]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-coalesce.c
aedaa96e7450aa6eb7091673fd96cd45bca35ca0
[thirdparty/gcc.git] / gcc / tree-ssa-coalesce.c
1 /* Coalesce SSA_NAMES together for the out-of-ssa pass.
2 Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4 Contributed by Andrew MacLeod <amacleod@redhat.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3, or (at your option)
11 any later version.
12
13 GCC is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "tm.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tree-pretty-print.h"
29 #include "bitmap.h"
30 #include "dumpfile.h"
31 #include "tree-flow.h"
32 #include "hashtab.h"
33 #include "tree-ssa-live.h"
34 #include "diagnostic-core.h"
35
36
37 /* This set of routines implements a coalesce_list. This is an object which
38 is used to track pairs of ssa_names which are desirable to coalesce
39 together to avoid copies. Costs are associated with each pair, and when
40 all desired information has been collected, the object can be used to
41 order the pairs for processing. */
42
43 /* This structure defines a pair entry. */
44
45 typedef struct coalesce_pair
46 {
47 int first_element;
48 int second_element;
49 int cost;
50 } * coalesce_pair_p;
51 typedef const struct coalesce_pair *const_coalesce_pair_p;
52
53 typedef struct cost_one_pair_d
54 {
55 int first_element;
56 int second_element;
57 struct cost_one_pair_d *next;
58 } * cost_one_pair_p;
59
60 /* This structure maintains the list of coalesce pairs. */
61
62 typedef struct coalesce_list_d
63 {
64 htab_t list; /* Hash table. */
65 coalesce_pair_p *sorted; /* List when sorted. */
66 int num_sorted; /* Number in the sorted list. */
67 cost_one_pair_p cost_one_list;/* Single use coalesces with cost 1. */
68 } *coalesce_list_p;
69
70 #define NO_BEST_COALESCE -1
71 #define MUST_COALESCE_COST INT_MAX
72
73
74 /* Return cost of execution of copy instruction with FREQUENCY. */
75
76 static inline int
77 coalesce_cost (int frequency, bool optimize_for_size)
78 {
79 /* Base costs on BB frequencies bounded by 1. */
80 int cost = frequency;
81
82 if (!cost)
83 cost = 1;
84
85 if (optimize_for_size)
86 cost = 1;
87
88 return cost;
89 }
90
91
92 /* Return the cost of executing a copy instruction in basic block BB. */
93
94 static inline int
95 coalesce_cost_bb (basic_block bb)
96 {
97 return coalesce_cost (bb->frequency, optimize_bb_for_size_p (bb));
98 }
99
100
101 /* Return the cost of executing a copy instruction on edge E. */
102
103 static inline int
104 coalesce_cost_edge (edge e)
105 {
106 int mult = 1;
107
108 /* Inserting copy on critical edge costs more than inserting it elsewhere. */
109 if (EDGE_CRITICAL_P (e))
110 mult = 2;
111 if (e->flags & EDGE_ABNORMAL)
112 return MUST_COALESCE_COST;
113 if (e->flags & EDGE_EH)
114 {
115 edge e2;
116 edge_iterator ei;
117 FOR_EACH_EDGE (e2, ei, e->dest->preds)
118 if (e2 != e)
119 {
120 /* Putting code on EH edge that leads to BB
121 with multiple predecestors imply splitting of
122 edge too. */
123 if (mult < 2)
124 mult = 2;
125 /* If there are multiple EH predecestors, we
126 also copy EH regions and produce separate
127 landing pad. This is expensive. */
128 if (e2->flags & EDGE_EH)
129 {
130 mult = 5;
131 break;
132 }
133 }
134 }
135
136 return coalesce_cost (EDGE_FREQUENCY (e),
137 optimize_edge_for_size_p (e)) * mult;
138 }
139
140
141 /* Retrieve a pair to coalesce from the cost_one_list in CL. Returns the
142 2 elements via P1 and P2. 1 is returned by the function if there is a pair,
143 NO_BEST_COALESCE is returned if there aren't any. */
144
145 static inline int
146 pop_cost_one_pair (coalesce_list_p cl, int *p1, int *p2)
147 {
148 cost_one_pair_p ptr;
149
150 ptr = cl->cost_one_list;
151 if (!ptr)
152 return NO_BEST_COALESCE;
153
154 *p1 = ptr->first_element;
155 *p2 = ptr->second_element;
156 cl->cost_one_list = ptr->next;
157
158 free (ptr);
159
160 return 1;
161 }
162
163 /* Retrieve the most expensive remaining pair to coalesce from CL. Returns the
164 2 elements via P1 and P2. Their calculated cost is returned by the function.
165 NO_BEST_COALESCE is returned if the coalesce list is empty. */
166
167 static inline int
168 pop_best_coalesce (coalesce_list_p cl, int *p1, int *p2)
169 {
170 coalesce_pair_p node;
171 int ret;
172
173 if (cl->sorted == NULL)
174 return pop_cost_one_pair (cl, p1, p2);
175
176 if (cl->num_sorted == 0)
177 return pop_cost_one_pair (cl, p1, p2);
178
179 node = cl->sorted[--(cl->num_sorted)];
180 *p1 = node->first_element;
181 *p2 = node->second_element;
182 ret = node->cost;
183 free (node);
184
185 return ret;
186 }
187
188
189 #define COALESCE_HASH_FN(R1, R2) ((R2) * ((R2) - 1) / 2 + (R1))
190
191 /* Hash function for coalesce list. Calculate hash for PAIR. */
192
193 static unsigned int
194 coalesce_pair_map_hash (const void *pair)
195 {
196 hashval_t a = (hashval_t)(((const_coalesce_pair_p)pair)->first_element);
197 hashval_t b = (hashval_t)(((const_coalesce_pair_p)pair)->second_element);
198
199 return COALESCE_HASH_FN (a,b);
200 }
201
202
203 /* Equality function for coalesce list hash table. Compare PAIR1 and PAIR2,
204 returning TRUE if the two pairs are equivalent. */
205
206 static int
207 coalesce_pair_map_eq (const void *pair1, const void *pair2)
208 {
209 const_coalesce_pair_p const p1 = (const_coalesce_pair_p) pair1;
210 const_coalesce_pair_p const p2 = (const_coalesce_pair_p) pair2;
211
212 return (p1->first_element == p2->first_element
213 && p1->second_element == p2->second_element);
214 }
215
216
217 /* Create a new empty coalesce list object and return it. */
218
219 static inline coalesce_list_p
220 create_coalesce_list (void)
221 {
222 coalesce_list_p list;
223 unsigned size = num_ssa_names * 3;
224
225 if (size < 40)
226 size = 40;
227
228 list = (coalesce_list_p) xmalloc (sizeof (struct coalesce_list_d));
229 list->list = htab_create (size, coalesce_pair_map_hash,
230 coalesce_pair_map_eq, NULL);
231 list->sorted = NULL;
232 list->num_sorted = 0;
233 list->cost_one_list = NULL;
234 return list;
235 }
236
237
238 /* Delete coalesce list CL. */
239
240 static inline void
241 delete_coalesce_list (coalesce_list_p cl)
242 {
243 gcc_assert (cl->cost_one_list == NULL);
244 htab_delete (cl->list);
245 free (cl->sorted);
246 gcc_assert (cl->num_sorted == 0);
247 free (cl);
248 }
249
250
251 /* Find a matching coalesce pair object in CL for the pair P1 and P2. If
252 one isn't found, return NULL if CREATE is false, otherwise create a new
253 coalesce pair object and return it. */
254
255 static coalesce_pair_p
256 find_coalesce_pair (coalesce_list_p cl, int p1, int p2, bool create)
257 {
258 struct coalesce_pair p;
259 void **slot;
260 unsigned int hash;
261
262 /* Normalize so that p1 is the smaller value. */
263 if (p2 < p1)
264 {
265 p.first_element = p2;
266 p.second_element = p1;
267 }
268 else
269 {
270 p.first_element = p1;
271 p.second_element = p2;
272 }
273
274 hash = coalesce_pair_map_hash (&p);
275 slot = htab_find_slot_with_hash (cl->list, &p, hash,
276 create ? INSERT : NO_INSERT);
277 if (!slot)
278 return NULL;
279
280 if (!*slot)
281 {
282 struct coalesce_pair * pair = XNEW (struct coalesce_pair);
283 gcc_assert (cl->sorted == NULL);
284 pair->first_element = p.first_element;
285 pair->second_element = p.second_element;
286 pair->cost = 0;
287 *slot = (void *)pair;
288 }
289
290 return (struct coalesce_pair *) *slot;
291 }
292
293 static inline void
294 add_cost_one_coalesce (coalesce_list_p cl, int p1, int p2)
295 {
296 cost_one_pair_p pair;
297
298 pair = XNEW (struct cost_one_pair_d);
299 pair->first_element = p1;
300 pair->second_element = p2;
301 pair->next = cl->cost_one_list;
302 cl->cost_one_list = pair;
303 }
304
305
306 /* Add a coalesce between P1 and P2 in list CL with a cost of VALUE. */
307
308 static inline void
309 add_coalesce (coalesce_list_p cl, int p1, int p2, int value)
310 {
311 coalesce_pair_p node;
312
313 gcc_assert (cl->sorted == NULL);
314 if (p1 == p2)
315 return;
316
317 node = find_coalesce_pair (cl, p1, p2, true);
318
319 /* Once the value is at least MUST_COALESCE_COST - 1, leave it that way. */
320 if (node->cost < MUST_COALESCE_COST - 1)
321 {
322 if (value < MUST_COALESCE_COST - 1)
323 node->cost += value;
324 else
325 node->cost = value;
326 }
327 }
328
329
330 /* Comparison function to allow qsort to sort P1 and P2 in Ascending order. */
331
332 static int
333 compare_pairs (const void *p1, const void *p2)
334 {
335 const_coalesce_pair_p const *const pp1 = (const_coalesce_pair_p const *) p1;
336 const_coalesce_pair_p const *const pp2 = (const_coalesce_pair_p const *) p2;
337 int result;
338
339 result = (* pp1)->cost - (* pp2)->cost;
340 /* Since qsort does not guarantee stability we use the elements
341 as a secondary key. This provides us with independence from
342 the host's implementation of the sorting algorithm. */
343 if (result == 0)
344 {
345 result = (* pp2)->first_element - (* pp1)->first_element;
346 if (result == 0)
347 result = (* pp2)->second_element - (* pp1)->second_element;
348 }
349
350 return result;
351 }
352
353
354 /* Return the number of unique coalesce pairs in CL. */
355
356 static inline int
357 num_coalesce_pairs (coalesce_list_p cl)
358 {
359 return htab_elements (cl->list);
360 }
361
362
363 /* Iterator over hash table pairs. */
364 typedef struct
365 {
366 htab_iterator hti;
367 } coalesce_pair_iterator;
368
369
370 /* Return first partition pair from list CL, initializing iterator ITER. */
371
372 static inline coalesce_pair_p
373 first_coalesce_pair (coalesce_list_p cl, coalesce_pair_iterator *iter)
374 {
375 coalesce_pair_p pair;
376
377 pair = (coalesce_pair_p) first_htab_element (&(iter->hti), cl->list);
378 return pair;
379 }
380
381
382 /* Return TRUE if there are no more partitions in for ITER to process. */
383
384 static inline bool
385 end_coalesce_pair_p (coalesce_pair_iterator *iter)
386 {
387 return end_htab_p (&(iter->hti));
388 }
389
390
391 /* Return the next partition pair to be visited by ITER. */
392
393 static inline coalesce_pair_p
394 next_coalesce_pair (coalesce_pair_iterator *iter)
395 {
396 coalesce_pair_p pair;
397
398 pair = (coalesce_pair_p) next_htab_element (&(iter->hti));
399 return pair;
400 }
401
402
403 /* Iterate over CL using ITER, returning values in PAIR. */
404
405 #define FOR_EACH_PARTITION_PAIR(PAIR, ITER, CL) \
406 for ((PAIR) = first_coalesce_pair ((CL), &(ITER)); \
407 !end_coalesce_pair_p (&(ITER)); \
408 (PAIR) = next_coalesce_pair (&(ITER)))
409
410
411 /* Prepare CL for removal of preferred pairs. When finished they are sorted
412 in order from most important coalesce to least important. */
413
414 static void
415 sort_coalesce_list (coalesce_list_p cl)
416 {
417 unsigned x, num;
418 coalesce_pair_p p;
419 coalesce_pair_iterator ppi;
420
421 gcc_assert (cl->sorted == NULL);
422
423 num = num_coalesce_pairs (cl);
424 cl->num_sorted = num;
425 if (num == 0)
426 return;
427
428 /* Allocate a vector for the pair pointers. */
429 cl->sorted = XNEWVEC (coalesce_pair_p, num);
430
431 /* Populate the vector with pointers to the pairs. */
432 x = 0;
433 FOR_EACH_PARTITION_PAIR (p, ppi, cl)
434 cl->sorted[x++] = p;
435 gcc_assert (x == num);
436
437 /* Already sorted. */
438 if (num == 1)
439 return;
440
441 /* If there are only 2, just pick swap them if the order isn't correct. */
442 if (num == 2)
443 {
444 if (cl->sorted[0]->cost > cl->sorted[1]->cost)
445 {
446 p = cl->sorted[0];
447 cl->sorted[0] = cl->sorted[1];
448 cl->sorted[1] = p;
449 }
450 return;
451 }
452
453 /* Only call qsort if there are more than 2 items. */
454 if (num > 2)
455 qsort (cl->sorted, num, sizeof (coalesce_pair_p), compare_pairs);
456 }
457
458
459 /* Send debug info for coalesce list CL to file F. */
460
461 static void
462 dump_coalesce_list (FILE *f, coalesce_list_p cl)
463 {
464 coalesce_pair_p node;
465 coalesce_pair_iterator ppi;
466 int x;
467 tree var;
468
469 if (cl->sorted == NULL)
470 {
471 fprintf (f, "Coalesce List:\n");
472 FOR_EACH_PARTITION_PAIR (node, ppi, cl)
473 {
474 tree var1 = ssa_name (node->first_element);
475 tree var2 = ssa_name (node->second_element);
476 print_generic_expr (f, var1, TDF_SLIM);
477 fprintf (f, " <-> ");
478 print_generic_expr (f, var2, TDF_SLIM);
479 fprintf (f, " (%1d), ", node->cost);
480 fprintf (f, "\n");
481 }
482 }
483 else
484 {
485 fprintf (f, "Sorted Coalesce list:\n");
486 for (x = cl->num_sorted - 1 ; x >=0; x--)
487 {
488 node = cl->sorted[x];
489 fprintf (f, "(%d) ", node->cost);
490 var = ssa_name (node->first_element);
491 print_generic_expr (f, var, TDF_SLIM);
492 fprintf (f, " <-> ");
493 var = ssa_name (node->second_element);
494 print_generic_expr (f, var, TDF_SLIM);
495 fprintf (f, "\n");
496 }
497 }
498 }
499
500
501 /* This represents a conflict graph. Implemented as an array of bitmaps.
502 A full matrix is used for conflicts rather than just upper triangular form.
503 this make sit much simpler and faster to perform conflict merges. */
504
505 typedef struct ssa_conflicts_d
506 {
507 unsigned size;
508 bitmap *conflicts;
509 } * ssa_conflicts_p;
510
511
512 /* Return an empty new conflict graph for SIZE elements. */
513
514 static inline ssa_conflicts_p
515 ssa_conflicts_new (unsigned size)
516 {
517 ssa_conflicts_p ptr;
518
519 ptr = XNEW (struct ssa_conflicts_d);
520 ptr->conflicts = XCNEWVEC (bitmap, size);
521 ptr->size = size;
522 return ptr;
523 }
524
525
526 /* Free storage for conflict graph PTR. */
527
528 static inline void
529 ssa_conflicts_delete (ssa_conflicts_p ptr)
530 {
531 unsigned x;
532 for (x = 0; x < ptr->size; x++)
533 if (ptr->conflicts[x])
534 BITMAP_FREE (ptr->conflicts[x]);
535
536 free (ptr->conflicts);
537 free (ptr);
538 }
539
540
541 /* Test if elements X and Y conflict in graph PTR. */
542
543 static inline bool
544 ssa_conflicts_test_p (ssa_conflicts_p ptr, unsigned x, unsigned y)
545 {
546 bitmap b;
547
548 gcc_checking_assert (x < ptr->size);
549 gcc_checking_assert (y < ptr->size);
550 gcc_checking_assert (x != y);
551
552 b = ptr->conflicts[x];
553 if (b)
554 /* Avoid the lookup if Y has no conflicts. */
555 return ptr->conflicts[y] ? bitmap_bit_p (b, y) : false;
556 else
557 return false;
558 }
559
560
561 /* Add a conflict with Y to the bitmap for X in graph PTR. */
562
563 static inline void
564 ssa_conflicts_add_one (ssa_conflicts_p ptr, unsigned x, unsigned y)
565 {
566 /* If there are no conflicts yet, allocate the bitmap and set bit. */
567 if (!ptr->conflicts[x])
568 ptr->conflicts[x] = BITMAP_ALLOC (NULL);
569 bitmap_set_bit (ptr->conflicts[x], y);
570 }
571
572
573 /* Add conflicts between X and Y in graph PTR. */
574
575 static inline void
576 ssa_conflicts_add (ssa_conflicts_p ptr, unsigned x, unsigned y)
577 {
578 gcc_checking_assert (x < ptr->size);
579 gcc_checking_assert (y < ptr->size);
580 gcc_checking_assert (x != y);
581 ssa_conflicts_add_one (ptr, x, y);
582 ssa_conflicts_add_one (ptr, y, x);
583 }
584
585
586 /* Merge all Y's conflict into X in graph PTR. */
587
588 static inline void
589 ssa_conflicts_merge (ssa_conflicts_p ptr, unsigned x, unsigned y)
590 {
591 unsigned z;
592 bitmap_iterator bi;
593
594 gcc_assert (x != y);
595 if (!(ptr->conflicts[y]))
596 return;
597
598 /* Add a conflict between X and every one Y has. If the bitmap doesn't
599 exist, then it has already been coalesced, and we don't need to add a
600 conflict. */
601 EXECUTE_IF_SET_IN_BITMAP (ptr->conflicts[y], 0, z, bi)
602 if (ptr->conflicts[z])
603 bitmap_set_bit (ptr->conflicts[z], x);
604
605 if (ptr->conflicts[x])
606 {
607 /* If X has conflicts, add Y's to X. */
608 bitmap_ior_into (ptr->conflicts[x], ptr->conflicts[y]);
609 BITMAP_FREE (ptr->conflicts[y]);
610 }
611 else
612 {
613 /* If X has no conflicts, simply use Y's. */
614 ptr->conflicts[x] = ptr->conflicts[y];
615 ptr->conflicts[y] = NULL;
616 }
617 }
618
619
620 /* Dump a conflicts graph. */
621
622 static void
623 ssa_conflicts_dump (FILE *file, ssa_conflicts_p ptr)
624 {
625 unsigned x;
626
627 fprintf (file, "\nConflict graph:\n");
628
629 for (x = 0; x < ptr->size; x++)
630 if (ptr->conflicts[x])
631 {
632 fprintf (dump_file, "%d: ", x);
633 dump_bitmap (file, ptr->conflicts[x]);
634 }
635 }
636
637
638 /* This structure is used to efficiently record the current status of live
639 SSA_NAMES when building a conflict graph.
640 LIVE_BASE_VAR has a bit set for each base variable which has at least one
641 ssa version live.
642 LIVE_BASE_PARTITIONS is an array of bitmaps using the basevar table as an
643 index, and is used to track what partitions of each base variable are
644 live. This makes it easy to add conflicts between just live partitions
645 with the same base variable.
646 The values in LIVE_BASE_PARTITIONS are only valid if the base variable is
647 marked as being live. This delays clearing of these bitmaps until
648 they are actually needed again. */
649
650 typedef struct live_track_d
651 {
652 bitmap live_base_var; /* Indicates if a basevar is live. */
653 bitmap *live_base_partitions; /* Live partitions for each basevar. */
654 var_map map; /* Var_map being used for partition mapping. */
655 } * live_track_p;
656
657
658 /* This routine will create a new live track structure based on the partitions
659 in MAP. */
660
661 static live_track_p
662 new_live_track (var_map map)
663 {
664 live_track_p ptr;
665 int lim, x;
666
667 /* Make sure there is a partition view in place. */
668 gcc_assert (map->partition_to_base_index != NULL);
669
670 ptr = (live_track_p) xmalloc (sizeof (struct live_track_d));
671 ptr->map = map;
672 lim = num_basevars (map);
673 ptr->live_base_partitions = (bitmap *) xmalloc(sizeof (bitmap *) * lim);
674 ptr->live_base_var = BITMAP_ALLOC (NULL);
675 for (x = 0; x < lim; x++)
676 ptr->live_base_partitions[x] = BITMAP_ALLOC (NULL);
677 return ptr;
678 }
679
680
681 /* This routine will free the memory associated with PTR. */
682
683 static void
684 delete_live_track (live_track_p ptr)
685 {
686 int x, lim;
687
688 lim = num_basevars (ptr->map);
689 for (x = 0; x < lim; x++)
690 BITMAP_FREE (ptr->live_base_partitions[x]);
691 BITMAP_FREE (ptr->live_base_var);
692 free (ptr->live_base_partitions);
693 free (ptr);
694 }
695
696
697 /* This function will remove PARTITION from the live list in PTR. */
698
699 static inline void
700 live_track_remove_partition (live_track_p ptr, int partition)
701 {
702 int root;
703
704 root = basevar_index (ptr->map, partition);
705 bitmap_clear_bit (ptr->live_base_partitions[root], partition);
706 /* If the element list is empty, make the base variable not live either. */
707 if (bitmap_empty_p (ptr->live_base_partitions[root]))
708 bitmap_clear_bit (ptr->live_base_var, root);
709 }
710
711
712 /* This function will adds PARTITION to the live list in PTR. */
713
714 static inline void
715 live_track_add_partition (live_track_p ptr, int partition)
716 {
717 int root;
718
719 root = basevar_index (ptr->map, partition);
720 /* If this base var wasn't live before, it is now. Clear the element list
721 since it was delayed until needed. */
722 if (bitmap_set_bit (ptr->live_base_var, root))
723 bitmap_clear (ptr->live_base_partitions[root]);
724 bitmap_set_bit (ptr->live_base_partitions[root], partition);
725
726 }
727
728
729 /* Clear the live bit for VAR in PTR. */
730
731 static inline void
732 live_track_clear_var (live_track_p ptr, tree var)
733 {
734 int p;
735
736 p = var_to_partition (ptr->map, var);
737 if (p != NO_PARTITION)
738 live_track_remove_partition (ptr, p);
739 }
740
741
742 /* Return TRUE if VAR is live in PTR. */
743
744 static inline bool
745 live_track_live_p (live_track_p ptr, tree var)
746 {
747 int p, root;
748
749 p = var_to_partition (ptr->map, var);
750 if (p != NO_PARTITION)
751 {
752 root = basevar_index (ptr->map, p);
753 if (bitmap_bit_p (ptr->live_base_var, root))
754 return bitmap_bit_p (ptr->live_base_partitions[root], p);
755 }
756 return false;
757 }
758
759
760 /* This routine will add USE to PTR. USE will be marked as live in both the
761 ssa live map and the live bitmap for the root of USE. */
762
763 static inline void
764 live_track_process_use (live_track_p ptr, tree use)
765 {
766 int p;
767
768 p = var_to_partition (ptr->map, use);
769 if (p == NO_PARTITION)
770 return;
771
772 /* Mark as live in the appropriate live list. */
773 live_track_add_partition (ptr, p);
774 }
775
776
777 /* This routine will process a DEF in PTR. DEF will be removed from the live
778 lists, and if there are any other live partitions with the same base
779 variable, conflicts will be added to GRAPH. */
780
781 static inline void
782 live_track_process_def (live_track_p ptr, tree def, ssa_conflicts_p graph)
783 {
784 int p, root;
785 bitmap b;
786 unsigned x;
787 bitmap_iterator bi;
788
789 p = var_to_partition (ptr->map, def);
790 if (p == NO_PARTITION)
791 return;
792
793 /* Clear the liveness bit. */
794 live_track_remove_partition (ptr, p);
795
796 /* If the bitmap isn't empty now, conflicts need to be added. */
797 root = basevar_index (ptr->map, p);
798 if (bitmap_bit_p (ptr->live_base_var, root))
799 {
800 b = ptr->live_base_partitions[root];
801 EXECUTE_IF_SET_IN_BITMAP (b, 0, x, bi)
802 ssa_conflicts_add (graph, p, x);
803 }
804 }
805
806
807 /* Initialize PTR with the partitions set in INIT. */
808
809 static inline void
810 live_track_init (live_track_p ptr, bitmap init)
811 {
812 unsigned p;
813 bitmap_iterator bi;
814
815 /* Mark all live on exit partitions. */
816 EXECUTE_IF_SET_IN_BITMAP (init, 0, p, bi)
817 live_track_add_partition (ptr, p);
818 }
819
820
821 /* This routine will clear all live partitions in PTR. */
822
823 static inline void
824 live_track_clear_base_vars (live_track_p ptr)
825 {
826 /* Simply clear the live base list. Anything marked as live in the element
827 lists will be cleared later if/when the base variable ever comes alive
828 again. */
829 bitmap_clear (ptr->live_base_var);
830 }
831
832
833 /* Build a conflict graph based on LIVEINFO. Any partitions which are in the
834 partition view of the var_map liveinfo is based on get entries in the
835 conflict graph. Only conflicts between ssa_name partitions with the same
836 base variable are added. */
837
838 static ssa_conflicts_p
839 build_ssa_conflict_graph (tree_live_info_p liveinfo)
840 {
841 ssa_conflicts_p graph;
842 var_map map;
843 basic_block bb;
844 ssa_op_iter iter;
845 live_track_p live;
846
847 map = live_var_map (liveinfo);
848 graph = ssa_conflicts_new (num_var_partitions (map));
849
850 live = new_live_track (map);
851
852 FOR_EACH_BB (bb)
853 {
854 gimple_stmt_iterator gsi;
855
856 /* Start with live on exit temporaries. */
857 live_track_init (live, live_on_exit (liveinfo, bb));
858
859 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
860 {
861 tree var;
862 gimple stmt = gsi_stmt (gsi);
863
864 /* A copy between 2 partitions does not introduce an interference
865 by itself. If they did, you would never be able to coalesce
866 two things which are copied. If the two variables really do
867 conflict, they will conflict elsewhere in the program.
868
869 This is handled by simply removing the SRC of the copy from the
870 live list, and processing the stmt normally. */
871 if (is_gimple_assign (stmt))
872 {
873 tree lhs = gimple_assign_lhs (stmt);
874 tree rhs1 = gimple_assign_rhs1 (stmt);
875 if (gimple_assign_copy_p (stmt)
876 && TREE_CODE (lhs) == SSA_NAME
877 && TREE_CODE (rhs1) == SSA_NAME)
878 live_track_clear_var (live, rhs1);
879 }
880 else if (is_gimple_debug (stmt))
881 continue;
882
883 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_DEF)
884 live_track_process_def (live, var, graph);
885
886 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, SSA_OP_USE)
887 live_track_process_use (live, var);
888 }
889
890 /* If result of a PHI is unused, looping over the statements will not
891 record any conflicts since the def was never live. Since the PHI node
892 is going to be translated out of SSA form, it will insert a copy.
893 There must be a conflict recorded between the result of the PHI and
894 any variables that are live. Otherwise the out-of-ssa translation
895 may create incorrect code. */
896 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
897 {
898 gimple phi = gsi_stmt (gsi);
899 tree result = PHI_RESULT (phi);
900 if (live_track_live_p (live, result))
901 live_track_process_def (live, result, graph);
902 }
903
904 live_track_clear_base_vars (live);
905 }
906
907 delete_live_track (live);
908 return graph;
909 }
910
911
912 /* Shortcut routine to print messages to file F of the form:
913 "STR1 EXPR1 STR2 EXPR2 STR3." */
914
915 static inline void
916 print_exprs (FILE *f, const char *str1, tree expr1, const char *str2,
917 tree expr2, const char *str3)
918 {
919 fprintf (f, "%s", str1);
920 print_generic_expr (f, expr1, TDF_SLIM);
921 fprintf (f, "%s", str2);
922 print_generic_expr (f, expr2, TDF_SLIM);
923 fprintf (f, "%s", str3);
924 }
925
926
927 /* Called if a coalesce across and abnormal edge cannot be performed. PHI is
928 the phi node at fault, I is the argument index at fault. A message is
929 printed and compilation is then terminated. */
930
931 static inline void
932 abnormal_corrupt (gimple phi, int i)
933 {
934 edge e = gimple_phi_arg_edge (phi, i);
935 tree res = gimple_phi_result (phi);
936 tree arg = gimple_phi_arg_def (phi, i);
937
938 fprintf (stderr, " Corrupt SSA across abnormal edge BB%d->BB%d\n",
939 e->src->index, e->dest->index);
940 fprintf (stderr, "Argument %d (", i);
941 print_generic_expr (stderr, arg, TDF_SLIM);
942 if (TREE_CODE (arg) != SSA_NAME)
943 fprintf (stderr, ") is not an SSA_NAME.\n");
944 else
945 {
946 gcc_assert (SSA_NAME_VAR (res) != SSA_NAME_VAR (arg));
947 fprintf (stderr, ") does not have the same base variable as the result ");
948 print_generic_stmt (stderr, res, TDF_SLIM);
949 }
950
951 internal_error ("SSA corruption");
952 }
953
954
955 /* Print a failure to coalesce a MUST_COALESCE pair X and Y. */
956
957 static inline void
958 fail_abnormal_edge_coalesce (int x, int y)
959 {
960 fprintf (stderr, "\nUnable to coalesce ssa_names %d and %d",x, y);
961 fprintf (stderr, " which are marked as MUST COALESCE.\n");
962 print_generic_expr (stderr, ssa_name (x), TDF_SLIM);
963 fprintf (stderr, " and ");
964 print_generic_stmt (stderr, ssa_name (y), TDF_SLIM);
965
966 internal_error ("SSA corruption");
967 }
968
969
970 /* This function creates a var_map for the current function as well as creating
971 a coalesce list for use later in the out of ssa process. */
972
973 static var_map
974 create_outofssa_var_map (coalesce_list_p cl, bitmap used_in_copy)
975 {
976 gimple_stmt_iterator gsi;
977 basic_block bb;
978 tree var;
979 gimple stmt;
980 tree first;
981 var_map map;
982 ssa_op_iter iter;
983 int v1, v2, cost;
984 unsigned i;
985
986 map = init_var_map (num_ssa_names);
987
988 FOR_EACH_BB (bb)
989 {
990 tree arg;
991
992 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi); gsi_next (&gsi))
993 {
994 gimple phi = gsi_stmt (gsi);
995 size_t i;
996 int ver;
997 tree res;
998 bool saw_copy = false;
999
1000 res = gimple_phi_result (phi);
1001 ver = SSA_NAME_VERSION (res);
1002 register_ssa_partition (map, res);
1003
1004 /* Register ssa_names and coalesces between the args and the result
1005 of all PHI. */
1006 for (i = 0; i < gimple_phi_num_args (phi); i++)
1007 {
1008 edge e = gimple_phi_arg_edge (phi, i);
1009 arg = PHI_ARG_DEF (phi, i);
1010 if (TREE_CODE (arg) == SSA_NAME)
1011 register_ssa_partition (map, arg);
1012 if (TREE_CODE (arg) == SSA_NAME
1013 && SSA_NAME_VAR (arg) == SSA_NAME_VAR (res))
1014 {
1015 saw_copy = true;
1016 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (arg));
1017 if ((e->flags & EDGE_ABNORMAL) == 0)
1018 {
1019 int cost = coalesce_cost_edge (e);
1020 if (cost == 1 && has_single_use (arg))
1021 add_cost_one_coalesce (cl, ver, SSA_NAME_VERSION (arg));
1022 else
1023 add_coalesce (cl, ver, SSA_NAME_VERSION (arg), cost);
1024 }
1025 }
1026 else
1027 if (e->flags & EDGE_ABNORMAL)
1028 abnormal_corrupt (phi, i);
1029 }
1030 if (saw_copy)
1031 bitmap_set_bit (used_in_copy, ver);
1032 }
1033
1034 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1035 {
1036 stmt = gsi_stmt (gsi);
1037
1038 if (is_gimple_debug (stmt))
1039 continue;
1040
1041 /* Register USE and DEF operands in each statement. */
1042 FOR_EACH_SSA_TREE_OPERAND (var, stmt, iter, (SSA_OP_DEF|SSA_OP_USE))
1043 register_ssa_partition (map, var);
1044
1045 /* Check for copy coalesces. */
1046 switch (gimple_code (stmt))
1047 {
1048 case GIMPLE_ASSIGN:
1049 {
1050 tree lhs = gimple_assign_lhs (stmt);
1051 tree rhs1 = gimple_assign_rhs1 (stmt);
1052
1053 if (gimple_assign_copy_p (stmt)
1054 && TREE_CODE (lhs) == SSA_NAME
1055 && TREE_CODE (rhs1) == SSA_NAME
1056 && SSA_NAME_VAR (lhs) == SSA_NAME_VAR (rhs1))
1057 {
1058 v1 = SSA_NAME_VERSION (lhs);
1059 v2 = SSA_NAME_VERSION (rhs1);
1060 cost = coalesce_cost_bb (bb);
1061 add_coalesce (cl, v1, v2, cost);
1062 bitmap_set_bit (used_in_copy, v1);
1063 bitmap_set_bit (used_in_copy, v2);
1064 }
1065 }
1066 break;
1067
1068 case GIMPLE_ASM:
1069 {
1070 unsigned long noutputs, i;
1071 unsigned long ninputs;
1072 tree *outputs, link;
1073 noutputs = gimple_asm_noutputs (stmt);
1074 ninputs = gimple_asm_ninputs (stmt);
1075 outputs = (tree *) alloca (noutputs * sizeof (tree));
1076 for (i = 0; i < noutputs; ++i) {
1077 link = gimple_asm_output_op (stmt, i);
1078 outputs[i] = TREE_VALUE (link);
1079 }
1080
1081 for (i = 0; i < ninputs; ++i)
1082 {
1083 const char *constraint;
1084 tree input;
1085 char *end;
1086 unsigned long match;
1087
1088 link = gimple_asm_input_op (stmt, i);
1089 constraint
1090 = TREE_STRING_POINTER (TREE_VALUE (TREE_PURPOSE (link)));
1091 input = TREE_VALUE (link);
1092
1093 if (TREE_CODE (input) != SSA_NAME)
1094 continue;
1095
1096 match = strtoul (constraint, &end, 10);
1097 if (match >= noutputs || end == constraint)
1098 continue;
1099
1100 if (TREE_CODE (outputs[match]) != SSA_NAME)
1101 continue;
1102
1103 v1 = SSA_NAME_VERSION (outputs[match]);
1104 v2 = SSA_NAME_VERSION (input);
1105
1106 if (SSA_NAME_VAR (outputs[match]) == SSA_NAME_VAR (input))
1107 {
1108 cost = coalesce_cost (REG_BR_PROB_BASE,
1109 optimize_bb_for_size_p (bb));
1110 add_coalesce (cl, v1, v2, cost);
1111 bitmap_set_bit (used_in_copy, v1);
1112 bitmap_set_bit (used_in_copy, v2);
1113 }
1114 }
1115 break;
1116 }
1117
1118 default:
1119 break;
1120 }
1121 }
1122 }
1123
1124 /* Now process result decls and live on entry variables for entry into
1125 the coalesce list. */
1126 first = NULL_TREE;
1127 for (i = 1; i < num_ssa_names; i++)
1128 {
1129 var = ssa_name (i);
1130 if (var != NULL_TREE && is_gimple_reg (var))
1131 {
1132 /* Add coalesces between all the result decls. */
1133 if (TREE_CODE (SSA_NAME_VAR (var)) == RESULT_DECL)
1134 {
1135 if (first == NULL_TREE)
1136 first = var;
1137 else
1138 {
1139 gcc_assert (SSA_NAME_VAR (var) == SSA_NAME_VAR (first));
1140 v1 = SSA_NAME_VERSION (first);
1141 v2 = SSA_NAME_VERSION (var);
1142 bitmap_set_bit (used_in_copy, v1);
1143 bitmap_set_bit (used_in_copy, v2);
1144 cost = coalesce_cost_bb (EXIT_BLOCK_PTR);
1145 add_coalesce (cl, v1, v2, cost);
1146 }
1147 }
1148 /* Mark any default_def variables as being in the coalesce list
1149 since they will have to be coalesced with the base variable. If
1150 not marked as present, they won't be in the coalesce view. */
1151 if (gimple_default_def (cfun, SSA_NAME_VAR (var)) == var
1152 && !has_zero_uses (var))
1153 bitmap_set_bit (used_in_copy, SSA_NAME_VERSION (var));
1154 }
1155 }
1156
1157 return map;
1158 }
1159
1160
1161 /* Attempt to coalesce ssa versions X and Y together using the partition
1162 mapping in MAP and checking conflicts in GRAPH. Output any debug info to
1163 DEBUG, if it is nun-NULL. */
1164
1165 static inline bool
1166 attempt_coalesce (var_map map, ssa_conflicts_p graph, int x, int y,
1167 FILE *debug)
1168 {
1169 int z;
1170 tree var1, var2;
1171 int p1, p2;
1172
1173 p1 = var_to_partition (map, ssa_name (x));
1174 p2 = var_to_partition (map, ssa_name (y));
1175
1176 if (debug)
1177 {
1178 fprintf (debug, "(%d)", x);
1179 print_generic_expr (debug, partition_to_var (map, p1), TDF_SLIM);
1180 fprintf (debug, " & (%d)", y);
1181 print_generic_expr (debug, partition_to_var (map, p2), TDF_SLIM);
1182 }
1183
1184 if (p1 == p2)
1185 {
1186 if (debug)
1187 fprintf (debug, ": Already Coalesced.\n");
1188 return true;
1189 }
1190
1191 if (debug)
1192 fprintf (debug, " [map: %d, %d] ", p1, p2);
1193
1194
1195 if (!ssa_conflicts_test_p (graph, p1, p2))
1196 {
1197 var1 = partition_to_var (map, p1);
1198 var2 = partition_to_var (map, p2);
1199 z = var_union (map, var1, var2);
1200 if (z == NO_PARTITION)
1201 {
1202 if (debug)
1203 fprintf (debug, ": Unable to perform partition union.\n");
1204 return false;
1205 }
1206
1207 /* z is the new combined partition. Remove the other partition from
1208 the list, and merge the conflicts. */
1209 if (z == p1)
1210 ssa_conflicts_merge (graph, p1, p2);
1211 else
1212 ssa_conflicts_merge (graph, p2, p1);
1213
1214 if (debug)
1215 fprintf (debug, ": Success -> %d\n", z);
1216 return true;
1217 }
1218
1219 if (debug)
1220 fprintf (debug, ": Fail due to conflict\n");
1221
1222 return false;
1223 }
1224
1225
1226 /* Attempt to Coalesce partitions in MAP which occur in the list CL using
1227 GRAPH. Debug output is sent to DEBUG if it is non-NULL. */
1228
1229 static void
1230 coalesce_partitions (var_map map, ssa_conflicts_p graph, coalesce_list_p cl,
1231 FILE *debug)
1232 {
1233 int x = 0, y = 0;
1234 tree var1, var2;
1235 int cost;
1236 basic_block bb;
1237 edge e;
1238 edge_iterator ei;
1239
1240 /* First, coalesce all the copies across abnormal edges. These are not placed
1241 in the coalesce list because they do not need to be sorted, and simply
1242 consume extra memory/compilation time in large programs. */
1243
1244 FOR_EACH_BB (bb)
1245 {
1246 FOR_EACH_EDGE (e, ei, bb->preds)
1247 if (e->flags & EDGE_ABNORMAL)
1248 {
1249 gimple_stmt_iterator gsi;
1250 for (gsi = gsi_start_phis (bb); !gsi_end_p (gsi);
1251 gsi_next (&gsi))
1252 {
1253 gimple phi = gsi_stmt (gsi);
1254 tree res = PHI_RESULT (phi);
1255 tree arg = PHI_ARG_DEF (phi, e->dest_idx);
1256 int v1 = SSA_NAME_VERSION (res);
1257 int v2 = SSA_NAME_VERSION (arg);
1258
1259 if (SSA_NAME_VAR (arg) != SSA_NAME_VAR (res))
1260 abnormal_corrupt (phi, e->dest_idx);
1261
1262 if (debug)
1263 fprintf (debug, "Abnormal coalesce: ");
1264
1265 if (!attempt_coalesce (map, graph, v1, v2, debug))
1266 fail_abnormal_edge_coalesce (v1, v2);
1267 }
1268 }
1269 }
1270
1271 /* Now process the items in the coalesce list. */
1272
1273 while ((cost = pop_best_coalesce (cl, &x, &y)) != NO_BEST_COALESCE)
1274 {
1275 var1 = ssa_name (x);
1276 var2 = ssa_name (y);
1277
1278 /* Assert the coalesces have the same base variable. */
1279 gcc_assert (SSA_NAME_VAR (var1) == SSA_NAME_VAR (var2));
1280
1281 if (debug)
1282 fprintf (debug, "Coalesce list: ");
1283 attempt_coalesce (map, graph, x, y, debug);
1284 }
1285 }
1286
1287 /* Returns a hash code for P. */
1288
1289 static hashval_t
1290 hash_ssa_name_by_var (const void *p)
1291 {
1292 const_tree n = (const_tree) p;
1293 return (hashval_t) htab_hash_pointer (SSA_NAME_VAR (n));
1294 }
1295
1296 /* Returns nonzero if P1 and P2 are equal. */
1297
1298 static int
1299 eq_ssa_name_by_var (const void *p1, const void *p2)
1300 {
1301 const_tree n1 = (const_tree) p1;
1302 const_tree n2 = (const_tree) p2;
1303 return SSA_NAME_VAR (n1) == SSA_NAME_VAR (n2);
1304 }
1305
1306 /* Reduce the number of copies by coalescing variables in the function. Return
1307 a partition map with the resulting coalesces. */
1308
1309 extern var_map
1310 coalesce_ssa_name (void)
1311 {
1312 tree_live_info_p liveinfo;
1313 ssa_conflicts_p graph;
1314 coalesce_list_p cl;
1315 bitmap used_in_copies = BITMAP_ALLOC (NULL);
1316 var_map map;
1317 unsigned int i;
1318 static htab_t ssa_name_hash;
1319
1320 cl = create_coalesce_list ();
1321 map = create_outofssa_var_map (cl, used_in_copies);
1322
1323 /* We need to coalesce all names originating same SSA_NAME_VAR
1324 so debug info remains undisturbed. */
1325 if (!optimize)
1326 {
1327 ssa_name_hash = htab_create (10, hash_ssa_name_by_var,
1328 eq_ssa_name_by_var, NULL);
1329 for (i = 1; i < num_ssa_names; i++)
1330 {
1331 tree a = ssa_name (i);
1332
1333 if (a
1334 && SSA_NAME_VAR (a)
1335 && !DECL_IGNORED_P (SSA_NAME_VAR (a))
1336 && (!has_zero_uses (a) || !SSA_NAME_IS_DEFAULT_DEF (a)))
1337 {
1338 tree *slot = (tree *) htab_find_slot (ssa_name_hash, a, INSERT);
1339
1340 if (!*slot)
1341 *slot = a;
1342 else
1343 {
1344 add_coalesce (cl, SSA_NAME_VERSION (a), SSA_NAME_VERSION (*slot),
1345 MUST_COALESCE_COST - 1);
1346 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (a));
1347 bitmap_set_bit (used_in_copies, SSA_NAME_VERSION (*slot));
1348 }
1349 }
1350 }
1351 htab_delete (ssa_name_hash);
1352 }
1353 if (dump_file && (dump_flags & TDF_DETAILS))
1354 dump_var_map (dump_file, map);
1355
1356 /* Don't calculate live ranges for variables not in the coalesce list. */
1357 partition_view_bitmap (map, used_in_copies, true);
1358 BITMAP_FREE (used_in_copies);
1359
1360 if (num_var_partitions (map) < 1)
1361 {
1362 delete_coalesce_list (cl);
1363 return map;
1364 }
1365
1366 if (dump_file && (dump_flags & TDF_DETAILS))
1367 dump_var_map (dump_file, map);
1368
1369 liveinfo = calculate_live_ranges (map);
1370
1371 if (dump_file && (dump_flags & TDF_DETAILS))
1372 dump_live_info (dump_file, liveinfo, LIVEDUMP_ENTRY);
1373
1374 /* Build a conflict graph. */
1375 graph = build_ssa_conflict_graph (liveinfo);
1376 delete_tree_live_info (liveinfo);
1377 if (dump_file && (dump_flags & TDF_DETAILS))
1378 ssa_conflicts_dump (dump_file, graph);
1379
1380 sort_coalesce_list (cl);
1381
1382 if (dump_file && (dump_flags & TDF_DETAILS))
1383 {
1384 fprintf (dump_file, "\nAfter sorting:\n");
1385 dump_coalesce_list (dump_file, cl);
1386 }
1387
1388 /* First, coalesce all live on entry variables to their base variable.
1389 This will ensure the first use is coming from the correct location. */
1390
1391 if (dump_file && (dump_flags & TDF_DETAILS))
1392 dump_var_map (dump_file, map);
1393
1394 /* Now coalesce everything in the list. */
1395 coalesce_partitions (map, graph, cl,
1396 ((dump_flags & TDF_DETAILS) ? dump_file
1397 : NULL));
1398
1399 delete_coalesce_list (cl);
1400 ssa_conflicts_delete (graph);
1401
1402 return map;
1403 }