]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/sel-sched.c
18604444b15f2c37db87faca340fbaeeb71e5d6c
[thirdparty/gcc.git] / gcc / sel-sched.c
1 /* Instruction scheduling pass. Selective scheduler and pipeliner.
2 Copyright (C) 2006-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "backend.h"
24 #include "tree.h"
25 #include "rtl.h"
26 #include "df.h"
27 #include "rtl-error.h"
28 #include "tm_p.h"
29 #include "regs.h"
30 #include "cfgbuild.h"
31 #include "flags.h"
32 #include "insn-config.h"
33 #include "insn-attr.h"
34 #include "except.h"
35 #include "recog.h"
36 #include "params.h"
37 #include "target.h"
38 #include "output.h"
39 #include "sched-int.h"
40 #include "langhooks.h"
41 #include "rtlhooks-def.h"
42 #include "emit-rtl.h"
43 #include "ira.h"
44 #include "ira-int.h"
45 #include "rtl-iter.h"
46
47 #ifdef INSN_SCHEDULING
48 #include "regset.h"
49 #include "cfgloop.h"
50 #include "sel-sched-ir.h"
51 #include "sel-sched-dump.h"
52 #include "sel-sched.h"
53 #include "dbgcnt.h"
54
55 /* Implementation of selective scheduling approach.
56 The below implementation follows the original approach with the following
57 changes:
58
59 o the scheduler works after register allocation (but can be also tuned
60 to work before RA);
61 o some instructions are not copied or register renamed;
62 o conditional jumps are not moved with code duplication;
63 o several jumps in one parallel group are not supported;
64 o when pipelining outer loops, code motion through inner loops
65 is not supported;
66 o control and data speculation are supported;
67 o some improvements for better compile time/performance were made.
68
69 Terminology
70 ===========
71
72 A vinsn, or virtual insn, is an insn with additional data characterizing
73 insn pattern, such as LHS, RHS, register sets used/set/clobbered, etc.
74 Vinsns also act as smart pointers to save memory by reusing them in
75 different expressions. A vinsn is described by vinsn_t type.
76
77 An expression is a vinsn with additional data characterizing its properties
78 at some point in the control flow graph. The data may be its usefulness,
79 priority, speculative status, whether it was renamed/subsituted, etc.
80 An expression is described by expr_t type.
81
82 Availability set (av_set) is a set of expressions at a given control flow
83 point. It is represented as av_set_t. The expressions in av sets are kept
84 sorted in the terms of expr_greater_p function. It allows to truncate
85 the set while leaving the best expressions.
86
87 A fence is a point through which code motion is prohibited. On each step,
88 we gather a parallel group of insns at a fence. It is possible to have
89 multiple fences. A fence is represented via fence_t.
90
91 A boundary is the border between the fence group and the rest of the code.
92 Currently, we never have more than one boundary per fence, as we finalize
93 the fence group when a jump is scheduled. A boundary is represented
94 via bnd_t.
95
96 High-level overview
97 ===================
98
99 The scheduler finds regions to schedule, schedules each one, and finalizes.
100 The regions are formed starting from innermost loops, so that when the inner
101 loop is pipelined, its prologue can be scheduled together with yet unprocessed
102 outer loop. The rest of acyclic regions are found using extend_rgns:
103 the blocks that are not yet allocated to any regions are traversed in top-down
104 order, and a block is added to a region to which all its predecessors belong;
105 otherwise, the block starts its own region.
106
107 The main scheduling loop (sel_sched_region_2) consists of just
108 scheduling on each fence and updating fences. For each fence,
109 we fill a parallel group of insns (fill_insns) until some insns can be added.
110 First, we compute available exprs (av-set) at the boundary of the current
111 group. Second, we choose the best expression from it. If the stall is
112 required to schedule any of the expressions, we advance the current cycle
113 appropriately. So, the final group does not exactly correspond to a VLIW
114 word. Third, we move the chosen expression to the boundary (move_op)
115 and update the intermediate av sets and liveness sets. We quit fill_insns
116 when either no insns left for scheduling or we have scheduled enough insns
117 so we feel like advancing a scheduling point.
118
119 Computing available expressions
120 ===============================
121
122 The computation (compute_av_set) is a bottom-up traversal. At each insn,
123 we're moving the union of its successors' sets through it via
124 moveup_expr_set. The dependent expressions are removed. Local
125 transformations (substitution, speculation) are applied to move more
126 exprs. Then the expr corresponding to the current insn is added.
127 The result is saved on each basic block header.
128
129 When traversing the CFG, we're moving down for no more than max_ws insns.
130 Also, we do not move down to ineligible successors (is_ineligible_successor),
131 which include moving along a back-edge, moving to already scheduled code,
132 and moving to another fence. The first two restrictions are lifted during
133 pipelining, which allows us to move insns along a back-edge. We always have
134 an acyclic region for scheduling because we forbid motion through fences.
135
136 Choosing the best expression
137 ============================
138
139 We sort the final availability set via sel_rank_for_schedule, then we remove
140 expressions which are not yet ready (tick_check_p) or which dest registers
141 cannot be used. For some of them, we choose another register via
142 find_best_reg. To do this, we run find_used_regs to calculate the set of
143 registers which cannot be used. The find_used_regs function performs
144 a traversal of code motion paths for an expr. We consider for renaming
145 only registers which are from the same regclass as the original one and
146 using which does not interfere with any live ranges. Finally, we convert
147 the resulting set to the ready list format and use max_issue and reorder*
148 hooks similarly to the Haifa scheduler.
149
150 Scheduling the best expression
151 ==============================
152
153 We run the move_op routine to perform the same type of code motion paths
154 traversal as in find_used_regs. (These are working via the same driver,
155 code_motion_path_driver.) When moving down the CFG, we look for original
156 instruction that gave birth to a chosen expression. We undo
157 the transformations performed on an expression via the history saved in it.
158 When found, we remove the instruction or leave a reg-reg copy/speculation
159 check if needed. On a way up, we insert bookkeeping copies at each join
160 point. If a copy is not needed, it will be removed later during this
161 traversal. We update the saved av sets and liveness sets on the way up, too.
162
163 Finalizing the schedule
164 =======================
165
166 When pipelining, we reschedule the blocks from which insns were pipelined
167 to get a tighter schedule. On Itanium, we also perform bundling via
168 the same routine from ia64.c.
169
170 Dependence analysis changes
171 ===========================
172
173 We augmented the sched-deps.c with hooks that get called when a particular
174 dependence is found in a particular part of an insn. Using these hooks, we
175 can do several actions such as: determine whether an insn can be moved through
176 another (has_dependence_p, moveup_expr); find out whether an insn can be
177 scheduled on the current cycle (tick_check_p); find out registers that
178 are set/used/clobbered by an insn and find out all the strange stuff that
179 restrict its movement, like SCHED_GROUP_P or CANT_MOVE (done in
180 init_global_and_expr_for_insn).
181
182 Initialization changes
183 ======================
184
185 There are parts of haifa-sched.c, sched-deps.c, and sched-rgn.c that are
186 reused in all of the schedulers. We have split up the initialization of data
187 of such parts into different functions prefixed with scheduler type and
188 postfixed with the type of data initialized: {,sel_,haifa_}sched_{init,finish},
189 sched_rgn_init/finish, sched_deps_init/finish, sched_init_{luids/bbs}, etc.
190 The same splitting is done with current_sched_info structure:
191 dependence-related parts are in sched_deps_info, common part is in
192 common_sched_info, and haifa/sel/etc part is in current_sched_info.
193
194 Target contexts
195 ===============
196
197 As we now have multiple-point scheduling, this would not work with backends
198 which save some of the scheduler state to use it in the target hooks.
199 For this purpose, we introduce a concept of target contexts, which
200 encapsulate such information. The backend should implement simple routines
201 of allocating/freeing/setting such a context. The scheduler calls these
202 as target hooks and handles the target context as an opaque pointer (similar
203 to the DFA state type, state_t).
204
205 Various speedups
206 ================
207
208 As the correct data dependence graph is not supported during scheduling (which
209 is to be changed in mid-term), we cache as much of the dependence analysis
210 results as possible to avoid reanalyzing. This includes: bitmap caches on
211 each insn in stream of the region saying yes/no for a query with a pair of
212 UIDs; hashtables with the previously done transformations on each insn in
213 stream; a vector keeping a history of transformations on each expr.
214
215 Also, we try to minimize the dependence context used on each fence to check
216 whether the given expression is ready for scheduling by removing from it
217 insns that are definitely completed the execution. The results of
218 tick_check_p checks are also cached in a vector on each fence.
219
220 We keep a valid liveness set on each insn in a region to avoid the high
221 cost of recomputation on large basic blocks.
222
223 Finally, we try to minimize the number of needed updates to the availability
224 sets. The updates happen in two cases: when fill_insns terminates,
225 we advance all fences and increase the stage number to show that the region
226 has changed and the sets are to be recomputed; and when the next iteration
227 of a loop in fill_insns happens (but this one reuses the saved av sets
228 on bb headers.) Thus, we try to break the fill_insns loop only when
229 "significant" number of insns from the current scheduling window was
230 scheduled. This should be made a target param.
231
232
233 TODO: correctly support the data dependence graph at all stages and get rid
234 of all caches. This should speed up the scheduler.
235 TODO: implement moving cond jumps with bookkeeping copies on both targets.
236 TODO: tune the scheduler before RA so it does not create too much pseudos.
237
238
239 References:
240 S.-M. Moon and K. Ebcioglu. Parallelizing nonnumerical code with
241 selective scheduling and software pipelining.
242 ACM TOPLAS, Vol 19, No. 6, pages 853--898, Nov. 1997.
243
244 Andrey Belevantsev, Maxim Kuvyrkov, Vladimir Makarov, Dmitry Melnik,
245 and Dmitry Zhurikhin. An interblock VLIW-targeted instruction scheduler
246 for GCC. In Proceedings of GCC Developers' Summit 2006.
247
248 Arutyun Avetisyan, Andrey Belevantsev, and Dmitry Melnik. GCC Instruction
249 Scheduler and Software Pipeliner on the Itanium Platform. EPIC-7 Workshop.
250 http://rogue.colorado.edu/EPIC7/.
251
252 */
253
254 /* True when pipelining is enabled. */
255 bool pipelining_p;
256
257 /* True if bookkeeping is enabled. */
258 bool bookkeeping_p;
259
260 /* Maximum number of insns that are eligible for renaming. */
261 int max_insns_to_rename;
262 \f
263
264 /* Definitions of local types and macros. */
265
266 /* Represents possible outcomes of moving an expression through an insn. */
267 enum MOVEUP_EXPR_CODE
268 {
269 /* The expression is not changed. */
270 MOVEUP_EXPR_SAME,
271
272 /* Not changed, but requires a new destination register. */
273 MOVEUP_EXPR_AS_RHS,
274
275 /* Cannot be moved. */
276 MOVEUP_EXPR_NULL,
277
278 /* Changed (substituted or speculated). */
279 MOVEUP_EXPR_CHANGED
280 };
281
282 /* The container to be passed into rtx search & replace functions. */
283 struct rtx_search_arg
284 {
285 /* What we are searching for. */
286 rtx x;
287
288 /* The occurrence counter. */
289 int n;
290 };
291
292 typedef struct rtx_search_arg *rtx_search_arg_p;
293
294 /* This struct contains precomputed hard reg sets that are needed when
295 computing registers available for renaming. */
296 struct hard_regs_data
297 {
298 /* For every mode, this stores registers available for use with
299 that mode. */
300 HARD_REG_SET regs_for_mode[NUM_MACHINE_MODES];
301
302 /* True when regs_for_mode[mode] is initialized. */
303 bool regs_for_mode_ok[NUM_MACHINE_MODES];
304
305 /* For every register, it has regs that are ok to rename into it.
306 The register in question is always set. If not, this means
307 that the whole set is not computed yet. */
308 HARD_REG_SET regs_for_rename[FIRST_PSEUDO_REGISTER];
309
310 /* For every mode, this stores registers not available due to
311 call clobbering. */
312 HARD_REG_SET regs_for_call_clobbered[NUM_MACHINE_MODES];
313
314 /* All registers that are used or call used. */
315 HARD_REG_SET regs_ever_used;
316
317 #ifdef STACK_REGS
318 /* Stack registers. */
319 HARD_REG_SET stack_regs;
320 #endif
321 };
322
323 /* Holds the results of computation of available for renaming and
324 unavailable hard registers. */
325 struct reg_rename
326 {
327 /* These are unavailable due to calls crossing, globalness, etc. */
328 HARD_REG_SET unavailable_hard_regs;
329
330 /* These are *available* for renaming. */
331 HARD_REG_SET available_for_renaming;
332
333 /* Whether this code motion path crosses a call. */
334 bool crosses_call;
335 };
336
337 /* A global structure that contains the needed information about harg
338 regs. */
339 static struct hard_regs_data sel_hrd;
340 \f
341
342 /* This structure holds local data used in code_motion_path_driver hooks on
343 the same or adjacent levels of recursion. Here we keep those parameters
344 that are not used in code_motion_path_driver routine itself, but only in
345 its hooks. Moreover, all parameters that can be modified in hooks are
346 in this structure, so all other parameters passed explicitly to hooks are
347 read-only. */
348 struct cmpd_local_params
349 {
350 /* Local params used in move_op_* functions. */
351
352 /* Edges for bookkeeping generation. */
353 edge e1, e2;
354
355 /* C_EXPR merged from all successors and locally allocated temporary C_EXPR. */
356 expr_t c_expr_merged, c_expr_local;
357
358 /* Local params used in fur_* functions. */
359 /* Copy of the ORIGINAL_INSN list, stores the original insns already
360 found before entering the current level of code_motion_path_driver. */
361 def_list_t old_original_insns;
362
363 /* Local params used in move_op_* functions. */
364 /* True when we have removed last insn in the block which was
365 also a boundary. Do not update anything or create bookkeeping copies. */
366 BOOL_BITFIELD removed_last_insn : 1;
367 };
368
369 /* Stores the static parameters for move_op_* calls. */
370 struct moveop_static_params
371 {
372 /* Destination register. */
373 rtx dest;
374
375 /* Current C_EXPR. */
376 expr_t c_expr;
377
378 /* An UID of expr_vliw which is to be moved up. If we find other exprs,
379 they are to be removed. */
380 int uid;
381
382 #ifdef ENABLE_CHECKING
383 /* This is initialized to the insn on which the driver stopped its traversal. */
384 insn_t failed_insn;
385 #endif
386
387 /* True if we scheduled an insn with different register. */
388 bool was_renamed;
389 };
390
391 /* Stores the static parameters for fur_* calls. */
392 struct fur_static_params
393 {
394 /* Set of registers unavailable on the code motion path. */
395 regset used_regs;
396
397 /* Pointer to the list of original insns definitions. */
398 def_list_t *original_insns;
399
400 /* True if a code motion path contains a CALL insn. */
401 bool crosses_call;
402 };
403
404 typedef struct fur_static_params *fur_static_params_p;
405 typedef struct cmpd_local_params *cmpd_local_params_p;
406 typedef struct moveop_static_params *moveop_static_params_p;
407
408 /* Set of hooks and parameters that determine behaviour specific to
409 move_op or find_used_regs functions. */
410 struct code_motion_path_driver_info_def
411 {
412 /* Called on enter to the basic block. */
413 int (*on_enter) (insn_t, cmpd_local_params_p, void *, bool);
414
415 /* Called when original expr is found. */
416 void (*orig_expr_found) (insn_t, expr_t, cmpd_local_params_p, void *);
417
418 /* Called while descending current basic block if current insn is not
419 the original EXPR we're searching for. */
420 bool (*orig_expr_not_found) (insn_t, av_set_t, void *);
421
422 /* Function to merge C_EXPRes from different successors. */
423 void (*merge_succs) (insn_t, insn_t, int, cmpd_local_params_p, void *);
424
425 /* Function to finalize merge from different successors and possibly
426 deallocate temporary data structures used for merging. */
427 void (*after_merge_succs) (cmpd_local_params_p, void *);
428
429 /* Called on the backward stage of recursion to do moveup_expr.
430 Used only with move_op_*. */
431 void (*ascend) (insn_t, void *);
432
433 /* Called on the ascending pass, before returning from the current basic
434 block or from the whole traversal. */
435 void (*at_first_insn) (insn_t, cmpd_local_params_p, void *);
436
437 /* When processing successors in move_op we need only descend into
438 SUCCS_NORMAL successors, while in find_used_regs we need SUCCS_ALL. */
439 int succ_flags;
440
441 /* The routine name to print in dumps ("move_op" of "find_used_regs"). */
442 const char *routine_name;
443 };
444
445 /* Global pointer to current hooks, either points to MOVE_OP_HOOKS or
446 FUR_HOOKS. */
447 struct code_motion_path_driver_info_def *code_motion_path_driver_info;
448
449 /* Set of hooks for performing move_op and find_used_regs routines with
450 code_motion_path_driver. */
451 extern struct code_motion_path_driver_info_def move_op_hooks, fur_hooks;
452
453 /* True if/when we want to emulate Haifa scheduler in the common code.
454 This is used in sched_rgn_local_init and in various places in
455 sched-deps.c. */
456 int sched_emulate_haifa_p;
457
458 /* GLOBAL_LEVEL is used to discard information stored in basic block headers
459 av_sets. Av_set of bb header is valid if its (bb header's) level is equal
460 to GLOBAL_LEVEL. And invalid if lesser. This is primarily used to advance
461 scheduling window. */
462 int global_level;
463
464 /* Current fences. */
465 flist_t fences;
466
467 /* True when separable insns should be scheduled as RHSes. */
468 static bool enable_schedule_as_rhs_p;
469
470 /* Used in verify_target_availability to assert that target reg is reported
471 unavailabile by both TARGET_UNAVAILABLE and find_used_regs only if
472 we haven't scheduled anything on the previous fence.
473 if scheduled_something_on_previous_fence is true, TARGET_UNAVAILABLE can
474 have more conservative value than the one returned by the
475 find_used_regs, thus we shouldn't assert that these values are equal. */
476 static bool scheduled_something_on_previous_fence;
477
478 /* All newly emitted insns will have their uids greater than this value. */
479 static int first_emitted_uid;
480
481 /* Set of basic blocks that are forced to start new ebbs. This is a subset
482 of all the ebb heads. */
483 static bitmap_head _forced_ebb_heads;
484 bitmap_head *forced_ebb_heads = &_forced_ebb_heads;
485
486 /* Blocks that need to be rescheduled after pipelining. */
487 bitmap blocks_to_reschedule = NULL;
488
489 /* True when the first lv set should be ignored when updating liveness. */
490 static bool ignore_first = false;
491
492 /* Number of insns max_issue has initialized data structures for. */
493 static int max_issue_size = 0;
494
495 /* Whether we can issue more instructions. */
496 static int can_issue_more;
497
498 /* Maximum software lookahead window size, reduced when rescheduling after
499 pipelining. */
500 static int max_ws;
501
502 /* Number of insns scheduled in current region. */
503 static int num_insns_scheduled;
504
505 /* A vector of expressions is used to be able to sort them. */
506 static vec<expr_t> vec_av_set = vNULL;
507
508 /* A vector of vinsns is used to hold temporary lists of vinsns. */
509 typedef vec<vinsn_t> vinsn_vec_t;
510
511 /* This vector has the exprs which may still present in av_sets, but actually
512 can't be moved up due to bookkeeping created during code motion to another
513 fence. See comment near the call to update_and_record_unavailable_insns
514 for the detailed explanations. */
515 static vinsn_vec_t vec_bookkeeping_blocked_vinsns = vinsn_vec_t ();
516
517 /* This vector has vinsns which are scheduled with renaming on the first fence
518 and then seen on the second. For expressions with such vinsns, target
519 availability information may be wrong. */
520 static vinsn_vec_t vec_target_unavailable_vinsns = vinsn_vec_t ();
521
522 /* Vector to store temporary nops inserted in move_op to prevent removal
523 of empty bbs. */
524 static vec<insn_t> vec_temp_moveop_nops = vNULL;
525
526 /* These bitmaps record original instructions scheduled on the current
527 iteration and bookkeeping copies created by them. */
528 static bitmap current_originators = NULL;
529 static bitmap current_copies = NULL;
530
531 /* This bitmap marks the blocks visited by code_motion_path_driver so we don't
532 visit them afterwards. */
533 static bitmap code_motion_visited_blocks = NULL;
534
535 /* Variables to accumulate different statistics. */
536
537 /* The number of bookkeeping copies created. */
538 static int stat_bookkeeping_copies;
539
540 /* The number of insns that required bookkeeiping for their scheduling. */
541 static int stat_insns_needed_bookkeeping;
542
543 /* The number of insns that got renamed. */
544 static int stat_renamed_scheduled;
545
546 /* The number of substitutions made during scheduling. */
547 static int stat_substitutions_total;
548 \f
549
550 /* Forward declarations of static functions. */
551 static bool rtx_ok_for_substitution_p (rtx, rtx);
552 static int sel_rank_for_schedule (const void *, const void *);
553 static av_set_t find_sequential_best_exprs (bnd_t, expr_t, bool);
554 static basic_block find_block_for_bookkeeping (edge e1, edge e2, bool lax);
555
556 static rtx get_dest_from_orig_ops (av_set_t);
557 static basic_block generate_bookkeeping_insn (expr_t, edge, edge);
558 static bool find_used_regs (insn_t, av_set_t, regset, struct reg_rename *,
559 def_list_t *);
560 static bool move_op (insn_t, av_set_t, expr_t, rtx, expr_t, bool*);
561 static int code_motion_path_driver (insn_t, av_set_t, ilist_t,
562 cmpd_local_params_p, void *);
563 static void sel_sched_region_1 (void);
564 static void sel_sched_region_2 (int);
565 static av_set_t compute_av_set_inside_bb (insn_t, ilist_t, int, bool);
566
567 static void debug_state (state_t);
568 \f
569
570 /* Functions that work with fences. */
571
572 /* Advance one cycle on FENCE. */
573 static void
574 advance_one_cycle (fence_t fence)
575 {
576 unsigned i;
577 int cycle;
578 rtx_insn *insn;
579
580 advance_state (FENCE_STATE (fence));
581 cycle = ++FENCE_CYCLE (fence);
582 FENCE_ISSUED_INSNS (fence) = 0;
583 FENCE_STARTS_CYCLE_P (fence) = 1;
584 can_issue_more = issue_rate;
585 FENCE_ISSUE_MORE (fence) = can_issue_more;
586
587 for (i = 0; vec_safe_iterate (FENCE_EXECUTING_INSNS (fence), i, &insn); )
588 {
589 if (INSN_READY_CYCLE (insn) < cycle)
590 {
591 remove_from_deps (FENCE_DC (fence), insn);
592 FENCE_EXECUTING_INSNS (fence)->unordered_remove (i);
593 continue;
594 }
595 i++;
596 }
597 if (sched_verbose >= 2)
598 {
599 sel_print ("Finished a cycle. Current cycle = %d\n", FENCE_CYCLE (fence));
600 debug_state (FENCE_STATE (fence));
601 }
602 }
603
604 /* Returns true when SUCC in a fallthru bb of INSN, possibly
605 skipping empty basic blocks. */
606 static bool
607 in_fallthru_bb_p (rtx_insn *insn, rtx succ)
608 {
609 basic_block bb = BLOCK_FOR_INSN (insn);
610 edge e;
611
612 if (bb == BLOCK_FOR_INSN (succ))
613 return true;
614
615 e = find_fallthru_edge_from (bb);
616 if (e)
617 bb = e->dest;
618 else
619 return false;
620
621 while (sel_bb_empty_p (bb))
622 bb = bb->next_bb;
623
624 return bb == BLOCK_FOR_INSN (succ);
625 }
626
627 /* Construct successor fences from OLD_FENCEs and put them in NEW_FENCES.
628 When a successor will continue a ebb, transfer all parameters of a fence
629 to the new fence. ORIG_MAX_SEQNO is the maximal seqno before this round
630 of scheduling helping to distinguish between the old and the new code. */
631 static void
632 extract_new_fences_from (flist_t old_fences, flist_tail_t new_fences,
633 int orig_max_seqno)
634 {
635 bool was_here_p = false;
636 insn_t insn = NULL;
637 insn_t succ;
638 succ_iterator si;
639 ilist_iterator ii;
640 fence_t fence = FLIST_FENCE (old_fences);
641 basic_block bb;
642
643 /* Get the only element of FENCE_BNDS (fence). */
644 FOR_EACH_INSN (insn, ii, FENCE_BNDS (fence))
645 {
646 gcc_assert (!was_here_p);
647 was_here_p = true;
648 }
649 gcc_assert (was_here_p && insn != NULL_RTX);
650
651 /* When in the "middle" of the block, just move this fence
652 to the new list. */
653 bb = BLOCK_FOR_INSN (insn);
654 if (! sel_bb_end_p (insn)
655 || (single_succ_p (bb)
656 && single_pred_p (single_succ (bb))))
657 {
658 insn_t succ;
659
660 succ = (sel_bb_end_p (insn)
661 ? sel_bb_head (single_succ (bb))
662 : NEXT_INSN (insn));
663
664 if (INSN_SEQNO (succ) > 0
665 && INSN_SEQNO (succ) <= orig_max_seqno
666 && INSN_SCHED_TIMES (succ) <= 0)
667 {
668 FENCE_INSN (fence) = succ;
669 move_fence_to_fences (old_fences, new_fences);
670
671 if (sched_verbose >= 1)
672 sel_print ("Fence %d continues as %d[%d] (state continue)\n",
673 INSN_UID (insn), INSN_UID (succ), BLOCK_NUM (succ));
674 }
675 return;
676 }
677
678 /* Otherwise copy fence's structures to (possibly) multiple successors. */
679 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
680 {
681 int seqno = INSN_SEQNO (succ);
682
683 if (0 < seqno && seqno <= orig_max_seqno
684 && (pipelining_p || INSN_SCHED_TIMES (succ) <= 0))
685 {
686 bool b = (in_same_ebb_p (insn, succ)
687 || in_fallthru_bb_p (insn, succ));
688
689 if (sched_verbose >= 1)
690 sel_print ("Fence %d continues as %d[%d] (state %s)\n",
691 INSN_UID (insn), INSN_UID (succ),
692 BLOCK_NUM (succ), b ? "continue" : "reset");
693
694 if (b)
695 add_dirty_fence_to_fences (new_fences, succ, fence);
696 else
697 {
698 /* Mark block of the SUCC as head of the new ebb. */
699 bitmap_set_bit (forced_ebb_heads, BLOCK_NUM (succ));
700 add_clean_fence_to_fences (new_fences, succ, fence);
701 }
702 }
703 }
704 }
705 \f
706
707 /* Functions to support substitution. */
708
709 /* Returns whether INSN with dependence status DS is eligible for
710 substitution, i.e. it's a copy operation x := y, and RHS that is
711 moved up through this insn should be substituted. */
712 static bool
713 can_substitute_through_p (insn_t insn, ds_t ds)
714 {
715 /* We can substitute only true dependencies. */
716 if ((ds & DEP_OUTPUT)
717 || (ds & DEP_ANTI)
718 || ! INSN_RHS (insn)
719 || ! INSN_LHS (insn))
720 return false;
721
722 /* Now we just need to make sure the INSN_RHS consists of only one
723 simple REG rtx. */
724 if (REG_P (INSN_LHS (insn))
725 && REG_P (INSN_RHS (insn)))
726 return true;
727 return false;
728 }
729
730 /* Substitute all occurrences of INSN's destination in EXPR' vinsn with INSN's
731 source (if INSN is eligible for substitution). Returns TRUE if
732 substitution was actually performed, FALSE otherwise. Substitution might
733 be not performed because it's either EXPR' vinsn doesn't contain INSN's
734 destination or the resulting insn is invalid for the target machine.
735 When UNDO is true, perform unsubstitution instead (the difference is in
736 the part of rtx on which validate_replace_rtx is called). */
737 static bool
738 substitute_reg_in_expr (expr_t expr, insn_t insn, bool undo)
739 {
740 rtx *where;
741 bool new_insn_valid;
742 vinsn_t *vi = &EXPR_VINSN (expr);
743 bool has_rhs = VINSN_RHS (*vi) != NULL;
744 rtx old, new_rtx;
745
746 /* Do not try to replace in SET_DEST. Although we'll choose new
747 register for the RHS, we don't want to change RHS' original reg.
748 If the insn is not SET, we may still be able to substitute something
749 in it, and if we're here (don't have deps), it doesn't write INSN's
750 dest. */
751 where = (has_rhs
752 ? &VINSN_RHS (*vi)
753 : &PATTERN (VINSN_INSN_RTX (*vi)));
754 old = undo ? INSN_RHS (insn) : INSN_LHS (insn);
755
756 /* Substitute if INSN has a form of x:=y and LHS(INSN) occurs in *VI. */
757 if (rtx_ok_for_substitution_p (old, *where))
758 {
759 rtx_insn *new_insn;
760 rtx *where_replace;
761
762 /* We should copy these rtxes before substitution. */
763 new_rtx = copy_rtx (undo ? INSN_LHS (insn) : INSN_RHS (insn));
764 new_insn = create_copy_of_insn_rtx (VINSN_INSN_RTX (*vi));
765
766 /* Where we'll replace.
767 WHERE_REPLACE should point inside NEW_INSN, so INSN_RHS couldn't be
768 used instead of SET_SRC. */
769 where_replace = (has_rhs
770 ? &SET_SRC (PATTERN (new_insn))
771 : &PATTERN (new_insn));
772
773 new_insn_valid
774 = validate_replace_rtx_part_nosimplify (old, new_rtx, where_replace,
775 new_insn);
776
777 /* ??? Actually, constrain_operands result depends upon choice of
778 destination register. E.g. if we allow single register to be an rhs,
779 and if we try to move dx=ax(as rhs) through ax=dx, we'll result
780 in invalid insn dx=dx, so we'll loose this rhs here.
781 Just can't come up with significant testcase for this, so just
782 leaving it for now. */
783 if (new_insn_valid)
784 {
785 change_vinsn_in_expr (expr,
786 create_vinsn_from_insn_rtx (new_insn, false));
787
788 /* Do not allow clobbering the address register of speculative
789 insns. */
790 if ((EXPR_SPEC_DONE_DS (expr) & SPECULATIVE)
791 && register_unavailable_p (VINSN_REG_USES (EXPR_VINSN (expr)),
792 expr_dest_reg (expr)))
793 EXPR_TARGET_AVAILABLE (expr) = false;
794
795 return true;
796 }
797 else
798 return false;
799 }
800 else
801 return false;
802 }
803
804 /* Return the number of places WHAT appears within WHERE.
805 Bail out when we found a reference occupying several hard registers. */
806 static int
807 count_occurrences_equiv (const_rtx what, const_rtx where)
808 {
809 int count = 0;
810 subrtx_iterator::array_type array;
811 FOR_EACH_SUBRTX (iter, array, where, NONCONST)
812 {
813 const_rtx x = *iter;
814 if (REG_P (x) && REGNO (x) == REGNO (what))
815 {
816 /* Bail out if mode is different or more than one register is
817 used. */
818 if (GET_MODE (x) != GET_MODE (what) || REG_NREGS (x) > 1)
819 return 0;
820 count += 1;
821 }
822 else if (GET_CODE (x) == SUBREG
823 && (!REG_P (SUBREG_REG (x))
824 || REGNO (SUBREG_REG (x)) == REGNO (what)))
825 /* ??? Do not support substituting regs inside subregs. In that case,
826 simplify_subreg will be called by validate_replace_rtx, and
827 unsubstitution will fail later. */
828 return 0;
829 }
830 return count;
831 }
832
833 /* Returns TRUE if WHAT is found in WHERE rtx tree. */
834 static bool
835 rtx_ok_for_substitution_p (rtx what, rtx where)
836 {
837 return (count_occurrences_equiv (what, where) > 0);
838 }
839 \f
840
841 /* Functions to support register renaming. */
842
843 /* Substitute VI's set source with REGNO. Returns newly created pattern
844 that has REGNO as its source. */
845 static rtx_insn *
846 create_insn_rtx_with_rhs (vinsn_t vi, rtx rhs_rtx)
847 {
848 rtx lhs_rtx;
849 rtx pattern;
850 rtx_insn *insn_rtx;
851
852 lhs_rtx = copy_rtx (VINSN_LHS (vi));
853
854 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
855 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
856
857 return insn_rtx;
858 }
859
860 /* Returns whether INSN's src can be replaced with register number
861 NEW_SRC_REG. E.g. the following insn is valid for i386:
862
863 (insn:HI 2205 6585 2207 727 ../../gcc/libiberty/regex.c:3337
864 (set (mem/s:QI (plus:SI (plus:SI (reg/f:SI 7 sp)
865 (reg:SI 0 ax [orig:770 c1 ] [770]))
866 (const_int 288 [0x120])) [0 str S1 A8])
867 (const_int 0 [0x0])) 43 {*movqi_1} (nil)
868 (nil))
869
870 But if we change (const_int 0 [0x0]) to (reg:QI 4 si), it will be invalid
871 because of operand constraints:
872
873 (define_insn "*movqi_1"
874 [(set (match_operand:QI 0 "nonimmediate_operand" "=q,q ,q ,r,r ,?r,m")
875 (match_operand:QI 1 "general_operand" " q,qn,qm,q,rn,qm,qn")
876 )]
877
878 So do constrain_operands here, before choosing NEW_SRC_REG as best
879 reg for rhs. */
880
881 static bool
882 replace_src_with_reg_ok_p (insn_t insn, rtx new_src_reg)
883 {
884 vinsn_t vi = INSN_VINSN (insn);
885 machine_mode mode;
886 rtx dst_loc;
887 bool res;
888
889 gcc_assert (VINSN_SEPARABLE_P (vi));
890
891 get_dest_and_mode (insn, &dst_loc, &mode);
892 gcc_assert (mode == GET_MODE (new_src_reg));
893
894 if (REG_P (dst_loc) && REGNO (new_src_reg) == REGNO (dst_loc))
895 return true;
896
897 /* See whether SET_SRC can be replaced with this register. */
898 validate_change (insn, &SET_SRC (PATTERN (insn)), new_src_reg, 1);
899 res = verify_changes (0);
900 cancel_changes (0);
901
902 return res;
903 }
904
905 /* Returns whether INSN still be valid after replacing it's DEST with
906 register NEW_REG. */
907 static bool
908 replace_dest_with_reg_ok_p (insn_t insn, rtx new_reg)
909 {
910 vinsn_t vi = INSN_VINSN (insn);
911 bool res;
912
913 /* We should deal here only with separable insns. */
914 gcc_assert (VINSN_SEPARABLE_P (vi));
915 gcc_assert (GET_MODE (VINSN_LHS (vi)) == GET_MODE (new_reg));
916
917 /* See whether SET_DEST can be replaced with this register. */
918 validate_change (insn, &SET_DEST (PATTERN (insn)), new_reg, 1);
919 res = verify_changes (0);
920 cancel_changes (0);
921
922 return res;
923 }
924
925 /* Create a pattern with rhs of VI and lhs of LHS_RTX. */
926 static rtx_insn *
927 create_insn_rtx_with_lhs (vinsn_t vi, rtx lhs_rtx)
928 {
929 rtx rhs_rtx;
930 rtx pattern;
931 rtx_insn *insn_rtx;
932
933 rhs_rtx = copy_rtx (VINSN_RHS (vi));
934
935 pattern = gen_rtx_SET (lhs_rtx, rhs_rtx);
936 insn_rtx = create_insn_rtx_from_pattern (pattern, NULL_RTX);
937
938 return insn_rtx;
939 }
940
941 /* Substitute lhs in the given expression EXPR for the register with number
942 NEW_REGNO. SET_DEST may be arbitrary rtx, not only register. */
943 static void
944 replace_dest_with_reg_in_expr (expr_t expr, rtx new_reg)
945 {
946 rtx_insn *insn_rtx;
947 vinsn_t vinsn;
948
949 insn_rtx = create_insn_rtx_with_lhs (EXPR_VINSN (expr), new_reg);
950 vinsn = create_vinsn_from_insn_rtx (insn_rtx, false);
951
952 change_vinsn_in_expr (expr, vinsn);
953 EXPR_WAS_RENAMED (expr) = 1;
954 EXPR_TARGET_AVAILABLE (expr) = 1;
955 }
956
957 /* Returns whether VI writes either one of the USED_REGS registers or,
958 if a register is a hard one, one of the UNAVAILABLE_HARD_REGS registers. */
959 static bool
960 vinsn_writes_one_of_regs_p (vinsn_t vi, regset used_regs,
961 HARD_REG_SET unavailable_hard_regs)
962 {
963 unsigned regno;
964 reg_set_iterator rsi;
965
966 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_SETS (vi), 0, regno, rsi)
967 {
968 if (REGNO_REG_SET_P (used_regs, regno))
969 return true;
970 if (HARD_REGISTER_NUM_P (regno)
971 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
972 return true;
973 }
974
975 EXECUTE_IF_SET_IN_REG_SET (VINSN_REG_CLOBBERS (vi), 0, regno, rsi)
976 {
977 if (REGNO_REG_SET_P (used_regs, regno))
978 return true;
979 if (HARD_REGISTER_NUM_P (regno)
980 && TEST_HARD_REG_BIT (unavailable_hard_regs, regno))
981 return true;
982 }
983
984 return false;
985 }
986
987 /* Returns register class of the output register in INSN.
988 Returns NO_REGS for call insns because some targets have constraints on
989 destination register of a call insn.
990
991 Code adopted from regrename.c::build_def_use. */
992 static enum reg_class
993 get_reg_class (rtx_insn *insn)
994 {
995 int i, n_ops;
996
997 extract_constrain_insn (insn);
998 preprocess_constraints (insn);
999 n_ops = recog_data.n_operands;
1000
1001 const operand_alternative *op_alt = which_op_alt ();
1002 if (asm_noperands (PATTERN (insn)) > 0)
1003 {
1004 for (i = 0; i < n_ops; i++)
1005 if (recog_data.operand_type[i] == OP_OUT)
1006 {
1007 rtx *loc = recog_data.operand_loc[i];
1008 rtx op = *loc;
1009 enum reg_class cl = alternative_class (op_alt, i);
1010
1011 if (REG_P (op)
1012 && REGNO (op) == ORIGINAL_REGNO (op))
1013 continue;
1014
1015 return cl;
1016 }
1017 }
1018 else if (!CALL_P (insn))
1019 {
1020 for (i = 0; i < n_ops + recog_data.n_dups; i++)
1021 {
1022 int opn = i < n_ops ? i : recog_data.dup_num[i - n_ops];
1023 enum reg_class cl = alternative_class (op_alt, opn);
1024
1025 if (recog_data.operand_type[opn] == OP_OUT ||
1026 recog_data.operand_type[opn] == OP_INOUT)
1027 return cl;
1028 }
1029 }
1030
1031 /* Insns like
1032 (insn (set (reg:CCZ 17 flags) (compare:CCZ ...)))
1033 may result in returning NO_REGS, cause flags is written implicitly through
1034 CMP insn, which has no OP_OUT | OP_INOUT operands. */
1035 return NO_REGS;
1036 }
1037
1038 /* Calculate HARD_REGNO_RENAME_OK data for REGNO. */
1039 static void
1040 init_hard_regno_rename (int regno)
1041 {
1042 int cur_reg;
1043
1044 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], regno);
1045
1046 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1047 {
1048 /* We are not interested in renaming in other regs. */
1049 if (!TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg))
1050 continue;
1051
1052 if (HARD_REGNO_RENAME_OK (regno, cur_reg))
1053 SET_HARD_REG_BIT (sel_hrd.regs_for_rename[regno], cur_reg);
1054 }
1055 }
1056
1057 /* A wrapper around HARD_REGNO_RENAME_OK that will look into the hard regs
1058 data first. */
1059 static inline bool
1060 sel_hard_regno_rename_ok (int from ATTRIBUTE_UNUSED, int to ATTRIBUTE_UNUSED)
1061 {
1062 /* Check whether this is all calculated. */
1063 if (TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], from))
1064 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1065
1066 init_hard_regno_rename (from);
1067
1068 return TEST_HARD_REG_BIT (sel_hrd.regs_for_rename[from], to);
1069 }
1070
1071 /* Calculate set of registers that are capable of holding MODE. */
1072 static void
1073 init_regs_for_mode (machine_mode mode)
1074 {
1075 int cur_reg;
1076
1077 CLEAR_HARD_REG_SET (sel_hrd.regs_for_mode[mode]);
1078 CLEAR_HARD_REG_SET (sel_hrd.regs_for_call_clobbered[mode]);
1079
1080 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1081 {
1082 int nregs;
1083 int i;
1084
1085 /* See whether it accepts all modes that occur in
1086 original insns. */
1087 if (! HARD_REGNO_MODE_OK (cur_reg, mode))
1088 continue;
1089
1090 nregs = hard_regno_nregs[cur_reg][mode];
1091
1092 for (i = nregs - 1; i >= 0; --i)
1093 if (fixed_regs[cur_reg + i]
1094 || global_regs[cur_reg + i]
1095 /* Can't use regs which aren't saved by
1096 the prologue. */
1097 || !TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg + i)
1098 /* Can't use regs with non-null REG_BASE_VALUE, because adjusting
1099 it affects aliasing globally and invalidates all AV sets. */
1100 || get_reg_base_value (cur_reg + i)
1101 #ifdef LEAF_REGISTERS
1102 /* We can't use a non-leaf register if we're in a
1103 leaf function. */
1104 || (crtl->is_leaf
1105 && !LEAF_REGISTERS[cur_reg + i])
1106 #endif
1107 )
1108 break;
1109
1110 if (i >= 0)
1111 continue;
1112
1113 if (HARD_REGNO_CALL_PART_CLOBBERED (cur_reg, mode))
1114 SET_HARD_REG_BIT (sel_hrd.regs_for_call_clobbered[mode],
1115 cur_reg);
1116
1117 /* If the CUR_REG passed all the checks above,
1118 then it's ok. */
1119 SET_HARD_REG_BIT (sel_hrd.regs_for_mode[mode], cur_reg);
1120 }
1121
1122 sel_hrd.regs_for_mode_ok[mode] = true;
1123 }
1124
1125 /* Init all register sets gathered in HRD. */
1126 static void
1127 init_hard_regs_data (void)
1128 {
1129 int cur_reg = 0;
1130 int cur_mode = 0;
1131
1132 CLEAR_HARD_REG_SET (sel_hrd.regs_ever_used);
1133 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1134 if (df_regs_ever_live_p (cur_reg) || call_used_regs[cur_reg])
1135 SET_HARD_REG_BIT (sel_hrd.regs_ever_used, cur_reg);
1136
1137 /* Initialize registers that are valid based on mode when this is
1138 really needed. */
1139 for (cur_mode = 0; cur_mode < NUM_MACHINE_MODES; cur_mode++)
1140 sel_hrd.regs_for_mode_ok[cur_mode] = false;
1141
1142 /* Mark that all HARD_REGNO_RENAME_OK is not calculated. */
1143 for (cur_reg = 0; cur_reg < FIRST_PSEUDO_REGISTER; cur_reg++)
1144 CLEAR_HARD_REG_SET (sel_hrd.regs_for_rename[cur_reg]);
1145
1146 #ifdef STACK_REGS
1147 CLEAR_HARD_REG_SET (sel_hrd.stack_regs);
1148
1149 for (cur_reg = FIRST_STACK_REG; cur_reg <= LAST_STACK_REG; cur_reg++)
1150 SET_HARD_REG_BIT (sel_hrd.stack_regs, cur_reg);
1151 #endif
1152 }
1153
1154 /* Mark hardware regs in REG_RENAME_P that are not suitable
1155 for renaming rhs in INSN due to hardware restrictions (register class,
1156 modes compatibility etc). This doesn't affect original insn's dest reg,
1157 if it isn't in USED_REGS. DEF is a definition insn of rhs for which the
1158 destination register is sought. LHS (DEF->ORIG_INSN) may be REG or MEM.
1159 Registers that are in used_regs are always marked in
1160 unavailable_hard_regs as well. */
1161
1162 static void
1163 mark_unavailable_hard_regs (def_t def, struct reg_rename *reg_rename_p,
1164 regset used_regs ATTRIBUTE_UNUSED)
1165 {
1166 machine_mode mode;
1167 enum reg_class cl = NO_REGS;
1168 rtx orig_dest;
1169 unsigned cur_reg, regno;
1170 hard_reg_set_iterator hrsi;
1171
1172 gcc_assert (GET_CODE (PATTERN (def->orig_insn)) == SET);
1173 gcc_assert (reg_rename_p);
1174
1175 orig_dest = SET_DEST (PATTERN (def->orig_insn));
1176
1177 /* We have decided not to rename 'mem = something;' insns, as 'something'
1178 is usually a register. */
1179 if (!REG_P (orig_dest))
1180 return;
1181
1182 regno = REGNO (orig_dest);
1183
1184 /* If before reload, don't try to work with pseudos. */
1185 if (!reload_completed && !HARD_REGISTER_NUM_P (regno))
1186 return;
1187
1188 if (reload_completed)
1189 cl = get_reg_class (def->orig_insn);
1190
1191 /* Stop if the original register is one of the fixed_regs, global_regs or
1192 frame pointer, or we could not discover its class. */
1193 if (fixed_regs[regno]
1194 || global_regs[regno]
1195 || (!HARD_FRAME_POINTER_IS_FRAME_POINTER && frame_pointer_needed
1196 && regno == HARD_FRAME_POINTER_REGNUM)
1197 || (HARD_FRAME_POINTER_REGNUM && frame_pointer_needed
1198 && regno == FRAME_POINTER_REGNUM)
1199 || (reload_completed && cl == NO_REGS))
1200 {
1201 SET_HARD_REG_SET (reg_rename_p->unavailable_hard_regs);
1202
1203 /* Give a chance for original register, if it isn't in used_regs. */
1204 if (!def->crosses_call)
1205 CLEAR_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno);
1206
1207 return;
1208 }
1209
1210 /* If something allocated on stack in this function, mark frame pointer
1211 register unavailable, considering also modes.
1212 FIXME: it is enough to do this once per all original defs. */
1213 if (frame_pointer_needed)
1214 {
1215 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1216 Pmode, FRAME_POINTER_REGNUM);
1217
1218 if (!HARD_FRAME_POINTER_IS_FRAME_POINTER)
1219 add_to_hard_reg_set (&reg_rename_p->unavailable_hard_regs,
1220 Pmode, HARD_FRAME_POINTER_REGNUM);
1221 }
1222
1223 #ifdef STACK_REGS
1224 /* For the stack registers the presence of FIRST_STACK_REG in USED_REGS
1225 is equivalent to as if all stack regs were in this set.
1226 I.e. no stack register can be renamed, and even if it's an original
1227 register here we make sure it won't be lifted over it's previous def
1228 (it's previous def will appear as if it's a FIRST_STACK_REG def.
1229 The HARD_REGNO_RENAME_OK covers other cases in condition below. */
1230 if (IN_RANGE (REGNO (orig_dest), FIRST_STACK_REG, LAST_STACK_REG)
1231 && REGNO_REG_SET_P (used_regs, FIRST_STACK_REG))
1232 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1233 sel_hrd.stack_regs);
1234 #endif
1235
1236 /* If there's a call on this path, make regs from call_used_reg_set
1237 unavailable. */
1238 if (def->crosses_call)
1239 IOR_HARD_REG_SET (reg_rename_p->unavailable_hard_regs,
1240 call_used_reg_set);
1241
1242 /* Stop here before reload: we need FRAME_REGS, STACK_REGS, and crosses_call,
1243 but not register classes. */
1244 if (!reload_completed)
1245 return;
1246
1247 /* Leave regs as 'available' only from the current
1248 register class. */
1249 COPY_HARD_REG_SET (reg_rename_p->available_for_renaming,
1250 reg_class_contents[cl]);
1251
1252 mode = GET_MODE (orig_dest);
1253
1254 /* Leave only registers available for this mode. */
1255 if (!sel_hrd.regs_for_mode_ok[mode])
1256 init_regs_for_mode (mode);
1257 AND_HARD_REG_SET (reg_rename_p->available_for_renaming,
1258 sel_hrd.regs_for_mode[mode]);
1259
1260 /* Exclude registers that are partially call clobbered. */
1261 if (def->crosses_call
1262 && ! HARD_REGNO_CALL_PART_CLOBBERED (regno, mode))
1263 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1264 sel_hrd.regs_for_call_clobbered[mode]);
1265
1266 /* Leave only those that are ok to rename. */
1267 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1268 0, cur_reg, hrsi)
1269 {
1270 int nregs;
1271 int i;
1272
1273 nregs = hard_regno_nregs[cur_reg][mode];
1274 gcc_assert (nregs > 0);
1275
1276 for (i = nregs - 1; i >= 0; --i)
1277 if (! sel_hard_regno_rename_ok (regno + i, cur_reg + i))
1278 break;
1279
1280 if (i >= 0)
1281 CLEAR_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1282 cur_reg);
1283 }
1284
1285 AND_COMPL_HARD_REG_SET (reg_rename_p->available_for_renaming,
1286 reg_rename_p->unavailable_hard_regs);
1287
1288 /* Regno is always ok from the renaming part of view, but it really
1289 could be in *unavailable_hard_regs already, so set it here instead
1290 of there. */
1291 SET_HARD_REG_BIT (reg_rename_p->available_for_renaming, regno);
1292 }
1293
1294 /* reg_rename_tick[REG1] > reg_rename_tick[REG2] if REG1 was chosen as the
1295 best register more recently than REG2. */
1296 static int reg_rename_tick[FIRST_PSEUDO_REGISTER];
1297
1298 /* Indicates the number of times renaming happened before the current one. */
1299 static int reg_rename_this_tick;
1300
1301 /* Choose the register among free, that is suitable for storing
1302 the rhs value.
1303
1304 ORIGINAL_INSNS is the list of insns where the operation (rhs)
1305 originally appears. There could be multiple original operations
1306 for single rhs since we moving it up and merging along different
1307 paths.
1308
1309 Some code is adapted from regrename.c (regrename_optimize).
1310 If original register is available, function returns it.
1311 Otherwise it performs the checks, so the new register should
1312 comply with the following:
1313 - it should not violate any live ranges (such registers are in
1314 REG_RENAME_P->available_for_renaming set);
1315 - it should not be in the HARD_REGS_USED regset;
1316 - it should be in the class compatible with original uses;
1317 - it should not be clobbered through reference with different mode;
1318 - if we're in the leaf function, then the new register should
1319 not be in the LEAF_REGISTERS;
1320 - etc.
1321
1322 If several registers meet the conditions, the register with smallest
1323 tick is returned to achieve more even register allocation.
1324
1325 If original register seems to be ok, we set *IS_ORIG_REG_P_PTR to true.
1326
1327 If no register satisfies the above conditions, NULL_RTX is returned. */
1328 static rtx
1329 choose_best_reg_1 (HARD_REG_SET hard_regs_used,
1330 struct reg_rename *reg_rename_p,
1331 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1332 {
1333 int best_new_reg;
1334 unsigned cur_reg;
1335 machine_mode mode = VOIDmode;
1336 unsigned regno, i, n;
1337 hard_reg_set_iterator hrsi;
1338 def_list_iterator di;
1339 def_t def;
1340
1341 /* If original register is available, return it. */
1342 *is_orig_reg_p_ptr = true;
1343
1344 FOR_EACH_DEF (def, di, original_insns)
1345 {
1346 rtx orig_dest = SET_DEST (PATTERN (def->orig_insn));
1347
1348 gcc_assert (REG_P (orig_dest));
1349
1350 /* Check that all original operations have the same mode.
1351 This is done for the next loop; if we'd return from this
1352 loop, we'd check only part of them, but in this case
1353 it doesn't matter. */
1354 if (mode == VOIDmode)
1355 mode = GET_MODE (orig_dest);
1356 gcc_assert (mode == GET_MODE (orig_dest));
1357
1358 regno = REGNO (orig_dest);
1359 for (i = 0, n = hard_regno_nregs[regno][mode]; i < n; i++)
1360 if (TEST_HARD_REG_BIT (hard_regs_used, regno + i))
1361 break;
1362
1363 /* All hard registers are available. */
1364 if (i == n)
1365 {
1366 gcc_assert (mode != VOIDmode);
1367
1368 /* Hard registers should not be shared. */
1369 return gen_rtx_REG (mode, regno);
1370 }
1371 }
1372
1373 *is_orig_reg_p_ptr = false;
1374 best_new_reg = -1;
1375
1376 /* Among all available regs choose the register that was
1377 allocated earliest. */
1378 EXECUTE_IF_SET_IN_HARD_REG_SET (reg_rename_p->available_for_renaming,
1379 0, cur_reg, hrsi)
1380 if (! TEST_HARD_REG_BIT (hard_regs_used, cur_reg))
1381 {
1382 /* Check that all hard regs for mode are available. */
1383 for (i = 1, n = hard_regno_nregs[cur_reg][mode]; i < n; i++)
1384 if (TEST_HARD_REG_BIT (hard_regs_used, cur_reg + i)
1385 || !TEST_HARD_REG_BIT (reg_rename_p->available_for_renaming,
1386 cur_reg + i))
1387 break;
1388
1389 if (i < n)
1390 continue;
1391
1392 /* All hard registers are available. */
1393 if (best_new_reg < 0
1394 || reg_rename_tick[cur_reg] < reg_rename_tick[best_new_reg])
1395 {
1396 best_new_reg = cur_reg;
1397
1398 /* Return immediately when we know there's no better reg. */
1399 if (! reg_rename_tick[best_new_reg])
1400 break;
1401 }
1402 }
1403
1404 if (best_new_reg >= 0)
1405 {
1406 /* Use the check from the above loop. */
1407 gcc_assert (mode != VOIDmode);
1408 return gen_rtx_REG (mode, best_new_reg);
1409 }
1410
1411 return NULL_RTX;
1412 }
1413
1414 /* A wrapper around choose_best_reg_1 () to verify that we make correct
1415 assumptions about available registers in the function. */
1416 static rtx
1417 choose_best_reg (HARD_REG_SET hard_regs_used, struct reg_rename *reg_rename_p,
1418 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1419 {
1420 rtx best_reg = choose_best_reg_1 (hard_regs_used, reg_rename_p,
1421 original_insns, is_orig_reg_p_ptr);
1422
1423 /* FIXME loop over hard_regno_nregs here. */
1424 gcc_assert (best_reg == NULL_RTX
1425 || TEST_HARD_REG_BIT (sel_hrd.regs_ever_used, REGNO (best_reg)));
1426
1427 return best_reg;
1428 }
1429
1430 /* Choose the pseudo register for storing rhs value. As this is supposed
1431 to work before reload, we return either the original register or make
1432 the new one. The parameters are the same that in choose_nest_reg_1
1433 functions, except that USED_REGS may contain pseudos.
1434 If we work with hard regs, check also REG_RENAME_P->UNAVAILABLE_HARD_REGS.
1435
1436 TODO: take into account register pressure while doing this. Up to this
1437 moment, this function would never return NULL for pseudos, but we should
1438 not rely on this. */
1439 static rtx
1440 choose_best_pseudo_reg (regset used_regs,
1441 struct reg_rename *reg_rename_p,
1442 def_list_t original_insns, bool *is_orig_reg_p_ptr)
1443 {
1444 def_list_iterator i;
1445 def_t def;
1446 machine_mode mode = VOIDmode;
1447 bool bad_hard_regs = false;
1448
1449 /* We should not use this after reload. */
1450 gcc_assert (!reload_completed);
1451
1452 /* If original register is available, return it. */
1453 *is_orig_reg_p_ptr = true;
1454
1455 FOR_EACH_DEF (def, i, original_insns)
1456 {
1457 rtx dest = SET_DEST (PATTERN (def->orig_insn));
1458 int orig_regno;
1459
1460 gcc_assert (REG_P (dest));
1461
1462 /* Check that all original operations have the same mode. */
1463 if (mode == VOIDmode)
1464 mode = GET_MODE (dest);
1465 else
1466 gcc_assert (mode == GET_MODE (dest));
1467 orig_regno = REGNO (dest);
1468
1469 if (!REGNO_REG_SET_P (used_regs, orig_regno))
1470 {
1471 if (orig_regno < FIRST_PSEUDO_REGISTER)
1472 {
1473 gcc_assert (df_regs_ever_live_p (orig_regno));
1474
1475 /* For hard registers, we have to check hardware imposed
1476 limitations (frame/stack registers, calls crossed). */
1477 if (!TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs,
1478 orig_regno))
1479 {
1480 /* Don't let register cross a call if it doesn't already
1481 cross one. This condition is written in accordance with
1482 that in sched-deps.c sched_analyze_reg(). */
1483 if (!reg_rename_p->crosses_call
1484 || REG_N_CALLS_CROSSED (orig_regno) > 0)
1485 return gen_rtx_REG (mode, orig_regno);
1486 }
1487
1488 bad_hard_regs = true;
1489 }
1490 else
1491 return dest;
1492 }
1493 }
1494
1495 *is_orig_reg_p_ptr = false;
1496
1497 /* We had some original hard registers that couldn't be used.
1498 Those were likely special. Don't try to create a pseudo. */
1499 if (bad_hard_regs)
1500 return NULL_RTX;
1501
1502 /* We haven't found a register from original operations. Get a new one.
1503 FIXME: control register pressure somehow. */
1504 {
1505 rtx new_reg = gen_reg_rtx (mode);
1506
1507 gcc_assert (mode != VOIDmode);
1508
1509 max_regno = max_reg_num ();
1510 maybe_extend_reg_info_p ();
1511 REG_N_CALLS_CROSSED (REGNO (new_reg)) = reg_rename_p->crosses_call ? 1 : 0;
1512
1513 return new_reg;
1514 }
1515 }
1516
1517 /* True when target of EXPR is available due to EXPR_TARGET_AVAILABLE,
1518 USED_REGS and REG_RENAME_P->UNAVAILABLE_HARD_REGS. */
1519 static void
1520 verify_target_availability (expr_t expr, regset used_regs,
1521 struct reg_rename *reg_rename_p)
1522 {
1523 unsigned n, i, regno;
1524 machine_mode mode;
1525 bool target_available, live_available, hard_available;
1526
1527 if (!REG_P (EXPR_LHS (expr)) || EXPR_TARGET_AVAILABLE (expr) < 0)
1528 return;
1529
1530 regno = expr_dest_regno (expr);
1531 mode = GET_MODE (EXPR_LHS (expr));
1532 target_available = EXPR_TARGET_AVAILABLE (expr) == 1;
1533 n = HARD_REGISTER_NUM_P (regno) ? hard_regno_nregs[regno][mode] : 1;
1534
1535 live_available = hard_available = true;
1536 for (i = 0; i < n; i++)
1537 {
1538 if (bitmap_bit_p (used_regs, regno + i))
1539 live_available = false;
1540 if (TEST_HARD_REG_BIT (reg_rename_p->unavailable_hard_regs, regno + i))
1541 hard_available = false;
1542 }
1543
1544 /* When target is not available, it may be due to hard register
1545 restrictions, e.g. crosses calls, so we check hard_available too. */
1546 if (target_available)
1547 gcc_assert (live_available);
1548 else
1549 /* Check only if we haven't scheduled something on the previous fence,
1550 cause due to MAX_SOFTWARE_LOOKAHEAD_WINDOW_SIZE issues
1551 and having more than one fence, we may end having targ_un in a block
1552 in which successors target register is actually available.
1553
1554 The last condition handles the case when a dependence from a call insn
1555 was created in sched-deps.c for insns with destination registers that
1556 never crossed a call before, but do cross one after our code motion.
1557
1558 FIXME: in the latter case, we just uselessly called find_used_regs,
1559 because we can't move this expression with any other register
1560 as well. */
1561 gcc_assert (scheduled_something_on_previous_fence || !live_available
1562 || !hard_available
1563 || (!reload_completed && reg_rename_p->crosses_call
1564 && REG_N_CALLS_CROSSED (regno) == 0));
1565 }
1566
1567 /* Collect unavailable registers due to liveness for EXPR from BNDS
1568 into USED_REGS. Save additional information about available
1569 registers and unavailable due to hardware restriction registers
1570 into REG_RENAME_P structure. Save original insns into ORIGINAL_INSNS
1571 list. */
1572 static void
1573 collect_unavailable_regs_from_bnds (expr_t expr, blist_t bnds, regset used_regs,
1574 struct reg_rename *reg_rename_p,
1575 def_list_t *original_insns)
1576 {
1577 for (; bnds; bnds = BLIST_NEXT (bnds))
1578 {
1579 bool res;
1580 av_set_t orig_ops = NULL;
1581 bnd_t bnd = BLIST_BND (bnds);
1582
1583 /* If the chosen best expr doesn't belong to current boundary,
1584 skip it. */
1585 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr)))
1586 continue;
1587
1588 /* Put in ORIG_OPS all exprs from this boundary that became
1589 RES on top. */
1590 orig_ops = find_sequential_best_exprs (bnd, expr, false);
1591
1592 /* Compute used regs and OR it into the USED_REGS. */
1593 res = find_used_regs (BND_TO (bnd), orig_ops, used_regs,
1594 reg_rename_p, original_insns);
1595
1596 /* FIXME: the assert is true until we'd have several boundaries. */
1597 gcc_assert (res);
1598 av_set_clear (&orig_ops);
1599 }
1600 }
1601
1602 /* Return TRUE if it is possible to replace LHSes of ORIG_INSNS with BEST_REG.
1603 If BEST_REG is valid, replace LHS of EXPR with it. */
1604 static bool
1605 try_replace_dest_reg (ilist_t orig_insns, rtx best_reg, expr_t expr)
1606 {
1607 /* Try whether we'll be able to generate the insn
1608 'dest := best_reg' at the place of the original operation. */
1609 for (; orig_insns; orig_insns = ILIST_NEXT (orig_insns))
1610 {
1611 insn_t orig_insn = DEF_LIST_DEF (orig_insns)->orig_insn;
1612
1613 gcc_assert (EXPR_SEPARABLE_P (INSN_EXPR (orig_insn)));
1614
1615 if (REGNO (best_reg) != REGNO (INSN_LHS (orig_insn))
1616 && (! replace_src_with_reg_ok_p (orig_insn, best_reg)
1617 || ! replace_dest_with_reg_ok_p (orig_insn, best_reg)))
1618 return false;
1619 }
1620
1621 /* Make sure that EXPR has the right destination
1622 register. */
1623 if (expr_dest_regno (expr) != REGNO (best_reg))
1624 replace_dest_with_reg_in_expr (expr, best_reg);
1625 else
1626 EXPR_TARGET_AVAILABLE (expr) = 1;
1627
1628 return true;
1629 }
1630
1631 /* Select and assign best register to EXPR searching from BNDS.
1632 Set *IS_ORIG_REG_P to TRUE if original register was selected.
1633 Return FALSE if no register can be chosen, which could happen when:
1634 * EXPR_SEPARABLE_P is true but we were unable to find suitable register;
1635 * EXPR_SEPARABLE_P is false but the insn sets/clobbers one of the registers
1636 that are used on the moving path. */
1637 static bool
1638 find_best_reg_for_expr (expr_t expr, blist_t bnds, bool *is_orig_reg_p)
1639 {
1640 static struct reg_rename reg_rename_data;
1641
1642 regset used_regs;
1643 def_list_t original_insns = NULL;
1644 bool reg_ok;
1645
1646 *is_orig_reg_p = false;
1647
1648 /* Don't bother to do anything if this insn doesn't set any registers. */
1649 if (bitmap_empty_p (VINSN_REG_SETS (EXPR_VINSN (expr)))
1650 && bitmap_empty_p (VINSN_REG_CLOBBERS (EXPR_VINSN (expr))))
1651 return true;
1652
1653 used_regs = get_clear_regset_from_pool ();
1654 CLEAR_HARD_REG_SET (reg_rename_data.unavailable_hard_regs);
1655
1656 collect_unavailable_regs_from_bnds (expr, bnds, used_regs, &reg_rename_data,
1657 &original_insns);
1658
1659 #ifdef ENABLE_CHECKING
1660 /* If after reload, make sure we're working with hard regs here. */
1661 if (reload_completed)
1662 {
1663 reg_set_iterator rsi;
1664 unsigned i;
1665
1666 EXECUTE_IF_SET_IN_REG_SET (used_regs, FIRST_PSEUDO_REGISTER, i, rsi)
1667 gcc_unreachable ();
1668 }
1669 #endif
1670
1671 if (EXPR_SEPARABLE_P (expr))
1672 {
1673 rtx best_reg = NULL_RTX;
1674 /* Check that we have computed availability of a target register
1675 correctly. */
1676 verify_target_availability (expr, used_regs, &reg_rename_data);
1677
1678 /* Turn everything in hard regs after reload. */
1679 if (reload_completed)
1680 {
1681 HARD_REG_SET hard_regs_used;
1682 REG_SET_TO_HARD_REG_SET (hard_regs_used, used_regs);
1683
1684 /* Join hard registers unavailable due to register class
1685 restrictions and live range intersection. */
1686 IOR_HARD_REG_SET (hard_regs_used,
1687 reg_rename_data.unavailable_hard_regs);
1688
1689 best_reg = choose_best_reg (hard_regs_used, &reg_rename_data,
1690 original_insns, is_orig_reg_p);
1691 }
1692 else
1693 best_reg = choose_best_pseudo_reg (used_regs, &reg_rename_data,
1694 original_insns, is_orig_reg_p);
1695
1696 if (!best_reg)
1697 reg_ok = false;
1698 else if (*is_orig_reg_p)
1699 {
1700 /* In case of unification BEST_REG may be different from EXPR's LHS
1701 when EXPR's LHS is unavailable, and there is another LHS among
1702 ORIGINAL_INSNS. */
1703 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1704 }
1705 else
1706 {
1707 /* Forbid renaming of low-cost insns. */
1708 if (sel_vinsn_cost (EXPR_VINSN (expr)) < 2)
1709 reg_ok = false;
1710 else
1711 reg_ok = try_replace_dest_reg (original_insns, best_reg, expr);
1712 }
1713 }
1714 else
1715 {
1716 /* If !EXPR_SCHEDULE_AS_RHS (EXPR), just make sure INSN doesn't set
1717 any of the HARD_REGS_USED set. */
1718 if (vinsn_writes_one_of_regs_p (EXPR_VINSN (expr), used_regs,
1719 reg_rename_data.unavailable_hard_regs))
1720 {
1721 reg_ok = false;
1722 gcc_assert (EXPR_TARGET_AVAILABLE (expr) <= 0);
1723 }
1724 else
1725 {
1726 reg_ok = true;
1727 gcc_assert (EXPR_TARGET_AVAILABLE (expr) != 0);
1728 }
1729 }
1730
1731 ilist_clear (&original_insns);
1732 return_regset_to_pool (used_regs);
1733
1734 return reg_ok;
1735 }
1736 \f
1737
1738 /* Return true if dependence described by DS can be overcomed. */
1739 static bool
1740 can_speculate_dep_p (ds_t ds)
1741 {
1742 if (spec_info == NULL)
1743 return false;
1744
1745 /* Leave only speculative data. */
1746 ds &= SPECULATIVE;
1747
1748 if (ds == 0)
1749 return false;
1750
1751 {
1752 /* FIXME: make sched-deps.c produce only those non-hard dependencies,
1753 that we can overcome. */
1754 ds_t spec_mask = spec_info->mask;
1755
1756 if ((ds & spec_mask) != ds)
1757 return false;
1758 }
1759
1760 if (ds_weak (ds) < spec_info->data_weakness_cutoff)
1761 return false;
1762
1763 return true;
1764 }
1765
1766 /* Get a speculation check instruction.
1767 C_EXPR is a speculative expression,
1768 CHECK_DS describes speculations that should be checked,
1769 ORIG_INSN is the original non-speculative insn in the stream. */
1770 static insn_t
1771 create_speculation_check (expr_t c_expr, ds_t check_ds, insn_t orig_insn)
1772 {
1773 rtx check_pattern;
1774 rtx_insn *insn_rtx;
1775 insn_t insn;
1776 basic_block recovery_block;
1777 rtx_insn *label;
1778
1779 /* Create a recovery block if target is going to emit branchy check, or if
1780 ORIG_INSN was speculative already. */
1781 if (targetm.sched.needs_block_p (check_ds)
1782 || EXPR_SPEC_DONE_DS (INSN_EXPR (orig_insn)) != 0)
1783 {
1784 recovery_block = sel_create_recovery_block (orig_insn);
1785 label = BB_HEAD (recovery_block);
1786 }
1787 else
1788 {
1789 recovery_block = NULL;
1790 label = NULL;
1791 }
1792
1793 /* Get pattern of the check. */
1794 check_pattern = targetm.sched.gen_spec_check (EXPR_INSN_RTX (c_expr), label,
1795 check_ds);
1796
1797 gcc_assert (check_pattern != NULL);
1798
1799 /* Emit check. */
1800 insn_rtx = create_insn_rtx_from_pattern (check_pattern, label);
1801
1802 insn = sel_gen_insn_from_rtx_after (insn_rtx, INSN_EXPR (orig_insn),
1803 INSN_SEQNO (orig_insn), orig_insn);
1804
1805 /* Make check to be non-speculative. */
1806 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
1807 INSN_SPEC_CHECKED_DS (insn) = check_ds;
1808
1809 /* Decrease priority of check by difference of load/check instruction
1810 latencies. */
1811 EXPR_PRIORITY (INSN_EXPR (insn)) -= (sel_vinsn_cost (INSN_VINSN (orig_insn))
1812 - sel_vinsn_cost (INSN_VINSN (insn)));
1813
1814 /* Emit copy of original insn (though with replaced target register,
1815 if needed) to the recovery block. */
1816 if (recovery_block != NULL)
1817 {
1818 rtx twin_rtx;
1819
1820 twin_rtx = copy_rtx (PATTERN (EXPR_INSN_RTX (c_expr)));
1821 twin_rtx = create_insn_rtx_from_pattern (twin_rtx, NULL_RTX);
1822 sel_gen_recovery_insn_from_rtx_after (twin_rtx,
1823 INSN_EXPR (orig_insn),
1824 INSN_SEQNO (insn),
1825 bb_note (recovery_block));
1826 }
1827
1828 /* If we've generated a data speculation check, make sure
1829 that all the bookkeeping instruction we'll create during
1830 this move_op () will allocate an ALAT entry so that the
1831 check won't fail.
1832 In case of control speculation we must convert C_EXPR to control
1833 speculative mode, because failing to do so will bring us an exception
1834 thrown by the non-control-speculative load. */
1835 check_ds = ds_get_max_dep_weak (check_ds);
1836 speculate_expr (c_expr, check_ds);
1837
1838 return insn;
1839 }
1840
1841 /* True when INSN is a "regN = regN" copy. */
1842 static bool
1843 identical_copy_p (rtx_insn *insn)
1844 {
1845 rtx lhs, rhs, pat;
1846
1847 pat = PATTERN (insn);
1848
1849 if (GET_CODE (pat) != SET)
1850 return false;
1851
1852 lhs = SET_DEST (pat);
1853 if (!REG_P (lhs))
1854 return false;
1855
1856 rhs = SET_SRC (pat);
1857 if (!REG_P (rhs))
1858 return false;
1859
1860 return REGNO (lhs) == REGNO (rhs);
1861 }
1862
1863 /* Undo all transformations on *AV_PTR that were done when
1864 moving through INSN. */
1865 static void
1866 undo_transformations (av_set_t *av_ptr, rtx_insn *insn)
1867 {
1868 av_set_iterator av_iter;
1869 expr_t expr;
1870 av_set_t new_set = NULL;
1871
1872 /* First, kill any EXPR that uses registers set by an insn. This is
1873 required for correctness. */
1874 FOR_EACH_EXPR_1 (expr, av_iter, av_ptr)
1875 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (expr))
1876 && bitmap_intersect_p (INSN_REG_SETS (insn),
1877 VINSN_REG_USES (EXPR_VINSN (expr)))
1878 /* When an insn looks like 'r1 = r1', we could substitute through
1879 it, but the above condition will still hold. This happened with
1880 gcc.c-torture/execute/961125-1.c. */
1881 && !identical_copy_p (insn))
1882 {
1883 if (sched_verbose >= 6)
1884 sel_print ("Expr %d removed due to use/set conflict\n",
1885 INSN_UID (EXPR_INSN_RTX (expr)));
1886 av_set_iter_remove (&av_iter);
1887 }
1888
1889 /* Undo transformations looking at the history vector. */
1890 FOR_EACH_EXPR (expr, av_iter, *av_ptr)
1891 {
1892 int index = find_in_history_vect (EXPR_HISTORY_OF_CHANGES (expr),
1893 insn, EXPR_VINSN (expr), true);
1894
1895 if (index >= 0)
1896 {
1897 expr_history_def *phist;
1898
1899 phist = &EXPR_HISTORY_OF_CHANGES (expr)[index];
1900
1901 switch (phist->type)
1902 {
1903 case TRANS_SPECULATION:
1904 {
1905 ds_t old_ds, new_ds;
1906
1907 /* Compute the difference between old and new speculative
1908 statuses: that's what we need to check.
1909 Earlier we used to assert that the status will really
1910 change. This no longer works because only the probability
1911 bits in the status may have changed during compute_av_set,
1912 and in the case of merging different probabilities of the
1913 same speculative status along different paths we do not
1914 record this in the history vector. */
1915 old_ds = phist->spec_ds;
1916 new_ds = EXPR_SPEC_DONE_DS (expr);
1917
1918 old_ds &= SPECULATIVE;
1919 new_ds &= SPECULATIVE;
1920 new_ds &= ~old_ds;
1921
1922 EXPR_SPEC_TO_CHECK_DS (expr) |= new_ds;
1923 break;
1924 }
1925 case TRANS_SUBSTITUTION:
1926 {
1927 expr_def _tmp_expr, *tmp_expr = &_tmp_expr;
1928 vinsn_t new_vi;
1929 bool add = true;
1930
1931 new_vi = phist->old_expr_vinsn;
1932
1933 gcc_assert (VINSN_SEPARABLE_P (new_vi)
1934 == EXPR_SEPARABLE_P (expr));
1935 copy_expr (tmp_expr, expr);
1936
1937 if (vinsn_equal_p (phist->new_expr_vinsn,
1938 EXPR_VINSN (tmp_expr)))
1939 change_vinsn_in_expr (tmp_expr, new_vi);
1940 else
1941 /* This happens when we're unsubstituting on a bookkeeping
1942 copy, which was in turn substituted. The history is wrong
1943 in this case. Do it the hard way. */
1944 add = substitute_reg_in_expr (tmp_expr, insn, true);
1945 if (add)
1946 av_set_add (&new_set, tmp_expr);
1947 clear_expr (tmp_expr);
1948 break;
1949 }
1950 default:
1951 gcc_unreachable ();
1952 }
1953 }
1954
1955 }
1956
1957 av_set_union_and_clear (av_ptr, &new_set, NULL);
1958 }
1959 \f
1960
1961 /* Moveup_* helpers for code motion and computing av sets. */
1962
1963 /* Propagates EXPR inside an insn group through THROUGH_INSN.
1964 The difference from the below function is that only substitution is
1965 performed. */
1966 static enum MOVEUP_EXPR_CODE
1967 moveup_expr_inside_insn_group (expr_t expr, insn_t through_insn)
1968 {
1969 vinsn_t vi = EXPR_VINSN (expr);
1970 ds_t *has_dep_p;
1971 ds_t full_ds;
1972
1973 /* Do this only inside insn group. */
1974 gcc_assert (INSN_SCHED_CYCLE (through_insn) > 0);
1975
1976 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
1977 if (full_ds == 0)
1978 return MOVEUP_EXPR_SAME;
1979
1980 /* Substitution is the possible choice in this case. */
1981 if (has_dep_p[DEPS_IN_RHS])
1982 {
1983 /* Can't substitute UNIQUE VINSNs. */
1984 gcc_assert (!VINSN_UNIQUE_P (vi));
1985
1986 if (can_substitute_through_p (through_insn,
1987 has_dep_p[DEPS_IN_RHS])
1988 && substitute_reg_in_expr (expr, through_insn, false))
1989 {
1990 EXPR_WAS_SUBSTITUTED (expr) = true;
1991 return MOVEUP_EXPR_CHANGED;
1992 }
1993
1994 /* Don't care about this, as even true dependencies may be allowed
1995 in an insn group. */
1996 return MOVEUP_EXPR_SAME;
1997 }
1998
1999 /* This can catch output dependencies in COND_EXECs. */
2000 if (has_dep_p[DEPS_IN_INSN])
2001 return MOVEUP_EXPR_NULL;
2002
2003 /* This is either an output or an anti dependence, which usually have
2004 a zero latency. Allow this here, if we'd be wrong, tick_check_p
2005 will fix this. */
2006 gcc_assert (has_dep_p[DEPS_IN_LHS]);
2007 return MOVEUP_EXPR_AS_RHS;
2008 }
2009
2010 /* True when a trapping EXPR cannot be moved through THROUGH_INSN. */
2011 #define CANT_MOVE_TRAPPING(expr, through_insn) \
2012 (VINSN_MAY_TRAP_P (EXPR_VINSN (expr)) \
2013 && !sel_insn_has_single_succ_p ((through_insn), SUCCS_ALL) \
2014 && !sel_insn_is_speculation_check (through_insn))
2015
2016 /* True when a conflict on a target register was found during moveup_expr. */
2017 static bool was_target_conflict = false;
2018
2019 /* Return true when moving a debug INSN across THROUGH_INSN will
2020 create a bookkeeping block. We don't want to create such blocks,
2021 for they would cause codegen differences between compilations with
2022 and without debug info. */
2023
2024 static bool
2025 moving_insn_creates_bookkeeping_block_p (insn_t insn,
2026 insn_t through_insn)
2027 {
2028 basic_block bbi, bbt;
2029 edge e1, e2;
2030 edge_iterator ei1, ei2;
2031
2032 if (!bookkeeping_can_be_created_if_moved_through_p (through_insn))
2033 {
2034 if (sched_verbose >= 9)
2035 sel_print ("no bookkeeping required: ");
2036 return FALSE;
2037 }
2038
2039 bbi = BLOCK_FOR_INSN (insn);
2040
2041 if (EDGE_COUNT (bbi->preds) == 1)
2042 {
2043 if (sched_verbose >= 9)
2044 sel_print ("only one pred edge: ");
2045 return TRUE;
2046 }
2047
2048 bbt = BLOCK_FOR_INSN (through_insn);
2049
2050 FOR_EACH_EDGE (e1, ei1, bbt->succs)
2051 {
2052 FOR_EACH_EDGE (e2, ei2, bbi->preds)
2053 {
2054 if (find_block_for_bookkeeping (e1, e2, TRUE))
2055 {
2056 if (sched_verbose >= 9)
2057 sel_print ("found existing block: ");
2058 return FALSE;
2059 }
2060 }
2061 }
2062
2063 if (sched_verbose >= 9)
2064 sel_print ("would create bookkeeping block: ");
2065
2066 return TRUE;
2067 }
2068
2069 /* Return true when the conflict with newly created implicit clobbers
2070 between EXPR and THROUGH_INSN is found because of renaming. */
2071 static bool
2072 implicit_clobber_conflict_p (insn_t through_insn, expr_t expr)
2073 {
2074 HARD_REG_SET temp;
2075 rtx_insn *insn;
2076 rtx reg, rhs, pat;
2077 hard_reg_set_iterator hrsi;
2078 unsigned regno;
2079 bool valid;
2080
2081 /* Make a new pseudo register. */
2082 reg = gen_reg_rtx (GET_MODE (EXPR_LHS (expr)));
2083 max_regno = max_reg_num ();
2084 maybe_extend_reg_info_p ();
2085
2086 /* Validate a change and bail out early. */
2087 insn = EXPR_INSN_RTX (expr);
2088 validate_change (insn, &SET_DEST (PATTERN (insn)), reg, true);
2089 valid = verify_changes (0);
2090 cancel_changes (0);
2091 if (!valid)
2092 {
2093 if (sched_verbose >= 6)
2094 sel_print ("implicit clobbers failed validation, ");
2095 return true;
2096 }
2097
2098 /* Make a new insn with it. */
2099 rhs = copy_rtx (VINSN_RHS (EXPR_VINSN (expr)));
2100 pat = gen_rtx_SET (reg, rhs);
2101 start_sequence ();
2102 insn = emit_insn (pat);
2103 end_sequence ();
2104
2105 /* Calculate implicit clobbers. */
2106 extract_insn (insn);
2107 preprocess_constraints (insn);
2108 alternative_mask prefrred = get_preferred_alternatives (insn);
2109 ira_implicitly_set_insn_hard_regs (&temp, prefrred);
2110 AND_COMPL_HARD_REG_SET (temp, ira_no_alloc_regs);
2111
2112 /* If any implicit clobber registers intersect with regular ones in
2113 through_insn, we have a dependency and thus bail out. */
2114 EXECUTE_IF_SET_IN_HARD_REG_SET (temp, 0, regno, hrsi)
2115 {
2116 vinsn_t vi = INSN_VINSN (through_insn);
2117 if (bitmap_bit_p (VINSN_REG_SETS (vi), regno)
2118 || bitmap_bit_p (VINSN_REG_CLOBBERS (vi), regno)
2119 || bitmap_bit_p (VINSN_REG_USES (vi), regno))
2120 return true;
2121 }
2122
2123 return false;
2124 }
2125
2126 /* Modifies EXPR so it can be moved through the THROUGH_INSN,
2127 performing necessary transformations. Record the type of transformation
2128 made in PTRANS_TYPE, when it is not NULL. When INSIDE_INSN_GROUP,
2129 permit all dependencies except true ones, and try to remove those
2130 too via forward substitution. All cases when a non-eliminable
2131 non-zero cost dependency exists inside an insn group will be fixed
2132 in tick_check_p instead. */
2133 static enum MOVEUP_EXPR_CODE
2134 moveup_expr (expr_t expr, insn_t through_insn, bool inside_insn_group,
2135 enum local_trans_type *ptrans_type)
2136 {
2137 vinsn_t vi = EXPR_VINSN (expr);
2138 insn_t insn = VINSN_INSN_RTX (vi);
2139 bool was_changed = false;
2140 bool as_rhs = false;
2141 ds_t *has_dep_p;
2142 ds_t full_ds;
2143
2144 /* ??? We use dependencies of non-debug insns on debug insns to
2145 indicate that the debug insns need to be reset if the non-debug
2146 insn is pulled ahead of it. It's hard to figure out how to
2147 introduce such a notion in sel-sched, but it already fails to
2148 support debug insns in other ways, so we just go ahead and
2149 let the deug insns go corrupt for now. */
2150 if (DEBUG_INSN_P (through_insn) && !DEBUG_INSN_P (insn))
2151 return MOVEUP_EXPR_SAME;
2152
2153 /* When inside_insn_group, delegate to the helper. */
2154 if (inside_insn_group)
2155 return moveup_expr_inside_insn_group (expr, through_insn);
2156
2157 /* Deal with unique insns and control dependencies. */
2158 if (VINSN_UNIQUE_P (vi))
2159 {
2160 /* We can move jumps without side-effects or jumps that are
2161 mutually exclusive with instruction THROUGH_INSN (all in cases
2162 dependencies allow to do so and jump is not speculative). */
2163 if (control_flow_insn_p (insn))
2164 {
2165 basic_block fallthru_bb;
2166
2167 /* Do not move checks and do not move jumps through other
2168 jumps. */
2169 if (control_flow_insn_p (through_insn)
2170 || sel_insn_is_speculation_check (insn))
2171 return MOVEUP_EXPR_NULL;
2172
2173 /* Don't move jumps through CFG joins. */
2174 if (bookkeeping_can_be_created_if_moved_through_p (through_insn))
2175 return MOVEUP_EXPR_NULL;
2176
2177 /* The jump should have a clear fallthru block, and
2178 this block should be in the current region. */
2179 if ((fallthru_bb = fallthru_bb_of_jump (insn)) == NULL
2180 || ! in_current_region_p (fallthru_bb))
2181 return MOVEUP_EXPR_NULL;
2182
2183 /* And it should be mutually exclusive with through_insn. */
2184 if (! sched_insns_conditions_mutex_p (insn, through_insn)
2185 && ! DEBUG_INSN_P (through_insn))
2186 return MOVEUP_EXPR_NULL;
2187 }
2188
2189 /* Don't move what we can't move. */
2190 if (EXPR_CANT_MOVE (expr)
2191 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn))
2192 return MOVEUP_EXPR_NULL;
2193
2194 /* Don't move SCHED_GROUP instruction through anything.
2195 If we don't force this, then it will be possible to start
2196 scheduling a sched_group before all its dependencies are
2197 resolved.
2198 ??? Haifa deals with this issue by delaying the SCHED_GROUP
2199 as late as possible through rank_for_schedule. */
2200 if (SCHED_GROUP_P (insn))
2201 return MOVEUP_EXPR_NULL;
2202 }
2203 else
2204 gcc_assert (!control_flow_insn_p (insn));
2205
2206 /* Don't move debug insns if this would require bookkeeping. */
2207 if (DEBUG_INSN_P (insn)
2208 && BLOCK_FOR_INSN (through_insn) != BLOCK_FOR_INSN (insn)
2209 && moving_insn_creates_bookkeeping_block_p (insn, through_insn))
2210 return MOVEUP_EXPR_NULL;
2211
2212 /* Deal with data dependencies. */
2213 was_target_conflict = false;
2214 full_ds = has_dependence_p (expr, through_insn, &has_dep_p);
2215 if (full_ds == 0)
2216 {
2217 if (!CANT_MOVE_TRAPPING (expr, through_insn))
2218 return MOVEUP_EXPR_SAME;
2219 }
2220 else
2221 {
2222 /* We can move UNIQUE insn up only as a whole and unchanged,
2223 so it shouldn't have any dependencies. */
2224 if (VINSN_UNIQUE_P (vi))
2225 return MOVEUP_EXPR_NULL;
2226 }
2227
2228 if (full_ds != 0 && can_speculate_dep_p (full_ds))
2229 {
2230 int res;
2231
2232 res = speculate_expr (expr, full_ds);
2233 if (res >= 0)
2234 {
2235 /* Speculation was successful. */
2236 full_ds = 0;
2237 was_changed = (res > 0);
2238 if (res == 2)
2239 was_target_conflict = true;
2240 if (ptrans_type)
2241 *ptrans_type = TRANS_SPECULATION;
2242 sel_clear_has_dependence ();
2243 }
2244 }
2245
2246 if (has_dep_p[DEPS_IN_INSN])
2247 /* We have some dependency that cannot be discarded. */
2248 return MOVEUP_EXPR_NULL;
2249
2250 if (has_dep_p[DEPS_IN_LHS])
2251 {
2252 /* Only separable insns can be moved up with the new register.
2253 Anyways, we should mark that the original register is
2254 unavailable. */
2255 if (!enable_schedule_as_rhs_p || !EXPR_SEPARABLE_P (expr))
2256 return MOVEUP_EXPR_NULL;
2257
2258 /* When renaming a hard register to a pseudo before reload, extra
2259 dependencies can occur from the implicit clobbers of the insn.
2260 Filter out such cases here. */
2261 if (!reload_completed && REG_P (EXPR_LHS (expr))
2262 && HARD_REGISTER_P (EXPR_LHS (expr))
2263 && implicit_clobber_conflict_p (through_insn, expr))
2264 {
2265 if (sched_verbose >= 6)
2266 sel_print ("implicit clobbers conflict detected, ");
2267 return MOVEUP_EXPR_NULL;
2268 }
2269 EXPR_TARGET_AVAILABLE (expr) = false;
2270 was_target_conflict = true;
2271 as_rhs = true;
2272 }
2273
2274 /* At this point we have either separable insns, that will be lifted
2275 up only as RHSes, or non-separable insns with no dependency in lhs.
2276 If dependency is in RHS, then try to perform substitution and move up
2277 substituted RHS:
2278
2279 Ex. 1: Ex.2
2280 y = x; y = x;
2281 z = y*2; y = y*2;
2282
2283 In Ex.1 y*2 can be substituted for x*2 and the whole operation can be
2284 moved above y=x assignment as z=x*2.
2285
2286 In Ex.2 y*2 also can be substituted for x*2, but only the right hand
2287 side can be moved because of the output dependency. The operation was
2288 cropped to its rhs above. */
2289 if (has_dep_p[DEPS_IN_RHS])
2290 {
2291 ds_t *rhs_dsp = &has_dep_p[DEPS_IN_RHS];
2292
2293 /* Can't substitute UNIQUE VINSNs. */
2294 gcc_assert (!VINSN_UNIQUE_P (vi));
2295
2296 if (can_speculate_dep_p (*rhs_dsp))
2297 {
2298 int res;
2299
2300 res = speculate_expr (expr, *rhs_dsp);
2301 if (res >= 0)
2302 {
2303 /* Speculation was successful. */
2304 *rhs_dsp = 0;
2305 was_changed = (res > 0);
2306 if (res == 2)
2307 was_target_conflict = true;
2308 if (ptrans_type)
2309 *ptrans_type = TRANS_SPECULATION;
2310 }
2311 else
2312 return MOVEUP_EXPR_NULL;
2313 }
2314 else if (can_substitute_through_p (through_insn,
2315 *rhs_dsp)
2316 && substitute_reg_in_expr (expr, through_insn, false))
2317 {
2318 /* ??? We cannot perform substitution AND speculation on the same
2319 insn. */
2320 gcc_assert (!was_changed);
2321 was_changed = true;
2322 if (ptrans_type)
2323 *ptrans_type = TRANS_SUBSTITUTION;
2324 EXPR_WAS_SUBSTITUTED (expr) = true;
2325 }
2326 else
2327 return MOVEUP_EXPR_NULL;
2328 }
2329
2330 /* Don't move trapping insns through jumps.
2331 This check should be at the end to give a chance to control speculation
2332 to perform its duties. */
2333 if (CANT_MOVE_TRAPPING (expr, through_insn))
2334 return MOVEUP_EXPR_NULL;
2335
2336 return (was_changed
2337 ? MOVEUP_EXPR_CHANGED
2338 : (as_rhs
2339 ? MOVEUP_EXPR_AS_RHS
2340 : MOVEUP_EXPR_SAME));
2341 }
2342
2343 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2344 if successful. When INSIDE_INSN_GROUP, also try ignore dependencies
2345 that can exist within a parallel group. Write to RES the resulting
2346 code for moveup_expr. */
2347 static bool
2348 try_bitmap_cache (expr_t expr, insn_t insn,
2349 bool inside_insn_group,
2350 enum MOVEUP_EXPR_CODE *res)
2351 {
2352 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2353
2354 /* First check whether we've analyzed this situation already. */
2355 if (bitmap_bit_p (INSN_ANALYZED_DEPS (insn), expr_uid))
2356 {
2357 if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2358 {
2359 if (sched_verbose >= 6)
2360 sel_print ("removed (cached)\n");
2361 *res = MOVEUP_EXPR_NULL;
2362 return true;
2363 }
2364 else
2365 {
2366 if (sched_verbose >= 6)
2367 sel_print ("unchanged (cached)\n");
2368 *res = MOVEUP_EXPR_SAME;
2369 return true;
2370 }
2371 }
2372 else if (bitmap_bit_p (INSN_FOUND_DEPS (insn), expr_uid))
2373 {
2374 if (inside_insn_group)
2375 {
2376 if (sched_verbose >= 6)
2377 sel_print ("unchanged (as RHS, cached, inside insn group)\n");
2378 *res = MOVEUP_EXPR_SAME;
2379 return true;
2380
2381 }
2382 else
2383 EXPR_TARGET_AVAILABLE (expr) = false;
2384
2385 /* This is the only case when propagation result can change over time,
2386 as we can dynamically switch off scheduling as RHS. In this case,
2387 just check the flag to reach the correct decision. */
2388 if (enable_schedule_as_rhs_p)
2389 {
2390 if (sched_verbose >= 6)
2391 sel_print ("unchanged (as RHS, cached)\n");
2392 *res = MOVEUP_EXPR_AS_RHS;
2393 return true;
2394 }
2395 else
2396 {
2397 if (sched_verbose >= 6)
2398 sel_print ("removed (cached as RHS, but renaming"
2399 " is now disabled)\n");
2400 *res = MOVEUP_EXPR_NULL;
2401 return true;
2402 }
2403 }
2404
2405 return false;
2406 }
2407
2408 /* Try to look at bitmap caches for EXPR and INSN pair, return true
2409 if successful. Write to RES the resulting code for moveup_expr. */
2410 static bool
2411 try_transformation_cache (expr_t expr, insn_t insn,
2412 enum MOVEUP_EXPR_CODE *res)
2413 {
2414 struct transformed_insns *pti
2415 = (struct transformed_insns *)
2416 htab_find_with_hash (INSN_TRANSFORMED_INSNS (insn),
2417 &EXPR_VINSN (expr),
2418 VINSN_HASH_RTX (EXPR_VINSN (expr)));
2419 if (pti)
2420 {
2421 /* This EXPR was already moved through this insn and was
2422 changed as a result. Fetch the proper data from
2423 the hashtable. */
2424 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2425 INSN_UID (insn), pti->type,
2426 pti->vinsn_old, pti->vinsn_new,
2427 EXPR_SPEC_DONE_DS (expr));
2428
2429 if (INSN_IN_STREAM_P (VINSN_INSN_RTX (pti->vinsn_new)))
2430 pti->vinsn_new = vinsn_copy (pti->vinsn_new, true);
2431 change_vinsn_in_expr (expr, pti->vinsn_new);
2432 if (pti->was_target_conflict)
2433 EXPR_TARGET_AVAILABLE (expr) = false;
2434 if (pti->type == TRANS_SPECULATION)
2435 {
2436 EXPR_SPEC_DONE_DS (expr) = pti->ds;
2437 EXPR_NEEDS_SPEC_CHECK_P (expr) |= pti->needs_check;
2438 }
2439
2440 if (sched_verbose >= 6)
2441 {
2442 sel_print ("changed (cached): ");
2443 dump_expr (expr);
2444 sel_print ("\n");
2445 }
2446
2447 *res = MOVEUP_EXPR_CHANGED;
2448 return true;
2449 }
2450
2451 return false;
2452 }
2453
2454 /* Update bitmap caches on INSN with result RES of propagating EXPR. */
2455 static void
2456 update_bitmap_cache (expr_t expr, insn_t insn, bool inside_insn_group,
2457 enum MOVEUP_EXPR_CODE res)
2458 {
2459 int expr_uid = INSN_UID (EXPR_INSN_RTX (expr));
2460
2461 /* Do not cache result of propagating jumps through an insn group,
2462 as it is always true, which is not useful outside the group. */
2463 if (inside_insn_group)
2464 return;
2465
2466 if (res == MOVEUP_EXPR_NULL)
2467 {
2468 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2469 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2470 }
2471 else if (res == MOVEUP_EXPR_SAME)
2472 {
2473 bitmap_set_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2474 bitmap_clear_bit (INSN_FOUND_DEPS (insn), expr_uid);
2475 }
2476 else if (res == MOVEUP_EXPR_AS_RHS)
2477 {
2478 bitmap_clear_bit (INSN_ANALYZED_DEPS (insn), expr_uid);
2479 bitmap_set_bit (INSN_FOUND_DEPS (insn), expr_uid);
2480 }
2481 else
2482 gcc_unreachable ();
2483 }
2484
2485 /* Update hashtable on INSN with changed EXPR, old EXPR_OLD_VINSN
2486 and transformation type TRANS_TYPE. */
2487 static void
2488 update_transformation_cache (expr_t expr, insn_t insn,
2489 bool inside_insn_group,
2490 enum local_trans_type trans_type,
2491 vinsn_t expr_old_vinsn)
2492 {
2493 struct transformed_insns *pti;
2494
2495 if (inside_insn_group)
2496 return;
2497
2498 pti = XNEW (struct transformed_insns);
2499 pti->vinsn_old = expr_old_vinsn;
2500 pti->vinsn_new = EXPR_VINSN (expr);
2501 pti->type = trans_type;
2502 pti->was_target_conflict = was_target_conflict;
2503 pti->ds = EXPR_SPEC_DONE_DS (expr);
2504 pti->needs_check = EXPR_NEEDS_SPEC_CHECK_P (expr);
2505 vinsn_attach (pti->vinsn_old);
2506 vinsn_attach (pti->vinsn_new);
2507 *((struct transformed_insns **)
2508 htab_find_slot_with_hash (INSN_TRANSFORMED_INSNS (insn),
2509 pti, VINSN_HASH_RTX (expr_old_vinsn),
2510 INSERT)) = pti;
2511 }
2512
2513 /* Same as moveup_expr, but first looks up the result of
2514 transformation in caches. */
2515 static enum MOVEUP_EXPR_CODE
2516 moveup_expr_cached (expr_t expr, insn_t insn, bool inside_insn_group)
2517 {
2518 enum MOVEUP_EXPR_CODE res;
2519 bool got_answer = false;
2520
2521 if (sched_verbose >= 6)
2522 {
2523 sel_print ("Moving ");
2524 dump_expr (expr);
2525 sel_print (" through %d: ", INSN_UID (insn));
2526 }
2527
2528 if (DEBUG_INSN_P (EXPR_INSN_RTX (expr))
2529 && (sel_bb_head (BLOCK_FOR_INSN (EXPR_INSN_RTX (expr)))
2530 == EXPR_INSN_RTX (expr)))
2531 /* Don't use cached information for debug insns that are heads of
2532 basic blocks. */;
2533 else if (try_bitmap_cache (expr, insn, inside_insn_group, &res))
2534 /* When inside insn group, we do not want remove stores conflicting
2535 with previosly issued loads. */
2536 got_answer = ! inside_insn_group || res != MOVEUP_EXPR_NULL;
2537 else if (try_transformation_cache (expr, insn, &res))
2538 got_answer = true;
2539
2540 if (! got_answer)
2541 {
2542 /* Invoke moveup_expr and record the results. */
2543 vinsn_t expr_old_vinsn = EXPR_VINSN (expr);
2544 ds_t expr_old_spec_ds = EXPR_SPEC_DONE_DS (expr);
2545 int expr_uid = INSN_UID (VINSN_INSN_RTX (expr_old_vinsn));
2546 bool unique_p = VINSN_UNIQUE_P (expr_old_vinsn);
2547 enum local_trans_type trans_type = TRANS_SUBSTITUTION;
2548
2549 /* ??? Invent something better than this. We can't allow old_vinsn
2550 to go, we need it for the history vector. */
2551 vinsn_attach (expr_old_vinsn);
2552
2553 res = moveup_expr (expr, insn, inside_insn_group,
2554 &trans_type);
2555 switch (res)
2556 {
2557 case MOVEUP_EXPR_NULL:
2558 update_bitmap_cache (expr, insn, inside_insn_group, res);
2559 if (sched_verbose >= 6)
2560 sel_print ("removed\n");
2561 break;
2562
2563 case MOVEUP_EXPR_SAME:
2564 update_bitmap_cache (expr, insn, inside_insn_group, res);
2565 if (sched_verbose >= 6)
2566 sel_print ("unchanged\n");
2567 break;
2568
2569 case MOVEUP_EXPR_AS_RHS:
2570 gcc_assert (!unique_p || inside_insn_group);
2571 update_bitmap_cache (expr, insn, inside_insn_group, res);
2572 if (sched_verbose >= 6)
2573 sel_print ("unchanged (as RHS)\n");
2574 break;
2575
2576 case MOVEUP_EXPR_CHANGED:
2577 gcc_assert (INSN_UID (EXPR_INSN_RTX (expr)) != expr_uid
2578 || EXPR_SPEC_DONE_DS (expr) != expr_old_spec_ds);
2579 insert_in_history_vect (&EXPR_HISTORY_OF_CHANGES (expr),
2580 INSN_UID (insn), trans_type,
2581 expr_old_vinsn, EXPR_VINSN (expr),
2582 expr_old_spec_ds);
2583 update_transformation_cache (expr, insn, inside_insn_group,
2584 trans_type, expr_old_vinsn);
2585 if (sched_verbose >= 6)
2586 {
2587 sel_print ("changed: ");
2588 dump_expr (expr);
2589 sel_print ("\n");
2590 }
2591 break;
2592 default:
2593 gcc_unreachable ();
2594 }
2595
2596 vinsn_detach (expr_old_vinsn);
2597 }
2598
2599 return res;
2600 }
2601
2602 /* Moves an av set AVP up through INSN, performing necessary
2603 transformations. */
2604 static void
2605 moveup_set_expr (av_set_t *avp, insn_t insn, bool inside_insn_group)
2606 {
2607 av_set_iterator i;
2608 expr_t expr;
2609
2610 FOR_EACH_EXPR_1 (expr, i, avp)
2611 {
2612
2613 switch (moveup_expr_cached (expr, insn, inside_insn_group))
2614 {
2615 case MOVEUP_EXPR_SAME:
2616 case MOVEUP_EXPR_AS_RHS:
2617 break;
2618
2619 case MOVEUP_EXPR_NULL:
2620 av_set_iter_remove (&i);
2621 break;
2622
2623 case MOVEUP_EXPR_CHANGED:
2624 expr = merge_with_other_exprs (avp, &i, expr);
2625 break;
2626
2627 default:
2628 gcc_unreachable ();
2629 }
2630 }
2631 }
2632
2633 /* Moves AVP set along PATH. */
2634 static void
2635 moveup_set_inside_insn_group (av_set_t *avp, ilist_t path)
2636 {
2637 int last_cycle;
2638
2639 if (sched_verbose >= 6)
2640 sel_print ("Moving expressions up in the insn group...\n");
2641 if (! path)
2642 return;
2643 last_cycle = INSN_SCHED_CYCLE (ILIST_INSN (path));
2644 while (path
2645 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2646 {
2647 moveup_set_expr (avp, ILIST_INSN (path), true);
2648 path = ILIST_NEXT (path);
2649 }
2650 }
2651
2652 /* Returns true if after moving EXPR along PATH it equals to EXPR_VLIW. */
2653 static bool
2654 equal_after_moveup_path_p (expr_t expr, ilist_t path, expr_t expr_vliw)
2655 {
2656 expr_def _tmp, *tmp = &_tmp;
2657 int last_cycle;
2658 bool res = true;
2659
2660 copy_expr_onside (tmp, expr);
2661 last_cycle = path ? INSN_SCHED_CYCLE (ILIST_INSN (path)) : 0;
2662 while (path
2663 && res
2664 && INSN_SCHED_CYCLE (ILIST_INSN (path)) == last_cycle)
2665 {
2666 res = (moveup_expr_cached (tmp, ILIST_INSN (path), true)
2667 != MOVEUP_EXPR_NULL);
2668 path = ILIST_NEXT (path);
2669 }
2670
2671 if (res)
2672 {
2673 vinsn_t tmp_vinsn = EXPR_VINSN (tmp);
2674 vinsn_t expr_vliw_vinsn = EXPR_VINSN (expr_vliw);
2675
2676 if (tmp_vinsn != expr_vliw_vinsn)
2677 res = vinsn_equal_p (tmp_vinsn, expr_vliw_vinsn);
2678 }
2679
2680 clear_expr (tmp);
2681 return res;
2682 }
2683 \f
2684
2685 /* Functions that compute av and lv sets. */
2686
2687 /* Returns true if INSN is not a downward continuation of the given path P in
2688 the current stage. */
2689 static bool
2690 is_ineligible_successor (insn_t insn, ilist_t p)
2691 {
2692 insn_t prev_insn;
2693
2694 /* Check if insn is not deleted. */
2695 if (PREV_INSN (insn) && NEXT_INSN (PREV_INSN (insn)) != insn)
2696 gcc_unreachable ();
2697 else if (NEXT_INSN (insn) && PREV_INSN (NEXT_INSN (insn)) != insn)
2698 gcc_unreachable ();
2699
2700 /* If it's the first insn visited, then the successor is ok. */
2701 if (!p)
2702 return false;
2703
2704 prev_insn = ILIST_INSN (p);
2705
2706 if (/* a backward edge. */
2707 INSN_SEQNO (insn) < INSN_SEQNO (prev_insn)
2708 /* is already visited. */
2709 || (INSN_SEQNO (insn) == INSN_SEQNO (prev_insn)
2710 && (ilist_is_in_p (p, insn)
2711 /* We can reach another fence here and still seqno of insn
2712 would be equal to seqno of prev_insn. This is possible
2713 when prev_insn is a previously created bookkeeping copy.
2714 In that case it'd get a seqno of insn. Thus, check here
2715 whether insn is in current fence too. */
2716 || IN_CURRENT_FENCE_P (insn)))
2717 /* Was already scheduled on this round. */
2718 || (INSN_SEQNO (insn) > INSN_SEQNO (prev_insn)
2719 && IN_CURRENT_FENCE_P (insn))
2720 /* An insn from another fence could also be
2721 scheduled earlier even if this insn is not in
2722 a fence list right now. Check INSN_SCHED_CYCLE instead. */
2723 || (!pipelining_p
2724 && INSN_SCHED_TIMES (insn) > 0))
2725 return true;
2726 else
2727 return false;
2728 }
2729
2730 /* Computes the av_set below the last bb insn INSN, doing all the 'dirty work'
2731 of handling multiple successors and properly merging its av_sets. P is
2732 the current path traversed. WS is the size of lookahead window.
2733 Return the av set computed. */
2734 static av_set_t
2735 compute_av_set_at_bb_end (insn_t insn, ilist_t p, int ws)
2736 {
2737 struct succs_info *sinfo;
2738 av_set_t expr_in_all_succ_branches = NULL;
2739 int is;
2740 insn_t succ, zero_succ = NULL;
2741 av_set_t av1 = NULL;
2742
2743 gcc_assert (sel_bb_end_p (insn));
2744
2745 /* Find different kind of successors needed for correct computing of
2746 SPEC and TARGET_AVAILABLE attributes. */
2747 sinfo = compute_succs_info (insn, SUCCS_NORMAL);
2748
2749 /* Debug output. */
2750 if (sched_verbose >= 6)
2751 {
2752 sel_print ("successors of bb end (%d): ", INSN_UID (insn));
2753 dump_insn_vector (sinfo->succs_ok);
2754 sel_print ("\n");
2755 if (sinfo->succs_ok_n != sinfo->all_succs_n)
2756 sel_print ("real successors num: %d\n", sinfo->all_succs_n);
2757 }
2758
2759 /* Add insn to the tail of current path. */
2760 ilist_add (&p, insn);
2761
2762 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2763 {
2764 av_set_t succ_set;
2765
2766 /* We will edit SUCC_SET and EXPR_SPEC field of its elements. */
2767 succ_set = compute_av_set_inside_bb (succ, p, ws, true);
2768
2769 av_set_split_usefulness (succ_set,
2770 sinfo->probs_ok[is],
2771 sinfo->all_prob);
2772
2773 if (sinfo->all_succs_n > 1)
2774 {
2775 /* Find EXPR'es that came from *all* successors and save them
2776 into expr_in_all_succ_branches. This set will be used later
2777 for calculating speculation attributes of EXPR'es. */
2778 if (is == 0)
2779 {
2780 expr_in_all_succ_branches = av_set_copy (succ_set);
2781
2782 /* Remember the first successor for later. */
2783 zero_succ = succ;
2784 }
2785 else
2786 {
2787 av_set_iterator i;
2788 expr_t expr;
2789
2790 FOR_EACH_EXPR_1 (expr, i, &expr_in_all_succ_branches)
2791 if (!av_set_is_in_p (succ_set, EXPR_VINSN (expr)))
2792 av_set_iter_remove (&i);
2793 }
2794 }
2795
2796 /* Union the av_sets. Check liveness restrictions on target registers
2797 in special case of two successors. */
2798 if (sinfo->succs_ok_n == 2 && is == 1)
2799 {
2800 basic_block bb0 = BLOCK_FOR_INSN (zero_succ);
2801 basic_block bb1 = BLOCK_FOR_INSN (succ);
2802
2803 gcc_assert (BB_LV_SET_VALID_P (bb0) && BB_LV_SET_VALID_P (bb1));
2804 av_set_union_and_live (&av1, &succ_set,
2805 BB_LV_SET (bb0),
2806 BB_LV_SET (bb1),
2807 insn);
2808 }
2809 else
2810 av_set_union_and_clear (&av1, &succ_set, insn);
2811 }
2812
2813 /* Check liveness restrictions via hard way when there are more than
2814 two successors. */
2815 if (sinfo->succs_ok_n > 2)
2816 FOR_EACH_VEC_ELT (sinfo->succs_ok, is, succ)
2817 {
2818 basic_block succ_bb = BLOCK_FOR_INSN (succ);
2819
2820 gcc_assert (BB_LV_SET_VALID_P (succ_bb));
2821 mark_unavailable_targets (av1, BB_AV_SET (succ_bb),
2822 BB_LV_SET (succ_bb));
2823 }
2824
2825 /* Finally, check liveness restrictions on paths leaving the region. */
2826 if (sinfo->all_succs_n > sinfo->succs_ok_n)
2827 FOR_EACH_VEC_ELT (sinfo->succs_other, is, succ)
2828 mark_unavailable_targets
2829 (av1, NULL, BB_LV_SET (BLOCK_FOR_INSN (succ)));
2830
2831 if (sinfo->all_succs_n > 1)
2832 {
2833 av_set_iterator i;
2834 expr_t expr;
2835
2836 /* Increase the spec attribute of all EXPR'es that didn't come
2837 from all successors. */
2838 FOR_EACH_EXPR (expr, i, av1)
2839 if (!av_set_is_in_p (expr_in_all_succ_branches, EXPR_VINSN (expr)))
2840 EXPR_SPEC (expr)++;
2841
2842 av_set_clear (&expr_in_all_succ_branches);
2843
2844 /* Do not move conditional branches through other
2845 conditional branches. So, remove all conditional
2846 branches from av_set if current operator is a conditional
2847 branch. */
2848 av_set_substract_cond_branches (&av1);
2849 }
2850
2851 ilist_remove (&p);
2852 free_succs_info (sinfo);
2853
2854 if (sched_verbose >= 6)
2855 {
2856 sel_print ("av_succs (%d): ", INSN_UID (insn));
2857 dump_av_set (av1);
2858 sel_print ("\n");
2859 }
2860
2861 return av1;
2862 }
2863
2864 /* This function computes av_set for the FIRST_INSN by dragging valid
2865 av_set through all basic block insns either from the end of basic block
2866 (computed using compute_av_set_at_bb_end) or from the insn on which
2867 MAX_WS was exceeded. It uses compute_av_set_at_bb_end to compute av_set
2868 below the basic block and handling conditional branches.
2869 FIRST_INSN - the basic block head, P - path consisting of the insns
2870 traversed on the way to the FIRST_INSN (the path is sparse, only bb heads
2871 and bb ends are added to the path), WS - current window size,
2872 NEED_COPY_P - true if we'll make a copy of av_set before returning it. */
2873 static av_set_t
2874 compute_av_set_inside_bb (insn_t first_insn, ilist_t p, int ws,
2875 bool need_copy_p)
2876 {
2877 insn_t cur_insn;
2878 int end_ws = ws;
2879 insn_t bb_end = sel_bb_end (BLOCK_FOR_INSN (first_insn));
2880 insn_t after_bb_end = NEXT_INSN (bb_end);
2881 insn_t last_insn;
2882 av_set_t av = NULL;
2883 basic_block cur_bb = BLOCK_FOR_INSN (first_insn);
2884
2885 /* Return NULL if insn is not on the legitimate downward path. */
2886 if (is_ineligible_successor (first_insn, p))
2887 {
2888 if (sched_verbose >= 6)
2889 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (first_insn));
2890
2891 return NULL;
2892 }
2893
2894 /* If insn already has valid av(insn) computed, just return it. */
2895 if (AV_SET_VALID_P (first_insn))
2896 {
2897 av_set_t av_set;
2898
2899 if (sel_bb_head_p (first_insn))
2900 av_set = BB_AV_SET (BLOCK_FOR_INSN (first_insn));
2901 else
2902 av_set = NULL;
2903
2904 if (sched_verbose >= 6)
2905 {
2906 sel_print ("Insn %d has a valid av set: ", INSN_UID (first_insn));
2907 dump_av_set (av_set);
2908 sel_print ("\n");
2909 }
2910
2911 return need_copy_p ? av_set_copy (av_set) : av_set;
2912 }
2913
2914 ilist_add (&p, first_insn);
2915
2916 /* As the result after this loop have completed, in LAST_INSN we'll
2917 have the insn which has valid av_set to start backward computation
2918 from: it either will be NULL because on it the window size was exceeded
2919 or other valid av_set as returned by compute_av_set for the last insn
2920 of the basic block. */
2921 for (last_insn = first_insn; last_insn != after_bb_end;
2922 last_insn = NEXT_INSN (last_insn))
2923 {
2924 /* We may encounter valid av_set not only on bb_head, but also on
2925 those insns on which previously MAX_WS was exceeded. */
2926 if (AV_SET_VALID_P (last_insn))
2927 {
2928 if (sched_verbose >= 6)
2929 sel_print ("Insn %d has a valid empty av set\n", INSN_UID (last_insn));
2930 break;
2931 }
2932
2933 /* The special case: the last insn of the BB may be an
2934 ineligible_successor due to its SEQ_NO that was set on
2935 it as a bookkeeping. */
2936 if (last_insn != first_insn
2937 && is_ineligible_successor (last_insn, p))
2938 {
2939 if (sched_verbose >= 6)
2940 sel_print ("Insn %d is ineligible_successor\n", INSN_UID (last_insn));
2941 break;
2942 }
2943
2944 if (DEBUG_INSN_P (last_insn))
2945 continue;
2946
2947 if (end_ws > max_ws)
2948 {
2949 /* We can reach max lookahead size at bb_header, so clean av_set
2950 first. */
2951 INSN_WS_LEVEL (last_insn) = global_level;
2952
2953 if (sched_verbose >= 6)
2954 sel_print ("Insn %d is beyond the software lookahead window size\n",
2955 INSN_UID (last_insn));
2956 break;
2957 }
2958
2959 end_ws++;
2960 }
2961
2962 /* Get the valid av_set into AV above the LAST_INSN to start backward
2963 computation from. It either will be empty av_set or av_set computed from
2964 the successors on the last insn of the current bb. */
2965 if (last_insn != after_bb_end)
2966 {
2967 av = NULL;
2968
2969 /* This is needed only to obtain av_sets that are identical to
2970 those computed by the old compute_av_set version. */
2971 if (last_insn == first_insn && !INSN_NOP_P (last_insn))
2972 av_set_add (&av, INSN_EXPR (last_insn));
2973 }
2974 else
2975 /* END_WS is always already increased by 1 if LAST_INSN == AFTER_BB_END. */
2976 av = compute_av_set_at_bb_end (bb_end, p, end_ws);
2977
2978 /* Compute av_set in AV starting from below the LAST_INSN up to
2979 location above the FIRST_INSN. */
2980 for (cur_insn = PREV_INSN (last_insn); cur_insn != PREV_INSN (first_insn);
2981 cur_insn = PREV_INSN (cur_insn))
2982 if (!INSN_NOP_P (cur_insn))
2983 {
2984 expr_t expr;
2985
2986 moveup_set_expr (&av, cur_insn, false);
2987
2988 /* If the expression for CUR_INSN is already in the set,
2989 replace it by the new one. */
2990 expr = av_set_lookup (av, INSN_VINSN (cur_insn));
2991 if (expr != NULL)
2992 {
2993 clear_expr (expr);
2994 copy_expr (expr, INSN_EXPR (cur_insn));
2995 }
2996 else
2997 av_set_add (&av, INSN_EXPR (cur_insn));
2998 }
2999
3000 /* Clear stale bb_av_set. */
3001 if (sel_bb_head_p (first_insn))
3002 {
3003 av_set_clear (&BB_AV_SET (cur_bb));
3004 BB_AV_SET (cur_bb) = need_copy_p ? av_set_copy (av) : av;
3005 BB_AV_LEVEL (cur_bb) = global_level;
3006 }
3007
3008 if (sched_verbose >= 6)
3009 {
3010 sel_print ("Computed av set for insn %d: ", INSN_UID (first_insn));
3011 dump_av_set (av);
3012 sel_print ("\n");
3013 }
3014
3015 ilist_remove (&p);
3016 return av;
3017 }
3018
3019 /* Compute av set before INSN.
3020 INSN - the current operation (actual rtx INSN)
3021 P - the current path, which is list of insns visited so far
3022 WS - software lookahead window size.
3023 UNIQUE_P - TRUE, if returned av_set will be changed, hence
3024 if we want to save computed av_set in s_i_d, we should make a copy of it.
3025
3026 In the resulting set we will have only expressions that don't have delay
3027 stalls and nonsubstitutable dependences. */
3028 static av_set_t
3029 compute_av_set (insn_t insn, ilist_t p, int ws, bool unique_p)
3030 {
3031 return compute_av_set_inside_bb (insn, p, ws, unique_p);
3032 }
3033
3034 /* Propagate a liveness set LV through INSN. */
3035 static void
3036 propagate_lv_set (regset lv, insn_t insn)
3037 {
3038 gcc_assert (INSN_P (insn));
3039
3040 if (INSN_NOP_P (insn))
3041 return;
3042
3043 df_simulate_one_insn_backwards (BLOCK_FOR_INSN (insn), insn, lv);
3044 }
3045
3046 /* Return livness set at the end of BB. */
3047 static regset
3048 compute_live_after_bb (basic_block bb)
3049 {
3050 edge e;
3051 edge_iterator ei;
3052 regset lv = get_clear_regset_from_pool ();
3053
3054 gcc_assert (!ignore_first);
3055
3056 FOR_EACH_EDGE (e, ei, bb->succs)
3057 if (sel_bb_empty_p (e->dest))
3058 {
3059 if (! BB_LV_SET_VALID_P (e->dest))
3060 {
3061 gcc_unreachable ();
3062 gcc_assert (BB_LV_SET (e->dest) == NULL);
3063 BB_LV_SET (e->dest) = compute_live_after_bb (e->dest);
3064 BB_LV_SET_VALID_P (e->dest) = true;
3065 }
3066 IOR_REG_SET (lv, BB_LV_SET (e->dest));
3067 }
3068 else
3069 IOR_REG_SET (lv, compute_live (sel_bb_head (e->dest)));
3070
3071 return lv;
3072 }
3073
3074 /* Compute the set of all live registers at the point before INSN and save
3075 it at INSN if INSN is bb header. */
3076 regset
3077 compute_live (insn_t insn)
3078 {
3079 basic_block bb = BLOCK_FOR_INSN (insn);
3080 insn_t final, temp;
3081 regset lv;
3082
3083 /* Return the valid set if we're already on it. */
3084 if (!ignore_first)
3085 {
3086 regset src = NULL;
3087
3088 if (sel_bb_head_p (insn) && BB_LV_SET_VALID_P (bb))
3089 src = BB_LV_SET (bb);
3090 else
3091 {
3092 gcc_assert (in_current_region_p (bb));
3093 if (INSN_LIVE_VALID_P (insn))
3094 src = INSN_LIVE (insn);
3095 }
3096
3097 if (src)
3098 {
3099 lv = get_regset_from_pool ();
3100 COPY_REG_SET (lv, src);
3101
3102 if (sel_bb_head_p (insn) && ! BB_LV_SET_VALID_P (bb))
3103 {
3104 COPY_REG_SET (BB_LV_SET (bb), lv);
3105 BB_LV_SET_VALID_P (bb) = true;
3106 }
3107
3108 return_regset_to_pool (lv);
3109 return lv;
3110 }
3111 }
3112
3113 /* We've skipped the wrong lv_set. Don't skip the right one. */
3114 ignore_first = false;
3115 gcc_assert (in_current_region_p (bb));
3116
3117 /* Find a valid LV set in this block or below, if needed.
3118 Start searching from the next insn: either ignore_first is true, or
3119 INSN doesn't have a correct live set. */
3120 temp = NEXT_INSN (insn);
3121 final = NEXT_INSN (BB_END (bb));
3122 while (temp != final && ! INSN_LIVE_VALID_P (temp))
3123 temp = NEXT_INSN (temp);
3124 if (temp == final)
3125 {
3126 lv = compute_live_after_bb (bb);
3127 temp = PREV_INSN (temp);
3128 }
3129 else
3130 {
3131 lv = get_regset_from_pool ();
3132 COPY_REG_SET (lv, INSN_LIVE (temp));
3133 }
3134
3135 /* Put correct lv sets on the insns which have bad sets. */
3136 final = PREV_INSN (insn);
3137 while (temp != final)
3138 {
3139 propagate_lv_set (lv, temp);
3140 COPY_REG_SET (INSN_LIVE (temp), lv);
3141 INSN_LIVE_VALID_P (temp) = true;
3142 temp = PREV_INSN (temp);
3143 }
3144
3145 /* Also put it in a BB. */
3146 if (sel_bb_head_p (insn))
3147 {
3148 basic_block bb = BLOCK_FOR_INSN (insn);
3149
3150 COPY_REG_SET (BB_LV_SET (bb), lv);
3151 BB_LV_SET_VALID_P (bb) = true;
3152 }
3153
3154 /* We return LV to the pool, but will not clear it there. Thus we can
3155 legimatelly use LV till the next use of regset_pool_get (). */
3156 return_regset_to_pool (lv);
3157 return lv;
3158 }
3159
3160 /* Update liveness sets for INSN. */
3161 static inline void
3162 update_liveness_on_insn (rtx_insn *insn)
3163 {
3164 ignore_first = true;
3165 compute_live (insn);
3166 }
3167
3168 /* Compute liveness below INSN and write it into REGS. */
3169 static inline void
3170 compute_live_below_insn (rtx_insn *insn, regset regs)
3171 {
3172 rtx_insn *succ;
3173 succ_iterator si;
3174
3175 FOR_EACH_SUCC_1 (succ, si, insn, SUCCS_ALL)
3176 IOR_REG_SET (regs, compute_live (succ));
3177 }
3178
3179 /* Update the data gathered in av and lv sets starting from INSN. */
3180 static void
3181 update_data_sets (rtx_insn *insn)
3182 {
3183 update_liveness_on_insn (insn);
3184 if (sel_bb_head_p (insn))
3185 {
3186 gcc_assert (AV_LEVEL (insn) != 0);
3187 BB_AV_LEVEL (BLOCK_FOR_INSN (insn)) = -1;
3188 compute_av_set (insn, NULL, 0, 0);
3189 }
3190 }
3191 \f
3192
3193 /* Helper for move_op () and find_used_regs ().
3194 Return speculation type for which a check should be created on the place
3195 of INSN. EXPR is one of the original ops we are searching for. */
3196 static ds_t
3197 get_spec_check_type_for_insn (insn_t insn, expr_t expr)
3198 {
3199 ds_t to_check_ds;
3200 ds_t already_checked_ds = EXPR_SPEC_DONE_DS (INSN_EXPR (insn));
3201
3202 to_check_ds = EXPR_SPEC_TO_CHECK_DS (expr);
3203
3204 if (targetm.sched.get_insn_checked_ds)
3205 already_checked_ds |= targetm.sched.get_insn_checked_ds (insn);
3206
3207 if (spec_info != NULL
3208 && (spec_info->flags & SEL_SCHED_SPEC_DONT_CHECK_CONTROL))
3209 already_checked_ds |= BEGIN_CONTROL;
3210
3211 already_checked_ds = ds_get_speculation_types (already_checked_ds);
3212
3213 to_check_ds &= ~already_checked_ds;
3214
3215 return to_check_ds;
3216 }
3217
3218 /* Find the set of registers that are unavailable for storing expres
3219 while moving ORIG_OPS up on the path starting from INSN due to
3220 liveness (USED_REGS) or hardware restrictions (REG_RENAME_P).
3221
3222 All the original operations found during the traversal are saved in the
3223 ORIGINAL_INSNS list.
3224
3225 REG_RENAME_P denotes the set of hardware registers that
3226 can not be used with renaming due to the register class restrictions,
3227 mode restrictions and other (the register we'll choose should be
3228 compatible class with the original uses, shouldn't be in call_used_regs,
3229 should be HARD_REGNO_RENAME_OK etc).
3230
3231 Returns TRUE if we've found all original insns, FALSE otherwise.
3232
3233 This function utilizes code_motion_path_driver (formerly find_used_regs_1)
3234 to traverse the code motion paths. This helper function finds registers
3235 that are not available for storing expres while moving ORIG_OPS up on the
3236 path starting from INSN. A register considered as used on the moving path,
3237 if one of the following conditions is not satisfied:
3238
3239 (1) a register not set or read on any path from xi to an instance of
3240 the original operation,
3241 (2) not among the live registers of the point immediately following the
3242 first original operation on a given downward path, except for the
3243 original target register of the operation,
3244 (3) not live on the other path of any conditional branch that is passed
3245 by the operation, in case original operations are not present on
3246 both paths of the conditional branch.
3247
3248 All the original operations found during the traversal are saved in the
3249 ORIGINAL_INSNS list.
3250
3251 REG_RENAME_P->CROSSES_CALL is true, if there is a call insn on the path
3252 from INSN to original insn. In this case CALL_USED_REG_SET will be added
3253 to unavailable hard regs at the point original operation is found. */
3254
3255 static bool
3256 find_used_regs (insn_t insn, av_set_t orig_ops, regset used_regs,
3257 struct reg_rename *reg_rename_p, def_list_t *original_insns)
3258 {
3259 def_list_iterator i;
3260 def_t def;
3261 int res;
3262 bool needs_spec_check_p = false;
3263 expr_t expr;
3264 av_set_iterator expr_iter;
3265 struct fur_static_params sparams;
3266 struct cmpd_local_params lparams;
3267
3268 /* We haven't visited any blocks yet. */
3269 bitmap_clear (code_motion_visited_blocks);
3270
3271 /* Init parameters for code_motion_path_driver. */
3272 sparams.crosses_call = false;
3273 sparams.original_insns = original_insns;
3274 sparams.used_regs = used_regs;
3275
3276 /* Set the appropriate hooks and data. */
3277 code_motion_path_driver_info = &fur_hooks;
3278
3279 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
3280
3281 reg_rename_p->crosses_call |= sparams.crosses_call;
3282
3283 gcc_assert (res == 1);
3284 gcc_assert (original_insns && *original_insns);
3285
3286 /* ??? We calculate whether an expression needs a check when computing
3287 av sets. This information is not as precise as it could be due to
3288 merging this bit in merge_expr. We can do better in find_used_regs,
3289 but we want to avoid multiple traversals of the same code motion
3290 paths. */
3291 FOR_EACH_EXPR (expr, expr_iter, orig_ops)
3292 needs_spec_check_p |= EXPR_NEEDS_SPEC_CHECK_P (expr);
3293
3294 /* Mark hardware regs in REG_RENAME_P that are not suitable
3295 for renaming expr in INSN due to hardware restrictions (register class,
3296 modes compatibility etc). */
3297 FOR_EACH_DEF (def, i, *original_insns)
3298 {
3299 vinsn_t vinsn = INSN_VINSN (def->orig_insn);
3300
3301 if (VINSN_SEPARABLE_P (vinsn))
3302 mark_unavailable_hard_regs (def, reg_rename_p, used_regs);
3303
3304 /* Do not allow clobbering of ld.[sa] address in case some of the
3305 original operations need a check. */
3306 if (needs_spec_check_p)
3307 IOR_REG_SET (used_regs, VINSN_REG_USES (vinsn));
3308 }
3309
3310 return true;
3311 }
3312 \f
3313
3314 /* Functions to choose the best insn from available ones. */
3315
3316 /* Adjusts the priority for EXPR using the backend *_adjust_priority hook. */
3317 static int
3318 sel_target_adjust_priority (expr_t expr)
3319 {
3320 int priority = EXPR_PRIORITY (expr);
3321 int new_priority;
3322
3323 if (targetm.sched.adjust_priority)
3324 new_priority = targetm.sched.adjust_priority (EXPR_INSN_RTX (expr), priority);
3325 else
3326 new_priority = priority;
3327
3328 /* If the priority has changed, adjust EXPR_PRIORITY_ADJ accordingly. */
3329 EXPR_PRIORITY_ADJ (expr) = new_priority - EXPR_PRIORITY (expr);
3330
3331 gcc_assert (EXPR_PRIORITY_ADJ (expr) >= 0);
3332
3333 if (sched_verbose >= 4)
3334 sel_print ("sel_target_adjust_priority: insn %d, %d+%d = %d.\n",
3335 INSN_UID (EXPR_INSN_RTX (expr)), EXPR_PRIORITY (expr),
3336 EXPR_PRIORITY_ADJ (expr), new_priority);
3337
3338 return new_priority;
3339 }
3340
3341 /* Rank two available exprs for schedule. Never return 0 here. */
3342 static int
3343 sel_rank_for_schedule (const void *x, const void *y)
3344 {
3345 expr_t tmp = *(const expr_t *) y;
3346 expr_t tmp2 = *(const expr_t *) x;
3347 insn_t tmp_insn, tmp2_insn;
3348 vinsn_t tmp_vinsn, tmp2_vinsn;
3349 int val;
3350
3351 tmp_vinsn = EXPR_VINSN (tmp);
3352 tmp2_vinsn = EXPR_VINSN (tmp2);
3353 tmp_insn = EXPR_INSN_RTX (tmp);
3354 tmp2_insn = EXPR_INSN_RTX (tmp2);
3355
3356 /* Schedule debug insns as early as possible. */
3357 if (DEBUG_INSN_P (tmp_insn) && !DEBUG_INSN_P (tmp2_insn))
3358 return -1;
3359 else if (DEBUG_INSN_P (tmp2_insn))
3360 return 1;
3361
3362 /* Prefer SCHED_GROUP_P insns to any others. */
3363 if (SCHED_GROUP_P (tmp_insn) != SCHED_GROUP_P (tmp2_insn))
3364 {
3365 if (VINSN_UNIQUE_P (tmp_vinsn) && VINSN_UNIQUE_P (tmp2_vinsn))
3366 return SCHED_GROUP_P (tmp2_insn) ? 1 : -1;
3367
3368 /* Now uniqueness means SCHED_GROUP_P is set, because schedule groups
3369 cannot be cloned. */
3370 if (VINSN_UNIQUE_P (tmp2_vinsn))
3371 return 1;
3372 return -1;
3373 }
3374
3375 /* Discourage scheduling of speculative checks. */
3376 val = (sel_insn_is_speculation_check (tmp_insn)
3377 - sel_insn_is_speculation_check (tmp2_insn));
3378 if (val)
3379 return val;
3380
3381 /* Prefer not scheduled insn over scheduled one. */
3382 if (EXPR_SCHED_TIMES (tmp) > 0 || EXPR_SCHED_TIMES (tmp2) > 0)
3383 {
3384 val = EXPR_SCHED_TIMES (tmp) - EXPR_SCHED_TIMES (tmp2);
3385 if (val)
3386 return val;
3387 }
3388
3389 /* Prefer jump over non-jump instruction. */
3390 if (control_flow_insn_p (tmp_insn) && !control_flow_insn_p (tmp2_insn))
3391 return -1;
3392 else if (control_flow_insn_p (tmp2_insn) && !control_flow_insn_p (tmp_insn))
3393 return 1;
3394
3395 /* Prefer an expr with greater priority. */
3396 if (EXPR_USEFULNESS (tmp) != 0 && EXPR_USEFULNESS (tmp2) != 0)
3397 {
3398 int p2 = EXPR_PRIORITY (tmp2) + EXPR_PRIORITY_ADJ (tmp2),
3399 p1 = EXPR_PRIORITY (tmp) + EXPR_PRIORITY_ADJ (tmp);
3400
3401 val = p2 * EXPR_USEFULNESS (tmp2) - p1 * EXPR_USEFULNESS (tmp);
3402 }
3403 else
3404 val = EXPR_PRIORITY (tmp2) - EXPR_PRIORITY (tmp)
3405 + EXPR_PRIORITY_ADJ (tmp2) - EXPR_PRIORITY_ADJ (tmp);
3406 if (val)
3407 return val;
3408
3409 if (spec_info != NULL && spec_info->mask != 0)
3410 /* This code was taken from haifa-sched.c: rank_for_schedule (). */
3411 {
3412 ds_t ds1, ds2;
3413 dw_t dw1, dw2;
3414 int dw;
3415
3416 ds1 = EXPR_SPEC_DONE_DS (tmp);
3417 if (ds1)
3418 dw1 = ds_weak (ds1);
3419 else
3420 dw1 = NO_DEP_WEAK;
3421
3422 ds2 = EXPR_SPEC_DONE_DS (tmp2);
3423 if (ds2)
3424 dw2 = ds_weak (ds2);
3425 else
3426 dw2 = NO_DEP_WEAK;
3427
3428 dw = dw2 - dw1;
3429 if (dw > (NO_DEP_WEAK / 8) || dw < -(NO_DEP_WEAK / 8))
3430 return dw;
3431 }
3432
3433 /* Prefer an old insn to a bookkeeping insn. */
3434 if (INSN_UID (tmp_insn) < first_emitted_uid
3435 && INSN_UID (tmp2_insn) >= first_emitted_uid)
3436 return -1;
3437 if (INSN_UID (tmp_insn) >= first_emitted_uid
3438 && INSN_UID (tmp2_insn) < first_emitted_uid)
3439 return 1;
3440
3441 /* Prefer an insn with smaller UID, as a last resort.
3442 We can't safely use INSN_LUID as it is defined only for those insns
3443 that are in the stream. */
3444 return INSN_UID (tmp_insn) - INSN_UID (tmp2_insn);
3445 }
3446
3447 /* Filter out expressions from av set pointed to by AV_PTR
3448 that are pipelined too many times. */
3449 static void
3450 process_pipelined_exprs (av_set_t *av_ptr)
3451 {
3452 expr_t expr;
3453 av_set_iterator si;
3454
3455 /* Don't pipeline already pipelined code as that would increase
3456 number of unnecessary register moves. */
3457 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3458 {
3459 if (EXPR_SCHED_TIMES (expr)
3460 >= PARAM_VALUE (PARAM_SELSCHED_MAX_SCHED_TIMES))
3461 av_set_iter_remove (&si);
3462 }
3463 }
3464
3465 /* Filter speculative insns from AV_PTR if we don't want them. */
3466 static void
3467 process_spec_exprs (av_set_t *av_ptr)
3468 {
3469 expr_t expr;
3470 av_set_iterator si;
3471
3472 if (spec_info == NULL)
3473 return;
3474
3475 /* Scan *AV_PTR to find out if we want to consider speculative
3476 instructions for scheduling. */
3477 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3478 {
3479 ds_t ds;
3480
3481 ds = EXPR_SPEC_DONE_DS (expr);
3482
3483 /* The probability of a success is too low - don't speculate. */
3484 if ((ds & SPECULATIVE)
3485 && (ds_weak (ds) < spec_info->data_weakness_cutoff
3486 || EXPR_USEFULNESS (expr) < spec_info->control_weakness_cutoff
3487 || (pipelining_p && false
3488 && (ds & DATA_SPEC)
3489 && (ds & CONTROL_SPEC))))
3490 {
3491 av_set_iter_remove (&si);
3492 continue;
3493 }
3494 }
3495 }
3496
3497 /* Search for any use-like insns in AV_PTR and decide on scheduling
3498 them. Return one when found, and NULL otherwise.
3499 Note that we check here whether a USE could be scheduled to avoid
3500 an infinite loop later. */
3501 static expr_t
3502 process_use_exprs (av_set_t *av_ptr)
3503 {
3504 expr_t expr;
3505 av_set_iterator si;
3506 bool uses_present_p = false;
3507 bool try_uses_p = true;
3508
3509 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3510 {
3511 /* This will also initialize INSN_CODE for later use. */
3512 if (recog_memoized (EXPR_INSN_RTX (expr)) < 0)
3513 {
3514 /* If we have a USE in *AV_PTR that was not scheduled yet,
3515 do so because it will do good only. */
3516 if (EXPR_SCHED_TIMES (expr) <= 0)
3517 {
3518 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3519 return expr;
3520
3521 av_set_iter_remove (&si);
3522 }
3523 else
3524 {
3525 gcc_assert (pipelining_p);
3526
3527 uses_present_p = true;
3528 }
3529 }
3530 else
3531 try_uses_p = false;
3532 }
3533
3534 if (uses_present_p)
3535 {
3536 /* If we don't want to schedule any USEs right now and we have some
3537 in *AV_PTR, remove them, else just return the first one found. */
3538 if (!try_uses_p)
3539 {
3540 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3541 if (INSN_CODE (EXPR_INSN_RTX (expr)) < 0)
3542 av_set_iter_remove (&si);
3543 }
3544 else
3545 {
3546 FOR_EACH_EXPR_1 (expr, si, av_ptr)
3547 {
3548 gcc_assert (INSN_CODE (EXPR_INSN_RTX (expr)) < 0);
3549
3550 if (EXPR_TARGET_AVAILABLE (expr) == 1)
3551 return expr;
3552
3553 av_set_iter_remove (&si);
3554 }
3555 }
3556 }
3557
3558 return NULL;
3559 }
3560
3561 /* Lookup EXPR in VINSN_VEC and return TRUE if found. Also check patterns from
3562 EXPR's history of changes. */
3563 static bool
3564 vinsn_vec_has_expr_p (vinsn_vec_t vinsn_vec, expr_t expr)
3565 {
3566 vinsn_t vinsn, expr_vinsn;
3567 int n;
3568 unsigned i;
3569
3570 /* Start with checking expr itself and then proceed with all the old forms
3571 of expr taken from its history vector. */
3572 for (i = 0, expr_vinsn = EXPR_VINSN (expr);
3573 expr_vinsn;
3574 expr_vinsn = (i < EXPR_HISTORY_OF_CHANGES (expr).length ()
3575 ? EXPR_HISTORY_OF_CHANGES (expr)[i++].old_expr_vinsn
3576 : NULL))
3577 FOR_EACH_VEC_ELT (vinsn_vec, n, vinsn)
3578 if (VINSN_SEPARABLE_P (vinsn))
3579 {
3580 if (vinsn_equal_p (vinsn, expr_vinsn))
3581 return true;
3582 }
3583 else
3584 {
3585 /* For non-separable instructions, the blocking insn can have
3586 another pattern due to substitution, and we can't choose
3587 different register as in the above case. Check all registers
3588 being written instead. */
3589 if (bitmap_intersect_p (VINSN_REG_SETS (vinsn),
3590 VINSN_REG_SETS (expr_vinsn)))
3591 return true;
3592 }
3593
3594 return false;
3595 }
3596
3597 #ifdef ENABLE_CHECKING
3598 /* Return true if either of expressions from ORIG_OPS can be blocked
3599 by previously created bookkeeping code. STATIC_PARAMS points to static
3600 parameters of move_op. */
3601 static bool
3602 av_set_could_be_blocked_by_bookkeeping_p (av_set_t orig_ops, void *static_params)
3603 {
3604 expr_t expr;
3605 av_set_iterator iter;
3606 moveop_static_params_p sparams;
3607
3608 /* This checks that expressions in ORIG_OPS are not blocked by bookkeeping
3609 created while scheduling on another fence. */
3610 FOR_EACH_EXPR (expr, iter, orig_ops)
3611 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3612 return true;
3613
3614 gcc_assert (code_motion_path_driver_info == &move_op_hooks);
3615 sparams = (moveop_static_params_p) static_params;
3616
3617 /* Expressions can be also blocked by bookkeeping created during current
3618 move_op. */
3619 if (bitmap_bit_p (current_copies, INSN_UID (sparams->failed_insn)))
3620 FOR_EACH_EXPR (expr, iter, orig_ops)
3621 if (moveup_expr_cached (expr, sparams->failed_insn, false) != MOVEUP_EXPR_NULL)
3622 return true;
3623
3624 /* Expressions in ORIG_OPS may have wrong destination register due to
3625 renaming. Check with the right register instead. */
3626 if (sparams->dest && REG_P (sparams->dest))
3627 {
3628 rtx reg = sparams->dest;
3629 vinsn_t failed_vinsn = INSN_VINSN (sparams->failed_insn);
3630
3631 if (register_unavailable_p (VINSN_REG_SETS (failed_vinsn), reg)
3632 || register_unavailable_p (VINSN_REG_USES (failed_vinsn), reg)
3633 || register_unavailable_p (VINSN_REG_CLOBBERS (failed_vinsn), reg))
3634 return true;
3635 }
3636
3637 return false;
3638 }
3639 #endif
3640
3641 /* Clear VINSN_VEC and detach vinsns. */
3642 static void
3643 vinsn_vec_clear (vinsn_vec_t *vinsn_vec)
3644 {
3645 unsigned len = vinsn_vec->length ();
3646 if (len > 0)
3647 {
3648 vinsn_t vinsn;
3649 int n;
3650
3651 FOR_EACH_VEC_ELT (*vinsn_vec, n, vinsn)
3652 vinsn_detach (vinsn);
3653 vinsn_vec->block_remove (0, len);
3654 }
3655 }
3656
3657 /* Add the vinsn of EXPR to the VINSN_VEC. */
3658 static void
3659 vinsn_vec_add (vinsn_vec_t *vinsn_vec, expr_t expr)
3660 {
3661 vinsn_attach (EXPR_VINSN (expr));
3662 vinsn_vec->safe_push (EXPR_VINSN (expr));
3663 }
3664
3665 /* Free the vector representing blocked expressions. */
3666 static void
3667 vinsn_vec_free (vinsn_vec_t &vinsn_vec)
3668 {
3669 vinsn_vec.release ();
3670 }
3671
3672 /* Increase EXPR_PRIORITY_ADJ for INSN by AMOUNT. */
3673
3674 void sel_add_to_insn_priority (rtx insn, int amount)
3675 {
3676 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)) += amount;
3677
3678 if (sched_verbose >= 2)
3679 sel_print ("sel_add_to_insn_priority: insn %d, by %d (now %d+%d).\n",
3680 INSN_UID (insn), amount, EXPR_PRIORITY (INSN_EXPR (insn)),
3681 EXPR_PRIORITY_ADJ (INSN_EXPR (insn)));
3682 }
3683
3684 /* Turn AV into a vector, filter inappropriate insns and sort it. Return
3685 true if there is something to schedule. BNDS and FENCE are current
3686 boundaries and fence, respectively. If we need to stall for some cycles
3687 before an expr from AV would become available, write this number to
3688 *PNEED_STALL. */
3689 static bool
3690 fill_vec_av_set (av_set_t av, blist_t bnds, fence_t fence,
3691 int *pneed_stall)
3692 {
3693 av_set_iterator si;
3694 expr_t expr;
3695 int sched_next_worked = 0, stalled, n;
3696 static int av_max_prio, est_ticks_till_branch;
3697 int min_need_stall = -1;
3698 deps_t dc = BND_DC (BLIST_BND (bnds));
3699
3700 /* Bail out early when the ready list contained only USEs/CLOBBERs that are
3701 already scheduled. */
3702 if (av == NULL)
3703 return false;
3704
3705 /* Empty vector from the previous stuff. */
3706 if (vec_av_set.length () > 0)
3707 vec_av_set.block_remove (0, vec_av_set.length ());
3708
3709 /* Turn the set into a vector for sorting and call sel_target_adjust_priority
3710 for each insn. */
3711 gcc_assert (vec_av_set.is_empty ());
3712 FOR_EACH_EXPR (expr, si, av)
3713 {
3714 vec_av_set.safe_push (expr);
3715
3716 gcc_assert (EXPR_PRIORITY_ADJ (expr) == 0 || *pneed_stall);
3717
3718 /* Adjust priority using target backend hook. */
3719 sel_target_adjust_priority (expr);
3720 }
3721
3722 /* Sort the vector. */
3723 vec_av_set.qsort (sel_rank_for_schedule);
3724
3725 /* We record maximal priority of insns in av set for current instruction
3726 group. */
3727 if (FENCE_STARTS_CYCLE_P (fence))
3728 av_max_prio = est_ticks_till_branch = INT_MIN;
3729
3730 /* Filter out inappropriate expressions. Loop's direction is reversed to
3731 visit "best" instructions first. We assume that vec::unordered_remove
3732 moves last element in place of one being deleted. */
3733 for (n = vec_av_set.length () - 1, stalled = 0; n >= 0; n--)
3734 {
3735 expr_t expr = vec_av_set[n];
3736 insn_t insn = EXPR_INSN_RTX (expr);
3737 signed char target_available;
3738 bool is_orig_reg_p = true;
3739 int need_cycles, new_prio;
3740 bool fence_insn_p = INSN_UID (insn) == INSN_UID (FENCE_INSN (fence));
3741
3742 /* Don't allow any insns other than from SCHED_GROUP if we have one. */
3743 if (FENCE_SCHED_NEXT (fence) && insn != FENCE_SCHED_NEXT (fence))
3744 {
3745 vec_av_set.unordered_remove (n);
3746 continue;
3747 }
3748
3749 /* Set number of sched_next insns (just in case there
3750 could be several). */
3751 if (FENCE_SCHED_NEXT (fence))
3752 sched_next_worked++;
3753
3754 /* Check all liveness requirements and try renaming.
3755 FIXME: try to minimize calls to this. */
3756 target_available = EXPR_TARGET_AVAILABLE (expr);
3757
3758 /* If insn was already scheduled on the current fence,
3759 set TARGET_AVAILABLE to -1 no matter what expr's attribute says. */
3760 if (vinsn_vec_has_expr_p (vec_target_unavailable_vinsns, expr)
3761 && !fence_insn_p)
3762 target_available = -1;
3763
3764 /* If the availability of the EXPR is invalidated by the insertion of
3765 bookkeeping earlier, make sure that we won't choose this expr for
3766 scheduling if it's not separable, and if it is separable, then
3767 we have to recompute the set of available registers for it. */
3768 if (vinsn_vec_has_expr_p (vec_bookkeeping_blocked_vinsns, expr))
3769 {
3770 vec_av_set.unordered_remove (n);
3771 if (sched_verbose >= 4)
3772 sel_print ("Expr %d is blocked by bookkeeping inserted earlier\n",
3773 INSN_UID (insn));
3774 continue;
3775 }
3776
3777 if (target_available == true)
3778 {
3779 /* Do nothing -- we can use an existing register. */
3780 is_orig_reg_p = EXPR_SEPARABLE_P (expr);
3781 }
3782 else if (/* Non-separable instruction will never
3783 get another register. */
3784 (target_available == false
3785 && !EXPR_SEPARABLE_P (expr))
3786 /* Don't try to find a register for low-priority expression. */
3787 || (int) vec_av_set.length () - 1 - n >= max_insns_to_rename
3788 /* ??? FIXME: Don't try to rename data speculation. */
3789 || (EXPR_SPEC_DONE_DS (expr) & BEGIN_DATA)
3790 || ! find_best_reg_for_expr (expr, bnds, &is_orig_reg_p))
3791 {
3792 vec_av_set.unordered_remove (n);
3793 if (sched_verbose >= 4)
3794 sel_print ("Expr %d has no suitable target register\n",
3795 INSN_UID (insn));
3796
3797 /* A fence insn should not get here. */
3798 gcc_assert (!fence_insn_p);
3799 continue;
3800 }
3801
3802 /* At this point a fence insn should always be available. */
3803 gcc_assert (!fence_insn_p
3804 || INSN_UID (FENCE_INSN (fence)) == INSN_UID (EXPR_INSN_RTX (expr)));
3805
3806 /* Filter expressions that need to be renamed or speculated when
3807 pipelining, because compensating register copies or speculation
3808 checks are likely to be placed near the beginning of the loop,
3809 causing a stall. */
3810 if (pipelining_p && EXPR_ORIG_SCHED_CYCLE (expr) > 0
3811 && (!is_orig_reg_p || EXPR_SPEC_DONE_DS (expr) != 0))
3812 {
3813 /* Estimation of number of cycles until loop branch for
3814 renaming/speculation to be successful. */
3815 int need_n_ticks_till_branch = sel_vinsn_cost (EXPR_VINSN (expr));
3816
3817 if ((int) current_loop_nest->ninsns < 9)
3818 {
3819 vec_av_set.unordered_remove (n);
3820 if (sched_verbose >= 4)
3821 sel_print ("Pipelining expr %d will likely cause stall\n",
3822 INSN_UID (insn));
3823 continue;
3824 }
3825
3826 if ((int) current_loop_nest->ninsns - num_insns_scheduled
3827 < need_n_ticks_till_branch * issue_rate / 2
3828 && est_ticks_till_branch < need_n_ticks_till_branch)
3829 {
3830 vec_av_set.unordered_remove (n);
3831 if (sched_verbose >= 4)
3832 sel_print ("Pipelining expr %d will likely cause stall\n",
3833 INSN_UID (insn));
3834 continue;
3835 }
3836 }
3837
3838 /* We want to schedule speculation checks as late as possible. Discard
3839 them from av set if there are instructions with higher priority. */
3840 if (sel_insn_is_speculation_check (insn)
3841 && EXPR_PRIORITY (expr) < av_max_prio)
3842 {
3843 stalled++;
3844 min_need_stall = min_need_stall < 0 ? 1 : MIN (min_need_stall, 1);
3845 vec_av_set.unordered_remove (n);
3846 if (sched_verbose >= 4)
3847 sel_print ("Delaying speculation check %d until its first use\n",
3848 INSN_UID (insn));
3849 continue;
3850 }
3851
3852 /* Ignore EXPRs available from pipelining to update AV_MAX_PRIO. */
3853 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3854 av_max_prio = MAX (av_max_prio, EXPR_PRIORITY (expr));
3855
3856 /* Don't allow any insns whose data is not yet ready.
3857 Check first whether we've already tried them and failed. */
3858 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
3859 {
3860 need_cycles = (FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3861 - FENCE_CYCLE (fence));
3862 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3863 est_ticks_till_branch = MAX (est_ticks_till_branch,
3864 EXPR_PRIORITY (expr) + need_cycles);
3865
3866 if (need_cycles > 0)
3867 {
3868 stalled++;
3869 min_need_stall = (min_need_stall < 0
3870 ? need_cycles
3871 : MIN (min_need_stall, need_cycles));
3872 vec_av_set.unordered_remove (n);
3873
3874 if (sched_verbose >= 4)
3875 sel_print ("Expr %d is not ready until cycle %d (cached)\n",
3876 INSN_UID (insn),
3877 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3878 continue;
3879 }
3880 }
3881
3882 /* Now resort to dependence analysis to find whether EXPR might be
3883 stalled due to dependencies from FENCE's context. */
3884 need_cycles = tick_check_p (expr, dc, fence);
3885 new_prio = EXPR_PRIORITY (expr) + EXPR_PRIORITY_ADJ (expr) + need_cycles;
3886
3887 if (EXPR_ORIG_SCHED_CYCLE (expr) <= 0)
3888 est_ticks_till_branch = MAX (est_ticks_till_branch,
3889 new_prio);
3890
3891 if (need_cycles > 0)
3892 {
3893 if (INSN_UID (insn) >= FENCE_READY_TICKS_SIZE (fence))
3894 {
3895 int new_size = INSN_UID (insn) * 3 / 2;
3896
3897 FENCE_READY_TICKS (fence)
3898 = (int *) xrecalloc (FENCE_READY_TICKS (fence),
3899 new_size, FENCE_READY_TICKS_SIZE (fence),
3900 sizeof (int));
3901 }
3902 FENCE_READY_TICKS (fence)[INSN_UID (insn)]
3903 = FENCE_CYCLE (fence) + need_cycles;
3904
3905 stalled++;
3906 min_need_stall = (min_need_stall < 0
3907 ? need_cycles
3908 : MIN (min_need_stall, need_cycles));
3909
3910 vec_av_set.unordered_remove (n);
3911
3912 if (sched_verbose >= 4)
3913 sel_print ("Expr %d is not ready yet until cycle %d\n",
3914 INSN_UID (insn),
3915 FENCE_READY_TICKS (fence)[INSN_UID (insn)]);
3916 continue;
3917 }
3918
3919 if (sched_verbose >= 4)
3920 sel_print ("Expr %d is ok\n", INSN_UID (insn));
3921 min_need_stall = 0;
3922 }
3923
3924 /* Clear SCHED_NEXT. */
3925 if (FENCE_SCHED_NEXT (fence))
3926 {
3927 gcc_assert (sched_next_worked == 1);
3928 FENCE_SCHED_NEXT (fence) = NULL;
3929 }
3930
3931 /* No need to stall if this variable was not initialized. */
3932 if (min_need_stall < 0)
3933 min_need_stall = 0;
3934
3935 if (vec_av_set.is_empty ())
3936 {
3937 /* We need to set *pneed_stall here, because later we skip this code
3938 when ready list is empty. */
3939 *pneed_stall = min_need_stall;
3940 return false;
3941 }
3942 else
3943 gcc_assert (min_need_stall == 0);
3944
3945 /* Sort the vector. */
3946 vec_av_set.qsort (sel_rank_for_schedule);
3947
3948 if (sched_verbose >= 4)
3949 {
3950 sel_print ("Total ready exprs: %d, stalled: %d\n",
3951 vec_av_set.length (), stalled);
3952 sel_print ("Sorted av set (%d): ", vec_av_set.length ());
3953 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3954 dump_expr (expr);
3955 sel_print ("\n");
3956 }
3957
3958 *pneed_stall = 0;
3959 return true;
3960 }
3961
3962 /* Convert a vectored and sorted av set to the ready list that
3963 the rest of the backend wants to see. */
3964 static void
3965 convert_vec_av_set_to_ready (void)
3966 {
3967 int n;
3968 expr_t expr;
3969
3970 /* Allocate and fill the ready list from the sorted vector. */
3971 ready.n_ready = vec_av_set.length ();
3972 ready.first = ready.n_ready - 1;
3973
3974 gcc_assert (ready.n_ready > 0);
3975
3976 if (ready.n_ready > max_issue_size)
3977 {
3978 max_issue_size = ready.n_ready;
3979 sched_extend_ready_list (ready.n_ready);
3980 }
3981
3982 FOR_EACH_VEC_ELT (vec_av_set, n, expr)
3983 {
3984 vinsn_t vi = EXPR_VINSN (expr);
3985 insn_t insn = VINSN_INSN_RTX (vi);
3986
3987 ready_try[n] = 0;
3988 ready.vec[n] = insn;
3989 }
3990 }
3991
3992 /* Initialize ready list from *AV_PTR for the max_issue () call.
3993 If any unrecognizable insn found in *AV_PTR, return it (and skip
3994 max_issue). BND and FENCE are current boundary and fence,
3995 respectively. If we need to stall for some cycles before an expr
3996 from *AV_PTR would become available, write this number to *PNEED_STALL. */
3997 static expr_t
3998 fill_ready_list (av_set_t *av_ptr, blist_t bnds, fence_t fence,
3999 int *pneed_stall)
4000 {
4001 expr_t expr;
4002
4003 /* We do not support multiple boundaries per fence. */
4004 gcc_assert (BLIST_NEXT (bnds) == NULL);
4005
4006 /* Process expressions required special handling, i.e. pipelined,
4007 speculative and recog() < 0 expressions first. */
4008 process_pipelined_exprs (av_ptr);
4009 process_spec_exprs (av_ptr);
4010
4011 /* A USE could be scheduled immediately. */
4012 expr = process_use_exprs (av_ptr);
4013 if (expr)
4014 {
4015 *pneed_stall = 0;
4016 return expr;
4017 }
4018
4019 /* Turn the av set to a vector for sorting. */
4020 if (! fill_vec_av_set (*av_ptr, bnds, fence, pneed_stall))
4021 {
4022 ready.n_ready = 0;
4023 return NULL;
4024 }
4025
4026 /* Build the final ready list. */
4027 convert_vec_av_set_to_ready ();
4028 return NULL;
4029 }
4030
4031 /* Wrapper for dfa_new_cycle (). Returns TRUE if cycle was advanced. */
4032 static bool
4033 sel_dfa_new_cycle (insn_t insn, fence_t fence)
4034 {
4035 int last_scheduled_cycle = FENCE_LAST_SCHEDULED_INSN (fence)
4036 ? INSN_SCHED_CYCLE (FENCE_LAST_SCHEDULED_INSN (fence))
4037 : FENCE_CYCLE (fence) - 1;
4038 bool res = false;
4039 int sort_p = 0;
4040
4041 if (!targetm.sched.dfa_new_cycle)
4042 return false;
4043
4044 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4045
4046 while (!sort_p && targetm.sched.dfa_new_cycle (sched_dump, sched_verbose,
4047 insn, last_scheduled_cycle,
4048 FENCE_CYCLE (fence), &sort_p))
4049 {
4050 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4051 advance_one_cycle (fence);
4052 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4053 res = true;
4054 }
4055
4056 return res;
4057 }
4058
4059 /* Invoke reorder* target hooks on the ready list. Return the number of insns
4060 we can issue. FENCE is the current fence. */
4061 static int
4062 invoke_reorder_hooks (fence_t fence)
4063 {
4064 int issue_more;
4065 bool ran_hook = false;
4066
4067 /* Call the reorder hook at the beginning of the cycle, and call
4068 the reorder2 hook in the middle of the cycle. */
4069 if (FENCE_ISSUED_INSNS (fence) == 0)
4070 {
4071 if (targetm.sched.reorder
4072 && !SCHED_GROUP_P (ready_element (&ready, 0))
4073 && ready.n_ready > 1)
4074 {
4075 /* Don't give reorder the most prioritized insn as it can break
4076 pipelining. */
4077 if (pipelining_p)
4078 --ready.n_ready;
4079
4080 issue_more
4081 = targetm.sched.reorder (sched_dump, sched_verbose,
4082 ready_lastpos (&ready),
4083 &ready.n_ready, FENCE_CYCLE (fence));
4084
4085 if (pipelining_p)
4086 ++ready.n_ready;
4087
4088 ran_hook = true;
4089 }
4090 else
4091 /* Initialize can_issue_more for variable_issue. */
4092 issue_more = issue_rate;
4093 }
4094 else if (targetm.sched.reorder2
4095 && !SCHED_GROUP_P (ready_element (&ready, 0)))
4096 {
4097 if (ready.n_ready == 1)
4098 issue_more =
4099 targetm.sched.reorder2 (sched_dump, sched_verbose,
4100 ready_lastpos (&ready),
4101 &ready.n_ready, FENCE_CYCLE (fence));
4102 else
4103 {
4104 if (pipelining_p)
4105 --ready.n_ready;
4106
4107 issue_more =
4108 targetm.sched.reorder2 (sched_dump, sched_verbose,
4109 ready.n_ready
4110 ? ready_lastpos (&ready) : NULL,
4111 &ready.n_ready, FENCE_CYCLE (fence));
4112
4113 if (pipelining_p)
4114 ++ready.n_ready;
4115 }
4116
4117 ran_hook = true;
4118 }
4119 else
4120 issue_more = FENCE_ISSUE_MORE (fence);
4121
4122 /* Ensure that ready list and vec_av_set are in line with each other,
4123 i.e. vec_av_set[i] == ready_element (&ready, i). */
4124 if (issue_more && ran_hook)
4125 {
4126 int i, j, n;
4127 rtx_insn **arr = ready.vec;
4128 expr_t *vec = vec_av_set.address ();
4129
4130 for (i = 0, n = ready.n_ready; i < n; i++)
4131 if (EXPR_INSN_RTX (vec[i]) != arr[i])
4132 {
4133 for (j = i; j < n; j++)
4134 if (EXPR_INSN_RTX (vec[j]) == arr[i])
4135 break;
4136 gcc_assert (j < n);
4137
4138 std::swap (vec[i], vec[j]);
4139 }
4140 }
4141
4142 return issue_more;
4143 }
4144
4145 /* Return an EXPR corresponding to INDEX element of ready list, if
4146 FOLLOW_READY_ELEMENT is true (i.e., an expr of
4147 ready_element (&ready, INDEX) will be returned), and to INDEX element of
4148 ready.vec otherwise. */
4149 static inline expr_t
4150 find_expr_for_ready (int index, bool follow_ready_element)
4151 {
4152 expr_t expr;
4153 int real_index;
4154
4155 real_index = follow_ready_element ? ready.first - index : index;
4156
4157 expr = vec_av_set[real_index];
4158 gcc_assert (ready.vec[real_index] == EXPR_INSN_RTX (expr));
4159
4160 return expr;
4161 }
4162
4163 /* Calculate insns worth trying via lookahead_guard hook. Return a number
4164 of such insns found. */
4165 static int
4166 invoke_dfa_lookahead_guard (void)
4167 {
4168 int i, n;
4169 bool have_hook
4170 = targetm.sched.first_cycle_multipass_dfa_lookahead_guard != NULL;
4171
4172 if (sched_verbose >= 2)
4173 sel_print ("ready after reorder: ");
4174
4175 for (i = 0, n = 0; i < ready.n_ready; i++)
4176 {
4177 expr_t expr;
4178 insn_t insn;
4179 int r;
4180
4181 /* In this loop insn is Ith element of the ready list given by
4182 ready_element, not Ith element of ready.vec. */
4183 insn = ready_element (&ready, i);
4184
4185 if (! have_hook || i == 0)
4186 r = 0;
4187 else
4188 r = targetm.sched.first_cycle_multipass_dfa_lookahead_guard (insn, i);
4189
4190 gcc_assert (INSN_CODE (insn) >= 0);
4191
4192 /* Only insns with ready_try = 0 can get here
4193 from fill_ready_list. */
4194 gcc_assert (ready_try [i] == 0);
4195 ready_try[i] = r;
4196 if (!r)
4197 n++;
4198
4199 expr = find_expr_for_ready (i, true);
4200
4201 if (sched_verbose >= 2)
4202 {
4203 dump_vinsn (EXPR_VINSN (expr));
4204 sel_print (":%d; ", ready_try[i]);
4205 }
4206 }
4207
4208 if (sched_verbose >= 2)
4209 sel_print ("\n");
4210 return n;
4211 }
4212
4213 /* Calculate the number of privileged insns and return it. */
4214 static int
4215 calculate_privileged_insns (void)
4216 {
4217 expr_t cur_expr, min_spec_expr = NULL;
4218 int privileged_n = 0, i;
4219
4220 for (i = 0; i < ready.n_ready; i++)
4221 {
4222 if (ready_try[i])
4223 continue;
4224
4225 if (! min_spec_expr)
4226 min_spec_expr = find_expr_for_ready (i, true);
4227
4228 cur_expr = find_expr_for_ready (i, true);
4229
4230 if (EXPR_SPEC (cur_expr) > EXPR_SPEC (min_spec_expr))
4231 break;
4232
4233 ++privileged_n;
4234 }
4235
4236 if (i == ready.n_ready)
4237 privileged_n = 0;
4238
4239 if (sched_verbose >= 2)
4240 sel_print ("privileged_n: %d insns with SPEC %d\n",
4241 privileged_n, privileged_n ? EXPR_SPEC (min_spec_expr) : -1);
4242 return privileged_n;
4243 }
4244
4245 /* Call the rest of the hooks after the choice was made. Return
4246 the number of insns that still can be issued given that the current
4247 number is ISSUE_MORE. FENCE and BEST_INSN are the current fence
4248 and the insn chosen for scheduling, respectively. */
4249 static int
4250 invoke_aftermath_hooks (fence_t fence, rtx_insn *best_insn, int issue_more)
4251 {
4252 gcc_assert (INSN_P (best_insn));
4253
4254 /* First, call dfa_new_cycle, and then variable_issue, if available. */
4255 sel_dfa_new_cycle (best_insn, fence);
4256
4257 if (targetm.sched.variable_issue)
4258 {
4259 memcpy (curr_state, FENCE_STATE (fence), dfa_state_size);
4260 issue_more =
4261 targetm.sched.variable_issue (sched_dump, sched_verbose, best_insn,
4262 issue_more);
4263 memcpy (FENCE_STATE (fence), curr_state, dfa_state_size);
4264 }
4265 else if (GET_CODE (PATTERN (best_insn)) != USE
4266 && GET_CODE (PATTERN (best_insn)) != CLOBBER)
4267 issue_more--;
4268
4269 return issue_more;
4270 }
4271
4272 /* Estimate the cost of issuing INSN on DFA state STATE. */
4273 static int
4274 estimate_insn_cost (rtx_insn *insn, state_t state)
4275 {
4276 static state_t temp = NULL;
4277 int cost;
4278
4279 if (!temp)
4280 temp = xmalloc (dfa_state_size);
4281
4282 memcpy (temp, state, dfa_state_size);
4283 cost = state_transition (temp, insn);
4284
4285 if (cost < 0)
4286 return 0;
4287 else if (cost == 0)
4288 return 1;
4289 return cost;
4290 }
4291
4292 /* Return the cost of issuing EXPR on the FENCE as estimated by DFA.
4293 This function properly handles ASMs, USEs etc. */
4294 static int
4295 get_expr_cost (expr_t expr, fence_t fence)
4296 {
4297 rtx_insn *insn = EXPR_INSN_RTX (expr);
4298
4299 if (recog_memoized (insn) < 0)
4300 {
4301 if (!FENCE_STARTS_CYCLE_P (fence)
4302 && INSN_ASM_P (insn))
4303 /* This is asm insn which is tryed to be issued on the
4304 cycle not first. Issue it on the next cycle. */
4305 return 1;
4306 else
4307 /* A USE insn, or something else we don't need to
4308 understand. We can't pass these directly to
4309 state_transition because it will trigger a
4310 fatal error for unrecognizable insns. */
4311 return 0;
4312 }
4313 else
4314 return estimate_insn_cost (insn, FENCE_STATE (fence));
4315 }
4316
4317 /* Find the best insn for scheduling, either via max_issue or just take
4318 the most prioritized available. */
4319 static int
4320 choose_best_insn (fence_t fence, int privileged_n, int *index)
4321 {
4322 int can_issue = 0;
4323
4324 if (dfa_lookahead > 0)
4325 {
4326 cycle_issued_insns = FENCE_ISSUED_INSNS (fence);
4327 /* TODO: pass equivalent of first_cycle_insn_p to max_issue (). */
4328 can_issue = max_issue (&ready, privileged_n,
4329 FENCE_STATE (fence), true, index);
4330 if (sched_verbose >= 2)
4331 sel_print ("max_issue: we can issue %d insns, already did %d insns\n",
4332 can_issue, FENCE_ISSUED_INSNS (fence));
4333 }
4334 else
4335 {
4336 /* We can't use max_issue; just return the first available element. */
4337 int i;
4338
4339 for (i = 0; i < ready.n_ready; i++)
4340 {
4341 expr_t expr = find_expr_for_ready (i, true);
4342
4343 if (get_expr_cost (expr, fence) < 1)
4344 {
4345 can_issue = can_issue_more;
4346 *index = i;
4347
4348 if (sched_verbose >= 2)
4349 sel_print ("using %dth insn from the ready list\n", i + 1);
4350
4351 break;
4352 }
4353 }
4354
4355 if (i == ready.n_ready)
4356 {
4357 can_issue = 0;
4358 *index = -1;
4359 }
4360 }
4361
4362 return can_issue;
4363 }
4364
4365 /* Choose the best expr from *AV_VLIW_PTR and a suitable register for it.
4366 BNDS and FENCE are current boundaries and scheduling fence respectively.
4367 Return the expr found and NULL if nothing can be issued atm.
4368 Write to PNEED_STALL the number of cycles to stall if no expr was found. */
4369 static expr_t
4370 find_best_expr (av_set_t *av_vliw_ptr, blist_t bnds, fence_t fence,
4371 int *pneed_stall)
4372 {
4373 expr_t best;
4374
4375 /* Choose the best insn for scheduling via:
4376 1) sorting the ready list based on priority;
4377 2) calling the reorder hook;
4378 3) calling max_issue. */
4379 best = fill_ready_list (av_vliw_ptr, bnds, fence, pneed_stall);
4380 if (best == NULL && ready.n_ready > 0)
4381 {
4382 int privileged_n, index;
4383
4384 can_issue_more = invoke_reorder_hooks (fence);
4385 if (can_issue_more > 0)
4386 {
4387 /* Try choosing the best insn until we find one that is could be
4388 scheduled due to liveness restrictions on its destination register.
4389 In the future, we'd like to choose once and then just probe insns
4390 in the order of their priority. */
4391 invoke_dfa_lookahead_guard ();
4392 privileged_n = calculate_privileged_insns ();
4393 can_issue_more = choose_best_insn (fence, privileged_n, &index);
4394 if (can_issue_more)
4395 best = find_expr_for_ready (index, true);
4396 }
4397 /* We had some available insns, so if we can't issue them,
4398 we have a stall. */
4399 if (can_issue_more == 0)
4400 {
4401 best = NULL;
4402 *pneed_stall = 1;
4403 }
4404 }
4405
4406 if (best != NULL)
4407 {
4408 can_issue_more = invoke_aftermath_hooks (fence, EXPR_INSN_RTX (best),
4409 can_issue_more);
4410 if (targetm.sched.variable_issue
4411 && can_issue_more == 0)
4412 *pneed_stall = 1;
4413 }
4414
4415 if (sched_verbose >= 2)
4416 {
4417 if (best != NULL)
4418 {
4419 sel_print ("Best expression (vliw form): ");
4420 dump_expr (best);
4421 sel_print ("; cycle %d\n", FENCE_CYCLE (fence));
4422 }
4423 else
4424 sel_print ("No best expr found!\n");
4425 }
4426
4427 return best;
4428 }
4429 \f
4430
4431 /* Functions that implement the core of the scheduler. */
4432
4433
4434 /* Emit an instruction from EXPR with SEQNO and VINSN after
4435 PLACE_TO_INSERT. */
4436 static insn_t
4437 emit_insn_from_expr_after (expr_t expr, vinsn_t vinsn, int seqno,
4438 insn_t place_to_insert)
4439 {
4440 /* This assert fails when we have identical instructions
4441 one of which dominates the other. In this case move_op ()
4442 finds the first instruction and doesn't search for second one.
4443 The solution would be to compute av_set after the first found
4444 insn and, if insn present in that set, continue searching.
4445 For now we workaround this issue in move_op. */
4446 gcc_assert (!INSN_IN_STREAM_P (EXPR_INSN_RTX (expr)));
4447
4448 if (EXPR_WAS_RENAMED (expr))
4449 {
4450 unsigned regno = expr_dest_regno (expr);
4451
4452 if (HARD_REGISTER_NUM_P (regno))
4453 {
4454 df_set_regs_ever_live (regno, true);
4455 reg_rename_tick[regno] = ++reg_rename_this_tick;
4456 }
4457 }
4458
4459 return sel_gen_insn_from_expr_after (expr, vinsn, seqno,
4460 place_to_insert);
4461 }
4462
4463 /* Return TRUE if BB can hold bookkeeping code. */
4464 static bool
4465 block_valid_for_bookkeeping_p (basic_block bb)
4466 {
4467 insn_t bb_end = BB_END (bb);
4468
4469 if (!in_current_region_p (bb) || EDGE_COUNT (bb->succs) > 1)
4470 return false;
4471
4472 if (INSN_P (bb_end))
4473 {
4474 if (INSN_SCHED_TIMES (bb_end) > 0)
4475 return false;
4476 }
4477 else
4478 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (bb_end));
4479
4480 return true;
4481 }
4482
4483 /* Attempt to find a block that can hold bookkeeping code for path(s) incoming
4484 into E2->dest, except from E1->src (there may be a sequence of empty basic
4485 blocks between E1->src and E2->dest). Return found block, or NULL if new
4486 one must be created. If LAX holds, don't assume there is a simple path
4487 from E1->src to E2->dest. */
4488 static basic_block
4489 find_block_for_bookkeeping (edge e1, edge e2, bool lax)
4490 {
4491 basic_block candidate_block = NULL;
4492 edge e;
4493
4494 /* Loop over edges from E1 to E2, inclusive. */
4495 for (e = e1; !lax || e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun); e =
4496 EDGE_SUCC (e->dest, 0))
4497 {
4498 if (EDGE_COUNT (e->dest->preds) == 2)
4499 {
4500 if (candidate_block == NULL)
4501 candidate_block = (EDGE_PRED (e->dest, 0) == e
4502 ? EDGE_PRED (e->dest, 1)->src
4503 : EDGE_PRED (e->dest, 0)->src);
4504 else
4505 /* Found additional edge leading to path from e1 to e2
4506 from aside. */
4507 return NULL;
4508 }
4509 else if (EDGE_COUNT (e->dest->preds) > 2)
4510 /* Several edges leading to path from e1 to e2 from aside. */
4511 return NULL;
4512
4513 if (e == e2)
4514 return ((!lax || candidate_block)
4515 && block_valid_for_bookkeeping_p (candidate_block)
4516 ? candidate_block
4517 : NULL);
4518
4519 if (lax && EDGE_COUNT (e->dest->succs) != 1)
4520 return NULL;
4521 }
4522
4523 if (lax)
4524 return NULL;
4525
4526 gcc_unreachable ();
4527 }
4528
4529 /* Create new basic block for bookkeeping code for path(s) incoming into
4530 E2->dest, except from E1->src. Return created block. */
4531 static basic_block
4532 create_block_for_bookkeeping (edge e1, edge e2)
4533 {
4534 basic_block new_bb, bb = e2->dest;
4535
4536 /* Check that we don't spoil the loop structure. */
4537 if (current_loop_nest)
4538 {
4539 basic_block latch = current_loop_nest->latch;
4540
4541 /* We do not split header. */
4542 gcc_assert (e2->dest != current_loop_nest->header);
4543
4544 /* We do not redirect the only edge to the latch block. */
4545 gcc_assert (e1->dest != latch
4546 || !single_pred_p (latch)
4547 || e1 != single_pred_edge (latch));
4548 }
4549
4550 /* Split BB to insert BOOK_INSN there. */
4551 new_bb = sched_split_block (bb, NULL);
4552
4553 /* Move note_list from the upper bb. */
4554 gcc_assert (BB_NOTE_LIST (new_bb) == NULL_RTX);
4555 BB_NOTE_LIST (new_bb) = BB_NOTE_LIST (bb);
4556 BB_NOTE_LIST (bb) = NULL;
4557
4558 gcc_assert (e2->dest == bb);
4559
4560 /* Skip block for bookkeeping copy when leaving E1->src. */
4561 if (e1->flags & EDGE_FALLTHRU)
4562 sel_redirect_edge_and_branch_force (e1, new_bb);
4563 else
4564 sel_redirect_edge_and_branch (e1, new_bb);
4565
4566 gcc_assert (e1->dest == new_bb);
4567 gcc_assert (sel_bb_empty_p (bb));
4568
4569 /* To keep basic block numbers in sync between debug and non-debug
4570 compilations, we have to rotate blocks here. Consider that we
4571 started from (a,b)->d, (c,d)->e, and d contained only debug
4572 insns. It would have been removed before if the debug insns
4573 weren't there, so we'd have split e rather than d. So what we do
4574 now is to swap the block numbers of new_bb and
4575 single_succ(new_bb) == e, so that the insns that were in e before
4576 get the new block number. */
4577
4578 if (MAY_HAVE_DEBUG_INSNS)
4579 {
4580 basic_block succ;
4581 insn_t insn = sel_bb_head (new_bb);
4582 insn_t last;
4583
4584 if (DEBUG_INSN_P (insn)
4585 && single_succ_p (new_bb)
4586 && (succ = single_succ (new_bb))
4587 && succ != EXIT_BLOCK_PTR_FOR_FN (cfun)
4588 && DEBUG_INSN_P ((last = sel_bb_end (new_bb))))
4589 {
4590 while (insn != last && (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4591 insn = NEXT_INSN (insn);
4592
4593 if (insn == last)
4594 {
4595 sel_global_bb_info_def gbi;
4596 sel_region_bb_info_def rbi;
4597
4598 if (sched_verbose >= 2)
4599 sel_print ("Swapping block ids %i and %i\n",
4600 new_bb->index, succ->index);
4601
4602 std::swap (new_bb->index, succ->index);
4603
4604 SET_BASIC_BLOCK_FOR_FN (cfun, new_bb->index, new_bb);
4605 SET_BASIC_BLOCK_FOR_FN (cfun, succ->index, succ);
4606
4607 memcpy (&gbi, SEL_GLOBAL_BB_INFO (new_bb), sizeof (gbi));
4608 memcpy (SEL_GLOBAL_BB_INFO (new_bb), SEL_GLOBAL_BB_INFO (succ),
4609 sizeof (gbi));
4610 memcpy (SEL_GLOBAL_BB_INFO (succ), &gbi, sizeof (gbi));
4611
4612 memcpy (&rbi, SEL_REGION_BB_INFO (new_bb), sizeof (rbi));
4613 memcpy (SEL_REGION_BB_INFO (new_bb), SEL_REGION_BB_INFO (succ),
4614 sizeof (rbi));
4615 memcpy (SEL_REGION_BB_INFO (succ), &rbi, sizeof (rbi));
4616
4617 std::swap (BLOCK_TO_BB (new_bb->index),
4618 BLOCK_TO_BB (succ->index));
4619
4620 std::swap (CONTAINING_RGN (new_bb->index),
4621 CONTAINING_RGN (succ->index));
4622
4623 for (int i = 0; i < current_nr_blocks; i++)
4624 if (BB_TO_BLOCK (i) == succ->index)
4625 BB_TO_BLOCK (i) = new_bb->index;
4626 else if (BB_TO_BLOCK (i) == new_bb->index)
4627 BB_TO_BLOCK (i) = succ->index;
4628
4629 FOR_BB_INSNS (new_bb, insn)
4630 if (INSN_P (insn))
4631 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = new_bb->index;
4632
4633 FOR_BB_INSNS (succ, insn)
4634 if (INSN_P (insn))
4635 EXPR_ORIG_BB_INDEX (INSN_EXPR (insn)) = succ->index;
4636
4637 if (bitmap_clear_bit (code_motion_visited_blocks, new_bb->index))
4638 bitmap_set_bit (code_motion_visited_blocks, succ->index);
4639
4640 gcc_assert (LABEL_P (BB_HEAD (new_bb))
4641 && LABEL_P (BB_HEAD (succ)));
4642
4643 if (sched_verbose >= 4)
4644 sel_print ("Swapping code labels %i and %i\n",
4645 CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4646 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4647
4648 std::swap (CODE_LABEL_NUMBER (BB_HEAD (new_bb)),
4649 CODE_LABEL_NUMBER (BB_HEAD (succ)));
4650 }
4651 }
4652 }
4653
4654 return bb;
4655 }
4656
4657 /* Return insn after which we must insert bookkeeping code for path(s) incoming
4658 into E2->dest, except from E1->src. If the returned insn immediately
4659 precedes a fence, assign that fence to *FENCE_TO_REWIND. */
4660 static insn_t
4661 find_place_for_bookkeeping (edge e1, edge e2, fence_t *fence_to_rewind)
4662 {
4663 insn_t place_to_insert;
4664 /* Find a basic block that can hold bookkeeping. If it can be found, do not
4665 create new basic block, but insert bookkeeping there. */
4666 basic_block book_block = find_block_for_bookkeeping (e1, e2, FALSE);
4667
4668 if (book_block)
4669 {
4670 place_to_insert = BB_END (book_block);
4671
4672 /* Don't use a block containing only debug insns for
4673 bookkeeping, this causes scheduling differences between debug
4674 and non-debug compilations, for the block would have been
4675 removed already. */
4676 if (DEBUG_INSN_P (place_to_insert))
4677 {
4678 rtx_insn *insn = sel_bb_head (book_block);
4679
4680 while (insn != place_to_insert &&
4681 (DEBUG_INSN_P (insn) || NOTE_P (insn)))
4682 insn = NEXT_INSN (insn);
4683
4684 if (insn == place_to_insert)
4685 book_block = NULL;
4686 }
4687 }
4688
4689 if (!book_block)
4690 {
4691 book_block = create_block_for_bookkeeping (e1, e2);
4692 place_to_insert = BB_END (book_block);
4693 if (sched_verbose >= 9)
4694 sel_print ("New block is %i, split from bookkeeping block %i\n",
4695 EDGE_SUCC (book_block, 0)->dest->index, book_block->index);
4696 }
4697 else
4698 {
4699 if (sched_verbose >= 9)
4700 sel_print ("Pre-existing bookkeeping block is %i\n", book_block->index);
4701 }
4702
4703 *fence_to_rewind = NULL;
4704 /* If basic block ends with a jump, insert bookkeeping code right before it.
4705 Notice if we are crossing a fence when taking PREV_INSN. */
4706 if (INSN_P (place_to_insert) && control_flow_insn_p (place_to_insert))
4707 {
4708 *fence_to_rewind = flist_lookup (fences, place_to_insert);
4709 place_to_insert = PREV_INSN (place_to_insert);
4710 }
4711
4712 return place_to_insert;
4713 }
4714
4715 /* Find a proper seqno for bookkeeing insn inserted at PLACE_TO_INSERT
4716 for JOIN_POINT. */
4717 static int
4718 find_seqno_for_bookkeeping (insn_t place_to_insert, insn_t join_point)
4719 {
4720 int seqno;
4721
4722 /* Check if we are about to insert bookkeeping copy before a jump, and use
4723 jump's seqno for the copy; otherwise, use JOIN_POINT's seqno. */
4724 rtx_insn *next = NEXT_INSN (place_to_insert);
4725 if (INSN_P (next)
4726 && JUMP_P (next)
4727 && BLOCK_FOR_INSN (next) == BLOCK_FOR_INSN (place_to_insert))
4728 {
4729 gcc_assert (INSN_SCHED_TIMES (next) == 0);
4730 seqno = INSN_SEQNO (next);
4731 }
4732 else if (INSN_SEQNO (join_point) > 0)
4733 seqno = INSN_SEQNO (join_point);
4734 else
4735 {
4736 seqno = get_seqno_by_preds (place_to_insert);
4737
4738 /* Sometimes the fences can move in such a way that there will be
4739 no instructions with positive seqno around this bookkeeping.
4740 This means that there will be no way to get to it by a regular
4741 fence movement. Never mind because we pick up such pieces for
4742 rescheduling anyways, so any positive value will do for now. */
4743 if (seqno < 0)
4744 {
4745 gcc_assert (pipelining_p);
4746 seqno = 1;
4747 }
4748 }
4749
4750 gcc_assert (seqno > 0);
4751 return seqno;
4752 }
4753
4754 /* Insert bookkeeping copy of C_EXPS's insn after PLACE_TO_INSERT, assigning
4755 NEW_SEQNO to it. Return created insn. */
4756 static insn_t
4757 emit_bookkeeping_insn (insn_t place_to_insert, expr_t c_expr, int new_seqno)
4758 {
4759 rtx_insn *new_insn_rtx = create_copy_of_insn_rtx (EXPR_INSN_RTX (c_expr));
4760
4761 vinsn_t new_vinsn
4762 = create_vinsn_from_insn_rtx (new_insn_rtx,
4763 VINSN_UNIQUE_P (EXPR_VINSN (c_expr)));
4764
4765 insn_t new_insn = emit_insn_from_expr_after (c_expr, new_vinsn, new_seqno,
4766 place_to_insert);
4767
4768 INSN_SCHED_TIMES (new_insn) = 0;
4769 bitmap_set_bit (current_copies, INSN_UID (new_insn));
4770
4771 return new_insn;
4772 }
4773
4774 /* Generate a bookkeeping copy of C_EXPR's insn for path(s) incoming into to
4775 E2->dest, except from E1->src (there may be a sequence of empty blocks
4776 between E1->src and E2->dest). Return block containing the copy.
4777 All scheduler data is initialized for the newly created insn. */
4778 static basic_block
4779 generate_bookkeeping_insn (expr_t c_expr, edge e1, edge e2)
4780 {
4781 insn_t join_point, place_to_insert, new_insn;
4782 int new_seqno;
4783 bool need_to_exchange_data_sets;
4784 fence_t fence_to_rewind;
4785
4786 if (sched_verbose >= 4)
4787 sel_print ("Generating bookkeeping insn (%d->%d)\n", e1->src->index,
4788 e2->dest->index);
4789
4790 join_point = sel_bb_head (e2->dest);
4791 place_to_insert = find_place_for_bookkeeping (e1, e2, &fence_to_rewind);
4792 new_seqno = find_seqno_for_bookkeeping (place_to_insert, join_point);
4793 need_to_exchange_data_sets
4794 = sel_bb_empty_p (BLOCK_FOR_INSN (place_to_insert));
4795
4796 new_insn = emit_bookkeeping_insn (place_to_insert, c_expr, new_seqno);
4797
4798 if (fence_to_rewind)
4799 FENCE_INSN (fence_to_rewind) = new_insn;
4800
4801 /* When inserting bookkeeping insn in new block, av sets should be
4802 following: old basic block (that now holds bookkeeping) data sets are
4803 the same as was before generation of bookkeeping, and new basic block
4804 (that now hold all other insns of old basic block) data sets are
4805 invalid. So exchange data sets for these basic blocks as sel_split_block
4806 mistakenly exchanges them in this case. Cannot do it earlier because
4807 when single instruction is added to new basic block it should hold NULL
4808 lv_set. */
4809 if (need_to_exchange_data_sets)
4810 exchange_data_sets (BLOCK_FOR_INSN (new_insn),
4811 BLOCK_FOR_INSN (join_point));
4812
4813 stat_bookkeeping_copies++;
4814 return BLOCK_FOR_INSN (new_insn);
4815 }
4816
4817 /* Remove from AV_PTR all insns that may need bookkeeping when scheduling
4818 on FENCE, but we are unable to copy them. */
4819 static void
4820 remove_insns_that_need_bookkeeping (fence_t fence, av_set_t *av_ptr)
4821 {
4822 expr_t expr;
4823 av_set_iterator i;
4824
4825 /* An expression does not need bookkeeping if it is available on all paths
4826 from current block to original block and current block dominates
4827 original block. We check availability on all paths by examining
4828 EXPR_SPEC; this is not equivalent, because it may be positive even
4829 if expr is available on all paths (but if expr is not available on
4830 any path, EXPR_SPEC will be positive). */
4831
4832 FOR_EACH_EXPR_1 (expr, i, av_ptr)
4833 {
4834 if (!control_flow_insn_p (EXPR_INSN_RTX (expr))
4835 && (!bookkeeping_p || VINSN_UNIQUE_P (EXPR_VINSN (expr)))
4836 && (EXPR_SPEC (expr)
4837 || !EXPR_ORIG_BB_INDEX (expr)
4838 || !dominated_by_p (CDI_DOMINATORS,
4839 BASIC_BLOCK_FOR_FN (cfun,
4840 EXPR_ORIG_BB_INDEX (expr)),
4841 BLOCK_FOR_INSN (FENCE_INSN (fence)))))
4842 {
4843 if (sched_verbose >= 4)
4844 sel_print ("Expr %d removed because it would need bookkeeping, which "
4845 "cannot be created\n", INSN_UID (EXPR_INSN_RTX (expr)));
4846 av_set_iter_remove (&i);
4847 }
4848 }
4849 }
4850
4851 /* Moving conditional jump through some instructions.
4852
4853 Consider example:
4854
4855 ... <- current scheduling point
4856 NOTE BASIC BLOCK: <- bb header
4857 (p8) add r14=r14+0x9;;
4858 (p8) mov [r14]=r23
4859 (!p8) jump L1;;
4860 NOTE BASIC BLOCK:
4861 ...
4862
4863 We can schedule jump one cycle earlier, than mov, because they cannot be
4864 executed together as their predicates are mutually exclusive.
4865
4866 This is done in this way: first, new fallthrough basic block is created
4867 after jump (it is always can be done, because there already should be a
4868 fallthrough block, where control flow goes in case of predicate being true -
4869 in our example; otherwise there should be a dependence between those
4870 instructions and jump and we cannot schedule jump right now);
4871 next, all instructions between jump and current scheduling point are moved
4872 to this new block. And the result is this:
4873
4874 NOTE BASIC BLOCK:
4875 (!p8) jump L1 <- current scheduling point
4876 NOTE BASIC BLOCK: <- bb header
4877 (p8) add r14=r14+0x9;;
4878 (p8) mov [r14]=r23
4879 NOTE BASIC BLOCK:
4880 ...
4881 */
4882 static void
4883 move_cond_jump (rtx_insn *insn, bnd_t bnd)
4884 {
4885 edge ft_edge;
4886 basic_block block_from, block_next, block_new, block_bnd, bb;
4887 rtx_insn *next, *prev, *link, *head;
4888
4889 block_from = BLOCK_FOR_INSN (insn);
4890 block_bnd = BLOCK_FOR_INSN (BND_TO (bnd));
4891 prev = BND_TO (bnd);
4892
4893 #ifdef ENABLE_CHECKING
4894 /* Moving of jump should not cross any other jumps or beginnings of new
4895 basic blocks. The only exception is when we move a jump through
4896 mutually exclusive insns along fallthru edges. */
4897 if (block_from != block_bnd)
4898 {
4899 bb = block_from;
4900 for (link = PREV_INSN (insn); link != PREV_INSN (prev);
4901 link = PREV_INSN (link))
4902 {
4903 if (INSN_P (link))
4904 gcc_assert (sched_insns_conditions_mutex_p (insn, link));
4905 if (BLOCK_FOR_INSN (link) && BLOCK_FOR_INSN (link) != bb)
4906 {
4907 gcc_assert (single_pred (bb) == BLOCK_FOR_INSN (link));
4908 bb = BLOCK_FOR_INSN (link);
4909 }
4910 }
4911 }
4912 #endif
4913
4914 /* Jump is moved to the boundary. */
4915 next = PREV_INSN (insn);
4916 BND_TO (bnd) = insn;
4917
4918 ft_edge = find_fallthru_edge_from (block_from);
4919 block_next = ft_edge->dest;
4920 /* There must be a fallthrough block (or where should go
4921 control flow in case of false jump predicate otherwise?). */
4922 gcc_assert (block_next);
4923
4924 /* Create new empty basic block after source block. */
4925 block_new = sel_split_edge (ft_edge);
4926 gcc_assert (block_new->next_bb == block_next
4927 && block_from->next_bb == block_new);
4928
4929 /* Move all instructions except INSN to BLOCK_NEW. */
4930 bb = block_bnd;
4931 head = BB_HEAD (block_new);
4932 while (bb != block_from->next_bb)
4933 {
4934 rtx_insn *from, *to;
4935 from = bb == block_bnd ? prev : sel_bb_head (bb);
4936 to = bb == block_from ? next : sel_bb_end (bb);
4937
4938 /* The jump being moved can be the first insn in the block.
4939 In this case we don't have to move anything in this block. */
4940 if (NEXT_INSN (to) != from)
4941 {
4942 reorder_insns (from, to, head);
4943
4944 for (link = to; link != head; link = PREV_INSN (link))
4945 EXPR_ORIG_BB_INDEX (INSN_EXPR (link)) = block_new->index;
4946 head = to;
4947 }
4948
4949 /* Cleanup possibly empty blocks left. */
4950 block_next = bb->next_bb;
4951 if (bb != block_from)
4952 tidy_control_flow (bb, false);
4953 bb = block_next;
4954 }
4955
4956 /* Assert there is no jump to BLOCK_NEW, only fallthrough edge. */
4957 gcc_assert (NOTE_INSN_BASIC_BLOCK_P (BB_HEAD (block_new)));
4958
4959 gcc_assert (!sel_bb_empty_p (block_from)
4960 && !sel_bb_empty_p (block_new));
4961
4962 /* Update data sets for BLOCK_NEW to represent that INSN and
4963 instructions from the other branch of INSN is no longer
4964 available at BLOCK_NEW. */
4965 BB_AV_LEVEL (block_new) = global_level;
4966 gcc_assert (BB_LV_SET (block_new) == NULL);
4967 BB_LV_SET (block_new) = get_clear_regset_from_pool ();
4968 update_data_sets (sel_bb_head (block_new));
4969
4970 /* INSN is a new basic block header - so prepare its data
4971 structures and update availability and liveness sets. */
4972 update_data_sets (insn);
4973
4974 if (sched_verbose >= 4)
4975 sel_print ("Moving jump %d\n", INSN_UID (insn));
4976 }
4977
4978 /* Remove nops generated during move_op for preventing removal of empty
4979 basic blocks. */
4980 static void
4981 remove_temp_moveop_nops (bool full_tidying)
4982 {
4983 int i;
4984 insn_t insn;
4985
4986 FOR_EACH_VEC_ELT (vec_temp_moveop_nops, i, insn)
4987 {
4988 gcc_assert (INSN_NOP_P (insn));
4989 return_nop_to_pool (insn, full_tidying);
4990 }
4991
4992 /* Empty the vector. */
4993 if (vec_temp_moveop_nops.length () > 0)
4994 vec_temp_moveop_nops.block_remove (0, vec_temp_moveop_nops.length ());
4995 }
4996
4997 /* Records the maximal UID before moving up an instruction. Used for
4998 distinguishing between bookkeeping copies and original insns. */
4999 static int max_uid_before_move_op = 0;
5000
5001 /* Remove from AV_VLIW_P all instructions but next when debug counter
5002 tells us so. Next instruction is fetched from BNDS. */
5003 static void
5004 remove_insns_for_debug (blist_t bnds, av_set_t *av_vliw_p)
5005 {
5006 if (! dbg_cnt (sel_sched_insn_cnt))
5007 /* Leave only the next insn in av_vliw. */
5008 {
5009 av_set_iterator av_it;
5010 expr_t expr;
5011 bnd_t bnd = BLIST_BND (bnds);
5012 insn_t next = BND_TO (bnd);
5013
5014 gcc_assert (BLIST_NEXT (bnds) == NULL);
5015
5016 FOR_EACH_EXPR_1 (expr, av_it, av_vliw_p)
5017 if (EXPR_INSN_RTX (expr) != next)
5018 av_set_iter_remove (&av_it);
5019 }
5020 }
5021
5022 /* Compute available instructions on BNDS. FENCE is the current fence. Write
5023 the computed set to *AV_VLIW_P. */
5024 static void
5025 compute_av_set_on_boundaries (fence_t fence, blist_t bnds, av_set_t *av_vliw_p)
5026 {
5027 if (sched_verbose >= 2)
5028 {
5029 sel_print ("Boundaries: ");
5030 dump_blist (bnds);
5031 sel_print ("\n");
5032 }
5033
5034 for (; bnds; bnds = BLIST_NEXT (bnds))
5035 {
5036 bnd_t bnd = BLIST_BND (bnds);
5037 av_set_t av1_copy;
5038 insn_t bnd_to = BND_TO (bnd);
5039
5040 /* Rewind BND->TO to the basic block header in case some bookkeeping
5041 instructions were inserted before BND->TO and it needs to be
5042 adjusted. */
5043 if (sel_bb_head_p (bnd_to))
5044 gcc_assert (INSN_SCHED_TIMES (bnd_to) == 0);
5045 else
5046 while (INSN_SCHED_TIMES (PREV_INSN (bnd_to)) == 0)
5047 {
5048 bnd_to = PREV_INSN (bnd_to);
5049 if (sel_bb_head_p (bnd_to))
5050 break;
5051 }
5052
5053 if (BND_TO (bnd) != bnd_to)
5054 {
5055 gcc_assert (FENCE_INSN (fence) == BND_TO (bnd));
5056 FENCE_INSN (fence) = bnd_to;
5057 BND_TO (bnd) = bnd_to;
5058 }
5059
5060 av_set_clear (&BND_AV (bnd));
5061 BND_AV (bnd) = compute_av_set (BND_TO (bnd), NULL, 0, true);
5062
5063 av_set_clear (&BND_AV1 (bnd));
5064 BND_AV1 (bnd) = av_set_copy (BND_AV (bnd));
5065
5066 moveup_set_inside_insn_group (&BND_AV1 (bnd), NULL);
5067
5068 av1_copy = av_set_copy (BND_AV1 (bnd));
5069 av_set_union_and_clear (av_vliw_p, &av1_copy, NULL);
5070 }
5071
5072 if (sched_verbose >= 2)
5073 {
5074 sel_print ("Available exprs (vliw form): ");
5075 dump_av_set (*av_vliw_p);
5076 sel_print ("\n");
5077 }
5078 }
5079
5080 /* Calculate the sequential av set on BND corresponding to the EXPR_VLIW
5081 expression. When FOR_MOVEOP is true, also replace the register of
5082 expressions found with the register from EXPR_VLIW. */
5083 static av_set_t
5084 find_sequential_best_exprs (bnd_t bnd, expr_t expr_vliw, bool for_moveop)
5085 {
5086 av_set_t expr_seq = NULL;
5087 expr_t expr;
5088 av_set_iterator i;
5089
5090 FOR_EACH_EXPR (expr, i, BND_AV (bnd))
5091 {
5092 if (equal_after_moveup_path_p (expr, NULL, expr_vliw))
5093 {
5094 if (for_moveop)
5095 {
5096 /* The sequential expression has the right form to pass
5097 to move_op except when renaming happened. Put the
5098 correct register in EXPR then. */
5099 if (EXPR_SEPARABLE_P (expr) && REG_P (EXPR_LHS (expr)))
5100 {
5101 if (expr_dest_regno (expr) != expr_dest_regno (expr_vliw))
5102 {
5103 replace_dest_with_reg_in_expr (expr, EXPR_LHS (expr_vliw));
5104 stat_renamed_scheduled++;
5105 }
5106 /* Also put the correct TARGET_AVAILABLE bit on the expr.
5107 This is needed when renaming came up with original
5108 register. */
5109 else if (EXPR_TARGET_AVAILABLE (expr)
5110 != EXPR_TARGET_AVAILABLE (expr_vliw))
5111 {
5112 gcc_assert (EXPR_TARGET_AVAILABLE (expr_vliw) == 1);
5113 EXPR_TARGET_AVAILABLE (expr) = 1;
5114 }
5115 }
5116 if (EXPR_WAS_SUBSTITUTED (expr))
5117 stat_substitutions_total++;
5118 }
5119
5120 av_set_add (&expr_seq, expr);
5121
5122 /* With substitution inside insn group, it is possible
5123 that more than one expression in expr_seq will correspond
5124 to expr_vliw. In this case, choose one as the attempt to
5125 move both leads to miscompiles. */
5126 break;
5127 }
5128 }
5129
5130 if (for_moveop && sched_verbose >= 2)
5131 {
5132 sel_print ("Best expression(s) (sequential form): ");
5133 dump_av_set (expr_seq);
5134 sel_print ("\n");
5135 }
5136
5137 return expr_seq;
5138 }
5139
5140
5141 /* Move nop to previous block. */
5142 static void ATTRIBUTE_UNUSED
5143 move_nop_to_previous_block (insn_t nop, basic_block prev_bb)
5144 {
5145 insn_t prev_insn, next_insn;
5146
5147 gcc_assert (sel_bb_head_p (nop)
5148 && prev_bb == BLOCK_FOR_INSN (nop)->prev_bb);
5149 rtx_note *note = bb_note (BLOCK_FOR_INSN (nop));
5150 prev_insn = sel_bb_end (prev_bb);
5151 next_insn = NEXT_INSN (nop);
5152 gcc_assert (prev_insn != NULL_RTX
5153 && PREV_INSN (note) == prev_insn);
5154
5155 SET_NEXT_INSN (prev_insn) = nop;
5156 SET_PREV_INSN (nop) = prev_insn;
5157
5158 SET_PREV_INSN (note) = nop;
5159 SET_NEXT_INSN (note) = next_insn;
5160
5161 SET_NEXT_INSN (nop) = note;
5162 SET_PREV_INSN (next_insn) = note;
5163
5164 BB_END (prev_bb) = nop;
5165 BLOCK_FOR_INSN (nop) = prev_bb;
5166 }
5167
5168 /* Prepare a place to insert the chosen expression on BND. */
5169 static insn_t
5170 prepare_place_to_insert (bnd_t bnd)
5171 {
5172 insn_t place_to_insert;
5173
5174 /* Init place_to_insert before calling move_op, as the later
5175 can possibly remove BND_TO (bnd). */
5176 if (/* If this is not the first insn scheduled. */
5177 BND_PTR (bnd))
5178 {
5179 /* Add it after last scheduled. */
5180 place_to_insert = ILIST_INSN (BND_PTR (bnd));
5181 if (DEBUG_INSN_P (place_to_insert))
5182 {
5183 ilist_t l = BND_PTR (bnd);
5184 while ((l = ILIST_NEXT (l)) &&
5185 DEBUG_INSN_P (ILIST_INSN (l)))
5186 ;
5187 if (!l)
5188 place_to_insert = NULL;
5189 }
5190 }
5191 else
5192 place_to_insert = NULL;
5193
5194 if (!place_to_insert)
5195 {
5196 /* Add it before BND_TO. The difference is in the
5197 basic block, where INSN will be added. */
5198 place_to_insert = get_nop_from_pool (BND_TO (bnd));
5199 gcc_assert (BLOCK_FOR_INSN (place_to_insert)
5200 == BLOCK_FOR_INSN (BND_TO (bnd)));
5201 }
5202
5203 return place_to_insert;
5204 }
5205
5206 /* Find original instructions for EXPR_SEQ and move it to BND boundary.
5207 Return the expression to emit in C_EXPR. */
5208 static bool
5209 move_exprs_to_boundary (bnd_t bnd, expr_t expr_vliw,
5210 av_set_t expr_seq, expr_t c_expr)
5211 {
5212 bool b, should_move;
5213 unsigned book_uid;
5214 bitmap_iterator bi;
5215 int n_bookkeeping_copies_before_moveop;
5216
5217 /* Make a move. This call will remove the original operation,
5218 insert all necessary bookkeeping instructions and update the
5219 data sets. After that all we have to do is add the operation
5220 at before BND_TO (BND). */
5221 n_bookkeeping_copies_before_moveop = stat_bookkeeping_copies;
5222 max_uid_before_move_op = get_max_uid ();
5223 bitmap_clear (current_copies);
5224 bitmap_clear (current_originators);
5225
5226 b = move_op (BND_TO (bnd), expr_seq, expr_vliw,
5227 get_dest_from_orig_ops (expr_seq), c_expr, &should_move);
5228
5229 /* We should be able to find the expression we've chosen for
5230 scheduling. */
5231 gcc_assert (b);
5232
5233 if (stat_bookkeeping_copies > n_bookkeeping_copies_before_moveop)
5234 stat_insns_needed_bookkeeping++;
5235
5236 EXECUTE_IF_SET_IN_BITMAP (current_copies, 0, book_uid, bi)
5237 {
5238 unsigned uid;
5239 bitmap_iterator bi;
5240
5241 /* We allocate these bitmaps lazily. */
5242 if (! INSN_ORIGINATORS_BY_UID (book_uid))
5243 INSN_ORIGINATORS_BY_UID (book_uid) = BITMAP_ALLOC (NULL);
5244
5245 bitmap_copy (INSN_ORIGINATORS_BY_UID (book_uid),
5246 current_originators);
5247
5248 /* Transitively add all originators' originators. */
5249 EXECUTE_IF_SET_IN_BITMAP (current_originators, 0, uid, bi)
5250 if (INSN_ORIGINATORS_BY_UID (uid))
5251 bitmap_ior_into (INSN_ORIGINATORS_BY_UID (book_uid),
5252 INSN_ORIGINATORS_BY_UID (uid));
5253 }
5254
5255 return should_move;
5256 }
5257
5258
5259 /* Debug a DFA state as an array of bytes. */
5260 static void
5261 debug_state (state_t state)
5262 {
5263 unsigned char *p;
5264 unsigned int i, size = dfa_state_size;
5265
5266 sel_print ("state (%u):", size);
5267 for (i = 0, p = (unsigned char *) state; i < size; i++)
5268 sel_print (" %d", p[i]);
5269 sel_print ("\n");
5270 }
5271
5272 /* Advance state on FENCE with INSN. Return true if INSN is
5273 an ASM, and we should advance state once more. */
5274 static bool
5275 advance_state_on_fence (fence_t fence, insn_t insn)
5276 {
5277 bool asm_p;
5278
5279 if (recog_memoized (insn) >= 0)
5280 {
5281 int res;
5282 state_t temp_state = alloca (dfa_state_size);
5283
5284 gcc_assert (!INSN_ASM_P (insn));
5285 asm_p = false;
5286
5287 memcpy (temp_state, FENCE_STATE (fence), dfa_state_size);
5288 res = state_transition (FENCE_STATE (fence), insn);
5289 gcc_assert (res < 0);
5290
5291 if (memcmp (temp_state, FENCE_STATE (fence), dfa_state_size))
5292 {
5293 FENCE_ISSUED_INSNS (fence)++;
5294
5295 /* We should never issue more than issue_rate insns. */
5296 if (FENCE_ISSUED_INSNS (fence) > issue_rate)
5297 gcc_unreachable ();
5298 }
5299 }
5300 else
5301 {
5302 /* This could be an ASM insn which we'd like to schedule
5303 on the next cycle. */
5304 asm_p = INSN_ASM_P (insn);
5305 if (!FENCE_STARTS_CYCLE_P (fence) && asm_p)
5306 advance_one_cycle (fence);
5307 }
5308
5309 if (sched_verbose >= 2)
5310 debug_state (FENCE_STATE (fence));
5311 if (!DEBUG_INSN_P (insn))
5312 FENCE_STARTS_CYCLE_P (fence) = 0;
5313 FENCE_ISSUE_MORE (fence) = can_issue_more;
5314 return asm_p;
5315 }
5316
5317 /* Update FENCE on which INSN was scheduled and this INSN, too. NEED_STALL
5318 is nonzero if we need to stall after issuing INSN. */
5319 static void
5320 update_fence_and_insn (fence_t fence, insn_t insn, int need_stall)
5321 {
5322 bool asm_p;
5323
5324 /* First, reflect that something is scheduled on this fence. */
5325 asm_p = advance_state_on_fence (fence, insn);
5326 FENCE_LAST_SCHEDULED_INSN (fence) = insn;
5327 vec_safe_push (FENCE_EXECUTING_INSNS (fence), insn);
5328 if (SCHED_GROUP_P (insn))
5329 {
5330 FENCE_SCHED_NEXT (fence) = INSN_SCHED_NEXT (insn);
5331 SCHED_GROUP_P (insn) = 0;
5332 }
5333 else
5334 FENCE_SCHED_NEXT (fence) = NULL;
5335 if (INSN_UID (insn) < FENCE_READY_TICKS_SIZE (fence))
5336 FENCE_READY_TICKS (fence) [INSN_UID (insn)] = 0;
5337
5338 /* Set instruction scheduling info. This will be used in bundling,
5339 pipelining, tick computations etc. */
5340 ++INSN_SCHED_TIMES (insn);
5341 EXPR_TARGET_AVAILABLE (INSN_EXPR (insn)) = true;
5342 EXPR_ORIG_SCHED_CYCLE (INSN_EXPR (insn)) = FENCE_CYCLE (fence);
5343 INSN_AFTER_STALL_P (insn) = FENCE_AFTER_STALL_P (fence);
5344 INSN_SCHED_CYCLE (insn) = FENCE_CYCLE (fence);
5345
5346 /* This does not account for adjust_cost hooks, just add the biggest
5347 constant the hook may add to the latency. TODO: make this
5348 a target dependent constant. */
5349 INSN_READY_CYCLE (insn)
5350 = INSN_SCHED_CYCLE (insn) + (INSN_CODE (insn) < 0
5351 ? 1
5352 : maximal_insn_latency (insn) + 1);
5353
5354 /* Change these fields last, as they're used above. */
5355 FENCE_AFTER_STALL_P (fence) = 0;
5356 if (asm_p || need_stall)
5357 advance_one_cycle (fence);
5358
5359 /* Indicate that we've scheduled something on this fence. */
5360 FENCE_SCHEDULED_P (fence) = true;
5361 scheduled_something_on_previous_fence = true;
5362
5363 /* Print debug information when insn's fields are updated. */
5364 if (sched_verbose >= 2)
5365 {
5366 sel_print ("Scheduling insn: ");
5367 dump_insn_1 (insn, 1);
5368 sel_print ("\n");
5369 }
5370 }
5371
5372 /* Update boundary BND (and, if needed, FENCE) with INSN, remove the
5373 old boundary from BNDSP, add new boundaries to BNDS_TAIL_P and
5374 return it. */
5375 static blist_t *
5376 update_boundaries (fence_t fence, bnd_t bnd, insn_t insn, blist_t *bndsp,
5377 blist_t *bnds_tailp)
5378 {
5379 succ_iterator si;
5380 insn_t succ;
5381
5382 advance_deps_context (BND_DC (bnd), insn);
5383 FOR_EACH_SUCC_1 (succ, si, insn,
5384 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
5385 {
5386 ilist_t ptr = ilist_copy (BND_PTR (bnd));
5387
5388 ilist_add (&ptr, insn);
5389
5390 if (DEBUG_INSN_P (insn) && sel_bb_end_p (insn)
5391 && is_ineligible_successor (succ, ptr))
5392 {
5393 ilist_clear (&ptr);
5394 continue;
5395 }
5396
5397 if (FENCE_INSN (fence) == insn && !sel_bb_end_p (insn))
5398 {
5399 if (sched_verbose >= 9)
5400 sel_print ("Updating fence insn from %i to %i\n",
5401 INSN_UID (insn), INSN_UID (succ));
5402 FENCE_INSN (fence) = succ;
5403 }
5404 blist_add (bnds_tailp, succ, ptr, BND_DC (bnd));
5405 bnds_tailp = &BLIST_NEXT (*bnds_tailp);
5406 }
5407
5408 blist_remove (bndsp);
5409 return bnds_tailp;
5410 }
5411
5412 /* Schedule EXPR_VLIW on BND. Return the insn emitted. */
5413 static insn_t
5414 schedule_expr_on_boundary (bnd_t bnd, expr_t expr_vliw, int seqno)
5415 {
5416 av_set_t expr_seq;
5417 expr_t c_expr = XALLOCA (expr_def);
5418 insn_t place_to_insert;
5419 insn_t insn;
5420 bool should_move;
5421
5422 expr_seq = find_sequential_best_exprs (bnd, expr_vliw, true);
5423
5424 /* In case of scheduling a jump skipping some other instructions,
5425 prepare CFG. After this, jump is at the boundary and can be
5426 scheduled as usual insn by MOVE_OP. */
5427 if (vinsn_cond_branch_p (EXPR_VINSN (expr_vliw)))
5428 {
5429 insn = EXPR_INSN_RTX (expr_vliw);
5430
5431 /* Speculative jumps are not handled. */
5432 if (insn != BND_TO (bnd)
5433 && !sel_insn_is_speculation_check (insn))
5434 move_cond_jump (insn, bnd);
5435 }
5436
5437 /* Find a place for C_EXPR to schedule. */
5438 place_to_insert = prepare_place_to_insert (bnd);
5439 should_move = move_exprs_to_boundary (bnd, expr_vliw, expr_seq, c_expr);
5440 clear_expr (c_expr);
5441
5442 /* Add the instruction. The corner case to care about is when
5443 the expr_seq set has more than one expr, and we chose the one that
5444 is not equal to expr_vliw. Then expr_vliw may be insn in stream, and
5445 we can't use it. Generate the new vinsn. */
5446 if (INSN_IN_STREAM_P (EXPR_INSN_RTX (expr_vliw)))
5447 {
5448 vinsn_t vinsn_new;
5449
5450 vinsn_new = vinsn_copy (EXPR_VINSN (expr_vliw), false);
5451 change_vinsn_in_expr (expr_vliw, vinsn_new);
5452 should_move = false;
5453 }
5454 if (should_move)
5455 insn = sel_move_insn (expr_vliw, seqno, place_to_insert);
5456 else
5457 insn = emit_insn_from_expr_after (expr_vliw, NULL, seqno,
5458 place_to_insert);
5459
5460 /* Return the nops generated for preserving of data sets back
5461 into pool. */
5462 if (INSN_NOP_P (place_to_insert))
5463 return_nop_to_pool (place_to_insert, !DEBUG_INSN_P (insn));
5464 remove_temp_moveop_nops (!DEBUG_INSN_P (insn));
5465
5466 av_set_clear (&expr_seq);
5467
5468 /* Save the expression scheduled so to reset target availability if we'll
5469 meet it later on the same fence. */
5470 if (EXPR_WAS_RENAMED (expr_vliw))
5471 vinsn_vec_add (&vec_target_unavailable_vinsns, INSN_EXPR (insn));
5472
5473 /* Check that the recent movement didn't destroyed loop
5474 structure. */
5475 gcc_assert (!pipelining_p
5476 || current_loop_nest == NULL
5477 || loop_latch_edge (current_loop_nest));
5478 return insn;
5479 }
5480
5481 /* Stall for N cycles on FENCE. */
5482 static void
5483 stall_for_cycles (fence_t fence, int n)
5484 {
5485 int could_more;
5486
5487 could_more = n > 1 || FENCE_ISSUED_INSNS (fence) < issue_rate;
5488 while (n--)
5489 advance_one_cycle (fence);
5490 if (could_more)
5491 FENCE_AFTER_STALL_P (fence) = 1;
5492 }
5493
5494 /* Gather a parallel group of insns at FENCE and assign their seqno
5495 to SEQNO. All scheduled insns are gathered in SCHEDULED_INSNS_TAILPP
5496 list for later recalculation of seqnos. */
5497 static void
5498 fill_insns (fence_t fence, int seqno, ilist_t **scheduled_insns_tailpp)
5499 {
5500 blist_t bnds = NULL, *bnds_tailp;
5501 av_set_t av_vliw = NULL;
5502 insn_t insn = FENCE_INSN (fence);
5503
5504 if (sched_verbose >= 2)
5505 sel_print ("Starting fill_insns for insn %d, cycle %d\n",
5506 INSN_UID (insn), FENCE_CYCLE (fence));
5507
5508 blist_add (&bnds, insn, NULL, FENCE_DC (fence));
5509 bnds_tailp = &BLIST_NEXT (bnds);
5510 set_target_context (FENCE_TC (fence));
5511 can_issue_more = FENCE_ISSUE_MORE (fence);
5512 target_bb = INSN_BB (insn);
5513
5514 /* Do while we can add any operation to the current group. */
5515 do
5516 {
5517 blist_t *bnds_tailp1, *bndsp;
5518 expr_t expr_vliw;
5519 int need_stall = false;
5520 int was_stall = 0, scheduled_insns = 0;
5521 int max_insns = pipelining_p ? issue_rate : 2 * issue_rate;
5522 int max_stall = pipelining_p ? 1 : 3;
5523 bool last_insn_was_debug = false;
5524 bool was_debug_bb_end_p = false;
5525
5526 compute_av_set_on_boundaries (fence, bnds, &av_vliw);
5527 remove_insns_that_need_bookkeeping (fence, &av_vliw);
5528 remove_insns_for_debug (bnds, &av_vliw);
5529
5530 /* Return early if we have nothing to schedule. */
5531 if (av_vliw == NULL)
5532 break;
5533
5534 /* Choose the best expression and, if needed, destination register
5535 for it. */
5536 do
5537 {
5538 expr_vliw = find_best_expr (&av_vliw, bnds, fence, &need_stall);
5539 if (! expr_vliw && need_stall)
5540 {
5541 /* All expressions required a stall. Do not recompute av sets
5542 as we'll get the same answer (modulo the insns between
5543 the fence and its boundary, which will not be available for
5544 pipelining).
5545 If we are going to stall for too long, break to recompute av
5546 sets and bring more insns for pipelining. */
5547 was_stall++;
5548 if (need_stall <= 3)
5549 stall_for_cycles (fence, need_stall);
5550 else
5551 {
5552 stall_for_cycles (fence, 1);
5553 break;
5554 }
5555 }
5556 }
5557 while (! expr_vliw && need_stall);
5558
5559 /* Now either we've selected expr_vliw or we have nothing to schedule. */
5560 if (!expr_vliw)
5561 {
5562 av_set_clear (&av_vliw);
5563 break;
5564 }
5565
5566 bndsp = &bnds;
5567 bnds_tailp1 = bnds_tailp;
5568
5569 do
5570 /* This code will be executed only once until we'd have several
5571 boundaries per fence. */
5572 {
5573 bnd_t bnd = BLIST_BND (*bndsp);
5574
5575 if (!av_set_is_in_p (BND_AV1 (bnd), EXPR_VINSN (expr_vliw)))
5576 {
5577 bndsp = &BLIST_NEXT (*bndsp);
5578 continue;
5579 }
5580
5581 insn = schedule_expr_on_boundary (bnd, expr_vliw, seqno);
5582 last_insn_was_debug = DEBUG_INSN_P (insn);
5583 if (last_insn_was_debug)
5584 was_debug_bb_end_p = (insn == BND_TO (bnd) && sel_bb_end_p (insn));
5585 update_fence_and_insn (fence, insn, need_stall);
5586 bnds_tailp = update_boundaries (fence, bnd, insn, bndsp, bnds_tailp);
5587
5588 /* Add insn to the list of scheduled on this cycle instructions. */
5589 ilist_add (*scheduled_insns_tailpp, insn);
5590 *scheduled_insns_tailpp = &ILIST_NEXT (**scheduled_insns_tailpp);
5591 }
5592 while (*bndsp != *bnds_tailp1);
5593
5594 av_set_clear (&av_vliw);
5595 if (!last_insn_was_debug)
5596 scheduled_insns++;
5597
5598 /* We currently support information about candidate blocks only for
5599 one 'target_bb' block. Hence we can't schedule after jump insn,
5600 as this will bring two boundaries and, hence, necessity to handle
5601 information for two or more blocks concurrently. */
5602 if ((last_insn_was_debug ? was_debug_bb_end_p : sel_bb_end_p (insn))
5603 || (was_stall
5604 && (was_stall >= max_stall
5605 || scheduled_insns >= max_insns)))
5606 break;
5607 }
5608 while (bnds);
5609
5610 gcc_assert (!FENCE_BNDS (fence));
5611
5612 /* Update boundaries of the FENCE. */
5613 while (bnds)
5614 {
5615 ilist_t ptr = BND_PTR (BLIST_BND (bnds));
5616
5617 if (ptr)
5618 {
5619 insn = ILIST_INSN (ptr);
5620
5621 if (!ilist_is_in_p (FENCE_BNDS (fence), insn))
5622 ilist_add (&FENCE_BNDS (fence), insn);
5623 }
5624
5625 blist_remove (&bnds);
5626 }
5627
5628 /* Update target context on the fence. */
5629 reset_target_context (FENCE_TC (fence), false);
5630 }
5631
5632 /* All exprs in ORIG_OPS must have the same destination register or memory.
5633 Return that destination. */
5634 static rtx
5635 get_dest_from_orig_ops (av_set_t orig_ops)
5636 {
5637 rtx dest = NULL_RTX;
5638 av_set_iterator av_it;
5639 expr_t expr;
5640 bool first_p = true;
5641
5642 FOR_EACH_EXPR (expr, av_it, orig_ops)
5643 {
5644 rtx x = EXPR_LHS (expr);
5645
5646 if (first_p)
5647 {
5648 first_p = false;
5649 dest = x;
5650 }
5651 else
5652 gcc_assert (dest == x
5653 || (dest != NULL_RTX && x != NULL_RTX
5654 && rtx_equal_p (dest, x)));
5655 }
5656
5657 return dest;
5658 }
5659
5660 /* Update data sets for the bookkeeping block and record those expressions
5661 which become no longer available after inserting this bookkeeping. */
5662 static void
5663 update_and_record_unavailable_insns (basic_block book_block)
5664 {
5665 av_set_iterator i;
5666 av_set_t old_av_set = NULL;
5667 expr_t cur_expr;
5668 rtx_insn *bb_end = sel_bb_end (book_block);
5669
5670 /* First, get correct liveness in the bookkeeping block. The problem is
5671 the range between the bookeeping insn and the end of block. */
5672 update_liveness_on_insn (bb_end);
5673 if (control_flow_insn_p (bb_end))
5674 update_liveness_on_insn (PREV_INSN (bb_end));
5675
5676 /* If there's valid av_set on BOOK_BLOCK, then there might exist another
5677 fence above, where we may choose to schedule an insn which is
5678 actually blocked from moving up with the bookkeeping we create here. */
5679 if (AV_SET_VALID_P (sel_bb_head (book_block)))
5680 {
5681 old_av_set = av_set_copy (BB_AV_SET (book_block));
5682 update_data_sets (sel_bb_head (book_block));
5683
5684 /* Traverse all the expressions in the old av_set and check whether
5685 CUR_EXPR is in new AV_SET. */
5686 FOR_EACH_EXPR (cur_expr, i, old_av_set)
5687 {
5688 expr_t new_expr = av_set_lookup (BB_AV_SET (book_block),
5689 EXPR_VINSN (cur_expr));
5690
5691 if (! new_expr
5692 /* In this case, we can just turn off the E_T_A bit, but we can't
5693 represent this information with the current vector. */
5694 || EXPR_TARGET_AVAILABLE (new_expr)
5695 != EXPR_TARGET_AVAILABLE (cur_expr))
5696 /* Unfortunately, the below code could be also fired up on
5697 separable insns, e.g. when moving insns through the new
5698 speculation check as in PR 53701. */
5699 vinsn_vec_add (&vec_bookkeeping_blocked_vinsns, cur_expr);
5700 }
5701
5702 av_set_clear (&old_av_set);
5703 }
5704 }
5705
5706 /* The main effect of this function is that sparams->c_expr is merged
5707 with (or copied to) lparams->c_expr_merged. If there's only one successor,
5708 we avoid merging anything by copying sparams->c_expr to lparams->c_expr_merged.
5709 lparams->c_expr_merged is copied back to sparams->c_expr after all
5710 successors has been traversed. lparams->c_expr_local is an expr allocated
5711 on stack in the caller function, and is used if there is more than one
5712 successor.
5713
5714 SUCC is one of the SUCCS_NORMAL successors of INSN,
5715 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ,
5716 LPARAMS and STATIC_PARAMS contain the parameters described above. */
5717 static void
5718 move_op_merge_succs (insn_t insn ATTRIBUTE_UNUSED,
5719 insn_t succ ATTRIBUTE_UNUSED,
5720 int moveop_drv_call_res,
5721 cmpd_local_params_p lparams, void *static_params)
5722 {
5723 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
5724
5725 /* Nothing to do, if original expr wasn't found below. */
5726 if (moveop_drv_call_res != 1)
5727 return;
5728
5729 /* If this is a first successor. */
5730 if (!lparams->c_expr_merged)
5731 {
5732 lparams->c_expr_merged = sparams->c_expr;
5733 sparams->c_expr = lparams->c_expr_local;
5734 }
5735 else
5736 {
5737 /* We must merge all found expressions to get reasonable
5738 EXPR_SPEC_DONE_DS for the resulting insn. If we don't
5739 do so then we can first find the expr with epsilon
5740 speculation success probability and only then with the
5741 good probability. As a result the insn will get epsilon
5742 probability and will never be scheduled because of
5743 weakness_cutoff in find_best_expr.
5744
5745 We call merge_expr_data here instead of merge_expr
5746 because due to speculation C_EXPR and X may have the
5747 same insns with different speculation types. And as of
5748 now such insns are considered non-equal.
5749
5750 However, EXPR_SCHED_TIMES is different -- we must get
5751 SCHED_TIMES from a real insn, not a bookkeeping copy.
5752 We force this here. Instead, we may consider merging
5753 SCHED_TIMES to the maximum instead of minimum in the
5754 below function. */
5755 int old_times = EXPR_SCHED_TIMES (lparams->c_expr_merged);
5756
5757 merge_expr_data (lparams->c_expr_merged, sparams->c_expr, NULL);
5758 if (EXPR_SCHED_TIMES (sparams->c_expr) == 0)
5759 EXPR_SCHED_TIMES (lparams->c_expr_merged) = old_times;
5760
5761 clear_expr (sparams->c_expr);
5762 }
5763 }
5764
5765 /* Add used regs for the successor SUCC into SPARAMS->USED_REGS.
5766
5767 SUCC is one of the SUCCS_NORMAL successors of INSN,
5768 MOVEOP_DRV_CALL_RES is the result of call code_motion_path_driver on succ or 0,
5769 if SUCC is one of SUCCS_BACK or SUCCS_OUT.
5770 STATIC_PARAMS contain USED_REGS set. */
5771 static void
5772 fur_merge_succs (insn_t insn ATTRIBUTE_UNUSED, insn_t succ,
5773 int moveop_drv_call_res,
5774 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5775 void *static_params)
5776 {
5777 regset succ_live;
5778 fur_static_params_p sparams = (fur_static_params_p) static_params;
5779
5780 /* Here we compute live regsets only for branches that do not lie
5781 on the code motion paths. These branches correspond to value
5782 MOVEOP_DRV_CALL_RES==0 and include SUCCS_BACK and SUCCS_OUT, though
5783 for such branches code_motion_path_driver is not called. */
5784 if (moveop_drv_call_res != 0)
5785 return;
5786
5787 /* Mark all registers that do not meet the following condition:
5788 (3) not live on the other path of any conditional branch
5789 that is passed by the operation, in case original
5790 operations are not present on both paths of the
5791 conditional branch. */
5792 succ_live = compute_live (succ);
5793 IOR_REG_SET (sparams->used_regs, succ_live);
5794 }
5795
5796 /* This function is called after the last successor. Copies LP->C_EXPR_MERGED
5797 into SP->CEXPR. */
5798 static void
5799 move_op_after_merge_succs (cmpd_local_params_p lp, void *sparams)
5800 {
5801 moveop_static_params_p sp = (moveop_static_params_p) sparams;
5802
5803 sp->c_expr = lp->c_expr_merged;
5804 }
5805
5806 /* Track bookkeeping copies created, insns scheduled, and blocks for
5807 rescheduling when INSN is found by move_op. */
5808 static void
5809 track_scheduled_insns_and_blocks (rtx_insn *insn)
5810 {
5811 /* Even if this insn can be a copy that will be removed during current move_op,
5812 we still need to count it as an originator. */
5813 bitmap_set_bit (current_originators, INSN_UID (insn));
5814
5815 if (!bitmap_clear_bit (current_copies, INSN_UID (insn)))
5816 {
5817 /* Note that original block needs to be rescheduled, as we pulled an
5818 instruction out of it. */
5819 if (INSN_SCHED_TIMES (insn) > 0)
5820 bitmap_set_bit (blocks_to_reschedule, BLOCK_FOR_INSN (insn)->index);
5821 else if (INSN_UID (insn) < first_emitted_uid && !DEBUG_INSN_P (insn))
5822 num_insns_scheduled++;
5823 }
5824
5825 /* For instructions we must immediately remove insn from the
5826 stream, so subsequent update_data_sets () won't include this
5827 insn into av_set.
5828 For expr we must make insn look like "INSN_REG (insn) := c_expr". */
5829 if (INSN_UID (insn) > max_uid_before_move_op)
5830 stat_bookkeeping_copies--;
5831 }
5832
5833 /* Emit a register-register copy for INSN if needed. Return true if
5834 emitted one. PARAMS is the move_op static parameters. */
5835 static bool
5836 maybe_emit_renaming_copy (rtx_insn *insn,
5837 moveop_static_params_p params)
5838 {
5839 bool insn_emitted = false;
5840 rtx cur_reg;
5841
5842 /* Bail out early when expression can not be renamed at all. */
5843 if (!EXPR_SEPARABLE_P (params->c_expr))
5844 return false;
5845
5846 cur_reg = expr_dest_reg (params->c_expr);
5847 gcc_assert (cur_reg && params->dest && REG_P (params->dest));
5848
5849 /* If original operation has expr and the register chosen for
5850 that expr is not original operation's dest reg, substitute
5851 operation's right hand side with the register chosen. */
5852 if (REGNO (params->dest) != REGNO (cur_reg))
5853 {
5854 insn_t reg_move_insn, reg_move_insn_rtx;
5855
5856 reg_move_insn_rtx = create_insn_rtx_with_rhs (INSN_VINSN (insn),
5857 params->dest);
5858 reg_move_insn = sel_gen_insn_from_rtx_after (reg_move_insn_rtx,
5859 INSN_EXPR (insn),
5860 INSN_SEQNO (insn),
5861 insn);
5862 EXPR_SPEC_DONE_DS (INSN_EXPR (reg_move_insn)) = 0;
5863 replace_dest_with_reg_in_expr (params->c_expr, params->dest);
5864
5865 insn_emitted = true;
5866 params->was_renamed = true;
5867 }
5868
5869 return insn_emitted;
5870 }
5871
5872 /* Emit a speculative check for INSN speculated as EXPR if needed.
5873 Return true if we've emitted one. PARAMS is the move_op static
5874 parameters. */
5875 static bool
5876 maybe_emit_speculative_check (rtx_insn *insn, expr_t expr,
5877 moveop_static_params_p params)
5878 {
5879 bool insn_emitted = false;
5880 insn_t x;
5881 ds_t check_ds;
5882
5883 check_ds = get_spec_check_type_for_insn (insn, expr);
5884 if (check_ds != 0)
5885 {
5886 /* A speculation check should be inserted. */
5887 x = create_speculation_check (params->c_expr, check_ds, insn);
5888 insn_emitted = true;
5889 }
5890 else
5891 {
5892 EXPR_SPEC_DONE_DS (INSN_EXPR (insn)) = 0;
5893 x = insn;
5894 }
5895
5896 gcc_assert (EXPR_SPEC_DONE_DS (INSN_EXPR (x)) == 0
5897 && EXPR_SPEC_TO_CHECK_DS (INSN_EXPR (x)) == 0);
5898 return insn_emitted;
5899 }
5900
5901 /* Handle transformations that leave an insn in place of original
5902 insn such as renaming/speculation. Return true if one of such
5903 transformations actually happened, and we have emitted this insn. */
5904 static bool
5905 handle_emitting_transformations (rtx_insn *insn, expr_t expr,
5906 moveop_static_params_p params)
5907 {
5908 bool insn_emitted = false;
5909
5910 insn_emitted = maybe_emit_renaming_copy (insn, params);
5911 insn_emitted |= maybe_emit_speculative_check (insn, expr, params);
5912
5913 return insn_emitted;
5914 }
5915
5916 /* If INSN is the only insn in the basic block (not counting JUMP,
5917 which may be a jump to next insn, and DEBUG_INSNs), we want to
5918 leave a NOP there till the return to fill_insns. */
5919
5920 static bool
5921 need_nop_to_preserve_insn_bb (rtx_insn *insn)
5922 {
5923 insn_t bb_head, bb_end, bb_next, in_next;
5924 basic_block bb = BLOCK_FOR_INSN (insn);
5925
5926 bb_head = sel_bb_head (bb);
5927 bb_end = sel_bb_end (bb);
5928
5929 if (bb_head == bb_end)
5930 return true;
5931
5932 while (bb_head != bb_end && DEBUG_INSN_P (bb_head))
5933 bb_head = NEXT_INSN (bb_head);
5934
5935 if (bb_head == bb_end)
5936 return true;
5937
5938 while (bb_head != bb_end && DEBUG_INSN_P (bb_end))
5939 bb_end = PREV_INSN (bb_end);
5940
5941 if (bb_head == bb_end)
5942 return true;
5943
5944 bb_next = NEXT_INSN (bb_head);
5945 while (bb_next != bb_end && DEBUG_INSN_P (bb_next))
5946 bb_next = NEXT_INSN (bb_next);
5947
5948 if (bb_next == bb_end && JUMP_P (bb_end))
5949 return true;
5950
5951 in_next = NEXT_INSN (insn);
5952 while (DEBUG_INSN_P (in_next))
5953 in_next = NEXT_INSN (in_next);
5954
5955 if (IN_CURRENT_FENCE_P (in_next))
5956 return true;
5957
5958 return false;
5959 }
5960
5961 /* Remove INSN from stream. When ONLY_DISCONNECT is true, its data
5962 is not removed but reused when INSN is re-emitted. */
5963 static void
5964 remove_insn_from_stream (rtx_insn *insn, bool only_disconnect)
5965 {
5966 /* If there's only one insn in the BB, make sure that a nop is
5967 inserted into it, so the basic block won't disappear when we'll
5968 delete INSN below with sel_remove_insn. It should also survive
5969 till the return to fill_insns. */
5970 if (need_nop_to_preserve_insn_bb (insn))
5971 {
5972 insn_t nop = get_nop_from_pool (insn);
5973 gcc_assert (INSN_NOP_P (nop));
5974 vec_temp_moveop_nops.safe_push (nop);
5975 }
5976
5977 sel_remove_insn (insn, only_disconnect, false);
5978 }
5979
5980 /* This function is called when original expr is found.
5981 INSN - current insn traversed, EXPR - the corresponding expr found.
5982 LPARAMS is the local parameters of code modion driver, STATIC_PARAMS
5983 is static parameters of move_op. */
5984 static void
5985 move_op_orig_expr_found (insn_t insn, expr_t expr,
5986 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
5987 void *static_params)
5988 {
5989 bool only_disconnect;
5990 moveop_static_params_p params = (moveop_static_params_p) static_params;
5991
5992 copy_expr_onside (params->c_expr, INSN_EXPR (insn));
5993 track_scheduled_insns_and_blocks (insn);
5994 handle_emitting_transformations (insn, expr, params);
5995 only_disconnect = params->uid == INSN_UID (insn);
5996
5997 /* Mark that we've disconnected an insn. */
5998 if (only_disconnect)
5999 params->uid = -1;
6000 remove_insn_from_stream (insn, only_disconnect);
6001 }
6002
6003 /* The function is called when original expr is found.
6004 INSN - current insn traversed, EXPR - the corresponding expr found,
6005 crosses_call and original_insns in STATIC_PARAMS are updated. */
6006 static void
6007 fur_orig_expr_found (insn_t insn, expr_t expr ATTRIBUTE_UNUSED,
6008 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6009 void *static_params)
6010 {
6011 fur_static_params_p params = (fur_static_params_p) static_params;
6012 regset tmp;
6013
6014 if (CALL_P (insn))
6015 params->crosses_call = true;
6016
6017 def_list_add (params->original_insns, insn, params->crosses_call);
6018
6019 /* Mark the registers that do not meet the following condition:
6020 (2) not among the live registers of the point
6021 immediately following the first original operation on
6022 a given downward path, except for the original target
6023 register of the operation. */
6024 tmp = get_clear_regset_from_pool ();
6025 compute_live_below_insn (insn, tmp);
6026 AND_COMPL_REG_SET (tmp, INSN_REG_SETS (insn));
6027 AND_COMPL_REG_SET (tmp, INSN_REG_CLOBBERS (insn));
6028 IOR_REG_SET (params->used_regs, tmp);
6029 return_regset_to_pool (tmp);
6030
6031 /* (*1) We need to add to USED_REGS registers that are read by
6032 INSN's lhs. This may lead to choosing wrong src register.
6033 E.g. (scheduling const expr enabled):
6034
6035 429: ax=0x0 <- Can't use AX for this expr (0x0)
6036 433: dx=[bp-0x18]
6037 427: [ax+dx+0x1]=ax
6038 REG_DEAD: ax
6039 168: di=dx
6040 REG_DEAD: dx
6041 */
6042 /* FIXME: see comment above and enable MEM_P
6043 in vinsn_separable_p. */
6044 gcc_assert (!VINSN_SEPARABLE_P (INSN_VINSN (insn))
6045 || !MEM_P (INSN_LHS (insn)));
6046 }
6047
6048 /* This function is called on the ascending pass, before returning from
6049 current basic block. */
6050 static void
6051 move_op_at_first_insn (insn_t insn, cmpd_local_params_p lparams,
6052 void *static_params)
6053 {
6054 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6055 basic_block book_block = NULL;
6056
6057 /* When we have removed the boundary insn for scheduling, which also
6058 happened to be the end insn in its bb, we don't need to update sets. */
6059 if (!lparams->removed_last_insn
6060 && lparams->e1
6061 && sel_bb_head_p (insn))
6062 {
6063 /* We should generate bookkeeping code only if we are not at the
6064 top level of the move_op. */
6065 if (sel_num_cfg_preds_gt_1 (insn))
6066 book_block = generate_bookkeeping_insn (sparams->c_expr,
6067 lparams->e1, lparams->e2);
6068 /* Update data sets for the current insn. */
6069 update_data_sets (insn);
6070 }
6071
6072 /* If bookkeeping code was inserted, we need to update av sets of basic
6073 block that received bookkeeping. After generation of bookkeeping insn,
6074 bookkeeping block does not contain valid av set because we are not following
6075 the original algorithm in every detail with regards to e.g. renaming
6076 simple reg-reg copies. Consider example:
6077
6078 bookkeeping block scheduling fence
6079 \ /
6080 \ join /
6081 ----------
6082 | |
6083 ----------
6084 / \
6085 / \
6086 r1 := r2 r1 := r3
6087
6088 We try to schedule insn "r1 := r3" on the current
6089 scheduling fence. Also, note that av set of bookkeeping block
6090 contain both insns "r1 := r2" and "r1 := r3". When the insn has
6091 been scheduled, the CFG is as follows:
6092
6093 r1 := r3 r1 := r3
6094 bookkeeping block scheduling fence
6095 \ /
6096 \ join /
6097 ----------
6098 | |
6099 ----------
6100 / \
6101 / \
6102 r1 := r2
6103
6104 Here, insn "r1 := r3" was scheduled at the current scheduling point
6105 and bookkeeping code was generated at the bookeeping block. This
6106 way insn "r1 := r2" is no longer available as a whole instruction
6107 (but only as expr) ahead of insn "r1 := r3" in bookkeeping block.
6108 This situation is handled by calling update_data_sets.
6109
6110 Since update_data_sets is called only on the bookkeeping block, and
6111 it also may have predecessors with av_sets, containing instructions that
6112 are no longer available, we save all such expressions that become
6113 unavailable during data sets update on the bookkeeping block in
6114 VEC_BOOKKEEPING_BLOCKED_VINSNS. Later we avoid selecting such
6115 expressions for scheduling. This allows us to avoid recomputation of
6116 av_sets outside the code motion path. */
6117
6118 if (book_block)
6119 update_and_record_unavailable_insns (book_block);
6120
6121 /* If INSN was previously marked for deletion, it's time to do it. */
6122 if (lparams->removed_last_insn)
6123 insn = PREV_INSN (insn);
6124
6125 /* Do not tidy control flow at the topmost moveop, as we can erroneously
6126 kill a block with a single nop in which the insn should be emitted. */
6127 if (lparams->e1)
6128 tidy_control_flow (BLOCK_FOR_INSN (insn), true);
6129 }
6130
6131 /* This function is called on the ascending pass, before returning from the
6132 current basic block. */
6133 static void
6134 fur_at_first_insn (insn_t insn,
6135 cmpd_local_params_p lparams ATTRIBUTE_UNUSED,
6136 void *static_params ATTRIBUTE_UNUSED)
6137 {
6138 gcc_assert (!sel_bb_head_p (insn) || AV_SET_VALID_P (insn)
6139 || AV_LEVEL (insn) == -1);
6140 }
6141
6142 /* Called on the backward stage of recursion to call moveup_expr for insn
6143 and sparams->c_expr. */
6144 static void
6145 move_op_ascend (insn_t insn, void *static_params)
6146 {
6147 enum MOVEUP_EXPR_CODE res;
6148 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6149
6150 if (! INSN_NOP_P (insn))
6151 {
6152 res = moveup_expr_cached (sparams->c_expr, insn, false);
6153 gcc_assert (res != MOVEUP_EXPR_NULL);
6154 }
6155
6156 /* Update liveness for this insn as it was invalidated. */
6157 update_liveness_on_insn (insn);
6158 }
6159
6160 /* This function is called on enter to the basic block.
6161 Returns TRUE if this block already have been visited and
6162 code_motion_path_driver should return 1, FALSE otherwise. */
6163 static int
6164 fur_on_enter (insn_t insn ATTRIBUTE_UNUSED, cmpd_local_params_p local_params,
6165 void *static_params, bool visited_p)
6166 {
6167 fur_static_params_p sparams = (fur_static_params_p) static_params;
6168
6169 if (visited_p)
6170 {
6171 /* If we have found something below this block, there should be at
6172 least one insn in ORIGINAL_INSNS. */
6173 gcc_assert (*sparams->original_insns);
6174
6175 /* Adjust CROSSES_CALL, since we may have come to this block along
6176 different path. */
6177 DEF_LIST_DEF (*sparams->original_insns)->crosses_call
6178 |= sparams->crosses_call;
6179 }
6180 else
6181 local_params->old_original_insns = *sparams->original_insns;
6182
6183 return 1;
6184 }
6185
6186 /* Same as above but for move_op. */
6187 static int
6188 move_op_on_enter (insn_t insn ATTRIBUTE_UNUSED,
6189 cmpd_local_params_p local_params ATTRIBUTE_UNUSED,
6190 void *static_params ATTRIBUTE_UNUSED, bool visited_p)
6191 {
6192 if (visited_p)
6193 return -1;
6194 return 1;
6195 }
6196
6197 /* This function is called while descending current basic block if current
6198 insn is not the original EXPR we're searching for.
6199
6200 Return value: FALSE, if code_motion_path_driver should perform a local
6201 cleanup and return 0 itself;
6202 TRUE, if code_motion_path_driver should continue. */
6203 static bool
6204 move_op_orig_expr_not_found (insn_t insn, av_set_t orig_ops ATTRIBUTE_UNUSED,
6205 void *static_params)
6206 {
6207 moveop_static_params_p sparams = (moveop_static_params_p) static_params;
6208
6209 #ifdef ENABLE_CHECKING
6210 sparams->failed_insn = insn;
6211 #endif
6212
6213 /* If we're scheduling separate expr, in order to generate correct code
6214 we need to stop the search at bookkeeping code generated with the
6215 same destination register or memory. */
6216 if (lhs_of_insn_equals_to_dest_p (insn, sparams->dest))
6217 return false;
6218 return true;
6219 }
6220
6221 /* This function is called while descending current basic block if current
6222 insn is not the original EXPR we're searching for.
6223
6224 Return value: TRUE (code_motion_path_driver should continue). */
6225 static bool
6226 fur_orig_expr_not_found (insn_t insn, av_set_t orig_ops, void *static_params)
6227 {
6228 bool mutexed;
6229 expr_t r;
6230 av_set_iterator avi;
6231 fur_static_params_p sparams = (fur_static_params_p) static_params;
6232
6233 if (CALL_P (insn))
6234 sparams->crosses_call = true;
6235 else if (DEBUG_INSN_P (insn))
6236 return true;
6237
6238 /* If current insn we are looking at cannot be executed together
6239 with original insn, then we can skip it safely.
6240
6241 Example: ORIG_OPS = { (p6) r14 = sign_extend (r15); }
6242 INSN = (!p6) r14 = r14 + 1;
6243
6244 Here we can schedule ORIG_OP with lhs = r14, though only
6245 looking at the set of used and set registers of INSN we must
6246 forbid it. So, add set/used in INSN registers to the
6247 untouchable set only if there is an insn in ORIG_OPS that can
6248 affect INSN. */
6249 mutexed = true;
6250 FOR_EACH_EXPR (r, avi, orig_ops)
6251 if (!sched_insns_conditions_mutex_p (insn, EXPR_INSN_RTX (r)))
6252 {
6253 mutexed = false;
6254 break;
6255 }
6256
6257 /* Mark all registers that do not meet the following condition:
6258 (1) Not set or read on any path from xi to an instance of the
6259 original operation. */
6260 if (!mutexed)
6261 {
6262 IOR_REG_SET (sparams->used_regs, INSN_REG_SETS (insn));
6263 IOR_REG_SET (sparams->used_regs, INSN_REG_USES (insn));
6264 IOR_REG_SET (sparams->used_regs, INSN_REG_CLOBBERS (insn));
6265 }
6266
6267 return true;
6268 }
6269
6270 /* Hooks and data to perform move_op operations with code_motion_path_driver. */
6271 struct code_motion_path_driver_info_def move_op_hooks = {
6272 move_op_on_enter,
6273 move_op_orig_expr_found,
6274 move_op_orig_expr_not_found,
6275 move_op_merge_succs,
6276 move_op_after_merge_succs,
6277 move_op_ascend,
6278 move_op_at_first_insn,
6279 SUCCS_NORMAL,
6280 "move_op"
6281 };
6282
6283 /* Hooks and data to perform find_used_regs operations
6284 with code_motion_path_driver. */
6285 struct code_motion_path_driver_info_def fur_hooks = {
6286 fur_on_enter,
6287 fur_orig_expr_found,
6288 fur_orig_expr_not_found,
6289 fur_merge_succs,
6290 NULL, /* fur_after_merge_succs */
6291 NULL, /* fur_ascend */
6292 fur_at_first_insn,
6293 SUCCS_ALL,
6294 "find_used_regs"
6295 };
6296
6297 /* Traverse all successors of INSN. For each successor that is SUCCS_NORMAL
6298 code_motion_path_driver is called recursively. Original operation
6299 was found at least on one path that is starting with one of INSN's
6300 successors (this fact is asserted). ORIG_OPS is expressions we're looking
6301 for, PATH is the path we've traversed, STATIC_PARAMS is the parameters
6302 of either move_op or find_used_regs depending on the caller.
6303
6304 Return 0 if we haven't found expression, 1 if we found it, -1 if we don't
6305 know for sure at this point. */
6306 static int
6307 code_motion_process_successors (insn_t insn, av_set_t orig_ops,
6308 ilist_t path, void *static_params)
6309 {
6310 int res = 0;
6311 succ_iterator succ_i;
6312 insn_t succ;
6313 basic_block bb;
6314 int old_index;
6315 unsigned old_succs;
6316
6317 struct cmpd_local_params lparams;
6318 expr_def _x;
6319
6320 lparams.c_expr_local = &_x;
6321 lparams.c_expr_merged = NULL;
6322
6323 /* We need to process only NORMAL succs for move_op, and collect live
6324 registers from ALL branches (including those leading out of the
6325 region) for find_used_regs.
6326
6327 In move_op, there can be a case when insn's bb number has changed
6328 due to created bookkeeping. This happens very rare, as we need to
6329 move expression from the beginning to the end of the same block.
6330 Rescan successors in this case. */
6331
6332 rescan:
6333 bb = BLOCK_FOR_INSN (insn);
6334 old_index = bb->index;
6335 old_succs = EDGE_COUNT (bb->succs);
6336
6337 FOR_EACH_SUCC_1 (succ, succ_i, insn, code_motion_path_driver_info->succ_flags)
6338 {
6339 int b;
6340
6341 lparams.e1 = succ_i.e1;
6342 lparams.e2 = succ_i.e2;
6343
6344 /* Go deep into recursion only for NORMAL edges (non-backedges within the
6345 current region). */
6346 if (succ_i.current_flags == SUCCS_NORMAL)
6347 b = code_motion_path_driver (succ, orig_ops, path, &lparams,
6348 static_params);
6349 else
6350 b = 0;
6351
6352 /* Merge c_expres found or unify live register sets from different
6353 successors. */
6354 code_motion_path_driver_info->merge_succs (insn, succ, b, &lparams,
6355 static_params);
6356 if (b == 1)
6357 res = b;
6358 else if (b == -1 && res != 1)
6359 res = b;
6360
6361 /* We have simplified the control flow below this point. In this case,
6362 the iterator becomes invalid. We need to try again.
6363 If we have removed the insn itself, it could be only an
6364 unconditional jump. Thus, do not rescan but break immediately --
6365 we have already visited the only successor block. */
6366 if (!BLOCK_FOR_INSN (insn))
6367 {
6368 if (sched_verbose >= 6)
6369 sel_print ("Not doing rescan: already visited the only successor"
6370 " of block %d\n", old_index);
6371 break;
6372 }
6373 if (BLOCK_FOR_INSN (insn)->index != old_index
6374 || EDGE_COUNT (bb->succs) != old_succs)
6375 {
6376 if (sched_verbose >= 6)
6377 sel_print ("Rescan: CFG was simplified below insn %d, block %d\n",
6378 INSN_UID (insn), BLOCK_FOR_INSN (insn)->index);
6379 insn = sel_bb_end (BLOCK_FOR_INSN (insn));
6380 goto rescan;
6381 }
6382 }
6383
6384 #ifdef ENABLE_CHECKING
6385 /* Here, RES==1 if original expr was found at least for one of the
6386 successors. After the loop, RES may happen to have zero value
6387 only if at some point the expr searched is present in av_set, but is
6388 not found below. In most cases, this situation is an error.
6389 The exception is when the original operation is blocked by
6390 bookkeeping generated for another fence or for another path in current
6391 move_op. */
6392 gcc_assert (res == 1
6393 || (res == 0
6394 && av_set_could_be_blocked_by_bookkeeping_p (orig_ops,
6395 static_params))
6396 || res == -1);
6397 #endif
6398
6399 /* Merge data, clean up, etc. */
6400 if (res != -1 && code_motion_path_driver_info->after_merge_succs)
6401 code_motion_path_driver_info->after_merge_succs (&lparams, static_params);
6402
6403 return res;
6404 }
6405
6406
6407 /* Perform a cleanup when the driver is about to terminate. ORIG_OPS_P
6408 is the pointer to the av set with expressions we were looking for,
6409 PATH_P is the pointer to the traversed path. */
6410 static inline void
6411 code_motion_path_driver_cleanup (av_set_t *orig_ops_p, ilist_t *path_p)
6412 {
6413 ilist_remove (path_p);
6414 av_set_clear (orig_ops_p);
6415 }
6416
6417 /* The driver function that implements move_op or find_used_regs
6418 functionality dependent whether code_motion_path_driver_INFO is set to
6419 &MOVE_OP_HOOKS or &FUR_HOOKS. This function implements the common parts
6420 of code (CFG traversal etc) that are shared among both functions. INSN
6421 is the insn we're starting the search from, ORIG_OPS are the expressions
6422 we're searching for, PATH is traversed path, LOCAL_PARAMS_IN are local
6423 parameters of the driver, and STATIC_PARAMS are static parameters of
6424 the caller.
6425
6426 Returns whether original instructions were found. Note that top-level
6427 code_motion_path_driver always returns true. */
6428 static int
6429 code_motion_path_driver (insn_t insn, av_set_t orig_ops, ilist_t path,
6430 cmpd_local_params_p local_params_in,
6431 void *static_params)
6432 {
6433 expr_t expr = NULL;
6434 basic_block bb = BLOCK_FOR_INSN (insn);
6435 insn_t first_insn, bb_tail, before_first;
6436 bool removed_last_insn = false;
6437
6438 if (sched_verbose >= 6)
6439 {
6440 sel_print ("%s (", code_motion_path_driver_info->routine_name);
6441 dump_insn (insn);
6442 sel_print (",");
6443 dump_av_set (orig_ops);
6444 sel_print (")\n");
6445 }
6446
6447 gcc_assert (orig_ops);
6448
6449 /* If no original operations exist below this insn, return immediately. */
6450 if (is_ineligible_successor (insn, path))
6451 {
6452 if (sched_verbose >= 6)
6453 sel_print ("Insn %d is ineligible successor\n", INSN_UID (insn));
6454 return false;
6455 }
6456
6457 /* The block can have invalid av set, in which case it was created earlier
6458 during move_op. Return immediately. */
6459 if (sel_bb_head_p (insn))
6460 {
6461 if (! AV_SET_VALID_P (insn))
6462 {
6463 if (sched_verbose >= 6)
6464 sel_print ("Returned from block %d as it had invalid av set\n",
6465 bb->index);
6466 return false;
6467 }
6468
6469 if (bitmap_bit_p (code_motion_visited_blocks, bb->index))
6470 {
6471 /* We have already found an original operation on this branch, do not
6472 go any further and just return TRUE here. If we don't stop here,
6473 function can have exponential behaviour even on the small code
6474 with many different paths (e.g. with data speculation and
6475 recovery blocks). */
6476 if (sched_verbose >= 6)
6477 sel_print ("Block %d already visited in this traversal\n", bb->index);
6478 if (code_motion_path_driver_info->on_enter)
6479 return code_motion_path_driver_info->on_enter (insn,
6480 local_params_in,
6481 static_params,
6482 true);
6483 }
6484 }
6485
6486 if (code_motion_path_driver_info->on_enter)
6487 code_motion_path_driver_info->on_enter (insn, local_params_in,
6488 static_params, false);
6489 orig_ops = av_set_copy (orig_ops);
6490
6491 /* Filter the orig_ops set. */
6492 if (AV_SET_VALID_P (insn))
6493 av_set_code_motion_filter (&orig_ops, AV_SET (insn));
6494
6495 /* If no more original ops, return immediately. */
6496 if (!orig_ops)
6497 {
6498 if (sched_verbose >= 6)
6499 sel_print ("No intersection with av set of block %d\n", bb->index);
6500 return false;
6501 }
6502
6503 /* For non-speculative insns we have to leave only one form of the
6504 original operation, because if we don't, we may end up with
6505 different C_EXPRes and, consequently, with bookkeepings for different
6506 expression forms along the same code motion path. That may lead to
6507 generation of incorrect code. So for each code motion we stick to
6508 the single form of the instruction, except for speculative insns
6509 which we need to keep in different forms with all speculation
6510 types. */
6511 av_set_leave_one_nonspec (&orig_ops);
6512
6513 /* It is not possible that all ORIG_OPS are filtered out. */
6514 gcc_assert (orig_ops);
6515
6516 /* It is enough to place only heads and tails of visited basic blocks into
6517 the PATH. */
6518 ilist_add (&path, insn);
6519 first_insn = insn;
6520 bb_tail = sel_bb_end (bb);
6521
6522 /* Descend the basic block in search of the original expr; this part
6523 corresponds to the part of the original move_op procedure executed
6524 before the recursive call. */
6525 for (;;)
6526 {
6527 /* Look at the insn and decide if it could be an ancestor of currently
6528 scheduling operation. If it is so, then the insn "dest = op" could
6529 either be replaced with "dest = reg", because REG now holds the result
6530 of OP, or just removed, if we've scheduled the insn as a whole.
6531
6532 If this insn doesn't contain currently scheduling OP, then proceed
6533 with searching and look at its successors. Operations we're searching
6534 for could have changed when moving up through this insn via
6535 substituting. In this case, perform unsubstitution on them first.
6536
6537 When traversing the DAG below this insn is finished, insert
6538 bookkeeping code, if the insn is a joint point, and remove
6539 leftovers. */
6540
6541 expr = av_set_lookup (orig_ops, INSN_VINSN (insn));
6542 if (expr)
6543 {
6544 insn_t last_insn = PREV_INSN (insn);
6545
6546 /* We have found the original operation. */
6547 if (sched_verbose >= 6)
6548 sel_print ("Found original operation at insn %d\n", INSN_UID (insn));
6549
6550 code_motion_path_driver_info->orig_expr_found
6551 (insn, expr, local_params_in, static_params);
6552
6553 /* Step back, so on the way back we'll start traversing from the
6554 previous insn (or we'll see that it's bb_note and skip that
6555 loop). */
6556 if (insn == first_insn)
6557 {
6558 first_insn = NEXT_INSN (last_insn);
6559 removed_last_insn = sel_bb_end_p (last_insn);
6560 }
6561 insn = last_insn;
6562 break;
6563 }
6564 else
6565 {
6566 /* We haven't found the original expr, continue descending the basic
6567 block. */
6568 if (code_motion_path_driver_info->orig_expr_not_found
6569 (insn, orig_ops, static_params))
6570 {
6571 /* Av set ops could have been changed when moving through this
6572 insn. To find them below it, we have to un-substitute them. */
6573 undo_transformations (&orig_ops, insn);
6574 }
6575 else
6576 {
6577 /* Clean up and return, if the hook tells us to do so. It may
6578 happen if we've encountered the previously created
6579 bookkeeping. */
6580 code_motion_path_driver_cleanup (&orig_ops, &path);
6581 return -1;
6582 }
6583
6584 gcc_assert (orig_ops);
6585 }
6586
6587 /* Stop at insn if we got to the end of BB. */
6588 if (insn == bb_tail)
6589 break;
6590
6591 insn = NEXT_INSN (insn);
6592 }
6593
6594 /* Here INSN either points to the insn before the original insn (may be
6595 bb_note, if original insn was a bb_head) or to the bb_end. */
6596 if (!expr)
6597 {
6598 int res;
6599 rtx_insn *last_insn = PREV_INSN (insn);
6600 bool added_to_path;
6601
6602 gcc_assert (insn == sel_bb_end (bb));
6603
6604 /* Add bb tail to PATH (but it doesn't make any sense if it's a bb_head -
6605 it's already in PATH then). */
6606 if (insn != first_insn)
6607 {
6608 ilist_add (&path, insn);
6609 added_to_path = true;
6610 }
6611 else
6612 added_to_path = false;
6613
6614 /* Process_successors should be able to find at least one
6615 successor for which code_motion_path_driver returns TRUE. */
6616 res = code_motion_process_successors (insn, orig_ops,
6617 path, static_params);
6618
6619 /* Jump in the end of basic block could have been removed or replaced
6620 during code_motion_process_successors, so recompute insn as the
6621 last insn in bb. */
6622 if (NEXT_INSN (last_insn) != insn)
6623 {
6624 insn = sel_bb_end (bb);
6625 first_insn = sel_bb_head (bb);
6626 }
6627
6628 /* Remove bb tail from path. */
6629 if (added_to_path)
6630 ilist_remove (&path);
6631
6632 if (res != 1)
6633 {
6634 /* This is the case when one of the original expr is no longer available
6635 due to bookkeeping created on this branch with the same register.
6636 In the original algorithm, which doesn't have update_data_sets call
6637 on a bookkeeping block, it would simply result in returning
6638 FALSE when we've encountered a previously generated bookkeeping
6639 insn in moveop_orig_expr_not_found. */
6640 code_motion_path_driver_cleanup (&orig_ops, &path);
6641 return res;
6642 }
6643 }
6644
6645 /* Don't need it any more. */
6646 av_set_clear (&orig_ops);
6647
6648 /* Backward pass: now, when we have C_EXPR computed, we'll drag it to
6649 the beginning of the basic block. */
6650 before_first = PREV_INSN (first_insn);
6651 while (insn != before_first)
6652 {
6653 if (code_motion_path_driver_info->ascend)
6654 code_motion_path_driver_info->ascend (insn, static_params);
6655
6656 insn = PREV_INSN (insn);
6657 }
6658
6659 /* Now we're at the bb head. */
6660 insn = first_insn;
6661 ilist_remove (&path);
6662 local_params_in->removed_last_insn = removed_last_insn;
6663 code_motion_path_driver_info->at_first_insn (insn, local_params_in, static_params);
6664
6665 /* This should be the very last operation as at bb head we could change
6666 the numbering by creating bookkeeping blocks. */
6667 if (removed_last_insn)
6668 insn = PREV_INSN (insn);
6669
6670 /* If we have simplified the control flow and removed the first jump insn,
6671 there's no point in marking this block in the visited blocks bitmap. */
6672 if (BLOCK_FOR_INSN (insn))
6673 bitmap_set_bit (code_motion_visited_blocks, BLOCK_FOR_INSN (insn)->index);
6674 return true;
6675 }
6676
6677 /* Move up the operations from ORIG_OPS set traversing the dag starting
6678 from INSN. PATH represents the edges traversed so far.
6679 DEST is the register chosen for scheduling the current expr. Insert
6680 bookkeeping code in the join points. EXPR_VLIW is the chosen expression,
6681 C_EXPR is how it looks like at the given cfg point.
6682 Set *SHOULD_MOVE to indicate whether we have only disconnected
6683 one of the insns found.
6684
6685 Returns whether original instructions were found, which is asserted
6686 to be true in the caller. */
6687 static bool
6688 move_op (insn_t insn, av_set_t orig_ops, expr_t expr_vliw,
6689 rtx dest, expr_t c_expr, bool *should_move)
6690 {
6691 struct moveop_static_params sparams;
6692 struct cmpd_local_params lparams;
6693 int res;
6694
6695 /* Init params for code_motion_path_driver. */
6696 sparams.dest = dest;
6697 sparams.c_expr = c_expr;
6698 sparams.uid = INSN_UID (EXPR_INSN_RTX (expr_vliw));
6699 #ifdef ENABLE_CHECKING
6700 sparams.failed_insn = NULL;
6701 #endif
6702 sparams.was_renamed = false;
6703 lparams.e1 = NULL;
6704
6705 /* We haven't visited any blocks yet. */
6706 bitmap_clear (code_motion_visited_blocks);
6707
6708 /* Set appropriate hooks and data. */
6709 code_motion_path_driver_info = &move_op_hooks;
6710 res = code_motion_path_driver (insn, orig_ops, NULL, &lparams, &sparams);
6711
6712 gcc_assert (res != -1);
6713
6714 if (sparams.was_renamed)
6715 EXPR_WAS_RENAMED (expr_vliw) = true;
6716
6717 *should_move = (sparams.uid == -1);
6718
6719 return res;
6720 }
6721 \f
6722
6723 /* Functions that work with regions. */
6724
6725 /* Current number of seqno used in init_seqno and init_seqno_1. */
6726 static int cur_seqno;
6727
6728 /* A helper for init_seqno. Traverse the region starting from BB and
6729 compute seqnos for visited insns, marking visited bbs in VISITED_BBS.
6730 Clear visited blocks from BLOCKS_TO_RESCHEDULE. */
6731 static void
6732 init_seqno_1 (basic_block bb, sbitmap visited_bbs, bitmap blocks_to_reschedule)
6733 {
6734 int bbi = BLOCK_TO_BB (bb->index);
6735 insn_t insn;
6736 insn_t succ_insn;
6737 succ_iterator si;
6738
6739 rtx_note *note = bb_note (bb);
6740 bitmap_set_bit (visited_bbs, bbi);
6741 if (blocks_to_reschedule)
6742 bitmap_clear_bit (blocks_to_reschedule, bb->index);
6743
6744 FOR_EACH_SUCC_1 (succ_insn, si, BB_END (bb),
6745 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
6746 {
6747 basic_block succ = BLOCK_FOR_INSN (succ_insn);
6748 int succ_bbi = BLOCK_TO_BB (succ->index);
6749
6750 gcc_assert (in_current_region_p (succ));
6751
6752 if (!bitmap_bit_p (visited_bbs, succ_bbi))
6753 {
6754 gcc_assert (succ_bbi > bbi);
6755
6756 init_seqno_1 (succ, visited_bbs, blocks_to_reschedule);
6757 }
6758 else if (blocks_to_reschedule)
6759 bitmap_set_bit (forced_ebb_heads, succ->index);
6760 }
6761
6762 for (insn = BB_END (bb); insn != note; insn = PREV_INSN (insn))
6763 INSN_SEQNO (insn) = cur_seqno--;
6764 }
6765
6766 /* Initialize seqnos for the current region. BLOCKS_TO_RESCHEDULE contains
6767 blocks on which we're rescheduling when pipelining, FROM is the block where
6768 traversing region begins (it may not be the head of the region when
6769 pipelining, but the head of the loop instead).
6770
6771 Returns the maximal seqno found. */
6772 static int
6773 init_seqno (bitmap blocks_to_reschedule, basic_block from)
6774 {
6775 sbitmap visited_bbs;
6776 bitmap_iterator bi;
6777 unsigned bbi;
6778
6779 visited_bbs = sbitmap_alloc (current_nr_blocks);
6780
6781 if (blocks_to_reschedule)
6782 {
6783 bitmap_ones (visited_bbs);
6784 EXECUTE_IF_SET_IN_BITMAP (blocks_to_reschedule, 0, bbi, bi)
6785 {
6786 gcc_assert (BLOCK_TO_BB (bbi) < current_nr_blocks);
6787 bitmap_clear_bit (visited_bbs, BLOCK_TO_BB (bbi));
6788 }
6789 }
6790 else
6791 {
6792 bitmap_clear (visited_bbs);
6793 from = EBB_FIRST_BB (0);
6794 }
6795
6796 cur_seqno = sched_max_luid - 1;
6797 init_seqno_1 (from, visited_bbs, blocks_to_reschedule);
6798
6799 /* cur_seqno may be positive if the number of instructions is less than
6800 sched_max_luid - 1 (when rescheduling or if some instructions have been
6801 removed by the call to purge_empty_blocks in sel_sched_region_1). */
6802 gcc_assert (cur_seqno >= 0);
6803
6804 sbitmap_free (visited_bbs);
6805 return sched_max_luid - 1;
6806 }
6807
6808 /* Initialize scheduling parameters for current region. */
6809 static void
6810 sel_setup_region_sched_flags (void)
6811 {
6812 enable_schedule_as_rhs_p = 1;
6813 bookkeeping_p = 1;
6814 pipelining_p = (bookkeeping_p
6815 && (flag_sel_sched_pipelining != 0)
6816 && current_loop_nest != NULL
6817 && loop_has_exit_edges (current_loop_nest));
6818 max_insns_to_rename = PARAM_VALUE (PARAM_SELSCHED_INSNS_TO_RENAME);
6819 max_ws = MAX_WS;
6820 }
6821
6822 /* Return true if all basic blocks of current region are empty. */
6823 static bool
6824 current_region_empty_p (void)
6825 {
6826 int i;
6827 for (i = 0; i < current_nr_blocks; i++)
6828 if (! sel_bb_empty_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i))))
6829 return false;
6830
6831 return true;
6832 }
6833
6834 /* Prepare and verify loop nest for pipelining. */
6835 static void
6836 setup_current_loop_nest (int rgn, bb_vec_t *bbs)
6837 {
6838 current_loop_nest = get_loop_nest_for_rgn (rgn);
6839
6840 if (!current_loop_nest)
6841 return;
6842
6843 /* If this loop has any saved loop preheaders from nested loops,
6844 add these basic blocks to the current region. */
6845 sel_add_loop_preheaders (bbs);
6846
6847 /* Check that we're starting with a valid information. */
6848 gcc_assert (loop_latch_edge (current_loop_nest));
6849 gcc_assert (LOOP_MARKED_FOR_PIPELINING_P (current_loop_nest));
6850 }
6851
6852 /* Compute instruction priorities for current region. */
6853 static void
6854 sel_compute_priorities (int rgn)
6855 {
6856 sched_rgn_compute_dependencies (rgn);
6857
6858 /* Compute insn priorities in haifa style. Then free haifa style
6859 dependencies that we've calculated for this. */
6860 compute_priorities ();
6861
6862 if (sched_verbose >= 5)
6863 debug_rgn_dependencies (0);
6864
6865 free_rgn_deps ();
6866 }
6867
6868 /* Init scheduling data for RGN. Returns true when this region should not
6869 be scheduled. */
6870 static bool
6871 sel_region_init (int rgn)
6872 {
6873 int i;
6874 bb_vec_t bbs;
6875
6876 rgn_setup_region (rgn);
6877
6878 /* Even if sched_is_disabled_for_current_region_p() is true, we still
6879 do region initialization here so the region can be bundled correctly,
6880 but we'll skip the scheduling in sel_sched_region (). */
6881 if (current_region_empty_p ())
6882 return true;
6883
6884 bbs.create (current_nr_blocks);
6885
6886 for (i = 0; i < current_nr_blocks; i++)
6887 bbs.quick_push (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i)));
6888
6889 sel_init_bbs (bbs);
6890
6891 if (flag_sel_sched_pipelining)
6892 setup_current_loop_nest (rgn, &bbs);
6893
6894 sel_setup_region_sched_flags ();
6895
6896 /* Initialize luids and dependence analysis which both sel-sched and haifa
6897 need. */
6898 sched_init_luids (bbs);
6899 sched_deps_init (false);
6900
6901 /* Initialize haifa data. */
6902 rgn_setup_sched_infos ();
6903 sel_set_sched_flags ();
6904 haifa_init_h_i_d (bbs);
6905
6906 sel_compute_priorities (rgn);
6907 init_deps_global ();
6908
6909 /* Main initialization. */
6910 sel_setup_sched_infos ();
6911 sel_init_global_and_expr (bbs);
6912
6913 bbs.release ();
6914
6915 blocks_to_reschedule = BITMAP_ALLOC (NULL);
6916
6917 /* Init correct liveness sets on each instruction of a single-block loop.
6918 This is the only situation when we can't update liveness when calling
6919 compute_live for the first insn of the loop. */
6920 if (current_loop_nest)
6921 {
6922 int header =
6923 (sel_is_loop_preheader_p (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (0)))
6924 ? 1
6925 : 0);
6926
6927 if (current_nr_blocks == header + 1)
6928 update_liveness_on_insn
6929 (sel_bb_head (BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (header))));
6930 }
6931
6932 /* Set hooks so that no newly generated insn will go out unnoticed. */
6933 sel_register_cfg_hooks ();
6934
6935 /* !!! We call target.sched.init () for the whole region, but we invoke
6936 targetm.sched.finish () for every ebb. */
6937 if (targetm.sched.init)
6938 /* None of the arguments are actually used in any target. */
6939 targetm.sched.init (sched_dump, sched_verbose, -1);
6940
6941 first_emitted_uid = get_max_uid () + 1;
6942 preheader_removed = false;
6943
6944 /* Reset register allocation ticks array. */
6945 memset (reg_rename_tick, 0, sizeof reg_rename_tick);
6946 reg_rename_this_tick = 0;
6947
6948 bitmap_initialize (forced_ebb_heads, 0);
6949 bitmap_clear (forced_ebb_heads);
6950
6951 setup_nop_vinsn ();
6952 current_copies = BITMAP_ALLOC (NULL);
6953 current_originators = BITMAP_ALLOC (NULL);
6954 code_motion_visited_blocks = BITMAP_ALLOC (NULL);
6955
6956 return false;
6957 }
6958
6959 /* Simplify insns after the scheduling. */
6960 static void
6961 simplify_changed_insns (void)
6962 {
6963 int i;
6964
6965 for (i = 0; i < current_nr_blocks; i++)
6966 {
6967 basic_block bb = BASIC_BLOCK_FOR_FN (cfun, BB_TO_BLOCK (i));
6968 rtx_insn *insn;
6969
6970 FOR_BB_INSNS (bb, insn)
6971 if (INSN_P (insn))
6972 {
6973 expr_t expr = INSN_EXPR (insn);
6974
6975 if (EXPR_WAS_SUBSTITUTED (expr))
6976 validate_simplify_insn (insn);
6977 }
6978 }
6979 }
6980
6981 /* Find boundaries of the EBB starting from basic block BB, marking blocks of
6982 this EBB in SCHEDULED_BLOCKS and appropriately filling in HEAD, TAIL,
6983 PREV_HEAD, and NEXT_TAIL fields of CURRENT_SCHED_INFO structure. */
6984 static void
6985 find_ebb_boundaries (basic_block bb, bitmap scheduled_blocks)
6986 {
6987 rtx_insn *head, *tail;
6988 basic_block bb1 = bb;
6989 if (sched_verbose >= 2)
6990 sel_print ("Finishing schedule in bbs: ");
6991
6992 do
6993 {
6994 bitmap_set_bit (scheduled_blocks, BLOCK_TO_BB (bb1->index));
6995
6996 if (sched_verbose >= 2)
6997 sel_print ("%d; ", bb1->index);
6998 }
6999 while (!bb_ends_ebb_p (bb1) && (bb1 = bb_next_bb (bb1)));
7000
7001 if (sched_verbose >= 2)
7002 sel_print ("\n");
7003
7004 get_ebb_head_tail (bb, bb1, &head, &tail);
7005
7006 current_sched_info->head = head;
7007 current_sched_info->tail = tail;
7008 current_sched_info->prev_head = PREV_INSN (head);
7009 current_sched_info->next_tail = NEXT_INSN (tail);
7010 }
7011
7012 /* Regenerate INSN_SCHED_CYCLEs for insns of current EBB. */
7013 static void
7014 reset_sched_cycles_in_current_ebb (void)
7015 {
7016 int last_clock = 0;
7017 int haifa_last_clock = -1;
7018 int haifa_clock = 0;
7019 int issued_insns = 0;
7020 insn_t insn;
7021
7022 if (targetm.sched.init)
7023 {
7024 /* None of the arguments are actually used in any target.
7025 NB: We should have md_reset () hook for cases like this. */
7026 targetm.sched.init (sched_dump, sched_verbose, -1);
7027 }
7028
7029 state_reset (curr_state);
7030 advance_state (curr_state);
7031
7032 for (insn = current_sched_info->head;
7033 insn != current_sched_info->next_tail;
7034 insn = NEXT_INSN (insn))
7035 {
7036 int cost, haifa_cost;
7037 int sort_p;
7038 bool asm_p, real_insn, after_stall, all_issued;
7039 int clock;
7040
7041 if (!INSN_P (insn))
7042 continue;
7043
7044 asm_p = false;
7045 real_insn = recog_memoized (insn) >= 0;
7046 clock = INSN_SCHED_CYCLE (insn);
7047
7048 cost = clock - last_clock;
7049
7050 /* Initialize HAIFA_COST. */
7051 if (! real_insn)
7052 {
7053 asm_p = INSN_ASM_P (insn);
7054
7055 if (asm_p)
7056 /* This is asm insn which *had* to be scheduled first
7057 on the cycle. */
7058 haifa_cost = 1;
7059 else
7060 /* This is a use/clobber insn. It should not change
7061 cost. */
7062 haifa_cost = 0;
7063 }
7064 else
7065 haifa_cost = estimate_insn_cost (insn, curr_state);
7066
7067 /* Stall for whatever cycles we've stalled before. */
7068 after_stall = 0;
7069 if (INSN_AFTER_STALL_P (insn) && cost > haifa_cost)
7070 {
7071 haifa_cost = cost;
7072 after_stall = 1;
7073 }
7074 all_issued = issued_insns == issue_rate;
7075 if (haifa_cost == 0 && all_issued)
7076 haifa_cost = 1;
7077 if (haifa_cost > 0)
7078 {
7079 int i = 0;
7080
7081 while (haifa_cost--)
7082 {
7083 advance_state (curr_state);
7084 issued_insns = 0;
7085 i++;
7086
7087 if (sched_verbose >= 2)
7088 {
7089 sel_print ("advance_state (state_transition)\n");
7090 debug_state (curr_state);
7091 }
7092
7093 /* The DFA may report that e.g. insn requires 2 cycles to be
7094 issued, but on the next cycle it says that insn is ready
7095 to go. Check this here. */
7096 if (!after_stall
7097 && real_insn
7098 && haifa_cost > 0
7099 && estimate_insn_cost (insn, curr_state) == 0)
7100 break;
7101
7102 /* When the data dependency stall is longer than the DFA stall,
7103 and when we have issued exactly issue_rate insns and stalled,
7104 it could be that after this longer stall the insn will again
7105 become unavailable to the DFA restrictions. Looks strange
7106 but happens e.g. on x86-64. So recheck DFA on the last
7107 iteration. */
7108 if ((after_stall || all_issued)
7109 && real_insn
7110 && haifa_cost == 0)
7111 haifa_cost = estimate_insn_cost (insn, curr_state);
7112 }
7113
7114 haifa_clock += i;
7115 if (sched_verbose >= 2)
7116 sel_print ("haifa clock: %d\n", haifa_clock);
7117 }
7118 else
7119 gcc_assert (haifa_cost == 0);
7120
7121 if (sched_verbose >= 2)
7122 sel_print ("Haifa cost for insn %d: %d\n", INSN_UID (insn), haifa_cost);
7123
7124 if (targetm.sched.dfa_new_cycle)
7125 while (targetm.sched.dfa_new_cycle (sched_dump, sched_verbose, insn,
7126 haifa_last_clock, haifa_clock,
7127 &sort_p))
7128 {
7129 advance_state (curr_state);
7130 issued_insns = 0;
7131 haifa_clock++;
7132 if (sched_verbose >= 2)
7133 {
7134 sel_print ("advance_state (dfa_new_cycle)\n");
7135 debug_state (curr_state);
7136 sel_print ("haifa clock: %d\n", haifa_clock + 1);
7137 }
7138 }
7139
7140 if (real_insn)
7141 {
7142 static state_t temp = NULL;
7143
7144 if (!temp)
7145 temp = xmalloc (dfa_state_size);
7146 memcpy (temp, curr_state, dfa_state_size);
7147
7148 cost = state_transition (curr_state, insn);
7149 if (memcmp (temp, curr_state, dfa_state_size))
7150 issued_insns++;
7151
7152 if (sched_verbose >= 2)
7153 {
7154 sel_print ("scheduled insn %d, clock %d\n", INSN_UID (insn),
7155 haifa_clock + 1);
7156 debug_state (curr_state);
7157 }
7158 gcc_assert (cost < 0);
7159 }
7160
7161 if (targetm.sched.variable_issue)
7162 targetm.sched.variable_issue (sched_dump, sched_verbose, insn, 0);
7163
7164 INSN_SCHED_CYCLE (insn) = haifa_clock;
7165
7166 last_clock = clock;
7167 haifa_last_clock = haifa_clock;
7168 }
7169 }
7170
7171 /* Put TImode markers on insns starting a new issue group. */
7172 static void
7173 put_TImodes (void)
7174 {
7175 int last_clock = -1;
7176 insn_t insn;
7177
7178 for (insn = current_sched_info->head; insn != current_sched_info->next_tail;
7179 insn = NEXT_INSN (insn))
7180 {
7181 int cost, clock;
7182
7183 if (!INSN_P (insn))
7184 continue;
7185
7186 clock = INSN_SCHED_CYCLE (insn);
7187 cost = (last_clock == -1) ? 1 : clock - last_clock;
7188
7189 gcc_assert (cost >= 0);
7190
7191 if (issue_rate > 1
7192 && GET_CODE (PATTERN (insn)) != USE
7193 && GET_CODE (PATTERN (insn)) != CLOBBER)
7194 {
7195 if (reload_completed && cost > 0)
7196 PUT_MODE (insn, TImode);
7197
7198 last_clock = clock;
7199 }
7200
7201 if (sched_verbose >= 2)
7202 sel_print ("Cost for insn %d is %d\n", INSN_UID (insn), cost);
7203 }
7204 }
7205
7206 /* Perform MD_FINISH on EBBs comprising current region. When
7207 RESET_SCHED_CYCLES_P is true, run a pass emulating the scheduler
7208 to produce correct sched cycles on insns. */
7209 static void
7210 sel_region_target_finish (bool reset_sched_cycles_p)
7211 {
7212 int i;
7213 bitmap scheduled_blocks = BITMAP_ALLOC (NULL);
7214
7215 for (i = 0; i < current_nr_blocks; i++)
7216 {
7217 if (bitmap_bit_p (scheduled_blocks, i))
7218 continue;
7219
7220 /* While pipelining outer loops, skip bundling for loop
7221 preheaders. Those will be rescheduled in the outer loop. */
7222 if (sel_is_loop_preheader_p (EBB_FIRST_BB (i)))
7223 continue;
7224
7225 find_ebb_boundaries (EBB_FIRST_BB (i), scheduled_blocks);
7226
7227 if (no_real_insns_p (current_sched_info->head, current_sched_info->tail))
7228 continue;
7229
7230 if (reset_sched_cycles_p)
7231 reset_sched_cycles_in_current_ebb ();
7232
7233 if (targetm.sched.init)
7234 targetm.sched.init (sched_dump, sched_verbose, -1);
7235
7236 put_TImodes ();
7237
7238 if (targetm.sched.finish)
7239 {
7240 targetm.sched.finish (sched_dump, sched_verbose);
7241
7242 /* Extend luids so that insns generated by the target will
7243 get zero luid. */
7244 sched_extend_luids ();
7245 }
7246 }
7247
7248 BITMAP_FREE (scheduled_blocks);
7249 }
7250
7251 /* Free the scheduling data for the current region. When RESET_SCHED_CYCLES_P
7252 is true, make an additional pass emulating scheduler to get correct insn
7253 cycles for md_finish calls. */
7254 static void
7255 sel_region_finish (bool reset_sched_cycles_p)
7256 {
7257 simplify_changed_insns ();
7258 sched_finish_ready_list ();
7259 free_nop_pool ();
7260
7261 /* Free the vectors. */
7262 vec_av_set.release ();
7263 BITMAP_FREE (current_copies);
7264 BITMAP_FREE (current_originators);
7265 BITMAP_FREE (code_motion_visited_blocks);
7266 vinsn_vec_free (vec_bookkeeping_blocked_vinsns);
7267 vinsn_vec_free (vec_target_unavailable_vinsns);
7268
7269 /* If LV_SET of the region head should be updated, do it now because
7270 there will be no other chance. */
7271 {
7272 succ_iterator si;
7273 insn_t insn;
7274
7275 FOR_EACH_SUCC_1 (insn, si, bb_note (EBB_FIRST_BB (0)),
7276 SUCCS_NORMAL | SUCCS_SKIP_TO_LOOP_EXITS)
7277 {
7278 basic_block bb = BLOCK_FOR_INSN (insn);
7279
7280 if (!BB_LV_SET_VALID_P (bb))
7281 compute_live (insn);
7282 }
7283 }
7284
7285 /* Emulate the Haifa scheduler for bundling. */
7286 if (reload_completed)
7287 sel_region_target_finish (reset_sched_cycles_p);
7288
7289 sel_finish_global_and_expr ();
7290
7291 bitmap_clear (forced_ebb_heads);
7292
7293 free_nop_vinsn ();
7294
7295 finish_deps_global ();
7296 sched_finish_luids ();
7297 h_d_i_d.release ();
7298
7299 sel_finish_bbs ();
7300 BITMAP_FREE (blocks_to_reschedule);
7301
7302 sel_unregister_cfg_hooks ();
7303
7304 max_issue_size = 0;
7305 }
7306 \f
7307
7308 /* Functions that implement the scheduler driver. */
7309
7310 /* Schedule a parallel instruction group on each of FENCES. MAX_SEQNO
7311 is the current maximum seqno. SCHEDULED_INSNS_TAILPP is the list
7312 of insns scheduled -- these would be postprocessed later. */
7313 static void
7314 schedule_on_fences (flist_t fences, int max_seqno,
7315 ilist_t **scheduled_insns_tailpp)
7316 {
7317 flist_t old_fences = fences;
7318
7319 if (sched_verbose >= 1)
7320 {
7321 sel_print ("\nScheduling on fences: ");
7322 dump_flist (fences);
7323 sel_print ("\n");
7324 }
7325
7326 scheduled_something_on_previous_fence = false;
7327 for (; fences; fences = FLIST_NEXT (fences))
7328 {
7329 fence_t fence = NULL;
7330 int seqno = 0;
7331 flist_t fences2;
7332 bool first_p = true;
7333
7334 /* Choose the next fence group to schedule.
7335 The fact that insn can be scheduled only once
7336 on the cycle is guaranteed by two properties:
7337 1. seqnos of parallel groups decrease with each iteration.
7338 2. If is_ineligible_successor () sees the larger seqno, it
7339 checks if candidate insn is_in_current_fence_p (). */
7340 for (fences2 = old_fences; fences2; fences2 = FLIST_NEXT (fences2))
7341 {
7342 fence_t f = FLIST_FENCE (fences2);
7343
7344 if (!FENCE_PROCESSED_P (f))
7345 {
7346 int i = INSN_SEQNO (FENCE_INSN (f));
7347
7348 if (first_p || i > seqno)
7349 {
7350 seqno = i;
7351 fence = f;
7352 first_p = false;
7353 }
7354 else
7355 /* ??? Seqnos of different groups should be different. */
7356 gcc_assert (1 || i != seqno);
7357 }
7358 }
7359
7360 gcc_assert (fence);
7361
7362 /* As FENCE is nonnull, SEQNO is initialized. */
7363 seqno -= max_seqno + 1;
7364 fill_insns (fence, seqno, scheduled_insns_tailpp);
7365 FENCE_PROCESSED_P (fence) = true;
7366 }
7367
7368 /* All av_sets are invalidated by GLOBAL_LEVEL increase, thus we
7369 don't need to keep bookkeeping-invalidated and target-unavailable
7370 vinsns any more. */
7371 vinsn_vec_clear (&vec_bookkeeping_blocked_vinsns);
7372 vinsn_vec_clear (&vec_target_unavailable_vinsns);
7373 }
7374
7375 /* Calculate MIN_SEQNO and MAX_SEQNO. */
7376 static void
7377 find_min_max_seqno (flist_t fences, int *min_seqno, int *max_seqno)
7378 {
7379 *min_seqno = *max_seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7380
7381 /* The first element is already processed. */
7382 while ((fences = FLIST_NEXT (fences)))
7383 {
7384 int seqno = INSN_SEQNO (FENCE_INSN (FLIST_FENCE (fences)));
7385
7386 if (*min_seqno > seqno)
7387 *min_seqno = seqno;
7388 else if (*max_seqno < seqno)
7389 *max_seqno = seqno;
7390 }
7391 }
7392
7393 /* Calculate new fences from FENCES. Write the current time to PTIME. */
7394 static flist_t
7395 calculate_new_fences (flist_t fences, int orig_max_seqno, int *ptime)
7396 {
7397 flist_t old_fences = fences;
7398 struct flist_tail_def _new_fences, *new_fences = &_new_fences;
7399 int max_time = 0;
7400
7401 flist_tail_init (new_fences);
7402 for (; fences; fences = FLIST_NEXT (fences))
7403 {
7404 fence_t fence = FLIST_FENCE (fences);
7405 insn_t insn;
7406
7407 if (!FENCE_BNDS (fence))
7408 {
7409 /* This fence doesn't have any successors. */
7410 if (!FENCE_SCHEDULED_P (fence))
7411 {
7412 /* Nothing was scheduled on this fence. */
7413 int seqno;
7414
7415 insn = FENCE_INSN (fence);
7416 seqno = INSN_SEQNO (insn);
7417 gcc_assert (seqno > 0 && seqno <= orig_max_seqno);
7418
7419 if (sched_verbose >= 1)
7420 sel_print ("Fence %d[%d] has not changed\n",
7421 INSN_UID (insn),
7422 BLOCK_NUM (insn));
7423 move_fence_to_fences (fences, new_fences);
7424 }
7425 }
7426 else
7427 extract_new_fences_from (fences, new_fences, orig_max_seqno);
7428 max_time = MAX (max_time, FENCE_CYCLE (fence));
7429 }
7430
7431 flist_clear (&old_fences);
7432 *ptime = max_time;
7433 return FLIST_TAIL_HEAD (new_fences);
7434 }
7435
7436 /* Update seqnos of insns given by PSCHEDULED_INSNS. MIN_SEQNO and MAX_SEQNO
7437 are the miminum and maximum seqnos of the group, HIGHEST_SEQNO_IN_USE is
7438 the highest seqno used in a region. Return the updated highest seqno. */
7439 static int
7440 update_seqnos_and_stage (int min_seqno, int max_seqno,
7441 int highest_seqno_in_use,
7442 ilist_t *pscheduled_insns)
7443 {
7444 int new_hs;
7445 ilist_iterator ii;
7446 insn_t insn;
7447
7448 /* Actually, new_hs is the seqno of the instruction, that was
7449 scheduled first (i.e. it is the first one in SCHEDULED_INSNS). */
7450 if (*pscheduled_insns)
7451 {
7452 new_hs = (INSN_SEQNO (ILIST_INSN (*pscheduled_insns))
7453 + highest_seqno_in_use + max_seqno - min_seqno + 2);
7454 gcc_assert (new_hs > highest_seqno_in_use);
7455 }
7456 else
7457 new_hs = highest_seqno_in_use;
7458
7459 FOR_EACH_INSN (insn, ii, *pscheduled_insns)
7460 {
7461 gcc_assert (INSN_SEQNO (insn) < 0);
7462 INSN_SEQNO (insn) += highest_seqno_in_use + max_seqno - min_seqno + 2;
7463 gcc_assert (INSN_SEQNO (insn) <= new_hs);
7464
7465 /* When not pipelining, purge unneeded insn info on the scheduled insns.
7466 For example, having reg_last array of INSN_DEPS_CONTEXT in memory may
7467 require > 1GB of memory e.g. on limit-fnargs.c. */
7468 if (! pipelining_p)
7469 free_data_for_scheduled_insn (insn);
7470 }
7471
7472 ilist_clear (pscheduled_insns);
7473 global_level++;
7474
7475 return new_hs;
7476 }
7477
7478 /* The main driver for scheduling a region. This function is responsible
7479 for correct propagation of fences (i.e. scheduling points) and creating
7480 a group of parallel insns at each of them. It also supports
7481 pipelining. ORIG_MAX_SEQNO is the maximal seqno before this pass
7482 of scheduling. */
7483 static void
7484 sel_sched_region_2 (int orig_max_seqno)
7485 {
7486 int highest_seqno_in_use = orig_max_seqno;
7487 int max_time = 0;
7488
7489 stat_bookkeeping_copies = 0;
7490 stat_insns_needed_bookkeeping = 0;
7491 stat_renamed_scheduled = 0;
7492 stat_substitutions_total = 0;
7493 num_insns_scheduled = 0;
7494
7495 while (fences)
7496 {
7497 int min_seqno, max_seqno;
7498 ilist_t scheduled_insns = NULL;
7499 ilist_t *scheduled_insns_tailp = &scheduled_insns;
7500
7501 find_min_max_seqno (fences, &min_seqno, &max_seqno);
7502 schedule_on_fences (fences, max_seqno, &scheduled_insns_tailp);
7503 fences = calculate_new_fences (fences, orig_max_seqno, &max_time);
7504 highest_seqno_in_use = update_seqnos_and_stage (min_seqno, max_seqno,
7505 highest_seqno_in_use,
7506 &scheduled_insns);
7507 }
7508
7509 if (sched_verbose >= 1)
7510 {
7511 sel_print ("Total scheduling time: %d cycles\n", max_time);
7512 sel_print ("Scheduled %d bookkeeping copies, %d insns needed "
7513 "bookkeeping, %d insns renamed, %d insns substituted\n",
7514 stat_bookkeeping_copies,
7515 stat_insns_needed_bookkeeping,
7516 stat_renamed_scheduled,
7517 stat_substitutions_total);
7518 }
7519 }
7520
7521 /* Schedule a region. When pipelining, search for possibly never scheduled
7522 bookkeeping code and schedule it. Reschedule pipelined code without
7523 pipelining after. */
7524 static void
7525 sel_sched_region_1 (void)
7526 {
7527 int orig_max_seqno;
7528
7529 /* Remove empty blocks that might be in the region from the beginning. */
7530 purge_empty_blocks ();
7531
7532 orig_max_seqno = init_seqno (NULL, NULL);
7533 gcc_assert (orig_max_seqno >= 1);
7534
7535 /* When pipelining outer loops, create fences on the loop header,
7536 not preheader. */
7537 fences = NULL;
7538 if (current_loop_nest)
7539 init_fences (BB_END (EBB_FIRST_BB (0)));
7540 else
7541 init_fences (bb_note (EBB_FIRST_BB (0)));
7542 global_level = 1;
7543
7544 sel_sched_region_2 (orig_max_seqno);
7545
7546 gcc_assert (fences == NULL);
7547
7548 if (pipelining_p)
7549 {
7550 int i;
7551 basic_block bb;
7552 struct flist_tail_def _new_fences;
7553 flist_tail_t new_fences = &_new_fences;
7554 bool do_p = true;
7555
7556 pipelining_p = false;
7557 max_ws = MIN (max_ws, issue_rate * 3 / 2);
7558 bookkeeping_p = false;
7559 enable_schedule_as_rhs_p = false;
7560
7561 /* Schedule newly created code, that has not been scheduled yet. */
7562 do_p = true;
7563
7564 while (do_p)
7565 {
7566 do_p = false;
7567
7568 for (i = 0; i < current_nr_blocks; i++)
7569 {
7570 basic_block bb = EBB_FIRST_BB (i);
7571
7572 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7573 {
7574 if (! bb_ends_ebb_p (bb))
7575 bitmap_set_bit (blocks_to_reschedule, bb_next_bb (bb)->index);
7576 if (sel_bb_empty_p (bb))
7577 {
7578 bitmap_clear_bit (blocks_to_reschedule, bb->index);
7579 continue;
7580 }
7581 clear_outdated_rtx_info (bb);
7582 if (sel_insn_is_speculation_check (BB_END (bb))
7583 && JUMP_P (BB_END (bb)))
7584 bitmap_set_bit (blocks_to_reschedule,
7585 BRANCH_EDGE (bb)->dest->index);
7586 }
7587 else if (! sel_bb_empty_p (bb)
7588 && INSN_SCHED_TIMES (sel_bb_head (bb)) <= 0)
7589 bitmap_set_bit (blocks_to_reschedule, bb->index);
7590 }
7591
7592 for (i = 0; i < current_nr_blocks; i++)
7593 {
7594 bb = EBB_FIRST_BB (i);
7595
7596 /* While pipelining outer loops, skip bundling for loop
7597 preheaders. Those will be rescheduled in the outer
7598 loop. */
7599 if (sel_is_loop_preheader_p (bb))
7600 {
7601 clear_outdated_rtx_info (bb);
7602 continue;
7603 }
7604
7605 if (bitmap_bit_p (blocks_to_reschedule, bb->index))
7606 {
7607 flist_tail_init (new_fences);
7608
7609 orig_max_seqno = init_seqno (blocks_to_reschedule, bb);
7610
7611 /* Mark BB as head of the new ebb. */
7612 bitmap_set_bit (forced_ebb_heads, bb->index);
7613
7614 gcc_assert (fences == NULL);
7615
7616 init_fences (bb_note (bb));
7617
7618 sel_sched_region_2 (orig_max_seqno);
7619
7620 do_p = true;
7621 break;
7622 }
7623 }
7624 }
7625 }
7626 }
7627
7628 /* Schedule the RGN region. */
7629 void
7630 sel_sched_region (int rgn)
7631 {
7632 bool schedule_p;
7633 bool reset_sched_cycles_p;
7634
7635 if (sel_region_init (rgn))
7636 return;
7637
7638 if (sched_verbose >= 1)
7639 sel_print ("Scheduling region %d\n", rgn);
7640
7641 schedule_p = (!sched_is_disabled_for_current_region_p ()
7642 && dbg_cnt (sel_sched_region_cnt));
7643 reset_sched_cycles_p = pipelining_p;
7644 if (schedule_p)
7645 sel_sched_region_1 ();
7646 else
7647 /* Force initialization of INSN_SCHED_CYCLEs for correct bundling. */
7648 reset_sched_cycles_p = true;
7649
7650 sel_region_finish (reset_sched_cycles_p);
7651 }
7652
7653 /* Perform global init for the scheduler. */
7654 static void
7655 sel_global_init (void)
7656 {
7657 calculate_dominance_info (CDI_DOMINATORS);
7658 alloc_sched_pools ();
7659
7660 /* Setup the infos for sched_init. */
7661 sel_setup_sched_infos ();
7662 setup_sched_dump ();
7663
7664 sched_rgn_init (false);
7665 sched_init ();
7666
7667 sched_init_bbs ();
7668 /* Reset AFTER_RECOVERY if it has been set by the 1st scheduler pass. */
7669 after_recovery = 0;
7670 can_issue_more = issue_rate;
7671
7672 sched_extend_target ();
7673 sched_deps_init (true);
7674 setup_nop_and_exit_insns ();
7675 sel_extend_global_bb_info ();
7676 init_lv_sets ();
7677 init_hard_regs_data ();
7678 }
7679
7680 /* Free the global data of the scheduler. */
7681 static void
7682 sel_global_finish (void)
7683 {
7684 free_bb_note_pool ();
7685 free_lv_sets ();
7686 sel_finish_global_bb_info ();
7687
7688 free_regset_pool ();
7689 free_nop_and_exit_insns ();
7690
7691 sched_rgn_finish ();
7692 sched_deps_finish ();
7693 sched_finish ();
7694
7695 if (current_loops)
7696 sel_finish_pipelining ();
7697
7698 free_sched_pools ();
7699 free_dominance_info (CDI_DOMINATORS);
7700 }
7701
7702 /* Return true when we need to skip selective scheduling. Used for debugging. */
7703 bool
7704 maybe_skip_selective_scheduling (void)
7705 {
7706 return ! dbg_cnt (sel_sched_cnt);
7707 }
7708
7709 /* The entry point. */
7710 void
7711 run_selective_scheduling (void)
7712 {
7713 int rgn;
7714
7715 if (n_basic_blocks_for_fn (cfun) == NUM_FIXED_BLOCKS)
7716 return;
7717
7718 sel_global_init ();
7719
7720 for (rgn = 0; rgn < nr_regions; rgn++)
7721 sel_sched_region (rgn);
7722
7723 sel_global_finish ();
7724 }
7725
7726 #endif