]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/trans-mem.c
c0e44c78ebe73c4b3f673027e23cb3f5dbec21ac
[thirdparty/gcc.git] / gcc / trans-mem.c
1 /* Passes for transactional memory support.
2 Copyright (C) 2008-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it under
7 the terms of the GNU General Public License as published by the Free
8 Software Foundation; either version 3, or (at your option) any later
9 version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
12 WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tree.h"
25 #include "basic-block.h"
26 #include "tree-ssa-alias.h"
27 #include "internal-fn.h"
28 #include "tree-eh.h"
29 #include "gimple-expr.h"
30 #include "is-a.h"
31 #include "gimple.h"
32 #include "calls.h"
33 #include "function.h"
34 #include "rtl.h"
35 #include "emit-rtl.h"
36 #include "gimplify.h"
37 #include "gimple-iterator.h"
38 #include "gimplify-me.h"
39 #include "gimple-walk.h"
40 #include "gimple-ssa.h"
41 #include "cgraph.h"
42 #include "tree-cfg.h"
43 #include "stringpool.h"
44 #include "tree-ssanames.h"
45 #include "tree-into-ssa.h"
46 #include "tree-pass.h"
47 #include "tree-inline.h"
48 #include "diagnostic-core.h"
49 #include "demangle.h"
50 #include "output.h"
51 #include "trans-mem.h"
52 #include "params.h"
53 #include "target.h"
54 #include "langhooks.h"
55 #include "gimple-pretty-print.h"
56 #include "cfgloop.h"
57 #include "tree-ssa-address.h"
58 #include "predict.h"
59
60
61 #define A_RUNINSTRUMENTEDCODE 0x0001
62 #define A_RUNUNINSTRUMENTEDCODE 0x0002
63 #define A_SAVELIVEVARIABLES 0x0004
64 #define A_RESTORELIVEVARIABLES 0x0008
65 #define A_ABORTTRANSACTION 0x0010
66
67 #define AR_USERABORT 0x0001
68 #define AR_USERRETRY 0x0002
69 #define AR_TMCONFLICT 0x0004
70 #define AR_EXCEPTIONBLOCKABORT 0x0008
71 #define AR_OUTERABORT 0x0010
72
73 #define MODE_SERIALIRREVOCABLE 0x0000
74
75
76 /* The representation of a transaction changes several times during the
77 lowering process. In the beginning, in the front-end we have the
78 GENERIC tree TRANSACTION_EXPR. For example,
79
80 __transaction {
81 local++;
82 if (++global == 10)
83 __tm_abort;
84 }
85
86 During initial gimplification (gimplify.c) the TRANSACTION_EXPR node is
87 trivially replaced with a GIMPLE_TRANSACTION node.
88
89 During pass_lower_tm, we examine the body of transactions looking
90 for aborts. Transactions that do not contain an abort may be
91 merged into an outer transaction. We also add a TRY-FINALLY node
92 to arrange for the transaction to be committed on any exit.
93
94 [??? Think about how this arrangement affects throw-with-commit
95 and throw-with-abort operations. In this case we want the TRY to
96 handle gotos, but not to catch any exceptions because the transaction
97 will already be closed.]
98
99 GIMPLE_TRANSACTION [label=NULL] {
100 try {
101 local = local + 1;
102 t0 = global;
103 t1 = t0 + 1;
104 global = t1;
105 if (t1 == 10)
106 __builtin___tm_abort ();
107 } finally {
108 __builtin___tm_commit ();
109 }
110 }
111
112 During pass_lower_eh, we create EH regions for the transactions,
113 intermixed with the regular EH stuff. This gives us a nice persistent
114 mapping (all the way through rtl) from transactional memory operation
115 back to the transaction, which allows us to get the abnormal edges
116 correct to model transaction aborts and restarts:
117
118 GIMPLE_TRANSACTION [label=over]
119 local = local + 1;
120 t0 = global;
121 t1 = t0 + 1;
122 global = t1;
123 if (t1 == 10)
124 __builtin___tm_abort ();
125 __builtin___tm_commit ();
126 over:
127
128 This is the end of all_lowering_passes, and so is what is present
129 during the IPA passes, and through all of the optimization passes.
130
131 During pass_ipa_tm, we examine all GIMPLE_TRANSACTION blocks in all
132 functions and mark functions for cloning.
133
134 At the end of gimple optimization, before exiting SSA form,
135 pass_tm_edges replaces statements that perform transactional
136 memory operations with the appropriate TM builtins, and swap
137 out function calls with their transactional clones. At this
138 point we introduce the abnormal transaction restart edges and
139 complete lowering of the GIMPLE_TRANSACTION node.
140
141 x = __builtin___tm_start (MAY_ABORT);
142 eh_label:
143 if (x & abort_transaction)
144 goto over;
145 local = local + 1;
146 t0 = __builtin___tm_load (global);
147 t1 = t0 + 1;
148 __builtin___tm_store (&global, t1);
149 if (t1 == 10)
150 __builtin___tm_abort ();
151 __builtin___tm_commit ();
152 over:
153 */
154
155 static void *expand_regions (struct tm_region *,
156 void *(*callback)(struct tm_region *, void *),
157 void *, bool);
158
159 \f
160 /* Return the attributes we want to examine for X, or NULL if it's not
161 something we examine. We look at function types, but allow pointers
162 to function types and function decls and peek through. */
163
164 static tree
165 get_attrs_for (const_tree x)
166 {
167 switch (TREE_CODE (x))
168 {
169 case FUNCTION_DECL:
170 return TYPE_ATTRIBUTES (TREE_TYPE (x));
171 break;
172
173 default:
174 if (TYPE_P (x))
175 return NULL;
176 x = TREE_TYPE (x);
177 if (TREE_CODE (x) != POINTER_TYPE)
178 return NULL;
179 /* FALLTHRU */
180
181 case POINTER_TYPE:
182 x = TREE_TYPE (x);
183 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
184 return NULL;
185 /* FALLTHRU */
186
187 case FUNCTION_TYPE:
188 case METHOD_TYPE:
189 return TYPE_ATTRIBUTES (x);
190 }
191 }
192
193 /* Return true if X has been marked TM_PURE. */
194
195 bool
196 is_tm_pure (const_tree x)
197 {
198 unsigned flags;
199
200 switch (TREE_CODE (x))
201 {
202 case FUNCTION_DECL:
203 case FUNCTION_TYPE:
204 case METHOD_TYPE:
205 break;
206
207 default:
208 if (TYPE_P (x))
209 return false;
210 x = TREE_TYPE (x);
211 if (TREE_CODE (x) != POINTER_TYPE)
212 return false;
213 /* FALLTHRU */
214
215 case POINTER_TYPE:
216 x = TREE_TYPE (x);
217 if (TREE_CODE (x) != FUNCTION_TYPE && TREE_CODE (x) != METHOD_TYPE)
218 return false;
219 break;
220 }
221
222 flags = flags_from_decl_or_type (x);
223 return (flags & ECF_TM_PURE) != 0;
224 }
225
226 /* Return true if X has been marked TM_IRREVOCABLE. */
227
228 static bool
229 is_tm_irrevocable (tree x)
230 {
231 tree attrs = get_attrs_for (x);
232
233 if (attrs && lookup_attribute ("transaction_unsafe", attrs))
234 return true;
235
236 /* A call to the irrevocable builtin is by definition,
237 irrevocable. */
238 if (TREE_CODE (x) == ADDR_EXPR)
239 x = TREE_OPERAND (x, 0);
240 if (TREE_CODE (x) == FUNCTION_DECL
241 && DECL_BUILT_IN_CLASS (x) == BUILT_IN_NORMAL
242 && DECL_FUNCTION_CODE (x) == BUILT_IN_TM_IRREVOCABLE)
243 return true;
244
245 return false;
246 }
247
248 /* Return true if X has been marked TM_SAFE. */
249
250 bool
251 is_tm_safe (const_tree x)
252 {
253 if (flag_tm)
254 {
255 tree attrs = get_attrs_for (x);
256 if (attrs)
257 {
258 if (lookup_attribute ("transaction_safe", attrs))
259 return true;
260 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
261 return true;
262 }
263 }
264 return false;
265 }
266
267 /* Return true if CALL is const, or tm_pure. */
268
269 static bool
270 is_tm_pure_call (gimple call)
271 {
272 tree fn = gimple_call_fn (call);
273
274 if (TREE_CODE (fn) == ADDR_EXPR)
275 {
276 fn = TREE_OPERAND (fn, 0);
277 gcc_assert (TREE_CODE (fn) == FUNCTION_DECL);
278 }
279 else
280 fn = TREE_TYPE (fn);
281
282 return is_tm_pure (fn);
283 }
284
285 /* Return true if X has been marked TM_CALLABLE. */
286
287 static bool
288 is_tm_callable (tree x)
289 {
290 tree attrs = get_attrs_for (x);
291 if (attrs)
292 {
293 if (lookup_attribute ("transaction_callable", attrs))
294 return true;
295 if (lookup_attribute ("transaction_safe", attrs))
296 return true;
297 if (lookup_attribute ("transaction_may_cancel_outer", attrs))
298 return true;
299 }
300 return false;
301 }
302
303 /* Return true if X has been marked TRANSACTION_MAY_CANCEL_OUTER. */
304
305 bool
306 is_tm_may_cancel_outer (tree x)
307 {
308 tree attrs = get_attrs_for (x);
309 if (attrs)
310 return lookup_attribute ("transaction_may_cancel_outer", attrs) != NULL;
311 return false;
312 }
313
314 /* Return true for built in functions that "end" a transaction. */
315
316 bool
317 is_tm_ending_fndecl (tree fndecl)
318 {
319 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
320 switch (DECL_FUNCTION_CODE (fndecl))
321 {
322 case BUILT_IN_TM_COMMIT:
323 case BUILT_IN_TM_COMMIT_EH:
324 case BUILT_IN_TM_ABORT:
325 case BUILT_IN_TM_IRREVOCABLE:
326 return true;
327 default:
328 break;
329 }
330
331 return false;
332 }
333
334 /* Return true if STMT is a built in function call that "ends" a
335 transaction. */
336
337 bool
338 is_tm_ending (gimple stmt)
339 {
340 tree fndecl;
341
342 if (gimple_code (stmt) != GIMPLE_CALL)
343 return false;
344
345 fndecl = gimple_call_fndecl (stmt);
346 return (fndecl != NULL_TREE
347 && is_tm_ending_fndecl (fndecl));
348 }
349
350 /* Return true if STMT is a TM load. */
351
352 static bool
353 is_tm_load (gimple stmt)
354 {
355 tree fndecl;
356
357 if (gimple_code (stmt) != GIMPLE_CALL)
358 return false;
359
360 fndecl = gimple_call_fndecl (stmt);
361 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
362 && BUILTIN_TM_LOAD_P (DECL_FUNCTION_CODE (fndecl)));
363 }
364
365 /* Same as above, but for simple TM loads, that is, not the
366 after-write, after-read, etc optimized variants. */
367
368 static bool
369 is_tm_simple_load (gimple stmt)
370 {
371 tree fndecl;
372
373 if (gimple_code (stmt) != GIMPLE_CALL)
374 return false;
375
376 fndecl = gimple_call_fndecl (stmt);
377 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
378 {
379 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
380 return (fcode == BUILT_IN_TM_LOAD_1
381 || fcode == BUILT_IN_TM_LOAD_2
382 || fcode == BUILT_IN_TM_LOAD_4
383 || fcode == BUILT_IN_TM_LOAD_8
384 || fcode == BUILT_IN_TM_LOAD_FLOAT
385 || fcode == BUILT_IN_TM_LOAD_DOUBLE
386 || fcode == BUILT_IN_TM_LOAD_LDOUBLE
387 || fcode == BUILT_IN_TM_LOAD_M64
388 || fcode == BUILT_IN_TM_LOAD_M128
389 || fcode == BUILT_IN_TM_LOAD_M256);
390 }
391 return false;
392 }
393
394 /* Return true if STMT is a TM store. */
395
396 static bool
397 is_tm_store (gimple stmt)
398 {
399 tree fndecl;
400
401 if (gimple_code (stmt) != GIMPLE_CALL)
402 return false;
403
404 fndecl = gimple_call_fndecl (stmt);
405 return (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
406 && BUILTIN_TM_STORE_P (DECL_FUNCTION_CODE (fndecl)));
407 }
408
409 /* Same as above, but for simple TM stores, that is, not the
410 after-write, after-read, etc optimized variants. */
411
412 static bool
413 is_tm_simple_store (gimple stmt)
414 {
415 tree fndecl;
416
417 if (gimple_code (stmt) != GIMPLE_CALL)
418 return false;
419
420 fndecl = gimple_call_fndecl (stmt);
421 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
422 {
423 enum built_in_function fcode = DECL_FUNCTION_CODE (fndecl);
424 return (fcode == BUILT_IN_TM_STORE_1
425 || fcode == BUILT_IN_TM_STORE_2
426 || fcode == BUILT_IN_TM_STORE_4
427 || fcode == BUILT_IN_TM_STORE_8
428 || fcode == BUILT_IN_TM_STORE_FLOAT
429 || fcode == BUILT_IN_TM_STORE_DOUBLE
430 || fcode == BUILT_IN_TM_STORE_LDOUBLE
431 || fcode == BUILT_IN_TM_STORE_M64
432 || fcode == BUILT_IN_TM_STORE_M128
433 || fcode == BUILT_IN_TM_STORE_M256);
434 }
435 return false;
436 }
437
438 /* Return true if FNDECL is BUILT_IN_TM_ABORT. */
439
440 static bool
441 is_tm_abort (tree fndecl)
442 {
443 return (fndecl
444 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
445 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_TM_ABORT);
446 }
447
448 /* Build a GENERIC tree for a user abort. This is called by front ends
449 while transforming the __tm_abort statement. */
450
451 tree
452 build_tm_abort_call (location_t loc, bool is_outer)
453 {
454 return build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_TM_ABORT), 1,
455 build_int_cst (integer_type_node,
456 AR_USERABORT
457 | (is_outer ? AR_OUTERABORT : 0)));
458 }
459 \f
460 /* Map for aribtrary function replacement under TM, as created
461 by the tm_wrap attribute. */
462
463 static GTY((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
464 htab_t tm_wrap_map;
465
466 void
467 record_tm_replacement (tree from, tree to)
468 {
469 struct tree_map **slot, *h;
470
471 /* Do not inline wrapper functions that will get replaced in the TM
472 pass.
473
474 Suppose you have foo() that will get replaced into tmfoo(). Make
475 sure the inliner doesn't try to outsmart us and inline foo()
476 before we get a chance to do the TM replacement. */
477 DECL_UNINLINABLE (from) = 1;
478
479 if (tm_wrap_map == NULL)
480 tm_wrap_map = htab_create_ggc (32, tree_map_hash, tree_map_eq, 0);
481
482 h = ggc_alloc_tree_map ();
483 h->hash = htab_hash_pointer (from);
484 h->base.from = from;
485 h->to = to;
486
487 slot = (struct tree_map **)
488 htab_find_slot_with_hash (tm_wrap_map, h, h->hash, INSERT);
489 *slot = h;
490 }
491
492 /* Return a TM-aware replacement function for DECL. */
493
494 static tree
495 find_tm_replacement_function (tree fndecl)
496 {
497 if (tm_wrap_map)
498 {
499 struct tree_map *h, in;
500
501 in.base.from = fndecl;
502 in.hash = htab_hash_pointer (fndecl);
503 h = (struct tree_map *) htab_find_with_hash (tm_wrap_map, &in, in.hash);
504 if (h)
505 return h->to;
506 }
507
508 /* ??? We may well want TM versions of most of the common <string.h>
509 functions. For now, we've already these two defined. */
510 /* Adjust expand_call_tm() attributes as necessary for the cases
511 handled here: */
512 if (DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
513 switch (DECL_FUNCTION_CODE (fndecl))
514 {
515 case BUILT_IN_MEMCPY:
516 return builtin_decl_explicit (BUILT_IN_TM_MEMCPY);
517 case BUILT_IN_MEMMOVE:
518 return builtin_decl_explicit (BUILT_IN_TM_MEMMOVE);
519 case BUILT_IN_MEMSET:
520 return builtin_decl_explicit (BUILT_IN_TM_MEMSET);
521 default:
522 return NULL;
523 }
524
525 return NULL;
526 }
527
528 /* When appropriate, record TM replacement for memory allocation functions.
529
530 FROM is the FNDECL to wrap. */
531 void
532 tm_malloc_replacement (tree from)
533 {
534 const char *str;
535 tree to;
536
537 if (TREE_CODE (from) != FUNCTION_DECL)
538 return;
539
540 /* If we have a previous replacement, the user must be explicitly
541 wrapping malloc/calloc/free. They better know what they're
542 doing... */
543 if (find_tm_replacement_function (from))
544 return;
545
546 str = IDENTIFIER_POINTER (DECL_NAME (from));
547
548 if (!strcmp (str, "malloc"))
549 to = builtin_decl_explicit (BUILT_IN_TM_MALLOC);
550 else if (!strcmp (str, "calloc"))
551 to = builtin_decl_explicit (BUILT_IN_TM_CALLOC);
552 else if (!strcmp (str, "free"))
553 to = builtin_decl_explicit (BUILT_IN_TM_FREE);
554 else
555 return;
556
557 TREE_NOTHROW (to) = 0;
558
559 record_tm_replacement (from, to);
560 }
561 \f
562 /* Diagnostics for tm_safe functions/regions. Called by the front end
563 once we've lowered the function to high-gimple. */
564
565 /* Subroutine of diagnose_tm_safe_errors, called through walk_gimple_seq.
566 Process exactly one statement. WI->INFO is set to non-null when in
567 the context of a tm_safe function, and null for a __transaction block. */
568
569 #define DIAG_TM_OUTER 1
570 #define DIAG_TM_SAFE 2
571 #define DIAG_TM_RELAXED 4
572
573 struct diagnose_tm
574 {
575 unsigned int summary_flags : 8;
576 unsigned int block_flags : 8;
577 unsigned int func_flags : 8;
578 unsigned int saw_volatile : 1;
579 gimple stmt;
580 };
581
582 /* Return true if T is a volatile variable of some kind. */
583
584 static bool
585 volatile_var_p (tree t)
586 {
587 return (SSA_VAR_P (t)
588 && TREE_THIS_VOLATILE (TREE_TYPE (t)));
589 }
590
591 /* Tree callback function for diagnose_tm pass. */
592
593 static tree
594 diagnose_tm_1_op (tree *tp, int *walk_subtrees ATTRIBUTE_UNUSED,
595 void *data)
596 {
597 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
598 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
599
600 if (volatile_var_p (*tp)
601 && d->block_flags & DIAG_TM_SAFE
602 && !d->saw_volatile)
603 {
604 d->saw_volatile = 1;
605 error_at (gimple_location (d->stmt),
606 "invalid volatile use of %qD inside transaction",
607 *tp);
608 }
609
610 return NULL_TREE;
611 }
612
613 static inline bool
614 is_tm_safe_or_pure (const_tree x)
615 {
616 return is_tm_safe (x) || is_tm_pure (x);
617 }
618
619 static tree
620 diagnose_tm_1 (gimple_stmt_iterator *gsi, bool *handled_ops_p,
621 struct walk_stmt_info *wi)
622 {
623 gimple stmt = gsi_stmt (*gsi);
624 struct diagnose_tm *d = (struct diagnose_tm *) wi->info;
625
626 /* Save stmt for use in leaf analysis. */
627 d->stmt = stmt;
628
629 switch (gimple_code (stmt))
630 {
631 case GIMPLE_CALL:
632 {
633 tree fn = gimple_call_fn (stmt);
634
635 if ((d->summary_flags & DIAG_TM_OUTER) == 0
636 && is_tm_may_cancel_outer (fn))
637 error_at (gimple_location (stmt),
638 "%<transaction_may_cancel_outer%> function call not within"
639 " outer transaction or %<transaction_may_cancel_outer%>");
640
641 if (d->summary_flags & DIAG_TM_SAFE)
642 {
643 bool is_safe, direct_call_p;
644 tree replacement;
645
646 if (TREE_CODE (fn) == ADDR_EXPR
647 && TREE_CODE (TREE_OPERAND (fn, 0)) == FUNCTION_DECL)
648 {
649 direct_call_p = true;
650 replacement = TREE_OPERAND (fn, 0);
651 replacement = find_tm_replacement_function (replacement);
652 if (replacement)
653 fn = replacement;
654 }
655 else
656 {
657 direct_call_p = false;
658 replacement = NULL_TREE;
659 }
660
661 if (is_tm_safe_or_pure (fn))
662 is_safe = true;
663 else if (is_tm_callable (fn) || is_tm_irrevocable (fn))
664 {
665 /* A function explicitly marked transaction_callable as
666 opposed to transaction_safe is being defined to be
667 unsafe as part of its ABI, regardless of its contents. */
668 is_safe = false;
669 }
670 else if (direct_call_p)
671 {
672 if (IS_TYPE_OR_DECL_P (fn)
673 && flags_from_decl_or_type (fn) & ECF_TM_BUILTIN)
674 is_safe = true;
675 else if (replacement)
676 {
677 /* ??? At present we've been considering replacements
678 merely transaction_callable, and therefore might
679 enter irrevocable. The tm_wrap attribute has not
680 yet made it into the new language spec. */
681 is_safe = false;
682 }
683 else
684 {
685 /* ??? Diagnostics for unmarked direct calls moved into
686 the IPA pass. Section 3.2 of the spec details how
687 functions not marked should be considered "implicitly
688 safe" based on having examined the function body. */
689 is_safe = true;
690 }
691 }
692 else
693 {
694 /* An unmarked indirect call. Consider it unsafe even
695 though optimization may yet figure out how to inline. */
696 is_safe = false;
697 }
698
699 if (!is_safe)
700 {
701 if (TREE_CODE (fn) == ADDR_EXPR)
702 fn = TREE_OPERAND (fn, 0);
703 if (d->block_flags & DIAG_TM_SAFE)
704 {
705 if (direct_call_p)
706 error_at (gimple_location (stmt),
707 "unsafe function call %qD within "
708 "atomic transaction", fn);
709 else
710 {
711 if (!DECL_P (fn) || DECL_NAME (fn))
712 error_at (gimple_location (stmt),
713 "unsafe function call %qE within "
714 "atomic transaction", fn);
715 else
716 error_at (gimple_location (stmt),
717 "unsafe indirect function call within "
718 "atomic transaction");
719 }
720 }
721 else
722 {
723 if (direct_call_p)
724 error_at (gimple_location (stmt),
725 "unsafe function call %qD within "
726 "%<transaction_safe%> function", fn);
727 else
728 {
729 if (!DECL_P (fn) || DECL_NAME (fn))
730 error_at (gimple_location (stmt),
731 "unsafe function call %qE within "
732 "%<transaction_safe%> function", fn);
733 else
734 error_at (gimple_location (stmt),
735 "unsafe indirect function call within "
736 "%<transaction_safe%> function");
737 }
738 }
739 }
740 }
741 }
742 break;
743
744 case GIMPLE_ASM:
745 /* ??? We ought to come up with a way to add attributes to
746 asm statements, and then add "transaction_safe" to it.
747 Either that or get the language spec to resurrect __tm_waiver. */
748 if (d->block_flags & DIAG_TM_SAFE)
749 error_at (gimple_location (stmt),
750 "asm not allowed in atomic transaction");
751 else if (d->func_flags & DIAG_TM_SAFE)
752 error_at (gimple_location (stmt),
753 "asm not allowed in %<transaction_safe%> function");
754 break;
755
756 case GIMPLE_TRANSACTION:
757 {
758 unsigned char inner_flags = DIAG_TM_SAFE;
759
760 if (gimple_transaction_subcode (stmt) & GTMA_IS_RELAXED)
761 {
762 if (d->block_flags & DIAG_TM_SAFE)
763 error_at (gimple_location (stmt),
764 "relaxed transaction in atomic transaction");
765 else if (d->func_flags & DIAG_TM_SAFE)
766 error_at (gimple_location (stmt),
767 "relaxed transaction in %<transaction_safe%> function");
768 inner_flags = DIAG_TM_RELAXED;
769 }
770 else if (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER)
771 {
772 if (d->block_flags)
773 error_at (gimple_location (stmt),
774 "outer transaction in transaction");
775 else if (d->func_flags & DIAG_TM_OUTER)
776 error_at (gimple_location (stmt),
777 "outer transaction in "
778 "%<transaction_may_cancel_outer%> function");
779 else if (d->func_flags & DIAG_TM_SAFE)
780 error_at (gimple_location (stmt),
781 "outer transaction in %<transaction_safe%> function");
782 inner_flags |= DIAG_TM_OUTER;
783 }
784
785 *handled_ops_p = true;
786 if (gimple_transaction_body (stmt))
787 {
788 struct walk_stmt_info wi_inner;
789 struct diagnose_tm d_inner;
790
791 memset (&d_inner, 0, sizeof (d_inner));
792 d_inner.func_flags = d->func_flags;
793 d_inner.block_flags = d->block_flags | inner_flags;
794 d_inner.summary_flags = d_inner.func_flags | d_inner.block_flags;
795
796 memset (&wi_inner, 0, sizeof (wi_inner));
797 wi_inner.info = &d_inner;
798
799 walk_gimple_seq (gimple_transaction_body (stmt),
800 diagnose_tm_1, diagnose_tm_1_op, &wi_inner);
801 }
802 }
803 break;
804
805 default:
806 break;
807 }
808
809 return NULL_TREE;
810 }
811
812 static unsigned int
813 diagnose_tm_blocks (void)
814 {
815 struct walk_stmt_info wi;
816 struct diagnose_tm d;
817
818 memset (&d, 0, sizeof (d));
819 if (is_tm_may_cancel_outer (current_function_decl))
820 d.func_flags = DIAG_TM_OUTER | DIAG_TM_SAFE;
821 else if (is_tm_safe (current_function_decl))
822 d.func_flags = DIAG_TM_SAFE;
823 d.summary_flags = d.func_flags;
824
825 memset (&wi, 0, sizeof (wi));
826 wi.info = &d;
827
828 walk_gimple_seq (gimple_body (current_function_decl),
829 diagnose_tm_1, diagnose_tm_1_op, &wi);
830
831 return 0;
832 }
833
834 namespace {
835
836 const pass_data pass_data_diagnose_tm_blocks =
837 {
838 GIMPLE_PASS, /* type */
839 "*diagnose_tm_blocks", /* name */
840 OPTGROUP_NONE, /* optinfo_flags */
841 true, /* has_execute */
842 TV_TRANS_MEM, /* tv_id */
843 PROP_gimple_any, /* properties_required */
844 0, /* properties_provided */
845 0, /* properties_destroyed */
846 0, /* todo_flags_start */
847 0, /* todo_flags_finish */
848 };
849
850 class pass_diagnose_tm_blocks : public gimple_opt_pass
851 {
852 public:
853 pass_diagnose_tm_blocks (gcc::context *ctxt)
854 : gimple_opt_pass (pass_data_diagnose_tm_blocks, ctxt)
855 {}
856
857 /* opt_pass methods: */
858 virtual bool gate (function *) { return flag_tm; }
859 virtual unsigned int execute (function *) { return diagnose_tm_blocks (); }
860
861 }; // class pass_diagnose_tm_blocks
862
863 } // anon namespace
864
865 gimple_opt_pass *
866 make_pass_diagnose_tm_blocks (gcc::context *ctxt)
867 {
868 return new pass_diagnose_tm_blocks (ctxt);
869 }
870 \f
871 /* Instead of instrumenting thread private memory, we save the
872 addresses in a log which we later use to save/restore the addresses
873 upon transaction start/restart.
874
875 The log is keyed by address, where each element contains individual
876 statements among different code paths that perform the store.
877
878 This log is later used to generate either plain save/restore of the
879 addresses upon transaction start/restart, or calls to the ITM_L*
880 logging functions.
881
882 So for something like:
883
884 struct large { int x[1000]; };
885 struct large lala = { 0 };
886 __transaction {
887 lala.x[i] = 123;
888 ...
889 }
890
891 We can either save/restore:
892
893 lala = { 0 };
894 trxn = _ITM_startTransaction ();
895 if (trxn & a_saveLiveVariables)
896 tmp_lala1 = lala.x[i];
897 else if (a & a_restoreLiveVariables)
898 lala.x[i] = tmp_lala1;
899
900 or use the logging functions:
901
902 lala = { 0 };
903 trxn = _ITM_startTransaction ();
904 _ITM_LU4 (&lala.x[i]);
905
906 Obviously, if we use _ITM_L* to log, we prefer to call _ITM_L* as
907 far up the dominator tree to shadow all of the writes to a given
908 location (thus reducing the total number of logging calls), but not
909 so high as to be called on a path that does not perform a
910 write. */
911
912 /* One individual log entry. We may have multiple statements for the
913 same location if neither dominate each other (on different
914 execution paths). */
915 typedef struct tm_log_entry
916 {
917 /* Address to save. */
918 tree addr;
919 /* Entry block for the transaction this address occurs in. */
920 basic_block entry_block;
921 /* Dominating statements the store occurs in. */
922 gimple_vec stmts;
923 /* Initially, while we are building the log, we place a nonzero
924 value here to mean that this address *will* be saved with a
925 save/restore sequence. Later, when generating the save sequence
926 we place the SSA temp generated here. */
927 tree save_var;
928 } *tm_log_entry_t;
929
930
931 /* Log entry hashtable helpers. */
932
933 struct log_entry_hasher
934 {
935 typedef tm_log_entry value_type;
936 typedef tm_log_entry compare_type;
937 static inline hashval_t hash (const value_type *);
938 static inline bool equal (const value_type *, const compare_type *);
939 static inline void remove (value_type *);
940 };
941
942 /* Htab support. Return hash value for a `tm_log_entry'. */
943 inline hashval_t
944 log_entry_hasher::hash (const value_type *log)
945 {
946 return iterative_hash_expr (log->addr, 0);
947 }
948
949 /* Htab support. Return true if two log entries are the same. */
950 inline bool
951 log_entry_hasher::equal (const value_type *log1, const compare_type *log2)
952 {
953 /* FIXME:
954
955 rth: I suggest that we get rid of the component refs etc.
956 I.e. resolve the reference to base + offset.
957
958 We may need to actually finish a merge with mainline for this,
959 since we'd like to be presented with Richi's MEM_REF_EXPRs more
960 often than not. But in the meantime your tm_log_entry could save
961 the results of get_inner_reference.
962
963 See: g++.dg/tm/pr46653.C
964 */
965
966 /* Special case plain equality because operand_equal_p() below will
967 return FALSE if the addresses are equal but they have
968 side-effects (e.g. a volatile address). */
969 if (log1->addr == log2->addr)
970 return true;
971
972 return operand_equal_p (log1->addr, log2->addr, 0);
973 }
974
975 /* Htab support. Free one tm_log_entry. */
976 inline void
977 log_entry_hasher::remove (value_type *lp)
978 {
979 lp->stmts.release ();
980 free (lp);
981 }
982
983
984 /* The actual log. */
985 static hash_table <log_entry_hasher> tm_log;
986
987 /* Addresses to log with a save/restore sequence. These should be in
988 dominator order. */
989 static vec<tree> tm_log_save_addresses;
990
991 enum thread_memory_type
992 {
993 mem_non_local = 0,
994 mem_thread_local,
995 mem_transaction_local,
996 mem_max
997 };
998
999 typedef struct tm_new_mem_map
1000 {
1001 /* SSA_NAME being dereferenced. */
1002 tree val;
1003 enum thread_memory_type local_new_memory;
1004 } tm_new_mem_map_t;
1005
1006 /* Hashtable helpers. */
1007
1008 struct tm_mem_map_hasher : typed_free_remove <tm_new_mem_map_t>
1009 {
1010 typedef tm_new_mem_map_t value_type;
1011 typedef tm_new_mem_map_t compare_type;
1012 static inline hashval_t hash (const value_type *);
1013 static inline bool equal (const value_type *, const compare_type *);
1014 };
1015
1016 inline hashval_t
1017 tm_mem_map_hasher::hash (const value_type *v)
1018 {
1019 return (intptr_t)v->val >> 4;
1020 }
1021
1022 inline bool
1023 tm_mem_map_hasher::equal (const value_type *v, const compare_type *c)
1024 {
1025 return v->val == c->val;
1026 }
1027
1028 /* Map for an SSA_NAME originally pointing to a non aliased new piece
1029 of memory (malloc, alloc, etc). */
1030 static hash_table <tm_mem_map_hasher> tm_new_mem_hash;
1031
1032 /* Initialize logging data structures. */
1033 static void
1034 tm_log_init (void)
1035 {
1036 tm_log.create (10);
1037 tm_new_mem_hash.create (5);
1038 tm_log_save_addresses.create (5);
1039 }
1040
1041 /* Free logging data structures. */
1042 static void
1043 tm_log_delete (void)
1044 {
1045 tm_log.dispose ();
1046 tm_new_mem_hash.dispose ();
1047 tm_log_save_addresses.release ();
1048 }
1049
1050 /* Return true if MEM is a transaction invariant memory for the TM
1051 region starting at REGION_ENTRY_BLOCK. */
1052 static bool
1053 transaction_invariant_address_p (const_tree mem, basic_block region_entry_block)
1054 {
1055 if ((TREE_CODE (mem) == INDIRECT_REF || TREE_CODE (mem) == MEM_REF)
1056 && TREE_CODE (TREE_OPERAND (mem, 0)) == SSA_NAME)
1057 {
1058 basic_block def_bb;
1059
1060 def_bb = gimple_bb (SSA_NAME_DEF_STMT (TREE_OPERAND (mem, 0)));
1061 return def_bb != region_entry_block
1062 && dominated_by_p (CDI_DOMINATORS, region_entry_block, def_bb);
1063 }
1064
1065 mem = strip_invariant_refs (mem);
1066 return mem && (CONSTANT_CLASS_P (mem) || decl_address_invariant_p (mem));
1067 }
1068
1069 /* Given an address ADDR in STMT, find it in the memory log or add it,
1070 making sure to keep only the addresses highest in the dominator
1071 tree.
1072
1073 ENTRY_BLOCK is the entry_block for the transaction.
1074
1075 If we find the address in the log, make sure it's either the same
1076 address, or an equivalent one that dominates ADDR.
1077
1078 If we find the address, but neither ADDR dominates the found
1079 address, nor the found one dominates ADDR, we're on different
1080 execution paths. Add it.
1081
1082 If known, ENTRY_BLOCK is the entry block for the region, otherwise
1083 NULL. */
1084 static void
1085 tm_log_add (basic_block entry_block, tree addr, gimple stmt)
1086 {
1087 tm_log_entry **slot;
1088 struct tm_log_entry l, *lp;
1089
1090 l.addr = addr;
1091 slot = tm_log.find_slot (&l, INSERT);
1092 if (!*slot)
1093 {
1094 tree type = TREE_TYPE (addr);
1095
1096 lp = XNEW (struct tm_log_entry);
1097 lp->addr = addr;
1098 *slot = lp;
1099
1100 /* Small invariant addresses can be handled as save/restores. */
1101 if (entry_block
1102 && transaction_invariant_address_p (lp->addr, entry_block)
1103 && TYPE_SIZE_UNIT (type) != NULL
1104 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type))
1105 && ((HOST_WIDE_INT) tree_to_uhwi (TYPE_SIZE_UNIT (type))
1106 < PARAM_VALUE (PARAM_TM_MAX_AGGREGATE_SIZE))
1107 /* We must be able to copy this type normally. I.e., no
1108 special constructors and the like. */
1109 && !TREE_ADDRESSABLE (type))
1110 {
1111 lp->save_var = create_tmp_reg (TREE_TYPE (lp->addr), "tm_save");
1112 lp->stmts.create (0);
1113 lp->entry_block = entry_block;
1114 /* Save addresses separately in dominator order so we don't
1115 get confused by overlapping addresses in the save/restore
1116 sequence. */
1117 tm_log_save_addresses.safe_push (lp->addr);
1118 }
1119 else
1120 {
1121 /* Use the logging functions. */
1122 lp->stmts.create (5);
1123 lp->stmts.quick_push (stmt);
1124 lp->save_var = NULL;
1125 }
1126 }
1127 else
1128 {
1129 size_t i;
1130 gimple oldstmt;
1131
1132 lp = *slot;
1133
1134 /* If we're generating a save/restore sequence, we don't care
1135 about statements. */
1136 if (lp->save_var)
1137 return;
1138
1139 for (i = 0; lp->stmts.iterate (i, &oldstmt); ++i)
1140 {
1141 if (stmt == oldstmt)
1142 return;
1143 /* We already have a store to the same address, higher up the
1144 dominator tree. Nothing to do. */
1145 if (dominated_by_p (CDI_DOMINATORS,
1146 gimple_bb (stmt), gimple_bb (oldstmt)))
1147 return;
1148 /* We should be processing blocks in dominator tree order. */
1149 gcc_assert (!dominated_by_p (CDI_DOMINATORS,
1150 gimple_bb (oldstmt), gimple_bb (stmt)));
1151 }
1152 /* Store is on a different code path. */
1153 lp->stmts.safe_push (stmt);
1154 }
1155 }
1156
1157 /* Gimplify the address of a TARGET_MEM_REF. Return the SSA_NAME
1158 result, insert the new statements before GSI. */
1159
1160 static tree
1161 gimplify_addr (gimple_stmt_iterator *gsi, tree x)
1162 {
1163 if (TREE_CODE (x) == TARGET_MEM_REF)
1164 x = tree_mem_ref_addr (build_pointer_type (TREE_TYPE (x)), x);
1165 else
1166 x = build_fold_addr_expr (x);
1167 return force_gimple_operand_gsi (gsi, x, true, NULL, true, GSI_SAME_STMT);
1168 }
1169
1170 /* Instrument one address with the logging functions.
1171 ADDR is the address to save.
1172 STMT is the statement before which to place it. */
1173 static void
1174 tm_log_emit_stmt (tree addr, gimple stmt)
1175 {
1176 tree type = TREE_TYPE (addr);
1177 tree size = TYPE_SIZE_UNIT (type);
1178 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
1179 gimple log;
1180 enum built_in_function code = BUILT_IN_TM_LOG;
1181
1182 if (type == float_type_node)
1183 code = BUILT_IN_TM_LOG_FLOAT;
1184 else if (type == double_type_node)
1185 code = BUILT_IN_TM_LOG_DOUBLE;
1186 else if (type == long_double_type_node)
1187 code = BUILT_IN_TM_LOG_LDOUBLE;
1188 else if (tree_fits_uhwi_p (size))
1189 {
1190 unsigned int n = tree_to_uhwi (size);
1191 switch (n)
1192 {
1193 case 1:
1194 code = BUILT_IN_TM_LOG_1;
1195 break;
1196 case 2:
1197 code = BUILT_IN_TM_LOG_2;
1198 break;
1199 case 4:
1200 code = BUILT_IN_TM_LOG_4;
1201 break;
1202 case 8:
1203 code = BUILT_IN_TM_LOG_8;
1204 break;
1205 default:
1206 code = BUILT_IN_TM_LOG;
1207 if (TREE_CODE (type) == VECTOR_TYPE)
1208 {
1209 if (n == 8 && builtin_decl_explicit (BUILT_IN_TM_LOG_M64))
1210 code = BUILT_IN_TM_LOG_M64;
1211 else if (n == 16 && builtin_decl_explicit (BUILT_IN_TM_LOG_M128))
1212 code = BUILT_IN_TM_LOG_M128;
1213 else if (n == 32 && builtin_decl_explicit (BUILT_IN_TM_LOG_M256))
1214 code = BUILT_IN_TM_LOG_M256;
1215 }
1216 break;
1217 }
1218 }
1219
1220 addr = gimplify_addr (&gsi, addr);
1221 if (code == BUILT_IN_TM_LOG)
1222 log = gimple_build_call (builtin_decl_explicit (code), 2, addr, size);
1223 else
1224 log = gimple_build_call (builtin_decl_explicit (code), 1, addr);
1225 gsi_insert_before (&gsi, log, GSI_SAME_STMT);
1226 }
1227
1228 /* Go through the log and instrument address that must be instrumented
1229 with the logging functions. Leave the save/restore addresses for
1230 later. */
1231 static void
1232 tm_log_emit (void)
1233 {
1234 hash_table <log_entry_hasher>::iterator hi;
1235 struct tm_log_entry *lp;
1236
1237 FOR_EACH_HASH_TABLE_ELEMENT (tm_log, lp, tm_log_entry_t, hi)
1238 {
1239 size_t i;
1240 gimple stmt;
1241
1242 if (dump_file)
1243 {
1244 fprintf (dump_file, "TM thread private mem logging: ");
1245 print_generic_expr (dump_file, lp->addr, 0);
1246 fprintf (dump_file, "\n");
1247 }
1248
1249 if (lp->save_var)
1250 {
1251 if (dump_file)
1252 fprintf (dump_file, "DUMPING to variable\n");
1253 continue;
1254 }
1255 else
1256 {
1257 if (dump_file)
1258 fprintf (dump_file, "DUMPING with logging functions\n");
1259 for (i = 0; lp->stmts.iterate (i, &stmt); ++i)
1260 tm_log_emit_stmt (lp->addr, stmt);
1261 }
1262 }
1263 }
1264
1265 /* Emit the save sequence for the corresponding addresses in the log.
1266 ENTRY_BLOCK is the entry block for the transaction.
1267 BB is the basic block to insert the code in. */
1268 static void
1269 tm_log_emit_saves (basic_block entry_block, basic_block bb)
1270 {
1271 size_t i;
1272 gimple_stmt_iterator gsi = gsi_last_bb (bb);
1273 gimple stmt;
1274 struct tm_log_entry l, *lp;
1275
1276 for (i = 0; i < tm_log_save_addresses.length (); ++i)
1277 {
1278 l.addr = tm_log_save_addresses[i];
1279 lp = *(tm_log.find_slot (&l, NO_INSERT));
1280 gcc_assert (lp->save_var != NULL);
1281
1282 /* We only care about variables in the current transaction. */
1283 if (lp->entry_block != entry_block)
1284 continue;
1285
1286 stmt = gimple_build_assign (lp->save_var, unshare_expr (lp->addr));
1287
1288 /* Make sure we can create an SSA_NAME for this type. For
1289 instance, aggregates aren't allowed, in which case the system
1290 will create a VOP for us and everything will just work. */
1291 if (is_gimple_reg_type (TREE_TYPE (lp->save_var)))
1292 {
1293 lp->save_var = make_ssa_name (lp->save_var, stmt);
1294 gimple_assign_set_lhs (stmt, lp->save_var);
1295 }
1296
1297 gsi_insert_before (&gsi, stmt, GSI_SAME_STMT);
1298 }
1299 }
1300
1301 /* Emit the restore sequence for the corresponding addresses in the log.
1302 ENTRY_BLOCK is the entry block for the transaction.
1303 BB is the basic block to insert the code in. */
1304 static void
1305 tm_log_emit_restores (basic_block entry_block, basic_block bb)
1306 {
1307 int i;
1308 struct tm_log_entry l, *lp;
1309 gimple_stmt_iterator gsi;
1310 gimple stmt;
1311
1312 for (i = tm_log_save_addresses.length () - 1; i >= 0; i--)
1313 {
1314 l.addr = tm_log_save_addresses[i];
1315 lp = *(tm_log.find_slot (&l, NO_INSERT));
1316 gcc_assert (lp->save_var != NULL);
1317
1318 /* We only care about variables in the current transaction. */
1319 if (lp->entry_block != entry_block)
1320 continue;
1321
1322 /* Restores are in LIFO order from the saves in case we have
1323 overlaps. */
1324 gsi = gsi_start_bb (bb);
1325
1326 stmt = gimple_build_assign (unshare_expr (lp->addr), lp->save_var);
1327 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1328 }
1329 }
1330
1331 \f
1332 static tree lower_sequence_tm (gimple_stmt_iterator *, bool *,
1333 struct walk_stmt_info *);
1334 static tree lower_sequence_no_tm (gimple_stmt_iterator *, bool *,
1335 struct walk_stmt_info *);
1336
1337 /* Evaluate an address X being dereferenced and determine if it
1338 originally points to a non aliased new chunk of memory (malloc,
1339 alloca, etc).
1340
1341 Return MEM_THREAD_LOCAL if it points to a thread-local address.
1342 Return MEM_TRANSACTION_LOCAL if it points to a transaction-local address.
1343 Return MEM_NON_LOCAL otherwise.
1344
1345 ENTRY_BLOCK is the entry block to the transaction containing the
1346 dereference of X. */
1347 static enum thread_memory_type
1348 thread_private_new_memory (basic_block entry_block, tree x)
1349 {
1350 gimple stmt = NULL;
1351 enum tree_code code;
1352 tm_new_mem_map_t **slot;
1353 tm_new_mem_map_t elt, *elt_p;
1354 tree val = x;
1355 enum thread_memory_type retval = mem_transaction_local;
1356
1357 if (!entry_block
1358 || TREE_CODE (x) != SSA_NAME
1359 /* Possible uninitialized use, or a function argument. In
1360 either case, we don't care. */
1361 || SSA_NAME_IS_DEFAULT_DEF (x))
1362 return mem_non_local;
1363
1364 /* Look in cache first. */
1365 elt.val = x;
1366 slot = tm_new_mem_hash.find_slot (&elt, INSERT);
1367 elt_p = *slot;
1368 if (elt_p)
1369 return elt_p->local_new_memory;
1370
1371 /* Optimistically assume the memory is transaction local during
1372 processing. This catches recursion into this variable. */
1373 *slot = elt_p = XNEW (tm_new_mem_map_t);
1374 elt_p->val = val;
1375 elt_p->local_new_memory = mem_transaction_local;
1376
1377 /* Search DEF chain to find the original definition of this address. */
1378 do
1379 {
1380 if (ptr_deref_may_alias_global_p (x))
1381 {
1382 /* Address escapes. This is not thread-private. */
1383 retval = mem_non_local;
1384 goto new_memory_ret;
1385 }
1386
1387 stmt = SSA_NAME_DEF_STMT (x);
1388
1389 /* If the malloc call is outside the transaction, this is
1390 thread-local. */
1391 if (retval != mem_thread_local
1392 && !dominated_by_p (CDI_DOMINATORS, gimple_bb (stmt), entry_block))
1393 retval = mem_thread_local;
1394
1395 if (is_gimple_assign (stmt))
1396 {
1397 code = gimple_assign_rhs_code (stmt);
1398 /* x = foo ==> foo */
1399 if (code == SSA_NAME)
1400 x = gimple_assign_rhs1 (stmt);
1401 /* x = foo + n ==> foo */
1402 else if (code == POINTER_PLUS_EXPR)
1403 x = gimple_assign_rhs1 (stmt);
1404 /* x = (cast*) foo ==> foo */
1405 else if (code == VIEW_CONVERT_EXPR || code == NOP_EXPR)
1406 x = gimple_assign_rhs1 (stmt);
1407 /* x = c ? op1 : op2 == > op1 or op2 just like a PHI */
1408 else if (code == COND_EXPR)
1409 {
1410 tree op1 = gimple_assign_rhs2 (stmt);
1411 tree op2 = gimple_assign_rhs3 (stmt);
1412 enum thread_memory_type mem;
1413 retval = thread_private_new_memory (entry_block, op1);
1414 if (retval == mem_non_local)
1415 goto new_memory_ret;
1416 mem = thread_private_new_memory (entry_block, op2);
1417 retval = MIN (retval, mem);
1418 goto new_memory_ret;
1419 }
1420 else
1421 {
1422 retval = mem_non_local;
1423 goto new_memory_ret;
1424 }
1425 }
1426 else
1427 {
1428 if (gimple_code (stmt) == GIMPLE_PHI)
1429 {
1430 unsigned int i;
1431 enum thread_memory_type mem;
1432 tree phi_result = gimple_phi_result (stmt);
1433
1434 /* If any of the ancestors are non-local, we are sure to
1435 be non-local. Otherwise we can avoid doing anything
1436 and inherit what has already been generated. */
1437 retval = mem_max;
1438 for (i = 0; i < gimple_phi_num_args (stmt); ++i)
1439 {
1440 tree op = PHI_ARG_DEF (stmt, i);
1441
1442 /* Exclude self-assignment. */
1443 if (phi_result == op)
1444 continue;
1445
1446 mem = thread_private_new_memory (entry_block, op);
1447 if (mem == mem_non_local)
1448 {
1449 retval = mem;
1450 goto new_memory_ret;
1451 }
1452 retval = MIN (retval, mem);
1453 }
1454 goto new_memory_ret;
1455 }
1456 break;
1457 }
1458 }
1459 while (TREE_CODE (x) == SSA_NAME);
1460
1461 if (stmt && is_gimple_call (stmt) && gimple_call_flags (stmt) & ECF_MALLOC)
1462 /* Thread-local or transaction-local. */
1463 ;
1464 else
1465 retval = mem_non_local;
1466
1467 new_memory_ret:
1468 elt_p->local_new_memory = retval;
1469 return retval;
1470 }
1471
1472 /* Determine whether X has to be instrumented using a read
1473 or write barrier.
1474
1475 ENTRY_BLOCK is the entry block for the region where stmt resides
1476 in. NULL if unknown.
1477
1478 STMT is the statement in which X occurs in. It is used for thread
1479 private memory instrumentation. If no TPM instrumentation is
1480 desired, STMT should be null. */
1481 static bool
1482 requires_barrier (basic_block entry_block, tree x, gimple stmt)
1483 {
1484 tree orig = x;
1485 while (handled_component_p (x))
1486 x = TREE_OPERAND (x, 0);
1487
1488 switch (TREE_CODE (x))
1489 {
1490 case INDIRECT_REF:
1491 case MEM_REF:
1492 {
1493 enum thread_memory_type ret;
1494
1495 ret = thread_private_new_memory (entry_block, TREE_OPERAND (x, 0));
1496 if (ret == mem_non_local)
1497 return true;
1498 if (stmt && ret == mem_thread_local)
1499 /* ?? Should we pass `orig', or the INDIRECT_REF X. ?? */
1500 tm_log_add (entry_block, orig, stmt);
1501
1502 /* Transaction-locals require nothing at all. For malloc, a
1503 transaction restart frees the memory and we reallocate.
1504 For alloca, the stack pointer gets reset by the retry and
1505 we reallocate. */
1506 return false;
1507 }
1508
1509 case TARGET_MEM_REF:
1510 if (TREE_CODE (TMR_BASE (x)) != ADDR_EXPR)
1511 return true;
1512 x = TREE_OPERAND (TMR_BASE (x), 0);
1513 if (TREE_CODE (x) == PARM_DECL)
1514 return false;
1515 gcc_assert (TREE_CODE (x) == VAR_DECL);
1516 /* FALLTHRU */
1517
1518 case PARM_DECL:
1519 case RESULT_DECL:
1520 case VAR_DECL:
1521 if (DECL_BY_REFERENCE (x))
1522 {
1523 /* ??? This value is a pointer, but aggregate_value_p has been
1524 jigged to return true which confuses needs_to_live_in_memory.
1525 This ought to be cleaned up generically.
1526
1527 FIXME: Verify this still happens after the next mainline
1528 merge. Testcase ie g++.dg/tm/pr47554.C.
1529 */
1530 return false;
1531 }
1532
1533 if (is_global_var (x))
1534 return !TREE_READONLY (x);
1535 if (/* FIXME: This condition should actually go below in the
1536 tm_log_add() call, however is_call_clobbered() depends on
1537 aliasing info which is not available during
1538 gimplification. Since requires_barrier() gets called
1539 during lower_sequence_tm/gimplification, leave the call
1540 to needs_to_live_in_memory until we eliminate
1541 lower_sequence_tm altogether. */
1542 needs_to_live_in_memory (x))
1543 return true;
1544 else
1545 {
1546 /* For local memory that doesn't escape (aka thread private
1547 memory), we can either save the value at the beginning of
1548 the transaction and restore on restart, or call a tm
1549 function to dynamically save and restore on restart
1550 (ITM_L*). */
1551 if (stmt)
1552 tm_log_add (entry_block, orig, stmt);
1553 return false;
1554 }
1555
1556 default:
1557 return false;
1558 }
1559 }
1560
1561 /* Mark the GIMPLE_ASSIGN statement as appropriate for being inside
1562 a transaction region. */
1563
1564 static void
1565 examine_assign_tm (unsigned *state, gimple_stmt_iterator *gsi)
1566 {
1567 gimple stmt = gsi_stmt (*gsi);
1568
1569 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_rhs1 (stmt), NULL))
1570 *state |= GTMA_HAVE_LOAD;
1571 if (requires_barrier (/*entry_block=*/NULL, gimple_assign_lhs (stmt), NULL))
1572 *state |= GTMA_HAVE_STORE;
1573 }
1574
1575 /* Mark a GIMPLE_CALL as appropriate for being inside a transaction. */
1576
1577 static void
1578 examine_call_tm (unsigned *state, gimple_stmt_iterator *gsi)
1579 {
1580 gimple stmt = gsi_stmt (*gsi);
1581 tree fn;
1582
1583 if (is_tm_pure_call (stmt))
1584 return;
1585
1586 /* Check if this call is a transaction abort. */
1587 fn = gimple_call_fndecl (stmt);
1588 if (is_tm_abort (fn))
1589 *state |= GTMA_HAVE_ABORT;
1590
1591 /* Note that something may happen. */
1592 *state |= GTMA_HAVE_LOAD | GTMA_HAVE_STORE;
1593 }
1594
1595 /* Lower a GIMPLE_TRANSACTION statement. */
1596
1597 static void
1598 lower_transaction (gimple_stmt_iterator *gsi, struct walk_stmt_info *wi)
1599 {
1600 gimple g, stmt = gsi_stmt (*gsi);
1601 unsigned int *outer_state = (unsigned int *) wi->info;
1602 unsigned int this_state = 0;
1603 struct walk_stmt_info this_wi;
1604
1605 /* First, lower the body. The scanning that we do inside gives
1606 us some idea of what we're dealing with. */
1607 memset (&this_wi, 0, sizeof (this_wi));
1608 this_wi.info = (void *) &this_state;
1609 walk_gimple_seq_mod (gimple_transaction_body_ptr (stmt),
1610 lower_sequence_tm, NULL, &this_wi);
1611
1612 /* If there was absolutely nothing transaction related inside the
1613 transaction, we may elide it. Likewise if this is a nested
1614 transaction and does not contain an abort. */
1615 if (this_state == 0
1616 || (!(this_state & GTMA_HAVE_ABORT) && outer_state != NULL))
1617 {
1618 if (outer_state)
1619 *outer_state |= this_state;
1620
1621 gsi_insert_seq_before (gsi, gimple_transaction_body (stmt),
1622 GSI_SAME_STMT);
1623 gimple_transaction_set_body (stmt, NULL);
1624
1625 gsi_remove (gsi, true);
1626 wi->removed_stmt = true;
1627 return;
1628 }
1629
1630 /* Wrap the body of the transaction in a try-finally node so that
1631 the commit call is always properly called. */
1632 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT), 0);
1633 if (flag_exceptions)
1634 {
1635 tree ptr;
1636 gimple_seq n_seq, e_seq;
1637
1638 n_seq = gimple_seq_alloc_with_stmt (g);
1639 e_seq = NULL;
1640
1641 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_EH_POINTER),
1642 1, integer_zero_node);
1643 ptr = create_tmp_var (ptr_type_node, NULL);
1644 gimple_call_set_lhs (g, ptr);
1645 gimple_seq_add_stmt (&e_seq, g);
1646
1647 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_COMMIT_EH),
1648 1, ptr);
1649 gimple_seq_add_stmt (&e_seq, g);
1650
1651 g = gimple_build_eh_else (n_seq, e_seq);
1652 }
1653
1654 g = gimple_build_try (gimple_transaction_body (stmt),
1655 gimple_seq_alloc_with_stmt (g), GIMPLE_TRY_FINALLY);
1656 gsi_insert_after (gsi, g, GSI_CONTINUE_LINKING);
1657
1658 gimple_transaction_set_body (stmt, NULL);
1659
1660 /* If the transaction calls abort or if this is an outer transaction,
1661 add an "over" label afterwards. */
1662 if ((this_state & (GTMA_HAVE_ABORT))
1663 || (gimple_transaction_subcode (stmt) & GTMA_IS_OUTER))
1664 {
1665 tree label = create_artificial_label (UNKNOWN_LOCATION);
1666 gimple_transaction_set_label (stmt, label);
1667 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
1668 }
1669
1670 /* Record the set of operations found for use later. */
1671 this_state |= gimple_transaction_subcode (stmt) & GTMA_DECLARATION_MASK;
1672 gimple_transaction_set_subcode (stmt, this_state);
1673 }
1674
1675 /* Iterate through the statements in the sequence, lowering them all
1676 as appropriate for being in a transaction. */
1677
1678 static tree
1679 lower_sequence_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1680 struct walk_stmt_info *wi)
1681 {
1682 unsigned int *state = (unsigned int *) wi->info;
1683 gimple stmt = gsi_stmt (*gsi);
1684
1685 *handled_ops_p = true;
1686 switch (gimple_code (stmt))
1687 {
1688 case GIMPLE_ASSIGN:
1689 /* Only memory reads/writes need to be instrumented. */
1690 if (gimple_assign_single_p (stmt))
1691 examine_assign_tm (state, gsi);
1692 break;
1693
1694 case GIMPLE_CALL:
1695 examine_call_tm (state, gsi);
1696 break;
1697
1698 case GIMPLE_ASM:
1699 *state |= GTMA_MAY_ENTER_IRREVOCABLE;
1700 break;
1701
1702 case GIMPLE_TRANSACTION:
1703 lower_transaction (gsi, wi);
1704 break;
1705
1706 default:
1707 *handled_ops_p = !gimple_has_substatements (stmt);
1708 break;
1709 }
1710
1711 return NULL_TREE;
1712 }
1713
1714 /* Iterate through the statements in the sequence, lowering them all
1715 as appropriate for being outside of a transaction. */
1716
1717 static tree
1718 lower_sequence_no_tm (gimple_stmt_iterator *gsi, bool *handled_ops_p,
1719 struct walk_stmt_info * wi)
1720 {
1721 gimple stmt = gsi_stmt (*gsi);
1722
1723 if (gimple_code (stmt) == GIMPLE_TRANSACTION)
1724 {
1725 *handled_ops_p = true;
1726 lower_transaction (gsi, wi);
1727 }
1728 else
1729 *handled_ops_p = !gimple_has_substatements (stmt);
1730
1731 return NULL_TREE;
1732 }
1733
1734 /* Main entry point for flattening GIMPLE_TRANSACTION constructs. After
1735 this, GIMPLE_TRANSACTION nodes still exist, but the nested body has
1736 been moved out, and all the data required for constructing a proper
1737 CFG has been recorded. */
1738
1739 static unsigned int
1740 execute_lower_tm (void)
1741 {
1742 struct walk_stmt_info wi;
1743 gimple_seq body;
1744
1745 /* Transactional clones aren't created until a later pass. */
1746 gcc_assert (!decl_is_tm_clone (current_function_decl));
1747
1748 body = gimple_body (current_function_decl);
1749 memset (&wi, 0, sizeof (wi));
1750 walk_gimple_seq_mod (&body, lower_sequence_no_tm, NULL, &wi);
1751 gimple_set_body (current_function_decl, body);
1752
1753 return 0;
1754 }
1755
1756 namespace {
1757
1758 const pass_data pass_data_lower_tm =
1759 {
1760 GIMPLE_PASS, /* type */
1761 "tmlower", /* name */
1762 OPTGROUP_NONE, /* optinfo_flags */
1763 true, /* has_execute */
1764 TV_TRANS_MEM, /* tv_id */
1765 PROP_gimple_lcf, /* properties_required */
1766 0, /* properties_provided */
1767 0, /* properties_destroyed */
1768 0, /* todo_flags_start */
1769 0, /* todo_flags_finish */
1770 };
1771
1772 class pass_lower_tm : public gimple_opt_pass
1773 {
1774 public:
1775 pass_lower_tm (gcc::context *ctxt)
1776 : gimple_opt_pass (pass_data_lower_tm, ctxt)
1777 {}
1778
1779 /* opt_pass methods: */
1780 virtual bool gate (function *) { return flag_tm; }
1781 virtual unsigned int execute (function *) { return execute_lower_tm (); }
1782
1783 }; // class pass_lower_tm
1784
1785 } // anon namespace
1786
1787 gimple_opt_pass *
1788 make_pass_lower_tm (gcc::context *ctxt)
1789 {
1790 return new pass_lower_tm (ctxt);
1791 }
1792 \f
1793 /* Collect region information for each transaction. */
1794
1795 struct tm_region
1796 {
1797 /* Link to the next unnested transaction. */
1798 struct tm_region *next;
1799
1800 /* Link to the next inner transaction. */
1801 struct tm_region *inner;
1802
1803 /* Link to the next outer transaction. */
1804 struct tm_region *outer;
1805
1806 /* The GIMPLE_TRANSACTION statement beginning this transaction.
1807 After TM_MARK, this gets replaced by a call to
1808 BUILT_IN_TM_START. */
1809 gimple transaction_stmt;
1810
1811 /* After TM_MARK expands the GIMPLE_TRANSACTION into a call to
1812 BUILT_IN_TM_START, this field is true if the transaction is an
1813 outer transaction. */
1814 bool original_transaction_was_outer;
1815
1816 /* Return value from BUILT_IN_TM_START. */
1817 tree tm_state;
1818
1819 /* The entry block to this region. This will always be the first
1820 block of the body of the transaction. */
1821 basic_block entry_block;
1822
1823 /* The first block after an expanded call to _ITM_beginTransaction. */
1824 basic_block restart_block;
1825
1826 /* The set of all blocks that end the region; NULL if only EXIT_BLOCK.
1827 These blocks are still a part of the region (i.e., the border is
1828 inclusive). Note that this set is only complete for paths in the CFG
1829 starting at ENTRY_BLOCK, and that there is no exit block recorded for
1830 the edge to the "over" label. */
1831 bitmap exit_blocks;
1832
1833 /* The set of all blocks that have an TM_IRREVOCABLE call. */
1834 bitmap irr_blocks;
1835 };
1836
1837 typedef struct tm_region *tm_region_p;
1838
1839 /* True if there are pending edge statements to be committed for the
1840 current function being scanned in the tmmark pass. */
1841 bool pending_edge_inserts_p;
1842
1843 static struct tm_region *all_tm_regions;
1844 static bitmap_obstack tm_obstack;
1845
1846
1847 /* A subroutine of tm_region_init. Record the existence of the
1848 GIMPLE_TRANSACTION statement in a tree of tm_region elements. */
1849
1850 static struct tm_region *
1851 tm_region_init_0 (struct tm_region *outer, basic_block bb, gimple stmt)
1852 {
1853 struct tm_region *region;
1854
1855 region = (struct tm_region *)
1856 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
1857
1858 if (outer)
1859 {
1860 region->next = outer->inner;
1861 outer->inner = region;
1862 }
1863 else
1864 {
1865 region->next = all_tm_regions;
1866 all_tm_regions = region;
1867 }
1868 region->inner = NULL;
1869 region->outer = outer;
1870
1871 region->transaction_stmt = stmt;
1872 region->original_transaction_was_outer = false;
1873 region->tm_state = NULL;
1874
1875 /* There are either one or two edges out of the block containing
1876 the GIMPLE_TRANSACTION, one to the actual region and one to the
1877 "over" label if the region contains an abort. The former will
1878 always be the one marked FALLTHRU. */
1879 region->entry_block = FALLTHRU_EDGE (bb)->dest;
1880
1881 region->exit_blocks = BITMAP_ALLOC (&tm_obstack);
1882 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
1883
1884 return region;
1885 }
1886
1887 /* A subroutine of tm_region_init. Record all the exit and
1888 irrevocable blocks in BB into the region's exit_blocks and
1889 irr_blocks bitmaps. Returns the new region being scanned. */
1890
1891 static struct tm_region *
1892 tm_region_init_1 (struct tm_region *region, basic_block bb)
1893 {
1894 gimple_stmt_iterator gsi;
1895 gimple g;
1896
1897 if (!region
1898 || (!region->irr_blocks && !region->exit_blocks))
1899 return region;
1900
1901 /* Check to see if this is the end of a region by seeing if it
1902 contains a call to __builtin_tm_commit{,_eh}. Note that the
1903 outermost region for DECL_IS_TM_CLONE need not collect this. */
1904 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1905 {
1906 g = gsi_stmt (gsi);
1907 if (gimple_code (g) == GIMPLE_CALL)
1908 {
1909 tree fn = gimple_call_fndecl (g);
1910 if (fn && DECL_BUILT_IN_CLASS (fn) == BUILT_IN_NORMAL)
1911 {
1912 if ((DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT
1913 || DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_COMMIT_EH)
1914 && region->exit_blocks)
1915 {
1916 bitmap_set_bit (region->exit_blocks, bb->index);
1917 region = region->outer;
1918 break;
1919 }
1920 if (DECL_FUNCTION_CODE (fn) == BUILT_IN_TM_IRREVOCABLE)
1921 bitmap_set_bit (region->irr_blocks, bb->index);
1922 }
1923 }
1924 }
1925 return region;
1926 }
1927
1928 /* Collect all of the transaction regions within the current function
1929 and record them in ALL_TM_REGIONS. The REGION parameter may specify
1930 an "outermost" region for use by tm clones. */
1931
1932 static void
1933 tm_region_init (struct tm_region *region)
1934 {
1935 gimple g;
1936 edge_iterator ei;
1937 edge e;
1938 basic_block bb;
1939 auto_vec<basic_block> queue;
1940 bitmap visited_blocks = BITMAP_ALLOC (NULL);
1941 struct tm_region *old_region;
1942 auto_vec<tm_region_p> bb_regions;
1943
1944 all_tm_regions = region;
1945 bb = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
1946
1947 /* We could store this information in bb->aux, but we may get called
1948 through get_all_tm_blocks() from another pass that may be already
1949 using bb->aux. */
1950 bb_regions.safe_grow_cleared (last_basic_block_for_fn (cfun));
1951
1952 queue.safe_push (bb);
1953 bb_regions[bb->index] = region;
1954 do
1955 {
1956 bb = queue.pop ();
1957 region = bb_regions[bb->index];
1958 bb_regions[bb->index] = NULL;
1959
1960 /* Record exit and irrevocable blocks. */
1961 region = tm_region_init_1 (region, bb);
1962
1963 /* Check for the last statement in the block beginning a new region. */
1964 g = last_stmt (bb);
1965 old_region = region;
1966 if (g && gimple_code (g) == GIMPLE_TRANSACTION)
1967 region = tm_region_init_0 (region, bb, g);
1968
1969 /* Process subsequent blocks. */
1970 FOR_EACH_EDGE (e, ei, bb->succs)
1971 if (!bitmap_bit_p (visited_blocks, e->dest->index))
1972 {
1973 bitmap_set_bit (visited_blocks, e->dest->index);
1974 queue.safe_push (e->dest);
1975
1976 /* If the current block started a new region, make sure that only
1977 the entry block of the new region is associated with this region.
1978 Other successors are still part of the old region. */
1979 if (old_region != region && e->dest != region->entry_block)
1980 bb_regions[e->dest->index] = old_region;
1981 else
1982 bb_regions[e->dest->index] = region;
1983 }
1984 }
1985 while (!queue.is_empty ());
1986 BITMAP_FREE (visited_blocks);
1987 }
1988
1989 /* The "gate" function for all transactional memory expansion and optimization
1990 passes. We collect region information for each top-level transaction, and
1991 if we don't find any, we skip all of the TM passes. Each region will have
1992 all of the exit blocks recorded, and the originating statement. */
1993
1994 static bool
1995 gate_tm_init (void)
1996 {
1997 if (!flag_tm)
1998 return false;
1999
2000 calculate_dominance_info (CDI_DOMINATORS);
2001 bitmap_obstack_initialize (&tm_obstack);
2002
2003 /* If the function is a TM_CLONE, then the entire function is the region. */
2004 if (decl_is_tm_clone (current_function_decl))
2005 {
2006 struct tm_region *region = (struct tm_region *)
2007 obstack_alloc (&tm_obstack.obstack, sizeof (struct tm_region));
2008 memset (region, 0, sizeof (*region));
2009 region->entry_block = single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun));
2010 /* For a clone, the entire function is the region. But even if
2011 we don't need to record any exit blocks, we may need to
2012 record irrevocable blocks. */
2013 region->irr_blocks = BITMAP_ALLOC (&tm_obstack);
2014
2015 tm_region_init (region);
2016 }
2017 else
2018 {
2019 tm_region_init (NULL);
2020
2021 /* If we didn't find any regions, cleanup and skip the whole tree
2022 of tm-related optimizations. */
2023 if (all_tm_regions == NULL)
2024 {
2025 bitmap_obstack_release (&tm_obstack);
2026 return false;
2027 }
2028 }
2029
2030 return true;
2031 }
2032
2033 namespace {
2034
2035 const pass_data pass_data_tm_init =
2036 {
2037 GIMPLE_PASS, /* type */
2038 "*tminit", /* name */
2039 OPTGROUP_NONE, /* optinfo_flags */
2040 false, /* has_execute */
2041 TV_TRANS_MEM, /* tv_id */
2042 ( PROP_ssa | PROP_cfg ), /* properties_required */
2043 0, /* properties_provided */
2044 0, /* properties_destroyed */
2045 0, /* todo_flags_start */
2046 0, /* todo_flags_finish */
2047 };
2048
2049 class pass_tm_init : public gimple_opt_pass
2050 {
2051 public:
2052 pass_tm_init (gcc::context *ctxt)
2053 : gimple_opt_pass (pass_data_tm_init, ctxt)
2054 {}
2055
2056 /* opt_pass methods: */
2057 virtual bool gate (function *) { return gate_tm_init (); }
2058
2059 }; // class pass_tm_init
2060
2061 } // anon namespace
2062
2063 gimple_opt_pass *
2064 make_pass_tm_init (gcc::context *ctxt)
2065 {
2066 return new pass_tm_init (ctxt);
2067 }
2068 \f
2069 /* Add FLAGS to the GIMPLE_TRANSACTION subcode for the transaction region
2070 represented by STATE. */
2071
2072 static inline void
2073 transaction_subcode_ior (struct tm_region *region, unsigned flags)
2074 {
2075 if (region && region->transaction_stmt)
2076 {
2077 flags |= gimple_transaction_subcode (region->transaction_stmt);
2078 gimple_transaction_set_subcode (region->transaction_stmt, flags);
2079 }
2080 }
2081
2082 /* Construct a memory load in a transactional context. Return the
2083 gimple statement performing the load, or NULL if there is no
2084 TM_LOAD builtin of the appropriate size to do the load.
2085
2086 LOC is the location to use for the new statement(s). */
2087
2088 static gimple
2089 build_tm_load (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2090 {
2091 enum built_in_function code = END_BUILTINS;
2092 tree t, type = TREE_TYPE (rhs), decl;
2093 gimple gcall;
2094
2095 if (type == float_type_node)
2096 code = BUILT_IN_TM_LOAD_FLOAT;
2097 else if (type == double_type_node)
2098 code = BUILT_IN_TM_LOAD_DOUBLE;
2099 else if (type == long_double_type_node)
2100 code = BUILT_IN_TM_LOAD_LDOUBLE;
2101 else if (TYPE_SIZE_UNIT (type) != NULL
2102 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2103 {
2104 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2105 {
2106 case 1:
2107 code = BUILT_IN_TM_LOAD_1;
2108 break;
2109 case 2:
2110 code = BUILT_IN_TM_LOAD_2;
2111 break;
2112 case 4:
2113 code = BUILT_IN_TM_LOAD_4;
2114 break;
2115 case 8:
2116 code = BUILT_IN_TM_LOAD_8;
2117 break;
2118 }
2119 }
2120
2121 if (code == END_BUILTINS)
2122 {
2123 decl = targetm.vectorize.builtin_tm_load (type);
2124 if (!decl)
2125 return NULL;
2126 }
2127 else
2128 decl = builtin_decl_explicit (code);
2129
2130 t = gimplify_addr (gsi, rhs);
2131 gcall = gimple_build_call (decl, 1, t);
2132 gimple_set_location (gcall, loc);
2133
2134 t = TREE_TYPE (TREE_TYPE (decl));
2135 if (useless_type_conversion_p (type, t))
2136 {
2137 gimple_call_set_lhs (gcall, lhs);
2138 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2139 }
2140 else
2141 {
2142 gimple g;
2143 tree temp;
2144
2145 temp = create_tmp_reg (t, NULL);
2146 gimple_call_set_lhs (gcall, temp);
2147 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2148
2149 t = fold_build1 (VIEW_CONVERT_EXPR, type, temp);
2150 g = gimple_build_assign (lhs, t);
2151 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2152 }
2153
2154 return gcall;
2155 }
2156
2157
2158 /* Similarly for storing TYPE in a transactional context. */
2159
2160 static gimple
2161 build_tm_store (location_t loc, tree lhs, tree rhs, gimple_stmt_iterator *gsi)
2162 {
2163 enum built_in_function code = END_BUILTINS;
2164 tree t, fn, type = TREE_TYPE (rhs), simple_type;
2165 gimple gcall;
2166
2167 if (type == float_type_node)
2168 code = BUILT_IN_TM_STORE_FLOAT;
2169 else if (type == double_type_node)
2170 code = BUILT_IN_TM_STORE_DOUBLE;
2171 else if (type == long_double_type_node)
2172 code = BUILT_IN_TM_STORE_LDOUBLE;
2173 else if (TYPE_SIZE_UNIT (type) != NULL
2174 && tree_fits_uhwi_p (TYPE_SIZE_UNIT (type)))
2175 {
2176 switch (tree_to_uhwi (TYPE_SIZE_UNIT (type)))
2177 {
2178 case 1:
2179 code = BUILT_IN_TM_STORE_1;
2180 break;
2181 case 2:
2182 code = BUILT_IN_TM_STORE_2;
2183 break;
2184 case 4:
2185 code = BUILT_IN_TM_STORE_4;
2186 break;
2187 case 8:
2188 code = BUILT_IN_TM_STORE_8;
2189 break;
2190 }
2191 }
2192
2193 if (code == END_BUILTINS)
2194 {
2195 fn = targetm.vectorize.builtin_tm_store (type);
2196 if (!fn)
2197 return NULL;
2198 }
2199 else
2200 fn = builtin_decl_explicit (code);
2201
2202 simple_type = TREE_VALUE (TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fn))));
2203
2204 if (TREE_CODE (rhs) == CONSTRUCTOR)
2205 {
2206 /* Handle the easy initialization to zero. */
2207 if (!CONSTRUCTOR_ELTS (rhs))
2208 rhs = build_int_cst (simple_type, 0);
2209 else
2210 {
2211 /* ...otherwise punt to the caller and probably use
2212 BUILT_IN_TM_MEMMOVE, because we can't wrap a
2213 VIEW_CONVERT_EXPR around a CONSTRUCTOR (below) and produce
2214 valid gimple. */
2215 return NULL;
2216 }
2217 }
2218 else if (!useless_type_conversion_p (simple_type, type))
2219 {
2220 gimple g;
2221 tree temp;
2222
2223 temp = create_tmp_reg (simple_type, NULL);
2224 t = fold_build1 (VIEW_CONVERT_EXPR, simple_type, rhs);
2225 g = gimple_build_assign (temp, t);
2226 gimple_set_location (g, loc);
2227 gsi_insert_before (gsi, g, GSI_SAME_STMT);
2228
2229 rhs = temp;
2230 }
2231
2232 t = gimplify_addr (gsi, lhs);
2233 gcall = gimple_build_call (fn, 2, t, rhs);
2234 gimple_set_location (gcall, loc);
2235 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2236
2237 return gcall;
2238 }
2239
2240
2241 /* Expand an assignment statement into transactional builtins. */
2242
2243 static void
2244 expand_assign_tm (struct tm_region *region, gimple_stmt_iterator *gsi)
2245 {
2246 gimple stmt = gsi_stmt (*gsi);
2247 location_t loc = gimple_location (stmt);
2248 tree lhs = gimple_assign_lhs (stmt);
2249 tree rhs = gimple_assign_rhs1 (stmt);
2250 bool store_p = requires_barrier (region->entry_block, lhs, NULL);
2251 bool load_p = requires_barrier (region->entry_block, rhs, NULL);
2252 gimple gcall = NULL;
2253
2254 if (!load_p && !store_p)
2255 {
2256 /* Add thread private addresses to log if applicable. */
2257 requires_barrier (region->entry_block, lhs, stmt);
2258 gsi_next (gsi);
2259 return;
2260 }
2261
2262 // Remove original load/store statement.
2263 gsi_remove (gsi, true);
2264
2265 if (load_p && !store_p)
2266 {
2267 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2268 gcall = build_tm_load (loc, lhs, rhs, gsi);
2269 }
2270 else if (store_p && !load_p)
2271 {
2272 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2273 gcall = build_tm_store (loc, lhs, rhs, gsi);
2274 }
2275 if (!gcall)
2276 {
2277 tree lhs_addr, rhs_addr, tmp;
2278
2279 if (load_p)
2280 transaction_subcode_ior (region, GTMA_HAVE_LOAD);
2281 if (store_p)
2282 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2283
2284 /* ??? Figure out if there's any possible overlap between the LHS
2285 and the RHS and if not, use MEMCPY. */
2286
2287 if (load_p && is_gimple_reg (lhs))
2288 {
2289 tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
2290 lhs_addr = build_fold_addr_expr (tmp);
2291 }
2292 else
2293 {
2294 tmp = NULL_TREE;
2295 lhs_addr = gimplify_addr (gsi, lhs);
2296 }
2297 rhs_addr = gimplify_addr (gsi, rhs);
2298 gcall = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_MEMMOVE),
2299 3, lhs_addr, rhs_addr,
2300 TYPE_SIZE_UNIT (TREE_TYPE (lhs)));
2301 gimple_set_location (gcall, loc);
2302 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2303
2304 if (tmp)
2305 {
2306 gcall = gimple_build_assign (lhs, tmp);
2307 gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2308 }
2309 }
2310
2311 /* Now that we have the load/store in its instrumented form, add
2312 thread private addresses to the log if applicable. */
2313 if (!store_p)
2314 requires_barrier (region->entry_block, lhs, gcall);
2315
2316 // The calls to build_tm_{store,load} above inserted the instrumented
2317 // call into the stream.
2318 // gsi_insert_before (gsi, gcall, GSI_SAME_STMT);
2319 }
2320
2321
2322 /* Expand a call statement as appropriate for a transaction. That is,
2323 either verify that the call does not affect the transaction, or
2324 redirect the call to a clone that handles transactions, or change
2325 the transaction state to IRREVOCABLE. Return true if the call is
2326 one of the builtins that end a transaction. */
2327
2328 static bool
2329 expand_call_tm (struct tm_region *region,
2330 gimple_stmt_iterator *gsi)
2331 {
2332 gimple stmt = gsi_stmt (*gsi);
2333 tree lhs = gimple_call_lhs (stmt);
2334 tree fn_decl;
2335 struct cgraph_node *node;
2336 bool retval = false;
2337
2338 fn_decl = gimple_call_fndecl (stmt);
2339
2340 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMCPY)
2341 || fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMMOVE))
2342 transaction_subcode_ior (region, GTMA_HAVE_STORE | GTMA_HAVE_LOAD);
2343 if (fn_decl == builtin_decl_explicit (BUILT_IN_TM_MEMSET))
2344 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2345
2346 if (is_tm_pure_call (stmt))
2347 return false;
2348
2349 if (fn_decl)
2350 retval = is_tm_ending_fndecl (fn_decl);
2351 if (!retval)
2352 {
2353 /* Assume all non-const/pure calls write to memory, except
2354 transaction ending builtins. */
2355 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2356 }
2357
2358 /* For indirect calls, we already generated a call into the runtime. */
2359 if (!fn_decl)
2360 {
2361 tree fn = gimple_call_fn (stmt);
2362
2363 /* We are guaranteed never to go irrevocable on a safe or pure
2364 call, and the pure call was handled above. */
2365 if (is_tm_safe (fn))
2366 return false;
2367 else
2368 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2369
2370 return false;
2371 }
2372
2373 node = cgraph_get_node (fn_decl);
2374 /* All calls should have cgraph here. */
2375 if (!node)
2376 {
2377 /* We can have a nodeless call here if some pass after IPA-tm
2378 added uninstrumented calls. For example, loop distribution
2379 can transform certain loop constructs into __builtin_mem*
2380 calls. In this case, see if we have a suitable TM
2381 replacement and fill in the gaps. */
2382 gcc_assert (DECL_BUILT_IN_CLASS (fn_decl) == BUILT_IN_NORMAL);
2383 enum built_in_function code = DECL_FUNCTION_CODE (fn_decl);
2384 gcc_assert (code == BUILT_IN_MEMCPY
2385 || code == BUILT_IN_MEMMOVE
2386 || code == BUILT_IN_MEMSET);
2387
2388 tree repl = find_tm_replacement_function (fn_decl);
2389 if (repl)
2390 {
2391 gimple_call_set_fndecl (stmt, repl);
2392 update_stmt (stmt);
2393 node = cgraph_create_node (repl);
2394 node->local.tm_may_enter_irr = false;
2395 return expand_call_tm (region, gsi);
2396 }
2397 gcc_unreachable ();
2398 }
2399 if (node->local.tm_may_enter_irr)
2400 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
2401
2402 if (is_tm_abort (fn_decl))
2403 {
2404 transaction_subcode_ior (region, GTMA_HAVE_ABORT);
2405 return true;
2406 }
2407
2408 /* Instrument the store if needed.
2409
2410 If the assignment happens inside the function call (return slot
2411 optimization), there is no instrumentation to be done, since
2412 the callee should have done the right thing. */
2413 if (lhs && requires_barrier (region->entry_block, lhs, stmt)
2414 && !gimple_call_return_slot_opt_p (stmt))
2415 {
2416 tree tmp = create_tmp_reg (TREE_TYPE (lhs), NULL);
2417 location_t loc = gimple_location (stmt);
2418 edge fallthru_edge = NULL;
2419
2420 /* Remember if the call was going to throw. */
2421 if (stmt_can_throw_internal (stmt))
2422 {
2423 edge_iterator ei;
2424 edge e;
2425 basic_block bb = gimple_bb (stmt);
2426
2427 FOR_EACH_EDGE (e, ei, bb->succs)
2428 if (e->flags & EDGE_FALLTHRU)
2429 {
2430 fallthru_edge = e;
2431 break;
2432 }
2433 }
2434
2435 gimple_call_set_lhs (stmt, tmp);
2436 update_stmt (stmt);
2437 stmt = gimple_build_assign (lhs, tmp);
2438 gimple_set_location (stmt, loc);
2439
2440 /* We cannot throw in the middle of a BB. If the call was going
2441 to throw, place the instrumentation on the fallthru edge, so
2442 the call remains the last statement in the block. */
2443 if (fallthru_edge)
2444 {
2445 gimple_seq fallthru_seq = gimple_seq_alloc_with_stmt (stmt);
2446 gimple_stmt_iterator fallthru_gsi = gsi_start (fallthru_seq);
2447 expand_assign_tm (region, &fallthru_gsi);
2448 gsi_insert_seq_on_edge (fallthru_edge, fallthru_seq);
2449 pending_edge_inserts_p = true;
2450 }
2451 else
2452 {
2453 gsi_insert_after (gsi, stmt, GSI_CONTINUE_LINKING);
2454 expand_assign_tm (region, gsi);
2455 }
2456
2457 transaction_subcode_ior (region, GTMA_HAVE_STORE);
2458 }
2459
2460 return retval;
2461 }
2462
2463
2464 /* Expand all statements in BB as appropriate for being inside
2465 a transaction. */
2466
2467 static void
2468 expand_block_tm (struct tm_region *region, basic_block bb)
2469 {
2470 gimple_stmt_iterator gsi;
2471
2472 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); )
2473 {
2474 gimple stmt = gsi_stmt (gsi);
2475 switch (gimple_code (stmt))
2476 {
2477 case GIMPLE_ASSIGN:
2478 /* Only memory reads/writes need to be instrumented. */
2479 if (gimple_assign_single_p (stmt)
2480 && !gimple_clobber_p (stmt))
2481 {
2482 expand_assign_tm (region, &gsi);
2483 continue;
2484 }
2485 break;
2486
2487 case GIMPLE_CALL:
2488 if (expand_call_tm (region, &gsi))
2489 return;
2490 break;
2491
2492 case GIMPLE_ASM:
2493 gcc_unreachable ();
2494
2495 default:
2496 break;
2497 }
2498 if (!gsi_end_p (gsi))
2499 gsi_next (&gsi);
2500 }
2501 }
2502
2503 /* Return the list of basic-blocks in REGION.
2504
2505 STOP_AT_IRREVOCABLE_P is true if caller is uninterested in blocks
2506 following a TM_IRREVOCABLE call.
2507
2508 INCLUDE_UNINSTRUMENTED_P is TRUE if we should include the
2509 uninstrumented code path blocks in the list of basic blocks
2510 returned, false otherwise. */
2511
2512 static vec<basic_block>
2513 get_tm_region_blocks (basic_block entry_block,
2514 bitmap exit_blocks,
2515 bitmap irr_blocks,
2516 bitmap all_region_blocks,
2517 bool stop_at_irrevocable_p,
2518 bool include_uninstrumented_p = true)
2519 {
2520 vec<basic_block> bbs = vNULL;
2521 unsigned i;
2522 edge e;
2523 edge_iterator ei;
2524 bitmap visited_blocks = BITMAP_ALLOC (NULL);
2525
2526 i = 0;
2527 bbs.safe_push (entry_block);
2528 bitmap_set_bit (visited_blocks, entry_block->index);
2529
2530 do
2531 {
2532 basic_block bb = bbs[i++];
2533
2534 if (exit_blocks &&
2535 bitmap_bit_p (exit_blocks, bb->index))
2536 continue;
2537
2538 if (stop_at_irrevocable_p
2539 && irr_blocks
2540 && bitmap_bit_p (irr_blocks, bb->index))
2541 continue;
2542
2543 FOR_EACH_EDGE (e, ei, bb->succs)
2544 if ((include_uninstrumented_p
2545 || !(e->flags & EDGE_TM_UNINSTRUMENTED))
2546 && !bitmap_bit_p (visited_blocks, e->dest->index))
2547 {
2548 bitmap_set_bit (visited_blocks, e->dest->index);
2549 bbs.safe_push (e->dest);
2550 }
2551 }
2552 while (i < bbs.length ());
2553
2554 if (all_region_blocks)
2555 bitmap_ior_into (all_region_blocks, visited_blocks);
2556
2557 BITMAP_FREE (visited_blocks);
2558 return bbs;
2559 }
2560
2561 // Callback data for collect_bb2reg.
2562 struct bb2reg_stuff
2563 {
2564 vec<tm_region_p> *bb2reg;
2565 bool include_uninstrumented_p;
2566 };
2567
2568 // Callback for expand_regions, collect innermost region data for each bb.
2569 static void *
2570 collect_bb2reg (struct tm_region *region, void *data)
2571 {
2572 struct bb2reg_stuff *stuff = (struct bb2reg_stuff *)data;
2573 vec<tm_region_p> *bb2reg = stuff->bb2reg;
2574 vec<basic_block> queue;
2575 unsigned int i;
2576 basic_block bb;
2577
2578 queue = get_tm_region_blocks (region->entry_block,
2579 region->exit_blocks,
2580 region->irr_blocks,
2581 NULL,
2582 /*stop_at_irr_p=*/true,
2583 stuff->include_uninstrumented_p);
2584
2585 // We expect expand_region to perform a post-order traversal of the region
2586 // tree. Therefore the last region seen for any bb is the innermost.
2587 FOR_EACH_VEC_ELT (queue, i, bb)
2588 (*bb2reg)[bb->index] = region;
2589
2590 queue.release ();
2591 return NULL;
2592 }
2593
2594 // Returns a vector, indexed by BB->INDEX, of the innermost tm_region to
2595 // which a basic block belongs. Note that we only consider the instrumented
2596 // code paths for the region; the uninstrumented code paths are ignored if
2597 // INCLUDE_UNINSTRUMENTED_P is false.
2598 //
2599 // ??? This data is very similar to the bb_regions array that is collected
2600 // during tm_region_init. Or, rather, this data is similar to what could
2601 // be used within tm_region_init. The actual computation in tm_region_init
2602 // begins and ends with bb_regions entirely full of NULL pointers, due to
2603 // the way in which pointers are swapped in and out of the array.
2604 //
2605 // ??? Our callers expect that blocks are not shared between transactions.
2606 // When the optimizers get too smart, and blocks are shared, then during
2607 // the tm_mark phase we'll add log entries to only one of the two transactions,
2608 // and in the tm_edge phase we'll add edges to the CFG that create invalid
2609 // cycles. The symptom being SSA defs that do not dominate their uses.
2610 // Note that the optimizers were locally correct with their transformation,
2611 // as we have no info within the program that suggests that the blocks cannot
2612 // be shared.
2613 //
2614 // ??? There is currently a hack inside tree-ssa-pre.c to work around the
2615 // only known instance of this block sharing.
2616
2617 static vec<tm_region_p>
2618 get_bb_regions_instrumented (bool traverse_clones,
2619 bool include_uninstrumented_p)
2620 {
2621 unsigned n = last_basic_block_for_fn (cfun);
2622 struct bb2reg_stuff stuff;
2623 vec<tm_region_p> ret;
2624
2625 ret.create (n);
2626 ret.safe_grow_cleared (n);
2627 stuff.bb2reg = &ret;
2628 stuff.include_uninstrumented_p = include_uninstrumented_p;
2629 expand_regions (all_tm_regions, collect_bb2reg, &stuff, traverse_clones);
2630
2631 return ret;
2632 }
2633
2634 /* Set the IN_TRANSACTION for all gimple statements that appear in a
2635 transaction. */
2636
2637 void
2638 compute_transaction_bits (void)
2639 {
2640 struct tm_region *region;
2641 vec<basic_block> queue;
2642 unsigned int i;
2643 basic_block bb;
2644
2645 /* ?? Perhaps we need to abstract gate_tm_init further, because we
2646 certainly don't need it to calculate CDI_DOMINATOR info. */
2647 gate_tm_init ();
2648
2649 FOR_EACH_BB_FN (bb, cfun)
2650 bb->flags &= ~BB_IN_TRANSACTION;
2651
2652 for (region = all_tm_regions; region; region = region->next)
2653 {
2654 queue = get_tm_region_blocks (region->entry_block,
2655 region->exit_blocks,
2656 region->irr_blocks,
2657 NULL,
2658 /*stop_at_irr_p=*/true);
2659 for (i = 0; queue.iterate (i, &bb); ++i)
2660 bb->flags |= BB_IN_TRANSACTION;
2661 queue.release ();
2662 }
2663
2664 if (all_tm_regions)
2665 bitmap_obstack_release (&tm_obstack);
2666 }
2667
2668 /* Replace the GIMPLE_TRANSACTION in this region with the corresponding
2669 call to BUILT_IN_TM_START. */
2670
2671 static void *
2672 expand_transaction (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2673 {
2674 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2675 basic_block transaction_bb = gimple_bb (region->transaction_stmt);
2676 tree tm_state = region->tm_state;
2677 tree tm_state_type = TREE_TYPE (tm_state);
2678 edge abort_edge = NULL;
2679 edge inst_edge = NULL;
2680 edge uninst_edge = NULL;
2681 edge fallthru_edge = NULL;
2682
2683 // Identify the various successors of the transaction start.
2684 {
2685 edge_iterator i;
2686 edge e;
2687 FOR_EACH_EDGE (e, i, transaction_bb->succs)
2688 {
2689 if (e->flags & EDGE_TM_ABORT)
2690 abort_edge = e;
2691 else if (e->flags & EDGE_TM_UNINSTRUMENTED)
2692 uninst_edge = e;
2693 else
2694 inst_edge = e;
2695 if (e->flags & EDGE_FALLTHRU)
2696 fallthru_edge = e;
2697 }
2698 }
2699
2700 /* ??? There are plenty of bits here we're not computing. */
2701 {
2702 int subcode = gimple_transaction_subcode (region->transaction_stmt);
2703 int flags = 0;
2704 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2705 flags |= PR_DOESGOIRREVOCABLE;
2706 if ((subcode & GTMA_MAY_ENTER_IRREVOCABLE) == 0)
2707 flags |= PR_HASNOIRREVOCABLE;
2708 /* If the transaction does not have an abort in lexical scope and is not
2709 marked as an outer transaction, then it will never abort. */
2710 if ((subcode & GTMA_HAVE_ABORT) == 0 && (subcode & GTMA_IS_OUTER) == 0)
2711 flags |= PR_HASNOABORT;
2712 if ((subcode & GTMA_HAVE_STORE) == 0)
2713 flags |= PR_READONLY;
2714 if (inst_edge && !(subcode & GTMA_HAS_NO_INSTRUMENTATION))
2715 flags |= PR_INSTRUMENTEDCODE;
2716 if (uninst_edge)
2717 flags |= PR_UNINSTRUMENTEDCODE;
2718 if (subcode & GTMA_IS_OUTER)
2719 region->original_transaction_was_outer = true;
2720 tree t = build_int_cst (tm_state_type, flags);
2721 gimple call = gimple_build_call (tm_start, 1, t);
2722 gimple_call_set_lhs (call, tm_state);
2723 gimple_set_location (call, gimple_location (region->transaction_stmt));
2724
2725 // Replace the GIMPLE_TRANSACTION with the call to BUILT_IN_TM_START.
2726 gimple_stmt_iterator gsi = gsi_last_bb (transaction_bb);
2727 gcc_assert (gsi_stmt (gsi) == region->transaction_stmt);
2728 gsi_insert_before (&gsi, call, GSI_SAME_STMT);
2729 gsi_remove (&gsi, true);
2730 region->transaction_stmt = call;
2731 }
2732
2733 // Generate log saves.
2734 if (!tm_log_save_addresses.is_empty ())
2735 tm_log_emit_saves (region->entry_block, transaction_bb);
2736
2737 // In the beginning, we've no tests to perform on transaction restart.
2738 // Note that after this point, transaction_bb becomes the "most recent
2739 // block containing tests for the transaction".
2740 region->restart_block = region->entry_block;
2741
2742 // Generate log restores.
2743 if (!tm_log_save_addresses.is_empty ())
2744 {
2745 basic_block test_bb = create_empty_bb (transaction_bb);
2746 basic_block code_bb = create_empty_bb (test_bb);
2747 basic_block join_bb = create_empty_bb (code_bb);
2748 if (current_loops && transaction_bb->loop_father)
2749 {
2750 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2751 add_bb_to_loop (code_bb, transaction_bb->loop_father);
2752 add_bb_to_loop (join_bb, transaction_bb->loop_father);
2753 }
2754 if (region->restart_block == region->entry_block)
2755 region->restart_block = test_bb;
2756
2757 tree t1 = create_tmp_reg (tm_state_type, NULL);
2758 tree t2 = build_int_cst (tm_state_type, A_RESTORELIVEVARIABLES);
2759 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2760 tm_state, t2);
2761 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2762 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2763
2764 t2 = build_int_cst (tm_state_type, 0);
2765 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2766 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2767
2768 tm_log_emit_restores (region->entry_block, code_bb);
2769
2770 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2771 edge et = make_edge (test_bb, code_bb, EDGE_TRUE_VALUE);
2772 edge ef = make_edge (test_bb, join_bb, EDGE_FALSE_VALUE);
2773 redirect_edge_pred (fallthru_edge, join_bb);
2774
2775 join_bb->frequency = test_bb->frequency = transaction_bb->frequency;
2776 join_bb->count = test_bb->count = transaction_bb->count;
2777
2778 ei->probability = PROB_ALWAYS;
2779 et->probability = PROB_LIKELY;
2780 ef->probability = PROB_UNLIKELY;
2781 et->count = apply_probability (test_bb->count, et->probability);
2782 ef->count = apply_probability (test_bb->count, ef->probability);
2783
2784 code_bb->count = et->count;
2785 code_bb->frequency = EDGE_FREQUENCY (et);
2786
2787 transaction_bb = join_bb;
2788 }
2789
2790 // If we have an ABORT edge, create a test to perform the abort.
2791 if (abort_edge)
2792 {
2793 basic_block test_bb = create_empty_bb (transaction_bb);
2794 if (current_loops && transaction_bb->loop_father)
2795 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2796 if (region->restart_block == region->entry_block)
2797 region->restart_block = test_bb;
2798
2799 tree t1 = create_tmp_reg (tm_state_type, NULL);
2800 tree t2 = build_int_cst (tm_state_type, A_ABORTTRANSACTION);
2801 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2802 tm_state, t2);
2803 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2804 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2805
2806 t2 = build_int_cst (tm_state_type, 0);
2807 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2808 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2809
2810 edge ei = make_edge (transaction_bb, test_bb, EDGE_FALLTHRU);
2811 test_bb->frequency = transaction_bb->frequency;
2812 test_bb->count = transaction_bb->count;
2813 ei->probability = PROB_ALWAYS;
2814
2815 // Not abort edge. If both are live, chose one at random as we'll
2816 // we'll be fixing that up below.
2817 redirect_edge_pred (fallthru_edge, test_bb);
2818 fallthru_edge->flags = EDGE_FALSE_VALUE;
2819 fallthru_edge->probability = PROB_VERY_LIKELY;
2820 fallthru_edge->count
2821 = apply_probability (test_bb->count, fallthru_edge->probability);
2822
2823 // Abort/over edge.
2824 redirect_edge_pred (abort_edge, test_bb);
2825 abort_edge->flags = EDGE_TRUE_VALUE;
2826 abort_edge->probability = PROB_VERY_UNLIKELY;
2827 abort_edge->count
2828 = apply_probability (test_bb->count, abort_edge->probability);
2829
2830 transaction_bb = test_bb;
2831 }
2832
2833 // If we have both instrumented and uninstrumented code paths, select one.
2834 if (inst_edge && uninst_edge)
2835 {
2836 basic_block test_bb = create_empty_bb (transaction_bb);
2837 if (current_loops && transaction_bb->loop_father)
2838 add_bb_to_loop (test_bb, transaction_bb->loop_father);
2839 if (region->restart_block == region->entry_block)
2840 region->restart_block = test_bb;
2841
2842 tree t1 = create_tmp_reg (tm_state_type, NULL);
2843 tree t2 = build_int_cst (tm_state_type, A_RUNUNINSTRUMENTEDCODE);
2844
2845 gimple stmt = gimple_build_assign_with_ops (BIT_AND_EXPR, t1,
2846 tm_state, t2);
2847 gimple_stmt_iterator gsi = gsi_last_bb (test_bb);
2848 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2849
2850 t2 = build_int_cst (tm_state_type, 0);
2851 stmt = gimple_build_cond (NE_EXPR, t1, t2, NULL, NULL);
2852 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
2853
2854 // Create the edge into test_bb first, as we want to copy values
2855 // out of the fallthru edge.
2856 edge e = make_edge (transaction_bb, test_bb, fallthru_edge->flags);
2857 e->probability = fallthru_edge->probability;
2858 test_bb->count = e->count = fallthru_edge->count;
2859 test_bb->frequency = EDGE_FREQUENCY (e);
2860
2861 // Now update the edges to the inst/uninist implementations.
2862 // For now assume that the paths are equally likely. When using HTM,
2863 // we'll try the uninst path first and fallback to inst path if htm
2864 // buffers are exceeded. Without HTM we start with the inst path and
2865 // use the uninst path when falling back to serial mode.
2866 redirect_edge_pred (inst_edge, test_bb);
2867 inst_edge->flags = EDGE_FALSE_VALUE;
2868 inst_edge->probability = REG_BR_PROB_BASE / 2;
2869 inst_edge->count
2870 = apply_probability (test_bb->count, inst_edge->probability);
2871
2872 redirect_edge_pred (uninst_edge, test_bb);
2873 uninst_edge->flags = EDGE_TRUE_VALUE;
2874 uninst_edge->probability = REG_BR_PROB_BASE / 2;
2875 uninst_edge->count
2876 = apply_probability (test_bb->count, uninst_edge->probability);
2877 }
2878
2879 // If we have no previous special cases, and we have PHIs at the beginning
2880 // of the atomic region, this means we have a loop at the beginning of the
2881 // atomic region that shares the first block. This can cause problems with
2882 // the transaction restart abnormal edges to be added in the tm_edges pass.
2883 // Solve this by adding a new empty block to receive the abnormal edges.
2884 if (region->restart_block == region->entry_block
2885 && phi_nodes (region->entry_block))
2886 {
2887 basic_block empty_bb = create_empty_bb (transaction_bb);
2888 region->restart_block = empty_bb;
2889 if (current_loops && transaction_bb->loop_father)
2890 add_bb_to_loop (empty_bb, transaction_bb->loop_father);
2891
2892 redirect_edge_pred (fallthru_edge, empty_bb);
2893 make_edge (transaction_bb, empty_bb, EDGE_FALLTHRU);
2894 }
2895
2896 return NULL;
2897 }
2898
2899 /* Generate the temporary to be used for the return value of
2900 BUILT_IN_TM_START. */
2901
2902 static void *
2903 generate_tm_state (struct tm_region *region, void *data ATTRIBUTE_UNUSED)
2904 {
2905 tree tm_start = builtin_decl_explicit (BUILT_IN_TM_START);
2906 region->tm_state =
2907 create_tmp_reg (TREE_TYPE (TREE_TYPE (tm_start)), "tm_state");
2908
2909 // Reset the subcode, post optimizations. We'll fill this in
2910 // again as we process blocks.
2911 if (region->exit_blocks)
2912 {
2913 unsigned int subcode
2914 = gimple_transaction_subcode (region->transaction_stmt);
2915
2916 if (subcode & GTMA_DOES_GO_IRREVOCABLE)
2917 subcode &= (GTMA_DECLARATION_MASK | GTMA_DOES_GO_IRREVOCABLE
2918 | GTMA_MAY_ENTER_IRREVOCABLE
2919 | GTMA_HAS_NO_INSTRUMENTATION);
2920 else
2921 subcode &= GTMA_DECLARATION_MASK;
2922 gimple_transaction_set_subcode (region->transaction_stmt, subcode);
2923 }
2924
2925 return NULL;
2926 }
2927
2928 // Propagate flags from inner transactions outwards.
2929 static void
2930 propagate_tm_flags_out (struct tm_region *region)
2931 {
2932 if (region == NULL)
2933 return;
2934 propagate_tm_flags_out (region->inner);
2935
2936 if (region->outer && region->outer->transaction_stmt)
2937 {
2938 unsigned s = gimple_transaction_subcode (region->transaction_stmt);
2939 s &= (GTMA_HAVE_ABORT | GTMA_HAVE_LOAD | GTMA_HAVE_STORE
2940 | GTMA_MAY_ENTER_IRREVOCABLE);
2941 s |= gimple_transaction_subcode (region->outer->transaction_stmt);
2942 gimple_transaction_set_subcode (region->outer->transaction_stmt, s);
2943 }
2944
2945 propagate_tm_flags_out (region->next);
2946 }
2947
2948 /* Entry point to the MARK phase of TM expansion. Here we replace
2949 transactional memory statements with calls to builtins, and function
2950 calls with their transactional clones (if available). But we don't
2951 yet lower GIMPLE_TRANSACTION or add the transaction restart back-edges. */
2952
2953 static unsigned int
2954 execute_tm_mark (void)
2955 {
2956 pending_edge_inserts_p = false;
2957
2958 expand_regions (all_tm_regions, generate_tm_state, NULL,
2959 /*traverse_clones=*/true);
2960
2961 tm_log_init ();
2962
2963 vec<tm_region_p> bb_regions
2964 = get_bb_regions_instrumented (/*traverse_clones=*/true,
2965 /*include_uninstrumented_p=*/false);
2966 struct tm_region *r;
2967 unsigned i;
2968
2969 // Expand memory operations into calls into the runtime.
2970 // This collects log entries as well.
2971 FOR_EACH_VEC_ELT (bb_regions, i, r)
2972 {
2973 if (r != NULL)
2974 {
2975 if (r->transaction_stmt)
2976 {
2977 unsigned sub = gimple_transaction_subcode (r->transaction_stmt);
2978
2979 /* If we're sure to go irrevocable, there won't be
2980 anything to expand, since the run-time will go
2981 irrevocable right away. */
2982 if (sub & GTMA_DOES_GO_IRREVOCABLE
2983 && sub & GTMA_MAY_ENTER_IRREVOCABLE)
2984 continue;
2985 }
2986 expand_block_tm (r, BASIC_BLOCK_FOR_FN (cfun, i));
2987 }
2988 }
2989
2990 bb_regions.release ();
2991
2992 // Propagate flags from inner transactions outwards.
2993 propagate_tm_flags_out (all_tm_regions);
2994
2995 // Expand GIMPLE_TRANSACTIONs into calls into the runtime.
2996 expand_regions (all_tm_regions, expand_transaction, NULL,
2997 /*traverse_clones=*/false);
2998
2999 tm_log_emit ();
3000 tm_log_delete ();
3001
3002 if (pending_edge_inserts_p)
3003 gsi_commit_edge_inserts ();
3004 free_dominance_info (CDI_DOMINATORS);
3005 return 0;
3006 }
3007
3008 namespace {
3009
3010 const pass_data pass_data_tm_mark =
3011 {
3012 GIMPLE_PASS, /* type */
3013 "tmmark", /* name */
3014 OPTGROUP_NONE, /* optinfo_flags */
3015 true, /* has_execute */
3016 TV_TRANS_MEM, /* tv_id */
3017 ( PROP_ssa | PROP_cfg ), /* properties_required */
3018 0, /* properties_provided */
3019 0, /* properties_destroyed */
3020 0, /* todo_flags_start */
3021 TODO_update_ssa, /* todo_flags_finish */
3022 };
3023
3024 class pass_tm_mark : public gimple_opt_pass
3025 {
3026 public:
3027 pass_tm_mark (gcc::context *ctxt)
3028 : gimple_opt_pass (pass_data_tm_mark, ctxt)
3029 {}
3030
3031 /* opt_pass methods: */
3032 virtual unsigned int execute (function *) { return execute_tm_mark (); }
3033
3034 }; // class pass_tm_mark
3035
3036 } // anon namespace
3037
3038 gimple_opt_pass *
3039 make_pass_tm_mark (gcc::context *ctxt)
3040 {
3041 return new pass_tm_mark (ctxt);
3042 }
3043 \f
3044
3045 /* Create an abnormal edge from STMT at iter, splitting the block
3046 as necessary. Adjust *PNEXT as needed for the split block. */
3047
3048 static inline void
3049 split_bb_make_tm_edge (gimple stmt, basic_block dest_bb,
3050 gimple_stmt_iterator iter, gimple_stmt_iterator *pnext)
3051 {
3052 basic_block bb = gimple_bb (stmt);
3053 if (!gsi_one_before_end_p (iter))
3054 {
3055 edge e = split_block (bb, stmt);
3056 *pnext = gsi_start_bb (e->dest);
3057 }
3058 make_edge (bb, dest_bb, EDGE_ABNORMAL);
3059
3060 // Record the need for the edge for the benefit of the rtl passes.
3061 if (cfun->gimple_df->tm_restart == NULL)
3062 cfun->gimple_df->tm_restart = htab_create_ggc (31, struct_ptr_hash,
3063 struct_ptr_eq, ggc_free);
3064
3065 struct tm_restart_node dummy;
3066 dummy.stmt = stmt;
3067 dummy.label_or_list = gimple_block_label (dest_bb);
3068
3069 void **slot = htab_find_slot (cfun->gimple_df->tm_restart, &dummy, INSERT);
3070 struct tm_restart_node *n = (struct tm_restart_node *) *slot;
3071 if (n == NULL)
3072 {
3073 n = ggc_alloc_tm_restart_node ();
3074 *n = dummy;
3075 }
3076 else
3077 {
3078 tree old = n->label_or_list;
3079 if (TREE_CODE (old) == LABEL_DECL)
3080 old = tree_cons (NULL, old, NULL);
3081 n->label_or_list = tree_cons (NULL, dummy.label_or_list, old);
3082 }
3083 }
3084
3085 /* Split block BB as necessary for every builtin function we added, and
3086 wire up the abnormal back edges implied by the transaction restart. */
3087
3088 static void
3089 expand_block_edges (struct tm_region *const region, basic_block bb)
3090 {
3091 gimple_stmt_iterator gsi, next_gsi;
3092
3093 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi = next_gsi)
3094 {
3095 gimple stmt = gsi_stmt (gsi);
3096
3097 next_gsi = gsi;
3098 gsi_next (&next_gsi);
3099
3100 // ??? Shouldn't we split for any non-pure, non-irrevocable function?
3101 if (gimple_code (stmt) != GIMPLE_CALL
3102 || (gimple_call_flags (stmt) & ECF_TM_BUILTIN) == 0)
3103 continue;
3104
3105 if (DECL_FUNCTION_CODE (gimple_call_fndecl (stmt)) == BUILT_IN_TM_ABORT)
3106 {
3107 // If we have a ``_transaction_cancel [[outer]]'', there is only
3108 // one abnormal edge: to the transaction marked OUTER.
3109 // All compiler-generated instances of BUILT_IN_TM_ABORT have a
3110 // constant argument, which we can examine here. Users invoking
3111 // TM_ABORT directly get what they deserve.
3112 tree arg = gimple_call_arg (stmt, 0);
3113 if (TREE_CODE (arg) == INTEGER_CST
3114 && (TREE_INT_CST_LOW (arg) & AR_OUTERABORT) != 0
3115 && !decl_is_tm_clone (current_function_decl))
3116 {
3117 // Find the GTMA_IS_OUTER transaction.
3118 for (struct tm_region *o = region; o; o = o->outer)
3119 if (o->original_transaction_was_outer)
3120 {
3121 split_bb_make_tm_edge (stmt, o->restart_block,
3122 gsi, &next_gsi);
3123 break;
3124 }
3125
3126 // Otherwise, the front-end should have semantically checked
3127 // outer aborts, but in either case the target region is not
3128 // within this function.
3129 continue;
3130 }
3131
3132 // Non-outer, TM aborts have an abnormal edge to the inner-most
3133 // transaction, the one being aborted;
3134 split_bb_make_tm_edge (stmt, region->restart_block, gsi, &next_gsi);
3135 }
3136
3137 // All TM builtins have an abnormal edge to the outer-most transaction.
3138 // We never restart inner transactions. For tm clones, we know a-priori
3139 // that the outer-most transaction is outside the function.
3140 if (decl_is_tm_clone (current_function_decl))
3141 continue;
3142
3143 if (cfun->gimple_df->tm_restart == NULL)
3144 cfun->gimple_df->tm_restart
3145 = htab_create_ggc (31, struct_ptr_hash, struct_ptr_eq, ggc_free);
3146
3147 // All TM builtins have an abnormal edge to the outer-most transaction.
3148 // We never restart inner transactions.
3149 for (struct tm_region *o = region; o; o = o->outer)
3150 if (!o->outer)
3151 {
3152 split_bb_make_tm_edge (stmt, o->restart_block, gsi, &next_gsi);
3153 break;
3154 }
3155
3156 // Delete any tail-call annotation that may have been added.
3157 // The tail-call pass may have mis-identified the commit as being
3158 // a candidate because we had not yet added this restart edge.
3159 gimple_call_set_tail (stmt, false);
3160 }
3161 }
3162
3163 /* Entry point to the final expansion of transactional nodes. */
3164
3165 namespace {
3166
3167 const pass_data pass_data_tm_edges =
3168 {
3169 GIMPLE_PASS, /* type */
3170 "tmedge", /* name */
3171 OPTGROUP_NONE, /* optinfo_flags */
3172 true, /* has_execute */
3173 TV_TRANS_MEM, /* tv_id */
3174 ( PROP_ssa | PROP_cfg ), /* properties_required */
3175 0, /* properties_provided */
3176 0, /* properties_destroyed */
3177 0, /* todo_flags_start */
3178 TODO_update_ssa, /* todo_flags_finish */
3179 };
3180
3181 class pass_tm_edges : public gimple_opt_pass
3182 {
3183 public:
3184 pass_tm_edges (gcc::context *ctxt)
3185 : gimple_opt_pass (pass_data_tm_edges, ctxt)
3186 {}
3187
3188 /* opt_pass methods: */
3189 virtual unsigned int execute (function *);
3190
3191 }; // class pass_tm_edges
3192
3193 unsigned int
3194 pass_tm_edges::execute (function *fun)
3195 {
3196 vec<tm_region_p> bb_regions
3197 = get_bb_regions_instrumented (/*traverse_clones=*/false,
3198 /*include_uninstrumented_p=*/true);
3199 struct tm_region *r;
3200 unsigned i;
3201
3202 FOR_EACH_VEC_ELT (bb_regions, i, r)
3203 if (r != NULL)
3204 expand_block_edges (r, BASIC_BLOCK_FOR_FN (fun, i));
3205
3206 bb_regions.release ();
3207
3208 /* We've got to release the dominance info now, to indicate that it
3209 must be rebuilt completely. Otherwise we'll crash trying to update
3210 the SSA web in the TODO section following this pass. */
3211 free_dominance_info (CDI_DOMINATORS);
3212 bitmap_obstack_release (&tm_obstack);
3213 all_tm_regions = NULL;
3214
3215 return 0;
3216 }
3217
3218 } // anon namespace
3219
3220 gimple_opt_pass *
3221 make_pass_tm_edges (gcc::context *ctxt)
3222 {
3223 return new pass_tm_edges (ctxt);
3224 }
3225 \f
3226 /* Helper function for expand_regions. Expand REGION and recurse to
3227 the inner region. Call CALLBACK on each region. CALLBACK returns
3228 NULL to continue the traversal, otherwise a non-null value which
3229 this function will return as well. TRAVERSE_CLONES is true if we
3230 should traverse transactional clones. */
3231
3232 static void *
3233 expand_regions_1 (struct tm_region *region,
3234 void *(*callback)(struct tm_region *, void *),
3235 void *data,
3236 bool traverse_clones)
3237 {
3238 void *retval = NULL;
3239 if (region->exit_blocks
3240 || (traverse_clones && decl_is_tm_clone (current_function_decl)))
3241 {
3242 retval = callback (region, data);
3243 if (retval)
3244 return retval;
3245 }
3246 if (region->inner)
3247 {
3248 retval = expand_regions (region->inner, callback, data, traverse_clones);
3249 if (retval)
3250 return retval;
3251 }
3252 return retval;
3253 }
3254
3255 /* Traverse the regions enclosed and including REGION. Execute
3256 CALLBACK for each region, passing DATA. CALLBACK returns NULL to
3257 continue the traversal, otherwise a non-null value which this
3258 function will return as well. TRAVERSE_CLONES is true if we should
3259 traverse transactional clones. */
3260
3261 static void *
3262 expand_regions (struct tm_region *region,
3263 void *(*callback)(struct tm_region *, void *),
3264 void *data,
3265 bool traverse_clones)
3266 {
3267 void *retval = NULL;
3268 while (region)
3269 {
3270 retval = expand_regions_1 (region, callback, data, traverse_clones);
3271 if (retval)
3272 return retval;
3273 region = region->next;
3274 }
3275 return retval;
3276 }
3277
3278 \f
3279 /* A unique TM memory operation. */
3280 typedef struct tm_memop
3281 {
3282 /* Unique ID that all memory operations to the same location have. */
3283 unsigned int value_id;
3284 /* Address of load/store. */
3285 tree addr;
3286 } *tm_memop_t;
3287
3288 /* TM memory operation hashtable helpers. */
3289
3290 struct tm_memop_hasher : typed_free_remove <tm_memop>
3291 {
3292 typedef tm_memop value_type;
3293 typedef tm_memop compare_type;
3294 static inline hashval_t hash (const value_type *);
3295 static inline bool equal (const value_type *, const compare_type *);
3296 };
3297
3298 /* Htab support. Return a hash value for a `tm_memop'. */
3299 inline hashval_t
3300 tm_memop_hasher::hash (const value_type *mem)
3301 {
3302 tree addr = mem->addr;
3303 /* We drill down to the SSA_NAME/DECL for the hash, but equality is
3304 actually done with operand_equal_p (see tm_memop_eq). */
3305 if (TREE_CODE (addr) == ADDR_EXPR)
3306 addr = TREE_OPERAND (addr, 0);
3307 return iterative_hash_expr (addr, 0);
3308 }
3309
3310 /* Htab support. Return true if two tm_memop's are the same. */
3311 inline bool
3312 tm_memop_hasher::equal (const value_type *mem1, const compare_type *mem2)
3313 {
3314 return operand_equal_p (mem1->addr, mem2->addr, 0);
3315 }
3316
3317 /* Sets for solving data flow equations in the memory optimization pass. */
3318 struct tm_memopt_bitmaps
3319 {
3320 /* Stores available to this BB upon entry. Basically, stores that
3321 dominate this BB. */
3322 bitmap store_avail_in;
3323 /* Stores available at the end of this BB. */
3324 bitmap store_avail_out;
3325 bitmap store_antic_in;
3326 bitmap store_antic_out;
3327 /* Reads available to this BB upon entry. Basically, reads that
3328 dominate this BB. */
3329 bitmap read_avail_in;
3330 /* Reads available at the end of this BB. */
3331 bitmap read_avail_out;
3332 /* Reads performed in this BB. */
3333 bitmap read_local;
3334 /* Writes performed in this BB. */
3335 bitmap store_local;
3336
3337 /* Temporary storage for pass. */
3338 /* Is the current BB in the worklist? */
3339 bool avail_in_worklist_p;
3340 /* Have we visited this BB? */
3341 bool visited_p;
3342 };
3343
3344 static bitmap_obstack tm_memopt_obstack;
3345
3346 /* Unique counter for TM loads and stores. Loads and stores of the
3347 same address get the same ID. */
3348 static unsigned int tm_memopt_value_id;
3349 static hash_table <tm_memop_hasher> tm_memopt_value_numbers;
3350
3351 #define STORE_AVAIL_IN(BB) \
3352 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_in
3353 #define STORE_AVAIL_OUT(BB) \
3354 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_avail_out
3355 #define STORE_ANTIC_IN(BB) \
3356 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_in
3357 #define STORE_ANTIC_OUT(BB) \
3358 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_antic_out
3359 #define READ_AVAIL_IN(BB) \
3360 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_in
3361 #define READ_AVAIL_OUT(BB) \
3362 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_avail_out
3363 #define READ_LOCAL(BB) \
3364 ((struct tm_memopt_bitmaps *) ((BB)->aux))->read_local
3365 #define STORE_LOCAL(BB) \
3366 ((struct tm_memopt_bitmaps *) ((BB)->aux))->store_local
3367 #define AVAIL_IN_WORKLIST_P(BB) \
3368 ((struct tm_memopt_bitmaps *) ((BB)->aux))->avail_in_worklist_p
3369 #define BB_VISITED_P(BB) \
3370 ((struct tm_memopt_bitmaps *) ((BB)->aux))->visited_p
3371
3372 /* Given a TM load/store in STMT, return the value number for the address
3373 it accesses. */
3374
3375 static unsigned int
3376 tm_memopt_value_number (gimple stmt, enum insert_option op)
3377 {
3378 struct tm_memop tmpmem, *mem;
3379 tm_memop **slot;
3380
3381 gcc_assert (is_tm_load (stmt) || is_tm_store (stmt));
3382 tmpmem.addr = gimple_call_arg (stmt, 0);
3383 slot = tm_memopt_value_numbers.find_slot (&tmpmem, op);
3384 if (*slot)
3385 mem = *slot;
3386 else if (op == INSERT)
3387 {
3388 mem = XNEW (struct tm_memop);
3389 *slot = mem;
3390 mem->value_id = tm_memopt_value_id++;
3391 mem->addr = tmpmem.addr;
3392 }
3393 else
3394 gcc_unreachable ();
3395 return mem->value_id;
3396 }
3397
3398 /* Accumulate TM memory operations in BB into STORE_LOCAL and READ_LOCAL. */
3399
3400 static void
3401 tm_memopt_accumulate_memops (basic_block bb)
3402 {
3403 gimple_stmt_iterator gsi;
3404
3405 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3406 {
3407 gimple stmt = gsi_stmt (gsi);
3408 bitmap bits;
3409 unsigned int loc;
3410
3411 if (is_tm_store (stmt))
3412 bits = STORE_LOCAL (bb);
3413 else if (is_tm_load (stmt))
3414 bits = READ_LOCAL (bb);
3415 else
3416 continue;
3417
3418 loc = tm_memopt_value_number (stmt, INSERT);
3419 bitmap_set_bit (bits, loc);
3420 if (dump_file)
3421 {
3422 fprintf (dump_file, "TM memopt (%s): value num=%d, BB=%d, addr=",
3423 is_tm_load (stmt) ? "LOAD" : "STORE", loc,
3424 gimple_bb (stmt)->index);
3425 print_generic_expr (dump_file, gimple_call_arg (stmt, 0), 0);
3426 fprintf (dump_file, "\n");
3427 }
3428 }
3429 }
3430
3431 /* Prettily dump one of the memopt sets. BITS is the bitmap to dump. */
3432
3433 static void
3434 dump_tm_memopt_set (const char *set_name, bitmap bits)
3435 {
3436 unsigned i;
3437 bitmap_iterator bi;
3438 const char *comma = "";
3439
3440 fprintf (dump_file, "TM memopt: %s: [", set_name);
3441 EXECUTE_IF_SET_IN_BITMAP (bits, 0, i, bi)
3442 {
3443 hash_table <tm_memop_hasher>::iterator hi;
3444 struct tm_memop *mem = NULL;
3445
3446 /* Yeah, yeah, yeah. Whatever. This is just for debugging. */
3447 FOR_EACH_HASH_TABLE_ELEMENT (tm_memopt_value_numbers, mem, tm_memop_t, hi)
3448 if (mem->value_id == i)
3449 break;
3450 gcc_assert (mem->value_id == i);
3451 fprintf (dump_file, "%s", comma);
3452 comma = ", ";
3453 print_generic_expr (dump_file, mem->addr, 0);
3454 }
3455 fprintf (dump_file, "]\n");
3456 }
3457
3458 /* Prettily dump all of the memopt sets in BLOCKS. */
3459
3460 static void
3461 dump_tm_memopt_sets (vec<basic_block> blocks)
3462 {
3463 size_t i;
3464 basic_block bb;
3465
3466 for (i = 0; blocks.iterate (i, &bb); ++i)
3467 {
3468 fprintf (dump_file, "------------BB %d---------\n", bb->index);
3469 dump_tm_memopt_set ("STORE_LOCAL", STORE_LOCAL (bb));
3470 dump_tm_memopt_set ("READ_LOCAL", READ_LOCAL (bb));
3471 dump_tm_memopt_set ("STORE_AVAIL_IN", STORE_AVAIL_IN (bb));
3472 dump_tm_memopt_set ("STORE_AVAIL_OUT", STORE_AVAIL_OUT (bb));
3473 dump_tm_memopt_set ("READ_AVAIL_IN", READ_AVAIL_IN (bb));
3474 dump_tm_memopt_set ("READ_AVAIL_OUT", READ_AVAIL_OUT (bb));
3475 }
3476 }
3477
3478 /* Compute {STORE,READ}_AVAIL_IN for the basic block BB. */
3479
3480 static void
3481 tm_memopt_compute_avin (basic_block bb)
3482 {
3483 edge e;
3484 unsigned ix;
3485
3486 /* Seed with the AVOUT of any predecessor. */
3487 for (ix = 0; ix < EDGE_COUNT (bb->preds); ix++)
3488 {
3489 e = EDGE_PRED (bb, ix);
3490 /* Make sure we have already visited this BB, and is thus
3491 initialized.
3492
3493 If e->src->aux is NULL, this predecessor is actually on an
3494 enclosing transaction. We only care about the current
3495 transaction, so ignore it. */
3496 if (e->src->aux && BB_VISITED_P (e->src))
3497 {
3498 bitmap_copy (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3499 bitmap_copy (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3500 break;
3501 }
3502 }
3503
3504 for (; ix < EDGE_COUNT (bb->preds); ix++)
3505 {
3506 e = EDGE_PRED (bb, ix);
3507 if (e->src->aux && BB_VISITED_P (e->src))
3508 {
3509 bitmap_and_into (STORE_AVAIL_IN (bb), STORE_AVAIL_OUT (e->src));
3510 bitmap_and_into (READ_AVAIL_IN (bb), READ_AVAIL_OUT (e->src));
3511 }
3512 }
3513
3514 BB_VISITED_P (bb) = true;
3515 }
3516
3517 /* Compute the STORE_ANTIC_IN for the basic block BB. */
3518
3519 static void
3520 tm_memopt_compute_antin (basic_block bb)
3521 {
3522 edge e;
3523 unsigned ix;
3524
3525 /* Seed with the ANTIC_OUT of any successor. */
3526 for (ix = 0; ix < EDGE_COUNT (bb->succs); ix++)
3527 {
3528 e = EDGE_SUCC (bb, ix);
3529 /* Make sure we have already visited this BB, and is thus
3530 initialized. */
3531 if (BB_VISITED_P (e->dest))
3532 {
3533 bitmap_copy (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3534 break;
3535 }
3536 }
3537
3538 for (; ix < EDGE_COUNT (bb->succs); ix++)
3539 {
3540 e = EDGE_SUCC (bb, ix);
3541 if (BB_VISITED_P (e->dest))
3542 bitmap_and_into (STORE_ANTIC_IN (bb), STORE_ANTIC_OUT (e->dest));
3543 }
3544
3545 BB_VISITED_P (bb) = true;
3546 }
3547
3548 /* Compute the AVAIL sets for every basic block in BLOCKS.
3549
3550 We compute {STORE,READ}_AVAIL_{OUT,IN} as follows:
3551
3552 AVAIL_OUT[bb] = union (AVAIL_IN[bb], LOCAL[bb])
3553 AVAIL_IN[bb] = intersect (AVAIL_OUT[predecessors])
3554
3555 This is basically what we do in lcm's compute_available(), but here
3556 we calculate two sets of sets (one for STOREs and one for READs),
3557 and we work on a region instead of the entire CFG.
3558
3559 REGION is the TM region.
3560 BLOCKS are the basic blocks in the region. */
3561
3562 static void
3563 tm_memopt_compute_available (struct tm_region *region,
3564 vec<basic_block> blocks)
3565 {
3566 edge e;
3567 basic_block *worklist, *qin, *qout, *qend, bb;
3568 unsigned int qlen, i;
3569 edge_iterator ei;
3570 bool changed;
3571
3572 /* Allocate a worklist array/queue. Entries are only added to the
3573 list if they were not already on the list. So the size is
3574 bounded by the number of basic blocks in the region. */
3575 qlen = blocks.length () - 1;
3576 qin = qout = worklist =
3577 XNEWVEC (basic_block, qlen);
3578
3579 /* Put every block in the region on the worklist. */
3580 for (i = 0; blocks.iterate (i, &bb); ++i)
3581 {
3582 /* Seed AVAIL_OUT with the LOCAL set. */
3583 bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_LOCAL (bb));
3584 bitmap_ior_into (READ_AVAIL_OUT (bb), READ_LOCAL (bb));
3585
3586 AVAIL_IN_WORKLIST_P (bb) = true;
3587 /* No need to insert the entry block, since it has an AVIN of
3588 null, and an AVOUT that has already been seeded in. */
3589 if (bb != region->entry_block)
3590 *qin++ = bb;
3591 }
3592
3593 /* The entry block has been initialized with the local sets. */
3594 BB_VISITED_P (region->entry_block) = true;
3595
3596 qin = worklist;
3597 qend = &worklist[qlen];
3598
3599 /* Iterate until the worklist is empty. */
3600 while (qlen)
3601 {
3602 /* Take the first entry off the worklist. */
3603 bb = *qout++;
3604 qlen--;
3605
3606 if (qout >= qend)
3607 qout = worklist;
3608
3609 /* This block can be added to the worklist again if necessary. */
3610 AVAIL_IN_WORKLIST_P (bb) = false;
3611 tm_memopt_compute_avin (bb);
3612
3613 /* Note: We do not add the LOCAL sets here because we already
3614 seeded the AVAIL_OUT sets with them. */
3615 changed = bitmap_ior_into (STORE_AVAIL_OUT (bb), STORE_AVAIL_IN (bb));
3616 changed |= bitmap_ior_into (READ_AVAIL_OUT (bb), READ_AVAIL_IN (bb));
3617 if (changed
3618 && (region->exit_blocks == NULL
3619 || !bitmap_bit_p (region->exit_blocks, bb->index)))
3620 /* If the out state of this block changed, then we need to add
3621 its successors to the worklist if they are not already in. */
3622 FOR_EACH_EDGE (e, ei, bb->succs)
3623 if (!AVAIL_IN_WORKLIST_P (e->dest)
3624 && e->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
3625 {
3626 *qin++ = e->dest;
3627 AVAIL_IN_WORKLIST_P (e->dest) = true;
3628 qlen++;
3629
3630 if (qin >= qend)
3631 qin = worklist;
3632 }
3633 }
3634
3635 free (worklist);
3636
3637 if (dump_file)
3638 dump_tm_memopt_sets (blocks);
3639 }
3640
3641 /* Compute ANTIC sets for every basic block in BLOCKS.
3642
3643 We compute STORE_ANTIC_OUT as follows:
3644
3645 STORE_ANTIC_OUT[bb] = union(STORE_ANTIC_IN[bb], STORE_LOCAL[bb])
3646 STORE_ANTIC_IN[bb] = intersect(STORE_ANTIC_OUT[successors])
3647
3648 REGION is the TM region.
3649 BLOCKS are the basic blocks in the region. */
3650
3651 static void
3652 tm_memopt_compute_antic (struct tm_region *region,
3653 vec<basic_block> blocks)
3654 {
3655 edge e;
3656 basic_block *worklist, *qin, *qout, *qend, bb;
3657 unsigned int qlen;
3658 int i;
3659 edge_iterator ei;
3660
3661 /* Allocate a worklist array/queue. Entries are only added to the
3662 list if they were not already on the list. So the size is
3663 bounded by the number of basic blocks in the region. */
3664 qin = qout = worklist = XNEWVEC (basic_block, blocks.length ());
3665
3666 for (qlen = 0, i = blocks.length () - 1; i >= 0; --i)
3667 {
3668 bb = blocks[i];
3669
3670 /* Seed ANTIC_OUT with the LOCAL set. */
3671 bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_LOCAL (bb));
3672
3673 /* Put every block in the region on the worklist. */
3674 AVAIL_IN_WORKLIST_P (bb) = true;
3675 /* No need to insert exit blocks, since their ANTIC_IN is NULL,
3676 and their ANTIC_OUT has already been seeded in. */
3677 if (region->exit_blocks
3678 && !bitmap_bit_p (region->exit_blocks, bb->index))
3679 {
3680 qlen++;
3681 *qin++ = bb;
3682 }
3683 }
3684
3685 /* The exit blocks have been initialized with the local sets. */
3686 if (region->exit_blocks)
3687 {
3688 unsigned int i;
3689 bitmap_iterator bi;
3690 EXECUTE_IF_SET_IN_BITMAP (region->exit_blocks, 0, i, bi)
3691 BB_VISITED_P (BASIC_BLOCK_FOR_FN (cfun, i)) = true;
3692 }
3693
3694 qin = worklist;
3695 qend = &worklist[qlen];
3696
3697 /* Iterate until the worklist is empty. */
3698 while (qlen)
3699 {
3700 /* Take the first entry off the worklist. */
3701 bb = *qout++;
3702 qlen--;
3703
3704 if (qout >= qend)
3705 qout = worklist;
3706
3707 /* This block can be added to the worklist again if necessary. */
3708 AVAIL_IN_WORKLIST_P (bb) = false;
3709 tm_memopt_compute_antin (bb);
3710
3711 /* Note: We do not add the LOCAL sets here because we already
3712 seeded the ANTIC_OUT sets with them. */
3713 if (bitmap_ior_into (STORE_ANTIC_OUT (bb), STORE_ANTIC_IN (bb))
3714 && bb != region->entry_block)
3715 /* If the out state of this block changed, then we need to add
3716 its predecessors to the worklist if they are not already in. */
3717 FOR_EACH_EDGE (e, ei, bb->preds)
3718 if (!AVAIL_IN_WORKLIST_P (e->src))
3719 {
3720 *qin++ = e->src;
3721 AVAIL_IN_WORKLIST_P (e->src) = true;
3722 qlen++;
3723
3724 if (qin >= qend)
3725 qin = worklist;
3726 }
3727 }
3728
3729 free (worklist);
3730
3731 if (dump_file)
3732 dump_tm_memopt_sets (blocks);
3733 }
3734
3735 /* Offsets of load variants from TM_LOAD. For example,
3736 BUILT_IN_TM_LOAD_RAR* is an offset of 1 from BUILT_IN_TM_LOAD*.
3737 See gtm-builtins.def. */
3738 #define TRANSFORM_RAR 1
3739 #define TRANSFORM_RAW 2
3740 #define TRANSFORM_RFW 3
3741 /* Offsets of store variants from TM_STORE. */
3742 #define TRANSFORM_WAR 1
3743 #define TRANSFORM_WAW 2
3744
3745 /* Inform about a load/store optimization. */
3746
3747 static void
3748 dump_tm_memopt_transform (gimple stmt)
3749 {
3750 if (dump_file)
3751 {
3752 fprintf (dump_file, "TM memopt: transforming: ");
3753 print_gimple_stmt (dump_file, stmt, 0, 0);
3754 fprintf (dump_file, "\n");
3755 }
3756 }
3757
3758 /* Perform a read/write optimization. Replaces the TM builtin in STMT
3759 by a builtin that is OFFSET entries down in the builtins table in
3760 gtm-builtins.def. */
3761
3762 static void
3763 tm_memopt_transform_stmt (unsigned int offset,
3764 gimple stmt,
3765 gimple_stmt_iterator *gsi)
3766 {
3767 tree fn = gimple_call_fn (stmt);
3768 gcc_assert (TREE_CODE (fn) == ADDR_EXPR);
3769 TREE_OPERAND (fn, 0)
3770 = builtin_decl_explicit ((enum built_in_function)
3771 (DECL_FUNCTION_CODE (TREE_OPERAND (fn, 0))
3772 + offset));
3773 gimple_call_set_fn (stmt, fn);
3774 gsi_replace (gsi, stmt, true);
3775 dump_tm_memopt_transform (stmt);
3776 }
3777
3778 /* Perform the actual TM memory optimization transformations in the
3779 basic blocks in BLOCKS. */
3780
3781 static void
3782 tm_memopt_transform_blocks (vec<basic_block> blocks)
3783 {
3784 size_t i;
3785 basic_block bb;
3786 gimple_stmt_iterator gsi;
3787
3788 for (i = 0; blocks.iterate (i, &bb); ++i)
3789 {
3790 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3791 {
3792 gimple stmt = gsi_stmt (gsi);
3793 bitmap read_avail = READ_AVAIL_IN (bb);
3794 bitmap store_avail = STORE_AVAIL_IN (bb);
3795 bitmap store_antic = STORE_ANTIC_OUT (bb);
3796 unsigned int loc;
3797
3798 if (is_tm_simple_load (stmt))
3799 {
3800 loc = tm_memopt_value_number (stmt, NO_INSERT);
3801 if (store_avail && bitmap_bit_p (store_avail, loc))
3802 tm_memopt_transform_stmt (TRANSFORM_RAW, stmt, &gsi);
3803 else if (store_antic && bitmap_bit_p (store_antic, loc))
3804 {
3805 tm_memopt_transform_stmt (TRANSFORM_RFW, stmt, &gsi);
3806 bitmap_set_bit (store_avail, loc);
3807 }
3808 else if (read_avail && bitmap_bit_p (read_avail, loc))
3809 tm_memopt_transform_stmt (TRANSFORM_RAR, stmt, &gsi);
3810 else
3811 bitmap_set_bit (read_avail, loc);
3812 }
3813 else if (is_tm_simple_store (stmt))
3814 {
3815 loc = tm_memopt_value_number (stmt, NO_INSERT);
3816 if (store_avail && bitmap_bit_p (store_avail, loc))
3817 tm_memopt_transform_stmt (TRANSFORM_WAW, stmt, &gsi);
3818 else
3819 {
3820 if (read_avail && bitmap_bit_p (read_avail, loc))
3821 tm_memopt_transform_stmt (TRANSFORM_WAR, stmt, &gsi);
3822 bitmap_set_bit (store_avail, loc);
3823 }
3824 }
3825 }
3826 }
3827 }
3828
3829 /* Return a new set of bitmaps for a BB. */
3830
3831 static struct tm_memopt_bitmaps *
3832 tm_memopt_init_sets (void)
3833 {
3834 struct tm_memopt_bitmaps *b
3835 = XOBNEW (&tm_memopt_obstack.obstack, struct tm_memopt_bitmaps);
3836 b->store_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3837 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3838 b->store_antic_in = BITMAP_ALLOC (&tm_memopt_obstack);
3839 b->store_antic_out = BITMAP_ALLOC (&tm_memopt_obstack);
3840 b->store_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3841 b->read_avail_in = BITMAP_ALLOC (&tm_memopt_obstack);
3842 b->read_avail_out = BITMAP_ALLOC (&tm_memopt_obstack);
3843 b->read_local = BITMAP_ALLOC (&tm_memopt_obstack);
3844 b->store_local = BITMAP_ALLOC (&tm_memopt_obstack);
3845 return b;
3846 }
3847
3848 /* Free sets computed for each BB. */
3849
3850 static void
3851 tm_memopt_free_sets (vec<basic_block> blocks)
3852 {
3853 size_t i;
3854 basic_block bb;
3855
3856 for (i = 0; blocks.iterate (i, &bb); ++i)
3857 bb->aux = NULL;
3858 }
3859
3860 /* Clear the visited bit for every basic block in BLOCKS. */
3861
3862 static void
3863 tm_memopt_clear_visited (vec<basic_block> blocks)
3864 {
3865 size_t i;
3866 basic_block bb;
3867
3868 for (i = 0; blocks.iterate (i, &bb); ++i)
3869 BB_VISITED_P (bb) = false;
3870 }
3871
3872 /* Replace TM load/stores with hints for the runtime. We handle
3873 things like read-after-write, write-after-read, read-after-read,
3874 read-for-write, etc. */
3875
3876 static unsigned int
3877 execute_tm_memopt (void)
3878 {
3879 struct tm_region *region;
3880 vec<basic_block> bbs;
3881
3882 tm_memopt_value_id = 0;
3883 tm_memopt_value_numbers.create (10);
3884
3885 for (region = all_tm_regions; region; region = region->next)
3886 {
3887 /* All the TM stores/loads in the current region. */
3888 size_t i;
3889 basic_block bb;
3890
3891 bitmap_obstack_initialize (&tm_memopt_obstack);
3892
3893 /* Save all BBs for the current region. */
3894 bbs = get_tm_region_blocks (region->entry_block,
3895 region->exit_blocks,
3896 region->irr_blocks,
3897 NULL,
3898 false);
3899
3900 /* Collect all the memory operations. */
3901 for (i = 0; bbs.iterate (i, &bb); ++i)
3902 {
3903 bb->aux = tm_memopt_init_sets ();
3904 tm_memopt_accumulate_memops (bb);
3905 }
3906
3907 /* Solve data flow equations and transform each block accordingly. */
3908 tm_memopt_clear_visited (bbs);
3909 tm_memopt_compute_available (region, bbs);
3910 tm_memopt_clear_visited (bbs);
3911 tm_memopt_compute_antic (region, bbs);
3912 tm_memopt_transform_blocks (bbs);
3913
3914 tm_memopt_free_sets (bbs);
3915 bbs.release ();
3916 bitmap_obstack_release (&tm_memopt_obstack);
3917 tm_memopt_value_numbers.empty ();
3918 }
3919
3920 tm_memopt_value_numbers.dispose ();
3921 return 0;
3922 }
3923
3924 namespace {
3925
3926 const pass_data pass_data_tm_memopt =
3927 {
3928 GIMPLE_PASS, /* type */
3929 "tmmemopt", /* name */
3930 OPTGROUP_NONE, /* optinfo_flags */
3931 true, /* has_execute */
3932 TV_TRANS_MEM, /* tv_id */
3933 ( PROP_ssa | PROP_cfg ), /* properties_required */
3934 0, /* properties_provided */
3935 0, /* properties_destroyed */
3936 0, /* todo_flags_start */
3937 0, /* todo_flags_finish */
3938 };
3939
3940 class pass_tm_memopt : public gimple_opt_pass
3941 {
3942 public:
3943 pass_tm_memopt (gcc::context *ctxt)
3944 : gimple_opt_pass (pass_data_tm_memopt, ctxt)
3945 {}
3946
3947 /* opt_pass methods: */
3948 virtual bool gate (function *) { return flag_tm && optimize > 0; }
3949 virtual unsigned int execute (function *) { return execute_tm_memopt (); }
3950
3951 }; // class pass_tm_memopt
3952
3953 } // anon namespace
3954
3955 gimple_opt_pass *
3956 make_pass_tm_memopt (gcc::context *ctxt)
3957 {
3958 return new pass_tm_memopt (ctxt);
3959 }
3960
3961 \f
3962 /* Interprocedual analysis for the creation of transactional clones.
3963 The aim of this pass is to find which functions are referenced in
3964 a non-irrevocable transaction context, and for those over which
3965 we have control (or user directive), create a version of the
3966 function which uses only the transactional interface to reference
3967 protected memories. This analysis proceeds in several steps:
3968
3969 (1) Collect the set of all possible transactional clones:
3970
3971 (a) For all local public functions marked tm_callable, push
3972 it onto the tm_callee queue.
3973
3974 (b) For all local functions, scan for calls in transaction blocks.
3975 Push the caller and callee onto the tm_caller and tm_callee
3976 queues. Count the number of callers for each callee.
3977
3978 (c) For each local function on the callee list, assume we will
3979 create a transactional clone. Push *all* calls onto the
3980 callee queues; count the number of clone callers separately
3981 to the number of original callers.
3982
3983 (2) Propagate irrevocable status up the dominator tree:
3984
3985 (a) Any external function on the callee list that is not marked
3986 tm_callable is irrevocable. Push all callers of such onto
3987 a worklist.
3988
3989 (b) For each function on the worklist, mark each block that
3990 contains an irrevocable call. Use the AND operator to
3991 propagate that mark up the dominator tree.
3992
3993 (c) If we reach the entry block for a possible transactional
3994 clone, then the transactional clone is irrevocable, and
3995 we should not create the clone after all. Push all
3996 callers onto the worklist.
3997
3998 (d) Place tm_irrevocable calls at the beginning of the relevant
3999 blocks. Special case here is the entry block for the entire
4000 transaction region; there we mark it GTMA_DOES_GO_IRREVOCABLE for
4001 the library to begin the region in serial mode. Decrement
4002 the call count for all callees in the irrevocable region.
4003
4004 (3) Create the transactional clones:
4005
4006 Any tm_callee that still has a non-zero call count is cloned.
4007 */
4008
4009 /* This structure is stored in the AUX field of each cgraph_node. */
4010 struct tm_ipa_cg_data
4011 {
4012 /* The clone of the function that got created. */
4013 struct cgraph_node *clone;
4014
4015 /* The tm regions in the normal function. */
4016 struct tm_region *all_tm_regions;
4017
4018 /* The blocks of the normal/clone functions that contain irrevocable
4019 calls, or blocks that are post-dominated by irrevocable calls. */
4020 bitmap irrevocable_blocks_normal;
4021 bitmap irrevocable_blocks_clone;
4022
4023 /* The blocks of the normal function that are involved in transactions. */
4024 bitmap transaction_blocks_normal;
4025
4026 /* The number of callers to the transactional clone of this function
4027 from normal and transactional clones respectively. */
4028 unsigned tm_callers_normal;
4029 unsigned tm_callers_clone;
4030
4031 /* True if all calls to this function's transactional clone
4032 are irrevocable. Also automatically true if the function
4033 has no transactional clone. */
4034 bool is_irrevocable;
4035
4036 /* Flags indicating the presence of this function in various queues. */
4037 bool in_callee_queue;
4038 bool in_worklist;
4039
4040 /* Flags indicating the kind of scan desired while in the worklist. */
4041 bool want_irr_scan_normal;
4042 };
4043
4044 typedef vec<cgraph_node_ptr> cgraph_node_queue;
4045
4046 /* Return the ipa data associated with NODE, allocating zeroed memory
4047 if necessary. TRAVERSE_ALIASES is true if we must traverse aliases
4048 and set *NODE accordingly. */
4049
4050 static struct tm_ipa_cg_data *
4051 get_cg_data (struct cgraph_node **node, bool traverse_aliases)
4052 {
4053 struct tm_ipa_cg_data *d;
4054
4055 if (traverse_aliases && (*node)->alias)
4056 *node = cgraph_alias_target (*node);
4057
4058 d = (struct tm_ipa_cg_data *) (*node)->aux;
4059
4060 if (d == NULL)
4061 {
4062 d = (struct tm_ipa_cg_data *)
4063 obstack_alloc (&tm_obstack.obstack, sizeof (*d));
4064 (*node)->aux = (void *) d;
4065 memset (d, 0, sizeof (*d));
4066 }
4067
4068 return d;
4069 }
4070
4071 /* Add NODE to the end of QUEUE, unless IN_QUEUE_P indicates that
4072 it is already present. */
4073
4074 static void
4075 maybe_push_queue (struct cgraph_node *node,
4076 cgraph_node_queue *queue_p, bool *in_queue_p)
4077 {
4078 if (!*in_queue_p)
4079 {
4080 *in_queue_p = true;
4081 queue_p->safe_push (node);
4082 }
4083 }
4084
4085 /* Duplicate the basic blocks in QUEUE for use in the uninstrumented
4086 code path. QUEUE are the basic blocks inside the transaction
4087 represented in REGION.
4088
4089 Later in split_code_paths() we will add the conditional to choose
4090 between the two alternatives. */
4091
4092 static void
4093 ipa_uninstrument_transaction (struct tm_region *region,
4094 vec<basic_block> queue)
4095 {
4096 gimple transaction = region->transaction_stmt;
4097 basic_block transaction_bb = gimple_bb (transaction);
4098 int n = queue.length ();
4099 basic_block *new_bbs = XNEWVEC (basic_block, n);
4100
4101 copy_bbs (queue.address (), n, new_bbs, NULL, 0, NULL, NULL, transaction_bb,
4102 true);
4103 edge e = make_edge (transaction_bb, new_bbs[0], EDGE_TM_UNINSTRUMENTED);
4104 add_phi_args_after_copy (new_bbs, n, e);
4105
4106 // Now we will have a GIMPLE_ATOMIC with 3 possible edges out of it.
4107 // a) EDGE_FALLTHRU into the transaction
4108 // b) EDGE_TM_ABORT out of the transaction
4109 // c) EDGE_TM_UNINSTRUMENTED into the uninstrumented blocks.
4110
4111 free (new_bbs);
4112 }
4113
4114 /* A subroutine of ipa_tm_scan_calls_transaction and ipa_tm_scan_calls_clone.
4115 Queue all callees within block BB. */
4116
4117 static void
4118 ipa_tm_scan_calls_block (cgraph_node_queue *callees_p,
4119 basic_block bb, bool for_clone)
4120 {
4121 gimple_stmt_iterator gsi;
4122
4123 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4124 {
4125 gimple stmt = gsi_stmt (gsi);
4126 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4127 {
4128 tree fndecl = gimple_call_fndecl (stmt);
4129 if (fndecl)
4130 {
4131 struct tm_ipa_cg_data *d;
4132 unsigned *pcallers;
4133 struct cgraph_node *node;
4134
4135 if (is_tm_ending_fndecl (fndecl))
4136 continue;
4137 if (find_tm_replacement_function (fndecl))
4138 continue;
4139
4140 node = cgraph_get_node (fndecl);
4141 gcc_assert (node != NULL);
4142 d = get_cg_data (&node, true);
4143
4144 pcallers = (for_clone ? &d->tm_callers_clone
4145 : &d->tm_callers_normal);
4146 *pcallers += 1;
4147
4148 maybe_push_queue (node, callees_p, &d->in_callee_queue);
4149 }
4150 }
4151 }
4152 }
4153
4154 /* Scan all calls in NODE that are within a transaction region,
4155 and push the resulting nodes into the callee queue. */
4156
4157 static void
4158 ipa_tm_scan_calls_transaction (struct tm_ipa_cg_data *d,
4159 cgraph_node_queue *callees_p)
4160 {
4161 struct tm_region *r;
4162
4163 d->transaction_blocks_normal = BITMAP_ALLOC (&tm_obstack);
4164 d->all_tm_regions = all_tm_regions;
4165
4166 for (r = all_tm_regions; r; r = r->next)
4167 {
4168 vec<basic_block> bbs;
4169 basic_block bb;
4170 unsigned i;
4171
4172 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks, NULL,
4173 d->transaction_blocks_normal, false);
4174
4175 // Generate the uninstrumented code path for this transaction.
4176 ipa_uninstrument_transaction (r, bbs);
4177
4178 FOR_EACH_VEC_ELT (bbs, i, bb)
4179 ipa_tm_scan_calls_block (callees_p, bb, false);
4180
4181 bbs.release ();
4182 }
4183
4184 // ??? copy_bbs should maintain cgraph edges for the blocks as it is
4185 // copying them, rather than forcing us to do this externally.
4186 rebuild_cgraph_edges ();
4187
4188 // ??? In ipa_uninstrument_transaction we don't try to update dominators
4189 // because copy_bbs doesn't return a VEC like iterate_fix_dominators expects.
4190 // Instead, just release dominators here so update_ssa recomputes them.
4191 free_dominance_info (CDI_DOMINATORS);
4192
4193 // When building the uninstrumented code path, copy_bbs will have invoked
4194 // create_new_def_for starting an "ssa update context". There is only one
4195 // instance of this context, so resolve ssa updates before moving on to
4196 // the next function.
4197 update_ssa (TODO_update_ssa);
4198 }
4199
4200 /* Scan all calls in NODE as if this is the transactional clone,
4201 and push the destinations into the callee queue. */
4202
4203 static void
4204 ipa_tm_scan_calls_clone (struct cgraph_node *node,
4205 cgraph_node_queue *callees_p)
4206 {
4207 struct function *fn = DECL_STRUCT_FUNCTION (node->decl);
4208 basic_block bb;
4209
4210 FOR_EACH_BB_FN (bb, fn)
4211 ipa_tm_scan_calls_block (callees_p, bb, true);
4212 }
4213
4214 /* The function NODE has been detected to be irrevocable. Push all
4215 of its callers onto WORKLIST for the purpose of re-scanning them. */
4216
4217 static void
4218 ipa_tm_note_irrevocable (struct cgraph_node *node,
4219 cgraph_node_queue *worklist_p)
4220 {
4221 struct tm_ipa_cg_data *d = get_cg_data (&node, true);
4222 struct cgraph_edge *e;
4223
4224 d->is_irrevocable = true;
4225
4226 for (e = node->callers; e ; e = e->next_caller)
4227 {
4228 basic_block bb;
4229 struct cgraph_node *caller;
4230
4231 /* Don't examine recursive calls. */
4232 if (e->caller == node)
4233 continue;
4234 /* Even if we think we can go irrevocable, believe the user
4235 above all. */
4236 if (is_tm_safe_or_pure (e->caller->decl))
4237 continue;
4238
4239 caller = e->caller;
4240 d = get_cg_data (&caller, true);
4241
4242 /* Check if the callee is in a transactional region. If so,
4243 schedule the function for normal re-scan as well. */
4244 bb = gimple_bb (e->call_stmt);
4245 gcc_assert (bb != NULL);
4246 if (d->transaction_blocks_normal
4247 && bitmap_bit_p (d->transaction_blocks_normal, bb->index))
4248 d->want_irr_scan_normal = true;
4249
4250 maybe_push_queue (caller, worklist_p, &d->in_worklist);
4251 }
4252 }
4253
4254 /* A subroutine of ipa_tm_scan_irr_blocks; return true iff any statement
4255 within the block is irrevocable. */
4256
4257 static bool
4258 ipa_tm_scan_irr_block (basic_block bb)
4259 {
4260 gimple_stmt_iterator gsi;
4261 tree fn;
4262
4263 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4264 {
4265 gimple stmt = gsi_stmt (gsi);
4266 switch (gimple_code (stmt))
4267 {
4268 case GIMPLE_ASSIGN:
4269 if (gimple_assign_single_p (stmt))
4270 {
4271 tree lhs = gimple_assign_lhs (stmt);
4272 tree rhs = gimple_assign_rhs1 (stmt);
4273 if (volatile_var_p (lhs) || volatile_var_p (rhs))
4274 return true;
4275 }
4276 break;
4277
4278 case GIMPLE_CALL:
4279 {
4280 tree lhs = gimple_call_lhs (stmt);
4281 if (lhs && volatile_var_p (lhs))
4282 return true;
4283
4284 if (is_tm_pure_call (stmt))
4285 break;
4286
4287 fn = gimple_call_fn (stmt);
4288
4289 /* Functions with the attribute are by definition irrevocable. */
4290 if (is_tm_irrevocable (fn))
4291 return true;
4292
4293 /* For direct function calls, go ahead and check for replacement
4294 functions, or transitive irrevocable functions. For indirect
4295 functions, we'll ask the runtime. */
4296 if (TREE_CODE (fn) == ADDR_EXPR)
4297 {
4298 struct tm_ipa_cg_data *d;
4299 struct cgraph_node *node;
4300
4301 fn = TREE_OPERAND (fn, 0);
4302 if (is_tm_ending_fndecl (fn))
4303 break;
4304 if (find_tm_replacement_function (fn))
4305 break;
4306
4307 node = cgraph_get_node (fn);
4308 d = get_cg_data (&node, true);
4309
4310 /* Return true if irrevocable, but above all, believe
4311 the user. */
4312 if (d->is_irrevocable
4313 && !is_tm_safe_or_pure (fn))
4314 return true;
4315 }
4316 break;
4317 }
4318
4319 case GIMPLE_ASM:
4320 /* ??? The Approved Method of indicating that an inline
4321 assembly statement is not relevant to the transaction
4322 is to wrap it in a __tm_waiver block. This is not
4323 yet implemented, so we can't check for it. */
4324 if (is_tm_safe (current_function_decl))
4325 {
4326 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
4327 SET_EXPR_LOCATION (t, gimple_location (stmt));
4328 error ("%Kasm not allowed in %<transaction_safe%> function", t);
4329 }
4330 return true;
4331
4332 default:
4333 break;
4334 }
4335 }
4336
4337 return false;
4338 }
4339
4340 /* For each of the blocks seeded witin PQUEUE, walk the CFG looking
4341 for new irrevocable blocks, marking them in NEW_IRR. Don't bother
4342 scanning past OLD_IRR or EXIT_BLOCKS. */
4343
4344 static bool
4345 ipa_tm_scan_irr_blocks (vec<basic_block> *pqueue, bitmap new_irr,
4346 bitmap old_irr, bitmap exit_blocks)
4347 {
4348 bool any_new_irr = false;
4349 edge e;
4350 edge_iterator ei;
4351 bitmap visited_blocks = BITMAP_ALLOC (NULL);
4352
4353 do
4354 {
4355 basic_block bb = pqueue->pop ();
4356
4357 /* Don't re-scan blocks we know already are irrevocable. */
4358 if (old_irr && bitmap_bit_p (old_irr, bb->index))
4359 continue;
4360
4361 if (ipa_tm_scan_irr_block (bb))
4362 {
4363 bitmap_set_bit (new_irr, bb->index);
4364 any_new_irr = true;
4365 }
4366 else if (exit_blocks == NULL || !bitmap_bit_p (exit_blocks, bb->index))
4367 {
4368 FOR_EACH_EDGE (e, ei, bb->succs)
4369 if (!bitmap_bit_p (visited_blocks, e->dest->index))
4370 {
4371 bitmap_set_bit (visited_blocks, e->dest->index);
4372 pqueue->safe_push (e->dest);
4373 }
4374 }
4375 }
4376 while (!pqueue->is_empty ());
4377
4378 BITMAP_FREE (visited_blocks);
4379
4380 return any_new_irr;
4381 }
4382
4383 /* Propagate the irrevocable property both up and down the dominator tree.
4384 BB is the current block being scanned; EXIT_BLOCKS are the edges of the
4385 TM regions; OLD_IRR are the results of a previous scan of the dominator
4386 tree which has been fully propagated; NEW_IRR is the set of new blocks
4387 which are gaining the irrevocable property during the current scan. */
4388
4389 static void
4390 ipa_tm_propagate_irr (basic_block entry_block, bitmap new_irr,
4391 bitmap old_irr, bitmap exit_blocks)
4392 {
4393 vec<basic_block> bbs;
4394 bitmap all_region_blocks;
4395
4396 /* If this block is in the old set, no need to rescan. */
4397 if (old_irr && bitmap_bit_p (old_irr, entry_block->index))
4398 return;
4399
4400 all_region_blocks = BITMAP_ALLOC (&tm_obstack);
4401 bbs = get_tm_region_blocks (entry_block, exit_blocks, NULL,
4402 all_region_blocks, false);
4403 do
4404 {
4405 basic_block bb = bbs.pop ();
4406 bool this_irr = bitmap_bit_p (new_irr, bb->index);
4407 bool all_son_irr = false;
4408 edge_iterator ei;
4409 edge e;
4410
4411 /* Propagate up. If my children are, I am too, but we must have
4412 at least one child that is. */
4413 if (!this_irr)
4414 {
4415 FOR_EACH_EDGE (e, ei, bb->succs)
4416 {
4417 if (!bitmap_bit_p (new_irr, e->dest->index))
4418 {
4419 all_son_irr = false;
4420 break;
4421 }
4422 else
4423 all_son_irr = true;
4424 }
4425 if (all_son_irr)
4426 {
4427 /* Add block to new_irr if it hasn't already been processed. */
4428 if (!old_irr || !bitmap_bit_p (old_irr, bb->index))
4429 {
4430 bitmap_set_bit (new_irr, bb->index);
4431 this_irr = true;
4432 }
4433 }
4434 }
4435
4436 /* Propagate down to everyone we immediately dominate. */
4437 if (this_irr)
4438 {
4439 basic_block son;
4440 for (son = first_dom_son (CDI_DOMINATORS, bb);
4441 son;
4442 son = next_dom_son (CDI_DOMINATORS, son))
4443 {
4444 /* Make sure block is actually in a TM region, and it
4445 isn't already in old_irr. */
4446 if ((!old_irr || !bitmap_bit_p (old_irr, son->index))
4447 && bitmap_bit_p (all_region_blocks, son->index))
4448 bitmap_set_bit (new_irr, son->index);
4449 }
4450 }
4451 }
4452 while (!bbs.is_empty ());
4453
4454 BITMAP_FREE (all_region_blocks);
4455 bbs.release ();
4456 }
4457
4458 static void
4459 ipa_tm_decrement_clone_counts (basic_block bb, bool for_clone)
4460 {
4461 gimple_stmt_iterator gsi;
4462
4463 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4464 {
4465 gimple stmt = gsi_stmt (gsi);
4466 if (is_gimple_call (stmt) && !is_tm_pure_call (stmt))
4467 {
4468 tree fndecl = gimple_call_fndecl (stmt);
4469 if (fndecl)
4470 {
4471 struct tm_ipa_cg_data *d;
4472 unsigned *pcallers;
4473 struct cgraph_node *tnode;
4474
4475 if (is_tm_ending_fndecl (fndecl))
4476 continue;
4477 if (find_tm_replacement_function (fndecl))
4478 continue;
4479
4480 tnode = cgraph_get_node (fndecl);
4481 d = get_cg_data (&tnode, true);
4482
4483 pcallers = (for_clone ? &d->tm_callers_clone
4484 : &d->tm_callers_normal);
4485
4486 gcc_assert (*pcallers > 0);
4487 *pcallers -= 1;
4488 }
4489 }
4490 }
4491 }
4492
4493 /* (Re-)Scan the transaction blocks in NODE for calls to irrevocable functions,
4494 as well as other irrevocable actions such as inline assembly. Mark all
4495 such blocks as irrevocable and decrement the number of calls to
4496 transactional clones. Return true if, for the transactional clone, the
4497 entire function is irrevocable. */
4498
4499 static bool
4500 ipa_tm_scan_irr_function (struct cgraph_node *node, bool for_clone)
4501 {
4502 struct tm_ipa_cg_data *d;
4503 bitmap new_irr, old_irr;
4504 bool ret = false;
4505
4506 /* Builtin operators (operator new, and such). */
4507 if (DECL_STRUCT_FUNCTION (node->decl) == NULL
4508 || DECL_STRUCT_FUNCTION (node->decl)->cfg == NULL)
4509 return false;
4510
4511 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
4512 calculate_dominance_info (CDI_DOMINATORS);
4513
4514 d = get_cg_data (&node, true);
4515 auto_vec<basic_block, 10> queue;
4516 new_irr = BITMAP_ALLOC (&tm_obstack);
4517
4518 /* Scan each tm region, propagating irrevocable status through the tree. */
4519 if (for_clone)
4520 {
4521 old_irr = d->irrevocable_blocks_clone;
4522 queue.quick_push (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)));
4523 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr, NULL))
4524 {
4525 ipa_tm_propagate_irr (single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
4526 new_irr,
4527 old_irr, NULL);
4528 ret = bitmap_bit_p (new_irr,
4529 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun))->index);
4530 }
4531 }
4532 else
4533 {
4534 struct tm_region *region;
4535
4536 old_irr = d->irrevocable_blocks_normal;
4537 for (region = d->all_tm_regions; region; region = region->next)
4538 {
4539 queue.quick_push (region->entry_block);
4540 if (ipa_tm_scan_irr_blocks (&queue, new_irr, old_irr,
4541 region->exit_blocks))
4542 ipa_tm_propagate_irr (region->entry_block, new_irr, old_irr,
4543 region->exit_blocks);
4544 }
4545 }
4546
4547 /* If we found any new irrevocable blocks, reduce the call count for
4548 transactional clones within the irrevocable blocks. Save the new
4549 set of irrevocable blocks for next time. */
4550 if (!bitmap_empty_p (new_irr))
4551 {
4552 bitmap_iterator bmi;
4553 unsigned i;
4554
4555 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4556 ipa_tm_decrement_clone_counts (BASIC_BLOCK_FOR_FN (cfun, i),
4557 for_clone);
4558
4559 if (old_irr)
4560 {
4561 bitmap_ior_into (old_irr, new_irr);
4562 BITMAP_FREE (new_irr);
4563 }
4564 else if (for_clone)
4565 d->irrevocable_blocks_clone = new_irr;
4566 else
4567 d->irrevocable_blocks_normal = new_irr;
4568
4569 if (dump_file && new_irr)
4570 {
4571 const char *dname;
4572 bitmap_iterator bmi;
4573 unsigned i;
4574
4575 dname = lang_hooks.decl_printable_name (current_function_decl, 2);
4576 EXECUTE_IF_SET_IN_BITMAP (new_irr, 0, i, bmi)
4577 fprintf (dump_file, "%s: bb %d goes irrevocable\n", dname, i);
4578 }
4579 }
4580 else
4581 BITMAP_FREE (new_irr);
4582
4583 pop_cfun ();
4584
4585 return ret;
4586 }
4587
4588 /* Return true if, for the transactional clone of NODE, any call
4589 may enter irrevocable mode. */
4590
4591 static bool
4592 ipa_tm_mayenterirr_function (struct cgraph_node *node)
4593 {
4594 struct tm_ipa_cg_data *d;
4595 tree decl;
4596 unsigned flags;
4597
4598 d = get_cg_data (&node, true);
4599 decl = node->decl;
4600 flags = flags_from_decl_or_type (decl);
4601
4602 /* Handle some TM builtins. Ordinarily these aren't actually generated
4603 at this point, but handling these functions when written in by the
4604 user makes it easier to build unit tests. */
4605 if (flags & ECF_TM_BUILTIN)
4606 return false;
4607
4608 /* Filter out all functions that are marked. */
4609 if (flags & ECF_TM_PURE)
4610 return false;
4611 if (is_tm_safe (decl))
4612 return false;
4613 if (is_tm_irrevocable (decl))
4614 return true;
4615 if (is_tm_callable (decl))
4616 return true;
4617 if (find_tm_replacement_function (decl))
4618 return true;
4619
4620 /* If we aren't seeing the final version of the function we don't
4621 know what it will contain at runtime. */
4622 if (cgraph_function_body_availability (node) < AVAIL_AVAILABLE)
4623 return true;
4624
4625 /* If the function must go irrevocable, then of course true. */
4626 if (d->is_irrevocable)
4627 return true;
4628
4629 /* If there are any blocks marked irrevocable, then the function
4630 as a whole may enter irrevocable. */
4631 if (d->irrevocable_blocks_clone)
4632 return true;
4633
4634 /* We may have previously marked this function as tm_may_enter_irr;
4635 see pass_diagnose_tm_blocks. */
4636 if (node->local.tm_may_enter_irr)
4637 return true;
4638
4639 /* Recurse on the main body for aliases. In general, this will
4640 result in one of the bits above being set so that we will not
4641 have to recurse next time. */
4642 if (node->alias)
4643 return ipa_tm_mayenterirr_function (cgraph_get_node (node->thunk.alias));
4644
4645 /* What remains is unmarked local functions without items that force
4646 the function to go irrevocable. */
4647 return false;
4648 }
4649
4650 /* Diagnose calls from transaction_safe functions to unmarked
4651 functions that are determined to not be safe. */
4652
4653 static void
4654 ipa_tm_diagnose_tm_safe (struct cgraph_node *node)
4655 {
4656 struct cgraph_edge *e;
4657
4658 for (e = node->callees; e ; e = e->next_callee)
4659 if (!is_tm_callable (e->callee->decl)
4660 && e->callee->local.tm_may_enter_irr)
4661 error_at (gimple_location (e->call_stmt),
4662 "unsafe function call %qD within "
4663 "%<transaction_safe%> function", e->callee->decl);
4664 }
4665
4666 /* Diagnose call from atomic transactions to unmarked functions
4667 that are determined to not be safe. */
4668
4669 static void
4670 ipa_tm_diagnose_transaction (struct cgraph_node *node,
4671 struct tm_region *all_tm_regions)
4672 {
4673 struct tm_region *r;
4674
4675 for (r = all_tm_regions; r ; r = r->next)
4676 if (gimple_transaction_subcode (r->transaction_stmt) & GTMA_IS_RELAXED)
4677 {
4678 /* Atomic transactions can be nested inside relaxed. */
4679 if (r->inner)
4680 ipa_tm_diagnose_transaction (node, r->inner);
4681 }
4682 else
4683 {
4684 vec<basic_block> bbs;
4685 gimple_stmt_iterator gsi;
4686 basic_block bb;
4687 size_t i;
4688
4689 bbs = get_tm_region_blocks (r->entry_block, r->exit_blocks,
4690 r->irr_blocks, NULL, false);
4691
4692 for (i = 0; bbs.iterate (i, &bb); ++i)
4693 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
4694 {
4695 gimple stmt = gsi_stmt (gsi);
4696 tree fndecl;
4697
4698 if (gimple_code (stmt) == GIMPLE_ASM)
4699 {
4700 error_at (gimple_location (stmt),
4701 "asm not allowed in atomic transaction");
4702 continue;
4703 }
4704
4705 if (!is_gimple_call (stmt))
4706 continue;
4707 fndecl = gimple_call_fndecl (stmt);
4708
4709 /* Indirect function calls have been diagnosed already. */
4710 if (!fndecl)
4711 continue;
4712
4713 /* Stop at the end of the transaction. */
4714 if (is_tm_ending_fndecl (fndecl))
4715 {
4716 if (bitmap_bit_p (r->exit_blocks, bb->index))
4717 break;
4718 continue;
4719 }
4720
4721 /* Marked functions have been diagnosed already. */
4722 if (is_tm_pure_call (stmt))
4723 continue;
4724 if (is_tm_callable (fndecl))
4725 continue;
4726
4727 if (cgraph_local_info (fndecl)->tm_may_enter_irr)
4728 error_at (gimple_location (stmt),
4729 "unsafe function call %qD within "
4730 "atomic transaction", fndecl);
4731 }
4732
4733 bbs.release ();
4734 }
4735 }
4736
4737 /* Return a transactional mangled name for the DECL_ASSEMBLER_NAME in
4738 OLD_DECL. The returned value is a freshly malloced pointer that
4739 should be freed by the caller. */
4740
4741 static tree
4742 tm_mangle (tree old_asm_id)
4743 {
4744 const char *old_asm_name;
4745 char *tm_name;
4746 void *alloc = NULL;
4747 struct demangle_component *dc;
4748 tree new_asm_id;
4749
4750 /* Determine if the symbol is already a valid C++ mangled name. Do this
4751 even for C, which might be interfacing with C++ code via appropriately
4752 ugly identifiers. */
4753 /* ??? We could probably do just as well checking for "_Z" and be done. */
4754 old_asm_name = IDENTIFIER_POINTER (old_asm_id);
4755 dc = cplus_demangle_v3_components (old_asm_name, DMGL_NO_OPTS, &alloc);
4756
4757 if (dc == NULL)
4758 {
4759 char length[8];
4760
4761 do_unencoded:
4762 sprintf (length, "%u", IDENTIFIER_LENGTH (old_asm_id));
4763 tm_name = concat ("_ZGTt", length, old_asm_name, NULL);
4764 }
4765 else
4766 {
4767 old_asm_name += 2; /* Skip _Z */
4768
4769 switch (dc->type)
4770 {
4771 case DEMANGLE_COMPONENT_TRANSACTION_CLONE:
4772 case DEMANGLE_COMPONENT_NONTRANSACTION_CLONE:
4773 /* Don't play silly games, you! */
4774 goto do_unencoded;
4775
4776 case DEMANGLE_COMPONENT_HIDDEN_ALIAS:
4777 /* I'd really like to know if we can ever be passed one of
4778 these from the C++ front end. The Logical Thing would
4779 seem that hidden-alias should be outer-most, so that we
4780 get hidden-alias of a transaction-clone and not vice-versa. */
4781 old_asm_name += 2;
4782 break;
4783
4784 default:
4785 break;
4786 }
4787
4788 tm_name = concat ("_ZGTt", old_asm_name, NULL);
4789 }
4790 free (alloc);
4791
4792 new_asm_id = get_identifier (tm_name);
4793 free (tm_name);
4794
4795 return new_asm_id;
4796 }
4797
4798 static inline void
4799 ipa_tm_mark_force_output_node (struct cgraph_node *node)
4800 {
4801 cgraph_mark_force_output_node (node);
4802 node->analyzed = true;
4803 }
4804
4805 static inline void
4806 ipa_tm_mark_forced_by_abi_node (struct cgraph_node *node)
4807 {
4808 node->forced_by_abi = true;
4809 node->analyzed = true;
4810 }
4811
4812 /* Callback data for ipa_tm_create_version_alias. */
4813 struct create_version_alias_info
4814 {
4815 struct cgraph_node *old_node;
4816 tree new_decl;
4817 };
4818
4819 /* A subroutine of ipa_tm_create_version, called via
4820 cgraph_for_node_and_aliases. Create new tm clones for each of
4821 the existing aliases. */
4822 static bool
4823 ipa_tm_create_version_alias (struct cgraph_node *node, void *data)
4824 {
4825 struct create_version_alias_info *info
4826 = (struct create_version_alias_info *)data;
4827 tree old_decl, new_decl, tm_name;
4828 struct cgraph_node *new_node;
4829
4830 if (!node->cpp_implicit_alias)
4831 return false;
4832
4833 old_decl = node->decl;
4834 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4835 new_decl = build_decl (DECL_SOURCE_LOCATION (old_decl),
4836 TREE_CODE (old_decl), tm_name,
4837 TREE_TYPE (old_decl));
4838
4839 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4840 SET_DECL_RTL (new_decl, NULL);
4841
4842 /* Based loosely on C++'s make_alias_for(). */
4843 TREE_PUBLIC (new_decl) = TREE_PUBLIC (old_decl);
4844 DECL_CONTEXT (new_decl) = DECL_CONTEXT (old_decl);
4845 DECL_LANG_SPECIFIC (new_decl) = DECL_LANG_SPECIFIC (old_decl);
4846 TREE_READONLY (new_decl) = TREE_READONLY (old_decl);
4847 DECL_EXTERNAL (new_decl) = 0;
4848 DECL_ARTIFICIAL (new_decl) = 1;
4849 TREE_ADDRESSABLE (new_decl) = 1;
4850 TREE_USED (new_decl) = 1;
4851 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4852
4853 /* Perform the same remapping to the comdat group. */
4854 if (DECL_ONE_ONLY (new_decl))
4855 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4856
4857 new_node = cgraph_same_body_alias (NULL, new_decl, info->new_decl);
4858 new_node->tm_clone = true;
4859 new_node->externally_visible = info->old_node->externally_visible;
4860 /* ?? Do not traverse aliases here. */
4861 get_cg_data (&node, false)->clone = new_node;
4862
4863 record_tm_clone_pair (old_decl, new_decl);
4864
4865 if (info->old_node->force_output
4866 || ipa_ref_list_first_referring (&info->old_node->ref_list))
4867 ipa_tm_mark_force_output_node (new_node);
4868 if (info->old_node->forced_by_abi)
4869 ipa_tm_mark_forced_by_abi_node (new_node);
4870 return false;
4871 }
4872
4873 /* Create a copy of the function (possibly declaration only) of OLD_NODE,
4874 appropriate for the transactional clone. */
4875
4876 static void
4877 ipa_tm_create_version (struct cgraph_node *old_node)
4878 {
4879 tree new_decl, old_decl, tm_name;
4880 struct cgraph_node *new_node;
4881
4882 old_decl = old_node->decl;
4883 new_decl = copy_node (old_decl);
4884
4885 /* DECL_ASSEMBLER_NAME needs to be set before we call
4886 cgraph_copy_node_for_versioning below, because cgraph_node will
4887 fill the assembler_name_hash. */
4888 tm_name = tm_mangle (DECL_ASSEMBLER_NAME (old_decl));
4889 SET_DECL_ASSEMBLER_NAME (new_decl, tm_name);
4890 SET_DECL_RTL (new_decl, NULL);
4891 TREE_SYMBOL_REFERENCED (tm_name) = 1;
4892
4893 /* Perform the same remapping to the comdat group. */
4894 if (DECL_ONE_ONLY (new_decl))
4895 DECL_COMDAT_GROUP (new_decl) = tm_mangle (DECL_COMDAT_GROUP (old_decl));
4896
4897 gcc_assert (!old_node->ipa_transforms_to_apply.exists ());
4898 new_node = cgraph_copy_node_for_versioning (old_node, new_decl, vNULL, NULL);
4899 new_node->local.local = false;
4900 new_node->externally_visible = old_node->externally_visible;
4901 new_node->lowered = true;
4902 new_node->tm_clone = 1;
4903 get_cg_data (&old_node, true)->clone = new_node;
4904
4905 if (cgraph_function_body_availability (old_node) >= AVAIL_OVERWRITABLE)
4906 {
4907 /* Remap extern inline to static inline. */
4908 /* ??? Is it worth trying to use make_decl_one_only? */
4909 if (DECL_DECLARED_INLINE_P (new_decl) && DECL_EXTERNAL (new_decl))
4910 {
4911 DECL_EXTERNAL (new_decl) = 0;
4912 TREE_PUBLIC (new_decl) = 0;
4913 DECL_WEAK (new_decl) = 0;
4914 }
4915
4916 tree_function_versioning (old_decl, new_decl,
4917 NULL, false, NULL,
4918 false, NULL, NULL);
4919 }
4920
4921 record_tm_clone_pair (old_decl, new_decl);
4922
4923 cgraph_call_function_insertion_hooks (new_node);
4924 if (old_node->force_output
4925 || ipa_ref_list_first_referring (&old_node->ref_list))
4926 ipa_tm_mark_force_output_node (new_node);
4927 if (old_node->forced_by_abi)
4928 ipa_tm_mark_forced_by_abi_node (new_node);
4929
4930 /* Do the same thing, but for any aliases of the original node. */
4931 {
4932 struct create_version_alias_info data;
4933 data.old_node = old_node;
4934 data.new_decl = new_decl;
4935 cgraph_for_node_and_aliases (old_node, ipa_tm_create_version_alias,
4936 &data, true);
4937 }
4938 }
4939
4940 /* Construct a call to TM_IRREVOCABLE and insert it at the beginning of BB. */
4941
4942 static void
4943 ipa_tm_insert_irr_call (struct cgraph_node *node, struct tm_region *region,
4944 basic_block bb)
4945 {
4946 gimple_stmt_iterator gsi;
4947 gimple g;
4948
4949 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
4950
4951 g = gimple_build_call (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE),
4952 1, build_int_cst (NULL_TREE, MODE_SERIALIRREVOCABLE));
4953
4954 split_block_after_labels (bb);
4955 gsi = gsi_after_labels (bb);
4956 gsi_insert_before (&gsi, g, GSI_SAME_STMT);
4957
4958 cgraph_create_edge (node,
4959 cgraph_get_create_node
4960 (builtin_decl_explicit (BUILT_IN_TM_IRREVOCABLE)),
4961 g, 0,
4962 compute_call_stmt_bb_frequency (node->decl,
4963 gimple_bb (g)));
4964 }
4965
4966 /* Construct a call to TM_GETTMCLONE and insert it before GSI. */
4967
4968 static bool
4969 ipa_tm_insert_gettmclone_call (struct cgraph_node *node,
4970 struct tm_region *region,
4971 gimple_stmt_iterator *gsi, gimple stmt)
4972 {
4973 tree gettm_fn, ret, old_fn, callfn;
4974 gimple g, g2;
4975 bool safe;
4976
4977 old_fn = gimple_call_fn (stmt);
4978
4979 if (TREE_CODE (old_fn) == ADDR_EXPR)
4980 {
4981 tree fndecl = TREE_OPERAND (old_fn, 0);
4982 tree clone = get_tm_clone_pair (fndecl);
4983
4984 /* By transforming the call into a TM_GETTMCLONE, we are
4985 technically taking the address of the original function and
4986 its clone. Explain this so inlining will know this function
4987 is needed. */
4988 cgraph_mark_address_taken_node (cgraph_get_node (fndecl));
4989 if (clone)
4990 cgraph_mark_address_taken_node (cgraph_get_node (clone));
4991 }
4992
4993 safe = is_tm_safe (TREE_TYPE (old_fn));
4994 gettm_fn = builtin_decl_explicit (safe ? BUILT_IN_TM_GETTMCLONE_SAFE
4995 : BUILT_IN_TM_GETTMCLONE_IRR);
4996 ret = create_tmp_var (ptr_type_node, NULL);
4997
4998 if (!safe)
4999 transaction_subcode_ior (region, GTMA_MAY_ENTER_IRREVOCABLE);
5000
5001 /* Discard OBJ_TYPE_REF, since we weren't able to fold it. */
5002 if (TREE_CODE (old_fn) == OBJ_TYPE_REF)
5003 old_fn = OBJ_TYPE_REF_EXPR (old_fn);
5004
5005 g = gimple_build_call (gettm_fn, 1, old_fn);
5006 ret = make_ssa_name (ret, g);
5007 gimple_call_set_lhs (g, ret);
5008
5009 gsi_insert_before (gsi, g, GSI_SAME_STMT);
5010
5011 cgraph_create_edge (node, cgraph_get_create_node (gettm_fn), g, 0,
5012 compute_call_stmt_bb_frequency (node->decl,
5013 gimple_bb (g)));
5014
5015 /* Cast return value from tm_gettmclone* into appropriate function
5016 pointer. */
5017 callfn = create_tmp_var (TREE_TYPE (old_fn), NULL);
5018 g2 = gimple_build_assign (callfn,
5019 fold_build1 (NOP_EXPR, TREE_TYPE (callfn), ret));
5020 callfn = make_ssa_name (callfn, g2);
5021 gimple_assign_set_lhs (g2, callfn);
5022 gsi_insert_before (gsi, g2, GSI_SAME_STMT);
5023
5024 /* ??? This is a hack to preserve the NOTHROW bit on the call,
5025 which we would have derived from the decl. Failure to save
5026 this bit means we might have to split the basic block. */
5027 if (gimple_call_nothrow_p (stmt))
5028 gimple_call_set_nothrow (stmt, true);
5029
5030 gimple_call_set_fn (stmt, callfn);
5031
5032 /* Discarding OBJ_TYPE_REF above may produce incompatible LHS and RHS
5033 for a call statement. Fix it. */
5034 {
5035 tree lhs = gimple_call_lhs (stmt);
5036 tree rettype = TREE_TYPE (gimple_call_fntype (stmt));
5037 if (lhs
5038 && !useless_type_conversion_p (TREE_TYPE (lhs), rettype))
5039 {
5040 tree temp;
5041
5042 temp = create_tmp_reg (rettype, 0);
5043 gimple_call_set_lhs (stmt, temp);
5044
5045 g2 = gimple_build_assign (lhs,
5046 fold_build1 (VIEW_CONVERT_EXPR,
5047 TREE_TYPE (lhs), temp));
5048 gsi_insert_after (gsi, g2, GSI_SAME_STMT);
5049 }
5050 }
5051
5052 update_stmt (stmt);
5053
5054 return true;
5055 }
5056
5057 /* Helper function for ipa_tm_transform_calls*. Given a call
5058 statement in GSI which resides inside transaction REGION, redirect
5059 the call to either its wrapper function, or its clone. */
5060
5061 static void
5062 ipa_tm_transform_calls_redirect (struct cgraph_node *node,
5063 struct tm_region *region,
5064 gimple_stmt_iterator *gsi,
5065 bool *need_ssa_rename_p)
5066 {
5067 gimple stmt = gsi_stmt (*gsi);
5068 struct cgraph_node *new_node;
5069 struct cgraph_edge *e = cgraph_edge (node, stmt);
5070 tree fndecl = gimple_call_fndecl (stmt);
5071
5072 /* For indirect calls, pass the address through the runtime. */
5073 if (fndecl == NULL)
5074 {
5075 *need_ssa_rename_p |=
5076 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5077 return;
5078 }
5079
5080 /* Handle some TM builtins. Ordinarily these aren't actually generated
5081 at this point, but handling these functions when written in by the
5082 user makes it easier to build unit tests. */
5083 if (flags_from_decl_or_type (fndecl) & ECF_TM_BUILTIN)
5084 return;
5085
5086 /* Fixup recursive calls inside clones. */
5087 /* ??? Why did cgraph_copy_node_for_versioning update the call edges
5088 for recursion but not update the call statements themselves? */
5089 if (e->caller == e->callee && decl_is_tm_clone (current_function_decl))
5090 {
5091 gimple_call_set_fndecl (stmt, current_function_decl);
5092 return;
5093 }
5094
5095 /* If there is a replacement, use it. */
5096 fndecl = find_tm_replacement_function (fndecl);
5097 if (fndecl)
5098 {
5099 new_node = cgraph_get_create_node (fndecl);
5100
5101 /* ??? Mark all transaction_wrap functions tm_may_enter_irr.
5102
5103 We can't do this earlier in record_tm_replacement because
5104 cgraph_remove_unreachable_nodes is called before we inject
5105 references to the node. Further, we can't do this in some
5106 nice central place in ipa_tm_execute because we don't have
5107 the exact list of wrapper functions that would be used.
5108 Marking more wrappers than necessary results in the creation
5109 of unnecessary cgraph_nodes, which can cause some of the
5110 other IPA passes to crash.
5111
5112 We do need to mark these nodes so that we get the proper
5113 result in expand_call_tm. */
5114 /* ??? This seems broken. How is it that we're marking the
5115 CALLEE as may_enter_irr? Surely we should be marking the
5116 CALLER. Also note that find_tm_replacement_function also
5117 contains mappings into the TM runtime, e.g. memcpy. These
5118 we know won't go irrevocable. */
5119 new_node->local.tm_may_enter_irr = 1;
5120 }
5121 else
5122 {
5123 struct tm_ipa_cg_data *d;
5124 struct cgraph_node *tnode = e->callee;
5125
5126 d = get_cg_data (&tnode, true);
5127 new_node = d->clone;
5128
5129 /* As we've already skipped pure calls and appropriate builtins,
5130 and we've already marked irrevocable blocks, if we can't come
5131 up with a static replacement, then ask the runtime. */
5132 if (new_node == NULL)
5133 {
5134 *need_ssa_rename_p |=
5135 ipa_tm_insert_gettmclone_call (node, region, gsi, stmt);
5136 return;
5137 }
5138
5139 fndecl = new_node->decl;
5140 }
5141
5142 cgraph_redirect_edge_callee (e, new_node);
5143 gimple_call_set_fndecl (stmt, fndecl);
5144 }
5145
5146 /* Helper function for ipa_tm_transform_calls. For a given BB,
5147 install calls to tm_irrevocable when IRR_BLOCKS are reached,
5148 redirect other calls to the generated transactional clone. */
5149
5150 static bool
5151 ipa_tm_transform_calls_1 (struct cgraph_node *node, struct tm_region *region,
5152 basic_block bb, bitmap irr_blocks)
5153 {
5154 gimple_stmt_iterator gsi;
5155 bool need_ssa_rename = false;
5156
5157 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5158 {
5159 ipa_tm_insert_irr_call (node, region, bb);
5160 return true;
5161 }
5162
5163 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
5164 {
5165 gimple stmt = gsi_stmt (gsi);
5166
5167 if (!is_gimple_call (stmt))
5168 continue;
5169 if (is_tm_pure_call (stmt))
5170 continue;
5171
5172 /* Redirect edges to the appropriate replacement or clone. */
5173 ipa_tm_transform_calls_redirect (node, region, &gsi, &need_ssa_rename);
5174 }
5175
5176 return need_ssa_rename;
5177 }
5178
5179 /* Walk the CFG for REGION, beginning at BB. Install calls to
5180 tm_irrevocable when IRR_BLOCKS are reached, redirect other calls to
5181 the generated transactional clone. */
5182
5183 static bool
5184 ipa_tm_transform_calls (struct cgraph_node *node, struct tm_region *region,
5185 basic_block bb, bitmap irr_blocks)
5186 {
5187 bool need_ssa_rename = false;
5188 edge e;
5189 edge_iterator ei;
5190 auto_vec<basic_block> queue;
5191 bitmap visited_blocks = BITMAP_ALLOC (NULL);
5192
5193 queue.safe_push (bb);
5194 do
5195 {
5196 bb = queue.pop ();
5197
5198 need_ssa_rename |=
5199 ipa_tm_transform_calls_1 (node, region, bb, irr_blocks);
5200
5201 if (irr_blocks && bitmap_bit_p (irr_blocks, bb->index))
5202 continue;
5203
5204 if (region && bitmap_bit_p (region->exit_blocks, bb->index))
5205 continue;
5206
5207 FOR_EACH_EDGE (e, ei, bb->succs)
5208 if (!bitmap_bit_p (visited_blocks, e->dest->index))
5209 {
5210 bitmap_set_bit (visited_blocks, e->dest->index);
5211 queue.safe_push (e->dest);
5212 }
5213 }
5214 while (!queue.is_empty ());
5215
5216 BITMAP_FREE (visited_blocks);
5217
5218 return need_ssa_rename;
5219 }
5220
5221 /* Transform the calls within the TM regions within NODE. */
5222
5223 static void
5224 ipa_tm_transform_transaction (struct cgraph_node *node)
5225 {
5226 struct tm_ipa_cg_data *d;
5227 struct tm_region *region;
5228 bool need_ssa_rename = false;
5229
5230 d = get_cg_data (&node, true);
5231
5232 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5233 calculate_dominance_info (CDI_DOMINATORS);
5234
5235 for (region = d->all_tm_regions; region; region = region->next)
5236 {
5237 /* If we're sure to go irrevocable, don't transform anything. */
5238 if (d->irrevocable_blocks_normal
5239 && bitmap_bit_p (d->irrevocable_blocks_normal,
5240 region->entry_block->index))
5241 {
5242 transaction_subcode_ior (region, GTMA_DOES_GO_IRREVOCABLE
5243 | GTMA_MAY_ENTER_IRREVOCABLE
5244 | GTMA_HAS_NO_INSTRUMENTATION);
5245 continue;
5246 }
5247
5248 need_ssa_rename |=
5249 ipa_tm_transform_calls (node, region, region->entry_block,
5250 d->irrevocable_blocks_normal);
5251 }
5252
5253 if (need_ssa_rename)
5254 update_ssa (TODO_update_ssa_only_virtuals);
5255
5256 pop_cfun ();
5257 }
5258
5259 /* Transform the calls within the transactional clone of NODE. */
5260
5261 static void
5262 ipa_tm_transform_clone (struct cgraph_node *node)
5263 {
5264 struct tm_ipa_cg_data *d;
5265 bool need_ssa_rename;
5266
5267 d = get_cg_data (&node, true);
5268
5269 /* If this function makes no calls and has no irrevocable blocks,
5270 then there's nothing to do. */
5271 /* ??? Remove non-aborting top-level transactions. */
5272 if (!node->callees && !node->indirect_calls && !d->irrevocable_blocks_clone)
5273 return;
5274
5275 push_cfun (DECL_STRUCT_FUNCTION (d->clone->decl));
5276 calculate_dominance_info (CDI_DOMINATORS);
5277
5278 need_ssa_rename =
5279 ipa_tm_transform_calls (d->clone, NULL,
5280 single_succ (ENTRY_BLOCK_PTR_FOR_FN (cfun)),
5281 d->irrevocable_blocks_clone);
5282
5283 if (need_ssa_rename)
5284 update_ssa (TODO_update_ssa_only_virtuals);
5285
5286 pop_cfun ();
5287 }
5288
5289 /* Main entry point for the transactional memory IPA pass. */
5290
5291 static unsigned int
5292 ipa_tm_execute (void)
5293 {
5294 cgraph_node_queue tm_callees = cgraph_node_queue ();
5295 /* List of functions that will go irrevocable. */
5296 cgraph_node_queue irr_worklist = cgraph_node_queue ();
5297
5298 struct cgraph_node *node;
5299 struct tm_ipa_cg_data *d;
5300 enum availability a;
5301 unsigned int i;
5302
5303 #ifdef ENABLE_CHECKING
5304 verify_cgraph ();
5305 #endif
5306
5307 bitmap_obstack_initialize (&tm_obstack);
5308 initialize_original_copy_tables ();
5309
5310 /* For all local functions marked tm_callable, queue them. */
5311 FOR_EACH_DEFINED_FUNCTION (node)
5312 if (is_tm_callable (node->decl)
5313 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5314 {
5315 d = get_cg_data (&node, true);
5316 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5317 }
5318
5319 /* For all local reachable functions... */
5320 FOR_EACH_DEFINED_FUNCTION (node)
5321 if (node->lowered
5322 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5323 {
5324 /* ... marked tm_pure, record that fact for the runtime by
5325 indicating that the pure function is its own tm_callable.
5326 No need to do this if the function's address can't be taken. */
5327 if (is_tm_pure (node->decl))
5328 {
5329 if (!node->local.local)
5330 record_tm_clone_pair (node->decl, node->decl);
5331 continue;
5332 }
5333
5334 push_cfun (DECL_STRUCT_FUNCTION (node->decl));
5335 calculate_dominance_info (CDI_DOMINATORS);
5336
5337 tm_region_init (NULL);
5338 if (all_tm_regions)
5339 {
5340 d = get_cg_data (&node, true);
5341
5342 /* Scan for calls that are in each transaction, and
5343 generate the uninstrumented code path. */
5344 ipa_tm_scan_calls_transaction (d, &tm_callees);
5345
5346 /* Put it in the worklist so we can scan the function
5347 later (ipa_tm_scan_irr_function) and mark the
5348 irrevocable blocks. */
5349 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5350 d->want_irr_scan_normal = true;
5351 }
5352
5353 pop_cfun ();
5354 }
5355
5356 /* For every local function on the callee list, scan as if we will be
5357 creating a transactional clone, queueing all new functions we find
5358 along the way. */
5359 for (i = 0; i < tm_callees.length (); ++i)
5360 {
5361 node = tm_callees[i];
5362 a = cgraph_function_body_availability (node);
5363 d = get_cg_data (&node, true);
5364
5365 /* Put it in the worklist so we can scan the function later
5366 (ipa_tm_scan_irr_function) and mark the irrevocable
5367 blocks. */
5368 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5369
5370 /* Some callees cannot be arbitrarily cloned. These will always be
5371 irrevocable. Mark these now, so that we need not scan them. */
5372 if (is_tm_irrevocable (node->decl))
5373 ipa_tm_note_irrevocable (node, &irr_worklist);
5374 else if (a <= AVAIL_NOT_AVAILABLE
5375 && !is_tm_safe_or_pure (node->decl))
5376 ipa_tm_note_irrevocable (node, &irr_worklist);
5377 else if (a >= AVAIL_OVERWRITABLE)
5378 {
5379 if (!tree_versionable_function_p (node->decl))
5380 ipa_tm_note_irrevocable (node, &irr_worklist);
5381 else if (!d->is_irrevocable)
5382 {
5383 /* If this is an alias, make sure its base is queued as well.
5384 we need not scan the callees now, as the base will do. */
5385 if (node->alias)
5386 {
5387 node = cgraph_get_node (node->thunk.alias);
5388 d = get_cg_data (&node, true);
5389 maybe_push_queue (node, &tm_callees, &d->in_callee_queue);
5390 continue;
5391 }
5392
5393 /* Add all nodes called by this function into
5394 tm_callees as well. */
5395 ipa_tm_scan_calls_clone (node, &tm_callees);
5396 }
5397 }
5398 }
5399
5400 /* Iterate scans until no more work to be done. Prefer not to use
5401 vec::pop because the worklist tends to follow a breadth-first
5402 search of the callgraph, which should allow convergance with a
5403 minimum number of scans. But we also don't want the worklist
5404 array to grow without bound, so we shift the array up periodically. */
5405 for (i = 0; i < irr_worklist.length (); ++i)
5406 {
5407 if (i > 256 && i == irr_worklist.length () / 8)
5408 {
5409 irr_worklist.block_remove (0, i);
5410 i = 0;
5411 }
5412
5413 node = irr_worklist[i];
5414 d = get_cg_data (&node, true);
5415 d->in_worklist = false;
5416
5417 if (d->want_irr_scan_normal)
5418 {
5419 d->want_irr_scan_normal = false;
5420 ipa_tm_scan_irr_function (node, false);
5421 }
5422 if (d->in_callee_queue && ipa_tm_scan_irr_function (node, true))
5423 ipa_tm_note_irrevocable (node, &irr_worklist);
5424 }
5425
5426 /* For every function on the callee list, collect the tm_may_enter_irr
5427 bit on the node. */
5428 irr_worklist.truncate (0);
5429 for (i = 0; i < tm_callees.length (); ++i)
5430 {
5431 node = tm_callees[i];
5432 if (ipa_tm_mayenterirr_function (node))
5433 {
5434 d = get_cg_data (&node, true);
5435 gcc_assert (d->in_worklist == false);
5436 maybe_push_queue (node, &irr_worklist, &d->in_worklist);
5437 }
5438 }
5439
5440 /* Propagate the tm_may_enter_irr bit to callers until stable. */
5441 for (i = 0; i < irr_worklist.length (); ++i)
5442 {
5443 struct cgraph_node *caller;
5444 struct cgraph_edge *e;
5445 struct ipa_ref *ref;
5446 unsigned j;
5447
5448 if (i > 256 && i == irr_worklist.length () / 8)
5449 {
5450 irr_worklist.block_remove (0, i);
5451 i = 0;
5452 }
5453
5454 node = irr_worklist[i];
5455 d = get_cg_data (&node, true);
5456 d->in_worklist = false;
5457 node->local.tm_may_enter_irr = true;
5458
5459 /* Propagate back to normal callers. */
5460 for (e = node->callers; e ; e = e->next_caller)
5461 {
5462 caller = e->caller;
5463 if (!is_tm_safe_or_pure (caller->decl)
5464 && !caller->local.tm_may_enter_irr)
5465 {
5466 d = get_cg_data (&caller, true);
5467 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5468 }
5469 }
5470
5471 /* Propagate back to referring aliases as well. */
5472 for (j = 0; ipa_ref_list_referring_iterate (&node->ref_list, j, ref); j++)
5473 {
5474 caller = cgraph (ref->referring);
5475 if (ref->use == IPA_REF_ALIAS
5476 && !caller->local.tm_may_enter_irr)
5477 {
5478 /* ?? Do not traverse aliases here. */
5479 d = get_cg_data (&caller, false);
5480 maybe_push_queue (caller, &irr_worklist, &d->in_worklist);
5481 }
5482 }
5483 }
5484
5485 /* Now validate all tm_safe functions, and all atomic regions in
5486 other functions. */
5487 FOR_EACH_DEFINED_FUNCTION (node)
5488 if (node->lowered
5489 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5490 {
5491 d = get_cg_data (&node, true);
5492 if (is_tm_safe (node->decl))
5493 ipa_tm_diagnose_tm_safe (node);
5494 else if (d->all_tm_regions)
5495 ipa_tm_diagnose_transaction (node, d->all_tm_regions);
5496 }
5497
5498 /* Create clones. Do those that are not irrevocable and have a
5499 positive call count. Do those publicly visible functions that
5500 the user directed us to clone. */
5501 for (i = 0; i < tm_callees.length (); ++i)
5502 {
5503 bool doit = false;
5504
5505 node = tm_callees[i];
5506 if (node->cpp_implicit_alias)
5507 continue;
5508
5509 a = cgraph_function_body_availability (node);
5510 d = get_cg_data (&node, true);
5511
5512 if (a <= AVAIL_NOT_AVAILABLE)
5513 doit = is_tm_callable (node->decl);
5514 else if (a <= AVAIL_AVAILABLE && is_tm_callable (node->decl))
5515 doit = true;
5516 else if (!d->is_irrevocable
5517 && d->tm_callers_normal + d->tm_callers_clone > 0)
5518 doit = true;
5519
5520 if (doit)
5521 ipa_tm_create_version (node);
5522 }
5523
5524 /* Redirect calls to the new clones, and insert irrevocable marks. */
5525 for (i = 0; i < tm_callees.length (); ++i)
5526 {
5527 node = tm_callees[i];
5528 if (node->analyzed)
5529 {
5530 d = get_cg_data (&node, true);
5531 if (d->clone)
5532 ipa_tm_transform_clone (node);
5533 }
5534 }
5535 FOR_EACH_DEFINED_FUNCTION (node)
5536 if (node->lowered
5537 && cgraph_function_body_availability (node) >= AVAIL_OVERWRITABLE)
5538 {
5539 d = get_cg_data (&node, true);
5540 if (d->all_tm_regions)
5541 ipa_tm_transform_transaction (node);
5542 }
5543
5544 /* Free and clear all data structures. */
5545 tm_callees.release ();
5546 irr_worklist.release ();
5547 bitmap_obstack_release (&tm_obstack);
5548 free_original_copy_tables ();
5549
5550 FOR_EACH_FUNCTION (node)
5551 node->aux = NULL;
5552
5553 #ifdef ENABLE_CHECKING
5554 verify_cgraph ();
5555 #endif
5556
5557 return 0;
5558 }
5559
5560 namespace {
5561
5562 const pass_data pass_data_ipa_tm =
5563 {
5564 SIMPLE_IPA_PASS, /* type */
5565 "tmipa", /* name */
5566 OPTGROUP_NONE, /* optinfo_flags */
5567 true, /* has_execute */
5568 TV_TRANS_MEM, /* tv_id */
5569 ( PROP_ssa | PROP_cfg ), /* properties_required */
5570 0, /* properties_provided */
5571 0, /* properties_destroyed */
5572 0, /* todo_flags_start */
5573 0, /* todo_flags_finish */
5574 };
5575
5576 class pass_ipa_tm : public simple_ipa_opt_pass
5577 {
5578 public:
5579 pass_ipa_tm (gcc::context *ctxt)
5580 : simple_ipa_opt_pass (pass_data_ipa_tm, ctxt)
5581 {}
5582
5583 /* opt_pass methods: */
5584 virtual bool gate (function *) { return flag_tm; }
5585 virtual unsigned int execute (function *) { return ipa_tm_execute (); }
5586
5587 }; // class pass_ipa_tm
5588
5589 } // anon namespace
5590
5591 simple_ipa_opt_pass *
5592 make_pass_ipa_tm (gcc::context *ctxt)
5593 {
5594 return new pass_ipa_tm (ctxt);
5595 }
5596
5597 #include "gt-trans-mem.h"