]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/shrink-wrap.c
1ac4ea3b0540f020f1f51a753c3a38a2f10be7ac
[thirdparty/gcc.git] / gcc / shrink-wrap.c
1 /* Shrink-wrapping related optimizations.
2 Copyright (C) 1987-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file handles shrink-wrapping related optimizations. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "cfghooks.h"
30 #include "df.h"
31 #include "memmodel.h"
32 #include "tm_p.h"
33 #include "regs.h"
34 #include "insn-config.h"
35 #include "emit-rtl.h"
36 #include "output.h"
37 #include "tree-pass.h"
38 #include "cfgrtl.h"
39 #include "cfgbuild.h"
40 #include "params.h"
41 #include "bb-reorder.h"
42 #include "shrink-wrap.h"
43 #include "regcprop.h"
44 #include "rtl-iter.h"
45 #include "valtrack.h"
46
47
48 /* Return true if INSN requires the stack frame to be set up.
49 PROLOGUE_USED contains the hard registers used in the function
50 prologue. SET_UP_BY_PROLOGUE is the set of registers we expect the
51 prologue to set up for the function. */
52 bool
53 requires_stack_frame_p (rtx_insn *insn, HARD_REG_SET prologue_used,
54 HARD_REG_SET set_up_by_prologue)
55 {
56 df_ref def, use;
57 HARD_REG_SET hardregs;
58 unsigned regno;
59
60 if (CALL_P (insn))
61 return !SIBLING_CALL_P (insn);
62
63 /* We need a frame to get the unique CFA expected by the unwinder. */
64 if (cfun->can_throw_non_call_exceptions && can_throw_internal (insn))
65 return true;
66
67 CLEAR_HARD_REG_SET (hardregs);
68 FOR_EACH_INSN_DEF (def, insn)
69 {
70 rtx dreg = DF_REF_REG (def);
71
72 if (!REG_P (dreg))
73 continue;
74
75 add_to_hard_reg_set (&hardregs, GET_MODE (dreg), REGNO (dreg));
76 }
77 if (hard_reg_set_intersect_p (hardregs, prologue_used))
78 return true;
79 AND_COMPL_HARD_REG_SET (hardregs, call_used_reg_set);
80 for (regno = 0; regno < FIRST_PSEUDO_REGISTER; regno++)
81 if (TEST_HARD_REG_BIT (hardregs, regno)
82 && df_regs_ever_live_p (regno))
83 return true;
84
85 FOR_EACH_INSN_USE (use, insn)
86 {
87 rtx reg = DF_REF_REG (use);
88
89 if (!REG_P (reg))
90 continue;
91
92 add_to_hard_reg_set (&hardregs, GET_MODE (reg),
93 REGNO (reg));
94 }
95 if (hard_reg_set_intersect_p (hardregs, set_up_by_prologue))
96 return true;
97
98 return false;
99 }
100
101 /* See whether there has a single live edge from BB, which dest uses
102 [REGNO, END_REGNO). Return the live edge if its dest bb has
103 one or two predecessors. Otherwise return NULL. */
104
105 static edge
106 live_edge_for_reg (basic_block bb, int regno, int end_regno)
107 {
108 edge e, live_edge;
109 edge_iterator ei;
110 bitmap live;
111 int i;
112
113 live_edge = NULL;
114 FOR_EACH_EDGE (e, ei, bb->succs)
115 {
116 live = df_get_live_in (e->dest);
117 for (i = regno; i < end_regno; i++)
118 if (REGNO_REG_SET_P (live, i))
119 {
120 if (live_edge && live_edge != e)
121 return NULL;
122 live_edge = e;
123 }
124 }
125
126 /* We can sometimes encounter dead code. Don't try to move it
127 into the exit block. */
128 if (!live_edge || live_edge->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
129 return NULL;
130
131 /* Reject targets of abnormal edges. This is needed for correctness
132 on ports like Alpha and MIPS, whose pic_offset_table_rtx can die on
133 exception edges even though it is generally treated as call-saved
134 for the majority of the compilation. Moving across abnormal edges
135 isn't going to be interesting for shrink-wrap usage anyway. */
136 if (live_edge->flags & EDGE_ABNORMAL)
137 return NULL;
138
139 /* When live_edge->dest->preds == 2, we can create a new block on
140 the edge to make it meet the requirement. */
141 if (EDGE_COUNT (live_edge->dest->preds) > 2)
142 return NULL;
143
144 return live_edge;
145 }
146
147 /* Try to move INSN from BB to a successor. Return true on success.
148 USES and DEFS are the set of registers that are used and defined
149 after INSN in BB. SPLIT_P indicates whether a live edge from BB
150 is splitted or not. */
151
152 static bool
153 move_insn_for_shrink_wrap (basic_block bb, rtx_insn *insn,
154 const HARD_REG_SET uses,
155 const HARD_REG_SET defs,
156 bool *split_p,
157 struct dead_debug_local *debug)
158 {
159 rtx set, src, dest;
160 bitmap live_out, live_in, bb_uses, bb_defs;
161 unsigned int i, dregno, end_dregno;
162 unsigned int sregno = FIRST_PSEUDO_REGISTER;
163 unsigned int end_sregno = FIRST_PSEUDO_REGISTER;
164 basic_block next_block;
165 edge live_edge;
166 rtx_insn *dinsn;
167 df_ref def;
168
169 /* Look for a simple register assignment. We don't use single_set here
170 because we can't deal with any CLOBBERs, USEs, or REG_UNUSED secondary
171 destinations. */
172 if (!INSN_P (insn))
173 return false;
174 set = PATTERN (insn);
175 if (GET_CODE (set) != SET)
176 return false;
177 src = SET_SRC (set);
178 dest = SET_DEST (set);
179
180 /* For the destination, we want only a register. Also disallow STACK
181 or FRAME related adjustments. They are likely part of the prologue,
182 so keep them in the entry block. */
183 if (!REG_P (dest)
184 || dest == stack_pointer_rtx
185 || dest == frame_pointer_rtx
186 || dest == hard_frame_pointer_rtx)
187 return false;
188
189 /* For the source, we want one of:
190 (1) A (non-overlapping) register
191 (2) A constant,
192 (3) An expression involving no more than one register.
193
194 That last point comes from the code following, which was originally
195 written to handle only register move operations, and still only handles
196 a single source register when checking for overlaps. Happily, the
197 same checks can be applied to expressions like (plus reg const). */
198
199 if (CONSTANT_P (src))
200 ;
201 else if (!REG_P (src))
202 {
203 rtx src_inner = NULL_RTX;
204
205 if (can_throw_internal (insn))
206 return false;
207
208 subrtx_var_iterator::array_type array;
209 FOR_EACH_SUBRTX_VAR (iter, array, src, ALL)
210 {
211 rtx x = *iter;
212 switch (GET_RTX_CLASS (GET_CODE (x)))
213 {
214 case RTX_CONST_OBJ:
215 case RTX_COMPARE:
216 case RTX_COMM_COMPARE:
217 case RTX_BIN_ARITH:
218 case RTX_COMM_ARITH:
219 case RTX_UNARY:
220 case RTX_TERNARY:
221 /* Constant or expression. Continue. */
222 break;
223
224 case RTX_OBJ:
225 case RTX_EXTRA:
226 switch (GET_CODE (x))
227 {
228 case UNSPEC:
229 case SUBREG:
230 case STRICT_LOW_PART:
231 case PC:
232 case LO_SUM:
233 /* Ok. Continue. */
234 break;
235
236 case REG:
237 /* Fail if we see a second inner register. */
238 if (src_inner != NULL)
239 return false;
240 src_inner = x;
241 break;
242
243 default:
244 return false;
245 }
246 break;
247
248 default:
249 return false;
250 }
251 }
252
253 if (src_inner != NULL)
254 src = src_inner;
255 }
256
257 /* Make sure that the source register isn't defined later in BB. */
258 if (REG_P (src))
259 {
260 sregno = REGNO (src);
261 end_sregno = END_REGNO (src);
262 if (overlaps_hard_reg_set_p (defs, GET_MODE (src), sregno))
263 return false;
264 }
265
266 /* Make sure that the destination register isn't referenced later in BB. */
267 dregno = REGNO (dest);
268 end_dregno = END_REGNO (dest);
269 if (overlaps_hard_reg_set_p (uses, GET_MODE (dest), dregno)
270 || overlaps_hard_reg_set_p (defs, GET_MODE (dest), dregno))
271 return false;
272
273 /* See whether there is a successor block to which we could move INSN. */
274 live_edge = live_edge_for_reg (bb, dregno, end_dregno);
275 if (!live_edge)
276 return false;
277
278 next_block = live_edge->dest;
279 /* Create a new basic block on the edge. */
280 if (EDGE_COUNT (next_block->preds) == 2)
281 {
282 /* split_edge for a block with only one successor is meaningless. */
283 if (EDGE_COUNT (bb->succs) == 1)
284 return false;
285
286 /* If DF_LIVE doesn't exist, i.e. at -O1, just give up. */
287 if (!df_live)
288 return false;
289
290 basic_block old_dest = live_edge->dest;
291 next_block = split_edge (live_edge);
292
293 /* We create a new basic block. Call df_grow_bb_info to make sure
294 all data structures are allocated. */
295 df_grow_bb_info (df_live);
296
297 bitmap_and (df_get_live_in (next_block), df_get_live_out (bb),
298 df_get_live_in (old_dest));
299 df_set_bb_dirty (next_block);
300
301 /* We should not split more than once for a function. */
302 if (*split_p)
303 return false;
304
305 *split_p = true;
306 }
307
308 /* At this point we are committed to moving INSN, but let's try to
309 move it as far as we can. */
310 do
311 {
312 if (MAY_HAVE_DEBUG_INSNS)
313 {
314 FOR_BB_INSNS_REVERSE (bb, dinsn)
315 if (DEBUG_INSN_P (dinsn))
316 {
317 df_ref use;
318 FOR_EACH_INSN_USE (use, dinsn)
319 if (refers_to_regno_p (dregno, end_dregno,
320 DF_REF_REG (use), (rtx *) NULL))
321 dead_debug_add (debug, use, DF_REF_REGNO (use));
322 }
323 else if (dinsn == insn)
324 break;
325 }
326 live_out = df_get_live_out (bb);
327 live_in = df_get_live_in (next_block);
328 bb = next_block;
329
330 /* Check whether BB uses DEST or clobbers DEST. We need to add
331 INSN to BB if so. Either way, DEST is no longer live on entry,
332 except for any part that overlaps SRC (next loop). */
333 bb_uses = &DF_LR_BB_INFO (bb)->use;
334 bb_defs = &DF_LR_BB_INFO (bb)->def;
335 if (df_live)
336 {
337 for (i = dregno; i < end_dregno; i++)
338 {
339 if (*split_p
340 || REGNO_REG_SET_P (bb_uses, i)
341 || REGNO_REG_SET_P (bb_defs, i)
342 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
343 next_block = NULL;
344 CLEAR_REGNO_REG_SET (live_out, i);
345 CLEAR_REGNO_REG_SET (live_in, i);
346 }
347
348 /* Check whether BB clobbers SRC. We need to add INSN to BB if so.
349 Either way, SRC is now live on entry. */
350 for (i = sregno; i < end_sregno; i++)
351 {
352 if (*split_p
353 || REGNO_REG_SET_P (bb_defs, i)
354 || REGNO_REG_SET_P (&DF_LIVE_BB_INFO (bb)->gen, i))
355 next_block = NULL;
356 SET_REGNO_REG_SET (live_out, i);
357 SET_REGNO_REG_SET (live_in, i);
358 }
359 }
360 else
361 {
362 /* DF_LR_BB_INFO (bb)->def does not comprise the DF_REF_PARTIAL and
363 DF_REF_CONDITIONAL defs. So if DF_LIVE doesn't exist, i.e.
364 at -O1, just give up searching NEXT_BLOCK. */
365 next_block = NULL;
366 for (i = dregno; i < end_dregno; i++)
367 {
368 CLEAR_REGNO_REG_SET (live_out, i);
369 CLEAR_REGNO_REG_SET (live_in, i);
370 }
371
372 for (i = sregno; i < end_sregno; i++)
373 {
374 SET_REGNO_REG_SET (live_out, i);
375 SET_REGNO_REG_SET (live_in, i);
376 }
377 }
378
379 /* If we don't need to add the move to BB, look for a single
380 successor block. */
381 if (next_block)
382 {
383 live_edge = live_edge_for_reg (next_block, dregno, end_dregno);
384 if (!live_edge || EDGE_COUNT (live_edge->dest->preds) > 1)
385 break;
386 next_block = live_edge->dest;
387 }
388 }
389 while (next_block);
390
391 /* For the new created basic block, there is no dataflow info at all.
392 So skip the following dataflow update and check. */
393 if (!(*split_p))
394 {
395 /* BB now defines DEST. It only uses the parts of DEST that overlap SRC
396 (next loop). */
397 for (i = dregno; i < end_dregno; i++)
398 {
399 CLEAR_REGNO_REG_SET (bb_uses, i);
400 SET_REGNO_REG_SET (bb_defs, i);
401 }
402
403 /* BB now uses SRC. */
404 for (i = sregno; i < end_sregno; i++)
405 SET_REGNO_REG_SET (bb_uses, i);
406 }
407
408 /* Insert debug temps for dead REGs used in subsequent debug insns. */
409 if (debug->used && !bitmap_empty_p (debug->used))
410 FOR_EACH_INSN_DEF (def, insn)
411 dead_debug_insert_temp (debug, DF_REF_REGNO (def), insn,
412 DEBUG_TEMP_BEFORE_WITH_VALUE);
413
414 emit_insn_after (PATTERN (insn), bb_note (bb));
415 delete_insn (insn);
416 return true;
417 }
418
419 /* Look for register copies in the first block of the function, and move
420 them down into successor blocks if the register is used only on one
421 path. This exposes more opportunities for shrink-wrapping. These
422 kinds of sets often occur when incoming argument registers are moved
423 to call-saved registers because their values are live across one or
424 more calls during the function. */
425
426 static void
427 prepare_shrink_wrap (basic_block entry_block)
428 {
429 rtx_insn *insn, *curr;
430 rtx x;
431 HARD_REG_SET uses, defs;
432 df_ref def, use;
433 bool split_p = false;
434 unsigned int i;
435 struct dead_debug_local debug;
436
437 if (JUMP_P (BB_END (entry_block)))
438 {
439 /* To have more shrink-wrapping opportunities, prepare_shrink_wrap tries
440 to sink the copies from parameter to callee saved register out of
441 entry block. copyprop_hardreg_forward_bb_without_debug_insn is called
442 to release some dependences. */
443 copyprop_hardreg_forward_bb_without_debug_insn (entry_block);
444 }
445
446 dead_debug_local_init (&debug, NULL, NULL);
447 CLEAR_HARD_REG_SET (uses);
448 CLEAR_HARD_REG_SET (defs);
449
450 FOR_BB_INSNS_REVERSE_SAFE (entry_block, insn, curr)
451 if (NONDEBUG_INSN_P (insn)
452 && !move_insn_for_shrink_wrap (entry_block, insn, uses, defs,
453 &split_p, &debug))
454 {
455 /* Add all defined registers to DEFs. */
456 FOR_EACH_INSN_DEF (def, insn)
457 {
458 x = DF_REF_REG (def);
459 if (REG_P (x) && HARD_REGISTER_P (x))
460 for (i = REGNO (x); i < END_REGNO (x); i++)
461 SET_HARD_REG_BIT (defs, i);
462 }
463
464 /* Add all used registers to USESs. */
465 FOR_EACH_INSN_USE (use, insn)
466 {
467 x = DF_REF_REG (use);
468 if (REG_P (x) && HARD_REGISTER_P (x))
469 for (i = REGNO (x); i < END_REGNO (x); i++)
470 SET_HARD_REG_BIT (uses, i);
471 }
472 }
473
474 dead_debug_local_finish (&debug, NULL);
475 }
476
477 /* Return whether basic block PRO can get the prologue. It can not if it
478 has incoming complex edges that need a prologue inserted (we make a new
479 block for the prologue, so those edges would need to be redirected, which
480 does not work). It also can not if there exist registers live on entry
481 to PRO that are clobbered by the prologue. */
482
483 static bool
484 can_get_prologue (basic_block pro, HARD_REG_SET prologue_clobbered)
485 {
486 edge e;
487 edge_iterator ei;
488 FOR_EACH_EDGE (e, ei, pro->preds)
489 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
490 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
491 return false;
492
493 HARD_REG_SET live;
494 REG_SET_TO_HARD_REG_SET (live, df_get_live_in (pro));
495 if (hard_reg_set_intersect_p (live, prologue_clobbered))
496 return false;
497
498 return true;
499 }
500
501 /* Return whether we can duplicate basic block BB for shrink wrapping. We
502 cannot if the block cannot be duplicated at all, or if any of its incoming
503 edges are complex and come from a block that does not require a prologue
504 (we cannot redirect such edges), or if the block is too big to copy.
505 PRO is the basic block before which we would put the prologue, MAX_SIZE is
506 the maximum size block we allow to be copied. */
507
508 static bool
509 can_dup_for_shrink_wrapping (basic_block bb, basic_block pro, unsigned max_size)
510 {
511 if (!can_duplicate_block_p (bb))
512 return false;
513
514 edge e;
515 edge_iterator ei;
516 FOR_EACH_EDGE (e, ei, bb->preds)
517 if (e->flags & (EDGE_COMPLEX | EDGE_CROSSING)
518 && !dominated_by_p (CDI_DOMINATORS, e->src, pro))
519 return false;
520
521 unsigned size = 0;
522
523 rtx_insn *insn;
524 FOR_BB_INSNS (bb, insn)
525 if (NONDEBUG_INSN_P (insn))
526 {
527 size += get_attr_min_length (insn);
528 if (size > max_size)
529 return false;
530 }
531
532 return true;
533 }
534
535 /* Do whatever needs to be done for exits that run without prologue.
536 Sibcalls need nothing done. Normal exits get a simple_return inserted. */
537
538 static void
539 handle_simple_exit (edge e)
540 {
541
542 if (e->flags & EDGE_SIBCALL)
543 {
544 /* Tell function.c to take no further action on this edge. */
545 e->flags |= EDGE_IGNORE;
546
547 e->flags &= ~EDGE_FALLTHRU;
548 emit_barrier_after_bb (e->src);
549 return;
550 }
551
552 /* If the basic block the edge comes from has multiple successors,
553 split the edge. */
554 if (EDGE_COUNT (e->src->succs) > 1)
555 {
556 basic_block old_bb = e->src;
557 rtx_insn *end = BB_END (old_bb);
558 rtx_note *note = emit_note_after (NOTE_INSN_DELETED, end);
559 basic_block new_bb = create_basic_block (note, note, old_bb);
560 BB_COPY_PARTITION (new_bb, old_bb);
561 BB_END (old_bb) = end;
562
563 redirect_edge_succ (e, new_bb);
564 e->flags |= EDGE_FALLTHRU;
565
566 e = make_edge (new_bb, EXIT_BLOCK_PTR_FOR_FN (cfun), 0);
567 }
568
569 e->flags &= ~EDGE_FALLTHRU;
570 rtx_jump_insn *ret = emit_jump_insn_after (targetm.gen_simple_return (),
571 BB_END (e->src));
572 JUMP_LABEL (ret) = simple_return_rtx;
573 emit_barrier_after_bb (e->src);
574
575 if (dump_file)
576 fprintf (dump_file, "Made simple_return with UID %d in bb %d\n",
577 INSN_UID (ret), e->src->index);
578 }
579
580 /* Try to perform a kind of shrink-wrapping, making sure the
581 prologue/epilogue is emitted only around those parts of the
582 function that require it.
583
584 There will be exactly one prologue, and it will be executed either
585 zero or one time, on any path. Depending on where the prologue is
586 placed, some of the basic blocks can be reached via both paths with
587 and without a prologue. Such blocks will be duplicated here, and the
588 edges changed to match.
589
590 Paths that go to the exit without going through the prologue will use
591 a simple_return instead of the epilogue. We maximize the number of
592 those, making sure to only duplicate blocks that can be duplicated.
593 If the prologue can then still be placed in multiple locations, we
594 place it as early as possible.
595
596 An example, where we duplicate blocks with control flow (legend:
597 _B_egin, _R_eturn and _S_imple_return; edges without arrowhead should
598 be taken to point down or to the right, to simplify the diagram; here,
599 block 3 needs a prologue, the rest does not):
600
601
602 B B
603 | |
604 2 2
605 |\ |\
606 | 3 becomes | 3
607 |/ | \
608 4 7 4
609 |\ |\ |\
610 | 5 | 8 | 5
611 |/ |/ |/
612 6 9 6
613 | | |
614 R S R
615
616
617 (bb 4 is duplicated to 7, and so on; the prologue is inserted on the
618 edge 2->3).
619
620 Another example, where part of a loop is duplicated (again, bb 3 is
621 the only block that needs a prologue):
622
623
624 B 3<-- B ->3<--
625 | | | | | | |
626 | v | becomes | | v |
627 2---4--- 2---5-- 4---
628 | | |
629 R S R
630
631
632 (bb 4 is duplicated to 5; the prologue is inserted on the edge 5->3).
633
634 ENTRY_EDGE is the edge where the prologue will be placed, possibly
635 changed by this function. PROLOGUE_SEQ is the prologue we will insert. */
636
637 void
638 try_shrink_wrapping (edge *entry_edge, rtx_insn *prologue_seq)
639 {
640 /* If we cannot shrink-wrap, are told not to shrink-wrap, or it makes
641 no sense to shrink-wrap: then do not shrink-wrap! */
642
643 if (!SHRINK_WRAPPING_ENABLED)
644 return;
645
646 if (crtl->profile && !targetm.profile_before_prologue ())
647 return;
648
649 if (crtl->calls_eh_return)
650 return;
651
652 bool empty_prologue = true;
653 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
654 if (!(NOTE_P (insn) && NOTE_KIND (insn) == NOTE_INSN_PROLOGUE_END))
655 {
656 empty_prologue = false;
657 break;
658 }
659 if (empty_prologue)
660 return;
661
662 /* Move some code down to expose more shrink-wrapping opportunities. */
663
664 basic_block entry = (*entry_edge)->dest;
665 prepare_shrink_wrap (entry);
666
667 if (dump_file)
668 fprintf (dump_file, "Attempting shrink-wrapping optimization.\n");
669
670 /* Compute the registers set and used in the prologue. */
671
672 HARD_REG_SET prologue_clobbered, prologue_used;
673 CLEAR_HARD_REG_SET (prologue_clobbered);
674 CLEAR_HARD_REG_SET (prologue_used);
675 for (rtx_insn *insn = prologue_seq; insn; insn = NEXT_INSN (insn))
676 if (NONDEBUG_INSN_P (insn))
677 {
678 HARD_REG_SET this_used;
679 CLEAR_HARD_REG_SET (this_used);
680 note_uses (&PATTERN (insn), record_hard_reg_uses, &this_used);
681 AND_COMPL_HARD_REG_SET (this_used, prologue_clobbered);
682 IOR_HARD_REG_SET (prologue_used, this_used);
683 note_stores (PATTERN (insn), record_hard_reg_sets, &prologue_clobbered);
684 }
685 CLEAR_HARD_REG_BIT (prologue_clobbered, STACK_POINTER_REGNUM);
686 if (frame_pointer_needed)
687 CLEAR_HARD_REG_BIT (prologue_clobbered, HARD_FRAME_POINTER_REGNUM);
688
689 /* Find out what registers are set up by the prologue; any use of these
690 cannot happen before the prologue. */
691
692 struct hard_reg_set_container set_up_by_prologue;
693 CLEAR_HARD_REG_SET (set_up_by_prologue.set);
694 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, STACK_POINTER_REGNUM);
695 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode, ARG_POINTER_REGNUM);
696 if (frame_pointer_needed)
697 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
698 HARD_FRAME_POINTER_REGNUM);
699 if (pic_offset_table_rtx
700 && (unsigned) PIC_OFFSET_TABLE_REGNUM != INVALID_REGNUM)
701 add_to_hard_reg_set (&set_up_by_prologue.set, Pmode,
702 PIC_OFFSET_TABLE_REGNUM);
703 if (crtl->drap_reg)
704 add_to_hard_reg_set (&set_up_by_prologue.set,
705 GET_MODE (crtl->drap_reg),
706 REGNO (crtl->drap_reg));
707 if (targetm.set_up_by_prologue)
708 targetm.set_up_by_prologue (&set_up_by_prologue);
709
710 /* We will insert the prologue before the basic block PRO. PRO should
711 dominate all basic blocks that need the prologue to be executed
712 before them. First, make PRO the "tightest wrap" possible. */
713
714 calculate_dominance_info (CDI_DOMINATORS);
715
716 basic_block pro = 0;
717
718 basic_block bb;
719 edge e;
720 edge_iterator ei;
721 FOR_EACH_BB_FN (bb, cfun)
722 {
723 rtx_insn *insn;
724 FOR_BB_INSNS (bb, insn)
725 if (NONDEBUG_INSN_P (insn)
726 && requires_stack_frame_p (insn, prologue_used,
727 set_up_by_prologue.set))
728 {
729 if (dump_file)
730 fprintf (dump_file, "Block %d needs the prologue.\n", bb->index);
731 pro = nearest_common_dominator (CDI_DOMINATORS, pro, bb);
732 break;
733 }
734 }
735
736 /* If nothing needs a prologue, just put it at the start. This really
737 shouldn't happen, but we cannot fix it here. */
738
739 if (pro == 0)
740 {
741 if (dump_file)
742 fprintf(dump_file, "Nothing needs a prologue, but it isn't empty; "
743 "putting it at the start.\n");
744 pro = entry;
745 }
746
747 if (dump_file)
748 fprintf (dump_file, "After wrapping required blocks, PRO is now %d\n",
749 pro->index);
750
751 /* Now see if we can put the prologue at the start of PRO. Putting it
752 there might require duplicating a block that cannot be duplicated,
753 or in some cases we cannot insert the prologue there at all. If PRO
754 wont't do, try again with the immediate dominator of PRO, and so on.
755
756 The blocks that need duplicating are those reachable from PRO but
757 not dominated by it. We keep in BB_WITH a bitmap of the blocks
758 reachable from PRO that we already found, and in VEC a stack of
759 those we still need to consider (to find successors). */
760
761 auto_bitmap bb_with;
762 bitmap_set_bit (bb_with, pro->index);
763
764 vec<basic_block> vec;
765 vec.create (n_basic_blocks_for_fn (cfun));
766 vec.quick_push (pro);
767
768 unsigned max_grow_size = get_uncond_jump_length ();
769 max_grow_size *= PARAM_VALUE (PARAM_MAX_GROW_COPY_BB_INSNS);
770
771 while (!vec.is_empty () && pro != entry)
772 {
773 while (pro != entry && !can_get_prologue (pro, prologue_clobbered))
774 {
775 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
776
777 if (bitmap_set_bit (bb_with, pro->index))
778 vec.quick_push (pro);
779 }
780
781 basic_block bb = vec.pop ();
782 if (!can_dup_for_shrink_wrapping (bb, pro, max_grow_size))
783 while (!dominated_by_p (CDI_DOMINATORS, bb, pro))
784 {
785 gcc_assert (pro != entry);
786
787 pro = get_immediate_dominator (CDI_DOMINATORS, pro);
788
789 if (bitmap_set_bit (bb_with, pro->index))
790 vec.quick_push (pro);
791 }
792
793 FOR_EACH_EDGE (e, ei, bb->succs)
794 if (e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
795 && bitmap_set_bit (bb_with, e->dest->index))
796 vec.quick_push (e->dest);
797 }
798
799 if (dump_file)
800 fprintf (dump_file, "Avoiding non-duplicatable blocks, PRO is now %d\n",
801 pro->index);
802
803 /* If we can move PRO back without having to duplicate more blocks, do so.
804 We do this because putting the prologue earlier is better for scheduling.
805
806 We can move back to a block PRE if every path from PRE will eventually
807 need a prologue, that is, PRO is a post-dominator of PRE. PRE needs
808 to dominate every block reachable from itself. We keep in BB_TMP a
809 bitmap of the blocks reachable from PRE that we already found, and in
810 VEC a stack of those we still need to consider.
811
812 Any block reachable from PRE is also reachable from all predecessors
813 of PRE, so if we find we need to move PRE back further we can leave
814 everything not considered so far on the stack. Any block dominated
815 by PRE is also dominated by all other dominators of PRE, so anything
816 found good for some PRE does not need to be reconsidered later.
817
818 We don't need to update BB_WITH because none of the new blocks found
819 can jump to a block that does not need the prologue. */
820
821 if (pro != entry)
822 {
823 calculate_dominance_info (CDI_POST_DOMINATORS);
824
825 auto_bitmap bb_tmp;
826 bitmap_copy (bb_tmp, bb_with);
827 basic_block last_ok = pro;
828 vec.truncate (0);
829
830 while (pro != entry)
831 {
832 basic_block pre = get_immediate_dominator (CDI_DOMINATORS, pro);
833 if (!dominated_by_p (CDI_POST_DOMINATORS, pre, pro))
834 break;
835
836 if (bitmap_set_bit (bb_tmp, pre->index))
837 vec.quick_push (pre);
838
839 bool ok = true;
840 while (!vec.is_empty ())
841 {
842 if (!dominated_by_p (CDI_DOMINATORS, vec.last (), pre))
843 {
844 ok = false;
845 break;
846 }
847
848 basic_block bb = vec.pop ();
849 FOR_EACH_EDGE (e, ei, bb->succs)
850 if (bitmap_set_bit (bb_tmp, e->dest->index))
851 vec.quick_push (e->dest);
852 }
853
854 if (ok && can_get_prologue (pre, prologue_clobbered))
855 last_ok = pre;
856
857 pro = pre;
858 }
859
860 pro = last_ok;
861
862 free_dominance_info (CDI_POST_DOMINATORS);
863 }
864
865 vec.release ();
866
867 if (dump_file)
868 fprintf (dump_file, "Bumping back to anticipatable blocks, PRO is now %d\n",
869 pro->index);
870
871 if (pro == entry)
872 {
873 free_dominance_info (CDI_DOMINATORS);
874 return;
875 }
876
877 /* Compute what fraction of the frequency and count of the blocks that run
878 both with and without prologue are for running with prologue. This gives
879 the correct answer for reducible flow graphs; for irreducible flow graphs
880 our profile is messed up beyond repair anyway. */
881
882 gcov_type num = 0;
883 gcov_type den = 0;
884
885 FOR_EACH_EDGE (e, ei, pro->preds)
886 if (!dominated_by_p (CDI_DOMINATORS, e->src, pro))
887 {
888 num += EDGE_FREQUENCY (e);
889 den += e->src->frequency;
890 }
891
892 if (den == 0)
893 den = 1;
894
895 /* All is okay, so do it. */
896
897 crtl->shrink_wrapped = true;
898 if (dump_file)
899 fprintf (dump_file, "Performing shrink-wrapping.\n");
900
901 /* Copy the blocks that can run both with and without prologue. The
902 originals run with prologue, the copies without. Store a pointer to
903 the copy in the ->aux field of the original. */
904
905 FOR_EACH_BB_FN (bb, cfun)
906 if (bitmap_bit_p (bb_with, bb->index)
907 && !dominated_by_p (CDI_DOMINATORS, bb, pro))
908 {
909 basic_block dup = duplicate_block (bb, 0, 0);
910
911 bb->aux = dup;
912
913 if (JUMP_P (BB_END (dup)) && !any_condjump_p (BB_END (dup)))
914 emit_barrier_after_bb (dup);
915
916 if (EDGE_COUNT (dup->succs) == 0)
917 emit_barrier_after_bb (dup);
918
919 if (dump_file)
920 fprintf (dump_file, "Duplicated %d to %d\n", bb->index, dup->index);
921
922 bb->frequency = RDIV (num * bb->frequency, den);
923 dup->frequency -= bb->frequency;
924 bb->count = RDIV (num * bb->count, den);
925 dup->count -= bb->count;
926 }
927
928 /* Now change the edges to point to the copies, where appropriate. */
929
930 FOR_EACH_BB_FN (bb, cfun)
931 if (!dominated_by_p (CDI_DOMINATORS, bb, pro))
932 {
933 basic_block src = bb;
934 if (bitmap_bit_p (bb_with, bb->index))
935 src = (basic_block) bb->aux;
936
937 FOR_EACH_EDGE (e, ei, src->succs)
938 {
939 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
940 continue;
941
942 if (bitmap_bit_p (bb_with, e->dest->index)
943 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
944 {
945 if (dump_file)
946 fprintf (dump_file, "Redirecting edge %d->%d to %d\n",
947 e->src->index, e->dest->index,
948 ((basic_block) e->dest->aux)->index);
949 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
950 }
951 else if (e->flags & EDGE_FALLTHRU
952 && bitmap_bit_p (bb_with, bb->index))
953 force_nonfallthru (e);
954 }
955 }
956
957 /* Also redirect the function entry edge if necessary. */
958
959 FOR_EACH_EDGE (e, ei, ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs)
960 if (bitmap_bit_p (bb_with, e->dest->index)
961 && !dominated_by_p (CDI_DOMINATORS, e->dest, pro))
962 {
963 basic_block split_bb = split_edge (e);
964 e = single_succ_edge (split_bb);
965 redirect_edge_and_branch_force (e, (basic_block) e->dest->aux);
966 }
967
968 /* Make a simple_return for those exits that run without prologue. */
969
970 FOR_EACH_BB_REVERSE_FN (bb, cfun)
971 if (!bitmap_bit_p (bb_with, bb->index))
972 FOR_EACH_EDGE (e, ei, bb->succs)
973 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
974 handle_simple_exit (e);
975
976 /* Finally, we want a single edge to put the prologue on. Make a new
977 block before the PRO block; the edge beteen them is the edge we want.
978 Then redirect those edges into PRO that come from blocks without the
979 prologue, to point to the new block instead. The new prologue block
980 is put at the end of the insn chain. */
981
982 basic_block new_bb = create_empty_bb (EXIT_BLOCK_PTR_FOR_FN (cfun)->prev_bb);
983 BB_COPY_PARTITION (new_bb, pro);
984 if (dump_file)
985 fprintf (dump_file, "Made prologue block %d\n", new_bb->index);
986
987 for (ei = ei_start (pro->preds); (e = ei_safe_edge (ei)); )
988 {
989 if (bitmap_bit_p (bb_with, e->src->index)
990 || dominated_by_p (CDI_DOMINATORS, e->src, pro))
991 {
992 ei_next (&ei);
993 continue;
994 }
995
996 new_bb->count += RDIV (e->src->count * e->probability, REG_BR_PROB_BASE);
997 new_bb->frequency += EDGE_FREQUENCY (e);
998
999 redirect_edge_and_branch_force (e, new_bb);
1000 if (dump_file)
1001 fprintf (dump_file, "Redirected edge from %d\n", e->src->index);
1002 }
1003
1004 *entry_edge = make_single_succ_edge (new_bb, pro, EDGE_FALLTHRU);
1005 force_nonfallthru (*entry_edge);
1006
1007 free_dominance_info (CDI_DOMINATORS);
1008 }
1009 \f
1010 /* Separate shrink-wrapping
1011
1012 Instead of putting all of the prologue and epilogue in one spot, we
1013 can put parts of it in places where those components are executed less
1014 frequently. The following code does this, for prologue and epilogue
1015 components that can be put in more than one location, and where those
1016 components can be executed more than once (the epilogue component will
1017 always be executed before the prologue component is executed a second
1018 time).
1019
1020 What exactly is a component is target-dependent. The more usual
1021 components are simple saves/restores to/from the frame of callee-saved
1022 registers. This code treats components abstractly (as an sbitmap),
1023 letting the target handle all details.
1024
1025 Prologue components are placed in such a way that for every component
1026 the prologue is executed as infrequently as possible. We do this by
1027 walking the dominator tree, comparing the cost of placing a prologue
1028 component before a block to the sum of costs determined for all subtrees
1029 of that block.
1030
1031 From this placement, we then determine for each component all blocks
1032 where at least one of this block's dominators (including itself) will
1033 get a prologue inserted. That then is how the components are placed.
1034 We could place the epilogue components a bit smarter (we can save a
1035 bit of code size sometimes); this is a possible future improvement.
1036
1037 Prologues and epilogues are preferably placed into a block, either at
1038 the beginning or end of it, if it is needed for all predecessor resp.
1039 successor edges; or placed on the edge otherwise.
1040
1041 If the placement of any prologue/epilogue leads to a situation we cannot
1042 handle (for example, an abnormal edge would need to be split, or some
1043 targets want to use some specific registers that may not be available
1044 where we want to put them), separate shrink-wrapping for the components
1045 in that prologue/epilogue is aborted. */
1046
1047
1048 /* Print the sbitmap COMPONENTS to the DUMP_FILE if not empty, with the
1049 label LABEL. */
1050 static void
1051 dump_components (const char *label, sbitmap components)
1052 {
1053 if (bitmap_empty_p (components))
1054 return;
1055
1056 fprintf (dump_file, " [%s", label);
1057
1058 for (unsigned int j = 0; j < components->n_bits; j++)
1059 if (bitmap_bit_p (components, j))
1060 fprintf (dump_file, " %u", j);
1061
1062 fprintf (dump_file, "]");
1063 }
1064
1065 /* The data we collect for each bb. */
1066 struct sw {
1067 /* What components does this BB need? */
1068 sbitmap needs_components;
1069
1070 /* What components does this BB have? This is the main decision this
1071 pass makes. */
1072 sbitmap has_components;
1073
1074 /* The components for which we placed code at the start of the BB (instead
1075 of on all incoming edges). */
1076 sbitmap head_components;
1077
1078 /* The components for which we placed code at the end of the BB (instead
1079 of on all outgoing edges). */
1080 sbitmap tail_components;
1081
1082 /* The frequency of executing the prologue for this BB, if a prologue is
1083 placed on this BB. This is a pessimistic estimate (no prologue is
1084 needed for edges from blocks that have the component under consideration
1085 active already). */
1086 gcov_type own_cost;
1087
1088 /* The frequency of executing the prologue for this BB and all BBs
1089 dominated by it. */
1090 gcov_type total_cost;
1091 };
1092
1093 /* A helper function for accessing the pass-specific info. */
1094 static inline struct sw *
1095 SW (basic_block bb)
1096 {
1097 gcc_assert (bb->aux);
1098 return (struct sw *) bb->aux;
1099 }
1100
1101 /* Create the pass-specific data structures for separately shrink-wrapping
1102 with components COMPONENTS. */
1103 static void
1104 init_separate_shrink_wrap (sbitmap components)
1105 {
1106 basic_block bb;
1107 FOR_ALL_BB_FN (bb, cfun)
1108 {
1109 bb->aux = xcalloc (1, sizeof (struct sw));
1110
1111 SW (bb)->needs_components = targetm.shrink_wrap.components_for_bb (bb);
1112
1113 /* Mark all basic blocks without successor as needing all components.
1114 This avoids problems in at least cfgcleanup, sel-sched, and
1115 regrename (largely to do with all paths to such a block still
1116 needing the same dwarf CFI info). */
1117 if (EDGE_COUNT (bb->succs) == 0)
1118 bitmap_copy (SW (bb)->needs_components, components);
1119
1120 if (dump_file)
1121 {
1122 fprintf (dump_file, "bb %d components:", bb->index);
1123 dump_components ("has", SW (bb)->needs_components);
1124 fprintf (dump_file, "\n");
1125 }
1126
1127 SW (bb)->has_components = sbitmap_alloc (SBITMAP_SIZE (components));
1128 SW (bb)->head_components = sbitmap_alloc (SBITMAP_SIZE (components));
1129 SW (bb)->tail_components = sbitmap_alloc (SBITMAP_SIZE (components));
1130 bitmap_clear (SW (bb)->has_components);
1131 }
1132 }
1133
1134 /* Destroy the pass-specific data. */
1135 static void
1136 fini_separate_shrink_wrap (void)
1137 {
1138 basic_block bb;
1139 FOR_ALL_BB_FN (bb, cfun)
1140 if (bb->aux)
1141 {
1142 sbitmap_free (SW (bb)->needs_components);
1143 sbitmap_free (SW (bb)->has_components);
1144 sbitmap_free (SW (bb)->head_components);
1145 sbitmap_free (SW (bb)->tail_components);
1146 free (bb->aux);
1147 bb->aux = 0;
1148 }
1149 }
1150
1151 /* Place the prologue for component WHICH, in the basic blocks dominated
1152 by HEAD. Do a DFS over the dominator tree, and set bit WHICH in the
1153 HAS_COMPONENTS of a block if either the block has that bit set in
1154 NEEDS_COMPONENTS, or it is cheaper to place the prologue here than in all
1155 dominator subtrees separately. */
1156 static void
1157 place_prologue_for_one_component (unsigned int which, basic_block head)
1158 {
1159 /* The block we are currently dealing with. */
1160 basic_block bb = head;
1161 /* Is this the first time we visit this block, i.e. have we just gone
1162 down the tree. */
1163 bool first_visit = true;
1164
1165 /* Walk the dominator tree, visit one block per iteration of this loop.
1166 Each basic block is visited twice: once before visiting any children
1167 of the block, and once after visiting all of them (leaf nodes are
1168 visited only once). As an optimization, we do not visit subtrees
1169 that can no longer influence the prologue placement. */
1170 for (;;)
1171 {
1172 /* First visit of a block: set the (children) cost accumulator to zero;
1173 if the block does not have the component itself, walk down. */
1174 if (first_visit)
1175 {
1176 /* Initialize the cost. The cost is the block execution frequency
1177 that does not come from backedges. Calculating this by simply
1178 adding the cost of all edges that aren't backedges does not
1179 work: this does not always add up to the block frequency at
1180 all, and even if it does, rounding error makes for bad
1181 decisions. */
1182 SW (bb)->own_cost = bb->frequency;
1183
1184 edge e;
1185 edge_iterator ei;
1186 FOR_EACH_EDGE (e, ei, bb->preds)
1187 if (dominated_by_p (CDI_DOMINATORS, e->src, bb))
1188 {
1189 if (SW (bb)->own_cost > EDGE_FREQUENCY (e))
1190 SW (bb)->own_cost -= EDGE_FREQUENCY (e);
1191 else
1192 SW (bb)->own_cost = 0;
1193 }
1194
1195 SW (bb)->total_cost = 0;
1196
1197 if (!bitmap_bit_p (SW (bb)->needs_components, which)
1198 && first_dom_son (CDI_DOMINATORS, bb))
1199 {
1200 bb = first_dom_son (CDI_DOMINATORS, bb);
1201 continue;
1202 }
1203 }
1204
1205 /* If this block does need the component itself, or it is cheaper to
1206 put the prologue here than in all the descendants that need it,
1207 mark it so. If this block's immediate post-dominator is dominated
1208 by this block, and that needs the prologue, we can put it on this
1209 block as well (earlier is better). */
1210 if (bitmap_bit_p (SW (bb)->needs_components, which)
1211 || SW (bb)->total_cost > SW (bb)->own_cost)
1212 {
1213 SW (bb)->total_cost = SW (bb)->own_cost;
1214 bitmap_set_bit (SW (bb)->has_components, which);
1215 }
1216 else
1217 {
1218 basic_block kid = get_immediate_dominator (CDI_POST_DOMINATORS, bb);
1219 if (dominated_by_p (CDI_DOMINATORS, kid, bb)
1220 && bitmap_bit_p (SW (kid)->has_components, which))
1221 {
1222 SW (bb)->total_cost = SW (bb)->own_cost;
1223 bitmap_set_bit (SW (bb)->has_components, which);
1224 }
1225 }
1226
1227 /* We are back where we started, so we are done now. */
1228 if (bb == head)
1229 return;
1230
1231 /* We now know the cost of the subtree rooted at the current block.
1232 Accumulate this cost in the parent. */
1233 basic_block parent = get_immediate_dominator (CDI_DOMINATORS, bb);
1234 SW (parent)->total_cost += SW (bb)->total_cost;
1235
1236 /* Don't walk the tree down unless necessary. */
1237 if (next_dom_son (CDI_DOMINATORS, bb)
1238 && SW (parent)->total_cost <= SW (parent)->own_cost)
1239 {
1240 bb = next_dom_son (CDI_DOMINATORS, bb);
1241 first_visit = true;
1242 }
1243 else
1244 {
1245 bb = parent;
1246 first_visit = false;
1247 }
1248 }
1249 }
1250
1251 /* Set HAS_COMPONENTS in every block to the maximum it can be set to without
1252 setting it on any path from entry to exit where it was not already set
1253 somewhere (or, for blocks that have no path to the exit, consider only
1254 paths from the entry to the block itself). */
1255 static void
1256 spread_components (sbitmap components)
1257 {
1258 basic_block entry_block = ENTRY_BLOCK_PTR_FOR_FN (cfun);
1259 basic_block exit_block = EXIT_BLOCK_PTR_FOR_FN (cfun);
1260
1261 /* A stack of all blocks left to consider, and a bitmap of all blocks
1262 on that stack. */
1263 vec<basic_block> todo;
1264 todo.create (n_basic_blocks_for_fn (cfun));
1265 auto_bitmap seen;
1266
1267 auto_sbitmap old (SBITMAP_SIZE (components));
1268
1269 /* Find for every block the components that are *not* needed on some path
1270 from the entry to that block. Do this with a flood fill from the entry
1271 block. Every block can be visited at most as often as the number of
1272 components (plus one), and usually much less often. */
1273
1274 if (dump_file)
1275 fprintf (dump_file, "Spreading down...\n");
1276
1277 basic_block bb;
1278 FOR_ALL_BB_FN (bb, cfun)
1279 bitmap_clear (SW (bb)->head_components);
1280
1281 bitmap_copy (SW (entry_block)->head_components, components);
1282
1283 edge e;
1284 edge_iterator ei;
1285
1286 todo.quick_push (single_succ (entry_block));
1287 bitmap_set_bit (seen, single_succ (entry_block)->index);
1288 while (!todo.is_empty ())
1289 {
1290 bb = todo.pop ();
1291
1292 bitmap_copy (old, SW (bb)->head_components);
1293
1294 FOR_EACH_EDGE (e, ei, bb->preds)
1295 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components,
1296 SW (e->src)->head_components);
1297
1298 bitmap_and_compl (SW (bb)->head_components, SW (bb)->head_components,
1299 SW (bb)->has_components);
1300
1301 if (!bitmap_equal_p (old, SW (bb)->head_components))
1302 FOR_EACH_EDGE (e, ei, bb->succs)
1303 if (bitmap_set_bit (seen, e->dest->index))
1304 todo.quick_push (e->dest);
1305
1306 bitmap_clear_bit (seen, bb->index);
1307 }
1308
1309 /* Find for every block the components that are *not* needed on some reverse
1310 path from the exit to that block. */
1311
1312 if (dump_file)
1313 fprintf (dump_file, "Spreading up...\n");
1314
1315 /* First, mark all blocks not reachable from the exit block as not needing
1316 any component on any path to the exit. Mark everything, and then clear
1317 again by a flood fill. */
1318
1319 FOR_ALL_BB_FN (bb, cfun)
1320 bitmap_copy (SW (bb)->tail_components, components);
1321
1322 FOR_EACH_EDGE (e, ei, exit_block->preds)
1323 {
1324 todo.quick_push (e->src);
1325 bitmap_set_bit (seen, e->src->index);
1326 }
1327
1328 while (!todo.is_empty ())
1329 {
1330 bb = todo.pop ();
1331
1332 if (!bitmap_empty_p (SW (bb)->tail_components))
1333 FOR_EACH_EDGE (e, ei, bb->preds)
1334 if (bitmap_set_bit (seen, e->src->index))
1335 todo.quick_push (e->src);
1336
1337 bitmap_clear (SW (bb)->tail_components);
1338
1339 bitmap_clear_bit (seen, bb->index);
1340 }
1341
1342 /* And then, flood fill backwards to find for every block the components
1343 not needed on some path to the exit. */
1344
1345 bitmap_copy (SW (exit_block)->tail_components, components);
1346
1347 FOR_EACH_EDGE (e, ei, exit_block->preds)
1348 {
1349 todo.quick_push (e->src);
1350 bitmap_set_bit (seen, e->src->index);
1351 }
1352
1353 while (!todo.is_empty ())
1354 {
1355 bb = todo.pop ();
1356
1357 bitmap_copy (old, SW (bb)->tail_components);
1358
1359 FOR_EACH_EDGE (e, ei, bb->succs)
1360 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components,
1361 SW (e->dest)->tail_components);
1362
1363 bitmap_and_compl (SW (bb)->tail_components, SW (bb)->tail_components,
1364 SW (bb)->has_components);
1365
1366 if (!bitmap_equal_p (old, SW (bb)->tail_components))
1367 FOR_EACH_EDGE (e, ei, bb->preds)
1368 if (bitmap_set_bit (seen, e->src->index))
1369 todo.quick_push (e->src);
1370
1371 bitmap_clear_bit (seen, bb->index);
1372 }
1373
1374 /* Finally, mark everything not not needed both forwards and backwards. */
1375
1376 FOR_EACH_BB_FN (bb, cfun)
1377 {
1378 bitmap_and (SW (bb)->head_components, SW (bb)->head_components,
1379 SW (bb)->tail_components);
1380 bitmap_and_compl (SW (bb)->has_components, components,
1381 SW (bb)->head_components);
1382 }
1383
1384 FOR_ALL_BB_FN (bb, cfun)
1385 {
1386 if (dump_file)
1387 {
1388 fprintf (dump_file, "bb %d components:", bb->index);
1389 dump_components ("has", SW (bb)->has_components);
1390 fprintf (dump_file, "\n");
1391 }
1392 }
1393 }
1394
1395 /* If we cannot handle placing some component's prologues or epilogues where
1396 we decided we should place them, unmark that component in COMPONENTS so
1397 that it is not wrapped separately. */
1398 static void
1399 disqualify_problematic_components (sbitmap components)
1400 {
1401 auto_sbitmap pro (SBITMAP_SIZE (components));
1402 auto_sbitmap epi (SBITMAP_SIZE (components));
1403
1404 basic_block bb;
1405 FOR_EACH_BB_FN (bb, cfun)
1406 {
1407 edge e;
1408 edge_iterator ei;
1409 FOR_EACH_EDGE (e, ei, bb->succs)
1410 {
1411 /* Find which components we want pro/epilogues for here. */
1412 bitmap_and_compl (epi, SW (e->src)->has_components,
1413 SW (e->dest)->has_components);
1414 bitmap_and_compl (pro, SW (e->dest)->has_components,
1415 SW (e->src)->has_components);
1416
1417 /* Ask the target what it thinks about things. */
1418 if (!bitmap_empty_p (epi))
1419 targetm.shrink_wrap.disqualify_components (components, e, epi,
1420 false);
1421 if (!bitmap_empty_p (pro))
1422 targetm.shrink_wrap.disqualify_components (components, e, pro,
1423 true);
1424
1425 /* If this edge doesn't need splitting, we're fine. */
1426 if (single_pred_p (e->dest)
1427 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
1428 continue;
1429
1430 /* If the edge can be split, that is fine too. */
1431 if ((e->flags & EDGE_ABNORMAL) == 0)
1432 continue;
1433
1434 /* We also can handle sibcalls. */
1435 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1436 {
1437 gcc_assert (e->flags & EDGE_SIBCALL);
1438 continue;
1439 }
1440
1441 /* Remove from consideration those components we would need
1442 pro/epilogues for on edges where we cannot insert them. */
1443 bitmap_and_compl (components, components, epi);
1444 bitmap_and_compl (components, components, pro);
1445
1446 if (dump_file && !bitmap_subset_p (epi, components))
1447 {
1448 fprintf (dump_file, " BAD epi %d->%d", e->src->index,
1449 e->dest->index);
1450 if (e->flags & EDGE_EH)
1451 fprintf (dump_file, " for EH");
1452 dump_components ("epi", epi);
1453 fprintf (dump_file, "\n");
1454 }
1455
1456 if (dump_file && !bitmap_subset_p (pro, components))
1457 {
1458 fprintf (dump_file, " BAD pro %d->%d", e->src->index,
1459 e->dest->index);
1460 if (e->flags & EDGE_EH)
1461 fprintf (dump_file, " for EH");
1462 dump_components ("pro", pro);
1463 fprintf (dump_file, "\n");
1464 }
1465 }
1466 }
1467 }
1468
1469 /* Place code for prologues and epilogues for COMPONENTS where we can put
1470 that code at the start of basic blocks. */
1471 static void
1472 emit_common_heads_for_components (sbitmap components)
1473 {
1474 auto_sbitmap pro (SBITMAP_SIZE (components));
1475 auto_sbitmap epi (SBITMAP_SIZE (components));
1476 auto_sbitmap tmp (SBITMAP_SIZE (components));
1477
1478 basic_block bb;
1479 FOR_ALL_BB_FN (bb, cfun)
1480 bitmap_clear (SW (bb)->head_components);
1481
1482 FOR_EACH_BB_FN (bb, cfun)
1483 {
1484 /* Find which prologue resp. epilogue components are needed for all
1485 predecessor edges to this block. */
1486
1487 /* First, select all possible components. */
1488 bitmap_copy (epi, components);
1489 bitmap_copy (pro, components);
1490
1491 edge e;
1492 edge_iterator ei;
1493 FOR_EACH_EDGE (e, ei, bb->preds)
1494 {
1495 if (e->flags & EDGE_ABNORMAL)
1496 {
1497 bitmap_clear (epi);
1498 bitmap_clear (pro);
1499 break;
1500 }
1501
1502 /* Deselect those epilogue components that should not be inserted
1503 for this edge. */
1504 bitmap_and_compl (tmp, SW (e->src)->has_components,
1505 SW (e->dest)->has_components);
1506 bitmap_and (epi, epi, tmp);
1507
1508 /* Similar, for the prologue. */
1509 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1510 SW (e->src)->has_components);
1511 bitmap_and (pro, pro, tmp);
1512 }
1513
1514 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1515 fprintf (dump_file, " bb %d", bb->index);
1516
1517 if (dump_file && !bitmap_empty_p (epi))
1518 dump_components ("epi", epi);
1519 if (dump_file && !bitmap_empty_p (pro))
1520 dump_components ("pro", pro);
1521
1522 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1523 fprintf (dump_file, "\n");
1524
1525 /* Place code after the BB note. */
1526 if (!bitmap_empty_p (pro))
1527 {
1528 start_sequence ();
1529 targetm.shrink_wrap.emit_prologue_components (pro);
1530 rtx_insn *seq = get_insns ();
1531 end_sequence ();
1532 record_prologue_seq (seq);
1533
1534 emit_insn_after (seq, bb_note (bb));
1535
1536 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, pro);
1537 }
1538
1539 if (!bitmap_empty_p (epi))
1540 {
1541 start_sequence ();
1542 targetm.shrink_wrap.emit_epilogue_components (epi);
1543 rtx_insn *seq = get_insns ();
1544 end_sequence ();
1545 record_epilogue_seq (seq);
1546
1547 emit_insn_after (seq, bb_note (bb));
1548
1549 bitmap_ior (SW (bb)->head_components, SW (bb)->head_components, epi);
1550 }
1551 }
1552 }
1553
1554 /* Place code for prologues and epilogues for COMPONENTS where we can put
1555 that code at the end of basic blocks. */
1556 static void
1557 emit_common_tails_for_components (sbitmap components)
1558 {
1559 auto_sbitmap pro (SBITMAP_SIZE (components));
1560 auto_sbitmap epi (SBITMAP_SIZE (components));
1561 auto_sbitmap tmp (SBITMAP_SIZE (components));
1562
1563 basic_block bb;
1564 FOR_ALL_BB_FN (bb, cfun)
1565 bitmap_clear (SW (bb)->tail_components);
1566
1567 FOR_EACH_BB_FN (bb, cfun)
1568 {
1569 /* Find which prologue resp. epilogue components are needed for all
1570 successor edges from this block. */
1571 if (EDGE_COUNT (bb->succs) == 0)
1572 continue;
1573
1574 /* First, select all possible components. */
1575 bitmap_copy (epi, components);
1576 bitmap_copy (pro, components);
1577
1578 edge e;
1579 edge_iterator ei;
1580 FOR_EACH_EDGE (e, ei, bb->succs)
1581 {
1582 if (e->flags & EDGE_ABNORMAL)
1583 {
1584 bitmap_clear (epi);
1585 bitmap_clear (pro);
1586 break;
1587 }
1588
1589 /* Deselect those epilogue components that should not be inserted
1590 for this edge, and also those that are already put at the head
1591 of the successor block. */
1592 bitmap_and_compl (tmp, SW (e->src)->has_components,
1593 SW (e->dest)->has_components);
1594 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1595 bitmap_and (epi, epi, tmp);
1596
1597 /* Similarly, for the prologue. */
1598 bitmap_and_compl (tmp, SW (e->dest)->has_components,
1599 SW (e->src)->has_components);
1600 bitmap_and_compl (tmp, tmp, SW (e->dest)->head_components);
1601 bitmap_and (pro, pro, tmp);
1602 }
1603
1604 /* If the last insn of this block is a control flow insn we cannot
1605 put anything after it. We can put our code before it instead,
1606 but only if that jump insn is a simple jump. */
1607 rtx_insn *last_insn = BB_END (bb);
1608 if (control_flow_insn_p (last_insn) && !simplejump_p (last_insn))
1609 {
1610 bitmap_clear (epi);
1611 bitmap_clear (pro);
1612 }
1613
1614 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1615 fprintf (dump_file, " bb %d", bb->index);
1616
1617 if (dump_file && !bitmap_empty_p (epi))
1618 dump_components ("epi", epi);
1619 if (dump_file && !bitmap_empty_p (pro))
1620 dump_components ("pro", pro);
1621
1622 if (dump_file && !(bitmap_empty_p (epi) && bitmap_empty_p (pro)))
1623 fprintf (dump_file, "\n");
1624
1625 /* Put the code at the end of the BB, but before any final jump. */
1626 if (!bitmap_empty_p (epi))
1627 {
1628 start_sequence ();
1629 targetm.shrink_wrap.emit_epilogue_components (epi);
1630 rtx_insn *seq = get_insns ();
1631 end_sequence ();
1632 record_epilogue_seq (seq);
1633
1634 if (control_flow_insn_p (last_insn))
1635 emit_insn_before (seq, last_insn);
1636 else
1637 emit_insn_after (seq, last_insn);
1638
1639 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, epi);
1640 }
1641
1642 if (!bitmap_empty_p (pro))
1643 {
1644 start_sequence ();
1645 targetm.shrink_wrap.emit_prologue_components (pro);
1646 rtx_insn *seq = get_insns ();
1647 end_sequence ();
1648 record_prologue_seq (seq);
1649
1650 if (control_flow_insn_p (last_insn))
1651 emit_insn_before (seq, last_insn);
1652 else
1653 emit_insn_after (seq, last_insn);
1654
1655 bitmap_ior (SW (bb)->tail_components, SW (bb)->tail_components, pro);
1656 }
1657 }
1658 }
1659
1660 /* Place prologues and epilogues for COMPONENTS on edges, if we haven't already
1661 placed them inside blocks directly. */
1662 static void
1663 insert_prologue_epilogue_for_components (sbitmap components)
1664 {
1665 auto_sbitmap pro (SBITMAP_SIZE (components));
1666 auto_sbitmap epi (SBITMAP_SIZE (components));
1667
1668 basic_block bb;
1669 FOR_EACH_BB_FN (bb, cfun)
1670 {
1671 if (!bb->aux)
1672 continue;
1673
1674 edge e;
1675 edge_iterator ei;
1676 FOR_EACH_EDGE (e, ei, bb->succs)
1677 {
1678 /* Find which pro/epilogue components are needed on this edge. */
1679 bitmap_and_compl (epi, SW (e->src)->has_components,
1680 SW (e->dest)->has_components);
1681 bitmap_and_compl (pro, SW (e->dest)->has_components,
1682 SW (e->src)->has_components);
1683 bitmap_and (epi, epi, components);
1684 bitmap_and (pro, pro, components);
1685
1686 /* Deselect those we already have put at the head or tail of the
1687 edge's dest resp. src. */
1688 bitmap_and_compl (epi, epi, SW (e->dest)->head_components);
1689 bitmap_and_compl (pro, pro, SW (e->dest)->head_components);
1690 bitmap_and_compl (epi, epi, SW (e->src)->tail_components);
1691 bitmap_and_compl (pro, pro, SW (e->src)->tail_components);
1692
1693 if (!bitmap_empty_p (epi) || !bitmap_empty_p (pro))
1694 {
1695 if (dump_file)
1696 {
1697 fprintf (dump_file, " %d->%d", e->src->index,
1698 e->dest->index);
1699 dump_components ("epi", epi);
1700 dump_components ("pro", pro);
1701 if (e->flags & EDGE_SIBCALL)
1702 fprintf (dump_file, " (SIBCALL)");
1703 else if (e->flags & EDGE_ABNORMAL)
1704 fprintf (dump_file, " (ABNORMAL)");
1705 fprintf (dump_file, "\n");
1706 }
1707
1708 /* Put the epilogue components in place. */
1709 start_sequence ();
1710 targetm.shrink_wrap.emit_epilogue_components (epi);
1711 rtx_insn *seq = get_insns ();
1712 end_sequence ();
1713 record_epilogue_seq (seq);
1714
1715 if (e->flags & EDGE_SIBCALL)
1716 {
1717 gcc_assert (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun));
1718
1719 rtx_insn *insn = BB_END (e->src);
1720 gcc_assert (CALL_P (insn) && SIBLING_CALL_P (insn));
1721 emit_insn_before (seq, insn);
1722 }
1723 else if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
1724 {
1725 gcc_assert (e->flags & EDGE_FALLTHRU);
1726 basic_block new_bb = split_edge (e);
1727 emit_insn_after (seq, BB_END (new_bb));
1728 }
1729 else
1730 insert_insn_on_edge (seq, e);
1731
1732 /* Put the prologue components in place. */
1733 start_sequence ();
1734 targetm.shrink_wrap.emit_prologue_components (pro);
1735 seq = get_insns ();
1736 end_sequence ();
1737 record_prologue_seq (seq);
1738
1739 insert_insn_on_edge (seq, e);
1740 }
1741 }
1742 }
1743
1744 commit_edge_insertions ();
1745 }
1746
1747 /* The main entry point to this subpass. FIRST_BB is where the prologue
1748 would be normally put. */
1749 void
1750 try_shrink_wrapping_separate (basic_block first_bb)
1751 {
1752 if (HAVE_cc0)
1753 return;
1754
1755 if (!(SHRINK_WRAPPING_ENABLED
1756 && flag_shrink_wrap_separate
1757 && optimize_function_for_speed_p (cfun)
1758 && targetm.shrink_wrap.get_separate_components))
1759 return;
1760
1761 /* We don't handle "strange" functions. */
1762 if (cfun->calls_alloca
1763 || cfun->calls_setjmp
1764 || cfun->can_throw_non_call_exceptions
1765 || crtl->calls_eh_return
1766 || crtl->has_nonlocal_goto
1767 || crtl->saves_all_registers)
1768 return;
1769
1770 /* Ask the target what components there are. If it returns NULL, don't
1771 do anything. */
1772 sbitmap components = targetm.shrink_wrap.get_separate_components ();
1773 if (!components)
1774 return;
1775
1776 /* We need LIVE info, not defining anything in the entry block and not
1777 using anything in the exit block. A block then needs a component if
1778 the register for that component is in the IN or GEN or KILL set for
1779 that block. */
1780 df_scan->local_flags |= DF_SCAN_EMPTY_ENTRY_EXIT;
1781 df_update_entry_exit_and_calls ();
1782 df_live_add_problem ();
1783 df_live_set_all_dirty ();
1784 df_analyze ();
1785
1786 calculate_dominance_info (CDI_DOMINATORS);
1787 calculate_dominance_info (CDI_POST_DOMINATORS);
1788
1789 init_separate_shrink_wrap (components);
1790
1791 sbitmap_iterator sbi;
1792 unsigned int j;
1793 EXECUTE_IF_SET_IN_BITMAP (components, 0, j, sbi)
1794 place_prologue_for_one_component (j, first_bb);
1795
1796 spread_components (components);
1797
1798 disqualify_problematic_components (components);
1799
1800 /* Don't separately shrink-wrap anything where the "main" prologue will
1801 go; the target code can often optimize things if it is presented with
1802 all components together (say, if it generates store-multiple insns). */
1803 bitmap_and_compl (components, components, SW (first_bb)->has_components);
1804
1805 if (bitmap_empty_p (components))
1806 {
1807 if (dump_file)
1808 fprintf (dump_file, "Not wrapping anything separately.\n");
1809 }
1810 else
1811 {
1812 if (dump_file)
1813 {
1814 fprintf (dump_file, "The components we wrap separately are");
1815 dump_components ("sep", components);
1816 fprintf (dump_file, "\n");
1817
1818 fprintf (dump_file, "... Inserting common heads...\n");
1819 }
1820
1821 emit_common_heads_for_components (components);
1822
1823 if (dump_file)
1824 fprintf (dump_file, "... Inserting common tails...\n");
1825
1826 emit_common_tails_for_components (components);
1827
1828 if (dump_file)
1829 fprintf (dump_file, "... Inserting the more difficult ones...\n");
1830
1831 insert_prologue_epilogue_for_components (components);
1832
1833 if (dump_file)
1834 fprintf (dump_file, "... Done.\n");
1835
1836 targetm.shrink_wrap.set_handled_components (components);
1837
1838 crtl->shrink_wrapped_separate = true;
1839 }
1840
1841 fini_separate_shrink_wrap ();
1842
1843 sbitmap_free (components);
1844 free_dominance_info (CDI_DOMINATORS);
1845 free_dominance_info (CDI_POST_DOMINATORS);
1846
1847 /* All done. */
1848 df_scan->local_flags &= ~DF_SCAN_EMPTY_ENTRY_EXIT;
1849 df_update_entry_exit_and_calls ();
1850 df_live_set_all_dirty ();
1851 df_analyze ();
1852 }