]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/reload1.c
baedc43b75f151a1da9e30d1f4b8d4b08b3f2da8
[thirdparty/gcc.git] / gcc / reload1.c
1 /* Reload pseudo regs into hard regs for insns that require hard regs.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "target.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "predict.h"
28 #include "df.h"
29 #include "memmodel.h"
30 #include "tm_p.h"
31 #include "optabs.h"
32 #include "regs.h"
33 #include "ira.h"
34 #include "recog.h"
35
36 #include "rtl-error.h"
37 #include "expr.h"
38 #include "addresses.h"
39 #include "cfgrtl.h"
40 #include "cfgbuild.h"
41 #include "reload.h"
42 #include "except.h"
43 #include "dumpfile.h"
44 #include "rtl-iter.h"
45
46 /* This file contains the reload pass of the compiler, which is
47 run after register allocation has been done. It checks that
48 each insn is valid (operands required to be in registers really
49 are in registers of the proper class) and fixes up invalid ones
50 by copying values temporarily into registers for the insns
51 that need them.
52
53 The results of register allocation are described by the vector
54 reg_renumber; the insns still contain pseudo regs, but reg_renumber
55 can be used to find which hard reg, if any, a pseudo reg is in.
56
57 The technique we always use is to free up a few hard regs that are
58 called ``reload regs'', and for each place where a pseudo reg
59 must be in a hard reg, copy it temporarily into one of the reload regs.
60
61 Reload regs are allocated locally for every instruction that needs
62 reloads. When there are pseudos which are allocated to a register that
63 has been chosen as a reload reg, such pseudos must be ``spilled''.
64 This means that they go to other hard regs, or to stack slots if no other
65 available hard regs can be found. Spilling can invalidate more
66 insns, requiring additional need for reloads, so we must keep checking
67 until the process stabilizes.
68
69 For machines with different classes of registers, we must keep track
70 of the register class needed for each reload, and make sure that
71 we allocate enough reload registers of each class.
72
73 The file reload.c contains the code that checks one insn for
74 validity and reports the reloads that it needs. This file
75 is in charge of scanning the entire rtl code, accumulating the
76 reload needs, spilling, assigning reload registers to use for
77 fixing up each insn, and generating the new insns to copy values
78 into the reload registers. */
79 \f
80 struct target_reload default_target_reload;
81 #if SWITCHABLE_TARGET
82 struct target_reload *this_target_reload = &default_target_reload;
83 #endif
84
85 #define spill_indirect_levels \
86 (this_target_reload->x_spill_indirect_levels)
87
88 /* During reload_as_needed, element N contains a REG rtx for the hard reg
89 into which reg N has been reloaded (perhaps for a previous insn). */
90 static rtx *reg_last_reload_reg;
91
92 /* Elt N nonzero if reg_last_reload_reg[N] has been set in this insn
93 for an output reload that stores into reg N. */
94 static regset_head reg_has_output_reload;
95
96 /* Indicates which hard regs are reload-registers for an output reload
97 in the current insn. */
98 static HARD_REG_SET reg_is_output_reload;
99
100 /* Widest mode in which each pseudo reg is referred to (via subreg). */
101 static machine_mode *reg_max_ref_mode;
102
103 /* Vector to remember old contents of reg_renumber before spilling. */
104 static short *reg_old_renumber;
105
106 /* During reload_as_needed, element N contains the last pseudo regno reloaded
107 into hard register N. If that pseudo reg occupied more than one register,
108 reg_reloaded_contents points to that pseudo for each spill register in
109 use; all of these must remain set for an inheritance to occur. */
110 static int reg_reloaded_contents[FIRST_PSEUDO_REGISTER];
111
112 /* During reload_as_needed, element N contains the insn for which
113 hard register N was last used. Its contents are significant only
114 when reg_reloaded_valid is set for this register. */
115 static rtx_insn *reg_reloaded_insn[FIRST_PSEUDO_REGISTER];
116
117 /* Indicate if reg_reloaded_insn / reg_reloaded_contents is valid. */
118 static HARD_REG_SET reg_reloaded_valid;
119 /* Indicate if the register was dead at the end of the reload.
120 This is only valid if reg_reloaded_contents is set and valid. */
121 static HARD_REG_SET reg_reloaded_dead;
122
123 /* Indicate whether the register's current value is one that is not
124 safe to retain across a call, even for registers that are normally
125 call-saved. This is only meaningful for members of reg_reloaded_valid. */
126 static HARD_REG_SET reg_reloaded_call_part_clobbered;
127
128 /* Number of spill-regs so far; number of valid elements of spill_regs. */
129 static int n_spills;
130
131 /* In parallel with spill_regs, contains REG rtx's for those regs.
132 Holds the last rtx used for any given reg, or 0 if it has never
133 been used for spilling yet. This rtx is reused, provided it has
134 the proper mode. */
135 static rtx spill_reg_rtx[FIRST_PSEUDO_REGISTER];
136
137 /* In parallel with spill_regs, contains nonzero for a spill reg
138 that was stored after the last time it was used.
139 The precise value is the insn generated to do the store. */
140 static rtx_insn *spill_reg_store[FIRST_PSEUDO_REGISTER];
141
142 /* This is the register that was stored with spill_reg_store. This is a
143 copy of reload_out / reload_out_reg when the value was stored; if
144 reload_out is a MEM, spill_reg_stored_to will be set to reload_out_reg. */
145 static rtx spill_reg_stored_to[FIRST_PSEUDO_REGISTER];
146
147 /* This table is the inverse mapping of spill_regs:
148 indexed by hard reg number,
149 it contains the position of that reg in spill_regs,
150 or -1 for something that is not in spill_regs.
151
152 ?!? This is no longer accurate. */
153 static short spill_reg_order[FIRST_PSEUDO_REGISTER];
154
155 /* This reg set indicates registers that can't be used as spill registers for
156 the currently processed insn. These are the hard registers which are live
157 during the insn, but not allocated to pseudos, as well as fixed
158 registers. */
159 static HARD_REG_SET bad_spill_regs;
160
161 /* These are the hard registers that can't be used as spill register for any
162 insn. This includes registers used for user variables and registers that
163 we can't eliminate. A register that appears in this set also can't be used
164 to retry register allocation. */
165 static HARD_REG_SET bad_spill_regs_global;
166
167 /* Describes order of use of registers for reloading
168 of spilled pseudo-registers. `n_spills' is the number of
169 elements that are actually valid; new ones are added at the end.
170
171 Both spill_regs and spill_reg_order are used on two occasions:
172 once during find_reload_regs, where they keep track of the spill registers
173 for a single insn, but also during reload_as_needed where they show all
174 the registers ever used by reload. For the latter case, the information
175 is calculated during finish_spills. */
176 static short spill_regs[FIRST_PSEUDO_REGISTER];
177
178 /* This vector of reg sets indicates, for each pseudo, which hard registers
179 may not be used for retrying global allocation because the register was
180 formerly spilled from one of them. If we allowed reallocating a pseudo to
181 a register that it was already allocated to, reload might not
182 terminate. */
183 static HARD_REG_SET *pseudo_previous_regs;
184
185 /* This vector of reg sets indicates, for each pseudo, which hard
186 registers may not be used for retrying global allocation because they
187 are used as spill registers during one of the insns in which the
188 pseudo is live. */
189 static HARD_REG_SET *pseudo_forbidden_regs;
190
191 /* All hard regs that have been used as spill registers for any insn are
192 marked in this set. */
193 static HARD_REG_SET used_spill_regs;
194
195 /* Index of last register assigned as a spill register. We allocate in
196 a round-robin fashion. */
197 static int last_spill_reg;
198
199 /* Record the stack slot for each spilled hard register. */
200 static rtx spill_stack_slot[FIRST_PSEUDO_REGISTER];
201
202 /* Width allocated so far for that stack slot. */
203 static unsigned int spill_stack_slot_width[FIRST_PSEUDO_REGISTER];
204
205 /* Record which pseudos needed to be spilled. */
206 static regset_head spilled_pseudos;
207
208 /* Record which pseudos changed their allocation in finish_spills. */
209 static regset_head changed_allocation_pseudos;
210
211 /* Used for communication between order_regs_for_reload and count_pseudo.
212 Used to avoid counting one pseudo twice. */
213 static regset_head pseudos_counted;
214
215 /* First uid used by insns created by reload in this function.
216 Used in find_equiv_reg. */
217 int reload_first_uid;
218
219 /* Flag set by local-alloc or global-alloc if anything is live in
220 a call-clobbered reg across calls. */
221 int caller_save_needed;
222
223 /* Set to 1 while reload_as_needed is operating.
224 Required by some machines to handle any generated moves differently. */
225 int reload_in_progress = 0;
226
227 /* This obstack is used for allocation of rtl during register elimination.
228 The allocated storage can be freed once find_reloads has processed the
229 insn. */
230 static struct obstack reload_obstack;
231
232 /* Points to the beginning of the reload_obstack. All insn_chain structures
233 are allocated first. */
234 static char *reload_startobj;
235
236 /* The point after all insn_chain structures. Used to quickly deallocate
237 memory allocated in copy_reloads during calculate_needs_all_insns. */
238 static char *reload_firstobj;
239
240 /* This points before all local rtl generated by register elimination.
241 Used to quickly free all memory after processing one insn. */
242 static char *reload_insn_firstobj;
243
244 /* List of insn_chain instructions, one for every insn that reload needs to
245 examine. */
246 struct insn_chain *reload_insn_chain;
247
248 /* TRUE if we potentially left dead insns in the insn stream and want to
249 run DCE immediately after reload, FALSE otherwise. */
250 static bool need_dce;
251
252 /* List of all insns needing reloads. */
253 static struct insn_chain *insns_need_reload;
254 \f
255 /* This structure is used to record information about register eliminations.
256 Each array entry describes one possible way of eliminating a register
257 in favor of another. If there is more than one way of eliminating a
258 particular register, the most preferred should be specified first. */
259
260 struct elim_table
261 {
262 int from; /* Register number to be eliminated. */
263 int to; /* Register number used as replacement. */
264 HOST_WIDE_INT initial_offset; /* Initial difference between values. */
265 int can_eliminate; /* Nonzero if this elimination can be done. */
266 int can_eliminate_previous; /* Value returned by TARGET_CAN_ELIMINATE
267 target hook in previous scan over insns
268 made by reload. */
269 HOST_WIDE_INT offset; /* Current offset between the two regs. */
270 HOST_WIDE_INT previous_offset;/* Offset at end of previous insn. */
271 int ref_outside_mem; /* "to" has been referenced outside a MEM. */
272 rtx from_rtx; /* REG rtx for the register to be eliminated.
273 We cannot simply compare the number since
274 we might then spuriously replace a hard
275 register corresponding to a pseudo
276 assigned to the reg to be eliminated. */
277 rtx to_rtx; /* REG rtx for the replacement. */
278 };
279
280 static struct elim_table *reg_eliminate = 0;
281
282 /* This is an intermediate structure to initialize the table. It has
283 exactly the members provided by ELIMINABLE_REGS. */
284 static const struct elim_table_1
285 {
286 const int from;
287 const int to;
288 } reg_eliminate_1[] =
289
290 ELIMINABLE_REGS;
291
292 #define NUM_ELIMINABLE_REGS ARRAY_SIZE (reg_eliminate_1)
293
294 /* Record the number of pending eliminations that have an offset not equal
295 to their initial offset. If nonzero, we use a new copy of each
296 replacement result in any insns encountered. */
297 int num_not_at_initial_offset;
298
299 /* Count the number of registers that we may be able to eliminate. */
300 static int num_eliminable;
301 /* And the number of registers that are equivalent to a constant that
302 can be eliminated to frame_pointer / arg_pointer + constant. */
303 static int num_eliminable_invariants;
304
305 /* For each label, we record the offset of each elimination. If we reach
306 a label by more than one path and an offset differs, we cannot do the
307 elimination. This information is indexed by the difference of the
308 number of the label and the first label number. We can't offset the
309 pointer itself as this can cause problems on machines with segmented
310 memory. The first table is an array of flags that records whether we
311 have yet encountered a label and the second table is an array of arrays,
312 one entry in the latter array for each elimination. */
313
314 static int first_label_num;
315 static char *offsets_known_at;
316 static HOST_WIDE_INT (*offsets_at)[NUM_ELIMINABLE_REGS];
317
318 vec<reg_equivs_t, va_gc> *reg_equivs;
319
320 /* Stack of addresses where an rtx has been changed. We can undo the
321 changes by popping items off the stack and restoring the original
322 value at each location.
323
324 We use this simplistic undo capability rather than copy_rtx as copy_rtx
325 will not make a deep copy of a normally sharable rtx, such as
326 (const (plus (symbol_ref) (const_int))). If such an expression appears
327 as R1 in gen_reload_chain_without_interm_reg_p, then a shared
328 rtx expression would be changed. See PR 42431. */
329
330 typedef rtx *rtx_p;
331 static vec<rtx_p> substitute_stack;
332
333 /* Number of labels in the current function. */
334
335 static int num_labels;
336 \f
337 static void replace_pseudos_in (rtx *, machine_mode, rtx);
338 static void maybe_fix_stack_asms (void);
339 static void copy_reloads (struct insn_chain *);
340 static void calculate_needs_all_insns (int);
341 static int find_reg (struct insn_chain *, int);
342 static void find_reload_regs (struct insn_chain *);
343 static void select_reload_regs (void);
344 static void delete_caller_save_insns (void);
345
346 static void spill_failure (rtx_insn *, enum reg_class);
347 static void count_spilled_pseudo (int, int, int);
348 static void delete_dead_insn (rtx_insn *);
349 static void alter_reg (int, int, bool);
350 static void set_label_offsets (rtx, rtx_insn *, int);
351 static void check_eliminable_occurrences (rtx);
352 static void elimination_effects (rtx, machine_mode);
353 static rtx eliminate_regs_1 (rtx, machine_mode, rtx, bool, bool);
354 static int eliminate_regs_in_insn (rtx_insn *, int);
355 static void update_eliminable_offsets (void);
356 static void mark_not_eliminable (rtx, const_rtx, void *);
357 static void set_initial_elim_offsets (void);
358 static bool verify_initial_elim_offsets (void);
359 static void set_initial_label_offsets (void);
360 static void set_offsets_for_label (rtx_insn *);
361 static void init_eliminable_invariants (rtx_insn *, bool);
362 static void init_elim_table (void);
363 static void free_reg_equiv (void);
364 static void update_eliminables (HARD_REG_SET *);
365 static bool update_eliminables_and_spill (void);
366 static void elimination_costs_in_insn (rtx_insn *);
367 static void spill_hard_reg (unsigned int, int);
368 static int finish_spills (int);
369 static void scan_paradoxical_subregs (rtx);
370 static void count_pseudo (int);
371 static void order_regs_for_reload (struct insn_chain *);
372 static void reload_as_needed (int);
373 static void forget_old_reloads_1 (rtx, const_rtx, void *);
374 static void forget_marked_reloads (regset);
375 static int reload_reg_class_lower (const void *, const void *);
376 static void mark_reload_reg_in_use (unsigned int, int, enum reload_type,
377 machine_mode);
378 static void clear_reload_reg_in_use (unsigned int, int, enum reload_type,
379 machine_mode);
380 static int reload_reg_free_p (unsigned int, int, enum reload_type);
381 static int reload_reg_free_for_value_p (int, int, int, enum reload_type,
382 rtx, rtx, int, int);
383 static int free_for_value_p (int, machine_mode, int, enum reload_type,
384 rtx, rtx, int, int);
385 static int allocate_reload_reg (struct insn_chain *, int, int);
386 static int conflicts_with_override (rtx);
387 static void failed_reload (rtx_insn *, int);
388 static int set_reload_reg (int, int);
389 static void choose_reload_regs_init (struct insn_chain *, rtx *);
390 static void choose_reload_regs (struct insn_chain *);
391 static void emit_input_reload_insns (struct insn_chain *, struct reload *,
392 rtx, int);
393 static void emit_output_reload_insns (struct insn_chain *, struct reload *,
394 int);
395 static void do_input_reload (struct insn_chain *, struct reload *, int);
396 static void do_output_reload (struct insn_chain *, struct reload *, int);
397 static void emit_reload_insns (struct insn_chain *);
398 static void delete_output_reload (rtx_insn *, int, int, rtx);
399 static void delete_address_reloads (rtx_insn *, rtx_insn *);
400 static void delete_address_reloads_1 (rtx_insn *, rtx, rtx_insn *);
401 static void inc_for_reload (rtx, rtx, rtx, int);
402 static void add_auto_inc_notes (rtx_insn *, rtx);
403 static void substitute (rtx *, const_rtx, rtx);
404 static bool gen_reload_chain_without_interm_reg_p (int, int);
405 static int reloads_conflict (int, int);
406 static rtx_insn *gen_reload (rtx, rtx, int, enum reload_type);
407 static rtx_insn *emit_insn_if_valid_for_reload (rtx);
408 \f
409 /* Initialize the reload pass. This is called at the beginning of compilation
410 and may be called again if the target is reinitialized. */
411
412 void
413 init_reload (void)
414 {
415 int i;
416
417 /* Often (MEM (REG n)) is still valid even if (REG n) is put on the stack.
418 Set spill_indirect_levels to the number of levels such addressing is
419 permitted, zero if it is not permitted at all. */
420
421 rtx tem
422 = gen_rtx_MEM (Pmode,
423 gen_rtx_PLUS (Pmode,
424 gen_rtx_REG (Pmode,
425 LAST_VIRTUAL_REGISTER + 1),
426 gen_int_mode (4, Pmode)));
427 spill_indirect_levels = 0;
428
429 while (memory_address_p (QImode, tem))
430 {
431 spill_indirect_levels++;
432 tem = gen_rtx_MEM (Pmode, tem);
433 }
434
435 /* See if indirect addressing is valid for (MEM (SYMBOL_REF ...)). */
436
437 tem = gen_rtx_MEM (Pmode, gen_rtx_SYMBOL_REF (Pmode, "foo"));
438 indirect_symref_ok = memory_address_p (QImode, tem);
439
440 /* See if reg+reg is a valid (and offsettable) address. */
441
442 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
443 {
444 tem = gen_rtx_PLUS (Pmode,
445 gen_rtx_REG (Pmode, HARD_FRAME_POINTER_REGNUM),
446 gen_rtx_REG (Pmode, i));
447
448 /* This way, we make sure that reg+reg is an offsettable address. */
449 tem = plus_constant (Pmode, tem, 4);
450
451 for (int mode = 0; mode < MAX_MACHINE_MODE; mode++)
452 if (!double_reg_address_ok[mode]
453 && memory_address_p ((enum machine_mode)mode, tem))
454 double_reg_address_ok[mode] = 1;
455 }
456
457 /* Initialize obstack for our rtl allocation. */
458 if (reload_startobj == NULL)
459 {
460 gcc_obstack_init (&reload_obstack);
461 reload_startobj = XOBNEWVAR (&reload_obstack, char, 0);
462 }
463
464 INIT_REG_SET (&spilled_pseudos);
465 INIT_REG_SET (&changed_allocation_pseudos);
466 INIT_REG_SET (&pseudos_counted);
467 }
468
469 /* List of insn chains that are currently unused. */
470 static struct insn_chain *unused_insn_chains = 0;
471
472 /* Allocate an empty insn_chain structure. */
473 struct insn_chain *
474 new_insn_chain (void)
475 {
476 struct insn_chain *c;
477
478 if (unused_insn_chains == 0)
479 {
480 c = XOBNEW (&reload_obstack, struct insn_chain);
481 INIT_REG_SET (&c->live_throughout);
482 INIT_REG_SET (&c->dead_or_set);
483 }
484 else
485 {
486 c = unused_insn_chains;
487 unused_insn_chains = c->next;
488 }
489 c->is_caller_save_insn = 0;
490 c->need_operand_change = 0;
491 c->need_reload = 0;
492 c->need_elim = 0;
493 return c;
494 }
495
496 /* Small utility function to set all regs in hard reg set TO which are
497 allocated to pseudos in regset FROM. */
498
499 void
500 compute_use_by_pseudos (HARD_REG_SET *to, regset from)
501 {
502 unsigned int regno;
503 reg_set_iterator rsi;
504
505 EXECUTE_IF_SET_IN_REG_SET (from, FIRST_PSEUDO_REGISTER, regno, rsi)
506 {
507 int r = reg_renumber[regno];
508
509 if (r < 0)
510 {
511 /* reload_combine uses the information from DF_LIVE_IN,
512 which might still contain registers that have not
513 actually been allocated since they have an
514 equivalence. */
515 gcc_assert (ira_conflicts_p || reload_completed);
516 }
517 else
518 add_to_hard_reg_set (to, PSEUDO_REGNO_MODE (regno), r);
519 }
520 }
521
522 /* Replace all pseudos found in LOC with their corresponding
523 equivalences. */
524
525 static void
526 replace_pseudos_in (rtx *loc, machine_mode mem_mode, rtx usage)
527 {
528 rtx x = *loc;
529 enum rtx_code code;
530 const char *fmt;
531 int i, j;
532
533 if (! x)
534 return;
535
536 code = GET_CODE (x);
537 if (code == REG)
538 {
539 unsigned int regno = REGNO (x);
540
541 if (regno < FIRST_PSEUDO_REGISTER)
542 return;
543
544 x = eliminate_regs_1 (x, mem_mode, usage, true, false);
545 if (x != *loc)
546 {
547 *loc = x;
548 replace_pseudos_in (loc, mem_mode, usage);
549 return;
550 }
551
552 if (reg_equiv_constant (regno))
553 *loc = reg_equiv_constant (regno);
554 else if (reg_equiv_invariant (regno))
555 *loc = reg_equiv_invariant (regno);
556 else if (reg_equiv_mem (regno))
557 *loc = reg_equiv_mem (regno);
558 else if (reg_equiv_address (regno))
559 *loc = gen_rtx_MEM (GET_MODE (x), reg_equiv_address (regno));
560 else
561 {
562 gcc_assert (!REG_P (regno_reg_rtx[regno])
563 || REGNO (regno_reg_rtx[regno]) != regno);
564 *loc = regno_reg_rtx[regno];
565 }
566
567 return;
568 }
569 else if (code == MEM)
570 {
571 replace_pseudos_in (& XEXP (x, 0), GET_MODE (x), usage);
572 return;
573 }
574
575 /* Process each of our operands recursively. */
576 fmt = GET_RTX_FORMAT (code);
577 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
578 if (*fmt == 'e')
579 replace_pseudos_in (&XEXP (x, i), mem_mode, usage);
580 else if (*fmt == 'E')
581 for (j = 0; j < XVECLEN (x, i); j++)
582 replace_pseudos_in (& XVECEXP (x, i, j), mem_mode, usage);
583 }
584
585 /* Determine if the current function has an exception receiver block
586 that reaches the exit block via non-exceptional edges */
587
588 static bool
589 has_nonexceptional_receiver (void)
590 {
591 edge e;
592 edge_iterator ei;
593 basic_block *tos, *worklist, bb;
594
595 /* If we're not optimizing, then just err on the safe side. */
596 if (!optimize)
597 return true;
598
599 /* First determine which blocks can reach exit via normal paths. */
600 tos = worklist = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) + 1);
601
602 FOR_EACH_BB_FN (bb, cfun)
603 bb->flags &= ~BB_REACHABLE;
604
605 /* Place the exit block on our worklist. */
606 EXIT_BLOCK_PTR_FOR_FN (cfun)->flags |= BB_REACHABLE;
607 *tos++ = EXIT_BLOCK_PTR_FOR_FN (cfun);
608
609 /* Iterate: find everything reachable from what we've already seen. */
610 while (tos != worklist)
611 {
612 bb = *--tos;
613
614 FOR_EACH_EDGE (e, ei, bb->preds)
615 if (!(e->flags & EDGE_ABNORMAL))
616 {
617 basic_block src = e->src;
618
619 if (!(src->flags & BB_REACHABLE))
620 {
621 src->flags |= BB_REACHABLE;
622 *tos++ = src;
623 }
624 }
625 }
626 free (worklist);
627
628 /* Now see if there's a reachable block with an exceptional incoming
629 edge. */
630 FOR_EACH_BB_FN (bb, cfun)
631 if (bb->flags & BB_REACHABLE && bb_has_abnormal_pred (bb))
632 return true;
633
634 /* No exceptional block reached exit unexceptionally. */
635 return false;
636 }
637
638 /* Grow (or allocate) the REG_EQUIVS array from its current size (which may be
639 zero elements) to MAX_REG_NUM elements.
640
641 Initialize all new fields to NULL and update REG_EQUIVS_SIZE. */
642 void
643 grow_reg_equivs (void)
644 {
645 int old_size = vec_safe_length (reg_equivs);
646 int max_regno = max_reg_num ();
647 int i;
648 reg_equivs_t ze;
649
650 memset (&ze, 0, sizeof (reg_equivs_t));
651 vec_safe_reserve (reg_equivs, max_regno);
652 for (i = old_size; i < max_regno; i++)
653 reg_equivs->quick_insert (i, ze);
654 }
655
656 \f
657 /* Global variables used by reload and its subroutines. */
658
659 /* The current basic block while in calculate_elim_costs_all_insns. */
660 static basic_block elim_bb;
661
662 /* Set during calculate_needs if an insn needs register elimination. */
663 static int something_needs_elimination;
664 /* Set during calculate_needs if an insn needs an operand changed. */
665 static int something_needs_operands_changed;
666 /* Set by alter_regs if we spilled a register to the stack. */
667 static bool something_was_spilled;
668
669 /* Nonzero means we couldn't get enough spill regs. */
670 static int failure;
671
672 /* Temporary array of pseudo-register number. */
673 static int *temp_pseudo_reg_arr;
674
675 /* If a pseudo has no hard reg, delete the insns that made the equivalence.
676 If that insn didn't set the register (i.e., it copied the register to
677 memory), just delete that insn instead of the equivalencing insn plus
678 anything now dead. If we call delete_dead_insn on that insn, we may
679 delete the insn that actually sets the register if the register dies
680 there and that is incorrect. */
681 static void
682 remove_init_insns ()
683 {
684 for (int i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
685 {
686 if (reg_renumber[i] < 0 && reg_equiv_init (i) != 0)
687 {
688 rtx list;
689 for (list = reg_equiv_init (i); list; list = XEXP (list, 1))
690 {
691 rtx_insn *equiv_insn = as_a <rtx_insn *> (XEXP (list, 0));
692
693 /* If we already deleted the insn or if it may trap, we can't
694 delete it. The latter case shouldn't happen, but can
695 if an insn has a variable address, gets a REG_EH_REGION
696 note added to it, and then gets converted into a load
697 from a constant address. */
698 if (NOTE_P (equiv_insn)
699 || can_throw_internal (equiv_insn))
700 ;
701 else if (reg_set_p (regno_reg_rtx[i], PATTERN (equiv_insn)))
702 delete_dead_insn (equiv_insn);
703 else
704 SET_INSN_DELETED (equiv_insn);
705 }
706 }
707 }
708 }
709
710 /* Return true if remove_init_insns will delete INSN. */
711 static bool
712 will_delete_init_insn_p (rtx_insn *insn)
713 {
714 rtx set = single_set (insn);
715 if (!set || !REG_P (SET_DEST (set)))
716 return false;
717 unsigned regno = REGNO (SET_DEST (set));
718
719 if (can_throw_internal (insn))
720 return false;
721
722 if (regno < FIRST_PSEUDO_REGISTER || reg_renumber[regno] >= 0)
723 return false;
724
725 for (rtx list = reg_equiv_init (regno); list; list = XEXP (list, 1))
726 {
727 rtx equiv_insn = XEXP (list, 0);
728 if (equiv_insn == insn)
729 return true;
730 }
731 return false;
732 }
733
734 /* Main entry point for the reload pass.
735
736 FIRST is the first insn of the function being compiled.
737
738 GLOBAL nonzero means we were called from global_alloc
739 and should attempt to reallocate any pseudoregs that we
740 displace from hard regs we will use for reloads.
741 If GLOBAL is zero, we do not have enough information to do that,
742 so any pseudo reg that is spilled must go to the stack.
743
744 Return value is TRUE if reload likely left dead insns in the
745 stream and a DCE pass should be run to elimiante them. Else the
746 return value is FALSE. */
747
748 bool
749 reload (rtx_insn *first, int global)
750 {
751 int i, n;
752 rtx_insn *insn;
753 struct elim_table *ep;
754 basic_block bb;
755 bool inserted;
756
757 /* Make sure even insns with volatile mem refs are recognizable. */
758 init_recog ();
759
760 failure = 0;
761
762 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
763
764 /* Make sure that the last insn in the chain
765 is not something that needs reloading. */
766 emit_note (NOTE_INSN_DELETED);
767
768 /* Enable find_equiv_reg to distinguish insns made by reload. */
769 reload_first_uid = get_max_uid ();
770
771 /* Initialize the secondary memory table. */
772 clear_secondary_mem ();
773
774 /* We don't have a stack slot for any spill reg yet. */
775 memset (spill_stack_slot, 0, sizeof spill_stack_slot);
776 memset (spill_stack_slot_width, 0, sizeof spill_stack_slot_width);
777
778 /* Initialize the save area information for caller-save, in case some
779 are needed. */
780 init_save_areas ();
781
782 /* Compute which hard registers are now in use
783 as homes for pseudo registers.
784 This is done here rather than (eg) in global_alloc
785 because this point is reached even if not optimizing. */
786 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
787 mark_home_live (i);
788
789 /* A function that has a nonlocal label that can reach the exit
790 block via non-exceptional paths must save all call-saved
791 registers. */
792 if (cfun->has_nonlocal_label
793 && has_nonexceptional_receiver ())
794 crtl->saves_all_registers = 1;
795
796 if (crtl->saves_all_registers)
797 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
798 if (! call_used_regs[i] && ! fixed_regs[i] && ! LOCAL_REGNO (i))
799 df_set_regs_ever_live (i, true);
800
801 /* Find all the pseudo registers that didn't get hard regs
802 but do have known equivalent constants or memory slots.
803 These include parameters (known equivalent to parameter slots)
804 and cse'd or loop-moved constant memory addresses.
805
806 Record constant equivalents in reg_equiv_constant
807 so they will be substituted by find_reloads.
808 Record memory equivalents in reg_mem_equiv so they can
809 be substituted eventually by altering the REG-rtx's. */
810
811 grow_reg_equivs ();
812 reg_old_renumber = XCNEWVEC (short, max_regno);
813 memcpy (reg_old_renumber, reg_renumber, max_regno * sizeof (short));
814 pseudo_forbidden_regs = XNEWVEC (HARD_REG_SET, max_regno);
815 pseudo_previous_regs = XCNEWVEC (HARD_REG_SET, max_regno);
816
817 CLEAR_HARD_REG_SET (bad_spill_regs_global);
818
819 init_eliminable_invariants (first, true);
820 init_elim_table ();
821
822 /* Alter each pseudo-reg rtx to contain its hard reg number. Assign
823 stack slots to the pseudos that lack hard regs or equivalents.
824 Do not touch virtual registers. */
825
826 temp_pseudo_reg_arr = XNEWVEC (int, max_regno - LAST_VIRTUAL_REGISTER - 1);
827 for (n = 0, i = LAST_VIRTUAL_REGISTER + 1; i < max_regno; i++)
828 temp_pseudo_reg_arr[n++] = i;
829
830 if (ira_conflicts_p)
831 /* Ask IRA to order pseudo-registers for better stack slot
832 sharing. */
833 ira_sort_regnos_for_alter_reg (temp_pseudo_reg_arr, n, reg_max_ref_mode);
834
835 for (i = 0; i < n; i++)
836 alter_reg (temp_pseudo_reg_arr[i], -1, false);
837
838 /* If we have some registers we think can be eliminated, scan all insns to
839 see if there is an insn that sets one of these registers to something
840 other than itself plus a constant. If so, the register cannot be
841 eliminated. Doing this scan here eliminates an extra pass through the
842 main reload loop in the most common case where register elimination
843 cannot be done. */
844 for (insn = first; insn && num_eliminable; insn = NEXT_INSN (insn))
845 if (INSN_P (insn))
846 note_stores (PATTERN (insn), mark_not_eliminable, NULL);
847
848 maybe_fix_stack_asms ();
849
850 insns_need_reload = 0;
851 something_needs_elimination = 0;
852
853 /* Initialize to -1, which means take the first spill register. */
854 last_spill_reg = -1;
855
856 /* Spill any hard regs that we know we can't eliminate. */
857 CLEAR_HARD_REG_SET (used_spill_regs);
858 /* There can be multiple ways to eliminate a register;
859 they should be listed adjacently.
860 Elimination for any register fails only if all possible ways fail. */
861 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; )
862 {
863 int from = ep->from;
864 int can_eliminate = 0;
865 do
866 {
867 can_eliminate |= ep->can_eliminate;
868 ep++;
869 }
870 while (ep < &reg_eliminate[NUM_ELIMINABLE_REGS] && ep->from == from);
871 if (! can_eliminate)
872 spill_hard_reg (from, 1);
873 }
874
875 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed)
876 spill_hard_reg (HARD_FRAME_POINTER_REGNUM, 1);
877
878 finish_spills (global);
879
880 /* From now on, we may need to generate moves differently. We may also
881 allow modifications of insns which cause them to not be recognized.
882 Any such modifications will be cleaned up during reload itself. */
883 reload_in_progress = 1;
884
885 /* This loop scans the entire function each go-round
886 and repeats until one repetition spills no additional hard regs. */
887 for (;;)
888 {
889 int something_changed;
890 HOST_WIDE_INT starting_frame_size;
891
892 starting_frame_size = get_frame_size ();
893 something_was_spilled = false;
894
895 set_initial_elim_offsets ();
896 set_initial_label_offsets ();
897
898 /* For each pseudo register that has an equivalent location defined,
899 try to eliminate any eliminable registers (such as the frame pointer)
900 assuming initial offsets for the replacement register, which
901 is the normal case.
902
903 If the resulting location is directly addressable, substitute
904 the MEM we just got directly for the old REG.
905
906 If it is not addressable but is a constant or the sum of a hard reg
907 and constant, it is probably not addressable because the constant is
908 out of range, in that case record the address; we will generate
909 hairy code to compute the address in a register each time it is
910 needed. Similarly if it is a hard register, but one that is not
911 valid as an address register.
912
913 If the location is not addressable, but does not have one of the
914 above forms, assign a stack slot. We have to do this to avoid the
915 potential of producing lots of reloads if, e.g., a location involves
916 a pseudo that didn't get a hard register and has an equivalent memory
917 location that also involves a pseudo that didn't get a hard register.
918
919 Perhaps at some point we will improve reload_when_needed handling
920 so this problem goes away. But that's very hairy. */
921
922 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
923 if (reg_renumber[i] < 0 && reg_equiv_memory_loc (i))
924 {
925 rtx x = eliminate_regs (reg_equiv_memory_loc (i), VOIDmode,
926 NULL_RTX);
927
928 if (strict_memory_address_addr_space_p
929 (GET_MODE (regno_reg_rtx[i]), XEXP (x, 0),
930 MEM_ADDR_SPACE (x)))
931 reg_equiv_mem (i) = x, reg_equiv_address (i) = 0;
932 else if (CONSTANT_P (XEXP (x, 0))
933 || (REG_P (XEXP (x, 0))
934 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER)
935 || (GET_CODE (XEXP (x, 0)) == PLUS
936 && REG_P (XEXP (XEXP (x, 0), 0))
937 && (REGNO (XEXP (XEXP (x, 0), 0))
938 < FIRST_PSEUDO_REGISTER)
939 && CONSTANT_P (XEXP (XEXP (x, 0), 1))))
940 reg_equiv_address (i) = XEXP (x, 0), reg_equiv_mem (i) = 0;
941 else
942 {
943 /* Make a new stack slot. Then indicate that something
944 changed so we go back and recompute offsets for
945 eliminable registers because the allocation of memory
946 below might change some offset. reg_equiv_{mem,address}
947 will be set up for this pseudo on the next pass around
948 the loop. */
949 reg_equiv_memory_loc (i) = 0;
950 reg_equiv_init (i) = 0;
951 alter_reg (i, -1, true);
952 }
953 }
954
955 if (caller_save_needed)
956 setup_save_areas ();
957
958 if (starting_frame_size && crtl->stack_alignment_needed)
959 {
960 /* If we have a stack frame, we must align it now. The
961 stack size may be a part of the offset computation for
962 register elimination. So if this changes the stack size,
963 then repeat the elimination bookkeeping. We don't
964 realign when there is no stack, as that will cause a
965 stack frame when none is needed should
966 TARGET_STARTING_FRAME_OFFSET not be already aligned to
967 STACK_BOUNDARY. */
968 assign_stack_local (BLKmode, 0, crtl->stack_alignment_needed);
969 }
970 /* If we allocated another stack slot, redo elimination bookkeeping. */
971 if (something_was_spilled || starting_frame_size != get_frame_size ())
972 {
973 if (update_eliminables_and_spill ())
974 finish_spills (0);
975 continue;
976 }
977
978 if (caller_save_needed)
979 {
980 save_call_clobbered_regs ();
981 /* That might have allocated new insn_chain structures. */
982 reload_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
983 }
984
985 calculate_needs_all_insns (global);
986
987 if (! ira_conflicts_p)
988 /* Don't do it for IRA. We need this info because we don't
989 change live_throughout and dead_or_set for chains when IRA
990 is used. */
991 CLEAR_REG_SET (&spilled_pseudos);
992
993 something_changed = 0;
994
995 /* If we allocated any new memory locations, make another pass
996 since it might have changed elimination offsets. */
997 if (something_was_spilled || starting_frame_size != get_frame_size ())
998 something_changed = 1;
999
1000 /* Even if the frame size remained the same, we might still have
1001 changed elimination offsets, e.g. if find_reloads called
1002 force_const_mem requiring the back end to allocate a constant
1003 pool base register that needs to be saved on the stack. */
1004 else if (!verify_initial_elim_offsets ())
1005 something_changed = 1;
1006
1007 if (update_eliminables_and_spill ())
1008 {
1009 finish_spills (0);
1010 something_changed = 1;
1011 }
1012 else
1013 {
1014 select_reload_regs ();
1015 if (failure)
1016 goto failed;
1017 if (insns_need_reload)
1018 something_changed |= finish_spills (global);
1019 }
1020
1021 if (! something_changed)
1022 break;
1023
1024 if (caller_save_needed)
1025 delete_caller_save_insns ();
1026
1027 obstack_free (&reload_obstack, reload_firstobj);
1028 }
1029
1030 /* If global-alloc was run, notify it of any register eliminations we have
1031 done. */
1032 if (global)
1033 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
1034 if (ep->can_eliminate)
1035 mark_elimination (ep->from, ep->to);
1036
1037 remove_init_insns ();
1038
1039 /* Use the reload registers where necessary
1040 by generating move instructions to move the must-be-register
1041 values into or out of the reload registers. */
1042
1043 if (insns_need_reload != 0 || something_needs_elimination
1044 || something_needs_operands_changed)
1045 {
1046 HOST_WIDE_INT old_frame_size = get_frame_size ();
1047
1048 reload_as_needed (global);
1049
1050 gcc_assert (old_frame_size == get_frame_size ());
1051
1052 gcc_assert (verify_initial_elim_offsets ());
1053 }
1054
1055 /* If we were able to eliminate the frame pointer, show that it is no
1056 longer live at the start of any basic block. If it ls live by
1057 virtue of being in a pseudo, that pseudo will be marked live
1058 and hence the frame pointer will be known to be live via that
1059 pseudo. */
1060
1061 if (! frame_pointer_needed)
1062 FOR_EACH_BB_FN (bb, cfun)
1063 bitmap_clear_bit (df_get_live_in (bb), HARD_FRAME_POINTER_REGNUM);
1064
1065 /* Come here (with failure set nonzero) if we can't get enough spill
1066 regs. */
1067 failed:
1068
1069 CLEAR_REG_SET (&changed_allocation_pseudos);
1070 CLEAR_REG_SET (&spilled_pseudos);
1071 reload_in_progress = 0;
1072
1073 /* Now eliminate all pseudo regs by modifying them into
1074 their equivalent memory references.
1075 The REG-rtx's for the pseudos are modified in place,
1076 so all insns that used to refer to them now refer to memory.
1077
1078 For a reg that has a reg_equiv_address, all those insns
1079 were changed by reloading so that no insns refer to it any longer;
1080 but the DECL_RTL of a variable decl may refer to it,
1081 and if so this causes the debugging info to mention the variable. */
1082
1083 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1084 {
1085 rtx addr = 0;
1086
1087 if (reg_equiv_mem (i))
1088 addr = XEXP (reg_equiv_mem (i), 0);
1089
1090 if (reg_equiv_address (i))
1091 addr = reg_equiv_address (i);
1092
1093 if (addr)
1094 {
1095 if (reg_renumber[i] < 0)
1096 {
1097 rtx reg = regno_reg_rtx[i];
1098
1099 REG_USERVAR_P (reg) = 0;
1100 PUT_CODE (reg, MEM);
1101 XEXP (reg, 0) = addr;
1102 if (reg_equiv_memory_loc (i))
1103 MEM_COPY_ATTRIBUTES (reg, reg_equiv_memory_loc (i));
1104 else
1105 MEM_ATTRS (reg) = 0;
1106 MEM_NOTRAP_P (reg) = 1;
1107 }
1108 else if (reg_equiv_mem (i))
1109 XEXP (reg_equiv_mem (i), 0) = addr;
1110 }
1111
1112 /* We don't want complex addressing modes in debug insns
1113 if simpler ones will do, so delegitimize equivalences
1114 in debug insns. */
1115 if (MAY_HAVE_DEBUG_BIND_INSNS && reg_renumber[i] < 0)
1116 {
1117 rtx reg = regno_reg_rtx[i];
1118 rtx equiv = 0;
1119 df_ref use, next;
1120
1121 if (reg_equiv_constant (i))
1122 equiv = reg_equiv_constant (i);
1123 else if (reg_equiv_invariant (i))
1124 equiv = reg_equiv_invariant (i);
1125 else if (reg && MEM_P (reg))
1126 equiv = targetm.delegitimize_address (reg);
1127 else if (reg && REG_P (reg) && (int)REGNO (reg) != i)
1128 equiv = reg;
1129
1130 if (equiv == reg)
1131 continue;
1132
1133 for (use = DF_REG_USE_CHAIN (i); use; use = next)
1134 {
1135 insn = DF_REF_INSN (use);
1136
1137 /* Make sure the next ref is for a different instruction,
1138 so that we're not affected by the rescan. */
1139 next = DF_REF_NEXT_REG (use);
1140 while (next && DF_REF_INSN (next) == insn)
1141 next = DF_REF_NEXT_REG (next);
1142
1143 if (DEBUG_BIND_INSN_P (insn))
1144 {
1145 if (!equiv)
1146 {
1147 INSN_VAR_LOCATION_LOC (insn) = gen_rtx_UNKNOWN_VAR_LOC ();
1148 df_insn_rescan_debug_internal (insn);
1149 }
1150 else
1151 INSN_VAR_LOCATION_LOC (insn)
1152 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (insn),
1153 reg, equiv);
1154 }
1155 }
1156 }
1157 }
1158
1159 /* We must set reload_completed now since the cleanup_subreg_operands call
1160 below will re-recognize each insn and reload may have generated insns
1161 which are only valid during and after reload. */
1162 reload_completed = 1;
1163
1164 /* Make a pass over all the insns and delete all USEs which we inserted
1165 only to tag a REG_EQUAL note on them. Remove all REG_DEAD and REG_UNUSED
1166 notes. Delete all CLOBBER insns, except those that refer to the return
1167 value and the special mem:BLK CLOBBERs added to prevent the scheduler
1168 from misarranging variable-array code, and simplify (subreg (reg))
1169 operands. Strip and regenerate REG_INC notes that may have been moved
1170 around. */
1171
1172 for (insn = first; insn; insn = NEXT_INSN (insn))
1173 if (INSN_P (insn))
1174 {
1175 rtx *pnote;
1176
1177 if (CALL_P (insn))
1178 replace_pseudos_in (& CALL_INSN_FUNCTION_USAGE (insn),
1179 VOIDmode, CALL_INSN_FUNCTION_USAGE (insn));
1180
1181 if ((GET_CODE (PATTERN (insn)) == USE
1182 /* We mark with QImode USEs introduced by reload itself. */
1183 && (GET_MODE (insn) == QImode
1184 || find_reg_note (insn, REG_EQUAL, NULL_RTX)))
1185 || (GET_CODE (PATTERN (insn)) == CLOBBER
1186 && (!MEM_P (XEXP (PATTERN (insn), 0))
1187 || GET_MODE (XEXP (PATTERN (insn), 0)) != BLKmode
1188 || (GET_CODE (XEXP (XEXP (PATTERN (insn), 0), 0)) != SCRATCH
1189 && XEXP (XEXP (PATTERN (insn), 0), 0)
1190 != stack_pointer_rtx))
1191 && (!REG_P (XEXP (PATTERN (insn), 0))
1192 || ! REG_FUNCTION_VALUE_P (XEXP (PATTERN (insn), 0)))))
1193 {
1194 delete_insn (insn);
1195 continue;
1196 }
1197
1198 /* Some CLOBBERs may survive until here and still reference unassigned
1199 pseudos with const equivalent, which may in turn cause ICE in later
1200 passes if the reference remains in place. */
1201 if (GET_CODE (PATTERN (insn)) == CLOBBER)
1202 replace_pseudos_in (& XEXP (PATTERN (insn), 0),
1203 VOIDmode, PATTERN (insn));
1204
1205 /* Discard obvious no-ops, even without -O. This optimization
1206 is fast and doesn't interfere with debugging. */
1207 if (NONJUMP_INSN_P (insn)
1208 && GET_CODE (PATTERN (insn)) == SET
1209 && REG_P (SET_SRC (PATTERN (insn)))
1210 && REG_P (SET_DEST (PATTERN (insn)))
1211 && (REGNO (SET_SRC (PATTERN (insn)))
1212 == REGNO (SET_DEST (PATTERN (insn)))))
1213 {
1214 delete_insn (insn);
1215 continue;
1216 }
1217
1218 pnote = &REG_NOTES (insn);
1219 while (*pnote != 0)
1220 {
1221 if (REG_NOTE_KIND (*pnote) == REG_DEAD
1222 || REG_NOTE_KIND (*pnote) == REG_UNUSED
1223 || REG_NOTE_KIND (*pnote) == REG_INC)
1224 *pnote = XEXP (*pnote, 1);
1225 else
1226 pnote = &XEXP (*pnote, 1);
1227 }
1228
1229 if (AUTO_INC_DEC)
1230 add_auto_inc_notes (insn, PATTERN (insn));
1231
1232 /* Simplify (subreg (reg)) if it appears as an operand. */
1233 cleanup_subreg_operands (insn);
1234
1235 /* Clean up invalid ASMs so that they don't confuse later passes.
1236 See PR 21299. */
1237 if (asm_noperands (PATTERN (insn)) >= 0)
1238 {
1239 extract_insn (insn);
1240 if (!constrain_operands (1, get_enabled_alternatives (insn)))
1241 {
1242 error_for_asm (insn,
1243 "%<asm%> operand has impossible constraints");
1244 delete_insn (insn);
1245 continue;
1246 }
1247 }
1248 }
1249
1250 free (temp_pseudo_reg_arr);
1251
1252 /* Indicate that we no longer have known memory locations or constants. */
1253 free_reg_equiv ();
1254
1255 free (reg_max_ref_mode);
1256 free (reg_old_renumber);
1257 free (pseudo_previous_regs);
1258 free (pseudo_forbidden_regs);
1259
1260 CLEAR_HARD_REG_SET (used_spill_regs);
1261 for (i = 0; i < n_spills; i++)
1262 SET_HARD_REG_BIT (used_spill_regs, spill_regs[i]);
1263
1264 /* Free all the insn_chain structures at once. */
1265 obstack_free (&reload_obstack, reload_startobj);
1266 unused_insn_chains = 0;
1267
1268 inserted = fixup_abnormal_edges ();
1269
1270 /* We've possibly turned single trapping insn into multiple ones. */
1271 if (cfun->can_throw_non_call_exceptions)
1272 {
1273 auto_sbitmap blocks (last_basic_block_for_fn (cfun));
1274 bitmap_ones (blocks);
1275 find_many_sub_basic_blocks (blocks);
1276 }
1277
1278 if (inserted)
1279 commit_edge_insertions ();
1280
1281 /* Replacing pseudos with their memory equivalents might have
1282 created shared rtx. Subsequent passes would get confused
1283 by this, so unshare everything here. */
1284 unshare_all_rtl_again (first);
1285
1286 #ifdef STACK_BOUNDARY
1287 /* init_emit has set the alignment of the hard frame pointer
1288 to STACK_BOUNDARY. It is very likely no longer valid if
1289 the hard frame pointer was used for register allocation. */
1290 if (!frame_pointer_needed)
1291 REGNO_POINTER_ALIGN (HARD_FRAME_POINTER_REGNUM) = BITS_PER_UNIT;
1292 #endif
1293
1294 substitute_stack.release ();
1295
1296 gcc_assert (bitmap_empty_p (&spilled_pseudos));
1297
1298 reload_completed = !failure;
1299
1300 return need_dce;
1301 }
1302
1303 /* Yet another special case. Unfortunately, reg-stack forces people to
1304 write incorrect clobbers in asm statements. These clobbers must not
1305 cause the register to appear in bad_spill_regs, otherwise we'll call
1306 fatal_insn later. We clear the corresponding regnos in the live
1307 register sets to avoid this.
1308 The whole thing is rather sick, I'm afraid. */
1309
1310 static void
1311 maybe_fix_stack_asms (void)
1312 {
1313 #ifdef STACK_REGS
1314 const char *constraints[MAX_RECOG_OPERANDS];
1315 machine_mode operand_mode[MAX_RECOG_OPERANDS];
1316 struct insn_chain *chain;
1317
1318 for (chain = reload_insn_chain; chain != 0; chain = chain->next)
1319 {
1320 int i, noperands;
1321 HARD_REG_SET clobbered, allowed;
1322 rtx pat;
1323
1324 if (! INSN_P (chain->insn)
1325 || (noperands = asm_noperands (PATTERN (chain->insn))) < 0)
1326 continue;
1327 pat = PATTERN (chain->insn);
1328 if (GET_CODE (pat) != PARALLEL)
1329 continue;
1330
1331 CLEAR_HARD_REG_SET (clobbered);
1332 CLEAR_HARD_REG_SET (allowed);
1333
1334 /* First, make a mask of all stack regs that are clobbered. */
1335 for (i = 0; i < XVECLEN (pat, 0); i++)
1336 {
1337 rtx t = XVECEXP (pat, 0, i);
1338 if (GET_CODE (t) == CLOBBER && STACK_REG_P (XEXP (t, 0)))
1339 SET_HARD_REG_BIT (clobbered, REGNO (XEXP (t, 0)));
1340 }
1341
1342 /* Get the operand values and constraints out of the insn. */
1343 decode_asm_operands (pat, recog_data.operand, recog_data.operand_loc,
1344 constraints, operand_mode, NULL);
1345
1346 /* For every operand, see what registers are allowed. */
1347 for (i = 0; i < noperands; i++)
1348 {
1349 const char *p = constraints[i];
1350 /* For every alternative, we compute the class of registers allowed
1351 for reloading in CLS, and merge its contents into the reg set
1352 ALLOWED. */
1353 int cls = (int) NO_REGS;
1354
1355 for (;;)
1356 {
1357 char c = *p;
1358
1359 if (c == '\0' || c == ',' || c == '#')
1360 {
1361 /* End of one alternative - mark the regs in the current
1362 class, and reset the class. */
1363 IOR_HARD_REG_SET (allowed, reg_class_contents[cls]);
1364 cls = NO_REGS;
1365 p++;
1366 if (c == '#')
1367 do {
1368 c = *p++;
1369 } while (c != '\0' && c != ',');
1370 if (c == '\0')
1371 break;
1372 continue;
1373 }
1374
1375 switch (c)
1376 {
1377 case 'g':
1378 cls = (int) reg_class_subunion[cls][(int) GENERAL_REGS];
1379 break;
1380
1381 default:
1382 enum constraint_num cn = lookup_constraint (p);
1383 if (insn_extra_address_constraint (cn))
1384 cls = (int) reg_class_subunion[cls]
1385 [(int) base_reg_class (VOIDmode, ADDR_SPACE_GENERIC,
1386 ADDRESS, SCRATCH)];
1387 else
1388 cls = (int) reg_class_subunion[cls]
1389 [reg_class_for_constraint (cn)];
1390 break;
1391 }
1392 p += CONSTRAINT_LEN (c, p);
1393 }
1394 }
1395 /* Those of the registers which are clobbered, but allowed by the
1396 constraints, must be usable as reload registers. So clear them
1397 out of the life information. */
1398 AND_HARD_REG_SET (allowed, clobbered);
1399 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1400 if (TEST_HARD_REG_BIT (allowed, i))
1401 {
1402 CLEAR_REGNO_REG_SET (&chain->live_throughout, i);
1403 CLEAR_REGNO_REG_SET (&chain->dead_or_set, i);
1404 }
1405 }
1406
1407 #endif
1408 }
1409 \f
1410 /* Copy the global variables n_reloads and rld into the corresponding elts
1411 of CHAIN. */
1412 static void
1413 copy_reloads (struct insn_chain *chain)
1414 {
1415 chain->n_reloads = n_reloads;
1416 chain->rld = XOBNEWVEC (&reload_obstack, struct reload, n_reloads);
1417 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
1418 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1419 }
1420
1421 /* Walk the chain of insns, and determine for each whether it needs reloads
1422 and/or eliminations. Build the corresponding insns_need_reload list, and
1423 set something_needs_elimination as appropriate. */
1424 static void
1425 calculate_needs_all_insns (int global)
1426 {
1427 struct insn_chain **pprev_reload = &insns_need_reload;
1428 struct insn_chain *chain, *next = 0;
1429
1430 something_needs_elimination = 0;
1431
1432 reload_insn_firstobj = XOBNEWVAR (&reload_obstack, char, 0);
1433 for (chain = reload_insn_chain; chain != 0; chain = next)
1434 {
1435 rtx_insn *insn = chain->insn;
1436
1437 next = chain->next;
1438
1439 /* Clear out the shortcuts. */
1440 chain->n_reloads = 0;
1441 chain->need_elim = 0;
1442 chain->need_reload = 0;
1443 chain->need_operand_change = 0;
1444
1445 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1446 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1447 what effects this has on the known offsets at labels. */
1448
1449 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1450 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1451 set_label_offsets (insn, insn, 0);
1452
1453 if (INSN_P (insn))
1454 {
1455 rtx old_body = PATTERN (insn);
1456 int old_code = INSN_CODE (insn);
1457 rtx old_notes = REG_NOTES (insn);
1458 int did_elimination = 0;
1459 int operands_changed = 0;
1460
1461 /* Skip insns that only set an equivalence. */
1462 if (will_delete_init_insn_p (insn))
1463 continue;
1464
1465 /* If needed, eliminate any eliminable registers. */
1466 if (num_eliminable || num_eliminable_invariants)
1467 did_elimination = eliminate_regs_in_insn (insn, 0);
1468
1469 /* Analyze the instruction. */
1470 operands_changed = find_reloads (insn, 0, spill_indirect_levels,
1471 global, spill_reg_order);
1472
1473 /* If a no-op set needs more than one reload, this is likely
1474 to be something that needs input address reloads. We
1475 can't get rid of this cleanly later, and it is of no use
1476 anyway, so discard it now.
1477 We only do this when expensive_optimizations is enabled,
1478 since this complements reload inheritance / output
1479 reload deletion, and it can make debugging harder. */
1480 if (flag_expensive_optimizations && n_reloads > 1)
1481 {
1482 rtx set = single_set (insn);
1483 if (set
1484 &&
1485 ((SET_SRC (set) == SET_DEST (set)
1486 && REG_P (SET_SRC (set))
1487 && REGNO (SET_SRC (set)) >= FIRST_PSEUDO_REGISTER)
1488 || (REG_P (SET_SRC (set)) && REG_P (SET_DEST (set))
1489 && reg_renumber[REGNO (SET_SRC (set))] < 0
1490 && reg_renumber[REGNO (SET_DEST (set))] < 0
1491 && reg_equiv_memory_loc (REGNO (SET_SRC (set))) != NULL
1492 && reg_equiv_memory_loc (REGNO (SET_DEST (set))) != NULL
1493 && rtx_equal_p (reg_equiv_memory_loc (REGNO (SET_SRC (set))),
1494 reg_equiv_memory_loc (REGNO (SET_DEST (set)))))))
1495 {
1496 if (ira_conflicts_p)
1497 /* Inform IRA about the insn deletion. */
1498 ira_mark_memory_move_deletion (REGNO (SET_DEST (set)),
1499 REGNO (SET_SRC (set)));
1500 delete_insn (insn);
1501 /* Delete it from the reload chain. */
1502 if (chain->prev)
1503 chain->prev->next = next;
1504 else
1505 reload_insn_chain = next;
1506 if (next)
1507 next->prev = chain->prev;
1508 chain->next = unused_insn_chains;
1509 unused_insn_chains = chain;
1510 continue;
1511 }
1512 }
1513 if (num_eliminable)
1514 update_eliminable_offsets ();
1515
1516 /* Remember for later shortcuts which insns had any reloads or
1517 register eliminations. */
1518 chain->need_elim = did_elimination;
1519 chain->need_reload = n_reloads > 0;
1520 chain->need_operand_change = operands_changed;
1521
1522 /* Discard any register replacements done. */
1523 if (did_elimination)
1524 {
1525 obstack_free (&reload_obstack, reload_insn_firstobj);
1526 PATTERN (insn) = old_body;
1527 INSN_CODE (insn) = old_code;
1528 REG_NOTES (insn) = old_notes;
1529 something_needs_elimination = 1;
1530 }
1531
1532 something_needs_operands_changed |= operands_changed;
1533
1534 if (n_reloads != 0)
1535 {
1536 copy_reloads (chain);
1537 *pprev_reload = chain;
1538 pprev_reload = &chain->next_need_reload;
1539 }
1540 }
1541 }
1542 *pprev_reload = 0;
1543 }
1544 \f
1545 /* This function is called from the register allocator to set up estimates
1546 for the cost of eliminating pseudos which have REG_EQUIV equivalences to
1547 an invariant. The structure is similar to calculate_needs_all_insns. */
1548
1549 void
1550 calculate_elim_costs_all_insns (void)
1551 {
1552 int *reg_equiv_init_cost;
1553 basic_block bb;
1554 int i;
1555
1556 reg_equiv_init_cost = XCNEWVEC (int, max_regno);
1557 init_elim_table ();
1558 init_eliminable_invariants (get_insns (), false);
1559
1560 set_initial_elim_offsets ();
1561 set_initial_label_offsets ();
1562
1563 FOR_EACH_BB_FN (bb, cfun)
1564 {
1565 rtx_insn *insn;
1566 elim_bb = bb;
1567
1568 FOR_BB_INSNS (bb, insn)
1569 {
1570 /* If this is a label, a JUMP_INSN, or has REG_NOTES (which might
1571 include REG_LABEL_OPERAND and REG_LABEL_TARGET), we need to see
1572 what effects this has on the known offsets at labels. */
1573
1574 if (LABEL_P (insn) || JUMP_P (insn) || JUMP_TABLE_DATA_P (insn)
1575 || (INSN_P (insn) && REG_NOTES (insn) != 0))
1576 set_label_offsets (insn, insn, 0);
1577
1578 if (INSN_P (insn))
1579 {
1580 rtx set = single_set (insn);
1581
1582 /* Skip insns that only set an equivalence. */
1583 if (set && REG_P (SET_DEST (set))
1584 && reg_renumber[REGNO (SET_DEST (set))] < 0
1585 && (reg_equiv_constant (REGNO (SET_DEST (set)))
1586 || reg_equiv_invariant (REGNO (SET_DEST (set)))))
1587 {
1588 unsigned regno = REGNO (SET_DEST (set));
1589 rtx_insn_list *init = reg_equiv_init (regno);
1590 if (init)
1591 {
1592 rtx t = eliminate_regs_1 (SET_SRC (set), VOIDmode, insn,
1593 false, true);
1594 machine_mode mode = GET_MODE (SET_DEST (set));
1595 int cost = set_src_cost (t, mode,
1596 optimize_bb_for_speed_p (bb));
1597 int freq = REG_FREQ_FROM_BB (bb);
1598
1599 reg_equiv_init_cost[regno] = cost * freq;
1600 continue;
1601 }
1602 }
1603 /* If needed, eliminate any eliminable registers. */
1604 if (num_eliminable || num_eliminable_invariants)
1605 elimination_costs_in_insn (insn);
1606
1607 if (num_eliminable)
1608 update_eliminable_offsets ();
1609 }
1610 }
1611 }
1612 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
1613 {
1614 if (reg_equiv_invariant (i))
1615 {
1616 if (reg_equiv_init (i))
1617 {
1618 int cost = reg_equiv_init_cost[i];
1619 if (dump_file)
1620 fprintf (dump_file,
1621 "Reg %d has equivalence, initial gains %d\n", i, cost);
1622 if (cost != 0)
1623 ira_adjust_equiv_reg_cost (i, cost);
1624 }
1625 else
1626 {
1627 if (dump_file)
1628 fprintf (dump_file,
1629 "Reg %d had equivalence, but can't be eliminated\n",
1630 i);
1631 ira_adjust_equiv_reg_cost (i, 0);
1632 }
1633 }
1634 }
1635
1636 free (reg_equiv_init_cost);
1637 free (offsets_known_at);
1638 free (offsets_at);
1639 offsets_at = NULL;
1640 offsets_known_at = NULL;
1641 }
1642 \f
1643 /* Comparison function for qsort to decide which of two reloads
1644 should be handled first. *P1 and *P2 are the reload numbers. */
1645
1646 static int
1647 reload_reg_class_lower (const void *r1p, const void *r2p)
1648 {
1649 int r1 = *(const short *) r1p, r2 = *(const short *) r2p;
1650 int t;
1651
1652 /* Consider required reloads before optional ones. */
1653 t = rld[r1].optional - rld[r2].optional;
1654 if (t != 0)
1655 return t;
1656
1657 /* Count all solitary classes before non-solitary ones. */
1658 t = ((reg_class_size[(int) rld[r2].rclass] == 1)
1659 - (reg_class_size[(int) rld[r1].rclass] == 1));
1660 if (t != 0)
1661 return t;
1662
1663 /* Aside from solitaires, consider all multi-reg groups first. */
1664 t = rld[r2].nregs - rld[r1].nregs;
1665 if (t != 0)
1666 return t;
1667
1668 /* Consider reloads in order of increasing reg-class number. */
1669 t = (int) rld[r1].rclass - (int) rld[r2].rclass;
1670 if (t != 0)
1671 return t;
1672
1673 /* If reloads are equally urgent, sort by reload number,
1674 so that the results of qsort leave nothing to chance. */
1675 return r1 - r2;
1676 }
1677 \f
1678 /* The cost of spilling each hard reg. */
1679 static int spill_cost[FIRST_PSEUDO_REGISTER];
1680
1681 /* When spilling multiple hard registers, we use SPILL_COST for the first
1682 spilled hard reg and SPILL_ADD_COST for subsequent regs. SPILL_ADD_COST
1683 only the first hard reg for a multi-reg pseudo. */
1684 static int spill_add_cost[FIRST_PSEUDO_REGISTER];
1685
1686 /* Map of hard regno to pseudo regno currently occupying the hard
1687 reg. */
1688 static int hard_regno_to_pseudo_regno[FIRST_PSEUDO_REGISTER];
1689
1690 /* Update the spill cost arrays, considering that pseudo REG is live. */
1691
1692 static void
1693 count_pseudo (int reg)
1694 {
1695 int freq = REG_FREQ (reg);
1696 int r = reg_renumber[reg];
1697 int nregs;
1698
1699 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1700 if (ira_conflicts_p && r < 0)
1701 return;
1702
1703 if (REGNO_REG_SET_P (&pseudos_counted, reg)
1704 || REGNO_REG_SET_P (&spilled_pseudos, reg))
1705 return;
1706
1707 SET_REGNO_REG_SET (&pseudos_counted, reg);
1708
1709 gcc_assert (r >= 0);
1710
1711 spill_add_cost[r] += freq;
1712 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1713 while (nregs-- > 0)
1714 {
1715 hard_regno_to_pseudo_regno[r + nregs] = reg;
1716 spill_cost[r + nregs] += freq;
1717 }
1718 }
1719
1720 /* Calculate the SPILL_COST and SPILL_ADD_COST arrays and determine the
1721 contents of BAD_SPILL_REGS for the insn described by CHAIN. */
1722
1723 static void
1724 order_regs_for_reload (struct insn_chain *chain)
1725 {
1726 unsigned i;
1727 HARD_REG_SET used_by_pseudos;
1728 HARD_REG_SET used_by_pseudos2;
1729 reg_set_iterator rsi;
1730
1731 COPY_HARD_REG_SET (bad_spill_regs, fixed_reg_set);
1732
1733 memset (spill_cost, 0, sizeof spill_cost);
1734 memset (spill_add_cost, 0, sizeof spill_add_cost);
1735 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1736 hard_regno_to_pseudo_regno[i] = -1;
1737
1738 /* Count number of uses of each hard reg by pseudo regs allocated to it
1739 and then order them by decreasing use. First exclude hard registers
1740 that are live in or across this insn. */
1741
1742 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
1743 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
1744 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos);
1745 IOR_HARD_REG_SET (bad_spill_regs, used_by_pseudos2);
1746
1747 /* Now find out which pseudos are allocated to it, and update
1748 hard_reg_n_uses. */
1749 CLEAR_REG_SET (&pseudos_counted);
1750
1751 EXECUTE_IF_SET_IN_REG_SET
1752 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
1753 {
1754 count_pseudo (i);
1755 }
1756 EXECUTE_IF_SET_IN_REG_SET
1757 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
1758 {
1759 count_pseudo (i);
1760 }
1761 CLEAR_REG_SET (&pseudos_counted);
1762 }
1763 \f
1764 /* Vector of reload-numbers showing the order in which the reloads should
1765 be processed. */
1766 static short reload_order[MAX_RELOADS];
1767
1768 /* This is used to keep track of the spill regs used in one insn. */
1769 static HARD_REG_SET used_spill_regs_local;
1770
1771 /* We decided to spill hard register SPILLED, which has a size of
1772 SPILLED_NREGS. Determine how pseudo REG, which is live during the insn,
1773 is affected. We will add it to SPILLED_PSEUDOS if necessary, and we will
1774 update SPILL_COST/SPILL_ADD_COST. */
1775
1776 static void
1777 count_spilled_pseudo (int spilled, int spilled_nregs, int reg)
1778 {
1779 int freq = REG_FREQ (reg);
1780 int r = reg_renumber[reg];
1781 int nregs;
1782
1783 /* Ignore spilled pseudo-registers which can be here only if IRA is used. */
1784 if (ira_conflicts_p && r < 0)
1785 return;
1786
1787 gcc_assert (r >= 0);
1788
1789 nregs = hard_regno_nregs (r, PSEUDO_REGNO_MODE (reg));
1790
1791 if (REGNO_REG_SET_P (&spilled_pseudos, reg)
1792 || spilled + spilled_nregs <= r || r + nregs <= spilled)
1793 return;
1794
1795 SET_REGNO_REG_SET (&spilled_pseudos, reg);
1796
1797 spill_add_cost[r] -= freq;
1798 while (nregs-- > 0)
1799 {
1800 hard_regno_to_pseudo_regno[r + nregs] = -1;
1801 spill_cost[r + nregs] -= freq;
1802 }
1803 }
1804
1805 /* Find reload register to use for reload number ORDER. */
1806
1807 static int
1808 find_reg (struct insn_chain *chain, int order)
1809 {
1810 int rnum = reload_order[order];
1811 struct reload *rl = rld + rnum;
1812 int best_cost = INT_MAX;
1813 int best_reg = -1;
1814 unsigned int i, j, n;
1815 int k;
1816 HARD_REG_SET not_usable;
1817 HARD_REG_SET used_by_other_reload;
1818 reg_set_iterator rsi;
1819 static int regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1820 static int best_regno_pseudo_regs[FIRST_PSEUDO_REGISTER];
1821
1822 COPY_HARD_REG_SET (not_usable, bad_spill_regs);
1823 IOR_HARD_REG_SET (not_usable, bad_spill_regs_global);
1824 IOR_COMPL_HARD_REG_SET (not_usable, reg_class_contents[rl->rclass]);
1825
1826 CLEAR_HARD_REG_SET (used_by_other_reload);
1827 for (k = 0; k < order; k++)
1828 {
1829 int other = reload_order[k];
1830
1831 if (rld[other].regno >= 0 && reloads_conflict (other, rnum))
1832 for (j = 0; j < rld[other].nregs; j++)
1833 SET_HARD_REG_BIT (used_by_other_reload, rld[other].regno + j);
1834 }
1835
1836 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1837 {
1838 #ifdef REG_ALLOC_ORDER
1839 unsigned int regno = reg_alloc_order[i];
1840 #else
1841 unsigned int regno = i;
1842 #endif
1843
1844 if (! TEST_HARD_REG_BIT (not_usable, regno)
1845 && ! TEST_HARD_REG_BIT (used_by_other_reload, regno)
1846 && targetm.hard_regno_mode_ok (regno, rl->mode))
1847 {
1848 int this_cost = spill_cost[regno];
1849 int ok = 1;
1850 unsigned int this_nregs = hard_regno_nregs (regno, rl->mode);
1851
1852 for (j = 1; j < this_nregs; j++)
1853 {
1854 this_cost += spill_add_cost[regno + j];
1855 if ((TEST_HARD_REG_BIT (not_usable, regno + j))
1856 || TEST_HARD_REG_BIT (used_by_other_reload, regno + j))
1857 ok = 0;
1858 }
1859 if (! ok)
1860 continue;
1861
1862 if (ira_conflicts_p)
1863 {
1864 /* Ask IRA to find a better pseudo-register for
1865 spilling. */
1866 for (n = j = 0; j < this_nregs; j++)
1867 {
1868 int r = hard_regno_to_pseudo_regno[regno + j];
1869
1870 if (r < 0)
1871 continue;
1872 if (n == 0 || regno_pseudo_regs[n - 1] != r)
1873 regno_pseudo_regs[n++] = r;
1874 }
1875 regno_pseudo_regs[n++] = -1;
1876 if (best_reg < 0
1877 || ira_better_spill_reload_regno_p (regno_pseudo_regs,
1878 best_regno_pseudo_regs,
1879 rl->in, rl->out,
1880 chain->insn))
1881 {
1882 best_reg = regno;
1883 for (j = 0;; j++)
1884 {
1885 best_regno_pseudo_regs[j] = regno_pseudo_regs[j];
1886 if (regno_pseudo_regs[j] < 0)
1887 break;
1888 }
1889 }
1890 continue;
1891 }
1892
1893 if (rl->in && REG_P (rl->in) && REGNO (rl->in) == regno)
1894 this_cost--;
1895 if (rl->out && REG_P (rl->out) && REGNO (rl->out) == regno)
1896 this_cost--;
1897 if (this_cost < best_cost
1898 /* Among registers with equal cost, prefer caller-saved ones, or
1899 use REG_ALLOC_ORDER if it is defined. */
1900 || (this_cost == best_cost
1901 #ifdef REG_ALLOC_ORDER
1902 && (inv_reg_alloc_order[regno]
1903 < inv_reg_alloc_order[best_reg])
1904 #else
1905 && call_used_regs[regno]
1906 && ! call_used_regs[best_reg]
1907 #endif
1908 ))
1909 {
1910 best_reg = regno;
1911 best_cost = this_cost;
1912 }
1913 }
1914 }
1915 if (best_reg == -1)
1916 return 0;
1917
1918 if (dump_file)
1919 fprintf (dump_file, "Using reg %d for reload %d\n", best_reg, rnum);
1920
1921 rl->nregs = hard_regno_nregs (best_reg, rl->mode);
1922 rl->regno = best_reg;
1923
1924 EXECUTE_IF_SET_IN_REG_SET
1925 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, j, rsi)
1926 {
1927 count_spilled_pseudo (best_reg, rl->nregs, j);
1928 }
1929
1930 EXECUTE_IF_SET_IN_REG_SET
1931 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, j, rsi)
1932 {
1933 count_spilled_pseudo (best_reg, rl->nregs, j);
1934 }
1935
1936 for (i = 0; i < rl->nregs; i++)
1937 {
1938 gcc_assert (spill_cost[best_reg + i] == 0);
1939 gcc_assert (spill_add_cost[best_reg + i] == 0);
1940 gcc_assert (hard_regno_to_pseudo_regno[best_reg + i] == -1);
1941 SET_HARD_REG_BIT (used_spill_regs_local, best_reg + i);
1942 }
1943 return 1;
1944 }
1945
1946 /* Find more reload regs to satisfy the remaining need of an insn, which
1947 is given by CHAIN.
1948 Do it by ascending class number, since otherwise a reg
1949 might be spilled for a big class and might fail to count
1950 for a smaller class even though it belongs to that class. */
1951
1952 static void
1953 find_reload_regs (struct insn_chain *chain)
1954 {
1955 int i;
1956
1957 /* In order to be certain of getting the registers we need,
1958 we must sort the reloads into order of increasing register class.
1959 Then our grabbing of reload registers will parallel the process
1960 that provided the reload registers. */
1961 for (i = 0; i < chain->n_reloads; i++)
1962 {
1963 /* Show whether this reload already has a hard reg. */
1964 if (chain->rld[i].reg_rtx)
1965 {
1966 chain->rld[i].regno = REGNO (chain->rld[i].reg_rtx);
1967 chain->rld[i].nregs = REG_NREGS (chain->rld[i].reg_rtx);
1968 }
1969 else
1970 chain->rld[i].regno = -1;
1971 reload_order[i] = i;
1972 }
1973
1974 n_reloads = chain->n_reloads;
1975 memcpy (rld, chain->rld, n_reloads * sizeof (struct reload));
1976
1977 CLEAR_HARD_REG_SET (used_spill_regs_local);
1978
1979 if (dump_file)
1980 fprintf (dump_file, "Spilling for insn %d.\n", INSN_UID (chain->insn));
1981
1982 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
1983
1984 /* Compute the order of preference for hard registers to spill. */
1985
1986 order_regs_for_reload (chain);
1987
1988 for (i = 0; i < n_reloads; i++)
1989 {
1990 int r = reload_order[i];
1991
1992 /* Ignore reloads that got marked inoperative. */
1993 if ((rld[r].out != 0 || rld[r].in != 0 || rld[r].secondary_p)
1994 && ! rld[r].optional
1995 && rld[r].regno == -1)
1996 if (! find_reg (chain, i))
1997 {
1998 if (dump_file)
1999 fprintf (dump_file, "reload failure for reload %d\n", r);
2000 spill_failure (chain->insn, rld[r].rclass);
2001 failure = 1;
2002 return;
2003 }
2004 }
2005
2006 COPY_HARD_REG_SET (chain->used_spill_regs, used_spill_regs_local);
2007 IOR_HARD_REG_SET (used_spill_regs, used_spill_regs_local);
2008
2009 memcpy (chain->rld, rld, n_reloads * sizeof (struct reload));
2010 }
2011
2012 static void
2013 select_reload_regs (void)
2014 {
2015 struct insn_chain *chain;
2016
2017 /* Try to satisfy the needs for each insn. */
2018 for (chain = insns_need_reload; chain != 0;
2019 chain = chain->next_need_reload)
2020 find_reload_regs (chain);
2021 }
2022 \f
2023 /* Delete all insns that were inserted by emit_caller_save_insns during
2024 this iteration. */
2025 static void
2026 delete_caller_save_insns (void)
2027 {
2028 struct insn_chain *c = reload_insn_chain;
2029
2030 while (c != 0)
2031 {
2032 while (c != 0 && c->is_caller_save_insn)
2033 {
2034 struct insn_chain *next = c->next;
2035 rtx_insn *insn = c->insn;
2036
2037 if (c == reload_insn_chain)
2038 reload_insn_chain = next;
2039 delete_insn (insn);
2040
2041 if (next)
2042 next->prev = c->prev;
2043 if (c->prev)
2044 c->prev->next = next;
2045 c->next = unused_insn_chains;
2046 unused_insn_chains = c;
2047 c = next;
2048 }
2049 if (c != 0)
2050 c = c->next;
2051 }
2052 }
2053 \f
2054 /* Handle the failure to find a register to spill.
2055 INSN should be one of the insns which needed this particular spill reg. */
2056
2057 static void
2058 spill_failure (rtx_insn *insn, enum reg_class rclass)
2059 {
2060 if (asm_noperands (PATTERN (insn)) >= 0)
2061 error_for_asm (insn, "can%'t find a register in class %qs while "
2062 "reloading %<asm%>",
2063 reg_class_names[rclass]);
2064 else
2065 {
2066 error ("unable to find a register to spill in class %qs",
2067 reg_class_names[rclass]);
2068
2069 if (dump_file)
2070 {
2071 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
2072 debug_reload_to_stream (dump_file);
2073 }
2074 fatal_insn ("this is the insn:", insn);
2075 }
2076 }
2077 \f
2078 /* Delete an unneeded INSN and any previous insns who sole purpose is loading
2079 data that is dead in INSN. */
2080
2081 static void
2082 delete_dead_insn (rtx_insn *insn)
2083 {
2084 rtx_insn *prev = prev_active_insn (insn);
2085 rtx prev_dest;
2086
2087 /* If the previous insn sets a register that dies in our insn make
2088 a note that we want to run DCE immediately after reload.
2089
2090 We used to delete the previous insn & recurse, but that's wrong for
2091 block local equivalences. Instead of trying to figure out the exact
2092 circumstances where we can delete the potentially dead insns, just
2093 let DCE do the job. */
2094 if (prev && BLOCK_FOR_INSN (prev) == BLOCK_FOR_INSN (insn)
2095 && GET_CODE (PATTERN (prev)) == SET
2096 && (prev_dest = SET_DEST (PATTERN (prev)), REG_P (prev_dest))
2097 && reg_mentioned_p (prev_dest, PATTERN (insn))
2098 && find_regno_note (insn, REG_DEAD, REGNO (prev_dest))
2099 && ! side_effects_p (SET_SRC (PATTERN (prev))))
2100 need_dce = 1;
2101
2102 SET_INSN_DELETED (insn);
2103 }
2104
2105 /* Modify the home of pseudo-reg I.
2106 The new home is present in reg_renumber[I].
2107
2108 FROM_REG may be the hard reg that the pseudo-reg is being spilled from;
2109 or it may be -1, meaning there is none or it is not relevant.
2110 This is used so that all pseudos spilled from a given hard reg
2111 can share one stack slot. */
2112
2113 static void
2114 alter_reg (int i, int from_reg, bool dont_share_p)
2115 {
2116 /* When outputting an inline function, this can happen
2117 for a reg that isn't actually used. */
2118 if (regno_reg_rtx[i] == 0)
2119 return;
2120
2121 /* If the reg got changed to a MEM at rtl-generation time,
2122 ignore it. */
2123 if (!REG_P (regno_reg_rtx[i]))
2124 return;
2125
2126 /* Modify the reg-rtx to contain the new hard reg
2127 number or else to contain its pseudo reg number. */
2128 SET_REGNO (regno_reg_rtx[i],
2129 reg_renumber[i] >= 0 ? reg_renumber[i] : i);
2130
2131 /* If we have a pseudo that is needed but has no hard reg or equivalent,
2132 allocate a stack slot for it. */
2133
2134 if (reg_renumber[i] < 0
2135 && REG_N_REFS (i) > 0
2136 && reg_equiv_constant (i) == 0
2137 && (reg_equiv_invariant (i) == 0
2138 || reg_equiv_init (i) == 0)
2139 && reg_equiv_memory_loc (i) == 0)
2140 {
2141 rtx x = NULL_RTX;
2142 machine_mode mode = GET_MODE (regno_reg_rtx[i]);
2143 unsigned int inherent_size = PSEUDO_REGNO_BYTES (i);
2144 unsigned int inherent_align = GET_MODE_ALIGNMENT (mode);
2145 machine_mode wider_mode = wider_subreg_mode (mode, reg_max_ref_mode[i]);
2146 unsigned int total_size = GET_MODE_SIZE (wider_mode);
2147 unsigned int min_align = GET_MODE_BITSIZE (reg_max_ref_mode[i]);
2148 int adjust = 0;
2149
2150 something_was_spilled = true;
2151
2152 if (ira_conflicts_p)
2153 {
2154 /* Mark the spill for IRA. */
2155 SET_REGNO_REG_SET (&spilled_pseudos, i);
2156 if (!dont_share_p)
2157 x = ira_reuse_stack_slot (i, inherent_size, total_size);
2158 }
2159
2160 if (x)
2161 ;
2162
2163 /* Each pseudo reg has an inherent size which comes from its own mode,
2164 and a total size which provides room for paradoxical subregs
2165 which refer to the pseudo reg in wider modes.
2166
2167 We can use a slot already allocated if it provides both
2168 enough inherent space and enough total space.
2169 Otherwise, we allocate a new slot, making sure that it has no less
2170 inherent space, and no less total space, then the previous slot. */
2171 else if (from_reg == -1 || (!dont_share_p && ira_conflicts_p))
2172 {
2173 rtx stack_slot;
2174
2175 /* No known place to spill from => no slot to reuse. */
2176 x = assign_stack_local (mode, total_size,
2177 min_align > inherent_align
2178 || total_size > inherent_size ? -1 : 0);
2179
2180 stack_slot = x;
2181
2182 /* Cancel the big-endian correction done in assign_stack_local.
2183 Get the address of the beginning of the slot. This is so we
2184 can do a big-endian correction unconditionally below. */
2185 if (BYTES_BIG_ENDIAN)
2186 {
2187 adjust = inherent_size - total_size;
2188 if (adjust)
2189 {
2190 unsigned int total_bits = total_size * BITS_PER_UNIT;
2191 machine_mode mem_mode
2192 = int_mode_for_size (total_bits, 1).else_blk ();
2193 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2194 }
2195 }
2196
2197 if (! dont_share_p && ira_conflicts_p)
2198 /* Inform IRA about allocation a new stack slot. */
2199 ira_mark_new_stack_slot (stack_slot, i, total_size);
2200 }
2201
2202 /* Reuse a stack slot if possible. */
2203 else if (spill_stack_slot[from_reg] != 0
2204 && spill_stack_slot_width[from_reg] >= total_size
2205 && (GET_MODE_SIZE (GET_MODE (spill_stack_slot[from_reg]))
2206 >= inherent_size)
2207 && MEM_ALIGN (spill_stack_slot[from_reg]) >= min_align)
2208 x = spill_stack_slot[from_reg];
2209
2210 /* Allocate a bigger slot. */
2211 else
2212 {
2213 /* Compute maximum size needed, both for inherent size
2214 and for total size. */
2215 rtx stack_slot;
2216
2217 if (spill_stack_slot[from_reg])
2218 {
2219 if (partial_subreg_p (mode,
2220 GET_MODE (spill_stack_slot[from_reg])))
2221 mode = GET_MODE (spill_stack_slot[from_reg]);
2222 if (spill_stack_slot_width[from_reg] > total_size)
2223 total_size = spill_stack_slot_width[from_reg];
2224 if (MEM_ALIGN (spill_stack_slot[from_reg]) > min_align)
2225 min_align = MEM_ALIGN (spill_stack_slot[from_reg]);
2226 }
2227
2228 /* Make a slot with that size. */
2229 x = assign_stack_local (mode, total_size,
2230 min_align > inherent_align
2231 || total_size > inherent_size ? -1 : 0);
2232 stack_slot = x;
2233
2234 /* Cancel the big-endian correction done in assign_stack_local.
2235 Get the address of the beginning of the slot. This is so we
2236 can do a big-endian correction unconditionally below. */
2237 if (BYTES_BIG_ENDIAN)
2238 {
2239 adjust = GET_MODE_SIZE (mode) - total_size;
2240 if (adjust)
2241 {
2242 unsigned int total_bits = total_size * BITS_PER_UNIT;
2243 machine_mode mem_mode
2244 = int_mode_for_size (total_bits, 1).else_blk ();
2245 stack_slot = adjust_address_nv (x, mem_mode, adjust);
2246 }
2247 }
2248
2249 spill_stack_slot[from_reg] = stack_slot;
2250 spill_stack_slot_width[from_reg] = total_size;
2251 }
2252
2253 /* On a big endian machine, the "address" of the slot
2254 is the address of the low part that fits its inherent mode. */
2255 adjust += subreg_size_lowpart_offset (inherent_size, total_size);
2256
2257 /* If we have any adjustment to make, or if the stack slot is the
2258 wrong mode, make a new stack slot. */
2259 x = adjust_address_nv (x, GET_MODE (regno_reg_rtx[i]), adjust);
2260
2261 /* Set all of the memory attributes as appropriate for a spill. */
2262 set_mem_attrs_for_spill (x);
2263
2264 /* Save the stack slot for later. */
2265 reg_equiv_memory_loc (i) = x;
2266 }
2267 }
2268
2269 /* Mark the slots in regs_ever_live for the hard regs used by
2270 pseudo-reg number REGNO, accessed in MODE. */
2271
2272 static void
2273 mark_home_live_1 (int regno, machine_mode mode)
2274 {
2275 int i, lim;
2276
2277 i = reg_renumber[regno];
2278 if (i < 0)
2279 return;
2280 lim = end_hard_regno (mode, i);
2281 while (i < lim)
2282 df_set_regs_ever_live (i++, true);
2283 }
2284
2285 /* Mark the slots in regs_ever_live for the hard regs
2286 used by pseudo-reg number REGNO. */
2287
2288 void
2289 mark_home_live (int regno)
2290 {
2291 if (reg_renumber[regno] >= 0)
2292 mark_home_live_1 (regno, PSEUDO_REGNO_MODE (regno));
2293 }
2294 \f
2295 /* This function handles the tracking of elimination offsets around branches.
2296
2297 X is a piece of RTL being scanned.
2298
2299 INSN is the insn that it came from, if any.
2300
2301 INITIAL_P is nonzero if we are to set the offset to be the initial
2302 offset and zero if we are setting the offset of the label to be the
2303 current offset. */
2304
2305 static void
2306 set_label_offsets (rtx x, rtx_insn *insn, int initial_p)
2307 {
2308 enum rtx_code code = GET_CODE (x);
2309 rtx tem;
2310 unsigned int i;
2311 struct elim_table *p;
2312
2313 switch (code)
2314 {
2315 case LABEL_REF:
2316 if (LABEL_REF_NONLOCAL_P (x))
2317 return;
2318
2319 x = label_ref_label (x);
2320
2321 /* fall through */
2322
2323 case CODE_LABEL:
2324 /* If we know nothing about this label, set the desired offsets. Note
2325 that this sets the offset at a label to be the offset before a label
2326 if we don't know anything about the label. This is not correct for
2327 the label after a BARRIER, but is the best guess we can make. If
2328 we guessed wrong, we will suppress an elimination that might have
2329 been possible had we been able to guess correctly. */
2330
2331 if (! offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num])
2332 {
2333 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2334 offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2335 = (initial_p ? reg_eliminate[i].initial_offset
2336 : reg_eliminate[i].offset);
2337 offsets_known_at[CODE_LABEL_NUMBER (x) - first_label_num] = 1;
2338 }
2339
2340 /* Otherwise, if this is the definition of a label and it is
2341 preceded by a BARRIER, set our offsets to the known offset of
2342 that label. */
2343
2344 else if (x == insn
2345 && (tem = prev_nonnote_insn (insn)) != 0
2346 && BARRIER_P (tem))
2347 set_offsets_for_label (insn);
2348 else
2349 /* If neither of the above cases is true, compare each offset
2350 with those previously recorded and suppress any eliminations
2351 where the offsets disagree. */
2352
2353 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
2354 if (offsets_at[CODE_LABEL_NUMBER (x) - first_label_num][i]
2355 != (initial_p ? reg_eliminate[i].initial_offset
2356 : reg_eliminate[i].offset))
2357 reg_eliminate[i].can_eliminate = 0;
2358
2359 return;
2360
2361 case JUMP_TABLE_DATA:
2362 set_label_offsets (PATTERN (insn), insn, initial_p);
2363 return;
2364
2365 case JUMP_INSN:
2366 set_label_offsets (PATTERN (insn), insn, initial_p);
2367
2368 /* fall through */
2369
2370 case INSN:
2371 case CALL_INSN:
2372 /* Any labels mentioned in REG_LABEL_OPERAND notes can be branched
2373 to indirectly and hence must have all eliminations at their
2374 initial offsets. */
2375 for (tem = REG_NOTES (x); tem; tem = XEXP (tem, 1))
2376 if (REG_NOTE_KIND (tem) == REG_LABEL_OPERAND)
2377 set_label_offsets (XEXP (tem, 0), insn, 1);
2378 return;
2379
2380 case PARALLEL:
2381 case ADDR_VEC:
2382 case ADDR_DIFF_VEC:
2383 /* Each of the labels in the parallel or address vector must be
2384 at their initial offsets. We want the first field for PARALLEL
2385 and ADDR_VEC and the second field for ADDR_DIFF_VEC. */
2386
2387 for (i = 0; i < (unsigned) XVECLEN (x, code == ADDR_DIFF_VEC); i++)
2388 set_label_offsets (XVECEXP (x, code == ADDR_DIFF_VEC, i),
2389 insn, initial_p);
2390 return;
2391
2392 case SET:
2393 /* We only care about setting PC. If the source is not RETURN,
2394 IF_THEN_ELSE, or a label, disable any eliminations not at
2395 their initial offsets. Similarly if any arm of the IF_THEN_ELSE
2396 isn't one of those possibilities. For branches to a label,
2397 call ourselves recursively.
2398
2399 Note that this can disable elimination unnecessarily when we have
2400 a non-local goto since it will look like a non-constant jump to
2401 someplace in the current function. This isn't a significant
2402 problem since such jumps will normally be when all elimination
2403 pairs are back to their initial offsets. */
2404
2405 if (SET_DEST (x) != pc_rtx)
2406 return;
2407
2408 switch (GET_CODE (SET_SRC (x)))
2409 {
2410 case PC:
2411 case RETURN:
2412 return;
2413
2414 case LABEL_REF:
2415 set_label_offsets (SET_SRC (x), insn, initial_p);
2416 return;
2417
2418 case IF_THEN_ELSE:
2419 tem = XEXP (SET_SRC (x), 1);
2420 if (GET_CODE (tem) == LABEL_REF)
2421 set_label_offsets (label_ref_label (tem), insn, initial_p);
2422 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2423 break;
2424
2425 tem = XEXP (SET_SRC (x), 2);
2426 if (GET_CODE (tem) == LABEL_REF)
2427 set_label_offsets (label_ref_label (tem), insn, initial_p);
2428 else if (GET_CODE (tem) != PC && GET_CODE (tem) != RETURN)
2429 break;
2430 return;
2431
2432 default:
2433 break;
2434 }
2435
2436 /* If we reach here, all eliminations must be at their initial
2437 offset because we are doing a jump to a variable address. */
2438 for (p = reg_eliminate; p < &reg_eliminate[NUM_ELIMINABLE_REGS]; p++)
2439 if (p->offset != p->initial_offset)
2440 p->can_eliminate = 0;
2441 break;
2442
2443 default:
2444 break;
2445 }
2446 }
2447 \f
2448 /* This function examines every reg that occurs in X and adjusts the
2449 costs for its elimination which are gathered by IRA. INSN is the
2450 insn in which X occurs. We do not recurse into MEM expressions. */
2451
2452 static void
2453 note_reg_elim_costly (const_rtx x, rtx insn)
2454 {
2455 subrtx_iterator::array_type array;
2456 FOR_EACH_SUBRTX (iter, array, x, NONCONST)
2457 {
2458 const_rtx x = *iter;
2459 if (MEM_P (x))
2460 iter.skip_subrtxes ();
2461 else if (REG_P (x)
2462 && REGNO (x) >= FIRST_PSEUDO_REGISTER
2463 && reg_equiv_init (REGNO (x))
2464 && reg_equiv_invariant (REGNO (x)))
2465 {
2466 rtx t = reg_equiv_invariant (REGNO (x));
2467 rtx new_rtx = eliminate_regs_1 (t, Pmode, insn, true, true);
2468 int cost = set_src_cost (new_rtx, Pmode,
2469 optimize_bb_for_speed_p (elim_bb));
2470 int freq = REG_FREQ_FROM_BB (elim_bb);
2471
2472 if (cost != 0)
2473 ira_adjust_equiv_reg_cost (REGNO (x), -cost * freq);
2474 }
2475 }
2476 }
2477
2478 /* Scan X and replace any eliminable registers (such as fp) with a
2479 replacement (such as sp), plus an offset.
2480
2481 MEM_MODE is the mode of an enclosing MEM. We need this to know how
2482 much to adjust a register for, e.g., PRE_DEC. Also, if we are inside a
2483 MEM, we are allowed to replace a sum of a register and the constant zero
2484 with the register, which we cannot do outside a MEM. In addition, we need
2485 to record the fact that a register is referenced outside a MEM.
2486
2487 If INSN is an insn, it is the insn containing X. If we replace a REG
2488 in a SET_DEST with an equivalent MEM and INSN is nonzero, write a
2489 CLOBBER of the pseudo after INSN so find_equiv_regs will know that
2490 the REG is being modified.
2491
2492 Alternatively, INSN may be a note (an EXPR_LIST or INSN_LIST).
2493 That's used when we eliminate in expressions stored in notes.
2494 This means, do not set ref_outside_mem even if the reference
2495 is outside of MEMs.
2496
2497 If FOR_COSTS is true, we are being called before reload in order to
2498 estimate the costs of keeping registers with an equivalence unallocated.
2499
2500 REG_EQUIV_MEM and REG_EQUIV_ADDRESS contain address that have had
2501 replacements done assuming all offsets are at their initial values. If
2502 they are not, or if REG_EQUIV_ADDRESS is nonzero for a pseudo we
2503 encounter, return the actual location so that find_reloads will do
2504 the proper thing. */
2505
2506 static rtx
2507 eliminate_regs_1 (rtx x, machine_mode mem_mode, rtx insn,
2508 bool may_use_invariant, bool for_costs)
2509 {
2510 enum rtx_code code = GET_CODE (x);
2511 struct elim_table *ep;
2512 int regno;
2513 rtx new_rtx;
2514 int i, j;
2515 const char *fmt;
2516 int copied = 0;
2517
2518 if (! current_function_decl)
2519 return x;
2520
2521 switch (code)
2522 {
2523 CASE_CONST_ANY:
2524 case CONST:
2525 case SYMBOL_REF:
2526 case CODE_LABEL:
2527 case PC:
2528 case CC0:
2529 case ASM_INPUT:
2530 case ADDR_VEC:
2531 case ADDR_DIFF_VEC:
2532 case RETURN:
2533 return x;
2534
2535 case REG:
2536 regno = REGNO (x);
2537
2538 /* First handle the case where we encounter a bare register that
2539 is eliminable. Replace it with a PLUS. */
2540 if (regno < FIRST_PSEUDO_REGISTER)
2541 {
2542 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2543 ep++)
2544 if (ep->from_rtx == x && ep->can_eliminate)
2545 return plus_constant (Pmode, ep->to_rtx, ep->previous_offset);
2546
2547 }
2548 else if (reg_renumber && reg_renumber[regno] < 0
2549 && reg_equivs
2550 && reg_equiv_invariant (regno))
2551 {
2552 if (may_use_invariant || (insn && DEBUG_INSN_P (insn)))
2553 return eliminate_regs_1 (copy_rtx (reg_equiv_invariant (regno)),
2554 mem_mode, insn, true, for_costs);
2555 /* There exists at least one use of REGNO that cannot be
2556 eliminated. Prevent the defining insn from being deleted. */
2557 reg_equiv_init (regno) = NULL;
2558 if (!for_costs)
2559 alter_reg (regno, -1, true);
2560 }
2561 return x;
2562
2563 /* You might think handling MINUS in a manner similar to PLUS is a
2564 good idea. It is not. It has been tried multiple times and every
2565 time the change has had to have been reverted.
2566
2567 Other parts of reload know a PLUS is special (gen_reload for example)
2568 and require special code to handle code a reloaded PLUS operand.
2569
2570 Also consider backends where the flags register is clobbered by a
2571 MINUS, but we can emit a PLUS that does not clobber flags (IA-32,
2572 lea instruction comes to mind). If we try to reload a MINUS, we
2573 may kill the flags register that was holding a useful value.
2574
2575 So, please before trying to handle MINUS, consider reload as a
2576 whole instead of this little section as well as the backend issues. */
2577 case PLUS:
2578 /* If this is the sum of an eliminable register and a constant, rework
2579 the sum. */
2580 if (REG_P (XEXP (x, 0))
2581 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2582 && CONSTANT_P (XEXP (x, 1)))
2583 {
2584 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2585 ep++)
2586 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2587 {
2588 /* The only time we want to replace a PLUS with a REG (this
2589 occurs when the constant operand of the PLUS is the negative
2590 of the offset) is when we are inside a MEM. We won't want
2591 to do so at other times because that would change the
2592 structure of the insn in a way that reload can't handle.
2593 We special-case the commonest situation in
2594 eliminate_regs_in_insn, so just replace a PLUS with a
2595 PLUS here, unless inside a MEM. */
2596 if (mem_mode != 0 && CONST_INT_P (XEXP (x, 1))
2597 && INTVAL (XEXP (x, 1)) == - ep->previous_offset)
2598 return ep->to_rtx;
2599 else
2600 return gen_rtx_PLUS (Pmode, ep->to_rtx,
2601 plus_constant (Pmode, XEXP (x, 1),
2602 ep->previous_offset));
2603 }
2604
2605 /* If the register is not eliminable, we are done since the other
2606 operand is a constant. */
2607 return x;
2608 }
2609
2610 /* If this is part of an address, we want to bring any constant to the
2611 outermost PLUS. We will do this by doing register replacement in
2612 our operands and seeing if a constant shows up in one of them.
2613
2614 Note that there is no risk of modifying the structure of the insn,
2615 since we only get called for its operands, thus we are either
2616 modifying the address inside a MEM, or something like an address
2617 operand of a load-address insn. */
2618
2619 {
2620 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2621 for_costs);
2622 rtx new1 = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2623 for_costs);
2624
2625 if (reg_renumber && (new0 != XEXP (x, 0) || new1 != XEXP (x, 1)))
2626 {
2627 /* If one side is a PLUS and the other side is a pseudo that
2628 didn't get a hard register but has a reg_equiv_constant,
2629 we must replace the constant here since it may no longer
2630 be in the position of any operand. */
2631 if (GET_CODE (new0) == PLUS && REG_P (new1)
2632 && REGNO (new1) >= FIRST_PSEUDO_REGISTER
2633 && reg_renumber[REGNO (new1)] < 0
2634 && reg_equivs
2635 && reg_equiv_constant (REGNO (new1)) != 0)
2636 new1 = reg_equiv_constant (REGNO (new1));
2637 else if (GET_CODE (new1) == PLUS && REG_P (new0)
2638 && REGNO (new0) >= FIRST_PSEUDO_REGISTER
2639 && reg_renumber[REGNO (new0)] < 0
2640 && reg_equiv_constant (REGNO (new0)) != 0)
2641 new0 = reg_equiv_constant (REGNO (new0));
2642
2643 new_rtx = form_sum (GET_MODE (x), new0, new1);
2644
2645 /* As above, if we are not inside a MEM we do not want to
2646 turn a PLUS into something else. We might try to do so here
2647 for an addition of 0 if we aren't optimizing. */
2648 if (! mem_mode && GET_CODE (new_rtx) != PLUS)
2649 return gen_rtx_PLUS (GET_MODE (x), new_rtx, const0_rtx);
2650 else
2651 return new_rtx;
2652 }
2653 }
2654 return x;
2655
2656 case MULT:
2657 /* If this is the product of an eliminable register and a
2658 constant, apply the distribute law and move the constant out
2659 so that we have (plus (mult ..) ..). This is needed in order
2660 to keep load-address insns valid. This case is pathological.
2661 We ignore the possibility of overflow here. */
2662 if (REG_P (XEXP (x, 0))
2663 && REGNO (XEXP (x, 0)) < FIRST_PSEUDO_REGISTER
2664 && CONST_INT_P (XEXP (x, 1)))
2665 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2666 ep++)
2667 if (ep->from_rtx == XEXP (x, 0) && ep->can_eliminate)
2668 {
2669 if (! mem_mode
2670 /* Refs inside notes or in DEBUG_INSNs don't count for
2671 this purpose. */
2672 && ! (insn != 0 && (GET_CODE (insn) == EXPR_LIST
2673 || GET_CODE (insn) == INSN_LIST
2674 || DEBUG_INSN_P (insn))))
2675 ep->ref_outside_mem = 1;
2676
2677 return
2678 plus_constant (Pmode,
2679 gen_rtx_MULT (Pmode, ep->to_rtx, XEXP (x, 1)),
2680 ep->previous_offset * INTVAL (XEXP (x, 1)));
2681 }
2682
2683 /* fall through */
2684
2685 case CALL:
2686 case COMPARE:
2687 /* See comments before PLUS about handling MINUS. */
2688 case MINUS:
2689 case DIV: case UDIV:
2690 case MOD: case UMOD:
2691 case AND: case IOR: case XOR:
2692 case ROTATERT: case ROTATE:
2693 case ASHIFTRT: case LSHIFTRT: case ASHIFT:
2694 case NE: case EQ:
2695 case GE: case GT: case GEU: case GTU:
2696 case LE: case LT: case LEU: case LTU:
2697 {
2698 rtx new0 = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2699 for_costs);
2700 rtx new1 = XEXP (x, 1)
2701 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, false,
2702 for_costs) : 0;
2703
2704 if (new0 != XEXP (x, 0) || new1 != XEXP (x, 1))
2705 return gen_rtx_fmt_ee (code, GET_MODE (x), new0, new1);
2706 }
2707 return x;
2708
2709 case EXPR_LIST:
2710 /* If we have something in XEXP (x, 0), the usual case, eliminate it. */
2711 if (XEXP (x, 0))
2712 {
2713 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, true,
2714 for_costs);
2715 if (new_rtx != XEXP (x, 0))
2716 {
2717 /* If this is a REG_DEAD note, it is not valid anymore.
2718 Using the eliminated version could result in creating a
2719 REG_DEAD note for the stack or frame pointer. */
2720 if (REG_NOTE_KIND (x) == REG_DEAD)
2721 return (XEXP (x, 1)
2722 ? eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2723 for_costs)
2724 : NULL_RTX);
2725
2726 x = alloc_reg_note (REG_NOTE_KIND (x), new_rtx, XEXP (x, 1));
2727 }
2728 }
2729
2730 /* fall through */
2731
2732 case INSN_LIST:
2733 case INT_LIST:
2734 /* Now do eliminations in the rest of the chain. If this was
2735 an EXPR_LIST, this might result in allocating more memory than is
2736 strictly needed, but it simplifies the code. */
2737 if (XEXP (x, 1))
2738 {
2739 new_rtx = eliminate_regs_1 (XEXP (x, 1), mem_mode, insn, true,
2740 for_costs);
2741 if (new_rtx != XEXP (x, 1))
2742 return
2743 gen_rtx_fmt_ee (GET_CODE (x), GET_MODE (x), XEXP (x, 0), new_rtx);
2744 }
2745 return x;
2746
2747 case PRE_INC:
2748 case POST_INC:
2749 case PRE_DEC:
2750 case POST_DEC:
2751 /* We do not support elimination of a register that is modified.
2752 elimination_effects has already make sure that this does not
2753 happen. */
2754 return x;
2755
2756 case PRE_MODIFY:
2757 case POST_MODIFY:
2758 /* We do not support elimination of a register that is modified.
2759 elimination_effects has already make sure that this does not
2760 happen. The only remaining case we need to consider here is
2761 that the increment value may be an eliminable register. */
2762 if (GET_CODE (XEXP (x, 1)) == PLUS
2763 && XEXP (XEXP (x, 1), 0) == XEXP (x, 0))
2764 {
2765 rtx new_rtx = eliminate_regs_1 (XEXP (XEXP (x, 1), 1), mem_mode,
2766 insn, true, for_costs);
2767
2768 if (new_rtx != XEXP (XEXP (x, 1), 1))
2769 return gen_rtx_fmt_ee (code, GET_MODE (x), XEXP (x, 0),
2770 gen_rtx_PLUS (GET_MODE (x),
2771 XEXP (x, 0), new_rtx));
2772 }
2773 return x;
2774
2775 case STRICT_LOW_PART:
2776 case NEG: case NOT:
2777 case SIGN_EXTEND: case ZERO_EXTEND:
2778 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
2779 case FLOAT: case FIX:
2780 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
2781 case ABS:
2782 case SQRT:
2783 case FFS:
2784 case CLZ:
2785 case CTZ:
2786 case POPCOUNT:
2787 case PARITY:
2788 case BSWAP:
2789 new_rtx = eliminate_regs_1 (XEXP (x, 0), mem_mode, insn, false,
2790 for_costs);
2791 if (new_rtx != XEXP (x, 0))
2792 return gen_rtx_fmt_e (code, GET_MODE (x), new_rtx);
2793 return x;
2794
2795 case SUBREG:
2796 /* Similar to above processing, but preserve SUBREG_BYTE.
2797 Convert (subreg (mem)) to (mem) if not paradoxical.
2798 Also, if we have a non-paradoxical (subreg (pseudo)) and the
2799 pseudo didn't get a hard reg, we must replace this with the
2800 eliminated version of the memory location because push_reload
2801 may do the replacement in certain circumstances. */
2802 if (REG_P (SUBREG_REG (x))
2803 && !paradoxical_subreg_p (x)
2804 && reg_equivs
2805 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
2806 {
2807 new_rtx = SUBREG_REG (x);
2808 }
2809 else
2810 new_rtx = eliminate_regs_1 (SUBREG_REG (x), mem_mode, insn, false, for_costs);
2811
2812 if (new_rtx != SUBREG_REG (x))
2813 {
2814 int x_size = GET_MODE_SIZE (GET_MODE (x));
2815 int new_size = GET_MODE_SIZE (GET_MODE (new_rtx));
2816
2817 if (MEM_P (new_rtx)
2818 && ((partial_subreg_p (GET_MODE (x), GET_MODE (new_rtx))
2819 /* On RISC machines, combine can create rtl of the form
2820 (set (subreg:m1 (reg:m2 R) 0) ...)
2821 where m1 < m2, and expects something interesting to
2822 happen to the entire word. Moreover, it will use the
2823 (reg:m2 R) later, expecting all bits to be preserved.
2824 So if the number of words is the same, preserve the
2825 subreg so that push_reload can see it. */
2826 && !(WORD_REGISTER_OPERATIONS
2827 && (x_size - 1) / UNITS_PER_WORD
2828 == (new_size -1 ) / UNITS_PER_WORD))
2829 || x_size == new_size)
2830 )
2831 return adjust_address_nv (new_rtx, GET_MODE (x), SUBREG_BYTE (x));
2832 else if (insn && GET_CODE (insn) == DEBUG_INSN)
2833 return gen_rtx_raw_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2834 else
2835 return gen_rtx_SUBREG (GET_MODE (x), new_rtx, SUBREG_BYTE (x));
2836 }
2837
2838 return x;
2839
2840 case MEM:
2841 /* Our only special processing is to pass the mode of the MEM to our
2842 recursive call and copy the flags. While we are here, handle this
2843 case more efficiently. */
2844
2845 new_rtx = eliminate_regs_1 (XEXP (x, 0), GET_MODE (x), insn, true,
2846 for_costs);
2847 if (for_costs
2848 && memory_address_p (GET_MODE (x), XEXP (x, 0))
2849 && !memory_address_p (GET_MODE (x), new_rtx))
2850 note_reg_elim_costly (XEXP (x, 0), insn);
2851
2852 return replace_equiv_address_nv (x, new_rtx);
2853
2854 case USE:
2855 /* Handle insn_list USE that a call to a pure function may generate. */
2856 new_rtx = eliminate_regs_1 (XEXP (x, 0), VOIDmode, insn, false,
2857 for_costs);
2858 if (new_rtx != XEXP (x, 0))
2859 return gen_rtx_USE (GET_MODE (x), new_rtx);
2860 return x;
2861
2862 case CLOBBER:
2863 case ASM_OPERANDS:
2864 gcc_assert (insn && DEBUG_INSN_P (insn));
2865 break;
2866
2867 case SET:
2868 gcc_unreachable ();
2869
2870 default:
2871 break;
2872 }
2873
2874 /* Process each of our operands recursively. If any have changed, make a
2875 copy of the rtx. */
2876 fmt = GET_RTX_FORMAT (code);
2877 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
2878 {
2879 if (*fmt == 'e')
2880 {
2881 new_rtx = eliminate_regs_1 (XEXP (x, i), mem_mode, insn, false,
2882 for_costs);
2883 if (new_rtx != XEXP (x, i) && ! copied)
2884 {
2885 x = shallow_copy_rtx (x);
2886 copied = 1;
2887 }
2888 XEXP (x, i) = new_rtx;
2889 }
2890 else if (*fmt == 'E')
2891 {
2892 int copied_vec = 0;
2893 for (j = 0; j < XVECLEN (x, i); j++)
2894 {
2895 new_rtx = eliminate_regs_1 (XVECEXP (x, i, j), mem_mode, insn, false,
2896 for_costs);
2897 if (new_rtx != XVECEXP (x, i, j) && ! copied_vec)
2898 {
2899 rtvec new_v = gen_rtvec_v (XVECLEN (x, i),
2900 XVEC (x, i)->elem);
2901 if (! copied)
2902 {
2903 x = shallow_copy_rtx (x);
2904 copied = 1;
2905 }
2906 XVEC (x, i) = new_v;
2907 copied_vec = 1;
2908 }
2909 XVECEXP (x, i, j) = new_rtx;
2910 }
2911 }
2912 }
2913
2914 return x;
2915 }
2916
2917 rtx
2918 eliminate_regs (rtx x, machine_mode mem_mode, rtx insn)
2919 {
2920 if (reg_eliminate == NULL)
2921 {
2922 gcc_assert (targetm.no_register_allocation);
2923 return x;
2924 }
2925 return eliminate_regs_1 (x, mem_mode, insn, false, false);
2926 }
2927
2928 /* Scan rtx X for modifications of elimination target registers. Update
2929 the table of eliminables to reflect the changed state. MEM_MODE is
2930 the mode of an enclosing MEM rtx, or VOIDmode if not within a MEM. */
2931
2932 static void
2933 elimination_effects (rtx x, machine_mode mem_mode)
2934 {
2935 enum rtx_code code = GET_CODE (x);
2936 struct elim_table *ep;
2937 int regno;
2938 int i, j;
2939 const char *fmt;
2940
2941 switch (code)
2942 {
2943 CASE_CONST_ANY:
2944 case CONST:
2945 case SYMBOL_REF:
2946 case CODE_LABEL:
2947 case PC:
2948 case CC0:
2949 case ASM_INPUT:
2950 case ADDR_VEC:
2951 case ADDR_DIFF_VEC:
2952 case RETURN:
2953 return;
2954
2955 case REG:
2956 regno = REGNO (x);
2957
2958 /* First handle the case where we encounter a bare register that
2959 is eliminable. Replace it with a PLUS. */
2960 if (regno < FIRST_PSEUDO_REGISTER)
2961 {
2962 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
2963 ep++)
2964 if (ep->from_rtx == x && ep->can_eliminate)
2965 {
2966 if (! mem_mode)
2967 ep->ref_outside_mem = 1;
2968 return;
2969 }
2970
2971 }
2972 else if (reg_renumber[regno] < 0
2973 && reg_equivs
2974 && reg_equiv_constant (regno)
2975 && ! function_invariant_p (reg_equiv_constant (regno)))
2976 elimination_effects (reg_equiv_constant (regno), mem_mode);
2977 return;
2978
2979 case PRE_INC:
2980 case POST_INC:
2981 case PRE_DEC:
2982 case POST_DEC:
2983 case POST_MODIFY:
2984 case PRE_MODIFY:
2985 /* If we modify the source of an elimination rule, disable it. */
2986 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2987 if (ep->from_rtx == XEXP (x, 0))
2988 ep->can_eliminate = 0;
2989
2990 /* If we modify the target of an elimination rule by adding a constant,
2991 update its offset. If we modify the target in any other way, we'll
2992 have to disable the rule as well. */
2993 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
2994 if (ep->to_rtx == XEXP (x, 0))
2995 {
2996 int size = GET_MODE_SIZE (mem_mode);
2997
2998 /* If more bytes than MEM_MODE are pushed, account for them. */
2999 #ifdef PUSH_ROUNDING
3000 if (ep->to_rtx == stack_pointer_rtx)
3001 size = PUSH_ROUNDING (size);
3002 #endif
3003 if (code == PRE_DEC || code == POST_DEC)
3004 ep->offset += size;
3005 else if (code == PRE_INC || code == POST_INC)
3006 ep->offset -= size;
3007 else if (code == PRE_MODIFY || code == POST_MODIFY)
3008 {
3009 if (GET_CODE (XEXP (x, 1)) == PLUS
3010 && XEXP (x, 0) == XEXP (XEXP (x, 1), 0)
3011 && CONST_INT_P (XEXP (XEXP (x, 1), 1)))
3012 ep->offset -= INTVAL (XEXP (XEXP (x, 1), 1));
3013 else
3014 ep->can_eliminate = 0;
3015 }
3016 }
3017
3018 /* These two aren't unary operators. */
3019 if (code == POST_MODIFY || code == PRE_MODIFY)
3020 break;
3021
3022 /* Fall through to generic unary operation case. */
3023 gcc_fallthrough ();
3024 case STRICT_LOW_PART:
3025 case NEG: case NOT:
3026 case SIGN_EXTEND: case ZERO_EXTEND:
3027 case TRUNCATE: case FLOAT_EXTEND: case FLOAT_TRUNCATE:
3028 case FLOAT: case FIX:
3029 case UNSIGNED_FIX: case UNSIGNED_FLOAT:
3030 case ABS:
3031 case SQRT:
3032 case FFS:
3033 case CLZ:
3034 case CTZ:
3035 case POPCOUNT:
3036 case PARITY:
3037 case BSWAP:
3038 elimination_effects (XEXP (x, 0), mem_mode);
3039 return;
3040
3041 case SUBREG:
3042 if (REG_P (SUBREG_REG (x))
3043 && !paradoxical_subreg_p (x)
3044 && reg_equivs
3045 && reg_equiv_memory_loc (REGNO (SUBREG_REG (x))) != 0)
3046 return;
3047
3048 elimination_effects (SUBREG_REG (x), mem_mode);
3049 return;
3050
3051 case USE:
3052 /* If using a register that is the source of an eliminate we still
3053 think can be performed, note it cannot be performed since we don't
3054 know how this register is used. */
3055 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3056 if (ep->from_rtx == XEXP (x, 0))
3057 ep->can_eliminate = 0;
3058
3059 elimination_effects (XEXP (x, 0), mem_mode);
3060 return;
3061
3062 case CLOBBER:
3063 /* If clobbering a register that is the replacement register for an
3064 elimination we still think can be performed, note that it cannot
3065 be performed. Otherwise, we need not be concerned about it. */
3066 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3067 if (ep->to_rtx == XEXP (x, 0))
3068 ep->can_eliminate = 0;
3069
3070 elimination_effects (XEXP (x, 0), mem_mode);
3071 return;
3072
3073 case SET:
3074 /* Check for setting a register that we know about. */
3075 if (REG_P (SET_DEST (x)))
3076 {
3077 /* See if this is setting the replacement register for an
3078 elimination.
3079
3080 If DEST is the hard frame pointer, we do nothing because we
3081 assume that all assignments to the frame pointer are for
3082 non-local gotos and are being done at a time when they are valid
3083 and do not disturb anything else. Some machines want to
3084 eliminate a fake argument pointer (or even a fake frame pointer)
3085 with either the real frame or the stack pointer. Assignments to
3086 the hard frame pointer must not prevent this elimination. */
3087
3088 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3089 ep++)
3090 if (ep->to_rtx == SET_DEST (x)
3091 && SET_DEST (x) != hard_frame_pointer_rtx)
3092 {
3093 /* If it is being incremented, adjust the offset. Otherwise,
3094 this elimination can't be done. */
3095 rtx src = SET_SRC (x);
3096
3097 if (GET_CODE (src) == PLUS
3098 && XEXP (src, 0) == SET_DEST (x)
3099 && CONST_INT_P (XEXP (src, 1)))
3100 ep->offset -= INTVAL (XEXP (src, 1));
3101 else
3102 ep->can_eliminate = 0;
3103 }
3104 }
3105
3106 elimination_effects (SET_DEST (x), VOIDmode);
3107 elimination_effects (SET_SRC (x), VOIDmode);
3108 return;
3109
3110 case MEM:
3111 /* Our only special processing is to pass the mode of the MEM to our
3112 recursive call. */
3113 elimination_effects (XEXP (x, 0), GET_MODE (x));
3114 return;
3115
3116 default:
3117 break;
3118 }
3119
3120 fmt = GET_RTX_FORMAT (code);
3121 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3122 {
3123 if (*fmt == 'e')
3124 elimination_effects (XEXP (x, i), mem_mode);
3125 else if (*fmt == 'E')
3126 for (j = 0; j < XVECLEN (x, i); j++)
3127 elimination_effects (XVECEXP (x, i, j), mem_mode);
3128 }
3129 }
3130
3131 /* Descend through rtx X and verify that no references to eliminable registers
3132 remain. If any do remain, mark the involved register as not
3133 eliminable. */
3134
3135 static void
3136 check_eliminable_occurrences (rtx x)
3137 {
3138 const char *fmt;
3139 int i;
3140 enum rtx_code code;
3141
3142 if (x == 0)
3143 return;
3144
3145 code = GET_CODE (x);
3146
3147 if (code == REG && REGNO (x) < FIRST_PSEUDO_REGISTER)
3148 {
3149 struct elim_table *ep;
3150
3151 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3152 if (ep->from_rtx == x)
3153 ep->can_eliminate = 0;
3154 return;
3155 }
3156
3157 fmt = GET_RTX_FORMAT (code);
3158 for (i = 0; i < GET_RTX_LENGTH (code); i++, fmt++)
3159 {
3160 if (*fmt == 'e')
3161 check_eliminable_occurrences (XEXP (x, i));
3162 else if (*fmt == 'E')
3163 {
3164 int j;
3165 for (j = 0; j < XVECLEN (x, i); j++)
3166 check_eliminable_occurrences (XVECEXP (x, i, j));
3167 }
3168 }
3169 }
3170 \f
3171 /* Scan INSN and eliminate all eliminable registers in it.
3172
3173 If REPLACE is nonzero, do the replacement destructively. Also
3174 delete the insn as dead it if it is setting an eliminable register.
3175
3176 If REPLACE is zero, do all our allocations in reload_obstack.
3177
3178 If no eliminations were done and this insn doesn't require any elimination
3179 processing (these are not identical conditions: it might be updating sp,
3180 but not referencing fp; this needs to be seen during reload_as_needed so
3181 that the offset between fp and sp can be taken into consideration), zero
3182 is returned. Otherwise, 1 is returned. */
3183
3184 static int
3185 eliminate_regs_in_insn (rtx_insn *insn, int replace)
3186 {
3187 int icode = recog_memoized (insn);
3188 rtx old_body = PATTERN (insn);
3189 int insn_is_asm = asm_noperands (old_body) >= 0;
3190 rtx old_set = single_set (insn);
3191 rtx new_body;
3192 int val = 0;
3193 int i;
3194 rtx substed_operand[MAX_RECOG_OPERANDS];
3195 rtx orig_operand[MAX_RECOG_OPERANDS];
3196 struct elim_table *ep;
3197 rtx plus_src, plus_cst_src;
3198
3199 if (! insn_is_asm && icode < 0)
3200 {
3201 gcc_assert (DEBUG_INSN_P (insn)
3202 || GET_CODE (PATTERN (insn)) == USE
3203 || GET_CODE (PATTERN (insn)) == CLOBBER
3204 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3205 if (DEBUG_BIND_INSN_P (insn))
3206 INSN_VAR_LOCATION_LOC (insn)
3207 = eliminate_regs (INSN_VAR_LOCATION_LOC (insn), VOIDmode, insn);
3208 return 0;
3209 }
3210
3211 if (old_set != 0 && REG_P (SET_DEST (old_set))
3212 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3213 {
3214 /* Check for setting an eliminable register. */
3215 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3216 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3217 {
3218 /* If this is setting the frame pointer register to the
3219 hardware frame pointer register and this is an elimination
3220 that will be done (tested above), this insn is really
3221 adjusting the frame pointer downward to compensate for
3222 the adjustment done before a nonlocal goto. */
3223 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER
3224 && ep->from == FRAME_POINTER_REGNUM
3225 && ep->to == HARD_FRAME_POINTER_REGNUM)
3226 {
3227 rtx base = SET_SRC (old_set);
3228 rtx_insn *base_insn = insn;
3229 HOST_WIDE_INT offset = 0;
3230
3231 while (base != ep->to_rtx)
3232 {
3233 rtx_insn *prev_insn;
3234 rtx prev_set;
3235
3236 if (GET_CODE (base) == PLUS
3237 && CONST_INT_P (XEXP (base, 1)))
3238 {
3239 offset += INTVAL (XEXP (base, 1));
3240 base = XEXP (base, 0);
3241 }
3242 else if ((prev_insn = prev_nonnote_insn (base_insn)) != 0
3243 && (prev_set = single_set (prev_insn)) != 0
3244 && rtx_equal_p (SET_DEST (prev_set), base))
3245 {
3246 base = SET_SRC (prev_set);
3247 base_insn = prev_insn;
3248 }
3249 else
3250 break;
3251 }
3252
3253 if (base == ep->to_rtx)
3254 {
3255 rtx src = plus_constant (Pmode, ep->to_rtx,
3256 offset - ep->offset);
3257
3258 new_body = old_body;
3259 if (! replace)
3260 {
3261 new_body = copy_insn (old_body);
3262 if (REG_NOTES (insn))
3263 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3264 }
3265 PATTERN (insn) = new_body;
3266 old_set = single_set (insn);
3267
3268 /* First see if this insn remains valid when we
3269 make the change. If not, keep the INSN_CODE
3270 the same and let reload fit it up. */
3271 validate_change (insn, &SET_SRC (old_set), src, 1);
3272 validate_change (insn, &SET_DEST (old_set),
3273 ep->to_rtx, 1);
3274 if (! apply_change_group ())
3275 {
3276 SET_SRC (old_set) = src;
3277 SET_DEST (old_set) = ep->to_rtx;
3278 }
3279
3280 val = 1;
3281 goto done;
3282 }
3283 }
3284
3285 /* In this case this insn isn't serving a useful purpose. We
3286 will delete it in reload_as_needed once we know that this
3287 elimination is, in fact, being done.
3288
3289 If REPLACE isn't set, we can't delete this insn, but needn't
3290 process it since it won't be used unless something changes. */
3291 if (replace)
3292 {
3293 delete_dead_insn (insn);
3294 return 1;
3295 }
3296 val = 1;
3297 goto done;
3298 }
3299 }
3300
3301 /* We allow one special case which happens to work on all machines we
3302 currently support: a single set with the source or a REG_EQUAL
3303 note being a PLUS of an eliminable register and a constant. */
3304 plus_src = plus_cst_src = 0;
3305 if (old_set && REG_P (SET_DEST (old_set)))
3306 {
3307 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3308 plus_src = SET_SRC (old_set);
3309 /* First see if the source is of the form (plus (...) CST). */
3310 if (plus_src
3311 && CONST_INT_P (XEXP (plus_src, 1)))
3312 plus_cst_src = plus_src;
3313 else if (REG_P (SET_SRC (old_set))
3314 || plus_src)
3315 {
3316 /* Otherwise, see if we have a REG_EQUAL note of the form
3317 (plus (...) CST). */
3318 rtx links;
3319 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3320 {
3321 if ((REG_NOTE_KIND (links) == REG_EQUAL
3322 || REG_NOTE_KIND (links) == REG_EQUIV)
3323 && GET_CODE (XEXP (links, 0)) == PLUS
3324 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3325 {
3326 plus_cst_src = XEXP (links, 0);
3327 break;
3328 }
3329 }
3330 }
3331
3332 /* Check that the first operand of the PLUS is a hard reg or
3333 the lowpart subreg of one. */
3334 if (plus_cst_src)
3335 {
3336 rtx reg = XEXP (plus_cst_src, 0);
3337 if (GET_CODE (reg) == SUBREG && subreg_lowpart_p (reg))
3338 reg = SUBREG_REG (reg);
3339
3340 if (!REG_P (reg) || REGNO (reg) >= FIRST_PSEUDO_REGISTER)
3341 plus_cst_src = 0;
3342 }
3343 }
3344 if (plus_cst_src)
3345 {
3346 rtx reg = XEXP (plus_cst_src, 0);
3347 HOST_WIDE_INT offset = INTVAL (XEXP (plus_cst_src, 1));
3348
3349 if (GET_CODE (reg) == SUBREG)
3350 reg = SUBREG_REG (reg);
3351
3352 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3353 if (ep->from_rtx == reg && ep->can_eliminate)
3354 {
3355 rtx to_rtx = ep->to_rtx;
3356 offset += ep->offset;
3357 offset = trunc_int_for_mode (offset, GET_MODE (plus_cst_src));
3358
3359 if (GET_CODE (XEXP (plus_cst_src, 0)) == SUBREG)
3360 to_rtx = gen_lowpart (GET_MODE (XEXP (plus_cst_src, 0)),
3361 to_rtx);
3362 /* If we have a nonzero offset, and the source is already
3363 a simple REG, the following transformation would
3364 increase the cost of the insn by replacing a simple REG
3365 with (plus (reg sp) CST). So try only when we already
3366 had a PLUS before. */
3367 if (offset == 0 || plus_src)
3368 {
3369 rtx new_src = plus_constant (GET_MODE (to_rtx),
3370 to_rtx, offset);
3371
3372 new_body = old_body;
3373 if (! replace)
3374 {
3375 new_body = copy_insn (old_body);
3376 if (REG_NOTES (insn))
3377 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3378 }
3379 PATTERN (insn) = new_body;
3380 old_set = single_set (insn);
3381
3382 /* First see if this insn remains valid when we make the
3383 change. If not, try to replace the whole pattern with
3384 a simple set (this may help if the original insn was a
3385 PARALLEL that was only recognized as single_set due to
3386 REG_UNUSED notes). If this isn't valid either, keep
3387 the INSN_CODE the same and let reload fix it up. */
3388 if (!validate_change (insn, &SET_SRC (old_set), new_src, 0))
3389 {
3390 rtx new_pat = gen_rtx_SET (SET_DEST (old_set), new_src);
3391
3392 if (!validate_change (insn, &PATTERN (insn), new_pat, 0))
3393 SET_SRC (old_set) = new_src;
3394 }
3395 }
3396 else
3397 break;
3398
3399 val = 1;
3400 /* This can't have an effect on elimination offsets, so skip right
3401 to the end. */
3402 goto done;
3403 }
3404 }
3405
3406 /* Determine the effects of this insn on elimination offsets. */
3407 elimination_effects (old_body, VOIDmode);
3408
3409 /* Eliminate all eliminable registers occurring in operands that
3410 can be handled by reload. */
3411 extract_insn (insn);
3412 for (i = 0; i < recog_data.n_operands; i++)
3413 {
3414 orig_operand[i] = recog_data.operand[i];
3415 substed_operand[i] = recog_data.operand[i];
3416
3417 /* For an asm statement, every operand is eliminable. */
3418 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3419 {
3420 bool is_set_src, in_plus;
3421
3422 /* Check for setting a register that we know about. */
3423 if (recog_data.operand_type[i] != OP_IN
3424 && REG_P (orig_operand[i]))
3425 {
3426 /* If we are assigning to a register that can be eliminated, it
3427 must be as part of a PARALLEL, since the code above handles
3428 single SETs. We must indicate that we can no longer
3429 eliminate this reg. */
3430 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3431 ep++)
3432 if (ep->from_rtx == orig_operand[i])
3433 ep->can_eliminate = 0;
3434 }
3435
3436 /* Companion to the above plus substitution, we can allow
3437 invariants as the source of a plain move. */
3438 is_set_src = false;
3439 if (old_set
3440 && recog_data.operand_loc[i] == &SET_SRC (old_set))
3441 is_set_src = true;
3442 in_plus = false;
3443 if (plus_src
3444 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3445 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3446 in_plus = true;
3447
3448 substed_operand[i]
3449 = eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3450 replace ? insn : NULL_RTX,
3451 is_set_src || in_plus, false);
3452 if (substed_operand[i] != orig_operand[i])
3453 val = 1;
3454 /* Terminate the search in check_eliminable_occurrences at
3455 this point. */
3456 *recog_data.operand_loc[i] = 0;
3457
3458 /* If an output operand changed from a REG to a MEM and INSN is an
3459 insn, write a CLOBBER insn. */
3460 if (recog_data.operand_type[i] != OP_IN
3461 && REG_P (orig_operand[i])
3462 && MEM_P (substed_operand[i])
3463 && replace)
3464 emit_insn_after (gen_clobber (orig_operand[i]), insn);
3465 }
3466 }
3467
3468 for (i = 0; i < recog_data.n_dups; i++)
3469 *recog_data.dup_loc[i]
3470 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3471
3472 /* If any eliminable remain, they aren't eliminable anymore. */
3473 check_eliminable_occurrences (old_body);
3474
3475 /* Substitute the operands; the new values are in the substed_operand
3476 array. */
3477 for (i = 0; i < recog_data.n_operands; i++)
3478 *recog_data.operand_loc[i] = substed_operand[i];
3479 for (i = 0; i < recog_data.n_dups; i++)
3480 *recog_data.dup_loc[i] = substed_operand[(int) recog_data.dup_num[i]];
3481
3482 /* If we are replacing a body that was a (set X (plus Y Z)), try to
3483 re-recognize the insn. We do this in case we had a simple addition
3484 but now can do this as a load-address. This saves an insn in this
3485 common case.
3486 If re-recognition fails, the old insn code number will still be used,
3487 and some register operands may have changed into PLUS expressions.
3488 These will be handled by find_reloads by loading them into a register
3489 again. */
3490
3491 if (val)
3492 {
3493 /* If we aren't replacing things permanently and we changed something,
3494 make another copy to ensure that all the RTL is new. Otherwise
3495 things can go wrong if find_reload swaps commutative operands
3496 and one is inside RTL that has been copied while the other is not. */
3497 new_body = old_body;
3498 if (! replace)
3499 {
3500 new_body = copy_insn (old_body);
3501 if (REG_NOTES (insn))
3502 REG_NOTES (insn) = copy_insn_1 (REG_NOTES (insn));
3503 }
3504 PATTERN (insn) = new_body;
3505
3506 /* If we had a move insn but now we don't, rerecognize it. This will
3507 cause spurious re-recognition if the old move had a PARALLEL since
3508 the new one still will, but we can't call single_set without
3509 having put NEW_BODY into the insn and the re-recognition won't
3510 hurt in this rare case. */
3511 /* ??? Why this huge if statement - why don't we just rerecognize the
3512 thing always? */
3513 if (! insn_is_asm
3514 && old_set != 0
3515 && ((REG_P (SET_SRC (old_set))
3516 && (GET_CODE (new_body) != SET
3517 || !REG_P (SET_SRC (new_body))))
3518 /* If this was a load from or store to memory, compare
3519 the MEM in recog_data.operand to the one in the insn.
3520 If they are not equal, then rerecognize the insn. */
3521 || (old_set != 0
3522 && ((MEM_P (SET_SRC (old_set))
3523 && SET_SRC (old_set) != recog_data.operand[1])
3524 || (MEM_P (SET_DEST (old_set))
3525 && SET_DEST (old_set) != recog_data.operand[0])))
3526 /* If this was an add insn before, rerecognize. */
3527 || GET_CODE (SET_SRC (old_set)) == PLUS))
3528 {
3529 int new_icode = recog (PATTERN (insn), insn, 0);
3530 if (new_icode >= 0)
3531 INSN_CODE (insn) = new_icode;
3532 }
3533 }
3534
3535 /* Restore the old body. If there were any changes to it, we made a copy
3536 of it while the changes were still in place, so we'll correctly return
3537 a modified insn below. */
3538 if (! replace)
3539 {
3540 /* Restore the old body. */
3541 for (i = 0; i < recog_data.n_operands; i++)
3542 /* Restoring a top-level match_parallel would clobber the new_body
3543 we installed in the insn. */
3544 if (recog_data.operand_loc[i] != &PATTERN (insn))
3545 *recog_data.operand_loc[i] = orig_operand[i];
3546 for (i = 0; i < recog_data.n_dups; i++)
3547 *recog_data.dup_loc[i] = orig_operand[(int) recog_data.dup_num[i]];
3548 }
3549
3550 /* Update all elimination pairs to reflect the status after the current
3551 insn. The changes we make were determined by the earlier call to
3552 elimination_effects.
3553
3554 We also detect cases where register elimination cannot be done,
3555 namely, if a register would be both changed and referenced outside a MEM
3556 in the resulting insn since such an insn is often undefined and, even if
3557 not, we cannot know what meaning will be given to it. Note that it is
3558 valid to have a register used in an address in an insn that changes it
3559 (presumably with a pre- or post-increment or decrement).
3560
3561 If anything changes, return nonzero. */
3562
3563 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3564 {
3565 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3566 ep->can_eliminate = 0;
3567
3568 ep->ref_outside_mem = 0;
3569
3570 if (ep->previous_offset != ep->offset)
3571 val = 1;
3572 }
3573
3574 done:
3575 /* If we changed something, perform elimination in REG_NOTES. This is
3576 needed even when REPLACE is zero because a REG_DEAD note might refer
3577 to a register that we eliminate and could cause a different number
3578 of spill registers to be needed in the final reload pass than in
3579 the pre-passes. */
3580 if (val && REG_NOTES (insn) != 0)
3581 REG_NOTES (insn)
3582 = eliminate_regs_1 (REG_NOTES (insn), VOIDmode, REG_NOTES (insn), true,
3583 false);
3584
3585 return val;
3586 }
3587
3588 /* Like eliminate_regs_in_insn, but only estimate costs for the use of the
3589 register allocator. INSN is the instruction we need to examine, we perform
3590 eliminations in its operands and record cases where eliminating a reg with
3591 an invariant equivalence would add extra cost. */
3592
3593 #pragma GCC diagnostic push
3594 #pragma GCC diagnostic warning "-Wmaybe-uninitialized"
3595 static void
3596 elimination_costs_in_insn (rtx_insn *insn)
3597 {
3598 int icode = recog_memoized (insn);
3599 rtx old_body = PATTERN (insn);
3600 int insn_is_asm = asm_noperands (old_body) >= 0;
3601 rtx old_set = single_set (insn);
3602 int i;
3603 rtx orig_operand[MAX_RECOG_OPERANDS];
3604 rtx orig_dup[MAX_RECOG_OPERANDS];
3605 struct elim_table *ep;
3606 rtx plus_src, plus_cst_src;
3607 bool sets_reg_p;
3608
3609 if (! insn_is_asm && icode < 0)
3610 {
3611 gcc_assert (DEBUG_INSN_P (insn)
3612 || GET_CODE (PATTERN (insn)) == USE
3613 || GET_CODE (PATTERN (insn)) == CLOBBER
3614 || GET_CODE (PATTERN (insn)) == ASM_INPUT);
3615 return;
3616 }
3617
3618 if (old_set != 0 && REG_P (SET_DEST (old_set))
3619 && REGNO (SET_DEST (old_set)) < FIRST_PSEUDO_REGISTER)
3620 {
3621 /* Check for setting an eliminable register. */
3622 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3623 if (ep->from_rtx == SET_DEST (old_set) && ep->can_eliminate)
3624 return;
3625 }
3626
3627 /* We allow one special case which happens to work on all machines we
3628 currently support: a single set with the source or a REG_EQUAL
3629 note being a PLUS of an eliminable register and a constant. */
3630 plus_src = plus_cst_src = 0;
3631 sets_reg_p = false;
3632 if (old_set && REG_P (SET_DEST (old_set)))
3633 {
3634 sets_reg_p = true;
3635 if (GET_CODE (SET_SRC (old_set)) == PLUS)
3636 plus_src = SET_SRC (old_set);
3637 /* First see if the source is of the form (plus (...) CST). */
3638 if (plus_src
3639 && CONST_INT_P (XEXP (plus_src, 1)))
3640 plus_cst_src = plus_src;
3641 else if (REG_P (SET_SRC (old_set))
3642 || plus_src)
3643 {
3644 /* Otherwise, see if we have a REG_EQUAL note of the form
3645 (plus (...) CST). */
3646 rtx links;
3647 for (links = REG_NOTES (insn); links; links = XEXP (links, 1))
3648 {
3649 if ((REG_NOTE_KIND (links) == REG_EQUAL
3650 || REG_NOTE_KIND (links) == REG_EQUIV)
3651 && GET_CODE (XEXP (links, 0)) == PLUS
3652 && CONST_INT_P (XEXP (XEXP (links, 0), 1)))
3653 {
3654 plus_cst_src = XEXP (links, 0);
3655 break;
3656 }
3657 }
3658 }
3659 }
3660
3661 /* Determine the effects of this insn on elimination offsets. */
3662 elimination_effects (old_body, VOIDmode);
3663
3664 /* Eliminate all eliminable registers occurring in operands that
3665 can be handled by reload. */
3666 extract_insn (insn);
3667 int n_dups = recog_data.n_dups;
3668 for (i = 0; i < n_dups; i++)
3669 orig_dup[i] = *recog_data.dup_loc[i];
3670
3671 int n_operands = recog_data.n_operands;
3672 for (i = 0; i < n_operands; i++)
3673 {
3674 orig_operand[i] = recog_data.operand[i];
3675
3676 /* For an asm statement, every operand is eliminable. */
3677 if (insn_is_asm || insn_data[icode].operand[i].eliminable)
3678 {
3679 bool is_set_src, in_plus;
3680
3681 /* Check for setting a register that we know about. */
3682 if (recog_data.operand_type[i] != OP_IN
3683 && REG_P (orig_operand[i]))
3684 {
3685 /* If we are assigning to a register that can be eliminated, it
3686 must be as part of a PARALLEL, since the code above handles
3687 single SETs. We must indicate that we can no longer
3688 eliminate this reg. */
3689 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS];
3690 ep++)
3691 if (ep->from_rtx == orig_operand[i])
3692 ep->can_eliminate = 0;
3693 }
3694
3695 /* Companion to the above plus substitution, we can allow
3696 invariants as the source of a plain move. */
3697 is_set_src = false;
3698 if (old_set && recog_data.operand_loc[i] == &SET_SRC (old_set))
3699 is_set_src = true;
3700 if (is_set_src && !sets_reg_p)
3701 note_reg_elim_costly (SET_SRC (old_set), insn);
3702 in_plus = false;
3703 if (plus_src && sets_reg_p
3704 && (recog_data.operand_loc[i] == &XEXP (plus_src, 0)
3705 || recog_data.operand_loc[i] == &XEXP (plus_src, 1)))
3706 in_plus = true;
3707
3708 eliminate_regs_1 (recog_data.operand[i], VOIDmode,
3709 NULL_RTX,
3710 is_set_src || in_plus, true);
3711 /* Terminate the search in check_eliminable_occurrences at
3712 this point. */
3713 *recog_data.operand_loc[i] = 0;
3714 }
3715 }
3716
3717 for (i = 0; i < n_dups; i++)
3718 *recog_data.dup_loc[i]
3719 = *recog_data.operand_loc[(int) recog_data.dup_num[i]];
3720
3721 /* If any eliminable remain, they aren't eliminable anymore. */
3722 check_eliminable_occurrences (old_body);
3723
3724 /* Restore the old body. */
3725 for (i = 0; i < n_operands; i++)
3726 *recog_data.operand_loc[i] = orig_operand[i];
3727 for (i = 0; i < n_dups; i++)
3728 *recog_data.dup_loc[i] = orig_dup[i];
3729
3730 /* Update all elimination pairs to reflect the status after the current
3731 insn. The changes we make were determined by the earlier call to
3732 elimination_effects. */
3733
3734 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3735 {
3736 if (ep->previous_offset != ep->offset && ep->ref_outside_mem)
3737 ep->can_eliminate = 0;
3738
3739 ep->ref_outside_mem = 0;
3740 }
3741
3742 return;
3743 }
3744 #pragma GCC diagnostic pop
3745
3746 /* Loop through all elimination pairs.
3747 Recalculate the number not at initial offset.
3748
3749 Compute the maximum offset (minimum offset if the stack does not
3750 grow downward) for each elimination pair. */
3751
3752 static void
3753 update_eliminable_offsets (void)
3754 {
3755 struct elim_table *ep;
3756
3757 num_not_at_initial_offset = 0;
3758 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3759 {
3760 ep->previous_offset = ep->offset;
3761 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3762 num_not_at_initial_offset++;
3763 }
3764 }
3765
3766 /* Given X, a SET or CLOBBER of DEST, if DEST is the target of a register
3767 replacement we currently believe is valid, mark it as not eliminable if X
3768 modifies DEST in any way other than by adding a constant integer to it.
3769
3770 If DEST is the frame pointer, we do nothing because we assume that
3771 all assignments to the hard frame pointer are nonlocal gotos and are being
3772 done at a time when they are valid and do not disturb anything else.
3773 Some machines want to eliminate a fake argument pointer with either the
3774 frame or stack pointer. Assignments to the hard frame pointer must not
3775 prevent this elimination.
3776
3777 Called via note_stores from reload before starting its passes to scan
3778 the insns of the function. */
3779
3780 static void
3781 mark_not_eliminable (rtx dest, const_rtx x, void *data ATTRIBUTE_UNUSED)
3782 {
3783 unsigned int i;
3784
3785 /* A SUBREG of a hard register here is just changing its mode. We should
3786 not see a SUBREG of an eliminable hard register, but check just in
3787 case. */
3788 if (GET_CODE (dest) == SUBREG)
3789 dest = SUBREG_REG (dest);
3790
3791 if (dest == hard_frame_pointer_rtx)
3792 return;
3793
3794 for (i = 0; i < NUM_ELIMINABLE_REGS; i++)
3795 if (reg_eliminate[i].can_eliminate && dest == reg_eliminate[i].to_rtx
3796 && (GET_CODE (x) != SET
3797 || GET_CODE (SET_SRC (x)) != PLUS
3798 || XEXP (SET_SRC (x), 0) != dest
3799 || !CONST_INT_P (XEXP (SET_SRC (x), 1))))
3800 {
3801 reg_eliminate[i].can_eliminate_previous
3802 = reg_eliminate[i].can_eliminate = 0;
3803 num_eliminable--;
3804 }
3805 }
3806
3807 /* Verify that the initial elimination offsets did not change since the
3808 last call to set_initial_elim_offsets. This is used to catch cases
3809 where something illegal happened during reload_as_needed that could
3810 cause incorrect code to be generated if we did not check for it. */
3811
3812 static bool
3813 verify_initial_elim_offsets (void)
3814 {
3815 HOST_WIDE_INT t;
3816 struct elim_table *ep;
3817
3818 if (!num_eliminable)
3819 return true;
3820
3821 targetm.compute_frame_layout ();
3822 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3823 {
3824 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, t);
3825 if (t != ep->initial_offset)
3826 return false;
3827 }
3828
3829 return true;
3830 }
3831
3832 /* Reset all offsets on eliminable registers to their initial values. */
3833
3834 static void
3835 set_initial_elim_offsets (void)
3836 {
3837 struct elim_table *ep = reg_eliminate;
3838
3839 targetm.compute_frame_layout ();
3840 for (; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3841 {
3842 INITIAL_ELIMINATION_OFFSET (ep->from, ep->to, ep->initial_offset);
3843 ep->previous_offset = ep->offset = ep->initial_offset;
3844 }
3845
3846 num_not_at_initial_offset = 0;
3847 }
3848
3849 /* Subroutine of set_initial_label_offsets called via for_each_eh_label. */
3850
3851 static void
3852 set_initial_eh_label_offset (rtx label)
3853 {
3854 set_label_offsets (label, NULL, 1);
3855 }
3856
3857 /* Initialize the known label offsets.
3858 Set a known offset for each forced label to be at the initial offset
3859 of each elimination. We do this because we assume that all
3860 computed jumps occur from a location where each elimination is
3861 at its initial offset.
3862 For all other labels, show that we don't know the offsets. */
3863
3864 static void
3865 set_initial_label_offsets (void)
3866 {
3867 memset (offsets_known_at, 0, num_labels);
3868
3869 unsigned int i;
3870 rtx_insn *insn;
3871 FOR_EACH_VEC_SAFE_ELT (forced_labels, i, insn)
3872 set_label_offsets (insn, NULL, 1);
3873
3874 for (rtx_insn_list *x = nonlocal_goto_handler_labels; x; x = x->next ())
3875 if (x->insn ())
3876 set_label_offsets (x->insn (), NULL, 1);
3877
3878 for_each_eh_label (set_initial_eh_label_offset);
3879 }
3880
3881 /* Set all elimination offsets to the known values for the code label given
3882 by INSN. */
3883
3884 static void
3885 set_offsets_for_label (rtx_insn *insn)
3886 {
3887 unsigned int i;
3888 int label_nr = CODE_LABEL_NUMBER (insn);
3889 struct elim_table *ep;
3890
3891 num_not_at_initial_offset = 0;
3892 for (i = 0, ep = reg_eliminate; i < NUM_ELIMINABLE_REGS; ep++, i++)
3893 {
3894 ep->offset = ep->previous_offset
3895 = offsets_at[label_nr - first_label_num][i];
3896 if (ep->can_eliminate && ep->offset != ep->initial_offset)
3897 num_not_at_initial_offset++;
3898 }
3899 }
3900
3901 /* See if anything that happened changes which eliminations are valid.
3902 For example, on the SPARC, whether or not the frame pointer can
3903 be eliminated can depend on what registers have been used. We need
3904 not check some conditions again (such as flag_omit_frame_pointer)
3905 since they can't have changed. */
3906
3907 static void
3908 update_eliminables (HARD_REG_SET *pset)
3909 {
3910 int previous_frame_pointer_needed = frame_pointer_needed;
3911 struct elim_table *ep;
3912
3913 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3914 if ((ep->from == HARD_FRAME_POINTER_REGNUM
3915 && targetm.frame_pointer_required ())
3916 || ! targetm.can_eliminate (ep->from, ep->to)
3917 )
3918 ep->can_eliminate = 0;
3919
3920 /* Look for the case where we have discovered that we can't replace
3921 register A with register B and that means that we will now be
3922 trying to replace register A with register C. This means we can
3923 no longer replace register C with register B and we need to disable
3924 such an elimination, if it exists. This occurs often with A == ap,
3925 B == sp, and C == fp. */
3926
3927 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3928 {
3929 struct elim_table *op;
3930 int new_to = -1;
3931
3932 if (! ep->can_eliminate && ep->can_eliminate_previous)
3933 {
3934 /* Find the current elimination for ep->from, if there is a
3935 new one. */
3936 for (op = reg_eliminate;
3937 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3938 if (op->from == ep->from && op->can_eliminate)
3939 {
3940 new_to = op->to;
3941 break;
3942 }
3943
3944 /* See if there is an elimination of NEW_TO -> EP->TO. If so,
3945 disable it. */
3946 for (op = reg_eliminate;
3947 op < &reg_eliminate[NUM_ELIMINABLE_REGS]; op++)
3948 if (op->from == new_to && op->to == ep->to)
3949 op->can_eliminate = 0;
3950 }
3951 }
3952
3953 /* See if any registers that we thought we could eliminate the previous
3954 time are no longer eliminable. If so, something has changed and we
3955 must spill the register. Also, recompute the number of eliminable
3956 registers and see if the frame pointer is needed; it is if there is
3957 no elimination of the frame pointer that we can perform. */
3958
3959 frame_pointer_needed = 1;
3960 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
3961 {
3962 if (ep->can_eliminate
3963 && ep->from == FRAME_POINTER_REGNUM
3964 && ep->to != HARD_FRAME_POINTER_REGNUM
3965 && (! SUPPORTS_STACK_ALIGNMENT
3966 || ! crtl->stack_realign_needed))
3967 frame_pointer_needed = 0;
3968
3969 if (! ep->can_eliminate && ep->can_eliminate_previous)
3970 {
3971 ep->can_eliminate_previous = 0;
3972 SET_HARD_REG_BIT (*pset, ep->from);
3973 num_eliminable--;
3974 }
3975 }
3976
3977 /* If we didn't need a frame pointer last time, but we do now, spill
3978 the hard frame pointer. */
3979 if (frame_pointer_needed && ! previous_frame_pointer_needed)
3980 SET_HARD_REG_BIT (*pset, HARD_FRAME_POINTER_REGNUM);
3981 }
3982
3983 /* Call update_eliminables an spill any registers we can't eliminate anymore.
3984 Return true iff a register was spilled. */
3985
3986 static bool
3987 update_eliminables_and_spill (void)
3988 {
3989 int i;
3990 bool did_spill = false;
3991 HARD_REG_SET to_spill;
3992 CLEAR_HARD_REG_SET (to_spill);
3993 update_eliminables (&to_spill);
3994 AND_COMPL_HARD_REG_SET (used_spill_regs, to_spill);
3995
3996 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3997 if (TEST_HARD_REG_BIT (to_spill, i))
3998 {
3999 spill_hard_reg (i, 1);
4000 did_spill = true;
4001
4002 /* Regardless of the state of spills, if we previously had
4003 a register that we thought we could eliminate, but now can
4004 not eliminate, we must run another pass.
4005
4006 Consider pseudos which have an entry in reg_equiv_* which
4007 reference an eliminable register. We must make another pass
4008 to update reg_equiv_* so that we do not substitute in the
4009 old value from when we thought the elimination could be
4010 performed. */
4011 }
4012 return did_spill;
4013 }
4014
4015 /* Return true if X is used as the target register of an elimination. */
4016
4017 bool
4018 elimination_target_reg_p (rtx x)
4019 {
4020 struct elim_table *ep;
4021
4022 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4023 if (ep->to_rtx == x && ep->can_eliminate)
4024 return true;
4025
4026 return false;
4027 }
4028
4029 /* Initialize the table of registers to eliminate.
4030 Pre-condition: global flag frame_pointer_needed has been set before
4031 calling this function. */
4032
4033 static void
4034 init_elim_table (void)
4035 {
4036 struct elim_table *ep;
4037 const struct elim_table_1 *ep1;
4038
4039 if (!reg_eliminate)
4040 reg_eliminate = XCNEWVEC (struct elim_table, NUM_ELIMINABLE_REGS);
4041
4042 num_eliminable = 0;
4043
4044 for (ep = reg_eliminate, ep1 = reg_eliminate_1;
4045 ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++, ep1++)
4046 {
4047 ep->from = ep1->from;
4048 ep->to = ep1->to;
4049 ep->can_eliminate = ep->can_eliminate_previous
4050 = (targetm.can_eliminate (ep->from, ep->to)
4051 && ! (ep->to == STACK_POINTER_REGNUM
4052 && frame_pointer_needed
4053 && (! SUPPORTS_STACK_ALIGNMENT
4054 || ! stack_realign_fp)));
4055 }
4056
4057 /* Count the number of eliminable registers and build the FROM and TO
4058 REG rtx's. Note that code in gen_rtx_REG will cause, e.g.,
4059 gen_rtx_REG (Pmode, STACK_POINTER_REGNUM) to equal stack_pointer_rtx.
4060 We depend on this. */
4061 for (ep = reg_eliminate; ep < &reg_eliminate[NUM_ELIMINABLE_REGS]; ep++)
4062 {
4063 num_eliminable += ep->can_eliminate;
4064 ep->from_rtx = gen_rtx_REG (Pmode, ep->from);
4065 ep->to_rtx = gen_rtx_REG (Pmode, ep->to);
4066 }
4067 }
4068
4069 /* Find all the pseudo registers that didn't get hard regs
4070 but do have known equivalent constants or memory slots.
4071 These include parameters (known equivalent to parameter slots)
4072 and cse'd or loop-moved constant memory addresses.
4073
4074 Record constant equivalents in reg_equiv_constant
4075 so they will be substituted by find_reloads.
4076 Record memory equivalents in reg_mem_equiv so they can
4077 be substituted eventually by altering the REG-rtx's. */
4078
4079 static void
4080 init_eliminable_invariants (rtx_insn *first, bool do_subregs)
4081 {
4082 int i;
4083 rtx_insn *insn;
4084
4085 grow_reg_equivs ();
4086 if (do_subregs)
4087 reg_max_ref_mode = XCNEWVEC (machine_mode, max_regno);
4088 else
4089 reg_max_ref_mode = NULL;
4090
4091 num_eliminable_invariants = 0;
4092
4093 first_label_num = get_first_label_num ();
4094 num_labels = max_label_num () - first_label_num;
4095
4096 /* Allocate the tables used to store offset information at labels. */
4097 offsets_known_at = XNEWVEC (char, num_labels);
4098 offsets_at = (HOST_WIDE_INT (*)[NUM_ELIMINABLE_REGS]) xmalloc (num_labels * NUM_ELIMINABLE_REGS * sizeof (HOST_WIDE_INT));
4099
4100 /* Look for REG_EQUIV notes; record what each pseudo is equivalent
4101 to. If DO_SUBREGS is true, also find all paradoxical subregs and
4102 find largest such for each pseudo. FIRST is the head of the insn
4103 list. */
4104
4105 for (insn = first; insn; insn = NEXT_INSN (insn))
4106 {
4107 rtx set = single_set (insn);
4108
4109 /* We may introduce USEs that we want to remove at the end, so
4110 we'll mark them with QImode. Make sure there are no
4111 previously-marked insns left by say regmove. */
4112 if (INSN_P (insn) && GET_CODE (PATTERN (insn)) == USE
4113 && GET_MODE (insn) != VOIDmode)
4114 PUT_MODE (insn, VOIDmode);
4115
4116 if (do_subregs && NONDEBUG_INSN_P (insn))
4117 scan_paradoxical_subregs (PATTERN (insn));
4118
4119 if (set != 0 && REG_P (SET_DEST (set)))
4120 {
4121 rtx note = find_reg_note (insn, REG_EQUIV, NULL_RTX);
4122 rtx x;
4123
4124 if (! note)
4125 continue;
4126
4127 i = REGNO (SET_DEST (set));
4128 x = XEXP (note, 0);
4129
4130 if (i <= LAST_VIRTUAL_REGISTER)
4131 continue;
4132
4133 /* If flag_pic and we have constant, verify it's legitimate. */
4134 if (!CONSTANT_P (x)
4135 || !flag_pic || LEGITIMATE_PIC_OPERAND_P (x))
4136 {
4137 /* It can happen that a REG_EQUIV note contains a MEM
4138 that is not a legitimate memory operand. As later
4139 stages of reload assume that all addresses found
4140 in the reg_equiv_* arrays were originally legitimate,
4141 we ignore such REG_EQUIV notes. */
4142 if (memory_operand (x, VOIDmode))
4143 {
4144 /* Always unshare the equivalence, so we can
4145 substitute into this insn without touching the
4146 equivalence. */
4147 reg_equiv_memory_loc (i) = copy_rtx (x);
4148 }
4149 else if (function_invariant_p (x))
4150 {
4151 machine_mode mode;
4152
4153 mode = GET_MODE (SET_DEST (set));
4154 if (GET_CODE (x) == PLUS)
4155 {
4156 /* This is PLUS of frame pointer and a constant,
4157 and might be shared. Unshare it. */
4158 reg_equiv_invariant (i) = copy_rtx (x);
4159 num_eliminable_invariants++;
4160 }
4161 else if (x == frame_pointer_rtx || x == arg_pointer_rtx)
4162 {
4163 reg_equiv_invariant (i) = x;
4164 num_eliminable_invariants++;
4165 }
4166 else if (targetm.legitimate_constant_p (mode, x))
4167 reg_equiv_constant (i) = x;
4168 else
4169 {
4170 reg_equiv_memory_loc (i) = force_const_mem (mode, x);
4171 if (! reg_equiv_memory_loc (i))
4172 reg_equiv_init (i) = NULL;
4173 }
4174 }
4175 else
4176 {
4177 reg_equiv_init (i) = NULL;
4178 continue;
4179 }
4180 }
4181 else
4182 reg_equiv_init (i) = NULL;
4183 }
4184 }
4185
4186 if (dump_file)
4187 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4188 if (reg_equiv_init (i))
4189 {
4190 fprintf (dump_file, "init_insns for %u: ", i);
4191 print_inline_rtx (dump_file, reg_equiv_init (i), 20);
4192 fprintf (dump_file, "\n");
4193 }
4194 }
4195
4196 /* Indicate that we no longer have known memory locations or constants.
4197 Free all data involved in tracking these. */
4198
4199 static void
4200 free_reg_equiv (void)
4201 {
4202 int i;
4203
4204 free (offsets_known_at);
4205 free (offsets_at);
4206 offsets_at = 0;
4207 offsets_known_at = 0;
4208
4209 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4210 if (reg_equiv_alt_mem_list (i))
4211 free_EXPR_LIST_list (&reg_equiv_alt_mem_list (i));
4212 vec_free (reg_equivs);
4213 }
4214 \f
4215 /* Kick all pseudos out of hard register REGNO.
4216
4217 If CANT_ELIMINATE is nonzero, it means that we are doing this spill
4218 because we found we can't eliminate some register. In the case, no pseudos
4219 are allowed to be in the register, even if they are only in a block that
4220 doesn't require spill registers, unlike the case when we are spilling this
4221 hard reg to produce another spill register.
4222
4223 Return nonzero if any pseudos needed to be kicked out. */
4224
4225 static void
4226 spill_hard_reg (unsigned int regno, int cant_eliminate)
4227 {
4228 int i;
4229
4230 if (cant_eliminate)
4231 {
4232 SET_HARD_REG_BIT (bad_spill_regs_global, regno);
4233 df_set_regs_ever_live (regno, true);
4234 }
4235
4236 /* Spill every pseudo reg that was allocated to this reg
4237 or to something that overlaps this reg. */
4238
4239 for (i = FIRST_PSEUDO_REGISTER; i < max_regno; i++)
4240 if (reg_renumber[i] >= 0
4241 && (unsigned int) reg_renumber[i] <= regno
4242 && end_hard_regno (PSEUDO_REGNO_MODE (i), reg_renumber[i]) > regno)
4243 SET_REGNO_REG_SET (&spilled_pseudos, i);
4244 }
4245
4246 /* After spill_hard_reg was called and/or find_reload_regs was run for all
4247 insns that need reloads, this function is used to actually spill pseudo
4248 registers and try to reallocate them. It also sets up the spill_regs
4249 array for use by choose_reload_regs.
4250
4251 GLOBAL nonzero means we should attempt to reallocate any pseudo registers
4252 that we displace from hard registers. */
4253
4254 static int
4255 finish_spills (int global)
4256 {
4257 struct insn_chain *chain;
4258 int something_changed = 0;
4259 unsigned i;
4260 reg_set_iterator rsi;
4261
4262 /* Build the spill_regs array for the function. */
4263 /* If there are some registers still to eliminate and one of the spill regs
4264 wasn't ever used before, additional stack space may have to be
4265 allocated to store this register. Thus, we may have changed the offset
4266 between the stack and frame pointers, so mark that something has changed.
4267
4268 One might think that we need only set VAL to 1 if this is a call-used
4269 register. However, the set of registers that must be saved by the
4270 prologue is not identical to the call-used set. For example, the
4271 register used by the call insn for the return PC is a call-used register,
4272 but must be saved by the prologue. */
4273
4274 n_spills = 0;
4275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4276 if (TEST_HARD_REG_BIT (used_spill_regs, i))
4277 {
4278 spill_reg_order[i] = n_spills;
4279 spill_regs[n_spills++] = i;
4280 if (num_eliminable && ! df_regs_ever_live_p (i))
4281 something_changed = 1;
4282 df_set_regs_ever_live (i, true);
4283 }
4284 else
4285 spill_reg_order[i] = -1;
4286
4287 EXECUTE_IF_SET_IN_REG_SET (&spilled_pseudos, FIRST_PSEUDO_REGISTER, i, rsi)
4288 if (! ira_conflicts_p || reg_renumber[i] >= 0)
4289 {
4290 /* Record the current hard register the pseudo is allocated to
4291 in pseudo_previous_regs so we avoid reallocating it to the
4292 same hard reg in a later pass. */
4293 gcc_assert (reg_renumber[i] >= 0);
4294
4295 SET_HARD_REG_BIT (pseudo_previous_regs[i], reg_renumber[i]);
4296 /* Mark it as no longer having a hard register home. */
4297 reg_renumber[i] = -1;
4298 if (ira_conflicts_p)
4299 /* Inform IRA about the change. */
4300 ira_mark_allocation_change (i);
4301 /* We will need to scan everything again. */
4302 something_changed = 1;
4303 }
4304
4305 /* Retry global register allocation if possible. */
4306 if (global && ira_conflicts_p)
4307 {
4308 unsigned int n;
4309
4310 memset (pseudo_forbidden_regs, 0, max_regno * sizeof (HARD_REG_SET));
4311 /* For every insn that needs reloads, set the registers used as spill
4312 regs in pseudo_forbidden_regs for every pseudo live across the
4313 insn. */
4314 for (chain = insns_need_reload; chain; chain = chain->next_need_reload)
4315 {
4316 EXECUTE_IF_SET_IN_REG_SET
4317 (&chain->live_throughout, FIRST_PSEUDO_REGISTER, i, rsi)
4318 {
4319 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4320 chain->used_spill_regs);
4321 }
4322 EXECUTE_IF_SET_IN_REG_SET
4323 (&chain->dead_or_set, FIRST_PSEUDO_REGISTER, i, rsi)
4324 {
4325 IOR_HARD_REG_SET (pseudo_forbidden_regs[i],
4326 chain->used_spill_regs);
4327 }
4328 }
4329
4330 /* Retry allocating the pseudos spilled in IRA and the
4331 reload. For each reg, merge the various reg sets that
4332 indicate which hard regs can't be used, and call
4333 ira_reassign_pseudos. */
4334 for (n = 0, i = FIRST_PSEUDO_REGISTER; i < (unsigned) max_regno; i++)
4335 if (reg_old_renumber[i] != reg_renumber[i])
4336 {
4337 if (reg_renumber[i] < 0)
4338 temp_pseudo_reg_arr[n++] = i;
4339 else
4340 CLEAR_REGNO_REG_SET (&spilled_pseudos, i);
4341 }
4342 if (ira_reassign_pseudos (temp_pseudo_reg_arr, n,
4343 bad_spill_regs_global,
4344 pseudo_forbidden_regs, pseudo_previous_regs,
4345 &spilled_pseudos))
4346 something_changed = 1;
4347 }
4348 /* Fix up the register information in the insn chain.
4349 This involves deleting those of the spilled pseudos which did not get
4350 a new hard register home from the live_{before,after} sets. */
4351 for (chain = reload_insn_chain; chain; chain = chain->next)
4352 {
4353 HARD_REG_SET used_by_pseudos;
4354 HARD_REG_SET used_by_pseudos2;
4355
4356 if (! ira_conflicts_p)
4357 {
4358 /* Don't do it for IRA because IRA and the reload still can
4359 assign hard registers to the spilled pseudos on next
4360 reload iterations. */
4361 AND_COMPL_REG_SET (&chain->live_throughout, &spilled_pseudos);
4362 AND_COMPL_REG_SET (&chain->dead_or_set, &spilled_pseudos);
4363 }
4364 /* Mark any unallocated hard regs as available for spills. That
4365 makes inheritance work somewhat better. */
4366 if (chain->need_reload)
4367 {
4368 REG_SET_TO_HARD_REG_SET (used_by_pseudos, &chain->live_throughout);
4369 REG_SET_TO_HARD_REG_SET (used_by_pseudos2, &chain->dead_or_set);
4370 IOR_HARD_REG_SET (used_by_pseudos, used_by_pseudos2);
4371
4372 compute_use_by_pseudos (&used_by_pseudos, &chain->live_throughout);
4373 compute_use_by_pseudos (&used_by_pseudos, &chain->dead_or_set);
4374 /* Value of chain->used_spill_regs from previous iteration
4375 may be not included in the value calculated here because
4376 of possible removing caller-saves insns (see function
4377 delete_caller_save_insns. */
4378 COMPL_HARD_REG_SET (chain->used_spill_regs, used_by_pseudos);
4379 AND_HARD_REG_SET (chain->used_spill_regs, used_spill_regs);
4380 }
4381 }
4382
4383 CLEAR_REG_SET (&changed_allocation_pseudos);
4384 /* Let alter_reg modify the reg rtx's for the modified pseudos. */
4385 for (i = FIRST_PSEUDO_REGISTER; i < (unsigned)max_regno; i++)
4386 {
4387 int regno = reg_renumber[i];
4388 if (reg_old_renumber[i] == regno)
4389 continue;
4390
4391 SET_REGNO_REG_SET (&changed_allocation_pseudos, i);
4392
4393 alter_reg (i, reg_old_renumber[i], false);
4394 reg_old_renumber[i] = regno;
4395 if (dump_file)
4396 {
4397 if (regno == -1)
4398 fprintf (dump_file, " Register %d now on stack.\n\n", i);
4399 else
4400 fprintf (dump_file, " Register %d now in %d.\n\n",
4401 i, reg_renumber[i]);
4402 }
4403 }
4404
4405 return something_changed;
4406 }
4407 \f
4408 /* Find all paradoxical subregs within X and update reg_max_ref_mode. */
4409
4410 static void
4411 scan_paradoxical_subregs (rtx x)
4412 {
4413 int i;
4414 const char *fmt;
4415 enum rtx_code code = GET_CODE (x);
4416
4417 switch (code)
4418 {
4419 case REG:
4420 case CONST:
4421 case SYMBOL_REF:
4422 case LABEL_REF:
4423 CASE_CONST_ANY:
4424 case CC0:
4425 case PC:
4426 case USE:
4427 case CLOBBER:
4428 return;
4429
4430 case SUBREG:
4431 if (REG_P (SUBREG_REG (x)))
4432 {
4433 unsigned int regno = REGNO (SUBREG_REG (x));
4434 if (partial_subreg_p (reg_max_ref_mode[regno], GET_MODE (x)))
4435 {
4436 reg_max_ref_mode[regno] = GET_MODE (x);
4437 mark_home_live_1 (regno, GET_MODE (x));
4438 }
4439 }
4440 return;
4441
4442 default:
4443 break;
4444 }
4445
4446 fmt = GET_RTX_FORMAT (code);
4447 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4448 {
4449 if (fmt[i] == 'e')
4450 scan_paradoxical_subregs (XEXP (x, i));
4451 else if (fmt[i] == 'E')
4452 {
4453 int j;
4454 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
4455 scan_paradoxical_subregs (XVECEXP (x, i, j));
4456 }
4457 }
4458 }
4459
4460 /* *OP_PTR and *OTHER_PTR are two operands to a conceptual reload.
4461 If *OP_PTR is a paradoxical subreg, try to remove that subreg
4462 and apply the corresponding narrowing subreg to *OTHER_PTR.
4463 Return true if the operands were changed, false otherwise. */
4464
4465 static bool
4466 strip_paradoxical_subreg (rtx *op_ptr, rtx *other_ptr)
4467 {
4468 rtx op, inner, other, tem;
4469
4470 op = *op_ptr;
4471 if (!paradoxical_subreg_p (op))
4472 return false;
4473 inner = SUBREG_REG (op);
4474
4475 other = *other_ptr;
4476 tem = gen_lowpart_common (GET_MODE (inner), other);
4477 if (!tem)
4478 return false;
4479
4480 /* If the lowpart operation turned a hard register into a subreg,
4481 rather than simplifying it to another hard register, then the
4482 mode change cannot be properly represented. For example, OTHER
4483 might be valid in its current mode, but not in the new one. */
4484 if (GET_CODE (tem) == SUBREG
4485 && REG_P (other)
4486 && HARD_REGISTER_P (other))
4487 return false;
4488
4489 *op_ptr = inner;
4490 *other_ptr = tem;
4491 return true;
4492 }
4493 \f
4494 /* A subroutine of reload_as_needed. If INSN has a REG_EH_REGION note,
4495 examine all of the reload insns between PREV and NEXT exclusive, and
4496 annotate all that may trap. */
4497
4498 static void
4499 fixup_eh_region_note (rtx_insn *insn, rtx_insn *prev, rtx_insn *next)
4500 {
4501 rtx note = find_reg_note (insn, REG_EH_REGION, NULL_RTX);
4502 if (note == NULL)
4503 return;
4504 if (!insn_could_throw_p (insn))
4505 remove_note (insn, note);
4506 copy_reg_eh_region_note_forward (note, NEXT_INSN (prev), next);
4507 }
4508
4509 /* Reload pseudo-registers into hard regs around each insn as needed.
4510 Additional register load insns are output before the insn that needs it
4511 and perhaps store insns after insns that modify the reloaded pseudo reg.
4512
4513 reg_last_reload_reg and reg_reloaded_contents keep track of
4514 which registers are already available in reload registers.
4515 We update these for the reloads that we perform,
4516 as the insns are scanned. */
4517
4518 static void
4519 reload_as_needed (int live_known)
4520 {
4521 struct insn_chain *chain;
4522 #if AUTO_INC_DEC
4523 int i;
4524 #endif
4525 rtx_note *marker;
4526
4527 memset (spill_reg_rtx, 0, sizeof spill_reg_rtx);
4528 memset (spill_reg_store, 0, sizeof spill_reg_store);
4529 reg_last_reload_reg = XCNEWVEC (rtx, max_regno);
4530 INIT_REG_SET (&reg_has_output_reload);
4531 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4532 CLEAR_HARD_REG_SET (reg_reloaded_call_part_clobbered);
4533
4534 set_initial_elim_offsets ();
4535
4536 /* Generate a marker insn that we will move around. */
4537 marker = emit_note (NOTE_INSN_DELETED);
4538 unlink_insn_chain (marker, marker);
4539
4540 for (chain = reload_insn_chain; chain; chain = chain->next)
4541 {
4542 rtx_insn *prev = 0;
4543 rtx_insn *insn = chain->insn;
4544 rtx_insn *old_next = NEXT_INSN (insn);
4545 #if AUTO_INC_DEC
4546 rtx_insn *old_prev = PREV_INSN (insn);
4547 #endif
4548
4549 if (will_delete_init_insn_p (insn))
4550 continue;
4551
4552 /* If we pass a label, copy the offsets from the label information
4553 into the current offsets of each elimination. */
4554 if (LABEL_P (insn))
4555 set_offsets_for_label (insn);
4556
4557 else if (INSN_P (insn))
4558 {
4559 regset_head regs_to_forget;
4560 INIT_REG_SET (&regs_to_forget);
4561 note_stores (PATTERN (insn), forget_old_reloads_1, &regs_to_forget);
4562
4563 /* If this is a USE and CLOBBER of a MEM, ensure that any
4564 references to eliminable registers have been removed. */
4565
4566 if ((GET_CODE (PATTERN (insn)) == USE
4567 || GET_CODE (PATTERN (insn)) == CLOBBER)
4568 && MEM_P (XEXP (PATTERN (insn), 0)))
4569 XEXP (XEXP (PATTERN (insn), 0), 0)
4570 = eliminate_regs (XEXP (XEXP (PATTERN (insn), 0), 0),
4571 GET_MODE (XEXP (PATTERN (insn), 0)),
4572 NULL_RTX);
4573
4574 /* If we need to do register elimination processing, do so.
4575 This might delete the insn, in which case we are done. */
4576 if ((num_eliminable || num_eliminable_invariants) && chain->need_elim)
4577 {
4578 eliminate_regs_in_insn (insn, 1);
4579 if (NOTE_P (insn))
4580 {
4581 update_eliminable_offsets ();
4582 CLEAR_REG_SET (&regs_to_forget);
4583 continue;
4584 }
4585 }
4586
4587 /* If need_elim is nonzero but need_reload is zero, one might think
4588 that we could simply set n_reloads to 0. However, find_reloads
4589 could have done some manipulation of the insn (such as swapping
4590 commutative operands), and these manipulations are lost during
4591 the first pass for every insn that needs register elimination.
4592 So the actions of find_reloads must be redone here. */
4593
4594 if (! chain->need_elim && ! chain->need_reload
4595 && ! chain->need_operand_change)
4596 n_reloads = 0;
4597 /* First find the pseudo regs that must be reloaded for this insn.
4598 This info is returned in the tables reload_... (see reload.h).
4599 Also modify the body of INSN by substituting RELOAD
4600 rtx's for those pseudo regs. */
4601 else
4602 {
4603 CLEAR_REG_SET (&reg_has_output_reload);
4604 CLEAR_HARD_REG_SET (reg_is_output_reload);
4605
4606 find_reloads (insn, 1, spill_indirect_levels, live_known,
4607 spill_reg_order);
4608 }
4609
4610 if (n_reloads > 0)
4611 {
4612 rtx_insn *next = NEXT_INSN (insn);
4613
4614 /* ??? PREV can get deleted by reload inheritance.
4615 Work around this by emitting a marker note. */
4616 prev = PREV_INSN (insn);
4617 reorder_insns_nobb (marker, marker, prev);
4618
4619 /* Now compute which reload regs to reload them into. Perhaps
4620 reusing reload regs from previous insns, or else output
4621 load insns to reload them. Maybe output store insns too.
4622 Record the choices of reload reg in reload_reg_rtx. */
4623 choose_reload_regs (chain);
4624
4625 /* Generate the insns to reload operands into or out of
4626 their reload regs. */
4627 emit_reload_insns (chain);
4628
4629 /* Substitute the chosen reload regs from reload_reg_rtx
4630 into the insn's body (or perhaps into the bodies of other
4631 load and store insn that we just made for reloading
4632 and that we moved the structure into). */
4633 subst_reloads (insn);
4634
4635 prev = PREV_INSN (marker);
4636 unlink_insn_chain (marker, marker);
4637
4638 /* Adjust the exception region notes for loads and stores. */
4639 if (cfun->can_throw_non_call_exceptions && !CALL_P (insn))
4640 fixup_eh_region_note (insn, prev, next);
4641
4642 /* Adjust the location of REG_ARGS_SIZE. */
4643 rtx p = find_reg_note (insn, REG_ARGS_SIZE, NULL_RTX);
4644 if (p)
4645 {
4646 remove_note (insn, p);
4647 fixup_args_size_notes (prev, PREV_INSN (next),
4648 INTVAL (XEXP (p, 0)));
4649 }
4650
4651 /* If this was an ASM, make sure that all the reload insns
4652 we have generated are valid. If not, give an error
4653 and delete them. */
4654 if (asm_noperands (PATTERN (insn)) >= 0)
4655 for (rtx_insn *p = NEXT_INSN (prev);
4656 p != next;
4657 p = NEXT_INSN (p))
4658 if (p != insn && INSN_P (p)
4659 && GET_CODE (PATTERN (p)) != USE
4660 && (recog_memoized (p) < 0
4661 || (extract_insn (p),
4662 !(constrain_operands (1,
4663 get_enabled_alternatives (p))))))
4664 {
4665 error_for_asm (insn,
4666 "%<asm%> operand requires "
4667 "impossible reload");
4668 delete_insn (p);
4669 }
4670 }
4671
4672 if (num_eliminable && chain->need_elim)
4673 update_eliminable_offsets ();
4674
4675 /* Any previously reloaded spilled pseudo reg, stored in this insn,
4676 is no longer validly lying around to save a future reload.
4677 Note that this does not detect pseudos that were reloaded
4678 for this insn in order to be stored in
4679 (obeying register constraints). That is correct; such reload
4680 registers ARE still valid. */
4681 forget_marked_reloads (&regs_to_forget);
4682 CLEAR_REG_SET (&regs_to_forget);
4683
4684 /* There may have been CLOBBER insns placed after INSN. So scan
4685 between INSN and NEXT and use them to forget old reloads. */
4686 for (rtx_insn *x = NEXT_INSN (insn); x != old_next; x = NEXT_INSN (x))
4687 if (NONJUMP_INSN_P (x) && GET_CODE (PATTERN (x)) == CLOBBER)
4688 note_stores (PATTERN (x), forget_old_reloads_1, NULL);
4689
4690 #if AUTO_INC_DEC
4691 /* Likewise for regs altered by auto-increment in this insn.
4692 REG_INC notes have been changed by reloading:
4693 find_reloads_address_1 records substitutions for them,
4694 which have been performed by subst_reloads above. */
4695 for (i = n_reloads - 1; i >= 0; i--)
4696 {
4697 rtx in_reg = rld[i].in_reg;
4698 if (in_reg)
4699 {
4700 enum rtx_code code = GET_CODE (in_reg);
4701 /* PRE_INC / PRE_DEC will have the reload register ending up
4702 with the same value as the stack slot, but that doesn't
4703 hold true for POST_INC / POST_DEC. Either we have to
4704 convert the memory access to a true POST_INC / POST_DEC,
4705 or we can't use the reload register for inheritance. */
4706 if ((code == POST_INC || code == POST_DEC)
4707 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4708 REGNO (rld[i].reg_rtx))
4709 /* Make sure it is the inc/dec pseudo, and not
4710 some other (e.g. output operand) pseudo. */
4711 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4712 == REGNO (XEXP (in_reg, 0))))
4713
4714 {
4715 rtx reload_reg = rld[i].reg_rtx;
4716 machine_mode mode = GET_MODE (reload_reg);
4717 int n = 0;
4718 rtx_insn *p;
4719
4720 for (p = PREV_INSN (old_next); p != prev; p = PREV_INSN (p))
4721 {
4722 /* We really want to ignore REG_INC notes here, so
4723 use PATTERN (p) as argument to reg_set_p . */
4724 if (reg_set_p (reload_reg, PATTERN (p)))
4725 break;
4726 n = count_occurrences (PATTERN (p), reload_reg, 0);
4727 if (! n)
4728 continue;
4729 if (n == 1)
4730 {
4731 rtx replace_reg
4732 = gen_rtx_fmt_e (code, mode, reload_reg);
4733
4734 validate_replace_rtx_group (reload_reg,
4735 replace_reg, p);
4736 n = verify_changes (0);
4737
4738 /* We must also verify that the constraints
4739 are met after the replacement. Make sure
4740 extract_insn is only called for an insn
4741 where the replacements were found to be
4742 valid so far. */
4743 if (n)
4744 {
4745 extract_insn (p);
4746 n = constrain_operands (1,
4747 get_enabled_alternatives (p));
4748 }
4749
4750 /* If the constraints were not met, then
4751 undo the replacement, else confirm it. */
4752 if (!n)
4753 cancel_changes (0);
4754 else
4755 confirm_change_group ();
4756 }
4757 break;
4758 }
4759 if (n == 1)
4760 {
4761 add_reg_note (p, REG_INC, reload_reg);
4762 /* Mark this as having an output reload so that the
4763 REG_INC processing code below won't invalidate
4764 the reload for inheritance. */
4765 SET_HARD_REG_BIT (reg_is_output_reload,
4766 REGNO (reload_reg));
4767 SET_REGNO_REG_SET (&reg_has_output_reload,
4768 REGNO (XEXP (in_reg, 0)));
4769 }
4770 else
4771 forget_old_reloads_1 (XEXP (in_reg, 0), NULL_RTX,
4772 NULL);
4773 }
4774 else if ((code == PRE_INC || code == PRE_DEC)
4775 && TEST_HARD_REG_BIT (reg_reloaded_valid,
4776 REGNO (rld[i].reg_rtx))
4777 /* Make sure it is the inc/dec pseudo, and not
4778 some other (e.g. output operand) pseudo. */
4779 && ((unsigned) reg_reloaded_contents[REGNO (rld[i].reg_rtx)]
4780 == REGNO (XEXP (in_reg, 0))))
4781 {
4782 SET_HARD_REG_BIT (reg_is_output_reload,
4783 REGNO (rld[i].reg_rtx));
4784 SET_REGNO_REG_SET (&reg_has_output_reload,
4785 REGNO (XEXP (in_reg, 0)));
4786 }
4787 else if (code == PRE_INC || code == PRE_DEC
4788 || code == POST_INC || code == POST_DEC)
4789 {
4790 int in_regno = REGNO (XEXP (in_reg, 0));
4791
4792 if (reg_last_reload_reg[in_regno] != NULL_RTX)
4793 {
4794 int in_hard_regno;
4795 bool forget_p = true;
4796
4797 in_hard_regno = REGNO (reg_last_reload_reg[in_regno]);
4798 if (TEST_HARD_REG_BIT (reg_reloaded_valid,
4799 in_hard_regno))
4800 {
4801 for (rtx_insn *x = (old_prev ?
4802 NEXT_INSN (old_prev) : insn);
4803 x != old_next;
4804 x = NEXT_INSN (x))
4805 if (x == reg_reloaded_insn[in_hard_regno])
4806 {
4807 forget_p = false;
4808 break;
4809 }
4810 }
4811 /* If for some reasons, we didn't set up
4812 reg_last_reload_reg in this insn,
4813 invalidate inheritance from previous
4814 insns for the incremented/decremented
4815 register. Such registers will be not in
4816 reg_has_output_reload. Invalidate it
4817 also if the corresponding element in
4818 reg_reloaded_insn is also
4819 invalidated. */
4820 if (forget_p)
4821 forget_old_reloads_1 (XEXP (in_reg, 0),
4822 NULL_RTX, NULL);
4823 }
4824 }
4825 }
4826 }
4827 /* If a pseudo that got a hard register is auto-incremented,
4828 we must purge records of copying it into pseudos without
4829 hard registers. */
4830 for (rtx x = REG_NOTES (insn); x; x = XEXP (x, 1))
4831 if (REG_NOTE_KIND (x) == REG_INC)
4832 {
4833 /* See if this pseudo reg was reloaded in this insn.
4834 If so, its last-reload info is still valid
4835 because it is based on this insn's reload. */
4836 for (i = 0; i < n_reloads; i++)
4837 if (rld[i].out == XEXP (x, 0))
4838 break;
4839
4840 if (i == n_reloads)
4841 forget_old_reloads_1 (XEXP (x, 0), NULL_RTX, NULL);
4842 }
4843 #endif
4844 }
4845 /* A reload reg's contents are unknown after a label. */
4846 if (LABEL_P (insn))
4847 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4848
4849 /* Don't assume a reload reg is still good after a call insn
4850 if it is a call-used reg, or if it contains a value that will
4851 be partially clobbered by the call. */
4852 else if (CALL_P (insn))
4853 {
4854 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, call_used_reg_set);
4855 AND_COMPL_HARD_REG_SET (reg_reloaded_valid, reg_reloaded_call_part_clobbered);
4856
4857 /* If this is a call to a setjmp-type function, we must not
4858 reuse any reload reg contents across the call; that will
4859 just be clobbered by other uses of the register in later
4860 code, before the longjmp. */
4861 if (find_reg_note (insn, REG_SETJMP, NULL_RTX))
4862 CLEAR_HARD_REG_SET (reg_reloaded_valid);
4863 }
4864 }
4865
4866 /* Clean up. */
4867 free (reg_last_reload_reg);
4868 CLEAR_REG_SET (&reg_has_output_reload);
4869 }
4870
4871 /* Discard all record of any value reloaded from X,
4872 or reloaded in X from someplace else;
4873 unless X is an output reload reg of the current insn.
4874
4875 X may be a hard reg (the reload reg)
4876 or it may be a pseudo reg that was reloaded from.
4877
4878 When DATA is non-NULL just mark the registers in regset
4879 to be forgotten later. */
4880
4881 static void
4882 forget_old_reloads_1 (rtx x, const_rtx ignored ATTRIBUTE_UNUSED,
4883 void *data)
4884 {
4885 unsigned int regno;
4886 unsigned int nr;
4887 regset regs = (regset) data;
4888
4889 /* note_stores does give us subregs of hard regs,
4890 subreg_regno_offset requires a hard reg. */
4891 while (GET_CODE (x) == SUBREG)
4892 {
4893 /* We ignore the subreg offset when calculating the regno,
4894 because we are using the entire underlying hard register
4895 below. */
4896 x = SUBREG_REG (x);
4897 }
4898
4899 if (!REG_P (x))
4900 return;
4901
4902 regno = REGNO (x);
4903
4904 if (regno >= FIRST_PSEUDO_REGISTER)
4905 nr = 1;
4906 else
4907 {
4908 unsigned int i;
4909
4910 nr = REG_NREGS (x);
4911 /* Storing into a spilled-reg invalidates its contents.
4912 This can happen if a block-local pseudo is allocated to that reg
4913 and it wasn't spilled because this block's total need is 0.
4914 Then some insn might have an optional reload and use this reg. */
4915 if (!regs)
4916 for (i = 0; i < nr; i++)
4917 /* But don't do this if the reg actually serves as an output
4918 reload reg in the current instruction. */
4919 if (n_reloads == 0
4920 || ! TEST_HARD_REG_BIT (reg_is_output_reload, regno + i))
4921 {
4922 CLEAR_HARD_REG_BIT (reg_reloaded_valid, regno + i);
4923 spill_reg_store[regno + i] = 0;
4924 }
4925 }
4926
4927 if (regs)
4928 while (nr-- > 0)
4929 SET_REGNO_REG_SET (regs, regno + nr);
4930 else
4931 {
4932 /* Since value of X has changed,
4933 forget any value previously copied from it. */
4934
4935 while (nr-- > 0)
4936 /* But don't forget a copy if this is the output reload
4937 that establishes the copy's validity. */
4938 if (n_reloads == 0
4939 || !REGNO_REG_SET_P (&reg_has_output_reload, regno + nr))
4940 reg_last_reload_reg[regno + nr] = 0;
4941 }
4942 }
4943
4944 /* Forget the reloads marked in regset by previous function. */
4945 static void
4946 forget_marked_reloads (regset regs)
4947 {
4948 unsigned int reg;
4949 reg_set_iterator rsi;
4950 EXECUTE_IF_SET_IN_REG_SET (regs, 0, reg, rsi)
4951 {
4952 if (reg < FIRST_PSEUDO_REGISTER
4953 /* But don't do this if the reg actually serves as an output
4954 reload reg in the current instruction. */
4955 && (n_reloads == 0
4956 || ! TEST_HARD_REG_BIT (reg_is_output_reload, reg)))
4957 {
4958 CLEAR_HARD_REG_BIT (reg_reloaded_valid, reg);
4959 spill_reg_store[reg] = 0;
4960 }
4961 if (n_reloads == 0
4962 || !REGNO_REG_SET_P (&reg_has_output_reload, reg))
4963 reg_last_reload_reg[reg] = 0;
4964 }
4965 }
4966 \f
4967 /* The following HARD_REG_SETs indicate when each hard register is
4968 used for a reload of various parts of the current insn. */
4969
4970 /* If reg is unavailable for all reloads. */
4971 static HARD_REG_SET reload_reg_unavailable;
4972 /* If reg is in use as a reload reg for a RELOAD_OTHER reload. */
4973 static HARD_REG_SET reload_reg_used;
4974 /* If reg is in use for a RELOAD_FOR_INPUT_ADDRESS reload for operand I. */
4975 static HARD_REG_SET reload_reg_used_in_input_addr[MAX_RECOG_OPERANDS];
4976 /* If reg is in use for a RELOAD_FOR_INPADDR_ADDRESS reload for operand I. */
4977 static HARD_REG_SET reload_reg_used_in_inpaddr_addr[MAX_RECOG_OPERANDS];
4978 /* If reg is in use for a RELOAD_FOR_OUTPUT_ADDRESS reload for operand I. */
4979 static HARD_REG_SET reload_reg_used_in_output_addr[MAX_RECOG_OPERANDS];
4980 /* If reg is in use for a RELOAD_FOR_OUTADDR_ADDRESS reload for operand I. */
4981 static HARD_REG_SET reload_reg_used_in_outaddr_addr[MAX_RECOG_OPERANDS];
4982 /* If reg is in use for a RELOAD_FOR_INPUT reload for operand I. */
4983 static HARD_REG_SET reload_reg_used_in_input[MAX_RECOG_OPERANDS];
4984 /* If reg is in use for a RELOAD_FOR_OUTPUT reload for operand I. */
4985 static HARD_REG_SET reload_reg_used_in_output[MAX_RECOG_OPERANDS];
4986 /* If reg is in use for a RELOAD_FOR_OPERAND_ADDRESS reload. */
4987 static HARD_REG_SET reload_reg_used_in_op_addr;
4988 /* If reg is in use for a RELOAD_FOR_OPADDR_ADDR reload. */
4989 static HARD_REG_SET reload_reg_used_in_op_addr_reload;
4990 /* If reg is in use for a RELOAD_FOR_INSN reload. */
4991 static HARD_REG_SET reload_reg_used_in_insn;
4992 /* If reg is in use for a RELOAD_FOR_OTHER_ADDRESS reload. */
4993 static HARD_REG_SET reload_reg_used_in_other_addr;
4994
4995 /* If reg is in use as a reload reg for any sort of reload. */
4996 static HARD_REG_SET reload_reg_used_at_all;
4997
4998 /* If reg is use as an inherited reload. We just mark the first register
4999 in the group. */
5000 static HARD_REG_SET reload_reg_used_for_inherit;
5001
5002 /* Records which hard regs are used in any way, either as explicit use or
5003 by being allocated to a pseudo during any point of the current insn. */
5004 static HARD_REG_SET reg_used_in_insn;
5005
5006 /* Mark reg REGNO as in use for a reload of the sort spec'd by OPNUM and
5007 TYPE. MODE is used to indicate how many consecutive regs are
5008 actually used. */
5009
5010 static void
5011 mark_reload_reg_in_use (unsigned int regno, int opnum, enum reload_type type,
5012 machine_mode mode)
5013 {
5014 switch (type)
5015 {
5016 case RELOAD_OTHER:
5017 add_to_hard_reg_set (&reload_reg_used, mode, regno);
5018 break;
5019
5020 case RELOAD_FOR_INPUT_ADDRESS:
5021 add_to_hard_reg_set (&reload_reg_used_in_input_addr[opnum], mode, regno);
5022 break;
5023
5024 case RELOAD_FOR_INPADDR_ADDRESS:
5025 add_to_hard_reg_set (&reload_reg_used_in_inpaddr_addr[opnum], mode, regno);
5026 break;
5027
5028 case RELOAD_FOR_OUTPUT_ADDRESS:
5029 add_to_hard_reg_set (&reload_reg_used_in_output_addr[opnum], mode, regno);
5030 break;
5031
5032 case RELOAD_FOR_OUTADDR_ADDRESS:
5033 add_to_hard_reg_set (&reload_reg_used_in_outaddr_addr[opnum], mode, regno);
5034 break;
5035
5036 case RELOAD_FOR_OPERAND_ADDRESS:
5037 add_to_hard_reg_set (&reload_reg_used_in_op_addr, mode, regno);
5038 break;
5039
5040 case RELOAD_FOR_OPADDR_ADDR:
5041 add_to_hard_reg_set (&reload_reg_used_in_op_addr_reload, mode, regno);
5042 break;
5043
5044 case RELOAD_FOR_OTHER_ADDRESS:
5045 add_to_hard_reg_set (&reload_reg_used_in_other_addr, mode, regno);
5046 break;
5047
5048 case RELOAD_FOR_INPUT:
5049 add_to_hard_reg_set (&reload_reg_used_in_input[opnum], mode, regno);
5050 break;
5051
5052 case RELOAD_FOR_OUTPUT:
5053 add_to_hard_reg_set (&reload_reg_used_in_output[opnum], mode, regno);
5054 break;
5055
5056 case RELOAD_FOR_INSN:
5057 add_to_hard_reg_set (&reload_reg_used_in_insn, mode, regno);
5058 break;
5059 }
5060
5061 add_to_hard_reg_set (&reload_reg_used_at_all, mode, regno);
5062 }
5063
5064 /* Similarly, but show REGNO is no longer in use for a reload. */
5065
5066 static void
5067 clear_reload_reg_in_use (unsigned int regno, int opnum,
5068 enum reload_type type, machine_mode mode)
5069 {
5070 unsigned int nregs = hard_regno_nregs (regno, mode);
5071 unsigned int start_regno, end_regno, r;
5072 int i;
5073 /* A complication is that for some reload types, inheritance might
5074 allow multiple reloads of the same types to share a reload register.
5075 We set check_opnum if we have to check only reloads with the same
5076 operand number, and check_any if we have to check all reloads. */
5077 int check_opnum = 0;
5078 int check_any = 0;
5079 HARD_REG_SET *used_in_set;
5080
5081 switch (type)
5082 {
5083 case RELOAD_OTHER:
5084 used_in_set = &reload_reg_used;
5085 break;
5086
5087 case RELOAD_FOR_INPUT_ADDRESS:
5088 used_in_set = &reload_reg_used_in_input_addr[opnum];
5089 break;
5090
5091 case RELOAD_FOR_INPADDR_ADDRESS:
5092 check_opnum = 1;
5093 used_in_set = &reload_reg_used_in_inpaddr_addr[opnum];
5094 break;
5095
5096 case RELOAD_FOR_OUTPUT_ADDRESS:
5097 used_in_set = &reload_reg_used_in_output_addr[opnum];
5098 break;
5099
5100 case RELOAD_FOR_OUTADDR_ADDRESS:
5101 check_opnum = 1;
5102 used_in_set = &reload_reg_used_in_outaddr_addr[opnum];
5103 break;
5104
5105 case RELOAD_FOR_OPERAND_ADDRESS:
5106 used_in_set = &reload_reg_used_in_op_addr;
5107 break;
5108
5109 case RELOAD_FOR_OPADDR_ADDR:
5110 check_any = 1;
5111 used_in_set = &reload_reg_used_in_op_addr_reload;
5112 break;
5113
5114 case RELOAD_FOR_OTHER_ADDRESS:
5115 used_in_set = &reload_reg_used_in_other_addr;
5116 check_any = 1;
5117 break;
5118
5119 case RELOAD_FOR_INPUT:
5120 used_in_set = &reload_reg_used_in_input[opnum];
5121 break;
5122
5123 case RELOAD_FOR_OUTPUT:
5124 used_in_set = &reload_reg_used_in_output[opnum];
5125 break;
5126
5127 case RELOAD_FOR_INSN:
5128 used_in_set = &reload_reg_used_in_insn;
5129 break;
5130 default:
5131 gcc_unreachable ();
5132 }
5133 /* We resolve conflicts with remaining reloads of the same type by
5134 excluding the intervals of reload registers by them from the
5135 interval of freed reload registers. Since we only keep track of
5136 one set of interval bounds, we might have to exclude somewhat
5137 more than what would be necessary if we used a HARD_REG_SET here.
5138 But this should only happen very infrequently, so there should
5139 be no reason to worry about it. */
5140
5141 start_regno = regno;
5142 end_regno = regno + nregs;
5143 if (check_opnum || check_any)
5144 {
5145 for (i = n_reloads - 1; i >= 0; i--)
5146 {
5147 if (rld[i].when_needed == type
5148 && (check_any || rld[i].opnum == opnum)
5149 && rld[i].reg_rtx)
5150 {
5151 unsigned int conflict_start = true_regnum (rld[i].reg_rtx);
5152 unsigned int conflict_end
5153 = end_hard_regno (rld[i].mode, conflict_start);
5154
5155 /* If there is an overlap with the first to-be-freed register,
5156 adjust the interval start. */
5157 if (conflict_start <= start_regno && conflict_end > start_regno)
5158 start_regno = conflict_end;
5159 /* Otherwise, if there is a conflict with one of the other
5160 to-be-freed registers, adjust the interval end. */
5161 if (conflict_start > start_regno && conflict_start < end_regno)
5162 end_regno = conflict_start;
5163 }
5164 }
5165 }
5166
5167 for (r = start_regno; r < end_regno; r++)
5168 CLEAR_HARD_REG_BIT (*used_in_set, r);
5169 }
5170
5171 /* 1 if reg REGNO is free as a reload reg for a reload of the sort
5172 specified by OPNUM and TYPE. */
5173
5174 static int
5175 reload_reg_free_p (unsigned int regno, int opnum, enum reload_type type)
5176 {
5177 int i;
5178
5179 /* In use for a RELOAD_OTHER means it's not available for anything. */
5180 if (TEST_HARD_REG_BIT (reload_reg_used, regno)
5181 || TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5182 return 0;
5183
5184 switch (type)
5185 {
5186 case RELOAD_OTHER:
5187 /* In use for anything means we can't use it for RELOAD_OTHER. */
5188 if (TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno)
5189 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5190 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5191 || TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5192 return 0;
5193
5194 for (i = 0; i < reload_n_operands; i++)
5195 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5196 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5197 || TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5198 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5199 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5200 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5201 return 0;
5202
5203 return 1;
5204
5205 case RELOAD_FOR_INPUT:
5206 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5207 || TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno))
5208 return 0;
5209
5210 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5211 return 0;
5212
5213 /* If it is used for some other input, can't use it. */
5214 for (i = 0; i < reload_n_operands; i++)
5215 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5216 return 0;
5217
5218 /* If it is used in a later operand's address, can't use it. */
5219 for (i = opnum + 1; i < reload_n_operands; i++)
5220 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5221 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5222 return 0;
5223
5224 return 1;
5225
5226 case RELOAD_FOR_INPUT_ADDRESS:
5227 /* Can't use a register if it is used for an input address for this
5228 operand or used as an input in an earlier one. */
5229 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno)
5230 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5231 return 0;
5232
5233 for (i = 0; i < opnum; i++)
5234 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5235 return 0;
5236
5237 return 1;
5238
5239 case RELOAD_FOR_INPADDR_ADDRESS:
5240 /* Can't use a register if it is used for an input address
5241 for this operand or used as an input in an earlier
5242 one. */
5243 if (TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[opnum], regno))
5244 return 0;
5245
5246 for (i = 0; i < opnum; i++)
5247 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5248 return 0;
5249
5250 return 1;
5251
5252 case RELOAD_FOR_OUTPUT_ADDRESS:
5253 /* Can't use a register if it is used for an output address for this
5254 operand or used as an output in this or a later operand. Note
5255 that multiple output operands are emitted in reverse order, so
5256 the conflicting ones are those with lower indices. */
5257 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[opnum], regno))
5258 return 0;
5259
5260 for (i = 0; i <= opnum; i++)
5261 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5262 return 0;
5263
5264 return 1;
5265
5266 case RELOAD_FOR_OUTADDR_ADDRESS:
5267 /* Can't use a register if it is used for an output address
5268 for this operand or used as an output in this or a
5269 later operand. Note that multiple output operands are
5270 emitted in reverse order, so the conflicting ones are
5271 those with lower indices. */
5272 if (TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5273 return 0;
5274
5275 for (i = 0; i <= opnum; i++)
5276 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5277 return 0;
5278
5279 return 1;
5280
5281 case RELOAD_FOR_OPERAND_ADDRESS:
5282 for (i = 0; i < reload_n_operands; i++)
5283 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5284 return 0;
5285
5286 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5287 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5288
5289 case RELOAD_FOR_OPADDR_ADDR:
5290 for (i = 0; i < reload_n_operands; i++)
5291 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5292 return 0;
5293
5294 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno));
5295
5296 case RELOAD_FOR_OUTPUT:
5297 /* This cannot share a register with RELOAD_FOR_INSN reloads, other
5298 outputs, or an operand address for this or an earlier output.
5299 Note that multiple output operands are emitted in reverse order,
5300 so the conflicting ones are those with higher indices. */
5301 if (TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno))
5302 return 0;
5303
5304 for (i = 0; i < reload_n_operands; i++)
5305 if (TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5306 return 0;
5307
5308 for (i = opnum; i < reload_n_operands; i++)
5309 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5310 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5311 return 0;
5312
5313 return 1;
5314
5315 case RELOAD_FOR_INSN:
5316 for (i = 0; i < reload_n_operands; i++)
5317 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno)
5318 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5319 return 0;
5320
5321 return (! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5322 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno));
5323
5324 case RELOAD_FOR_OTHER_ADDRESS:
5325 return ! TEST_HARD_REG_BIT (reload_reg_used_in_other_addr, regno);
5326
5327 default:
5328 gcc_unreachable ();
5329 }
5330 }
5331
5332 /* Return 1 if the value in reload reg REGNO, as used by the reload with
5333 the number RELOADNUM, is still available in REGNO at the end of the insn.
5334
5335 We can assume that the reload reg was already tested for availability
5336 at the time it is needed, and we should not check this again,
5337 in case the reg has already been marked in use. */
5338
5339 static int
5340 reload_reg_reaches_end_p (unsigned int regno, int reloadnum)
5341 {
5342 int opnum = rld[reloadnum].opnum;
5343 enum reload_type type = rld[reloadnum].when_needed;
5344 int i;
5345
5346 /* See if there is a reload with the same type for this operand, using
5347 the same register. This case is not handled by the code below. */
5348 for (i = reloadnum + 1; i < n_reloads; i++)
5349 {
5350 rtx reg;
5351
5352 if (rld[i].opnum != opnum || rld[i].when_needed != type)
5353 continue;
5354 reg = rld[i].reg_rtx;
5355 if (reg == NULL_RTX)
5356 continue;
5357 if (regno >= REGNO (reg) && regno < END_REGNO (reg))
5358 return 0;
5359 }
5360
5361 switch (type)
5362 {
5363 case RELOAD_OTHER:
5364 /* Since a RELOAD_OTHER reload claims the reg for the entire insn,
5365 its value must reach the end. */
5366 return 1;
5367
5368 /* If this use is for part of the insn,
5369 its value reaches if no subsequent part uses the same register.
5370 Just like the above function, don't try to do this with lots
5371 of fallthroughs. */
5372
5373 case RELOAD_FOR_OTHER_ADDRESS:
5374 /* Here we check for everything else, since these don't conflict
5375 with anything else and everything comes later. */
5376
5377 for (i = 0; i < reload_n_operands; i++)
5378 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5379 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5380 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno)
5381 || TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5382 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5383 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5384 return 0;
5385
5386 return (! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5387 && ! TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno)
5388 && ! TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5389 && ! TEST_HARD_REG_BIT (reload_reg_used, regno));
5390
5391 case RELOAD_FOR_INPUT_ADDRESS:
5392 case RELOAD_FOR_INPADDR_ADDRESS:
5393 /* Similar, except that we check only for this and subsequent inputs
5394 and the address of only subsequent inputs and we do not need
5395 to check for RELOAD_OTHER objects since they are known not to
5396 conflict. */
5397
5398 for (i = opnum; i < reload_n_operands; i++)
5399 if (TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5400 return 0;
5401
5402 /* Reload register of reload with type RELOAD_FOR_INPADDR_ADDRESS
5403 could be killed if the register is also used by reload with type
5404 RELOAD_FOR_INPUT_ADDRESS, so check it. */
5405 if (type == RELOAD_FOR_INPADDR_ADDRESS
5406 && TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[opnum], regno))
5407 return 0;
5408
5409 for (i = opnum + 1; i < reload_n_operands; i++)
5410 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5411 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno))
5412 return 0;
5413
5414 for (i = 0; i < reload_n_operands; i++)
5415 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5416 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5417 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5418 return 0;
5419
5420 if (TEST_HARD_REG_BIT (reload_reg_used_in_op_addr_reload, regno))
5421 return 0;
5422
5423 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5424 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5425 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5426
5427 case RELOAD_FOR_INPUT:
5428 /* Similar to input address, except we start at the next operand for
5429 both input and input address and we do not check for
5430 RELOAD_FOR_OPERAND_ADDRESS and RELOAD_FOR_INSN since these
5431 would conflict. */
5432
5433 for (i = opnum + 1; i < reload_n_operands; i++)
5434 if (TEST_HARD_REG_BIT (reload_reg_used_in_input_addr[i], regno)
5435 || TEST_HARD_REG_BIT (reload_reg_used_in_inpaddr_addr[i], regno)
5436 || TEST_HARD_REG_BIT (reload_reg_used_in_input[i], regno))
5437 return 0;
5438
5439 /* ... fall through ... */
5440
5441 case RELOAD_FOR_OPERAND_ADDRESS:
5442 /* Check outputs and their addresses. */
5443
5444 for (i = 0; i < reload_n_operands; i++)
5445 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5446 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5447 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5448 return 0;
5449
5450 return (!TEST_HARD_REG_BIT (reload_reg_used, regno));
5451
5452 case RELOAD_FOR_OPADDR_ADDR:
5453 for (i = 0; i < reload_n_operands; i++)
5454 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5455 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno)
5456 || TEST_HARD_REG_BIT (reload_reg_used_in_output[i], regno))
5457 return 0;
5458
5459 return (!TEST_HARD_REG_BIT (reload_reg_used_in_op_addr, regno)
5460 && !TEST_HARD_REG_BIT (reload_reg_used_in_insn, regno)
5461 && !TEST_HARD_REG_BIT (reload_reg_used, regno));
5462
5463 case RELOAD_FOR_INSN:
5464 /* These conflict with other outputs with RELOAD_OTHER. So
5465 we need only check for output addresses. */
5466
5467 opnum = reload_n_operands;
5468
5469 /* fall through */
5470
5471 case RELOAD_FOR_OUTPUT:
5472 case RELOAD_FOR_OUTPUT_ADDRESS:
5473 case RELOAD_FOR_OUTADDR_ADDRESS:
5474 /* We already know these can't conflict with a later output. So the
5475 only thing to check are later output addresses.
5476 Note that multiple output operands are emitted in reverse order,
5477 so the conflicting ones are those with lower indices. */
5478 for (i = 0; i < opnum; i++)
5479 if (TEST_HARD_REG_BIT (reload_reg_used_in_output_addr[i], regno)
5480 || TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[i], regno))
5481 return 0;
5482
5483 /* Reload register of reload with type RELOAD_FOR_OUTADDR_ADDRESS
5484 could be killed if the register is also used by reload with type
5485 RELOAD_FOR_OUTPUT_ADDRESS, so check it. */
5486 if (type == RELOAD_FOR_OUTADDR_ADDRESS
5487 && TEST_HARD_REG_BIT (reload_reg_used_in_outaddr_addr[opnum], regno))
5488 return 0;
5489
5490 return 1;
5491
5492 default:
5493 gcc_unreachable ();
5494 }
5495 }
5496
5497 /* Like reload_reg_reaches_end_p, but check that the condition holds for
5498 every register in REG. */
5499
5500 static bool
5501 reload_reg_rtx_reaches_end_p (rtx reg, int reloadnum)
5502 {
5503 unsigned int i;
5504
5505 for (i = REGNO (reg); i < END_REGNO (reg); i++)
5506 if (!reload_reg_reaches_end_p (i, reloadnum))
5507 return false;
5508 return true;
5509 }
5510 \f
5511
5512 /* Returns whether R1 and R2 are uniquely chained: the value of one
5513 is used by the other, and that value is not used by any other
5514 reload for this insn. This is used to partially undo the decision
5515 made in find_reloads when in the case of multiple
5516 RELOAD_FOR_OPERAND_ADDRESS reloads it converts all
5517 RELOAD_FOR_OPADDR_ADDR reloads into RELOAD_FOR_OPERAND_ADDRESS
5518 reloads. This code tries to avoid the conflict created by that
5519 change. It might be cleaner to explicitly keep track of which
5520 RELOAD_FOR_OPADDR_ADDR reload is associated with which
5521 RELOAD_FOR_OPERAND_ADDRESS reload, rather than to try to detect
5522 this after the fact. */
5523 static bool
5524 reloads_unique_chain_p (int r1, int r2)
5525 {
5526 int i;
5527
5528 /* We only check input reloads. */
5529 if (! rld[r1].in || ! rld[r2].in)
5530 return false;
5531
5532 /* Avoid anything with output reloads. */
5533 if (rld[r1].out || rld[r2].out)
5534 return false;
5535
5536 /* "chained" means one reload is a component of the other reload,
5537 not the same as the other reload. */
5538 if (rld[r1].opnum != rld[r2].opnum
5539 || rtx_equal_p (rld[r1].in, rld[r2].in)
5540 || rld[r1].optional || rld[r2].optional
5541 || ! (reg_mentioned_p (rld[r1].in, rld[r2].in)
5542 || reg_mentioned_p (rld[r2].in, rld[r1].in)))
5543 return false;
5544
5545 /* The following loop assumes that r1 is the reload that feeds r2. */
5546 if (r1 > r2)
5547 std::swap (r1, r2);
5548
5549 for (i = 0; i < n_reloads; i ++)
5550 /* Look for input reloads that aren't our two */
5551 if (i != r1 && i != r2 && rld[i].in)
5552 {
5553 /* If our reload is mentioned at all, it isn't a simple chain. */
5554 if (reg_mentioned_p (rld[r1].in, rld[i].in))
5555 return false;
5556 }
5557 return true;
5558 }
5559
5560 /* The recursive function change all occurrences of WHAT in *WHERE
5561 to REPL. */
5562 static void
5563 substitute (rtx *where, const_rtx what, rtx repl)
5564 {
5565 const char *fmt;
5566 int i;
5567 enum rtx_code code;
5568
5569 if (*where == 0)
5570 return;
5571
5572 if (*where == what || rtx_equal_p (*where, what))
5573 {
5574 /* Record the location of the changed rtx. */
5575 substitute_stack.safe_push (where);
5576 *where = repl;
5577 return;
5578 }
5579
5580 code = GET_CODE (*where);
5581 fmt = GET_RTX_FORMAT (code);
5582 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5583 {
5584 if (fmt[i] == 'E')
5585 {
5586 int j;
5587
5588 for (j = XVECLEN (*where, i) - 1; j >= 0; j--)
5589 substitute (&XVECEXP (*where, i, j), what, repl);
5590 }
5591 else if (fmt[i] == 'e')
5592 substitute (&XEXP (*where, i), what, repl);
5593 }
5594 }
5595
5596 /* The function returns TRUE if chain of reload R1 and R2 (in any
5597 order) can be evaluated without usage of intermediate register for
5598 the reload containing another reload. It is important to see
5599 gen_reload to understand what the function is trying to do. As an
5600 example, let us have reload chain
5601
5602 r2: const
5603 r1: <something> + const
5604
5605 and reload R2 got reload reg HR. The function returns true if
5606 there is a correct insn HR = HR + <something>. Otherwise,
5607 gen_reload will use intermediate register (and this is the reload
5608 reg for R1) to reload <something>.
5609
5610 We need this function to find a conflict for chain reloads. In our
5611 example, if HR = HR + <something> is incorrect insn, then we cannot
5612 use HR as a reload register for R2. If we do use it then we get a
5613 wrong code:
5614
5615 HR = const
5616 HR = <something>
5617 HR = HR + HR
5618
5619 */
5620 static bool
5621 gen_reload_chain_without_interm_reg_p (int r1, int r2)
5622 {
5623 /* Assume other cases in gen_reload are not possible for
5624 chain reloads or do need an intermediate hard registers. */
5625 bool result = true;
5626 int regno, code;
5627 rtx out, in;
5628 rtx_insn *insn;
5629 rtx_insn *last = get_last_insn ();
5630
5631 /* Make r2 a component of r1. */
5632 if (reg_mentioned_p (rld[r1].in, rld[r2].in))
5633 std::swap (r1, r2);
5634
5635 gcc_assert (reg_mentioned_p (rld[r2].in, rld[r1].in));
5636 regno = rld[r1].regno >= 0 ? rld[r1].regno : rld[r2].regno;
5637 gcc_assert (regno >= 0);
5638 out = gen_rtx_REG (rld[r1].mode, regno);
5639 in = rld[r1].in;
5640 substitute (&in, rld[r2].in, gen_rtx_REG (rld[r2].mode, regno));
5641
5642 /* If IN is a paradoxical SUBREG, remove it and try to put the
5643 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
5644 strip_paradoxical_subreg (&in, &out);
5645
5646 if (GET_CODE (in) == PLUS
5647 && (REG_P (XEXP (in, 0))
5648 || GET_CODE (XEXP (in, 0)) == SUBREG
5649 || MEM_P (XEXP (in, 0)))
5650 && (REG_P (XEXP (in, 1))
5651 || GET_CODE (XEXP (in, 1)) == SUBREG
5652 || CONSTANT_P (XEXP (in, 1))
5653 || MEM_P (XEXP (in, 1))))
5654 {
5655 insn = emit_insn (gen_rtx_SET (out, in));
5656 code = recog_memoized (insn);
5657 result = false;
5658
5659 if (code >= 0)
5660 {
5661 extract_insn (insn);
5662 /* We want constrain operands to treat this insn strictly in
5663 its validity determination, i.e., the way it would after
5664 reload has completed. */
5665 result = constrain_operands (1, get_enabled_alternatives (insn));
5666 }
5667
5668 delete_insns_since (last);
5669 }
5670
5671 /* Restore the original value at each changed address within R1. */
5672 while (!substitute_stack.is_empty ())
5673 {
5674 rtx *where = substitute_stack.pop ();
5675 *where = rld[r2].in;
5676 }
5677
5678 return result;
5679 }
5680
5681 /* Return 1 if the reloads denoted by R1 and R2 cannot share a register.
5682 Return 0 otherwise.
5683
5684 This function uses the same algorithm as reload_reg_free_p above. */
5685
5686 static int
5687 reloads_conflict (int r1, int r2)
5688 {
5689 enum reload_type r1_type = rld[r1].when_needed;
5690 enum reload_type r2_type = rld[r2].when_needed;
5691 int r1_opnum = rld[r1].opnum;
5692 int r2_opnum = rld[r2].opnum;
5693
5694 /* RELOAD_OTHER conflicts with everything. */
5695 if (r2_type == RELOAD_OTHER)
5696 return 1;
5697
5698 /* Otherwise, check conflicts differently for each type. */
5699
5700 switch (r1_type)
5701 {
5702 case RELOAD_FOR_INPUT:
5703 return (r2_type == RELOAD_FOR_INSN
5704 || r2_type == RELOAD_FOR_OPERAND_ADDRESS
5705 || r2_type == RELOAD_FOR_OPADDR_ADDR
5706 || r2_type == RELOAD_FOR_INPUT
5707 || ((r2_type == RELOAD_FOR_INPUT_ADDRESS
5708 || r2_type == RELOAD_FOR_INPADDR_ADDRESS)
5709 && r2_opnum > r1_opnum));
5710
5711 case RELOAD_FOR_INPUT_ADDRESS:
5712 return ((r2_type == RELOAD_FOR_INPUT_ADDRESS && r1_opnum == r2_opnum)
5713 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5714
5715 case RELOAD_FOR_INPADDR_ADDRESS:
5716 return ((r2_type == RELOAD_FOR_INPADDR_ADDRESS && r1_opnum == r2_opnum)
5717 || (r2_type == RELOAD_FOR_INPUT && r2_opnum < r1_opnum));
5718
5719 case RELOAD_FOR_OUTPUT_ADDRESS:
5720 return ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS && r2_opnum == r1_opnum)
5721 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5722
5723 case RELOAD_FOR_OUTADDR_ADDRESS:
5724 return ((r2_type == RELOAD_FOR_OUTADDR_ADDRESS && r2_opnum == r1_opnum)
5725 || (r2_type == RELOAD_FOR_OUTPUT && r2_opnum <= r1_opnum));
5726
5727 case RELOAD_FOR_OPERAND_ADDRESS:
5728 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_INSN
5729 || (r2_type == RELOAD_FOR_OPERAND_ADDRESS
5730 && (!reloads_unique_chain_p (r1, r2)
5731 || !gen_reload_chain_without_interm_reg_p (r1, r2))));
5732
5733 case RELOAD_FOR_OPADDR_ADDR:
5734 return (r2_type == RELOAD_FOR_INPUT
5735 || r2_type == RELOAD_FOR_OPADDR_ADDR);
5736
5737 case RELOAD_FOR_OUTPUT:
5738 return (r2_type == RELOAD_FOR_INSN || r2_type == RELOAD_FOR_OUTPUT
5739 || ((r2_type == RELOAD_FOR_OUTPUT_ADDRESS
5740 || r2_type == RELOAD_FOR_OUTADDR_ADDRESS)
5741 && r2_opnum >= r1_opnum));
5742
5743 case RELOAD_FOR_INSN:
5744 return (r2_type == RELOAD_FOR_INPUT || r2_type == RELOAD_FOR_OUTPUT
5745 || r2_type == RELOAD_FOR_INSN
5746 || r2_type == RELOAD_FOR_OPERAND_ADDRESS);
5747
5748 case RELOAD_FOR_OTHER_ADDRESS:
5749 return r2_type == RELOAD_FOR_OTHER_ADDRESS;
5750
5751 case RELOAD_OTHER:
5752 return 1;
5753
5754 default:
5755 gcc_unreachable ();
5756 }
5757 }
5758 \f
5759 /* Indexed by reload number, 1 if incoming value
5760 inherited from previous insns. */
5761 static char reload_inherited[MAX_RELOADS];
5762
5763 /* For an inherited reload, this is the insn the reload was inherited from,
5764 if we know it. Otherwise, this is 0. */
5765 static rtx_insn *reload_inheritance_insn[MAX_RELOADS];
5766
5767 /* If nonzero, this is a place to get the value of the reload,
5768 rather than using reload_in. */
5769 static rtx reload_override_in[MAX_RELOADS];
5770
5771 /* For each reload, the hard register number of the register used,
5772 or -1 if we did not need a register for this reload. */
5773 static int reload_spill_index[MAX_RELOADS];
5774
5775 /* Index X is the value of rld[X].reg_rtx, adjusted for the input mode. */
5776 static rtx reload_reg_rtx_for_input[MAX_RELOADS];
5777
5778 /* Index X is the value of rld[X].reg_rtx, adjusted for the output mode. */
5779 static rtx reload_reg_rtx_for_output[MAX_RELOADS];
5780
5781 /* Subroutine of free_for_value_p, used to check a single register.
5782 START_REGNO is the starting regno of the full reload register
5783 (possibly comprising multiple hard registers) that we are considering. */
5784
5785 static int
5786 reload_reg_free_for_value_p (int start_regno, int regno, int opnum,
5787 enum reload_type type, rtx value, rtx out,
5788 int reloadnum, int ignore_address_reloads)
5789 {
5790 int time1;
5791 /* Set if we see an input reload that must not share its reload register
5792 with any new earlyclobber, but might otherwise share the reload
5793 register with an output or input-output reload. */
5794 int check_earlyclobber = 0;
5795 int i;
5796 int copy = 0;
5797
5798 if (TEST_HARD_REG_BIT (reload_reg_unavailable, regno))
5799 return 0;
5800
5801 if (out == const0_rtx)
5802 {
5803 copy = 1;
5804 out = NULL_RTX;
5805 }
5806
5807 /* We use some pseudo 'time' value to check if the lifetimes of the
5808 new register use would overlap with the one of a previous reload
5809 that is not read-only or uses a different value.
5810 The 'time' used doesn't have to be linear in any shape or form, just
5811 monotonic.
5812 Some reload types use different 'buckets' for each operand.
5813 So there are MAX_RECOG_OPERANDS different time values for each
5814 such reload type.
5815 We compute TIME1 as the time when the register for the prospective
5816 new reload ceases to be live, and TIME2 for each existing
5817 reload as the time when that the reload register of that reload
5818 becomes live.
5819 Where there is little to be gained by exact lifetime calculations,
5820 we just make conservative assumptions, i.e. a longer lifetime;
5821 this is done in the 'default:' cases. */
5822 switch (type)
5823 {
5824 case RELOAD_FOR_OTHER_ADDRESS:
5825 /* RELOAD_FOR_OTHER_ADDRESS conflicts with RELOAD_OTHER reloads. */
5826 time1 = copy ? 0 : 1;
5827 break;
5828 case RELOAD_OTHER:
5829 time1 = copy ? 1 : MAX_RECOG_OPERANDS * 5 + 5;
5830 break;
5831 /* For each input, we may have a sequence of RELOAD_FOR_INPADDR_ADDRESS,
5832 RELOAD_FOR_INPUT_ADDRESS and RELOAD_FOR_INPUT. By adding 0 / 1 / 2 ,
5833 respectively, to the time values for these, we get distinct time
5834 values. To get distinct time values for each operand, we have to
5835 multiply opnum by at least three. We round that up to four because
5836 multiply by four is often cheaper. */
5837 case RELOAD_FOR_INPADDR_ADDRESS:
5838 time1 = opnum * 4 + 2;
5839 break;
5840 case RELOAD_FOR_INPUT_ADDRESS:
5841 time1 = opnum * 4 + 3;
5842 break;
5843 case RELOAD_FOR_INPUT:
5844 /* All RELOAD_FOR_INPUT reloads remain live till the instruction
5845 executes (inclusive). */
5846 time1 = copy ? opnum * 4 + 4 : MAX_RECOG_OPERANDS * 4 + 3;
5847 break;
5848 case RELOAD_FOR_OPADDR_ADDR:
5849 /* opnum * 4 + 4
5850 <= (MAX_RECOG_OPERANDS - 1) * 4 + 4 == MAX_RECOG_OPERANDS * 4 */
5851 time1 = MAX_RECOG_OPERANDS * 4 + 1;
5852 break;
5853 case RELOAD_FOR_OPERAND_ADDRESS:
5854 /* RELOAD_FOR_OPERAND_ADDRESS reloads are live even while the insn
5855 is executed. */
5856 time1 = copy ? MAX_RECOG_OPERANDS * 4 + 2 : MAX_RECOG_OPERANDS * 4 + 3;
5857 break;
5858 case RELOAD_FOR_OUTADDR_ADDRESS:
5859 time1 = MAX_RECOG_OPERANDS * 4 + 4 + opnum;
5860 break;
5861 case RELOAD_FOR_OUTPUT_ADDRESS:
5862 time1 = MAX_RECOG_OPERANDS * 4 + 5 + opnum;
5863 break;
5864 default:
5865 time1 = MAX_RECOG_OPERANDS * 5 + 5;
5866 }
5867
5868 for (i = 0; i < n_reloads; i++)
5869 {
5870 rtx reg = rld[i].reg_rtx;
5871 if (reg && REG_P (reg)
5872 && (unsigned) regno - true_regnum (reg) < REG_NREGS (reg)
5873 && i != reloadnum)
5874 {
5875 rtx other_input = rld[i].in;
5876
5877 /* If the other reload loads the same input value, that
5878 will not cause a conflict only if it's loading it into
5879 the same register. */
5880 if (true_regnum (reg) != start_regno)
5881 other_input = NULL_RTX;
5882 if (! other_input || ! rtx_equal_p (other_input, value)
5883 || rld[i].out || out)
5884 {
5885 int time2;
5886 switch (rld[i].when_needed)
5887 {
5888 case RELOAD_FOR_OTHER_ADDRESS:
5889 time2 = 0;
5890 break;
5891 case RELOAD_FOR_INPADDR_ADDRESS:
5892 /* find_reloads makes sure that a
5893 RELOAD_FOR_{INP,OP,OUT}ADDR_ADDRESS reload is only used
5894 by at most one - the first -
5895 RELOAD_FOR_{INPUT,OPERAND,OUTPUT}_ADDRESS . If the
5896 address reload is inherited, the address address reload
5897 goes away, so we can ignore this conflict. */
5898 if (type == RELOAD_FOR_INPUT_ADDRESS && reloadnum == i + 1
5899 && ignore_address_reloads
5900 /* Unless the RELOAD_FOR_INPUT is an auto_inc expression.
5901 Then the address address is still needed to store
5902 back the new address. */
5903 && ! rld[reloadnum].out)
5904 continue;
5905 /* Likewise, if a RELOAD_FOR_INPUT can inherit a value, its
5906 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS
5907 reloads go away. */
5908 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5909 && ignore_address_reloads
5910 /* Unless we are reloading an auto_inc expression. */
5911 && ! rld[reloadnum].out)
5912 continue;
5913 time2 = rld[i].opnum * 4 + 2;
5914 break;
5915 case RELOAD_FOR_INPUT_ADDRESS:
5916 if (type == RELOAD_FOR_INPUT && opnum == rld[i].opnum
5917 && ignore_address_reloads
5918 && ! rld[reloadnum].out)
5919 continue;
5920 time2 = rld[i].opnum * 4 + 3;
5921 break;
5922 case RELOAD_FOR_INPUT:
5923 time2 = rld[i].opnum * 4 + 4;
5924 check_earlyclobber = 1;
5925 break;
5926 /* rld[i].opnum * 4 + 4 <= (MAX_RECOG_OPERAND - 1) * 4 + 4
5927 == MAX_RECOG_OPERAND * 4 */
5928 case RELOAD_FOR_OPADDR_ADDR:
5929 if (type == RELOAD_FOR_OPERAND_ADDRESS && reloadnum == i + 1
5930 && ignore_address_reloads
5931 && ! rld[reloadnum].out)
5932 continue;
5933 time2 = MAX_RECOG_OPERANDS * 4 + 1;
5934 break;
5935 case RELOAD_FOR_OPERAND_ADDRESS:
5936 time2 = MAX_RECOG_OPERANDS * 4 + 2;
5937 check_earlyclobber = 1;
5938 break;
5939 case RELOAD_FOR_INSN:
5940 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5941 break;
5942 case RELOAD_FOR_OUTPUT:
5943 /* All RELOAD_FOR_OUTPUT reloads become live just after the
5944 instruction is executed. */
5945 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5946 break;
5947 /* The first RELOAD_FOR_OUTADDR_ADDRESS reload conflicts with
5948 the RELOAD_FOR_OUTPUT reloads, so assign it the same time
5949 value. */
5950 case RELOAD_FOR_OUTADDR_ADDRESS:
5951 if (type == RELOAD_FOR_OUTPUT_ADDRESS && reloadnum == i + 1
5952 && ignore_address_reloads
5953 && ! rld[reloadnum].out)
5954 continue;
5955 time2 = MAX_RECOG_OPERANDS * 4 + 4 + rld[i].opnum;
5956 break;
5957 case RELOAD_FOR_OUTPUT_ADDRESS:
5958 time2 = MAX_RECOG_OPERANDS * 4 + 5 + rld[i].opnum;
5959 break;
5960 case RELOAD_OTHER:
5961 /* If there is no conflict in the input part, handle this
5962 like an output reload. */
5963 if (! rld[i].in || rtx_equal_p (other_input, value))
5964 {
5965 time2 = MAX_RECOG_OPERANDS * 4 + 4;
5966 /* Earlyclobbered outputs must conflict with inputs. */
5967 if (earlyclobber_operand_p (rld[i].out))
5968 time2 = MAX_RECOG_OPERANDS * 4 + 3;
5969
5970 break;
5971 }
5972 time2 = 1;
5973 /* RELOAD_OTHER might be live beyond instruction execution,
5974 but this is not obvious when we set time2 = 1. So check
5975 here if there might be a problem with the new reload
5976 clobbering the register used by the RELOAD_OTHER. */
5977 if (out)
5978 return 0;
5979 break;
5980 default:
5981 return 0;
5982 }
5983 if ((time1 >= time2
5984 && (! rld[i].in || rld[i].out
5985 || ! rtx_equal_p (other_input, value)))
5986 || (out && rld[reloadnum].out_reg
5987 && time2 >= MAX_RECOG_OPERANDS * 4 + 3))
5988 return 0;
5989 }
5990 }
5991 }
5992
5993 /* Earlyclobbered outputs must conflict with inputs. */
5994 if (check_earlyclobber && out && earlyclobber_operand_p (out))
5995 return 0;
5996
5997 return 1;
5998 }
5999
6000 /* Return 1 if the value in reload reg REGNO, as used by a reload
6001 needed for the part of the insn specified by OPNUM and TYPE,
6002 may be used to load VALUE into it.
6003
6004 MODE is the mode in which the register is used, this is needed to
6005 determine how many hard regs to test.
6006
6007 Other read-only reloads with the same value do not conflict
6008 unless OUT is nonzero and these other reloads have to live while
6009 output reloads live.
6010 If OUT is CONST0_RTX, this is a special case: it means that the
6011 test should not be for using register REGNO as reload register, but
6012 for copying from register REGNO into the reload register.
6013
6014 RELOADNUM is the number of the reload we want to load this value for;
6015 a reload does not conflict with itself.
6016
6017 When IGNORE_ADDRESS_RELOADS is set, we can not have conflicts with
6018 reloads that load an address for the very reload we are considering.
6019
6020 The caller has to make sure that there is no conflict with the return
6021 register. */
6022
6023 static int
6024 free_for_value_p (int regno, machine_mode mode, int opnum,
6025 enum reload_type type, rtx value, rtx out, int reloadnum,
6026 int ignore_address_reloads)
6027 {
6028 int nregs = hard_regno_nregs (regno, mode);
6029 while (nregs-- > 0)
6030 if (! reload_reg_free_for_value_p (regno, regno + nregs, opnum, type,
6031 value, out, reloadnum,
6032 ignore_address_reloads))
6033 return 0;
6034 return 1;
6035 }
6036
6037 /* Return nonzero if the rtx X is invariant over the current function. */
6038 /* ??? Actually, the places where we use this expect exactly what is
6039 tested here, and not everything that is function invariant. In
6040 particular, the frame pointer and arg pointer are special cased;
6041 pic_offset_table_rtx is not, and we must not spill these things to
6042 memory. */
6043
6044 int
6045 function_invariant_p (const_rtx x)
6046 {
6047 if (CONSTANT_P (x))
6048 return 1;
6049 if (x == frame_pointer_rtx || x == arg_pointer_rtx)
6050 return 1;
6051 if (GET_CODE (x) == PLUS
6052 && (XEXP (x, 0) == frame_pointer_rtx || XEXP (x, 0) == arg_pointer_rtx)
6053 && GET_CODE (XEXP (x, 1)) == CONST_INT)
6054 return 1;
6055 return 0;
6056 }
6057
6058 /* Determine whether the reload reg X overlaps any rtx'es used for
6059 overriding inheritance. Return nonzero if so. */
6060
6061 static int
6062 conflicts_with_override (rtx x)
6063 {
6064 int i;
6065 for (i = 0; i < n_reloads; i++)
6066 if (reload_override_in[i]
6067 && reg_overlap_mentioned_p (x, reload_override_in[i]))
6068 return 1;
6069 return 0;
6070 }
6071 \f
6072 /* Give an error message saying we failed to find a reload for INSN,
6073 and clear out reload R. */
6074 static void
6075 failed_reload (rtx_insn *insn, int r)
6076 {
6077 if (asm_noperands (PATTERN (insn)) < 0)
6078 /* It's the compiler's fault. */
6079 fatal_insn ("could not find a spill register", insn);
6080
6081 /* It's the user's fault; the operand's mode and constraint
6082 don't match. Disable this reload so we don't crash in final. */
6083 error_for_asm (insn,
6084 "%<asm%> operand constraint incompatible with operand size");
6085 rld[r].in = 0;
6086 rld[r].out = 0;
6087 rld[r].reg_rtx = 0;
6088 rld[r].optional = 1;
6089 rld[r].secondary_p = 1;
6090 }
6091
6092 /* I is the index in SPILL_REG_RTX of the reload register we are to allocate
6093 for reload R. If it's valid, get an rtx for it. Return nonzero if
6094 successful. */
6095 static int
6096 set_reload_reg (int i, int r)
6097 {
6098 int regno;
6099 rtx reg = spill_reg_rtx[i];
6100
6101 if (reg == 0 || GET_MODE (reg) != rld[r].mode)
6102 spill_reg_rtx[i] = reg
6103 = gen_rtx_REG (rld[r].mode, spill_regs[i]);
6104
6105 regno = true_regnum (reg);
6106
6107 /* Detect when the reload reg can't hold the reload mode.
6108 This used to be one `if', but Sequent compiler can't handle that. */
6109 if (targetm.hard_regno_mode_ok (regno, rld[r].mode))
6110 {
6111 machine_mode test_mode = VOIDmode;
6112 if (rld[r].in)
6113 test_mode = GET_MODE (rld[r].in);
6114 /* If rld[r].in has VOIDmode, it means we will load it
6115 in whatever mode the reload reg has: to wit, rld[r].mode.
6116 We have already tested that for validity. */
6117 /* Aside from that, we need to test that the expressions
6118 to reload from or into have modes which are valid for this
6119 reload register. Otherwise the reload insns would be invalid. */
6120 if (! (rld[r].in != 0 && test_mode != VOIDmode
6121 && !targetm.hard_regno_mode_ok (regno, test_mode)))
6122 if (! (rld[r].out != 0
6123 && !targetm.hard_regno_mode_ok (regno, GET_MODE (rld[r].out))))
6124 {
6125 /* The reg is OK. */
6126 last_spill_reg = i;
6127
6128 /* Mark as in use for this insn the reload regs we use
6129 for this. */
6130 mark_reload_reg_in_use (spill_regs[i], rld[r].opnum,
6131 rld[r].when_needed, rld[r].mode);
6132
6133 rld[r].reg_rtx = reg;
6134 reload_spill_index[r] = spill_regs[i];
6135 return 1;
6136 }
6137 }
6138 return 0;
6139 }
6140
6141 /* Find a spill register to use as a reload register for reload R.
6142 LAST_RELOAD is nonzero if this is the last reload for the insn being
6143 processed.
6144
6145 Set rld[R].reg_rtx to the register allocated.
6146
6147 We return 1 if successful, or 0 if we couldn't find a spill reg and
6148 we didn't change anything. */
6149
6150 static int
6151 allocate_reload_reg (struct insn_chain *chain ATTRIBUTE_UNUSED, int r,
6152 int last_reload)
6153 {
6154 int i, pass, count;
6155
6156 /* If we put this reload ahead, thinking it is a group,
6157 then insist on finding a group. Otherwise we can grab a
6158 reg that some other reload needs.
6159 (That can happen when we have a 68000 DATA_OR_FP_REG
6160 which is a group of data regs or one fp reg.)
6161 We need not be so restrictive if there are no more reloads
6162 for this insn.
6163
6164 ??? Really it would be nicer to have smarter handling
6165 for that kind of reg class, where a problem like this is normal.
6166 Perhaps those classes should be avoided for reloading
6167 by use of more alternatives. */
6168
6169 int force_group = rld[r].nregs > 1 && ! last_reload;
6170
6171 /* If we want a single register and haven't yet found one,
6172 take any reg in the right class and not in use.
6173 If we want a consecutive group, here is where we look for it.
6174
6175 We use three passes so we can first look for reload regs to
6176 reuse, which are already in use for other reloads in this insn,
6177 and only then use additional registers which are not "bad", then
6178 finally any register.
6179
6180 I think that maximizing reuse is needed to make sure we don't
6181 run out of reload regs. Suppose we have three reloads, and
6182 reloads A and B can share regs. These need two regs.
6183 Suppose A and B are given different regs.
6184 That leaves none for C. */
6185 for (pass = 0; pass < 3; pass++)
6186 {
6187 /* I is the index in spill_regs.
6188 We advance it round-robin between insns to use all spill regs
6189 equally, so that inherited reloads have a chance
6190 of leapfrogging each other. */
6191
6192 i = last_spill_reg;
6193
6194 for (count = 0; count < n_spills; count++)
6195 {
6196 int rclass = (int) rld[r].rclass;
6197 int regnum;
6198
6199 i++;
6200 if (i >= n_spills)
6201 i -= n_spills;
6202 regnum = spill_regs[i];
6203
6204 if ((reload_reg_free_p (regnum, rld[r].opnum,
6205 rld[r].when_needed)
6206 || (rld[r].in
6207 /* We check reload_reg_used to make sure we
6208 don't clobber the return register. */
6209 && ! TEST_HARD_REG_BIT (reload_reg_used, regnum)
6210 && free_for_value_p (regnum, rld[r].mode, rld[r].opnum,
6211 rld[r].when_needed, rld[r].in,
6212 rld[r].out, r, 1)))
6213 && TEST_HARD_REG_BIT (reg_class_contents[rclass], regnum)
6214 && targetm.hard_regno_mode_ok (regnum, rld[r].mode)
6215 /* Look first for regs to share, then for unshared. But
6216 don't share regs used for inherited reloads; they are
6217 the ones we want to preserve. */
6218 && (pass
6219 || (TEST_HARD_REG_BIT (reload_reg_used_at_all,
6220 regnum)
6221 && ! TEST_HARD_REG_BIT (reload_reg_used_for_inherit,
6222 regnum))))
6223 {
6224 int nr = hard_regno_nregs (regnum, rld[r].mode);
6225
6226 /* During the second pass we want to avoid reload registers
6227 which are "bad" for this reload. */
6228 if (pass == 1
6229 && ira_bad_reload_regno (regnum, rld[r].in, rld[r].out))
6230 continue;
6231
6232 /* Avoid the problem where spilling a GENERAL_OR_FP_REG
6233 (on 68000) got us two FP regs. If NR is 1,
6234 we would reject both of them. */
6235 if (force_group)
6236 nr = rld[r].nregs;
6237 /* If we need only one reg, we have already won. */
6238 if (nr == 1)
6239 {
6240 /* But reject a single reg if we demand a group. */
6241 if (force_group)
6242 continue;
6243 break;
6244 }
6245 /* Otherwise check that as many consecutive regs as we need
6246 are available here. */
6247 while (nr > 1)
6248 {
6249 int regno = regnum + nr - 1;
6250 if (!(TEST_HARD_REG_BIT (reg_class_contents[rclass], regno)
6251 && spill_reg_order[regno] >= 0
6252 && reload_reg_free_p (regno, rld[r].opnum,
6253 rld[r].when_needed)))
6254 break;
6255 nr--;
6256 }
6257 if (nr == 1)
6258 break;
6259 }
6260 }
6261
6262 /* If we found something on the current pass, omit later passes. */
6263 if (count < n_spills)
6264 break;
6265 }
6266
6267 /* We should have found a spill register by now. */
6268 if (count >= n_spills)
6269 return 0;
6270
6271 /* I is the index in SPILL_REG_RTX of the reload register we are to
6272 allocate. Get an rtx for it and find its register number. */
6273
6274 return set_reload_reg (i, r);
6275 }
6276 \f
6277 /* Initialize all the tables needed to allocate reload registers.
6278 CHAIN is the insn currently being processed; SAVE_RELOAD_REG_RTX
6279 is the array we use to restore the reg_rtx field for every reload. */
6280
6281 static void
6282 choose_reload_regs_init (struct insn_chain *chain, rtx *save_reload_reg_rtx)
6283 {
6284 int i;
6285
6286 for (i = 0; i < n_reloads; i++)
6287 rld[i].reg_rtx = save_reload_reg_rtx[i];
6288
6289 memset (reload_inherited, 0, MAX_RELOADS);
6290 memset (reload_inheritance_insn, 0, MAX_RELOADS * sizeof (rtx));
6291 memset (reload_override_in, 0, MAX_RELOADS * sizeof (rtx));
6292
6293 CLEAR_HARD_REG_SET (reload_reg_used);
6294 CLEAR_HARD_REG_SET (reload_reg_used_at_all);
6295 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr);
6296 CLEAR_HARD_REG_SET (reload_reg_used_in_op_addr_reload);
6297 CLEAR_HARD_REG_SET (reload_reg_used_in_insn);
6298 CLEAR_HARD_REG_SET (reload_reg_used_in_other_addr);
6299
6300 CLEAR_HARD_REG_SET (reg_used_in_insn);
6301 {
6302 HARD_REG_SET tmp;
6303 REG_SET_TO_HARD_REG_SET (tmp, &chain->live_throughout);
6304 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6305 REG_SET_TO_HARD_REG_SET (tmp, &chain->dead_or_set);
6306 IOR_HARD_REG_SET (reg_used_in_insn, tmp);
6307 compute_use_by_pseudos (&reg_used_in_insn, &chain->live_throughout);
6308 compute_use_by_pseudos (&reg_used_in_insn, &chain->dead_or_set);
6309 }
6310
6311 for (i = 0; i < reload_n_operands; i++)
6312 {
6313 CLEAR_HARD_REG_SET (reload_reg_used_in_output[i]);
6314 CLEAR_HARD_REG_SET (reload_reg_used_in_input[i]);
6315 CLEAR_HARD_REG_SET (reload_reg_used_in_input_addr[i]);
6316 CLEAR_HARD_REG_SET (reload_reg_used_in_inpaddr_addr[i]);
6317 CLEAR_HARD_REG_SET (reload_reg_used_in_output_addr[i]);
6318 CLEAR_HARD_REG_SET (reload_reg_used_in_outaddr_addr[i]);
6319 }
6320
6321 COMPL_HARD_REG_SET (reload_reg_unavailable, chain->used_spill_regs);
6322
6323 CLEAR_HARD_REG_SET (reload_reg_used_for_inherit);
6324
6325 for (i = 0; i < n_reloads; i++)
6326 /* If we have already decided to use a certain register,
6327 don't use it in another way. */
6328 if (rld[i].reg_rtx)
6329 mark_reload_reg_in_use (REGNO (rld[i].reg_rtx), rld[i].opnum,
6330 rld[i].when_needed, rld[i].mode);
6331 }
6332
6333 /* If X is not a subreg, return it unmodified. If it is a subreg,
6334 look up whether we made a replacement for the SUBREG_REG. Return
6335 either the replacement or the SUBREG_REG. */
6336
6337 static rtx
6338 replaced_subreg (rtx x)
6339 {
6340 if (GET_CODE (x) == SUBREG)
6341 return find_replacement (&SUBREG_REG (x));
6342 return x;
6343 }
6344
6345 /* Compute the offset to pass to subreg_regno_offset, for a pseudo of
6346 mode OUTERMODE that is available in a hard reg of mode INNERMODE.
6347 SUBREG is non-NULL if the pseudo is a subreg whose reg is a pseudo,
6348 otherwise it is NULL. */
6349
6350 static int
6351 compute_reload_subreg_offset (machine_mode outermode,
6352 rtx subreg,
6353 machine_mode innermode)
6354 {
6355 int outer_offset;
6356 machine_mode middlemode;
6357
6358 if (!subreg)
6359 return subreg_lowpart_offset (outermode, innermode);
6360
6361 outer_offset = SUBREG_BYTE (subreg);
6362 middlemode = GET_MODE (SUBREG_REG (subreg));
6363
6364 /* If SUBREG is paradoxical then return the normal lowpart offset
6365 for OUTERMODE and INNERMODE. Our caller has already checked
6366 that OUTERMODE fits in INNERMODE. */
6367 if (paradoxical_subreg_p (outermode, middlemode))
6368 return subreg_lowpart_offset (outermode, innermode);
6369
6370 /* SUBREG is normal, but may not be lowpart; return OUTER_OFFSET
6371 plus the normal lowpart offset for MIDDLEMODE and INNERMODE. */
6372 return outer_offset + subreg_lowpart_offset (middlemode, innermode);
6373 }
6374
6375 /* Assign hard reg targets for the pseudo-registers we must reload
6376 into hard regs for this insn.
6377 Also output the instructions to copy them in and out of the hard regs.
6378
6379 For machines with register classes, we are responsible for
6380 finding a reload reg in the proper class. */
6381
6382 static void
6383 choose_reload_regs (struct insn_chain *chain)
6384 {
6385 rtx_insn *insn = chain->insn;
6386 int i, j;
6387 unsigned int max_group_size = 1;
6388 enum reg_class group_class = NO_REGS;
6389 int pass, win, inheritance;
6390
6391 rtx save_reload_reg_rtx[MAX_RELOADS];
6392
6393 /* In order to be certain of getting the registers we need,
6394 we must sort the reloads into order of increasing register class.
6395 Then our grabbing of reload registers will parallel the process
6396 that provided the reload registers.
6397
6398 Also note whether any of the reloads wants a consecutive group of regs.
6399 If so, record the maximum size of the group desired and what
6400 register class contains all the groups needed by this insn. */
6401
6402 for (j = 0; j < n_reloads; j++)
6403 {
6404 reload_order[j] = j;
6405 if (rld[j].reg_rtx != NULL_RTX)
6406 {
6407 gcc_assert (REG_P (rld[j].reg_rtx)
6408 && HARD_REGISTER_P (rld[j].reg_rtx));
6409 reload_spill_index[j] = REGNO (rld[j].reg_rtx);
6410 }
6411 else
6412 reload_spill_index[j] = -1;
6413
6414 if (rld[j].nregs > 1)
6415 {
6416 max_group_size = MAX (rld[j].nregs, max_group_size);
6417 group_class
6418 = reg_class_superunion[(int) rld[j].rclass][(int) group_class];
6419 }
6420
6421 save_reload_reg_rtx[j] = rld[j].reg_rtx;
6422 }
6423
6424 if (n_reloads > 1)
6425 qsort (reload_order, n_reloads, sizeof (short), reload_reg_class_lower);
6426
6427 /* If -O, try first with inheritance, then turning it off.
6428 If not -O, don't do inheritance.
6429 Using inheritance when not optimizing leads to paradoxes
6430 with fp on the 68k: fp numbers (not NaNs) fail to be equal to themselves
6431 because one side of the comparison might be inherited. */
6432 win = 0;
6433 for (inheritance = optimize > 0; inheritance >= 0; inheritance--)
6434 {
6435 choose_reload_regs_init (chain, save_reload_reg_rtx);
6436
6437 /* Process the reloads in order of preference just found.
6438 Beyond this point, subregs can be found in reload_reg_rtx.
6439
6440 This used to look for an existing reloaded home for all of the
6441 reloads, and only then perform any new reloads. But that could lose
6442 if the reloads were done out of reg-class order because a later
6443 reload with a looser constraint might have an old home in a register
6444 needed by an earlier reload with a tighter constraint.
6445
6446 To solve this, we make two passes over the reloads, in the order
6447 described above. In the first pass we try to inherit a reload
6448 from a previous insn. If there is a later reload that needs a
6449 class that is a proper subset of the class being processed, we must
6450 also allocate a spill register during the first pass.
6451
6452 Then make a second pass over the reloads to allocate any reloads
6453 that haven't been given registers yet. */
6454
6455 for (j = 0; j < n_reloads; j++)
6456 {
6457 int r = reload_order[j];
6458 rtx search_equiv = NULL_RTX;
6459
6460 /* Ignore reloads that got marked inoperative. */
6461 if (rld[r].out == 0 && rld[r].in == 0
6462 && ! rld[r].secondary_p)
6463 continue;
6464
6465 /* If find_reloads chose to use reload_in or reload_out as a reload
6466 register, we don't need to chose one. Otherwise, try even if it
6467 found one since we might save an insn if we find the value lying
6468 around.
6469 Try also when reload_in is a pseudo without a hard reg. */
6470 if (rld[r].in != 0 && rld[r].reg_rtx != 0
6471 && (rtx_equal_p (rld[r].in, rld[r].reg_rtx)
6472 || (rtx_equal_p (rld[r].out, rld[r].reg_rtx)
6473 && !MEM_P (rld[r].in)
6474 && true_regnum (rld[r].in) < FIRST_PSEUDO_REGISTER)))
6475 continue;
6476
6477 #if 0 /* No longer needed for correct operation.
6478 It might give better code, or might not; worth an experiment? */
6479 /* If this is an optional reload, we can't inherit from earlier insns
6480 until we are sure that any non-optional reloads have been allocated.
6481 The following code takes advantage of the fact that optional reloads
6482 are at the end of reload_order. */
6483 if (rld[r].optional != 0)
6484 for (i = 0; i < j; i++)
6485 if ((rld[reload_order[i]].out != 0
6486 || rld[reload_order[i]].in != 0
6487 || rld[reload_order[i]].secondary_p)
6488 && ! rld[reload_order[i]].optional
6489 && rld[reload_order[i]].reg_rtx == 0)
6490 allocate_reload_reg (chain, reload_order[i], 0);
6491 #endif
6492
6493 /* First see if this pseudo is already available as reloaded
6494 for a previous insn. We cannot try to inherit for reloads
6495 that are smaller than the maximum number of registers needed
6496 for groups unless the register we would allocate cannot be used
6497 for the groups.
6498
6499 We could check here to see if this is a secondary reload for
6500 an object that is already in a register of the desired class.
6501 This would avoid the need for the secondary reload register.
6502 But this is complex because we can't easily determine what
6503 objects might want to be loaded via this reload. So let a
6504 register be allocated here. In `emit_reload_insns' we suppress
6505 one of the loads in the case described above. */
6506
6507 if (inheritance)
6508 {
6509 int byte = 0;
6510 int regno = -1;
6511 machine_mode mode = VOIDmode;
6512 rtx subreg = NULL_RTX;
6513
6514 if (rld[r].in == 0)
6515 ;
6516 else if (REG_P (rld[r].in))
6517 {
6518 regno = REGNO (rld[r].in);
6519 mode = GET_MODE (rld[r].in);
6520 }
6521 else if (REG_P (rld[r].in_reg))
6522 {
6523 regno = REGNO (rld[r].in_reg);
6524 mode = GET_MODE (rld[r].in_reg);
6525 }
6526 else if (GET_CODE (rld[r].in_reg) == SUBREG
6527 && REG_P (SUBREG_REG (rld[r].in_reg)))
6528 {
6529 regno = REGNO (SUBREG_REG (rld[r].in_reg));
6530 if (regno < FIRST_PSEUDO_REGISTER)
6531 regno = subreg_regno (rld[r].in_reg);
6532 else
6533 {
6534 subreg = rld[r].in_reg;
6535 byte = SUBREG_BYTE (subreg);
6536 }
6537 mode = GET_MODE (rld[r].in_reg);
6538 }
6539 #if AUTO_INC_DEC
6540 else if (GET_RTX_CLASS (GET_CODE (rld[r].in_reg)) == RTX_AUTOINC
6541 && REG_P (XEXP (rld[r].in_reg, 0)))
6542 {
6543 regno = REGNO (XEXP (rld[r].in_reg, 0));
6544 mode = GET_MODE (XEXP (rld[r].in_reg, 0));
6545 rld[r].out = rld[r].in;
6546 }
6547 #endif
6548 #if 0
6549 /* This won't work, since REGNO can be a pseudo reg number.
6550 Also, it takes much more hair to keep track of all the things
6551 that can invalidate an inherited reload of part of a pseudoreg. */
6552 else if (GET_CODE (rld[r].in) == SUBREG
6553 && REG_P (SUBREG_REG (rld[r].in)))
6554 regno = subreg_regno (rld[r].in);
6555 #endif
6556
6557 if (regno >= 0
6558 && reg_last_reload_reg[regno] != 0
6559 && (GET_MODE_SIZE (GET_MODE (reg_last_reload_reg[regno]))
6560 >= GET_MODE_SIZE (mode) + byte)
6561 /* Verify that the register it's in can be used in
6562 mode MODE. */
6563 && (REG_CAN_CHANGE_MODE_P
6564 (REGNO (reg_last_reload_reg[regno]),
6565 GET_MODE (reg_last_reload_reg[regno]),
6566 mode)))
6567 {
6568 enum reg_class rclass = rld[r].rclass, last_class;
6569 rtx last_reg = reg_last_reload_reg[regno];
6570
6571 i = REGNO (last_reg);
6572 byte = compute_reload_subreg_offset (mode,
6573 subreg,
6574 GET_MODE (last_reg));
6575 i += subreg_regno_offset (i, GET_MODE (last_reg), byte, mode);
6576 last_class = REGNO_REG_CLASS (i);
6577
6578 if (reg_reloaded_contents[i] == regno
6579 && TEST_HARD_REG_BIT (reg_reloaded_valid, i)
6580 && targetm.hard_regno_mode_ok (i, rld[r].mode)
6581 && (TEST_HARD_REG_BIT (reg_class_contents[(int) rclass], i)
6582 /* Even if we can't use this register as a reload
6583 register, we might use it for reload_override_in,
6584 if copying it to the desired class is cheap
6585 enough. */
6586 || ((register_move_cost (mode, last_class, rclass)
6587 < memory_move_cost (mode, rclass, true))
6588 && (secondary_reload_class (1, rclass, mode,
6589 last_reg)
6590 == NO_REGS)
6591 && !(targetm.secondary_memory_needed
6592 (mode, last_class, rclass))))
6593 && (rld[r].nregs == max_group_size
6594 || ! TEST_HARD_REG_BIT (reg_class_contents[(int) group_class],
6595 i))
6596 && free_for_value_p (i, rld[r].mode, rld[r].opnum,
6597 rld[r].when_needed, rld[r].in,
6598 const0_rtx, r, 1))
6599 {
6600 /* If a group is needed, verify that all the subsequent
6601 registers still have their values intact. */
6602 int nr = hard_regno_nregs (i, rld[r].mode);
6603 int k;
6604
6605 for (k = 1; k < nr; k++)
6606 if (reg_reloaded_contents[i + k] != regno
6607 || ! TEST_HARD_REG_BIT (reg_reloaded_valid, i + k))
6608 break;
6609
6610 if (k == nr)
6611 {
6612 int i1;
6613 int bad_for_class;
6614
6615 last_reg = (GET_MODE (last_reg) == mode
6616 ? last_reg : gen_rtx_REG (mode, i));
6617
6618 bad_for_class = 0;
6619 for (k = 0; k < nr; k++)
6620 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6621 i+k);
6622
6623 /* We found a register that contains the
6624 value we need. If this register is the
6625 same as an `earlyclobber' operand of the
6626 current insn, just mark it as a place to
6627 reload from since we can't use it as the
6628 reload register itself. */
6629
6630 for (i1 = 0; i1 < n_earlyclobbers; i1++)
6631 if (reg_overlap_mentioned_for_reload_p
6632 (reg_last_reload_reg[regno],
6633 reload_earlyclobbers[i1]))
6634 break;
6635
6636 if (i1 != n_earlyclobbers
6637 || ! (free_for_value_p (i, rld[r].mode,
6638 rld[r].opnum,
6639 rld[r].when_needed, rld[r].in,
6640 rld[r].out, r, 1))
6641 /* Don't use it if we'd clobber a pseudo reg. */
6642 || (TEST_HARD_REG_BIT (reg_used_in_insn, i)
6643 && rld[r].out
6644 && ! TEST_HARD_REG_BIT (reg_reloaded_dead, i))
6645 /* Don't clobber the frame pointer. */
6646 || (i == HARD_FRAME_POINTER_REGNUM
6647 && frame_pointer_needed
6648 && rld[r].out)
6649 /* Don't really use the inherited spill reg
6650 if we need it wider than we've got it. */
6651 || paradoxical_subreg_p (rld[r].mode, mode)
6652 || bad_for_class
6653
6654 /* If find_reloads chose reload_out as reload
6655 register, stay with it - that leaves the
6656 inherited register for subsequent reloads. */
6657 || (rld[r].out && rld[r].reg_rtx
6658 && rtx_equal_p (rld[r].out, rld[r].reg_rtx)))
6659 {
6660 if (! rld[r].optional)
6661 {
6662 reload_override_in[r] = last_reg;
6663 reload_inheritance_insn[r]
6664 = reg_reloaded_insn[i];
6665 }
6666 }
6667 else
6668 {
6669 int k;
6670 /* We can use this as a reload reg. */
6671 /* Mark the register as in use for this part of
6672 the insn. */
6673 mark_reload_reg_in_use (i,
6674 rld[r].opnum,
6675 rld[r].when_needed,
6676 rld[r].mode);
6677 rld[r].reg_rtx = last_reg;
6678 reload_inherited[r] = 1;
6679 reload_inheritance_insn[r]
6680 = reg_reloaded_insn[i];
6681 reload_spill_index[r] = i;
6682 for (k = 0; k < nr; k++)
6683 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6684 i + k);
6685 }
6686 }
6687 }
6688 }
6689 }
6690
6691 /* Here's another way to see if the value is already lying around. */
6692 if (inheritance
6693 && rld[r].in != 0
6694 && ! reload_inherited[r]
6695 && rld[r].out == 0
6696 && (CONSTANT_P (rld[r].in)
6697 || GET_CODE (rld[r].in) == PLUS
6698 || REG_P (rld[r].in)
6699 || MEM_P (rld[r].in))
6700 && (rld[r].nregs == max_group_size
6701 || ! reg_classes_intersect_p (rld[r].rclass, group_class)))
6702 search_equiv = rld[r].in;
6703
6704 if (search_equiv)
6705 {
6706 rtx equiv
6707 = find_equiv_reg (search_equiv, insn, rld[r].rclass,
6708 -1, NULL, 0, rld[r].mode);
6709 int regno = 0;
6710
6711 if (equiv != 0)
6712 {
6713 if (REG_P (equiv))
6714 regno = REGNO (equiv);
6715 else
6716 {
6717 /* This must be a SUBREG of a hard register.
6718 Make a new REG since this might be used in an
6719 address and not all machines support SUBREGs
6720 there. */
6721 gcc_assert (GET_CODE (equiv) == SUBREG);
6722 regno = subreg_regno (equiv);
6723 equiv = gen_rtx_REG (rld[r].mode, regno);
6724 /* If we choose EQUIV as the reload register, but the
6725 loop below decides to cancel the inheritance, we'll
6726 end up reloading EQUIV in rld[r].mode, not the mode
6727 it had originally. That isn't safe when EQUIV isn't
6728 available as a spill register since its value might
6729 still be live at this point. */
6730 for (i = regno; i < regno + (int) rld[r].nregs; i++)
6731 if (TEST_HARD_REG_BIT (reload_reg_unavailable, i))
6732 equiv = 0;
6733 }
6734 }
6735
6736 /* If we found a spill reg, reject it unless it is free
6737 and of the desired class. */
6738 if (equiv != 0)
6739 {
6740 int regs_used = 0;
6741 int bad_for_class = 0;
6742 int max_regno = regno + rld[r].nregs;
6743
6744 for (i = regno; i < max_regno; i++)
6745 {
6746 regs_used |= TEST_HARD_REG_BIT (reload_reg_used_at_all,
6747 i);
6748 bad_for_class |= ! TEST_HARD_REG_BIT (reg_class_contents[(int) rld[r].rclass],
6749 i);
6750 }
6751
6752 if ((regs_used
6753 && ! free_for_value_p (regno, rld[r].mode,
6754 rld[r].opnum, rld[r].when_needed,
6755 rld[r].in, rld[r].out, r, 1))
6756 || bad_for_class)
6757 equiv = 0;
6758 }
6759
6760 if (equiv != 0
6761 && !targetm.hard_regno_mode_ok (regno, rld[r].mode))
6762 equiv = 0;
6763
6764 /* We found a register that contains the value we need.
6765 If this register is the same as an `earlyclobber' operand
6766 of the current insn, just mark it as a place to reload from
6767 since we can't use it as the reload register itself. */
6768
6769 if (equiv != 0)
6770 for (i = 0; i < n_earlyclobbers; i++)
6771 if (reg_overlap_mentioned_for_reload_p (equiv,
6772 reload_earlyclobbers[i]))
6773 {
6774 if (! rld[r].optional)
6775 reload_override_in[r] = equiv;
6776 equiv = 0;
6777 break;
6778 }
6779
6780 /* If the equiv register we have found is explicitly clobbered
6781 in the current insn, it depends on the reload type if we
6782 can use it, use it for reload_override_in, or not at all.
6783 In particular, we then can't use EQUIV for a
6784 RELOAD_FOR_OUTPUT_ADDRESS reload. */
6785
6786 if (equiv != 0)
6787 {
6788 if (regno_clobbered_p (regno, insn, rld[r].mode, 2))
6789 switch (rld[r].when_needed)
6790 {
6791 case RELOAD_FOR_OTHER_ADDRESS:
6792 case RELOAD_FOR_INPADDR_ADDRESS:
6793 case RELOAD_FOR_INPUT_ADDRESS:
6794 case RELOAD_FOR_OPADDR_ADDR:
6795 break;
6796 case RELOAD_OTHER:
6797 case RELOAD_FOR_INPUT:
6798 case RELOAD_FOR_OPERAND_ADDRESS:
6799 if (! rld[r].optional)
6800 reload_override_in[r] = equiv;
6801 /* Fall through. */
6802 default:
6803 equiv = 0;
6804 break;
6805 }
6806 else if (regno_clobbered_p (regno, insn, rld[r].mode, 1))
6807 switch (rld[r].when_needed)
6808 {
6809 case RELOAD_FOR_OTHER_ADDRESS:
6810 case RELOAD_FOR_INPADDR_ADDRESS:
6811 case RELOAD_FOR_INPUT_ADDRESS:
6812 case RELOAD_FOR_OPADDR_ADDR:
6813 case RELOAD_FOR_OPERAND_ADDRESS:
6814 case RELOAD_FOR_INPUT:
6815 break;
6816 case RELOAD_OTHER:
6817 if (! rld[r].optional)
6818 reload_override_in[r] = equiv;
6819 /* Fall through. */
6820 default:
6821 equiv = 0;
6822 break;
6823 }
6824 }
6825
6826 /* If we found an equivalent reg, say no code need be generated
6827 to load it, and use it as our reload reg. */
6828 if (equiv != 0
6829 && (regno != HARD_FRAME_POINTER_REGNUM
6830 || !frame_pointer_needed))
6831 {
6832 int nr = hard_regno_nregs (regno, rld[r].mode);
6833 int k;
6834 rld[r].reg_rtx = equiv;
6835 reload_spill_index[r] = regno;
6836 reload_inherited[r] = 1;
6837
6838 /* If reg_reloaded_valid is not set for this register,
6839 there might be a stale spill_reg_store lying around.
6840 We must clear it, since otherwise emit_reload_insns
6841 might delete the store. */
6842 if (! TEST_HARD_REG_BIT (reg_reloaded_valid, regno))
6843 spill_reg_store[regno] = NULL;
6844 /* If any of the hard registers in EQUIV are spill
6845 registers, mark them as in use for this insn. */
6846 for (k = 0; k < nr; k++)
6847 {
6848 i = spill_reg_order[regno + k];
6849 if (i >= 0)
6850 {
6851 mark_reload_reg_in_use (regno, rld[r].opnum,
6852 rld[r].when_needed,
6853 rld[r].mode);
6854 SET_HARD_REG_BIT (reload_reg_used_for_inherit,
6855 regno + k);
6856 }
6857 }
6858 }
6859 }
6860
6861 /* If we found a register to use already, or if this is an optional
6862 reload, we are done. */
6863 if (rld[r].reg_rtx != 0 || rld[r].optional != 0)
6864 continue;
6865
6866 #if 0
6867 /* No longer needed for correct operation. Might or might
6868 not give better code on the average. Want to experiment? */
6869
6870 /* See if there is a later reload that has a class different from our
6871 class that intersects our class or that requires less register
6872 than our reload. If so, we must allocate a register to this
6873 reload now, since that reload might inherit a previous reload
6874 and take the only available register in our class. Don't do this
6875 for optional reloads since they will force all previous reloads
6876 to be allocated. Also don't do this for reloads that have been
6877 turned off. */
6878
6879 for (i = j + 1; i < n_reloads; i++)
6880 {
6881 int s = reload_order[i];
6882
6883 if ((rld[s].in == 0 && rld[s].out == 0
6884 && ! rld[s].secondary_p)
6885 || rld[s].optional)
6886 continue;
6887
6888 if ((rld[s].rclass != rld[r].rclass
6889 && reg_classes_intersect_p (rld[r].rclass,
6890 rld[s].rclass))
6891 || rld[s].nregs < rld[r].nregs)
6892 break;
6893 }
6894
6895 if (i == n_reloads)
6896 continue;
6897
6898 allocate_reload_reg (chain, r, j == n_reloads - 1);
6899 #endif
6900 }
6901
6902 /* Now allocate reload registers for anything non-optional that
6903 didn't get one yet. */
6904 for (j = 0; j < n_reloads; j++)
6905 {
6906 int r = reload_order[j];
6907
6908 /* Ignore reloads that got marked inoperative. */
6909 if (rld[r].out == 0 && rld[r].in == 0 && ! rld[r].secondary_p)
6910 continue;
6911
6912 /* Skip reloads that already have a register allocated or are
6913 optional. */
6914 if (rld[r].reg_rtx != 0 || rld[r].optional)
6915 continue;
6916
6917 if (! allocate_reload_reg (chain, r, j == n_reloads - 1))
6918 break;
6919 }
6920
6921 /* If that loop got all the way, we have won. */
6922 if (j == n_reloads)
6923 {
6924 win = 1;
6925 break;
6926 }
6927
6928 /* Loop around and try without any inheritance. */
6929 }
6930
6931 if (! win)
6932 {
6933 /* First undo everything done by the failed attempt
6934 to allocate with inheritance. */
6935 choose_reload_regs_init (chain, save_reload_reg_rtx);
6936
6937 /* Some sanity tests to verify that the reloads found in the first
6938 pass are identical to the ones we have now. */
6939 gcc_assert (chain->n_reloads == n_reloads);
6940
6941 for (i = 0; i < n_reloads; i++)
6942 {
6943 if (chain->rld[i].regno < 0 || chain->rld[i].reg_rtx != 0)
6944 continue;
6945 gcc_assert (chain->rld[i].when_needed == rld[i].when_needed);
6946 for (j = 0; j < n_spills; j++)
6947 if (spill_regs[j] == chain->rld[i].regno)
6948 if (! set_reload_reg (j, i))
6949 failed_reload (chain->insn, i);
6950 }
6951 }
6952
6953 /* If we thought we could inherit a reload, because it seemed that
6954 nothing else wanted the same reload register earlier in the insn,
6955 verify that assumption, now that all reloads have been assigned.
6956 Likewise for reloads where reload_override_in has been set. */
6957
6958 /* If doing expensive optimizations, do one preliminary pass that doesn't
6959 cancel any inheritance, but removes reloads that have been needed only
6960 for reloads that we know can be inherited. */
6961 for (pass = flag_expensive_optimizations; pass >= 0; pass--)
6962 {
6963 for (j = 0; j < n_reloads; j++)
6964 {
6965 int r = reload_order[j];
6966 rtx check_reg;
6967 rtx tem;
6968 if (reload_inherited[r] && rld[r].reg_rtx)
6969 check_reg = rld[r].reg_rtx;
6970 else if (reload_override_in[r]
6971 && (REG_P (reload_override_in[r])
6972 || GET_CODE (reload_override_in[r]) == SUBREG))
6973 check_reg = reload_override_in[r];
6974 else
6975 continue;
6976 if (! free_for_value_p (true_regnum (check_reg), rld[r].mode,
6977 rld[r].opnum, rld[r].when_needed, rld[r].in,
6978 (reload_inherited[r]
6979 ? rld[r].out : const0_rtx),
6980 r, 1))
6981 {
6982 if (pass)
6983 continue;
6984 reload_inherited[r] = 0;
6985 reload_override_in[r] = 0;
6986 }
6987 /* If we can inherit a RELOAD_FOR_INPUT, or can use a
6988 reload_override_in, then we do not need its related
6989 RELOAD_FOR_INPUT_ADDRESS / RELOAD_FOR_INPADDR_ADDRESS reloads;
6990 likewise for other reload types.
6991 We handle this by removing a reload when its only replacement
6992 is mentioned in reload_in of the reload we are going to inherit.
6993 A special case are auto_inc expressions; even if the input is
6994 inherited, we still need the address for the output. We can
6995 recognize them because they have RELOAD_OUT set to RELOAD_IN.
6996 If we succeeded removing some reload and we are doing a preliminary
6997 pass just to remove such reloads, make another pass, since the
6998 removal of one reload might allow us to inherit another one. */
6999 else if (rld[r].in
7000 && rld[r].out != rld[r].in
7001 && remove_address_replacements (rld[r].in))
7002 {
7003 if (pass)
7004 pass = 2;
7005 }
7006 /* If we needed a memory location for the reload, we also have to
7007 remove its related reloads. */
7008 else if (rld[r].in
7009 && rld[r].out != rld[r].in
7010 && (tem = replaced_subreg (rld[r].in), REG_P (tem))
7011 && REGNO (tem) < FIRST_PSEUDO_REGISTER
7012 && (targetm.secondary_memory_needed
7013 (rld[r].inmode, REGNO_REG_CLASS (REGNO (tem)),
7014 rld[r].rclass))
7015 && remove_address_replacements
7016 (get_secondary_mem (tem, rld[r].inmode, rld[r].opnum,
7017 rld[r].when_needed)))
7018 {
7019 if (pass)
7020 pass = 2;
7021 }
7022 }
7023 }
7024
7025 /* Now that reload_override_in is known valid,
7026 actually override reload_in. */
7027 for (j = 0; j < n_reloads; j++)
7028 if (reload_override_in[j])
7029 rld[j].in = reload_override_in[j];
7030
7031 /* If this reload won't be done because it has been canceled or is
7032 optional and not inherited, clear reload_reg_rtx so other
7033 routines (such as subst_reloads) don't get confused. */
7034 for (j = 0; j < n_reloads; j++)
7035 if (rld[j].reg_rtx != 0
7036 && ((rld[j].optional && ! reload_inherited[j])
7037 || (rld[j].in == 0 && rld[j].out == 0
7038 && ! rld[j].secondary_p)))
7039 {
7040 int regno = true_regnum (rld[j].reg_rtx);
7041
7042 if (spill_reg_order[regno] >= 0)
7043 clear_reload_reg_in_use (regno, rld[j].opnum,
7044 rld[j].when_needed, rld[j].mode);
7045 rld[j].reg_rtx = 0;
7046 reload_spill_index[j] = -1;
7047 }
7048
7049 /* Record which pseudos and which spill regs have output reloads. */
7050 for (j = 0; j < n_reloads; j++)
7051 {
7052 int r = reload_order[j];
7053
7054 i = reload_spill_index[r];
7055
7056 /* I is nonneg if this reload uses a register.
7057 If rld[r].reg_rtx is 0, this is an optional reload
7058 that we opted to ignore. */
7059 if (rld[r].out_reg != 0 && REG_P (rld[r].out_reg)
7060 && rld[r].reg_rtx != 0)
7061 {
7062 int nregno = REGNO (rld[r].out_reg);
7063 int nr = 1;
7064
7065 if (nregno < FIRST_PSEUDO_REGISTER)
7066 nr = hard_regno_nregs (nregno, rld[r].mode);
7067
7068 while (--nr >= 0)
7069 SET_REGNO_REG_SET (&reg_has_output_reload,
7070 nregno + nr);
7071
7072 if (i >= 0)
7073 add_to_hard_reg_set (&reg_is_output_reload, rld[r].mode, i);
7074
7075 gcc_assert (rld[r].when_needed == RELOAD_OTHER
7076 || rld[r].when_needed == RELOAD_FOR_OUTPUT
7077 || rld[r].when_needed == RELOAD_FOR_INSN);
7078 }
7079 }
7080 }
7081
7082 /* Deallocate the reload register for reload R. This is called from
7083 remove_address_replacements. */
7084
7085 void
7086 deallocate_reload_reg (int r)
7087 {
7088 int regno;
7089
7090 if (! rld[r].reg_rtx)
7091 return;
7092 regno = true_regnum (rld[r].reg_rtx);
7093 rld[r].reg_rtx = 0;
7094 if (spill_reg_order[regno] >= 0)
7095 clear_reload_reg_in_use (regno, rld[r].opnum, rld[r].when_needed,
7096 rld[r].mode);
7097 reload_spill_index[r] = -1;
7098 }
7099 \f
7100 /* These arrays are filled by emit_reload_insns and its subroutines. */
7101 static rtx_insn *input_reload_insns[MAX_RECOG_OPERANDS];
7102 static rtx_insn *other_input_address_reload_insns = 0;
7103 static rtx_insn *other_input_reload_insns = 0;
7104 static rtx_insn *input_address_reload_insns[MAX_RECOG_OPERANDS];
7105 static rtx_insn *inpaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7106 static rtx_insn *output_reload_insns[MAX_RECOG_OPERANDS];
7107 static rtx_insn *output_address_reload_insns[MAX_RECOG_OPERANDS];
7108 static rtx_insn *outaddr_address_reload_insns[MAX_RECOG_OPERANDS];
7109 static rtx_insn *operand_reload_insns = 0;
7110 static rtx_insn *other_operand_reload_insns = 0;
7111 static rtx_insn *other_output_reload_insns[MAX_RECOG_OPERANDS];
7112
7113 /* Values to be put in spill_reg_store are put here first. Instructions
7114 must only be placed here if the associated reload register reaches
7115 the end of the instruction's reload sequence. */
7116 static rtx_insn *new_spill_reg_store[FIRST_PSEUDO_REGISTER];
7117 static HARD_REG_SET reg_reloaded_died;
7118
7119 /* Check if *RELOAD_REG is suitable as an intermediate or scratch register
7120 of class NEW_CLASS with mode NEW_MODE. Or alternatively, if alt_reload_reg
7121 is nonzero, if that is suitable. On success, change *RELOAD_REG to the
7122 adjusted register, and return true. Otherwise, return false. */
7123 static bool
7124 reload_adjust_reg_for_temp (rtx *reload_reg, rtx alt_reload_reg,
7125 enum reg_class new_class,
7126 machine_mode new_mode)
7127
7128 {
7129 rtx reg;
7130
7131 for (reg = *reload_reg; reg; reg = alt_reload_reg, alt_reload_reg = 0)
7132 {
7133 unsigned regno = REGNO (reg);
7134
7135 if (!TEST_HARD_REG_BIT (reg_class_contents[(int) new_class], regno))
7136 continue;
7137 if (GET_MODE (reg) != new_mode)
7138 {
7139 if (!targetm.hard_regno_mode_ok (regno, new_mode))
7140 continue;
7141 if (hard_regno_nregs (regno, new_mode) > REG_NREGS (reg))
7142 continue;
7143 reg = reload_adjust_reg_for_mode (reg, new_mode);
7144 }
7145 *reload_reg = reg;
7146 return true;
7147 }
7148 return false;
7149 }
7150
7151 /* Check if *RELOAD_REG is suitable as a scratch register for the reload
7152 pattern with insn_code ICODE, or alternatively, if alt_reload_reg is
7153 nonzero, if that is suitable. On success, change *RELOAD_REG to the
7154 adjusted register, and return true. Otherwise, return false. */
7155 static bool
7156 reload_adjust_reg_for_icode (rtx *reload_reg, rtx alt_reload_reg,
7157 enum insn_code icode)
7158
7159 {
7160 enum reg_class new_class = scratch_reload_class (icode);
7161 machine_mode new_mode = insn_data[(int) icode].operand[2].mode;
7162
7163 return reload_adjust_reg_for_temp (reload_reg, alt_reload_reg,
7164 new_class, new_mode);
7165 }
7166
7167 /* Generate insns to perform reload RL, which is for the insn in CHAIN and
7168 has the number J. OLD contains the value to be used as input. */
7169
7170 static void
7171 emit_input_reload_insns (struct insn_chain *chain, struct reload *rl,
7172 rtx old, int j)
7173 {
7174 rtx_insn *insn = chain->insn;
7175 rtx reloadreg;
7176 rtx oldequiv_reg = 0;
7177 rtx oldequiv = 0;
7178 int special = 0;
7179 machine_mode mode;
7180 rtx_insn **where;
7181
7182 /* delete_output_reload is only invoked properly if old contains
7183 the original pseudo register. Since this is replaced with a
7184 hard reg when RELOAD_OVERRIDE_IN is set, see if we can
7185 find the pseudo in RELOAD_IN_REG. This is also used to
7186 determine whether a secondary reload is needed. */
7187 if (reload_override_in[j]
7188 && (REG_P (rl->in_reg)
7189 || (GET_CODE (rl->in_reg) == SUBREG
7190 && REG_P (SUBREG_REG (rl->in_reg)))))
7191 {
7192 oldequiv = old;
7193 old = rl->in_reg;
7194 }
7195 if (oldequiv == 0)
7196 oldequiv = old;
7197 else if (REG_P (oldequiv))
7198 oldequiv_reg = oldequiv;
7199 else if (GET_CODE (oldequiv) == SUBREG)
7200 oldequiv_reg = SUBREG_REG (oldequiv);
7201
7202 reloadreg = reload_reg_rtx_for_input[j];
7203 mode = GET_MODE (reloadreg);
7204
7205 /* If we are reloading from a register that was recently stored in
7206 with an output-reload, see if we can prove there was
7207 actually no need to store the old value in it. */
7208
7209 if (optimize && REG_P (oldequiv)
7210 && REGNO (oldequiv) < FIRST_PSEUDO_REGISTER
7211 && spill_reg_store[REGNO (oldequiv)]
7212 && REG_P (old)
7213 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (oldequiv)])
7214 || rtx_equal_p (spill_reg_stored_to[REGNO (oldequiv)],
7215 rl->out_reg)))
7216 delete_output_reload (insn, j, REGNO (oldequiv), reloadreg);
7217
7218 /* Encapsulate OLDEQUIV into the reload mode, then load RELOADREG from
7219 OLDEQUIV. */
7220
7221 while (GET_CODE (oldequiv) == SUBREG && GET_MODE (oldequiv) != mode)
7222 oldequiv = SUBREG_REG (oldequiv);
7223 if (GET_MODE (oldequiv) != VOIDmode
7224 && mode != GET_MODE (oldequiv))
7225 oldequiv = gen_lowpart_SUBREG (mode, oldequiv);
7226
7227 /* Switch to the right place to emit the reload insns. */
7228 switch (rl->when_needed)
7229 {
7230 case RELOAD_OTHER:
7231 where = &other_input_reload_insns;
7232 break;
7233 case RELOAD_FOR_INPUT:
7234 where = &input_reload_insns[rl->opnum];
7235 break;
7236 case RELOAD_FOR_INPUT_ADDRESS:
7237 where = &input_address_reload_insns[rl->opnum];
7238 break;
7239 case RELOAD_FOR_INPADDR_ADDRESS:
7240 where = &inpaddr_address_reload_insns[rl->opnum];
7241 break;
7242 case RELOAD_FOR_OUTPUT_ADDRESS:
7243 where = &output_address_reload_insns[rl->opnum];
7244 break;
7245 case RELOAD_FOR_OUTADDR_ADDRESS:
7246 where = &outaddr_address_reload_insns[rl->opnum];
7247 break;
7248 case RELOAD_FOR_OPERAND_ADDRESS:
7249 where = &operand_reload_insns;
7250 break;
7251 case RELOAD_FOR_OPADDR_ADDR:
7252 where = &other_operand_reload_insns;
7253 break;
7254 case RELOAD_FOR_OTHER_ADDRESS:
7255 where = &other_input_address_reload_insns;
7256 break;
7257 default:
7258 gcc_unreachable ();
7259 }
7260
7261 push_to_sequence (*where);
7262
7263 /* Auto-increment addresses must be reloaded in a special way. */
7264 if (rl->out && ! rl->out_reg)
7265 {
7266 /* We are not going to bother supporting the case where a
7267 incremented register can't be copied directly from
7268 OLDEQUIV since this seems highly unlikely. */
7269 gcc_assert (rl->secondary_in_reload < 0);
7270
7271 if (reload_inherited[j])
7272 oldequiv = reloadreg;
7273
7274 old = XEXP (rl->in_reg, 0);
7275
7276 /* Prevent normal processing of this reload. */
7277 special = 1;
7278 /* Output a special code sequence for this case. */
7279 inc_for_reload (reloadreg, oldequiv, rl->out, rl->inc);
7280 }
7281
7282 /* If we are reloading a pseudo-register that was set by the previous
7283 insn, see if we can get rid of that pseudo-register entirely
7284 by redirecting the previous insn into our reload register. */
7285
7286 else if (optimize && REG_P (old)
7287 && REGNO (old) >= FIRST_PSEUDO_REGISTER
7288 && dead_or_set_p (insn, old)
7289 /* This is unsafe if some other reload
7290 uses the same reg first. */
7291 && ! conflicts_with_override (reloadreg)
7292 && free_for_value_p (REGNO (reloadreg), rl->mode, rl->opnum,
7293 rl->when_needed, old, rl->out, j, 0))
7294 {
7295 rtx_insn *temp = PREV_INSN (insn);
7296 while (temp && (NOTE_P (temp) || DEBUG_INSN_P (temp)))
7297 temp = PREV_INSN (temp);
7298 if (temp
7299 && NONJUMP_INSN_P (temp)
7300 && GET_CODE (PATTERN (temp)) == SET
7301 && SET_DEST (PATTERN (temp)) == old
7302 /* Make sure we can access insn_operand_constraint. */
7303 && asm_noperands (PATTERN (temp)) < 0
7304 /* This is unsafe if operand occurs more than once in current
7305 insn. Perhaps some occurrences aren't reloaded. */
7306 && count_occurrences (PATTERN (insn), old, 0) == 1)
7307 {
7308 rtx old = SET_DEST (PATTERN (temp));
7309 /* Store into the reload register instead of the pseudo. */
7310 SET_DEST (PATTERN (temp)) = reloadreg;
7311
7312 /* Verify that resulting insn is valid.
7313
7314 Note that we have replaced the destination of TEMP with
7315 RELOADREG. If TEMP references RELOADREG within an
7316 autoincrement addressing mode, then the resulting insn
7317 is ill-formed and we must reject this optimization. */
7318 extract_insn (temp);
7319 if (constrain_operands (1, get_enabled_alternatives (temp))
7320 && (!AUTO_INC_DEC || ! find_reg_note (temp, REG_INC, reloadreg)))
7321 {
7322 /* If the previous insn is an output reload, the source is
7323 a reload register, and its spill_reg_store entry will
7324 contain the previous destination. This is now
7325 invalid. */
7326 if (REG_P (SET_SRC (PATTERN (temp)))
7327 && REGNO (SET_SRC (PATTERN (temp))) < FIRST_PSEUDO_REGISTER)
7328 {
7329 spill_reg_store[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7330 spill_reg_stored_to[REGNO (SET_SRC (PATTERN (temp)))] = 0;
7331 }
7332
7333 /* If these are the only uses of the pseudo reg,
7334 pretend for GDB it lives in the reload reg we used. */
7335 if (REG_N_DEATHS (REGNO (old)) == 1
7336 && REG_N_SETS (REGNO (old)) == 1)
7337 {
7338 reg_renumber[REGNO (old)] = REGNO (reloadreg);
7339 if (ira_conflicts_p)
7340 /* Inform IRA about the change. */
7341 ira_mark_allocation_change (REGNO (old));
7342 alter_reg (REGNO (old), -1, false);
7343 }
7344 special = 1;
7345
7346 /* Adjust any debug insns between temp and insn. */
7347 while ((temp = NEXT_INSN (temp)) != insn)
7348 if (DEBUG_BIND_INSN_P (temp))
7349 INSN_VAR_LOCATION_LOC (temp)
7350 = simplify_replace_rtx (INSN_VAR_LOCATION_LOC (temp),
7351 old, reloadreg);
7352 else
7353 gcc_assert (DEBUG_INSN_P (temp) || NOTE_P (temp));
7354 }
7355 else
7356 {
7357 SET_DEST (PATTERN (temp)) = old;
7358 }
7359 }
7360 }
7361
7362 /* We can't do that, so output an insn to load RELOADREG. */
7363
7364 /* If we have a secondary reload, pick up the secondary register
7365 and icode, if any. If OLDEQUIV and OLD are different or
7366 if this is an in-out reload, recompute whether or not we
7367 still need a secondary register and what the icode should
7368 be. If we still need a secondary register and the class or
7369 icode is different, go back to reloading from OLD if using
7370 OLDEQUIV means that we got the wrong type of register. We
7371 cannot have different class or icode due to an in-out reload
7372 because we don't make such reloads when both the input and
7373 output need secondary reload registers. */
7374
7375 if (! special && rl->secondary_in_reload >= 0)
7376 {
7377 rtx second_reload_reg = 0;
7378 rtx third_reload_reg = 0;
7379 int secondary_reload = rl->secondary_in_reload;
7380 rtx real_oldequiv = oldequiv;
7381 rtx real_old = old;
7382 rtx tmp;
7383 enum insn_code icode;
7384 enum insn_code tertiary_icode = CODE_FOR_nothing;
7385
7386 /* If OLDEQUIV is a pseudo with a MEM, get the real MEM
7387 and similarly for OLD.
7388 See comments in get_secondary_reload in reload.c. */
7389 /* If it is a pseudo that cannot be replaced with its
7390 equivalent MEM, we must fall back to reload_in, which
7391 will have all the necessary substitutions registered.
7392 Likewise for a pseudo that can't be replaced with its
7393 equivalent constant.
7394
7395 Take extra care for subregs of such pseudos. Note that
7396 we cannot use reg_equiv_mem in this case because it is
7397 not in the right mode. */
7398
7399 tmp = oldequiv;
7400 if (GET_CODE (tmp) == SUBREG)
7401 tmp = SUBREG_REG (tmp);
7402 if (REG_P (tmp)
7403 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7404 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7405 || reg_equiv_constant (REGNO (tmp)) != 0))
7406 {
7407 if (! reg_equiv_mem (REGNO (tmp))
7408 || num_not_at_initial_offset
7409 || GET_CODE (oldequiv) == SUBREG)
7410 real_oldequiv = rl->in;
7411 else
7412 real_oldequiv = reg_equiv_mem (REGNO (tmp));
7413 }
7414
7415 tmp = old;
7416 if (GET_CODE (tmp) == SUBREG)
7417 tmp = SUBREG_REG (tmp);
7418 if (REG_P (tmp)
7419 && REGNO (tmp) >= FIRST_PSEUDO_REGISTER
7420 && (reg_equiv_memory_loc (REGNO (tmp)) != 0
7421 || reg_equiv_constant (REGNO (tmp)) != 0))
7422 {
7423 if (! reg_equiv_mem (REGNO (tmp))
7424 || num_not_at_initial_offset
7425 || GET_CODE (old) == SUBREG)
7426 real_old = rl->in;
7427 else
7428 real_old = reg_equiv_mem (REGNO (tmp));
7429 }
7430
7431 second_reload_reg = rld[secondary_reload].reg_rtx;
7432 if (rld[secondary_reload].secondary_in_reload >= 0)
7433 {
7434 int tertiary_reload = rld[secondary_reload].secondary_in_reload;
7435
7436 third_reload_reg = rld[tertiary_reload].reg_rtx;
7437 tertiary_icode = rld[secondary_reload].secondary_in_icode;
7438 /* We'd have to add more code for quartary reloads. */
7439 gcc_assert (rld[tertiary_reload].secondary_in_reload < 0);
7440 }
7441 icode = rl->secondary_in_icode;
7442
7443 if ((old != oldequiv && ! rtx_equal_p (old, oldequiv))
7444 || (rl->in != 0 && rl->out != 0))
7445 {
7446 secondary_reload_info sri, sri2;
7447 enum reg_class new_class, new_t_class;
7448
7449 sri.icode = CODE_FOR_nothing;
7450 sri.prev_sri = NULL;
7451 new_class
7452 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7453 rl->rclass, mode,
7454 &sri);
7455
7456 if (new_class == NO_REGS && sri.icode == CODE_FOR_nothing)
7457 second_reload_reg = 0;
7458 else if (new_class == NO_REGS)
7459 {
7460 if (reload_adjust_reg_for_icode (&second_reload_reg,
7461 third_reload_reg,
7462 (enum insn_code) sri.icode))
7463 {
7464 icode = (enum insn_code) sri.icode;
7465 third_reload_reg = 0;
7466 }
7467 else
7468 {
7469 oldequiv = old;
7470 real_oldequiv = real_old;
7471 }
7472 }
7473 else if (sri.icode != CODE_FOR_nothing)
7474 /* We currently lack a way to express this in reloads. */
7475 gcc_unreachable ();
7476 else
7477 {
7478 sri2.icode = CODE_FOR_nothing;
7479 sri2.prev_sri = &sri;
7480 new_t_class
7481 = (enum reg_class) targetm.secondary_reload (1, real_oldequiv,
7482 new_class, mode,
7483 &sri);
7484 if (new_t_class == NO_REGS && sri2.icode == CODE_FOR_nothing)
7485 {
7486 if (reload_adjust_reg_for_temp (&second_reload_reg,
7487 third_reload_reg,
7488 new_class, mode))
7489 {
7490 third_reload_reg = 0;
7491 tertiary_icode = (enum insn_code) sri2.icode;
7492 }
7493 else
7494 {
7495 oldequiv = old;
7496 real_oldequiv = real_old;
7497 }
7498 }
7499 else if (new_t_class == NO_REGS && sri2.icode != CODE_FOR_nothing)
7500 {
7501 rtx intermediate = second_reload_reg;
7502
7503 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7504 new_class, mode)
7505 && reload_adjust_reg_for_icode (&third_reload_reg, NULL,
7506 ((enum insn_code)
7507 sri2.icode)))
7508 {
7509 second_reload_reg = intermediate;
7510 tertiary_icode = (enum insn_code) sri2.icode;
7511 }
7512 else
7513 {
7514 oldequiv = old;
7515 real_oldequiv = real_old;
7516 }
7517 }
7518 else if (new_t_class != NO_REGS && sri2.icode == CODE_FOR_nothing)
7519 {
7520 rtx intermediate = second_reload_reg;
7521
7522 if (reload_adjust_reg_for_temp (&intermediate, NULL,
7523 new_class, mode)
7524 && reload_adjust_reg_for_temp (&third_reload_reg, NULL,
7525 new_t_class, mode))
7526 {
7527 second_reload_reg = intermediate;
7528 tertiary_icode = (enum insn_code) sri2.icode;
7529 }
7530 else
7531 {
7532 oldequiv = old;
7533 real_oldequiv = real_old;
7534 }
7535 }
7536 else
7537 {
7538 /* This could be handled more intelligently too. */
7539 oldequiv = old;
7540 real_oldequiv = real_old;
7541 }
7542 }
7543 }
7544
7545 /* If we still need a secondary reload register, check
7546 to see if it is being used as a scratch or intermediate
7547 register and generate code appropriately. If we need
7548 a scratch register, use REAL_OLDEQUIV since the form of
7549 the insn may depend on the actual address if it is
7550 a MEM. */
7551
7552 if (second_reload_reg)
7553 {
7554 if (icode != CODE_FOR_nothing)
7555 {
7556 /* We'd have to add extra code to handle this case. */
7557 gcc_assert (!third_reload_reg);
7558
7559 emit_insn (GEN_FCN (icode) (reloadreg, real_oldequiv,
7560 second_reload_reg));
7561 special = 1;
7562 }
7563 else
7564 {
7565 /* See if we need a scratch register to load the
7566 intermediate register (a tertiary reload). */
7567 if (tertiary_icode != CODE_FOR_nothing)
7568 {
7569 emit_insn ((GEN_FCN (tertiary_icode)
7570 (second_reload_reg, real_oldequiv,
7571 third_reload_reg)));
7572 }
7573 else if (third_reload_reg)
7574 {
7575 gen_reload (third_reload_reg, real_oldequiv,
7576 rl->opnum,
7577 rl->when_needed);
7578 gen_reload (second_reload_reg, third_reload_reg,
7579 rl->opnum,
7580 rl->when_needed);
7581 }
7582 else
7583 gen_reload (second_reload_reg, real_oldequiv,
7584 rl->opnum,
7585 rl->when_needed);
7586
7587 oldequiv = second_reload_reg;
7588 }
7589 }
7590 }
7591
7592 if (! special && ! rtx_equal_p (reloadreg, oldequiv))
7593 {
7594 rtx real_oldequiv = oldequiv;
7595
7596 if ((REG_P (oldequiv)
7597 && REGNO (oldequiv) >= FIRST_PSEUDO_REGISTER
7598 && (reg_equiv_memory_loc (REGNO (oldequiv)) != 0
7599 || reg_equiv_constant (REGNO (oldequiv)) != 0))
7600 || (GET_CODE (oldequiv) == SUBREG
7601 && REG_P (SUBREG_REG (oldequiv))
7602 && (REGNO (SUBREG_REG (oldequiv))
7603 >= FIRST_PSEUDO_REGISTER)
7604 && ((reg_equiv_memory_loc (REGNO (SUBREG_REG (oldequiv))) != 0)
7605 || (reg_equiv_constant (REGNO (SUBREG_REG (oldequiv))) != 0)))
7606 || (CONSTANT_P (oldequiv)
7607 && (targetm.preferred_reload_class (oldequiv,
7608 REGNO_REG_CLASS (REGNO (reloadreg)))
7609 == NO_REGS)))
7610 real_oldequiv = rl->in;
7611 gen_reload (reloadreg, real_oldequiv, rl->opnum,
7612 rl->when_needed);
7613 }
7614
7615 if (cfun->can_throw_non_call_exceptions)
7616 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7617
7618 /* End this sequence. */
7619 *where = get_insns ();
7620 end_sequence ();
7621
7622 /* Update reload_override_in so that delete_address_reloads_1
7623 can see the actual register usage. */
7624 if (oldequiv_reg)
7625 reload_override_in[j] = oldequiv;
7626 }
7627
7628 /* Generate insns to for the output reload RL, which is for the insn described
7629 by CHAIN and has the number J. */
7630 static void
7631 emit_output_reload_insns (struct insn_chain *chain, struct reload *rl,
7632 int j)
7633 {
7634 rtx reloadreg;
7635 rtx_insn *insn = chain->insn;
7636 int special = 0;
7637 rtx old = rl->out;
7638 machine_mode mode;
7639 rtx_insn *p;
7640 rtx rl_reg_rtx;
7641
7642 if (rl->when_needed == RELOAD_OTHER)
7643 start_sequence ();
7644 else
7645 push_to_sequence (output_reload_insns[rl->opnum]);
7646
7647 rl_reg_rtx = reload_reg_rtx_for_output[j];
7648 mode = GET_MODE (rl_reg_rtx);
7649
7650 reloadreg = rl_reg_rtx;
7651
7652 /* If we need two reload regs, set RELOADREG to the intermediate
7653 one, since it will be stored into OLD. We might need a secondary
7654 register only for an input reload, so check again here. */
7655
7656 if (rl->secondary_out_reload >= 0)
7657 {
7658 rtx real_old = old;
7659 int secondary_reload = rl->secondary_out_reload;
7660 int tertiary_reload = rld[secondary_reload].secondary_out_reload;
7661
7662 if (REG_P (old) && REGNO (old) >= FIRST_PSEUDO_REGISTER
7663 && reg_equiv_mem (REGNO (old)) != 0)
7664 real_old = reg_equiv_mem (REGNO (old));
7665
7666 if (secondary_reload_class (0, rl->rclass, mode, real_old) != NO_REGS)
7667 {
7668 rtx second_reloadreg = reloadreg;
7669 reloadreg = rld[secondary_reload].reg_rtx;
7670
7671 /* See if RELOADREG is to be used as a scratch register
7672 or as an intermediate register. */
7673 if (rl->secondary_out_icode != CODE_FOR_nothing)
7674 {
7675 /* We'd have to add extra code to handle this case. */
7676 gcc_assert (tertiary_reload < 0);
7677
7678 emit_insn ((GEN_FCN (rl->secondary_out_icode)
7679 (real_old, second_reloadreg, reloadreg)));
7680 special = 1;
7681 }
7682 else
7683 {
7684 /* See if we need both a scratch and intermediate reload
7685 register. */
7686
7687 enum insn_code tertiary_icode
7688 = rld[secondary_reload].secondary_out_icode;
7689
7690 /* We'd have to add more code for quartary reloads. */
7691 gcc_assert (tertiary_reload < 0
7692 || rld[tertiary_reload].secondary_out_reload < 0);
7693
7694 if (GET_MODE (reloadreg) != mode)
7695 reloadreg = reload_adjust_reg_for_mode (reloadreg, mode);
7696
7697 if (tertiary_icode != CODE_FOR_nothing)
7698 {
7699 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7700
7701 /* Copy primary reload reg to secondary reload reg.
7702 (Note that these have been swapped above, then
7703 secondary reload reg to OLD using our insn.) */
7704
7705 /* If REAL_OLD is a paradoxical SUBREG, remove it
7706 and try to put the opposite SUBREG on
7707 RELOADREG. */
7708 strip_paradoxical_subreg (&real_old, &reloadreg);
7709
7710 gen_reload (reloadreg, second_reloadreg,
7711 rl->opnum, rl->when_needed);
7712 emit_insn ((GEN_FCN (tertiary_icode)
7713 (real_old, reloadreg, third_reloadreg)));
7714 special = 1;
7715 }
7716
7717 else
7718 {
7719 /* Copy between the reload regs here and then to
7720 OUT later. */
7721
7722 gen_reload (reloadreg, second_reloadreg,
7723 rl->opnum, rl->when_needed);
7724 if (tertiary_reload >= 0)
7725 {
7726 rtx third_reloadreg = rld[tertiary_reload].reg_rtx;
7727
7728 gen_reload (third_reloadreg, reloadreg,
7729 rl->opnum, rl->when_needed);
7730 reloadreg = third_reloadreg;
7731 }
7732 }
7733 }
7734 }
7735 }
7736
7737 /* Output the last reload insn. */
7738 if (! special)
7739 {
7740 rtx set;
7741
7742 /* Don't output the last reload if OLD is not the dest of
7743 INSN and is in the src and is clobbered by INSN. */
7744 if (! flag_expensive_optimizations
7745 || !REG_P (old)
7746 || !(set = single_set (insn))
7747 || rtx_equal_p (old, SET_DEST (set))
7748 || !reg_mentioned_p (old, SET_SRC (set))
7749 || !((REGNO (old) < FIRST_PSEUDO_REGISTER)
7750 && regno_clobbered_p (REGNO (old), insn, rl->mode, 0)))
7751 gen_reload (old, reloadreg, rl->opnum,
7752 rl->when_needed);
7753 }
7754
7755 /* Look at all insns we emitted, just to be safe. */
7756 for (p = get_insns (); p; p = NEXT_INSN (p))
7757 if (INSN_P (p))
7758 {
7759 rtx pat = PATTERN (p);
7760
7761 /* If this output reload doesn't come from a spill reg,
7762 clear any memory of reloaded copies of the pseudo reg.
7763 If this output reload comes from a spill reg,
7764 reg_has_output_reload will make this do nothing. */
7765 note_stores (pat, forget_old_reloads_1, NULL);
7766
7767 if (reg_mentioned_p (rl_reg_rtx, pat))
7768 {
7769 rtx set = single_set (insn);
7770 if (reload_spill_index[j] < 0
7771 && set
7772 && SET_SRC (set) == rl_reg_rtx)
7773 {
7774 int src = REGNO (SET_SRC (set));
7775
7776 reload_spill_index[j] = src;
7777 SET_HARD_REG_BIT (reg_is_output_reload, src);
7778 if (find_regno_note (insn, REG_DEAD, src))
7779 SET_HARD_REG_BIT (reg_reloaded_died, src);
7780 }
7781 if (HARD_REGISTER_P (rl_reg_rtx))
7782 {
7783 int s = rl->secondary_out_reload;
7784 set = single_set (p);
7785 /* If this reload copies only to the secondary reload
7786 register, the secondary reload does the actual
7787 store. */
7788 if (s >= 0 && set == NULL_RTX)
7789 /* We can't tell what function the secondary reload
7790 has and where the actual store to the pseudo is
7791 made; leave new_spill_reg_store alone. */
7792 ;
7793 else if (s >= 0
7794 && SET_SRC (set) == rl_reg_rtx
7795 && SET_DEST (set) == rld[s].reg_rtx)
7796 {
7797 /* Usually the next instruction will be the
7798 secondary reload insn; if we can confirm
7799 that it is, setting new_spill_reg_store to
7800 that insn will allow an extra optimization. */
7801 rtx s_reg = rld[s].reg_rtx;
7802 rtx_insn *next = NEXT_INSN (p);
7803 rld[s].out = rl->out;
7804 rld[s].out_reg = rl->out_reg;
7805 set = single_set (next);
7806 if (set && SET_SRC (set) == s_reg
7807 && reload_reg_rtx_reaches_end_p (s_reg, s))
7808 {
7809 SET_HARD_REG_BIT (reg_is_output_reload,
7810 REGNO (s_reg));
7811 new_spill_reg_store[REGNO (s_reg)] = next;
7812 }
7813 }
7814 else if (reload_reg_rtx_reaches_end_p (rl_reg_rtx, j))
7815 new_spill_reg_store[REGNO (rl_reg_rtx)] = p;
7816 }
7817 }
7818 }
7819
7820 if (rl->when_needed == RELOAD_OTHER)
7821 {
7822 emit_insn (other_output_reload_insns[rl->opnum]);
7823 other_output_reload_insns[rl->opnum] = get_insns ();
7824 }
7825 else
7826 output_reload_insns[rl->opnum] = get_insns ();
7827
7828 if (cfun->can_throw_non_call_exceptions)
7829 copy_reg_eh_region_note_forward (insn, get_insns (), NULL);
7830
7831 end_sequence ();
7832 }
7833
7834 /* Do input reloading for reload RL, which is for the insn described by CHAIN
7835 and has the number J. */
7836 static void
7837 do_input_reload (struct insn_chain *chain, struct reload *rl, int j)
7838 {
7839 rtx_insn *insn = chain->insn;
7840 rtx old = (rl->in && MEM_P (rl->in)
7841 ? rl->in_reg : rl->in);
7842 rtx reg_rtx = rl->reg_rtx;
7843
7844 if (old && reg_rtx)
7845 {
7846 machine_mode mode;
7847
7848 /* Determine the mode to reload in.
7849 This is very tricky because we have three to choose from.
7850 There is the mode the insn operand wants (rl->inmode).
7851 There is the mode of the reload register RELOADREG.
7852 There is the intrinsic mode of the operand, which we could find
7853 by stripping some SUBREGs.
7854 It turns out that RELOADREG's mode is irrelevant:
7855 we can change that arbitrarily.
7856
7857 Consider (SUBREG:SI foo:QI) as an operand that must be SImode;
7858 then the reload reg may not support QImode moves, so use SImode.
7859 If foo is in memory due to spilling a pseudo reg, this is safe,
7860 because the QImode value is in the least significant part of a
7861 slot big enough for a SImode. If foo is some other sort of
7862 memory reference, then it is impossible to reload this case,
7863 so previous passes had better make sure this never happens.
7864
7865 Then consider a one-word union which has SImode and one of its
7866 members is a float, being fetched as (SUBREG:SF union:SI).
7867 We must fetch that as SFmode because we could be loading into
7868 a float-only register. In this case OLD's mode is correct.
7869
7870 Consider an immediate integer: it has VOIDmode. Here we need
7871 to get a mode from something else.
7872
7873 In some cases, there is a fourth mode, the operand's
7874 containing mode. If the insn specifies a containing mode for
7875 this operand, it overrides all others.
7876
7877 I am not sure whether the algorithm here is always right,
7878 but it does the right things in those cases. */
7879
7880 mode = GET_MODE (old);
7881 if (mode == VOIDmode)
7882 mode = rl->inmode;
7883
7884 /* We cannot use gen_lowpart_common since it can do the wrong thing
7885 when REG_RTX has a multi-word mode. Note that REG_RTX must
7886 always be a REG here. */
7887 if (GET_MODE (reg_rtx) != mode)
7888 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7889 }
7890 reload_reg_rtx_for_input[j] = reg_rtx;
7891
7892 if (old != 0
7893 /* AUTO_INC reloads need to be handled even if inherited. We got an
7894 AUTO_INC reload if reload_out is set but reload_out_reg isn't. */
7895 && (! reload_inherited[j] || (rl->out && ! rl->out_reg))
7896 && ! rtx_equal_p (reg_rtx, old)
7897 && reg_rtx != 0)
7898 emit_input_reload_insns (chain, rld + j, old, j);
7899
7900 /* When inheriting a wider reload, we have a MEM in rl->in,
7901 e.g. inheriting a SImode output reload for
7902 (mem:HI (plus:SI (reg:SI 14 fp) (const_int 10))) */
7903 if (optimize && reload_inherited[j] && rl->in
7904 && MEM_P (rl->in)
7905 && MEM_P (rl->in_reg)
7906 && reload_spill_index[j] >= 0
7907 && TEST_HARD_REG_BIT (reg_reloaded_valid, reload_spill_index[j]))
7908 rl->in = regno_reg_rtx[reg_reloaded_contents[reload_spill_index[j]]];
7909
7910 /* If we are reloading a register that was recently stored in with an
7911 output-reload, see if we can prove there was
7912 actually no need to store the old value in it. */
7913
7914 if (optimize
7915 && (reload_inherited[j] || reload_override_in[j])
7916 && reg_rtx
7917 && REG_P (reg_rtx)
7918 && spill_reg_store[REGNO (reg_rtx)] != 0
7919 #if 0
7920 /* There doesn't seem to be any reason to restrict this to pseudos
7921 and doing so loses in the case where we are copying from a
7922 register of the wrong class. */
7923 && !HARD_REGISTER_P (spill_reg_stored_to[REGNO (reg_rtx)])
7924 #endif
7925 /* The insn might have already some references to stackslots
7926 replaced by MEMs, while reload_out_reg still names the
7927 original pseudo. */
7928 && (dead_or_set_p (insn, spill_reg_stored_to[REGNO (reg_rtx)])
7929 || rtx_equal_p (spill_reg_stored_to[REGNO (reg_rtx)], rl->out_reg)))
7930 delete_output_reload (insn, j, REGNO (reg_rtx), reg_rtx);
7931 }
7932
7933 /* Do output reloading for reload RL, which is for the insn described by
7934 CHAIN and has the number J.
7935 ??? At some point we need to support handling output reloads of
7936 JUMP_INSNs or insns that set cc0. */
7937 static void
7938 do_output_reload (struct insn_chain *chain, struct reload *rl, int j)
7939 {
7940 rtx note, old;
7941 rtx_insn *insn = chain->insn;
7942 /* If this is an output reload that stores something that is
7943 not loaded in this same reload, see if we can eliminate a previous
7944 store. */
7945 rtx pseudo = rl->out_reg;
7946 rtx reg_rtx = rl->reg_rtx;
7947
7948 if (rl->out && reg_rtx)
7949 {
7950 machine_mode mode;
7951
7952 /* Determine the mode to reload in.
7953 See comments above (for input reloading). */
7954 mode = GET_MODE (rl->out);
7955 if (mode == VOIDmode)
7956 {
7957 /* VOIDmode should never happen for an output. */
7958 if (asm_noperands (PATTERN (insn)) < 0)
7959 /* It's the compiler's fault. */
7960 fatal_insn ("VOIDmode on an output", insn);
7961 error_for_asm (insn, "output operand is constant in %<asm%>");
7962 /* Prevent crash--use something we know is valid. */
7963 mode = word_mode;
7964 rl->out = gen_rtx_REG (mode, REGNO (reg_rtx));
7965 }
7966 if (GET_MODE (reg_rtx) != mode)
7967 reg_rtx = reload_adjust_reg_for_mode (reg_rtx, mode);
7968 }
7969 reload_reg_rtx_for_output[j] = reg_rtx;
7970
7971 if (pseudo
7972 && optimize
7973 && REG_P (pseudo)
7974 && ! rtx_equal_p (rl->in_reg, pseudo)
7975 && REGNO (pseudo) >= FIRST_PSEUDO_REGISTER
7976 && reg_last_reload_reg[REGNO (pseudo)])
7977 {
7978 int pseudo_no = REGNO (pseudo);
7979 int last_regno = REGNO (reg_last_reload_reg[pseudo_no]);
7980
7981 /* We don't need to test full validity of last_regno for
7982 inherit here; we only want to know if the store actually
7983 matches the pseudo. */
7984 if (TEST_HARD_REG_BIT (reg_reloaded_valid, last_regno)
7985 && reg_reloaded_contents[last_regno] == pseudo_no
7986 && spill_reg_store[last_regno]
7987 && rtx_equal_p (pseudo, spill_reg_stored_to[last_regno]))
7988 delete_output_reload (insn, j, last_regno, reg_rtx);
7989 }
7990
7991 old = rl->out_reg;
7992 if (old == 0
7993 || reg_rtx == 0
7994 || rtx_equal_p (old, reg_rtx))
7995 return;
7996
7997 /* An output operand that dies right away does need a reload,
7998 but need not be copied from it. Show the new location in the
7999 REG_UNUSED note. */
8000 if ((REG_P (old) || GET_CODE (old) == SCRATCH)
8001 && (note = find_reg_note (insn, REG_UNUSED, old)) != 0)
8002 {
8003 XEXP (note, 0) = reg_rtx;
8004 return;
8005 }
8006 /* Likewise for a SUBREG of an operand that dies. */
8007 else if (GET_CODE (old) == SUBREG
8008 && REG_P (SUBREG_REG (old))
8009 && 0 != (note = find_reg_note (insn, REG_UNUSED,
8010 SUBREG_REG (old))))
8011 {
8012 XEXP (note, 0) = gen_lowpart_common (GET_MODE (old), reg_rtx);
8013 return;
8014 }
8015 else if (GET_CODE (old) == SCRATCH)
8016 /* If we aren't optimizing, there won't be a REG_UNUSED note,
8017 but we don't want to make an output reload. */
8018 return;
8019
8020 /* If is a JUMP_INSN, we can't support output reloads yet. */
8021 gcc_assert (NONJUMP_INSN_P (insn));
8022
8023 emit_output_reload_insns (chain, rld + j, j);
8024 }
8025
8026 /* A reload copies values of MODE from register SRC to register DEST.
8027 Return true if it can be treated for inheritance purposes like a
8028 group of reloads, each one reloading a single hard register. The
8029 caller has already checked that (reg:MODE SRC) and (reg:MODE DEST)
8030 occupy the same number of hard registers. */
8031
8032 static bool
8033 inherit_piecemeal_p (int dest ATTRIBUTE_UNUSED,
8034 int src ATTRIBUTE_UNUSED,
8035 machine_mode mode ATTRIBUTE_UNUSED)
8036 {
8037 return (REG_CAN_CHANGE_MODE_P (dest, mode, reg_raw_mode[dest])
8038 && REG_CAN_CHANGE_MODE_P (src, mode, reg_raw_mode[src]));
8039 }
8040
8041 /* Output insns to reload values in and out of the chosen reload regs. */
8042
8043 static void
8044 emit_reload_insns (struct insn_chain *chain)
8045 {
8046 rtx_insn *insn = chain->insn;
8047
8048 int j;
8049
8050 CLEAR_HARD_REG_SET (reg_reloaded_died);
8051
8052 for (j = 0; j < reload_n_operands; j++)
8053 input_reload_insns[j] = input_address_reload_insns[j]
8054 = inpaddr_address_reload_insns[j]
8055 = output_reload_insns[j] = output_address_reload_insns[j]
8056 = outaddr_address_reload_insns[j]
8057 = other_output_reload_insns[j] = 0;
8058 other_input_address_reload_insns = 0;
8059 other_input_reload_insns = 0;
8060 operand_reload_insns = 0;
8061 other_operand_reload_insns = 0;
8062
8063 /* Dump reloads into the dump file. */
8064 if (dump_file)
8065 {
8066 fprintf (dump_file, "\nReloads for insn # %d\n", INSN_UID (insn));
8067 debug_reload_to_stream (dump_file);
8068 }
8069
8070 for (j = 0; j < n_reloads; j++)
8071 if (rld[j].reg_rtx && HARD_REGISTER_P (rld[j].reg_rtx))
8072 {
8073 unsigned int i;
8074
8075 for (i = REGNO (rld[j].reg_rtx); i < END_REGNO (rld[j].reg_rtx); i++)
8076 new_spill_reg_store[i] = 0;
8077 }
8078
8079 /* Now output the instructions to copy the data into and out of the
8080 reload registers. Do these in the order that the reloads were reported,
8081 since reloads of base and index registers precede reloads of operands
8082 and the operands may need the base and index registers reloaded. */
8083
8084 for (j = 0; j < n_reloads; j++)
8085 {
8086 do_input_reload (chain, rld + j, j);
8087 do_output_reload (chain, rld + j, j);
8088 }
8089
8090 /* Now write all the insns we made for reloads in the order expected by
8091 the allocation functions. Prior to the insn being reloaded, we write
8092 the following reloads:
8093
8094 RELOAD_FOR_OTHER_ADDRESS reloads for input addresses.
8095
8096 RELOAD_OTHER reloads.
8097
8098 For each operand, any RELOAD_FOR_INPADDR_ADDRESS reloads followed
8099 by any RELOAD_FOR_INPUT_ADDRESS reloads followed by the
8100 RELOAD_FOR_INPUT reload for the operand.
8101
8102 RELOAD_FOR_OPADDR_ADDRS reloads.
8103
8104 RELOAD_FOR_OPERAND_ADDRESS reloads.
8105
8106 After the insn being reloaded, we write the following:
8107
8108 For each operand, any RELOAD_FOR_OUTADDR_ADDRESS reloads followed
8109 by any RELOAD_FOR_OUTPUT_ADDRESS reload followed by the
8110 RELOAD_FOR_OUTPUT reload, followed by any RELOAD_OTHER output
8111 reloads for the operand. The RELOAD_OTHER output reloads are
8112 output in descending order by reload number. */
8113
8114 emit_insn_before (other_input_address_reload_insns, insn);
8115 emit_insn_before (other_input_reload_insns, insn);
8116
8117 for (j = 0; j < reload_n_operands; j++)
8118 {
8119 emit_insn_before (inpaddr_address_reload_insns[j], insn);
8120 emit_insn_before (input_address_reload_insns[j], insn);
8121 emit_insn_before (input_reload_insns[j], insn);
8122 }
8123
8124 emit_insn_before (other_operand_reload_insns, insn);
8125 emit_insn_before (operand_reload_insns, insn);
8126
8127 for (j = 0; j < reload_n_operands; j++)
8128 {
8129 rtx_insn *x = emit_insn_after (outaddr_address_reload_insns[j], insn);
8130 x = emit_insn_after (output_address_reload_insns[j], x);
8131 x = emit_insn_after (output_reload_insns[j], x);
8132 emit_insn_after (other_output_reload_insns[j], x);
8133 }
8134
8135 /* For all the spill regs newly reloaded in this instruction,
8136 record what they were reloaded from, so subsequent instructions
8137 can inherit the reloads.
8138
8139 Update spill_reg_store for the reloads of this insn.
8140 Copy the elements that were updated in the loop above. */
8141
8142 for (j = 0; j < n_reloads; j++)
8143 {
8144 int r = reload_order[j];
8145 int i = reload_spill_index[r];
8146
8147 /* If this is a non-inherited input reload from a pseudo, we must
8148 clear any memory of a previous store to the same pseudo. Only do
8149 something if there will not be an output reload for the pseudo
8150 being reloaded. */
8151 if (rld[r].in_reg != 0
8152 && ! (reload_inherited[r] || reload_override_in[r]))
8153 {
8154 rtx reg = rld[r].in_reg;
8155
8156 if (GET_CODE (reg) == SUBREG)
8157 reg = SUBREG_REG (reg);
8158
8159 if (REG_P (reg)
8160 && REGNO (reg) >= FIRST_PSEUDO_REGISTER
8161 && !REGNO_REG_SET_P (&reg_has_output_reload, REGNO (reg)))
8162 {
8163 int nregno = REGNO (reg);
8164
8165 if (reg_last_reload_reg[nregno])
8166 {
8167 int last_regno = REGNO (reg_last_reload_reg[nregno]);
8168
8169 if (reg_reloaded_contents[last_regno] == nregno)
8170 spill_reg_store[last_regno] = 0;
8171 }
8172 }
8173 }
8174
8175 /* I is nonneg if this reload used a register.
8176 If rld[r].reg_rtx is 0, this is an optional reload
8177 that we opted to ignore. */
8178
8179 if (i >= 0 && rld[r].reg_rtx != 0)
8180 {
8181 int nr = hard_regno_nregs (i, GET_MODE (rld[r].reg_rtx));
8182 int k;
8183
8184 /* For a multi register reload, we need to check if all or part
8185 of the value lives to the end. */
8186 for (k = 0; k < nr; k++)
8187 if (reload_reg_reaches_end_p (i + k, r))
8188 CLEAR_HARD_REG_BIT (reg_reloaded_valid, i + k);
8189
8190 /* Maybe the spill reg contains a copy of reload_out. */
8191 if (rld[r].out != 0
8192 && (REG_P (rld[r].out)
8193 || (rld[r].out_reg
8194 ? REG_P (rld[r].out_reg)
8195 /* The reload value is an auto-modification of
8196 some kind. For PRE_INC, POST_INC, PRE_DEC
8197 and POST_DEC, we record an equivalence
8198 between the reload register and the operand
8199 on the optimistic assumption that we can make
8200 the equivalence hold. reload_as_needed must
8201 then either make it hold or invalidate the
8202 equivalence.
8203
8204 PRE_MODIFY and POST_MODIFY addresses are reloaded
8205 somewhat differently, and allowing them here leads
8206 to problems. */
8207 : (GET_CODE (rld[r].out) != POST_MODIFY
8208 && GET_CODE (rld[r].out) != PRE_MODIFY))))
8209 {
8210 rtx reg;
8211
8212 reg = reload_reg_rtx_for_output[r];
8213 if (reload_reg_rtx_reaches_end_p (reg, r))
8214 {
8215 machine_mode mode = GET_MODE (reg);
8216 int regno = REGNO (reg);
8217 int nregs = REG_NREGS (reg);
8218 rtx out = (REG_P (rld[r].out)
8219 ? rld[r].out
8220 : rld[r].out_reg
8221 ? rld[r].out_reg
8222 /* AUTO_INC */ : XEXP (rld[r].in_reg, 0));
8223 int out_regno = REGNO (out);
8224 int out_nregs = (!HARD_REGISTER_NUM_P (out_regno) ? 1
8225 : hard_regno_nregs (out_regno, mode));
8226 bool piecemeal;
8227
8228 spill_reg_store[regno] = new_spill_reg_store[regno];
8229 spill_reg_stored_to[regno] = out;
8230 reg_last_reload_reg[out_regno] = reg;
8231
8232 piecemeal = (HARD_REGISTER_NUM_P (out_regno)
8233 && nregs == out_nregs
8234 && inherit_piecemeal_p (out_regno, regno, mode));
8235
8236 /* If OUT_REGNO is a hard register, it may occupy more than
8237 one register. If it does, say what is in the
8238 rest of the registers assuming that both registers
8239 agree on how many words the object takes. If not,
8240 invalidate the subsequent registers. */
8241
8242 if (HARD_REGISTER_NUM_P (out_regno))
8243 for (k = 1; k < out_nregs; k++)
8244 reg_last_reload_reg[out_regno + k]
8245 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8246
8247 /* Now do the inverse operation. */
8248 for (k = 0; k < nregs; k++)
8249 {
8250 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8251 reg_reloaded_contents[regno + k]
8252 = (!HARD_REGISTER_NUM_P (out_regno) || !piecemeal
8253 ? out_regno
8254 : out_regno + k);
8255 reg_reloaded_insn[regno + k] = insn;
8256 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8257 if (targetm.hard_regno_call_part_clobbered (regno + k,
8258 mode))
8259 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8260 regno + k);
8261 else
8262 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8263 regno + k);
8264 }
8265 }
8266 }
8267 /* Maybe the spill reg contains a copy of reload_in. Only do
8268 something if there will not be an output reload for
8269 the register being reloaded. */
8270 else if (rld[r].out_reg == 0
8271 && rld[r].in != 0
8272 && ((REG_P (rld[r].in)
8273 && !HARD_REGISTER_P (rld[r].in)
8274 && !REGNO_REG_SET_P (&reg_has_output_reload,
8275 REGNO (rld[r].in)))
8276 || (REG_P (rld[r].in_reg)
8277 && !REGNO_REG_SET_P (&reg_has_output_reload,
8278 REGNO (rld[r].in_reg))))
8279 && !reg_set_p (reload_reg_rtx_for_input[r], PATTERN (insn)))
8280 {
8281 rtx reg;
8282
8283 reg = reload_reg_rtx_for_input[r];
8284 if (reload_reg_rtx_reaches_end_p (reg, r))
8285 {
8286 machine_mode mode;
8287 int regno;
8288 int nregs;
8289 int in_regno;
8290 int in_nregs;
8291 rtx in;
8292 bool piecemeal;
8293
8294 mode = GET_MODE (reg);
8295 regno = REGNO (reg);
8296 nregs = REG_NREGS (reg);
8297 if (REG_P (rld[r].in)
8298 && REGNO (rld[r].in) >= FIRST_PSEUDO_REGISTER)
8299 in = rld[r].in;
8300 else if (REG_P (rld[r].in_reg))
8301 in = rld[r].in_reg;
8302 else
8303 in = XEXP (rld[r].in_reg, 0);
8304 in_regno = REGNO (in);
8305
8306 in_nregs = (!HARD_REGISTER_NUM_P (in_regno) ? 1
8307 : hard_regno_nregs (in_regno, mode));
8308
8309 reg_last_reload_reg[in_regno] = reg;
8310
8311 piecemeal = (HARD_REGISTER_NUM_P (in_regno)
8312 && nregs == in_nregs
8313 && inherit_piecemeal_p (regno, in_regno, mode));
8314
8315 if (HARD_REGISTER_NUM_P (in_regno))
8316 for (k = 1; k < in_nregs; k++)
8317 reg_last_reload_reg[in_regno + k]
8318 = (piecemeal ? regno_reg_rtx[regno + k] : 0);
8319
8320 /* Unless we inherited this reload, show we haven't
8321 recently done a store.
8322 Previous stores of inherited auto_inc expressions
8323 also have to be discarded. */
8324 if (! reload_inherited[r]
8325 || (rld[r].out && ! rld[r].out_reg))
8326 spill_reg_store[regno] = 0;
8327
8328 for (k = 0; k < nregs; k++)
8329 {
8330 CLEAR_HARD_REG_BIT (reg_reloaded_dead, regno + k);
8331 reg_reloaded_contents[regno + k]
8332 = (!HARD_REGISTER_NUM_P (in_regno) || !piecemeal
8333 ? in_regno
8334 : in_regno + k);
8335 reg_reloaded_insn[regno + k] = insn;
8336 SET_HARD_REG_BIT (reg_reloaded_valid, regno + k);
8337 if (targetm.hard_regno_call_part_clobbered (regno + k,
8338 mode))
8339 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8340 regno + k);
8341 else
8342 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8343 regno + k);
8344 }
8345 }
8346 }
8347 }
8348
8349 /* The following if-statement was #if 0'd in 1.34 (or before...).
8350 It's reenabled in 1.35 because supposedly nothing else
8351 deals with this problem. */
8352
8353 /* If a register gets output-reloaded from a non-spill register,
8354 that invalidates any previous reloaded copy of it.
8355 But forget_old_reloads_1 won't get to see it, because
8356 it thinks only about the original insn. So invalidate it here.
8357 Also do the same thing for RELOAD_OTHER constraints where the
8358 output is discarded. */
8359 if (i < 0
8360 && ((rld[r].out != 0
8361 && (REG_P (rld[r].out)
8362 || (MEM_P (rld[r].out)
8363 && REG_P (rld[r].out_reg))))
8364 || (rld[r].out == 0 && rld[r].out_reg
8365 && REG_P (rld[r].out_reg))))
8366 {
8367 rtx out = ((rld[r].out && REG_P (rld[r].out))
8368 ? rld[r].out : rld[r].out_reg);
8369 int out_regno = REGNO (out);
8370 machine_mode mode = GET_MODE (out);
8371
8372 /* REG_RTX is now set or clobbered by the main instruction.
8373 As the comment above explains, forget_old_reloads_1 only
8374 sees the original instruction, and there is no guarantee
8375 that the original instruction also clobbered REG_RTX.
8376 For example, if find_reloads sees that the input side of
8377 a matched operand pair dies in this instruction, it may
8378 use the input register as the reload register.
8379
8380 Calling forget_old_reloads_1 is a waste of effort if
8381 REG_RTX is also the output register.
8382
8383 If we know that REG_RTX holds the value of a pseudo
8384 register, the code after the call will record that fact. */
8385 if (rld[r].reg_rtx && rld[r].reg_rtx != out)
8386 forget_old_reloads_1 (rld[r].reg_rtx, NULL_RTX, NULL);
8387
8388 if (!HARD_REGISTER_NUM_P (out_regno))
8389 {
8390 rtx src_reg;
8391 rtx_insn *store_insn = NULL;
8392
8393 reg_last_reload_reg[out_regno] = 0;
8394
8395 /* If we can find a hard register that is stored, record
8396 the storing insn so that we may delete this insn with
8397 delete_output_reload. */
8398 src_reg = reload_reg_rtx_for_output[r];
8399
8400 if (src_reg)
8401 {
8402 if (reload_reg_rtx_reaches_end_p (src_reg, r))
8403 store_insn = new_spill_reg_store[REGNO (src_reg)];
8404 else
8405 src_reg = NULL_RTX;
8406 }
8407 else
8408 {
8409 /* If this is an optional reload, try to find the
8410 source reg from an input reload. */
8411 rtx set = single_set (insn);
8412 if (set && SET_DEST (set) == rld[r].out)
8413 {
8414 int k;
8415
8416 src_reg = SET_SRC (set);
8417 store_insn = insn;
8418 for (k = 0; k < n_reloads; k++)
8419 {
8420 if (rld[k].in == src_reg)
8421 {
8422 src_reg = reload_reg_rtx_for_input[k];
8423 break;
8424 }
8425 }
8426 }
8427 }
8428 if (src_reg && REG_P (src_reg)
8429 && REGNO (src_reg) < FIRST_PSEUDO_REGISTER)
8430 {
8431 int src_regno, src_nregs, k;
8432 rtx note;
8433
8434 gcc_assert (GET_MODE (src_reg) == mode);
8435 src_regno = REGNO (src_reg);
8436 src_nregs = hard_regno_nregs (src_regno, mode);
8437 /* The place where to find a death note varies with
8438 PRESERVE_DEATH_INFO_REGNO_P . The condition is not
8439 necessarily checked exactly in the code that moves
8440 notes, so just check both locations. */
8441 note = find_regno_note (insn, REG_DEAD, src_regno);
8442 if (! note && store_insn)
8443 note = find_regno_note (store_insn, REG_DEAD, src_regno);
8444 for (k = 0; k < src_nregs; k++)
8445 {
8446 spill_reg_store[src_regno + k] = store_insn;
8447 spill_reg_stored_to[src_regno + k] = out;
8448 reg_reloaded_contents[src_regno + k] = out_regno;
8449 reg_reloaded_insn[src_regno + k] = store_insn;
8450 CLEAR_HARD_REG_BIT (reg_reloaded_dead, src_regno + k);
8451 SET_HARD_REG_BIT (reg_reloaded_valid, src_regno + k);
8452 if (targetm.hard_regno_call_part_clobbered
8453 (src_regno + k, mode))
8454 SET_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8455 src_regno + k);
8456 else
8457 CLEAR_HARD_REG_BIT (reg_reloaded_call_part_clobbered,
8458 src_regno + k);
8459 SET_HARD_REG_BIT (reg_is_output_reload, src_regno + k);
8460 if (note)
8461 SET_HARD_REG_BIT (reg_reloaded_died, src_regno);
8462 else
8463 CLEAR_HARD_REG_BIT (reg_reloaded_died, src_regno);
8464 }
8465 reg_last_reload_reg[out_regno] = src_reg;
8466 /* We have to set reg_has_output_reload here, or else
8467 forget_old_reloads_1 will clear reg_last_reload_reg
8468 right away. */
8469 SET_REGNO_REG_SET (&reg_has_output_reload,
8470 out_regno);
8471 }
8472 }
8473 else
8474 {
8475 int k, out_nregs = hard_regno_nregs (out_regno, mode);
8476
8477 for (k = 0; k < out_nregs; k++)
8478 reg_last_reload_reg[out_regno + k] = 0;
8479 }
8480 }
8481 }
8482 IOR_HARD_REG_SET (reg_reloaded_dead, reg_reloaded_died);
8483 }
8484 \f
8485 /* Go through the motions to emit INSN and test if it is strictly valid.
8486 Return the emitted insn if valid, else return NULL. */
8487
8488 static rtx_insn *
8489 emit_insn_if_valid_for_reload (rtx pat)
8490 {
8491 rtx_insn *last = get_last_insn ();
8492 int code;
8493
8494 rtx_insn *insn = emit_insn (pat);
8495 code = recog_memoized (insn);
8496
8497 if (code >= 0)
8498 {
8499 extract_insn (insn);
8500 /* We want constrain operands to treat this insn strictly in its
8501 validity determination, i.e., the way it would after reload has
8502 completed. */
8503 if (constrain_operands (1, get_enabled_alternatives (insn)))
8504 return insn;
8505 }
8506
8507 delete_insns_since (last);
8508 return NULL;
8509 }
8510
8511 /* Emit code to perform a reload from IN (which may be a reload register) to
8512 OUT (which may also be a reload register). IN or OUT is from operand
8513 OPNUM with reload type TYPE.
8514
8515 Returns first insn emitted. */
8516
8517 static rtx_insn *
8518 gen_reload (rtx out, rtx in, int opnum, enum reload_type type)
8519 {
8520 rtx_insn *last = get_last_insn ();
8521 rtx_insn *tem;
8522 rtx tem1, tem2;
8523
8524 /* If IN is a paradoxical SUBREG, remove it and try to put the
8525 opposite SUBREG on OUT. Likewise for a paradoxical SUBREG on OUT. */
8526 if (!strip_paradoxical_subreg (&in, &out))
8527 strip_paradoxical_subreg (&out, &in);
8528
8529 /* How to do this reload can get quite tricky. Normally, we are being
8530 asked to reload a simple operand, such as a MEM, a constant, or a pseudo
8531 register that didn't get a hard register. In that case we can just
8532 call emit_move_insn.
8533
8534 We can also be asked to reload a PLUS that adds a register or a MEM to
8535 another register, constant or MEM. This can occur during frame pointer
8536 elimination and while reloading addresses. This case is handled by
8537 trying to emit a single insn to perform the add. If it is not valid,
8538 we use a two insn sequence.
8539
8540 Or we can be asked to reload an unary operand that was a fragment of
8541 an addressing mode, into a register. If it isn't recognized as-is,
8542 we try making the unop operand and the reload-register the same:
8543 (set reg:X (unop:X expr:Y))
8544 -> (set reg:Y expr:Y) (set reg:X (unop:X reg:Y)).
8545
8546 Finally, we could be called to handle an 'o' constraint by putting
8547 an address into a register. In that case, we first try to do this
8548 with a named pattern of "reload_load_address". If no such pattern
8549 exists, we just emit a SET insn and hope for the best (it will normally
8550 be valid on machines that use 'o').
8551
8552 This entire process is made complex because reload will never
8553 process the insns we generate here and so we must ensure that
8554 they will fit their constraints and also by the fact that parts of
8555 IN might be being reloaded separately and replaced with spill registers.
8556 Because of this, we are, in some sense, just guessing the right approach
8557 here. The one listed above seems to work.
8558
8559 ??? At some point, this whole thing needs to be rethought. */
8560
8561 if (GET_CODE (in) == PLUS
8562 && (REG_P (XEXP (in, 0))
8563 || GET_CODE (XEXP (in, 0)) == SUBREG
8564 || MEM_P (XEXP (in, 0)))
8565 && (REG_P (XEXP (in, 1))
8566 || GET_CODE (XEXP (in, 1)) == SUBREG
8567 || CONSTANT_P (XEXP (in, 1))
8568 || MEM_P (XEXP (in, 1))))
8569 {
8570 /* We need to compute the sum of a register or a MEM and another
8571 register, constant, or MEM, and put it into the reload
8572 register. The best possible way of doing this is if the machine
8573 has a three-operand ADD insn that accepts the required operands.
8574
8575 The simplest approach is to try to generate such an insn and see if it
8576 is recognized and matches its constraints. If so, it can be used.
8577
8578 It might be better not to actually emit the insn unless it is valid,
8579 but we need to pass the insn as an operand to `recog' and
8580 `extract_insn' and it is simpler to emit and then delete the insn if
8581 not valid than to dummy things up. */
8582
8583 rtx op0, op1, tem;
8584 rtx_insn *insn;
8585 enum insn_code code;
8586
8587 op0 = find_replacement (&XEXP (in, 0));
8588 op1 = find_replacement (&XEXP (in, 1));
8589
8590 /* Since constraint checking is strict, commutativity won't be
8591 checked, so we need to do that here to avoid spurious failure
8592 if the add instruction is two-address and the second operand
8593 of the add is the same as the reload reg, which is frequently
8594 the case. If the insn would be A = B + A, rearrange it so
8595 it will be A = A + B as constrain_operands expects. */
8596
8597 if (REG_P (XEXP (in, 1))
8598 && REGNO (out) == REGNO (XEXP (in, 1)))
8599 tem = op0, op0 = op1, op1 = tem;
8600
8601 if (op0 != XEXP (in, 0) || op1 != XEXP (in, 1))
8602 in = gen_rtx_PLUS (GET_MODE (in), op0, op1);
8603
8604 insn = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8605 if (insn)
8606 return insn;
8607
8608 /* If that failed, we must use a conservative two-insn sequence.
8609
8610 Use a move to copy one operand into the reload register. Prefer
8611 to reload a constant, MEM or pseudo since the move patterns can
8612 handle an arbitrary operand. If OP1 is not a constant, MEM or
8613 pseudo and OP1 is not a valid operand for an add instruction, then
8614 reload OP1.
8615
8616 After reloading one of the operands into the reload register, add
8617 the reload register to the output register.
8618
8619 If there is another way to do this for a specific machine, a
8620 DEFINE_PEEPHOLE should be specified that recognizes the sequence
8621 we emit below. */
8622
8623 code = optab_handler (add_optab, GET_MODE (out));
8624
8625 if (CONSTANT_P (op1) || MEM_P (op1) || GET_CODE (op1) == SUBREG
8626 || (REG_P (op1)
8627 && REGNO (op1) >= FIRST_PSEUDO_REGISTER)
8628 || (code != CODE_FOR_nothing
8629 && !insn_operand_matches (code, 2, op1)))
8630 tem = op0, op0 = op1, op1 = tem;
8631
8632 gen_reload (out, op0, opnum, type);
8633
8634 /* If OP0 and OP1 are the same, we can use OUT for OP1.
8635 This fixes a problem on the 32K where the stack pointer cannot
8636 be used as an operand of an add insn. */
8637
8638 if (rtx_equal_p (op0, op1))
8639 op1 = out;
8640
8641 insn = emit_insn_if_valid_for_reload (gen_add2_insn (out, op1));
8642 if (insn)
8643 {
8644 /* Add a REG_EQUIV note so that find_equiv_reg can find it. */
8645 set_dst_reg_note (insn, REG_EQUIV, in, out);
8646 return insn;
8647 }
8648
8649 /* If that failed, copy the address register to the reload register.
8650 Then add the constant to the reload register. */
8651
8652 gcc_assert (!reg_overlap_mentioned_p (out, op0));
8653 gen_reload (out, op1, opnum, type);
8654 insn = emit_insn (gen_add2_insn (out, op0));
8655 set_dst_reg_note (insn, REG_EQUIV, in, out);
8656 }
8657
8658 /* If we need a memory location to do the move, do it that way. */
8659 else if ((tem1 = replaced_subreg (in), tem2 = replaced_subreg (out),
8660 (REG_P (tem1) && REG_P (tem2)))
8661 && REGNO (tem1) < FIRST_PSEUDO_REGISTER
8662 && REGNO (tem2) < FIRST_PSEUDO_REGISTER
8663 && targetm.secondary_memory_needed (GET_MODE (out),
8664 REGNO_REG_CLASS (REGNO (tem1)),
8665 REGNO_REG_CLASS (REGNO (tem2))))
8666 {
8667 /* Get the memory to use and rewrite both registers to its mode. */
8668 rtx loc = get_secondary_mem (in, GET_MODE (out), opnum, type);
8669
8670 if (GET_MODE (loc) != GET_MODE (out))
8671 out = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (out));
8672
8673 if (GET_MODE (loc) != GET_MODE (in))
8674 in = gen_rtx_REG (GET_MODE (loc), reg_or_subregno (in));
8675
8676 gen_reload (loc, in, opnum, type);
8677 gen_reload (out, loc, opnum, type);
8678 }
8679 else if (REG_P (out) && UNARY_P (in))
8680 {
8681 rtx op1;
8682 rtx out_moded;
8683 rtx_insn *set;
8684
8685 op1 = find_replacement (&XEXP (in, 0));
8686 if (op1 != XEXP (in, 0))
8687 in = gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in), op1);
8688
8689 /* First, try a plain SET. */
8690 set = emit_insn_if_valid_for_reload (gen_rtx_SET (out, in));
8691 if (set)
8692 return set;
8693
8694 /* If that failed, move the inner operand to the reload
8695 register, and try the same unop with the inner expression
8696 replaced with the reload register. */
8697
8698 if (GET_MODE (op1) != GET_MODE (out))
8699 out_moded = gen_rtx_REG (GET_MODE (op1), REGNO (out));
8700 else
8701 out_moded = out;
8702
8703 gen_reload (out_moded, op1, opnum, type);
8704
8705 rtx temp = gen_rtx_SET (out, gen_rtx_fmt_e (GET_CODE (in), GET_MODE (in),
8706 out_moded));
8707 rtx_insn *insn = emit_insn_if_valid_for_reload (temp);
8708 if (insn)
8709 {
8710 set_unique_reg_note (insn, REG_EQUIV, in);
8711 return insn;
8712 }
8713
8714 fatal_insn ("failure trying to reload:", set);
8715 }
8716 /* If IN is a simple operand, use gen_move_insn. */
8717 else if (OBJECT_P (in) || GET_CODE (in) == SUBREG)
8718 {
8719 tem = emit_insn (gen_move_insn (out, in));
8720 /* IN may contain a LABEL_REF, if so add a REG_LABEL_OPERAND note. */
8721 mark_jump_label (in, tem, 0);
8722 }
8723
8724 else if (targetm.have_reload_load_address ())
8725 emit_insn (targetm.gen_reload_load_address (out, in));
8726
8727 /* Otherwise, just write (set OUT IN) and hope for the best. */
8728 else
8729 emit_insn (gen_rtx_SET (out, in));
8730
8731 /* Return the first insn emitted.
8732 We can not just return get_last_insn, because there may have
8733 been multiple instructions emitted. Also note that gen_move_insn may
8734 emit more than one insn itself, so we can not assume that there is one
8735 insn emitted per emit_insn_before call. */
8736
8737 return last ? NEXT_INSN (last) : get_insns ();
8738 }
8739 \f
8740 /* Delete a previously made output-reload whose result we now believe
8741 is not needed. First we double-check.
8742
8743 INSN is the insn now being processed.
8744 LAST_RELOAD_REG is the hard register number for which we want to delete
8745 the last output reload.
8746 J is the reload-number that originally used REG. The caller has made
8747 certain that reload J doesn't use REG any longer for input.
8748 NEW_RELOAD_REG is reload register that reload J is using for REG. */
8749
8750 static void
8751 delete_output_reload (rtx_insn *insn, int j, int last_reload_reg,
8752 rtx new_reload_reg)
8753 {
8754 rtx_insn *output_reload_insn = spill_reg_store[last_reload_reg];
8755 rtx reg = spill_reg_stored_to[last_reload_reg];
8756 int k;
8757 int n_occurrences;
8758 int n_inherited = 0;
8759 rtx substed;
8760 unsigned regno;
8761 int nregs;
8762
8763 /* It is possible that this reload has been only used to set another reload
8764 we eliminated earlier and thus deleted this instruction too. */
8765 if (output_reload_insn->deleted ())
8766 return;
8767
8768 /* Get the raw pseudo-register referred to. */
8769
8770 while (GET_CODE (reg) == SUBREG)
8771 reg = SUBREG_REG (reg);
8772 substed = reg_equiv_memory_loc (REGNO (reg));
8773
8774 /* This is unsafe if the operand occurs more often in the current
8775 insn than it is inherited. */
8776 for (k = n_reloads - 1; k >= 0; k--)
8777 {
8778 rtx reg2 = rld[k].in;
8779 if (! reg2)
8780 continue;
8781 if (MEM_P (reg2) || reload_override_in[k])
8782 reg2 = rld[k].in_reg;
8783
8784 if (AUTO_INC_DEC && rld[k].out && ! rld[k].out_reg)
8785 reg2 = XEXP (rld[k].in_reg, 0);
8786
8787 while (GET_CODE (reg2) == SUBREG)
8788 reg2 = SUBREG_REG (reg2);
8789 if (rtx_equal_p (reg2, reg))
8790 {
8791 if (reload_inherited[k] || reload_override_in[k] || k == j)
8792 n_inherited++;
8793 else
8794 return;
8795 }
8796 }
8797 n_occurrences = count_occurrences (PATTERN (insn), reg, 0);
8798 if (CALL_P (insn) && CALL_INSN_FUNCTION_USAGE (insn))
8799 n_occurrences += count_occurrences (CALL_INSN_FUNCTION_USAGE (insn),
8800 reg, 0);
8801 if (substed)
8802 n_occurrences += count_occurrences (PATTERN (insn),
8803 eliminate_regs (substed, VOIDmode,
8804 NULL_RTX), 0);
8805 for (rtx i1 = reg_equiv_alt_mem_list (REGNO (reg)); i1; i1 = XEXP (i1, 1))
8806 {
8807 gcc_assert (!rtx_equal_p (XEXP (i1, 0), substed));
8808 n_occurrences += count_occurrences (PATTERN (insn), XEXP (i1, 0), 0);
8809 }
8810 if (n_occurrences > n_inherited)
8811 return;
8812
8813 regno = REGNO (reg);
8814 nregs = REG_NREGS (reg);
8815
8816 /* If the pseudo-reg we are reloading is no longer referenced
8817 anywhere between the store into it and here,
8818 and we're within the same basic block, then the value can only
8819 pass through the reload reg and end up here.
8820 Otherwise, give up--return. */
8821 for (rtx_insn *i1 = NEXT_INSN (output_reload_insn);
8822 i1 != insn; i1 = NEXT_INSN (i1))
8823 {
8824 if (NOTE_INSN_BASIC_BLOCK_P (i1))
8825 return;
8826 if ((NONJUMP_INSN_P (i1) || CALL_P (i1))
8827 && refers_to_regno_p (regno, regno + nregs, PATTERN (i1), NULL))
8828 {
8829 /* If this is USE in front of INSN, we only have to check that
8830 there are no more references than accounted for by inheritance. */
8831 while (NONJUMP_INSN_P (i1) && GET_CODE (PATTERN (i1)) == USE)
8832 {
8833 n_occurrences += rtx_equal_p (reg, XEXP (PATTERN (i1), 0)) != 0;
8834 i1 = NEXT_INSN (i1);
8835 }
8836 if (n_occurrences <= n_inherited && i1 == insn)
8837 break;
8838 return;
8839 }
8840 }
8841
8842 /* We will be deleting the insn. Remove the spill reg information. */
8843 for (k = hard_regno_nregs (last_reload_reg, GET_MODE (reg)); k-- > 0; )
8844 {
8845 spill_reg_store[last_reload_reg + k] = 0;
8846 spill_reg_stored_to[last_reload_reg + k] = 0;
8847 }
8848
8849 /* The caller has already checked that REG dies or is set in INSN.
8850 It has also checked that we are optimizing, and thus some
8851 inaccuracies in the debugging information are acceptable.
8852 So we could just delete output_reload_insn. But in some cases
8853 we can improve the debugging information without sacrificing
8854 optimization - maybe even improving the code: See if the pseudo
8855 reg has been completely replaced with reload regs. If so, delete
8856 the store insn and forget we had a stack slot for the pseudo. */
8857 if (rld[j].out != rld[j].in
8858 && REG_N_DEATHS (REGNO (reg)) == 1
8859 && REG_N_SETS (REGNO (reg)) == 1
8860 && REG_BASIC_BLOCK (REGNO (reg)) >= NUM_FIXED_BLOCKS
8861 && find_regno_note (insn, REG_DEAD, REGNO (reg)))
8862 {
8863 rtx_insn *i2;
8864
8865 /* We know that it was used only between here and the beginning of
8866 the current basic block. (We also know that the last use before
8867 INSN was the output reload we are thinking of deleting, but never
8868 mind that.) Search that range; see if any ref remains. */
8869 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8870 {
8871 rtx set = single_set (i2);
8872
8873 /* Uses which just store in the pseudo don't count,
8874 since if they are the only uses, they are dead. */
8875 if (set != 0 && SET_DEST (set) == reg)
8876 continue;
8877 if (LABEL_P (i2) || JUMP_P (i2))
8878 break;
8879 if ((NONJUMP_INSN_P (i2) || CALL_P (i2))
8880 && reg_mentioned_p (reg, PATTERN (i2)))
8881 {
8882 /* Some other ref remains; just delete the output reload we
8883 know to be dead. */
8884 delete_address_reloads (output_reload_insn, insn);
8885 delete_insn (output_reload_insn);
8886 return;
8887 }
8888 }
8889
8890 /* Delete the now-dead stores into this pseudo. Note that this
8891 loop also takes care of deleting output_reload_insn. */
8892 for (i2 = PREV_INSN (insn); i2; i2 = PREV_INSN (i2))
8893 {
8894 rtx set = single_set (i2);
8895
8896 if (set != 0 && SET_DEST (set) == reg)
8897 {
8898 delete_address_reloads (i2, insn);
8899 delete_insn (i2);
8900 }
8901 if (LABEL_P (i2) || JUMP_P (i2))
8902 break;
8903 }
8904
8905 /* For the debugging info, say the pseudo lives in this reload reg. */
8906 reg_renumber[REGNO (reg)] = REGNO (new_reload_reg);
8907 if (ira_conflicts_p)
8908 /* Inform IRA about the change. */
8909 ira_mark_allocation_change (REGNO (reg));
8910 alter_reg (REGNO (reg), -1, false);
8911 }
8912 else
8913 {
8914 delete_address_reloads (output_reload_insn, insn);
8915 delete_insn (output_reload_insn);
8916 }
8917 }
8918
8919 /* We are going to delete DEAD_INSN. Recursively delete loads of
8920 reload registers used in DEAD_INSN that are not used till CURRENT_INSN.
8921 CURRENT_INSN is being reloaded, so we have to check its reloads too. */
8922 static void
8923 delete_address_reloads (rtx_insn *dead_insn, rtx_insn *current_insn)
8924 {
8925 rtx set = single_set (dead_insn);
8926 rtx set2, dst;
8927 rtx_insn *prev, *next;
8928 if (set)
8929 {
8930 rtx dst = SET_DEST (set);
8931 if (MEM_P (dst))
8932 delete_address_reloads_1 (dead_insn, XEXP (dst, 0), current_insn);
8933 }
8934 /* If we deleted the store from a reloaded post_{in,de}c expression,
8935 we can delete the matching adds. */
8936 prev = PREV_INSN (dead_insn);
8937 next = NEXT_INSN (dead_insn);
8938 if (! prev || ! next)
8939 return;
8940 set = single_set (next);
8941 set2 = single_set (prev);
8942 if (! set || ! set2
8943 || GET_CODE (SET_SRC (set)) != PLUS || GET_CODE (SET_SRC (set2)) != PLUS
8944 || !CONST_INT_P (XEXP (SET_SRC (set), 1))
8945 || !CONST_INT_P (XEXP (SET_SRC (set2), 1)))
8946 return;
8947 dst = SET_DEST (set);
8948 if (! rtx_equal_p (dst, SET_DEST (set2))
8949 || ! rtx_equal_p (dst, XEXP (SET_SRC (set), 0))
8950 || ! rtx_equal_p (dst, XEXP (SET_SRC (set2), 0))
8951 || (INTVAL (XEXP (SET_SRC (set), 1))
8952 != -INTVAL (XEXP (SET_SRC (set2), 1))))
8953 return;
8954 delete_related_insns (prev);
8955 delete_related_insns (next);
8956 }
8957
8958 /* Subfunction of delete_address_reloads: process registers found in X. */
8959 static void
8960 delete_address_reloads_1 (rtx_insn *dead_insn, rtx x, rtx_insn *current_insn)
8961 {
8962 rtx_insn *prev, *i2;
8963 rtx set, dst;
8964 int i, j;
8965 enum rtx_code code = GET_CODE (x);
8966
8967 if (code != REG)
8968 {
8969 const char *fmt = GET_RTX_FORMAT (code);
8970 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
8971 {
8972 if (fmt[i] == 'e')
8973 delete_address_reloads_1 (dead_insn, XEXP (x, i), current_insn);
8974 else if (fmt[i] == 'E')
8975 {
8976 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
8977 delete_address_reloads_1 (dead_insn, XVECEXP (x, i, j),
8978 current_insn);
8979 }
8980 }
8981 return;
8982 }
8983
8984 if (spill_reg_order[REGNO (x)] < 0)
8985 return;
8986
8987 /* Scan backwards for the insn that sets x. This might be a way back due
8988 to inheritance. */
8989 for (prev = PREV_INSN (dead_insn); prev; prev = PREV_INSN (prev))
8990 {
8991 code = GET_CODE (prev);
8992 if (code == CODE_LABEL || code == JUMP_INSN)
8993 return;
8994 if (!INSN_P (prev))
8995 continue;
8996 if (reg_set_p (x, PATTERN (prev)))
8997 break;
8998 if (reg_referenced_p (x, PATTERN (prev)))
8999 return;
9000 }
9001 if (! prev || INSN_UID (prev) < reload_first_uid)
9002 return;
9003 /* Check that PREV only sets the reload register. */
9004 set = single_set (prev);
9005 if (! set)
9006 return;
9007 dst = SET_DEST (set);
9008 if (!REG_P (dst)
9009 || ! rtx_equal_p (dst, x))
9010 return;
9011 if (! reg_set_p (dst, PATTERN (dead_insn)))
9012 {
9013 /* Check if DST was used in a later insn -
9014 it might have been inherited. */
9015 for (i2 = NEXT_INSN (dead_insn); i2; i2 = NEXT_INSN (i2))
9016 {
9017 if (LABEL_P (i2))
9018 break;
9019 if (! INSN_P (i2))
9020 continue;
9021 if (reg_referenced_p (dst, PATTERN (i2)))
9022 {
9023 /* If there is a reference to the register in the current insn,
9024 it might be loaded in a non-inherited reload. If no other
9025 reload uses it, that means the register is set before
9026 referenced. */
9027 if (i2 == current_insn)
9028 {
9029 for (j = n_reloads - 1; j >= 0; j--)
9030 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9031 || reload_override_in[j] == dst)
9032 return;
9033 for (j = n_reloads - 1; j >= 0; j--)
9034 if (rld[j].in && rld[j].reg_rtx == dst)
9035 break;
9036 if (j >= 0)
9037 break;
9038 }
9039 return;
9040 }
9041 if (JUMP_P (i2))
9042 break;
9043 /* If DST is still live at CURRENT_INSN, check if it is used for
9044 any reload. Note that even if CURRENT_INSN sets DST, we still
9045 have to check the reloads. */
9046 if (i2 == current_insn)
9047 {
9048 for (j = n_reloads - 1; j >= 0; j--)
9049 if ((rld[j].reg_rtx == dst && reload_inherited[j])
9050 || reload_override_in[j] == dst)
9051 return;
9052 /* ??? We can't finish the loop here, because dst might be
9053 allocated to a pseudo in this block if no reload in this
9054 block needs any of the classes containing DST - see
9055 spill_hard_reg. There is no easy way to tell this, so we
9056 have to scan till the end of the basic block. */
9057 }
9058 if (reg_set_p (dst, PATTERN (i2)))
9059 break;
9060 }
9061 }
9062 delete_address_reloads_1 (prev, SET_SRC (set), current_insn);
9063 reg_reloaded_contents[REGNO (dst)] = -1;
9064 delete_insn (prev);
9065 }
9066 \f
9067 /* Output reload-insns to reload VALUE into RELOADREG.
9068 VALUE is an autoincrement or autodecrement RTX whose operand
9069 is a register or memory location;
9070 so reloading involves incrementing that location.
9071 IN is either identical to VALUE, or some cheaper place to reload from.
9072
9073 INC_AMOUNT is the number to increment or decrement by (always positive).
9074 This cannot be deduced from VALUE. */
9075
9076 static void
9077 inc_for_reload (rtx reloadreg, rtx in, rtx value, int inc_amount)
9078 {
9079 /* REG or MEM to be copied and incremented. */
9080 rtx incloc = find_replacement (&XEXP (value, 0));
9081 /* Nonzero if increment after copying. */
9082 int post = (GET_CODE (value) == POST_DEC || GET_CODE (value) == POST_INC
9083 || GET_CODE (value) == POST_MODIFY);
9084 rtx_insn *last;
9085 rtx inc;
9086 rtx_insn *add_insn;
9087 int code;
9088 rtx real_in = in == value ? incloc : in;
9089
9090 /* No hard register is equivalent to this register after
9091 inc/dec operation. If REG_LAST_RELOAD_REG were nonzero,
9092 we could inc/dec that register as well (maybe even using it for
9093 the source), but I'm not sure it's worth worrying about. */
9094 if (REG_P (incloc))
9095 reg_last_reload_reg[REGNO (incloc)] = 0;
9096
9097 if (GET_CODE (value) == PRE_MODIFY || GET_CODE (value) == POST_MODIFY)
9098 {
9099 gcc_assert (GET_CODE (XEXP (value, 1)) == PLUS);
9100 inc = find_replacement (&XEXP (XEXP (value, 1), 1));
9101 }
9102 else
9103 {
9104 if (GET_CODE (value) == PRE_DEC || GET_CODE (value) == POST_DEC)
9105 inc_amount = -inc_amount;
9106
9107 inc = GEN_INT (inc_amount);
9108 }
9109
9110 /* If this is post-increment, first copy the location to the reload reg. */
9111 if (post && real_in != reloadreg)
9112 emit_insn (gen_move_insn (reloadreg, real_in));
9113
9114 if (in == value)
9115 {
9116 /* See if we can directly increment INCLOC. Use a method similar to
9117 that in gen_reload. */
9118
9119 last = get_last_insn ();
9120 add_insn = emit_insn (gen_rtx_SET (incloc,
9121 gen_rtx_PLUS (GET_MODE (incloc),
9122 incloc, inc)));
9123
9124 code = recog_memoized (add_insn);
9125 if (code >= 0)
9126 {
9127 extract_insn (add_insn);
9128 if (constrain_operands (1, get_enabled_alternatives (add_insn)))
9129 {
9130 /* If this is a pre-increment and we have incremented the value
9131 where it lives, copy the incremented value to RELOADREG to
9132 be used as an address. */
9133
9134 if (! post)
9135 emit_insn (gen_move_insn (reloadreg, incloc));
9136 return;
9137 }
9138 }
9139 delete_insns_since (last);
9140 }
9141
9142 /* If couldn't do the increment directly, must increment in RELOADREG.
9143 The way we do this depends on whether this is pre- or post-increment.
9144 For pre-increment, copy INCLOC to the reload register, increment it
9145 there, then save back. */
9146
9147 if (! post)
9148 {
9149 if (in != reloadreg)
9150 emit_insn (gen_move_insn (reloadreg, real_in));
9151 emit_insn (gen_add2_insn (reloadreg, inc));
9152 emit_insn (gen_move_insn (incloc, reloadreg));
9153 }
9154 else
9155 {
9156 /* Postincrement.
9157 Because this might be a jump insn or a compare, and because RELOADREG
9158 may not be available after the insn in an input reload, we must do
9159 the incrementation before the insn being reloaded for.
9160
9161 We have already copied IN to RELOADREG. Increment the copy in
9162 RELOADREG, save that back, then decrement RELOADREG so it has
9163 the original value. */
9164
9165 emit_insn (gen_add2_insn (reloadreg, inc));
9166 emit_insn (gen_move_insn (incloc, reloadreg));
9167 if (CONST_INT_P (inc))
9168 emit_insn (gen_add2_insn (reloadreg,
9169 gen_int_mode (-INTVAL (inc),
9170 GET_MODE (reloadreg))));
9171 else
9172 emit_insn (gen_sub2_insn (reloadreg, inc));
9173 }
9174 }
9175 \f
9176 static void
9177 add_auto_inc_notes (rtx_insn *insn, rtx x)
9178 {
9179 enum rtx_code code = GET_CODE (x);
9180 const char *fmt;
9181 int i, j;
9182
9183 if (code == MEM && auto_inc_p (XEXP (x, 0)))
9184 {
9185 add_reg_note (insn, REG_INC, XEXP (XEXP (x, 0), 0));
9186 return;
9187 }
9188
9189 /* Scan all the operand sub-expressions. */
9190 fmt = GET_RTX_FORMAT (code);
9191 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
9192 {
9193 if (fmt[i] == 'e')
9194 add_auto_inc_notes (insn, XEXP (x, i));
9195 else if (fmt[i] == 'E')
9196 for (j = XVECLEN (x, i) - 1; j >= 0; j--)
9197 add_auto_inc_notes (insn, XVECEXP (x, i, j));
9198 }
9199 }