]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ccp.c
d5a05608f781af46633ac74a9d16948cec4f68cc
[thirdparty/gcc.git] / gcc / tree-ssa-ccp.c
1 /* Conditional constant propagation pass for the GNU compiler.
2 Copyright (C) 2000-2016 Free Software Foundation, Inc.
3 Adapted from original RTL SSA-CCP by Daniel Berlin <dberlin@dberlin.org>
4 Adapted to GIMPLE trees by Diego Novillo <dnovillo@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it
9 under the terms of the GNU General Public License as published by the
10 Free Software Foundation; either version 3, or (at your option) any
11 later version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT
14 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* Conditional constant propagation (CCP) is based on the SSA
23 propagation engine (tree-ssa-propagate.c). Constant assignments of
24 the form VAR = CST are propagated from the assignments into uses of
25 VAR, which in turn may generate new constants. The simulation uses
26 a four level lattice to keep track of constant values associated
27 with SSA names. Given an SSA name V_i, it may take one of the
28 following values:
29
30 UNINITIALIZED -> the initial state of the value. This value
31 is replaced with a correct initial value
32 the first time the value is used, so the
33 rest of the pass does not need to care about
34 it. Using this value simplifies initialization
35 of the pass, and prevents us from needlessly
36 scanning statements that are never reached.
37
38 UNDEFINED -> V_i is a local variable whose definition
39 has not been processed yet. Therefore we
40 don't yet know if its value is a constant
41 or not.
42
43 CONSTANT -> V_i has been found to hold a constant
44 value C.
45
46 VARYING -> V_i cannot take a constant value, or if it
47 does, it is not possible to determine it
48 at compile time.
49
50 The core of SSA-CCP is in ccp_visit_stmt and ccp_visit_phi_node:
51
52 1- In ccp_visit_stmt, we are interested in assignments whose RHS
53 evaluates into a constant and conditional jumps whose predicate
54 evaluates into a boolean true or false. When an assignment of
55 the form V_i = CONST is found, V_i's lattice value is set to
56 CONSTANT and CONST is associated with it. This causes the
57 propagation engine to add all the SSA edges coming out the
58 assignment into the worklists, so that statements that use V_i
59 can be visited.
60
61 If the statement is a conditional with a constant predicate, we
62 mark the outgoing edges as executable or not executable
63 depending on the predicate's value. This is then used when
64 visiting PHI nodes to know when a PHI argument can be ignored.
65
66
67 2- In ccp_visit_phi_node, if all the PHI arguments evaluate to the
68 same constant C, then the LHS of the PHI is set to C. This
69 evaluation is known as the "meet operation". Since one of the
70 goals of this evaluation is to optimistically return constant
71 values as often as possible, it uses two main short cuts:
72
73 - If an argument is flowing in through a non-executable edge, it
74 is ignored. This is useful in cases like this:
75
76 if (PRED)
77 a_9 = 3;
78 else
79 a_10 = 100;
80 a_11 = PHI (a_9, a_10)
81
82 If PRED is known to always evaluate to false, then we can
83 assume that a_11 will always take its value from a_10, meaning
84 that instead of consider it VARYING (a_9 and a_10 have
85 different values), we can consider it CONSTANT 100.
86
87 - If an argument has an UNDEFINED value, then it does not affect
88 the outcome of the meet operation. If a variable V_i has an
89 UNDEFINED value, it means that either its defining statement
90 hasn't been visited yet or V_i has no defining statement, in
91 which case the original symbol 'V' is being used
92 uninitialized. Since 'V' is a local variable, the compiler
93 may assume any initial value for it.
94
95
96 After propagation, every variable V_i that ends up with a lattice
97 value of CONSTANT will have the associated constant value in the
98 array CONST_VAL[i].VALUE. That is fed into substitute_and_fold for
99 final substitution and folding.
100
101 This algorithm uses wide-ints at the max precision of the target.
102 This means that, with one uninteresting exception, variables with
103 UNSIGNED types never go to VARYING because the bits above the
104 precision of the type of the variable are always zero. The
105 uninteresting case is a variable of UNSIGNED type that has the
106 maximum precision of the target. Such variables can go to VARYING,
107 but this causes no loss of infomation since these variables will
108 never be extended.
109
110 References:
111
112 Constant propagation with conditional branches,
113 Wegman and Zadeck, ACM TOPLAS 13(2):181-210.
114
115 Building an Optimizing Compiler,
116 Robert Morgan, Butterworth-Heinemann, 1998, Section 8.9.
117
118 Advanced Compiler Design and Implementation,
119 Steven Muchnick, Morgan Kaufmann, 1997, Section 12.6 */
120
121 #include "config.h"
122 #include "system.h"
123 #include "coretypes.h"
124 #include "backend.h"
125 #include "target.h"
126 #include "tree.h"
127 #include "gimple.h"
128 #include "tree-pass.h"
129 #include "ssa.h"
130 #include "gimple-pretty-print.h"
131 #include "fold-const.h"
132 #include "gimple-fold.h"
133 #include "tree-eh.h"
134 #include "gimplify.h"
135 #include "gimple-iterator.h"
136 #include "tree-cfg.h"
137 #include "tree-ssa-propagate.h"
138 #include "dbgcnt.h"
139 #include "params.h"
140 #include "builtins.h"
141 #include "tree-chkp.h"
142 #include "cfgloop.h"
143 #include "stor-layout.h"
144 #include "optabs-query.h"
145 #include "tree-ssa-ccp.h"
146
147 /* Possible lattice values. */
148 typedef enum
149 {
150 UNINITIALIZED,
151 UNDEFINED,
152 CONSTANT,
153 VARYING
154 } ccp_lattice_t;
155
156 struct ccp_prop_value_t {
157 /* Lattice value. */
158 ccp_lattice_t lattice_val;
159
160 /* Propagated value. */
161 tree value;
162
163 /* Mask that applies to the propagated value during CCP. For X
164 with a CONSTANT lattice value X & ~mask == value & ~mask. The
165 zero bits in the mask cover constant values. The ones mean no
166 information. */
167 widest_int mask;
168 };
169
170 /* Array of propagated constant values. After propagation,
171 CONST_VAL[I].VALUE holds the constant value for SSA_NAME(I). If
172 the constant is held in an SSA name representing a memory store
173 (i.e., a VDEF), CONST_VAL[I].MEM_REF will contain the actual
174 memory reference used to store (i.e., the LHS of the assignment
175 doing the store). */
176 static ccp_prop_value_t *const_val;
177 static unsigned n_const_val;
178
179 static void canonicalize_value (ccp_prop_value_t *);
180 static bool ccp_fold_stmt (gimple_stmt_iterator *);
181 static void ccp_lattice_meet (ccp_prop_value_t *, ccp_prop_value_t *);
182
183 /* Dump constant propagation value VAL to file OUTF prefixed by PREFIX. */
184
185 static void
186 dump_lattice_value (FILE *outf, const char *prefix, ccp_prop_value_t val)
187 {
188 switch (val.lattice_val)
189 {
190 case UNINITIALIZED:
191 fprintf (outf, "%sUNINITIALIZED", prefix);
192 break;
193 case UNDEFINED:
194 fprintf (outf, "%sUNDEFINED", prefix);
195 break;
196 case VARYING:
197 fprintf (outf, "%sVARYING", prefix);
198 break;
199 case CONSTANT:
200 if (TREE_CODE (val.value) != INTEGER_CST
201 || val.mask == 0)
202 {
203 fprintf (outf, "%sCONSTANT ", prefix);
204 print_generic_expr (outf, val.value, dump_flags);
205 }
206 else
207 {
208 widest_int cval = wi::bit_and_not (wi::to_widest (val.value),
209 val.mask);
210 fprintf (outf, "%sCONSTANT ", prefix);
211 print_hex (cval, outf);
212 fprintf (outf, " (");
213 print_hex (val.mask, outf);
214 fprintf (outf, ")");
215 }
216 break;
217 default:
218 gcc_unreachable ();
219 }
220 }
221
222
223 /* Print lattice value VAL to stderr. */
224
225 void debug_lattice_value (ccp_prop_value_t val);
226
227 DEBUG_FUNCTION void
228 debug_lattice_value (ccp_prop_value_t val)
229 {
230 dump_lattice_value (stderr, "", val);
231 fprintf (stderr, "\n");
232 }
233
234 /* Extend NONZERO_BITS to a full mask, based on sgn. */
235
236 static widest_int
237 extend_mask (const wide_int &nonzero_bits, signop sgn)
238 {
239 return widest_int::from (nonzero_bits, sgn);
240 }
241
242 /* Compute a default value for variable VAR and store it in the
243 CONST_VAL array. The following rules are used to get default
244 values:
245
246 1- Global and static variables that are declared constant are
247 considered CONSTANT.
248
249 2- Any other value is considered UNDEFINED. This is useful when
250 considering PHI nodes. PHI arguments that are undefined do not
251 change the constant value of the PHI node, which allows for more
252 constants to be propagated.
253
254 3- Variables defined by statements other than assignments and PHI
255 nodes are considered VARYING.
256
257 4- Initial values of variables that are not GIMPLE registers are
258 considered VARYING. */
259
260 static ccp_prop_value_t
261 get_default_value (tree var)
262 {
263 ccp_prop_value_t val = { UNINITIALIZED, NULL_TREE, 0 };
264 gimple *stmt;
265
266 stmt = SSA_NAME_DEF_STMT (var);
267
268 if (gimple_nop_p (stmt))
269 {
270 /* Variables defined by an empty statement are those used
271 before being initialized. If VAR is a local variable, we
272 can assume initially that it is UNDEFINED, otherwise we must
273 consider it VARYING. */
274 if (!virtual_operand_p (var)
275 && SSA_NAME_VAR (var)
276 && TREE_CODE (SSA_NAME_VAR (var)) == VAR_DECL)
277 val.lattice_val = UNDEFINED;
278 else
279 {
280 val.lattice_val = VARYING;
281 val.mask = -1;
282 if (flag_tree_bit_ccp)
283 {
284 wide_int nonzero_bits = get_nonzero_bits (var);
285 if (nonzero_bits != -1)
286 {
287 val.lattice_val = CONSTANT;
288 val.value = build_zero_cst (TREE_TYPE (var));
289 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (var)));
290 }
291 }
292 }
293 }
294 else if (is_gimple_assign (stmt))
295 {
296 tree cst;
297 if (gimple_assign_single_p (stmt)
298 && DECL_P (gimple_assign_rhs1 (stmt))
299 && (cst = get_symbol_constant_value (gimple_assign_rhs1 (stmt))))
300 {
301 val.lattice_val = CONSTANT;
302 val.value = cst;
303 }
304 else
305 {
306 /* Any other variable defined by an assignment is considered
307 UNDEFINED. */
308 val.lattice_val = UNDEFINED;
309 }
310 }
311 else if ((is_gimple_call (stmt)
312 && gimple_call_lhs (stmt) != NULL_TREE)
313 || gimple_code (stmt) == GIMPLE_PHI)
314 {
315 /* A variable defined by a call or a PHI node is considered
316 UNDEFINED. */
317 val.lattice_val = UNDEFINED;
318 }
319 else
320 {
321 /* Otherwise, VAR will never take on a constant value. */
322 val.lattice_val = VARYING;
323 val.mask = -1;
324 }
325
326 return val;
327 }
328
329
330 /* Get the constant value associated with variable VAR. */
331
332 static inline ccp_prop_value_t *
333 get_value (tree var)
334 {
335 ccp_prop_value_t *val;
336
337 if (const_val == NULL
338 || SSA_NAME_VERSION (var) >= n_const_val)
339 return NULL;
340
341 val = &const_val[SSA_NAME_VERSION (var)];
342 if (val->lattice_val == UNINITIALIZED)
343 *val = get_default_value (var);
344
345 canonicalize_value (val);
346
347 return val;
348 }
349
350 /* Return the constant tree value associated with VAR. */
351
352 static inline tree
353 get_constant_value (tree var)
354 {
355 ccp_prop_value_t *val;
356 if (TREE_CODE (var) != SSA_NAME)
357 {
358 if (is_gimple_min_invariant (var))
359 return var;
360 return NULL_TREE;
361 }
362 val = get_value (var);
363 if (val
364 && val->lattice_val == CONSTANT
365 && (TREE_CODE (val->value) != INTEGER_CST
366 || val->mask == 0))
367 return val->value;
368 return NULL_TREE;
369 }
370
371 /* Sets the value associated with VAR to VARYING. */
372
373 static inline void
374 set_value_varying (tree var)
375 {
376 ccp_prop_value_t *val = &const_val[SSA_NAME_VERSION (var)];
377
378 val->lattice_val = VARYING;
379 val->value = NULL_TREE;
380 val->mask = -1;
381 }
382
383 /* For integer constants, make sure to drop TREE_OVERFLOW. */
384
385 static void
386 canonicalize_value (ccp_prop_value_t *val)
387 {
388 if (val->lattice_val != CONSTANT)
389 return;
390
391 if (TREE_OVERFLOW_P (val->value))
392 val->value = drop_tree_overflow (val->value);
393 }
394
395 /* Return whether the lattice transition is valid. */
396
397 static bool
398 valid_lattice_transition (ccp_prop_value_t old_val, ccp_prop_value_t new_val)
399 {
400 /* Lattice transitions must always be monotonically increasing in
401 value. */
402 if (old_val.lattice_val < new_val.lattice_val)
403 return true;
404
405 if (old_val.lattice_val != new_val.lattice_val)
406 return false;
407
408 if (!old_val.value && !new_val.value)
409 return true;
410
411 /* Now both lattice values are CONSTANT. */
412
413 /* Allow arbitrary copy changes as we might look through PHI <a_1, ...>
414 when only a single copy edge is executable. */
415 if (TREE_CODE (old_val.value) == SSA_NAME
416 && TREE_CODE (new_val.value) == SSA_NAME)
417 return true;
418
419 /* Allow transitioning from a constant to a copy. */
420 if (is_gimple_min_invariant (old_val.value)
421 && TREE_CODE (new_val.value) == SSA_NAME)
422 return true;
423
424 /* Allow transitioning from PHI <&x, not executable> == &x
425 to PHI <&x, &y> == common alignment. */
426 if (TREE_CODE (old_val.value) != INTEGER_CST
427 && TREE_CODE (new_val.value) == INTEGER_CST)
428 return true;
429
430 /* Bit-lattices have to agree in the still valid bits. */
431 if (TREE_CODE (old_val.value) == INTEGER_CST
432 && TREE_CODE (new_val.value) == INTEGER_CST)
433 return (wi::bit_and_not (wi::to_widest (old_val.value), new_val.mask)
434 == wi::bit_and_not (wi::to_widest (new_val.value), new_val.mask));
435
436 /* Otherwise constant values have to agree. */
437 if (operand_equal_p (old_val.value, new_val.value, 0))
438 return true;
439
440 /* At least the kinds and types should agree now. */
441 if (TREE_CODE (old_val.value) != TREE_CODE (new_val.value)
442 || !types_compatible_p (TREE_TYPE (old_val.value),
443 TREE_TYPE (new_val.value)))
444 return false;
445
446 /* For floats and !HONOR_NANS allow transitions from (partial) NaN
447 to non-NaN. */
448 tree type = TREE_TYPE (new_val.value);
449 if (SCALAR_FLOAT_TYPE_P (type)
450 && !HONOR_NANS (type))
451 {
452 if (REAL_VALUE_ISNAN (TREE_REAL_CST (old_val.value)))
453 return true;
454 }
455 else if (VECTOR_FLOAT_TYPE_P (type)
456 && !HONOR_NANS (type))
457 {
458 for (unsigned i = 0; i < VECTOR_CST_NELTS (old_val.value); ++i)
459 if (!REAL_VALUE_ISNAN
460 (TREE_REAL_CST (VECTOR_CST_ELT (old_val.value, i)))
461 && !operand_equal_p (VECTOR_CST_ELT (old_val.value, i),
462 VECTOR_CST_ELT (new_val.value, i), 0))
463 return false;
464 return true;
465 }
466 else if (COMPLEX_FLOAT_TYPE_P (type)
467 && !HONOR_NANS (type))
468 {
469 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_REALPART (old_val.value)))
470 && !operand_equal_p (TREE_REALPART (old_val.value),
471 TREE_REALPART (new_val.value), 0))
472 return false;
473 if (!REAL_VALUE_ISNAN (TREE_REAL_CST (TREE_IMAGPART (old_val.value)))
474 && !operand_equal_p (TREE_IMAGPART (old_val.value),
475 TREE_IMAGPART (new_val.value), 0))
476 return false;
477 return true;
478 }
479 return false;
480 }
481
482 /* Set the value for variable VAR to NEW_VAL. Return true if the new
483 value is different from VAR's previous value. */
484
485 static bool
486 set_lattice_value (tree var, ccp_prop_value_t *new_val)
487 {
488 /* We can deal with old UNINITIALIZED values just fine here. */
489 ccp_prop_value_t *old_val = &const_val[SSA_NAME_VERSION (var)];
490
491 canonicalize_value (new_val);
492
493 /* We have to be careful to not go up the bitwise lattice
494 represented by the mask. Instead of dropping to VARYING
495 use the meet operator to retain a conservative value.
496 Missed optimizations like PR65851 makes this necessary.
497 It also ensures we converge to a stable lattice solution. */
498 if (new_val->lattice_val == CONSTANT
499 && old_val->lattice_val == CONSTANT
500 && TREE_CODE (new_val->value) != SSA_NAME)
501 ccp_lattice_meet (new_val, old_val);
502
503 gcc_checking_assert (valid_lattice_transition (*old_val, *new_val));
504
505 /* If *OLD_VAL and NEW_VAL are the same, return false to inform the
506 caller that this was a non-transition. */
507 if (old_val->lattice_val != new_val->lattice_val
508 || (new_val->lattice_val == CONSTANT
509 && (TREE_CODE (new_val->value) != TREE_CODE (old_val->value)
510 || (TREE_CODE (new_val->value) == INTEGER_CST
511 && (new_val->mask != old_val->mask
512 || (wi::bit_and_not (wi::to_widest (old_val->value),
513 new_val->mask)
514 != wi::bit_and_not (wi::to_widest (new_val->value),
515 new_val->mask))))
516 || (TREE_CODE (new_val->value) != INTEGER_CST
517 && !operand_equal_p (new_val->value, old_val->value, 0)))))
518 {
519 /* ??? We would like to delay creation of INTEGER_CSTs from
520 partially constants here. */
521
522 if (dump_file && (dump_flags & TDF_DETAILS))
523 {
524 dump_lattice_value (dump_file, "Lattice value changed to ", *new_val);
525 fprintf (dump_file, ". Adding SSA edges to worklist.\n");
526 }
527
528 *old_val = *new_val;
529
530 gcc_assert (new_val->lattice_val != UNINITIALIZED);
531 return true;
532 }
533
534 return false;
535 }
536
537 static ccp_prop_value_t get_value_for_expr (tree, bool);
538 static ccp_prop_value_t bit_value_binop (enum tree_code, tree, tree, tree);
539 void bit_value_binop (enum tree_code, signop, int, widest_int *, widest_int *,
540 signop, int, const widest_int &, const widest_int &,
541 signop, int, const widest_int &, const widest_int &);
542
543 /* Return a widest_int that can be used for bitwise simplifications
544 from VAL. */
545
546 static widest_int
547 value_to_wide_int (ccp_prop_value_t val)
548 {
549 if (val.value
550 && TREE_CODE (val.value) == INTEGER_CST)
551 return wi::to_widest (val.value);
552
553 return 0;
554 }
555
556 /* Return the value for the address expression EXPR based on alignment
557 information. */
558
559 static ccp_prop_value_t
560 get_value_from_alignment (tree expr)
561 {
562 tree type = TREE_TYPE (expr);
563 ccp_prop_value_t val;
564 unsigned HOST_WIDE_INT bitpos;
565 unsigned int align;
566
567 gcc_assert (TREE_CODE (expr) == ADDR_EXPR);
568
569 get_pointer_alignment_1 (expr, &align, &bitpos);
570 val.mask = (POINTER_TYPE_P (type) || TYPE_UNSIGNED (type)
571 ? wi::mask <widest_int> (TYPE_PRECISION (type), false)
572 : -1).and_not (align / BITS_PER_UNIT - 1);
573 val.lattice_val
574 = wi::sext (val.mask, TYPE_PRECISION (type)) == -1 ? VARYING : CONSTANT;
575 if (val.lattice_val == CONSTANT)
576 val.value = build_int_cstu (type, bitpos / BITS_PER_UNIT);
577 else
578 val.value = NULL_TREE;
579
580 return val;
581 }
582
583 /* Return the value for the tree operand EXPR. If FOR_BITS_P is true
584 return constant bits extracted from alignment information for
585 invariant addresses. */
586
587 static ccp_prop_value_t
588 get_value_for_expr (tree expr, bool for_bits_p)
589 {
590 ccp_prop_value_t val;
591
592 if (TREE_CODE (expr) == SSA_NAME)
593 {
594 val = *get_value (expr);
595 if (for_bits_p
596 && val.lattice_val == CONSTANT
597 && TREE_CODE (val.value) == ADDR_EXPR)
598 val = get_value_from_alignment (val.value);
599 /* Fall back to a copy value. */
600 if (!for_bits_p
601 && val.lattice_val == VARYING
602 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (expr))
603 {
604 val.lattice_val = CONSTANT;
605 val.value = expr;
606 val.mask = -1;
607 }
608 }
609 else if (is_gimple_min_invariant (expr)
610 && (!for_bits_p || TREE_CODE (expr) != ADDR_EXPR))
611 {
612 val.lattice_val = CONSTANT;
613 val.value = expr;
614 val.mask = 0;
615 canonicalize_value (&val);
616 }
617 else if (TREE_CODE (expr) == ADDR_EXPR)
618 val = get_value_from_alignment (expr);
619 else
620 {
621 val.lattice_val = VARYING;
622 val.mask = -1;
623 val.value = NULL_TREE;
624 }
625
626 if (val.lattice_val == VARYING
627 && TYPE_UNSIGNED (TREE_TYPE (expr)))
628 val.mask = wi::zext (val.mask, TYPE_PRECISION (TREE_TYPE (expr)));
629
630 return val;
631 }
632
633 /* Return the likely CCP lattice value for STMT.
634
635 If STMT has no operands, then return CONSTANT.
636
637 Else if undefinedness of operands of STMT cause its value to be
638 undefined, then return UNDEFINED.
639
640 Else if any operands of STMT are constants, then return CONSTANT.
641
642 Else return VARYING. */
643
644 static ccp_lattice_t
645 likely_value (gimple *stmt)
646 {
647 bool has_constant_operand, has_undefined_operand, all_undefined_operands;
648 bool has_nsa_operand;
649 tree use;
650 ssa_op_iter iter;
651 unsigned i;
652
653 enum gimple_code code = gimple_code (stmt);
654
655 /* This function appears to be called only for assignments, calls,
656 conditionals, and switches, due to the logic in visit_stmt. */
657 gcc_assert (code == GIMPLE_ASSIGN
658 || code == GIMPLE_CALL
659 || code == GIMPLE_COND
660 || code == GIMPLE_SWITCH);
661
662 /* If the statement has volatile operands, it won't fold to a
663 constant value. */
664 if (gimple_has_volatile_ops (stmt))
665 return VARYING;
666
667 /* Arrive here for more complex cases. */
668 has_constant_operand = false;
669 has_undefined_operand = false;
670 all_undefined_operands = true;
671 has_nsa_operand = false;
672 FOR_EACH_SSA_TREE_OPERAND (use, stmt, iter, SSA_OP_USE)
673 {
674 ccp_prop_value_t *val = get_value (use);
675
676 if (val->lattice_val == UNDEFINED)
677 has_undefined_operand = true;
678 else
679 all_undefined_operands = false;
680
681 if (val->lattice_val == CONSTANT)
682 has_constant_operand = true;
683
684 if (SSA_NAME_IS_DEFAULT_DEF (use)
685 || !prop_simulate_again_p (SSA_NAME_DEF_STMT (use)))
686 has_nsa_operand = true;
687 }
688
689 /* There may be constants in regular rhs operands. For calls we
690 have to ignore lhs, fndecl and static chain, otherwise only
691 the lhs. */
692 for (i = (is_gimple_call (stmt) ? 2 : 0) + gimple_has_lhs (stmt);
693 i < gimple_num_ops (stmt); ++i)
694 {
695 tree op = gimple_op (stmt, i);
696 if (!op || TREE_CODE (op) == SSA_NAME)
697 continue;
698 if (is_gimple_min_invariant (op))
699 has_constant_operand = true;
700 }
701
702 if (has_constant_operand)
703 all_undefined_operands = false;
704
705 if (has_undefined_operand
706 && code == GIMPLE_CALL
707 && gimple_call_internal_p (stmt))
708 switch (gimple_call_internal_fn (stmt))
709 {
710 /* These 3 builtins use the first argument just as a magic
711 way how to find out a decl uid. */
712 case IFN_GOMP_SIMD_LANE:
713 case IFN_GOMP_SIMD_VF:
714 case IFN_GOMP_SIMD_LAST_LANE:
715 has_undefined_operand = false;
716 break;
717 default:
718 break;
719 }
720
721 /* If the operation combines operands like COMPLEX_EXPR make sure to
722 not mark the result UNDEFINED if only one part of the result is
723 undefined. */
724 if (has_undefined_operand && all_undefined_operands)
725 return UNDEFINED;
726 else if (code == GIMPLE_ASSIGN && has_undefined_operand)
727 {
728 switch (gimple_assign_rhs_code (stmt))
729 {
730 /* Unary operators are handled with all_undefined_operands. */
731 case PLUS_EXPR:
732 case MINUS_EXPR:
733 case POINTER_PLUS_EXPR:
734 /* Not MIN_EXPR, MAX_EXPR. One VARYING operand may be selected.
735 Not bitwise operators, one VARYING operand may specify the
736 result completely. Not logical operators for the same reason.
737 Not COMPLEX_EXPR as one VARYING operand makes the result partly
738 not UNDEFINED. Not *DIV_EXPR, comparisons and shifts because
739 the undefined operand may be promoted. */
740 return UNDEFINED;
741
742 case ADDR_EXPR:
743 /* If any part of an address is UNDEFINED, like the index
744 of an ARRAY_EXPR, then treat the result as UNDEFINED. */
745 return UNDEFINED;
746
747 default:
748 ;
749 }
750 }
751 /* If there was an UNDEFINED operand but the result may be not UNDEFINED
752 fall back to CONSTANT. During iteration UNDEFINED may still drop
753 to CONSTANT. */
754 if (has_undefined_operand)
755 return CONSTANT;
756
757 /* We do not consider virtual operands here -- load from read-only
758 memory may have only VARYING virtual operands, but still be
759 constant. Also we can combine the stmt with definitions from
760 operands whose definitions are not simulated again. */
761 if (has_constant_operand
762 || has_nsa_operand
763 || gimple_references_memory_p (stmt))
764 return CONSTANT;
765
766 return VARYING;
767 }
768
769 /* Returns true if STMT cannot be constant. */
770
771 static bool
772 surely_varying_stmt_p (gimple *stmt)
773 {
774 /* If the statement has operands that we cannot handle, it cannot be
775 constant. */
776 if (gimple_has_volatile_ops (stmt))
777 return true;
778
779 /* If it is a call and does not return a value or is not a
780 builtin and not an indirect call or a call to function with
781 assume_aligned/alloc_align attribute, it is varying. */
782 if (is_gimple_call (stmt))
783 {
784 tree fndecl, fntype = gimple_call_fntype (stmt);
785 if (!gimple_call_lhs (stmt)
786 || ((fndecl = gimple_call_fndecl (stmt)) != NULL_TREE
787 && !DECL_BUILT_IN (fndecl)
788 && !lookup_attribute ("assume_aligned",
789 TYPE_ATTRIBUTES (fntype))
790 && !lookup_attribute ("alloc_align",
791 TYPE_ATTRIBUTES (fntype))))
792 return true;
793 }
794
795 /* Any other store operation is not interesting. */
796 else if (gimple_vdef (stmt))
797 return true;
798
799 /* Anything other than assignments and conditional jumps are not
800 interesting for CCP. */
801 if (gimple_code (stmt) != GIMPLE_ASSIGN
802 && gimple_code (stmt) != GIMPLE_COND
803 && gimple_code (stmt) != GIMPLE_SWITCH
804 && gimple_code (stmt) != GIMPLE_CALL)
805 return true;
806
807 return false;
808 }
809
810 /* Initialize local data structures for CCP. */
811
812 static void
813 ccp_initialize (void)
814 {
815 basic_block bb;
816
817 n_const_val = num_ssa_names;
818 const_val = XCNEWVEC (ccp_prop_value_t, n_const_val);
819
820 /* Initialize simulation flags for PHI nodes and statements. */
821 FOR_EACH_BB_FN (bb, cfun)
822 {
823 gimple_stmt_iterator i;
824
825 for (i = gsi_start_bb (bb); !gsi_end_p (i); gsi_next (&i))
826 {
827 gimple *stmt = gsi_stmt (i);
828 bool is_varying;
829
830 /* If the statement is a control insn, then we do not
831 want to avoid simulating the statement once. Failure
832 to do so means that those edges will never get added. */
833 if (stmt_ends_bb_p (stmt))
834 is_varying = false;
835 else
836 is_varying = surely_varying_stmt_p (stmt);
837
838 if (is_varying)
839 {
840 tree def;
841 ssa_op_iter iter;
842
843 /* If the statement will not produce a constant, mark
844 all its outputs VARYING. */
845 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
846 set_value_varying (def);
847 }
848 prop_set_simulate_again (stmt, !is_varying);
849 }
850 }
851
852 /* Now process PHI nodes. We never clear the simulate_again flag on
853 phi nodes, since we do not know which edges are executable yet,
854 except for phi nodes for virtual operands when we do not do store ccp. */
855 FOR_EACH_BB_FN (bb, cfun)
856 {
857 gphi_iterator i;
858
859 for (i = gsi_start_phis (bb); !gsi_end_p (i); gsi_next (&i))
860 {
861 gphi *phi = i.phi ();
862
863 if (virtual_operand_p (gimple_phi_result (phi)))
864 prop_set_simulate_again (phi, false);
865 else
866 prop_set_simulate_again (phi, true);
867 }
868 }
869 }
870
871 /* Debug count support. Reset the values of ssa names
872 VARYING when the total number ssa names analyzed is
873 beyond the debug count specified. */
874
875 static void
876 do_dbg_cnt (void)
877 {
878 unsigned i;
879 for (i = 0; i < num_ssa_names; i++)
880 {
881 if (!dbg_cnt (ccp))
882 {
883 const_val[i].lattice_val = VARYING;
884 const_val[i].mask = -1;
885 const_val[i].value = NULL_TREE;
886 }
887 }
888 }
889
890
891 /* Do final substitution of propagated values, cleanup the flowgraph and
892 free allocated storage. If NONZERO_P, record nonzero bits.
893
894 Return TRUE when something was optimized. */
895
896 static bool
897 ccp_finalize (bool nonzero_p)
898 {
899 bool something_changed;
900 unsigned i;
901 tree name;
902
903 do_dbg_cnt ();
904
905 /* Derive alignment and misalignment information from partially
906 constant pointers in the lattice or nonzero bits from partially
907 constant integers. */
908 FOR_EACH_SSA_NAME (i, name, cfun)
909 {
910 ccp_prop_value_t *val;
911 unsigned int tem, align;
912
913 if (!POINTER_TYPE_P (TREE_TYPE (name))
914 && (!INTEGRAL_TYPE_P (TREE_TYPE (name))
915 /* Don't record nonzero bits before IPA to avoid
916 using too much memory. */
917 || !nonzero_p))
918 continue;
919
920 val = get_value (name);
921 if (val->lattice_val != CONSTANT
922 || TREE_CODE (val->value) != INTEGER_CST
923 || val->mask == 0)
924 continue;
925
926 if (POINTER_TYPE_P (TREE_TYPE (name)))
927 {
928 /* Trailing mask bits specify the alignment, trailing value
929 bits the misalignment. */
930 tem = val->mask.to_uhwi ();
931 align = (tem & -tem);
932 if (align > 1)
933 set_ptr_info_alignment (get_ptr_info (name), align,
934 (TREE_INT_CST_LOW (val->value)
935 & (align - 1)));
936 }
937 else
938 {
939 unsigned int precision = TYPE_PRECISION (TREE_TYPE (val->value));
940 wide_int nonzero_bits = wide_int::from (val->mask, precision,
941 UNSIGNED) | val->value;
942 nonzero_bits &= get_nonzero_bits (name);
943 set_nonzero_bits (name, nonzero_bits);
944 }
945 }
946
947 /* Perform substitutions based on the known constant values. */
948 something_changed = substitute_and_fold (get_constant_value,
949 ccp_fold_stmt, true);
950
951 free (const_val);
952 const_val = NULL;
953 return something_changed;;
954 }
955
956
957 /* Compute the meet operator between *VAL1 and *VAL2. Store the result
958 in VAL1.
959
960 any M UNDEFINED = any
961 any M VARYING = VARYING
962 Ci M Cj = Ci if (i == j)
963 Ci M Cj = VARYING if (i != j)
964 */
965
966 static void
967 ccp_lattice_meet (ccp_prop_value_t *val1, ccp_prop_value_t *val2)
968 {
969 if (val1->lattice_val == UNDEFINED
970 /* For UNDEFINED M SSA we can't always SSA because its definition
971 may not dominate the PHI node. Doing optimistic copy propagation
972 also causes a lot of gcc.dg/uninit-pred*.c FAILs. */
973 && (val2->lattice_val != CONSTANT
974 || TREE_CODE (val2->value) != SSA_NAME))
975 {
976 /* UNDEFINED M any = any */
977 *val1 = *val2;
978 }
979 else if (val2->lattice_val == UNDEFINED
980 /* See above. */
981 && (val1->lattice_val != CONSTANT
982 || TREE_CODE (val1->value) != SSA_NAME))
983 {
984 /* any M UNDEFINED = any
985 Nothing to do. VAL1 already contains the value we want. */
986 ;
987 }
988 else if (val1->lattice_val == VARYING
989 || val2->lattice_val == VARYING)
990 {
991 /* any M VARYING = VARYING. */
992 val1->lattice_val = VARYING;
993 val1->mask = -1;
994 val1->value = NULL_TREE;
995 }
996 else if (val1->lattice_val == CONSTANT
997 && val2->lattice_val == CONSTANT
998 && TREE_CODE (val1->value) == INTEGER_CST
999 && TREE_CODE (val2->value) == INTEGER_CST)
1000 {
1001 /* Ci M Cj = Ci if (i == j)
1002 Ci M Cj = VARYING if (i != j)
1003
1004 For INTEGER_CSTs mask unequal bits. If no equal bits remain,
1005 drop to varying. */
1006 val1->mask = (val1->mask | val2->mask
1007 | (wi::to_widest (val1->value)
1008 ^ wi::to_widest (val2->value)));
1009 if (wi::sext (val1->mask, TYPE_PRECISION (TREE_TYPE (val1->value))) == -1)
1010 {
1011 val1->lattice_val = VARYING;
1012 val1->value = NULL_TREE;
1013 }
1014 }
1015 else if (val1->lattice_val == CONSTANT
1016 && val2->lattice_val == CONSTANT
1017 && operand_equal_p (val1->value, val2->value, 0))
1018 {
1019 /* Ci M Cj = Ci if (i == j)
1020 Ci M Cj = VARYING if (i != j)
1021
1022 VAL1 already contains the value we want for equivalent values. */
1023 }
1024 else if (val1->lattice_val == CONSTANT
1025 && val2->lattice_val == CONSTANT
1026 && (TREE_CODE (val1->value) == ADDR_EXPR
1027 || TREE_CODE (val2->value) == ADDR_EXPR))
1028 {
1029 /* When not equal addresses are involved try meeting for
1030 alignment. */
1031 ccp_prop_value_t tem = *val2;
1032 if (TREE_CODE (val1->value) == ADDR_EXPR)
1033 *val1 = get_value_for_expr (val1->value, true);
1034 if (TREE_CODE (val2->value) == ADDR_EXPR)
1035 tem = get_value_for_expr (val2->value, true);
1036 ccp_lattice_meet (val1, &tem);
1037 }
1038 else
1039 {
1040 /* Any other combination is VARYING. */
1041 val1->lattice_val = VARYING;
1042 val1->mask = -1;
1043 val1->value = NULL_TREE;
1044 }
1045 }
1046
1047
1048 /* Loop through the PHI_NODE's parameters for BLOCK and compare their
1049 lattice values to determine PHI_NODE's lattice value. The value of a
1050 PHI node is determined calling ccp_lattice_meet with all the arguments
1051 of the PHI node that are incoming via executable edges. */
1052
1053 static enum ssa_prop_result
1054 ccp_visit_phi_node (gphi *phi)
1055 {
1056 unsigned i;
1057 ccp_prop_value_t new_val;
1058
1059 if (dump_file && (dump_flags & TDF_DETAILS))
1060 {
1061 fprintf (dump_file, "\nVisiting PHI node: ");
1062 print_gimple_stmt (dump_file, phi, 0, dump_flags);
1063 }
1064
1065 new_val.lattice_val = UNDEFINED;
1066 new_val.value = NULL_TREE;
1067 new_val.mask = 0;
1068
1069 bool first = true;
1070 bool non_exec_edge = false;
1071 for (i = 0; i < gimple_phi_num_args (phi); i++)
1072 {
1073 /* Compute the meet operator over all the PHI arguments flowing
1074 through executable edges. */
1075 edge e = gimple_phi_arg_edge (phi, i);
1076
1077 if (dump_file && (dump_flags & TDF_DETAILS))
1078 {
1079 fprintf (dump_file,
1080 "\n Argument #%d (%d -> %d %sexecutable)\n",
1081 i, e->src->index, e->dest->index,
1082 (e->flags & EDGE_EXECUTABLE) ? "" : "not ");
1083 }
1084
1085 /* If the incoming edge is executable, Compute the meet operator for
1086 the existing value of the PHI node and the current PHI argument. */
1087 if (e->flags & EDGE_EXECUTABLE)
1088 {
1089 tree arg = gimple_phi_arg (phi, i)->def;
1090 ccp_prop_value_t arg_val = get_value_for_expr (arg, false);
1091
1092 if (first)
1093 {
1094 new_val = arg_val;
1095 first = false;
1096 }
1097 else
1098 ccp_lattice_meet (&new_val, &arg_val);
1099
1100 if (dump_file && (dump_flags & TDF_DETAILS))
1101 {
1102 fprintf (dump_file, "\t");
1103 print_generic_expr (dump_file, arg, dump_flags);
1104 dump_lattice_value (dump_file, "\tValue: ", arg_val);
1105 fprintf (dump_file, "\n");
1106 }
1107
1108 if (new_val.lattice_val == VARYING)
1109 break;
1110 }
1111 else
1112 non_exec_edge = true;
1113 }
1114
1115 /* In case there were non-executable edges and the value is a copy
1116 make sure its definition dominates the PHI node. */
1117 if (non_exec_edge
1118 && new_val.lattice_val == CONSTANT
1119 && TREE_CODE (new_val.value) == SSA_NAME
1120 && ! SSA_NAME_IS_DEFAULT_DEF (new_val.value)
1121 && ! dominated_by_p (CDI_DOMINATORS, gimple_bb (phi),
1122 gimple_bb (SSA_NAME_DEF_STMT (new_val.value))))
1123 {
1124 new_val.lattice_val = VARYING;
1125 new_val.value = NULL_TREE;
1126 new_val.mask = -1;
1127 }
1128
1129 if (dump_file && (dump_flags & TDF_DETAILS))
1130 {
1131 dump_lattice_value (dump_file, "\n PHI node value: ", new_val);
1132 fprintf (dump_file, "\n\n");
1133 }
1134
1135 /* Make the transition to the new value. */
1136 if (set_lattice_value (gimple_phi_result (phi), &new_val))
1137 {
1138 if (new_val.lattice_val == VARYING)
1139 return SSA_PROP_VARYING;
1140 else
1141 return SSA_PROP_INTERESTING;
1142 }
1143 else
1144 return SSA_PROP_NOT_INTERESTING;
1145 }
1146
1147 /* Return the constant value for OP or OP otherwise. */
1148
1149 static tree
1150 valueize_op (tree op)
1151 {
1152 if (TREE_CODE (op) == SSA_NAME)
1153 {
1154 tree tem = get_constant_value (op);
1155 if (tem)
1156 return tem;
1157 }
1158 return op;
1159 }
1160
1161 /* Return the constant value for OP, but signal to not follow SSA
1162 edges if the definition may be simulated again. */
1163
1164 static tree
1165 valueize_op_1 (tree op)
1166 {
1167 if (TREE_CODE (op) == SSA_NAME)
1168 {
1169 /* If the definition may be simulated again we cannot follow
1170 this SSA edge as the SSA propagator does not necessarily
1171 re-visit the use. */
1172 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
1173 if (!gimple_nop_p (def_stmt)
1174 && prop_simulate_again_p (def_stmt))
1175 return NULL_TREE;
1176 tree tem = get_constant_value (op);
1177 if (tem)
1178 return tem;
1179 }
1180 return op;
1181 }
1182
1183 /* CCP specific front-end to the non-destructive constant folding
1184 routines.
1185
1186 Attempt to simplify the RHS of STMT knowing that one or more
1187 operands are constants.
1188
1189 If simplification is possible, return the simplified RHS,
1190 otherwise return the original RHS or NULL_TREE. */
1191
1192 static tree
1193 ccp_fold (gimple *stmt)
1194 {
1195 location_t loc = gimple_location (stmt);
1196 switch (gimple_code (stmt))
1197 {
1198 case GIMPLE_COND:
1199 {
1200 /* Handle comparison operators that can appear in GIMPLE form. */
1201 tree op0 = valueize_op (gimple_cond_lhs (stmt));
1202 tree op1 = valueize_op (gimple_cond_rhs (stmt));
1203 enum tree_code code = gimple_cond_code (stmt);
1204 return fold_binary_loc (loc, code, boolean_type_node, op0, op1);
1205 }
1206
1207 case GIMPLE_SWITCH:
1208 {
1209 /* Return the constant switch index. */
1210 return valueize_op (gimple_switch_index (as_a <gswitch *> (stmt)));
1211 }
1212
1213 case GIMPLE_ASSIGN:
1214 case GIMPLE_CALL:
1215 return gimple_fold_stmt_to_constant_1 (stmt,
1216 valueize_op, valueize_op_1);
1217
1218 default:
1219 gcc_unreachable ();
1220 }
1221 }
1222
1223 /* Apply the operation CODE in type TYPE to the value, mask pair
1224 RVAL and RMASK representing a value of type RTYPE and set
1225 the value, mask pair *VAL and *MASK to the result. */
1226
1227 void
1228 bit_value_unop (enum tree_code code, signop type_sgn, int type_precision,
1229 widest_int *val, widest_int *mask,
1230 signop rtype_sgn, int rtype_precision,
1231 const widest_int &rval, const widest_int &rmask)
1232 {
1233 switch (code)
1234 {
1235 case BIT_NOT_EXPR:
1236 *mask = rmask;
1237 *val = ~rval;
1238 break;
1239
1240 case NEGATE_EXPR:
1241 {
1242 widest_int temv, temm;
1243 /* Return ~rval + 1. */
1244 bit_value_unop (BIT_NOT_EXPR, type_sgn, type_precision, &temv, &temm,
1245 type_sgn, type_precision, rval, rmask);
1246 bit_value_binop (PLUS_EXPR, type_sgn, type_precision, val, mask,
1247 type_sgn, type_precision, temv, temm,
1248 type_sgn, type_precision, 1, 0);
1249 break;
1250 }
1251
1252 CASE_CONVERT:
1253 {
1254 /* First extend mask and value according to the original type. */
1255 *mask = wi::ext (rmask, rtype_precision, rtype_sgn);
1256 *val = wi::ext (rval, rtype_precision, rtype_sgn);
1257
1258 /* Then extend mask and value according to the target type. */
1259 *mask = wi::ext (*mask, type_precision, type_sgn);
1260 *val = wi::ext (*val, type_precision, type_sgn);
1261 break;
1262 }
1263
1264 default:
1265 *mask = -1;
1266 break;
1267 }
1268 }
1269
1270 /* Apply the operation CODE in type TYPE to the value, mask pairs
1271 R1VAL, R1MASK and R2VAL, R2MASK representing a values of type R1TYPE
1272 and R2TYPE and set the value, mask pair *VAL and *MASK to the result. */
1273
1274 void
1275 bit_value_binop (enum tree_code code, signop sgn, int width,
1276 widest_int *val, widest_int *mask,
1277 signop r1type_sgn, int r1type_precision,
1278 const widest_int &r1val, const widest_int &r1mask,
1279 signop r2type_sgn, int r2type_precision,
1280 const widest_int &r2val, const widest_int &r2mask)
1281 {
1282 bool swap_p = false;
1283
1284 /* Assume we'll get a constant result. Use an initial non varying
1285 value, we fall back to varying in the end if necessary. */
1286 *mask = -1;
1287
1288 switch (code)
1289 {
1290 case BIT_AND_EXPR:
1291 /* The mask is constant where there is a known not
1292 set bit, (m1 | m2) & ((v1 | m1) & (v2 | m2)) */
1293 *mask = (r1mask | r2mask) & (r1val | r1mask) & (r2val | r2mask);
1294 *val = r1val & r2val;
1295 break;
1296
1297 case BIT_IOR_EXPR:
1298 /* The mask is constant where there is a known
1299 set bit, (m1 | m2) & ~((v1 & ~m1) | (v2 & ~m2)). */
1300 *mask = (r1mask | r2mask)
1301 .and_not (r1val.and_not (r1mask) | r2val.and_not (r2mask));
1302 *val = r1val | r2val;
1303 break;
1304
1305 case BIT_XOR_EXPR:
1306 /* m1 | m2 */
1307 *mask = r1mask | r2mask;
1308 *val = r1val ^ r2val;
1309 break;
1310
1311 case LROTATE_EXPR:
1312 case RROTATE_EXPR:
1313 if (r2mask == 0)
1314 {
1315 widest_int shift = r2val;
1316 if (shift == 0)
1317 {
1318 *mask = r1mask;
1319 *val = r1val;
1320 }
1321 else
1322 {
1323 if (wi::neg_p (shift))
1324 {
1325 shift = -shift;
1326 if (code == RROTATE_EXPR)
1327 code = LROTATE_EXPR;
1328 else
1329 code = RROTATE_EXPR;
1330 }
1331 if (code == RROTATE_EXPR)
1332 {
1333 *mask = wi::rrotate (r1mask, shift, width);
1334 *val = wi::rrotate (r1val, shift, width);
1335 }
1336 else
1337 {
1338 *mask = wi::lrotate (r1mask, shift, width);
1339 *val = wi::lrotate (r1val, shift, width);
1340 }
1341 }
1342 }
1343 break;
1344
1345 case LSHIFT_EXPR:
1346 case RSHIFT_EXPR:
1347 /* ??? We can handle partially known shift counts if we know
1348 its sign. That way we can tell that (x << (y | 8)) & 255
1349 is zero. */
1350 if (r2mask == 0)
1351 {
1352 widest_int shift = r2val;
1353 if (shift == 0)
1354 {
1355 *mask = r1mask;
1356 *val = r1val;
1357 }
1358 else
1359 {
1360 if (wi::neg_p (shift))
1361 {
1362 shift = -shift;
1363 if (code == RSHIFT_EXPR)
1364 code = LSHIFT_EXPR;
1365 else
1366 code = RSHIFT_EXPR;
1367 }
1368 if (code == RSHIFT_EXPR)
1369 {
1370 *mask = wi::rshift (wi::ext (r1mask, width, sgn), shift, sgn);
1371 *val = wi::rshift (wi::ext (r1val, width, sgn), shift, sgn);
1372 }
1373 else
1374 {
1375 *mask = wi::ext (r1mask << shift, width, sgn);
1376 *val = wi::ext (r1val << shift, width, sgn);
1377 }
1378 }
1379 }
1380 break;
1381
1382 case PLUS_EXPR:
1383 case POINTER_PLUS_EXPR:
1384 {
1385 /* Do the addition with unknown bits set to zero, to give carry-ins of
1386 zero wherever possible. */
1387 widest_int lo = r1val.and_not (r1mask) + r2val.and_not (r2mask);
1388 lo = wi::ext (lo, width, sgn);
1389 /* Do the addition with unknown bits set to one, to give carry-ins of
1390 one wherever possible. */
1391 widest_int hi = (r1val | r1mask) + (r2val | r2mask);
1392 hi = wi::ext (hi, width, sgn);
1393 /* Each bit in the result is known if (a) the corresponding bits in
1394 both inputs are known, and (b) the carry-in to that bit position
1395 is known. We can check condition (b) by seeing if we got the same
1396 result with minimised carries as with maximised carries. */
1397 *mask = r1mask | r2mask | (lo ^ hi);
1398 *mask = wi::ext (*mask, width, sgn);
1399 /* It shouldn't matter whether we choose lo or hi here. */
1400 *val = lo;
1401 break;
1402 }
1403
1404 case MINUS_EXPR:
1405 {
1406 widest_int temv, temm;
1407 bit_value_unop (NEGATE_EXPR, r2type_sgn, r2type_precision, &temv, &temm,
1408 r2type_sgn, r2type_precision, r2val, r2mask);
1409 bit_value_binop (PLUS_EXPR, sgn, width, val, mask,
1410 r1type_sgn, r1type_precision, r1val, r1mask,
1411 r2type_sgn, r2type_precision, temv, temm);
1412 break;
1413 }
1414
1415 case MULT_EXPR:
1416 {
1417 /* Just track trailing zeros in both operands and transfer
1418 them to the other. */
1419 int r1tz = wi::ctz (r1val | r1mask);
1420 int r2tz = wi::ctz (r2val | r2mask);
1421 if (r1tz + r2tz >= width)
1422 {
1423 *mask = 0;
1424 *val = 0;
1425 }
1426 else if (r1tz + r2tz > 0)
1427 {
1428 *mask = wi::ext (wi::mask <widest_int> (r1tz + r2tz, true),
1429 width, sgn);
1430 *val = 0;
1431 }
1432 break;
1433 }
1434
1435 case EQ_EXPR:
1436 case NE_EXPR:
1437 {
1438 widest_int m = r1mask | r2mask;
1439 if (r1val.and_not (m) != r2val.and_not (m))
1440 {
1441 *mask = 0;
1442 *val = ((code == EQ_EXPR) ? 0 : 1);
1443 }
1444 else
1445 {
1446 /* We know the result of a comparison is always one or zero. */
1447 *mask = 1;
1448 *val = 0;
1449 }
1450 break;
1451 }
1452
1453 case GE_EXPR:
1454 case GT_EXPR:
1455 swap_p = true;
1456 code = swap_tree_comparison (code);
1457 /* Fall through. */
1458 case LT_EXPR:
1459 case LE_EXPR:
1460 {
1461 int minmax, maxmin;
1462
1463 const widest_int &o1val = swap_p ? r2val : r1val;
1464 const widest_int &o1mask = swap_p ? r2mask : r1mask;
1465 const widest_int &o2val = swap_p ? r1val : r2val;
1466 const widest_int &o2mask = swap_p ? r1mask : r2mask;
1467
1468 /* If the most significant bits are not known we know nothing. */
1469 if (wi::neg_p (o1mask) || wi::neg_p (o2mask))
1470 break;
1471
1472 /* For comparisons the signedness is in the comparison operands. */
1473 sgn = r1type_sgn;
1474
1475 /* If we know the most significant bits we know the values
1476 value ranges by means of treating varying bits as zero
1477 or one. Do a cross comparison of the max/min pairs. */
1478 maxmin = wi::cmp (o1val | o1mask, o2val.and_not (o2mask), sgn);
1479 minmax = wi::cmp (o1val.and_not (o1mask), o2val | o2mask, sgn);
1480 if (maxmin < 0) /* o1 is less than o2. */
1481 {
1482 *mask = 0;
1483 *val = 1;
1484 }
1485 else if (minmax > 0) /* o1 is not less or equal to o2. */
1486 {
1487 *mask = 0;
1488 *val = 0;
1489 }
1490 else if (maxmin == minmax) /* o1 and o2 are equal. */
1491 {
1492 /* This probably should never happen as we'd have
1493 folded the thing during fully constant value folding. */
1494 *mask = 0;
1495 *val = (code == LE_EXPR ? 1 : 0);
1496 }
1497 else
1498 {
1499 /* We know the result of a comparison is always one or zero. */
1500 *mask = 1;
1501 *val = 0;
1502 }
1503 break;
1504 }
1505
1506 default:;
1507 }
1508 }
1509
1510 /* Return the propagation value when applying the operation CODE to
1511 the value RHS yielding type TYPE. */
1512
1513 static ccp_prop_value_t
1514 bit_value_unop (enum tree_code code, tree type, tree rhs)
1515 {
1516 ccp_prop_value_t rval = get_value_for_expr (rhs, true);
1517 widest_int value, mask;
1518 ccp_prop_value_t val;
1519
1520 if (rval.lattice_val == UNDEFINED)
1521 return rval;
1522
1523 gcc_assert ((rval.lattice_val == CONSTANT
1524 && TREE_CODE (rval.value) == INTEGER_CST)
1525 || wi::sext (rval.mask, TYPE_PRECISION (TREE_TYPE (rhs))) == -1);
1526 bit_value_unop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1527 TYPE_SIGN (TREE_TYPE (rhs)), TYPE_PRECISION (TREE_TYPE (rhs)),
1528 value_to_wide_int (rval), rval.mask);
1529 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1530 {
1531 val.lattice_val = CONSTANT;
1532 val.mask = mask;
1533 /* ??? Delay building trees here. */
1534 val.value = wide_int_to_tree (type, value);
1535 }
1536 else
1537 {
1538 val.lattice_val = VARYING;
1539 val.value = NULL_TREE;
1540 val.mask = -1;
1541 }
1542 return val;
1543 }
1544
1545 /* Return the propagation value when applying the operation CODE to
1546 the values RHS1 and RHS2 yielding type TYPE. */
1547
1548 static ccp_prop_value_t
1549 bit_value_binop (enum tree_code code, tree type, tree rhs1, tree rhs2)
1550 {
1551 ccp_prop_value_t r1val = get_value_for_expr (rhs1, true);
1552 ccp_prop_value_t r2val = get_value_for_expr (rhs2, true);
1553 widest_int value, mask;
1554 ccp_prop_value_t val;
1555
1556 if (r1val.lattice_val == UNDEFINED
1557 || r2val.lattice_val == UNDEFINED)
1558 {
1559 val.lattice_val = VARYING;
1560 val.value = NULL_TREE;
1561 val.mask = -1;
1562 return val;
1563 }
1564
1565 gcc_assert ((r1val.lattice_val == CONSTANT
1566 && TREE_CODE (r1val.value) == INTEGER_CST)
1567 || wi::sext (r1val.mask,
1568 TYPE_PRECISION (TREE_TYPE (rhs1))) == -1);
1569 gcc_assert ((r2val.lattice_val == CONSTANT
1570 && TREE_CODE (r2val.value) == INTEGER_CST)
1571 || wi::sext (r2val.mask,
1572 TYPE_PRECISION (TREE_TYPE (rhs2))) == -1);
1573 bit_value_binop (code, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1574 TYPE_SIGN (TREE_TYPE (rhs1)), TYPE_PRECISION (TREE_TYPE (rhs1)),
1575 value_to_wide_int (r1val), r1val.mask,
1576 TYPE_SIGN (TREE_TYPE (rhs2)), TYPE_PRECISION (TREE_TYPE (rhs2)),
1577 value_to_wide_int (r2val), r2val.mask);
1578
1579 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1580 {
1581 val.lattice_val = CONSTANT;
1582 val.mask = mask;
1583 /* ??? Delay building trees here. */
1584 val.value = wide_int_to_tree (type, value);
1585 }
1586 else
1587 {
1588 val.lattice_val = VARYING;
1589 val.value = NULL_TREE;
1590 val.mask = -1;
1591 }
1592 return val;
1593 }
1594
1595 /* Return the propagation value for __builtin_assume_aligned
1596 and functions with assume_aligned or alloc_aligned attribute.
1597 For __builtin_assume_aligned, ATTR is NULL_TREE,
1598 for assume_aligned attribute ATTR is non-NULL and ALLOC_ALIGNED
1599 is false, for alloc_aligned attribute ATTR is non-NULL and
1600 ALLOC_ALIGNED is true. */
1601
1602 static ccp_prop_value_t
1603 bit_value_assume_aligned (gimple *stmt, tree attr, ccp_prop_value_t ptrval,
1604 bool alloc_aligned)
1605 {
1606 tree align, misalign = NULL_TREE, type;
1607 unsigned HOST_WIDE_INT aligni, misaligni = 0;
1608 ccp_prop_value_t alignval;
1609 widest_int value, mask;
1610 ccp_prop_value_t val;
1611
1612 if (attr == NULL_TREE)
1613 {
1614 tree ptr = gimple_call_arg (stmt, 0);
1615 type = TREE_TYPE (ptr);
1616 ptrval = get_value_for_expr (ptr, true);
1617 }
1618 else
1619 {
1620 tree lhs = gimple_call_lhs (stmt);
1621 type = TREE_TYPE (lhs);
1622 }
1623
1624 if (ptrval.lattice_val == UNDEFINED)
1625 return ptrval;
1626 gcc_assert ((ptrval.lattice_val == CONSTANT
1627 && TREE_CODE (ptrval.value) == INTEGER_CST)
1628 || wi::sext (ptrval.mask, TYPE_PRECISION (type)) == -1);
1629 if (attr == NULL_TREE)
1630 {
1631 /* Get aligni and misaligni from __builtin_assume_aligned. */
1632 align = gimple_call_arg (stmt, 1);
1633 if (!tree_fits_uhwi_p (align))
1634 return ptrval;
1635 aligni = tree_to_uhwi (align);
1636 if (gimple_call_num_args (stmt) > 2)
1637 {
1638 misalign = gimple_call_arg (stmt, 2);
1639 if (!tree_fits_uhwi_p (misalign))
1640 return ptrval;
1641 misaligni = tree_to_uhwi (misalign);
1642 }
1643 }
1644 else
1645 {
1646 /* Get aligni and misaligni from assume_aligned or
1647 alloc_align attributes. */
1648 if (TREE_VALUE (attr) == NULL_TREE)
1649 return ptrval;
1650 attr = TREE_VALUE (attr);
1651 align = TREE_VALUE (attr);
1652 if (!tree_fits_uhwi_p (align))
1653 return ptrval;
1654 aligni = tree_to_uhwi (align);
1655 if (alloc_aligned)
1656 {
1657 if (aligni == 0 || aligni > gimple_call_num_args (stmt))
1658 return ptrval;
1659 align = gimple_call_arg (stmt, aligni - 1);
1660 if (!tree_fits_uhwi_p (align))
1661 return ptrval;
1662 aligni = tree_to_uhwi (align);
1663 }
1664 else if (TREE_CHAIN (attr) && TREE_VALUE (TREE_CHAIN (attr)))
1665 {
1666 misalign = TREE_VALUE (TREE_CHAIN (attr));
1667 if (!tree_fits_uhwi_p (misalign))
1668 return ptrval;
1669 misaligni = tree_to_uhwi (misalign);
1670 }
1671 }
1672 if (aligni <= 1 || (aligni & (aligni - 1)) != 0 || misaligni >= aligni)
1673 return ptrval;
1674
1675 align = build_int_cst_type (type, -aligni);
1676 alignval = get_value_for_expr (align, true);
1677 bit_value_binop (BIT_AND_EXPR, TYPE_SIGN (type), TYPE_PRECISION (type), &value, &mask,
1678 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (ptrval), ptrval.mask,
1679 TYPE_SIGN (type), TYPE_PRECISION (type), value_to_wide_int (alignval), alignval.mask);
1680
1681 if (wi::sext (mask, TYPE_PRECISION (type)) != -1)
1682 {
1683 val.lattice_val = CONSTANT;
1684 val.mask = mask;
1685 gcc_assert ((mask.to_uhwi () & (aligni - 1)) == 0);
1686 gcc_assert ((value.to_uhwi () & (aligni - 1)) == 0);
1687 value |= misaligni;
1688 /* ??? Delay building trees here. */
1689 val.value = wide_int_to_tree (type, value);
1690 }
1691 else
1692 {
1693 val.lattice_val = VARYING;
1694 val.value = NULL_TREE;
1695 val.mask = -1;
1696 }
1697 return val;
1698 }
1699
1700 /* Evaluate statement STMT.
1701 Valid only for assignments, calls, conditionals, and switches. */
1702
1703 static ccp_prop_value_t
1704 evaluate_stmt (gimple *stmt)
1705 {
1706 ccp_prop_value_t val;
1707 tree simplified = NULL_TREE;
1708 ccp_lattice_t likelyvalue = likely_value (stmt);
1709 bool is_constant = false;
1710 unsigned int align;
1711
1712 if (dump_file && (dump_flags & TDF_DETAILS))
1713 {
1714 fprintf (dump_file, "which is likely ");
1715 switch (likelyvalue)
1716 {
1717 case CONSTANT:
1718 fprintf (dump_file, "CONSTANT");
1719 break;
1720 case UNDEFINED:
1721 fprintf (dump_file, "UNDEFINED");
1722 break;
1723 case VARYING:
1724 fprintf (dump_file, "VARYING");
1725 break;
1726 default:;
1727 }
1728 fprintf (dump_file, "\n");
1729 }
1730
1731 /* If the statement is likely to have a CONSTANT result, then try
1732 to fold the statement to determine the constant value. */
1733 /* FIXME. This is the only place that we call ccp_fold.
1734 Since likely_value never returns CONSTANT for calls, we will
1735 not attempt to fold them, including builtins that may profit. */
1736 if (likelyvalue == CONSTANT)
1737 {
1738 fold_defer_overflow_warnings ();
1739 simplified = ccp_fold (stmt);
1740 if (simplified && TREE_CODE (simplified) == SSA_NAME)
1741 {
1742 val = *get_value (simplified);
1743 if (val.lattice_val != VARYING)
1744 {
1745 fold_undefer_overflow_warnings (true, stmt, 0);
1746 return val;
1747 }
1748 }
1749 is_constant = simplified && is_gimple_min_invariant (simplified);
1750 fold_undefer_overflow_warnings (is_constant, stmt, 0);
1751 if (is_constant)
1752 {
1753 /* The statement produced a constant value. */
1754 val.lattice_val = CONSTANT;
1755 val.value = simplified;
1756 val.mask = 0;
1757 return val;
1758 }
1759 }
1760 /* If the statement is likely to have a VARYING result, then do not
1761 bother folding the statement. */
1762 else if (likelyvalue == VARYING)
1763 {
1764 enum gimple_code code = gimple_code (stmt);
1765 if (code == GIMPLE_ASSIGN)
1766 {
1767 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1768
1769 /* Other cases cannot satisfy is_gimple_min_invariant
1770 without folding. */
1771 if (get_gimple_rhs_class (subcode) == GIMPLE_SINGLE_RHS)
1772 simplified = gimple_assign_rhs1 (stmt);
1773 }
1774 else if (code == GIMPLE_SWITCH)
1775 simplified = gimple_switch_index (as_a <gswitch *> (stmt));
1776 else
1777 /* These cannot satisfy is_gimple_min_invariant without folding. */
1778 gcc_assert (code == GIMPLE_CALL || code == GIMPLE_COND);
1779 is_constant = simplified && is_gimple_min_invariant (simplified);
1780 if (is_constant)
1781 {
1782 /* The statement produced a constant value. */
1783 val.lattice_val = CONSTANT;
1784 val.value = simplified;
1785 val.mask = 0;
1786 }
1787 }
1788 /* If the statement result is likely UNDEFINED, make it so. */
1789 else if (likelyvalue == UNDEFINED)
1790 {
1791 val.lattice_val = UNDEFINED;
1792 val.value = NULL_TREE;
1793 val.mask = 0;
1794 return val;
1795 }
1796
1797 /* Resort to simplification for bitwise tracking. */
1798 if (flag_tree_bit_ccp
1799 && (likelyvalue == CONSTANT || is_gimple_call (stmt)
1800 || (gimple_assign_single_p (stmt)
1801 && gimple_assign_rhs_code (stmt) == ADDR_EXPR))
1802 && !is_constant)
1803 {
1804 enum gimple_code code = gimple_code (stmt);
1805 val.lattice_val = VARYING;
1806 val.value = NULL_TREE;
1807 val.mask = -1;
1808 if (code == GIMPLE_ASSIGN)
1809 {
1810 enum tree_code subcode = gimple_assign_rhs_code (stmt);
1811 tree rhs1 = gimple_assign_rhs1 (stmt);
1812 tree lhs = gimple_assign_lhs (stmt);
1813 if ((INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1814 || POINTER_TYPE_P (TREE_TYPE (lhs)))
1815 && (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1816 || POINTER_TYPE_P (TREE_TYPE (rhs1))))
1817 switch (get_gimple_rhs_class (subcode))
1818 {
1819 case GIMPLE_SINGLE_RHS:
1820 val = get_value_for_expr (rhs1, true);
1821 break;
1822
1823 case GIMPLE_UNARY_RHS:
1824 val = bit_value_unop (subcode, TREE_TYPE (lhs), rhs1);
1825 break;
1826
1827 case GIMPLE_BINARY_RHS:
1828 val = bit_value_binop (subcode, TREE_TYPE (lhs), rhs1,
1829 gimple_assign_rhs2 (stmt));
1830 break;
1831
1832 default:;
1833 }
1834 }
1835 else if (code == GIMPLE_COND)
1836 {
1837 enum tree_code code = gimple_cond_code (stmt);
1838 tree rhs1 = gimple_cond_lhs (stmt);
1839 tree rhs2 = gimple_cond_rhs (stmt);
1840 if (INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1841 || POINTER_TYPE_P (TREE_TYPE (rhs1)))
1842 val = bit_value_binop (code, TREE_TYPE (rhs1), rhs1, rhs2);
1843 }
1844 else if (gimple_call_builtin_p (stmt, BUILT_IN_NORMAL))
1845 {
1846 tree fndecl = gimple_call_fndecl (stmt);
1847 switch (DECL_FUNCTION_CODE (fndecl))
1848 {
1849 case BUILT_IN_MALLOC:
1850 case BUILT_IN_REALLOC:
1851 case BUILT_IN_CALLOC:
1852 case BUILT_IN_STRDUP:
1853 case BUILT_IN_STRNDUP:
1854 val.lattice_val = CONSTANT;
1855 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1856 val.mask = ~((HOST_WIDE_INT) MALLOC_ABI_ALIGNMENT
1857 / BITS_PER_UNIT - 1);
1858 break;
1859
1860 case BUILT_IN_ALLOCA:
1861 case BUILT_IN_ALLOCA_WITH_ALIGN:
1862 align = (DECL_FUNCTION_CODE (fndecl) == BUILT_IN_ALLOCA_WITH_ALIGN
1863 ? TREE_INT_CST_LOW (gimple_call_arg (stmt, 1))
1864 : BIGGEST_ALIGNMENT);
1865 val.lattice_val = CONSTANT;
1866 val.value = build_int_cst (TREE_TYPE (gimple_get_lhs (stmt)), 0);
1867 val.mask = ~((HOST_WIDE_INT) align / BITS_PER_UNIT - 1);
1868 break;
1869
1870 /* These builtins return their first argument, unmodified. */
1871 case BUILT_IN_MEMCPY:
1872 case BUILT_IN_MEMMOVE:
1873 case BUILT_IN_MEMSET:
1874 case BUILT_IN_STRCPY:
1875 case BUILT_IN_STRNCPY:
1876 case BUILT_IN_MEMCPY_CHK:
1877 case BUILT_IN_MEMMOVE_CHK:
1878 case BUILT_IN_MEMSET_CHK:
1879 case BUILT_IN_STRCPY_CHK:
1880 case BUILT_IN_STRNCPY_CHK:
1881 val = get_value_for_expr (gimple_call_arg (stmt, 0), true);
1882 break;
1883
1884 case BUILT_IN_ASSUME_ALIGNED:
1885 val = bit_value_assume_aligned (stmt, NULL_TREE, val, false);
1886 break;
1887
1888 case BUILT_IN_ALIGNED_ALLOC:
1889 {
1890 tree align = get_constant_value (gimple_call_arg (stmt, 0));
1891 if (align
1892 && tree_fits_uhwi_p (align))
1893 {
1894 unsigned HOST_WIDE_INT aligni = tree_to_uhwi (align);
1895 if (aligni > 1
1896 /* align must be power-of-two */
1897 && (aligni & (aligni - 1)) == 0)
1898 {
1899 val.lattice_val = CONSTANT;
1900 val.value = build_int_cst (ptr_type_node, 0);
1901 val.mask = -aligni;
1902 }
1903 }
1904 break;
1905 }
1906
1907 default:;
1908 }
1909 }
1910 if (is_gimple_call (stmt) && gimple_call_lhs (stmt))
1911 {
1912 tree fntype = gimple_call_fntype (stmt);
1913 if (fntype)
1914 {
1915 tree attrs = lookup_attribute ("assume_aligned",
1916 TYPE_ATTRIBUTES (fntype));
1917 if (attrs)
1918 val = bit_value_assume_aligned (stmt, attrs, val, false);
1919 attrs = lookup_attribute ("alloc_align",
1920 TYPE_ATTRIBUTES (fntype));
1921 if (attrs)
1922 val = bit_value_assume_aligned (stmt, attrs, val, true);
1923 }
1924 }
1925 is_constant = (val.lattice_val == CONSTANT);
1926 }
1927
1928 if (flag_tree_bit_ccp
1929 && ((is_constant && TREE_CODE (val.value) == INTEGER_CST)
1930 || !is_constant)
1931 && gimple_get_lhs (stmt)
1932 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME)
1933 {
1934 tree lhs = gimple_get_lhs (stmt);
1935 wide_int nonzero_bits = get_nonzero_bits (lhs);
1936 if (nonzero_bits != -1)
1937 {
1938 if (!is_constant)
1939 {
1940 val.lattice_val = CONSTANT;
1941 val.value = build_zero_cst (TREE_TYPE (lhs));
1942 val.mask = extend_mask (nonzero_bits, TYPE_SIGN (TREE_TYPE (lhs)));
1943 is_constant = true;
1944 }
1945 else
1946 {
1947 if (wi::bit_and_not (val.value, nonzero_bits) != 0)
1948 val.value = wide_int_to_tree (TREE_TYPE (lhs),
1949 nonzero_bits & val.value);
1950 if (nonzero_bits == 0)
1951 val.mask = 0;
1952 else
1953 val.mask = val.mask & extend_mask (nonzero_bits,
1954 TYPE_SIGN (TREE_TYPE (lhs)));
1955 }
1956 }
1957 }
1958
1959 /* The statement produced a nonconstant value. */
1960 if (!is_constant)
1961 {
1962 /* The statement produced a copy. */
1963 if (simplified && TREE_CODE (simplified) == SSA_NAME
1964 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (simplified))
1965 {
1966 val.lattice_val = CONSTANT;
1967 val.value = simplified;
1968 val.mask = -1;
1969 }
1970 /* The statement is VARYING. */
1971 else
1972 {
1973 val.lattice_val = VARYING;
1974 val.value = NULL_TREE;
1975 val.mask = -1;
1976 }
1977 }
1978
1979 return val;
1980 }
1981
1982 typedef hash_table<nofree_ptr_hash<gimple> > gimple_htab;
1983
1984 /* Given a BUILT_IN_STACK_SAVE value SAVED_VAL, insert a clobber of VAR before
1985 each matching BUILT_IN_STACK_RESTORE. Mark visited phis in VISITED. */
1986
1987 static void
1988 insert_clobber_before_stack_restore (tree saved_val, tree var,
1989 gimple_htab **visited)
1990 {
1991 gimple *stmt;
1992 gassign *clobber_stmt;
1993 tree clobber;
1994 imm_use_iterator iter;
1995 gimple_stmt_iterator i;
1996 gimple **slot;
1997
1998 FOR_EACH_IMM_USE_STMT (stmt, iter, saved_val)
1999 if (gimple_call_builtin_p (stmt, BUILT_IN_STACK_RESTORE))
2000 {
2001 clobber = build_constructor (TREE_TYPE (var),
2002 NULL);
2003 TREE_THIS_VOLATILE (clobber) = 1;
2004 clobber_stmt = gimple_build_assign (var, clobber);
2005
2006 i = gsi_for_stmt (stmt);
2007 gsi_insert_before (&i, clobber_stmt, GSI_SAME_STMT);
2008 }
2009 else if (gimple_code (stmt) == GIMPLE_PHI)
2010 {
2011 if (!*visited)
2012 *visited = new gimple_htab (10);
2013
2014 slot = (*visited)->find_slot (stmt, INSERT);
2015 if (*slot != NULL)
2016 continue;
2017
2018 *slot = stmt;
2019 insert_clobber_before_stack_restore (gimple_phi_result (stmt), var,
2020 visited);
2021 }
2022 else if (gimple_assign_ssa_name_copy_p (stmt))
2023 insert_clobber_before_stack_restore (gimple_assign_lhs (stmt), var,
2024 visited);
2025 else if (chkp_gimple_call_builtin_p (stmt, BUILT_IN_CHKP_BNDRET))
2026 continue;
2027 else
2028 gcc_assert (is_gimple_debug (stmt));
2029 }
2030
2031 /* Advance the iterator to the previous non-debug gimple statement in the same
2032 or dominating basic block. */
2033
2034 static inline void
2035 gsi_prev_dom_bb_nondebug (gimple_stmt_iterator *i)
2036 {
2037 basic_block dom;
2038
2039 gsi_prev_nondebug (i);
2040 while (gsi_end_p (*i))
2041 {
2042 dom = get_immediate_dominator (CDI_DOMINATORS, i->bb);
2043 if (dom == NULL || dom == ENTRY_BLOCK_PTR_FOR_FN (cfun))
2044 return;
2045
2046 *i = gsi_last_bb (dom);
2047 }
2048 }
2049
2050 /* Find a BUILT_IN_STACK_SAVE dominating gsi_stmt (I), and insert
2051 a clobber of VAR before each matching BUILT_IN_STACK_RESTORE.
2052
2053 It is possible that BUILT_IN_STACK_SAVE cannot be find in a dominator when a
2054 previous pass (such as DOM) duplicated it along multiple paths to a BB. In
2055 that case the function gives up without inserting the clobbers. */
2056
2057 static void
2058 insert_clobbers_for_var (gimple_stmt_iterator i, tree var)
2059 {
2060 gimple *stmt;
2061 tree saved_val;
2062 gimple_htab *visited = NULL;
2063
2064 for (; !gsi_end_p (i); gsi_prev_dom_bb_nondebug (&i))
2065 {
2066 stmt = gsi_stmt (i);
2067
2068 if (!gimple_call_builtin_p (stmt, BUILT_IN_STACK_SAVE))
2069 continue;
2070
2071 saved_val = gimple_call_lhs (stmt);
2072 if (saved_val == NULL_TREE)
2073 continue;
2074
2075 insert_clobber_before_stack_restore (saved_val, var, &visited);
2076 break;
2077 }
2078
2079 delete visited;
2080 }
2081
2082 /* Detects a __builtin_alloca_with_align with constant size argument. Declares
2083 fixed-size array and returns the address, if found, otherwise returns
2084 NULL_TREE. */
2085
2086 static tree
2087 fold_builtin_alloca_with_align (gimple *stmt)
2088 {
2089 unsigned HOST_WIDE_INT size, threshold, n_elem;
2090 tree lhs, arg, block, var, elem_type, array_type;
2091
2092 /* Get lhs. */
2093 lhs = gimple_call_lhs (stmt);
2094 if (lhs == NULL_TREE)
2095 return NULL_TREE;
2096
2097 /* Detect constant argument. */
2098 arg = get_constant_value (gimple_call_arg (stmt, 0));
2099 if (arg == NULL_TREE
2100 || TREE_CODE (arg) != INTEGER_CST
2101 || !tree_fits_uhwi_p (arg))
2102 return NULL_TREE;
2103
2104 size = tree_to_uhwi (arg);
2105
2106 /* Heuristic: don't fold large allocas. */
2107 threshold = (unsigned HOST_WIDE_INT)PARAM_VALUE (PARAM_LARGE_STACK_FRAME);
2108 /* In case the alloca is located at function entry, it has the same lifetime
2109 as a declared array, so we allow a larger size. */
2110 block = gimple_block (stmt);
2111 if (!(cfun->after_inlining
2112 && block
2113 && TREE_CODE (BLOCK_SUPERCONTEXT (block)) == FUNCTION_DECL))
2114 threshold /= 10;
2115 if (size > threshold)
2116 return NULL_TREE;
2117
2118 /* Declare array. */
2119 elem_type = build_nonstandard_integer_type (BITS_PER_UNIT, 1);
2120 n_elem = size * 8 / BITS_PER_UNIT;
2121 array_type = build_array_type_nelts (elem_type, n_elem);
2122 var = create_tmp_var (array_type);
2123 SET_DECL_ALIGN (var, TREE_INT_CST_LOW (gimple_call_arg (stmt, 1)));
2124 {
2125 struct ptr_info_def *pi = SSA_NAME_PTR_INFO (lhs);
2126 if (pi != NULL && !pi->pt.anything)
2127 {
2128 bool singleton_p;
2129 unsigned uid;
2130 singleton_p = pt_solution_singleton_p (&pi->pt, &uid);
2131 gcc_assert (singleton_p);
2132 SET_DECL_PT_UID (var, uid);
2133 }
2134 }
2135
2136 /* Fold alloca to the address of the array. */
2137 return fold_convert (TREE_TYPE (lhs), build_fold_addr_expr (var));
2138 }
2139
2140 /* Fold the stmt at *GSI with CCP specific information that propagating
2141 and regular folding does not catch. */
2142
2143 static bool
2144 ccp_fold_stmt (gimple_stmt_iterator *gsi)
2145 {
2146 gimple *stmt = gsi_stmt (*gsi);
2147
2148 switch (gimple_code (stmt))
2149 {
2150 case GIMPLE_COND:
2151 {
2152 gcond *cond_stmt = as_a <gcond *> (stmt);
2153 ccp_prop_value_t val;
2154 /* Statement evaluation will handle type mismatches in constants
2155 more gracefully than the final propagation. This allows us to
2156 fold more conditionals here. */
2157 val = evaluate_stmt (stmt);
2158 if (val.lattice_val != CONSTANT
2159 || val.mask != 0)
2160 return false;
2161
2162 if (dump_file)
2163 {
2164 fprintf (dump_file, "Folding predicate ");
2165 print_gimple_expr (dump_file, stmt, 0, 0);
2166 fprintf (dump_file, " to ");
2167 print_generic_expr (dump_file, val.value, 0);
2168 fprintf (dump_file, "\n");
2169 }
2170
2171 if (integer_zerop (val.value))
2172 gimple_cond_make_false (cond_stmt);
2173 else
2174 gimple_cond_make_true (cond_stmt);
2175
2176 return true;
2177 }
2178
2179 case GIMPLE_CALL:
2180 {
2181 tree lhs = gimple_call_lhs (stmt);
2182 int flags = gimple_call_flags (stmt);
2183 tree val;
2184 tree argt;
2185 bool changed = false;
2186 unsigned i;
2187
2188 /* If the call was folded into a constant make sure it goes
2189 away even if we cannot propagate into all uses because of
2190 type issues. */
2191 if (lhs
2192 && TREE_CODE (lhs) == SSA_NAME
2193 && (val = get_constant_value (lhs))
2194 /* Don't optimize away calls that have side-effects. */
2195 && (flags & (ECF_CONST|ECF_PURE)) != 0
2196 && (flags & ECF_LOOPING_CONST_OR_PURE) == 0)
2197 {
2198 tree new_rhs = unshare_expr (val);
2199 bool res;
2200 if (!useless_type_conversion_p (TREE_TYPE (lhs),
2201 TREE_TYPE (new_rhs)))
2202 new_rhs = fold_convert (TREE_TYPE (lhs), new_rhs);
2203 res = update_call_from_tree (gsi, new_rhs);
2204 gcc_assert (res);
2205 return true;
2206 }
2207
2208 /* Internal calls provide no argument types, so the extra laxity
2209 for normal calls does not apply. */
2210 if (gimple_call_internal_p (stmt))
2211 return false;
2212
2213 /* The heuristic of fold_builtin_alloca_with_align differs before and
2214 after inlining, so we don't require the arg to be changed into a
2215 constant for folding, but just to be constant. */
2216 if (gimple_call_builtin_p (stmt, BUILT_IN_ALLOCA_WITH_ALIGN))
2217 {
2218 tree new_rhs = fold_builtin_alloca_with_align (stmt);
2219 if (new_rhs)
2220 {
2221 bool res = update_call_from_tree (gsi, new_rhs);
2222 tree var = TREE_OPERAND (TREE_OPERAND (new_rhs, 0),0);
2223 gcc_assert (res);
2224 insert_clobbers_for_var (*gsi, var);
2225 return true;
2226 }
2227 }
2228
2229 /* Propagate into the call arguments. Compared to replace_uses_in
2230 this can use the argument slot types for type verification
2231 instead of the current argument type. We also can safely
2232 drop qualifiers here as we are dealing with constants anyway. */
2233 argt = TYPE_ARG_TYPES (gimple_call_fntype (stmt));
2234 for (i = 0; i < gimple_call_num_args (stmt) && argt;
2235 ++i, argt = TREE_CHAIN (argt))
2236 {
2237 tree arg = gimple_call_arg (stmt, i);
2238 if (TREE_CODE (arg) == SSA_NAME
2239 && (val = get_constant_value (arg))
2240 && useless_type_conversion_p
2241 (TYPE_MAIN_VARIANT (TREE_VALUE (argt)),
2242 TYPE_MAIN_VARIANT (TREE_TYPE (val))))
2243 {
2244 gimple_call_set_arg (stmt, i, unshare_expr (val));
2245 changed = true;
2246 }
2247 }
2248
2249 return changed;
2250 }
2251
2252 case GIMPLE_ASSIGN:
2253 {
2254 tree lhs = gimple_assign_lhs (stmt);
2255 tree val;
2256
2257 /* If we have a load that turned out to be constant replace it
2258 as we cannot propagate into all uses in all cases. */
2259 if (gimple_assign_single_p (stmt)
2260 && TREE_CODE (lhs) == SSA_NAME
2261 && (val = get_constant_value (lhs)))
2262 {
2263 tree rhs = unshare_expr (val);
2264 if (!useless_type_conversion_p (TREE_TYPE (lhs), TREE_TYPE (rhs)))
2265 rhs = fold_build1 (VIEW_CONVERT_EXPR, TREE_TYPE (lhs), rhs);
2266 gimple_assign_set_rhs_from_tree (gsi, rhs);
2267 return true;
2268 }
2269
2270 return false;
2271 }
2272
2273 default:
2274 return false;
2275 }
2276 }
2277
2278 /* Visit the assignment statement STMT. Set the value of its LHS to the
2279 value computed by the RHS and store LHS in *OUTPUT_P. If STMT
2280 creates virtual definitions, set the value of each new name to that
2281 of the RHS (if we can derive a constant out of the RHS).
2282 Value-returning call statements also perform an assignment, and
2283 are handled here. */
2284
2285 static enum ssa_prop_result
2286 visit_assignment (gimple *stmt, tree *output_p)
2287 {
2288 ccp_prop_value_t val;
2289 enum ssa_prop_result retval = SSA_PROP_NOT_INTERESTING;
2290
2291 tree lhs = gimple_get_lhs (stmt);
2292 if (TREE_CODE (lhs) == SSA_NAME)
2293 {
2294 /* Evaluate the statement, which could be
2295 either a GIMPLE_ASSIGN or a GIMPLE_CALL. */
2296 val = evaluate_stmt (stmt);
2297
2298 /* If STMT is an assignment to an SSA_NAME, we only have one
2299 value to set. */
2300 if (set_lattice_value (lhs, &val))
2301 {
2302 *output_p = lhs;
2303 if (val.lattice_val == VARYING)
2304 retval = SSA_PROP_VARYING;
2305 else
2306 retval = SSA_PROP_INTERESTING;
2307 }
2308 }
2309
2310 return retval;
2311 }
2312
2313
2314 /* Visit the conditional statement STMT. Return SSA_PROP_INTERESTING
2315 if it can determine which edge will be taken. Otherwise, return
2316 SSA_PROP_VARYING. */
2317
2318 static enum ssa_prop_result
2319 visit_cond_stmt (gimple *stmt, edge *taken_edge_p)
2320 {
2321 ccp_prop_value_t val;
2322 basic_block block;
2323
2324 block = gimple_bb (stmt);
2325 val = evaluate_stmt (stmt);
2326 if (val.lattice_val != CONSTANT
2327 || val.mask != 0)
2328 return SSA_PROP_VARYING;
2329
2330 /* Find which edge out of the conditional block will be taken and add it
2331 to the worklist. If no single edge can be determined statically,
2332 return SSA_PROP_VARYING to feed all the outgoing edges to the
2333 propagation engine. */
2334 *taken_edge_p = find_taken_edge (block, val.value);
2335 if (*taken_edge_p)
2336 return SSA_PROP_INTERESTING;
2337 else
2338 return SSA_PROP_VARYING;
2339 }
2340
2341
2342 /* Evaluate statement STMT. If the statement produces an output value and
2343 its evaluation changes the lattice value of its output, return
2344 SSA_PROP_INTERESTING and set *OUTPUT_P to the SSA_NAME holding the
2345 output value.
2346
2347 If STMT is a conditional branch and we can determine its truth
2348 value, set *TAKEN_EDGE_P accordingly. If STMT produces a varying
2349 value, return SSA_PROP_VARYING. */
2350
2351 static enum ssa_prop_result
2352 ccp_visit_stmt (gimple *stmt, edge *taken_edge_p, tree *output_p)
2353 {
2354 tree def;
2355 ssa_op_iter iter;
2356
2357 if (dump_file && (dump_flags & TDF_DETAILS))
2358 {
2359 fprintf (dump_file, "\nVisiting statement:\n");
2360 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
2361 }
2362
2363 switch (gimple_code (stmt))
2364 {
2365 case GIMPLE_ASSIGN:
2366 /* If the statement is an assignment that produces a single
2367 output value, evaluate its RHS to see if the lattice value of
2368 its output has changed. */
2369 return visit_assignment (stmt, output_p);
2370
2371 case GIMPLE_CALL:
2372 /* A value-returning call also performs an assignment. */
2373 if (gimple_call_lhs (stmt) != NULL_TREE)
2374 return visit_assignment (stmt, output_p);
2375 break;
2376
2377 case GIMPLE_COND:
2378 case GIMPLE_SWITCH:
2379 /* If STMT is a conditional branch, see if we can determine
2380 which branch will be taken. */
2381 /* FIXME. It appears that we should be able to optimize
2382 computed GOTOs here as well. */
2383 return visit_cond_stmt (stmt, taken_edge_p);
2384
2385 default:
2386 break;
2387 }
2388
2389 /* Any other kind of statement is not interesting for constant
2390 propagation and, therefore, not worth simulating. */
2391 if (dump_file && (dump_flags & TDF_DETAILS))
2392 fprintf (dump_file, "No interesting values produced. Marked VARYING.\n");
2393
2394 /* Definitions made by statements other than assignments to
2395 SSA_NAMEs represent unknown modifications to their outputs.
2396 Mark them VARYING. */
2397 FOR_EACH_SSA_TREE_OPERAND (def, stmt, iter, SSA_OP_ALL_DEFS)
2398 set_value_varying (def);
2399
2400 return SSA_PROP_VARYING;
2401 }
2402
2403
2404 /* Main entry point for SSA Conditional Constant Propagation. If NONZERO_P,
2405 record nonzero bits. */
2406
2407 static unsigned int
2408 do_ssa_ccp (bool nonzero_p)
2409 {
2410 unsigned int todo = 0;
2411 calculate_dominance_info (CDI_DOMINATORS);
2412
2413 ccp_initialize ();
2414 ssa_propagate (ccp_visit_stmt, ccp_visit_phi_node);
2415 if (ccp_finalize (nonzero_p || flag_ipa_bit_cp))
2416 {
2417 todo = (TODO_cleanup_cfg | TODO_update_ssa);
2418
2419 /* ccp_finalize does not preserve loop-closed ssa. */
2420 loops_state_clear (LOOP_CLOSED_SSA);
2421 }
2422
2423 free_dominance_info (CDI_DOMINATORS);
2424 return todo;
2425 }
2426
2427
2428 namespace {
2429
2430 const pass_data pass_data_ccp =
2431 {
2432 GIMPLE_PASS, /* type */
2433 "ccp", /* name */
2434 OPTGROUP_NONE, /* optinfo_flags */
2435 TV_TREE_CCP, /* tv_id */
2436 ( PROP_cfg | PROP_ssa ), /* properties_required */
2437 0, /* properties_provided */
2438 0, /* properties_destroyed */
2439 0, /* todo_flags_start */
2440 TODO_update_address_taken, /* todo_flags_finish */
2441 };
2442
2443 class pass_ccp : public gimple_opt_pass
2444 {
2445 public:
2446 pass_ccp (gcc::context *ctxt)
2447 : gimple_opt_pass (pass_data_ccp, ctxt), nonzero_p (false)
2448 {}
2449
2450 /* opt_pass methods: */
2451 opt_pass * clone () { return new pass_ccp (m_ctxt); }
2452 void set_pass_param (unsigned int n, bool param)
2453 {
2454 gcc_assert (n == 0);
2455 nonzero_p = param;
2456 }
2457 virtual bool gate (function *) { return flag_tree_ccp != 0; }
2458 virtual unsigned int execute (function *) { return do_ssa_ccp (nonzero_p); }
2459
2460 private:
2461 /* Determines whether the pass instance records nonzero bits. */
2462 bool nonzero_p;
2463 }; // class pass_ccp
2464
2465 } // anon namespace
2466
2467 gimple_opt_pass *
2468 make_pass_ccp (gcc::context *ctxt)
2469 {
2470 return new pass_ccp (ctxt);
2471 }
2472
2473
2474
2475 /* Try to optimize out __builtin_stack_restore. Optimize it out
2476 if there is another __builtin_stack_restore in the same basic
2477 block and no calls or ASM_EXPRs are in between, or if this block's
2478 only outgoing edge is to EXIT_BLOCK and there are no calls or
2479 ASM_EXPRs after this __builtin_stack_restore. */
2480
2481 static tree
2482 optimize_stack_restore (gimple_stmt_iterator i)
2483 {
2484 tree callee;
2485 gimple *stmt;
2486
2487 basic_block bb = gsi_bb (i);
2488 gimple *call = gsi_stmt (i);
2489
2490 if (gimple_code (call) != GIMPLE_CALL
2491 || gimple_call_num_args (call) != 1
2492 || TREE_CODE (gimple_call_arg (call, 0)) != SSA_NAME
2493 || !POINTER_TYPE_P (TREE_TYPE (gimple_call_arg (call, 0))))
2494 return NULL_TREE;
2495
2496 for (gsi_next (&i); !gsi_end_p (i); gsi_next (&i))
2497 {
2498 stmt = gsi_stmt (i);
2499 if (gimple_code (stmt) == GIMPLE_ASM)
2500 return NULL_TREE;
2501 if (gimple_code (stmt) != GIMPLE_CALL)
2502 continue;
2503
2504 callee = gimple_call_fndecl (stmt);
2505 if (!callee
2506 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
2507 /* All regular builtins are ok, just obviously not alloca. */
2508 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA
2509 || DECL_FUNCTION_CODE (callee) == BUILT_IN_ALLOCA_WITH_ALIGN)
2510 return NULL_TREE;
2511
2512 if (DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_RESTORE)
2513 goto second_stack_restore;
2514 }
2515
2516 if (!gsi_end_p (i))
2517 return NULL_TREE;
2518
2519 /* Allow one successor of the exit block, or zero successors. */
2520 switch (EDGE_COUNT (bb->succs))
2521 {
2522 case 0:
2523 break;
2524 case 1:
2525 if (single_succ_edge (bb)->dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
2526 return NULL_TREE;
2527 break;
2528 default:
2529 return NULL_TREE;
2530 }
2531 second_stack_restore:
2532
2533 /* If there's exactly one use, then zap the call to __builtin_stack_save.
2534 If there are multiple uses, then the last one should remove the call.
2535 In any case, whether the call to __builtin_stack_save can be removed
2536 or not is irrelevant to removing the call to __builtin_stack_restore. */
2537 if (has_single_use (gimple_call_arg (call, 0)))
2538 {
2539 gimple *stack_save = SSA_NAME_DEF_STMT (gimple_call_arg (call, 0));
2540 if (is_gimple_call (stack_save))
2541 {
2542 callee = gimple_call_fndecl (stack_save);
2543 if (callee
2544 && DECL_BUILT_IN_CLASS (callee) == BUILT_IN_NORMAL
2545 && DECL_FUNCTION_CODE (callee) == BUILT_IN_STACK_SAVE)
2546 {
2547 gimple_stmt_iterator stack_save_gsi;
2548 tree rhs;
2549
2550 stack_save_gsi = gsi_for_stmt (stack_save);
2551 rhs = build_int_cst (TREE_TYPE (gimple_call_arg (call, 0)), 0);
2552 update_call_from_tree (&stack_save_gsi, rhs);
2553 }
2554 }
2555 }
2556
2557 /* No effect, so the statement will be deleted. */
2558 return integer_zero_node;
2559 }
2560
2561 /* If va_list type is a simple pointer and nothing special is needed,
2562 optimize __builtin_va_start (&ap, 0) into ap = __builtin_next_arg (0),
2563 __builtin_va_end (&ap) out as NOP and __builtin_va_copy into a simple
2564 pointer assignment. */
2565
2566 static tree
2567 optimize_stdarg_builtin (gimple *call)
2568 {
2569 tree callee, lhs, rhs, cfun_va_list;
2570 bool va_list_simple_ptr;
2571 location_t loc = gimple_location (call);
2572
2573 if (gimple_code (call) != GIMPLE_CALL)
2574 return NULL_TREE;
2575
2576 callee = gimple_call_fndecl (call);
2577
2578 cfun_va_list = targetm.fn_abi_va_list (callee);
2579 va_list_simple_ptr = POINTER_TYPE_P (cfun_va_list)
2580 && (TREE_TYPE (cfun_va_list) == void_type_node
2581 || TREE_TYPE (cfun_va_list) == char_type_node);
2582
2583 switch (DECL_FUNCTION_CODE (callee))
2584 {
2585 case BUILT_IN_VA_START:
2586 if (!va_list_simple_ptr
2587 || targetm.expand_builtin_va_start != NULL
2588 || !builtin_decl_explicit_p (BUILT_IN_NEXT_ARG))
2589 return NULL_TREE;
2590
2591 if (gimple_call_num_args (call) != 2)
2592 return NULL_TREE;
2593
2594 lhs = gimple_call_arg (call, 0);
2595 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2596 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2597 != TYPE_MAIN_VARIANT (cfun_va_list))
2598 return NULL_TREE;
2599
2600 lhs = build_fold_indirect_ref_loc (loc, lhs);
2601 rhs = build_call_expr_loc (loc, builtin_decl_explicit (BUILT_IN_NEXT_ARG),
2602 1, integer_zero_node);
2603 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2604 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2605
2606 case BUILT_IN_VA_COPY:
2607 if (!va_list_simple_ptr)
2608 return NULL_TREE;
2609
2610 if (gimple_call_num_args (call) != 2)
2611 return NULL_TREE;
2612
2613 lhs = gimple_call_arg (call, 0);
2614 if (!POINTER_TYPE_P (TREE_TYPE (lhs))
2615 || TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (lhs)))
2616 != TYPE_MAIN_VARIANT (cfun_va_list))
2617 return NULL_TREE;
2618
2619 lhs = build_fold_indirect_ref_loc (loc, lhs);
2620 rhs = gimple_call_arg (call, 1);
2621 if (TYPE_MAIN_VARIANT (TREE_TYPE (rhs))
2622 != TYPE_MAIN_VARIANT (cfun_va_list))
2623 return NULL_TREE;
2624
2625 rhs = fold_convert_loc (loc, TREE_TYPE (lhs), rhs);
2626 return build2 (MODIFY_EXPR, TREE_TYPE (lhs), lhs, rhs);
2627
2628 case BUILT_IN_VA_END:
2629 /* No effect, so the statement will be deleted. */
2630 return integer_zero_node;
2631
2632 default:
2633 gcc_unreachable ();
2634 }
2635 }
2636
2637 /* Attemp to make the block of __builtin_unreachable I unreachable by changing
2638 the incoming jumps. Return true if at least one jump was changed. */
2639
2640 static bool
2641 optimize_unreachable (gimple_stmt_iterator i)
2642 {
2643 basic_block bb = gsi_bb (i);
2644 gimple_stmt_iterator gsi;
2645 gimple *stmt;
2646 edge_iterator ei;
2647 edge e;
2648 bool ret;
2649
2650 if (flag_sanitize & SANITIZE_UNREACHABLE)
2651 return false;
2652
2653 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2654 {
2655 stmt = gsi_stmt (gsi);
2656
2657 if (is_gimple_debug (stmt))
2658 continue;
2659
2660 if (glabel *label_stmt = dyn_cast <glabel *> (stmt))
2661 {
2662 /* Verify we do not need to preserve the label. */
2663 if (FORCED_LABEL (gimple_label_label (label_stmt)))
2664 return false;
2665
2666 continue;
2667 }
2668
2669 /* Only handle the case that __builtin_unreachable is the first statement
2670 in the block. We rely on DCE to remove stmts without side-effects
2671 before __builtin_unreachable. */
2672 if (gsi_stmt (gsi) != gsi_stmt (i))
2673 return false;
2674 }
2675
2676 ret = false;
2677 FOR_EACH_EDGE (e, ei, bb->preds)
2678 {
2679 gsi = gsi_last_bb (e->src);
2680 if (gsi_end_p (gsi))
2681 continue;
2682
2683 stmt = gsi_stmt (gsi);
2684 if (gcond *cond_stmt = dyn_cast <gcond *> (stmt))
2685 {
2686 if (e->flags & EDGE_TRUE_VALUE)
2687 gimple_cond_make_false (cond_stmt);
2688 else if (e->flags & EDGE_FALSE_VALUE)
2689 gimple_cond_make_true (cond_stmt);
2690 else
2691 gcc_unreachable ();
2692 update_stmt (cond_stmt);
2693 }
2694 else
2695 {
2696 /* Todo: handle other cases, f.i. switch statement. */
2697 continue;
2698 }
2699
2700 ret = true;
2701 }
2702
2703 return ret;
2704 }
2705
2706 /* Optimize
2707 mask_2 = 1 << cnt_1;
2708 _4 = __atomic_fetch_or_* (ptr_6, mask_2, _3);
2709 _5 = _4 & mask_2;
2710 to
2711 _4 = ATOMIC_BIT_TEST_AND_SET (ptr_6, cnt_1, 0, _3);
2712 _5 = _4;
2713 If _5 is only used in _5 != 0 or _5 == 0 comparisons, 1
2714 is passed instead of 0, and the builtin just returns a zero
2715 or 1 value instead of the actual bit.
2716 Similarly for __sync_fetch_and_or_* (without the ", _3" part
2717 in there), and/or if mask_2 is a power of 2 constant.
2718 Similarly for xor instead of or, use ATOMIC_BIT_TEST_AND_COMPLEMENT
2719 in that case. And similarly for and instead of or, except that
2720 the second argument to the builtin needs to be one's complement
2721 of the mask instead of mask. */
2722
2723 static void
2724 optimize_atomic_bit_test_and (gimple_stmt_iterator *gsip,
2725 enum internal_fn fn, bool has_model_arg,
2726 bool after)
2727 {
2728 gimple *call = gsi_stmt (*gsip);
2729 tree lhs = gimple_call_lhs (call);
2730 use_operand_p use_p;
2731 gimple *use_stmt;
2732 tree mask, bit;
2733 optab optab;
2734
2735 if (!flag_inline_atomics
2736 || optimize_debug
2737 || !gimple_call_builtin_p (call, BUILT_IN_NORMAL)
2738 || !lhs
2739 || SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs)
2740 || !single_imm_use (lhs, &use_p, &use_stmt)
2741 || !is_gimple_assign (use_stmt)
2742 || gimple_assign_rhs_code (use_stmt) != BIT_AND_EXPR
2743 || !gimple_vdef (call))
2744 return;
2745
2746 switch (fn)
2747 {
2748 case IFN_ATOMIC_BIT_TEST_AND_SET:
2749 optab = atomic_bit_test_and_set_optab;
2750 break;
2751 case IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT:
2752 optab = atomic_bit_test_and_complement_optab;
2753 break;
2754 case IFN_ATOMIC_BIT_TEST_AND_RESET:
2755 optab = atomic_bit_test_and_reset_optab;
2756 break;
2757 default:
2758 return;
2759 }
2760
2761 if (optab_handler (optab, TYPE_MODE (TREE_TYPE (lhs))) == CODE_FOR_nothing)
2762 return;
2763
2764 mask = gimple_call_arg (call, 1);
2765 tree use_lhs = gimple_assign_lhs (use_stmt);
2766 if (!use_lhs)
2767 return;
2768
2769 if (TREE_CODE (mask) == INTEGER_CST)
2770 {
2771 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2772 mask = const_unop (BIT_NOT_EXPR, TREE_TYPE (mask), mask);
2773 mask = fold_convert (TREE_TYPE (lhs), mask);
2774 int ibit = tree_log2 (mask);
2775 if (ibit < 0)
2776 return;
2777 bit = build_int_cst (TREE_TYPE (lhs), ibit);
2778 }
2779 else if (TREE_CODE (mask) == SSA_NAME)
2780 {
2781 gimple *g = SSA_NAME_DEF_STMT (mask);
2782 if (fn == IFN_ATOMIC_BIT_TEST_AND_RESET)
2783 {
2784 if (!is_gimple_assign (g)
2785 || gimple_assign_rhs_code (g) != BIT_NOT_EXPR)
2786 return;
2787 mask = gimple_assign_rhs1 (g);
2788 if (TREE_CODE (mask) != SSA_NAME)
2789 return;
2790 g = SSA_NAME_DEF_STMT (mask);
2791 }
2792 if (!is_gimple_assign (g)
2793 || gimple_assign_rhs_code (g) != LSHIFT_EXPR
2794 || !integer_onep (gimple_assign_rhs1 (g)))
2795 return;
2796 bit = gimple_assign_rhs2 (g);
2797 }
2798 else
2799 return;
2800
2801 if (gimple_assign_rhs1 (use_stmt) == lhs)
2802 {
2803 if (!operand_equal_p (gimple_assign_rhs2 (use_stmt), mask, 0))
2804 return;
2805 }
2806 else if (gimple_assign_rhs2 (use_stmt) != lhs
2807 || !operand_equal_p (gimple_assign_rhs1 (use_stmt), mask, 0))
2808 return;
2809
2810 bool use_bool = true;
2811 bool has_debug_uses = false;
2812 imm_use_iterator iter;
2813 gimple *g;
2814
2815 if (SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs))
2816 use_bool = false;
2817 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2818 {
2819 enum tree_code code = ERROR_MARK;
2820 tree op0, op1;
2821 if (is_gimple_debug (g))
2822 {
2823 has_debug_uses = true;
2824 continue;
2825 }
2826 else if (is_gimple_assign (g))
2827 switch (gimple_assign_rhs_code (g))
2828 {
2829 case COND_EXPR:
2830 op1 = gimple_assign_rhs1 (g);
2831 code = TREE_CODE (op1);
2832 op0 = TREE_OPERAND (op1, 0);
2833 op1 = TREE_OPERAND (op1, 1);
2834 break;
2835 case EQ_EXPR:
2836 case NE_EXPR:
2837 code = gimple_assign_rhs_code (g);
2838 op0 = gimple_assign_rhs1 (g);
2839 op1 = gimple_assign_rhs2 (g);
2840 break;
2841 default:
2842 break;
2843 }
2844 else if (gimple_code (g) == GIMPLE_COND)
2845 {
2846 code = gimple_cond_code (g);
2847 op0 = gimple_cond_lhs (g);
2848 op1 = gimple_cond_rhs (g);
2849 }
2850
2851 if ((code == EQ_EXPR || code == NE_EXPR)
2852 && op0 == use_lhs
2853 && integer_zerop (op1))
2854 {
2855 use_operand_p use_p;
2856 int n = 0;
2857 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2858 n++;
2859 if (n == 1)
2860 continue;
2861 }
2862
2863 use_bool = false;
2864 BREAK_FROM_IMM_USE_STMT (iter);
2865 }
2866
2867 tree new_lhs = make_ssa_name (TREE_TYPE (lhs));
2868 tree flag = build_int_cst (TREE_TYPE (lhs), use_bool);
2869 if (has_model_arg)
2870 g = gimple_build_call_internal (fn, 4, gimple_call_arg (call, 0),
2871 bit, flag, gimple_call_arg (call, 2));
2872 else
2873 g = gimple_build_call_internal (fn, 3, gimple_call_arg (call, 0),
2874 bit, flag);
2875 gimple_call_set_lhs (g, new_lhs);
2876 gimple_set_location (g, gimple_location (call));
2877 gimple_set_vuse (g, gimple_vuse (call));
2878 gimple_set_vdef (g, gimple_vdef (call));
2879 SSA_NAME_DEF_STMT (gimple_vdef (call)) = g;
2880 gimple_stmt_iterator gsi = *gsip;
2881 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2882 if (after)
2883 {
2884 /* The internal function returns the value of the specified bit
2885 before the atomic operation. If we are interested in the value
2886 of the specified bit after the atomic operation (makes only sense
2887 for xor, otherwise the bit content is compile time known),
2888 we need to invert the bit. */
2889 g = gimple_build_assign (make_ssa_name (TREE_TYPE (lhs)),
2890 BIT_XOR_EXPR, new_lhs,
2891 use_bool ? build_int_cst (TREE_TYPE (lhs), 1)
2892 : mask);
2893 new_lhs = gimple_assign_lhs (g);
2894 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2895 }
2896 if (use_bool && has_debug_uses)
2897 {
2898 tree temp = make_node (DEBUG_EXPR_DECL);
2899 DECL_ARTIFICIAL (temp) = 1;
2900 TREE_TYPE (temp) = TREE_TYPE (lhs);
2901 DECL_MODE (temp) = TYPE_MODE (TREE_TYPE (lhs));
2902 tree t = build2 (LSHIFT_EXPR, TREE_TYPE (lhs), new_lhs, bit);
2903 g = gimple_build_debug_bind (temp, t, g);
2904 gsi_insert_after (&gsi, g, GSI_NEW_STMT);
2905 FOR_EACH_IMM_USE_STMT (g, iter, use_lhs)
2906 if (is_gimple_debug (g))
2907 {
2908 use_operand_p use_p;
2909 FOR_EACH_IMM_USE_ON_STMT (use_p, iter)
2910 SET_USE (use_p, temp);
2911 update_stmt (g);
2912 }
2913 }
2914 SSA_NAME_OCCURS_IN_ABNORMAL_PHI (new_lhs)
2915 = SSA_NAME_OCCURS_IN_ABNORMAL_PHI (use_lhs);
2916 replace_uses_by (use_lhs, new_lhs);
2917 gsi = gsi_for_stmt (use_stmt);
2918 gsi_remove (&gsi, true);
2919 release_defs (use_stmt);
2920 gsi_remove (gsip, true);
2921 release_ssa_name (lhs);
2922 }
2923
2924 /* A simple pass that attempts to fold all builtin functions. This pass
2925 is run after we've propagated as many constants as we can. */
2926
2927 namespace {
2928
2929 const pass_data pass_data_fold_builtins =
2930 {
2931 GIMPLE_PASS, /* type */
2932 "fab", /* name */
2933 OPTGROUP_NONE, /* optinfo_flags */
2934 TV_NONE, /* tv_id */
2935 ( PROP_cfg | PROP_ssa ), /* properties_required */
2936 0, /* properties_provided */
2937 0, /* properties_destroyed */
2938 0, /* todo_flags_start */
2939 TODO_update_ssa, /* todo_flags_finish */
2940 };
2941
2942 class pass_fold_builtins : public gimple_opt_pass
2943 {
2944 public:
2945 pass_fold_builtins (gcc::context *ctxt)
2946 : gimple_opt_pass (pass_data_fold_builtins, ctxt)
2947 {}
2948
2949 /* opt_pass methods: */
2950 opt_pass * clone () { return new pass_fold_builtins (m_ctxt); }
2951 virtual unsigned int execute (function *);
2952
2953 }; // class pass_fold_builtins
2954
2955 unsigned int
2956 pass_fold_builtins::execute (function *fun)
2957 {
2958 bool cfg_changed = false;
2959 basic_block bb;
2960 unsigned int todoflags = 0;
2961
2962 FOR_EACH_BB_FN (bb, fun)
2963 {
2964 gimple_stmt_iterator i;
2965 for (i = gsi_start_bb (bb); !gsi_end_p (i); )
2966 {
2967 gimple *stmt, *old_stmt;
2968 tree callee;
2969 enum built_in_function fcode;
2970
2971 stmt = gsi_stmt (i);
2972
2973 if (gimple_code (stmt) != GIMPLE_CALL)
2974 {
2975 /* Remove all *ssaname_N ={v} {CLOBBER}; stmts,
2976 after the last GIMPLE DSE they aren't needed and might
2977 unnecessarily keep the SSA_NAMEs live. */
2978 if (gimple_clobber_p (stmt))
2979 {
2980 tree lhs = gimple_assign_lhs (stmt);
2981 if (TREE_CODE (lhs) == MEM_REF
2982 && TREE_CODE (TREE_OPERAND (lhs, 0)) == SSA_NAME)
2983 {
2984 unlink_stmt_vdef (stmt);
2985 gsi_remove (&i, true);
2986 release_defs (stmt);
2987 continue;
2988 }
2989 }
2990 gsi_next (&i);
2991 continue;
2992 }
2993
2994 callee = gimple_call_fndecl (stmt);
2995 if (!callee || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL)
2996 {
2997 gsi_next (&i);
2998 continue;
2999 }
3000
3001 fcode = DECL_FUNCTION_CODE (callee);
3002 if (fold_stmt (&i))
3003 ;
3004 else
3005 {
3006 tree result = NULL_TREE;
3007 switch (DECL_FUNCTION_CODE (callee))
3008 {
3009 case BUILT_IN_CONSTANT_P:
3010 /* Resolve __builtin_constant_p. If it hasn't been
3011 folded to integer_one_node by now, it's fairly
3012 certain that the value simply isn't constant. */
3013 result = integer_zero_node;
3014 break;
3015
3016 case BUILT_IN_ASSUME_ALIGNED:
3017 /* Remove __builtin_assume_aligned. */
3018 result = gimple_call_arg (stmt, 0);
3019 break;
3020
3021 case BUILT_IN_STACK_RESTORE:
3022 result = optimize_stack_restore (i);
3023 if (result)
3024 break;
3025 gsi_next (&i);
3026 continue;
3027
3028 case BUILT_IN_UNREACHABLE:
3029 if (optimize_unreachable (i))
3030 cfg_changed = true;
3031 break;
3032
3033 case BUILT_IN_ATOMIC_FETCH_OR_1:
3034 case BUILT_IN_ATOMIC_FETCH_OR_2:
3035 case BUILT_IN_ATOMIC_FETCH_OR_4:
3036 case BUILT_IN_ATOMIC_FETCH_OR_8:
3037 case BUILT_IN_ATOMIC_FETCH_OR_16:
3038 optimize_atomic_bit_test_and (&i,
3039 IFN_ATOMIC_BIT_TEST_AND_SET,
3040 true, false);
3041 break;
3042 case BUILT_IN_SYNC_FETCH_AND_OR_1:
3043 case BUILT_IN_SYNC_FETCH_AND_OR_2:
3044 case BUILT_IN_SYNC_FETCH_AND_OR_4:
3045 case BUILT_IN_SYNC_FETCH_AND_OR_8:
3046 case BUILT_IN_SYNC_FETCH_AND_OR_16:
3047 optimize_atomic_bit_test_and (&i,
3048 IFN_ATOMIC_BIT_TEST_AND_SET,
3049 false, false);
3050 break;
3051
3052 case BUILT_IN_ATOMIC_FETCH_XOR_1:
3053 case BUILT_IN_ATOMIC_FETCH_XOR_2:
3054 case BUILT_IN_ATOMIC_FETCH_XOR_4:
3055 case BUILT_IN_ATOMIC_FETCH_XOR_8:
3056 case BUILT_IN_ATOMIC_FETCH_XOR_16:
3057 optimize_atomic_bit_test_and
3058 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, false);
3059 break;
3060 case BUILT_IN_SYNC_FETCH_AND_XOR_1:
3061 case BUILT_IN_SYNC_FETCH_AND_XOR_2:
3062 case BUILT_IN_SYNC_FETCH_AND_XOR_4:
3063 case BUILT_IN_SYNC_FETCH_AND_XOR_8:
3064 case BUILT_IN_SYNC_FETCH_AND_XOR_16:
3065 optimize_atomic_bit_test_and
3066 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, false);
3067 break;
3068
3069 case BUILT_IN_ATOMIC_XOR_FETCH_1:
3070 case BUILT_IN_ATOMIC_XOR_FETCH_2:
3071 case BUILT_IN_ATOMIC_XOR_FETCH_4:
3072 case BUILT_IN_ATOMIC_XOR_FETCH_8:
3073 case BUILT_IN_ATOMIC_XOR_FETCH_16:
3074 optimize_atomic_bit_test_and
3075 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, true, true);
3076 break;
3077 case BUILT_IN_SYNC_XOR_AND_FETCH_1:
3078 case BUILT_IN_SYNC_XOR_AND_FETCH_2:
3079 case BUILT_IN_SYNC_XOR_AND_FETCH_4:
3080 case BUILT_IN_SYNC_XOR_AND_FETCH_8:
3081 case BUILT_IN_SYNC_XOR_AND_FETCH_16:
3082 optimize_atomic_bit_test_and
3083 (&i, IFN_ATOMIC_BIT_TEST_AND_COMPLEMENT, false, true);
3084 break;
3085
3086 case BUILT_IN_ATOMIC_FETCH_AND_1:
3087 case BUILT_IN_ATOMIC_FETCH_AND_2:
3088 case BUILT_IN_ATOMIC_FETCH_AND_4:
3089 case BUILT_IN_ATOMIC_FETCH_AND_8:
3090 case BUILT_IN_ATOMIC_FETCH_AND_16:
3091 optimize_atomic_bit_test_and (&i,
3092 IFN_ATOMIC_BIT_TEST_AND_RESET,
3093 true, false);
3094 break;
3095 case BUILT_IN_SYNC_FETCH_AND_AND_1:
3096 case BUILT_IN_SYNC_FETCH_AND_AND_2:
3097 case BUILT_IN_SYNC_FETCH_AND_AND_4:
3098 case BUILT_IN_SYNC_FETCH_AND_AND_8:
3099 case BUILT_IN_SYNC_FETCH_AND_AND_16:
3100 optimize_atomic_bit_test_and (&i,
3101 IFN_ATOMIC_BIT_TEST_AND_RESET,
3102 false, false);
3103 break;
3104
3105 case BUILT_IN_VA_START:
3106 case BUILT_IN_VA_END:
3107 case BUILT_IN_VA_COPY:
3108 /* These shouldn't be folded before pass_stdarg. */
3109 result = optimize_stdarg_builtin (stmt);
3110 if (result)
3111 break;
3112 /* FALLTHRU */
3113
3114 default:;
3115 }
3116
3117 if (!result)
3118 {
3119 gsi_next (&i);
3120 continue;
3121 }
3122
3123 if (!update_call_from_tree (&i, result))
3124 gimplify_and_update_call_from_tree (&i, result);
3125 }
3126
3127 todoflags |= TODO_update_address_taken;
3128
3129 if (dump_file && (dump_flags & TDF_DETAILS))
3130 {
3131 fprintf (dump_file, "Simplified\n ");
3132 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3133 }
3134
3135 old_stmt = stmt;
3136 stmt = gsi_stmt (i);
3137 update_stmt (stmt);
3138
3139 if (maybe_clean_or_replace_eh_stmt (old_stmt, stmt)
3140 && gimple_purge_dead_eh_edges (bb))
3141 cfg_changed = true;
3142
3143 if (dump_file && (dump_flags & TDF_DETAILS))
3144 {
3145 fprintf (dump_file, "to\n ");
3146 print_gimple_stmt (dump_file, stmt, 0, dump_flags);
3147 fprintf (dump_file, "\n");
3148 }
3149
3150 /* Retry the same statement if it changed into another
3151 builtin, there might be new opportunities now. */
3152 if (gimple_code (stmt) != GIMPLE_CALL)
3153 {
3154 gsi_next (&i);
3155 continue;
3156 }
3157 callee = gimple_call_fndecl (stmt);
3158 if (!callee
3159 || DECL_BUILT_IN_CLASS (callee) != BUILT_IN_NORMAL
3160 || DECL_FUNCTION_CODE (callee) == fcode)
3161 gsi_next (&i);
3162 }
3163 }
3164
3165 /* Delete unreachable blocks. */
3166 if (cfg_changed)
3167 todoflags |= TODO_cleanup_cfg;
3168
3169 return todoflags;
3170 }
3171
3172 } // anon namespace
3173
3174 gimple_opt_pass *
3175 make_pass_fold_builtins (gcc::context *ctxt)
3176 {
3177 return new pass_fold_builtins (ctxt);
3178 }