]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/stor-layout.c
a95722ac10ec959bce4cefe28a57e6b8eb3fcfaf
[thirdparty/gcc.git] / gcc / stor-layout.c
1 /* C-compiler utilities for types and variables storage layout
2 Copyright (C) 1987-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "stor-layout.h"
27 #include "stringpool.h"
28 #include "varasm.h"
29 #include "print-tree.h"
30 #include "rtl.h"
31 #include "tm_p.h"
32 #include "flags.h"
33 #include "function.h"
34 #include "expr.h"
35 #include "diagnostic-core.h"
36 #include "target.h"
37 #include "langhooks.h"
38 #include "regs.h"
39 #include "params.h"
40 #include "cgraph.h"
41 #include "tree-inline.h"
42 #include "tree-dump.h"
43 #include "gimplify.h"
44
45 /* Data type for the expressions representing sizes of data types.
46 It is the first integer type laid out. */
47 tree sizetype_tab[(int) stk_type_kind_last];
48
49 /* If nonzero, this is an upper limit on alignment of structure fields.
50 The value is measured in bits. */
51 unsigned int maximum_field_alignment = TARGET_DEFAULT_PACK_STRUCT * BITS_PER_UNIT;
52
53 /* Nonzero if all REFERENCE_TYPEs are internal and hence should be allocated
54 in the address spaces' address_mode, not pointer_mode. Set only by
55 internal_reference_types called only by a front end. */
56 static int reference_types_internal = 0;
57
58 static tree self_referential_size (tree);
59 static void finalize_record_size (record_layout_info);
60 static void finalize_type_size (tree);
61 static void place_union_field (record_layout_info, tree);
62 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
63 static int excess_unit_span (HOST_WIDE_INT, HOST_WIDE_INT, HOST_WIDE_INT,
64 HOST_WIDE_INT, tree);
65 #endif
66 extern void debug_rli (record_layout_info);
67 \f
68 /* Show that REFERENCE_TYPES are internal and should use address_mode.
69 Called only by front end. */
70
71 void
72 internal_reference_types (void)
73 {
74 reference_types_internal = 1;
75 }
76
77 /* Given a size SIZE that may not be a constant, return a SAVE_EXPR
78 to serve as the actual size-expression for a type or decl. */
79
80 tree
81 variable_size (tree size)
82 {
83 /* Obviously. */
84 if (TREE_CONSTANT (size))
85 return size;
86
87 /* If the size is self-referential, we can't make a SAVE_EXPR (see
88 save_expr for the rationale). But we can do something else. */
89 if (CONTAINS_PLACEHOLDER_P (size))
90 return self_referential_size (size);
91
92 /* If we are in the global binding level, we can't make a SAVE_EXPR
93 since it may end up being shared across functions, so it is up
94 to the front-end to deal with this case. */
95 if (lang_hooks.decls.global_bindings_p ())
96 return size;
97
98 return save_expr (size);
99 }
100
101 /* An array of functions used for self-referential size computation. */
102 static GTY(()) vec<tree, va_gc> *size_functions;
103
104 /* Similar to copy_tree_r but do not copy component references involving
105 PLACEHOLDER_EXPRs. These nodes are spotted in find_placeholder_in_expr
106 and substituted in substitute_in_expr. */
107
108 static tree
109 copy_self_referential_tree_r (tree *tp, int *walk_subtrees, void *data)
110 {
111 enum tree_code code = TREE_CODE (*tp);
112
113 /* Stop at types, decls, constants like copy_tree_r. */
114 if (TREE_CODE_CLASS (code) == tcc_type
115 || TREE_CODE_CLASS (code) == tcc_declaration
116 || TREE_CODE_CLASS (code) == tcc_constant)
117 {
118 *walk_subtrees = 0;
119 return NULL_TREE;
120 }
121
122 /* This is the pattern built in ada/make_aligning_type. */
123 else if (code == ADDR_EXPR
124 && TREE_CODE (TREE_OPERAND (*tp, 0)) == PLACEHOLDER_EXPR)
125 {
126 *walk_subtrees = 0;
127 return NULL_TREE;
128 }
129
130 /* Default case: the component reference. */
131 else if (code == COMPONENT_REF)
132 {
133 tree inner;
134 for (inner = TREE_OPERAND (*tp, 0);
135 REFERENCE_CLASS_P (inner);
136 inner = TREE_OPERAND (inner, 0))
137 ;
138
139 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
140 {
141 *walk_subtrees = 0;
142 return NULL_TREE;
143 }
144 }
145
146 /* We're not supposed to have them in self-referential size trees
147 because we wouldn't properly control when they are evaluated.
148 However, not creating superfluous SAVE_EXPRs requires accurate
149 tracking of readonly-ness all the way down to here, which we
150 cannot always guarantee in practice. So punt in this case. */
151 else if (code == SAVE_EXPR)
152 return error_mark_node;
153
154 else if (code == STATEMENT_LIST)
155 gcc_unreachable ();
156
157 return copy_tree_r (tp, walk_subtrees, data);
158 }
159
160 /* Given a SIZE expression that is self-referential, return an equivalent
161 expression to serve as the actual size expression for a type. */
162
163 static tree
164 self_referential_size (tree size)
165 {
166 static unsigned HOST_WIDE_INT fnno = 0;
167 vec<tree> self_refs = vNULL;
168 tree param_type_list = NULL, param_decl_list = NULL;
169 tree t, ref, return_type, fntype, fnname, fndecl;
170 unsigned int i;
171 char buf[128];
172 vec<tree, va_gc> *args = NULL;
173
174 /* Do not factor out simple operations. */
175 t = skip_simple_constant_arithmetic (size);
176 if (TREE_CODE (t) == CALL_EXPR)
177 return size;
178
179 /* Collect the list of self-references in the expression. */
180 find_placeholder_in_expr (size, &self_refs);
181 gcc_assert (self_refs.length () > 0);
182
183 /* Obtain a private copy of the expression. */
184 t = size;
185 if (walk_tree (&t, copy_self_referential_tree_r, NULL, NULL) != NULL_TREE)
186 return size;
187 size = t;
188
189 /* Build the parameter and argument lists in parallel; also
190 substitute the former for the latter in the expression. */
191 vec_alloc (args, self_refs.length ());
192 FOR_EACH_VEC_ELT (self_refs, i, ref)
193 {
194 tree subst, param_name, param_type, param_decl;
195
196 if (DECL_P (ref))
197 {
198 /* We shouldn't have true variables here. */
199 gcc_assert (TREE_READONLY (ref));
200 subst = ref;
201 }
202 /* This is the pattern built in ada/make_aligning_type. */
203 else if (TREE_CODE (ref) == ADDR_EXPR)
204 subst = ref;
205 /* Default case: the component reference. */
206 else
207 subst = TREE_OPERAND (ref, 1);
208
209 sprintf (buf, "p%d", i);
210 param_name = get_identifier (buf);
211 param_type = TREE_TYPE (ref);
212 param_decl
213 = build_decl (input_location, PARM_DECL, param_name, param_type);
214 DECL_ARG_TYPE (param_decl) = param_type;
215 DECL_ARTIFICIAL (param_decl) = 1;
216 TREE_READONLY (param_decl) = 1;
217
218 size = substitute_in_expr (size, subst, param_decl);
219
220 param_type_list = tree_cons (NULL_TREE, param_type, param_type_list);
221 param_decl_list = chainon (param_decl, param_decl_list);
222 args->quick_push (ref);
223 }
224
225 self_refs.release ();
226
227 /* Append 'void' to indicate that the number of parameters is fixed. */
228 param_type_list = tree_cons (NULL_TREE, void_type_node, param_type_list);
229
230 /* The 3 lists have been created in reverse order. */
231 param_type_list = nreverse (param_type_list);
232 param_decl_list = nreverse (param_decl_list);
233
234 /* Build the function type. */
235 return_type = TREE_TYPE (size);
236 fntype = build_function_type (return_type, param_type_list);
237
238 /* Build the function declaration. */
239 sprintf (buf, "SZ"HOST_WIDE_INT_PRINT_UNSIGNED, fnno++);
240 fnname = get_file_function_name (buf);
241 fndecl = build_decl (input_location, FUNCTION_DECL, fnname, fntype);
242 for (t = param_decl_list; t; t = DECL_CHAIN (t))
243 DECL_CONTEXT (t) = fndecl;
244 DECL_ARGUMENTS (fndecl) = param_decl_list;
245 DECL_RESULT (fndecl)
246 = build_decl (input_location, RESULT_DECL, 0, return_type);
247 DECL_CONTEXT (DECL_RESULT (fndecl)) = fndecl;
248
249 /* The function has been created by the compiler and we don't
250 want to emit debug info for it. */
251 DECL_ARTIFICIAL (fndecl) = 1;
252 DECL_IGNORED_P (fndecl) = 1;
253
254 /* It is supposed to be "const" and never throw. */
255 TREE_READONLY (fndecl) = 1;
256 TREE_NOTHROW (fndecl) = 1;
257
258 /* We want it to be inlined when this is deemed profitable, as
259 well as discarded if every call has been integrated. */
260 DECL_DECLARED_INLINE_P (fndecl) = 1;
261
262 /* It is made up of a unique return statement. */
263 DECL_INITIAL (fndecl) = make_node (BLOCK);
264 BLOCK_SUPERCONTEXT (DECL_INITIAL (fndecl)) = fndecl;
265 t = build2 (MODIFY_EXPR, return_type, DECL_RESULT (fndecl), size);
266 DECL_SAVED_TREE (fndecl) = build1 (RETURN_EXPR, void_type_node, t);
267 TREE_STATIC (fndecl) = 1;
268
269 /* Put it onto the list of size functions. */
270 vec_safe_push (size_functions, fndecl);
271
272 /* Replace the original expression with a call to the size function. */
273 return build_call_expr_loc_vec (UNKNOWN_LOCATION, fndecl, args);
274 }
275
276 /* Take, queue and compile all the size functions. It is essential that
277 the size functions be gimplified at the very end of the compilation
278 in order to guarantee transparent handling of self-referential sizes.
279 Otherwise the GENERIC inliner would not be able to inline them back
280 at each of their call sites, thus creating artificial non-constant
281 size expressions which would trigger nasty problems later on. */
282
283 void
284 finalize_size_functions (void)
285 {
286 unsigned int i;
287 tree fndecl;
288
289 for (i = 0; size_functions && size_functions->iterate (i, &fndecl); i++)
290 {
291 allocate_struct_function (fndecl, false);
292 set_cfun (NULL);
293 dump_function (TDI_original, fndecl);
294 gimplify_function_tree (fndecl);
295 dump_function (TDI_generic, fndecl);
296 cgraph_node::finalize_function (fndecl, false);
297 }
298
299 vec_free (size_functions);
300 }
301 \f
302 /* Return the machine mode to use for a nonscalar of SIZE bits. The
303 mode must be in class MCLASS, and have exactly that many value bits;
304 it may have padding as well. If LIMIT is nonzero, modes of wider
305 than MAX_FIXED_MODE_SIZE will not be used. */
306
307 enum machine_mode
308 mode_for_size (unsigned int size, enum mode_class mclass, int limit)
309 {
310 enum machine_mode mode;
311 int i;
312
313 if (limit && size > MAX_FIXED_MODE_SIZE)
314 return BLKmode;
315
316 /* Get the first mode which has this size, in the specified class. */
317 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
318 mode = GET_MODE_WIDER_MODE (mode))
319 if (GET_MODE_PRECISION (mode) == size)
320 return mode;
321
322 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
323 for (i = 0; i < NUM_INT_N_ENTS; i ++)
324 if (int_n_data[i].bitsize == size
325 && int_n_enabled_p[i])
326 return int_n_data[i].m;
327
328 return BLKmode;
329 }
330
331 /* Similar, except passed a tree node. */
332
333 enum machine_mode
334 mode_for_size_tree (const_tree size, enum mode_class mclass, int limit)
335 {
336 unsigned HOST_WIDE_INT uhwi;
337 unsigned int ui;
338
339 if (!tree_fits_uhwi_p (size))
340 return BLKmode;
341 uhwi = tree_to_uhwi (size);
342 ui = uhwi;
343 if (uhwi != ui)
344 return BLKmode;
345 return mode_for_size (ui, mclass, limit);
346 }
347
348 /* Similar, but never return BLKmode; return the narrowest mode that
349 contains at least the requested number of value bits. */
350
351 enum machine_mode
352 smallest_mode_for_size (unsigned int size, enum mode_class mclass)
353 {
354 enum machine_mode mode = VOIDmode;
355 int i;
356
357 /* Get the first mode which has at least this size, in the
358 specified class. */
359 for (mode = GET_CLASS_NARROWEST_MODE (mclass); mode != VOIDmode;
360 mode = GET_MODE_WIDER_MODE (mode))
361 if (GET_MODE_PRECISION (mode) >= size)
362 break;
363
364 if (mclass == MODE_INT || mclass == MODE_PARTIAL_INT)
365 for (i = 0; i < NUM_INT_N_ENTS; i ++)
366 if (int_n_data[i].bitsize >= size
367 && int_n_data[i].bitsize < GET_MODE_PRECISION (mode)
368 && int_n_enabled_p[i])
369 mode = int_n_data[i].m;
370
371 if (mode == VOIDmode)
372 gcc_unreachable ();
373
374 return mode;
375 }
376
377 /* Find an integer mode of the exact same size, or BLKmode on failure. */
378
379 enum machine_mode
380 int_mode_for_mode (enum machine_mode mode)
381 {
382 switch (GET_MODE_CLASS (mode))
383 {
384 case MODE_INT:
385 case MODE_PARTIAL_INT:
386 break;
387
388 case MODE_COMPLEX_INT:
389 case MODE_COMPLEX_FLOAT:
390 case MODE_FLOAT:
391 case MODE_DECIMAL_FLOAT:
392 case MODE_VECTOR_INT:
393 case MODE_VECTOR_FLOAT:
394 case MODE_FRACT:
395 case MODE_ACCUM:
396 case MODE_UFRACT:
397 case MODE_UACCUM:
398 case MODE_VECTOR_FRACT:
399 case MODE_VECTOR_ACCUM:
400 case MODE_VECTOR_UFRACT:
401 case MODE_VECTOR_UACCUM:
402 mode = mode_for_size (GET_MODE_BITSIZE (mode), MODE_INT, 0);
403 break;
404
405 case MODE_RANDOM:
406 if (mode == BLKmode)
407 break;
408
409 /* ... fall through ... */
410
411 case MODE_CC:
412 default:
413 gcc_unreachable ();
414 }
415
416 return mode;
417 }
418
419 /* Find a mode that can be used for efficient bitwise operations on MODE.
420 Return BLKmode if no such mode exists. */
421
422 enum machine_mode
423 bitwise_mode_for_mode (enum machine_mode mode)
424 {
425 /* Quick exit if we already have a suitable mode. */
426 unsigned int bitsize = GET_MODE_BITSIZE (mode);
427 if (SCALAR_INT_MODE_P (mode) && bitsize <= MAX_FIXED_MODE_SIZE)
428 return mode;
429
430 /* Reuse the sanity checks from int_mode_for_mode. */
431 gcc_checking_assert ((int_mode_for_mode (mode), true));
432
433 /* Try to replace complex modes with complex modes. In general we
434 expect both components to be processed independently, so we only
435 care whether there is a register for the inner mode. */
436 if (COMPLEX_MODE_P (mode))
437 {
438 enum machine_mode trial = mode;
439 if (GET_MODE_CLASS (mode) != MODE_COMPLEX_INT)
440 trial = mode_for_size (bitsize, MODE_COMPLEX_INT, false);
441 if (trial != BLKmode
442 && have_regs_of_mode[GET_MODE_INNER (trial)])
443 return trial;
444 }
445
446 /* Try to replace vector modes with vector modes. Also try using vector
447 modes if an integer mode would be too big. */
448 if (VECTOR_MODE_P (mode) || bitsize > MAX_FIXED_MODE_SIZE)
449 {
450 enum machine_mode trial = mode;
451 if (GET_MODE_CLASS (mode) != MODE_VECTOR_INT)
452 trial = mode_for_size (bitsize, MODE_VECTOR_INT, 0);
453 if (trial != BLKmode
454 && have_regs_of_mode[trial]
455 && targetm.vector_mode_supported_p (trial))
456 return trial;
457 }
458
459 /* Otherwise fall back on integers while honoring MAX_FIXED_MODE_SIZE. */
460 return mode_for_size (bitsize, MODE_INT, true);
461 }
462
463 /* Find a type that can be used for efficient bitwise operations on MODE.
464 Return null if no such mode exists. */
465
466 tree
467 bitwise_type_for_mode (enum machine_mode mode)
468 {
469 mode = bitwise_mode_for_mode (mode);
470 if (mode == BLKmode)
471 return NULL_TREE;
472
473 unsigned int inner_size = GET_MODE_UNIT_BITSIZE (mode);
474 tree inner_type = build_nonstandard_integer_type (inner_size, true);
475
476 if (VECTOR_MODE_P (mode))
477 return build_vector_type_for_mode (inner_type, mode);
478
479 if (COMPLEX_MODE_P (mode))
480 return build_complex_type (inner_type);
481
482 gcc_checking_assert (GET_MODE_INNER (mode) == VOIDmode);
483 return inner_type;
484 }
485
486 /* Find a mode that is suitable for representing a vector with
487 NUNITS elements of mode INNERMODE. Returns BLKmode if there
488 is no suitable mode. */
489
490 enum machine_mode
491 mode_for_vector (enum machine_mode innermode, unsigned nunits)
492 {
493 enum machine_mode mode;
494
495 /* First, look for a supported vector type. */
496 if (SCALAR_FLOAT_MODE_P (innermode))
497 mode = MIN_MODE_VECTOR_FLOAT;
498 else if (SCALAR_FRACT_MODE_P (innermode))
499 mode = MIN_MODE_VECTOR_FRACT;
500 else if (SCALAR_UFRACT_MODE_P (innermode))
501 mode = MIN_MODE_VECTOR_UFRACT;
502 else if (SCALAR_ACCUM_MODE_P (innermode))
503 mode = MIN_MODE_VECTOR_ACCUM;
504 else if (SCALAR_UACCUM_MODE_P (innermode))
505 mode = MIN_MODE_VECTOR_UACCUM;
506 else
507 mode = MIN_MODE_VECTOR_INT;
508
509 /* Do not check vector_mode_supported_p here. We'll do that
510 later in vector_type_mode. */
511 for (; mode != VOIDmode ; mode = GET_MODE_WIDER_MODE (mode))
512 if (GET_MODE_NUNITS (mode) == nunits
513 && GET_MODE_INNER (mode) == innermode)
514 break;
515
516 /* For integers, try mapping it to a same-sized scalar mode. */
517 if (mode == VOIDmode
518 && GET_MODE_CLASS (innermode) == MODE_INT)
519 mode = mode_for_size (nunits * GET_MODE_BITSIZE (innermode),
520 MODE_INT, 0);
521
522 if (mode == VOIDmode
523 || (GET_MODE_CLASS (mode) == MODE_INT
524 && !have_regs_of_mode[mode]))
525 return BLKmode;
526
527 return mode;
528 }
529
530 /* Return the alignment of MODE. This will be bounded by 1 and
531 BIGGEST_ALIGNMENT. */
532
533 unsigned int
534 get_mode_alignment (enum machine_mode mode)
535 {
536 return MIN (BIGGEST_ALIGNMENT, MAX (1, mode_base_align[mode]*BITS_PER_UNIT));
537 }
538
539 /* Return the precision of the mode, or for a complex or vector mode the
540 precision of the mode of its elements. */
541
542 unsigned int
543 element_precision (enum machine_mode mode)
544 {
545 if (COMPLEX_MODE_P (mode) || VECTOR_MODE_P (mode))
546 mode = GET_MODE_INNER (mode);
547
548 return GET_MODE_PRECISION (mode);
549 }
550
551 /* Return the natural mode of an array, given that it is SIZE bytes in
552 total and has elements of type ELEM_TYPE. */
553
554 static enum machine_mode
555 mode_for_array (tree elem_type, tree size)
556 {
557 tree elem_size;
558 unsigned HOST_WIDE_INT int_size, int_elem_size;
559 bool limit_p;
560
561 /* One-element arrays get the component type's mode. */
562 elem_size = TYPE_SIZE (elem_type);
563 if (simple_cst_equal (size, elem_size))
564 return TYPE_MODE (elem_type);
565
566 limit_p = true;
567 if (tree_fits_uhwi_p (size) && tree_fits_uhwi_p (elem_size))
568 {
569 int_size = tree_to_uhwi (size);
570 int_elem_size = tree_to_uhwi (elem_size);
571 if (int_elem_size > 0
572 && int_size % int_elem_size == 0
573 && targetm.array_mode_supported_p (TYPE_MODE (elem_type),
574 int_size / int_elem_size))
575 limit_p = false;
576 }
577 return mode_for_size_tree (size, MODE_INT, limit_p);
578 }
579 \f
580 /* Subroutine of layout_decl: Force alignment required for the data type.
581 But if the decl itself wants greater alignment, don't override that. */
582
583 static inline void
584 do_type_align (tree type, tree decl)
585 {
586 if (TYPE_ALIGN (type) > DECL_ALIGN (decl))
587 {
588 DECL_ALIGN (decl) = TYPE_ALIGN (type);
589 if (TREE_CODE (decl) == FIELD_DECL)
590 DECL_USER_ALIGN (decl) = TYPE_USER_ALIGN (type);
591 }
592 }
593
594 /* Set the size, mode and alignment of a ..._DECL node.
595 TYPE_DECL does need this for C++.
596 Note that LABEL_DECL and CONST_DECL nodes do not need this,
597 and FUNCTION_DECL nodes have them set up in a special (and simple) way.
598 Don't call layout_decl for them.
599
600 KNOWN_ALIGN is the amount of alignment we can assume this
601 decl has with no special effort. It is relevant only for FIELD_DECLs
602 and depends on the previous fields.
603 All that matters about KNOWN_ALIGN is which powers of 2 divide it.
604 If KNOWN_ALIGN is 0, it means, "as much alignment as you like":
605 the record will be aligned to suit. */
606
607 void
608 layout_decl (tree decl, unsigned int known_align)
609 {
610 tree type = TREE_TYPE (decl);
611 enum tree_code code = TREE_CODE (decl);
612 rtx rtl = NULL_RTX;
613 location_t loc = DECL_SOURCE_LOCATION (decl);
614
615 if (code == CONST_DECL)
616 return;
617
618 gcc_assert (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL
619 || code == TYPE_DECL ||code == FIELD_DECL);
620
621 rtl = DECL_RTL_IF_SET (decl);
622
623 if (type == error_mark_node)
624 type = void_type_node;
625
626 /* Usually the size and mode come from the data type without change,
627 however, the front-end may set the explicit width of the field, so its
628 size may not be the same as the size of its type. This happens with
629 bitfields, of course (an `int' bitfield may be only 2 bits, say), but it
630 also happens with other fields. For example, the C++ front-end creates
631 zero-sized fields corresponding to empty base classes, and depends on
632 layout_type setting DECL_FIELD_BITPOS correctly for the field. Set the
633 size in bytes from the size in bits. If we have already set the mode,
634 don't set it again since we can be called twice for FIELD_DECLs. */
635
636 DECL_UNSIGNED (decl) = TYPE_UNSIGNED (type);
637 if (DECL_MODE (decl) == VOIDmode)
638 DECL_MODE (decl) = TYPE_MODE (type);
639
640 if (DECL_SIZE (decl) == 0)
641 {
642 DECL_SIZE (decl) = TYPE_SIZE (type);
643 DECL_SIZE_UNIT (decl) = TYPE_SIZE_UNIT (type);
644 }
645 else if (DECL_SIZE_UNIT (decl) == 0)
646 DECL_SIZE_UNIT (decl)
647 = fold_convert_loc (loc, sizetype,
648 size_binop_loc (loc, CEIL_DIV_EXPR, DECL_SIZE (decl),
649 bitsize_unit_node));
650
651 if (code != FIELD_DECL)
652 /* For non-fields, update the alignment from the type. */
653 do_type_align (type, decl);
654 else
655 /* For fields, it's a bit more complicated... */
656 {
657 bool old_user_align = DECL_USER_ALIGN (decl);
658 bool zero_bitfield = false;
659 bool packed_p = DECL_PACKED (decl);
660 unsigned int mfa;
661
662 if (DECL_BIT_FIELD (decl))
663 {
664 DECL_BIT_FIELD_TYPE (decl) = type;
665
666 /* A zero-length bit-field affects the alignment of the next
667 field. In essence such bit-fields are not influenced by
668 any packing due to #pragma pack or attribute packed. */
669 if (integer_zerop (DECL_SIZE (decl))
670 && ! targetm.ms_bitfield_layout_p (DECL_FIELD_CONTEXT (decl)))
671 {
672 zero_bitfield = true;
673 packed_p = false;
674 #ifdef PCC_BITFIELD_TYPE_MATTERS
675 if (PCC_BITFIELD_TYPE_MATTERS)
676 do_type_align (type, decl);
677 else
678 #endif
679 {
680 #ifdef EMPTY_FIELD_BOUNDARY
681 if (EMPTY_FIELD_BOUNDARY > DECL_ALIGN (decl))
682 {
683 DECL_ALIGN (decl) = EMPTY_FIELD_BOUNDARY;
684 DECL_USER_ALIGN (decl) = 0;
685 }
686 #endif
687 }
688 }
689
690 /* See if we can use an ordinary integer mode for a bit-field.
691 Conditions are: a fixed size that is correct for another mode,
692 occupying a complete byte or bytes on proper boundary. */
693 if (TYPE_SIZE (type) != 0
694 && TREE_CODE (TYPE_SIZE (type)) == INTEGER_CST
695 && GET_MODE_CLASS (TYPE_MODE (type)) == MODE_INT)
696 {
697 enum machine_mode xmode
698 = mode_for_size_tree (DECL_SIZE (decl), MODE_INT, 1);
699 unsigned int xalign = GET_MODE_ALIGNMENT (xmode);
700
701 if (xmode != BLKmode
702 && !(xalign > BITS_PER_UNIT && DECL_PACKED (decl))
703 && (known_align == 0 || known_align >= xalign))
704 {
705 DECL_ALIGN (decl) = MAX (xalign, DECL_ALIGN (decl));
706 DECL_MODE (decl) = xmode;
707 DECL_BIT_FIELD (decl) = 0;
708 }
709 }
710
711 /* Turn off DECL_BIT_FIELD if we won't need it set. */
712 if (TYPE_MODE (type) == BLKmode && DECL_MODE (decl) == BLKmode
713 && known_align >= TYPE_ALIGN (type)
714 && DECL_ALIGN (decl) >= TYPE_ALIGN (type))
715 DECL_BIT_FIELD (decl) = 0;
716 }
717 else if (packed_p && DECL_USER_ALIGN (decl))
718 /* Don't touch DECL_ALIGN. For other packed fields, go ahead and
719 round up; we'll reduce it again below. We want packing to
720 supersede USER_ALIGN inherited from the type, but defer to
721 alignment explicitly specified on the field decl. */;
722 else
723 do_type_align (type, decl);
724
725 /* If the field is packed and not explicitly aligned, give it the
726 minimum alignment. Note that do_type_align may set
727 DECL_USER_ALIGN, so we need to check old_user_align instead. */
728 if (packed_p
729 && !old_user_align)
730 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), BITS_PER_UNIT);
731
732 if (! packed_p && ! DECL_USER_ALIGN (decl))
733 {
734 /* Some targets (i.e. i386, VMS) limit struct field alignment
735 to a lower boundary than alignment of variables unless
736 it was overridden by attribute aligned. */
737 #ifdef BIGGEST_FIELD_ALIGNMENT
738 DECL_ALIGN (decl)
739 = MIN (DECL_ALIGN (decl), (unsigned) BIGGEST_FIELD_ALIGNMENT);
740 #endif
741 #ifdef ADJUST_FIELD_ALIGN
742 DECL_ALIGN (decl) = ADJUST_FIELD_ALIGN (decl, DECL_ALIGN (decl));
743 #endif
744 }
745
746 if (zero_bitfield)
747 mfa = initial_max_fld_align * BITS_PER_UNIT;
748 else
749 mfa = maximum_field_alignment;
750 /* Should this be controlled by DECL_USER_ALIGN, too? */
751 if (mfa != 0)
752 DECL_ALIGN (decl) = MIN (DECL_ALIGN (decl), mfa);
753 }
754
755 /* Evaluate nonconstant size only once, either now or as soon as safe. */
756 if (DECL_SIZE (decl) != 0 && TREE_CODE (DECL_SIZE (decl)) != INTEGER_CST)
757 DECL_SIZE (decl) = variable_size (DECL_SIZE (decl));
758 if (DECL_SIZE_UNIT (decl) != 0
759 && TREE_CODE (DECL_SIZE_UNIT (decl)) != INTEGER_CST)
760 DECL_SIZE_UNIT (decl) = variable_size (DECL_SIZE_UNIT (decl));
761
762 /* If requested, warn about definitions of large data objects. */
763 if (warn_larger_than
764 && (code == VAR_DECL || code == PARM_DECL)
765 && ! DECL_EXTERNAL (decl))
766 {
767 tree size = DECL_SIZE_UNIT (decl);
768
769 if (size != 0 && TREE_CODE (size) == INTEGER_CST
770 && compare_tree_int (size, larger_than_size) > 0)
771 {
772 int size_as_int = TREE_INT_CST_LOW (size);
773
774 if (compare_tree_int (size, size_as_int) == 0)
775 warning (OPT_Wlarger_than_, "size of %q+D is %d bytes", decl, size_as_int);
776 else
777 warning (OPT_Wlarger_than_, "size of %q+D is larger than %wd bytes",
778 decl, larger_than_size);
779 }
780 }
781
782 /* If the RTL was already set, update its mode and mem attributes. */
783 if (rtl)
784 {
785 PUT_MODE (rtl, DECL_MODE (decl));
786 SET_DECL_RTL (decl, 0);
787 set_mem_attributes (rtl, decl, 1);
788 SET_DECL_RTL (decl, rtl);
789 }
790 }
791
792 /* Given a VAR_DECL, PARM_DECL or RESULT_DECL, clears the results of
793 a previous call to layout_decl and calls it again. */
794
795 void
796 relayout_decl (tree decl)
797 {
798 DECL_SIZE (decl) = DECL_SIZE_UNIT (decl) = 0;
799 DECL_MODE (decl) = VOIDmode;
800 if (!DECL_USER_ALIGN (decl))
801 DECL_ALIGN (decl) = 0;
802 SET_DECL_RTL (decl, 0);
803
804 layout_decl (decl, 0);
805 }
806 \f
807 /* Begin laying out type T, which may be a RECORD_TYPE, UNION_TYPE, or
808 QUAL_UNION_TYPE. Return a pointer to a struct record_layout_info which
809 is to be passed to all other layout functions for this record. It is the
810 responsibility of the caller to call `free' for the storage returned.
811 Note that garbage collection is not permitted until we finish laying
812 out the record. */
813
814 record_layout_info
815 start_record_layout (tree t)
816 {
817 record_layout_info rli = XNEW (struct record_layout_info_s);
818
819 rli->t = t;
820
821 /* If the type has a minimum specified alignment (via an attribute
822 declaration, for example) use it -- otherwise, start with a
823 one-byte alignment. */
824 rli->record_align = MAX (BITS_PER_UNIT, TYPE_ALIGN (t));
825 rli->unpacked_align = rli->record_align;
826 rli->offset_align = MAX (rli->record_align, BIGGEST_ALIGNMENT);
827
828 #ifdef STRUCTURE_SIZE_BOUNDARY
829 /* Packed structures don't need to have minimum size. */
830 if (! TYPE_PACKED (t))
831 {
832 unsigned tmp;
833
834 /* #pragma pack overrides STRUCTURE_SIZE_BOUNDARY. */
835 tmp = (unsigned) STRUCTURE_SIZE_BOUNDARY;
836 if (maximum_field_alignment != 0)
837 tmp = MIN (tmp, maximum_field_alignment);
838 rli->record_align = MAX (rli->record_align, tmp);
839 }
840 #endif
841
842 rli->offset = size_zero_node;
843 rli->bitpos = bitsize_zero_node;
844 rli->prev_field = 0;
845 rli->pending_statics = 0;
846 rli->packed_maybe_necessary = 0;
847 rli->remaining_in_alignment = 0;
848
849 return rli;
850 }
851
852 /* Return the combined bit position for the byte offset OFFSET and the
853 bit position BITPOS.
854
855 These functions operate on byte and bit positions present in FIELD_DECLs
856 and assume that these expressions result in no (intermediate) overflow.
857 This assumption is necessary to fold the expressions as much as possible,
858 so as to avoid creating artificially variable-sized types in languages
859 supporting variable-sized types like Ada. */
860
861 tree
862 bit_from_pos (tree offset, tree bitpos)
863 {
864 if (TREE_CODE (offset) == PLUS_EXPR)
865 offset = size_binop (PLUS_EXPR,
866 fold_convert (bitsizetype, TREE_OPERAND (offset, 0)),
867 fold_convert (bitsizetype, TREE_OPERAND (offset, 1)));
868 else
869 offset = fold_convert (bitsizetype, offset);
870 return size_binop (PLUS_EXPR, bitpos,
871 size_binop (MULT_EXPR, offset, bitsize_unit_node));
872 }
873
874 /* Return the combined truncated byte position for the byte offset OFFSET and
875 the bit position BITPOS. */
876
877 tree
878 byte_from_pos (tree offset, tree bitpos)
879 {
880 tree bytepos;
881 if (TREE_CODE (bitpos) == MULT_EXPR
882 && tree_int_cst_equal (TREE_OPERAND (bitpos, 1), bitsize_unit_node))
883 bytepos = TREE_OPERAND (bitpos, 0);
884 else
885 bytepos = size_binop (TRUNC_DIV_EXPR, bitpos, bitsize_unit_node);
886 return size_binop (PLUS_EXPR, offset, fold_convert (sizetype, bytepos));
887 }
888
889 /* Split the bit position POS into a byte offset *POFFSET and a bit
890 position *PBITPOS with the byte offset aligned to OFF_ALIGN bits. */
891
892 void
893 pos_from_bit (tree *poffset, tree *pbitpos, unsigned int off_align,
894 tree pos)
895 {
896 tree toff_align = bitsize_int (off_align);
897 if (TREE_CODE (pos) == MULT_EXPR
898 && tree_int_cst_equal (TREE_OPERAND (pos, 1), toff_align))
899 {
900 *poffset = size_binop (MULT_EXPR,
901 fold_convert (sizetype, TREE_OPERAND (pos, 0)),
902 size_int (off_align / BITS_PER_UNIT));
903 *pbitpos = bitsize_zero_node;
904 }
905 else
906 {
907 *poffset = size_binop (MULT_EXPR,
908 fold_convert (sizetype,
909 size_binop (FLOOR_DIV_EXPR, pos,
910 toff_align)),
911 size_int (off_align / BITS_PER_UNIT));
912 *pbitpos = size_binop (FLOOR_MOD_EXPR, pos, toff_align);
913 }
914 }
915
916 /* Given a pointer to bit and byte offsets and an offset alignment,
917 normalize the offsets so they are within the alignment. */
918
919 void
920 normalize_offset (tree *poffset, tree *pbitpos, unsigned int off_align)
921 {
922 /* If the bit position is now larger than it should be, adjust it
923 downwards. */
924 if (compare_tree_int (*pbitpos, off_align) >= 0)
925 {
926 tree offset, bitpos;
927 pos_from_bit (&offset, &bitpos, off_align, *pbitpos);
928 *poffset = size_binop (PLUS_EXPR, *poffset, offset);
929 *pbitpos = bitpos;
930 }
931 }
932
933 /* Print debugging information about the information in RLI. */
934
935 DEBUG_FUNCTION void
936 debug_rli (record_layout_info rli)
937 {
938 print_node_brief (stderr, "type", rli->t, 0);
939 print_node_brief (stderr, "\noffset", rli->offset, 0);
940 print_node_brief (stderr, " bitpos", rli->bitpos, 0);
941
942 fprintf (stderr, "\naligns: rec = %u, unpack = %u, off = %u\n",
943 rli->record_align, rli->unpacked_align,
944 rli->offset_align);
945
946 /* The ms_struct code is the only that uses this. */
947 if (targetm.ms_bitfield_layout_p (rli->t))
948 fprintf (stderr, "remaining in alignment = %u\n", rli->remaining_in_alignment);
949
950 if (rli->packed_maybe_necessary)
951 fprintf (stderr, "packed may be necessary\n");
952
953 if (!vec_safe_is_empty (rli->pending_statics))
954 {
955 fprintf (stderr, "pending statics:\n");
956 debug_vec_tree (rli->pending_statics);
957 }
958 }
959
960 /* Given an RLI with a possibly-incremented BITPOS, adjust OFFSET and
961 BITPOS if necessary to keep BITPOS below OFFSET_ALIGN. */
962
963 void
964 normalize_rli (record_layout_info rli)
965 {
966 normalize_offset (&rli->offset, &rli->bitpos, rli->offset_align);
967 }
968
969 /* Returns the size in bytes allocated so far. */
970
971 tree
972 rli_size_unit_so_far (record_layout_info rli)
973 {
974 return byte_from_pos (rli->offset, rli->bitpos);
975 }
976
977 /* Returns the size in bits allocated so far. */
978
979 tree
980 rli_size_so_far (record_layout_info rli)
981 {
982 return bit_from_pos (rli->offset, rli->bitpos);
983 }
984
985 /* FIELD is about to be added to RLI->T. The alignment (in bits) of
986 the next available location within the record is given by KNOWN_ALIGN.
987 Update the variable alignment fields in RLI, and return the alignment
988 to give the FIELD. */
989
990 unsigned int
991 update_alignment_for_field (record_layout_info rli, tree field,
992 unsigned int known_align)
993 {
994 /* The alignment required for FIELD. */
995 unsigned int desired_align;
996 /* The type of this field. */
997 tree type = TREE_TYPE (field);
998 /* True if the field was explicitly aligned by the user. */
999 bool user_align;
1000 bool is_bitfield;
1001
1002 /* Do not attempt to align an ERROR_MARK node */
1003 if (TREE_CODE (type) == ERROR_MARK)
1004 return 0;
1005
1006 /* Lay out the field so we know what alignment it needs. */
1007 layout_decl (field, known_align);
1008 desired_align = DECL_ALIGN (field);
1009 user_align = DECL_USER_ALIGN (field);
1010
1011 is_bitfield = (type != error_mark_node
1012 && DECL_BIT_FIELD_TYPE (field)
1013 && ! integer_zerop (TYPE_SIZE (type)));
1014
1015 /* Record must have at least as much alignment as any field.
1016 Otherwise, the alignment of the field within the record is
1017 meaningless. */
1018 if (targetm.ms_bitfield_layout_p (rli->t))
1019 {
1020 /* Here, the alignment of the underlying type of a bitfield can
1021 affect the alignment of a record; even a zero-sized field
1022 can do this. The alignment should be to the alignment of
1023 the type, except that for zero-size bitfields this only
1024 applies if there was an immediately prior, nonzero-size
1025 bitfield. (That's the way it is, experimentally.) */
1026 if ((!is_bitfield && !DECL_PACKED (field))
1027 || ((DECL_SIZE (field) == NULL_TREE
1028 || !integer_zerop (DECL_SIZE (field)))
1029 ? !DECL_PACKED (field)
1030 : (rli->prev_field
1031 && DECL_BIT_FIELD_TYPE (rli->prev_field)
1032 && ! integer_zerop (DECL_SIZE (rli->prev_field)))))
1033 {
1034 unsigned int type_align = TYPE_ALIGN (type);
1035 type_align = MAX (type_align, desired_align);
1036 if (maximum_field_alignment != 0)
1037 type_align = MIN (type_align, maximum_field_alignment);
1038 rli->record_align = MAX (rli->record_align, type_align);
1039 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1040 }
1041 }
1042 #ifdef PCC_BITFIELD_TYPE_MATTERS
1043 else if (is_bitfield && PCC_BITFIELD_TYPE_MATTERS)
1044 {
1045 /* Named bit-fields cause the entire structure to have the
1046 alignment implied by their type. Some targets also apply the same
1047 rules to unnamed bitfields. */
1048 if (DECL_NAME (field) != 0
1049 || targetm.align_anon_bitfield ())
1050 {
1051 unsigned int type_align = TYPE_ALIGN (type);
1052
1053 #ifdef ADJUST_FIELD_ALIGN
1054 if (! TYPE_USER_ALIGN (type))
1055 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1056 #endif
1057
1058 /* Targets might chose to handle unnamed and hence possibly
1059 zero-width bitfield. Those are not influenced by #pragmas
1060 or packed attributes. */
1061 if (integer_zerop (DECL_SIZE (field)))
1062 {
1063 if (initial_max_fld_align)
1064 type_align = MIN (type_align,
1065 initial_max_fld_align * BITS_PER_UNIT);
1066 }
1067 else if (maximum_field_alignment != 0)
1068 type_align = MIN (type_align, maximum_field_alignment);
1069 else if (DECL_PACKED (field))
1070 type_align = MIN (type_align, BITS_PER_UNIT);
1071
1072 /* The alignment of the record is increased to the maximum
1073 of the current alignment, the alignment indicated on the
1074 field (i.e., the alignment specified by an __aligned__
1075 attribute), and the alignment indicated by the type of
1076 the field. */
1077 rli->record_align = MAX (rli->record_align, desired_align);
1078 rli->record_align = MAX (rli->record_align, type_align);
1079
1080 if (warn_packed)
1081 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1082 user_align |= TYPE_USER_ALIGN (type);
1083 }
1084 }
1085 #endif
1086 else
1087 {
1088 rli->record_align = MAX (rli->record_align, desired_align);
1089 rli->unpacked_align = MAX (rli->unpacked_align, TYPE_ALIGN (type));
1090 }
1091
1092 TYPE_USER_ALIGN (rli->t) |= user_align;
1093
1094 return desired_align;
1095 }
1096
1097 /* Called from place_field to handle unions. */
1098
1099 static void
1100 place_union_field (record_layout_info rli, tree field)
1101 {
1102 update_alignment_for_field (rli, field, /*known_align=*/0);
1103
1104 DECL_FIELD_OFFSET (field) = size_zero_node;
1105 DECL_FIELD_BIT_OFFSET (field) = bitsize_zero_node;
1106 SET_DECL_OFFSET_ALIGN (field, BIGGEST_ALIGNMENT);
1107
1108 /* If this is an ERROR_MARK return *after* having set the
1109 field at the start of the union. This helps when parsing
1110 invalid fields. */
1111 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK)
1112 return;
1113
1114 /* We assume the union's size will be a multiple of a byte so we don't
1115 bother with BITPOS. */
1116 if (TREE_CODE (rli->t) == UNION_TYPE)
1117 rli->offset = size_binop (MAX_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1118 else if (TREE_CODE (rli->t) == QUAL_UNION_TYPE)
1119 rli->offset = fold_build3 (COND_EXPR, sizetype, DECL_QUALIFIER (field),
1120 DECL_SIZE_UNIT (field), rli->offset);
1121 }
1122
1123 #if defined (PCC_BITFIELD_TYPE_MATTERS) || defined (BITFIELD_NBYTES_LIMITED)
1124 /* A bitfield of SIZE with a required access alignment of ALIGN is allocated
1125 at BYTE_OFFSET / BIT_OFFSET. Return nonzero if the field would span more
1126 units of alignment than the underlying TYPE. */
1127 static int
1128 excess_unit_span (HOST_WIDE_INT byte_offset, HOST_WIDE_INT bit_offset,
1129 HOST_WIDE_INT size, HOST_WIDE_INT align, tree type)
1130 {
1131 /* Note that the calculation of OFFSET might overflow; we calculate it so
1132 that we still get the right result as long as ALIGN is a power of two. */
1133 unsigned HOST_WIDE_INT offset = byte_offset * BITS_PER_UNIT + bit_offset;
1134
1135 offset = offset % align;
1136 return ((offset + size + align - 1) / align
1137 > tree_to_uhwi (TYPE_SIZE (type)) / align);
1138 }
1139 #endif
1140
1141 /* RLI contains information about the layout of a RECORD_TYPE. FIELD
1142 is a FIELD_DECL to be added after those fields already present in
1143 T. (FIELD is not actually added to the TYPE_FIELDS list here;
1144 callers that desire that behavior must manually perform that step.) */
1145
1146 void
1147 place_field (record_layout_info rli, tree field)
1148 {
1149 /* The alignment required for FIELD. */
1150 unsigned int desired_align;
1151 /* The alignment FIELD would have if we just dropped it into the
1152 record as it presently stands. */
1153 unsigned int known_align;
1154 unsigned int actual_align;
1155 /* The type of this field. */
1156 tree type = TREE_TYPE (field);
1157
1158 gcc_assert (TREE_CODE (field) != ERROR_MARK);
1159
1160 /* If FIELD is static, then treat it like a separate variable, not
1161 really like a structure field. If it is a FUNCTION_DECL, it's a
1162 method. In both cases, all we do is lay out the decl, and we do
1163 it *after* the record is laid out. */
1164 if (TREE_CODE (field) == VAR_DECL)
1165 {
1166 vec_safe_push (rli->pending_statics, field);
1167 return;
1168 }
1169
1170 /* Enumerators and enum types which are local to this class need not
1171 be laid out. Likewise for initialized constant fields. */
1172 else if (TREE_CODE (field) != FIELD_DECL)
1173 return;
1174
1175 /* Unions are laid out very differently than records, so split
1176 that code off to another function. */
1177 else if (TREE_CODE (rli->t) != RECORD_TYPE)
1178 {
1179 place_union_field (rli, field);
1180 return;
1181 }
1182
1183 else if (TREE_CODE (type) == ERROR_MARK)
1184 {
1185 /* Place this field at the current allocation position, so we
1186 maintain monotonicity. */
1187 DECL_FIELD_OFFSET (field) = rli->offset;
1188 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1189 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1190 return;
1191 }
1192
1193 /* Work out the known alignment so far. Note that A & (-A) is the
1194 value of the least-significant bit in A that is one. */
1195 if (! integer_zerop (rli->bitpos))
1196 known_align = (tree_to_uhwi (rli->bitpos)
1197 & - tree_to_uhwi (rli->bitpos));
1198 else if (integer_zerop (rli->offset))
1199 known_align = 0;
1200 else if (tree_fits_uhwi_p (rli->offset))
1201 known_align = (BITS_PER_UNIT
1202 * (tree_to_uhwi (rli->offset)
1203 & - tree_to_uhwi (rli->offset)));
1204 else
1205 known_align = rli->offset_align;
1206
1207 desired_align = update_alignment_for_field (rli, field, known_align);
1208 if (known_align == 0)
1209 known_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1210
1211 if (warn_packed && DECL_PACKED (field))
1212 {
1213 if (known_align >= TYPE_ALIGN (type))
1214 {
1215 if (TYPE_ALIGN (type) > desired_align)
1216 {
1217 if (STRICT_ALIGNMENT)
1218 warning (OPT_Wattributes, "packed attribute causes "
1219 "inefficient alignment for %q+D", field);
1220 /* Don't warn if DECL_PACKED was set by the type. */
1221 else if (!TYPE_PACKED (rli->t))
1222 warning (OPT_Wattributes, "packed attribute is "
1223 "unnecessary for %q+D", field);
1224 }
1225 }
1226 else
1227 rli->packed_maybe_necessary = 1;
1228 }
1229
1230 /* Does this field automatically have alignment it needs by virtue
1231 of the fields that precede it and the record's own alignment? */
1232 if (known_align < desired_align)
1233 {
1234 /* No, we need to skip space before this field.
1235 Bump the cumulative size to multiple of field alignment. */
1236
1237 if (!targetm.ms_bitfield_layout_p (rli->t)
1238 && DECL_SOURCE_LOCATION (field) != BUILTINS_LOCATION)
1239 warning (OPT_Wpadded, "padding struct to align %q+D", field);
1240
1241 /* If the alignment is still within offset_align, just align
1242 the bit position. */
1243 if (desired_align < rli->offset_align)
1244 rli->bitpos = round_up (rli->bitpos, desired_align);
1245 else
1246 {
1247 /* First adjust OFFSET by the partial bits, then align. */
1248 rli->offset
1249 = size_binop (PLUS_EXPR, rli->offset,
1250 fold_convert (sizetype,
1251 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1252 bitsize_unit_node)));
1253 rli->bitpos = bitsize_zero_node;
1254
1255 rli->offset = round_up (rli->offset, desired_align / BITS_PER_UNIT);
1256 }
1257
1258 if (! TREE_CONSTANT (rli->offset))
1259 rli->offset_align = desired_align;
1260 if (targetm.ms_bitfield_layout_p (rli->t))
1261 rli->prev_field = NULL;
1262 }
1263
1264 /* Handle compatibility with PCC. Note that if the record has any
1265 variable-sized fields, we need not worry about compatibility. */
1266 #ifdef PCC_BITFIELD_TYPE_MATTERS
1267 if (PCC_BITFIELD_TYPE_MATTERS
1268 && ! targetm.ms_bitfield_layout_p (rli->t)
1269 && TREE_CODE (field) == FIELD_DECL
1270 && type != error_mark_node
1271 && DECL_BIT_FIELD (field)
1272 && (! DECL_PACKED (field)
1273 /* Enter for these packed fields only to issue a warning. */
1274 || TYPE_ALIGN (type) <= BITS_PER_UNIT)
1275 && maximum_field_alignment == 0
1276 && ! integer_zerop (DECL_SIZE (field))
1277 && tree_fits_uhwi_p (DECL_SIZE (field))
1278 && tree_fits_uhwi_p (rli->offset)
1279 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1280 {
1281 unsigned int type_align = TYPE_ALIGN (type);
1282 tree dsize = DECL_SIZE (field);
1283 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1284 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1285 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1286
1287 #ifdef ADJUST_FIELD_ALIGN
1288 if (! TYPE_USER_ALIGN (type))
1289 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1290 #endif
1291
1292 /* A bit field may not span more units of alignment of its type
1293 than its type itself. Advance to next boundary if necessary. */
1294 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1295 {
1296 if (DECL_PACKED (field))
1297 {
1298 if (warn_packed_bitfield_compat == 1)
1299 inform
1300 (input_location,
1301 "offset of packed bit-field %qD has changed in GCC 4.4",
1302 field);
1303 }
1304 else
1305 rli->bitpos = round_up (rli->bitpos, type_align);
1306 }
1307
1308 if (! DECL_PACKED (field))
1309 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1310 }
1311 #endif
1312
1313 #ifdef BITFIELD_NBYTES_LIMITED
1314 if (BITFIELD_NBYTES_LIMITED
1315 && ! targetm.ms_bitfield_layout_p (rli->t)
1316 && TREE_CODE (field) == FIELD_DECL
1317 && type != error_mark_node
1318 && DECL_BIT_FIELD_TYPE (field)
1319 && ! DECL_PACKED (field)
1320 && ! integer_zerop (DECL_SIZE (field))
1321 && tree_fits_uhwi_p (DECL_SIZE (field))
1322 && tree_fits_uhwi_p (rli->offset)
1323 && tree_fits_uhwi_p (TYPE_SIZE (type)))
1324 {
1325 unsigned int type_align = TYPE_ALIGN (type);
1326 tree dsize = DECL_SIZE (field);
1327 HOST_WIDE_INT field_size = tree_to_uhwi (dsize);
1328 HOST_WIDE_INT offset = tree_to_uhwi (rli->offset);
1329 HOST_WIDE_INT bit_offset = tree_to_shwi (rli->bitpos);
1330
1331 #ifdef ADJUST_FIELD_ALIGN
1332 if (! TYPE_USER_ALIGN (type))
1333 type_align = ADJUST_FIELD_ALIGN (field, type_align);
1334 #endif
1335
1336 if (maximum_field_alignment != 0)
1337 type_align = MIN (type_align, maximum_field_alignment);
1338 /* ??? This test is opposite the test in the containing if
1339 statement, so this code is unreachable currently. */
1340 else if (DECL_PACKED (field))
1341 type_align = MIN (type_align, BITS_PER_UNIT);
1342
1343 /* A bit field may not span the unit of alignment of its type.
1344 Advance to next boundary if necessary. */
1345 if (excess_unit_span (offset, bit_offset, field_size, type_align, type))
1346 rli->bitpos = round_up (rli->bitpos, type_align);
1347
1348 TYPE_USER_ALIGN (rli->t) |= TYPE_USER_ALIGN (type);
1349 }
1350 #endif
1351
1352 /* See the docs for TARGET_MS_BITFIELD_LAYOUT_P for details.
1353 A subtlety:
1354 When a bit field is inserted into a packed record, the whole
1355 size of the underlying type is used by one or more same-size
1356 adjacent bitfields. (That is, if its long:3, 32 bits is
1357 used in the record, and any additional adjacent long bitfields are
1358 packed into the same chunk of 32 bits. However, if the size
1359 changes, a new field of that size is allocated.) In an unpacked
1360 record, this is the same as using alignment, but not equivalent
1361 when packing.
1362
1363 Note: for compatibility, we use the type size, not the type alignment
1364 to determine alignment, since that matches the documentation */
1365
1366 if (targetm.ms_bitfield_layout_p (rli->t))
1367 {
1368 tree prev_saved = rli->prev_field;
1369 tree prev_type = prev_saved ? DECL_BIT_FIELD_TYPE (prev_saved) : NULL;
1370
1371 /* This is a bitfield if it exists. */
1372 if (rli->prev_field)
1373 {
1374 /* If both are bitfields, nonzero, and the same size, this is
1375 the middle of a run. Zero declared size fields are special
1376 and handled as "end of run". (Note: it's nonzero declared
1377 size, but equal type sizes!) (Since we know that both
1378 the current and previous fields are bitfields by the
1379 time we check it, DECL_SIZE must be present for both.) */
1380 if (DECL_BIT_FIELD_TYPE (field)
1381 && !integer_zerop (DECL_SIZE (field))
1382 && !integer_zerop (DECL_SIZE (rli->prev_field))
1383 && tree_fits_shwi_p (DECL_SIZE (rli->prev_field))
1384 && tree_fits_uhwi_p (TYPE_SIZE (type))
1385 && simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type)))
1386 {
1387 /* We're in the middle of a run of equal type size fields; make
1388 sure we realign if we run out of bits. (Not decl size,
1389 type size!) */
1390 HOST_WIDE_INT bitsize = tree_to_uhwi (DECL_SIZE (field));
1391
1392 if (rli->remaining_in_alignment < bitsize)
1393 {
1394 HOST_WIDE_INT typesize = tree_to_uhwi (TYPE_SIZE (type));
1395
1396 /* out of bits; bump up to next 'word'. */
1397 rli->bitpos
1398 = size_binop (PLUS_EXPR, rli->bitpos,
1399 bitsize_int (rli->remaining_in_alignment));
1400 rli->prev_field = field;
1401 if (typesize < bitsize)
1402 rli->remaining_in_alignment = 0;
1403 else
1404 rli->remaining_in_alignment = typesize - bitsize;
1405 }
1406 else
1407 rli->remaining_in_alignment -= bitsize;
1408 }
1409 else
1410 {
1411 /* End of a run: if leaving a run of bitfields of the same type
1412 size, we have to "use up" the rest of the bits of the type
1413 size.
1414
1415 Compute the new position as the sum of the size for the prior
1416 type and where we first started working on that type.
1417 Note: since the beginning of the field was aligned then
1418 of course the end will be too. No round needed. */
1419
1420 if (!integer_zerop (DECL_SIZE (rli->prev_field)))
1421 {
1422 rli->bitpos
1423 = size_binop (PLUS_EXPR, rli->bitpos,
1424 bitsize_int (rli->remaining_in_alignment));
1425 }
1426 else
1427 /* We "use up" size zero fields; the code below should behave
1428 as if the prior field was not a bitfield. */
1429 prev_saved = NULL;
1430
1431 /* Cause a new bitfield to be captured, either this time (if
1432 currently a bitfield) or next time we see one. */
1433 if (!DECL_BIT_FIELD_TYPE (field)
1434 || integer_zerop (DECL_SIZE (field)))
1435 rli->prev_field = NULL;
1436 }
1437
1438 normalize_rli (rli);
1439 }
1440
1441 /* If we're starting a new run of same type size bitfields
1442 (or a run of non-bitfields), set up the "first of the run"
1443 fields.
1444
1445 That is, if the current field is not a bitfield, or if there
1446 was a prior bitfield the type sizes differ, or if there wasn't
1447 a prior bitfield the size of the current field is nonzero.
1448
1449 Note: we must be sure to test ONLY the type size if there was
1450 a prior bitfield and ONLY for the current field being zero if
1451 there wasn't. */
1452
1453 if (!DECL_BIT_FIELD_TYPE (field)
1454 || (prev_saved != NULL
1455 ? !simple_cst_equal (TYPE_SIZE (type), TYPE_SIZE (prev_type))
1456 : !integer_zerop (DECL_SIZE (field)) ))
1457 {
1458 /* Never smaller than a byte for compatibility. */
1459 unsigned int type_align = BITS_PER_UNIT;
1460
1461 /* (When not a bitfield), we could be seeing a flex array (with
1462 no DECL_SIZE). Since we won't be using remaining_in_alignment
1463 until we see a bitfield (and come by here again) we just skip
1464 calculating it. */
1465 if (DECL_SIZE (field) != NULL
1466 && tree_fits_uhwi_p (TYPE_SIZE (TREE_TYPE (field)))
1467 && tree_fits_uhwi_p (DECL_SIZE (field)))
1468 {
1469 unsigned HOST_WIDE_INT bitsize
1470 = tree_to_uhwi (DECL_SIZE (field));
1471 unsigned HOST_WIDE_INT typesize
1472 = tree_to_uhwi (TYPE_SIZE (TREE_TYPE (field)));
1473
1474 if (typesize < bitsize)
1475 rli->remaining_in_alignment = 0;
1476 else
1477 rli->remaining_in_alignment = typesize - bitsize;
1478 }
1479
1480 /* Now align (conventionally) for the new type. */
1481 type_align = TYPE_ALIGN (TREE_TYPE (field));
1482
1483 if (maximum_field_alignment != 0)
1484 type_align = MIN (type_align, maximum_field_alignment);
1485
1486 rli->bitpos = round_up (rli->bitpos, type_align);
1487
1488 /* If we really aligned, don't allow subsequent bitfields
1489 to undo that. */
1490 rli->prev_field = NULL;
1491 }
1492 }
1493
1494 /* Offset so far becomes the position of this field after normalizing. */
1495 normalize_rli (rli);
1496 DECL_FIELD_OFFSET (field) = rli->offset;
1497 DECL_FIELD_BIT_OFFSET (field) = rli->bitpos;
1498 SET_DECL_OFFSET_ALIGN (field, rli->offset_align);
1499
1500 /* Evaluate nonconstant offsets only once, either now or as soon as safe. */
1501 if (TREE_CODE (DECL_FIELD_OFFSET (field)) != INTEGER_CST)
1502 DECL_FIELD_OFFSET (field) = variable_size (DECL_FIELD_OFFSET (field));
1503
1504 /* If this field ended up more aligned than we thought it would be (we
1505 approximate this by seeing if its position changed), lay out the field
1506 again; perhaps we can use an integral mode for it now. */
1507 if (! integer_zerop (DECL_FIELD_BIT_OFFSET (field)))
1508 actual_align = (tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1509 & - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field)));
1510 else if (integer_zerop (DECL_FIELD_OFFSET (field)))
1511 actual_align = MAX (BIGGEST_ALIGNMENT, rli->record_align);
1512 else if (tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
1513 actual_align = (BITS_PER_UNIT
1514 * (tree_to_uhwi (DECL_FIELD_OFFSET (field))
1515 & - tree_to_uhwi (DECL_FIELD_OFFSET (field))));
1516 else
1517 actual_align = DECL_OFFSET_ALIGN (field);
1518 /* ACTUAL_ALIGN is still the actual alignment *within the record* .
1519 store / extract bit field operations will check the alignment of the
1520 record against the mode of bit fields. */
1521
1522 if (known_align != actual_align)
1523 layout_decl (field, actual_align);
1524
1525 if (rli->prev_field == NULL && DECL_BIT_FIELD_TYPE (field))
1526 rli->prev_field = field;
1527
1528 /* Now add size of this field to the size of the record. If the size is
1529 not constant, treat the field as being a multiple of bytes and just
1530 adjust the offset, resetting the bit position. Otherwise, apportion the
1531 size amongst the bit position and offset. First handle the case of an
1532 unspecified size, which can happen when we have an invalid nested struct
1533 definition, such as struct j { struct j { int i; } }. The error message
1534 is printed in finish_struct. */
1535 if (DECL_SIZE (field) == 0)
1536 /* Do nothing. */;
1537 else if (TREE_CODE (DECL_SIZE (field)) != INTEGER_CST
1538 || TREE_OVERFLOW (DECL_SIZE (field)))
1539 {
1540 rli->offset
1541 = size_binop (PLUS_EXPR, rli->offset,
1542 fold_convert (sizetype,
1543 size_binop (CEIL_DIV_EXPR, rli->bitpos,
1544 bitsize_unit_node)));
1545 rli->offset
1546 = size_binop (PLUS_EXPR, rli->offset, DECL_SIZE_UNIT (field));
1547 rli->bitpos = bitsize_zero_node;
1548 rli->offset_align = MIN (rli->offset_align, desired_align);
1549 }
1550 else if (targetm.ms_bitfield_layout_p (rli->t))
1551 {
1552 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1553
1554 /* If we ended a bitfield before the full length of the type then
1555 pad the struct out to the full length of the last type. */
1556 if ((DECL_CHAIN (field) == NULL
1557 || TREE_CODE (DECL_CHAIN (field)) != FIELD_DECL)
1558 && DECL_BIT_FIELD_TYPE (field)
1559 && !integer_zerop (DECL_SIZE (field)))
1560 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos,
1561 bitsize_int (rli->remaining_in_alignment));
1562
1563 normalize_rli (rli);
1564 }
1565 else
1566 {
1567 rli->bitpos = size_binop (PLUS_EXPR, rli->bitpos, DECL_SIZE (field));
1568 normalize_rli (rli);
1569 }
1570 }
1571
1572 /* Assuming that all the fields have been laid out, this function uses
1573 RLI to compute the final TYPE_SIZE, TYPE_ALIGN, etc. for the type
1574 indicated by RLI. */
1575
1576 static void
1577 finalize_record_size (record_layout_info rli)
1578 {
1579 tree unpadded_size, unpadded_size_unit;
1580
1581 /* Now we want just byte and bit offsets, so set the offset alignment
1582 to be a byte and then normalize. */
1583 rli->offset_align = BITS_PER_UNIT;
1584 normalize_rli (rli);
1585
1586 /* Determine the desired alignment. */
1587 #ifdef ROUND_TYPE_ALIGN
1588 TYPE_ALIGN (rli->t) = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t),
1589 rli->record_align);
1590 #else
1591 TYPE_ALIGN (rli->t) = MAX (TYPE_ALIGN (rli->t), rli->record_align);
1592 #endif
1593
1594 /* Compute the size so far. Be sure to allow for extra bits in the
1595 size in bytes. We have guaranteed above that it will be no more
1596 than a single byte. */
1597 unpadded_size = rli_size_so_far (rli);
1598 unpadded_size_unit = rli_size_unit_so_far (rli);
1599 if (! integer_zerop (rli->bitpos))
1600 unpadded_size_unit
1601 = size_binop (PLUS_EXPR, unpadded_size_unit, size_one_node);
1602
1603 if (TREE_CODE (unpadded_size_unit) == INTEGER_CST
1604 && !TREE_OVERFLOW (unpadded_size_unit)
1605 && !valid_constant_size_p (unpadded_size_unit))
1606 error ("type %qT is too large", rli->t);
1607
1608 /* Round the size up to be a multiple of the required alignment. */
1609 TYPE_SIZE (rli->t) = round_up (unpadded_size, TYPE_ALIGN (rli->t));
1610 TYPE_SIZE_UNIT (rli->t)
1611 = round_up (unpadded_size_unit, TYPE_ALIGN_UNIT (rli->t));
1612
1613 if (TREE_CONSTANT (unpadded_size)
1614 && simple_cst_equal (unpadded_size, TYPE_SIZE (rli->t)) == 0
1615 && input_location != BUILTINS_LOCATION)
1616 warning (OPT_Wpadded, "padding struct size to alignment boundary");
1617
1618 if (warn_packed && TREE_CODE (rli->t) == RECORD_TYPE
1619 && TYPE_PACKED (rli->t) && ! rli->packed_maybe_necessary
1620 && TREE_CONSTANT (unpadded_size))
1621 {
1622 tree unpacked_size;
1623
1624 #ifdef ROUND_TYPE_ALIGN
1625 rli->unpacked_align
1626 = ROUND_TYPE_ALIGN (rli->t, TYPE_ALIGN (rli->t), rli->unpacked_align);
1627 #else
1628 rli->unpacked_align = MAX (TYPE_ALIGN (rli->t), rli->unpacked_align);
1629 #endif
1630
1631 unpacked_size = round_up (TYPE_SIZE (rli->t), rli->unpacked_align);
1632 if (simple_cst_equal (unpacked_size, TYPE_SIZE (rli->t)))
1633 {
1634 if (TYPE_NAME (rli->t))
1635 {
1636 tree name;
1637
1638 if (TREE_CODE (TYPE_NAME (rli->t)) == IDENTIFIER_NODE)
1639 name = TYPE_NAME (rli->t);
1640 else
1641 name = DECL_NAME (TYPE_NAME (rli->t));
1642
1643 if (STRICT_ALIGNMENT)
1644 warning (OPT_Wpacked, "packed attribute causes inefficient "
1645 "alignment for %qE", name);
1646 else
1647 warning (OPT_Wpacked,
1648 "packed attribute is unnecessary for %qE", name);
1649 }
1650 else
1651 {
1652 if (STRICT_ALIGNMENT)
1653 warning (OPT_Wpacked,
1654 "packed attribute causes inefficient alignment");
1655 else
1656 warning (OPT_Wpacked, "packed attribute is unnecessary");
1657 }
1658 }
1659 }
1660 }
1661
1662 /* Compute the TYPE_MODE for the TYPE (which is a RECORD_TYPE). */
1663
1664 void
1665 compute_record_mode (tree type)
1666 {
1667 tree field;
1668 enum machine_mode mode = VOIDmode;
1669
1670 /* Most RECORD_TYPEs have BLKmode, so we start off assuming that.
1671 However, if possible, we use a mode that fits in a register
1672 instead, in order to allow for better optimization down the
1673 line. */
1674 SET_TYPE_MODE (type, BLKmode);
1675
1676 if (! tree_fits_uhwi_p (TYPE_SIZE (type)))
1677 return;
1678
1679 /* A record which has any BLKmode members must itself be
1680 BLKmode; it can't go in a register. Unless the member is
1681 BLKmode only because it isn't aligned. */
1682 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
1683 {
1684 if (TREE_CODE (field) != FIELD_DECL)
1685 continue;
1686
1687 if (TREE_CODE (TREE_TYPE (field)) == ERROR_MARK
1688 || (TYPE_MODE (TREE_TYPE (field)) == BLKmode
1689 && ! TYPE_NO_FORCE_BLK (TREE_TYPE (field))
1690 && !(TYPE_SIZE (TREE_TYPE (field)) != 0
1691 && integer_zerop (TYPE_SIZE (TREE_TYPE (field)))))
1692 || ! tree_fits_uhwi_p (bit_position (field))
1693 || DECL_SIZE (field) == 0
1694 || ! tree_fits_uhwi_p (DECL_SIZE (field)))
1695 return;
1696
1697 /* If this field is the whole struct, remember its mode so
1698 that, say, we can put a double in a class into a DF
1699 register instead of forcing it to live in the stack. */
1700 if (simple_cst_equal (TYPE_SIZE (type), DECL_SIZE (field)))
1701 mode = DECL_MODE (field);
1702
1703 /* With some targets, it is sub-optimal to access an aligned
1704 BLKmode structure as a scalar. */
1705 if (targetm.member_type_forces_blk (field, mode))
1706 return;
1707 }
1708
1709 /* If we only have one real field; use its mode if that mode's size
1710 matches the type's size. This only applies to RECORD_TYPE. This
1711 does not apply to unions. */
1712 if (TREE_CODE (type) == RECORD_TYPE && mode != VOIDmode
1713 && tree_fits_uhwi_p (TYPE_SIZE (type))
1714 && GET_MODE_BITSIZE (mode) == tree_to_uhwi (TYPE_SIZE (type)))
1715 SET_TYPE_MODE (type, mode);
1716 else
1717 SET_TYPE_MODE (type, mode_for_size_tree (TYPE_SIZE (type), MODE_INT, 1));
1718
1719 /* If structure's known alignment is less than what the scalar
1720 mode would need, and it matters, then stick with BLKmode. */
1721 if (TYPE_MODE (type) != BLKmode
1722 && STRICT_ALIGNMENT
1723 && ! (TYPE_ALIGN (type) >= BIGGEST_ALIGNMENT
1724 || TYPE_ALIGN (type) >= GET_MODE_ALIGNMENT (TYPE_MODE (type))))
1725 {
1726 /* If this is the only reason this type is BLKmode, then
1727 don't force containing types to be BLKmode. */
1728 TYPE_NO_FORCE_BLK (type) = 1;
1729 SET_TYPE_MODE (type, BLKmode);
1730 }
1731 }
1732
1733 /* Compute TYPE_SIZE and TYPE_ALIGN for TYPE, once it has been laid
1734 out. */
1735
1736 static void
1737 finalize_type_size (tree type)
1738 {
1739 /* Normally, use the alignment corresponding to the mode chosen.
1740 However, where strict alignment is not required, avoid
1741 over-aligning structures, since most compilers do not do this
1742 alignment. */
1743
1744 if (TYPE_MODE (type) != BLKmode && TYPE_MODE (type) != VOIDmode
1745 && (STRICT_ALIGNMENT
1746 || (TREE_CODE (type) != RECORD_TYPE && TREE_CODE (type) != UNION_TYPE
1747 && TREE_CODE (type) != QUAL_UNION_TYPE
1748 && TREE_CODE (type) != ARRAY_TYPE)))
1749 {
1750 unsigned mode_align = GET_MODE_ALIGNMENT (TYPE_MODE (type));
1751
1752 /* Don't override a larger alignment requirement coming from a user
1753 alignment of one of the fields. */
1754 if (mode_align >= TYPE_ALIGN (type))
1755 {
1756 TYPE_ALIGN (type) = mode_align;
1757 TYPE_USER_ALIGN (type) = 0;
1758 }
1759 }
1760
1761 /* Do machine-dependent extra alignment. */
1762 #ifdef ROUND_TYPE_ALIGN
1763 TYPE_ALIGN (type)
1764 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (type), BITS_PER_UNIT);
1765 #endif
1766
1767 /* If we failed to find a simple way to calculate the unit size
1768 of the type, find it by division. */
1769 if (TYPE_SIZE_UNIT (type) == 0 && TYPE_SIZE (type) != 0)
1770 /* TYPE_SIZE (type) is computed in bitsizetype. After the division, the
1771 result will fit in sizetype. We will get more efficient code using
1772 sizetype, so we force a conversion. */
1773 TYPE_SIZE_UNIT (type)
1774 = fold_convert (sizetype,
1775 size_binop (FLOOR_DIV_EXPR, TYPE_SIZE (type),
1776 bitsize_unit_node));
1777
1778 if (TYPE_SIZE (type) != 0)
1779 {
1780 TYPE_SIZE (type) = round_up (TYPE_SIZE (type), TYPE_ALIGN (type));
1781 TYPE_SIZE_UNIT (type)
1782 = round_up (TYPE_SIZE_UNIT (type), TYPE_ALIGN_UNIT (type));
1783 }
1784
1785 /* Evaluate nonconstant sizes only once, either now or as soon as safe. */
1786 if (TYPE_SIZE (type) != 0 && TREE_CODE (TYPE_SIZE (type)) != INTEGER_CST)
1787 TYPE_SIZE (type) = variable_size (TYPE_SIZE (type));
1788 if (TYPE_SIZE_UNIT (type) != 0
1789 && TREE_CODE (TYPE_SIZE_UNIT (type)) != INTEGER_CST)
1790 TYPE_SIZE_UNIT (type) = variable_size (TYPE_SIZE_UNIT (type));
1791
1792 /* Also layout any other variants of the type. */
1793 if (TYPE_NEXT_VARIANT (type)
1794 || type != TYPE_MAIN_VARIANT (type))
1795 {
1796 tree variant;
1797 /* Record layout info of this variant. */
1798 tree size = TYPE_SIZE (type);
1799 tree size_unit = TYPE_SIZE_UNIT (type);
1800 unsigned int align = TYPE_ALIGN (type);
1801 unsigned int precision = TYPE_PRECISION (type);
1802 unsigned int user_align = TYPE_USER_ALIGN (type);
1803 enum machine_mode mode = TYPE_MODE (type);
1804
1805 /* Copy it into all variants. */
1806 for (variant = TYPE_MAIN_VARIANT (type);
1807 variant != 0;
1808 variant = TYPE_NEXT_VARIANT (variant))
1809 {
1810 TYPE_SIZE (variant) = size;
1811 TYPE_SIZE_UNIT (variant) = size_unit;
1812 TYPE_ALIGN (variant) = align;
1813 TYPE_PRECISION (variant) = precision;
1814 TYPE_USER_ALIGN (variant) = user_align;
1815 SET_TYPE_MODE (variant, mode);
1816 }
1817 }
1818 }
1819
1820 /* Return a new underlying object for a bitfield started with FIELD. */
1821
1822 static tree
1823 start_bitfield_representative (tree field)
1824 {
1825 tree repr = make_node (FIELD_DECL);
1826 DECL_FIELD_OFFSET (repr) = DECL_FIELD_OFFSET (field);
1827 /* Force the representative to begin at a BITS_PER_UNIT aligned
1828 boundary - C++ may use tail-padding of a base object to
1829 continue packing bits so the bitfield region does not start
1830 at bit zero (see g++.dg/abi/bitfield5.C for example).
1831 Unallocated bits may happen for other reasons as well,
1832 for example Ada which allows explicit bit-granular structure layout. */
1833 DECL_FIELD_BIT_OFFSET (repr)
1834 = size_binop (BIT_AND_EXPR,
1835 DECL_FIELD_BIT_OFFSET (field),
1836 bitsize_int (~(BITS_PER_UNIT - 1)));
1837 SET_DECL_OFFSET_ALIGN (repr, DECL_OFFSET_ALIGN (field));
1838 DECL_SIZE (repr) = DECL_SIZE (field);
1839 DECL_SIZE_UNIT (repr) = DECL_SIZE_UNIT (field);
1840 DECL_PACKED (repr) = DECL_PACKED (field);
1841 DECL_CONTEXT (repr) = DECL_CONTEXT (field);
1842 return repr;
1843 }
1844
1845 /* Finish up a bitfield group that was started by creating the underlying
1846 object REPR with the last field in the bitfield group FIELD. */
1847
1848 static void
1849 finish_bitfield_representative (tree repr, tree field)
1850 {
1851 unsigned HOST_WIDE_INT bitsize, maxbitsize;
1852 enum machine_mode mode;
1853 tree nextf, size;
1854
1855 size = size_diffop (DECL_FIELD_OFFSET (field),
1856 DECL_FIELD_OFFSET (repr));
1857 gcc_assert (tree_fits_uhwi_p (size));
1858 bitsize = (tree_to_uhwi (size) * BITS_PER_UNIT
1859 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (field))
1860 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr))
1861 + tree_to_uhwi (DECL_SIZE (field)));
1862
1863 /* Round up bitsize to multiples of BITS_PER_UNIT. */
1864 bitsize = (bitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1865
1866 /* Now nothing tells us how to pad out bitsize ... */
1867 nextf = DECL_CHAIN (field);
1868 while (nextf && TREE_CODE (nextf) != FIELD_DECL)
1869 nextf = DECL_CHAIN (nextf);
1870 if (nextf)
1871 {
1872 tree maxsize;
1873 /* If there was an error, the field may be not laid out
1874 correctly. Don't bother to do anything. */
1875 if (TREE_TYPE (nextf) == error_mark_node)
1876 return;
1877 maxsize = size_diffop (DECL_FIELD_OFFSET (nextf),
1878 DECL_FIELD_OFFSET (repr));
1879 if (tree_fits_uhwi_p (maxsize))
1880 {
1881 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1882 + tree_to_uhwi (DECL_FIELD_BIT_OFFSET (nextf))
1883 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1884 /* If the group ends within a bitfield nextf does not need to be
1885 aligned to BITS_PER_UNIT. Thus round up. */
1886 maxbitsize = (maxbitsize + BITS_PER_UNIT - 1) & ~(BITS_PER_UNIT - 1);
1887 }
1888 else
1889 maxbitsize = bitsize;
1890 }
1891 else
1892 {
1893 /* ??? If you consider that tail-padding of this struct might be
1894 re-used when deriving from it we cannot really do the following
1895 and thus need to set maxsize to bitsize? Also we cannot
1896 generally rely on maxsize to fold to an integer constant, so
1897 use bitsize as fallback for this case. */
1898 tree maxsize = size_diffop (TYPE_SIZE_UNIT (DECL_CONTEXT (field)),
1899 DECL_FIELD_OFFSET (repr));
1900 if (tree_fits_uhwi_p (maxsize))
1901 maxbitsize = (tree_to_uhwi (maxsize) * BITS_PER_UNIT
1902 - tree_to_uhwi (DECL_FIELD_BIT_OFFSET (repr)));
1903 else
1904 maxbitsize = bitsize;
1905 }
1906
1907 /* Only if we don't artificially break up the representative in
1908 the middle of a large bitfield with different possibly
1909 overlapping representatives. And all representatives start
1910 at byte offset. */
1911 gcc_assert (maxbitsize % BITS_PER_UNIT == 0);
1912
1913 /* Find the smallest nice mode to use. */
1914 for (mode = GET_CLASS_NARROWEST_MODE (MODE_INT); mode != VOIDmode;
1915 mode = GET_MODE_WIDER_MODE (mode))
1916 if (GET_MODE_BITSIZE (mode) >= bitsize)
1917 break;
1918 if (mode != VOIDmode
1919 && (GET_MODE_BITSIZE (mode) > maxbitsize
1920 || GET_MODE_BITSIZE (mode) > MAX_FIXED_MODE_SIZE))
1921 mode = VOIDmode;
1922
1923 if (mode == VOIDmode)
1924 {
1925 /* We really want a BLKmode representative only as a last resort,
1926 considering the member b in
1927 struct { int a : 7; int b : 17; int c; } __attribute__((packed));
1928 Otherwise we simply want to split the representative up
1929 allowing for overlaps within the bitfield region as required for
1930 struct { int a : 7; int b : 7;
1931 int c : 10; int d; } __attribute__((packed));
1932 [0, 15] HImode for a and b, [8, 23] HImode for c. */
1933 DECL_SIZE (repr) = bitsize_int (bitsize);
1934 DECL_SIZE_UNIT (repr) = size_int (bitsize / BITS_PER_UNIT);
1935 DECL_MODE (repr) = BLKmode;
1936 TREE_TYPE (repr) = build_array_type_nelts (unsigned_char_type_node,
1937 bitsize / BITS_PER_UNIT);
1938 }
1939 else
1940 {
1941 unsigned HOST_WIDE_INT modesize = GET_MODE_BITSIZE (mode);
1942 DECL_SIZE (repr) = bitsize_int (modesize);
1943 DECL_SIZE_UNIT (repr) = size_int (modesize / BITS_PER_UNIT);
1944 DECL_MODE (repr) = mode;
1945 TREE_TYPE (repr) = lang_hooks.types.type_for_mode (mode, 1);
1946 }
1947
1948 /* Remember whether the bitfield group is at the end of the
1949 structure or not. */
1950 DECL_CHAIN (repr) = nextf;
1951 }
1952
1953 /* Compute and set FIELD_DECLs for the underlying objects we should
1954 use for bitfield access for the structure laid out with RLI. */
1955
1956 static void
1957 finish_bitfield_layout (record_layout_info rli)
1958 {
1959 tree field, prev;
1960 tree repr = NULL_TREE;
1961
1962 /* Unions would be special, for the ease of type-punning optimizations
1963 we could use the underlying type as hint for the representative
1964 if the bitfield would fit and the representative would not exceed
1965 the union in size. */
1966 if (TREE_CODE (rli->t) != RECORD_TYPE)
1967 return;
1968
1969 for (prev = NULL_TREE, field = TYPE_FIELDS (rli->t);
1970 field; field = DECL_CHAIN (field))
1971 {
1972 if (TREE_CODE (field) != FIELD_DECL)
1973 continue;
1974
1975 /* In the C++ memory model, consecutive bit fields in a structure are
1976 considered one memory location and updating a memory location
1977 may not store into adjacent memory locations. */
1978 if (!repr
1979 && DECL_BIT_FIELD_TYPE (field))
1980 {
1981 /* Start new representative. */
1982 repr = start_bitfield_representative (field);
1983 }
1984 else if (repr
1985 && ! DECL_BIT_FIELD_TYPE (field))
1986 {
1987 /* Finish off new representative. */
1988 finish_bitfield_representative (repr, prev);
1989 repr = NULL_TREE;
1990 }
1991 else if (DECL_BIT_FIELD_TYPE (field))
1992 {
1993 gcc_assert (repr != NULL_TREE);
1994
1995 /* Zero-size bitfields finish off a representative and
1996 do not have a representative themselves. This is
1997 required by the C++ memory model. */
1998 if (integer_zerop (DECL_SIZE (field)))
1999 {
2000 finish_bitfield_representative (repr, prev);
2001 repr = NULL_TREE;
2002 }
2003
2004 /* We assume that either DECL_FIELD_OFFSET of the representative
2005 and each bitfield member is a constant or they are equal.
2006 This is because we need to be able to compute the bit-offset
2007 of each field relative to the representative in get_bit_range
2008 during RTL expansion.
2009 If these constraints are not met, simply force a new
2010 representative to be generated. That will at most
2011 generate worse code but still maintain correctness with
2012 respect to the C++ memory model. */
2013 else if (!((tree_fits_uhwi_p (DECL_FIELD_OFFSET (repr))
2014 && tree_fits_uhwi_p (DECL_FIELD_OFFSET (field)))
2015 || operand_equal_p (DECL_FIELD_OFFSET (repr),
2016 DECL_FIELD_OFFSET (field), 0)))
2017 {
2018 finish_bitfield_representative (repr, prev);
2019 repr = start_bitfield_representative (field);
2020 }
2021 }
2022 else
2023 continue;
2024
2025 if (repr)
2026 DECL_BIT_FIELD_REPRESENTATIVE (field) = repr;
2027
2028 prev = field;
2029 }
2030
2031 if (repr)
2032 finish_bitfield_representative (repr, prev);
2033 }
2034
2035 /* Do all of the work required to layout the type indicated by RLI,
2036 once the fields have been laid out. This function will call `free'
2037 for RLI, unless FREE_P is false. Passing a value other than false
2038 for FREE_P is bad practice; this option only exists to support the
2039 G++ 3.2 ABI. */
2040
2041 void
2042 finish_record_layout (record_layout_info rli, int free_p)
2043 {
2044 tree variant;
2045
2046 /* Compute the final size. */
2047 finalize_record_size (rli);
2048
2049 /* Compute the TYPE_MODE for the record. */
2050 compute_record_mode (rli->t);
2051
2052 /* Perform any last tweaks to the TYPE_SIZE, etc. */
2053 finalize_type_size (rli->t);
2054
2055 /* Compute bitfield representatives. */
2056 finish_bitfield_layout (rli);
2057
2058 /* Propagate TYPE_PACKED to variants. With C++ templates,
2059 handle_packed_attribute is too early to do this. */
2060 for (variant = TYPE_NEXT_VARIANT (rli->t); variant;
2061 variant = TYPE_NEXT_VARIANT (variant))
2062 TYPE_PACKED (variant) = TYPE_PACKED (rli->t);
2063
2064 /* Lay out any static members. This is done now because their type
2065 may use the record's type. */
2066 while (!vec_safe_is_empty (rli->pending_statics))
2067 layout_decl (rli->pending_statics->pop (), 0);
2068
2069 /* Clean up. */
2070 if (free_p)
2071 {
2072 vec_free (rli->pending_statics);
2073 free (rli);
2074 }
2075 }
2076 \f
2077
2078 /* Finish processing a builtin RECORD_TYPE type TYPE. It's name is
2079 NAME, its fields are chained in reverse on FIELDS.
2080
2081 If ALIGN_TYPE is non-null, it is given the same alignment as
2082 ALIGN_TYPE. */
2083
2084 void
2085 finish_builtin_struct (tree type, const char *name, tree fields,
2086 tree align_type)
2087 {
2088 tree tail, next;
2089
2090 for (tail = NULL_TREE; fields; tail = fields, fields = next)
2091 {
2092 DECL_FIELD_CONTEXT (fields) = type;
2093 next = DECL_CHAIN (fields);
2094 DECL_CHAIN (fields) = tail;
2095 }
2096 TYPE_FIELDS (type) = tail;
2097
2098 if (align_type)
2099 {
2100 TYPE_ALIGN (type) = TYPE_ALIGN (align_type);
2101 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (align_type);
2102 }
2103
2104 layout_type (type);
2105 #if 0 /* not yet, should get fixed properly later */
2106 TYPE_NAME (type) = make_type_decl (get_identifier (name), type);
2107 #else
2108 TYPE_NAME (type) = build_decl (BUILTINS_LOCATION,
2109 TYPE_DECL, get_identifier (name), type);
2110 #endif
2111 TYPE_STUB_DECL (type) = TYPE_NAME (type);
2112 layout_decl (TYPE_NAME (type), 0);
2113 }
2114
2115 /* Calculate the mode, size, and alignment for TYPE.
2116 For an array type, calculate the element separation as well.
2117 Record TYPE on the chain of permanent or temporary types
2118 so that dbxout will find out about it.
2119
2120 TYPE_SIZE of a type is nonzero if the type has been laid out already.
2121 layout_type does nothing on such a type.
2122
2123 If the type is incomplete, its TYPE_SIZE remains zero. */
2124
2125 void
2126 layout_type (tree type)
2127 {
2128 gcc_assert (type);
2129
2130 if (type == error_mark_node)
2131 return;
2132
2133 /* Do nothing if type has been laid out before. */
2134 if (TYPE_SIZE (type))
2135 return;
2136
2137 switch (TREE_CODE (type))
2138 {
2139 case LANG_TYPE:
2140 /* This kind of type is the responsibility
2141 of the language-specific code. */
2142 gcc_unreachable ();
2143
2144 case BOOLEAN_TYPE:
2145 case INTEGER_TYPE:
2146 case ENUMERAL_TYPE:
2147 SET_TYPE_MODE (type,
2148 smallest_mode_for_size (TYPE_PRECISION (type), MODE_INT));
2149 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2150 /* Don't set TYPE_PRECISION here, as it may be set by a bitfield. */
2151 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2152 break;
2153
2154 case REAL_TYPE:
2155 SET_TYPE_MODE (type,
2156 mode_for_size (TYPE_PRECISION (type), MODE_FLOAT, 0));
2157 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2158 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2159 break;
2160
2161 case FIXED_POINT_TYPE:
2162 /* TYPE_MODE (type) has been set already. */
2163 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2164 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2165 break;
2166
2167 case COMPLEX_TYPE:
2168 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2169 SET_TYPE_MODE (type,
2170 mode_for_size (2 * TYPE_PRECISION (TREE_TYPE (type)),
2171 (TREE_CODE (TREE_TYPE (type)) == REAL_TYPE
2172 ? MODE_COMPLEX_FLOAT : MODE_COMPLEX_INT),
2173 0));
2174 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (TYPE_MODE (type)));
2175 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (TYPE_MODE (type)));
2176 break;
2177
2178 case VECTOR_TYPE:
2179 {
2180 int nunits = TYPE_VECTOR_SUBPARTS (type);
2181 tree innertype = TREE_TYPE (type);
2182
2183 gcc_assert (!(nunits & (nunits - 1)));
2184
2185 /* Find an appropriate mode for the vector type. */
2186 if (TYPE_MODE (type) == VOIDmode)
2187 SET_TYPE_MODE (type,
2188 mode_for_vector (TYPE_MODE (innertype), nunits));
2189
2190 TYPE_SATURATING (type) = TYPE_SATURATING (TREE_TYPE (type));
2191 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TREE_TYPE (type));
2192 TYPE_SIZE_UNIT (type) = int_const_binop (MULT_EXPR,
2193 TYPE_SIZE_UNIT (innertype),
2194 size_int (nunits));
2195 TYPE_SIZE (type) = int_const_binop (MULT_EXPR, TYPE_SIZE (innertype),
2196 bitsize_int (nunits));
2197
2198 /* For vector types, we do not default to the mode's alignment.
2199 Instead, query a target hook, defaulting to natural alignment.
2200 This prevents ABI changes depending on whether or not native
2201 vector modes are supported. */
2202 TYPE_ALIGN (type) = targetm.vector_alignment (type);
2203
2204 /* However, if the underlying mode requires a bigger alignment than
2205 what the target hook provides, we cannot use the mode. For now,
2206 simply reject that case. */
2207 gcc_assert (TYPE_ALIGN (type)
2208 >= GET_MODE_ALIGNMENT (TYPE_MODE (type)));
2209 break;
2210 }
2211
2212 case VOID_TYPE:
2213 /* This is an incomplete type and so doesn't have a size. */
2214 TYPE_ALIGN (type) = 1;
2215 TYPE_USER_ALIGN (type) = 0;
2216 SET_TYPE_MODE (type, VOIDmode);
2217 break;
2218
2219 case OFFSET_TYPE:
2220 TYPE_SIZE (type) = bitsize_int (POINTER_SIZE);
2221 TYPE_SIZE_UNIT (type) = size_int (POINTER_SIZE_UNITS);
2222 /* A pointer might be MODE_PARTIAL_INT, but ptrdiff_t must be
2223 integral, which may be an __intN. */
2224 SET_TYPE_MODE (type, mode_for_size (POINTER_SIZE, MODE_INT, 0));
2225 TYPE_PRECISION (type) = POINTER_SIZE;
2226 break;
2227
2228 case FUNCTION_TYPE:
2229 case METHOD_TYPE:
2230 /* It's hard to see what the mode and size of a function ought to
2231 be, but we do know the alignment is FUNCTION_BOUNDARY, so
2232 make it consistent with that. */
2233 SET_TYPE_MODE (type, mode_for_size (FUNCTION_BOUNDARY, MODE_INT, 0));
2234 TYPE_SIZE (type) = bitsize_int (FUNCTION_BOUNDARY);
2235 TYPE_SIZE_UNIT (type) = size_int (FUNCTION_BOUNDARY / BITS_PER_UNIT);
2236 break;
2237
2238 case POINTER_TYPE:
2239 case REFERENCE_TYPE:
2240 {
2241 enum machine_mode mode = TYPE_MODE (type);
2242 if (TREE_CODE (type) == REFERENCE_TYPE && reference_types_internal)
2243 {
2244 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
2245 mode = targetm.addr_space.address_mode (as);
2246 }
2247
2248 TYPE_SIZE (type) = bitsize_int (GET_MODE_BITSIZE (mode));
2249 TYPE_SIZE_UNIT (type) = size_int (GET_MODE_SIZE (mode));
2250 TYPE_UNSIGNED (type) = 1;
2251 TYPE_PRECISION (type) = GET_MODE_PRECISION (mode);
2252 }
2253 break;
2254
2255 case ARRAY_TYPE:
2256 {
2257 tree index = TYPE_DOMAIN (type);
2258 tree element = TREE_TYPE (type);
2259
2260 build_pointer_type (element);
2261
2262 /* We need to know both bounds in order to compute the size. */
2263 if (index && TYPE_MAX_VALUE (index) && TYPE_MIN_VALUE (index)
2264 && TYPE_SIZE (element))
2265 {
2266 tree ub = TYPE_MAX_VALUE (index);
2267 tree lb = TYPE_MIN_VALUE (index);
2268 tree element_size = TYPE_SIZE (element);
2269 tree length;
2270
2271 /* Make sure that an array of zero-sized element is zero-sized
2272 regardless of its extent. */
2273 if (integer_zerop (element_size))
2274 length = size_zero_node;
2275
2276 /* The computation should happen in the original signedness so
2277 that (possible) negative values are handled appropriately
2278 when determining overflow. */
2279 else
2280 {
2281 /* ??? When it is obvious that the range is signed
2282 represent it using ssizetype. */
2283 if (TREE_CODE (lb) == INTEGER_CST
2284 && TREE_CODE (ub) == INTEGER_CST
2285 && TYPE_UNSIGNED (TREE_TYPE (lb))
2286 && tree_int_cst_lt (ub, lb))
2287 {
2288 lb = wide_int_to_tree (ssizetype,
2289 offset_int::from (lb, SIGNED));
2290 ub = wide_int_to_tree (ssizetype,
2291 offset_int::from (ub, SIGNED));
2292 }
2293 length
2294 = fold_convert (sizetype,
2295 size_binop (PLUS_EXPR,
2296 build_int_cst (TREE_TYPE (lb), 1),
2297 size_binop (MINUS_EXPR, ub, lb)));
2298 }
2299
2300 /* ??? We have no way to distinguish a null-sized array from an
2301 array spanning the whole sizetype range, so we arbitrarily
2302 decide that [0, -1] is the only valid representation. */
2303 if (integer_zerop (length)
2304 && TREE_OVERFLOW (length)
2305 && integer_zerop (lb))
2306 length = size_zero_node;
2307
2308 TYPE_SIZE (type) = size_binop (MULT_EXPR, element_size,
2309 fold_convert (bitsizetype,
2310 length));
2311
2312 /* If we know the size of the element, calculate the total size
2313 directly, rather than do some division thing below. This
2314 optimization helps Fortran assumed-size arrays (where the
2315 size of the array is determined at runtime) substantially. */
2316 if (TYPE_SIZE_UNIT (element))
2317 TYPE_SIZE_UNIT (type)
2318 = size_binop (MULT_EXPR, TYPE_SIZE_UNIT (element), length);
2319 }
2320
2321 /* Now round the alignment and size,
2322 using machine-dependent criteria if any. */
2323
2324 #ifdef ROUND_TYPE_ALIGN
2325 TYPE_ALIGN (type)
2326 = ROUND_TYPE_ALIGN (type, TYPE_ALIGN (element), BITS_PER_UNIT);
2327 #else
2328 TYPE_ALIGN (type) = MAX (TYPE_ALIGN (element), BITS_PER_UNIT);
2329 #endif
2330 TYPE_USER_ALIGN (type) = TYPE_USER_ALIGN (element);
2331 SET_TYPE_MODE (type, BLKmode);
2332 if (TYPE_SIZE (type) != 0
2333 && ! targetm.member_type_forces_blk (type, VOIDmode)
2334 /* BLKmode elements force BLKmode aggregate;
2335 else extract/store fields may lose. */
2336 && (TYPE_MODE (TREE_TYPE (type)) != BLKmode
2337 || TYPE_NO_FORCE_BLK (TREE_TYPE (type))))
2338 {
2339 SET_TYPE_MODE (type, mode_for_array (TREE_TYPE (type),
2340 TYPE_SIZE (type)));
2341 if (TYPE_MODE (type) != BLKmode
2342 && STRICT_ALIGNMENT && TYPE_ALIGN (type) < BIGGEST_ALIGNMENT
2343 && TYPE_ALIGN (type) < GET_MODE_ALIGNMENT (TYPE_MODE (type)))
2344 {
2345 TYPE_NO_FORCE_BLK (type) = 1;
2346 SET_TYPE_MODE (type, BLKmode);
2347 }
2348 }
2349 /* When the element size is constant, check that it is at least as
2350 large as the element alignment. */
2351 if (TYPE_SIZE_UNIT (element)
2352 && TREE_CODE (TYPE_SIZE_UNIT (element)) == INTEGER_CST
2353 /* If TYPE_SIZE_UNIT overflowed, then it is certainly larger than
2354 TYPE_ALIGN_UNIT. */
2355 && !TREE_OVERFLOW (TYPE_SIZE_UNIT (element))
2356 && !integer_zerop (TYPE_SIZE_UNIT (element))
2357 && compare_tree_int (TYPE_SIZE_UNIT (element),
2358 TYPE_ALIGN_UNIT (element)) < 0)
2359 error ("alignment of array elements is greater than element size");
2360 break;
2361 }
2362
2363 case RECORD_TYPE:
2364 case UNION_TYPE:
2365 case QUAL_UNION_TYPE:
2366 {
2367 tree field;
2368 record_layout_info rli;
2369
2370 /* Initialize the layout information. */
2371 rli = start_record_layout (type);
2372
2373 /* If this is a QUAL_UNION_TYPE, we want to process the fields
2374 in the reverse order in building the COND_EXPR that denotes
2375 its size. We reverse them again later. */
2376 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2377 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2378
2379 /* Place all the fields. */
2380 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2381 place_field (rli, field);
2382
2383 if (TREE_CODE (type) == QUAL_UNION_TYPE)
2384 TYPE_FIELDS (type) = nreverse (TYPE_FIELDS (type));
2385
2386 /* Finish laying out the record. */
2387 finish_record_layout (rli, /*free_p=*/true);
2388 }
2389 break;
2390
2391 default:
2392 gcc_unreachable ();
2393 }
2394
2395 /* Compute the final TYPE_SIZE, TYPE_ALIGN, etc. for TYPE. For
2396 records and unions, finish_record_layout already called this
2397 function. */
2398 if (TREE_CODE (type) != RECORD_TYPE
2399 && TREE_CODE (type) != UNION_TYPE
2400 && TREE_CODE (type) != QUAL_UNION_TYPE)
2401 finalize_type_size (type);
2402
2403 /* We should never see alias sets on incomplete aggregates. And we
2404 should not call layout_type on not incomplete aggregates. */
2405 if (AGGREGATE_TYPE_P (type))
2406 gcc_assert (!TYPE_ALIAS_SET_KNOWN_P (type));
2407 }
2408
2409 /* Return the least alignment required for type TYPE. */
2410
2411 unsigned int
2412 min_align_of_type (tree type)
2413 {
2414 unsigned int align = TYPE_ALIGN (type);
2415 align = MIN (align, BIGGEST_ALIGNMENT);
2416 if (!TYPE_USER_ALIGN (type))
2417 {
2418 #ifdef BIGGEST_FIELD_ALIGNMENT
2419 align = MIN (align, BIGGEST_FIELD_ALIGNMENT);
2420 #endif
2421 unsigned int field_align = align;
2422 #ifdef ADJUST_FIELD_ALIGN
2423 tree field = build_decl (UNKNOWN_LOCATION, FIELD_DECL, NULL_TREE, type);
2424 field_align = ADJUST_FIELD_ALIGN (field, field_align);
2425 ggc_free (field);
2426 #endif
2427 align = MIN (align, field_align);
2428 }
2429 return align / BITS_PER_UNIT;
2430 }
2431
2432 /* Vector types need to re-check the target flags each time we report
2433 the machine mode. We need to do this because attribute target can
2434 change the result of vector_mode_supported_p and have_regs_of_mode
2435 on a per-function basis. Thus the TYPE_MODE of a VECTOR_TYPE can
2436 change on a per-function basis. */
2437 /* ??? Possibly a better solution is to run through all the types
2438 referenced by a function and re-compute the TYPE_MODE once, rather
2439 than make the TYPE_MODE macro call a function. */
2440
2441 enum machine_mode
2442 vector_type_mode (const_tree t)
2443 {
2444 enum machine_mode mode;
2445
2446 gcc_assert (TREE_CODE (t) == VECTOR_TYPE);
2447
2448 mode = t->type_common.mode;
2449 if (VECTOR_MODE_P (mode)
2450 && (!targetm.vector_mode_supported_p (mode)
2451 || !have_regs_of_mode[mode]))
2452 {
2453 enum machine_mode innermode = TREE_TYPE (t)->type_common.mode;
2454
2455 /* For integers, try mapping it to a same-sized scalar mode. */
2456 if (GET_MODE_CLASS (innermode) == MODE_INT)
2457 {
2458 mode = mode_for_size (TYPE_VECTOR_SUBPARTS (t)
2459 * GET_MODE_BITSIZE (innermode), MODE_INT, 0);
2460
2461 if (mode != VOIDmode && have_regs_of_mode[mode])
2462 return mode;
2463 }
2464
2465 return BLKmode;
2466 }
2467
2468 return mode;
2469 }
2470 \f
2471 /* Create and return a type for signed integers of PRECISION bits. */
2472
2473 tree
2474 make_signed_type (int precision)
2475 {
2476 tree type = make_node (INTEGER_TYPE);
2477
2478 TYPE_PRECISION (type) = precision;
2479
2480 fixup_signed_type (type);
2481 return type;
2482 }
2483
2484 /* Create and return a type for unsigned integers of PRECISION bits. */
2485
2486 tree
2487 make_unsigned_type (int precision)
2488 {
2489 tree type = make_node (INTEGER_TYPE);
2490
2491 TYPE_PRECISION (type) = precision;
2492
2493 fixup_unsigned_type (type);
2494 return type;
2495 }
2496 \f
2497 /* Create and return a type for fract of PRECISION bits, UNSIGNEDP,
2498 and SATP. */
2499
2500 tree
2501 make_fract_type (int precision, int unsignedp, int satp)
2502 {
2503 tree type = make_node (FIXED_POINT_TYPE);
2504
2505 TYPE_PRECISION (type) = precision;
2506
2507 if (satp)
2508 TYPE_SATURATING (type) = 1;
2509
2510 /* Lay out the type: set its alignment, size, etc. */
2511 if (unsignedp)
2512 {
2513 TYPE_UNSIGNED (type) = 1;
2514 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UFRACT, 0));
2515 }
2516 else
2517 SET_TYPE_MODE (type, mode_for_size (precision, MODE_FRACT, 0));
2518 layout_type (type);
2519
2520 return type;
2521 }
2522
2523 /* Create and return a type for accum of PRECISION bits, UNSIGNEDP,
2524 and SATP. */
2525
2526 tree
2527 make_accum_type (int precision, int unsignedp, int satp)
2528 {
2529 tree type = make_node (FIXED_POINT_TYPE);
2530
2531 TYPE_PRECISION (type) = precision;
2532
2533 if (satp)
2534 TYPE_SATURATING (type) = 1;
2535
2536 /* Lay out the type: set its alignment, size, etc. */
2537 if (unsignedp)
2538 {
2539 TYPE_UNSIGNED (type) = 1;
2540 SET_TYPE_MODE (type, mode_for_size (precision, MODE_UACCUM, 0));
2541 }
2542 else
2543 SET_TYPE_MODE (type, mode_for_size (precision, MODE_ACCUM, 0));
2544 layout_type (type);
2545
2546 return type;
2547 }
2548
2549 /* Initialize sizetypes so layout_type can use them. */
2550
2551 void
2552 initialize_sizetypes (void)
2553 {
2554 int precision, bprecision;
2555
2556 /* Get sizetypes precision from the SIZE_TYPE target macro. */
2557 if (strcmp (SIZETYPE, "unsigned int") == 0)
2558 precision = INT_TYPE_SIZE;
2559 else if (strcmp (SIZETYPE, "long unsigned int") == 0)
2560 precision = LONG_TYPE_SIZE;
2561 else if (strcmp (SIZETYPE, "long long unsigned int") == 0)
2562 precision = LONG_LONG_TYPE_SIZE;
2563 else if (strcmp (SIZETYPE, "short unsigned int") == 0)
2564 precision = SHORT_TYPE_SIZE;
2565 else
2566 {
2567 int i;
2568
2569 precision = -1;
2570 for (i = 0; i < NUM_INT_N_ENTS; i++)
2571 if (int_n_enabled_p[i])
2572 {
2573 char name[50];
2574 sprintf (name, "__int%d unsigned", int_n_data[i].bitsize);
2575
2576 if (strcmp (name, SIZETYPE) == 0)
2577 {
2578 precision = int_n_data[i].bitsize;
2579 }
2580 }
2581 if (precision == -1)
2582 gcc_unreachable ();
2583 }
2584
2585 bprecision
2586 = MIN (precision + BITS_PER_UNIT_LOG + 1, MAX_FIXED_MODE_SIZE);
2587 bprecision
2588 = GET_MODE_PRECISION (smallest_mode_for_size (bprecision, MODE_INT));
2589 if (bprecision > HOST_BITS_PER_DOUBLE_INT)
2590 bprecision = HOST_BITS_PER_DOUBLE_INT;
2591
2592 /* Create stubs for sizetype and bitsizetype so we can create constants. */
2593 sizetype = make_node (INTEGER_TYPE);
2594 TYPE_NAME (sizetype) = get_identifier ("sizetype");
2595 TYPE_PRECISION (sizetype) = precision;
2596 TYPE_UNSIGNED (sizetype) = 1;
2597 bitsizetype = make_node (INTEGER_TYPE);
2598 TYPE_NAME (bitsizetype) = get_identifier ("bitsizetype");
2599 TYPE_PRECISION (bitsizetype) = bprecision;
2600 TYPE_UNSIGNED (bitsizetype) = 1;
2601
2602 /* Now layout both types manually. */
2603 SET_TYPE_MODE (sizetype, smallest_mode_for_size (precision, MODE_INT));
2604 TYPE_ALIGN (sizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (sizetype));
2605 TYPE_SIZE (sizetype) = bitsize_int (precision);
2606 TYPE_SIZE_UNIT (sizetype) = size_int (GET_MODE_SIZE (TYPE_MODE (sizetype)));
2607 set_min_and_max_values_for_integral_type (sizetype, precision, UNSIGNED);
2608
2609 SET_TYPE_MODE (bitsizetype, smallest_mode_for_size (bprecision, MODE_INT));
2610 TYPE_ALIGN (bitsizetype) = GET_MODE_ALIGNMENT (TYPE_MODE (bitsizetype));
2611 TYPE_SIZE (bitsizetype) = bitsize_int (bprecision);
2612 TYPE_SIZE_UNIT (bitsizetype)
2613 = size_int (GET_MODE_SIZE (TYPE_MODE (bitsizetype)));
2614 set_min_and_max_values_for_integral_type (bitsizetype, bprecision, UNSIGNED);
2615
2616 /* Create the signed variants of *sizetype. */
2617 ssizetype = make_signed_type (TYPE_PRECISION (sizetype));
2618 TYPE_NAME (ssizetype) = get_identifier ("ssizetype");
2619 sbitsizetype = make_signed_type (TYPE_PRECISION (bitsizetype));
2620 TYPE_NAME (sbitsizetype) = get_identifier ("sbitsizetype");
2621 }
2622 \f
2623 /* TYPE is an integral type, i.e., an INTEGRAL_TYPE, ENUMERAL_TYPE
2624 or BOOLEAN_TYPE. Set TYPE_MIN_VALUE and TYPE_MAX_VALUE
2625 for TYPE, based on the PRECISION and whether or not the TYPE
2626 IS_UNSIGNED. PRECISION need not correspond to a width supported
2627 natively by the hardware; for example, on a machine with 8-bit,
2628 16-bit, and 32-bit register modes, PRECISION might be 7, 23, or
2629 61. */
2630
2631 void
2632 set_min_and_max_values_for_integral_type (tree type,
2633 int precision,
2634 signop sgn)
2635 {
2636 /* For bitfields with zero width we end up creating integer types
2637 with zero precision. Don't assign any minimum/maximum values
2638 to those types, they don't have any valid value. */
2639 if (precision < 1)
2640 return;
2641
2642 TYPE_MIN_VALUE (type)
2643 = wide_int_to_tree (type, wi::min_value (precision, sgn));
2644 TYPE_MAX_VALUE (type)
2645 = wide_int_to_tree (type, wi::max_value (precision, sgn));
2646 }
2647
2648 /* Set the extreme values of TYPE based on its precision in bits,
2649 then lay it out. Used when make_signed_type won't do
2650 because the tree code is not INTEGER_TYPE.
2651 E.g. for Pascal, when the -fsigned-char option is given. */
2652
2653 void
2654 fixup_signed_type (tree type)
2655 {
2656 int precision = TYPE_PRECISION (type);
2657
2658 set_min_and_max_values_for_integral_type (type, precision, SIGNED);
2659
2660 /* Lay out the type: set its alignment, size, etc. */
2661 layout_type (type);
2662 }
2663
2664 /* Set the extreme values of TYPE based on its precision in bits,
2665 then lay it out. This is used both in `make_unsigned_type'
2666 and for enumeral types. */
2667
2668 void
2669 fixup_unsigned_type (tree type)
2670 {
2671 int precision = TYPE_PRECISION (type);
2672
2673 TYPE_UNSIGNED (type) = 1;
2674
2675 set_min_and_max_values_for_integral_type (type, precision, UNSIGNED);
2676
2677 /* Lay out the type: set its alignment, size, etc. */
2678 layout_type (type);
2679 }
2680 \f
2681 /* Construct an iterator for a bitfield that spans BITSIZE bits,
2682 starting at BITPOS.
2683
2684 BITREGION_START is the bit position of the first bit in this
2685 sequence of bit fields. BITREGION_END is the last bit in this
2686 sequence. If these two fields are non-zero, we should restrict the
2687 memory access to that range. Otherwise, we are allowed to touch
2688 any adjacent non bit-fields.
2689
2690 ALIGN is the alignment of the underlying object in bits.
2691 VOLATILEP says whether the bitfield is volatile. */
2692
2693 bit_field_mode_iterator
2694 ::bit_field_mode_iterator (HOST_WIDE_INT bitsize, HOST_WIDE_INT bitpos,
2695 HOST_WIDE_INT bitregion_start,
2696 HOST_WIDE_INT bitregion_end,
2697 unsigned int align, bool volatilep)
2698 : m_mode (GET_CLASS_NARROWEST_MODE (MODE_INT)), m_bitsize (bitsize),
2699 m_bitpos (bitpos), m_bitregion_start (bitregion_start),
2700 m_bitregion_end (bitregion_end), m_align (align),
2701 m_volatilep (volatilep), m_count (0)
2702 {
2703 if (!m_bitregion_end)
2704 {
2705 /* We can assume that any aligned chunk of ALIGN bits that overlaps
2706 the bitfield is mapped and won't trap, provided that ALIGN isn't
2707 too large. The cap is the biggest required alignment for data,
2708 or at least the word size. And force one such chunk at least. */
2709 unsigned HOST_WIDE_INT units
2710 = MIN (align, MAX (BIGGEST_ALIGNMENT, BITS_PER_WORD));
2711 if (bitsize <= 0)
2712 bitsize = 1;
2713 m_bitregion_end = bitpos + bitsize + units - 1;
2714 m_bitregion_end -= m_bitregion_end % units + 1;
2715 }
2716 }
2717
2718 /* Calls to this function return successively larger modes that can be used
2719 to represent the bitfield. Return true if another bitfield mode is
2720 available, storing it in *OUT_MODE if so. */
2721
2722 bool
2723 bit_field_mode_iterator::next_mode (enum machine_mode *out_mode)
2724 {
2725 for (; m_mode != VOIDmode; m_mode = GET_MODE_WIDER_MODE (m_mode))
2726 {
2727 unsigned int unit = GET_MODE_BITSIZE (m_mode);
2728
2729 /* Skip modes that don't have full precision. */
2730 if (unit != GET_MODE_PRECISION (m_mode))
2731 continue;
2732
2733 /* Stop if the mode is too wide to handle efficiently. */
2734 if (unit > MAX_FIXED_MODE_SIZE)
2735 break;
2736
2737 /* Don't deliver more than one multiword mode; the smallest one
2738 should be used. */
2739 if (m_count > 0 && unit > BITS_PER_WORD)
2740 break;
2741
2742 /* Skip modes that are too small. */
2743 unsigned HOST_WIDE_INT substart = (unsigned HOST_WIDE_INT) m_bitpos % unit;
2744 unsigned HOST_WIDE_INT subend = substart + m_bitsize;
2745 if (subend > unit)
2746 continue;
2747
2748 /* Stop if the mode goes outside the bitregion. */
2749 HOST_WIDE_INT start = m_bitpos - substart;
2750 if (m_bitregion_start && start < m_bitregion_start)
2751 break;
2752 HOST_WIDE_INT end = start + unit;
2753 if (end > m_bitregion_end + 1)
2754 break;
2755
2756 /* Stop if the mode requires too much alignment. */
2757 if (GET_MODE_ALIGNMENT (m_mode) > m_align
2758 && SLOW_UNALIGNED_ACCESS (m_mode, m_align))
2759 break;
2760
2761 *out_mode = m_mode;
2762 m_mode = GET_MODE_WIDER_MODE (m_mode);
2763 m_count++;
2764 return true;
2765 }
2766 return false;
2767 }
2768
2769 /* Return true if smaller modes are generally preferred for this kind
2770 of bitfield. */
2771
2772 bool
2773 bit_field_mode_iterator::prefer_smaller_modes ()
2774 {
2775 return (m_volatilep
2776 ? targetm.narrow_volatile_bitfield ()
2777 : !SLOW_BYTE_ACCESS);
2778 }
2779
2780 /* Find the best machine mode to use when referencing a bit field of length
2781 BITSIZE bits starting at BITPOS.
2782
2783 BITREGION_START is the bit position of the first bit in this
2784 sequence of bit fields. BITREGION_END is the last bit in this
2785 sequence. If these two fields are non-zero, we should restrict the
2786 memory access to that range. Otherwise, we are allowed to touch
2787 any adjacent non bit-fields.
2788
2789 The underlying object is known to be aligned to a boundary of ALIGN bits.
2790 If LARGEST_MODE is not VOIDmode, it means that we should not use a mode
2791 larger than LARGEST_MODE (usually SImode).
2792
2793 If no mode meets all these conditions, we return VOIDmode.
2794
2795 If VOLATILEP is false and SLOW_BYTE_ACCESS is false, we return the
2796 smallest mode meeting these conditions.
2797
2798 If VOLATILEP is false and SLOW_BYTE_ACCESS is true, we return the
2799 largest mode (but a mode no wider than UNITS_PER_WORD) that meets
2800 all the conditions.
2801
2802 If VOLATILEP is true the narrow_volatile_bitfields target hook is used to
2803 decide which of the above modes should be used. */
2804
2805 enum machine_mode
2806 get_best_mode (int bitsize, int bitpos,
2807 unsigned HOST_WIDE_INT bitregion_start,
2808 unsigned HOST_WIDE_INT bitregion_end,
2809 unsigned int align,
2810 enum machine_mode largest_mode, bool volatilep)
2811 {
2812 bit_field_mode_iterator iter (bitsize, bitpos, bitregion_start,
2813 bitregion_end, align, volatilep);
2814 enum machine_mode widest_mode = VOIDmode;
2815 enum machine_mode mode;
2816 while (iter.next_mode (&mode)
2817 /* ??? For historical reasons, reject modes that would normally
2818 receive greater alignment, even if unaligned accesses are
2819 acceptable. This has both advantages and disadvantages.
2820 Removing this check means that something like:
2821
2822 struct s { unsigned int x; unsigned int y; };
2823 int f (struct s *s) { return s->x == 0 && s->y == 0; }
2824
2825 can be implemented using a single load and compare on
2826 64-bit machines that have no alignment restrictions.
2827 For example, on powerpc64-linux-gnu, we would generate:
2828
2829 ld 3,0(3)
2830 cntlzd 3,3
2831 srdi 3,3,6
2832 blr
2833
2834 rather than:
2835
2836 lwz 9,0(3)
2837 cmpwi 7,9,0
2838 bne 7,.L3
2839 lwz 3,4(3)
2840 cntlzw 3,3
2841 srwi 3,3,5
2842 extsw 3,3
2843 blr
2844 .p2align 4,,15
2845 .L3:
2846 li 3,0
2847 blr
2848
2849 However, accessing more than one field can make life harder
2850 for the gimple optimizers. For example, gcc.dg/vect/bb-slp-5.c
2851 has a series of unsigned short copies followed by a series of
2852 unsigned short comparisons. With this check, both the copies
2853 and comparisons remain 16-bit accesses and FRE is able
2854 to eliminate the latter. Without the check, the comparisons
2855 can be done using 2 64-bit operations, which FRE isn't able
2856 to handle in the same way.
2857
2858 Either way, it would probably be worth disabling this check
2859 during expand. One particular example where removing the
2860 check would help is the get_best_mode call in store_bit_field.
2861 If we are given a memory bitregion of 128 bits that is aligned
2862 to a 64-bit boundary, and the bitfield we want to modify is
2863 in the second half of the bitregion, this check causes
2864 store_bitfield to turn the memory into a 64-bit reference
2865 to the _first_ half of the region. We later use
2866 adjust_bitfield_address to get a reference to the correct half,
2867 but doing so looks to adjust_bitfield_address as though we are
2868 moving past the end of the original object, so it drops the
2869 associated MEM_EXPR and MEM_OFFSET. Removing the check
2870 causes store_bit_field to keep a 128-bit memory reference,
2871 so that the final bitfield reference still has a MEM_EXPR
2872 and MEM_OFFSET. */
2873 && GET_MODE_ALIGNMENT (mode) <= align
2874 && (largest_mode == VOIDmode
2875 || GET_MODE_SIZE (mode) <= GET_MODE_SIZE (largest_mode)))
2876 {
2877 widest_mode = mode;
2878 if (iter.prefer_smaller_modes ())
2879 break;
2880 }
2881 return widest_mode;
2882 }
2883
2884 /* Gets minimal and maximal values for MODE (signed or unsigned depending on
2885 SIGN). The returned constants are made to be usable in TARGET_MODE. */
2886
2887 void
2888 get_mode_bounds (enum machine_mode mode, int sign,
2889 enum machine_mode target_mode,
2890 rtx *mmin, rtx *mmax)
2891 {
2892 unsigned size = GET_MODE_PRECISION (mode);
2893 unsigned HOST_WIDE_INT min_val, max_val;
2894
2895 gcc_assert (size <= HOST_BITS_PER_WIDE_INT);
2896
2897 /* Special case BImode, which has values 0 and STORE_FLAG_VALUE. */
2898 if (mode == BImode)
2899 {
2900 if (STORE_FLAG_VALUE < 0)
2901 {
2902 min_val = STORE_FLAG_VALUE;
2903 max_val = 0;
2904 }
2905 else
2906 {
2907 min_val = 0;
2908 max_val = STORE_FLAG_VALUE;
2909 }
2910 }
2911 else if (sign)
2912 {
2913 min_val = -((unsigned HOST_WIDE_INT) 1 << (size - 1));
2914 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1)) - 1;
2915 }
2916 else
2917 {
2918 min_val = 0;
2919 max_val = ((unsigned HOST_WIDE_INT) 1 << (size - 1) << 1) - 1;
2920 }
2921
2922 *mmin = gen_int_mode (min_val, target_mode);
2923 *mmax = gen_int_mode (max_val, target_mode);
2924 }
2925
2926 #include "gt-stor-layout.h"