]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-eh.c
bd9294dedc5d41949d5f2a5648e703c3dfc3220b
[thirdparty/gcc.git] / gcc / tree-eh.c
1 /* Exception handling semantics and decomposition for trees.
2 Copyright (C) 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "function.h"
28 #include "except.h"
29 #include "pointer-set.h"
30 #include "tree-flow.h"
31 #include "tree-inline.h"
32 #include "tree-pass.h"
33 #include "langhooks.h"
34 #include "ggc.h"
35 #include "diagnostic-core.h"
36 #include "gimple.h"
37 #include "target.h"
38 #include "cfgloop.h"
39
40 /* In some instances a tree and a gimple need to be stored in a same table,
41 i.e. in hash tables. This is a structure to do this. */
42 typedef union {tree *tp; tree t; gimple g;} treemple;
43
44 /* Nonzero if we are using EH to handle cleanups. */
45 static int using_eh_for_cleanups_p = 0;
46
47 void
48 using_eh_for_cleanups (void)
49 {
50 using_eh_for_cleanups_p = 1;
51 }
52
53 /* Misc functions used in this file. */
54
55 /* Remember and lookup EH landing pad data for arbitrary statements.
56 Really this means any statement that could_throw_p. We could
57 stuff this information into the stmt_ann data structure, but:
58
59 (1) We absolutely rely on this information being kept until
60 we get to rtl. Once we're done with lowering here, if we lose
61 the information there's no way to recover it!
62
63 (2) There are many more statements that *cannot* throw as
64 compared to those that can. We should be saving some amount
65 of space by only allocating memory for those that can throw. */
66
67 /* Add statement T in function IFUN to landing pad NUM. */
68
69 void
70 add_stmt_to_eh_lp_fn (struct function *ifun, gimple t, int num)
71 {
72 struct throw_stmt_node *n;
73 void **slot;
74
75 gcc_assert (num != 0);
76
77 n = ggc_alloc_throw_stmt_node ();
78 n->stmt = t;
79 n->lp_nr = num;
80
81 if (!get_eh_throw_stmt_table (ifun))
82 set_eh_throw_stmt_table (ifun, htab_create_ggc (31, struct_ptr_hash,
83 struct_ptr_eq,
84 ggc_free));
85
86 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), n, INSERT);
87 gcc_assert (!*slot);
88 *slot = n;
89 }
90
91 /* Add statement T in the current function (cfun) to EH landing pad NUM. */
92
93 void
94 add_stmt_to_eh_lp (gimple t, int num)
95 {
96 add_stmt_to_eh_lp_fn (cfun, t, num);
97 }
98
99 /* Add statement T to the single EH landing pad in REGION. */
100
101 static void
102 record_stmt_eh_region (eh_region region, gimple t)
103 {
104 if (region == NULL)
105 return;
106 if (region->type == ERT_MUST_NOT_THROW)
107 add_stmt_to_eh_lp_fn (cfun, t, -region->index);
108 else
109 {
110 eh_landing_pad lp = region->landing_pads;
111 if (lp == NULL)
112 lp = gen_eh_landing_pad (region);
113 else
114 gcc_assert (lp->next_lp == NULL);
115 add_stmt_to_eh_lp_fn (cfun, t, lp->index);
116 }
117 }
118
119
120 /* Remove statement T in function IFUN from its EH landing pad. */
121
122 bool
123 remove_stmt_from_eh_lp_fn (struct function *ifun, gimple t)
124 {
125 struct throw_stmt_node dummy;
126 void **slot;
127
128 if (!get_eh_throw_stmt_table (ifun))
129 return false;
130
131 dummy.stmt = t;
132 slot = htab_find_slot (get_eh_throw_stmt_table (ifun), &dummy,
133 NO_INSERT);
134 if (slot)
135 {
136 htab_clear_slot (get_eh_throw_stmt_table (ifun), slot);
137 return true;
138 }
139 else
140 return false;
141 }
142
143
144 /* Remove statement T in the current function (cfun) from its
145 EH landing pad. */
146
147 bool
148 remove_stmt_from_eh_lp (gimple t)
149 {
150 return remove_stmt_from_eh_lp_fn (cfun, t);
151 }
152
153 /* Determine if statement T is inside an EH region in function IFUN.
154 Positive numbers indicate a landing pad index; negative numbers
155 indicate a MUST_NOT_THROW region index; zero indicates that the
156 statement is not recorded in the region table. */
157
158 int
159 lookup_stmt_eh_lp_fn (struct function *ifun, gimple t)
160 {
161 struct throw_stmt_node *p, n;
162
163 if (ifun->eh->throw_stmt_table == NULL)
164 return 0;
165
166 n.stmt = t;
167 p = (struct throw_stmt_node *) htab_find (ifun->eh->throw_stmt_table, &n);
168 return p ? p->lp_nr : 0;
169 }
170
171 /* Likewise, but always use the current function. */
172
173 int
174 lookup_stmt_eh_lp (gimple t)
175 {
176 /* We can get called from initialized data when -fnon-call-exceptions
177 is on; prevent crash. */
178 if (!cfun)
179 return 0;
180 return lookup_stmt_eh_lp_fn (cfun, t);
181 }
182
183 /* First pass of EH node decomposition. Build up a tree of GIMPLE_TRY_FINALLY
184 nodes and LABEL_DECL nodes. We will use this during the second phase to
185 determine if a goto leaves the body of a TRY_FINALLY_EXPR node. */
186
187 struct finally_tree_node
188 {
189 /* When storing a GIMPLE_TRY, we have to record a gimple. However
190 when deciding whether a GOTO to a certain LABEL_DECL (which is a
191 tree) leaves the TRY block, its necessary to record a tree in
192 this field. Thus a treemple is used. */
193 treemple child;
194 gimple parent;
195 };
196
197 /* Note that this table is *not* marked GTY. It is short-lived. */
198 static htab_t finally_tree;
199
200 static void
201 record_in_finally_tree (treemple child, gimple parent)
202 {
203 struct finally_tree_node *n;
204 void **slot;
205
206 n = XNEW (struct finally_tree_node);
207 n->child = child;
208 n->parent = parent;
209
210 slot = htab_find_slot (finally_tree, n, INSERT);
211 gcc_assert (!*slot);
212 *slot = n;
213 }
214
215 static void
216 collect_finally_tree (gimple stmt, gimple region);
217
218 /* Go through the gimple sequence. Works with collect_finally_tree to
219 record all GIMPLE_LABEL and GIMPLE_TRY statements. */
220
221 static void
222 collect_finally_tree_1 (gimple_seq seq, gimple region)
223 {
224 gimple_stmt_iterator gsi;
225
226 for (gsi = gsi_start (seq); !gsi_end_p (gsi); gsi_next (&gsi))
227 collect_finally_tree (gsi_stmt (gsi), region);
228 }
229
230 static void
231 collect_finally_tree (gimple stmt, gimple region)
232 {
233 treemple temp;
234
235 switch (gimple_code (stmt))
236 {
237 case GIMPLE_LABEL:
238 temp.t = gimple_label_label (stmt);
239 record_in_finally_tree (temp, region);
240 break;
241
242 case GIMPLE_TRY:
243 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
244 {
245 temp.g = stmt;
246 record_in_finally_tree (temp, region);
247 collect_finally_tree_1 (gimple_try_eval (stmt), stmt);
248 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
249 }
250 else if (gimple_try_kind (stmt) == GIMPLE_TRY_CATCH)
251 {
252 collect_finally_tree_1 (gimple_try_eval (stmt), region);
253 collect_finally_tree_1 (gimple_try_cleanup (stmt), region);
254 }
255 break;
256
257 case GIMPLE_CATCH:
258 collect_finally_tree_1 (gimple_catch_handler (stmt), region);
259 break;
260
261 case GIMPLE_EH_FILTER:
262 collect_finally_tree_1 (gimple_eh_filter_failure (stmt), region);
263 break;
264
265 case GIMPLE_EH_ELSE:
266 collect_finally_tree_1 (gimple_eh_else_n_body (stmt), region);
267 collect_finally_tree_1 (gimple_eh_else_e_body (stmt), region);
268 break;
269
270 default:
271 /* A type, a decl, or some kind of statement that we're not
272 interested in. Don't walk them. */
273 break;
274 }
275 }
276
277
278 /* Use the finally tree to determine if a jump from START to TARGET
279 would leave the try_finally node that START lives in. */
280
281 static bool
282 outside_finally_tree (treemple start, gimple target)
283 {
284 struct finally_tree_node n, *p;
285
286 do
287 {
288 n.child = start;
289 p = (struct finally_tree_node *) htab_find (finally_tree, &n);
290 if (!p)
291 return true;
292 start.g = p->parent;
293 }
294 while (start.g != target);
295
296 return false;
297 }
298
299 /* Second pass of EH node decomposition. Actually transform the GIMPLE_TRY
300 nodes into a set of gotos, magic labels, and eh regions.
301 The eh region creation is straight-forward, but frobbing all the gotos
302 and such into shape isn't. */
303
304 /* The sequence into which we record all EH stuff. This will be
305 placed at the end of the function when we're all done. */
306 static gimple_seq eh_seq;
307
308 /* Record whether an EH region contains something that can throw,
309 indexed by EH region number. */
310 static bitmap eh_region_may_contain_throw_map;
311
312 /* The GOTO_QUEUE is is an array of GIMPLE_GOTO and GIMPLE_RETURN
313 statements that are seen to escape this GIMPLE_TRY_FINALLY node.
314 The idea is to record a gimple statement for everything except for
315 the conditionals, which get their labels recorded. Since labels are
316 of type 'tree', we need this node to store both gimple and tree
317 objects. REPL_STMT is the sequence used to replace the goto/return
318 statement. CONT_STMT is used to store the statement that allows
319 the return/goto to jump to the original destination. */
320
321 struct goto_queue_node
322 {
323 treemple stmt;
324 gimple_seq repl_stmt;
325 gimple cont_stmt;
326 int index;
327 /* This is used when index >= 0 to indicate that stmt is a label (as
328 opposed to a goto stmt). */
329 int is_label;
330 };
331
332 /* State of the world while lowering. */
333
334 struct leh_state
335 {
336 /* What's "current" while constructing the eh region tree. These
337 correspond to variables of the same name in cfun->eh, which we
338 don't have easy access to. */
339 eh_region cur_region;
340
341 /* What's "current" for the purposes of __builtin_eh_pointer. For
342 a CATCH, this is the associated TRY. For an EH_FILTER, this is
343 the associated ALLOWED_EXCEPTIONS, etc. */
344 eh_region ehp_region;
345
346 /* Processing of TRY_FINALLY requires a bit more state. This is
347 split out into a separate structure so that we don't have to
348 copy so much when processing other nodes. */
349 struct leh_tf_state *tf;
350 };
351
352 struct leh_tf_state
353 {
354 /* Pointer to the GIMPLE_TRY_FINALLY node under discussion. The
355 try_finally_expr is the original GIMPLE_TRY_FINALLY. We need to retain
356 this so that outside_finally_tree can reliably reference the tree used
357 in the collect_finally_tree data structures. */
358 gimple try_finally_expr;
359 gimple top_p;
360
361 /* While lowering a top_p usually it is expanded into multiple statements,
362 thus we need the following field to store them. */
363 gimple_seq top_p_seq;
364
365 /* The state outside this try_finally node. */
366 struct leh_state *outer;
367
368 /* The exception region created for it. */
369 eh_region region;
370
371 /* The goto queue. */
372 struct goto_queue_node *goto_queue;
373 size_t goto_queue_size;
374 size_t goto_queue_active;
375
376 /* Pointer map to help in searching goto_queue when it is large. */
377 struct pointer_map_t *goto_queue_map;
378
379 /* The set of unique labels seen as entries in the goto queue. */
380 VEC(tree,heap) *dest_array;
381
382 /* A label to be added at the end of the completed transformed
383 sequence. It will be set if may_fallthru was true *at one time*,
384 though subsequent transformations may have cleared that flag. */
385 tree fallthru_label;
386
387 /* True if it is possible to fall out the bottom of the try block.
388 Cleared if the fallthru is converted to a goto. */
389 bool may_fallthru;
390
391 /* True if any entry in goto_queue is a GIMPLE_RETURN. */
392 bool may_return;
393
394 /* True if the finally block can receive an exception edge.
395 Cleared if the exception case is handled by code duplication. */
396 bool may_throw;
397 };
398
399 static gimple_seq lower_eh_must_not_throw (struct leh_state *, gimple);
400
401 /* Search for STMT in the goto queue. Return the replacement,
402 or null if the statement isn't in the queue. */
403
404 #define LARGE_GOTO_QUEUE 20
405
406 static void lower_eh_constructs_1 (struct leh_state *state, gimple_seq *seq);
407
408 static gimple_seq
409 find_goto_replacement (struct leh_tf_state *tf, treemple stmt)
410 {
411 unsigned int i;
412 void **slot;
413
414 if (tf->goto_queue_active < LARGE_GOTO_QUEUE)
415 {
416 for (i = 0; i < tf->goto_queue_active; i++)
417 if ( tf->goto_queue[i].stmt.g == stmt.g)
418 return tf->goto_queue[i].repl_stmt;
419 return NULL;
420 }
421
422 /* If we have a large number of entries in the goto_queue, create a
423 pointer map and use that for searching. */
424
425 if (!tf->goto_queue_map)
426 {
427 tf->goto_queue_map = pointer_map_create ();
428 for (i = 0; i < tf->goto_queue_active; i++)
429 {
430 slot = pointer_map_insert (tf->goto_queue_map,
431 tf->goto_queue[i].stmt.g);
432 gcc_assert (*slot == NULL);
433 *slot = &tf->goto_queue[i];
434 }
435 }
436
437 slot = pointer_map_contains (tf->goto_queue_map, stmt.g);
438 if (slot != NULL)
439 return (((struct goto_queue_node *) *slot)->repl_stmt);
440
441 return NULL;
442 }
443
444 /* A subroutine of replace_goto_queue_1. Handles the sub-clauses of a
445 lowered GIMPLE_COND. If, by chance, the replacement is a simple goto,
446 then we can just splat it in, otherwise we add the new stmts immediately
447 after the GIMPLE_COND and redirect. */
448
449 static void
450 replace_goto_queue_cond_clause (tree *tp, struct leh_tf_state *tf,
451 gimple_stmt_iterator *gsi)
452 {
453 tree label;
454 gimple_seq new_seq;
455 treemple temp;
456 location_t loc = gimple_location (gsi_stmt (*gsi));
457
458 temp.tp = tp;
459 new_seq = find_goto_replacement (tf, temp);
460 if (!new_seq)
461 return;
462
463 if (gimple_seq_singleton_p (new_seq)
464 && gimple_code (gimple_seq_first_stmt (new_seq)) == GIMPLE_GOTO)
465 {
466 *tp = gimple_goto_dest (gimple_seq_first_stmt (new_seq));
467 return;
468 }
469
470 label = create_artificial_label (loc);
471 /* Set the new label for the GIMPLE_COND */
472 *tp = label;
473
474 gsi_insert_after (gsi, gimple_build_label (label), GSI_CONTINUE_LINKING);
475 gsi_insert_seq_after (gsi, gimple_seq_copy (new_seq), GSI_CONTINUE_LINKING);
476 }
477
478 /* The real work of replace_goto_queue. Returns with TSI updated to
479 point to the next statement. */
480
481 static void replace_goto_queue_stmt_list (gimple_seq *, struct leh_tf_state *);
482
483 static void
484 replace_goto_queue_1 (gimple stmt, struct leh_tf_state *tf,
485 gimple_stmt_iterator *gsi)
486 {
487 gimple_seq seq;
488 treemple temp;
489 temp.g = NULL;
490
491 switch (gimple_code (stmt))
492 {
493 case GIMPLE_GOTO:
494 case GIMPLE_RETURN:
495 temp.g = stmt;
496 seq = find_goto_replacement (tf, temp);
497 if (seq)
498 {
499 gsi_insert_seq_before (gsi, gimple_seq_copy (seq), GSI_SAME_STMT);
500 gsi_remove (gsi, false);
501 return;
502 }
503 break;
504
505 case GIMPLE_COND:
506 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 2), tf, gsi);
507 replace_goto_queue_cond_clause (gimple_op_ptr (stmt, 3), tf, gsi);
508 break;
509
510 case GIMPLE_TRY:
511 replace_goto_queue_stmt_list (gimple_try_eval_ptr (stmt), tf);
512 replace_goto_queue_stmt_list (gimple_try_cleanup_ptr (stmt), tf);
513 break;
514 case GIMPLE_CATCH:
515 replace_goto_queue_stmt_list (gimple_catch_handler_ptr (stmt), tf);
516 break;
517 case GIMPLE_EH_FILTER:
518 replace_goto_queue_stmt_list (gimple_eh_filter_failure_ptr (stmt), tf);
519 break;
520 case GIMPLE_EH_ELSE:
521 replace_goto_queue_stmt_list (gimple_eh_else_n_body_ptr (stmt), tf);
522 replace_goto_queue_stmt_list (gimple_eh_else_e_body_ptr (stmt), tf);
523 break;
524
525 default:
526 /* These won't have gotos in them. */
527 break;
528 }
529
530 gsi_next (gsi);
531 }
532
533 /* A subroutine of replace_goto_queue. Handles GIMPLE_SEQ. */
534
535 static void
536 replace_goto_queue_stmt_list (gimple_seq *seq, struct leh_tf_state *tf)
537 {
538 gimple_stmt_iterator gsi = gsi_start (*seq);
539
540 while (!gsi_end_p (gsi))
541 replace_goto_queue_1 (gsi_stmt (gsi), tf, &gsi);
542 }
543
544 /* Replace all goto queue members. */
545
546 static void
547 replace_goto_queue (struct leh_tf_state *tf)
548 {
549 if (tf->goto_queue_active == 0)
550 return;
551 replace_goto_queue_stmt_list (&tf->top_p_seq, tf);
552 replace_goto_queue_stmt_list (&eh_seq, tf);
553 }
554
555 /* Add a new record to the goto queue contained in TF. NEW_STMT is the
556 data to be added, IS_LABEL indicates whether NEW_STMT is a label or
557 a gimple return. */
558
559 static void
560 record_in_goto_queue (struct leh_tf_state *tf,
561 treemple new_stmt,
562 int index,
563 bool is_label)
564 {
565 size_t active, size;
566 struct goto_queue_node *q;
567
568 gcc_assert (!tf->goto_queue_map);
569
570 active = tf->goto_queue_active;
571 size = tf->goto_queue_size;
572 if (active >= size)
573 {
574 size = (size ? size * 2 : 32);
575 tf->goto_queue_size = size;
576 tf->goto_queue
577 = XRESIZEVEC (struct goto_queue_node, tf->goto_queue, size);
578 }
579
580 q = &tf->goto_queue[active];
581 tf->goto_queue_active = active + 1;
582
583 memset (q, 0, sizeof (*q));
584 q->stmt = new_stmt;
585 q->index = index;
586 q->is_label = is_label;
587 }
588
589 /* Record the LABEL label in the goto queue contained in TF.
590 TF is not null. */
591
592 static void
593 record_in_goto_queue_label (struct leh_tf_state *tf, treemple stmt, tree label)
594 {
595 int index;
596 treemple temp, new_stmt;
597
598 if (!label)
599 return;
600
601 /* Computed and non-local gotos do not get processed. Given
602 their nature we can neither tell whether we've escaped the
603 finally block nor redirect them if we knew. */
604 if (TREE_CODE (label) != LABEL_DECL)
605 return;
606
607 /* No need to record gotos that don't leave the try block. */
608 temp.t = label;
609 if (!outside_finally_tree (temp, tf->try_finally_expr))
610 return;
611
612 if (! tf->dest_array)
613 {
614 tf->dest_array = VEC_alloc (tree, heap, 10);
615 VEC_quick_push (tree, tf->dest_array, label);
616 index = 0;
617 }
618 else
619 {
620 int n = VEC_length (tree, tf->dest_array);
621 for (index = 0; index < n; ++index)
622 if (VEC_index (tree, tf->dest_array, index) == label)
623 break;
624 if (index == n)
625 VEC_safe_push (tree, heap, tf->dest_array, label);
626 }
627
628 /* In the case of a GOTO we want to record the destination label,
629 since with a GIMPLE_COND we have an easy access to the then/else
630 labels. */
631 new_stmt = stmt;
632 record_in_goto_queue (tf, new_stmt, index, true);
633 }
634
635 /* For any GIMPLE_GOTO or GIMPLE_RETURN, decide whether it leaves a try_finally
636 node, and if so record that fact in the goto queue associated with that
637 try_finally node. */
638
639 static void
640 maybe_record_in_goto_queue (struct leh_state *state, gimple stmt)
641 {
642 struct leh_tf_state *tf = state->tf;
643 treemple new_stmt;
644
645 if (!tf)
646 return;
647
648 switch (gimple_code (stmt))
649 {
650 case GIMPLE_COND:
651 new_stmt.tp = gimple_op_ptr (stmt, 2);
652 record_in_goto_queue_label (tf, new_stmt, gimple_cond_true_label (stmt));
653 new_stmt.tp = gimple_op_ptr (stmt, 3);
654 record_in_goto_queue_label (tf, new_stmt, gimple_cond_false_label (stmt));
655 break;
656 case GIMPLE_GOTO:
657 new_stmt.g = stmt;
658 record_in_goto_queue_label (tf, new_stmt, gimple_goto_dest (stmt));
659 break;
660
661 case GIMPLE_RETURN:
662 tf->may_return = true;
663 new_stmt.g = stmt;
664 record_in_goto_queue (tf, new_stmt, -1, false);
665 break;
666
667 default:
668 gcc_unreachable ();
669 }
670 }
671
672
673 #ifdef ENABLE_CHECKING
674 /* We do not process GIMPLE_SWITCHes for now. As long as the original source
675 was in fact structured, and we've not yet done jump threading, then none
676 of the labels will leave outer GIMPLE_TRY_FINALLY nodes. Verify this. */
677
678 static void
679 verify_norecord_switch_expr (struct leh_state *state, gimple switch_expr)
680 {
681 struct leh_tf_state *tf = state->tf;
682 size_t i, n;
683
684 if (!tf)
685 return;
686
687 n = gimple_switch_num_labels (switch_expr);
688
689 for (i = 0; i < n; ++i)
690 {
691 treemple temp;
692 tree lab = CASE_LABEL (gimple_switch_label (switch_expr, i));
693 temp.t = lab;
694 gcc_assert (!outside_finally_tree (temp, tf->try_finally_expr));
695 }
696 }
697 #else
698 #define verify_norecord_switch_expr(state, switch_expr)
699 #endif
700
701 /* Redirect a RETURN_EXPR pointed to by Q to FINLAB. If MOD is
702 non-null, insert it before the new branch. */
703
704 static void
705 do_return_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod)
706 {
707 gimple x;
708
709 /* In the case of a return, the queue node must be a gimple statement. */
710 gcc_assert (!q->is_label);
711
712 /* Note that the return value may have already been computed, e.g.,
713
714 int x;
715 int foo (void)
716 {
717 x = 0;
718 try {
719 return x;
720 } finally {
721 x++;
722 }
723 }
724
725 should return 0, not 1. We don't have to do anything to make
726 this happens because the return value has been placed in the
727 RESULT_DECL already. */
728
729 q->cont_stmt = q->stmt.g;
730
731 if (mod)
732 gimple_seq_add_seq (&q->repl_stmt, mod);
733
734 x = gimple_build_goto (finlab);
735 gimple_seq_add_stmt (&q->repl_stmt, x);
736 }
737
738 /* Similar, but easier, for GIMPLE_GOTO. */
739
740 static void
741 do_goto_redirection (struct goto_queue_node *q, tree finlab, gimple_seq mod,
742 struct leh_tf_state *tf)
743 {
744 gimple x;
745
746 gcc_assert (q->is_label);
747
748 q->cont_stmt = gimple_build_goto (VEC_index (tree, tf->dest_array, q->index));
749
750 if (mod)
751 gimple_seq_add_seq (&q->repl_stmt, mod);
752
753 x = gimple_build_goto (finlab);
754 gimple_seq_add_stmt (&q->repl_stmt, x);
755 }
756
757 /* Emit a standard landing pad sequence into SEQ for REGION. */
758
759 static void
760 emit_post_landing_pad (gimple_seq *seq, eh_region region)
761 {
762 eh_landing_pad lp = region->landing_pads;
763 gimple x;
764
765 if (lp == NULL)
766 lp = gen_eh_landing_pad (region);
767
768 lp->post_landing_pad = create_artificial_label (UNKNOWN_LOCATION);
769 EH_LANDING_PAD_NR (lp->post_landing_pad) = lp->index;
770
771 x = gimple_build_label (lp->post_landing_pad);
772 gimple_seq_add_stmt (seq, x);
773 }
774
775 /* Emit a RESX statement into SEQ for REGION. */
776
777 static void
778 emit_resx (gimple_seq *seq, eh_region region)
779 {
780 gimple x = gimple_build_resx (region->index);
781 gimple_seq_add_stmt (seq, x);
782 if (region->outer)
783 record_stmt_eh_region (region->outer, x);
784 }
785
786 /* Emit an EH_DISPATCH statement into SEQ for REGION. */
787
788 static void
789 emit_eh_dispatch (gimple_seq *seq, eh_region region)
790 {
791 gimple x = gimple_build_eh_dispatch (region->index);
792 gimple_seq_add_stmt (seq, x);
793 }
794
795 /* Note that the current EH region may contain a throw, or a
796 call to a function which itself may contain a throw. */
797
798 static void
799 note_eh_region_may_contain_throw (eh_region region)
800 {
801 while (bitmap_set_bit (eh_region_may_contain_throw_map, region->index))
802 {
803 if (region->type == ERT_MUST_NOT_THROW)
804 break;
805 region = region->outer;
806 if (region == NULL)
807 break;
808 }
809 }
810
811 /* Check if REGION has been marked as containing a throw. If REGION is
812 NULL, this predicate is false. */
813
814 static inline bool
815 eh_region_may_contain_throw (eh_region r)
816 {
817 return r && bitmap_bit_p (eh_region_may_contain_throw_map, r->index);
818 }
819
820 /* We want to transform
821 try { body; } catch { stuff; }
822 to
823 normal_seqence:
824 body;
825 over:
826 eh_seqence:
827 landing_pad:
828 stuff;
829 goto over;
830
831 TP is a GIMPLE_TRY node. REGION is the region whose post_landing_pad
832 should be placed before the second operand, or NULL. OVER is
833 an existing label that should be put at the exit, or NULL. */
834
835 static gimple_seq
836 frob_into_branch_around (gimple tp, eh_region region, tree over)
837 {
838 gimple x;
839 gimple_seq cleanup, result;
840 location_t loc = gimple_location (tp);
841
842 cleanup = gimple_try_cleanup (tp);
843 result = gimple_try_eval (tp);
844
845 if (region)
846 emit_post_landing_pad (&eh_seq, region);
847
848 if (gimple_seq_may_fallthru (cleanup))
849 {
850 if (!over)
851 over = create_artificial_label (loc);
852 x = gimple_build_goto (over);
853 gimple_seq_add_stmt (&cleanup, x);
854 }
855 gimple_seq_add_seq (&eh_seq, cleanup);
856
857 if (over)
858 {
859 x = gimple_build_label (over);
860 gimple_seq_add_stmt (&result, x);
861 }
862 return result;
863 }
864
865 /* A subroutine of lower_try_finally. Duplicate the tree rooted at T.
866 Make sure to record all new labels found. */
867
868 static gimple_seq
869 lower_try_finally_dup_block (gimple_seq seq, struct leh_state *outer_state)
870 {
871 gimple region = NULL;
872 gimple_seq new_seq;
873
874 new_seq = copy_gimple_seq_and_replace_locals (seq);
875
876 if (outer_state->tf)
877 region = outer_state->tf->try_finally_expr;
878 collect_finally_tree_1 (new_seq, region);
879
880 return new_seq;
881 }
882
883 /* A subroutine of lower_try_finally. Create a fallthru label for
884 the given try_finally state. The only tricky bit here is that
885 we have to make sure to record the label in our outer context. */
886
887 static tree
888 lower_try_finally_fallthru_label (struct leh_tf_state *tf)
889 {
890 tree label = tf->fallthru_label;
891 treemple temp;
892
893 if (!label)
894 {
895 label = create_artificial_label (gimple_location (tf->try_finally_expr));
896 tf->fallthru_label = label;
897 if (tf->outer->tf)
898 {
899 temp.t = label;
900 record_in_finally_tree (temp, tf->outer->tf->try_finally_expr);
901 }
902 }
903 return label;
904 }
905
906 /* A subroutine of lower_try_finally. If FINALLY consits of a
907 GIMPLE_EH_ELSE node, return it. */
908
909 static inline gimple
910 get_eh_else (gimple_seq finally)
911 {
912 gimple x = gimple_seq_first_stmt (finally);
913 if (gimple_code (x) == GIMPLE_EH_ELSE)
914 {
915 gcc_assert (gimple_seq_singleton_p (finally));
916 return x;
917 }
918 return NULL;
919 }
920
921 /* A subroutine of lower_try_finally. If the eh_protect_cleanup_actions
922 langhook returns non-null, then the language requires that the exception
923 path out of a try_finally be treated specially. To wit: the code within
924 the finally block may not itself throw an exception. We have two choices
925 here. First we can duplicate the finally block and wrap it in a
926 must_not_throw region. Second, we can generate code like
927
928 try {
929 finally_block;
930 } catch {
931 if (fintmp == eh_edge)
932 protect_cleanup_actions;
933 }
934
935 where "fintmp" is the temporary used in the switch statement generation
936 alternative considered below. For the nonce, we always choose the first
937 option.
938
939 THIS_STATE may be null if this is a try-cleanup, not a try-finally. */
940
941 static void
942 honor_protect_cleanup_actions (struct leh_state *outer_state,
943 struct leh_state *this_state,
944 struct leh_tf_state *tf)
945 {
946 tree protect_cleanup_actions;
947 gimple_stmt_iterator gsi;
948 bool finally_may_fallthru;
949 gimple_seq finally;
950 gimple x, eh_else;
951
952 /* First check for nothing to do. */
953 if (lang_hooks.eh_protect_cleanup_actions == NULL)
954 return;
955 protect_cleanup_actions = lang_hooks.eh_protect_cleanup_actions ();
956 if (protect_cleanup_actions == NULL)
957 return;
958
959 finally = gimple_try_cleanup (tf->top_p);
960 eh_else = get_eh_else (finally);
961
962 /* Duplicate the FINALLY block. Only need to do this for try-finally,
963 and not for cleanups. If we've got an EH_ELSE, extract it now. */
964 if (eh_else)
965 {
966 finally = gimple_eh_else_e_body (eh_else);
967 gimple_try_set_cleanup (tf->top_p, gimple_eh_else_n_body (eh_else));
968 }
969 else if (this_state)
970 finally = lower_try_finally_dup_block (finally, outer_state);
971 finally_may_fallthru = gimple_seq_may_fallthru (finally);
972
973 /* If this cleanup consists of a TRY_CATCH_EXPR with TRY_CATCH_IS_CLEANUP
974 set, the handler of the TRY_CATCH_EXPR is another cleanup which ought
975 to be in an enclosing scope, but needs to be implemented at this level
976 to avoid a nesting violation (see wrap_temporary_cleanups in
977 cp/decl.c). Since it's logically at an outer level, we should call
978 terminate before we get to it, so strip it away before adding the
979 MUST_NOT_THROW filter. */
980 gsi = gsi_start (finally);
981 x = gsi_stmt (gsi);
982 if (gimple_code (x) == GIMPLE_TRY
983 && gimple_try_kind (x) == GIMPLE_TRY_CATCH
984 && gimple_try_catch_is_cleanup (x))
985 {
986 gsi_insert_seq_before (&gsi, gimple_try_eval (x), GSI_SAME_STMT);
987 gsi_remove (&gsi, false);
988 }
989
990 /* Wrap the block with protect_cleanup_actions as the action. */
991 x = gimple_build_eh_must_not_throw (protect_cleanup_actions);
992 x = gimple_build_try (finally, gimple_seq_alloc_with_stmt (x),
993 GIMPLE_TRY_CATCH);
994 finally = lower_eh_must_not_throw (outer_state, x);
995
996 /* Drop all of this into the exception sequence. */
997 emit_post_landing_pad (&eh_seq, tf->region);
998 gimple_seq_add_seq (&eh_seq, finally);
999 if (finally_may_fallthru)
1000 emit_resx (&eh_seq, tf->region);
1001
1002 /* Having now been handled, EH isn't to be considered with
1003 the rest of the outgoing edges. */
1004 tf->may_throw = false;
1005 }
1006
1007 /* A subroutine of lower_try_finally. We have determined that there is
1008 no fallthru edge out of the finally block. This means that there is
1009 no outgoing edge corresponding to any incoming edge. Restructure the
1010 try_finally node for this special case. */
1011
1012 static void
1013 lower_try_finally_nofallthru (struct leh_state *state,
1014 struct leh_tf_state *tf)
1015 {
1016 tree lab;
1017 gimple x, eh_else;
1018 gimple_seq finally;
1019 struct goto_queue_node *q, *qe;
1020
1021 lab = create_artificial_label (gimple_location (tf->try_finally_expr));
1022
1023 /* We expect that tf->top_p is a GIMPLE_TRY. */
1024 finally = gimple_try_cleanup (tf->top_p);
1025 tf->top_p_seq = gimple_try_eval (tf->top_p);
1026
1027 x = gimple_build_label (lab);
1028 gimple_seq_add_stmt (&tf->top_p_seq, x);
1029
1030 q = tf->goto_queue;
1031 qe = q + tf->goto_queue_active;
1032 for (; q < qe; ++q)
1033 if (q->index < 0)
1034 do_return_redirection (q, lab, NULL);
1035 else
1036 do_goto_redirection (q, lab, NULL, tf);
1037
1038 replace_goto_queue (tf);
1039
1040 /* Emit the finally block into the stream. Lower EH_ELSE at this time. */
1041 eh_else = get_eh_else (finally);
1042 if (eh_else)
1043 {
1044 finally = gimple_eh_else_n_body (eh_else);
1045 lower_eh_constructs_1 (state, &finally);
1046 gimple_seq_add_seq (&tf->top_p_seq, finally);
1047
1048 if (tf->may_throw)
1049 {
1050 finally = gimple_eh_else_e_body (eh_else);
1051 lower_eh_constructs_1 (state, &finally);
1052
1053 emit_post_landing_pad (&eh_seq, tf->region);
1054 gimple_seq_add_seq (&eh_seq, finally);
1055 }
1056 }
1057 else
1058 {
1059 lower_eh_constructs_1 (state, &finally);
1060 gimple_seq_add_seq (&tf->top_p_seq, finally);
1061
1062 if (tf->may_throw)
1063 {
1064 emit_post_landing_pad (&eh_seq, tf->region);
1065
1066 x = gimple_build_goto (lab);
1067 gimple_seq_add_stmt (&eh_seq, x);
1068 }
1069 }
1070 }
1071
1072 /* A subroutine of lower_try_finally. We have determined that there is
1073 exactly one destination of the finally block. Restructure the
1074 try_finally node for this special case. */
1075
1076 static void
1077 lower_try_finally_onedest (struct leh_state *state, struct leh_tf_state *tf)
1078 {
1079 struct goto_queue_node *q, *qe;
1080 gimple x;
1081 gimple_seq finally;
1082 tree finally_label;
1083 location_t loc = gimple_location (tf->try_finally_expr);
1084
1085 finally = gimple_try_cleanup (tf->top_p);
1086 tf->top_p_seq = gimple_try_eval (tf->top_p);
1087
1088 /* Since there's only one destination, and the destination edge can only
1089 either be EH or non-EH, that implies that all of our incoming edges
1090 are of the same type. Therefore we can lower EH_ELSE immediately. */
1091 x = get_eh_else (finally);
1092 if (x)
1093 {
1094 if (tf->may_throw)
1095 finally = gimple_eh_else_e_body (x);
1096 else
1097 finally = gimple_eh_else_n_body (x);
1098 }
1099
1100 lower_eh_constructs_1 (state, &finally);
1101
1102 if (tf->may_throw)
1103 {
1104 /* Only reachable via the exception edge. Add the given label to
1105 the head of the FINALLY block. Append a RESX at the end. */
1106 emit_post_landing_pad (&eh_seq, tf->region);
1107 gimple_seq_add_seq (&eh_seq, finally);
1108 emit_resx (&eh_seq, tf->region);
1109 return;
1110 }
1111
1112 if (tf->may_fallthru)
1113 {
1114 /* Only reachable via the fallthru edge. Do nothing but let
1115 the two blocks run together; we'll fall out the bottom. */
1116 gimple_seq_add_seq (&tf->top_p_seq, finally);
1117 return;
1118 }
1119
1120 finally_label = create_artificial_label (loc);
1121 x = gimple_build_label (finally_label);
1122 gimple_seq_add_stmt (&tf->top_p_seq, x);
1123
1124 gimple_seq_add_seq (&tf->top_p_seq, finally);
1125
1126 q = tf->goto_queue;
1127 qe = q + tf->goto_queue_active;
1128
1129 if (tf->may_return)
1130 {
1131 /* Reachable by return expressions only. Redirect them. */
1132 for (; q < qe; ++q)
1133 do_return_redirection (q, finally_label, NULL);
1134 replace_goto_queue (tf);
1135 }
1136 else
1137 {
1138 /* Reachable by goto expressions only. Redirect them. */
1139 for (; q < qe; ++q)
1140 do_goto_redirection (q, finally_label, NULL, tf);
1141 replace_goto_queue (tf);
1142
1143 if (VEC_index (tree, tf->dest_array, 0) == tf->fallthru_label)
1144 {
1145 /* Reachable by goto to fallthru label only. Redirect it
1146 to the new label (already created, sadly), and do not
1147 emit the final branch out, or the fallthru label. */
1148 tf->fallthru_label = NULL;
1149 return;
1150 }
1151 }
1152
1153 /* Place the original return/goto to the original destination
1154 immediately after the finally block. */
1155 x = tf->goto_queue[0].cont_stmt;
1156 gimple_seq_add_stmt (&tf->top_p_seq, x);
1157 maybe_record_in_goto_queue (state, x);
1158 }
1159
1160 /* A subroutine of lower_try_finally. There are multiple edges incoming
1161 and outgoing from the finally block. Implement this by duplicating the
1162 finally block for every destination. */
1163
1164 static void
1165 lower_try_finally_copy (struct leh_state *state, struct leh_tf_state *tf)
1166 {
1167 gimple_seq finally;
1168 gimple_seq new_stmt;
1169 gimple_seq seq;
1170 gimple x, eh_else;
1171 tree tmp;
1172 location_t tf_loc = gimple_location (tf->try_finally_expr);
1173
1174 finally = gimple_try_cleanup (tf->top_p);
1175
1176 /* Notice EH_ELSE, and simplify some of the remaining code
1177 by considering FINALLY to be the normal return path only. */
1178 eh_else = get_eh_else (finally);
1179 if (eh_else)
1180 finally = gimple_eh_else_n_body (eh_else);
1181
1182 tf->top_p_seq = gimple_try_eval (tf->top_p);
1183 new_stmt = NULL;
1184
1185 if (tf->may_fallthru)
1186 {
1187 seq = lower_try_finally_dup_block (finally, state);
1188 lower_eh_constructs_1 (state, &seq);
1189 gimple_seq_add_seq (&new_stmt, seq);
1190
1191 tmp = lower_try_finally_fallthru_label (tf);
1192 x = gimple_build_goto (tmp);
1193 gimple_seq_add_stmt (&new_stmt, x);
1194 }
1195
1196 if (tf->may_throw)
1197 {
1198 /* We don't need to copy the EH path of EH_ELSE,
1199 since it is only emitted once. */
1200 if (eh_else)
1201 seq = gimple_eh_else_e_body (eh_else);
1202 else
1203 seq = lower_try_finally_dup_block (finally, state);
1204 lower_eh_constructs_1 (state, &seq);
1205
1206 emit_post_landing_pad (&eh_seq, tf->region);
1207 gimple_seq_add_seq (&eh_seq, seq);
1208 emit_resx (&eh_seq, tf->region);
1209 }
1210
1211 if (tf->goto_queue)
1212 {
1213 struct goto_queue_node *q, *qe;
1214 int return_index, index;
1215 struct labels_s
1216 {
1217 struct goto_queue_node *q;
1218 tree label;
1219 } *labels;
1220
1221 return_index = VEC_length (tree, tf->dest_array);
1222 labels = XCNEWVEC (struct labels_s, return_index + 1);
1223
1224 q = tf->goto_queue;
1225 qe = q + tf->goto_queue_active;
1226 for (; q < qe; q++)
1227 {
1228 index = q->index < 0 ? return_index : q->index;
1229
1230 if (!labels[index].q)
1231 labels[index].q = q;
1232 }
1233
1234 for (index = 0; index < return_index + 1; index++)
1235 {
1236 tree lab;
1237
1238 q = labels[index].q;
1239 if (! q)
1240 continue;
1241
1242 lab = labels[index].label
1243 = create_artificial_label (tf_loc);
1244
1245 if (index == return_index)
1246 do_return_redirection (q, lab, NULL);
1247 else
1248 do_goto_redirection (q, lab, NULL, tf);
1249
1250 x = gimple_build_label (lab);
1251 gimple_seq_add_stmt (&new_stmt, x);
1252
1253 seq = lower_try_finally_dup_block (finally, state);
1254 lower_eh_constructs_1 (state, &seq);
1255 gimple_seq_add_seq (&new_stmt, seq);
1256
1257 gimple_seq_add_stmt (&new_stmt, q->cont_stmt);
1258 maybe_record_in_goto_queue (state, q->cont_stmt);
1259 }
1260
1261 for (q = tf->goto_queue; q < qe; q++)
1262 {
1263 tree lab;
1264
1265 index = q->index < 0 ? return_index : q->index;
1266
1267 if (labels[index].q == q)
1268 continue;
1269
1270 lab = labels[index].label;
1271
1272 if (index == return_index)
1273 do_return_redirection (q, lab, NULL);
1274 else
1275 do_goto_redirection (q, lab, NULL, tf);
1276 }
1277
1278 replace_goto_queue (tf);
1279 free (labels);
1280 }
1281
1282 /* Need to link new stmts after running replace_goto_queue due
1283 to not wanting to process the same goto stmts twice. */
1284 gimple_seq_add_seq (&tf->top_p_seq, new_stmt);
1285 }
1286
1287 /* A subroutine of lower_try_finally. There are multiple edges incoming
1288 and outgoing from the finally block. Implement this by instrumenting
1289 each incoming edge and creating a switch statement at the end of the
1290 finally block that branches to the appropriate destination. */
1291
1292 static void
1293 lower_try_finally_switch (struct leh_state *state, struct leh_tf_state *tf)
1294 {
1295 struct goto_queue_node *q, *qe;
1296 tree finally_tmp, finally_label;
1297 int return_index, eh_index, fallthru_index;
1298 int nlabels, ndests, j, last_case_index;
1299 tree last_case;
1300 VEC (tree,heap) *case_label_vec;
1301 gimple_seq switch_body = NULL;
1302 gimple x, eh_else;
1303 tree tmp;
1304 gimple switch_stmt;
1305 gimple_seq finally;
1306 struct pointer_map_t *cont_map = NULL;
1307 /* The location of the TRY_FINALLY stmt. */
1308 location_t tf_loc = gimple_location (tf->try_finally_expr);
1309 /* The location of the finally block. */
1310 location_t finally_loc;
1311
1312 finally = gimple_try_cleanup (tf->top_p);
1313 eh_else = get_eh_else (finally);
1314
1315 /* Mash the TRY block to the head of the chain. */
1316 tf->top_p_seq = gimple_try_eval (tf->top_p);
1317
1318 /* The location of the finally is either the last stmt in the finally
1319 block or the location of the TRY_FINALLY itself. */
1320 x = gimple_seq_last_stmt (finally);
1321 finally_loc = x ? gimple_location (x) : tf_loc;
1322
1323 /* Lower the finally block itself. */
1324 lower_eh_constructs_1 (state, &finally);
1325
1326 /* Prepare for switch statement generation. */
1327 nlabels = VEC_length (tree, tf->dest_array);
1328 return_index = nlabels;
1329 eh_index = return_index + tf->may_return;
1330 fallthru_index = eh_index + (tf->may_throw && !eh_else);
1331 ndests = fallthru_index + tf->may_fallthru;
1332
1333 finally_tmp = create_tmp_var (integer_type_node, "finally_tmp");
1334 finally_label = create_artificial_label (finally_loc);
1335
1336 /* We use VEC_quick_push on case_label_vec throughout this function,
1337 since we know the size in advance and allocate precisely as muce
1338 space as needed. */
1339 case_label_vec = VEC_alloc (tree, heap, ndests);
1340 last_case = NULL;
1341 last_case_index = 0;
1342
1343 /* Begin inserting code for getting to the finally block. Things
1344 are done in this order to correspond to the sequence the code is
1345 laid out. */
1346
1347 if (tf->may_fallthru)
1348 {
1349 x = gimple_build_assign (finally_tmp,
1350 build_int_cst (integer_type_node,
1351 fallthru_index));
1352 gimple_seq_add_stmt (&tf->top_p_seq, x);
1353
1354 tmp = build_int_cst (integer_type_node, fallthru_index);
1355 last_case = build_case_label (tmp, NULL,
1356 create_artificial_label (tf_loc));
1357 VEC_quick_push (tree, case_label_vec, last_case);
1358 last_case_index++;
1359
1360 x = gimple_build_label (CASE_LABEL (last_case));
1361 gimple_seq_add_stmt (&switch_body, x);
1362
1363 tmp = lower_try_finally_fallthru_label (tf);
1364 x = gimple_build_goto (tmp);
1365 gimple_seq_add_stmt (&switch_body, x);
1366 }
1367
1368 /* For EH_ELSE, emit the exception path (plus resx) now, then
1369 subsequently we only need consider the normal path. */
1370 if (eh_else)
1371 {
1372 if (tf->may_throw)
1373 {
1374 finally = gimple_eh_else_e_body (eh_else);
1375 lower_eh_constructs_1 (state, &finally);
1376
1377 emit_post_landing_pad (&eh_seq, tf->region);
1378 gimple_seq_add_seq (&eh_seq, finally);
1379 emit_resx (&eh_seq, tf->region);
1380 }
1381
1382 finally = gimple_eh_else_n_body (eh_else);
1383 }
1384 else if (tf->may_throw)
1385 {
1386 emit_post_landing_pad (&eh_seq, tf->region);
1387
1388 x = gimple_build_assign (finally_tmp,
1389 build_int_cst (integer_type_node, eh_index));
1390 gimple_seq_add_stmt (&eh_seq, x);
1391
1392 x = gimple_build_goto (finally_label);
1393 gimple_seq_add_stmt (&eh_seq, x);
1394
1395 tmp = build_int_cst (integer_type_node, eh_index);
1396 last_case = build_case_label (tmp, NULL,
1397 create_artificial_label (tf_loc));
1398 VEC_quick_push (tree, case_label_vec, last_case);
1399 last_case_index++;
1400
1401 x = gimple_build_label (CASE_LABEL (last_case));
1402 gimple_seq_add_stmt (&eh_seq, x);
1403 emit_resx (&eh_seq, tf->region);
1404 }
1405
1406 x = gimple_build_label (finally_label);
1407 gimple_seq_add_stmt (&tf->top_p_seq, x);
1408
1409 gimple_seq_add_seq (&tf->top_p_seq, finally);
1410
1411 /* Redirect each incoming goto edge. */
1412 q = tf->goto_queue;
1413 qe = q + tf->goto_queue_active;
1414 j = last_case_index + tf->may_return;
1415 /* Prepare the assignments to finally_tmp that are executed upon the
1416 entrance through a particular edge. */
1417 for (; q < qe; ++q)
1418 {
1419 gimple_seq mod = NULL;
1420 int switch_id;
1421 unsigned int case_index;
1422
1423 if (q->index < 0)
1424 {
1425 x = gimple_build_assign (finally_tmp,
1426 build_int_cst (integer_type_node,
1427 return_index));
1428 gimple_seq_add_stmt (&mod, x);
1429 do_return_redirection (q, finally_label, mod);
1430 switch_id = return_index;
1431 }
1432 else
1433 {
1434 x = gimple_build_assign (finally_tmp,
1435 build_int_cst (integer_type_node, q->index));
1436 gimple_seq_add_stmt (&mod, x);
1437 do_goto_redirection (q, finally_label, mod, tf);
1438 switch_id = q->index;
1439 }
1440
1441 case_index = j + q->index;
1442 if (VEC_length (tree, case_label_vec) <= case_index
1443 || !VEC_index (tree, case_label_vec, case_index))
1444 {
1445 tree case_lab;
1446 void **slot;
1447 tmp = build_int_cst (integer_type_node, switch_id);
1448 case_lab = build_case_label (tmp, NULL,
1449 create_artificial_label (tf_loc));
1450 /* We store the cont_stmt in the pointer map, so that we can recover
1451 it in the loop below. */
1452 if (!cont_map)
1453 cont_map = pointer_map_create ();
1454 slot = pointer_map_insert (cont_map, case_lab);
1455 *slot = q->cont_stmt;
1456 VEC_quick_push (tree, case_label_vec, case_lab);
1457 }
1458 }
1459 for (j = last_case_index; j < last_case_index + nlabels; j++)
1460 {
1461 gimple cont_stmt;
1462 void **slot;
1463
1464 last_case = VEC_index (tree, case_label_vec, j);
1465
1466 gcc_assert (last_case);
1467 gcc_assert (cont_map);
1468
1469 slot = pointer_map_contains (cont_map, last_case);
1470 gcc_assert (slot);
1471 cont_stmt = *(gimple *) slot;
1472
1473 x = gimple_build_label (CASE_LABEL (last_case));
1474 gimple_seq_add_stmt (&switch_body, x);
1475 gimple_seq_add_stmt (&switch_body, cont_stmt);
1476 maybe_record_in_goto_queue (state, cont_stmt);
1477 }
1478 if (cont_map)
1479 pointer_map_destroy (cont_map);
1480
1481 replace_goto_queue (tf);
1482
1483 /* Make sure that the last case is the default label, as one is required.
1484 Then sort the labels, which is also required in GIMPLE. */
1485 CASE_LOW (last_case) = NULL;
1486 sort_case_labels (case_label_vec);
1487
1488 /* Build the switch statement, setting last_case to be the default
1489 label. */
1490 switch_stmt = gimple_build_switch_vec (finally_tmp, last_case,
1491 case_label_vec);
1492 gimple_set_location (switch_stmt, finally_loc);
1493
1494 /* Need to link SWITCH_STMT after running replace_goto_queue
1495 due to not wanting to process the same goto stmts twice. */
1496 gimple_seq_add_stmt (&tf->top_p_seq, switch_stmt);
1497 gimple_seq_add_seq (&tf->top_p_seq, switch_body);
1498 }
1499
1500 /* Decide whether or not we are going to duplicate the finally block.
1501 There are several considerations.
1502
1503 First, if this is Java, then the finally block contains code
1504 written by the user. It has line numbers associated with it,
1505 so duplicating the block means it's difficult to set a breakpoint.
1506 Since controlling code generation via -g is verboten, we simply
1507 never duplicate code without optimization.
1508
1509 Second, we'd like to prevent egregious code growth. One way to
1510 do this is to estimate the size of the finally block, multiply
1511 that by the number of copies we'd need to make, and compare against
1512 the estimate of the size of the switch machinery we'd have to add. */
1513
1514 static bool
1515 decide_copy_try_finally (int ndests, bool may_throw, gimple_seq finally)
1516 {
1517 int f_estimate, sw_estimate;
1518 gimple eh_else;
1519
1520 /* If there's an EH_ELSE involved, the exception path is separate
1521 and really doesn't come into play for this computation. */
1522 eh_else = get_eh_else (finally);
1523 if (eh_else)
1524 {
1525 ndests -= may_throw;
1526 finally = gimple_eh_else_n_body (eh_else);
1527 }
1528
1529 if (!optimize)
1530 {
1531 gimple_stmt_iterator gsi;
1532
1533 if (ndests == 1)
1534 return true;
1535
1536 for (gsi = gsi_start (finally); !gsi_end_p (gsi); gsi_next (&gsi))
1537 {
1538 gimple stmt = gsi_stmt (gsi);
1539 if (!is_gimple_debug (stmt) && !gimple_clobber_p (stmt))
1540 return false;
1541 }
1542 return true;
1543 }
1544
1545 /* Finally estimate N times, plus N gotos. */
1546 f_estimate = count_insns_seq (finally, &eni_size_weights);
1547 f_estimate = (f_estimate + 1) * ndests;
1548
1549 /* Switch statement (cost 10), N variable assignments, N gotos. */
1550 sw_estimate = 10 + 2 * ndests;
1551
1552 /* Optimize for size clearly wants our best guess. */
1553 if (optimize_function_for_size_p (cfun))
1554 return f_estimate < sw_estimate;
1555
1556 /* ??? These numbers are completely made up so far. */
1557 if (optimize > 1)
1558 return f_estimate < 100 || f_estimate < sw_estimate * 2;
1559 else
1560 return f_estimate < 40 || f_estimate * 2 < sw_estimate * 3;
1561 }
1562
1563 /* REG is the enclosing region for a possible cleanup region, or the region
1564 itself. Returns TRUE if such a region would be unreachable.
1565
1566 Cleanup regions within a must-not-throw region aren't actually reachable
1567 even if there are throwing stmts within them, because the personality
1568 routine will call terminate before unwinding. */
1569
1570 static bool
1571 cleanup_is_dead_in (eh_region reg)
1572 {
1573 while (reg && reg->type == ERT_CLEANUP)
1574 reg = reg->outer;
1575 return (reg && reg->type == ERT_MUST_NOT_THROW);
1576 }
1577
1578 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_FINALLY nodes
1579 to a sequence of labels and blocks, plus the exception region trees
1580 that record all the magic. This is complicated by the need to
1581 arrange for the FINALLY block to be executed on all exits. */
1582
1583 static gimple_seq
1584 lower_try_finally (struct leh_state *state, gimple tp)
1585 {
1586 struct leh_tf_state this_tf;
1587 struct leh_state this_state;
1588 int ndests;
1589 gimple_seq old_eh_seq;
1590
1591 /* Process the try block. */
1592
1593 memset (&this_tf, 0, sizeof (this_tf));
1594 this_tf.try_finally_expr = tp;
1595 this_tf.top_p = tp;
1596 this_tf.outer = state;
1597 if (using_eh_for_cleanups_p && !cleanup_is_dead_in (state->cur_region))
1598 {
1599 this_tf.region = gen_eh_region_cleanup (state->cur_region);
1600 this_state.cur_region = this_tf.region;
1601 }
1602 else
1603 {
1604 this_tf.region = NULL;
1605 this_state.cur_region = state->cur_region;
1606 }
1607
1608 this_state.ehp_region = state->ehp_region;
1609 this_state.tf = &this_tf;
1610
1611 old_eh_seq = eh_seq;
1612 eh_seq = NULL;
1613
1614 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1615
1616 /* Determine if the try block is escaped through the bottom. */
1617 this_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1618
1619 /* Determine if any exceptions are possible within the try block. */
1620 if (this_tf.region)
1621 this_tf.may_throw = eh_region_may_contain_throw (this_tf.region);
1622 if (this_tf.may_throw)
1623 honor_protect_cleanup_actions (state, &this_state, &this_tf);
1624
1625 /* Determine how many edges (still) reach the finally block. Or rather,
1626 how many destinations are reached by the finally block. Use this to
1627 determine how we process the finally block itself. */
1628
1629 ndests = VEC_length (tree, this_tf.dest_array);
1630 ndests += this_tf.may_fallthru;
1631 ndests += this_tf.may_return;
1632 ndests += this_tf.may_throw;
1633
1634 /* If the FINALLY block is not reachable, dike it out. */
1635 if (ndests == 0)
1636 {
1637 gimple_seq_add_seq (&this_tf.top_p_seq, gimple_try_eval (tp));
1638 gimple_try_set_cleanup (tp, NULL);
1639 }
1640 /* If the finally block doesn't fall through, then any destination
1641 we might try to impose there isn't reached either. There may be
1642 some minor amount of cleanup and redirection still needed. */
1643 else if (!gimple_seq_may_fallthru (gimple_try_cleanup (tp)))
1644 lower_try_finally_nofallthru (state, &this_tf);
1645
1646 /* We can easily special-case redirection to a single destination. */
1647 else if (ndests == 1)
1648 lower_try_finally_onedest (state, &this_tf);
1649 else if (decide_copy_try_finally (ndests, this_tf.may_throw,
1650 gimple_try_cleanup (tp)))
1651 lower_try_finally_copy (state, &this_tf);
1652 else
1653 lower_try_finally_switch (state, &this_tf);
1654
1655 /* If someone requested we add a label at the end of the transformed
1656 block, do so. */
1657 if (this_tf.fallthru_label)
1658 {
1659 /* This must be reached only if ndests == 0. */
1660 gimple x = gimple_build_label (this_tf.fallthru_label);
1661 gimple_seq_add_stmt (&this_tf.top_p_seq, x);
1662 }
1663
1664 VEC_free (tree, heap, this_tf.dest_array);
1665 free (this_tf.goto_queue);
1666 if (this_tf.goto_queue_map)
1667 pointer_map_destroy (this_tf.goto_queue_map);
1668
1669 /* If there was an old (aka outer) eh_seq, append the current eh_seq.
1670 If there was no old eh_seq, then the append is trivially already done. */
1671 if (old_eh_seq)
1672 {
1673 if (eh_seq == NULL)
1674 eh_seq = old_eh_seq;
1675 else
1676 {
1677 gimple_seq new_eh_seq = eh_seq;
1678 eh_seq = old_eh_seq;
1679 gimple_seq_add_seq(&eh_seq, new_eh_seq);
1680 }
1681 }
1682
1683 return this_tf.top_p_seq;
1684 }
1685
1686 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY_CATCH with a
1687 list of GIMPLE_CATCH to a sequence of labels and blocks, plus the
1688 exception region trees that records all the magic. */
1689
1690 static gimple_seq
1691 lower_catch (struct leh_state *state, gimple tp)
1692 {
1693 eh_region try_region = NULL;
1694 struct leh_state this_state = *state;
1695 gimple_stmt_iterator gsi;
1696 tree out_label;
1697 gimple_seq new_seq, cleanup;
1698 gimple x;
1699 location_t try_catch_loc = gimple_location (tp);
1700
1701 if (flag_exceptions)
1702 {
1703 try_region = gen_eh_region_try (state->cur_region);
1704 this_state.cur_region = try_region;
1705 }
1706
1707 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1708
1709 if (!eh_region_may_contain_throw (try_region))
1710 return gimple_try_eval (tp);
1711
1712 new_seq = NULL;
1713 emit_eh_dispatch (&new_seq, try_region);
1714 emit_resx (&new_seq, try_region);
1715
1716 this_state.cur_region = state->cur_region;
1717 this_state.ehp_region = try_region;
1718
1719 out_label = NULL;
1720 cleanup = gimple_try_cleanup (tp);
1721 for (gsi = gsi_start (cleanup);
1722 !gsi_end_p (gsi);
1723 gsi_next (&gsi))
1724 {
1725 eh_catch c;
1726 gimple gcatch;
1727 gimple_seq handler;
1728
1729 gcatch = gsi_stmt (gsi);
1730 c = gen_eh_region_catch (try_region, gimple_catch_types (gcatch));
1731
1732 handler = gimple_catch_handler (gcatch);
1733 lower_eh_constructs_1 (&this_state, &handler);
1734
1735 c->label = create_artificial_label (UNKNOWN_LOCATION);
1736 x = gimple_build_label (c->label);
1737 gimple_seq_add_stmt (&new_seq, x);
1738
1739 gimple_seq_add_seq (&new_seq, handler);
1740
1741 if (gimple_seq_may_fallthru (new_seq))
1742 {
1743 if (!out_label)
1744 out_label = create_artificial_label (try_catch_loc);
1745
1746 x = gimple_build_goto (out_label);
1747 gimple_seq_add_stmt (&new_seq, x);
1748 }
1749 if (!c->type_list)
1750 break;
1751 }
1752
1753 gimple_try_set_cleanup (tp, new_seq);
1754
1755 return frob_into_branch_around (tp, try_region, out_label);
1756 }
1757
1758 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with a
1759 GIMPLE_EH_FILTER to a sequence of labels and blocks, plus the exception
1760 region trees that record all the magic. */
1761
1762 static gimple_seq
1763 lower_eh_filter (struct leh_state *state, gimple tp)
1764 {
1765 struct leh_state this_state = *state;
1766 eh_region this_region = NULL;
1767 gimple inner, x;
1768 gimple_seq new_seq;
1769
1770 inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1771
1772 if (flag_exceptions)
1773 {
1774 this_region = gen_eh_region_allowed (state->cur_region,
1775 gimple_eh_filter_types (inner));
1776 this_state.cur_region = this_region;
1777 }
1778
1779 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1780
1781 if (!eh_region_may_contain_throw (this_region))
1782 return gimple_try_eval (tp);
1783
1784 new_seq = NULL;
1785 this_state.cur_region = state->cur_region;
1786 this_state.ehp_region = this_region;
1787
1788 emit_eh_dispatch (&new_seq, this_region);
1789 emit_resx (&new_seq, this_region);
1790
1791 this_region->u.allowed.label = create_artificial_label (UNKNOWN_LOCATION);
1792 x = gimple_build_label (this_region->u.allowed.label);
1793 gimple_seq_add_stmt (&new_seq, x);
1794
1795 lower_eh_constructs_1 (&this_state, gimple_eh_filter_failure_ptr (inner));
1796 gimple_seq_add_seq (&new_seq, gimple_eh_filter_failure (inner));
1797
1798 gimple_try_set_cleanup (tp, new_seq);
1799
1800 return frob_into_branch_around (tp, this_region, NULL);
1801 }
1802
1803 /* A subroutine of lower_eh_constructs_1. Lower a GIMPLE_TRY with
1804 an GIMPLE_EH_MUST_NOT_THROW to a sequence of labels and blocks,
1805 plus the exception region trees that record all the magic. */
1806
1807 static gimple_seq
1808 lower_eh_must_not_throw (struct leh_state *state, gimple tp)
1809 {
1810 struct leh_state this_state = *state;
1811
1812 if (flag_exceptions)
1813 {
1814 gimple inner = gimple_seq_first_stmt (gimple_try_cleanup (tp));
1815 eh_region this_region;
1816
1817 this_region = gen_eh_region_must_not_throw (state->cur_region);
1818 this_region->u.must_not_throw.failure_decl
1819 = gimple_eh_must_not_throw_fndecl (inner);
1820 this_region->u.must_not_throw.failure_loc = gimple_location (tp);
1821
1822 /* In order to get mangling applied to this decl, we must mark it
1823 used now. Otherwise, pass_ipa_free_lang_data won't think it
1824 needs to happen. */
1825 TREE_USED (this_region->u.must_not_throw.failure_decl) = 1;
1826
1827 this_state.cur_region = this_region;
1828 }
1829
1830 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1831
1832 return gimple_try_eval (tp);
1833 }
1834
1835 /* Implement a cleanup expression. This is similar to try-finally,
1836 except that we only execute the cleanup block for exception edges. */
1837
1838 static gimple_seq
1839 lower_cleanup (struct leh_state *state, gimple tp)
1840 {
1841 struct leh_state this_state = *state;
1842 eh_region this_region = NULL;
1843 struct leh_tf_state fake_tf;
1844 gimple_seq result;
1845 bool cleanup_dead = cleanup_is_dead_in (state->cur_region);
1846
1847 if (flag_exceptions && !cleanup_dead)
1848 {
1849 this_region = gen_eh_region_cleanup (state->cur_region);
1850 this_state.cur_region = this_region;
1851 }
1852
1853 lower_eh_constructs_1 (&this_state, gimple_try_eval_ptr (tp));
1854
1855 if (cleanup_dead || !eh_region_may_contain_throw (this_region))
1856 return gimple_try_eval (tp);
1857
1858 /* Build enough of a try-finally state so that we can reuse
1859 honor_protect_cleanup_actions. */
1860 memset (&fake_tf, 0, sizeof (fake_tf));
1861 fake_tf.top_p = fake_tf.try_finally_expr = tp;
1862 fake_tf.outer = state;
1863 fake_tf.region = this_region;
1864 fake_tf.may_fallthru = gimple_seq_may_fallthru (gimple_try_eval (tp));
1865 fake_tf.may_throw = true;
1866
1867 honor_protect_cleanup_actions (state, NULL, &fake_tf);
1868
1869 if (fake_tf.may_throw)
1870 {
1871 /* In this case honor_protect_cleanup_actions had nothing to do,
1872 and we should process this normally. */
1873 lower_eh_constructs_1 (state, gimple_try_cleanup_ptr (tp));
1874 result = frob_into_branch_around (tp, this_region,
1875 fake_tf.fallthru_label);
1876 }
1877 else
1878 {
1879 /* In this case honor_protect_cleanup_actions did nearly all of
1880 the work. All we have left is to append the fallthru_label. */
1881
1882 result = gimple_try_eval (tp);
1883 if (fake_tf.fallthru_label)
1884 {
1885 gimple x = gimple_build_label (fake_tf.fallthru_label);
1886 gimple_seq_add_stmt (&result, x);
1887 }
1888 }
1889 return result;
1890 }
1891
1892 /* Main loop for lowering eh constructs. Also moves gsi to the next
1893 statement. */
1894
1895 static void
1896 lower_eh_constructs_2 (struct leh_state *state, gimple_stmt_iterator *gsi)
1897 {
1898 gimple_seq replace;
1899 gimple x;
1900 gimple stmt = gsi_stmt (*gsi);
1901
1902 switch (gimple_code (stmt))
1903 {
1904 case GIMPLE_CALL:
1905 {
1906 tree fndecl = gimple_call_fndecl (stmt);
1907 tree rhs, lhs;
1908
1909 if (fndecl && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL)
1910 switch (DECL_FUNCTION_CODE (fndecl))
1911 {
1912 case BUILT_IN_EH_POINTER:
1913 /* The front end may have generated a call to
1914 __builtin_eh_pointer (0) within a catch region. Replace
1915 this zero argument with the current catch region number. */
1916 if (state->ehp_region)
1917 {
1918 tree nr = build_int_cst (integer_type_node,
1919 state->ehp_region->index);
1920 gimple_call_set_arg (stmt, 0, nr);
1921 }
1922 else
1923 {
1924 /* The user has dome something silly. Remove it. */
1925 rhs = null_pointer_node;
1926 goto do_replace;
1927 }
1928 break;
1929
1930 case BUILT_IN_EH_FILTER:
1931 /* ??? This should never appear, but since it's a builtin it
1932 is accessible to abuse by users. Just remove it and
1933 replace the use with the arbitrary value zero. */
1934 rhs = build_int_cst (TREE_TYPE (TREE_TYPE (fndecl)), 0);
1935 do_replace:
1936 lhs = gimple_call_lhs (stmt);
1937 x = gimple_build_assign (lhs, rhs);
1938 gsi_insert_before (gsi, x, GSI_SAME_STMT);
1939 /* FALLTHRU */
1940
1941 case BUILT_IN_EH_COPY_VALUES:
1942 /* Likewise this should not appear. Remove it. */
1943 gsi_remove (gsi, true);
1944 return;
1945
1946 default:
1947 break;
1948 }
1949 }
1950 /* FALLTHRU */
1951
1952 case GIMPLE_ASSIGN:
1953 /* If the stmt can throw use a new temporary for the assignment
1954 to a LHS. This makes sure the old value of the LHS is
1955 available on the EH edge. Only do so for statements that
1956 potentially fall through (no noreturn calls e.g.), otherwise
1957 this new assignment might create fake fallthru regions. */
1958 if (stmt_could_throw_p (stmt)
1959 && gimple_has_lhs (stmt)
1960 && gimple_stmt_may_fallthru (stmt)
1961 && !tree_could_throw_p (gimple_get_lhs (stmt))
1962 && is_gimple_reg_type (TREE_TYPE (gimple_get_lhs (stmt))))
1963 {
1964 tree lhs = gimple_get_lhs (stmt);
1965 tree tmp = create_tmp_var (TREE_TYPE (lhs), NULL);
1966 gimple s = gimple_build_assign (lhs, tmp);
1967 gimple_set_location (s, gimple_location (stmt));
1968 gimple_set_block (s, gimple_block (stmt));
1969 gimple_set_lhs (stmt, tmp);
1970 if (TREE_CODE (TREE_TYPE (tmp)) == COMPLEX_TYPE
1971 || TREE_CODE (TREE_TYPE (tmp)) == VECTOR_TYPE)
1972 DECL_GIMPLE_REG_P (tmp) = 1;
1973 gsi_insert_after (gsi, s, GSI_SAME_STMT);
1974 }
1975 /* Look for things that can throw exceptions, and record them. */
1976 if (state->cur_region && stmt_could_throw_p (stmt))
1977 {
1978 record_stmt_eh_region (state->cur_region, stmt);
1979 note_eh_region_may_contain_throw (state->cur_region);
1980 }
1981 break;
1982
1983 case GIMPLE_COND:
1984 case GIMPLE_GOTO:
1985 case GIMPLE_RETURN:
1986 maybe_record_in_goto_queue (state, stmt);
1987 break;
1988
1989 case GIMPLE_SWITCH:
1990 verify_norecord_switch_expr (state, stmt);
1991 break;
1992
1993 case GIMPLE_TRY:
1994 if (gimple_try_kind (stmt) == GIMPLE_TRY_FINALLY)
1995 replace = lower_try_finally (state, stmt);
1996 else
1997 {
1998 x = gimple_seq_first_stmt (gimple_try_cleanup (stmt));
1999 if (!x)
2000 {
2001 replace = gimple_try_eval (stmt);
2002 lower_eh_constructs_1 (state, &replace);
2003 }
2004 else
2005 switch (gimple_code (x))
2006 {
2007 case GIMPLE_CATCH:
2008 replace = lower_catch (state, stmt);
2009 break;
2010 case GIMPLE_EH_FILTER:
2011 replace = lower_eh_filter (state, stmt);
2012 break;
2013 case GIMPLE_EH_MUST_NOT_THROW:
2014 replace = lower_eh_must_not_throw (state, stmt);
2015 break;
2016 case GIMPLE_EH_ELSE:
2017 /* This code is only valid with GIMPLE_TRY_FINALLY. */
2018 gcc_unreachable ();
2019 default:
2020 replace = lower_cleanup (state, stmt);
2021 break;
2022 }
2023 }
2024
2025 /* Remove the old stmt and insert the transformed sequence
2026 instead. */
2027 gsi_insert_seq_before (gsi, replace, GSI_SAME_STMT);
2028 gsi_remove (gsi, true);
2029
2030 /* Return since we don't want gsi_next () */
2031 return;
2032
2033 case GIMPLE_EH_ELSE:
2034 /* We should be eliminating this in lower_try_finally et al. */
2035 gcc_unreachable ();
2036
2037 default:
2038 /* A type, a decl, or some kind of statement that we're not
2039 interested in. Don't walk them. */
2040 break;
2041 }
2042
2043 gsi_next (gsi);
2044 }
2045
2046 /* A helper to unwrap a gimple_seq and feed stmts to lower_eh_constructs_2. */
2047
2048 static void
2049 lower_eh_constructs_1 (struct leh_state *state, gimple_seq *pseq)
2050 {
2051 gimple_stmt_iterator gsi;
2052 for (gsi = gsi_start (*pseq); !gsi_end_p (gsi);)
2053 lower_eh_constructs_2 (state, &gsi);
2054 }
2055
2056 static unsigned int
2057 lower_eh_constructs (void)
2058 {
2059 struct leh_state null_state;
2060 gimple_seq bodyp;
2061
2062 bodyp = gimple_body (current_function_decl);
2063 if (bodyp == NULL)
2064 return 0;
2065
2066 finally_tree = htab_create (31, struct_ptr_hash, struct_ptr_eq, free);
2067 eh_region_may_contain_throw_map = BITMAP_ALLOC (NULL);
2068 memset (&null_state, 0, sizeof (null_state));
2069
2070 collect_finally_tree_1 (bodyp, NULL);
2071 lower_eh_constructs_1 (&null_state, &bodyp);
2072 gimple_set_body (current_function_decl, bodyp);
2073
2074 /* We assume there's a return statement, or something, at the end of
2075 the function, and thus ploping the EH sequence afterward won't
2076 change anything. */
2077 gcc_assert (!gimple_seq_may_fallthru (bodyp));
2078 gimple_seq_add_seq (&bodyp, eh_seq);
2079
2080 /* We assume that since BODYP already existed, adding EH_SEQ to it
2081 didn't change its value, and we don't have to re-set the function. */
2082 gcc_assert (bodyp == gimple_body (current_function_decl));
2083
2084 htab_delete (finally_tree);
2085 BITMAP_FREE (eh_region_may_contain_throw_map);
2086 eh_seq = NULL;
2087
2088 /* If this function needs a language specific EH personality routine
2089 and the frontend didn't already set one do so now. */
2090 if (function_needs_eh_personality (cfun) == eh_personality_lang
2091 && !DECL_FUNCTION_PERSONALITY (current_function_decl))
2092 DECL_FUNCTION_PERSONALITY (current_function_decl)
2093 = lang_hooks.eh_personality ();
2094
2095 return 0;
2096 }
2097
2098 struct gimple_opt_pass pass_lower_eh =
2099 {
2100 {
2101 GIMPLE_PASS,
2102 "eh", /* name */
2103 NULL, /* gate */
2104 lower_eh_constructs, /* execute */
2105 NULL, /* sub */
2106 NULL, /* next */
2107 0, /* static_pass_number */
2108 TV_TREE_EH, /* tv_id */
2109 PROP_gimple_lcf, /* properties_required */
2110 PROP_gimple_leh, /* properties_provided */
2111 0, /* properties_destroyed */
2112 0, /* todo_flags_start */
2113 0 /* todo_flags_finish */
2114 }
2115 };
2116 \f
2117 /* Create the multiple edges from an EH_DISPATCH statement to all of
2118 the possible handlers for its EH region. Return true if there's
2119 no fallthru edge; false if there is. */
2120
2121 bool
2122 make_eh_dispatch_edges (gimple stmt)
2123 {
2124 eh_region r;
2125 eh_catch c;
2126 basic_block src, dst;
2127
2128 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2129 src = gimple_bb (stmt);
2130
2131 switch (r->type)
2132 {
2133 case ERT_TRY:
2134 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2135 {
2136 dst = label_to_block (c->label);
2137 make_edge (src, dst, 0);
2138
2139 /* A catch-all handler doesn't have a fallthru. */
2140 if (c->type_list == NULL)
2141 return false;
2142 }
2143 break;
2144
2145 case ERT_ALLOWED_EXCEPTIONS:
2146 dst = label_to_block (r->u.allowed.label);
2147 make_edge (src, dst, 0);
2148 break;
2149
2150 default:
2151 gcc_unreachable ();
2152 }
2153
2154 return true;
2155 }
2156
2157 /* Create the single EH edge from STMT to its nearest landing pad,
2158 if there is such a landing pad within the current function. */
2159
2160 void
2161 make_eh_edges (gimple stmt)
2162 {
2163 basic_block src, dst;
2164 eh_landing_pad lp;
2165 int lp_nr;
2166
2167 lp_nr = lookup_stmt_eh_lp (stmt);
2168 if (lp_nr <= 0)
2169 return;
2170
2171 lp = get_eh_landing_pad_from_number (lp_nr);
2172 gcc_assert (lp != NULL);
2173
2174 src = gimple_bb (stmt);
2175 dst = label_to_block (lp->post_landing_pad);
2176 make_edge (src, dst, EDGE_EH);
2177 }
2178
2179 /* Do the work in redirecting EDGE_IN to NEW_BB within the EH region tree;
2180 do not actually perform the final edge redirection.
2181
2182 CHANGE_REGION is true when we're being called from cleanup_empty_eh and
2183 we intend to change the destination EH region as well; this means
2184 EH_LANDING_PAD_NR must already be set on the destination block label.
2185 If false, we're being called from generic cfg manipulation code and we
2186 should preserve our place within the region tree. */
2187
2188 static void
2189 redirect_eh_edge_1 (edge edge_in, basic_block new_bb, bool change_region)
2190 {
2191 eh_landing_pad old_lp, new_lp;
2192 basic_block old_bb;
2193 gimple throw_stmt;
2194 int old_lp_nr, new_lp_nr;
2195 tree old_label, new_label;
2196 edge_iterator ei;
2197 edge e;
2198
2199 old_bb = edge_in->dest;
2200 old_label = gimple_block_label (old_bb);
2201 old_lp_nr = EH_LANDING_PAD_NR (old_label);
2202 gcc_assert (old_lp_nr > 0);
2203 old_lp = get_eh_landing_pad_from_number (old_lp_nr);
2204
2205 throw_stmt = last_stmt (edge_in->src);
2206 gcc_assert (lookup_stmt_eh_lp (throw_stmt) == old_lp_nr);
2207
2208 new_label = gimple_block_label (new_bb);
2209
2210 /* Look for an existing region that might be using NEW_BB already. */
2211 new_lp_nr = EH_LANDING_PAD_NR (new_label);
2212 if (new_lp_nr)
2213 {
2214 new_lp = get_eh_landing_pad_from_number (new_lp_nr);
2215 gcc_assert (new_lp);
2216
2217 /* Unless CHANGE_REGION is true, the new and old landing pad
2218 had better be associated with the same EH region. */
2219 gcc_assert (change_region || new_lp->region == old_lp->region);
2220 }
2221 else
2222 {
2223 new_lp = NULL;
2224 gcc_assert (!change_region);
2225 }
2226
2227 /* Notice when we redirect the last EH edge away from OLD_BB. */
2228 FOR_EACH_EDGE (e, ei, old_bb->preds)
2229 if (e != edge_in && (e->flags & EDGE_EH))
2230 break;
2231
2232 if (new_lp)
2233 {
2234 /* NEW_LP already exists. If there are still edges into OLD_LP,
2235 there's nothing to do with the EH tree. If there are no more
2236 edges into OLD_LP, then we want to remove OLD_LP as it is unused.
2237 If CHANGE_REGION is true, then our caller is expecting to remove
2238 the landing pad. */
2239 if (e == NULL && !change_region)
2240 remove_eh_landing_pad (old_lp);
2241 }
2242 else
2243 {
2244 /* No correct landing pad exists. If there are no more edges
2245 into OLD_LP, then we can simply re-use the existing landing pad.
2246 Otherwise, we have to create a new landing pad. */
2247 if (e == NULL)
2248 {
2249 EH_LANDING_PAD_NR (old_lp->post_landing_pad) = 0;
2250 new_lp = old_lp;
2251 }
2252 else
2253 new_lp = gen_eh_landing_pad (old_lp->region);
2254 new_lp->post_landing_pad = new_label;
2255 EH_LANDING_PAD_NR (new_label) = new_lp->index;
2256 }
2257
2258 /* Maybe move the throwing statement to the new region. */
2259 if (old_lp != new_lp)
2260 {
2261 remove_stmt_from_eh_lp (throw_stmt);
2262 add_stmt_to_eh_lp (throw_stmt, new_lp->index);
2263 }
2264 }
2265
2266 /* Redirect EH edge E to NEW_BB. */
2267
2268 edge
2269 redirect_eh_edge (edge edge_in, basic_block new_bb)
2270 {
2271 redirect_eh_edge_1 (edge_in, new_bb, false);
2272 return ssa_redirect_edge (edge_in, new_bb);
2273 }
2274
2275 /* This is a subroutine of gimple_redirect_edge_and_branch. Update the
2276 labels for redirecting a non-fallthru EH_DISPATCH edge E to NEW_BB.
2277 The actual edge update will happen in the caller. */
2278
2279 void
2280 redirect_eh_dispatch_edge (gimple stmt, edge e, basic_block new_bb)
2281 {
2282 tree new_lab = gimple_block_label (new_bb);
2283 bool any_changed = false;
2284 basic_block old_bb;
2285 eh_region r;
2286 eh_catch c;
2287
2288 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
2289 switch (r->type)
2290 {
2291 case ERT_TRY:
2292 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
2293 {
2294 old_bb = label_to_block (c->label);
2295 if (old_bb == e->dest)
2296 {
2297 c->label = new_lab;
2298 any_changed = true;
2299 }
2300 }
2301 break;
2302
2303 case ERT_ALLOWED_EXCEPTIONS:
2304 old_bb = label_to_block (r->u.allowed.label);
2305 gcc_assert (old_bb == e->dest);
2306 r->u.allowed.label = new_lab;
2307 any_changed = true;
2308 break;
2309
2310 default:
2311 gcc_unreachable ();
2312 }
2313
2314 gcc_assert (any_changed);
2315 }
2316 \f
2317 /* Helper function for operation_could_trap_p and stmt_could_throw_p. */
2318
2319 bool
2320 operation_could_trap_helper_p (enum tree_code op,
2321 bool fp_operation,
2322 bool honor_trapv,
2323 bool honor_nans,
2324 bool honor_snans,
2325 tree divisor,
2326 bool *handled)
2327 {
2328 *handled = true;
2329 switch (op)
2330 {
2331 case TRUNC_DIV_EXPR:
2332 case CEIL_DIV_EXPR:
2333 case FLOOR_DIV_EXPR:
2334 case ROUND_DIV_EXPR:
2335 case EXACT_DIV_EXPR:
2336 case CEIL_MOD_EXPR:
2337 case FLOOR_MOD_EXPR:
2338 case ROUND_MOD_EXPR:
2339 case TRUNC_MOD_EXPR:
2340 case RDIV_EXPR:
2341 if (honor_snans || honor_trapv)
2342 return true;
2343 if (fp_operation)
2344 return flag_trapping_math;
2345 if (!TREE_CONSTANT (divisor) || integer_zerop (divisor))
2346 return true;
2347 return false;
2348
2349 case LT_EXPR:
2350 case LE_EXPR:
2351 case GT_EXPR:
2352 case GE_EXPR:
2353 case LTGT_EXPR:
2354 /* Some floating point comparisons may trap. */
2355 return honor_nans;
2356
2357 case EQ_EXPR:
2358 case NE_EXPR:
2359 case UNORDERED_EXPR:
2360 case ORDERED_EXPR:
2361 case UNLT_EXPR:
2362 case UNLE_EXPR:
2363 case UNGT_EXPR:
2364 case UNGE_EXPR:
2365 case UNEQ_EXPR:
2366 return honor_snans;
2367
2368 case CONVERT_EXPR:
2369 case FIX_TRUNC_EXPR:
2370 /* Conversion of floating point might trap. */
2371 return honor_nans;
2372
2373 case NEGATE_EXPR:
2374 case ABS_EXPR:
2375 case CONJ_EXPR:
2376 /* These operations don't trap with floating point. */
2377 if (honor_trapv)
2378 return true;
2379 return false;
2380
2381 case PLUS_EXPR:
2382 case MINUS_EXPR:
2383 case MULT_EXPR:
2384 /* Any floating arithmetic may trap. */
2385 if (fp_operation && flag_trapping_math)
2386 return true;
2387 if (honor_trapv)
2388 return true;
2389 return false;
2390
2391 case COMPLEX_EXPR:
2392 case CONSTRUCTOR:
2393 /* Constructing an object cannot trap. */
2394 return false;
2395
2396 default:
2397 /* Any floating arithmetic may trap. */
2398 if (fp_operation && flag_trapping_math)
2399 return true;
2400
2401 *handled = false;
2402 return false;
2403 }
2404 }
2405
2406 /* Return true if operation OP may trap. FP_OPERATION is true if OP is applied
2407 on floating-point values. HONOR_TRAPV is true if OP is applied on integer
2408 type operands that may trap. If OP is a division operator, DIVISOR contains
2409 the value of the divisor. */
2410
2411 bool
2412 operation_could_trap_p (enum tree_code op, bool fp_operation, bool honor_trapv,
2413 tree divisor)
2414 {
2415 bool honor_nans = (fp_operation && flag_trapping_math
2416 && !flag_finite_math_only);
2417 bool honor_snans = fp_operation && flag_signaling_nans != 0;
2418 bool handled;
2419
2420 if (TREE_CODE_CLASS (op) != tcc_comparison
2421 && TREE_CODE_CLASS (op) != tcc_unary
2422 && TREE_CODE_CLASS (op) != tcc_binary)
2423 return false;
2424
2425 return operation_could_trap_helper_p (op, fp_operation, honor_trapv,
2426 honor_nans, honor_snans, divisor,
2427 &handled);
2428 }
2429
2430 /* Return true if EXPR can trap, as in dereferencing an invalid pointer
2431 location or floating point arithmetic. C.f. the rtl version, may_trap_p.
2432 This routine expects only GIMPLE lhs or rhs input. */
2433
2434 bool
2435 tree_could_trap_p (tree expr)
2436 {
2437 enum tree_code code;
2438 bool fp_operation = false;
2439 bool honor_trapv = false;
2440 tree t, base, div = NULL_TREE;
2441
2442 if (!expr)
2443 return false;
2444
2445 code = TREE_CODE (expr);
2446 t = TREE_TYPE (expr);
2447
2448 if (t)
2449 {
2450 if (COMPARISON_CLASS_P (expr))
2451 fp_operation = FLOAT_TYPE_P (TREE_TYPE (TREE_OPERAND (expr, 0)));
2452 else
2453 fp_operation = FLOAT_TYPE_P (t);
2454 honor_trapv = INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t);
2455 }
2456
2457 if (TREE_CODE_CLASS (code) == tcc_binary)
2458 div = TREE_OPERAND (expr, 1);
2459 if (operation_could_trap_p (code, fp_operation, honor_trapv, div))
2460 return true;
2461
2462 restart:
2463 switch (code)
2464 {
2465 case TARGET_MEM_REF:
2466 if (TREE_CODE (TMR_BASE (expr)) == ADDR_EXPR
2467 && !TMR_INDEX (expr) && !TMR_INDEX2 (expr))
2468 return false;
2469 return !TREE_THIS_NOTRAP (expr);
2470
2471 case COMPONENT_REF:
2472 case REALPART_EXPR:
2473 case IMAGPART_EXPR:
2474 case BIT_FIELD_REF:
2475 case VIEW_CONVERT_EXPR:
2476 case WITH_SIZE_EXPR:
2477 expr = TREE_OPERAND (expr, 0);
2478 code = TREE_CODE (expr);
2479 goto restart;
2480
2481 case ARRAY_RANGE_REF:
2482 base = TREE_OPERAND (expr, 0);
2483 if (tree_could_trap_p (base))
2484 return true;
2485 if (TREE_THIS_NOTRAP (expr))
2486 return false;
2487 return !range_in_array_bounds_p (expr);
2488
2489 case ARRAY_REF:
2490 base = TREE_OPERAND (expr, 0);
2491 if (tree_could_trap_p (base))
2492 return true;
2493 if (TREE_THIS_NOTRAP (expr))
2494 return false;
2495 return !in_array_bounds_p (expr);
2496
2497 case MEM_REF:
2498 if (TREE_CODE (TREE_OPERAND (expr, 0)) == ADDR_EXPR)
2499 return false;
2500 /* Fallthru. */
2501 case INDIRECT_REF:
2502 return !TREE_THIS_NOTRAP (expr);
2503
2504 case ASM_EXPR:
2505 return TREE_THIS_VOLATILE (expr);
2506
2507 case CALL_EXPR:
2508 t = get_callee_fndecl (expr);
2509 /* Assume that calls to weak functions may trap. */
2510 if (!t || !DECL_P (t))
2511 return true;
2512 if (DECL_WEAK (t))
2513 return tree_could_trap_p (t);
2514 return false;
2515
2516 case FUNCTION_DECL:
2517 /* Assume that accesses to weak functions may trap, unless we know
2518 they are certainly defined in current TU or in some other
2519 LTO partition. */
2520 if (DECL_WEAK (expr))
2521 {
2522 struct cgraph_node *node;
2523 if (!DECL_EXTERNAL (expr))
2524 return false;
2525 node = cgraph_function_node (cgraph_get_node (expr), NULL);
2526 if (node && node->symbol.in_other_partition)
2527 return false;
2528 return true;
2529 }
2530 return false;
2531
2532 case VAR_DECL:
2533 /* Assume that accesses to weak vars may trap, unless we know
2534 they are certainly defined in current TU or in some other
2535 LTO partition. */
2536 if (DECL_WEAK (expr))
2537 {
2538 struct varpool_node *node;
2539 if (!DECL_EXTERNAL (expr))
2540 return false;
2541 node = varpool_variable_node (varpool_get_node (expr), NULL);
2542 if (node && node->symbol.in_other_partition)
2543 return false;
2544 return true;
2545 }
2546 return false;
2547
2548 default:
2549 return false;
2550 }
2551 }
2552
2553
2554 /* Helper for stmt_could_throw_p. Return true if STMT (assumed to be a
2555 an assignment or a conditional) may throw. */
2556
2557 static bool
2558 stmt_could_throw_1_p (gimple stmt)
2559 {
2560 enum tree_code code = gimple_expr_code (stmt);
2561 bool honor_nans = false;
2562 bool honor_snans = false;
2563 bool fp_operation = false;
2564 bool honor_trapv = false;
2565 tree t;
2566 size_t i;
2567 bool handled, ret;
2568
2569 if (TREE_CODE_CLASS (code) == tcc_comparison
2570 || TREE_CODE_CLASS (code) == tcc_unary
2571 || TREE_CODE_CLASS (code) == tcc_binary)
2572 {
2573 if (is_gimple_assign (stmt)
2574 && TREE_CODE_CLASS (code) == tcc_comparison)
2575 t = TREE_TYPE (gimple_assign_rhs1 (stmt));
2576 else if (gimple_code (stmt) == GIMPLE_COND)
2577 t = TREE_TYPE (gimple_cond_lhs (stmt));
2578 else
2579 t = gimple_expr_type (stmt);
2580 fp_operation = FLOAT_TYPE_P (t);
2581 if (fp_operation)
2582 {
2583 honor_nans = flag_trapping_math && !flag_finite_math_only;
2584 honor_snans = flag_signaling_nans != 0;
2585 }
2586 else if (INTEGRAL_TYPE_P (t) && TYPE_OVERFLOW_TRAPS (t))
2587 honor_trapv = true;
2588 }
2589
2590 /* Check if the main expression may trap. */
2591 t = is_gimple_assign (stmt) ? gimple_assign_rhs2 (stmt) : NULL;
2592 ret = operation_could_trap_helper_p (code, fp_operation, honor_trapv,
2593 honor_nans, honor_snans, t,
2594 &handled);
2595 if (handled)
2596 return ret;
2597
2598 /* If the expression does not trap, see if any of the individual operands may
2599 trap. */
2600 for (i = 0; i < gimple_num_ops (stmt); i++)
2601 if (tree_could_trap_p (gimple_op (stmt, i)))
2602 return true;
2603
2604 return false;
2605 }
2606
2607
2608 /* Return true if statement STMT could throw an exception. */
2609
2610 bool
2611 stmt_could_throw_p (gimple stmt)
2612 {
2613 if (!flag_exceptions)
2614 return false;
2615
2616 /* The only statements that can throw an exception are assignments,
2617 conditionals, calls, resx, and asms. */
2618 switch (gimple_code (stmt))
2619 {
2620 case GIMPLE_RESX:
2621 return true;
2622
2623 case GIMPLE_CALL:
2624 return !gimple_call_nothrow_p (stmt);
2625
2626 case GIMPLE_ASSIGN:
2627 case GIMPLE_COND:
2628 if (!cfun->can_throw_non_call_exceptions)
2629 return false;
2630 return stmt_could_throw_1_p (stmt);
2631
2632 case GIMPLE_ASM:
2633 if (!cfun->can_throw_non_call_exceptions)
2634 return false;
2635 return gimple_asm_volatile_p (stmt);
2636
2637 default:
2638 return false;
2639 }
2640 }
2641
2642
2643 /* Return true if expression T could throw an exception. */
2644
2645 bool
2646 tree_could_throw_p (tree t)
2647 {
2648 if (!flag_exceptions)
2649 return false;
2650 if (TREE_CODE (t) == MODIFY_EXPR)
2651 {
2652 if (cfun->can_throw_non_call_exceptions
2653 && tree_could_trap_p (TREE_OPERAND (t, 0)))
2654 return true;
2655 t = TREE_OPERAND (t, 1);
2656 }
2657
2658 if (TREE_CODE (t) == WITH_SIZE_EXPR)
2659 t = TREE_OPERAND (t, 0);
2660 if (TREE_CODE (t) == CALL_EXPR)
2661 return (call_expr_flags (t) & ECF_NOTHROW) == 0;
2662 if (cfun->can_throw_non_call_exceptions)
2663 return tree_could_trap_p (t);
2664 return false;
2665 }
2666
2667 /* Return true if STMT can throw an exception that is not caught within
2668 the current function (CFUN). */
2669
2670 bool
2671 stmt_can_throw_external (gimple stmt)
2672 {
2673 int lp_nr;
2674
2675 if (!stmt_could_throw_p (stmt))
2676 return false;
2677
2678 lp_nr = lookup_stmt_eh_lp (stmt);
2679 return lp_nr == 0;
2680 }
2681
2682 /* Return true if STMT can throw an exception that is caught within
2683 the current function (CFUN). */
2684
2685 bool
2686 stmt_can_throw_internal (gimple stmt)
2687 {
2688 int lp_nr;
2689
2690 if (!stmt_could_throw_p (stmt))
2691 return false;
2692
2693 lp_nr = lookup_stmt_eh_lp (stmt);
2694 return lp_nr > 0;
2695 }
2696
2697 /* Given a statement STMT in IFUN, if STMT can no longer throw, then
2698 remove any entry it might have from the EH table. Return true if
2699 any change was made. */
2700
2701 bool
2702 maybe_clean_eh_stmt_fn (struct function *ifun, gimple stmt)
2703 {
2704 if (stmt_could_throw_p (stmt))
2705 return false;
2706 return remove_stmt_from_eh_lp_fn (ifun, stmt);
2707 }
2708
2709 /* Likewise, but always use the current function. */
2710
2711 bool
2712 maybe_clean_eh_stmt (gimple stmt)
2713 {
2714 return maybe_clean_eh_stmt_fn (cfun, stmt);
2715 }
2716
2717 /* Given a statement OLD_STMT and a new statement NEW_STMT that has replaced
2718 OLD_STMT in the function, remove OLD_STMT from the EH table and put NEW_STMT
2719 in the table if it should be in there. Return TRUE if a replacement was
2720 done that my require an EH edge purge. */
2721
2722 bool
2723 maybe_clean_or_replace_eh_stmt (gimple old_stmt, gimple new_stmt)
2724 {
2725 int lp_nr = lookup_stmt_eh_lp (old_stmt);
2726
2727 if (lp_nr != 0)
2728 {
2729 bool new_stmt_could_throw = stmt_could_throw_p (new_stmt);
2730
2731 if (new_stmt == old_stmt && new_stmt_could_throw)
2732 return false;
2733
2734 remove_stmt_from_eh_lp (old_stmt);
2735 if (new_stmt_could_throw)
2736 {
2737 add_stmt_to_eh_lp (new_stmt, lp_nr);
2738 return false;
2739 }
2740 else
2741 return true;
2742 }
2743
2744 return false;
2745 }
2746
2747 /* Given a statement OLD_STMT in OLD_FUN and a duplicate statement NEW_STMT
2748 in NEW_FUN, copy the EH table data from OLD_STMT to NEW_STMT. The MAP
2749 operand is the return value of duplicate_eh_regions. */
2750
2751 bool
2752 maybe_duplicate_eh_stmt_fn (struct function *new_fun, gimple new_stmt,
2753 struct function *old_fun, gimple old_stmt,
2754 struct pointer_map_t *map, int default_lp_nr)
2755 {
2756 int old_lp_nr, new_lp_nr;
2757 void **slot;
2758
2759 if (!stmt_could_throw_p (new_stmt))
2760 return false;
2761
2762 old_lp_nr = lookup_stmt_eh_lp_fn (old_fun, old_stmt);
2763 if (old_lp_nr == 0)
2764 {
2765 if (default_lp_nr == 0)
2766 return false;
2767 new_lp_nr = default_lp_nr;
2768 }
2769 else if (old_lp_nr > 0)
2770 {
2771 eh_landing_pad old_lp, new_lp;
2772
2773 old_lp = VEC_index (eh_landing_pad, old_fun->eh->lp_array, old_lp_nr);
2774 slot = pointer_map_contains (map, old_lp);
2775 new_lp = (eh_landing_pad) *slot;
2776 new_lp_nr = new_lp->index;
2777 }
2778 else
2779 {
2780 eh_region old_r, new_r;
2781
2782 old_r = VEC_index (eh_region, old_fun->eh->region_array, -old_lp_nr);
2783 slot = pointer_map_contains (map, old_r);
2784 new_r = (eh_region) *slot;
2785 new_lp_nr = -new_r->index;
2786 }
2787
2788 add_stmt_to_eh_lp_fn (new_fun, new_stmt, new_lp_nr);
2789 return true;
2790 }
2791
2792 /* Similar, but both OLD_STMT and NEW_STMT are within the current function,
2793 and thus no remapping is required. */
2794
2795 bool
2796 maybe_duplicate_eh_stmt (gimple new_stmt, gimple old_stmt)
2797 {
2798 int lp_nr;
2799
2800 if (!stmt_could_throw_p (new_stmt))
2801 return false;
2802
2803 lp_nr = lookup_stmt_eh_lp (old_stmt);
2804 if (lp_nr == 0)
2805 return false;
2806
2807 add_stmt_to_eh_lp (new_stmt, lp_nr);
2808 return true;
2809 }
2810 \f
2811 /* Returns TRUE if oneh and twoh are exception handlers (gimple_try_cleanup of
2812 GIMPLE_TRY) that are similar enough to be considered the same. Currently
2813 this only handles handlers consisting of a single call, as that's the
2814 important case for C++: a destructor call for a particular object showing
2815 up in multiple handlers. */
2816
2817 static bool
2818 same_handler_p (gimple_seq oneh, gimple_seq twoh)
2819 {
2820 gimple_stmt_iterator gsi;
2821 gimple ones, twos;
2822 unsigned int ai;
2823
2824 gsi = gsi_start (oneh);
2825 if (!gsi_one_before_end_p (gsi))
2826 return false;
2827 ones = gsi_stmt (gsi);
2828
2829 gsi = gsi_start (twoh);
2830 if (!gsi_one_before_end_p (gsi))
2831 return false;
2832 twos = gsi_stmt (gsi);
2833
2834 if (!is_gimple_call (ones)
2835 || !is_gimple_call (twos)
2836 || gimple_call_lhs (ones)
2837 || gimple_call_lhs (twos)
2838 || gimple_call_chain (ones)
2839 || gimple_call_chain (twos)
2840 || !gimple_call_same_target_p (ones, twos)
2841 || gimple_call_num_args (ones) != gimple_call_num_args (twos))
2842 return false;
2843
2844 for (ai = 0; ai < gimple_call_num_args (ones); ++ai)
2845 if (!operand_equal_p (gimple_call_arg (ones, ai),
2846 gimple_call_arg (twos, ai), 0))
2847 return false;
2848
2849 return true;
2850 }
2851
2852 /* Optimize
2853 try { A() } finally { try { ~B() } catch { ~A() } }
2854 try { ... } finally { ~A() }
2855 into
2856 try { A() } catch { ~B() }
2857 try { ~B() ... } finally { ~A() }
2858
2859 This occurs frequently in C++, where A is a local variable and B is a
2860 temporary used in the initializer for A. */
2861
2862 static void
2863 optimize_double_finally (gimple one, gimple two)
2864 {
2865 gimple oneh;
2866 gimple_stmt_iterator gsi;
2867 gimple_seq cleanup;
2868
2869 cleanup = gimple_try_cleanup (one);
2870 gsi = gsi_start (cleanup);
2871 if (!gsi_one_before_end_p (gsi))
2872 return;
2873
2874 oneh = gsi_stmt (gsi);
2875 if (gimple_code (oneh) != GIMPLE_TRY
2876 || gimple_try_kind (oneh) != GIMPLE_TRY_CATCH)
2877 return;
2878
2879 if (same_handler_p (gimple_try_cleanup (oneh), gimple_try_cleanup (two)))
2880 {
2881 gimple_seq seq = gimple_try_eval (oneh);
2882
2883 gimple_try_set_cleanup (one, seq);
2884 gimple_try_set_kind (one, GIMPLE_TRY_CATCH);
2885 seq = copy_gimple_seq_and_replace_locals (seq);
2886 gimple_seq_add_seq (&seq, gimple_try_eval (two));
2887 gimple_try_set_eval (two, seq);
2888 }
2889 }
2890
2891 /* Perform EH refactoring optimizations that are simpler to do when code
2892 flow has been lowered but EH structures haven't. */
2893
2894 static void
2895 refactor_eh_r (gimple_seq seq)
2896 {
2897 gimple_stmt_iterator gsi;
2898 gimple one, two;
2899
2900 one = NULL;
2901 two = NULL;
2902 gsi = gsi_start (seq);
2903 while (1)
2904 {
2905 one = two;
2906 if (gsi_end_p (gsi))
2907 two = NULL;
2908 else
2909 two = gsi_stmt (gsi);
2910 if (one
2911 && two
2912 && gimple_code (one) == GIMPLE_TRY
2913 && gimple_code (two) == GIMPLE_TRY
2914 && gimple_try_kind (one) == GIMPLE_TRY_FINALLY
2915 && gimple_try_kind (two) == GIMPLE_TRY_FINALLY)
2916 optimize_double_finally (one, two);
2917 if (one)
2918 switch (gimple_code (one))
2919 {
2920 case GIMPLE_TRY:
2921 refactor_eh_r (gimple_try_eval (one));
2922 refactor_eh_r (gimple_try_cleanup (one));
2923 break;
2924 case GIMPLE_CATCH:
2925 refactor_eh_r (gimple_catch_handler (one));
2926 break;
2927 case GIMPLE_EH_FILTER:
2928 refactor_eh_r (gimple_eh_filter_failure (one));
2929 break;
2930 case GIMPLE_EH_ELSE:
2931 refactor_eh_r (gimple_eh_else_n_body (one));
2932 refactor_eh_r (gimple_eh_else_e_body (one));
2933 break;
2934 default:
2935 break;
2936 }
2937 if (two)
2938 gsi_next (&gsi);
2939 else
2940 break;
2941 }
2942 }
2943
2944 static unsigned
2945 refactor_eh (void)
2946 {
2947 refactor_eh_r (gimple_body (current_function_decl));
2948 return 0;
2949 }
2950
2951 static bool
2952 gate_refactor_eh (void)
2953 {
2954 return flag_exceptions != 0;
2955 }
2956
2957 struct gimple_opt_pass pass_refactor_eh =
2958 {
2959 {
2960 GIMPLE_PASS,
2961 "ehopt", /* name */
2962 gate_refactor_eh, /* gate */
2963 refactor_eh, /* execute */
2964 NULL, /* sub */
2965 NULL, /* next */
2966 0, /* static_pass_number */
2967 TV_TREE_EH, /* tv_id */
2968 PROP_gimple_lcf, /* properties_required */
2969 0, /* properties_provided */
2970 0, /* properties_destroyed */
2971 0, /* todo_flags_start */
2972 0 /* todo_flags_finish */
2973 }
2974 };
2975 \f
2976 /* At the end of gimple optimization, we can lower RESX. */
2977
2978 static bool
2979 lower_resx (basic_block bb, gimple stmt, struct pointer_map_t *mnt_map)
2980 {
2981 int lp_nr;
2982 eh_region src_r, dst_r;
2983 gimple_stmt_iterator gsi;
2984 gimple x;
2985 tree fn, src_nr;
2986 bool ret = false;
2987
2988 lp_nr = lookup_stmt_eh_lp (stmt);
2989 if (lp_nr != 0)
2990 dst_r = get_eh_region_from_lp_number (lp_nr);
2991 else
2992 dst_r = NULL;
2993
2994 src_r = get_eh_region_from_number (gimple_resx_region (stmt));
2995 gsi = gsi_last_bb (bb);
2996
2997 if (src_r == NULL)
2998 {
2999 /* We can wind up with no source region when pass_cleanup_eh shows
3000 that there are no entries into an eh region and deletes it, but
3001 then the block that contains the resx isn't removed. This can
3002 happen without optimization when the switch statement created by
3003 lower_try_finally_switch isn't simplified to remove the eh case.
3004
3005 Resolve this by expanding the resx node to an abort. */
3006
3007 fn = builtin_decl_implicit (BUILT_IN_TRAP);
3008 x = gimple_build_call (fn, 0);
3009 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3010
3011 while (EDGE_COUNT (bb->succs) > 0)
3012 remove_edge (EDGE_SUCC (bb, 0));
3013 }
3014 else if (dst_r)
3015 {
3016 /* When we have a destination region, we resolve this by copying
3017 the excptr and filter values into place, and changing the edge
3018 to immediately after the landing pad. */
3019 edge e;
3020
3021 if (lp_nr < 0)
3022 {
3023 basic_block new_bb;
3024 void **slot;
3025 tree lab;
3026
3027 /* We are resuming into a MUST_NOT_CALL region. Expand a call to
3028 the failure decl into a new block, if needed. */
3029 gcc_assert (dst_r->type == ERT_MUST_NOT_THROW);
3030
3031 slot = pointer_map_contains (mnt_map, dst_r);
3032 if (slot == NULL)
3033 {
3034 gimple_stmt_iterator gsi2;
3035
3036 new_bb = create_empty_bb (bb);
3037 if (current_loops)
3038 add_bb_to_loop (new_bb, bb->loop_father);
3039 lab = gimple_block_label (new_bb);
3040 gsi2 = gsi_start_bb (new_bb);
3041
3042 fn = dst_r->u.must_not_throw.failure_decl;
3043 x = gimple_build_call (fn, 0);
3044 gimple_set_location (x, dst_r->u.must_not_throw.failure_loc);
3045 gsi_insert_after (&gsi2, x, GSI_CONTINUE_LINKING);
3046
3047 slot = pointer_map_insert (mnt_map, dst_r);
3048 *slot = lab;
3049 }
3050 else
3051 {
3052 lab = (tree) *slot;
3053 new_bb = label_to_block (lab);
3054 }
3055
3056 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3057 e = make_edge (bb, new_bb, EDGE_FALLTHRU);
3058 e->count = bb->count;
3059 e->probability = REG_BR_PROB_BASE;
3060 }
3061 else
3062 {
3063 edge_iterator ei;
3064 tree dst_nr = build_int_cst (integer_type_node, dst_r->index);
3065
3066 fn = builtin_decl_implicit (BUILT_IN_EH_COPY_VALUES);
3067 src_nr = build_int_cst (integer_type_node, src_r->index);
3068 x = gimple_build_call (fn, 2, dst_nr, src_nr);
3069 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3070
3071 /* Update the flags for the outgoing edge. */
3072 e = single_succ_edge (bb);
3073 gcc_assert (e->flags & EDGE_EH);
3074 e->flags = (e->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3075
3076 /* If there are no more EH users of the landing pad, delete it. */
3077 FOR_EACH_EDGE (e, ei, e->dest->preds)
3078 if (e->flags & EDGE_EH)
3079 break;
3080 if (e == NULL)
3081 {
3082 eh_landing_pad lp = get_eh_landing_pad_from_number (lp_nr);
3083 remove_eh_landing_pad (lp);
3084 }
3085 }
3086
3087 ret = true;
3088 }
3089 else
3090 {
3091 tree var;
3092
3093 /* When we don't have a destination region, this exception escapes
3094 up the call chain. We resolve this by generating a call to the
3095 _Unwind_Resume library function. */
3096
3097 /* The ARM EABI redefines _Unwind_Resume as __cxa_end_cleanup
3098 with no arguments for C++ and Java. Check for that. */
3099 if (src_r->use_cxa_end_cleanup)
3100 {
3101 fn = builtin_decl_implicit (BUILT_IN_CXA_END_CLEANUP);
3102 x = gimple_build_call (fn, 0);
3103 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3104 }
3105 else
3106 {
3107 fn = builtin_decl_implicit (BUILT_IN_EH_POINTER);
3108 src_nr = build_int_cst (integer_type_node, src_r->index);
3109 x = gimple_build_call (fn, 1, src_nr);
3110 var = create_tmp_var (ptr_type_node, NULL);
3111 var = make_ssa_name (var, x);
3112 gimple_call_set_lhs (x, var);
3113 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3114
3115 fn = builtin_decl_implicit (BUILT_IN_UNWIND_RESUME);
3116 x = gimple_build_call (fn, 1, var);
3117 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3118 }
3119
3120 gcc_assert (EDGE_COUNT (bb->succs) == 0);
3121 }
3122
3123 gsi_remove (&gsi, true);
3124
3125 return ret;
3126 }
3127
3128 static unsigned
3129 execute_lower_resx (void)
3130 {
3131 basic_block bb;
3132 struct pointer_map_t *mnt_map;
3133 bool dominance_invalidated = false;
3134 bool any_rewritten = false;
3135
3136 mnt_map = pointer_map_create ();
3137
3138 FOR_EACH_BB (bb)
3139 {
3140 gimple last = last_stmt (bb);
3141 if (last && is_gimple_resx (last))
3142 {
3143 dominance_invalidated |= lower_resx (bb, last, mnt_map);
3144 any_rewritten = true;
3145 }
3146 }
3147
3148 pointer_map_destroy (mnt_map);
3149
3150 if (dominance_invalidated)
3151 {
3152 free_dominance_info (CDI_DOMINATORS);
3153 free_dominance_info (CDI_POST_DOMINATORS);
3154 }
3155
3156 return any_rewritten ? TODO_update_ssa_only_virtuals : 0;
3157 }
3158
3159 static bool
3160 gate_lower_resx (void)
3161 {
3162 return flag_exceptions != 0;
3163 }
3164
3165 struct gimple_opt_pass pass_lower_resx =
3166 {
3167 {
3168 GIMPLE_PASS,
3169 "resx", /* name */
3170 gate_lower_resx, /* gate */
3171 execute_lower_resx, /* execute */
3172 NULL, /* sub */
3173 NULL, /* next */
3174 0, /* static_pass_number */
3175 TV_TREE_EH, /* tv_id */
3176 PROP_gimple_lcf, /* properties_required */
3177 0, /* properties_provided */
3178 0, /* properties_destroyed */
3179 0, /* todo_flags_start */
3180 TODO_verify_flow /* todo_flags_finish */
3181 }
3182 };
3183
3184 /* Try to optimize var = {v} {CLOBBER} stmts followed just by
3185 external throw. */
3186
3187 static void
3188 optimize_clobbers (basic_block bb)
3189 {
3190 gimple_stmt_iterator gsi = gsi_last_bb (bb);
3191 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3192 {
3193 gimple stmt = gsi_stmt (gsi);
3194 if (is_gimple_debug (stmt))
3195 continue;
3196 if (!gimple_clobber_p (stmt)
3197 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3198 return;
3199 unlink_stmt_vdef (stmt);
3200 gsi_remove (&gsi, true);
3201 release_defs (stmt);
3202 }
3203 }
3204
3205 /* Try to sink var = {v} {CLOBBER} stmts followed just by
3206 internal throw to successor BB. */
3207
3208 static int
3209 sink_clobbers (basic_block bb)
3210 {
3211 edge e;
3212 edge_iterator ei;
3213 gimple_stmt_iterator gsi, dgsi;
3214 basic_block succbb;
3215 bool any_clobbers = false;
3216
3217 /* Only optimize if BB has a single EH successor and
3218 all predecessor edges are EH too. */
3219 if (!single_succ_p (bb)
3220 || (single_succ_edge (bb)->flags & EDGE_EH) == 0)
3221 return 0;
3222
3223 FOR_EACH_EDGE (e, ei, bb->preds)
3224 {
3225 if ((e->flags & EDGE_EH) == 0)
3226 return 0;
3227 }
3228
3229 /* And BB contains only CLOBBER stmts before the final
3230 RESX. */
3231 gsi = gsi_last_bb (bb);
3232 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3233 {
3234 gimple stmt = gsi_stmt (gsi);
3235 if (is_gimple_debug (stmt))
3236 continue;
3237 if (gimple_code (stmt) == GIMPLE_LABEL)
3238 break;
3239 if (!gimple_clobber_p (stmt)
3240 || TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
3241 return 0;
3242 any_clobbers = true;
3243 }
3244 if (!any_clobbers)
3245 return 0;
3246
3247 succbb = single_succ (bb);
3248 dgsi = gsi_after_labels (succbb);
3249 gsi = gsi_last_bb (bb);
3250 for (gsi_prev (&gsi); !gsi_end_p (gsi); gsi_prev (&gsi))
3251 {
3252 gimple stmt = gsi_stmt (gsi);
3253 if (is_gimple_debug (stmt))
3254 continue;
3255 if (gimple_code (stmt) == GIMPLE_LABEL)
3256 break;
3257 unlink_stmt_vdef (stmt);
3258 gsi_remove (&gsi, false);
3259 /* Trigger the operand scanner to cause renaming for virtual
3260 operands for this statement.
3261 ??? Given the simple structure of this code manually
3262 figuring out the reaching definition should not be too hard. */
3263 if (gimple_vuse (stmt))
3264 gimple_set_vuse (stmt, NULL_TREE);
3265 gsi_insert_before (&dgsi, stmt, GSI_SAME_STMT);
3266 }
3267
3268 return TODO_update_ssa_only_virtuals;
3269 }
3270
3271 /* At the end of inlining, we can lower EH_DISPATCH. Return true when
3272 we have found some duplicate labels and removed some edges. */
3273
3274 static bool
3275 lower_eh_dispatch (basic_block src, gimple stmt)
3276 {
3277 gimple_stmt_iterator gsi;
3278 int region_nr;
3279 eh_region r;
3280 tree filter, fn;
3281 gimple x;
3282 bool redirected = false;
3283
3284 region_nr = gimple_eh_dispatch_region (stmt);
3285 r = get_eh_region_from_number (region_nr);
3286
3287 gsi = gsi_last_bb (src);
3288
3289 switch (r->type)
3290 {
3291 case ERT_TRY:
3292 {
3293 VEC (tree, heap) *labels = NULL;
3294 tree default_label = NULL;
3295 eh_catch c;
3296 edge_iterator ei;
3297 edge e;
3298 struct pointer_set_t *seen_values = pointer_set_create ();
3299
3300 /* Collect the labels for a switch. Zero the post_landing_pad
3301 field becase we'll no longer have anything keeping these labels
3302 in existence and the optimizer will be free to merge these
3303 blocks at will. */
3304 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
3305 {
3306 tree tp_node, flt_node, lab = c->label;
3307 bool have_label = false;
3308
3309 c->label = NULL;
3310 tp_node = c->type_list;
3311 flt_node = c->filter_list;
3312
3313 if (tp_node == NULL)
3314 {
3315 default_label = lab;
3316 break;
3317 }
3318 do
3319 {
3320 /* Filter out duplicate labels that arise when this handler
3321 is shadowed by an earlier one. When no labels are
3322 attached to the handler anymore, we remove
3323 the corresponding edge and then we delete unreachable
3324 blocks at the end of this pass. */
3325 if (! pointer_set_contains (seen_values, TREE_VALUE (flt_node)))
3326 {
3327 tree t = build_case_label (TREE_VALUE (flt_node),
3328 NULL, lab);
3329 VEC_safe_push (tree, heap, labels, t);
3330 pointer_set_insert (seen_values, TREE_VALUE (flt_node));
3331 have_label = true;
3332 }
3333
3334 tp_node = TREE_CHAIN (tp_node);
3335 flt_node = TREE_CHAIN (flt_node);
3336 }
3337 while (tp_node);
3338 if (! have_label)
3339 {
3340 remove_edge (find_edge (src, label_to_block (lab)));
3341 redirected = true;
3342 }
3343 }
3344
3345 /* Clean up the edge flags. */
3346 FOR_EACH_EDGE (e, ei, src->succs)
3347 {
3348 if (e->flags & EDGE_FALLTHRU)
3349 {
3350 /* If there was no catch-all, use the fallthru edge. */
3351 if (default_label == NULL)
3352 default_label = gimple_block_label (e->dest);
3353 e->flags &= ~EDGE_FALLTHRU;
3354 }
3355 }
3356 gcc_assert (default_label != NULL);
3357
3358 /* Don't generate a switch if there's only a default case.
3359 This is common in the form of try { A; } catch (...) { B; }. */
3360 if (labels == NULL)
3361 {
3362 e = single_succ_edge (src);
3363 e->flags |= EDGE_FALLTHRU;
3364 }
3365 else
3366 {
3367 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3368 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3369 region_nr));
3370 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3371 filter = make_ssa_name (filter, x);
3372 gimple_call_set_lhs (x, filter);
3373 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3374
3375 /* Turn the default label into a default case. */
3376 default_label = build_case_label (NULL, NULL, default_label);
3377 sort_case_labels (labels);
3378
3379 x = gimple_build_switch_vec (filter, default_label, labels);
3380 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3381
3382 VEC_free (tree, heap, labels);
3383 }
3384 pointer_set_destroy (seen_values);
3385 }
3386 break;
3387
3388 case ERT_ALLOWED_EXCEPTIONS:
3389 {
3390 edge b_e = BRANCH_EDGE (src);
3391 edge f_e = FALLTHRU_EDGE (src);
3392
3393 fn = builtin_decl_implicit (BUILT_IN_EH_FILTER);
3394 x = gimple_build_call (fn, 1, build_int_cst (integer_type_node,
3395 region_nr));
3396 filter = create_tmp_var (TREE_TYPE (TREE_TYPE (fn)), NULL);
3397 filter = make_ssa_name (filter, x);
3398 gimple_call_set_lhs (x, filter);
3399 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3400
3401 r->u.allowed.label = NULL;
3402 x = gimple_build_cond (EQ_EXPR, filter,
3403 build_int_cst (TREE_TYPE (filter),
3404 r->u.allowed.filter),
3405 NULL_TREE, NULL_TREE);
3406 gsi_insert_before (&gsi, x, GSI_SAME_STMT);
3407
3408 b_e->flags = b_e->flags | EDGE_TRUE_VALUE;
3409 f_e->flags = (f_e->flags & ~EDGE_FALLTHRU) | EDGE_FALSE_VALUE;
3410 }
3411 break;
3412
3413 default:
3414 gcc_unreachable ();
3415 }
3416
3417 /* Replace the EH_DISPATCH with the SWITCH or COND generated above. */
3418 gsi_remove (&gsi, true);
3419 return redirected;
3420 }
3421
3422 static unsigned
3423 execute_lower_eh_dispatch (void)
3424 {
3425 basic_block bb;
3426 int flags = 0;
3427 bool redirected = false;
3428
3429 assign_filter_values ();
3430
3431 FOR_EACH_BB (bb)
3432 {
3433 gimple last = last_stmt (bb);
3434 if (last == NULL)
3435 continue;
3436 if (gimple_code (last) == GIMPLE_EH_DISPATCH)
3437 {
3438 redirected |= lower_eh_dispatch (bb, last);
3439 flags |= TODO_update_ssa_only_virtuals;
3440 }
3441 else if (gimple_code (last) == GIMPLE_RESX)
3442 {
3443 if (stmt_can_throw_external (last))
3444 optimize_clobbers (bb);
3445 else
3446 flags |= sink_clobbers (bb);
3447 }
3448 }
3449
3450 if (redirected)
3451 delete_unreachable_blocks ();
3452 return flags;
3453 }
3454
3455 static bool
3456 gate_lower_eh_dispatch (void)
3457 {
3458 return cfun->eh->region_tree != NULL;
3459 }
3460
3461 struct gimple_opt_pass pass_lower_eh_dispatch =
3462 {
3463 {
3464 GIMPLE_PASS,
3465 "ehdisp", /* name */
3466 gate_lower_eh_dispatch, /* gate */
3467 execute_lower_eh_dispatch, /* execute */
3468 NULL, /* sub */
3469 NULL, /* next */
3470 0, /* static_pass_number */
3471 TV_TREE_EH, /* tv_id */
3472 PROP_gimple_lcf, /* properties_required */
3473 0, /* properties_provided */
3474 0, /* properties_destroyed */
3475 0, /* todo_flags_start */
3476 TODO_verify_flow /* todo_flags_finish */
3477 }
3478 };
3479 \f
3480 /* Walk statements, see what regions are really referenced and remove
3481 those that are unused. */
3482
3483 static void
3484 remove_unreachable_handlers (void)
3485 {
3486 sbitmap r_reachable, lp_reachable;
3487 eh_region region;
3488 eh_landing_pad lp;
3489 basic_block bb;
3490 int lp_nr, r_nr;
3491
3492 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3493 lp_reachable
3494 = sbitmap_alloc (VEC_length (eh_landing_pad, cfun->eh->lp_array));
3495 sbitmap_zero (r_reachable);
3496 sbitmap_zero (lp_reachable);
3497
3498 FOR_EACH_BB (bb)
3499 {
3500 gimple_stmt_iterator gsi;
3501
3502 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
3503 {
3504 gimple stmt = gsi_stmt (gsi);
3505 lp_nr = lookup_stmt_eh_lp (stmt);
3506
3507 /* Negative LP numbers are MUST_NOT_THROW regions which
3508 are not considered BB enders. */
3509 if (lp_nr < 0)
3510 SET_BIT (r_reachable, -lp_nr);
3511
3512 /* Positive LP numbers are real landing pads, are are BB enders. */
3513 else if (lp_nr > 0)
3514 {
3515 gcc_assert (gsi_one_before_end_p (gsi));
3516 region = get_eh_region_from_lp_number (lp_nr);
3517 SET_BIT (r_reachable, region->index);
3518 SET_BIT (lp_reachable, lp_nr);
3519 }
3520
3521 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3522 switch (gimple_code (stmt))
3523 {
3524 case GIMPLE_RESX:
3525 SET_BIT (r_reachable, gimple_resx_region (stmt));
3526 break;
3527 case GIMPLE_EH_DISPATCH:
3528 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3529 break;
3530 default:
3531 break;
3532 }
3533 }
3534 }
3535
3536 if (dump_file)
3537 {
3538 fprintf (dump_file, "Before removal of unreachable regions:\n");
3539 dump_eh_tree (dump_file, cfun);
3540 fprintf (dump_file, "Reachable regions: ");
3541 dump_sbitmap_file (dump_file, r_reachable);
3542 fprintf (dump_file, "Reachable landing pads: ");
3543 dump_sbitmap_file (dump_file, lp_reachable);
3544 }
3545
3546 for (r_nr = 1;
3547 VEC_iterate (eh_region, cfun->eh->region_array, r_nr, region); ++r_nr)
3548 if (region && !TEST_BIT (r_reachable, r_nr))
3549 {
3550 if (dump_file)
3551 fprintf (dump_file, "Removing unreachable region %d\n", r_nr);
3552 remove_eh_handler (region);
3553 }
3554
3555 for (lp_nr = 1;
3556 VEC_iterate (eh_landing_pad, cfun->eh->lp_array, lp_nr, lp); ++lp_nr)
3557 if (lp && !TEST_BIT (lp_reachable, lp_nr))
3558 {
3559 if (dump_file)
3560 fprintf (dump_file, "Removing unreachable landing pad %d\n", lp_nr);
3561 remove_eh_landing_pad (lp);
3562 }
3563
3564 if (dump_file)
3565 {
3566 fprintf (dump_file, "\n\nAfter removal of unreachable regions:\n");
3567 dump_eh_tree (dump_file, cfun);
3568 fprintf (dump_file, "\n\n");
3569 }
3570
3571 sbitmap_free (r_reachable);
3572 sbitmap_free (lp_reachable);
3573
3574 #ifdef ENABLE_CHECKING
3575 verify_eh_tree (cfun);
3576 #endif
3577 }
3578
3579 /* Remove unreachable handlers if any landing pads have been removed after
3580 last ehcleanup pass (due to gimple_purge_dead_eh_edges). */
3581
3582 void
3583 maybe_remove_unreachable_handlers (void)
3584 {
3585 eh_landing_pad lp;
3586 int i;
3587
3588 if (cfun->eh == NULL)
3589 return;
3590
3591 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3592 if (lp && lp->post_landing_pad)
3593 {
3594 if (label_to_block (lp->post_landing_pad) == NULL)
3595 {
3596 remove_unreachable_handlers ();
3597 return;
3598 }
3599 }
3600 }
3601
3602 /* Remove regions that do not have landing pads. This assumes
3603 that remove_unreachable_handlers has already been run, and
3604 that we've just manipulated the landing pads since then. */
3605
3606 static void
3607 remove_unreachable_handlers_no_lp (void)
3608 {
3609 eh_region r;
3610 int i;
3611 sbitmap r_reachable;
3612 basic_block bb;
3613
3614 r_reachable = sbitmap_alloc (VEC_length (eh_region, cfun->eh->region_array));
3615 sbitmap_zero (r_reachable);
3616
3617 FOR_EACH_BB (bb)
3618 {
3619 gimple stmt = last_stmt (bb);
3620 if (stmt)
3621 /* Avoid removing regions referenced from RESX/EH_DISPATCH. */
3622 switch (gimple_code (stmt))
3623 {
3624 case GIMPLE_RESX:
3625 SET_BIT (r_reachable, gimple_resx_region (stmt));
3626 break;
3627 case GIMPLE_EH_DISPATCH:
3628 SET_BIT (r_reachable, gimple_eh_dispatch_region (stmt));
3629 break;
3630 default:
3631 break;
3632 }
3633 }
3634
3635 for (i = 1; VEC_iterate (eh_region, cfun->eh->region_array, i, r); ++i)
3636 if (r && r->landing_pads == NULL && r->type != ERT_MUST_NOT_THROW
3637 && !TEST_BIT (r_reachable, i))
3638 {
3639 if (dump_file)
3640 fprintf (dump_file, "Removing unreachable region %d\n", i);
3641 remove_eh_handler (r);
3642 }
3643
3644 sbitmap_free (r_reachable);
3645 }
3646
3647 /* Undo critical edge splitting on an EH landing pad. Earlier, we
3648 optimisticaly split all sorts of edges, including EH edges. The
3649 optimization passes in between may not have needed them; if not,
3650 we should undo the split.
3651
3652 Recognize this case by having one EH edge incoming to the BB and
3653 one normal edge outgoing; BB should be empty apart from the
3654 post_landing_pad label.
3655
3656 Note that this is slightly different from the empty handler case
3657 handled by cleanup_empty_eh, in that the actual handler may yet
3658 have actual code but the landing pad has been separated from the
3659 handler. As such, cleanup_empty_eh relies on this transformation
3660 having been done first. */
3661
3662 static bool
3663 unsplit_eh (eh_landing_pad lp)
3664 {
3665 basic_block bb = label_to_block (lp->post_landing_pad);
3666 gimple_stmt_iterator gsi;
3667 edge e_in, e_out;
3668
3669 /* Quickly check the edge counts on BB for singularity. */
3670 if (EDGE_COUNT (bb->preds) != 1 || EDGE_COUNT (bb->succs) != 1)
3671 return false;
3672 e_in = EDGE_PRED (bb, 0);
3673 e_out = EDGE_SUCC (bb, 0);
3674
3675 /* Input edge must be EH and output edge must be normal. */
3676 if ((e_in->flags & EDGE_EH) == 0 || (e_out->flags & EDGE_EH) != 0)
3677 return false;
3678
3679 /* The block must be empty except for the labels and debug insns. */
3680 gsi = gsi_after_labels (bb);
3681 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
3682 gsi_next_nondebug (&gsi);
3683 if (!gsi_end_p (gsi))
3684 return false;
3685
3686 /* The destination block must not already have a landing pad
3687 for a different region. */
3688 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3689 {
3690 gimple stmt = gsi_stmt (gsi);
3691 tree lab;
3692 int lp_nr;
3693
3694 if (gimple_code (stmt) != GIMPLE_LABEL)
3695 break;
3696 lab = gimple_label_label (stmt);
3697 lp_nr = EH_LANDING_PAD_NR (lab);
3698 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3699 return false;
3700 }
3701
3702 /* The new destination block must not already be a destination of
3703 the source block, lest we merge fallthru and eh edges and get
3704 all sorts of confused. */
3705 if (find_edge (e_in->src, e_out->dest))
3706 return false;
3707
3708 /* ??? We can get degenerate phis due to cfg cleanups. I would have
3709 thought this should have been cleaned up by a phicprop pass, but
3710 that doesn't appear to handle virtuals. Propagate by hand. */
3711 if (!gimple_seq_empty_p (phi_nodes (bb)))
3712 {
3713 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); )
3714 {
3715 gimple use_stmt, phi = gsi_stmt (gsi);
3716 tree lhs = gimple_phi_result (phi);
3717 tree rhs = gimple_phi_arg_def (phi, 0);
3718 use_operand_p use_p;
3719 imm_use_iterator iter;
3720
3721 FOR_EACH_IMM_USE_STMT (use_stmt, iter, lhs)
3722 {
3723 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
3724 SET_USE (use_p, rhs);
3725 }
3726
3727 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
3728 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (rhs) = 1;
3729
3730 remove_phi_node (&gsi, true);
3731 }
3732 }
3733
3734 if (dump_file && (dump_flags & TDF_DETAILS))
3735 fprintf (dump_file, "Unsplit EH landing pad %d to block %i.\n",
3736 lp->index, e_out->dest->index);
3737
3738 /* Redirect the edge. Since redirect_eh_edge_1 expects to be moving
3739 a successor edge, humor it. But do the real CFG change with the
3740 predecessor of E_OUT in order to preserve the ordering of arguments
3741 to the PHI nodes in E_OUT->DEST. */
3742 redirect_eh_edge_1 (e_in, e_out->dest, false);
3743 redirect_edge_pred (e_out, e_in->src);
3744 e_out->flags = e_in->flags;
3745 e_out->probability = e_in->probability;
3746 e_out->count = e_in->count;
3747 remove_edge (e_in);
3748
3749 return true;
3750 }
3751
3752 /* Examine each landing pad block and see if it matches unsplit_eh. */
3753
3754 static bool
3755 unsplit_all_eh (void)
3756 {
3757 bool changed = false;
3758 eh_landing_pad lp;
3759 int i;
3760
3761 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
3762 if (lp)
3763 changed |= unsplit_eh (lp);
3764
3765 return changed;
3766 }
3767
3768 /* A subroutine of cleanup_empty_eh. Redirect all EH edges incoming
3769 to OLD_BB to NEW_BB; return true on success, false on failure.
3770
3771 OLD_BB_OUT is the edge into NEW_BB from OLD_BB, so if we miss any
3772 PHI variables from OLD_BB we can pick them up from OLD_BB_OUT.
3773 Virtual PHIs may be deleted and marked for renaming. */
3774
3775 static bool
3776 cleanup_empty_eh_merge_phis (basic_block new_bb, basic_block old_bb,
3777 edge old_bb_out, bool change_region)
3778 {
3779 gimple_stmt_iterator ngsi, ogsi;
3780 edge_iterator ei;
3781 edge e;
3782 bitmap rename_virts;
3783 bitmap ophi_handled;
3784
3785 /* The destination block must not be a regular successor for any
3786 of the preds of the landing pad. Thus, avoid turning
3787 <..>
3788 | \ EH
3789 | <..>
3790 | /
3791 <..>
3792 into
3793 <..>
3794 | | EH
3795 <..>
3796 which CFG verification would choke on. See PR45172 and PR51089. */
3797 FOR_EACH_EDGE (e, ei, old_bb->preds)
3798 if (find_edge (e->src, new_bb))
3799 return false;
3800
3801 FOR_EACH_EDGE (e, ei, old_bb->preds)
3802 redirect_edge_var_map_clear (e);
3803
3804 ophi_handled = BITMAP_ALLOC (NULL);
3805 rename_virts = BITMAP_ALLOC (NULL);
3806
3807 /* First, iterate through the PHIs on NEW_BB and set up the edge_var_map
3808 for the edges we're going to move. */
3809 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); gsi_next (&ngsi))
3810 {
3811 gimple ophi, nphi = gsi_stmt (ngsi);
3812 tree nresult, nop;
3813
3814 nresult = gimple_phi_result (nphi);
3815 nop = gimple_phi_arg_def (nphi, old_bb_out->dest_idx);
3816
3817 /* Find the corresponding PHI in OLD_BB so we can forward-propagate
3818 the source ssa_name. */
3819 ophi = NULL;
3820 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3821 {
3822 ophi = gsi_stmt (ogsi);
3823 if (gimple_phi_result (ophi) == nop)
3824 break;
3825 ophi = NULL;
3826 }
3827
3828 /* If we did find the corresponding PHI, copy those inputs. */
3829 if (ophi)
3830 {
3831 /* If NOP is used somewhere else beyond phis in new_bb, give up. */
3832 if (!has_single_use (nop))
3833 {
3834 imm_use_iterator imm_iter;
3835 use_operand_p use_p;
3836
3837 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, nop)
3838 {
3839 if (!gimple_debug_bind_p (USE_STMT (use_p))
3840 && (gimple_code (USE_STMT (use_p)) != GIMPLE_PHI
3841 || gimple_bb (USE_STMT (use_p)) != new_bb))
3842 goto fail;
3843 }
3844 }
3845 bitmap_set_bit (ophi_handled, SSA_NAME_VERSION (nop));
3846 FOR_EACH_EDGE (e, ei, old_bb->preds)
3847 {
3848 location_t oloc;
3849 tree oop;
3850
3851 if ((e->flags & EDGE_EH) == 0)
3852 continue;
3853 oop = gimple_phi_arg_def (ophi, e->dest_idx);
3854 oloc = gimple_phi_arg_location (ophi, e->dest_idx);
3855 redirect_edge_var_map_add (e, nresult, oop, oloc);
3856 }
3857 }
3858 /* If we didn't find the PHI, but it's a VOP, remember to rename
3859 it later, assuming all other tests succeed. */
3860 else if (!is_gimple_reg (nresult))
3861 bitmap_set_bit (rename_virts, SSA_NAME_VERSION (nresult));
3862 /* If we didn't find the PHI, and it's a real variable, we know
3863 from the fact that OLD_BB is tree_empty_eh_handler_p that the
3864 variable is unchanged from input to the block and we can simply
3865 re-use the input to NEW_BB from the OLD_BB_OUT edge. */
3866 else
3867 {
3868 location_t nloc
3869 = gimple_phi_arg_location (nphi, old_bb_out->dest_idx);
3870 FOR_EACH_EDGE (e, ei, old_bb->preds)
3871 redirect_edge_var_map_add (e, nresult, nop, nloc);
3872 }
3873 }
3874
3875 /* Second, verify that all PHIs from OLD_BB have been handled. If not,
3876 we don't know what values from the other edges into NEW_BB to use. */
3877 for (ogsi = gsi_start_phis (old_bb); !gsi_end_p (ogsi); gsi_next (&ogsi))
3878 {
3879 gimple ophi = gsi_stmt (ogsi);
3880 tree oresult = gimple_phi_result (ophi);
3881 if (!bitmap_bit_p (ophi_handled, SSA_NAME_VERSION (oresult)))
3882 goto fail;
3883 }
3884
3885 /* At this point we know that the merge will succeed. Remove the PHI
3886 nodes for the virtuals that we want to rename. */
3887 if (!bitmap_empty_p (rename_virts))
3888 {
3889 for (ngsi = gsi_start_phis (new_bb); !gsi_end_p (ngsi); )
3890 {
3891 gimple nphi = gsi_stmt (ngsi);
3892 tree nresult = gimple_phi_result (nphi);
3893 if (bitmap_bit_p (rename_virts, SSA_NAME_VERSION (nresult)))
3894 {
3895 mark_virtual_phi_result_for_renaming (nphi);
3896 remove_phi_node (&ngsi, true);
3897 }
3898 else
3899 gsi_next (&ngsi);
3900 }
3901 }
3902
3903 /* Finally, move the edges and update the PHIs. */
3904 for (ei = ei_start (old_bb->preds); (e = ei_safe_edge (ei)); )
3905 if (e->flags & EDGE_EH)
3906 {
3907 /* ??? CFG manipluation routines do not try to update loop
3908 form on edge redirection. Do so manually here for now. */
3909 /* If we redirect a loop entry or latch edge that will either create
3910 a multiple entry loop or rotate the loop. If the loops merge
3911 we may have created a loop with multiple latches.
3912 All of this isn't easily fixed thus cancel the affected loop
3913 and mark the other loop as possibly having multiple latches. */
3914 if (current_loops
3915 && e->dest == e->dest->loop_father->header)
3916 {
3917 e->dest->loop_father->header = NULL;
3918 e->dest->loop_father->latch = NULL;
3919 new_bb->loop_father->latch = NULL;
3920 loops_state_set (LOOPS_NEED_FIXUP|LOOPS_MAY_HAVE_MULTIPLE_LATCHES);
3921 }
3922 redirect_eh_edge_1 (e, new_bb, change_region);
3923 redirect_edge_succ (e, new_bb);
3924 flush_pending_stmts (e);
3925 }
3926 else
3927 ei_next (&ei);
3928
3929 BITMAP_FREE (ophi_handled);
3930 BITMAP_FREE (rename_virts);
3931 return true;
3932
3933 fail:
3934 FOR_EACH_EDGE (e, ei, old_bb->preds)
3935 redirect_edge_var_map_clear (e);
3936 BITMAP_FREE (ophi_handled);
3937 BITMAP_FREE (rename_virts);
3938 return false;
3939 }
3940
3941 /* A subroutine of cleanup_empty_eh. Move a landing pad LP from its
3942 old region to NEW_REGION at BB. */
3943
3944 static void
3945 cleanup_empty_eh_move_lp (basic_block bb, edge e_out,
3946 eh_landing_pad lp, eh_region new_region)
3947 {
3948 gimple_stmt_iterator gsi;
3949 eh_landing_pad *pp;
3950
3951 for (pp = &lp->region->landing_pads; *pp != lp; pp = &(*pp)->next_lp)
3952 continue;
3953 *pp = lp->next_lp;
3954
3955 lp->region = new_region;
3956 lp->next_lp = new_region->landing_pads;
3957 new_region->landing_pads = lp;
3958
3959 /* Delete the RESX that was matched within the empty handler block. */
3960 gsi = gsi_last_bb (bb);
3961 unlink_stmt_vdef (gsi_stmt (gsi));
3962 gsi_remove (&gsi, true);
3963
3964 /* Clean up E_OUT for the fallthru. */
3965 e_out->flags = (e_out->flags & ~EDGE_EH) | EDGE_FALLTHRU;
3966 e_out->probability = REG_BR_PROB_BASE;
3967 }
3968
3969 /* A subroutine of cleanup_empty_eh. Handle more complex cases of
3970 unsplitting than unsplit_eh was prepared to handle, e.g. when
3971 multiple incoming edges and phis are involved. */
3972
3973 static bool
3974 cleanup_empty_eh_unsplit (basic_block bb, edge e_out, eh_landing_pad lp)
3975 {
3976 gimple_stmt_iterator gsi;
3977 tree lab;
3978
3979 /* We really ought not have totally lost everything following
3980 a landing pad label. Given that BB is empty, there had better
3981 be a successor. */
3982 gcc_assert (e_out != NULL);
3983
3984 /* The destination block must not already have a landing pad
3985 for a different region. */
3986 lab = NULL;
3987 for (gsi = gsi_start_bb (e_out->dest); !gsi_end_p (gsi); gsi_next (&gsi))
3988 {
3989 gimple stmt = gsi_stmt (gsi);
3990 int lp_nr;
3991
3992 if (gimple_code (stmt) != GIMPLE_LABEL)
3993 break;
3994 lab = gimple_label_label (stmt);
3995 lp_nr = EH_LANDING_PAD_NR (lab);
3996 if (lp_nr && get_eh_region_from_lp_number (lp_nr) != lp->region)
3997 return false;
3998 }
3999
4000 /* Attempt to move the PHIs into the successor block. */
4001 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, false))
4002 {
4003 if (dump_file && (dump_flags & TDF_DETAILS))
4004 fprintf (dump_file,
4005 "Unsplit EH landing pad %d to block %i "
4006 "(via cleanup_empty_eh).\n",
4007 lp->index, e_out->dest->index);
4008 return true;
4009 }
4010
4011 return false;
4012 }
4013
4014 /* Return true if edge E_FIRST is part of an empty infinite loop
4015 or leads to such a loop through a series of single successor
4016 empty bbs. */
4017
4018 static bool
4019 infinite_empty_loop_p (edge e_first)
4020 {
4021 bool inf_loop = false;
4022 edge e;
4023
4024 if (e_first->dest == e_first->src)
4025 return true;
4026
4027 e_first->src->aux = (void *) 1;
4028 for (e = e_first; single_succ_p (e->dest); e = single_succ_edge (e->dest))
4029 {
4030 gimple_stmt_iterator gsi;
4031 if (e->dest->aux)
4032 {
4033 inf_loop = true;
4034 break;
4035 }
4036 e->dest->aux = (void *) 1;
4037 gsi = gsi_after_labels (e->dest);
4038 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4039 gsi_next_nondebug (&gsi);
4040 if (!gsi_end_p (gsi))
4041 break;
4042 }
4043 e_first->src->aux = NULL;
4044 for (e = e_first; e->dest->aux; e = single_succ_edge (e->dest))
4045 e->dest->aux = NULL;
4046
4047 return inf_loop;
4048 }
4049
4050 /* Examine the block associated with LP to determine if it's an empty
4051 handler for its EH region. If so, attempt to redirect EH edges to
4052 an outer region. Return true the CFG was updated in any way. This
4053 is similar to jump forwarding, just across EH edges. */
4054
4055 static bool
4056 cleanup_empty_eh (eh_landing_pad lp)
4057 {
4058 basic_block bb = label_to_block (lp->post_landing_pad);
4059 gimple_stmt_iterator gsi;
4060 gimple resx;
4061 eh_region new_region;
4062 edge_iterator ei;
4063 edge e, e_out;
4064 bool has_non_eh_pred;
4065 bool ret = false;
4066 int new_lp_nr;
4067
4068 /* There can be zero or one edges out of BB. This is the quickest test. */
4069 switch (EDGE_COUNT (bb->succs))
4070 {
4071 case 0:
4072 e_out = NULL;
4073 break;
4074 case 1:
4075 e_out = EDGE_SUCC (bb, 0);
4076 break;
4077 default:
4078 return false;
4079 }
4080
4081 resx = last_stmt (bb);
4082 if (resx && is_gimple_resx (resx))
4083 {
4084 if (stmt_can_throw_external (resx))
4085 optimize_clobbers (bb);
4086 else if (sink_clobbers (bb))
4087 ret = true;
4088 }
4089
4090 gsi = gsi_after_labels (bb);
4091
4092 /* Make sure to skip debug statements. */
4093 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
4094 gsi_next_nondebug (&gsi);
4095
4096 /* If the block is totally empty, look for more unsplitting cases. */
4097 if (gsi_end_p (gsi))
4098 {
4099 /* For the degenerate case of an infinite loop bail out. */
4100 if (infinite_empty_loop_p (e_out))
4101 return ret;
4102
4103 return ret | cleanup_empty_eh_unsplit (bb, e_out, lp);
4104 }
4105
4106 /* The block should consist only of a single RESX statement, modulo a
4107 preceding call to __builtin_stack_restore if there is no outgoing
4108 edge, since the call can be eliminated in this case. */
4109 resx = gsi_stmt (gsi);
4110 if (!e_out && gimple_call_builtin_p (resx, BUILT_IN_STACK_RESTORE))
4111 {
4112 gsi_next (&gsi);
4113 resx = gsi_stmt (gsi);
4114 }
4115 if (!is_gimple_resx (resx))
4116 return ret;
4117 gcc_assert (gsi_one_before_end_p (gsi));
4118
4119 /* Determine if there are non-EH edges, or resx edges into the handler. */
4120 has_non_eh_pred = false;
4121 FOR_EACH_EDGE (e, ei, bb->preds)
4122 if (!(e->flags & EDGE_EH))
4123 has_non_eh_pred = true;
4124
4125 /* Find the handler that's outer of the empty handler by looking at
4126 where the RESX instruction was vectored. */
4127 new_lp_nr = lookup_stmt_eh_lp (resx);
4128 new_region = get_eh_region_from_lp_number (new_lp_nr);
4129
4130 /* If there's no destination region within the current function,
4131 redirection is trivial via removing the throwing statements from
4132 the EH region, removing the EH edges, and allowing the block
4133 to go unreachable. */
4134 if (new_region == NULL)
4135 {
4136 gcc_assert (e_out == NULL);
4137 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4138 if (e->flags & EDGE_EH)
4139 {
4140 gimple stmt = last_stmt (e->src);
4141 remove_stmt_from_eh_lp (stmt);
4142 remove_edge (e);
4143 }
4144 else
4145 ei_next (&ei);
4146 goto succeed;
4147 }
4148
4149 /* If the destination region is a MUST_NOT_THROW, allow the runtime
4150 to handle the abort and allow the blocks to go unreachable. */
4151 if (new_region->type == ERT_MUST_NOT_THROW)
4152 {
4153 for (ei = ei_start (bb->preds); (e = ei_safe_edge (ei)); )
4154 if (e->flags & EDGE_EH)
4155 {
4156 gimple stmt = last_stmt (e->src);
4157 remove_stmt_from_eh_lp (stmt);
4158 add_stmt_to_eh_lp (stmt, new_lp_nr);
4159 remove_edge (e);
4160 }
4161 else
4162 ei_next (&ei);
4163 goto succeed;
4164 }
4165
4166 /* Try to redirect the EH edges and merge the PHIs into the destination
4167 landing pad block. If the merge succeeds, we'll already have redirected
4168 all the EH edges. The handler itself will go unreachable if there were
4169 no normal edges. */
4170 if (cleanup_empty_eh_merge_phis (e_out->dest, bb, e_out, true))
4171 goto succeed;
4172
4173 /* Finally, if all input edges are EH edges, then we can (potentially)
4174 reduce the number of transfers from the runtime by moving the landing
4175 pad from the original region to the new region. This is a win when
4176 we remove the last CLEANUP region along a particular exception
4177 propagation path. Since nothing changes except for the region with
4178 which the landing pad is associated, the PHI nodes do not need to be
4179 adjusted at all. */
4180 if (!has_non_eh_pred)
4181 {
4182 cleanup_empty_eh_move_lp (bb, e_out, lp, new_region);
4183 if (dump_file && (dump_flags & TDF_DETAILS))
4184 fprintf (dump_file, "Empty EH handler %i moved to EH region %i.\n",
4185 lp->index, new_region->index);
4186
4187 /* ??? The CFG didn't change, but we may have rendered the
4188 old EH region unreachable. Trigger a cleanup there. */
4189 return true;
4190 }
4191
4192 return ret;
4193
4194 succeed:
4195 if (dump_file && (dump_flags & TDF_DETAILS))
4196 fprintf (dump_file, "Empty EH handler %i removed.\n", lp->index);
4197 remove_eh_landing_pad (lp);
4198 return true;
4199 }
4200
4201 /* Do a post-order traversal of the EH region tree. Examine each
4202 post_landing_pad block and see if we can eliminate it as empty. */
4203
4204 static bool
4205 cleanup_all_empty_eh (void)
4206 {
4207 bool changed = false;
4208 eh_landing_pad lp;
4209 int i;
4210
4211 for (i = 1; VEC_iterate (eh_landing_pad, cfun->eh->lp_array, i, lp); ++i)
4212 if (lp)
4213 changed |= cleanup_empty_eh (lp);
4214
4215 return changed;
4216 }
4217
4218 /* Perform cleanups and lowering of exception handling
4219 1) cleanups regions with handlers doing nothing are optimized out
4220 2) MUST_NOT_THROW regions that became dead because of 1) are optimized out
4221 3) Info about regions that are containing instructions, and regions
4222 reachable via local EH edges is collected
4223 4) Eh tree is pruned for regions no longer neccesary.
4224
4225 TODO: Push MUST_NOT_THROW regions to the root of the EH tree.
4226 Unify those that have the same failure decl and locus.
4227 */
4228
4229 static unsigned int
4230 execute_cleanup_eh_1 (void)
4231 {
4232 /* Do this first: unsplit_all_eh and cleanup_all_empty_eh can die
4233 looking up unreachable landing pads. */
4234 remove_unreachable_handlers ();
4235
4236 /* Watch out for the region tree vanishing due to all unreachable. */
4237 if (cfun->eh->region_tree && optimize)
4238 {
4239 bool changed = false;
4240
4241 changed |= unsplit_all_eh ();
4242 changed |= cleanup_all_empty_eh ();
4243
4244 if (changed)
4245 {
4246 free_dominance_info (CDI_DOMINATORS);
4247 free_dominance_info (CDI_POST_DOMINATORS);
4248
4249 /* We delayed all basic block deletion, as we may have performed
4250 cleanups on EH edges while non-EH edges were still present. */
4251 delete_unreachable_blocks ();
4252
4253 /* We manipulated the landing pads. Remove any region that no
4254 longer has a landing pad. */
4255 remove_unreachable_handlers_no_lp ();
4256
4257 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
4258 }
4259 }
4260
4261 return 0;
4262 }
4263
4264 static unsigned int
4265 execute_cleanup_eh (void)
4266 {
4267 int ret = execute_cleanup_eh_1 ();
4268
4269 /* If the function no longer needs an EH personality routine
4270 clear it. This exposes cross-language inlining opportunities
4271 and avoids references to a never defined personality routine. */
4272 if (DECL_FUNCTION_PERSONALITY (current_function_decl)
4273 && function_needs_eh_personality (cfun) != eh_personality_lang)
4274 DECL_FUNCTION_PERSONALITY (current_function_decl) = NULL_TREE;
4275
4276 return ret;
4277 }
4278
4279 static bool
4280 gate_cleanup_eh (void)
4281 {
4282 return cfun->eh != NULL && cfun->eh->region_tree != NULL;
4283 }
4284
4285 struct gimple_opt_pass pass_cleanup_eh = {
4286 {
4287 GIMPLE_PASS,
4288 "ehcleanup", /* name */
4289 gate_cleanup_eh, /* gate */
4290 execute_cleanup_eh, /* execute */
4291 NULL, /* sub */
4292 NULL, /* next */
4293 0, /* static_pass_number */
4294 TV_TREE_EH, /* tv_id */
4295 PROP_gimple_lcf, /* properties_required */
4296 0, /* properties_provided */
4297 0, /* properties_destroyed */
4298 0, /* todo_flags_start */
4299 0 /* todo_flags_finish */
4300 }
4301 };
4302 \f
4303 /* Verify that BB containing STMT as the last statement, has precisely the
4304 edge that make_eh_edges would create. */
4305
4306 DEBUG_FUNCTION bool
4307 verify_eh_edges (gimple stmt)
4308 {
4309 basic_block bb = gimple_bb (stmt);
4310 eh_landing_pad lp = NULL;
4311 int lp_nr;
4312 edge_iterator ei;
4313 edge e, eh_edge;
4314
4315 lp_nr = lookup_stmt_eh_lp (stmt);
4316 if (lp_nr > 0)
4317 lp = get_eh_landing_pad_from_number (lp_nr);
4318
4319 eh_edge = NULL;
4320 FOR_EACH_EDGE (e, ei, bb->succs)
4321 {
4322 if (e->flags & EDGE_EH)
4323 {
4324 if (eh_edge)
4325 {
4326 error ("BB %i has multiple EH edges", bb->index);
4327 return true;
4328 }
4329 else
4330 eh_edge = e;
4331 }
4332 }
4333
4334 if (lp == NULL)
4335 {
4336 if (eh_edge)
4337 {
4338 error ("BB %i can not throw but has an EH edge", bb->index);
4339 return true;
4340 }
4341 return false;
4342 }
4343
4344 if (!stmt_could_throw_p (stmt))
4345 {
4346 error ("BB %i last statement has incorrectly set lp", bb->index);
4347 return true;
4348 }
4349
4350 if (eh_edge == NULL)
4351 {
4352 error ("BB %i is missing an EH edge", bb->index);
4353 return true;
4354 }
4355
4356 if (eh_edge->dest != label_to_block (lp->post_landing_pad))
4357 {
4358 error ("Incorrect EH edge %i->%i", bb->index, eh_edge->dest->index);
4359 return true;
4360 }
4361
4362 return false;
4363 }
4364
4365 /* Similarly, but handle GIMPLE_EH_DISPATCH specifically. */
4366
4367 DEBUG_FUNCTION bool
4368 verify_eh_dispatch_edge (gimple stmt)
4369 {
4370 eh_region r;
4371 eh_catch c;
4372 basic_block src, dst;
4373 bool want_fallthru = true;
4374 edge_iterator ei;
4375 edge e, fall_edge;
4376
4377 r = get_eh_region_from_number (gimple_eh_dispatch_region (stmt));
4378 src = gimple_bb (stmt);
4379
4380 FOR_EACH_EDGE (e, ei, src->succs)
4381 gcc_assert (e->aux == NULL);
4382
4383 switch (r->type)
4384 {
4385 case ERT_TRY:
4386 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4387 {
4388 dst = label_to_block (c->label);
4389 e = find_edge (src, dst);
4390 if (e == NULL)
4391 {
4392 error ("BB %i is missing an edge", src->index);
4393 return true;
4394 }
4395 e->aux = (void *)e;
4396
4397 /* A catch-all handler doesn't have a fallthru. */
4398 if (c->type_list == NULL)
4399 {
4400 want_fallthru = false;
4401 break;
4402 }
4403 }
4404 break;
4405
4406 case ERT_ALLOWED_EXCEPTIONS:
4407 dst = label_to_block (r->u.allowed.label);
4408 e = find_edge (src, dst);
4409 if (e == NULL)
4410 {
4411 error ("BB %i is missing an edge", src->index);
4412 return true;
4413 }
4414 e->aux = (void *)e;
4415 break;
4416
4417 default:
4418 gcc_unreachable ();
4419 }
4420
4421 fall_edge = NULL;
4422 FOR_EACH_EDGE (e, ei, src->succs)
4423 {
4424 if (e->flags & EDGE_FALLTHRU)
4425 {
4426 if (fall_edge != NULL)
4427 {
4428 error ("BB %i too many fallthru edges", src->index);
4429 return true;
4430 }
4431 fall_edge = e;
4432 }
4433 else if (e->aux)
4434 e->aux = NULL;
4435 else
4436 {
4437 error ("BB %i has incorrect edge", src->index);
4438 return true;
4439 }
4440 }
4441 if ((fall_edge != NULL) ^ want_fallthru)
4442 {
4443 error ("BB %i has incorrect fallthru edge", src->index);
4444 return true;
4445 }
4446
4447 return false;
4448 }