]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-into-ssa.c
2f5ac69251ef01c65e8b2d3e783af543f5ebf44b
[thirdparty/gcc.git] / gcc / tree-into-ssa.c
1 /* Rewrite a program in Normal form into SSA.
2 Copyright (C) 2001-2013 Free Software Foundation, Inc.
3 Contributed by Diego Novillo <dnovillo@redhat.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26 #include "flags.h"
27 #include "tm_p.h"
28 #include "langhooks.h"
29 #include "basic-block.h"
30 #include "function.h"
31 #include "gimple-pretty-print.h"
32 #include "bitmap.h"
33 #include "tree-ssa.h"
34 #include "gimple.h"
35 #include "tree-inline.h"
36 #include "hash-table.h"
37 #include "tree-pass.h"
38 #include "cfgloop.h"
39 #include "domwalk.h"
40 #include "params.h"
41 #include "diagnostic-core.h"
42 #include "tree-into-ssa.h"
43
44
45 /* This file builds the SSA form for a function as described in:
46 R. Cytron, J. Ferrante, B. Rosen, M. Wegman, and K. Zadeck. Efficiently
47 Computing Static Single Assignment Form and the Control Dependence
48 Graph. ACM Transactions on Programming Languages and Systems,
49 13(4):451-490, October 1991. */
50
51 /* Structure to map a variable VAR to the set of blocks that contain
52 definitions for VAR. */
53 struct def_blocks_d
54 {
55 /* Blocks that contain definitions of VAR. Bit I will be set if the
56 Ith block contains a definition of VAR. */
57 bitmap def_blocks;
58
59 /* Blocks that contain a PHI node for VAR. */
60 bitmap phi_blocks;
61
62 /* Blocks where VAR is live-on-entry. Similar semantics as
63 DEF_BLOCKS. */
64 bitmap livein_blocks;
65 };
66
67 typedef struct def_blocks_d *def_blocks_p;
68
69
70 /* Stack of trees used to restore the global currdefs to its original
71 state after completing rewriting of a block and its dominator
72 children. Its elements have the following properties:
73
74 - An SSA_NAME (N) indicates that the current definition of the
75 underlying variable should be set to the given SSA_NAME. If the
76 symbol associated with the SSA_NAME is not a GIMPLE register, the
77 next slot in the stack must be a _DECL node (SYM). In this case,
78 the name N in the previous slot is the current reaching
79 definition for SYM.
80
81 - A _DECL node indicates that the underlying variable has no
82 current definition.
83
84 - A NULL node at the top entry is used to mark the last slot
85 associated with the current block. */
86 static vec<tree> block_defs_stack;
87
88
89 /* Set of existing SSA names being replaced by update_ssa. */
90 static sbitmap old_ssa_names;
91
92 /* Set of new SSA names being added by update_ssa. Note that both
93 NEW_SSA_NAMES and OLD_SSA_NAMES are dense bitmaps because most of
94 the operations done on them are presence tests. */
95 static sbitmap new_ssa_names;
96
97 static sbitmap interesting_blocks;
98
99 /* Set of SSA names that have been marked to be released after they
100 were registered in the replacement table. They will be finally
101 released after we finish updating the SSA web. */
102 static bitmap names_to_release;
103
104 /* vec of vec of PHIs to rewrite in a basic block. Element I corresponds
105 the to basic block with index I. Allocated once per compilation, *not*
106 released between different functions. */
107 static vec<gimple_vec> phis_to_rewrite;
108
109 /* The bitmap of non-NULL elements of PHIS_TO_REWRITE. */
110 static bitmap blocks_with_phis_to_rewrite;
111
112 /* Growth factor for NEW_SSA_NAMES and OLD_SSA_NAMES. These sets need
113 to grow as the callers to create_new_def_for will create new names on
114 the fly.
115 FIXME. Currently set to 1/3 to avoid frequent reallocations but still
116 need to find a reasonable growth strategy. */
117 #define NAME_SETS_GROWTH_FACTOR (MAX (3, num_ssa_names / 3))
118
119
120 /* The function the SSA updating data structures have been initialized for.
121 NULL if they need to be initialized by create_new_def_for. */
122 static struct function *update_ssa_initialized_fn = NULL;
123
124 /* Global data to attach to the main dominator walk structure. */
125 struct mark_def_sites_global_data
126 {
127 /* This bitmap contains the variables which are set before they
128 are used in a basic block. */
129 bitmap kills;
130 };
131
132 /* It is advantageous to avoid things like life analysis for variables which
133 do not need PHI nodes. This enum describes whether or not a particular
134 variable may need a PHI node. */
135
136 enum need_phi_state {
137 /* This is the default. If we are still in this state after finding
138 all the definition and use sites, then we will assume the variable
139 needs PHI nodes. This is probably an overly conservative assumption. */
140 NEED_PHI_STATE_UNKNOWN,
141
142 /* This state indicates that we have seen one or more sets of the
143 variable in a single basic block and that the sets dominate all
144 uses seen so far. If after finding all definition and use sites
145 we are still in this state, then the variable does not need any
146 PHI nodes. */
147 NEED_PHI_STATE_NO,
148
149 /* This state indicates that we have either seen multiple definitions of
150 the variable in multiple blocks, or that we encountered a use in a
151 block that was not dominated by the block containing the set(s) of
152 this variable. This variable is assumed to need PHI nodes. */
153 NEED_PHI_STATE_MAYBE
154 };
155
156 /* Information stored for both SSA names and decls. */
157 struct common_info_d
158 {
159 /* This field indicates whether or not the variable may need PHI nodes.
160 See the enum's definition for more detailed information about the
161 states. */
162 ENUM_BITFIELD (need_phi_state) need_phi_state : 2;
163
164 /* The current reaching definition replacing this var. */
165 tree current_def;
166
167 /* Definitions for this var. */
168 struct def_blocks_d def_blocks;
169 };
170
171 /* The information associated with decls and SSA names. */
172 typedef struct common_info_d *common_info_p;
173
174 /* Information stored for decls. */
175 struct var_info_d
176 {
177 /* The variable. */
178 tree var;
179
180 /* Information stored for both SSA names and decls. */
181 struct common_info_d info;
182 };
183
184 /* The information associated with decls. */
185 typedef struct var_info_d *var_info_p;
186
187
188 /* VAR_INFOS hashtable helpers. */
189
190 struct var_info_hasher : typed_free_remove <var_info_d>
191 {
192 typedef var_info_d value_type;
193 typedef var_info_d compare_type;
194 static inline hashval_t hash (const value_type *);
195 static inline bool equal (const value_type *, const compare_type *);
196 };
197
198 inline hashval_t
199 var_info_hasher::hash (const value_type *p)
200 {
201 return DECL_UID (p->var);
202 }
203
204 inline bool
205 var_info_hasher::equal (const value_type *p1, const compare_type *p2)
206 {
207 return p1->var == p2->var;
208 }
209
210
211 /* Each entry in VAR_INFOS contains an element of type STRUCT
212 VAR_INFO_D. */
213 static hash_table <var_info_hasher> var_infos;
214
215
216 /* Information stored for SSA names. */
217 struct ssa_name_info
218 {
219 /* Age of this record (so that info_for_ssa_name table can be cleared
220 quickly); if AGE < CURRENT_INFO_FOR_SSA_NAME_AGE, then the fields
221 are assumed to be null. */
222 unsigned age;
223
224 /* Replacement mappings, allocated from update_ssa_obstack. */
225 bitmap repl_set;
226
227 /* Information stored for both SSA names and decls. */
228 struct common_info_d info;
229 };
230
231 /* The information associated with names. */
232 typedef struct ssa_name_info *ssa_name_info_p;
233
234 static vec<ssa_name_info_p> info_for_ssa_name;
235 static unsigned current_info_for_ssa_name_age;
236
237 static bitmap_obstack update_ssa_obstack;
238
239 /* The set of blocks affected by update_ssa. */
240 static bitmap blocks_to_update;
241
242 /* The main entry point to the SSA renamer (rewrite_blocks) may be
243 called several times to do different, but related, tasks.
244 Initially, we need it to rename the whole program into SSA form.
245 At other times, we may need it to only rename into SSA newly
246 exposed symbols. Finally, we can also call it to incrementally fix
247 an already built SSA web. */
248 enum rewrite_mode {
249 /* Convert the whole function into SSA form. */
250 REWRITE_ALL,
251
252 /* Incrementally update the SSA web by replacing existing SSA
253 names with new ones. See update_ssa for details. */
254 REWRITE_UPDATE
255 };
256
257 /* The set of symbols we ought to re-write into SSA form in update_ssa. */
258 static bitmap symbols_to_rename_set;
259 static vec<tree> symbols_to_rename;
260
261 /* Mark SYM for renaming. */
262
263 static void
264 mark_for_renaming (tree sym)
265 {
266 if (!symbols_to_rename_set)
267 symbols_to_rename_set = BITMAP_ALLOC (NULL);
268 if (bitmap_set_bit (symbols_to_rename_set, DECL_UID (sym)))
269 symbols_to_rename.safe_push (sym);
270 }
271
272 /* Return true if SYM is marked for renaming. */
273
274 static bool
275 marked_for_renaming (tree sym)
276 {
277 if (!symbols_to_rename_set || sym == NULL_TREE)
278 return false;
279 return bitmap_bit_p (symbols_to_rename_set, DECL_UID (sym));
280 }
281
282
283 /* Return true if STMT needs to be rewritten. When renaming a subset
284 of the variables, not all statements will be processed. This is
285 decided in mark_def_sites. */
286
287 static inline bool
288 rewrite_uses_p (gimple stmt)
289 {
290 return gimple_visited_p (stmt);
291 }
292
293
294 /* Set the rewrite marker on STMT to the value given by REWRITE_P. */
295
296 static inline void
297 set_rewrite_uses (gimple stmt, bool rewrite_p)
298 {
299 gimple_set_visited (stmt, rewrite_p);
300 }
301
302
303 /* Return true if the DEFs created by statement STMT should be
304 registered when marking new definition sites. This is slightly
305 different than rewrite_uses_p: it's used by update_ssa to
306 distinguish statements that need to have both uses and defs
307 processed from those that only need to have their defs processed.
308 Statements that define new SSA names only need to have their defs
309 registered, but they don't need to have their uses renamed. */
310
311 static inline bool
312 register_defs_p (gimple stmt)
313 {
314 return gimple_plf (stmt, GF_PLF_1) != 0;
315 }
316
317
318 /* If REGISTER_DEFS_P is true, mark STMT to have its DEFs registered. */
319
320 static inline void
321 set_register_defs (gimple stmt, bool register_defs_p)
322 {
323 gimple_set_plf (stmt, GF_PLF_1, register_defs_p);
324 }
325
326
327 /* Get the information associated with NAME. */
328
329 static inline ssa_name_info_p
330 get_ssa_name_ann (tree name)
331 {
332 unsigned ver = SSA_NAME_VERSION (name);
333 unsigned len = info_for_ssa_name.length ();
334 struct ssa_name_info *info;
335
336 /* Re-allocate the vector at most once per update/into-SSA. */
337 if (ver >= len)
338 info_for_ssa_name.safe_grow_cleared (num_ssa_names);
339
340 /* But allocate infos lazily. */
341 info = info_for_ssa_name[ver];
342 if (!info)
343 {
344 info = XCNEW (struct ssa_name_info);
345 info->age = current_info_for_ssa_name_age;
346 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
347 info_for_ssa_name[ver] = info;
348 }
349
350 if (info->age < current_info_for_ssa_name_age)
351 {
352 info->age = current_info_for_ssa_name_age;
353 info->repl_set = NULL;
354 info->info.need_phi_state = NEED_PHI_STATE_UNKNOWN;
355 info->info.current_def = NULL_TREE;
356 info->info.def_blocks.def_blocks = NULL;
357 info->info.def_blocks.phi_blocks = NULL;
358 info->info.def_blocks.livein_blocks = NULL;
359 }
360
361 return info;
362 }
363
364 /* Return and allocate the auxiliar information for DECL. */
365
366 static inline var_info_p
367 get_var_info (tree decl)
368 {
369 struct var_info_d vi;
370 var_info_d **slot;
371 vi.var = decl;
372 slot = var_infos.find_slot_with_hash (&vi, DECL_UID (decl), INSERT);
373 if (*slot == NULL)
374 {
375 var_info_p v = XCNEW (struct var_info_d);
376 v->var = decl;
377 *slot = v;
378 return v;
379 }
380 return *slot;
381 }
382
383
384 /* Clears info for SSA names. */
385
386 static void
387 clear_ssa_name_info (void)
388 {
389 current_info_for_ssa_name_age++;
390
391 /* If current_info_for_ssa_name_age wraps we use stale information.
392 Asser that this does not happen. */
393 gcc_assert (current_info_for_ssa_name_age != 0);
394 }
395
396
397 /* Get access to the auxiliar information stored per SSA name or decl. */
398
399 static inline common_info_p
400 get_common_info (tree var)
401 {
402 if (TREE_CODE (var) == SSA_NAME)
403 return &get_ssa_name_ann (var)->info;
404 else
405 return &get_var_info (var)->info;
406 }
407
408
409 /* Return the current definition for VAR. */
410
411 tree
412 get_current_def (tree var)
413 {
414 return get_common_info (var)->current_def;
415 }
416
417
418 /* Sets current definition of VAR to DEF. */
419
420 void
421 set_current_def (tree var, tree def)
422 {
423 get_common_info (var)->current_def = def;
424 }
425
426 /* Cleans up the REWRITE_THIS_STMT and REGISTER_DEFS_IN_THIS_STMT flags for
427 all statements in basic block BB. */
428
429 static void
430 initialize_flags_in_bb (basic_block bb)
431 {
432 gimple stmt;
433 gimple_stmt_iterator gsi;
434
435 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
436 {
437 gimple phi = gsi_stmt (gsi);
438 set_rewrite_uses (phi, false);
439 set_register_defs (phi, false);
440 }
441
442 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
443 {
444 stmt = gsi_stmt (gsi);
445
446 /* We are going to use the operand cache API, such as
447 SET_USE, SET_DEF, and FOR_EACH_IMM_USE_FAST. The operand
448 cache for each statement should be up-to-date. */
449 gcc_checking_assert (!gimple_modified_p (stmt));
450 set_rewrite_uses (stmt, false);
451 set_register_defs (stmt, false);
452 }
453 }
454
455 /* Mark block BB as interesting for update_ssa. */
456
457 static void
458 mark_block_for_update (basic_block bb)
459 {
460 gcc_checking_assert (blocks_to_update != NULL);
461 if (!bitmap_set_bit (blocks_to_update, bb->index))
462 return;
463 initialize_flags_in_bb (bb);
464 }
465
466 /* Return the set of blocks where variable VAR is defined and the blocks
467 where VAR is live on entry (livein). If no entry is found in
468 DEF_BLOCKS, a new one is created and returned. */
469
470 static inline struct def_blocks_d *
471 get_def_blocks_for (common_info_p info)
472 {
473 struct def_blocks_d *db_p = &info->def_blocks;
474 if (!db_p->def_blocks)
475 {
476 db_p->def_blocks = BITMAP_ALLOC (&update_ssa_obstack);
477 db_p->phi_blocks = BITMAP_ALLOC (&update_ssa_obstack);
478 db_p->livein_blocks = BITMAP_ALLOC (&update_ssa_obstack);
479 }
480
481 return db_p;
482 }
483
484
485 /* Mark block BB as the definition site for variable VAR. PHI_P is true if
486 VAR is defined by a PHI node. */
487
488 static void
489 set_def_block (tree var, basic_block bb, bool phi_p)
490 {
491 struct def_blocks_d *db_p;
492 common_info_p info;
493
494 info = get_common_info (var);
495 db_p = get_def_blocks_for (info);
496
497 /* Set the bit corresponding to the block where VAR is defined. */
498 bitmap_set_bit (db_p->def_blocks, bb->index);
499 if (phi_p)
500 bitmap_set_bit (db_p->phi_blocks, bb->index);
501
502 /* Keep track of whether or not we may need to insert PHI nodes.
503
504 If we are in the UNKNOWN state, then this is the first definition
505 of VAR. Additionally, we have not seen any uses of VAR yet, so
506 we do not need a PHI node for this variable at this time (i.e.,
507 transition to NEED_PHI_STATE_NO).
508
509 If we are in any other state, then we either have multiple definitions
510 of this variable occurring in different blocks or we saw a use of the
511 variable which was not dominated by the block containing the
512 definition(s). In this case we may need a PHI node, so enter
513 state NEED_PHI_STATE_MAYBE. */
514 if (info->need_phi_state == NEED_PHI_STATE_UNKNOWN)
515 info->need_phi_state = NEED_PHI_STATE_NO;
516 else
517 info->need_phi_state = NEED_PHI_STATE_MAYBE;
518 }
519
520
521 /* Mark block BB as having VAR live at the entry to BB. */
522
523 static void
524 set_livein_block (tree var, basic_block bb)
525 {
526 common_info_p info;
527 struct def_blocks_d *db_p;
528
529 info = get_common_info (var);
530 db_p = get_def_blocks_for (info);
531
532 /* Set the bit corresponding to the block where VAR is live in. */
533 bitmap_set_bit (db_p->livein_blocks, bb->index);
534
535 /* Keep track of whether or not we may need to insert PHI nodes.
536
537 If we reach here in NEED_PHI_STATE_NO, see if this use is dominated
538 by the single block containing the definition(s) of this variable. If
539 it is, then we remain in NEED_PHI_STATE_NO, otherwise we transition to
540 NEED_PHI_STATE_MAYBE. */
541 if (info->need_phi_state == NEED_PHI_STATE_NO)
542 {
543 int def_block_index = bitmap_first_set_bit (db_p->def_blocks);
544
545 if (def_block_index == -1
546 || ! dominated_by_p (CDI_DOMINATORS, bb,
547 BASIC_BLOCK (def_block_index)))
548 info->need_phi_state = NEED_PHI_STATE_MAYBE;
549 }
550 else
551 info->need_phi_state = NEED_PHI_STATE_MAYBE;
552 }
553
554
555 /* Return true if NAME is in OLD_SSA_NAMES. */
556
557 static inline bool
558 is_old_name (tree name)
559 {
560 unsigned ver = SSA_NAME_VERSION (name);
561 if (!new_ssa_names)
562 return false;
563 return (ver < SBITMAP_SIZE (new_ssa_names)
564 && bitmap_bit_p (old_ssa_names, ver));
565 }
566
567
568 /* Return true if NAME is in NEW_SSA_NAMES. */
569
570 static inline bool
571 is_new_name (tree name)
572 {
573 unsigned ver = SSA_NAME_VERSION (name);
574 if (!new_ssa_names)
575 return false;
576 return (ver < SBITMAP_SIZE (new_ssa_names)
577 && bitmap_bit_p (new_ssa_names, ver));
578 }
579
580
581 /* Return the names replaced by NEW_TREE (i.e., REPL_TBL[NEW_TREE].SET). */
582
583 static inline bitmap
584 names_replaced_by (tree new_tree)
585 {
586 return get_ssa_name_ann (new_tree)->repl_set;
587 }
588
589
590 /* Add OLD to REPL_TBL[NEW_TREE].SET. */
591
592 static inline void
593 add_to_repl_tbl (tree new_tree, tree old)
594 {
595 bitmap *set = &get_ssa_name_ann (new_tree)->repl_set;
596 if (!*set)
597 *set = BITMAP_ALLOC (&update_ssa_obstack);
598 bitmap_set_bit (*set, SSA_NAME_VERSION (old));
599 }
600
601
602 /* Add a new mapping NEW_TREE -> OLD REPL_TBL. Every entry N_i in REPL_TBL
603 represents the set of names O_1 ... O_j replaced by N_i. This is
604 used by update_ssa and its helpers to introduce new SSA names in an
605 already formed SSA web. */
606
607 static void
608 add_new_name_mapping (tree new_tree, tree old)
609 {
610 /* OLD and NEW_TREE must be different SSA names for the same symbol. */
611 gcc_checking_assert (new_tree != old
612 && SSA_NAME_VAR (new_tree) == SSA_NAME_VAR (old));
613
614 /* We may need to grow NEW_SSA_NAMES and OLD_SSA_NAMES because our
615 caller may have created new names since the set was created. */
616 if (SBITMAP_SIZE (new_ssa_names) <= num_ssa_names - 1)
617 {
618 unsigned int new_sz = num_ssa_names + NAME_SETS_GROWTH_FACTOR;
619 new_ssa_names = sbitmap_resize (new_ssa_names, new_sz, 0);
620 old_ssa_names = sbitmap_resize (old_ssa_names, new_sz, 0);
621 }
622
623 /* Update the REPL_TBL table. */
624 add_to_repl_tbl (new_tree, old);
625
626 /* If OLD had already been registered as a new name, then all the
627 names that OLD replaces should also be replaced by NEW_TREE. */
628 if (is_new_name (old))
629 bitmap_ior_into (names_replaced_by (new_tree), names_replaced_by (old));
630
631 /* Register NEW_TREE and OLD in NEW_SSA_NAMES and OLD_SSA_NAMES,
632 respectively. */
633 bitmap_set_bit (new_ssa_names, SSA_NAME_VERSION (new_tree));
634 bitmap_set_bit (old_ssa_names, SSA_NAME_VERSION (old));
635 }
636
637
638 /* Call back for walk_dominator_tree used to collect definition sites
639 for every variable in the function. For every statement S in block
640 BB:
641
642 1- Variables defined by S in the DEFS of S are marked in the bitmap
643 KILLS.
644
645 2- If S uses a variable VAR and there is no preceding kill of VAR,
646 then it is marked in the LIVEIN_BLOCKS bitmap associated with VAR.
647
648 This information is used to determine which variables are live
649 across block boundaries to reduce the number of PHI nodes
650 we create. */
651
652 static void
653 mark_def_sites (basic_block bb, gimple stmt, bitmap kills)
654 {
655 tree def;
656 use_operand_p use_p;
657 ssa_op_iter iter;
658
659 /* Since this is the first time that we rewrite the program into SSA
660 form, force an operand scan on every statement. */
661 update_stmt (stmt);
662
663 gcc_checking_assert (blocks_to_update == NULL);
664 set_register_defs (stmt, false);
665 set_rewrite_uses (stmt, false);
666
667 if (is_gimple_debug (stmt))
668 {
669 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
670 {
671 tree sym = USE_FROM_PTR (use_p);
672 gcc_checking_assert (DECL_P (sym));
673 set_rewrite_uses (stmt, true);
674 }
675 if (rewrite_uses_p (stmt))
676 bitmap_set_bit (interesting_blocks, bb->index);
677 return;
678 }
679
680 /* If a variable is used before being set, then the variable is live
681 across a block boundary, so mark it live-on-entry to BB. */
682 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
683 {
684 tree sym = USE_FROM_PTR (use_p);
685 gcc_checking_assert (DECL_P (sym));
686 if (!bitmap_bit_p (kills, DECL_UID (sym)))
687 set_livein_block (sym, bb);
688 set_rewrite_uses (stmt, true);
689 }
690
691 /* Now process the defs. Mark BB as the definition block and add
692 each def to the set of killed symbols. */
693 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
694 {
695 gcc_checking_assert (DECL_P (def));
696 set_def_block (def, bb, false);
697 bitmap_set_bit (kills, DECL_UID (def));
698 set_register_defs (stmt, true);
699 }
700
701 /* If we found the statement interesting then also mark the block BB
702 as interesting. */
703 if (rewrite_uses_p (stmt) || register_defs_p (stmt))
704 bitmap_set_bit (interesting_blocks, bb->index);
705 }
706
707 /* Structure used by prune_unused_phi_nodes to record bounds of the intervals
708 in the dfs numbering of the dominance tree. */
709
710 struct dom_dfsnum
711 {
712 /* Basic block whose index this entry corresponds to. */
713 unsigned bb_index;
714
715 /* The dfs number of this node. */
716 unsigned dfs_num;
717 };
718
719 /* Compares two entries of type struct dom_dfsnum by dfs_num field. Callback
720 for qsort. */
721
722 static int
723 cmp_dfsnum (const void *a, const void *b)
724 {
725 const struct dom_dfsnum *const da = (const struct dom_dfsnum *) a;
726 const struct dom_dfsnum *const db = (const struct dom_dfsnum *) b;
727
728 return (int) da->dfs_num - (int) db->dfs_num;
729 }
730
731 /* Among the intervals starting at the N points specified in DEFS, find
732 the one that contains S, and return its bb_index. */
733
734 static unsigned
735 find_dfsnum_interval (struct dom_dfsnum *defs, unsigned n, unsigned s)
736 {
737 unsigned f = 0, t = n, m;
738
739 while (t > f + 1)
740 {
741 m = (f + t) / 2;
742 if (defs[m].dfs_num <= s)
743 f = m;
744 else
745 t = m;
746 }
747
748 return defs[f].bb_index;
749 }
750
751 /* Clean bits from PHIS for phi nodes whose value cannot be used in USES.
752 KILLS is a bitmap of blocks where the value is defined before any use. */
753
754 static void
755 prune_unused_phi_nodes (bitmap phis, bitmap kills, bitmap uses)
756 {
757 vec<int> worklist;
758 bitmap_iterator bi;
759 unsigned i, b, p, u, top;
760 bitmap live_phis;
761 basic_block def_bb, use_bb;
762 edge e;
763 edge_iterator ei;
764 bitmap to_remove;
765 struct dom_dfsnum *defs;
766 unsigned n_defs, adef;
767
768 if (bitmap_empty_p (uses))
769 {
770 bitmap_clear (phis);
771 return;
772 }
773
774 /* The phi must dominate a use, or an argument of a live phi. Also, we
775 do not create any phi nodes in def blocks, unless they are also livein. */
776 to_remove = BITMAP_ALLOC (NULL);
777 bitmap_and_compl (to_remove, kills, uses);
778 bitmap_and_compl_into (phis, to_remove);
779 if (bitmap_empty_p (phis))
780 {
781 BITMAP_FREE (to_remove);
782 return;
783 }
784
785 /* We want to remove the unnecessary phi nodes, but we do not want to compute
786 liveness information, as that may be linear in the size of CFG, and if
787 there are lot of different variables to rewrite, this may lead to quadratic
788 behavior.
789
790 Instead, we basically emulate standard dce. We put all uses to worklist,
791 then for each of them find the nearest def that dominates them. If this
792 def is a phi node, we mark it live, and if it was not live before, we
793 add the predecessors of its basic block to the worklist.
794
795 To quickly locate the nearest def that dominates use, we use dfs numbering
796 of the dominance tree (that is already available in order to speed up
797 queries). For each def, we have the interval given by the dfs number on
798 entry to and on exit from the corresponding subtree in the dominance tree.
799 The nearest dominator for a given use is the smallest of these intervals
800 that contains entry and exit dfs numbers for the basic block with the use.
801 If we store the bounds for all the uses to an array and sort it, we can
802 locate the nearest dominating def in logarithmic time by binary search.*/
803 bitmap_ior (to_remove, kills, phis);
804 n_defs = bitmap_count_bits (to_remove);
805 defs = XNEWVEC (struct dom_dfsnum, 2 * n_defs + 1);
806 defs[0].bb_index = 1;
807 defs[0].dfs_num = 0;
808 adef = 1;
809 EXECUTE_IF_SET_IN_BITMAP (to_remove, 0, i, bi)
810 {
811 def_bb = BASIC_BLOCK (i);
812 defs[adef].bb_index = i;
813 defs[adef].dfs_num = bb_dom_dfs_in (CDI_DOMINATORS, def_bb);
814 defs[adef + 1].bb_index = i;
815 defs[adef + 1].dfs_num = bb_dom_dfs_out (CDI_DOMINATORS, def_bb);
816 adef += 2;
817 }
818 BITMAP_FREE (to_remove);
819 gcc_assert (adef == 2 * n_defs + 1);
820 qsort (defs, adef, sizeof (struct dom_dfsnum), cmp_dfsnum);
821 gcc_assert (defs[0].bb_index == 1);
822
823 /* Now each DEFS entry contains the number of the basic block to that the
824 dfs number corresponds. Change them to the number of basic block that
825 corresponds to the interval following the dfs number. Also, for the
826 dfs_out numbers, increase the dfs number by one (so that it corresponds
827 to the start of the following interval, not to the end of the current
828 one). We use WORKLIST as a stack. */
829 worklist.create (n_defs + 1);
830 worklist.quick_push (1);
831 top = 1;
832 n_defs = 1;
833 for (i = 1; i < adef; i++)
834 {
835 b = defs[i].bb_index;
836 if (b == top)
837 {
838 /* This is a closing element. Interval corresponding to the top
839 of the stack after removing it follows. */
840 worklist.pop ();
841 top = worklist[worklist.length () - 1];
842 defs[n_defs].bb_index = top;
843 defs[n_defs].dfs_num = defs[i].dfs_num + 1;
844 }
845 else
846 {
847 /* Opening element. Nothing to do, just push it to the stack and move
848 it to the correct position. */
849 defs[n_defs].bb_index = defs[i].bb_index;
850 defs[n_defs].dfs_num = defs[i].dfs_num;
851 worklist.quick_push (b);
852 top = b;
853 }
854
855 /* If this interval starts at the same point as the previous one, cancel
856 the previous one. */
857 if (defs[n_defs].dfs_num == defs[n_defs - 1].dfs_num)
858 defs[n_defs - 1].bb_index = defs[n_defs].bb_index;
859 else
860 n_defs++;
861 }
862 worklist.pop ();
863 gcc_assert (worklist.is_empty ());
864
865 /* Now process the uses. */
866 live_phis = BITMAP_ALLOC (NULL);
867 EXECUTE_IF_SET_IN_BITMAP (uses, 0, i, bi)
868 {
869 worklist.safe_push (i);
870 }
871
872 while (!worklist.is_empty ())
873 {
874 b = worklist.pop ();
875 if (b == ENTRY_BLOCK)
876 continue;
877
878 /* If there is a phi node in USE_BB, it is made live. Otherwise,
879 find the def that dominates the immediate dominator of USE_BB
880 (the kill in USE_BB does not dominate the use). */
881 if (bitmap_bit_p (phis, b))
882 p = b;
883 else
884 {
885 use_bb = get_immediate_dominator (CDI_DOMINATORS, BASIC_BLOCK (b));
886 p = find_dfsnum_interval (defs, n_defs,
887 bb_dom_dfs_in (CDI_DOMINATORS, use_bb));
888 if (!bitmap_bit_p (phis, p))
889 continue;
890 }
891
892 /* If the phi node is already live, there is nothing to do. */
893 if (!bitmap_set_bit (live_phis, p))
894 continue;
895
896 /* Add the new uses to the worklist. */
897 def_bb = BASIC_BLOCK (p);
898 FOR_EACH_EDGE (e, ei, def_bb->preds)
899 {
900 u = e->src->index;
901 if (bitmap_bit_p (uses, u))
902 continue;
903
904 /* In case there is a kill directly in the use block, do not record
905 the use (this is also necessary for correctness, as we assume that
906 uses dominated by a def directly in their block have been filtered
907 out before). */
908 if (bitmap_bit_p (kills, u))
909 continue;
910
911 bitmap_set_bit (uses, u);
912 worklist.safe_push (u);
913 }
914 }
915
916 worklist.release ();
917 bitmap_copy (phis, live_phis);
918 BITMAP_FREE (live_phis);
919 free (defs);
920 }
921
922 /* Return the set of blocks where variable VAR is defined and the blocks
923 where VAR is live on entry (livein). Return NULL, if no entry is
924 found in DEF_BLOCKS. */
925
926 static inline struct def_blocks_d *
927 find_def_blocks_for (tree var)
928 {
929 def_blocks_p p = &get_common_info (var)->def_blocks;
930 if (!p->def_blocks)
931 return NULL;
932 return p;
933 }
934
935
936 /* Marks phi node PHI in basic block BB for rewrite. */
937
938 static void
939 mark_phi_for_rewrite (basic_block bb, gimple phi)
940 {
941 gimple_vec phis;
942 unsigned n, idx = bb->index;
943
944 if (rewrite_uses_p (phi))
945 return;
946
947 set_rewrite_uses (phi, true);
948
949 if (!blocks_with_phis_to_rewrite)
950 return;
951
952 bitmap_set_bit (blocks_with_phis_to_rewrite, idx);
953
954 n = (unsigned) last_basic_block + 1;
955 if (phis_to_rewrite.length () < n)
956 phis_to_rewrite.safe_grow_cleared (n);
957
958 phis = phis_to_rewrite[idx];
959 phis.reserve (10);
960
961 phis.safe_push (phi);
962 phis_to_rewrite[idx] = phis;
963 }
964
965 /* Insert PHI nodes for variable VAR using the iterated dominance
966 frontier given in PHI_INSERTION_POINTS. If UPDATE_P is true, this
967 function assumes that the caller is incrementally updating the
968 existing SSA form, in which case VAR may be an SSA name instead of
969 a symbol.
970
971 PHI_INSERTION_POINTS is updated to reflect nodes that already had a
972 PHI node for VAR. On exit, only the nodes that received a PHI node
973 for VAR will be present in PHI_INSERTION_POINTS. */
974
975 static void
976 insert_phi_nodes_for (tree var, bitmap phi_insertion_points, bool update_p)
977 {
978 unsigned bb_index;
979 edge e;
980 gimple phi;
981 basic_block bb;
982 bitmap_iterator bi;
983 struct def_blocks_d *def_map = find_def_blocks_for (var);
984
985 /* Remove the blocks where we already have PHI nodes for VAR. */
986 bitmap_and_compl_into (phi_insertion_points, def_map->phi_blocks);
987
988 /* Remove obviously useless phi nodes. */
989 prune_unused_phi_nodes (phi_insertion_points, def_map->def_blocks,
990 def_map->livein_blocks);
991
992 /* And insert the PHI nodes. */
993 EXECUTE_IF_SET_IN_BITMAP (phi_insertion_points, 0, bb_index, bi)
994 {
995 bb = BASIC_BLOCK (bb_index);
996 if (update_p)
997 mark_block_for_update (bb);
998
999 if (dump_file && (dump_flags & TDF_DETAILS))
1000 {
1001 fprintf (dump_file, "creating PHI node in block #%d for ", bb_index);
1002 print_generic_expr (dump_file, var, TDF_SLIM);
1003 fprintf (dump_file, "\n");
1004 }
1005 phi = NULL;
1006
1007 if (TREE_CODE (var) == SSA_NAME)
1008 {
1009 /* If we are rewriting SSA names, create the LHS of the PHI
1010 node by duplicating VAR. This is useful in the case of
1011 pointers, to also duplicate pointer attributes (alias
1012 information, in particular). */
1013 edge_iterator ei;
1014 tree new_lhs;
1015
1016 gcc_checking_assert (update_p);
1017 new_lhs = duplicate_ssa_name (var, NULL);
1018 phi = create_phi_node (new_lhs, bb);
1019 add_new_name_mapping (new_lhs, var);
1020
1021 /* Add VAR to every argument slot of PHI. We need VAR in
1022 every argument so that rewrite_update_phi_arguments knows
1023 which name is this PHI node replacing. If VAR is a
1024 symbol marked for renaming, this is not necessary, the
1025 renamer will use the symbol on the LHS to get its
1026 reaching definition. */
1027 FOR_EACH_EDGE (e, ei, bb->preds)
1028 add_phi_arg (phi, var, e, UNKNOWN_LOCATION);
1029 }
1030 else
1031 {
1032 tree tracked_var;
1033
1034 gcc_checking_assert (DECL_P (var));
1035 phi = create_phi_node (var, bb);
1036
1037 tracked_var = target_for_debug_bind (var);
1038 if (tracked_var)
1039 {
1040 gimple note = gimple_build_debug_bind (tracked_var,
1041 PHI_RESULT (phi),
1042 phi);
1043 gimple_stmt_iterator si = gsi_after_labels (bb);
1044 gsi_insert_before (&si, note, GSI_SAME_STMT);
1045 }
1046 }
1047
1048 /* Mark this PHI node as interesting for update_ssa. */
1049 set_register_defs (phi, true);
1050 mark_phi_for_rewrite (bb, phi);
1051 }
1052 }
1053
1054 /* Sort var_infos after DECL_UID of their var. */
1055
1056 static int
1057 insert_phi_nodes_compare_var_infos (const void *a, const void *b)
1058 {
1059 const struct var_info_d *defa = *(struct var_info_d * const *)a;
1060 const struct var_info_d *defb = *(struct var_info_d * const *)b;
1061 if (DECL_UID (defa->var) < DECL_UID (defb->var))
1062 return -1;
1063 else
1064 return 1;
1065 }
1066
1067 /* Insert PHI nodes at the dominance frontier of blocks with variable
1068 definitions. DFS contains the dominance frontier information for
1069 the flowgraph. */
1070
1071 static void
1072 insert_phi_nodes (bitmap_head *dfs)
1073 {
1074 hash_table <var_info_hasher>::iterator hi;
1075 unsigned i;
1076 var_info_p info;
1077 vec<var_info_p> vars;
1078
1079 timevar_push (TV_TREE_INSERT_PHI_NODES);
1080
1081 vars.create (var_infos.elements ());
1082 FOR_EACH_HASH_TABLE_ELEMENT (var_infos, info, var_info_p, hi)
1083 if (info->info.need_phi_state != NEED_PHI_STATE_NO)
1084 vars.quick_push (info);
1085
1086 /* Do two stages to avoid code generation differences for UID
1087 differences but no UID ordering differences. */
1088 vars.qsort (insert_phi_nodes_compare_var_infos);
1089
1090 FOR_EACH_VEC_ELT (vars, i, info)
1091 {
1092 bitmap idf = compute_idf (info->info.def_blocks.def_blocks, dfs);
1093 insert_phi_nodes_for (info->var, idf, false);
1094 BITMAP_FREE (idf);
1095 }
1096
1097 vars.release ();
1098
1099 timevar_pop (TV_TREE_INSERT_PHI_NODES);
1100 }
1101
1102
1103 /* Push SYM's current reaching definition into BLOCK_DEFS_STACK and
1104 register DEF (an SSA_NAME) to be a new definition for SYM. */
1105
1106 static void
1107 register_new_def (tree def, tree sym)
1108 {
1109 common_info_p info = get_common_info (sym);
1110 tree currdef;
1111
1112 /* If this variable is set in a single basic block and all uses are
1113 dominated by the set(s) in that single basic block, then there is
1114 no reason to record anything for this variable in the block local
1115 definition stacks. Doing so just wastes time and memory.
1116
1117 This is the same test to prune the set of variables which may
1118 need PHI nodes. So we just use that information since it's already
1119 computed and available for us to use. */
1120 if (info->need_phi_state == NEED_PHI_STATE_NO)
1121 {
1122 info->current_def = def;
1123 return;
1124 }
1125
1126 currdef = info->current_def;
1127
1128 /* If SYM is not a GIMPLE register, then CURRDEF may be a name whose
1129 SSA_NAME_VAR is not necessarily SYM. In this case, also push SYM
1130 in the stack so that we know which symbol is being defined by
1131 this SSA name when we unwind the stack. */
1132 if (currdef && !is_gimple_reg (sym))
1133 block_defs_stack.safe_push (sym);
1134
1135 /* Push the current reaching definition into BLOCK_DEFS_STACK. This
1136 stack is later used by the dominator tree callbacks to restore
1137 the reaching definitions for all the variables defined in the
1138 block after a recursive visit to all its immediately dominated
1139 blocks. If there is no current reaching definition, then just
1140 record the underlying _DECL node. */
1141 block_defs_stack.safe_push (currdef ? currdef : sym);
1142
1143 /* Set the current reaching definition for SYM to be DEF. */
1144 info->current_def = def;
1145 }
1146
1147
1148 /* Perform a depth-first traversal of the dominator tree looking for
1149 variables to rename. BB is the block where to start searching.
1150 Renaming is a five step process:
1151
1152 1- Every definition made by PHI nodes at the start of the blocks is
1153 registered as the current definition for the corresponding variable.
1154
1155 2- Every statement in BB is rewritten. USE and VUSE operands are
1156 rewritten with their corresponding reaching definition. DEF and
1157 VDEF targets are registered as new definitions.
1158
1159 3- All the PHI nodes in successor blocks of BB are visited. The
1160 argument corresponding to BB is replaced with its current reaching
1161 definition.
1162
1163 4- Recursively rewrite every dominator child block of BB.
1164
1165 5- Restore (in reverse order) the current reaching definition for every
1166 new definition introduced in this block. This is done so that when
1167 we return from the recursive call, all the current reaching
1168 definitions are restored to the names that were valid in the
1169 dominator parent of BB. */
1170
1171 /* Return the current definition for variable VAR. If none is found,
1172 create a new SSA name to act as the zeroth definition for VAR. */
1173
1174 static tree
1175 get_reaching_def (tree var)
1176 {
1177 common_info_p info = get_common_info (var);
1178 tree currdef;
1179
1180 /* Lookup the current reaching definition for VAR. */
1181 currdef = info->current_def;
1182
1183 /* If there is no reaching definition for VAR, create and register a
1184 default definition for it (if needed). */
1185 if (currdef == NULL_TREE)
1186 {
1187 tree sym = DECL_P (var) ? var : SSA_NAME_VAR (var);
1188 currdef = get_or_create_ssa_default_def (cfun, sym);
1189 }
1190
1191 /* Return the current reaching definition for VAR, or the default
1192 definition, if we had to create one. */
1193 return currdef;
1194 }
1195
1196
1197 /* Helper function for rewrite_stmt. Rewrite uses in a debug stmt. */
1198
1199 static void
1200 rewrite_debug_stmt_uses (gimple stmt)
1201 {
1202 use_operand_p use_p;
1203 ssa_op_iter iter;
1204 bool update = false;
1205
1206 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1207 {
1208 tree var = USE_FROM_PTR (use_p), def;
1209 common_info_p info = get_common_info (var);
1210 gcc_checking_assert (DECL_P (var));
1211 def = info->current_def;
1212 if (!def)
1213 {
1214 if (TREE_CODE (var) == PARM_DECL && single_succ_p (ENTRY_BLOCK_PTR))
1215 {
1216 gimple_stmt_iterator gsi
1217 = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1218 int lim;
1219 /* Search a few source bind stmts at the start of first bb to
1220 see if a DEBUG_EXPR_DECL can't be reused. */
1221 for (lim = 32;
1222 !gsi_end_p (gsi) && lim > 0;
1223 gsi_next (&gsi), lim--)
1224 {
1225 gimple gstmt = gsi_stmt (gsi);
1226 if (!gimple_debug_source_bind_p (gstmt))
1227 break;
1228 if (gimple_debug_source_bind_get_value (gstmt) == var)
1229 {
1230 def = gimple_debug_source_bind_get_var (gstmt);
1231 if (TREE_CODE (def) == DEBUG_EXPR_DECL)
1232 break;
1233 else
1234 def = NULL_TREE;
1235 }
1236 }
1237 /* If not, add a new source bind stmt. */
1238 if (def == NULL_TREE)
1239 {
1240 gimple def_temp;
1241 def = make_node (DEBUG_EXPR_DECL);
1242 def_temp = gimple_build_debug_source_bind (def, var, NULL);
1243 DECL_ARTIFICIAL (def) = 1;
1244 TREE_TYPE (def) = TREE_TYPE (var);
1245 DECL_MODE (def) = DECL_MODE (var);
1246 gsi = gsi_after_labels (single_succ (ENTRY_BLOCK_PTR));
1247 gsi_insert_before (&gsi, def_temp, GSI_SAME_STMT);
1248 }
1249 update = true;
1250 }
1251 }
1252 else
1253 {
1254 /* Check if info->current_def can be trusted. */
1255 basic_block bb = gimple_bb (stmt);
1256 basic_block def_bb
1257 = SSA_NAME_IS_DEFAULT_DEF (def)
1258 ? NULL : gimple_bb (SSA_NAME_DEF_STMT (def));
1259
1260 /* If definition is in current bb, it is fine. */
1261 if (bb == def_bb)
1262 ;
1263 /* If definition bb doesn't dominate the current bb,
1264 it can't be used. */
1265 else if (def_bb && !dominated_by_p (CDI_DOMINATORS, bb, def_bb))
1266 def = NULL;
1267 /* If there is just one definition and dominates the current
1268 bb, it is fine. */
1269 else if (info->need_phi_state == NEED_PHI_STATE_NO)
1270 ;
1271 else
1272 {
1273 struct def_blocks_d *db_p = get_def_blocks_for (info);
1274
1275 /* If there are some non-debug uses in the current bb,
1276 it is fine. */
1277 if (bitmap_bit_p (db_p->livein_blocks, bb->index))
1278 ;
1279 /* Otherwise give up for now. */
1280 else
1281 def = NULL;
1282 }
1283 }
1284 if (def == NULL)
1285 {
1286 gimple_debug_bind_reset_value (stmt);
1287 update_stmt (stmt);
1288 return;
1289 }
1290 SET_USE (use_p, def);
1291 }
1292 if (update)
1293 update_stmt (stmt);
1294 }
1295
1296 /* SSA Rewriting Step 2. Rewrite every variable used in each statement in
1297 the block with its immediate reaching definitions. Update the current
1298 definition of a variable when a new real or virtual definition is found. */
1299
1300 static void
1301 rewrite_stmt (gimple_stmt_iterator *si)
1302 {
1303 use_operand_p use_p;
1304 def_operand_p def_p;
1305 ssa_op_iter iter;
1306 gimple stmt = gsi_stmt (*si);
1307
1308 /* If mark_def_sites decided that we don't need to rewrite this
1309 statement, ignore it. */
1310 gcc_assert (blocks_to_update == NULL);
1311 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1312 return;
1313
1314 if (dump_file && (dump_flags & TDF_DETAILS))
1315 {
1316 fprintf (dump_file, "Renaming statement ");
1317 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1318 fprintf (dump_file, "\n");
1319 }
1320
1321 /* Step 1. Rewrite USES in the statement. */
1322 if (rewrite_uses_p (stmt))
1323 {
1324 if (is_gimple_debug (stmt))
1325 rewrite_debug_stmt_uses (stmt);
1326 else
1327 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1328 {
1329 tree var = USE_FROM_PTR (use_p);
1330 gcc_checking_assert (DECL_P (var));
1331 SET_USE (use_p, get_reaching_def (var));
1332 }
1333 }
1334
1335 /* Step 2. Register the statement's DEF operands. */
1336 if (register_defs_p (stmt))
1337 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1338 {
1339 tree var = DEF_FROM_PTR (def_p);
1340 tree name;
1341 tree tracked_var;
1342
1343 gcc_checking_assert (DECL_P (var));
1344
1345 if (gimple_clobber_p (stmt)
1346 && is_gimple_reg (var))
1347 {
1348 /* If we rewrite a DECL into SSA form then drop its
1349 clobber stmts and replace uses with a new default def. */
1350 gcc_checking_assert (TREE_CODE (var) == VAR_DECL
1351 && !gimple_vdef (stmt));
1352 gsi_replace (si, gimple_build_nop (), true);
1353 register_new_def (get_or_create_ssa_default_def (cfun, var), var);
1354 break;
1355 }
1356
1357 name = make_ssa_name (var, stmt);
1358 SET_DEF (def_p, name);
1359 register_new_def (DEF_FROM_PTR (def_p), var);
1360
1361 tracked_var = target_for_debug_bind (var);
1362 if (tracked_var)
1363 {
1364 gimple note = gimple_build_debug_bind (tracked_var, name, stmt);
1365 gsi_insert_after (si, note, GSI_SAME_STMT);
1366 }
1367 }
1368 }
1369
1370
1371 /* SSA Rewriting Step 3. Visit all the successor blocks of BB looking for
1372 PHI nodes. For every PHI node found, add a new argument containing the
1373 current reaching definition for the variable and the edge through which
1374 that definition is reaching the PHI node. */
1375
1376 static void
1377 rewrite_add_phi_arguments (basic_block bb)
1378 {
1379 edge e;
1380 edge_iterator ei;
1381
1382 FOR_EACH_EDGE (e, ei, bb->succs)
1383 {
1384 gimple phi;
1385 gimple_stmt_iterator gsi;
1386
1387 for (gsi = gsi_start_phis (e->dest); !gsi_end_p (gsi);
1388 gsi_next (&gsi))
1389 {
1390 tree currdef, res;
1391 location_t loc;
1392
1393 phi = gsi_stmt (gsi);
1394 res = gimple_phi_result (phi);
1395 currdef = get_reaching_def (SSA_NAME_VAR (res));
1396 /* Virtual operand PHI args do not need a location. */
1397 if (virtual_operand_p (res))
1398 loc = UNKNOWN_LOCATION;
1399 else
1400 loc = gimple_location (SSA_NAME_DEF_STMT (currdef));
1401 add_phi_arg (phi, currdef, e, loc);
1402 }
1403 }
1404 }
1405
1406 class rewrite_dom_walker : public dom_walker
1407 {
1408 public:
1409 rewrite_dom_walker (cdi_direction direction) : dom_walker (direction) {}
1410
1411 virtual void before_dom_children (basic_block);
1412 virtual void after_dom_children (basic_block);
1413 };
1414
1415 /* SSA Rewriting Step 1. Initialization, create a block local stack
1416 of reaching definitions for new SSA names produced in this block
1417 (BLOCK_DEFS). Register new definitions for every PHI node in the
1418 block. */
1419
1420 void
1421 rewrite_dom_walker::before_dom_children (basic_block bb)
1422 {
1423 gimple_stmt_iterator gsi;
1424
1425 if (dump_file && (dump_flags & TDF_DETAILS))
1426 fprintf (dump_file, "\n\nRenaming block #%d\n\n", bb->index);
1427
1428 /* Mark the unwind point for this block. */
1429 block_defs_stack.safe_push (NULL_TREE);
1430
1431 /* Step 1. Register new definitions for every PHI node in the block.
1432 Conceptually, all the PHI nodes are executed in parallel and each PHI
1433 node introduces a new version for the associated variable. */
1434 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1435 {
1436 tree result = gimple_phi_result (gsi_stmt (gsi));
1437 register_new_def (result, SSA_NAME_VAR (result));
1438 }
1439
1440 /* Step 2. Rewrite every variable used in each statement in the block
1441 with its immediate reaching definitions. Update the current definition
1442 of a variable when a new real or virtual definition is found. */
1443 if (bitmap_bit_p (interesting_blocks, bb->index))
1444 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1445 rewrite_stmt (&gsi);
1446
1447 /* Step 3. Visit all the successor blocks of BB looking for PHI nodes.
1448 For every PHI node found, add a new argument containing the current
1449 reaching definition for the variable and the edge through which that
1450 definition is reaching the PHI node. */
1451 rewrite_add_phi_arguments (bb);
1452 }
1453
1454
1455
1456 /* Called after visiting all the statements in basic block BB and all
1457 of its dominator children. Restore CURRDEFS to its original value. */
1458
1459 void
1460 rewrite_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
1461 {
1462 /* Restore CURRDEFS to its original state. */
1463 while (block_defs_stack.length () > 0)
1464 {
1465 tree tmp = block_defs_stack.pop ();
1466 tree saved_def, var;
1467
1468 if (tmp == NULL_TREE)
1469 break;
1470
1471 if (TREE_CODE (tmp) == SSA_NAME)
1472 {
1473 /* If we recorded an SSA_NAME, then make the SSA_NAME the
1474 current definition of its underlying variable. Note that
1475 if the SSA_NAME is not for a GIMPLE register, the symbol
1476 being defined is stored in the next slot in the stack.
1477 This mechanism is needed because an SSA name for a
1478 non-register symbol may be the definition for more than
1479 one symbol (e.g., SFTs, aliased variables, etc). */
1480 saved_def = tmp;
1481 var = SSA_NAME_VAR (saved_def);
1482 if (!is_gimple_reg (var))
1483 var = block_defs_stack.pop ();
1484 }
1485 else
1486 {
1487 /* If we recorded anything else, it must have been a _DECL
1488 node and its current reaching definition must have been
1489 NULL. */
1490 saved_def = NULL;
1491 var = tmp;
1492 }
1493
1494 get_common_info (var)->current_def = saved_def;
1495 }
1496 }
1497
1498
1499 /* Dump bitmap SET (assumed to contain VAR_DECLs) to FILE. */
1500
1501 DEBUG_FUNCTION void
1502 debug_decl_set (bitmap set)
1503 {
1504 dump_decl_set (stderr, set);
1505 fprintf (stderr, "\n");
1506 }
1507
1508
1509 /* Dump the renaming stack (block_defs_stack) to FILE. Traverse the
1510 stack up to a maximum of N levels. If N is -1, the whole stack is
1511 dumped. New levels are created when the dominator tree traversal
1512 used for renaming enters a new sub-tree. */
1513
1514 void
1515 dump_defs_stack (FILE *file, int n)
1516 {
1517 int i, j;
1518
1519 fprintf (file, "\n\nRenaming stack");
1520 if (n > 0)
1521 fprintf (file, " (up to %d levels)", n);
1522 fprintf (file, "\n\n");
1523
1524 i = 1;
1525 fprintf (file, "Level %d (current level)\n", i);
1526 for (j = (int) block_defs_stack.length () - 1; j >= 0; j--)
1527 {
1528 tree name, var;
1529
1530 name = block_defs_stack[j];
1531 if (name == NULL_TREE)
1532 {
1533 i++;
1534 if (n > 0 && i > n)
1535 break;
1536 fprintf (file, "\nLevel %d\n", i);
1537 continue;
1538 }
1539
1540 if (DECL_P (name))
1541 {
1542 var = name;
1543 name = NULL_TREE;
1544 }
1545 else
1546 {
1547 var = SSA_NAME_VAR (name);
1548 if (!is_gimple_reg (var))
1549 {
1550 j--;
1551 var = block_defs_stack[j];
1552 }
1553 }
1554
1555 fprintf (file, " Previous CURRDEF (");
1556 print_generic_expr (file, var, 0);
1557 fprintf (file, ") = ");
1558 if (name)
1559 print_generic_expr (file, name, 0);
1560 else
1561 fprintf (file, "<NIL>");
1562 fprintf (file, "\n");
1563 }
1564 }
1565
1566
1567 /* Dump the renaming stack (block_defs_stack) to stderr. Traverse the
1568 stack up to a maximum of N levels. If N is -1, the whole stack is
1569 dumped. New levels are created when the dominator tree traversal
1570 used for renaming enters a new sub-tree. */
1571
1572 DEBUG_FUNCTION void
1573 debug_defs_stack (int n)
1574 {
1575 dump_defs_stack (stderr, n);
1576 }
1577
1578
1579 /* Dump the current reaching definition of every symbol to FILE. */
1580
1581 void
1582 dump_currdefs (FILE *file)
1583 {
1584 unsigned i;
1585 tree var;
1586
1587 if (symbols_to_rename.is_empty ())
1588 return;
1589
1590 fprintf (file, "\n\nCurrent reaching definitions\n\n");
1591 FOR_EACH_VEC_ELT (symbols_to_rename, i, var)
1592 {
1593 common_info_p info = get_common_info (var);
1594 fprintf (file, "CURRDEF (");
1595 print_generic_expr (file, var, 0);
1596 fprintf (file, ") = ");
1597 if (info->current_def)
1598 print_generic_expr (file, info->current_def, 0);
1599 else
1600 fprintf (file, "<NIL>");
1601 fprintf (file, "\n");
1602 }
1603 }
1604
1605
1606 /* Dump the current reaching definition of every symbol to stderr. */
1607
1608 DEBUG_FUNCTION void
1609 debug_currdefs (void)
1610 {
1611 dump_currdefs (stderr);
1612 }
1613
1614
1615 /* Dump SSA information to FILE. */
1616
1617 void
1618 dump_tree_ssa (FILE *file)
1619 {
1620 const char *funcname
1621 = lang_hooks.decl_printable_name (current_function_decl, 2);
1622
1623 fprintf (file, "SSA renaming information for %s\n\n", funcname);
1624
1625 dump_var_infos (file);
1626 dump_defs_stack (file, -1);
1627 dump_currdefs (file);
1628 dump_tree_ssa_stats (file);
1629 }
1630
1631
1632 /* Dump SSA information to stderr. */
1633
1634 DEBUG_FUNCTION void
1635 debug_tree_ssa (void)
1636 {
1637 dump_tree_ssa (stderr);
1638 }
1639
1640
1641 /* Dump statistics for the hash table HTAB. */
1642
1643 static void
1644 htab_statistics (FILE *file, hash_table <var_info_hasher> htab)
1645 {
1646 fprintf (file, "size %ld, %ld elements, %f collision/search ratio\n",
1647 (long) htab.size (),
1648 (long) htab.elements (),
1649 htab.collisions ());
1650 }
1651
1652
1653 /* Dump SSA statistics on FILE. */
1654
1655 void
1656 dump_tree_ssa_stats (FILE *file)
1657 {
1658 if (var_infos.is_created ())
1659 {
1660 fprintf (file, "\nHash table statistics:\n");
1661 fprintf (file, " var_infos: ");
1662 htab_statistics (file, var_infos);
1663 fprintf (file, "\n");
1664 }
1665 }
1666
1667
1668 /* Dump SSA statistics on stderr. */
1669
1670 DEBUG_FUNCTION void
1671 debug_tree_ssa_stats (void)
1672 {
1673 dump_tree_ssa_stats (stderr);
1674 }
1675
1676
1677 /* Callback for htab_traverse to dump the VAR_INFOS hash table. */
1678
1679 int
1680 debug_var_infos_r (var_info_d **slot, FILE *file)
1681 {
1682 struct var_info_d *info = *slot;
1683
1684 fprintf (file, "VAR: ");
1685 print_generic_expr (file, info->var, dump_flags);
1686 bitmap_print (file, info->info.def_blocks.def_blocks,
1687 ", DEF_BLOCKS: { ", "}");
1688 bitmap_print (file, info->info.def_blocks.livein_blocks,
1689 ", LIVEIN_BLOCKS: { ", "}");
1690 bitmap_print (file, info->info.def_blocks.phi_blocks,
1691 ", PHI_BLOCKS: { ", "}\n");
1692
1693 return 1;
1694 }
1695
1696
1697 /* Dump the VAR_INFOS hash table on FILE. */
1698
1699 void
1700 dump_var_infos (FILE *file)
1701 {
1702 fprintf (file, "\n\nDefinition and live-in blocks:\n\n");
1703 if (var_infos.is_created ())
1704 var_infos.traverse <FILE *, debug_var_infos_r> (file);
1705 }
1706
1707
1708 /* Dump the VAR_INFOS hash table on stderr. */
1709
1710 DEBUG_FUNCTION void
1711 debug_var_infos (void)
1712 {
1713 dump_var_infos (stderr);
1714 }
1715
1716
1717 /* Register NEW_NAME to be the new reaching definition for OLD_NAME. */
1718
1719 static inline void
1720 register_new_update_single (tree new_name, tree old_name)
1721 {
1722 common_info_p info = get_common_info (old_name);
1723 tree currdef = info->current_def;
1724
1725 /* Push the current reaching definition into BLOCK_DEFS_STACK.
1726 This stack is later used by the dominator tree callbacks to
1727 restore the reaching definitions for all the variables
1728 defined in the block after a recursive visit to all its
1729 immediately dominated blocks. */
1730 block_defs_stack.reserve (2);
1731 block_defs_stack.quick_push (currdef);
1732 block_defs_stack.quick_push (old_name);
1733
1734 /* Set the current reaching definition for OLD_NAME to be
1735 NEW_NAME. */
1736 info->current_def = new_name;
1737 }
1738
1739
1740 /* Register NEW_NAME to be the new reaching definition for all the
1741 names in OLD_NAMES. Used by the incremental SSA update routines to
1742 replace old SSA names with new ones. */
1743
1744 static inline void
1745 register_new_update_set (tree new_name, bitmap old_names)
1746 {
1747 bitmap_iterator bi;
1748 unsigned i;
1749
1750 EXECUTE_IF_SET_IN_BITMAP (old_names, 0, i, bi)
1751 register_new_update_single (new_name, ssa_name (i));
1752 }
1753
1754
1755
1756 /* If the operand pointed to by USE_P is a name in OLD_SSA_NAMES or
1757 it is a symbol marked for renaming, replace it with USE_P's current
1758 reaching definition. */
1759
1760 static inline void
1761 maybe_replace_use (use_operand_p use_p)
1762 {
1763 tree rdef = NULL_TREE;
1764 tree use = USE_FROM_PTR (use_p);
1765 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1766
1767 if (marked_for_renaming (sym))
1768 rdef = get_reaching_def (sym);
1769 else if (is_old_name (use))
1770 rdef = get_reaching_def (use);
1771
1772 if (rdef && rdef != use)
1773 SET_USE (use_p, rdef);
1774 }
1775
1776
1777 /* Same as maybe_replace_use, but without introducing default stmts,
1778 returning false to indicate a need to do so. */
1779
1780 static inline bool
1781 maybe_replace_use_in_debug_stmt (use_operand_p use_p)
1782 {
1783 tree rdef = NULL_TREE;
1784 tree use = USE_FROM_PTR (use_p);
1785 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
1786
1787 if (marked_for_renaming (sym))
1788 rdef = get_var_info (sym)->info.current_def;
1789 else if (is_old_name (use))
1790 {
1791 rdef = get_ssa_name_ann (use)->info.current_def;
1792 /* We can't assume that, if there's no current definition, the
1793 default one should be used. It could be the case that we've
1794 rearranged blocks so that the earlier definition no longer
1795 dominates the use. */
1796 if (!rdef && SSA_NAME_IS_DEFAULT_DEF (use))
1797 rdef = use;
1798 }
1799 else
1800 rdef = use;
1801
1802 if (rdef && rdef != use)
1803 SET_USE (use_p, rdef);
1804
1805 return rdef != NULL_TREE;
1806 }
1807
1808
1809 /* If the operand pointed to by DEF_P is an SSA name in NEW_SSA_NAMES
1810 or OLD_SSA_NAMES, or if it is a symbol marked for renaming,
1811 register it as the current definition for the names replaced by
1812 DEF_P. */
1813
1814 static inline void
1815 maybe_register_def (def_operand_p def_p, gimple stmt,
1816 gimple_stmt_iterator gsi)
1817 {
1818 tree def = DEF_FROM_PTR (def_p);
1819 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
1820
1821 /* If DEF is a naked symbol that needs renaming, create a new
1822 name for it. */
1823 if (marked_for_renaming (sym))
1824 {
1825 if (DECL_P (def))
1826 {
1827 tree tracked_var;
1828
1829 def = make_ssa_name (def, stmt);
1830 SET_DEF (def_p, def);
1831
1832 tracked_var = target_for_debug_bind (sym);
1833 if (tracked_var)
1834 {
1835 gimple note = gimple_build_debug_bind (tracked_var, def, stmt);
1836 /* If stmt ends the bb, insert the debug stmt on the single
1837 non-EH edge from the stmt. */
1838 if (gsi_one_before_end_p (gsi) && stmt_ends_bb_p (stmt))
1839 {
1840 basic_block bb = gsi_bb (gsi);
1841 edge_iterator ei;
1842 edge e, ef = NULL;
1843 FOR_EACH_EDGE (e, ei, bb->succs)
1844 if (!(e->flags & EDGE_EH))
1845 {
1846 gcc_checking_assert (!ef);
1847 ef = e;
1848 }
1849 /* If there are other predecessors to ef->dest, then
1850 there must be PHI nodes for the modified
1851 variable, and therefore there will be debug bind
1852 stmts after the PHI nodes. The debug bind notes
1853 we'd insert would force the creation of a new
1854 block (diverging codegen) and be redundant with
1855 the post-PHI bind stmts, so don't add them.
1856
1857 As for the exit edge, there wouldn't be redundant
1858 bind stmts, but there wouldn't be a PC to bind
1859 them to either, so avoid diverging the CFG. */
1860 if (ef && single_pred_p (ef->dest)
1861 && ef->dest != EXIT_BLOCK_PTR)
1862 {
1863 /* If there were PHI nodes in the node, we'd
1864 have to make sure the value we're binding
1865 doesn't need rewriting. But there shouldn't
1866 be PHI nodes in a single-predecessor block,
1867 so we just add the note. */
1868 gsi_insert_on_edge_immediate (ef, note);
1869 }
1870 }
1871 else
1872 gsi_insert_after (&gsi, note, GSI_SAME_STMT);
1873 }
1874 }
1875
1876 register_new_update_single (def, sym);
1877 }
1878 else
1879 {
1880 /* If DEF is a new name, register it as a new definition
1881 for all the names replaced by DEF. */
1882 if (is_new_name (def))
1883 register_new_update_set (def, names_replaced_by (def));
1884
1885 /* If DEF is an old name, register DEF as a new
1886 definition for itself. */
1887 if (is_old_name (def))
1888 register_new_update_single (def, def);
1889 }
1890 }
1891
1892
1893 /* Update every variable used in the statement pointed-to by SI. The
1894 statement is assumed to be in SSA form already. Names in
1895 OLD_SSA_NAMES used by SI will be updated to their current reaching
1896 definition. Names in OLD_SSA_NAMES or NEW_SSA_NAMES defined by SI
1897 will be registered as a new definition for their corresponding name
1898 in OLD_SSA_NAMES. */
1899
1900 static void
1901 rewrite_update_stmt (gimple stmt, gimple_stmt_iterator gsi)
1902 {
1903 use_operand_p use_p;
1904 def_operand_p def_p;
1905 ssa_op_iter iter;
1906
1907 /* Only update marked statements. */
1908 if (!rewrite_uses_p (stmt) && !register_defs_p (stmt))
1909 return;
1910
1911 if (dump_file && (dump_flags & TDF_DETAILS))
1912 {
1913 fprintf (dump_file, "Updating SSA information for statement ");
1914 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1915 }
1916
1917 /* Rewrite USES included in OLD_SSA_NAMES and USES whose underlying
1918 symbol is marked for renaming. */
1919 if (rewrite_uses_p (stmt))
1920 {
1921 if (is_gimple_debug (stmt))
1922 {
1923 bool failed = false;
1924
1925 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_USE)
1926 if (!maybe_replace_use_in_debug_stmt (use_p))
1927 {
1928 failed = true;
1929 break;
1930 }
1931
1932 if (failed)
1933 {
1934 /* DOM sometimes threads jumps in such a way that a
1935 debug stmt ends up referencing a SSA variable that no
1936 longer dominates the debug stmt, but such that all
1937 incoming definitions refer to the same definition in
1938 an earlier dominator. We could try to recover that
1939 definition somehow, but this will have to do for now.
1940
1941 Introducing a default definition, which is what
1942 maybe_replace_use() would do in such cases, may
1943 modify code generation, for the otherwise-unused
1944 default definition would never go away, modifying SSA
1945 version numbers all over. */
1946 gimple_debug_bind_reset_value (stmt);
1947 update_stmt (stmt);
1948 }
1949 }
1950 else
1951 {
1952 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, iter, SSA_OP_ALL_USES)
1953 maybe_replace_use (use_p);
1954 }
1955 }
1956
1957 /* Register definitions of names in NEW_SSA_NAMES and OLD_SSA_NAMES.
1958 Also register definitions for names whose underlying symbol is
1959 marked for renaming. */
1960 if (register_defs_p (stmt))
1961 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, iter, SSA_OP_ALL_DEFS)
1962 maybe_register_def (def_p, stmt, gsi);
1963 }
1964
1965
1966 /* Visit all the successor blocks of BB looking for PHI nodes. For
1967 every PHI node found, check if any of its arguments is in
1968 OLD_SSA_NAMES. If so, and if the argument has a current reaching
1969 definition, replace it. */
1970
1971 static void
1972 rewrite_update_phi_arguments (basic_block bb)
1973 {
1974 edge e;
1975 edge_iterator ei;
1976 unsigned i;
1977
1978 FOR_EACH_EDGE (e, ei, bb->succs)
1979 {
1980 gimple phi;
1981 gimple_vec phis;
1982
1983 if (!bitmap_bit_p (blocks_with_phis_to_rewrite, e->dest->index))
1984 continue;
1985
1986 phis = phis_to_rewrite[e->dest->index];
1987 FOR_EACH_VEC_ELT (phis, i, phi)
1988 {
1989 tree arg, lhs_sym, reaching_def = NULL;
1990 use_operand_p arg_p;
1991
1992 gcc_checking_assert (rewrite_uses_p (phi));
1993
1994 arg_p = PHI_ARG_DEF_PTR_FROM_EDGE (phi, e);
1995 arg = USE_FROM_PTR (arg_p);
1996
1997 if (arg && !DECL_P (arg) && TREE_CODE (arg) != SSA_NAME)
1998 continue;
1999
2000 lhs_sym = SSA_NAME_VAR (gimple_phi_result (phi));
2001
2002 if (arg == NULL_TREE)
2003 {
2004 /* When updating a PHI node for a recently introduced
2005 symbol we may find NULL arguments. That's why we
2006 take the symbol from the LHS of the PHI node. */
2007 reaching_def = get_reaching_def (lhs_sym);
2008
2009 }
2010 else
2011 {
2012 tree sym = DECL_P (arg) ? arg : SSA_NAME_VAR (arg);
2013
2014 if (marked_for_renaming (sym))
2015 reaching_def = get_reaching_def (sym);
2016 else if (is_old_name (arg))
2017 reaching_def = get_reaching_def (arg);
2018 }
2019
2020 /* Update the argument if there is a reaching def. */
2021 if (reaching_def)
2022 {
2023 source_location locus;
2024 int arg_i = PHI_ARG_INDEX_FROM_USE (arg_p);
2025
2026 SET_USE (arg_p, reaching_def);
2027
2028 /* Virtual operands do not need a location. */
2029 if (virtual_operand_p (reaching_def))
2030 locus = UNKNOWN_LOCATION;
2031 else
2032 {
2033 gimple stmt = SSA_NAME_DEF_STMT (reaching_def);
2034
2035 /* Single element PHI nodes behave like copies, so get the
2036 location from the phi argument. */
2037 if (gimple_code (stmt) == GIMPLE_PHI
2038 && gimple_phi_num_args (stmt) == 1)
2039 locus = gimple_phi_arg_location (stmt, 0);
2040 else
2041 locus = gimple_location (stmt);
2042 }
2043
2044 gimple_phi_arg_set_location (phi, arg_i, locus);
2045 }
2046
2047
2048 if (e->flags & EDGE_ABNORMAL)
2049 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (USE_FROM_PTR (arg_p)) = 1;
2050 }
2051 }
2052 }
2053
2054 class rewrite_update_dom_walker : public dom_walker
2055 {
2056 public:
2057 rewrite_update_dom_walker (cdi_direction direction) : dom_walker (direction) {}
2058
2059 virtual void before_dom_children (basic_block);
2060 virtual void after_dom_children (basic_block);
2061 };
2062
2063 /* Initialization of block data structures for the incremental SSA
2064 update pass. Create a block local stack of reaching definitions
2065 for new SSA names produced in this block (BLOCK_DEFS). Register
2066 new definitions for every PHI node in the block. */
2067
2068 void
2069 rewrite_update_dom_walker::before_dom_children (basic_block bb)
2070 {
2071 bool is_abnormal_phi;
2072 gimple_stmt_iterator gsi;
2073
2074 if (dump_file && (dump_flags & TDF_DETAILS))
2075 fprintf (dump_file, "Registering new PHI nodes in block #%d\n",
2076 bb->index);
2077
2078 /* Mark the unwind point for this block. */
2079 block_defs_stack.safe_push (NULL_TREE);
2080
2081 if (!bitmap_bit_p (blocks_to_update, bb->index))
2082 return;
2083
2084 /* Mark the LHS if any of the arguments flows through an abnormal
2085 edge. */
2086 is_abnormal_phi = bb_has_abnormal_pred (bb);
2087
2088 /* If any of the PHI nodes is a replacement for a name in
2089 OLD_SSA_NAMES or it's one of the names in NEW_SSA_NAMES, then
2090 register it as a new definition for its corresponding name. Also
2091 register definitions for names whose underlying symbols are
2092 marked for renaming. */
2093 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2094 {
2095 tree lhs, lhs_sym;
2096 gimple phi = gsi_stmt (gsi);
2097
2098 if (!register_defs_p (phi))
2099 continue;
2100
2101 lhs = gimple_phi_result (phi);
2102 lhs_sym = SSA_NAME_VAR (lhs);
2103
2104 if (marked_for_renaming (lhs_sym))
2105 register_new_update_single (lhs, lhs_sym);
2106 else
2107 {
2108
2109 /* If LHS is a new name, register a new definition for all
2110 the names replaced by LHS. */
2111 if (is_new_name (lhs))
2112 register_new_update_set (lhs, names_replaced_by (lhs));
2113
2114 /* If LHS is an OLD name, register it as a new definition
2115 for itself. */
2116 if (is_old_name (lhs))
2117 register_new_update_single (lhs, lhs);
2118 }
2119
2120 if (is_abnormal_phi)
2121 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs) = 1;
2122 }
2123
2124 /* Step 2. Rewrite every variable used in each statement in the block. */
2125 if (bitmap_bit_p (interesting_blocks, bb->index))
2126 {
2127 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2128 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2129 rewrite_update_stmt (gsi_stmt (gsi), gsi);
2130 }
2131
2132 /* Step 3. Update PHI nodes. */
2133 rewrite_update_phi_arguments (bb);
2134 }
2135
2136 /* Called after visiting block BB. Unwind BLOCK_DEFS_STACK to restore
2137 the current reaching definition of every name re-written in BB to
2138 the original reaching definition before visiting BB. This
2139 unwinding must be done in the opposite order to what is done in
2140 register_new_update_set. */
2141
2142 void
2143 rewrite_update_dom_walker::after_dom_children (basic_block bb ATTRIBUTE_UNUSED)
2144 {
2145 while (block_defs_stack.length () > 0)
2146 {
2147 tree var = block_defs_stack.pop ();
2148 tree saved_def;
2149
2150 /* NULL indicates the unwind stop point for this block (see
2151 rewrite_update_enter_block). */
2152 if (var == NULL)
2153 return;
2154
2155 saved_def = block_defs_stack.pop ();
2156 get_common_info (var)->current_def = saved_def;
2157 }
2158 }
2159
2160
2161 /* Rewrite the actual blocks, statements, and PHI arguments, to be in SSA
2162 form.
2163
2164 ENTRY indicates the block where to start. Every block dominated by
2165 ENTRY will be rewritten.
2166
2167 WHAT indicates what actions will be taken by the renamer (see enum
2168 rewrite_mode).
2169
2170 BLOCKS are the set of interesting blocks for the dominator walker
2171 to process. If this set is NULL, then all the nodes dominated
2172 by ENTRY are walked. Otherwise, blocks dominated by ENTRY that
2173 are not present in BLOCKS are ignored. */
2174
2175 static void
2176 rewrite_blocks (basic_block entry, enum rewrite_mode what)
2177 {
2178 /* Rewrite all the basic blocks in the program. */
2179 timevar_push (TV_TREE_SSA_REWRITE_BLOCKS);
2180
2181 block_defs_stack.create (10);
2182
2183 /* Recursively walk the dominator tree rewriting each statement in
2184 each basic block. */
2185 if (what == REWRITE_ALL)
2186 rewrite_dom_walker (CDI_DOMINATORS).walk (entry);
2187 else if (what == REWRITE_UPDATE)
2188 rewrite_update_dom_walker (CDI_DOMINATORS).walk (entry);
2189 else
2190 gcc_unreachable ();
2191
2192 /* Debugging dumps. */
2193 if (dump_file && (dump_flags & TDF_STATS))
2194 {
2195 dump_dfa_stats (dump_file);
2196 if (var_infos.is_created ())
2197 dump_tree_ssa_stats (dump_file);
2198 }
2199
2200 block_defs_stack.release ();
2201
2202 timevar_pop (TV_TREE_SSA_REWRITE_BLOCKS);
2203 }
2204
2205 class mark_def_dom_walker : public dom_walker
2206 {
2207 public:
2208 mark_def_dom_walker (cdi_direction direction);
2209 ~mark_def_dom_walker ();
2210
2211 virtual void before_dom_children (basic_block);
2212
2213 private:
2214 /* Notice that this bitmap is indexed using variable UIDs, so it must be
2215 large enough to accommodate all the variables referenced in the
2216 function, not just the ones we are renaming. */
2217 bitmap m_kills;
2218 };
2219
2220 mark_def_dom_walker::mark_def_dom_walker (cdi_direction direction)
2221 : dom_walker (direction), m_kills (BITMAP_ALLOC (NULL))
2222 {
2223 }
2224
2225 mark_def_dom_walker::~mark_def_dom_walker ()
2226 {
2227 BITMAP_FREE (m_kills);
2228 }
2229
2230 /* Block processing routine for mark_def_sites. Clear the KILLS bitmap
2231 at the start of each block, and call mark_def_sites for each statement. */
2232
2233 void
2234 mark_def_dom_walker::before_dom_children (basic_block bb)
2235 {
2236 gimple_stmt_iterator gsi;
2237
2238 bitmap_clear (m_kills);
2239 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2240 mark_def_sites (bb, gsi_stmt (gsi), m_kills);
2241 }
2242
2243 /* Initialize internal data needed during renaming. */
2244
2245 static void
2246 init_ssa_renamer (void)
2247 {
2248 cfun->gimple_df->in_ssa_p = false;
2249
2250 /* Allocate memory for the DEF_BLOCKS hash table. */
2251 gcc_assert (!var_infos.is_created ());
2252 var_infos.create (vec_safe_length (cfun->local_decls));
2253
2254 bitmap_obstack_initialize (&update_ssa_obstack);
2255 }
2256
2257
2258 /* Deallocate internal data structures used by the renamer. */
2259
2260 static void
2261 fini_ssa_renamer (void)
2262 {
2263 if (var_infos.is_created ())
2264 var_infos.dispose ();
2265
2266 bitmap_obstack_release (&update_ssa_obstack);
2267
2268 cfun->gimple_df->ssa_renaming_needed = 0;
2269 cfun->gimple_df->rename_vops = 0;
2270 cfun->gimple_df->in_ssa_p = true;
2271 }
2272
2273 /* Main entry point into the SSA builder. The renaming process
2274 proceeds in four main phases:
2275
2276 1- Compute dominance frontier and immediate dominators, needed to
2277 insert PHI nodes and rename the function in dominator tree
2278 order.
2279
2280 2- Find and mark all the blocks that define variables.
2281
2282 3- Insert PHI nodes at dominance frontiers (insert_phi_nodes).
2283
2284 4- Rename all the blocks (rewrite_blocks) and statements in the program.
2285
2286 Steps 3 and 4 are done using the dominator tree walker
2287 (walk_dominator_tree). */
2288
2289 static unsigned int
2290 rewrite_into_ssa (void)
2291 {
2292 bitmap_head *dfs;
2293 basic_block bb;
2294 unsigned i;
2295
2296 /* Initialize operand data structures. */
2297 init_ssa_operands (cfun);
2298
2299 /* Initialize internal data needed by the renamer. */
2300 init_ssa_renamer ();
2301
2302 /* Initialize the set of interesting blocks. The callback
2303 mark_def_sites will add to this set those blocks that the renamer
2304 should process. */
2305 interesting_blocks = sbitmap_alloc (last_basic_block);
2306 bitmap_clear (interesting_blocks);
2307
2308 /* Initialize dominance frontier. */
2309 dfs = XNEWVEC (bitmap_head, last_basic_block);
2310 FOR_EACH_BB (bb)
2311 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
2312
2313 /* 1- Compute dominance frontiers. */
2314 calculate_dominance_info (CDI_DOMINATORS);
2315 compute_dominance_frontiers (dfs);
2316
2317 /* 2- Find and mark definition sites. */
2318 mark_def_dom_walker (CDI_DOMINATORS).walk (cfun->cfg->x_entry_block_ptr);
2319
2320 /* 3- Insert PHI nodes at dominance frontiers of definition blocks. */
2321 insert_phi_nodes (dfs);
2322
2323 /* 4- Rename all the blocks. */
2324 rewrite_blocks (ENTRY_BLOCK_PTR, REWRITE_ALL);
2325
2326 /* Free allocated memory. */
2327 FOR_EACH_BB (bb)
2328 bitmap_clear (&dfs[bb->index]);
2329 free (dfs);
2330
2331 sbitmap_free (interesting_blocks);
2332
2333 fini_ssa_renamer ();
2334
2335 /* Try to get rid of all gimplifier generated temporaries by making
2336 its SSA names anonymous. This way we can garbage collect them
2337 all after removing unused locals which we do in our TODO. */
2338 for (i = 1; i < num_ssa_names; ++i)
2339 {
2340 tree decl, name = ssa_name (i);
2341 if (!name
2342 || SSA_NAME_IS_DEFAULT_DEF (name))
2343 continue;
2344 decl = SSA_NAME_VAR (name);
2345 if (decl
2346 && TREE_CODE (decl) == VAR_DECL
2347 && !VAR_DECL_IS_VIRTUAL_OPERAND (decl)
2348 && DECL_IGNORED_P (decl))
2349 SET_SSA_NAME_VAR_OR_IDENTIFIER (name, DECL_NAME (decl));
2350 }
2351
2352 return 0;
2353 }
2354
2355 /* Gate for IPCP optimization. */
2356
2357 static bool
2358 gate_into_ssa (void)
2359 {
2360 /* Do nothing for funcions that was produced already in SSA form. */
2361 return !(cfun->curr_properties & PROP_ssa);
2362 }
2363
2364 namespace {
2365
2366 const pass_data pass_data_build_ssa =
2367 {
2368 GIMPLE_PASS, /* type */
2369 "ssa", /* name */
2370 OPTGROUP_NONE, /* optinfo_flags */
2371 true, /* has_gate */
2372 true, /* has_execute */
2373 TV_TREE_SSA_OTHER, /* tv_id */
2374 PROP_cfg, /* properties_required */
2375 PROP_ssa, /* properties_provided */
2376 0, /* properties_destroyed */
2377 0, /* todo_flags_start */
2378 ( TODO_verify_ssa | TODO_remove_unused_locals ), /* todo_flags_finish */
2379 };
2380
2381 class pass_build_ssa : public gimple_opt_pass
2382 {
2383 public:
2384 pass_build_ssa (gcc::context *ctxt)
2385 : gimple_opt_pass (pass_data_build_ssa, ctxt)
2386 {}
2387
2388 /* opt_pass methods: */
2389 bool gate () { return gate_into_ssa (); }
2390 unsigned int execute () { return rewrite_into_ssa (); }
2391
2392 }; // class pass_build_ssa
2393
2394 } // anon namespace
2395
2396 gimple_opt_pass *
2397 make_pass_build_ssa (gcc::context *ctxt)
2398 {
2399 return new pass_build_ssa (ctxt);
2400 }
2401
2402
2403 /* Mark the definition of VAR at STMT and BB as interesting for the
2404 renamer. BLOCKS is the set of blocks that need updating. */
2405
2406 static void
2407 mark_def_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2408 {
2409 gcc_checking_assert (bitmap_bit_p (blocks_to_update, bb->index));
2410 set_register_defs (stmt, true);
2411
2412 if (insert_phi_p)
2413 {
2414 bool is_phi_p = gimple_code (stmt) == GIMPLE_PHI;
2415
2416 set_def_block (var, bb, is_phi_p);
2417
2418 /* If VAR is an SSA name in NEW_SSA_NAMES, this is a definition
2419 site for both itself and all the old names replaced by it. */
2420 if (TREE_CODE (var) == SSA_NAME && is_new_name (var))
2421 {
2422 bitmap_iterator bi;
2423 unsigned i;
2424 bitmap set = names_replaced_by (var);
2425 if (set)
2426 EXECUTE_IF_SET_IN_BITMAP (set, 0, i, bi)
2427 set_def_block (ssa_name (i), bb, is_phi_p);
2428 }
2429 }
2430 }
2431
2432
2433 /* Mark the use of VAR at STMT and BB as interesting for the
2434 renamer. INSERT_PHI_P is true if we are going to insert new PHI
2435 nodes. */
2436
2437 static inline void
2438 mark_use_interesting (tree var, gimple stmt, basic_block bb, bool insert_phi_p)
2439 {
2440 basic_block def_bb = gimple_bb (stmt);
2441
2442 mark_block_for_update (def_bb);
2443 mark_block_for_update (bb);
2444
2445 if (gimple_code (stmt) == GIMPLE_PHI)
2446 mark_phi_for_rewrite (def_bb, stmt);
2447 else
2448 {
2449 set_rewrite_uses (stmt, true);
2450
2451 if (is_gimple_debug (stmt))
2452 return;
2453 }
2454
2455 /* If VAR has not been defined in BB, then it is live-on-entry
2456 to BB. Note that we cannot just use the block holding VAR's
2457 definition because if VAR is one of the names in OLD_SSA_NAMES,
2458 it will have several definitions (itself and all the names that
2459 replace it). */
2460 if (insert_phi_p)
2461 {
2462 struct def_blocks_d *db_p = get_def_blocks_for (get_common_info (var));
2463 if (!bitmap_bit_p (db_p->def_blocks, bb->index))
2464 set_livein_block (var, bb);
2465 }
2466 }
2467
2468
2469 /* Do a dominator walk starting at BB processing statements that
2470 reference symbols in SSA operands. This is very similar to
2471 mark_def_sites, but the scan handles statements whose operands may
2472 already be SSA names.
2473
2474 If INSERT_PHI_P is true, mark those uses as live in the
2475 corresponding block. This is later used by the PHI placement
2476 algorithm to make PHI pruning decisions.
2477
2478 FIXME. Most of this would be unnecessary if we could associate a
2479 symbol to all the SSA names that reference it. But that
2480 sounds like it would be expensive to maintain. Still, it
2481 would be interesting to see if it makes better sense to do
2482 that. */
2483
2484 static void
2485 prepare_block_for_update (basic_block bb, bool insert_phi_p)
2486 {
2487 basic_block son;
2488 gimple_stmt_iterator si;
2489 edge e;
2490 edge_iterator ei;
2491
2492 mark_block_for_update (bb);
2493
2494 /* Process PHI nodes marking interesting those that define or use
2495 the symbols that we are interested in. */
2496 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
2497 {
2498 gimple phi = gsi_stmt (si);
2499 tree lhs_sym, lhs = gimple_phi_result (phi);
2500
2501 if (TREE_CODE (lhs) == SSA_NAME
2502 && (! virtual_operand_p (lhs)
2503 || ! cfun->gimple_df->rename_vops))
2504 continue;
2505
2506 lhs_sym = DECL_P (lhs) ? lhs : SSA_NAME_VAR (lhs);
2507 mark_for_renaming (lhs_sym);
2508 mark_def_interesting (lhs_sym, phi, bb, insert_phi_p);
2509
2510 /* Mark the uses in phi nodes as interesting. It would be more correct
2511 to process the arguments of the phi nodes of the successor edges of
2512 BB at the end of prepare_block_for_update, however, that turns out
2513 to be significantly more expensive. Doing it here is conservatively
2514 correct -- it may only cause us to believe a value to be live in a
2515 block that also contains its definition, and thus insert a few more
2516 phi nodes for it. */
2517 FOR_EACH_EDGE (e, ei, bb->preds)
2518 mark_use_interesting (lhs_sym, phi, e->src, insert_phi_p);
2519 }
2520
2521 /* Process the statements. */
2522 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
2523 {
2524 gimple stmt;
2525 ssa_op_iter i;
2526 use_operand_p use_p;
2527 def_operand_p def_p;
2528
2529 stmt = gsi_stmt (si);
2530
2531 if (cfun->gimple_df->rename_vops
2532 && gimple_vuse (stmt))
2533 {
2534 tree use = gimple_vuse (stmt);
2535 tree sym = DECL_P (use) ? use : SSA_NAME_VAR (use);
2536 mark_for_renaming (sym);
2537 mark_use_interesting (sym, stmt, bb, insert_phi_p);
2538 }
2539
2540 FOR_EACH_SSA_USE_OPERAND (use_p, stmt, i, SSA_OP_USE)
2541 {
2542 tree use = USE_FROM_PTR (use_p);
2543 if (!DECL_P (use))
2544 continue;
2545 mark_for_renaming (use);
2546 mark_use_interesting (use, stmt, bb, insert_phi_p);
2547 }
2548
2549 if (cfun->gimple_df->rename_vops
2550 && gimple_vdef (stmt))
2551 {
2552 tree def = gimple_vdef (stmt);
2553 tree sym = DECL_P (def) ? def : SSA_NAME_VAR (def);
2554 mark_for_renaming (sym);
2555 mark_def_interesting (sym, stmt, bb, insert_phi_p);
2556 }
2557
2558 FOR_EACH_SSA_DEF_OPERAND (def_p, stmt, i, SSA_OP_DEF)
2559 {
2560 tree def = DEF_FROM_PTR (def_p);
2561 if (!DECL_P (def))
2562 continue;
2563 mark_for_renaming (def);
2564 mark_def_interesting (def, stmt, bb, insert_phi_p);
2565 }
2566 }
2567
2568 /* Now visit all the blocks dominated by BB. */
2569 for (son = first_dom_son (CDI_DOMINATORS, bb);
2570 son;
2571 son = next_dom_son (CDI_DOMINATORS, son))
2572 prepare_block_for_update (son, insert_phi_p);
2573 }
2574
2575
2576 /* Helper for prepare_names_to_update. Mark all the use sites for
2577 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2578 prepare_names_to_update. */
2579
2580 static void
2581 prepare_use_sites_for (tree name, bool insert_phi_p)
2582 {
2583 use_operand_p use_p;
2584 imm_use_iterator iter;
2585
2586 FOR_EACH_IMM_USE_FAST (use_p, iter, name)
2587 {
2588 gimple stmt = USE_STMT (use_p);
2589 basic_block bb = gimple_bb (stmt);
2590
2591 if (gimple_code (stmt) == GIMPLE_PHI)
2592 {
2593 int ix = PHI_ARG_INDEX_FROM_USE (use_p);
2594 edge e = gimple_phi_arg_edge (stmt, ix);
2595 mark_use_interesting (name, stmt, e->src, insert_phi_p);
2596 }
2597 else
2598 {
2599 /* For regular statements, mark this as an interesting use
2600 for NAME. */
2601 mark_use_interesting (name, stmt, bb, insert_phi_p);
2602 }
2603 }
2604 }
2605
2606
2607 /* Helper for prepare_names_to_update. Mark the definition site for
2608 NAME as interesting. BLOCKS and INSERT_PHI_P are as in
2609 prepare_names_to_update. */
2610
2611 static void
2612 prepare_def_site_for (tree name, bool insert_phi_p)
2613 {
2614 gimple stmt;
2615 basic_block bb;
2616
2617 gcc_checking_assert (names_to_release == NULL
2618 || !bitmap_bit_p (names_to_release,
2619 SSA_NAME_VERSION (name)));
2620
2621 stmt = SSA_NAME_DEF_STMT (name);
2622 bb = gimple_bb (stmt);
2623 if (bb)
2624 {
2625 gcc_checking_assert (bb->index < last_basic_block);
2626 mark_block_for_update (bb);
2627 mark_def_interesting (name, stmt, bb, insert_phi_p);
2628 }
2629 }
2630
2631
2632 /* Mark definition and use sites of names in NEW_SSA_NAMES and
2633 OLD_SSA_NAMES. INSERT_PHI_P is true if the caller wants to insert
2634 PHI nodes for newly created names. */
2635
2636 static void
2637 prepare_names_to_update (bool insert_phi_p)
2638 {
2639 unsigned i = 0;
2640 bitmap_iterator bi;
2641 sbitmap_iterator sbi;
2642
2643 /* If a name N from NEW_SSA_NAMES is also marked to be released,
2644 remove it from NEW_SSA_NAMES so that we don't try to visit its
2645 defining basic block (which most likely doesn't exist). Notice
2646 that we cannot do the same with names in OLD_SSA_NAMES because we
2647 want to replace existing instances. */
2648 if (names_to_release)
2649 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2650 bitmap_clear_bit (new_ssa_names, i);
2651
2652 /* First process names in NEW_SSA_NAMES. Otherwise, uses of old
2653 names may be considered to be live-in on blocks that contain
2654 definitions for their replacements. */
2655 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2656 prepare_def_site_for (ssa_name (i), insert_phi_p);
2657
2658 /* If an old name is in NAMES_TO_RELEASE, we cannot remove it from
2659 OLD_SSA_NAMES, but we have to ignore its definition site. */
2660 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
2661 {
2662 if (names_to_release == NULL || !bitmap_bit_p (names_to_release, i))
2663 prepare_def_site_for (ssa_name (i), insert_phi_p);
2664 prepare_use_sites_for (ssa_name (i), insert_phi_p);
2665 }
2666 }
2667
2668
2669 /* Dump all the names replaced by NAME to FILE. */
2670
2671 void
2672 dump_names_replaced_by (FILE *file, tree name)
2673 {
2674 unsigned i;
2675 bitmap old_set;
2676 bitmap_iterator bi;
2677
2678 print_generic_expr (file, name, 0);
2679 fprintf (file, " -> { ");
2680
2681 old_set = names_replaced_by (name);
2682 EXECUTE_IF_SET_IN_BITMAP (old_set, 0, i, bi)
2683 {
2684 print_generic_expr (file, ssa_name (i), 0);
2685 fprintf (file, " ");
2686 }
2687
2688 fprintf (file, "}\n");
2689 }
2690
2691
2692 /* Dump all the names replaced by NAME to stderr. */
2693
2694 DEBUG_FUNCTION void
2695 debug_names_replaced_by (tree name)
2696 {
2697 dump_names_replaced_by (stderr, name);
2698 }
2699
2700
2701 /* Dump SSA update information to FILE. */
2702
2703 void
2704 dump_update_ssa (FILE *file)
2705 {
2706 unsigned i = 0;
2707 bitmap_iterator bi;
2708
2709 if (!need_ssa_update_p (cfun))
2710 return;
2711
2712 if (new_ssa_names && bitmap_first_set_bit (new_ssa_names) >= 0)
2713 {
2714 sbitmap_iterator sbi;
2715
2716 fprintf (file, "\nSSA replacement table\n");
2717 fprintf (file, "N_i -> { O_1 ... O_j } means that N_i replaces "
2718 "O_1, ..., O_j\n\n");
2719
2720 EXECUTE_IF_SET_IN_BITMAP (new_ssa_names, 0, i, sbi)
2721 dump_names_replaced_by (file, ssa_name (i));
2722 }
2723
2724 if (symbols_to_rename_set && !bitmap_empty_p (symbols_to_rename_set))
2725 {
2726 fprintf (file, "\nSymbols to be put in SSA form\n");
2727 dump_decl_set (file, symbols_to_rename_set);
2728 fprintf (file, "\n");
2729 }
2730
2731 if (names_to_release && !bitmap_empty_p (names_to_release))
2732 {
2733 fprintf (file, "\nSSA names to release after updating the SSA web\n\n");
2734 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2735 {
2736 print_generic_expr (file, ssa_name (i), 0);
2737 fprintf (file, " ");
2738 }
2739 fprintf (file, "\n");
2740 }
2741 }
2742
2743
2744 /* Dump SSA update information to stderr. */
2745
2746 DEBUG_FUNCTION void
2747 debug_update_ssa (void)
2748 {
2749 dump_update_ssa (stderr);
2750 }
2751
2752
2753 /* Initialize data structures used for incremental SSA updates. */
2754
2755 static void
2756 init_update_ssa (struct function *fn)
2757 {
2758 /* Reserve more space than the current number of names. The calls to
2759 add_new_name_mapping are typically done after creating new SSA
2760 names, so we'll need to reallocate these arrays. */
2761 old_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2762 bitmap_clear (old_ssa_names);
2763
2764 new_ssa_names = sbitmap_alloc (num_ssa_names + NAME_SETS_GROWTH_FACTOR);
2765 bitmap_clear (new_ssa_names);
2766
2767 bitmap_obstack_initialize (&update_ssa_obstack);
2768
2769 names_to_release = NULL;
2770 update_ssa_initialized_fn = fn;
2771 }
2772
2773
2774 /* Deallocate data structures used for incremental SSA updates. */
2775
2776 void
2777 delete_update_ssa (void)
2778 {
2779 unsigned i;
2780 bitmap_iterator bi;
2781
2782 sbitmap_free (old_ssa_names);
2783 old_ssa_names = NULL;
2784
2785 sbitmap_free (new_ssa_names);
2786 new_ssa_names = NULL;
2787
2788 BITMAP_FREE (symbols_to_rename_set);
2789 symbols_to_rename_set = NULL;
2790 symbols_to_rename.release ();
2791
2792 if (names_to_release)
2793 {
2794 EXECUTE_IF_SET_IN_BITMAP (names_to_release, 0, i, bi)
2795 release_ssa_name (ssa_name (i));
2796 BITMAP_FREE (names_to_release);
2797 }
2798
2799 clear_ssa_name_info ();
2800
2801 fini_ssa_renamer ();
2802
2803 if (blocks_with_phis_to_rewrite)
2804 EXECUTE_IF_SET_IN_BITMAP (blocks_with_phis_to_rewrite, 0, i, bi)
2805 {
2806 gimple_vec phis = phis_to_rewrite[i];
2807 phis.release ();
2808 phis_to_rewrite[i].create (0);
2809 }
2810
2811 BITMAP_FREE (blocks_with_phis_to_rewrite);
2812 BITMAP_FREE (blocks_to_update);
2813
2814 update_ssa_initialized_fn = NULL;
2815 }
2816
2817
2818 /* Create a new name for OLD_NAME in statement STMT and replace the
2819 operand pointed to by DEF_P with the newly created name. If DEF_P
2820 is NULL then STMT should be a GIMPLE assignment.
2821 Return the new name and register the replacement mapping <NEW, OLD> in
2822 update_ssa's tables. */
2823
2824 tree
2825 create_new_def_for (tree old_name, gimple stmt, def_operand_p def)
2826 {
2827 tree new_name;
2828
2829 timevar_push (TV_TREE_SSA_INCREMENTAL);
2830
2831 if (!update_ssa_initialized_fn)
2832 init_update_ssa (cfun);
2833
2834 gcc_assert (update_ssa_initialized_fn == cfun);
2835
2836 new_name = duplicate_ssa_name (old_name, stmt);
2837 if (def)
2838 SET_DEF (def, new_name);
2839 else
2840 gimple_assign_set_lhs (stmt, new_name);
2841
2842 if (gimple_code (stmt) == GIMPLE_PHI)
2843 {
2844 basic_block bb = gimple_bb (stmt);
2845
2846 /* If needed, mark NEW_NAME as occurring in an abnormal PHI node. */
2847 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_name) = bb_has_abnormal_pred (bb);
2848 }
2849
2850 add_new_name_mapping (new_name, old_name);
2851
2852 /* For the benefit of passes that will be updating the SSA form on
2853 their own, set the current reaching definition of OLD_NAME to be
2854 NEW_NAME. */
2855 get_ssa_name_ann (old_name)->info.current_def = new_name;
2856
2857 timevar_pop (TV_TREE_SSA_INCREMENTAL);
2858
2859 return new_name;
2860 }
2861
2862
2863 /* Mark virtual operands of FN for renaming by update_ssa. */
2864
2865 void
2866 mark_virtual_operands_for_renaming (struct function *fn)
2867 {
2868 fn->gimple_df->ssa_renaming_needed = 1;
2869 fn->gimple_df->rename_vops = 1;
2870 }
2871
2872
2873 /* Return true if there is any work to be done by update_ssa
2874 for function FN. */
2875
2876 bool
2877 need_ssa_update_p (struct function *fn)
2878 {
2879 gcc_assert (fn != NULL);
2880 return (update_ssa_initialized_fn == fn
2881 || (fn->gimple_df && fn->gimple_df->ssa_renaming_needed));
2882 }
2883
2884 /* Return true if name N has been registered in the replacement table. */
2885
2886 bool
2887 name_registered_for_update_p (tree n ATTRIBUTE_UNUSED)
2888 {
2889 if (!update_ssa_initialized_fn)
2890 return false;
2891
2892 gcc_assert (update_ssa_initialized_fn == cfun);
2893
2894 return is_new_name (n) || is_old_name (n);
2895 }
2896
2897
2898 /* Mark NAME to be released after update_ssa has finished. */
2899
2900 void
2901 release_ssa_name_after_update_ssa (tree name)
2902 {
2903 gcc_assert (cfun && update_ssa_initialized_fn == cfun);
2904
2905 if (names_to_release == NULL)
2906 names_to_release = BITMAP_ALLOC (NULL);
2907
2908 bitmap_set_bit (names_to_release, SSA_NAME_VERSION (name));
2909 }
2910
2911
2912 /* Insert new PHI nodes to replace VAR. DFS contains dominance
2913 frontier information. BLOCKS is the set of blocks to be updated.
2914
2915 This is slightly different than the regular PHI insertion
2916 algorithm. The value of UPDATE_FLAGS controls how PHI nodes for
2917 real names (i.e., GIMPLE registers) are inserted:
2918
2919 - If UPDATE_FLAGS == TODO_update_ssa, we are only interested in PHI
2920 nodes inside the region affected by the block that defines VAR
2921 and the blocks that define all its replacements. All these
2922 definition blocks are stored in DEF_BLOCKS[VAR]->DEF_BLOCKS.
2923
2924 First, we compute the entry point to the region (ENTRY). This is
2925 given by the nearest common dominator to all the definition
2926 blocks. When computing the iterated dominance frontier (IDF), any
2927 block not strictly dominated by ENTRY is ignored.
2928
2929 We then call the standard PHI insertion algorithm with the pruned
2930 IDF.
2931
2932 - If UPDATE_FLAGS == TODO_update_ssa_full_phi, the IDF for real
2933 names is not pruned. PHI nodes are inserted at every IDF block. */
2934
2935 static void
2936 insert_updated_phi_nodes_for (tree var, bitmap_head *dfs, bitmap blocks,
2937 unsigned update_flags)
2938 {
2939 basic_block entry;
2940 struct def_blocks_d *db;
2941 bitmap idf, pruned_idf;
2942 bitmap_iterator bi;
2943 unsigned i;
2944
2945 if (TREE_CODE (var) == SSA_NAME)
2946 gcc_checking_assert (is_old_name (var));
2947 else
2948 gcc_checking_assert (marked_for_renaming (var));
2949
2950 /* Get all the definition sites for VAR. */
2951 db = find_def_blocks_for (var);
2952
2953 /* No need to do anything if there were no definitions to VAR. */
2954 if (db == NULL || bitmap_empty_p (db->def_blocks))
2955 return;
2956
2957 /* Compute the initial iterated dominance frontier. */
2958 idf = compute_idf (db->def_blocks, dfs);
2959 pruned_idf = BITMAP_ALLOC (NULL);
2960
2961 if (TREE_CODE (var) == SSA_NAME)
2962 {
2963 if (update_flags == TODO_update_ssa)
2964 {
2965 /* If doing regular SSA updates for GIMPLE registers, we are
2966 only interested in IDF blocks dominated by the nearest
2967 common dominator of all the definition blocks. */
2968 entry = nearest_common_dominator_for_set (CDI_DOMINATORS,
2969 db->def_blocks);
2970 if (entry != ENTRY_BLOCK_PTR)
2971 EXECUTE_IF_SET_IN_BITMAP (idf, 0, i, bi)
2972 if (BASIC_BLOCK (i) != entry
2973 && dominated_by_p (CDI_DOMINATORS, BASIC_BLOCK (i), entry))
2974 bitmap_set_bit (pruned_idf, i);
2975 }
2976 else
2977 {
2978 /* Otherwise, do not prune the IDF for VAR. */
2979 gcc_checking_assert (update_flags == TODO_update_ssa_full_phi);
2980 bitmap_copy (pruned_idf, idf);
2981 }
2982 }
2983 else
2984 {
2985 /* Otherwise, VAR is a symbol that needs to be put into SSA form
2986 for the first time, so we need to compute the full IDF for
2987 it. */
2988 bitmap_copy (pruned_idf, idf);
2989 }
2990
2991 if (!bitmap_empty_p (pruned_idf))
2992 {
2993 /* Make sure that PRUNED_IDF blocks and all their feeding blocks
2994 are included in the region to be updated. The feeding blocks
2995 are important to guarantee that the PHI arguments are renamed
2996 properly. */
2997
2998 /* FIXME, this is not needed if we are updating symbols. We are
2999 already starting at the ENTRY block anyway. */
3000 bitmap_ior_into (blocks, pruned_idf);
3001 EXECUTE_IF_SET_IN_BITMAP (pruned_idf, 0, i, bi)
3002 {
3003 edge e;
3004 edge_iterator ei;
3005 basic_block bb = BASIC_BLOCK (i);
3006
3007 FOR_EACH_EDGE (e, ei, bb->preds)
3008 if (e->src->index >= 0)
3009 bitmap_set_bit (blocks, e->src->index);
3010 }
3011
3012 insert_phi_nodes_for (var, pruned_idf, true);
3013 }
3014
3015 BITMAP_FREE (pruned_idf);
3016 BITMAP_FREE (idf);
3017 }
3018
3019 /* Sort symbols_to_rename after their DECL_UID. */
3020
3021 static int
3022 insert_updated_phi_nodes_compare_uids (const void *a, const void *b)
3023 {
3024 const_tree syma = *(const const_tree *)a;
3025 const_tree symb = *(const const_tree *)b;
3026 if (DECL_UID (syma) == DECL_UID (symb))
3027 return 0;
3028 return DECL_UID (syma) < DECL_UID (symb) ? -1 : 1;
3029 }
3030
3031 /* Given a set of newly created SSA names (NEW_SSA_NAMES) and a set of
3032 existing SSA names (OLD_SSA_NAMES), update the SSA form so that:
3033
3034 1- The names in OLD_SSA_NAMES dominated by the definitions of
3035 NEW_SSA_NAMES are all re-written to be reached by the
3036 appropriate definition from NEW_SSA_NAMES.
3037
3038 2- If needed, new PHI nodes are added to the iterated dominance
3039 frontier of the blocks where each of NEW_SSA_NAMES are defined.
3040
3041 The mapping between OLD_SSA_NAMES and NEW_SSA_NAMES is setup by
3042 calling create_new_def_for to create new defs for names that the
3043 caller wants to replace.
3044
3045 The caller cretaes the new names to be inserted and the names that need
3046 to be replaced by calling create_new_def_for for each old definition
3047 to be replaced. Note that the function assumes that the
3048 new defining statement has already been inserted in the IL.
3049
3050 For instance, given the following code:
3051
3052 1 L0:
3053 2 x_1 = PHI (0, x_5)
3054 3 if (x_1 < 10)
3055 4 if (x_1 > 7)
3056 5 y_2 = 0
3057 6 else
3058 7 y_3 = x_1 + x_7
3059 8 endif
3060 9 x_5 = x_1 + 1
3061 10 goto L0;
3062 11 endif
3063
3064 Suppose that we insert new names x_10 and x_11 (lines 4 and 8).
3065
3066 1 L0:
3067 2 x_1 = PHI (0, x_5)
3068 3 if (x_1 < 10)
3069 4 x_10 = ...
3070 5 if (x_1 > 7)
3071 6 y_2 = 0
3072 7 else
3073 8 x_11 = ...
3074 9 y_3 = x_1 + x_7
3075 10 endif
3076 11 x_5 = x_1 + 1
3077 12 goto L0;
3078 13 endif
3079
3080 We want to replace all the uses of x_1 with the new definitions of
3081 x_10 and x_11. Note that the only uses that should be replaced are
3082 those at lines 5, 9 and 11. Also, the use of x_7 at line 9 should
3083 *not* be replaced (this is why we cannot just mark symbol 'x' for
3084 renaming).
3085
3086 Additionally, we may need to insert a PHI node at line 11 because
3087 that is a merge point for x_10 and x_11. So the use of x_1 at line
3088 11 will be replaced with the new PHI node. The insertion of PHI
3089 nodes is optional. They are not strictly necessary to preserve the
3090 SSA form, and depending on what the caller inserted, they may not
3091 even be useful for the optimizers. UPDATE_FLAGS controls various
3092 aspects of how update_ssa operates, see the documentation for
3093 TODO_update_ssa*. */
3094
3095 void
3096 update_ssa (unsigned update_flags)
3097 {
3098 basic_block bb, start_bb;
3099 bitmap_iterator bi;
3100 unsigned i = 0;
3101 bool insert_phi_p;
3102 sbitmap_iterator sbi;
3103 tree sym;
3104
3105 /* Only one update flag should be set. */
3106 gcc_assert (update_flags == TODO_update_ssa
3107 || update_flags == TODO_update_ssa_no_phi
3108 || update_flags == TODO_update_ssa_full_phi
3109 || update_flags == TODO_update_ssa_only_virtuals);
3110
3111 if (!need_ssa_update_p (cfun))
3112 return;
3113
3114 timevar_push (TV_TREE_SSA_INCREMENTAL);
3115
3116 if (dump_file && (dump_flags & TDF_DETAILS))
3117 fprintf (dump_file, "\nUpdating SSA:\n");
3118
3119 if (!update_ssa_initialized_fn)
3120 init_update_ssa (cfun);
3121 else if (update_flags == TODO_update_ssa_only_virtuals)
3122 {
3123 /* If we only need to update virtuals, remove all the mappings for
3124 real names before proceeding. The caller is responsible for
3125 having dealt with the name mappings before calling update_ssa. */
3126 bitmap_clear (old_ssa_names);
3127 bitmap_clear (new_ssa_names);
3128 }
3129
3130 gcc_assert (update_ssa_initialized_fn == cfun);
3131
3132 blocks_with_phis_to_rewrite = BITMAP_ALLOC (NULL);
3133 if (!phis_to_rewrite.exists ())
3134 phis_to_rewrite.create (last_basic_block + 1);
3135 blocks_to_update = BITMAP_ALLOC (NULL);
3136
3137 /* Ensure that the dominance information is up-to-date. */
3138 calculate_dominance_info (CDI_DOMINATORS);
3139
3140 insert_phi_p = (update_flags != TODO_update_ssa_no_phi);
3141
3142 /* If there are names defined in the replacement table, prepare
3143 definition and use sites for all the names in NEW_SSA_NAMES and
3144 OLD_SSA_NAMES. */
3145 if (bitmap_first_set_bit (new_ssa_names) >= 0)
3146 {
3147 prepare_names_to_update (insert_phi_p);
3148
3149 /* If all the names in NEW_SSA_NAMES had been marked for
3150 removal, and there are no symbols to rename, then there's
3151 nothing else to do. */
3152 if (bitmap_first_set_bit (new_ssa_names) < 0
3153 && !cfun->gimple_df->ssa_renaming_needed)
3154 goto done;
3155 }
3156
3157 /* Next, determine the block at which to start the renaming process. */
3158 if (cfun->gimple_df->ssa_renaming_needed)
3159 {
3160 /* If we rename bare symbols initialize the mapping to
3161 auxiliar info we need to keep track of. */
3162 var_infos.create (47);
3163
3164 /* If we have to rename some symbols from scratch, we need to
3165 start the process at the root of the CFG. FIXME, it should
3166 be possible to determine the nearest block that had a
3167 definition for each of the symbols that are marked for
3168 updating. For now this seems more work than it's worth. */
3169 start_bb = ENTRY_BLOCK_PTR;
3170
3171 /* Traverse the CFG looking for existing definitions and uses of
3172 symbols in SSA operands. Mark interesting blocks and
3173 statements and set local live-in information for the PHI
3174 placement heuristics. */
3175 prepare_block_for_update (start_bb, insert_phi_p);
3176
3177 #ifdef ENABLE_CHECKING
3178 for (i = 1; i < num_ssa_names; ++i)
3179 {
3180 tree name = ssa_name (i);
3181 if (!name
3182 || virtual_operand_p (name))
3183 continue;
3184
3185 /* For all but virtual operands, which do not have SSA names
3186 with overlapping life ranges, ensure that symbols marked
3187 for renaming do not have existing SSA names associated with
3188 them as we do not re-write them out-of-SSA before going
3189 into SSA for the remaining symbol uses. */
3190 if (marked_for_renaming (SSA_NAME_VAR (name)))
3191 {
3192 fprintf (stderr, "Existing SSA name for symbol marked for "
3193 "renaming: ");
3194 print_generic_expr (stderr, name, TDF_SLIM);
3195 fprintf (stderr, "\n");
3196 internal_error ("SSA corruption");
3197 }
3198 }
3199 #endif
3200 }
3201 else
3202 {
3203 /* Otherwise, the entry block to the region is the nearest
3204 common dominator for the blocks in BLOCKS. */
3205 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3206 blocks_to_update);
3207 }
3208
3209 /* If requested, insert PHI nodes at the iterated dominance frontier
3210 of every block, creating new definitions for names in OLD_SSA_NAMES
3211 and for symbols found. */
3212 if (insert_phi_p)
3213 {
3214 bitmap_head *dfs;
3215
3216 /* If the caller requested PHI nodes to be added, compute
3217 dominance frontiers. */
3218 dfs = XNEWVEC (bitmap_head, last_basic_block);
3219 FOR_EACH_BB (bb)
3220 bitmap_initialize (&dfs[bb->index], &bitmap_default_obstack);
3221 compute_dominance_frontiers (dfs);
3222
3223 if (bitmap_first_set_bit (old_ssa_names) >= 0)
3224 {
3225 sbitmap_iterator sbi;
3226
3227 /* insert_update_phi_nodes_for will call add_new_name_mapping
3228 when inserting new PHI nodes, so the set OLD_SSA_NAMES
3229 will grow while we are traversing it (but it will not
3230 gain any new members). Copy OLD_SSA_NAMES to a temporary
3231 for traversal. */
3232 sbitmap tmp = sbitmap_alloc (SBITMAP_SIZE (old_ssa_names));
3233 bitmap_copy (tmp, old_ssa_names);
3234 EXECUTE_IF_SET_IN_BITMAP (tmp, 0, i, sbi)
3235 insert_updated_phi_nodes_for (ssa_name (i), dfs, blocks_to_update,
3236 update_flags);
3237 sbitmap_free (tmp);
3238 }
3239
3240 symbols_to_rename.qsort (insert_updated_phi_nodes_compare_uids);
3241 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3242 insert_updated_phi_nodes_for (sym, dfs, blocks_to_update,
3243 update_flags);
3244
3245 FOR_EACH_BB (bb)
3246 bitmap_clear (&dfs[bb->index]);
3247 free (dfs);
3248
3249 /* Insertion of PHI nodes may have added blocks to the region.
3250 We need to re-compute START_BB to include the newly added
3251 blocks. */
3252 if (start_bb != ENTRY_BLOCK_PTR)
3253 start_bb = nearest_common_dominator_for_set (CDI_DOMINATORS,
3254 blocks_to_update);
3255 }
3256
3257 /* Reset the current definition for name and symbol before renaming
3258 the sub-graph. */
3259 EXECUTE_IF_SET_IN_BITMAP (old_ssa_names, 0, i, sbi)
3260 get_ssa_name_ann (ssa_name (i))->info.current_def = NULL_TREE;
3261
3262 FOR_EACH_VEC_ELT (symbols_to_rename, i, sym)
3263 get_var_info (sym)->info.current_def = NULL_TREE;
3264
3265 /* Now start the renaming process at START_BB. */
3266 interesting_blocks = sbitmap_alloc (last_basic_block);
3267 bitmap_clear (interesting_blocks);
3268 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3269 bitmap_set_bit (interesting_blocks, i);
3270
3271 rewrite_blocks (start_bb, REWRITE_UPDATE);
3272
3273 sbitmap_free (interesting_blocks);
3274
3275 /* Debugging dumps. */
3276 if (dump_file)
3277 {
3278 int c;
3279 unsigned i;
3280
3281 dump_update_ssa (dump_file);
3282
3283 fprintf (dump_file, "Incremental SSA update started at block: %d\n",
3284 start_bb->index);
3285
3286 c = 0;
3287 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3288 c++;
3289 fprintf (dump_file, "Number of blocks in CFG: %d\n", last_basic_block);
3290 fprintf (dump_file, "Number of blocks to update: %d (%3.0f%%)\n",
3291 c, PERCENT (c, last_basic_block));
3292
3293 if (dump_flags & TDF_DETAILS)
3294 {
3295 fprintf (dump_file, "Affected blocks:");
3296 EXECUTE_IF_SET_IN_BITMAP (blocks_to_update, 0, i, bi)
3297 fprintf (dump_file, " %u", i);
3298 fprintf (dump_file, "\n");
3299 }
3300
3301 fprintf (dump_file, "\n\n");
3302 }
3303
3304 /* Free allocated memory. */
3305 done:
3306 delete_update_ssa ();
3307
3308 timevar_pop (TV_TREE_SSA_INCREMENTAL);
3309 }