
4290
4291 /* Spill every pseudo reg that was allocated to this reg
4292 or to something that overlaps this reg. */
4293
4294 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4295 if (reg_renumber[i] >= 0
4296 && (unsigned int) reg_renumber[i] <= regno
4297 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4298 SET_REGNO_REG_SET (&spilled_pseudos, i);
4299 }
4300
4301 /* After find_reload_regs has been run for all insn that need reloads,
4302 and/or spill_hard_regs was called, this function is used to actually
4303 spill pseudo registers and try to reallocate them. It also sets up the
4304 spill_regs array for use by choose_reload_regs. */
4305
4306 static int
4307 finish_spills (int global)
4308 {
4309 struct insn_chain *chain;
4310 int something_changed = 0;
4311 unsigned i;
4312 reg_set_iterator rsi;
4313
4314 /* Build the spill_regs array for the function. */
4315 /* If there are some registers still to eliminate and one of the spill regs
4316 wasn't ever used before, additional stack space may have to be
4317 allocated to store this register. Thus, we may have changed the offset
4318 between the stack and frame pointers, so mark that something has changed.
4319
4320 One might think that we need only set VAL to 1 if this is a call-used
4321 register. However, the set of registers that must be saved by the
4322 prologue is not identical to the call-used set. For example, the
4323 register used by the call insn for the return PC is a call-used register,
4324 but must be saved by the prologue. */
4325
4326 n_spills = 0;
4327 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4328 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4329 {
4330 spill_reg_order[i] = n_spills;
4331 spill_regs[n_spills++] = i;
4332 if (num_eliminable && ! df_regs_ever_live_p (i))
4333 something_changed = 1;
4334 df_set_regs_ever_live (i, true);
4335 }
4336 else
4337 spill_reg_order[i] = -1;
4338
4339 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4340 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4341 {
4342 /* Record the current hard register the pseudo is allocated to
4343 in pseudo_previous_regs so we avoid reallocating it to the
4344 same hard reg in a later pass. */
4345 gcc_assert (reg_renumber[i] >= 0);
4346
4347 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4348 /* Mark it as no longer having a hard register home. */
4349 reg_renumber[i] = -1;
4350 if (ira_conflicts_p)
4351 /* Inform IRA about the change. */
4352 ira_mark_allocation_change (i);
4353 /* We will need to scan everything again. */
4354 something_changed = 1;
4355 }
4356
4357 /* Retry global register allocation if possible. */
4358 if (global && ira_conflicts_p)
4359 {
4360 unsigned int n;
4361
4362 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4363 /* For every insn that needs reloads, set the registers used as spill
4364 regs in pseudo_forbidden_regs for every pseudo live across the
4365 insn. */
4366 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4367 {
4368 EXECUTE_IF_SET_IN_REG_SET
4369 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4370 {
4371 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4372 chain->used_spill_regs);
4373 }
4374 EXECUTE_IF_SET_IN_REG_SET
4375 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4376 {
4377 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4378 chain->used_spill_regs);
4379 }
4380 }
4381
4382 /* Retry allocating the pseudos spilled in IRA and the
4383 reload. For each reg, merge the various reg sets that
4384 indicate which hard regs can't be used, and call
4385 ira_reassign_pseudos. */
4386 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4387 if (reg_old_renumber[i] != reg_renumber[i])
4388 {
4389 if (reg_renumber[i] < 0)
4390 temp_pseudo_reg_arr[n++] = i;
4391 else
4392 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4393 }
4394 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4395 bad_spill_regs_global,
4396 pseudo_forbidden_regs, pseudo_previous_regs,
4397 &spilled_pseudos))
4398 something_changed = 1;
4399 }
4400 /* Fix up the register information in the insn chain.
4401 This involves deleting those of the spilled pseudos which did not get
4402 a new hard register home from the live_{before,after} sets. */
4403 for (chain = reload_insn_chain; chain; chain = chain->next)
4404 {
4405 HARD_REG_SET used_by_pseudos;
4406 HARD_REG_SET used_by_pseudos2;
4407
4408 if (! ira_conflicts_p)
4409 {
4410 /* Don't do it for IRA because IRA and the reload still can
4411 assign hard registers to the spilled pseudos on next
4412 reload iterations. */
4413 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4414 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4415 }
4416 /* Mark any unallocated hard regs as available for spills. That
4417 makes inheritance work somewhat better. */
4418 if (chain->need_reload)
4419 {
4420 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4421 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4422 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4423
4424 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4425 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4426 /* Value of chain->used_spill_regs from previous iteration
4427 may be not included in the value calculated here because
4428 of possible removing caller-saves insns (see function
4429 delete_caller_save_insns. */
4430 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4431 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4432 }
4433 }
4434
4435 CLEAR_REG_SET (&changed_allocation_pseudos);
4436 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4437 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4438 {
4439 int regno = reg_renumber[i];
4440 if (reg_old_renumber[i] == regno)
4441 continue;
4442
4443 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4444
4445 alter_reg (i, reg_old_renumber[i], false);
4446 reg_old_renumber[i] = regno;
4447 if (dump_file)
4448 {
4449 if (regno == -1)
4450 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4451 else
4452 fprintf (dump_file, " Register %d now in %d.\n\n",
4453 i, reg_renumber[i]);
4454 }
4455 }
4456
4457 return something_changed;
4458 }
4459 \f
4460 /* Find all paradoxical subregs within X and update reg_max_ref_width. */
4461
4462 static void
4463 scan_paradoxical_subregs (rtx x)
4464 {
4465 int i;
4466 const char *fmt;
4467 enum rtx_code code = GET_CODE (x);
4468
4469 switch (code)
4470 {
4471 case REG:
4472 case CONST:
4473 case SYMBOL_REF:
4474 case LABEL_REF:
4475 CASE_CONST_ANY:
4476 case CC0:
4477 case PC:
4478 case USE:
4479 case CLOBBER:
4480 return;
4481
4482 case SUBREG:
4483 if (REG_P (SUBREG_REG (x))
4484 && (GET_MODE_SIZE (GET_MODE (x))
4485 > reg_max_ref_width[REGNO (SUBREG_REG (x))]))
4486 {
4487 reg_max_ref_width[REGNO (SUBREG_REG (x))]
4488 = GET_MODE_SIZE (GET_MODE (x));
4489 mark_home_live_1 (REGNO (SUBREG_REG (x)), GET_MODE (x));
4490 }
4491 return;
4492
4493 default:
4494 break;
4495 }
4496
4497 fmt = GET_RTX_FORMAT (code);
4498 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4499 {
4500 if (fmt[i] == 'e')
4501 scan_paradoxical_subregs (XEXP (x, i));
4502 else if (fmt[i] == 'E')
4503 {
4504 int j;
4505 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4506 scan_paradoxical_subregs (XVECEXP (x, i, j));
4507 }
4508 }
4509 }
4510
4511 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4512 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4513 and apply the corresponding narrowing subreg to *OTHER_PTR.
4514 Return true if the operands were changed, false otherwise. */
4515
4516 static bool
4517 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4518 {
4519 rtx op, inner, other, tem;
4520
4521 op = *op_ptr;
4522 if (!paradoxical_subreg_p (op))
4523 return false;
4524 inner = SUBREG_REG (op);
4525
4526 other = *other_ptr;
4527 tem = gen_lowpart_common (GET_MODE (inner), other);
4528 if (!tem)
4529 return false;
4530
4531 /* If the lowpart operation turned a hard register into a subreg,
4532 rather than simplifying it to another hard register, then the
4533 mode change cannot be properly represented. For example, OTHER
4534 might be valid in its current mode, but not in the new one. */
4535 if (GET_CODE (tem) == SUBREG
4536 && REG_P (other)
4537 && HARD_REGISTER_P (other))
4538 return false;
4539
4540 *op_ptr = inner;
4541 *other_ptr = tem;
4542 return true;
4543 }
4544 \f
4545 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4546 examine all of the reload insns between PREV and NEXT exclusive, and
4547 annotate all that may trap. */
4548
4549 static void
4550 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4551 {
4552 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4553 if (note == NULL)
4554 return;
4555 if (!insn_could_throw_p (insn))
4556 remove_note (insn, note);
4557 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4558 }
4559
4560 /* Reload pseudo-registers into hard regs around each insn as needed.
4561 Additional register load insns are output before the insn that needs it
4562 and perhaps store insns after insns that modify the reloaded pseudo reg.
4563
4564 reg_last_reload_reg and reg_reloaded_contents keep track of
4565 which registers are already available in reload registers.
4566 We update these for the reloads that we perform,
4567 as the insns are scanned. */
4568
4569 static void
4570 reload_as_needed (int live_known)
4571 {
4572 struct insn_chain *chain;
4573 #if defined (AUTO_INC_DEC)
4574 int i;
4575 #endif
4576 rtx x;
4577 rtx_note *marker;
4578
4579 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4580 memset (spill_reg_store, 0, sizeof spill_reg_store);
4581 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4582 INIT_REG_SET (&reg_has_output_reload);
4583 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4584 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4585
4586 set_initial_elim_offsets ();
4587
4588 /* Generate a marker insn that we will move around. */
4589 marker = emit_note (NOTE_INSN_DELETED);
4590 unlink_insn_chain (marker, marker);
4591
4592 for (chain = reload_insn_chain; chain; chain = chain->next)
4593 {
4594 rtx_insn *prev = 0;
4595 rtx_insn *insn = chain->insn;
4596 rtx_insn *old_next = NEXT_INSN (insn);
4597 #ifdef AUTO_INC_DEC
4598 rtx_insn *old_prev = PREV_INSN (insn);
4599 #endif
4600
4601 if (will_delete_init_insn_p (insn))
4602 continue;
4603
4604 /* If we pass a label, copy the offsets from the label information
4605 into the current offsets of each elimination. */
4606 if (LABEL_P (insn))
4607 set_offsets_for_label (insn);
4608
4609 else if (INSN_P (insn))
4610 {
4611 regset_head regs_to_forget;
4612 INIT_REG_SET (&regs_to_forget);
4613 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4614
4615 /* If this is a USE and CLOBBER of a MEM, ensure that any
4616 references to eliminable registers have been removed. */
4617
4618 if ((GET_CODE (PATTERN (insn)) == USE
4619 || GET_CODE (PATTERN (insn)) == CLOBBER)
4620 && MEM_P (XEXP (PATTERN (insn), 0)))
4621 XEXP (XEXP (PATTERN (insn), 0), 0)
4622 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4623 GET_MODE (XEXP (PATTERN (insn), 0)),
4624 NULL_RTX);
4625
4626 /* If we need to do register elimination processing, do so.
4627 This might delete the insn, in which case we are done. */
4628 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4629 {
4630 eliminate_regs_in_insn (insn, 1);
4631 if (NOTE_P (insn))
4632 {
4633 update_eliminable_offsets ();
4634 CLEAR_REG_SET (&regs_to_forget);
4635 continue;
4636 }
4637 }
4638
4639 /* If need_elim is nonzero but need_reload is zero, one might think
4640 that we could simply set n_reloads to 0. However, find_reloads
4641 could have done some manipulation of the insn (such as swapping
4642 commutative operands), and these manipulations are lost during
4643 the first pass for every insn that needs register elimination.
4644 So the actions of find_reloads must be redone here. */
4645
4646 if (! chain->need_elim && ! chain->need_reload
4647 && ! chain->need_operand_change)
4648 n_reloads = 0;
4649 /* First find the pseudo regs that must be reloaded for this insn.
4650 This info is returned in the tables reload_... (see reload.h).
4651 Also modify the body of INSN by substituting RELOAD
4652 rtx's for those pseudo regs. */
4653 else
4654 {
4655 CLEAR_REG_SET (&reg_has_output_reload);
4656 CLEAR_HARD_REG_SET (reg_is_output_reload);
4657
4658 find_reloads (insn, 1, spill_indirect_levels, live_known,
4659 spill_reg_order);
4660 }
4661
4662 if (n_reloads > 0)
4663 {
4664 rtx_insn *next = NEXT_INSN (insn);
4665 rtx p;
4666
4667 /* ??? PREV can get deleted by reload inheritance.
4668 Work around this by emitting a marker note. */
4669 prev = PREV_INSN (insn);
4670 reorder_insns_nobb (marker, marker, prev);
4671
4672 /* Now compute which reload regs to reload them into. Perhaps
4673 reusing reload regs from previous insns, or else output
4674 load insns to reload them. Maybe output store insns too.
4675 Record the choices of reload reg in reload_reg_rtx. */
4676 choose_reload_regs (chain);
4677
4678 /* Generate the insns to reload operands into or out of
4679 their reload regs. */
4680 emit_reload_insns (chain);
4681
4682 /* Substitute the chosen reload regs from reload_reg_rtx
4683 into the insn's body (or perhaps into the bodies of other
4684 load and store insn that we just made for reloading
4685 and that we moved the structure into). */
4686 subst_reloads (insn);
4687
4688 prev = PREV_INSN (marker);
4689 unlink_insn_chain (marker, marker);
4690
4691 /* Adjust the exception region notes for loads and stores. */
4692 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4693 fixup_eh_region_note (insn, prev, next);
4694
4695 /* Adjust the location of REG_ARGS_SIZE. */
4696 p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4697 if (p)
4698 {
4699 remove_note (insn, p);
4700 fixup_args_size_notes (prev, PREV_INSN (next),
4701 INTVAL (XEXP (p, 0)));
4702 }
4703
4704 /* If this was an ASM, make sure that all the reload insns
4705 we have generated are valid. If not, give an error
4706 and delete them. */
4707 if (asm_noperands (PATTERN (insn)) >= 0)
4708 for (p = NEXT_INSN (prev); p != next; p = NEXT_INSN (p))
4709 if (p != insn && INSN_P (p)
4710 && GET_CODE (PATTERN (p)) != USE
4711 && (recog_memoized (p) < 0
4712 || (extract_insn (p), ! constrain_operands (1))))
4713 {
4714 error_for_asm (insn,
4715 "%<asm%> operand requires "
4716 "impossible reload");
4717 delete_insn (p);
4718 }
4719 }
4720
4721 if (num_eliminable && chain->need_elim)
4722 update_eliminable_offsets ();
4723
4724 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4725 is no longer validly lying around to save a future reload.
4726 Note that this does not detect pseudos that were reloaded
4727 for this insn in order to be stored in
4728 (obeying register constraints). That is correct; such reload
4729 registers ARE still valid. */
4730 forget_marked_reloads (&regs_to_forget);
4731 CLEAR_REG_SET (&regs_to_forget);
4732
4733 /* There may have been CLOBBER insns placed after INSN. So scan
4734 between INSN and NEXT and use them to forget old reloads. */
4735 for (x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4736 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4737 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4738
4739 #ifdef AUTO_INC_DEC
4740 /* Likewise for regs altered by auto-increment in this insn.
4741 REG_INC notes have been changed by reloading:
4742 find_reloads_address_1 records substitutions for them,
4743 which have been performed by subst_reloads above. */
4744 for (i = n_reloads - 1; i >= 0; i--)
4745 {
4746 rtx in_reg = rld[i].in_reg;
4747 if (in_reg)
4748 {
4749 enum rtx_code code = GET_CODE (in_reg);
4750 /* PRE_INC / PRE_DEC will have the reload register ending up
4751 with the same value as the stack slot, but that doesn't
4752 hold true for POST_INC / POST_DEC. Either we have to
4753 convert the memory access to a true POST_INC / POST_DEC,
4754 or we can't use the reload register for inheritance. */
4755 if ((code == POST_INC || code == POST_DEC)
4756 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4757 REGNO (rld[i].reg_rtx))
4758 /* Make sure it is the inc/dec pseudo, and not
4759 some other (e.g. output operand) pseudo. */
4760 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4761 == REGNO (XEXP (in_reg, 0))))
4762
4763 {
4764 rtx reload_reg = rld[i].reg_rtx;
4765 enum machine_mode mode = GET_MODE (reload_reg);
4766 int n = 0;
4767 rtx p;
4768
4769 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4770 {
4771 /* We really want to ignore REG_INC notes here, so
4772 use PATTERN (p) as argument to reg_set_p . */
4773 if (reg_set_p (reload_reg, PATTERN (p)))
4774 break;
4775 n = count_occurrences (PATTERN (p), reload_reg, 0);
4776 if (! n)
4777 continue;
4778 if (n == 1)
4779 {
4780 rtx replace_reg
4781 = gen_rtx_fmt_e (code, mode, reload_reg);
4782
4783 validate_replace_rtx_group (reload_reg,
4784 replace_reg, p);
4785 n = verify_changes (0);
4786
4787 /* We must also verify that the constraints
4788 are met after the replacement. Make sure
4789 extract_insn is only called for an insn
4790 where the replacements were found to be
4791 valid so far. */
4792 if (n)
4793 {
4794 extract_insn (p);
4795 n = constrain_operands (1);
4796 }
4797
4798 /* If the constraints were not met, then
4799 undo the replacement, else confirm it. */
4800 if (!n)
4801 cancel_changes (0);
4802 else
4803 confirm_change_group ();
4804 }
4805 break;
4806 }
4807 if (n == 1)
4808 {
4809 add_reg_note (p, REG_INC, reload_reg);
4810 /* Mark this as having an output reload so that the
4811 REG_INC processing code below won't invalidate
4812 the reload for inheritance. */
4813 SET_HARD_REG_BIT (reg_is_output_reload,
4814 REGNO (reload_reg));
4815 SET_REGNO_REG_SET (&reg_has_output_reload,
4816 REGNO (XEXP (in_reg, 0)));
4817 }
4818 else
4819 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4820 NULL);
4821 }
4822 else if ((code == PRE_INC || code == PRE_DEC)
4823 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4824 REGNO (rld[i].reg_rtx))
4825 /* Make sure it is the inc/dec pseudo, and not
4826 some other (e.g. output operand) pseudo. */
4827 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4828 == REGNO (XEXP (in_reg, 0))))
4829 {
4830 SET_HARD_REG_BIT (reg_is_output_reload,
4831 REGNO (rld[i].reg_rtx));
4832 SET_REGNO_REG_SET (&reg_has_output_reload,
4833 REGNO (XEXP (in_reg, 0)));
4834 }
4835 else if (code == PRE_INC || code == PRE_DEC
4836 || code == POST_INC || code == POST_DEC)
4837 {
4838 int in_regno = REGNO (XEXP (in_reg, 0));
4839
4840 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4841 {
4842 int in_hard_regno;
4843 bool forget_p = true;
4844
4845 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4846 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4847 in_hard_regno))
4848 {
4849 for (x = old_prev ? NEXT_INSN (old_prev) : insn;
4850 x != old_next;
4851 x = NEXT_INSN (x))
4852 if (x == reg_reloaded_insn[in_hard_regno])
4853 {
4854 forget_p = false;
4855 break;
4856 }
4857 }
4858 /* If for some reasons, we didn't set up
4859 reg_last_reload_reg in this insn,
4860 invalidate inheritance from previous
4861 insns for the incremented/decremented
4862 register. Such registers will be not in
4863 reg_has_output_reload. Invalidate it
4864 also if the corresponding element in
4865 reg_reloaded_insn is also
4866 invalidated. */
4867 if (forget_p)
4868 forget_old_reloads_1 (XEXP (in_reg, 0),
4869 NULL_RTX, NULL);
4870 }
4871 }
4872 }
4873 }
4874 /* If a pseudo that got a hard register is auto-incremented,
4875 we must purge records of copying it into pseudos without
4876 hard registers. */
4877 for (x = REG_NOTES (insn); x; x = XEXP (x, 1))
4878 if (REG_NOTE_KIND (x) == REG_INC)
4879 {
4880 /* See if this pseudo reg was reloaded in this insn.
4881 If so, its last-reload info is still valid
4882 because it is based on this insn's reload. */
4883 for (i = 0; i < n_reloads; i++)
4884 if (rld[i].out == XEXP (x, 0))
4885 break;
4886
4887 if (i == n_reloads)
4888 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4889 }
4890 #endif
4891 }
4892 /* A reload reg's contents are unknown after a label. */
4893 if (LABEL_P (insn))
4894 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4895
4896 /* Don't assume a reload reg is still good after a call insn
4897 if it is a call-used reg, or if it contains a value that will
4898 be partially clobbered by the call. */
4899 else if (CALL_P (insn))
4900 {
4901 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4902 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4903
4904 /* If this is a call to a setjmp-type function, we must not
4905 reuse any reload reg contents across the call; that will
4906 just be clobbered by other uses of the register in later
4907 code, before the longjmp. */
4908 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4909 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4910 }
4911 }
4912
4913 /* Clean up. */
4914 free (reg_last_reload_reg);
4915 CLEAR_REG_SET (&reg_has_output_reload);
4916 }
4917
4918 /* Discard all record of any value reloaded from X,
4919 or reloaded in X from someplace else;
4920 unless X is an output reload reg of the current insn.
4921
4922 X may be a hard reg (the reload reg)
4923 or it may be a pseudo reg that was reloaded from.
4924
4925 When DATA is non-NULL just mark the registers in regset
4926 to be forgotten later. */
4927
4928 static void
4929 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4930 void *data)
4931 {
4932 unsigned int regno;
4933 unsigned int nr;
4934 regset regs = (regset) data;
4935
4936 /* note_stores does give us subregs of hard regs,
4937 subreg_regno_offset requires a hard reg. */
4938 while (GET_CODE (x) == SUBREG)
4939 {
4940 /* We ignore the subreg offset when calculating the regno,
4941 because we are using the entire underlying hard register
4942 below. */
4943 x = SUBREG_REG (x);
4944 }
4945
4946 if (!REG_P (x))
4947 return;
4948
4949 regno = REGNO (x);
4950
4951 if (regno >= FIRST_PSEUDO_REGISTER)
4952 nr = 1;
4953 else
4954 {
4955 unsigned int i;
4956
4957 nr = hard_regno_nregs[regno][GET_MODE (x)];
4958 /* Storing into a spilled-reg invalidates its contents.
4959 This can happen if a block-local pseudo is allocated to that reg
4960 and it wasn't spilled because this block's total need is 0.
4961 Then some insn might have an optional reload and use this reg. */
4962 if (!regs)
4963 for (i = 0; i < nr; i++)
4964 /* But don't do this if the reg actually serves as an output
4965 reload reg in the current instruction. */
4966 if (n_reloads == 0
4967 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4968 {
4969 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4970 spill_reg_store[regno + i] = 0;
4971 }
4972 }
4973
4974 if (regs)
4975 while (nr-- > 0)
4976 SET_REGNO_REG_SET (regs, regno + nr);
4977 else
4978 {
4979 /* Since value of X has changed,
4980 forget any value previously copied from it. */
4981
4982 while (nr-- > 0)
4983 /* But don't forget a copy if this is the output reload
4984 that establishes the copy's validity. */
4985 if (n_reloads == 0
4986 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4987 reg_last_reload_reg[regno + nr] = 0;
4988 }
4989 }
4990
4991 /* Forget the reloads marked in regset by previous function. */
4992 static void
4993 forget_marked_reloads (regset regs)
4994 {
4995 unsigned int reg;
4996 reg_set_iterator rsi;
4997 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4998 {
4999 if (reg < FIRST_PSEUDO_REGISTER
5000 /* But don't do this if the reg actually serves as an output
5001 reload reg in the current instruction. */
5002 && (n_reloads == 0
5003 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
5004 {
5005 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
5006 spill_reg_store[reg] = 0;
5007 }
5008 if (n_reloads == 0
5009 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
5010 reg_last_reload_reg[reg] = 0;
5011 }
5012 }
5013 \f
5014 /* The following HARD_REG_SETs indicate when each hard register is
5015 used for a reload of various parts of the current insn. */
5016
5017 /* If reg is unavailable for all reloads. */
5018 static HARD_REG_SET reload_reg_unavailable;
5019 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
5020 static HARD_REG_SET reload_reg_used;
5021 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
5022 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
5023 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
5024 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
5025 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
5026 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
5027 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
5028 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
5029 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
5030 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
5031 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
5032 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
5033 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
5034 static HARD_REG_SET reload_reg_used_in_op_addr;
5035 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
5036 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
5037 /* If reg is in use for a RELOAD_FOR_INSN reload. */
5038 static HARD_REG_SET reload_reg_used_in_insn;
5039 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
5040 static HARD_REG_SET reload_reg_used_in_other_addr;
5041
5042 /* If reg is in use as a reload reg for any sort of reload. */
5043 static HARD_REG_SET reload_reg_used_at_all;
5044
5045 /* If reg is use as an inherited reload. We just mark the first register
5046 in the group. */
5047 static HARD_REG_SET reload_reg_used_for_inherit;
5048
5049 /* Records which hard regs are used in any way, either as explicit use or
5050 by being allocated to a pseudo during any point of the current insn. */
5051 static HARD_REG_SET reg_used_in_insn;
5052
5053 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5054 TYPE. MODE is used to indicate how many consecutive regs are
5055 actually used. */
5056
5057 static void
5058 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5059 enum machine_mode mode)
5060 {
5061 switch (type)
5062 {
5063 case RELOAD_OTHER:
5064 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5065 break;
5066
5067 case RELOAD_FOR_INPUT_ADDRESS:
5068 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5069 break;
5070
5071 case RELOAD_FOR_INPADDR_ADDRESS:
5072 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5073 break;
5074
5075 case RELOAD_FOR_OUTPUT_ADDRESS:
5076 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5077 break;
5078
5079 case RELOAD_FOR_OUTADDR_ADDRESS:
5080 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5081 break;
5082
5083 case RELOAD_FOR_OPERAND_ADDRESS:
5084 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5085 break;
5086
5087 case RELOAD_FOR_OPADDR_ADDR:
5088 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5089 break;
5090
5091 case RELOAD_FOR_OTHER_ADDRESS:
5092 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5093 break;
5094
5095 case RELOAD_FOR_INPUT:
5096 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5097 break;
5098
5099 case RELOAD_FOR_OUTPUT:
5100 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5101 break;
5102
5103 case RELOAD_FOR_INSN:
5104 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5105 break;
5106 }
5107
5108 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5109 }
5110
5111 /* Similarly, but show REGNO is no longer in use for a reload. */
5112
5113 static void
5114 clear_reload_reg_in_use (unsigned int regno, int opnum,
5115 enum reload_type type, enum machine_mode mode)
5116 {
5117 unsigned int nregs = hard_regno_nregs[regno][mode];
5118 unsigned int start_regno, end_regno, r;
5119 int i;
5120 /* A complication is that for some reload types, inheritance might
5121 allow multiple reloads of the same types to share a reload register.
5122 We set check_opnum if we have to check only reloads with the same
5123 operand number, and check_any if we have to check all reloads. */
5124 int check_opnum = 0;
5125 int check_any = 0;
5126 HARD_REG_SET *used_in_set;
5127
5128 switch (type)
5129 {
5130 case RELOAD_OTHER:
5131 used_in_set = &reload_reg_used;
5132 break;
5133
5134 case RELOAD_FOR_INPUT_ADDRESS:
5135 used_in_set = &reload_reg_used_in_input_addr[opnum];
5136 break;
5137
5138 case RELOAD_FOR_INPADDR_ADDRESS:
5139 check_opnum = 1;
5140 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5141 break;
5142
5143 case RELOAD_FOR_OUTPUT_ADDRESS:
5144 used_in_set = &reload_reg_used_in_output_addr[opnum];
5145 break;
5146
5147 case RELOAD_FOR_OUTADDR_ADDRESS:
5148 check_opnum = 1;
5149 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5150 break;
5151
5152 case RELOAD_FOR_OPERAND_ADDRESS:
5153 used_in_set = &reload_reg_used_in_op_addr;
5154 break;
5155
5156 case RELOAD_FOR_OPADDR_ADDR:
5157 check_any = 1;
5158 used_in_set = &reload_reg_used_in_op_addr_reload;
5159 break;
5160
5161 case RELOAD_FOR_OTHER_ADDRESS:
5162 used_in_set = &reload_reg_used_in_other_addr;
5163 check_any = 1;
5164 break;
5165
5166 case RELOAD_FOR_INPUT:
5167 used_in_set = &reload_reg_used_in_input[opnum];
5168 break;
5169
5170 case RELOAD_FOR_OUTPUT:
5171 used_in_set = &reload_reg_used_in_output[opnum];
5172 break;
5173
5174 case RELOAD_FOR_INSN:
5175 used_in_set = &reload_reg_used_in_insn;
5176 break;
5177 default:
5178 gcc_unreachable ();
5179 }
5180 /* We resolve conflicts with remaining reloads of the same type by
5181 excluding the intervals of reload registers by them from the
5182 interval of freed reload registers. Since we only keep track of
5183 one set of interval bounds, we might have to exclude somewhat
5184 more than what would be necessary if we used a HARD_REG_SET here.
5185 But this should only happen very infrequently, so there should
5186 be no reason to worry about it. */
5187
5188 start_regno = regno;
5189 end_regno = regno + nregs;
5190 if (check_opnum || check_any)
5191 {
5192 for (i = n_reloads - 1; i >= 0; i--)
5193 {
5194 if (rld[i].when_needed == type
5195 && (check_any || rld[i].opnum == opnum)
5196 && rld[i].reg_rtx)
5197 {
5198 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5199 unsigned int conflict_end
5200 = end_hard_regno (rld[i].mode, conflict_start);
5201
5202 /* If there is an overlap with the first to-be-freed register,
5203 adjust the interval start. */
5204 if (conflict_start <= start_regno && conflict_end > start_regno)
5205 start_regno = conflict_end;
5206 /* Otherwise, if there is a conflict with one of the other
5207 to-be-freed registers, adjust the interval end. */
5208 if (conflict_start > start_regno && conflict_start < end_regno)
5209 end_regno = conflict_start;
5210 }
5211 }
5212 }
5213
5214 for (r = start_regno; r < end_regno; r++)
5215 CLEAR_HARD_REG_BIT (*used_in_set, r);
5216 }
5217
5218 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5219 specified by OPNUM and TYPE. */
5220
5221 static int
5222 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5223 {
5224 int i;
5225
5226 /* In use for a RELOAD_OTHER means it's not available for anything. */
5227 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5228 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5229 return 0;
5230
5231 switch (type)
5232 {
5233 case RELOAD_OTHER:
5234 /* In use for anything means we can't use it for RELOAD_OTHER. */
5235 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5236 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5237 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5238 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5239 return 0;
5240
5241 for (i = 0; i < reload_n_operands; i++)
5242 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5243 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5244 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5245 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5246 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5247 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5248 return 0;
5249
5250 return 1;
5251
5252 case RELOAD_FOR_INPUT:
5253 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5254 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5255 return 0;
5256
5257 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5258 return 0;
5259
5260 /* If it is used for some other input, can't use it. */
5261 for (i = 0; i < reload_n_operands; i++)
5262 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5263 return 0;
5264
5265 /* If it is used in a later operand's address, can't use it. */
5266 for (i = opnum + 1; i < reload_n_operands; i++)
5267 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5268 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5269 return 0;
5270
5271 return 1;
5272
5273 case RELOAD_FOR_INPUT_ADDRESS:
5274 /* Can't use a register if it is used for an input address for this
5275 operand or used as an input in an earlier one. */
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5277 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5278 return 0;
5279
5280 for (i = 0; i < opnum; i++)
5281 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5282 return 0;
5283
5284 return 1;
5285
5286 case RELOAD_FOR_INPADDR_ADDRESS:
5287 /* Can't use a register if it is used for an input address
5288 for this operand or used as an input in an earlier
5289 one. */
5290 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5291 return 0;
5292
5293 for (i = 0; i < opnum; i++)
5294 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5295 return 0;
5296
5297 return 1;
5298
5299 case RELOAD_FOR_OUTPUT_ADDRESS:
5300 /* Can't use a register if it is used for an output address for this
5301 operand or used as an output in this or a later operand. Note
5302 that multiple output operands are emitted in reverse order, so
5303 the conflicting ones are those with lower indices. */
5304 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5305 return 0;
5306
5307 for (i = 0; i <= opnum; i++)
5308 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5309 return 0;
5310
5311 return 1;
5312
5313 case RELOAD_FOR_OUTADDR_ADDRESS:
5314 /* Can't use a register if it is used for an output address
5315 for this operand or used as an output in this or a
5316 later operand. Note that multiple output operands are
5317 emitted in reverse order, so the conflicting ones are
5318 those with lower indices. */
5319 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5320 return 0;
5321
5322 for (i = 0; i <= opnum; i++)
5323 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5324 return 0;
5325
5326 return 1;
5327
5328 case RELOAD_FOR_OPERAND_ADDRESS:
5329 for (i = 0; i < reload_n_operands; i++)
5330 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5331 return 0;
5332
5333 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5334 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5335
5336 case RELOAD_FOR_OPADDR_ADDR:
5337 for (i = 0; i < reload_n_operands; i++)
5338 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5339 return 0;
5340
5341 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5342
5343 case RELOAD_FOR_OUTPUT:
5344 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5345 outputs, or an operand address for this or an earlier output.
5346 Note that multiple output operands are emitted in reverse order,
5347 so the conflicting ones are those with higher indices. */
5348 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5349 return 0;
5350
5351 for (i = 0; i < reload_n_operands; i++)
5352 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5353 return 0;
5354
5355 for (i = opnum; i < reload_n_operands; i++)
5356 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5357 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5358 return 0;
5359
5360 return 1;
5361
5362 case RELOAD_FOR_INSN:
5363 for (i = 0; i < reload_n_operands; i++)
5364 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5365 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5366 return 0;
5367
5368 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5369 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5370
5371 case RELOAD_FOR_OTHER_ADDRESS:
5372 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5373
5374 default:
5375 gcc_unreachable ();
5376 }
5377 }
5378
5379 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5380 the number RELOADNUM, is still available in REGNO at the end of the insn.
5381
5382 We can assume that the reload reg was already tested for availability
5383 at the time it is needed, and we should not check this again,
5384 in case the reg has already been marked in use. */
5385
5386 static int
5387 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5388 {
5389 int opnum = rld[reloadnum].opnum;
5390 enum reload_type type = rld[reloadnum].when_needed;
5391 int i;
5392
5393 /* See if there is a reload with the same type for this operand, using
5394 the same register. This case is not handled by the code below. */
5395 for (i = reloadnum + 1; i < n_reloads; i++)
5396 {
5397 rtx reg;
5398 int nregs;
5399
5400 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5401 continue;
5402 reg = rld[i].reg_rtx;
5403 if (reg == NULL_RTX)
5404 continue;
5405 nregs = hard_regno_nregs[REGNO (reg)][GET_MODE (reg)];
5406 if (regno >= REGNO (reg) && regno < REGNO (reg) + nregs)
5407 return 0;
5408 }
5409
5410 switch (type)
5411 {
5412 case RELOAD_OTHER:
5413 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5414 its value must reach the end. */
5415 return 1;
5416
5417 /* If this use is for part of the insn,
5418 its value reaches if no subsequent part uses the same register.
5419 Just like the above function, don't try to do this with lots
5420 of fallthroughs. */
5421
5422 case RELOAD_FOR_OTHER_ADDRESS:
5423 /* Here we check for everything else, since these don't conflict
5424 with anything else and everything comes later. */
5425
5426 for (i = 0; i < reload_n_operands; i++)
5427 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5428 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5429 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5430 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5431 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5432 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5433 return 0;
5434
5435 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5436 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5437 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5438 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5439
5440 case RELOAD_FOR_INPUT_ADDRESS:
5441 case RELOAD_FOR_INPADDR_ADDRESS:
5442 /* Similar, except that we check only for this and subsequent inputs
5443 and the address of only subsequent inputs and we do not need
5444 to check for RELOAD_OTHER objects since they are known not to
5445 conflict. */
5446
5447 for (i = opnum; i < reload_n_operands; i++)
5448 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5449 return 0;
5450
5451 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5452 could be killed if the register is also used by reload with type
5453 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5454 if (type == RELOAD_FOR_INPADDR_ADDRESS
5455 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5456 return 0;
5457
5458 for (i = opnum + 1; i < reload_n_operands; i++)
5459 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5460 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5461 return 0;
5462
5463 for (i = 0; i < reload_n_operands; i++)
5464 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5465 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5466 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5467 return 0;
5468
5469 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5470 return 0;
5471
5472 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5473 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5474 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5475
5476 case RELOAD_FOR_INPUT:
5477 /* Similar to input address, except we start at the next operand for
5478 both input and input address and we do not check for
5479 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5480 would conflict. */
5481
5482 for (i = opnum + 1; i < reload_n_operands; i++)
5483 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5484 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5485 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5486 return 0;
5487
5488 /* ... fall through ... */
5489
5490 case RELOAD_FOR_OPERAND_ADDRESS:
5491 /* Check outputs and their addresses. */
5492
5493 for (i = 0; i < reload_n_operands; i++)
5494 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5495 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5496 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5497 return 0;
5498
5499 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5500
5501 case RELOAD_FOR_OPADDR_ADDR:
5502 for (i = 0; i < reload_n_operands; i++)
5503 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5504 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5505 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5506 return 0;
5507
5508 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5509 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5510 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5511
5512 case RELOAD_FOR_INSN:
5513 /* These conflict with other outputs with RELOAD_OTHER. So
5514 we need only check for output addresses. */
5515
5516 opnum = reload_n_operands;
5517
5518 /* ... fall through ... */
5519
5520 case RELOAD_FOR_OUTPUT:
5521 case RELOAD_FOR_OUTPUT_ADDRESS:
5522 case RELOAD_FOR_OUTADDR_ADDRESS:
5523 /* We already know these can't conflict with a later output. So the
5524 only thing to check are later output addresses.
5525 Note that multiple output operands are emitted in reverse order,
5526 so the conflicting ones are those with lower indices. */
5527 for (i = 0; i < opnum; i++)
5528 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5529 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5530 return 0;
5531
5532 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5533 could be killed if the register is also used by reload with type
5534 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5535 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5536 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5537 return 0;
5538
5539 return 1;
5540
5541 default:
5542 gcc_unreachable ();
5543 }
5544 }
5545
5546 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5547 every register in REG. */
5548
5549 static bool
5550 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5551 {
5552 unsigned int i;
5553
5554 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5555 if (!reload_reg_reaches_end_p (i, reloadnum))
5556 return false;
5557 return true;
5558 }
5559 \f
5560
5561 /* Returns whether R1 and R2 are uniquely chained: the value of one
5562 is used by the other, and that value is not used by any other
5563 reload for this insn. This is used to partially undo the decision
5564 made in find_reloads when in the case of multiple
5565 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5566 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5567 reloads. This code tries to avoid the conflict created by that
5568 change. It might be cleaner to explicitly keep track of which
5569 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5570 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5571 this after the fact. */
5572 static bool
5573 reloads_unique_chain_p (int r1, int r2)
5574 {
5575 int i;
5576
5577 /* We only check input reloads. */
5578 if (! rld[r1].in || ! rld[r2].in)
5579 return false;
5580
5581 /* Avoid anything with output reloads. */
5582 if (rld[r1].out || rld[r2].out)
5583 return false;
5584
5585 /* "chained" means one reload is a component of the other reload,
5586 not the same as the other reload. */
5587 if (rld[r1].opnum != rld[r2].opnum
5588 || rtx_equal_p (rld[r1].in, rld[r2].in)
5589 || rld[r1].optional || rld[r2].optional
5590 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5591 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5592 return false;
5593
5594 /* The following loop assumes that r1 is the reload that feeds r2. */
5595 if (r1 > r2)
5596 {
5597 int tmp = r2;
5598 r2 = r1;
5599 r1 = tmp;
5600 }
5601
5602 for (i = 0; i < n_reloads; i ++)
5603 /* Look for input reloads that aren't our two */
5604 if (i != r1 && i != r2 && rld[i].in)
5605 {
5606 /* If our reload is mentioned at all, it isn't a simple chain. */
5607 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5608 return false;
5609 }
5610 return true;
5611 }
5612
5613 /* The recursive function change all occurrences of WHAT in *WHERE
5614 to REPL. */
5615 static void
5616 substitute (rtx *where, const_rtx what, rtx repl)
5617 {
5618 const char *fmt;
5619 int i;
5620 enum rtx_code code;
5621
5622 if (*where == 0)
5623 return;
5624
5625 if (*where == what || rtx_equal_p (*where, what))
5626 {
5627 /* Record the location of the changed rtx. */
5628 substitute_stack.safe_push (where);
5629 *where = repl;
5630 return;
5631 }
5632
5633 code = GET_CODE (*where);
5634 fmt = GET_RTX_FORMAT (code);
5635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5636 {
5637 if (fmt[i] == 'E')
5638 {
5639 int j;
5640
5641 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5642 substitute (&XVECEXP (*where, i, j), what, repl);
5643 }
5644 else if (fmt[i] == 'e')
5645 substitute (&XEXP (*where, i), what, repl);
5646 }
5647 }
5648
5649 /* The function returns TRUE if chain of reload R1 and R2 (in any
5650 order) can be evaluated without usage of intermediate register for
5651 the reload containing another reload. It is important to see
5652 gen_reload to understand what the function is trying to do. As an
5653 example, let us have reload chain
5654
5655 r2: const
5656 r1: <something> + const
5657
5658 and reload R2 got reload reg HR. The function returns true if
5659 there is a correct insn HR = HR + <something>. Otherwise,
5660 gen_reload will use intermediate register (and this is the reload
5661 reg for R1) to reload <something>.
5662
5663 We need this function to find a conflict for chain reloads. In our
5664 example, if HR = HR + <something> is incorrect insn, then we cannot
5665 use HR as a reload register for R2. If we do use it then we get a
5666 wrong code:
5667
5668 HR = const
5669 HR = <something>
5670 HR = HR + HR
5671
5672 */
5673 static bool
5674 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5675 {
5676 /* Assume other cases in gen_reload are not possible for
5677 chain reloads or do need an intermediate hard registers. */
5678 bool result = true;
5679 int regno, n, code;
5680 rtx out, in;
5681 rtx_insn *insn;
5682 rtx_insn *last = get_last_insn ();
5683
5684 /* Make r2 a component of r1. */
5685 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5686 {
5687 n = r1;
5688 r1 = r2;
5689 r2 = n;
5690 }
5691 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5692 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5693 gcc_assert (regno >= 0);
5694 out = gen_rtx_REG (rld[r1].mode, regno);
5695 in = rld[r1].in;
5696 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5697
5698 /* If IN is a paradoxical SUBREG, remove it and try to put the
5699 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5700 strip_paradoxical_subreg (&in, &out);
5701
5702 if (GET_CODE (in) == PLUS
5703 && (REG_P (XEXP (in, 0))
5704 || GET_CODE (XEXP (in, 0)) == SUBREG
5705 || MEM_P (XEXP (in, 0)))
5706 && (REG_P (XEXP (in, 1))
5707 || GET_CODE (XEXP (in, 1)) == SUBREG
5708 || CONSTANT_P (XEXP (in, 1))
5709 || MEM_P (XEXP (in, 1))))
5710 {
5711 insn = emit_insn (gen_rtx_SET (VOIDmode, out, in));
5712 code = recog_memoized (insn);
5713 result = false;
5714
5715 if (code >= 0)
5716 {
5717 extract_insn (insn);
5718 /* We want constrain operands to treat this insn strictly in
5719 its validity determination, i.e., the way it would after
5720 reload has completed. */
5721 result = constrain_operands (1);
5722 }
5723
5724 delete_insns_since (last);
5725 }
5726
5727 /* Restore the original value at each changed address within R1. */
5728 while (!substitute_stack.is_empty ())
5729 {
5730 rtx *where = substitute_stack.pop ();
5731 *where = rld[r2].in;
5732 }
5733
5734 return result;
5735 }
5736
5737 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5738 Return 0 otherwise.
5739
5740 This function uses the same algorithm as reload_reg_free_p above. */
5741
5742 static int
5743 reloads_conflict (int r1, int r2)
5744 {
5745 enum reload_type r1_type = rld[r1].when_needed;
5746 enum reload_type r2_type = rld[r2].when_needed;
5747 int r1_opnum = rld[r1].opnum;
5748 int r2_opnum = rld[r2].opnum;
5749
5750 /* RELOAD_OTHER conflicts with everything. */
5751 if (r2_type == RELOAD_OTHER)
5752 return 1;
5753
5754 /* Otherwise, check conflicts differently for each type. */
5755
5756 switch (r1_type)
5757 {
5758 case RELOAD_FOR_INPUT:
5759 return (r2_type == RELOAD_FOR_INSN
5760 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5761 || r2_type == RELOAD_FOR_OPADDR_ADDR
5762 || r2_type == RELOAD_FOR_INPUT
5763 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5764 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5765 && r2_opnum > r1_opnum));
5766
5767 case RELOAD_FOR_INPUT_ADDRESS:
5768 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5769 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5770
5771 case RELOAD_FOR_INPADDR_ADDRESS:
5772 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5773 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5774
5775 case RELOAD_FOR_OUTPUT_ADDRESS:
5776 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5777 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5778
5779 case RELOAD_FOR_OUTADDR_ADDRESS:
5780 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5781 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5782
5783 case RELOAD_FOR_OPERAND_ADDRESS:
5784 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5785 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5786 && (!reloads_unique_chain_p (r1, r2)
5787 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5788
5789 case RELOAD_FOR_OPADDR_ADDR:
5790 return (r2_type == RELOAD_FOR_INPUT
5791 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5792
5793 case RELOAD_FOR_OUTPUT:
5794 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5795 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5796 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5797 && r2_opnum >= r1_opnum));
5798
5799 case RELOAD_FOR_INSN:
5800 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5801 || r2_type == RELOAD_FOR_INSN
5802 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5803
5804 case RELOAD_FOR_OTHER_ADDRESS:
5805 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5806
5807 case RELOAD_OTHER:
5808 return 1;
5809
5810 default:
5811 gcc_unreachable ();
5812 }
5813 }
5814 \f
5815 /* Indexed by reload number, 1 if incoming value
5816 inherited from previous insns. */
5817 static char reload_inherited[MAX_RELOADS];
5818
5819 /* For an inherited reload, this is the insn the reload was inherited from,
5820 if we know it. Otherwise, this is 0. */
5821 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5822
5823 /* If nonzero, this is a place to get the value of the reload,
5824 rather than using reload_in. */
5825 static rtx reload_override_in[MAX_RELOADS];
5826
5827 /* For each reload, the hard register number of the register used,
5828 or -1 if we did not need a register for this reload. */
5829 static int reload_spill_index[MAX_RELOADS];
5830
5831 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5832 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5833
5834 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5835 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5836
5837 /* Subroutine of free_for_value_p, used to check a single register.
5838 START_REGNO is the starting regno of the full reload register
5839 (possibly comprising multiple hard registers) that we are considering. */
5840
5841 static int
5842 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5843 enum reload_type type, rtx value, rtx out,
5844 int reloadnum, int ignore_address_reloads)
5845 {
5846 int time1;
5847 /* Set if we see an input reload that must not share its reload register
5848 with any new earlyclobber, but might otherwise share the reload
5849 register with an output or input-output reload. */
5850 int check_earlyclobber = 0;
5851 int i;
5852 int copy = 0;
5853
5854 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5855 return 0;
5856
5857 if (out == const0_rtx)
5858 {
5859 copy = 1;
5860 out = NULL_RTX;
5861 }
5862
5863 /* We use some pseudo 'time' value to check if the lifetimes of the
5864 new register use would overlap with the one of a previous reload
5865 that is not read-only or uses a different value.
5866 The 'time' used doesn't have to be linear in any shape or form, just
5867 monotonic.
5868 Some reload types use different 'buckets' for each operand.
5869 So there are MAX_RECOG_OPERANDS different time values for each
5870 such reload type.
5871 We compute TIME1 as the time when the register for the prospective
5872 new reload ceases to be live, and TIME2 for each existing
5873 reload as the time when that the reload register of that reload
5874 becomes live.
5875 Where there is little to be gained by exact lifetime calculations,
5876 we just make conservative assumptions, i.e. a longer lifetime;
5877 this is done in the 'default:' cases. */
5878 switch (type)
5879 {
5880 case RELOAD_FOR_OTHER_ADDRESS:
5881 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5882 time1 = copy ? 0 : 1;
5883 break;
5884 case RELOAD_OTHER:
5885 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5886 break;
5887 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5888 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5889 respectively, to the time values for these, we get distinct time
5890 values. To get distinct time values for each operand, we have to
5891 multiply opnum by at least three. We round that up to four because
5892 multiply by four is often cheaper. */
5893 case RELOAD_FOR_INPADDR_ADDRESS:
5894 time1 = opnum * 4 + 2;
5895 break;
5896 case RELOAD_FOR_INPUT_ADDRESS:
5897 time1 = opnum * 4 + 3;
5898 break;
5899 case RELOAD_FOR_INPUT:
5900 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5901 executes (inclusive). */
5902 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5903 break;
5904 case RELOAD_FOR_OPADDR_ADDR:
5905 /* opnum * 4 + 4
5906 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5907 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5908 break;
5909 case RELOAD_FOR_OPERAND_ADDRESS:
5910 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5911 is executed. */
5912 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5913 break;
5914 case RELOAD_FOR_OUTADDR_ADDRESS:
5915 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5916 break;
5917 case RELOAD_FOR_OUTPUT_ADDRESS:
5918 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5919 break;
5920 default:
5921 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5922 }
5923
5924 for (i = 0; i < n_reloads; i++)
5925 {
5926 rtx reg = rld[i].reg_rtx;
5927 if (reg && REG_P (reg)
5928 && ((unsigned) regno - true_regnum (reg)
5929 <= hard_regno_nregs[REGNO (reg)][GET_MODE (reg)] - (unsigned) 1)
5930 && i != reloadnum)
5931 {
5932 rtx other_input = rld[i].in;
5933
5934 /* If the other reload loads the same input value, that
5935 will not cause a conflict only if it's loading it into
5936 the same register. */
5937 if (true_regnum (reg) != start_regno)
5938 other_input = NULL_RTX;
5939 if (! other_input || ! rtx_equal_p (other_input, value)
5940 || rld[i].out || out)
5941 {
5942 int time2;
5943 switch (rld[i].when_needed)
5944 {
5945 case RELOAD_FOR_OTHER_ADDRESS:
5946 time2 = 0;
5947 break;
5948 case RELOAD_FOR_INPADDR_ADDRESS:
5949 /* find_reloads makes sure that a
5950 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5951 by at most one - the first -
5952 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5953 address reload is inherited, the address address reload
5954 goes away, so we can ignore this conflict. */
5955 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5956 && ignore_address_reloads
5957 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5958 Then the address address is still needed to store
5959 back the new address. */
5960 && ! rld[reloadnum].out)
5961 continue;
5962 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5963 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5964 reloads go away. */
5965 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5966 && ignore_address_reloads
5967 /* Unless we are reloading an auto_inc expression. */
5968 && ! rld[reloadnum].out)
5969 continue;
5970 time2 = rld[i].opnum * 4 + 2;
5971 break;
5972 case RELOAD_FOR_INPUT_ADDRESS:
5973 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5974 && ignore_address_reloads
5975 && ! rld[reloadnum].out)
5976 continue;
5977 time2 = rld[i].opnum * 4 + 3;
5978 break;
5979 case RELOAD_FOR_INPUT:
5980 time2 = rld[i].opnum * 4 + 4;
5981 check_earlyclobber = 1;
5982 break;
5983 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5984 == MAX_RECOG_OPERAND * 4 */
5985 case RELOAD_FOR_OPADDR_ADDR:
5986 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5987 && ignore_address_reloads
5988 && ! rld[reloadnum].out)
5989 continue;
5990 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5991 break;
5992 case RELOAD_FOR_OPERAND_ADDRESS:
5993 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5994 check_earlyclobber = 1;
5995 break;
5996 case RELOAD_FOR_INSN:
5997 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5998 break;
5999 case RELOAD_FOR_OUTPUT:
6000 /* All RELOAD_FOR_OUTPUT reloads become live just after the
6001 instruction is executed. */
6002 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6003 break;
6004 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
6005 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
6006 value. */
6007 case RELOAD_FOR_OUTADDR_ADDRESS:
6008 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
6009 && ignore_address_reloads
6010 && ! rld[reloadnum].out)
6011 continue;
6012 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
6013 break;
6014 case RELOAD_FOR_OUTPUT_ADDRESS:
6015 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
6016 break;
6017 case RELOAD_OTHER:
6018 /* If there is no conflict in the input part, handle this
6019 like an output reload. */
6020 if (! rld[i].in || rtx_equal_p (other_input, value))
6021 {
6022 time2 = MAX_RECOG_OPERANDS * 4 + 4;
6023 /* Earlyclobbered outputs must conflict with inputs. */
6024 if (earlyclobber_operand_p (rld[i].out))
6025 time2 = MAX_RECOG_OPERANDS * 4 + 3;
6026
6027 break;
6028 }
6029 time2 = 1;
6030 /* RELOAD_OTHER might be live beyond instruction execution,
6031 but this is not obvious when we set time2 = 1. So check
6032 here if there might be a problem with the new reload
6033 clobbering the register used by the RELOAD_OTHER. */
6034 if (out)
6035 return 0;
6036 break;
6037 default:
6038 return 0;
6039 }
6040 if ((time1 >= time2
6041 && (! rld[i].in || rld[i].out
6042 || ! rtx_equal_p (other_input, value)))
6043 || (out && rld[reloadnum].out_reg
6044 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
6045 return 0;
6046 }
6047 }
6048 }
6049
6050 /* Earlyclobbered outputs must conflict with inputs. */
6051 if (check_earlyclobber && out && earlyclobber_operand_p (out))
6052 return 0;
6053
6054 return 1;
6055 }
6056
6057 /* Return 1 if the value in reload reg REGNO, as used by a reload
6058 needed for the part of the insn specified by OPNUM and TYPE,
6059 may be used to load VALUE into it.
6060
6061 MODE is the mode in which the register is used, this is needed to
6062 determine how many hard regs to test.
6063
6064 Other read-only reloads with the same value do not conflict
6065 unless OUT is nonzero and these other reloads have to live while
6066 output reloads live.
6067 If OUT is CONST0_RTX, this is a special case: it means that the
6068 test should not be for using register REGNO as reload register, but
6069 for copying from register REGNO into the reload register.
6070
6071 RELOADNUM is the number of the reload we want to load this value for;
6072 a reload does not conflict with itself.
6073
6074 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6075 reloads that load an address for the very reload we are considering.
6076
6077 The caller has to make sure that there is no conflict with the return
6078 register. */
6079
6080 static int
6081 free_for_value_p (int regno, enum machine_mode mode, int opnum,
6082 enum reload_type type, rtx value, rtx out, int reloadnum,
6083 int ignore_address_reloads)
6084 {
6085 int nregs = hard_regno_nregs[regno][mode];
6086 while (nregs-- > 0)
6087 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6088 value, out, reloadnum,
6089 ignore_address_reloads))
6090 return 0;
6091 return 1;
6092 }
6093
6094 /* Return nonzero if the rtx X is invariant over the current function. */
6095 /* ??? Actually, the places where we use this expect exactly what is
6096 tested here, and not everything that is function invariant. In
6097 particular, the frame pointer and arg pointer are special cased;
6098 pic_offset_table_rtx is not, and we must not spill these things to
6099 memory. */
6100
6101 int
6102 function_invariant_p (const_rtx x)
6103 {
6104 if (CONSTANT_P (x))
6105 return 1;
6106 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6107 return 1;
6108 if (GET_CODE (x) == PLUS
6109 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6110 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6111 return 1;
6112 return 0;
6113 }
6114
6115 /* Determine whether the reload reg X overlaps any rtx'es used for
6116 overriding inheritance. Return nonzero if so. */
6117
6118 static int
6119 conflicts_with_override (rtx x)
6120 {
6121 int i;
6122 for (i = 0; i < n_reloads; i++)
6123 if (reload_override_in[i]
6124 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6125 return 1;
6126 return 0;
6127 }
6128 \f
6129 /* Give an error message saying we failed to find a reload for INSN,
6130 and clear out reload R. */
6131 static void
6132 failed_reload (rtx_insn *insn, int r)
6133 {
6134 if (asm_noperands (PATTERN (insn)) < 0)
6135 /* It's the compiler's fault. */
6136 fatal_insn ("could not find a spill register", insn);
6137
6138 /* It's the user's fault; the operand's mode and constraint
6139 don't match. Disable this reload so we don't crash in final. */
6140 error_for_asm (insn,
6141 "%<asm%> operand constraint incompatible with operand size");
6142 rld[r].in = 0;
6143 rld[r].out = 0;
6144 rld[r].reg_rtx = 0;
6145 rld[r].optional = 1;
6146 rld[r].secondary_p = 1;
6147 }
6148
6149 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6150 for reload R. If it's valid, get an rtx for it. Return nonzero if
6151 successful. */
6152 static int
6153 set_reload_reg (int i, int r)
6154 {
6155 /* regno is 'set but not used' if HARD_REGNO_MODE_OK doesn't use its first
6156 parameter. */
6157 int regno ATTRIBUTE_UNUSED;
6158 rtx reg = spill_reg_rtx[i];
6159
6160 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6161 spill_reg_rtx[i] = reg
6162 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6163
6164 regno = true_regnum (reg);
6165
6166 /* Detect when the reload reg can't hold the reload mode.
6167 This used to be one `if', but Sequent compiler can't handle that. */
6168 if (HARD_REGNO_MODE_OK (regno, rld[r].mode))
6169 {
6170 enum machine_mode test_mode = VOIDmode;
6171 if (rld[r].in)
6172 test_mode = GET_MODE (rld[r].in);
6173 /* If rld[r].in has VOIDmode, it means we will load it
6174 in whatever mode the reload reg has: to wit, rld[r].mode.
6175 We have already tested that for validity. */
6176 /* Aside from that, we need to test that the expressions
6177 to reload from or into have modes which are valid for this
6178 reload register. Otherwise the reload insns would be invalid. */
6179 if (! (rld[r].in != 0 && test_mode != VOIDmode
6180 && ! HARD_REGNO_MODE_OK (regno, test_mode)))
6181 if (! (rld[r].out != 0
6182 && ! HARD_REGNO_MODE_OK (regno, GET_MODE (rld[r].out))))
6183 {
6184 /* The reg is OK. */
6185 last_spill_reg = i;
6186
6187 /* Mark as in use for this insn the reload regs we use
6188 for this. */
6189 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6190 rld[r].when_needed, rld[r].mode);
6191
6192 rld[r].reg_rtx = reg;
6193 reload_spill_index[r] = spill_regs[i];
6194 return 1;
6195 }
6196 }
6197 return 0;
6198 }
6199
6200 /* Find a spill register to use as a reload register for reload R.
6201 LAST_RELOAD is nonzero if this is the last reload for the insn being
6202 processed.
6203
6204 Set rld[R].reg_rtx to the register allocated.
6205
6206 We return 1 if successful, or 0 if we couldn't find a spill reg and
6207 we didn't change anything. */
6208
6209 static int
6210 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6211 int last_reload)
6212 {
6213 int i, pass, count;
6214
6215 /* If we put this reload ahead, thinking it is a group,
6216 then insist on finding a group. Otherwise we can grab a
6217 reg that some other reload needs.
6218 (That can happen when we have a 68000 DATA_OR_FP_REG
6219 which is a group of data regs or one fp reg.)
6220 We need not be so restrictive if there are no more reloads
6221 for this insn.
6222
6223 ??? Really it would be nicer to have smarter handling
6224 for that kind of reg class, where a problem like this is normal.
6225 Perhaps those classes should be avoided for reloading
6226 by use of more alternatives. */
6227
6228 int force_group = rld[r].nregs > 1 && ! last_reload;
6229
6230 /* If we want a single register and haven't yet found one,
6231 take any reg in the right class and not in use.
6232 If we want a consecutive group, here is where we look for it.
6233
6234 We use three passes so we can first look for reload regs to
6235 reuse, which are already in use for other reloads in this insn,
6236 and only then use additional registers which are not "bad", then
6237 finally any register.
6238
6239 I think that maximizing reuse is needed to make sure we don't
6240 run out of reload regs. Suppose we have three reloads, and
6241 reloads A and B can share regs. These need two regs.
6242 Suppose A and B are given different regs.
6243 That leaves none for C. */
6244 for (pass = 0; pass < 3; pass++)
6245 {
6246 /* I is the index in spill_regs.
6247 We advance it round-robin between insns to use all spill regs
6248 equally, so that inherited reloads have a chance
6249 of leapfrogging each other. */
6250
6251 i = last_spill_reg;
6252
6253 for (count = 0; count < n_spills; count++)
6254 {
6255 int rclass = (int) rld[r].rclass;
6256 int regnum;
6257
6258 i++;
6259 if (i >= n_spills)
6260 i -= n_spills;
6261 regnum = spill_regs[i];
6262
6263 if ((reload_reg_free_p (regnum, rld[r].opnum,
6264 rld[r].when_needed)
6265 || (rld[r].in
6266 /* We check reload_reg_used to make sure we
6267 don't clobber the return register. */
6268 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6269 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6270 rld[r].when_needed, rld[r].in,
6271 rld[r].out, r, 1)))
6272 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6273 && HARD_REGNO_MODE_OK (regnum, rld[r].mode)
6274 /* Look first for regs to share, then for unshared. But
6275 don't share regs used for inherited reloads; they are
6276 the ones we want to preserve. */
6277 && (pass
6278 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6279 regnum)
6280 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6281 regnum))))
6282 {
6283 int nr = hard_regno_nregs[regnum][rld[r].mode];
6284
6285 /* During the second pass we want to avoid reload registers
6286 which are "bad" for this reload. */
6287 if (pass == 1
6288 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6289 continue;
6290
6291 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6292 (on 68000) got us two FP regs. If NR is 1,
6293 we would reject both of them. */
6294 if (force_group)
6295 nr = rld[r].nregs;
6296 /* If we need only one reg, we have already won. */
6297 if (nr == 1)
6298 {
6299 /* But reject a single reg if we demand a group. */
6300 if (force_group)
6301 continue;
6302 break;
6303 }
6304 /* Otherwise check that as many consecutive regs as we need
6305 are available here. */
6306 while (nr > 1)
6307 {
6308 int regno = regnum + nr - 1;
6309 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6310 && spill_reg_order[regno] >= 0
6311 && reload_reg_free_p (regno, rld[r].opnum,
6312 rld[r].when_needed)))
6313 break;
6314 nr--;
6315 }
6316 if (nr == 1)
6317 break;
6318 }
6319 }
6320
6321 /* If we found something on the current pass, omit later passes. */
6322 if (count < n_spills)
6323 break;
6324 }
6325
6326 /* We should have found a spill register by now. */
6327 if (count >= n_spills)
6328 return 0;
6329
6330 /* I is the index in SPILL_REG_RTX of the reload register we are to
6331 allocate. Get an rtx for it and find its register number. */
6332
6333 return set_reload_reg (i, r);
6334 }
6335 \f
6336 /* Initialize all the tables needed to allocate reload registers.
6337 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6338 is the array we use to restore the reg_rtx field for every reload. */
6339
6340 static void
6341 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6342 {
6343 int i;
6344
6345 for (i = 0; i < n_reloads; i++)
6346 rld[i].reg_rtx = save_reload_reg_rtx[i];
6347
6348 memset (reload_inherited, 0, MAX_RELOADS);
6349 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6350 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6351
6352 CLEAR_HARD_REG_SET (reload_reg_used);
6353 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6354 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6355 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6356 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6357 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6358
6359 CLEAR_HARD_REG_SET (reg_used_in_insn);
6360 {
6361 HARD_REG_SET tmp;
6362 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6363 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6364 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6365 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6366 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6367 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6368 }
6369
6370 for (i = 0; i < reload_n_operands; i++)
6371 {
6372 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6373 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6374 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6375 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6376 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6377 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6378 }
6379
6380 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6381
6382 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6383
6384 for (i = 0; i < n_reloads; i++)
6385 /* If we have already decided to use a certain register,
6386 don't use it in another way. */
6387 if (rld[i].reg_rtx)
6388 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6389 rld[i].when_needed, rld[i].mode);
6390 }
6391
6392 #ifdef SECONDARY_MEMORY_NEEDED
6393 /* If X is not a subreg, return it unmodified. If it is a subreg,
6394 look up whether we made a replacement for the SUBREG_REG. Return
6395 either the replacement or the SUBREG_REG. */
6396
6397 static rtx
6398 replaced_subreg (rtx x)
6399 {
6400 if (GET_CODE (x) == SUBREG)
6401 return find_replacement (&SUBREG_REG (x));
6402 return x;
6403 }
6404 #endif
6405
6406 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6407 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6408 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6409 otherwise it is NULL. */
6410
6411 static int
6412 compute_reload_subreg_offset (enum machine_mode outermode,
6413 rtx subreg,
6414 enum machine_mode innermode)
6415 {
6416 int outer_offset;
6417 enum machine_mode middlemode;
6418
6419 if (!subreg)
6420 return subreg_lowpart_offset (outermode, innermode);
6421
6422 outer_offset = SUBREG_BYTE (subreg);
6423 middlemode = GET_MODE (SUBREG_REG (subreg));
6424
6425 /* If SUBREG is paradoxical then return the normal lowpart offset
6426 for OUTERMODE and INNERMODE. Our caller has already checked
6427 that OUTERMODE fits in INNERMODE. */
6428 if (outer_offset == 0
6429 && GET_MODE_SIZE (outermode) > GET_MODE_SIZE (middlemode))
6430 return subreg_lowpart_offset (outermode, innermode);
6431
6432 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6433 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6434 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6435 }
6436
6437 /* Assign hard reg targets for the pseudo-registers we must reload
6438 into hard regs for this insn.
6439 Also output the instructions to copy them in and out of the hard regs.
6440
6441 For machines with register classes, we are responsible for
6442 finding a reload reg in the proper class. */
6443
6444 static void
6445 choose_reload_regs (struct insn_chain *chain)
6446 {
6447 rtx_insn *insn = chain->insn;
6448 int i, j;
6449 unsigned int max_group_size = 1;
6450 enum reg_class group_class = NO_REGS;
6451 int pass, win, inheritance;
6452
6453 rtx save_reload_reg_rtx[MAX_RELOADS];
6454
6455 /* In order to be certain of getting the registers we need,
6456 we must sort the reloads into order of increasing register class.
6457 Then our grabbing of reload registers will parallel the process
6458 that provided the reload registers.
6459
6460 Also note whether any of the reloads wants a consecutive group of regs.
6461 If so, record the maximum size of the group desired and what
6462 register class contains all the groups needed by this insn. */
6463
6464 for (j = 0; j < n_reloads; j++)
6465 {
6466 reload_order[j] = j;
6467 if (rld[j].reg_rtx != NULL_RTX)
6468 {
6469 gcc_assert (REG_P (rld[j].reg_rtx)
6470 && HARD_REGISTER_P (rld[j].reg_rtx));
6471 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6472 }
6473 else
6474 reload_spill_index[j] = -1;
6475
6476 if (rld[j].nregs > 1)
6477 {
6478 max_group_size = MAX (rld[j].nregs, max_group_size);
6479 group_class
6480 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6481 }
6482
6483 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6484 }
6485
6486 if (n_reloads > 1)
6487 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6488
6489 /* If -O, try first with inheritance, then turning it off.
6490 If not -O, don't do inheritance.
6491 Using inheritance when not optimizing leads to paradoxes
6492 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6493 because one side of the comparison might be inherited. */
6494 win = 0;
6495 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6496 {
6497 choose_reload_regs_init (chain, save_reload_reg_rtx);
6498
6499 /* Process the reloads in order of preference just found.
6500 Beyond this point, subregs can be found in reload_reg_rtx.
6501
6502 This used to look for an existing reloaded home for all of the
6503 reloads, and only then perform any new reloads. But that could lose
6504 if the reloads were done out of reg-class order because a later
6505 reload with a looser constraint might have an old home in a register
6506 needed by an earlier reload with a tighter constraint.
6507
6508 To solve this, we make two passes over the reloads, in the order
6509 described above. In the first pass we try to inherit a reload
6510 from a previous insn. If there is a later reload that needs a
6511 class that is a proper subset of the class being processed, we must
6512 also allocate a spill register during the first pass.
6513
6514 Then make a second pass over the reloads to allocate any reloads
6515 that haven't been given registers yet. */
6516
6517 for (j = 0; j < n_reloads; j++)
6518 {
6519 int r = reload_order[j];
6520 rtx search_equiv = NULL_RTX;
6521
6522 /* Ignore reloads that got marked inoperative. */
6523 if (rld[r].out == 0 && rld[r].in == 0
6524 && ! rld[r].secondary_p)
6525 continue;
6526
6527 /* If find_reloads chose to use reload_in or reload_out as a reload
6528 register, we don't need to chose one. Otherwise, try even if it
6529 found one since we might save an insn if we find the value lying
6530 around.
6531 Try also when reload_in is a pseudo without a hard reg. */
6532 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6533 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6534 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6535 && !MEM_P (rld[r].in)
6536 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6537 continue;
6538
6539 #if 0 /* No longer needed for correct operation.
6540 It might give better code, or might not; worth an experiment? */
6541 /* If this is an optional reload, we can't inherit from earlier insns
6542 until we are sure that any non-optional reloads have been allocated.
6543 The following code takes advantage of the fact that optional reloads
6544 are at the end of reload_order. */
6545 if (rld[r].optional != 0)
6546 for (i = 0; i < j; i++)
6547 if ((rld[reload_order[i]].out != 0
6548 || rld[reload_order[i]].in != 0
6549 || rld[reload_order[i]].secondary_p)
6550 && ! rld[reload_order[i]].optional
6551 && rld[reload_order[i]].reg_rtx == 0)
6552 allocate_reload_reg (chain, reload_order[i], 0);
6553 #endif
6554
6555 /* First see if this pseudo is already available as reloaded
6556 for a previous insn. We cannot try to inherit for reloads
6557 that are smaller than the maximum number of registers needed
6558 for groups unless the register we would allocate cannot be used
6559 for the groups.
6560
6561 We could check here to see if this is a secondary reload for
6562 an object that is already in a register of the desired class.
6563 This would avoid the need for the secondary reload register.
6564 But this is complex because we can't easily determine what
6565 objects might want to be loaded via this reload. So let a
6566 register be allocated here. In `emit_reload_insns' we suppress
6567 one of the loads in the case described above. */
6568
6569 if (inheritance)
6570 {
6571 int byte = 0;
6572 int regno = -1;
6573 enum machine_mode mode = VOIDmode;
6574 rtx subreg = NULL_RTX;
6575
6576 if (rld[r].in == 0)
6577 ;
6578 else if (REG_P (rld[r].in))
6579 {
6580 regno = REGNO (rld[r].in);
6581 mode = GET_MODE (rld[r].in);
6582 }
6583 else if (REG_P (rld[r].in_reg))
6584 {
6585 regno = REGNO (rld[r].in_reg);
6586 mode = GET_MODE (rld[r].in_reg);
6587 }
6588 else if (GET_CODE (rld[r].in_reg) == SUBREG
6589 && REG_P (SUBREG_REG (rld[r].in_reg)))
6590 {
6591 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6592 if (regno < FIRST_PSEUDO_REGISTER)
6593 regno = subreg_regno (rld[r].in_reg);
6594 else
6595 {
6596 subreg = rld[r].in_reg;
6597 byte = SUBREG_BYTE (subreg);
6598 }
6599 mode = GET_MODE (rld[r].in_reg);
6600 }
6601 #ifdef AUTO_INC_DEC
6602 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6603 && REG_P (XEXP (rld[r].in_reg, 0)))
6604 {
6605 regno = REGNO (XEXP (rld[r].in_reg, 0));
6606 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6607 rld[r].out = rld[r].in;
6608 }
6609 #endif
6610 #if 0
6611 /* This won't work, since REGNO can be a pseudo reg number.
6612 Also, it takes much more hair to keep track of all the things
6613 that can invalidate an inherited reload of part of a pseudoreg. */
6614 else if (GET_CODE (rld[r].in) == SUBREG
6615 && REG_P (SUBREG_REG (rld[r].in)))
6616 regno = subreg_regno (rld[r].in);
6617 #endif
6618
6619 if (regno >= 0
6620 && reg_last_reload_reg[regno] != 0
6621 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6622 >= GET_MODE_SIZE (mode) + byte)
6623 #ifdef CANNOT_CHANGE_MODE_CLASS
6624 /* Verify that the register it's in can be used in
6625 mode MODE. */
6626 && !REG_CANNOT_CHANGE_MODE_P (REGNO (reg_last_reload_reg[regno]),
6627 GET_MODE (reg_last_reload_reg[regno]),
6628 mode)
6629 #endif
6630 )
6631 {
6632 enum reg_class rclass = rld[r].rclass, last_class;
6633 rtx last_reg = reg_last_reload_reg[regno];
6634
6635 i = REGNO (last_reg);
6636 byte = compute_reload_subreg_offset (mode,
6637 subreg,
6638 GET_MODE (last_reg));
6639 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6640 last_class = REGNO_REG_CLASS (i);
6641
6642 if (reg_reloaded_contents[i] == regno
6643 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6644 && HARD_REGNO_MODE_OK (i, rld[r].mode)
6645 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6646 /* Even if we can't use this register as a reload
6647 register, we might use it for reload_override_in,
6648 if copying it to the desired class is cheap
6649 enough. */
6650 || ((register_move_cost (mode, last_class, rclass)
6651 < memory_move_cost (mode, rclass, true))
6652 && (secondary_reload_class (1, rclass, mode,
6653 last_reg)
6654 == NO_REGS)
6655 #ifdef SECONDARY_MEMORY_NEEDED
6656 && ! SECONDARY_MEMORY_NEEDED (last_class, rclass,
6657 mode)
6658 #endif
6659 ))
6660
6661 && (rld[r].nregs == max_group_size
6662 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6663 i))
6664 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6665 rld[r].when_needed, rld[r].in,
6666 const0_rtx, r, 1))
6667 {
6668 /* If a group is needed, verify that all the subsequent
6669 registers still have their values intact. */
6670 int nr = hard_regno_nregs[i][rld[r].mode];
6671 int k;
6672
6673 for (k = 1; k < nr; k++)
6674 if (reg_reloaded_contents[i + k] != regno
6675 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6676 break;
6677
6678 if (k == nr)
6679 {
6680 int i1;
6681 int bad_for_class;
6682
6683 last_reg = (GET_MODE (last_reg) == mode
6684 ? last_reg : gen_rtx_REG (mode, i));
6685
6686 bad_for_class = 0;
6687 for (k = 0; k < nr; k++)
6688 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6689 i+k);
6690
6691 /* We found a register that contains the
6692 value we need. If this register is the
6693 same as an `earlyclobber' operand of the
6694 current insn, just mark it as a place to
6695 reload from since we can't use it as the
6696 reload register itself. */
6697
6698 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6699 if (reg_overlap_mentioned_for_reload_p
6700 (reg_last_reload_reg[regno],
6701 reload_earlyclobbers[i1]))
6702 break;
6703
6704 if (i1 != n_earlyclobbers
6705 || ! (free_for_value_p (i, rld[r].mode,
6706 rld[r].opnum,
6707 rld[r].when_needed, rld[r].in,
6708 rld[r].out, r, 1))
6709 /* Don't use it if we'd clobber a pseudo reg. */
6710 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6711 && rld[r].out
6712 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6713 /* Don't clobber the frame pointer. */
6714 || (i == HARD_FRAME_POINTER_REGNUM
6715 && frame_pointer_needed
6716 && rld[r].out)
6717 /* Don't really use the inherited spill reg
6718 if we need it wider than we've got it. */
6719 || (GET_MODE_SIZE (rld[r].mode)
6720 > GET_MODE_SIZE (mode))
6721 || bad_for_class
6722
6723 /* If find_reloads chose reload_out as reload
6724 register, stay with it - that leaves the
6725 inherited register for subsequent reloads. */
6726 || (rld[r].out && rld[r].reg_rtx
6727 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6728 {
6729 if (! rld[r].optional)
6730 {
6731 reload_override_in[r] = last_reg;
6732 reload_inheritance_insn[r]
6733 = reg_reloaded_insn[i];
6734 }
6735 }
6736 else
6737 {
6738 int k;
6739 /* We can use this as a reload reg. */
6740 /* Mark the register as in use for this part of
6741 the insn. */
6742 mark_reload_reg_in_use (i,
6743 rld[r].opnum,
6744 rld[r].when_needed,
6745 rld[r].mode);
6746 rld[r].reg_rtx = last_reg;
6747 reload_inherited[r] = 1;
6748 reload_inheritance_insn[r]
6749 = reg_reloaded_insn[i];
6750 reload_spill_index[r] = i;
6751 for (k = 0; k < nr; k++)
6752 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6753 i + k);
6754 }
6755 }
6756 }
6757 }
6758 }
6759
6760 /* Here's another way to see if the value is already lying around. */
6761 if (inheritance
6762 && rld[r].in != 0
6763 && ! reload_inherited[r]
6764 && rld[r].out == 0
6765 && (CONSTANT_P (rld[r].in)
6766 || GET_CODE (rld[r].in) == PLUS
6767 || REG_P (rld[r].in)
6768 || MEM_P (rld[r].in))
6769 && (rld[r].nregs == max_group_size
6770 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6771 search_equiv = rld[r].in;
6772
6773 if (search_equiv)
6774 {
6775 rtx equiv
6776 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6777 -1, NULL, 0, rld[r].mode);
6778 int regno = 0;
6779
6780 if (equiv != 0)
6781 {
6782 if (REG_P (equiv))
6783 regno = REGNO (equiv);
6784 else
6785 {
6786 /* This must be a SUBREG of a hard register.
6787 Make a new REG since this might be used in an
6788 address and not all machines support SUBREGs
6789 there. */
6790 gcc_assert (GET_CODE (equiv) == SUBREG);
6791 regno = subreg_regno (equiv);
6792 equiv = gen_rtx_REG (rld[r].mode, regno);
6793 /* If we choose EQUIV as the reload register, but the
6794 loop below decides to cancel the inheritance, we'll
6795 end up reloading EQUIV in rld[r].mode, not the mode
6796 it had originally. That isn't safe when EQUIV isn't
6797 available as a spill register since its value might
6798 still be live at this point. */
6799 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6800 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6801 equiv = 0;
6802 }
6803 }
6804
6805 /* If we found a spill reg, reject it unless it is free
6806 and of the desired class. */
6807 if (equiv != 0)
6808 {
6809 int regs_used = 0;
6810 int bad_for_class = 0;
6811 int max_regno = regno + rld[r].nregs;
6812
6813 for (i = regno; i < max_regno; i++)
6814 {
6815 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6816 i);
6817 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6818 i);
6819 }
6820
6821 if ((regs_used
6822 && ! free_for_value_p (regno, rld[r].mode,
6823 rld[r].opnum, rld[r].when_needed,
6824 rld[r].in, rld[r].out, r, 1))
6825 || bad_for_class)
6826 equiv = 0;
6827 }
6828
6829 if (equiv != 0 && ! HARD_REGNO_MODE_OK (regno, rld[r].mode))
6830 equiv = 0;
6831
6832 /* We found a register that contains the value we need.
6833 If this register is the same as an `earlyclobber' operand
6834 of the current insn, just mark it as a place to reload from
6835 since we can't use it as the reload register itself. */
6836
6837 if (equiv != 0)
6838 for (i = 0; i < n_earlyclobbers; i++)
6839 if (reg_overlap_mentioned_for_reload_p (equiv,
6840 reload_earlyclobbers[i]))
6841 {
6842 if (! rld[r].optional)
6843 reload_override_in[r] = equiv;
6844 equiv = 0;
6845 break;
6846 }
6847
6848 /* If the equiv register we have found is explicitly clobbered
6849 in the current insn, it depends on the reload type if we
6850 can use it, use it for reload_override_in, or not at all.
6851 In particular, we then can't use EQUIV for a
6852 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6853
6854 if (equiv != 0)
6855 {
6856 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6857 switch (rld[r].when_needed)
6858 {
6859 case RELOAD_FOR_OTHER_ADDRESS:
6860 case RELOAD_FOR_INPADDR_ADDRESS:
6861 case RELOAD_FOR_INPUT_ADDRESS:
6862 case RELOAD_FOR_OPADDR_ADDR:
6863 break;
6864 case RELOAD_OTHER:
6865 case RELOAD_FOR_INPUT:
6866 case RELOAD_FOR_OPERAND_ADDRESS:
6867 if (! rld[r].optional)
6868 reload_override_in[r] = equiv;
6869 /* Fall through. */
6870 default:
6871 equiv = 0;
6872 break;
6873 }
6874 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6875 switch (rld[r].when_needed)
6876 {
6877 case RELOAD_FOR_OTHER_ADDRESS:
6878 case RELOAD_FOR_INPADDR_ADDRESS:
6879 case RELOAD_FOR_INPUT_ADDRESS:
6880 case RELOAD_FOR_OPADDR_ADDR:
6881 case RELOAD_FOR_OPERAND_ADDRESS:
6882 case RELOAD_FOR_INPUT:
6883 break;
6884 case RELOAD_OTHER:
6885 if (! rld[r].optional)
6886 reload_override_in[r] = equiv;
6887 /* Fall through. */
6888 default:
6889 equiv = 0;
6890 break;
6891 }
6892 }
6893
6894 /* If we found an equivalent reg, say no code need be generated
6895 to load it, and use it as our reload reg. */
6896 if (equiv != 0
6897 && (regno != HARD_FRAME_POINTER_REGNUM
6898 || !frame_pointer_needed))
6899 {
6900 int nr = hard_regno_nregs[regno][rld[r].mode];
6901 int k;
6902 rld[r].reg_rtx = equiv;
6903 reload_spill_index[r] = regno;
6904 reload_inherited[r] = 1;
6905
6906 /* If reg_reloaded_valid is not set for this register,
6907 there might be a stale spill_reg_store lying around.
6908 We must clear it, since otherwise emit_reload_insns
6909 might delete the store. */
6910 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6911 spill_reg_store[regno] = NULL;
6912 /* If any of the hard registers in EQUIV are spill
6913 registers, mark them as in use for this insn. */
6914 for (k = 0; k < nr; k++)
6915 {
6916 i = spill_reg_order[regno + k];
6917 if (i >= 0)
6918 {
6919 mark_reload_reg_in_use (regno, rld[r].opnum,
6920 rld[r].when_needed,
6921 rld[r].mode);
6922 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6923 regno + k);
6924 }
6925 }
6926 }
6927 }
6928
6929 /* If we found a register to use already, or if this is an optional
6930 reload, we are done. */
6931 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6932 continue;
6933
6934 #if 0
6935 /* No longer needed for correct operation. Might or might
6936 not give better code on the average. Want to experiment? */
6937
6938 /* See if there is a later reload that has a class different from our
6939 class that intersects our class or that requires less register
6940 than our reload. If so, we must allocate a register to this
6941 reload now, since that reload might inherit a previous reload
6942 and take the only available register in our class. Don't do this
6943 for optional reloads since they will force all previous reloads
6944 to be allocated. Also don't do this for reloads that have been
6945 turned off. */
6946
6947 for (i = j + 1; i < n_reloads; i++)
6948 {
6949 int s = reload_order[i];
6950
6951 if ((rld[s].in == 0 && rld[s].out == 0
6952 && ! rld[s].secondary_p)
6953 || rld[s].optional)
6954 continue;
6955
6956 if ((rld[s].rclass != rld[r].rclass
6957 && reg_classes_intersect_p (rld[r].rclass,
6958 rld[s].rclass))
6959 || rld[s].nregs < rld[r].nregs)
6960 break;
6961 }
6962
6963 if (i == n_reloads)
6964 continue;
6965
6966 allocate_reload_reg (chain, r, j == n_reloads - 1);
6967 #endif
6968 }
6969
6970 /* Now allocate reload registers for anything non-optional that
6971 didn't get one yet. */
6972 for (j = 0; j < n_reloads; j++)
6973 {
6974 int r = reload_order[j];
6975
6976 /* Ignore reloads that got marked inoperative. */
6977 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6978 continue;
6979
6980 /* Skip reloads that already have a register allocated or are
6981 optional. */
6982 if (rld[r].reg_rtx != 0 || rld[r].optional)
6983 continue;
6984
6985 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6986 break;
6987 }
6988
6989 /* If that loop got all the way, we have won. */
6990 if (j == n_reloads)
6991 {
6992 win = 1;
6993 break;
6994 }
6995
6996 /* Loop around and try without any inheritance. */
6997 }
6998
6999 if (! win)
7000 {
7001 /* First undo everything done by the failed attempt
7002 to allocate with inheritance. */
7003 choose_reload_regs_init (chain, save_reload_reg_rtx);
7004
7005 /* Some sanity tests to verify that the reloads found in the first
7006 pass are identical to the ones we have now. */
7007 gcc_assert (chain->n_reloads == n_reloads);
7008
7009 for (i = 0; i < n_reloads; i++)
7010 {
7011 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
7012 continue;
7013 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
7014 for (j = 0; j < n_spills; j++)
7015 if (spill_regs[j] == chain->rld[i].regno)
7016 if (! set_reload_reg (j, i))
7017 failed_reload (chain->insn, i);
7018 }
7019 }
7020
7021 /* If we thought we could inherit a reload, because it seemed that
7022 nothing else wanted the same reload register earlier in the insn,
7023 verify that assumption, now that all reloads have been assigned.
7024 Likewise for reloads where reload_override_in has been set. */
7025
7026 /* If doing expensive optimizations, do one preliminary pass that doesn't
7027 cancel any inheritance, but removes reloads that have been needed only
7028 for reloads that we know can be inherited. */
7029 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
7030 {
7031 for (j = 0; j < n_reloads; j++)
7032 {
7033 int r = reload_order[j];
7034 rtx check_reg;
7035 #ifdef SECONDARY_MEMORY_NEEDED
7036 rtx tem;
7037 #endif
7038 if (reload_inherited[r] && rld[r].reg_rtx)
7039 check_reg = rld[r].reg_rtx;
7040 else if (reload_override_in[r]
7041 && (REG_P (reload_override_in[r])
7042 || GET_CODE (reload_override_in[r]) == SUBREG))
7043 check_reg = reload_override_in[r];
7044 else
7045 continue;
7046 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
7047 rld[r].opnum, rld[r].when_needed, rld[r].in,
7048 (reload_inherited[r]
7049 ? rld[r].out : const0_rtx),
7050 r, 1))
7051 {
7052 if (pass)
7053 continue;
7054 reload_inherited[r] = 0;
7055 reload_override_in[r] = 0;
7056 }
7057 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
7058 reload_override_in, then we do not need its related
7059 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
7060 likewise for other reload types.
7061 We handle this by removing a reload when its only replacement
7062 is mentioned in reload_in of the reload we are going to inherit.
7063 A special case are auto_inc expressions; even if the input is
7064 inherited, we still need the address for the output. We can
7065 recognize them because they have RELOAD_OUT set to RELOAD_IN.
7066 If we succeeded removing some reload and we are doing a preliminary
7067 pass just to remove such reloads, make another pass, since the
7068 removal of one reload might allow us to inherit another one. */
7069 else if (rld[r].in
7070 && rld[r].out != rld[r].in
7071 && remove_address_replacements (rld[r].in))
7072 {
7073 if (pass)
7074 pass = 2;
7075 }
7076 #ifdef SECONDARY_MEMORY_NEEDED
7077 /* If we needed a memory location for the reload, we also have to
7078 remove its related reloads. */
7079 else if (rld[r].in
7080 && rld[r].out != rld[r].in
7081 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7082 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7083 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem)),
7084 rld[r].rclass, rld[r].inmode)
7085 && remove_address_replacements
7086 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7087 rld[r].when_needed)))
7088 {
7089 if (pass)
7090 pass = 2;
7091 }
7092 #endif
7093 }
7094 }
7095
7096 /* Now that reload_override_in is known valid,
7097 actually override reload_in. */
7098 for (j = 0; j < n_reloads; j++)
7099 if (reload_override_in[j])
7100 rld[j].in = reload_override_in[j];
7101
7102 /* If this reload won't be done because it has been canceled or is
7103 optional and not inherited, clear reload_reg_rtx so other
7104 routines (such as subst_reloads) don't get confused. */
7105 for (j = 0; j < n_reloads; j++)
7106 if (rld[j].reg_rtx != 0
7107 && ((rld[j].optional && ! reload_inherited[j])
7108 || (rld[j].in == 0 && rld[j].out == 0
7109 && ! rld[j].secondary_p)))
7110 {
7111 int regno = true_regnum (rld[j].reg_rtx);
7112
7113 if (spill_reg_order[regno] >= 0)
7114 clear_reload_reg_in_use (regno, rld[j].opnum,
7115 rld[j].when_needed, rld[j].mode);
7116 rld[j].reg_rtx = 0;
7117 reload_spill_index[j] = -1;
7118 }
7119
7120 /* Record which pseudos and which spill regs have output reloads. */
7121 for (j = 0; j < n_reloads; j++)
7122 {
7123 int r = reload_order[j];
7124
7125 i = reload_spill_index[r];
7126
7127 /* I is nonneg if this reload uses a register.
7128 If rld[r].reg_rtx is 0, this is an optional reload
7129 that we opted to ignore. */
7130 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7131 && rld[r].reg_rtx != 0)
7132 {
7133 int nregno = REGNO (rld[r].out_reg);
7134 int nr = 1;
7135
7136 if (nregno < FIRST_PSEUDO_REGISTER)
7137 nr = hard_regno_nregs[nregno][rld[r].mode];
7138
7139 while (--nr >= 0)
7140 SET_REGNO_REG_SET (&reg_has_output_reload,
7141 nregno + nr);
7142
7143 if (i >= 0)
7144 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7145
7146 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7147 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7148 || rld[r].when_needed == RELOAD_FOR_INSN);
7149 }
7150 }
7151 }
7152
7153 /* Deallocate the reload register for reload R. This is called from
7154 remove_address_replacements. */
7155
7156 void
7157 deallocate_reload_reg (int r)
7158 {
7159 int regno;
7160
7161 if (! rld[r].reg_rtx)
7162 return;
7163 regno = true_regnum (rld[r].reg_rtx);
7164 rld[r].reg_rtx = 0;
7165 if (spill_reg_order[regno] >= 0)
7166 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7167 rld[r].mode);
7168 reload_spill_index[r] = -1;
7169 }
7170 \f
7171 /* These arrays are filled by emit_reload_insns and its subroutines. */
7172 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7173 static rtx_insn *other_input_address_reload_insns = 0;
7174 static rtx_insn *other_input_reload_insns = 0;
7175 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7176 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7177 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7178 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7179 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7180 static rtx_insn *operand_reload_insns = 0;
7181 static rtx_insn *other_operand_reload_insns = 0;
7182 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7183
7184 /* Values to be put in spill_reg_store are put here first. Instructions
7185 must only be placed here if the associated reload register reaches
7186 the end of the instruction's reload sequence. */
7187 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7188 static HARD_REG_SET reg_reloaded_died;
7189
7190 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7191 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7192 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7193 adjusted register, and return true. Otherwise, return false. */
7194 static bool
7195 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7196 enum reg_class new_class,
7197 enum machine_mode new_mode)
7198
7199 {
7200 rtx reg;
7201
7202 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7203 {
7204 unsigned regno = REGNO (reg);
7205
7206 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7207 continue;
7208 if (GET_MODE (reg) != new_mode)
7209 {
7210 if (!HARD_REGNO_MODE_OK (regno, new_mode))
7211 continue;
7212 if (hard_regno_nregs[regno][new_mode]
7213 > hard_regno_nregs[regno][GET_MODE (reg)])
7214 continue;
7215 reg = reload_adjust_reg_for_mode (reg, new_mode);
7216 }
7217 *reload_reg = reg;
7218 return true;
7219 }
7220 return false;
7221 }
7222
7223 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7224 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7225 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7226 adjusted register, and return true. Otherwise, return false. */
7227 static bool
7228 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7229 enum insn_code icode)
7230
7231 {
7232 enum reg_class new_class = scratch_reload_class (icode);
7233 enum machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7234
7235 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7236 new_class, new_mode);
7237 }
7238
7239 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7240 has the number J. OLD contains the value to be used as input. */
7241
7242 static void
7243 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7244 rtx old, int j)
7245 {
7246 rtx_insn *insn = chain->insn;
7247 rtx reloadreg;
7248 rtx oldequiv_reg = 0;
7249 rtx oldequiv = 0;
7250 int special = 0;
7251 enum machine_mode mode;
7252 rtx_insn **where;
7253
7254 /* delete_output_reload is only invoked properly if old contains
7255 the original pseudo register. Since this is replaced with a
7256 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7257 find the pseudo in RELOAD_IN_REG. This is also used to
7258 determine whether a secondary reload is needed. */
7259 if (reload_override_in[j]
7260 && (REG_P (rl->in_reg)
7261 || (GET_CODE (rl->in_reg) == SUBREG
7262 && REG_P (SUBREG_REG (rl->in_reg)))))
7263 {
7264 oldequiv = old;
7265 old = rl->in_reg;
7266 }
7267 if (oldequiv == 0)
7268 oldequiv = old;
7269 else if (REG_P (oldequiv))
7270 oldequiv_reg = oldequiv;
7271 else if (GET_CODE (oldequiv) == SUBREG)
7272 oldequiv_reg = SUBREG_REG (oldequiv);
7273
7274 reloadreg = reload_reg_rtx_for_input[j];
7275 mode = GET_MODE (reloadreg);
7276
7277 /* If we are reloading from a register that was recently stored in
7278 with an output-reload, see if we can prove there was
7279 actually no need to store the old value in it. */
7280
7281 if (optimize && REG_P (oldequiv)
7282 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7283 && spill_reg_store[REGNO (oldequiv)]
7284 && REG_P (old)
7285 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7286 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7287 rl->out_reg)))
7288 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7289
7290 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7291 OLDEQUIV. */
7292
7293 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7294 oldequiv = SUBREG_REG (oldequiv);
7295 if (GET_MODE (oldequiv) != VOIDmode
7296 && mode != GET_MODE (oldequiv))
7297 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7298
7299 /* Switch to the right place to emit the reload insns. */
7300 switch (rl->when_needed)
7301 {
7302 case RELOAD_OTHER:
7303 where = &other_input_reload_insns;
7304 break;
7305 case RELOAD_FOR_INPUT:
7306 where = &input_reload_insns[rl->opnum];
7307 break;
7308 case RELOAD_FOR_INPUT_ADDRESS:
7309 where = &input_address_reload_insns[rl->opnum];
7310 break;
7311 case RELOAD_FOR_INPADDR_ADDRESS:
7312 where = &inpaddr_address_reload_insns[rl->opnum];
7313 break;
7314 case RELOAD_FOR_OUTPUT_ADDRESS:
7315 where = &output_address_reload_insns[rl->opnum];
7316 break;
7317 case RELOAD_FOR_OUTADDR_ADDRESS:
7318 where = &outaddr_address_reload_insns[rl->opnum];
7319 break;
7320 case RELOAD_FOR_OPERAND_ADDRESS:
7321 where = &operand_reload_insns;
7322 break;
7323 case RELOAD_FOR_OPADDR_ADDR:
7324 where = &other_operand_reload_insns;
7325 break;
7326 case RELOAD_FOR_OTHER_ADDRESS:
7327 where = &other_input_address_reload_insns;
7328 break;
7329 default:
7330 gcc_unreachable ();
7331 }
7332
7333 push_to_sequence (*where);
7334
7335 /* Auto-increment addresses must be reloaded in a special way. */
7336 if (rl->out && ! rl->out_reg)
7337 {
7338 /* We are not going to bother supporting the case where a
7339 incremented register can't be copied directly from
7340 OLDEQUIV since this seems highly unlikely. */
7341 gcc_assert (rl->secondary_in_reload < 0);
7342
7343 if (reload_inherited[j])
7344 oldequiv = reloadreg;
7345
7346 old = XEXP (rl->in_reg, 0);
7347
7348 /* Prevent normal processing of this reload. */
7349 special = 1;
7350 /* Output a special code sequence for this case. */
7351 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7352 }
7353
7354 /* If we are reloading a pseudo-register that was set by the previous
7355 insn, see if we can get rid of that pseudo-register entirely
7356 by redirecting the previous insn into our reload register. */
7357
7358 else if (optimize && REG_P (old)
7359 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7360 && dead_or_set_p (insn, old)
7361 /* This is unsafe if some other reload
7362 uses the same reg first. */
7363 && ! conflicts_with_override (reloadreg)
7364 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7365 rl->when_needed, old, rl->out, j, 0))
7366 {
7367 rtx_insn *temp = PREV_INSN (insn);
7368 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7369 temp = PREV_INSN (temp);
7370 if (temp
7371 && NONJUMP_INSN_P (temp)
7372 && GET_CODE (PATTERN (temp)) == SET
7373 && SET_DEST (PATTERN (temp)) == old
7374 /* Make sure we can access insn_operand_constraint. */
7375 && asm_noperands (PATTERN (temp)) < 0
7376 /* This is unsafe if operand occurs more than once in current
7377 insn. Perhaps some occurrences aren't reloaded. */
7378 && count_occurrences (PATTERN (insn), old, 0) == 1)
7379 {
7380 rtx old = SET_DEST (PATTERN (temp));
7381 /* Store into the reload register instead of the pseudo. */
7382 SET_DEST (PATTERN (temp)) = reloadreg;
7383
7384 /* Verify that resulting insn is valid.
7385
7386 Note that we have replaced the destination of TEMP with
7387 RELOADREG. If TEMP references RELOADREG within an
7388 autoincrement addressing mode, then the resulting insn
7389 is ill-formed and we must reject this optimization. */
7390 extract_insn (temp);
7391 if (constrain_operands (1)
7392 #ifdef AUTO_INC_DEC
7393 && ! find_reg_note (temp, REG_INC, reloadreg)
7394 #endif
7395 )
7396 {
7397 /* If the previous insn is an output reload, the source is
7398 a reload register, and its spill_reg_store entry will
7399 contain the previous destination. This is now
7400 invalid. */
7401 if (REG_P (SET_SRC (PATTERN (temp)))
7402 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7403 {
7404 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7405 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7406 }
7407
7408 /* If these are the only uses of the pseudo reg,
7409 pretend for GDB it lives in the reload reg we used. */
7410 if (REG_N_DEATHS (REGNO (old)) == 1
7411 && REG_N_SETS (REGNO (old)) == 1)
7412 {
7413 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7414 if (ira_conflicts_p)
7415 /* Inform IRA about the change. */
7416 ira_mark_allocation_change (REGNO (old));
7417 alter_reg (REGNO (old), -1, false);
7418 }
7419 special = 1;
7420
7421 /* Adjust any debug insns between temp and insn. */
7422 while ((temp = NEXT_INSN (temp)) != insn)
7423 if (DEBUG_INSN_P (temp))
7424 replace_rtx (PATTERN (temp), old, reloadreg);
7425 else
7426 gcc_assert (NOTE_P (temp));
7427 }
7428 else
7429 {
7430 SET_DEST (PATTERN (temp)) = old;
7431 }
7432 }
7433 }
7434
7435 /* We can't do that, so output an insn to load RELOADREG. */
7436
7437 /* If we have a secondary reload, pick up the secondary register
7438 and icode, if any. If OLDEQUIV and OLD are different or
7439 if this is an in-out reload, recompute whether or not we
7440 still need a secondary register and what the icode should
7441 be. If we still need a secondary register and the class or
7442 icode is different, go back to reloading from OLD if using
7443 OLDEQUIV means that we got the wrong type of register. We
7444 cannot have different class or icode due to an in-out reload
7445 because we don't make such reloads when both the input and
7446 output need secondary reload registers. */
7447
7448 if (! special && rl->secondary_in_reload >= 0)
7449 {
7450 rtx second_reload_reg = 0;
7451 rtx third_reload_reg = 0;
7452 int secondary_reload = rl->secondary_in_reload;
7453 rtx real_oldequiv = oldequiv;
7454 rtx real_old = old;
7455 rtx tmp;
7456 enum insn_code icode;
7457 enum insn_code tertiary_icode = CODE_FOR_nothing;
7458
7459 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7460 and similarly for OLD.
7461 See comments in get_secondary_reload in reload.c. */
7462 /* If it is a pseudo that cannot be replaced with its
7463 equivalent MEM, we must fall back to reload_in, which
7464 will have all the necessary substitutions registered.
7465 Likewise for a pseudo that can't be replaced with its
7466 equivalent constant.
7467
7468 Take extra care for subregs of such pseudos. Note that
7469 we cannot use reg_equiv_mem in this case because it is
7470 not in the right mode. */
7471
7472 tmp = oldequiv;
7473 if (GET_CODE (tmp) == SUBREG)
7474 tmp = SUBREG_REG (tmp);
7475 if (REG_P (tmp)
7476 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7477 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7478 || reg_equiv_constant (REGNO (tmp)) != 0))
7479 {
7480 if (! reg_equiv_mem (REGNO (tmp))
7481 || num_not_at_initial_offset
7482 || GET_CODE (oldequiv) == SUBREG)
7483 real_oldequiv = rl->in;
7484 else
7485 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7486 }
7487
7488 tmp = old;
7489 if (GET_CODE (tmp) == SUBREG)
7490 tmp = SUBREG_REG (tmp);
7491 if (REG_P (tmp)
7492 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7493 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7494 || reg_equiv_constant (REGNO (tmp)) != 0))
7495 {
7496 if (! reg_equiv_mem (REGNO (tmp))
7497 || num_not_at_initial_offset
7498 || GET_CODE (old) == SUBREG)
7499 real_old = rl->in;
7500 else
7501 real_old = reg_equiv_mem (REGNO (tmp));
7502 }
7503
7504 second_reload_reg = rld[secondary_reload].reg_rtx;
7505 if (rld[secondary_reload].secondary_in_reload >= 0)
7506 {
7507 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7508
7509 third_reload_reg = rld[tertiary_reload].reg_rtx;
7510 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7511 /* We'd have to add more code for quartary reloads. */
7512 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7513 }
7514 icode = rl->secondary_in_icode;
7515
7516 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7517 || (rl->in != 0 && rl->out != 0))
7518 {
7519 secondary_reload_info sri, sri2;
7520 enum reg_class new_class, new_t_class;
7521
7522 sri.icode = CODE_FOR_nothing;
7523 sri.prev_sri = NULL;
7524 new_class
7525 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7526 rl->rclass, mode,
7527 &sri);
7528
7529 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7530 second_reload_reg = 0;
7531 else if (new_class == NO_REGS)
7532 {
7533 if (reload_adjust_reg_for_icode (&second_reload_reg,
7534 third_reload_reg,
7535 (enum insn_code) sri.icode))
7536 {
7537 icode = (enum insn_code) sri.icode;
7538 third_reload_reg = 0;
7539 }
7540 else
7541 {
7542 oldequiv = old;
7543 real_oldequiv = real_old;
7544 }
7545 }
7546 else if (sri.icode != CODE_FOR_nothing)
7547 /* We currently lack a way to express this in reloads. */
7548 gcc_unreachable ();
7549 else
7550 {
7551 sri2.icode = CODE_FOR_nothing;
7552 sri2.prev_sri = &sri;
7553 new_t_class
7554 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7555 new_class, mode,
7556 &sri);
7557 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7558 {
7559 if (reload_adjust_reg_for_temp (&second_reload_reg,
7560 third_reload_reg,
7561 new_class, mode))
7562 {
7563 third_reload_reg = 0;
7564 tertiary_icode = (enum insn_code) sri2.icode;
7565 }
7566 else
7567 {
7568 oldequiv = old;
7569 real_oldequiv = real_old;
7570 }
7571 }
7572 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7573 {
7574 rtx intermediate = second_reload_reg;
7575
7576 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7577 new_class, mode)
7578 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7579 ((enum insn_code)
7580 sri2.icode)))
7581 {
7582 second_reload_reg = intermediate;
7583 tertiary_icode = (enum insn_code) sri2.icode;
7584 }
7585 else
7586 {
7587 oldequiv = old;
7588 real_oldequiv = real_old;
7589 }
7590 }
7591 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7592 {
7593 rtx intermediate = second_reload_reg;
7594
7595 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7596 new_class, mode)
7597 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7598 new_t_class, mode))
7599 {
7600 second_reload_reg = intermediate;
7601 tertiary_icode = (enum insn_code) sri2.icode;
7602 }
7603 else
7604 {
7605 oldequiv = old;
7606 real_oldequiv = real_old;
7607 }
7608 }
7609 else
7610 {
7611 /* This could be handled more intelligently too. */
7612 oldequiv = old;
7613 real_oldequiv = real_old;
7614 }
7615 }
7616 }
7617
7618 /* If we still need a secondary reload register, check
7619 to see if it is being used as a scratch or intermediate
7620 register and generate code appropriately. If we need
7621 a scratch register, use REAL_OLDEQUIV since the form of
7622 the insn may depend on the actual address if it is
7623 a MEM. */
7624
7625 if (second_reload_reg)
7626 {
7627 if (icode != CODE_FOR_nothing)
7628 {
7629 /* We'd have to add extra code to handle this case. */
7630 gcc_assert (!third_reload_reg);
7631
7632 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7633 second_reload_reg));
7634 special = 1;
7635 }
7636 else
7637 {
7638 /* See if we need a scratch register to load the
7639 intermediate register (a tertiary reload). */
7640 if (tertiary_icode != CODE_FOR_nothing)
7641 {
7642 emit_insn ((GEN_FCN (tertiary_icode)
7643 (second_reload_reg, real_oldequiv,
7644 third_reload_reg)));
7645 }
7646 else if (third_reload_reg)
7647 {
7648 gen_reload (third_reload_reg, real_oldequiv,
7649 rl->opnum,
7650 rl->when_needed);
7651 gen_reload (second_reload_reg, third_reload_reg,
7652 rl->opnum,
7653 rl->when_needed);
7654 }
7655 else
7656 gen_reload (second_reload_reg, real_oldequiv,
7657 rl->opnum,
7658 rl->when_needed);
7659
7660 oldequiv = second_reload_reg;
7661 }
7662 }
7663 }
7664
7665 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7666 {
7667 rtx real_oldequiv = oldequiv;
7668
7669 if ((REG_P (oldequiv)
7670 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7671 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7672 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7673 || (GET_CODE (oldequiv) == SUBREG
7674 && REG_P (SUBREG_REG (oldequiv))
7675 && (REGNO (SUBREG_REG (oldequiv))
7676 >= FIRST_PSEUDO_REGISTER)
7677 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7678 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7679 || (CONSTANT_P (oldequiv)
7680 && (targetm.preferred_reload_class (oldequiv,
7681 REGNO_REG_CLASS (REGNO (reloadreg)))
7682 == NO_REGS)))
7683 real_oldequiv = rl->in;
7684 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7685 rl->when_needed);
7686 }
7687
7688 if (cfun->can_throw_non_call_exceptions)
7689 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7690
7691 /* End this sequence. */
7692 *where = get_insns ();
7693 end_sequence ();
7694
7695 /* Update reload_override_in so that delete_address_reloads_1
7696 can see the actual register usage. */
7697 if (oldequiv_reg)
7698 reload_override_in[j] = oldequiv;
7699 }
7700
7701 /* Generate insns to for the output reload RL, which is for the insn described
7702 by CHAIN and has the number J. */
7703 static void
7704 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7705 int j)
7706 {
7707 rtx reloadreg;
7708 rtx_insn *insn = chain->insn;
7709 int special = 0;
7710 rtx old = rl->out;
7711 enum machine_mode mode;
7712 rtx_insn *p;
7713 rtx rl_reg_rtx;
7714
7715 if (rl->when_needed == RELOAD_OTHER)
7716 start_sequence ();
7717 else
7718 push_to_sequence (output_reload_insns[rl->opnum]);
7719
7720 rl_reg_rtx = reload_reg_rtx_for_output[j];
7721 mode = GET_MODE (rl_reg_rtx);
7722
7723 reloadreg = rl_reg_rtx;
7724
7725 /* If we need two reload regs, set RELOADREG to the intermediate
7726 one, since it will be stored into OLD. We might need a secondary
7727 register only for an input reload, so check again here. */
7728
7729 if (rl->secondary_out_reload >= 0)
7730 {
7731 rtx real_old = old;
7732 int secondary_reload = rl->secondary_out_reload;
7733 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7734
7735 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7736 && reg_equiv_mem (REGNO (old)) != 0)
7737 real_old = reg_equiv_mem (REGNO (old));
7738
7739 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7740 {
7741 rtx second_reloadreg = reloadreg;
7742 reloadreg = rld[secondary_reload].reg_rtx;
7743
7744 /* See if RELOADREG is to be used as a scratch register
7745 or as an intermediate register. */
7746 if (rl->secondary_out_icode != CODE_FOR_nothing)
7747 {
7748 /* We'd have to add extra code to handle this case. */
7749 gcc_assert (tertiary_reload < 0);
7750
7751 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7752 (real_old, second_reloadreg, reloadreg)));
7753 special = 1;
7754 }
7755 else
7756 {
7757 /* See if we need both a scratch and intermediate reload
7758 register. */
7759
7760 enum insn_code tertiary_icode
7761 = rld[secondary_reload].secondary_out_icode;
7762
7763 /* We'd have to add more code for quartary reloads. */
7764 gcc_assert (tertiary_reload < 0
7765 || rld[tertiary_reload].secondary_out_reload < 0);
7766
7767 if (GET_MODE (reloadreg) != mode)
7768 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7769
7770 if (tertiary_icode != CODE_FOR_nothing)
7771 {
7772 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7773
7774 /* Copy primary reload reg to secondary reload reg.
7775 (Note that these have been swapped above, then
7776 secondary reload reg to OLD using our insn.) */
7777
7778 /* If REAL_OLD is a paradoxical SUBREG, remove it
7779 and try to put the opposite SUBREG on
7780 RELOADREG. */
7781 strip_paradoxical_subreg (&real_old, &reloadreg);
7782
7783 gen_reload (reloadreg, second_reloadreg,
7784 rl->opnum, rl->when_needed);
7785 emit_insn ((GEN_FCN (tertiary_icode)
7786 (real_old, reloadreg, third_reloadreg)));
7787 special = 1;
7788 }
7789
7790 else
7791 {
7792 /* Copy between the reload regs here and then to
7793 OUT later. */
7794
7795 gen_reload (reloadreg, second_reloadreg,
7796 rl->opnum, rl->when_needed);
7797 if (tertiary_reload >= 0)
7798 {
7799 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7800
7801 gen_reload (third_reloadreg, reloadreg,
7802 rl->opnum, rl->when_needed);
7803 reloadreg = third_reloadreg;
7804 }
7805 }
7806 }
7807 }
7808 }
7809
7810 /* Output the last reload insn. */
7811 if (! special)
7812 {
7813 rtx set;
7814
7815 /* Don't output the last reload if OLD is not the dest of
7816 INSN and is in the src and is clobbered by INSN. */
7817 if (! flag_expensive_optimizations
7818 || !REG_P (old)
7819 || !(set = single_set (insn))
7820 || rtx_equal_p (old, SET_DEST (set))
7821 || !reg_mentioned_p (old, SET_SRC (set))
7822 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7823 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7824 gen_reload (old, reloadreg, rl->opnum,
7825 rl->when_needed);
7826 }
7827
7828 /* Look at all insns we emitted, just to be safe. */
7829 for (p = get_insns (); p; p = NEXT_INSN (p))
7830 if (INSN_P (p))
7831 {
7832 rtx pat = PATTERN (p);
7833
7834 /* If this output reload doesn't come from a spill reg,
7835 clear any memory of reloaded copies of the pseudo reg.
7836 If this output reload comes from a spill reg,
7837 reg_has_output_reload will make this do nothing. */
7838 note_stores (pat, forget_old_reloads_1, NULL);
7839
7840 if (reg_mentioned_p (rl_reg_rtx, pat))
7841 {
7842 rtx set = single_set (insn);
7843 if (reload_spill_index[j] < 0
7844 && set
7845 && SET_SRC (set) == rl_reg_rtx)
7846 {
7847 int src = REGNO (SET_SRC (set));
7848
7849 reload_spill_index[j] = src;
7850 SET_HARD_REG_BIT (reg_is_output_reload, src);
7851 if (find_regno_note (insn, REG_DEAD, src))
7852 SET_HARD_REG_BIT (reg_reloaded_died, src);
7853 }
7854 if (HARD_REGISTER_P (rl_reg_rtx))
7855 {
7856 int s = rl->secondary_out_reload;
7857 set = single_set (p);
7858 /* If this reload copies only to the secondary reload
7859 register, the secondary reload does the actual
7860 store. */
7861 if (s >= 0 && set == NULL_RTX)
7862 /* We can't tell what function the secondary reload
7863 has and where the actual store to the pseudo is
7864 made; leave new_spill_reg_store alone. */
7865 ;
7866 else if (s >= 0
7867 && SET_SRC (set) == rl_reg_rtx
7868 && SET_DEST (set) == rld[s].reg_rtx)
7869 {
7870 /* Usually the next instruction will be the
7871 secondary reload insn; if we can confirm
7872 that it is, setting new_spill_reg_store to
7873 that insn will allow an extra optimization. */
7874 rtx s_reg = rld[s].reg_rtx;
7875 rtx_insn *next = NEXT_INSN (p);
7876 rld[s].out = rl->out;
7877 rld[s].out_reg = rl->out_reg;
7878 set = single_set (next);
7879 if (set && SET_SRC (set) == s_reg
7880 && reload_reg_rtx_reaches_end_p (s_reg, s))
7881 {
7882 SET_HARD_REG_BIT (reg_is_output_reload,
7883 REGNO (s_reg));
7884 new_spill_reg_store[REGNO (s_reg)] = next;
7885 }
7886 }
7887 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7888 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7889 }
7890 }
7891 }
7892
7893 if (rl->when_needed == RELOAD_OTHER)
7894 {
7895 emit_insn (other_output_reload_insns[rl->opnum]);
7896 other_output_reload_insns[rl->opnum] = get_insns ();
7897 }
7898 else
7899 output_reload_insns[rl->opnum] = get_insns ();
7900
7901 if (cfun->can_throw_non_call_exceptions)
7902 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7903
7904 end_sequence ();
7905 }
7906
7907 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7908 and has the number J. */
7909 static void
7910 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7911 {
7912 rtx_insn *insn = chain->insn;
7913 rtx old = (rl->in && MEM_P (rl->in)
7914 ? rl->in_reg : rl->in);
7915 rtx reg_rtx = rl->reg_rtx;
7916
7917 if (old && reg_rtx)
7918 {
7919 enum machine_mode mode;
7920
7921 /* Determine the mode to reload in.
7922 This is very tricky because we have three to choose from.
7923 There is the mode the insn operand wants (rl->inmode).
7924 There is the mode of the reload register RELOADREG.
7925 There is the intrinsic mode of the operand, which we could find
7926 by stripping some SUBREGs.
7927 It turns out that RELOADREG's mode is irrelevant:
7928 we can change that arbitrarily.
7929
7930 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7931 then the reload reg may not support QImode moves, so use SImode.
7932 If foo is in memory due to spilling a pseudo reg, this is safe,
7933 because the QImode value is in the least significant part of a
7934 slot big enough for a SImode. If foo is some other sort of
7935 memory reference, then it is impossible to reload this case,
7936 so previous passes had better make sure this never happens.
7937
7938 Then consider a one-word union which has SImode and one of its
7939 members is a float, being fetched as (SUBREG:SF union:SI).
7940 We must fetch that as SFmode because we could be loading into
7941 a float-only register. In this case OLD's mode is correct.
7942
7943 Consider an immediate integer: it has VOIDmode. Here we need
7944 to get a mode from something else.
7945
7946 In some cases, there is a fourth mode, the operand's
7947 containing mode. If the insn specifies a containing mode for
7948 this operand, it overrides all others.
7949
7950 I am not sure whether the algorithm here is always right,
7951 but it does the right things in those cases. */
7952
7953 mode = GET_MODE (old);
7954 if (mode == VOIDmode)
7955 mode = rl->inmode;
7956
7957 /* We cannot use gen_lowpart_common since it can do the wrong thing
7958 when REG_RTX has a multi-word mode. Note that REG_RTX must
7959 always be a REG here. */
7960 if (GET_MODE (reg_rtx) != mode)
7961 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7962 }
7963 reload_reg_rtx_for_input[j] = reg_rtx;
7964
7965 if (old != 0
7966 /* AUTO_INC reloads need to be handled even if inherited. We got an
7967 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7968 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7969 && ! rtx_equal_p (reg_rtx, old)
7970 && reg_rtx != 0)
7971 emit_input_reload_insns (chain, rld + j, old, j);
7972
7973 /* When inheriting a wider reload, we have a MEM in rl->in,
7974 e.g. inheriting a SImode output reload for
7975 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7976 if (optimize && reload_inherited[j] && rl->in
7977 && MEM_P (rl->in)
7978 && MEM_P (rl->in_reg)
7979 && reload_spill_index[j] >= 0
7980 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7981 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7982
7983 /* If we are reloading a register that was recently stored in with an
7984 output-reload, see if we can prove there was
7985 actually no need to store the old value in it. */
7986
7987 if (optimize
7988 && (reload_inherited[j] || reload_override_in[j])
7989 && reg_rtx
7990 && REG_P (reg_rtx)
7991 && spill_reg_store[REGNO (reg_rtx)] != 0
7992 #if 0
7993 /* There doesn't seem to be any reason to restrict this to pseudos
7994 and doing so loses in the case where we are copying from a
7995 register of the wrong class. */
7996 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7997 #endif
7998 /* The insn might have already some references to stackslots
7999 replaced by MEMs, while reload_out_reg still names the
8000 original pseudo. */
8001 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
8002 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
8003 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
8004 }
8005
8006 /* Do output reloading for reload RL, which is for the insn described by
8007 CHAIN and has the number J.
8008 ??? At some point we need to support handling output reloads of
8009 JUMP_INSNs or insns that set cc0. */
8010 static void
8011 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
8012 {
8013 rtx note, old;
8014 rtx_insn *insn = chain->insn;
8015 /* If this is an output reload that stores something that is
8016 not loaded in this same reload, see if we can eliminate a previous
8017 store. */
8018 rtx pseudo = rl->out_reg;
8019 rtx reg_rtx = rl->reg_rtx;
8020
8021 if (rl->out && reg_rtx)
8022 {
8023 enum machine_mode mode;
8024
8025 /* Determine the mode to reload in.
8026 See comments above (for input reloading). */
8027 mode = GET_MODE (rl->out);
8028 if (mode == VOIDmode)
8029 {
8030 /* VOIDmode should never happen for an output. */
8031 if (asm_noperands (PATTERN (insn)) < 0)
8032 /* It's the compiler's fault. */
8033 fatal_insn ("VOIDmode on an output", insn);
8034 error_for_asm (insn, "output operand is constant in %<asm%>");
8035 /* Prevent crash--use something we know is valid. */
8036 mode = word_mode;
8037 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
8038 }
8039 if (GET_MODE (reg_rtx) != mode)
8040 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
8041 }
8042 reload_reg_rtx_for_output[j] = reg_rtx;
8043
8044 if (pseudo
8045 && optimize
8046 && REG_P (pseudo)
8047 && ! rtx_equal_p (rl->in_reg, pseudo)
8048 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
8049 && reg_last_reload_reg[REGNO (pseudo)])
8050 {
8051 int pseudo_no = REGNO (pseudo);
8052 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
8053
8054 /* We don't need to test full validity of last_regno for
8055 inherit here; we only want to know if the store actually
8056 matches the pseudo. */
8057 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
8058 && reg_reloaded_contents[last_regno] == pseudo_no
8059 && spill_reg_store[last_regno]
8060 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
8061 delete_output_reload (insn, j, last_regno, reg_rtx);
8062 }
8063
8064 old = rl->out_reg;
8065 if (old == 0
8066 || reg_rtx == 0
8067 || rtx_equal_p (old, reg_rtx))
8068 return;
8069
8070 /* An output operand that dies right away does need a reload,
8071 but need not be copied from it. Show the new location in the
8072 REG_UNUSED note. */
8073 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8074 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8075 {
8076 XEXP (note, 0) = reg_rtx;
8077 return;
8078 }
8079 /* Likewise for a SUBREG of an operand that dies. */
8080 else if (GET_CODE (old) == SUBREG
8081 && REG_P (SUBREG_REG (old))
8082 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8083 SUBREG_REG (old))))
8084 {
8085 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8086 return;
8087 }
8088 else if (GET_CODE (old) == SCRATCH)
8089 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8090 but we don't want to make an output reload. */
8091 return;
8092
8093 /* If is a JUMP_INSN, we can't support output reloads yet. */
8094 gcc_assert (NONJUMP_INSN_P (insn));
8095
8096 emit_output_reload_insns (chain, rld + j, j);
8097 }
8098
8099 /* A reload copies values of MODE from register SRC to register DEST.
8100 Return true if it can be treated for inheritance purposes like a
8101 group of reloads, each one reloading a single hard register. The
8102 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8103 occupy the same number of hard registers. */
8104
8105 static bool
8106 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8107 int src ATTRIBUTE_UNUSED,
8108 enum machine_mode mode ATTRIBUTE_UNUSED)
8109 {
8110 #ifdef CANNOT_CHANGE_MODE_CLASS
8111 return (!REG_CANNOT_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8112 && !REG_CANNOT_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8113 #else
8114 return true;
8115 #endif
8116 }
8117
8118 /* Output insns to reload values in and out of the chosen reload regs. */
8119
8120 static void
8121 emit_reload_insns (struct insn_chain *chain)
8122 {
8123 rtx_insn *insn = chain->insn;
8124
8125 int j;
8126
8127 CLEAR_HARD_REG_SET (reg_reloaded_died);
8128
8129 for (j = 0; j < reload_n_operands; j++)
8130 input_reload_insns[j] = input_address_reload_insns[j]
8131 = inpaddr_address_reload_insns[j]
8132 = output_reload_insns[j] = output_address_reload_insns[j]
8133 = outaddr_address_reload_insns[j]
8134 = other_output_reload_insns[j] = 0;
8135 other_input_address_reload_insns = 0;
8136 other_input_reload_insns = 0;
8137 operand_reload_insns = 0;
8138 other_operand_reload_insns = 0;
8139
8140 /* Dump reloads into the dump file. */
8141 if (dump_file)
8142 {
8143 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8144 debug_reload_to_stream (dump_file);
8145 }
8146
8147 for (j = 0; j < n_reloads; j++)
8148 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8149 {
8150 unsigned int i;
8151
8152 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8153 new_spill_reg_store[i] = 0;
8154 }
8155
8156 /* Now output the instructions to copy the data into and out of the
8157 reload registers. Do these in the order that the reloads were reported,
8158 since reloads of base and index registers precede reloads of operands
8159 and the operands may need the base and index registers reloaded. */
8160
8161 for (j = 0; j < n_reloads; j++)
8162 {
8163 do_input_reload (chain, rld + j, j);
8164 do_output_reload (chain, rld + j, j);
8165 }
8166
8167 /* Now write all the insns we made for reloads in the order expected by
8168 the allocation functions. Prior to the insn being reloaded, we write
8169 the following reloads:
8170
8171 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8172
8173 RELOAD_OTHER reloads.
8174
8175 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8176 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8177 RELOAD_FOR_INPUT reload for the operand.
8178
8179 RELOAD_FOR_OPADDR_ADDRS reloads.
8180
8181 RELOAD_FOR_OPERAND_ADDRESS reloads.
8182
8183 After the insn being reloaded, we write the following:
8184
8185 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8186 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8187 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8188 reloads for the operand. The RELOAD_OTHER output reloads are
8189 output in descending order by reload number. */
8190
8191 emit_insn_before (other_input_address_reload_insns, insn);
8192 emit_insn_before (other_input_reload_insns, insn);
8193
8194 for (j = 0; j < reload_n_operands; j++)
8195 {
8196 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8197 emit_insn_before (input_address_reload_insns[j], insn);
8198 emit_insn_before (input_reload_insns[j], insn);
8199 }
8200
8201 emit_insn_before (other_operand_reload_insns, insn);
8202 emit_insn_before (operand_reload_insns, insn);
8203
8204 for (j = 0; j < reload_n_operands; j++)
8205 {
8206 rtx x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8207 x = emit_insn_after (output_address_reload_insns[j], x);
8208 x = emit_insn_after (output_reload_insns[j], x);
8209 emit_insn_after (other_output_reload_insns[j], x);
8210 }
8211
8212 /* For all the spill regs newly reloaded in this instruction,
8213 record what they were reloaded from, so subsequent instructions
8214 can inherit the reloads.
8215
8216 Update spill_reg_store for the reloads of this insn.
8217 Copy the elements that were updated in the loop above. */
8218
8219 for (j = 0; j < n_reloads; j++)
8220 {
8221 int r = reload_order[j];
8222 int i = reload_spill_index[r];
8223
8224 /* If this is a non-inherited input reload from a pseudo, we must
8225 clear any memory of a previous store to the same pseudo. Only do
8226 something if there will not be an output reload for the pseudo
8227 being reloaded. */
8228 if (rld[r].in_reg != 0
8229 && ! (reload_inherited[r] || reload_override_in[r]))
8230 {
8231 rtx reg = rld[r].in_reg;
8232
8233 if (GET_CODE (reg) == SUBREG)
8234 reg = SUBREG_REG (reg);
8235
8236 if (REG_P (reg)
8237 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8238 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8239 {
8240 int nregno = REGNO (reg);
8241
8242 if (reg_last_reload_reg[nregno])
8243 {
8244 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8245
8246 if (reg_reloaded_contents[last_regno] == nregno)
8247 spill_reg_store[last_regno] = 0;
8248 }
8249 }
8250 }
8251
8252 /* I is nonneg if this reload used a register.
8253 If rld[r].reg_rtx is 0, this is an optional reload
8254 that we opted to ignore. */
8255
8256 if (i >= 0 && rld[r].reg_rtx != 0)
8257 {
8258 int nr = hard_regno_nregs[i][GET_MODE (rld[r].reg_rtx)];
8259 int k;
8260
8261 /* For a multi register reload, we need to check if all or part
8262 of the value lives to the end. */
8263 for (k = 0; k < nr; k++)
8264 if (reload_reg_reaches_end_p (i + k, r))
8265 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8266
8267 /* Maybe the spill reg contains a copy of reload_out. */
8268 if (rld[r].out != 0
8269 && (REG_P (rld[r].out)
8270 || (rld[r].out_reg
8271 ? REG_P (rld[r].out_reg)
8272 /* The reload value is an auto-modification of
8273 some kind. For PRE_INC, POST_INC, PRE_DEC
8274 and POST_DEC, we record an equivalence
8275 between the reload register and the operand
8276 on the optimistic assumption that we can make
8277 the equivalence hold. reload_as_needed must
8278 then either make it hold or invalidate the
8279 equivalence.
8280
8281 PRE_MODIFY and POST_MODIFY addresses are reloaded
8282 somewhat differently, and allowing them here leads
8283 to problems. */
8284 : (GET_CODE (rld[r].out) != POST_MODIFY
8285 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8286 {
8287 rtx reg;
8288
8289 reg = reload_reg_rtx_for_output[r];
8290 if (reload_reg_rtx_reaches_end_p (reg, r))
8291 {
8292 enum machine_mode mode = GET_MODE (reg);
8293 int regno = REGNO (reg);
8294 int nregs = hard_regno_nregs[regno][mode];
8295 rtx out = (REG_P (rld[r].out)
8296 ? rld[r].out
8297 : rld[r].out_reg
8298 ? rld[r].out_reg
8299 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8300 int out_regno = REGNO (out);
8301 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8302 : hard_regno_nregs[out_regno][mode]);
8303 bool piecemeal;
8304
8305 spill_reg_store[regno] = new_spill_reg_store[regno];
8306 spill_reg_stored_to[regno] = out;
8307 reg_last_reload_reg[out_regno] = reg;
8308
8309 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8310 && nregs == out_nregs
8311 && inherit_piecemeal_p (out_regno, regno, mode));
8312
8313 /* If OUT_REGNO is a hard register, it may occupy more than
8314 one register. If it does, say what is in the
8315 rest of the registers assuming that both registers
8316 agree on how many words the object takes. If not,
8317 invalidate the subsequent registers. */
8318
8319 if (HARD_REGISTER_NUM_P (out_regno))
8320 for (k = 1; k < out_nregs; k++)
8321 reg_last_reload_reg[out_regno + k]
8322 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8323
8324 /* Now do the inverse operation. */
8325 for (k = 0; k < nregs; k++)
8326 {
8327 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8328 reg_reloaded_contents[regno + k]
8329 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8330 ? out_regno
8331 : out_regno + k);
8332 reg_reloaded_insn[regno + k] = insn;
8333 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8334 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8335 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8336 regno + k);
8337 else
8338 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8339 regno + k);
8340 }
8341 }
8342 }
8343 /* Maybe the spill reg contains a copy of reload_in. Only do
8344 something if there will not be an output reload for
8345 the register being reloaded. */
8346 else if (rld[r].out_reg == 0
8347 && rld[r].in != 0
8348 && ((REG_P (rld[r].in)
8349 && !HARD_REGISTER_P (rld[r].in)
8350 && !REGNO_REG_SET_P (&reg_has_output_reload,
8351 REGNO (rld[r].in)))
8352 || (REG_P (rld[r].in_reg)
8353 && !REGNO_REG_SET_P (&reg_has_output_reload,
8354 REGNO (rld[r].in_reg))))
8355 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8356 {
8357 rtx reg;
8358
8359 reg = reload_reg_rtx_for_input[r];
8360 if (reload_reg_rtx_reaches_end_p (reg, r))
8361 {
8362 enum machine_mode mode;
8363 int regno;
8364 int nregs;
8365 int in_regno;
8366 int in_nregs;
8367 rtx in;
8368 bool piecemeal;
8369
8370 mode = GET_MODE (reg);
8371 regno = REGNO (reg);
8372 nregs = hard_regno_nregs[regno][mode];
8373 if (REG_P (rld[r].in)
8374 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8375 in = rld[r].in;
8376 else if (REG_P (rld[r].in_reg))
8377 in = rld[r].in_reg;
8378 else
8379 in = XEXP (rld[r].in_reg, 0);
8380 in_regno = REGNO (in);
8381
8382 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8383 : hard_regno_nregs[in_regno][mode]);
8384
8385 reg_last_reload_reg[in_regno] = reg;
8386
8387 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8388 && nregs == in_nregs
8389 && inherit_piecemeal_p (regno, in_regno, mode));
8390
8391 if (HARD_REGISTER_NUM_P (in_regno))
8392 for (k = 1; k < in_nregs; k++)
8393 reg_last_reload_reg[in_regno + k]
8394 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8395
8396 /* Unless we inherited this reload, show we haven't
8397 recently done a store.
8398 Previous stores of inherited auto_inc expressions
8399 also have to be discarded. */
8400 if (! reload_inherited[r]
8401 || (rld[r].out && ! rld[r].out_reg))
8402 spill_reg_store[regno] = 0;
8403
8404 for (k = 0; k < nregs; k++)
8405 {
8406 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8407 reg_reloaded_contents[regno + k]
8408 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8409 ? in_regno
8410 : in_regno + k);
8411 reg_reloaded_insn[regno + k] = insn;
8412 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8413 if (HARD_REGNO_CALL_PART_CLOBBERED (regno + k, mode))
8414 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8415 regno + k);
8416 else
8417 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8418 regno + k);
8419 }
8420 }
8421 }
8422 }
8423
8424 /* The following if-statement was #if 0'd in 1.34 (or before...).
8425 It's reenabled in 1.35 because supposedly nothing else
8426 deals with this problem. */
8427
8428 /* If a register gets output-reloaded from a non-spill register,
8429 that invalidates any previous reloaded copy of it.
8430 But forget_old_reloads_1 won't get to see it, because
8431 it thinks only about the original insn. So invalidate it here.
8432 Also do the same thing for RELOAD_OTHER constraints where the
8433 output is discarded. */
8434 if (i < 0
8435 && ((rld[r].out != 0
8436 && (REG_P (rld[r].out)
8437 || (MEM_P (rld[r].out)
8438 && REG_P (rld[r].out_reg))))
8439 || (rld[r].out == 0 && rld[r].out_reg
8440 && REG_P (rld[r].out_reg))))
8441 {
8442 rtx out = ((rld[r].out && REG_P (rld[r].out))
8443 ? rld[r].out : rld[r].out_reg);
8444 int out_regno = REGNO (out);
8445 enum machine_mode mode = GET_MODE (out);
8446
8447 /* REG_RTX is now set or clobbered by the main instruction.
8448 As the comment above explains, forget_old_reloads_1 only
8449 sees the original instruction, and there is no guarantee
8450 that the original instruction also clobbered REG_RTX.
8451 For example, if find_reloads sees that the input side of
8452 a matched operand pair dies in this instruction, it may
8453 use the input register as the reload register.
8454
8455 Calling forget_old_reloads_1 is a waste of effort if
8456 REG_RTX is also the output register.
8457
8458 If we know that REG_RTX holds the value of a pseudo
8459 register, the code after the call will record that fact. */
8460 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8461 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8462
8463 if (!HARD_REGISTER_NUM_P (out_regno))
8464 {
8465 rtx src_reg;
8466 rtx_insn *store_insn = NULL;
8467
8468 reg_last_reload_reg[out_regno] = 0;
8469
8470 /* If we can find a hard register that is stored, record
8471 the storing insn so that we may delete this insn with
8472 delete_output_reload. */
8473 src_reg = reload_reg_rtx_for_output[r];
8474
8475 if (src_reg)
8476 {
8477 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8478 store_insn = new_spill_reg_store[REGNO (src_reg)];
8479 else
8480 src_reg = NULL_RTX;
8481 }
8482 else
8483 {
8484 /* If this is an optional reload, try to find the
8485 source reg from an input reload. */
8486 rtx set = single_set (insn);
8487 if (set && SET_DEST (set) == rld[r].out)
8488 {
8489 int k;
8490
8491 src_reg = SET_SRC (set);
8492 store_insn = insn;
8493 for (k = 0; k < n_reloads; k++)
8494 {
8495 if (rld[k].in == src_reg)
8496 {
8497 src_reg = reload_reg_rtx_for_input[k];
8498 break;
8499 }
8500 }
8501 }
8502 }
8503 if (src_reg && REG_P (src_reg)
8504 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8505 {
8506 int src_regno, src_nregs, k;
8507 rtx note;
8508
8509 gcc_assert (GET_MODE (src_reg) == mode);
8510 src_regno = REGNO (src_reg);
8511 src_nregs = hard_regno_nregs[src_regno][mode];
8512 /* The place where to find a death note varies with
8513 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8514 necessarily checked exactly in the code that moves
8515 notes, so just check both locations. */
8516 note = find_regno_note (insn, REG_DEAD, src_regno);
8517 if (! note && store_insn)
8518 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8519 for (k = 0; k < src_nregs; k++)
8520 {
8521 spill_reg_store[src_regno + k] = store_insn;
8522 spill_reg_stored_to[src_regno + k] = out;
8523 reg_reloaded_contents[src_regno + k] = out_regno;
8524 reg_reloaded_insn[src_regno + k] = store_insn;
8525 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8526 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8527 if (HARD_REGNO_CALL_PART_CLOBBERED (src_regno + k,
8528 mode))
8529 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8530 src_regno + k);
8531 else
8532 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8533 src_regno + k);
8534 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8535 if (note)
8536 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8537 else
8538 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8539 }
8540 reg_last_reload_reg[out_regno] = src_reg;
8541 /* We have to set reg_has_output_reload here, or else
8542 forget_old_reloads_1 will clear reg_last_reload_reg
8543 right away. */
8544 SET_REGNO_REG_SET (&reg_has_output_reload,
8545 out_regno);
8546 }
8547 }
8548 else
8549 {
8550 int k, out_nregs = hard_regno_nregs[out_regno][mode];
8551
8552 for (k = 0; k < out_nregs; k++)
8553 reg_last_reload_reg[out_regno + k] = 0;
8554 }
8555 }
8556 }
8557 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8558 }
8559 \f
8560 /* Go through the motions to emit INSN and test if it is strictly valid.
8561 Return the emitted insn if valid, else return NULL. */
8562
8563 static rtx_insn *
8564 emit_insn_if_valid_for_reload (rtx insn)
8565 {
8566 rtx_insn *last = get_last_insn ();
8567 int code;
8568
8569 insn = emit_insn (insn);
8570 code = recog_memoized (insn);
8571
8572 if (code >= 0)
8573 {
8574 extract_insn (insn);
8575 /* We want constrain operands to treat this insn strictly in its
8576 validity determination, i.e., the way it would after reload has
8577 completed. */
8578 if (constrain_operands (1))
8579 return as_a <rtx_insn *> (insn);
8580 }
8581
8582 delete_insns_since (last);
8583 return NULL;
8584 }
8585
8586 /* Emit code to perform a reload from IN (which may be a reload register) to
8587 OUT (which may also be a reload register). IN or OUT is from operand
8588 OPNUM with reload type TYPE.
8589
8590 Returns first insn emitted. */
8591
8592 static rtx_insn *
8593 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8594 {
8595 rtx_insn *last = get_last_insn ();
8596 rtx tem;
8597 #ifdef SECONDARY_MEMORY_NEEDED
8598 rtx tem1, tem2;
8599 #endif
8600
8601 /* If IN is a paradoxical SUBREG, remove it and try to put the
8602 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8603 if (!strip_paradoxical_subreg (&in, &out))
8604 strip_paradoxical_subreg (&out, &in);
8605
8606 /* How to do this reload can get quite tricky. Normally, we are being
8607 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8608 register that didn't get a hard register. In that case we can just
8609 call emit_move_insn.
8610
8611 We can also be asked to reload a PLUS that adds a register or a MEM to
8612 another register, constant or MEM. This can occur during frame pointer
8613 elimination and while reloading addresses. This case is handled by
8614 trying to emit a single insn to perform the add. If it is not valid,
8615 we use a two insn sequence.
8616
8617 Or we can be asked to reload an unary operand that was a fragment of
8618 an addressing mode, into a register. If it isn't recognized as-is,
8619 we try making the unop operand and the reload-register the same:
8620 (set reg:X (unop:X expr:Y))
8621 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8622
8623 Finally, we could be called to handle an 'o' constraint by putting
8624 an address into a register. In that case, we first try to do this
8625 with a named pattern of "reload_load_address". If no such pattern
8626 exists, we just emit a SET insn and hope for the best (it will normally
8627 be valid on machines that use 'o').
8628
8629 This entire process is made complex because reload will never
8630 process the insns we generate here and so we must ensure that
8631 they will fit their constraints and also by the fact that parts of
8632 IN might be being reloaded separately and replaced with spill registers.
8633 Because of this, we are, in some sense, just guessing the right approach
8634 here. The one listed above seems to work.
8635
8636 ??? At some point, this whole thing needs to be rethought. */
8637
8638 if (GET_CODE (in) == PLUS
8639 && (REG_P (XEXP (in, 0))
8640 || GET_CODE (XEXP (in, 0)) == SUBREG
8641 || MEM_P (XEXP (in, 0)))
8642 && (REG_P (XEXP (in, 1))
8643 || GET_CODE (XEXP (in, 1)) == SUBREG
8644 || CONSTANT_P (XEXP (in, 1))
8645 || MEM_P (XEXP (in, 1))))
8646 {
8647 /* We need to compute the sum of a register or a MEM and another
8648 register, constant, or MEM, and put it into the reload
8649 register. The best possible way of doing this is if the machine
8650 has a three-operand ADD insn that accepts the required operands.
8651
8652 The simplest approach is to try to generate such an insn and see if it
8653 is recognized and matches its constraints. If so, it can be used.
8654
8655 It might be better not to actually emit the insn unless it is valid,
8656 but we need to pass the insn as an operand to `recog' and
8657 `extract_insn' and it is simpler to emit and then delete the insn if
8658 not valid than to dummy things up. */
8659
8660 rtx op0, op1, tem;
8661 rtx_insn *insn;
8662 enum insn_code code;
8663
8664 op0 = find_replacement (&XEXP (in, 0));
8665 op1 = find_replacement (&XEXP (in, 1));
8666
8667 /* Since constraint checking is strict, commutativity won't be
8668 checked, so we need to do that here to avoid spurious failure
8669 if the add instruction is two-address and the second operand
8670 of the add is the same as the reload reg, which is frequently
8671 the case. If the insn would be A = B + A, rearrange it so
8672 it will be A = A + B as constrain_operands expects. */
8673
8674 if (REG_P (XEXP (in, 1))
8675 && REGNO (out) == REGNO (XEXP (in, 1)))
8676 tem = op0, op0 = op1, op1 = tem;
8677
8678 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8679 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8680
8681 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8682 if (insn)
8683 return insn;
8684
8685 /* If that failed, we must use a conservative two-insn sequence.
8686
8687 Use a move to copy one operand into the reload register. Prefer
8688 to reload a constant, MEM or pseudo since the move patterns can
8689 handle an arbitrary operand. If OP1 is not a constant, MEM or
8690 pseudo and OP1 is not a valid operand for an add instruction, then
8691 reload OP1.
8692
8693 After reloading one of the operands into the reload register, add
8694 the reload register to the output register.
8695
8696 If there is another way to do this for a specific machine, a
8697 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8698 we emit below. */
8699
8700 code = optab_handler (add_optab, GET_MODE (out));
8701
8702 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8703 || (REG_P (op1)
8704 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8705 || (code != CODE_FOR_nothing
8706 && !insn_operand_matches (code, 2, op1)))
8707 tem = op0, op0 = op1, op1 = tem;
8708
8709 gen_reload (out, op0, opnum, type);
8710
8711 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8712 This fixes a problem on the 32K where the stack pointer cannot
8713 be used as an operand of an add insn. */
8714
8715 if (rtx_equal_p (op0, op1))
8716 op1 = out;
8717
8718 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8719 if (insn)
8720 {
8721 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8722 set_dst_reg_note (insn, REG_EQUIV, in, out);
8723 return insn;
8724 }
8725
8726 /* If that failed, copy the address register to the reload register.
8727 Then add the constant to the reload register. */
8728
8729 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8730 gen_reload (out, op1, opnum, type);
8731 insn = emit_insn (gen_add2_insn (out, op0));
8732 set_dst_reg_note (insn, REG_EQUIV, in, out);
8733 }
8734
8735 #ifdef SECONDARY_MEMORY_NEEDED
8736 /* If we need a memory location to do the move, do it that way. */
8737 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8738 (REG_P (tem1) && REG_P (tem2)))
8739 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8740 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8741 && SECONDARY_MEMORY_NEEDED (REGNO_REG_CLASS (REGNO (tem1)),
8742 REGNO_REG_CLASS (REGNO (tem2)),
8743 GET_MODE (out)))
8744 {
8745 /* Get the memory to use and rewrite both registers to its mode. */
8746 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8747
8748 if (GET_MODE (loc) != GET_MODE (out))
8749 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8750
8751 if (GET_MODE (loc) != GET_MODE (in))
8752 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8753
8754 gen_reload (loc, in, opnum, type);
8755 gen_reload (out, loc, opnum, type);
8756 }
8757 #endif
8758 else if (REG_P (out) && UNARY_P (in))
8759 {
8760 rtx insn;
8761 rtx op1;
8762 rtx out_moded;
8763 rtx_insn *set;
8764
8765 op1 = find_replacement (&XEXP (in, 0));
8766 if (op1 != XEXP (in, 0))
8767 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8768
8769 /* First, try a plain SET. */
8770 set = emit_insn_if_valid_for_reload (gen_rtx_SET (VOIDmode, out, in));
8771 if (set)
8772 return set;
8773
8774 /* If that failed, move the inner operand to the reload
8775 register, and try the same unop with the inner expression
8776 replaced with the reload register. */
8777
8778 if (GET_MODE (op1) != GET_MODE (out))
8779 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8780 else
8781 out_moded = out;
8782
8783 gen_reload (out_moded, op1, opnum, type);
8784
8785 insn
8786 = gen_rtx_SET (VOIDmode, out,
8787 gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8788 out_moded));
8789 insn = emit_insn_if_valid_for_reload (insn);
8790 if (insn)
8791 {
8792 set_unique_reg_note (insn, REG_EQUIV, in);
8793 return as_a <rtx_insn *> (insn);
8794 }
8795
8796 fatal_insn ("failure trying to reload:", set);
8797 }
8798 /* If IN is a simple operand, use gen_move_insn. */
8799 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8800 {
8801 tem = emit_insn (gen_move_insn (out, in));
8802 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8803 mark_jump_label (in, tem, 0);
8804 }
8805
8806 #ifdef HAVE_reload_load_address
8807 else if (HAVE_reload_load_address)
8808 emit_insn (gen_reload_load_address (out, in));
8809 #endif
8810
8811 /* Otherwise, just write (set OUT IN) and hope for the best. */
8812 else
8813 emit_insn (gen_rtx_SET (VOIDmode, out, in));
8814
8815 /* Return the first insn emitted.
8816 We can not just return get_last_insn, because there may have
8817 been multiple instructions emitted. Also note that gen_move_insn may
8818 emit more than one insn itself, so we can not assume that there is one
8819 insn emitted per emit_insn_before call. */
8820
8821 return last ? NEXT_INSN (last) : get_insns ();
8822 }
8823 \f
8824 /* Delete a previously made output-reload whose result we now believe
8825 is not needed. First we double-check.
8826
8827 INSN is the insn now being processed.
8828 LAST_RELOAD_REG is the hard register number for which we want to delete
8829 the last output reload.
8830 J is the reload-number that originally used REG. The caller has made
8831 certain that reload J doesn't use REG any longer for input.
8832 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8833
8834 static void
8835 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8836 rtx new_reload_reg)
8837 {
8838 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8839 rtx reg = spill_reg_stored_to[last_reload_reg];
8840 int k;
8841 int n_occurrences;
8842 int n_inherited = 0;
8843 rtx i1;
8844 rtx substed;
8845 unsigned regno;
8846 int nregs;
8847
8848 /* It is possible that this reload has been only used to set another reload
8849 we eliminated earlier and thus deleted this instruction too. */
8850 if (INSN_DELETED_P (output_reload_insn))
8851 return;
8852
8853 /* Get the raw pseudo-register referred to. */
8854
8855 while (GET_CODE (reg) == SUBREG)
8856 reg = SUBREG_REG (reg);
8857 substed = reg_equiv_memory_loc (REGNO (reg));
8858
8859 /* This is unsafe if the operand occurs more often in the current
8860 insn than it is inherited. */
8861 for (k = n_reloads - 1; k >= 0; k--)
8862 {
8863 rtx reg2 = rld[k].in;
8864 if (! reg2)
8865 continue;
8866 if (MEM_P (reg2) || reload_override_in[k])
8867 reg2 = rld[k].in_reg;
8868 #ifdef AUTO_INC_DEC
8869 if (rld[k].out && ! rld[k].out_reg)
8870 reg2 = XEXP (rld[k].in_reg, 0);
8871 #endif
8872 while (GET_CODE (reg2) == SUBREG)
8873 reg2 = SUBREG_REG (reg2);
8874 if (rtx_equal_p (reg2, reg))
8875 {
8876 if (reload_inherited[k] || reload_override_in[k] || k == j)
8877 n_inherited++;
8878 else
8879 return;
8880 }
8881 }
8882 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8883 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8884 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8885 reg, 0);
8886 if (substed)
8887 n_occurrences += count_occurrences (PATTERN (insn),
8888 eliminate_regs (substed, VOIDmode,
8889 NULL_RTX), 0);
8890 for (i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8891 {
8892 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8893 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8894 }
8895 if (n_occurrences > n_inherited)
8896 return;
8897
8898 regno = REGNO (reg);
8899 if (regno >= FIRST_PSEUDO_REGISTER)
8900 nregs = 1;
8901 else
8902 nregs = hard_regno_nregs[regno][GET_MODE (reg)];
8903
8904 /* If the pseudo-reg we are reloading is no longer referenced
8905 anywhere between the store into it and here,
8906 and we're within the same basic block, then the value can only
8907 pass through the reload reg and end up here.
8908 Otherwise, give up--return. */
8909 for (i1 = NEXT_INSN (output_reload_insn);
8910 i1 != insn; i1 = NEXT_INSN (i1))
8911 {
8912 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8913 return;
8914 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8915 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8916 {
8917 /* If this is USE in front of INSN, we only have to check that
8918 there are no more references than accounted for by inheritance. */
8919 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8920 {
8921 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8922 i1 = NEXT_INSN (i1);
8923 }
8924 if (n_occurrences <= n_inherited && i1 == insn)
8925 break;
8926 return;
8927 }
8928 }
8929
8930 /* We will be deleting the insn. Remove the spill reg information. */
8931 for (k = hard_regno_nregs[last_reload_reg][GET_MODE (reg)]; k-- > 0; )
8932 {
8933 spill_reg_store[last_reload_reg + k] = 0;
8934 spill_reg_stored_to[last_reload_reg + k] = 0;
8935 }
8936
8937 /* The caller has already checked that REG dies or is set in INSN.
8938 It has also checked that we are optimizing, and thus some
8939 inaccuracies in the debugging information are acceptable.
8940 So we could just delete output_reload_insn. But in some cases
8941 we can improve the debugging information without sacrificing
8942 optimization - maybe even improving the code: See if the pseudo
8943 reg has been completely replaced with reload regs. If so, delete
8944 the store insn and forget we had a stack slot for the pseudo. */
8945 if (rld[j].out != rld[j].in
8946 && REG_N_DEATHS (REGNO (reg)) == 1
8947 && REG_N_SETS (REGNO (reg)) == 1
8948 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8949 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8950 {
8951 rtx_insn *i2;
8952
8953 /* We know that it was used only between here and the beginning of
8954 the current basic block. (We also know that the last use before
8955 INSN was the output reload we are thinking of deleting, but never
8956 mind that.) Search that range; see if any ref remains. */
8957 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8958 {
8959 rtx set = single_set (i2);
8960
8961 /* Uses which just store in the pseudo don't count,
8962 since if they are the only uses, they are dead. */
8963 if (set != 0 && SET_DEST (set) == reg)
8964 continue;
8965 if (LABEL_P (i2) || JUMP_P (i2))
8966 break;
8967 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8968 && reg_mentioned_p (reg, PATTERN (i2)))
8969 {
8970 /* Some other ref remains; just delete the output reload we
8971 know to be dead. */
8972 delete_address_reloads (output_reload_insn, insn);
8973 delete_insn (output_reload_insn);
8974 return;
8975 }
8976 }
8977
8978 /* Delete the now-dead stores into this pseudo. Note that this
8979 loop also takes care of deleting output_reload_insn. */
8980 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8981 {
8982 rtx set = single_set (i2);
8983
8984 if (set != 0 && SET_DEST (set) == reg)
8985 {
8986 delete_address_reloads (i2, insn);
8987 delete_insn (i2);
8988 }
8989 if (LABEL_P (i2) || JUMP_P (i2))
8990 break;
8991 }
8992
8993 /* For the debugging info, say the pseudo lives in this reload reg. */
8994 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8995 if (ira_conflicts_p)
8996 /* Inform IRA about the change. */
8997 ira_mark_allocation_change (REGNO (reg));
8998 alter_reg (REGNO (reg), -1, false);
8999 }
9000 else
9001 {
9002 delete_address_reloads (output_reload_insn, insn);
9003 delete_insn (output_reload_insn);
9004 }
9005 }
9006
9007 /* We are going to delete DEAD_INSN. Recursively delete loads of
9008 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
9009 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
9010 static void
9011 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
9012 {
9013 rtx set = single_set (dead_insn);
9014 rtx set2, dst;
9015 rtx_insn *prev, *next;
9016 if (set)
9017 {
9018 rtx dst = SET_DEST (set);
9019 if (MEM_P (dst))
9020 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
9021 }
9022 /* If we deleted the store from a reloaded post_{in,de}c expression,
9023 we can delete the matching adds. */
9024 prev = PREV_INSN (dead_insn);
9025 next = NEXT_INSN (dead_insn);
9026 if (! prev || ! next)
9027 return;
9028 set = single_set (next);
9029 set2 = single_set (prev);
9030 if (! set || ! set2
9031 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
9032 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
9033 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
9034 return;
9035 dst = SET_DEST (set);
9036 if (! rtx_equal_p (dst, SET_DEST (set2))
9037 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
9038 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
9039 || (INTVAL (XEXP (SET_SRC (set), 1))
9040 != -INTVAL (XEXP (SET_SRC (set2), 1))))
9041 return;
9042 delete_related_insns (prev);
9043 delete_related_insns (next);
9044 }
9045
9046 /* Subfunction of delete_address_reloads: process registers found in X. */
9047 static void
9048 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
9049 {
9050 rtx_insn *prev, *i2;
9051 rtx set, dst;
9052 int i, j;
9053 enum rtx_code code = GET_CODE (x);
9054
9055 if (code != REG)
9056 {
9057 const char *fmt = GET_RTX_FORMAT (code);
9058 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9059 {
9060 if (fmt[i] == 'e')
9061 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
9062 else if (fmt[i] == 'E')
9063 {
9064 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9065 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
9066 current_insn);
9067 }
9068 }
9069 return;
9070 }
9071
9072 if (spill_reg_order[REGNO (x)] < 0)
9073 return;
9074
9075 /* Scan backwards for the insn that sets x. This might be a way back due
9076 to inheritance. */
9077 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
9078 {
9079 code = GET_CODE (prev);
9080 if (code == CODE_LABEL || code == JUMP_INSN)
9081 return;
9082 if (!INSN_P (prev))
9083 continue;
9084 if (reg_set_p (x, PATTERN (prev)))
9085 break;
9086 if (reg_referenced_p (x, PATTERN (prev)))
9087 return;
9088 }
9089 if (! prev || INSN_UID (prev) < reload_first_uid)
9090 return;
9091 /* Check that PREV only sets the reload register. */
9092 set = single_set (prev);
9093 if (! set)
9094 return;
9095 dst = SET_DEST (set);
9096 if (!REG_P (dst)
9097 || ! rtx_equal_p (dst, x))
9098 return;
9099 if (! reg_set_p (dst, PATTERN (dead_insn)))
9100 {
9101 /* Check if DST was used in a later insn -
9102 it might have been inherited. */
9103 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9104 {
9105 if (LABEL_P (i2))
9106 break;
9107 if (! INSN_P (i2))
9108 continue;
9109 if (reg_referenced_p (dst, PATTERN (i2)))
9110 {
9111 /* If there is a reference to the register in the current insn,
9112 it might be loaded in a non-inherited reload. If no other
9113 reload uses it, that means the register is set before
9114 referenced. */
9115 if (i2 == current_insn)
9116 {
9117 for (j = n_reloads - 1; j >= 0; j--)
9118 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9119 || reload_override_in[j] == dst)
9120 return;
9121 for (j = n_reloads - 1; j >= 0; j--)
9122 if (rld[j].in && rld[j].reg_rtx == dst)
9123 break;
9124 if (j >= 0)
9125 break;
9126 }
9127 return;
9128 }
9129 if (JUMP_P (i2))
9130 break;
9131 /* If DST is still live at CURRENT_INSN, check if it is used for
9132 any reload. Note that even if CURRENT_INSN sets DST, we still
9133 have to check the reloads. */
9134 if (i2 == current_insn)
9135 {
9136 for (j = n_reloads - 1; j >= 0; j--)
9137 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9138 || reload_override_in[j] == dst)
9139 return;
9140 /* ??? We can't finish the loop here, because dst might be
9141 allocated to a pseudo in this block if no reload in this
9142 block needs any of the classes containing DST - see
9143 spill_hard_reg. There is no easy way to tell this, so we
9144 have to scan till the end of the basic block. */
9145 }
9146 if (reg_set_p (dst, PATTERN (i2)))
9147 break;
9148 }
9149 }
9150 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9151 reg_reloaded_contents[REGNO (dst)] = -1;
9152 delete_insn (prev);
9153 }
9154 \f
9155 /* Output reload-insns to reload VALUE into RELOADREG.
9156 VALUE is an autoincrement or autodecrement RTX whose operand
9157 is a register or memory location;
9158 so reloading involves incrementing that location.
9159 IN is either identical to VALUE, or some cheaper place to reload from.
9160
9161 INC_AMOUNT is the number to increment or decrement by (always positive).
9162 This cannot be deduced from VALUE. */
9163
9164 static void
9165 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9166 {
9167 /* REG or MEM to be copied and incremented. */
9168 rtx incloc = find_replacement (&XEXP (value, 0));
9169 /* Nonzero if increment after copying. */
9170 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9171 || GET_CODE (value) == POST_MODIFY);
9172 rtx_insn *last;
9173 rtx inc;
9174 rtx_insn *add_insn;
9175 int code;
9176 rtx real_in = in == value ? incloc : in;
9177
9178 /* No hard register is equivalent to this register after
9179 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9180 we could inc/dec that register as well (maybe even using it for
9181 the source), but I'm not sure it's worth worrying about. */
9182 if (REG_P (incloc))
9183 reg_last_reload_reg[REGNO (incloc)] = 0;
9184
9185 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9186 {
9187 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9188 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9189 }
9190 else
9191 {
9192 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9193 inc_amount = -inc_amount;
9194
9195 inc = GEN_INT (inc_amount);
9196 }
9197
9198 /* If this is post-increment, first copy the location to the reload reg. */
9199 if (post && real_in != reloadreg)
9200 emit_insn (gen_move_insn (reloadreg, real_in));
9201
9202 if (in == value)
9203 {
9204 /* See if we can directly increment INCLOC. Use a method similar to
9205 that in gen_reload. */
9206
9207 last = get_last_insn ();
9208 add_insn = emit_insn (gen_rtx_SET (VOIDmode, incloc,
9209 gen_rtx_PLUS (GET_MODE (incloc),
9210 incloc, inc)));
9211
9212 code = recog_memoized (add_insn);
9213 if (code >= 0)
9214 {
9215 extract_insn (add_insn);
9216 if (constrain_operands (1))
9217 {
9218 /* If this is a pre-increment and we have incremented the value
9219 where it lives, copy the incremented value to RELOADREG to
9220 be used as an address. */
9221
9222 if (! post)
9223 emit_insn (gen_move_insn (reloadreg, incloc));
9224 return;
9225 }
9226 }
9227 delete_insns_since (last);
9228 }
9229
9230 /* If couldn't do the increment directly, must increment in RELOADREG.
9231 The way we do this depends on whether this is pre- or post-increment.
9232 For pre-increment, copy INCLOC to the reload register, increment it
9233 there, then save back. */
9234
9235 if (! post)
9236 {
9237 if (in != reloadreg)
9238 emit_insn (gen_move_insn (reloadreg, real_in));
9239 emit_insn (gen_add2_insn (reloadreg, inc));
9240 emit_insn (gen_move_insn (incloc, reloadreg));
9241 }
9242 else
9243 {
9244 /* Postincrement.
9245 Because this might be a jump insn or a compare, and because RELOADREG
9246 may not be available after the insn in an input reload, we must do
9247 the incrementation before the insn being reloaded for.
9248
9249 We have already copied IN to RELOADREG. Increment the copy in
9250 RELOADREG, save that back, then decrement RELOADREG so it has
9251 the original value. */
9252
9253 emit_insn (gen_add2_insn (reloadreg, inc));
9254 emit_insn (gen_move_insn (incloc, reloadreg));
9255 if (CONST_INT_P (inc))
9256 emit_insn (gen_add2_insn (reloadreg,
9257 gen_int_mode (-INTVAL (inc),
9258 GET_MODE (reloadreg))));
9259 else
9260 emit_insn (gen_sub2_insn (reloadreg, inc));
9261 }
9262 }
9263 \f
9264 #ifdef AUTO_INC_DEC
9265 static void
9266 add_auto_inc_notes (rtx_insn *insn, rtx x)
9267 {
9268 enum rtx_code code = GET_CODE (x);
9269 const char *fmt;
9270 int i, j;
9271
9272 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9273 {
9274 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9275 return;
9276 }
9277
9278 /* Scan all the operand sub-expressions. */
9279 fmt = GET_RTX_FORMAT (code);
9280 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9281 {
9282 if (fmt[i] == 'e')
9283 add_auto_inc_notes (insn, XEXP (x, i));
9284 else if (fmt[i] == 'E')
9285 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9286 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9287 }
9288 }
9289 #endif