]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-dfa.cc
af8e9243947e2b6fe1209825c60c28b06b11d759
[thirdparty/gcc.git] / gcc / tree-dfa.cc
1 /* Data flow functions for trees.
2 Copyright (C) 2001-2023 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "backend.h"
25 #include "rtl.h"
26 #include "tree.h"
27 #include "gimple.h"
28 #include "tree-pass.h"
29 #include "ssa.h"
30 #include "tree-pretty-print.h"
31 #include "fold-const.h"
32 #include "stor-layout.h"
33 #include "langhooks.h"
34 #include "gimple-iterator.h"
35 #include "gimple-walk.h"
36 #include "tree-dfa.h"
37 #include "gimple-range.h"
38
39 /* Build and maintain data flow information for trees. */
40
41 /* Counters used to display DFA and SSA statistics. */
42 struct dfa_stats_d
43 {
44 long num_defs;
45 long num_uses;
46 long num_phis;
47 long num_phi_args;
48 size_t max_num_phi_args;
49 long num_vdefs;
50 long num_vuses;
51 };
52
53
54 /* Local functions. */
55 static void collect_dfa_stats (struct dfa_stats_d *);
56
57
58 /*---------------------------------------------------------------------------
59 Dataflow analysis (DFA) routines
60 ---------------------------------------------------------------------------*/
61
62 /* Renumber the gimple stmt uids in one block. The caller is responsible
63 of calling set_gimple_stmt_max_uid (fun, 0) at some point. */
64
65 void
66 renumber_gimple_stmt_uids_in_block (struct function *fun, basic_block bb)
67 {
68 gimple_stmt_iterator bsi;
69 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
70 {
71 gimple *stmt = gsi_stmt (bsi);
72 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
73 }
74 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
75 {
76 gimple *stmt = gsi_stmt (bsi);
77 gimple_set_uid (stmt, inc_gimple_stmt_max_uid (fun));
78 }
79 }
80
81 /* Renumber all of the gimple stmt uids. */
82
83 void
84 renumber_gimple_stmt_uids (struct function *fun)
85 {
86 basic_block bb;
87
88 set_gimple_stmt_max_uid (fun, 0);
89 FOR_ALL_BB_FN (bb, fun)
90 renumber_gimple_stmt_uids_in_block (fun, bb);
91 }
92
93 /* Like renumber_gimple_stmt_uids, but only do work on the basic blocks
94 in BLOCKS, of which there are N_BLOCKS. Also renumbers PHIs. */
95
96 void
97 renumber_gimple_stmt_uids_in_blocks (basic_block *blocks, int n_blocks)
98 {
99 int i;
100
101 set_gimple_stmt_max_uid (cfun, 0);
102 for (i = 0; i < n_blocks; i++)
103 renumber_gimple_stmt_uids_in_block (cfun, blocks[i]);
104 }
105
106
107
108 /*---------------------------------------------------------------------------
109 Debugging functions
110 ---------------------------------------------------------------------------*/
111
112 /* Dump variable VAR and its may-aliases to FILE. */
113
114 void
115 dump_variable (FILE *file, tree var)
116 {
117 if (TREE_CODE (var) == SSA_NAME)
118 {
119 if (POINTER_TYPE_P (TREE_TYPE (var)))
120 dump_points_to_info_for (file, var);
121 var = SSA_NAME_VAR (var);
122 }
123
124 if (var == NULL_TREE)
125 {
126 fprintf (file, "<nil>");
127 return;
128 }
129
130 print_generic_expr (file, var, dump_flags);
131
132 fprintf (file, ", UID D.%u", (unsigned) DECL_UID (var));
133 if (DECL_PT_UID (var) != DECL_UID (var))
134 fprintf (file, ", PT-UID D.%u", (unsigned) DECL_PT_UID (var));
135
136 fprintf (file, ", ");
137 print_generic_expr (file, TREE_TYPE (var), dump_flags);
138
139 if (TREE_ADDRESSABLE (var))
140 fprintf (file, ", is addressable");
141
142 if (is_global_var (var))
143 fprintf (file, ", is global");
144
145 if (TREE_THIS_VOLATILE (var))
146 fprintf (file, ", is volatile");
147
148 if (cfun && ssa_default_def (cfun, var))
149 {
150 fprintf (file, ", default def: ");
151 print_generic_expr (file, ssa_default_def (cfun, var), dump_flags);
152 }
153
154 if (DECL_INITIAL (var))
155 {
156 fprintf (file, ", initial: ");
157 print_generic_expr (file, DECL_INITIAL (var), dump_flags);
158 }
159
160 fprintf (file, "\n");
161 }
162
163
164 /* Dump variable VAR and its may-aliases to stderr. */
165
166 DEBUG_FUNCTION void
167 debug_variable (tree var)
168 {
169 dump_variable (stderr, var);
170 }
171
172
173 /* Dump various DFA statistics to FILE. */
174
175 void
176 dump_dfa_stats (FILE *file)
177 {
178 struct dfa_stats_d dfa_stats;
179
180 unsigned long size, total = 0;
181 const char * const fmt_str = "%-30s%-13s%12s\n";
182 const char * const fmt_str_1 = "%-30s%13lu" PRsa (11) "\n";
183 const char * const fmt_str_3 = "%-43s" PRsa (11) "\n";
184 const char *funcname
185 = lang_hooks.decl_printable_name (current_function_decl, 2);
186
187 collect_dfa_stats (&dfa_stats);
188
189 fprintf (file, "\nDFA Statistics for %s\n\n", funcname);
190
191 fprintf (file, "---------------------------------------------------------\n");
192 fprintf (file, fmt_str, "", " Number of ", "Memory");
193 fprintf (file, fmt_str, "", " instances ", "used ");
194 fprintf (file, "---------------------------------------------------------\n");
195
196 size = dfa_stats.num_uses * sizeof (tree *);
197 total += size;
198 fprintf (file, fmt_str_1, "USE operands", dfa_stats.num_uses,
199 SIZE_AMOUNT (size));
200
201 size = dfa_stats.num_defs * sizeof (tree *);
202 total += size;
203 fprintf (file, fmt_str_1, "DEF operands", dfa_stats.num_defs,
204 SIZE_AMOUNT (size));
205
206 size = dfa_stats.num_vuses * sizeof (tree *);
207 total += size;
208 fprintf (file, fmt_str_1, "VUSE operands", dfa_stats.num_vuses,
209 SIZE_AMOUNT (size));
210
211 size = dfa_stats.num_vdefs * sizeof (tree *);
212 total += size;
213 fprintf (file, fmt_str_1, "VDEF operands", dfa_stats.num_vdefs,
214 SIZE_AMOUNT (size));
215
216 size = dfa_stats.num_phis * sizeof (struct gphi);
217 total += size;
218 fprintf (file, fmt_str_1, "PHI nodes", dfa_stats.num_phis,
219 SIZE_AMOUNT (size));
220
221 size = dfa_stats.num_phi_args * sizeof (struct phi_arg_d);
222 total += size;
223 fprintf (file, fmt_str_1, "PHI arguments", dfa_stats.num_phi_args,
224 SIZE_AMOUNT (size));
225
226 fprintf (file, "---------------------------------------------------------\n");
227 fprintf (file, fmt_str_3, "Total memory used by DFA/SSA data",
228 SIZE_AMOUNT (total));
229 fprintf (file, "---------------------------------------------------------\n");
230 fprintf (file, "\n");
231
232 if (dfa_stats.num_phis)
233 fprintf (file, "Average number of arguments per PHI node: %.1f (max: %ld)\n",
234 (float) dfa_stats.num_phi_args / (float) dfa_stats.num_phis,
235 (long) dfa_stats.max_num_phi_args);
236
237 fprintf (file, "\n");
238 }
239
240
241 /* Dump DFA statistics on stderr. */
242
243 DEBUG_FUNCTION void
244 debug_dfa_stats (void)
245 {
246 dump_dfa_stats (stderr);
247 }
248
249
250 /* Collect DFA statistics and store them in the structure pointed to by
251 DFA_STATS_P. */
252
253 static void
254 collect_dfa_stats (struct dfa_stats_d *dfa_stats_p ATTRIBUTE_UNUSED)
255 {
256 basic_block bb;
257
258 gcc_assert (dfa_stats_p);
259
260 memset ((void *)dfa_stats_p, 0, sizeof (struct dfa_stats_d));
261
262 /* Walk all the statements in the function counting references. */
263 FOR_EACH_BB_FN (bb, cfun)
264 {
265 for (gphi_iterator si = gsi_start_phis (bb); !gsi_end_p (si);
266 gsi_next (&si))
267 {
268 gphi *phi = si.phi ();
269 dfa_stats_p->num_phis++;
270 dfa_stats_p->num_phi_args += gimple_phi_num_args (phi);
271 if (gimple_phi_num_args (phi) > dfa_stats_p->max_num_phi_args)
272 dfa_stats_p->max_num_phi_args = gimple_phi_num_args (phi);
273 }
274
275 for (gimple_stmt_iterator si = gsi_start_bb (bb); !gsi_end_p (si);
276 gsi_next (&si))
277 {
278 gimple *stmt = gsi_stmt (si);
279 dfa_stats_p->num_defs += NUM_SSA_OPERANDS (stmt, SSA_OP_DEF);
280 dfa_stats_p->num_uses += NUM_SSA_OPERANDS (stmt, SSA_OP_USE);
281 dfa_stats_p->num_vdefs += gimple_vdef (stmt) ? 1 : 0;
282 dfa_stats_p->num_vuses += gimple_vuse (stmt) ? 1 : 0;
283 }
284 }
285 }
286
287
288 /*---------------------------------------------------------------------------
289 Miscellaneous helpers
290 ---------------------------------------------------------------------------*/
291
292 /* Lookup VAR UID in the default_defs hashtable and return the associated
293 variable. */
294
295 tree
296 ssa_default_def (struct function *fn, tree var)
297 {
298 struct tree_decl_minimal ind;
299 struct tree_ssa_name in;
300 gcc_assert (VAR_P (var)
301 || TREE_CODE (var) == PARM_DECL
302 || TREE_CODE (var) == RESULT_DECL);
303
304 /* Always NULL_TREE for rtl function dumps. */
305 if (!fn->gimple_df)
306 return NULL_TREE;
307
308 in.var = (tree)&ind;
309 ind.uid = DECL_UID (var);
310 return DEFAULT_DEFS (fn)->find_with_hash ((tree)&in, DECL_UID (var));
311 }
312
313 /* Insert the pair VAR's UID, DEF into the default_defs hashtable
314 of function FN. */
315
316 void
317 set_ssa_default_def (struct function *fn, tree var, tree def)
318 {
319 struct tree_decl_minimal ind;
320 struct tree_ssa_name in;
321
322 gcc_assert (VAR_P (var)
323 || TREE_CODE (var) == PARM_DECL
324 || TREE_CODE (var) == RESULT_DECL);
325 in.var = (tree)&ind;
326 ind.uid = DECL_UID (var);
327 if (!def)
328 {
329 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
330 DECL_UID (var),
331 NO_INSERT);
332 if (loc)
333 {
334 SSA_NAME_IS_DEFAULT_DEF (*(tree *)loc) = false;
335 DEFAULT_DEFS (fn)->clear_slot (loc);
336 }
337 return;
338 }
339 gcc_assert (TREE_CODE (def) == SSA_NAME && SSA_NAME_VAR (def) == var);
340 tree *loc = DEFAULT_DEFS (fn)->find_slot_with_hash ((tree)&in,
341 DECL_UID (var), INSERT);
342
343 /* Default definition might be changed by tail call optimization. */
344 if (*loc)
345 SSA_NAME_IS_DEFAULT_DEF (*loc) = false;
346
347 /* Mark DEF as the default definition for VAR. */
348 *loc = def;
349 SSA_NAME_IS_DEFAULT_DEF (def) = true;
350 }
351
352 /* Retrieve or create a default definition for VAR. */
353
354 tree
355 get_or_create_ssa_default_def (struct function *fn, tree var)
356 {
357 tree ddef = ssa_default_def (fn, var);
358 if (ddef == NULL_TREE)
359 {
360 ddef = make_ssa_name_fn (fn, var, gimple_build_nop ());
361 set_ssa_default_def (fn, var, ddef);
362 }
363 return ddef;
364 }
365
366
367 /* If EXP is a handled component reference for a structure, return the
368 base variable. The access range is delimited by bit positions *POFFSET and
369 *POFFSET + *PMAX_SIZE. The access size is *PSIZE bits. If either
370 *PSIZE or *PMAX_SIZE is -1, they could not be determined. If *PSIZE
371 and *PMAX_SIZE are equal, the access is non-variable. If *PREVERSE is
372 true, the storage order of the reference is reversed. */
373
374 tree
375 get_ref_base_and_extent (tree exp, poly_int64 *poffset,
376 poly_int64 *psize,
377 poly_int64 *pmax_size,
378 bool *preverse)
379 {
380 poly_offset_int bitsize = -1;
381 poly_offset_int maxsize;
382 tree size_tree = NULL_TREE;
383 poly_offset_int bit_offset = 0;
384 bool seen_variable_array_ref = false;
385
386 /* First get the final access size and the storage order from just the
387 outermost expression. */
388 if (TREE_CODE (exp) == COMPONENT_REF)
389 size_tree = DECL_SIZE (TREE_OPERAND (exp, 1));
390 else if (TREE_CODE (exp) == BIT_FIELD_REF)
391 size_tree = TREE_OPERAND (exp, 1);
392 else if (TREE_CODE (exp) == WITH_SIZE_EXPR)
393 {
394 size_tree = TREE_OPERAND (exp, 1);
395 exp = TREE_OPERAND (exp, 0);
396 }
397 else if (!VOID_TYPE_P (TREE_TYPE (exp)))
398 {
399 machine_mode mode = TYPE_MODE (TREE_TYPE (exp));
400 if (mode == BLKmode)
401 size_tree = TYPE_SIZE (TREE_TYPE (exp));
402 else
403 bitsize = GET_MODE_BITSIZE (mode);
404 }
405 if (size_tree != NULL_TREE
406 && poly_int_tree_p (size_tree))
407 bitsize = wi::to_poly_offset (size_tree);
408
409 *preverse = reverse_storage_order_for_component_p (exp);
410
411 /* Initially, maxsize is the same as the accessed element size.
412 In the following it will only grow (or become -1). */
413 maxsize = bitsize;
414
415 /* Compute cumulative bit-offset for nested component-refs and array-refs,
416 and find the ultimate containing object. */
417 while (1)
418 {
419 switch (TREE_CODE (exp))
420 {
421 case BIT_FIELD_REF:
422 bit_offset += wi::to_poly_offset (TREE_OPERAND (exp, 2));
423 break;
424
425 case COMPONENT_REF:
426 {
427 tree field = TREE_OPERAND (exp, 1);
428 tree this_offset = component_ref_field_offset (exp);
429
430 if (this_offset && poly_int_tree_p (this_offset))
431 {
432 poly_offset_int woffset = (wi::to_poly_offset (this_offset)
433 << LOG2_BITS_PER_UNIT);
434 woffset += wi::to_offset (DECL_FIELD_BIT_OFFSET (field));
435 bit_offset += woffset;
436
437 /* If we had seen a variable array ref already and we just
438 referenced the last field of a struct or a union member
439 then we have to adjust maxsize by the padding at the end
440 of our field. */
441 if (seen_variable_array_ref)
442 {
443 tree stype = TREE_TYPE (TREE_OPERAND (exp, 0));
444 tree next = DECL_CHAIN (field);
445 while (next && TREE_CODE (next) != FIELD_DECL)
446 next = DECL_CHAIN (next);
447 if (!next
448 || TREE_CODE (stype) != RECORD_TYPE)
449 {
450 tree fsize = DECL_SIZE (field);
451 tree ssize = TYPE_SIZE (stype);
452 if (fsize == NULL
453 || !poly_int_tree_p (fsize)
454 || ssize == NULL
455 || !poly_int_tree_p (ssize))
456 maxsize = -1;
457 else if (known_size_p (maxsize))
458 {
459 poly_offset_int tem
460 = (wi::to_poly_offset (ssize)
461 - wi::to_poly_offset (fsize));
462 tem -= woffset;
463 maxsize += tem;
464 }
465 }
466 /* An component ref with an adjacent field up in the
467 structure hierarchy constrains the size of any variable
468 array ref lower in the access hierarchy. */
469 else
470 seen_variable_array_ref = false;
471 }
472 }
473 else
474 {
475 tree csize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
476 /* We need to adjust maxsize to the whole structure bitsize.
477 But we can subtract any constant offset seen so far,
478 because that would get us out of the structure otherwise. */
479 if (known_size_p (maxsize)
480 && csize
481 && poly_int_tree_p (csize))
482 maxsize = wi::to_poly_offset (csize) - bit_offset;
483 else
484 maxsize = -1;
485 }
486 }
487 break;
488
489 case ARRAY_REF:
490 case ARRAY_RANGE_REF:
491 {
492 tree index = TREE_OPERAND (exp, 1);
493 tree low_bound, unit_size;
494
495 /* If the resulting bit-offset is constant, track it. */
496 if (poly_int_tree_p (index)
497 && (low_bound = array_ref_low_bound (exp),
498 poly_int_tree_p (low_bound))
499 && (unit_size = array_ref_element_size (exp),
500 TREE_CODE (unit_size) == INTEGER_CST))
501 {
502 poly_offset_int woffset
503 = wi::sext (wi::to_poly_offset (index)
504 - wi::to_poly_offset (low_bound),
505 TYPE_PRECISION (sizetype));
506 woffset *= wi::to_offset (unit_size);
507 woffset <<= LOG2_BITS_PER_UNIT;
508 bit_offset += woffset;
509
510 /* An array ref with a constant index up in the structure
511 hierarchy will constrain the size of any variable array ref
512 lower in the access hierarchy. */
513 seen_variable_array_ref = false;
514 }
515 else
516 {
517 tree asize = TYPE_SIZE (TREE_TYPE (TREE_OPERAND (exp, 0)));
518 /* We need to adjust maxsize to the whole array bitsize.
519 But we can subtract any constant offset seen so far,
520 because that would get us outside of the array otherwise. */
521 if (known_size_p (maxsize)
522 && asize
523 && poly_int_tree_p (asize))
524 maxsize = wi::to_poly_offset (asize) - bit_offset;
525 else
526 maxsize = -1;
527
528 /* Remember that we have seen an array ref with a variable
529 index. */
530 seen_variable_array_ref = true;
531
532 value_range vr;
533 range_query *query;
534 if (cfun)
535 query = get_range_query (cfun);
536 else
537 query = get_global_range_query ();
538
539 if (TREE_CODE (index) == SSA_NAME
540 && (low_bound = array_ref_low_bound (exp),
541 poly_int_tree_p (low_bound))
542 && (unit_size = array_ref_element_size (exp),
543 TREE_CODE (unit_size) == INTEGER_CST)
544 && query->range_of_expr (vr, index)
545 && !vr.varying_p ()
546 && !vr.undefined_p ())
547 {
548 wide_int min = vr.lower_bound ();
549 wide_int max = vr.upper_bound ();
550 poly_offset_int lbound = wi::to_poly_offset (low_bound);
551 /* Try to constrain maxsize with range information. */
552 offset_int omax
553 = offset_int::from (max, TYPE_SIGN (TREE_TYPE (index)));
554 if (known_lt (lbound, omax))
555 {
556 poly_offset_int rmaxsize;
557 rmaxsize = (omax - lbound + 1)
558 * wi::to_offset (unit_size) << LOG2_BITS_PER_UNIT;
559 if (!known_size_p (maxsize)
560 || known_lt (rmaxsize, maxsize))
561 {
562 /* If we know an upper bound below the declared
563 one this is no longer variable. */
564 if (known_size_p (maxsize))
565 seen_variable_array_ref = false;
566 maxsize = rmaxsize;
567 }
568 }
569 /* Try to adjust bit_offset with range information. */
570 offset_int omin
571 = offset_int::from (min, TYPE_SIGN (TREE_TYPE (index)));
572 if (known_le (lbound, omin))
573 {
574 poly_offset_int woffset
575 = wi::sext (omin - lbound,
576 TYPE_PRECISION (sizetype));
577 woffset *= wi::to_offset (unit_size);
578 woffset <<= LOG2_BITS_PER_UNIT;
579 bit_offset += woffset;
580 if (known_size_p (maxsize))
581 maxsize -= woffset;
582 }
583 }
584 }
585 }
586 break;
587
588 case REALPART_EXPR:
589 break;
590
591 case IMAGPART_EXPR:
592 bit_offset += bitsize;
593 break;
594
595 case VIEW_CONVERT_EXPR:
596 break;
597
598 case TARGET_MEM_REF:
599 /* Via the variable index or index2 we can reach the
600 whole object. Still hand back the decl here. */
601 if (TREE_CODE (TMR_BASE (exp)) == ADDR_EXPR
602 && (TMR_INDEX (exp) || TMR_INDEX2 (exp)))
603 {
604 exp = TREE_OPERAND (TMR_BASE (exp), 0);
605 bit_offset = 0;
606 maxsize = -1;
607 goto done;
608 }
609 /* Fallthru. */
610 case MEM_REF:
611 /* We need to deal with variable arrays ending structures such as
612 struct { int length; int a[1]; } x; x.a[d]
613 struct { struct { int a; int b; } a[1]; } x; x.a[d].a
614 struct { struct { int a[1]; } a[1]; } x; x.a[0][d], x.a[d][0]
615 struct { int len; union { int a[1]; struct X x; } u; } x; x.u.a[d]
616 where we do not know maxsize for variable index accesses to
617 the array. The simplest way to conservatively deal with this
618 is to punt in the case that offset + maxsize reaches the
619 base type boundary. This needs to include possible trailing
620 padding that is there for alignment purposes. */
621 if (seen_variable_array_ref
622 && known_size_p (maxsize)
623 && (TYPE_SIZE (TREE_TYPE (exp)) == NULL_TREE
624 || !poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp)))
625 || (maybe_eq
626 (bit_offset + maxsize,
627 wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))))))
628 maxsize = -1;
629
630 /* Hand back the decl for MEM[&decl, off]. */
631 if (TREE_CODE (TREE_OPERAND (exp, 0)) == ADDR_EXPR)
632 {
633 if (integer_zerop (TREE_OPERAND (exp, 1)))
634 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
635 else
636 {
637 poly_offset_int off = mem_ref_offset (exp);
638 off <<= LOG2_BITS_PER_UNIT;
639 off += bit_offset;
640 poly_int64 off_hwi;
641 if (off.to_shwi (&off_hwi))
642 {
643 bit_offset = off_hwi;
644 exp = TREE_OPERAND (TREE_OPERAND (exp, 0), 0);
645 }
646 }
647 }
648 goto done;
649
650 default:
651 goto done;
652 }
653
654 exp = TREE_OPERAND (exp, 0);
655 }
656
657 done:
658 if (!bitsize.to_shwi (psize) || maybe_lt (*psize, 0))
659 {
660 *poffset = 0;
661 *psize = -1;
662 *pmax_size = -1;
663
664 return exp;
665 }
666
667 /* ??? Due to negative offsets in ARRAY_REF we can end up with
668 negative bit_offset here. We might want to store a zero offset
669 in this case. */
670 if (!bit_offset.to_shwi (poffset))
671 {
672 *poffset = 0;
673 *pmax_size = -1;
674
675 return exp;
676 }
677
678 /* In case of a decl or constant base object we can do better. */
679
680 if (DECL_P (exp))
681 {
682 if (VAR_P (exp)
683 && ((flag_unconstrained_commons && DECL_COMMON (exp))
684 || (DECL_EXTERNAL (exp) && seen_variable_array_ref)))
685 {
686 tree sz_tree = TYPE_SIZE (TREE_TYPE (exp));
687 /* If size is unknown, or we have read to the end, assume there
688 may be more to the structure than we are told. */
689 if (TREE_CODE (TREE_TYPE (exp)) == ARRAY_TYPE
690 || (seen_variable_array_ref
691 && (sz_tree == NULL_TREE
692 || !poly_int_tree_p (sz_tree)
693 || maybe_eq (bit_offset + maxsize,
694 wi::to_poly_offset (sz_tree)))))
695 maxsize = -1;
696 }
697 /* If maxsize is unknown adjust it according to the size of the
698 base decl. */
699 else if (!known_size_p (maxsize)
700 && DECL_SIZE (exp)
701 && poly_int_tree_p (DECL_SIZE (exp)))
702 maxsize = wi::to_poly_offset (DECL_SIZE (exp)) - bit_offset;
703 }
704 else if (CONSTANT_CLASS_P (exp))
705 {
706 /* If maxsize is unknown adjust it according to the size of the
707 base type constant. */
708 if (!known_size_p (maxsize)
709 && TYPE_SIZE (TREE_TYPE (exp))
710 && poly_int_tree_p (TYPE_SIZE (TREE_TYPE (exp))))
711 maxsize = (wi::to_poly_offset (TYPE_SIZE (TREE_TYPE (exp)))
712 - bit_offset);
713 }
714
715 if (!maxsize.to_shwi (pmax_size)
716 || maybe_lt (*pmax_size, 0)
717 || !endpoint_representable_p (*poffset, *pmax_size))
718 *pmax_size = -1;
719
720 /* Punt if *POFFSET + *PSIZE overflows in HOST_WIDE_INT, the callers don't
721 check for such overflows individually and assume it works. */
722 if (!endpoint_representable_p (*poffset, *psize))
723 {
724 *poffset = 0;
725 *psize = -1;
726 *pmax_size = -1;
727
728 return exp;
729 }
730
731 return exp;
732 }
733
734 /* Like get_ref_base_and_extent, but for cases in which we only care
735 about constant-width accesses at constant offsets. Return null
736 if the access is anything else. */
737
738 tree
739 get_ref_base_and_extent_hwi (tree exp, HOST_WIDE_INT *poffset,
740 HOST_WIDE_INT *psize, bool *preverse)
741 {
742 poly_int64 offset, size, max_size;
743 HOST_WIDE_INT const_offset, const_size;
744 bool reverse;
745 tree decl = get_ref_base_and_extent (exp, &offset, &size, &max_size,
746 &reverse);
747 if (!offset.is_constant (&const_offset)
748 || !size.is_constant (&const_size)
749 || const_offset < 0
750 || !known_size_p (max_size)
751 || maybe_ne (max_size, const_size))
752 return NULL_TREE;
753
754 *poffset = const_offset;
755 *psize = const_size;
756 *preverse = reverse;
757 return decl;
758 }
759
760 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
761 denotes the starting address of the memory access EXP.
762 Returns NULL_TREE if the offset is not constant or any component
763 is not BITS_PER_UNIT-aligned.
764 VALUEIZE if non-NULL is used to valueize SSA names. It should return
765 its argument or a constant if the argument is known to be constant. */
766
767 tree
768 get_addr_base_and_unit_offset_1 (tree exp, poly_int64 *poffset,
769 tree (*valueize) (tree))
770 {
771 poly_int64 byte_offset = 0;
772
773 /* Compute cumulative byte-offset for nested component-refs and array-refs,
774 and find the ultimate containing object. */
775 while (1)
776 {
777 switch (TREE_CODE (exp))
778 {
779 case BIT_FIELD_REF:
780 {
781 poly_int64 this_byte_offset;
782 poly_uint64 this_bit_offset;
783 if (!poly_int_tree_p (TREE_OPERAND (exp, 2), &this_bit_offset)
784 || !multiple_p (this_bit_offset, BITS_PER_UNIT,
785 &this_byte_offset))
786 return NULL_TREE;
787 byte_offset += this_byte_offset;
788 }
789 break;
790
791 case COMPONENT_REF:
792 {
793 tree field = TREE_OPERAND (exp, 1);
794 tree this_offset = component_ref_field_offset (exp);
795 poly_int64 hthis_offset;
796
797 if (!this_offset
798 || !poly_int_tree_p (this_offset, &hthis_offset)
799 || (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
800 % BITS_PER_UNIT))
801 return NULL_TREE;
802
803 hthis_offset += (TREE_INT_CST_LOW (DECL_FIELD_BIT_OFFSET (field))
804 / BITS_PER_UNIT);
805 byte_offset += hthis_offset;
806 }
807 break;
808
809 case ARRAY_REF:
810 case ARRAY_RANGE_REF:
811 {
812 tree index = TREE_OPERAND (exp, 1);
813 tree low_bound, unit_size;
814
815 if (valueize
816 && TREE_CODE (index) == SSA_NAME)
817 index = (*valueize) (index);
818 if (!poly_int_tree_p (index))
819 return NULL_TREE;
820 low_bound = array_ref_low_bound (exp);
821 if (valueize
822 && TREE_CODE (low_bound) == SSA_NAME)
823 low_bound = (*valueize) (low_bound);
824 if (!poly_int_tree_p (low_bound))
825 return NULL_TREE;
826 unit_size = array_ref_element_size (exp);
827 if (TREE_CODE (unit_size) != INTEGER_CST)
828 return NULL_TREE;
829
830 /* If the resulting bit-offset is constant, track it. */
831 poly_offset_int woffset
832 = wi::sext (wi::to_poly_offset (index)
833 - wi::to_poly_offset (low_bound),
834 TYPE_PRECISION (sizetype));
835 woffset *= wi::to_offset (unit_size);
836 byte_offset += woffset.force_shwi ();
837 }
838 break;
839
840 case REALPART_EXPR:
841 break;
842
843 case IMAGPART_EXPR:
844 byte_offset += TREE_INT_CST_LOW (TYPE_SIZE_UNIT (TREE_TYPE (exp)));
845 break;
846
847 case VIEW_CONVERT_EXPR:
848 break;
849
850 case MEM_REF:
851 {
852 tree base = TREE_OPERAND (exp, 0);
853 if (valueize
854 && TREE_CODE (base) == SSA_NAME)
855 base = (*valueize) (base);
856
857 /* Hand back the decl for MEM[&decl, off]. */
858 if (TREE_CODE (base) == ADDR_EXPR)
859 {
860 if (!integer_zerop (TREE_OPERAND (exp, 1)))
861 {
862 poly_offset_int off = mem_ref_offset (exp);
863 byte_offset += off.force_shwi ();
864 }
865 exp = TREE_OPERAND (base, 0);
866 }
867 goto done;
868 }
869
870 case TARGET_MEM_REF:
871 {
872 tree base = TREE_OPERAND (exp, 0);
873 if (valueize
874 && TREE_CODE (base) == SSA_NAME)
875 base = (*valueize) (base);
876
877 /* Hand back the decl for MEM[&decl, off]. */
878 if (TREE_CODE (base) == ADDR_EXPR)
879 {
880 if (TMR_INDEX (exp) || TMR_INDEX2 (exp))
881 return NULL_TREE;
882 if (!integer_zerop (TMR_OFFSET (exp)))
883 {
884 poly_offset_int off = mem_ref_offset (exp);
885 byte_offset += off.force_shwi ();
886 }
887 exp = TREE_OPERAND (base, 0);
888 }
889 goto done;
890 }
891
892 default:
893 goto done;
894 }
895
896 exp = TREE_OPERAND (exp, 0);
897 }
898 done:
899
900 *poffset = byte_offset;
901 return exp;
902 }
903
904 /* Returns the base object and a constant BITS_PER_UNIT offset in *POFFSET that
905 denotes the starting address of the memory access EXP.
906 Returns NULL_TREE if the offset is not constant or any component
907 is not BITS_PER_UNIT-aligned. */
908
909 tree
910 get_addr_base_and_unit_offset (tree exp, poly_int64 *poffset)
911 {
912 return get_addr_base_and_unit_offset_1 (exp, poffset, NULL);
913 }
914
915 /* Returns true if STMT references an SSA_NAME that has
916 SSA_NAME_OCCURS_IN_ABNORMAL_PHI set, otherwise false. */
917
918 bool
919 stmt_references_abnormal_ssa_name (gimple *stmt)
920 {
921 ssa_op_iter oi;
922 use_operand_p use_p;
923
924 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
925 {
926 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (use_p)))
927 return true;
928 }
929
930 return false;
931 }
932
933 /* If STMT takes any abnormal PHI values as input, replace them with
934 local copies. */
935
936 void
937 replace_abnormal_ssa_names (gimple *stmt)
938 {
939 ssa_op_iter oi;
940 use_operand_p use_p;
941
942 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, oi, SSA_OP_USE)
943 {
944 tree op = USE_FROM_PTR (use_p);
945 if (TREE_CODE (op) == SSA_NAME && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (op))
946 {
947 gimple_stmt_iterator gsi = gsi_for_stmt (stmt);
948 tree new_name = make_ssa_name (TREE_TYPE (op));
949 gassign *assign = gimple_build_assign (new_name, op);
950 gsi_insert_before (&gsi, assign, GSI_SAME_STMT);
951 SET_USE (use_p, new_name);
952 }
953 }
954 }
955
956 /* Pair of tree and a sorting index, for dump_enumerated_decls. */
957 struct GTY(()) numbered_tree
958 {
959 tree t;
960 int num;
961 };
962
963
964 /* Compare two declarations references by their DECL_UID / sequence number.
965 Called via qsort. */
966
967 static int
968 compare_decls_by_uid (const void *pa, const void *pb)
969 {
970 const numbered_tree *nt_a = ((const numbered_tree *)pa);
971 const numbered_tree *nt_b = ((const numbered_tree *)pb);
972
973 if (DECL_UID (nt_a->t) != DECL_UID (nt_b->t))
974 return DECL_UID (nt_a->t) - DECL_UID (nt_b->t);
975 return nt_a->num - nt_b->num;
976 }
977
978 /* Called via walk_gimple_stmt / walk_gimple_op by dump_enumerated_decls. */
979 static tree
980 dump_enumerated_decls_push (tree *tp, int *walk_subtrees, void *data)
981 {
982 struct walk_stmt_info *wi = (struct walk_stmt_info *) data;
983 vec<numbered_tree> *list = (vec<numbered_tree> *) wi->info;
984 numbered_tree nt;
985
986 if (!DECL_P (*tp))
987 return NULL_TREE;
988 nt.t = *tp;
989 nt.num = list->length ();
990 list->safe_push (nt);
991 *walk_subtrees = 0;
992 return NULL_TREE;
993 }
994
995 /* Find all the declarations used by the current function, sort them by uid,
996 and emit the sorted list. Each declaration is tagged with a sequence
997 number indicating when it was found during statement / tree walking,
998 so that TDF_NOUID comparisons of anonymous declarations are still
999 meaningful. Where a declaration was encountered more than once, we
1000 emit only the sequence number of the first encounter.
1001 FILE is the dump file where to output the list and FLAGS is as in
1002 print_generic_expr. */
1003 void
1004 dump_enumerated_decls (FILE *file, dump_flags_t flags)
1005 {
1006 if (!cfun->cfg)
1007 return;
1008
1009 basic_block bb;
1010 struct walk_stmt_info wi;
1011 auto_vec<numbered_tree, 40> decl_list;
1012
1013 memset (&wi, '\0', sizeof (wi));
1014 wi.info = (void *) &decl_list;
1015 FOR_EACH_BB_FN (bb, cfun)
1016 {
1017 gimple_stmt_iterator gsi;
1018
1019 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1020 if (!is_gimple_debug (gsi_stmt (gsi)))
1021 walk_gimple_stmt (&gsi, NULL, dump_enumerated_decls_push, &wi);
1022 }
1023 decl_list.qsort (compare_decls_by_uid);
1024 if (decl_list.length ())
1025 {
1026 unsigned ix;
1027 numbered_tree *ntp;
1028 tree last = NULL_TREE;
1029
1030 fprintf (file, "Declarations used by %s, sorted by DECL_UID:\n",
1031 current_function_name ());
1032 FOR_EACH_VEC_ELT (decl_list, ix, ntp)
1033 {
1034 if (ntp->t == last)
1035 continue;
1036 fprintf (file, "%d: ", ntp->num);
1037 print_generic_decl (file, ntp->t, flags);
1038 fprintf (file, "\n");
1039 last = ntp->t;
1040 }
1041 }
1042 }