]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-ifcombine.c
b901f379c6b81d00cd7a31b6fb4ee14586470446
[thirdparty/gcc.git] / gcc / tree-ssa-ifcombine.c
1 /* Combining of if-expressions on trees.
2 Copyright (C) 2007-2014 Free Software Foundation, Inc.
3 Contributed by Richard Guenther <rguenther@suse.de>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 /* rtl is needed only because arm back-end requires it for
26 BRANCH_COST. */
27 #include "rtl.h"
28 #include "tm_p.h"
29 #include "tree.h"
30 #include "stor-layout.h"
31 #include "basic-block.h"
32 #include "tree-pretty-print.h"
33 #include "tree-ssa-alias.h"
34 #include "internal-fn.h"
35 #include "gimple-fold.h"
36 #include "gimple-expr.h"
37 #include "is-a.h"
38 #include "gimple.h"
39 #include "gimple-iterator.h"
40 #include "gimplify-me.h"
41 #include "gimple-ssa.h"
42 #include "tree-cfg.h"
43 #include "tree-phinodes.h"
44 #include "ssa-iterators.h"
45 #include "tree-pass.h"
46
47 #ifndef LOGICAL_OP_NON_SHORT_CIRCUIT
48 #define LOGICAL_OP_NON_SHORT_CIRCUIT \
49 (BRANCH_COST (optimize_function_for_speed_p (cfun), \
50 false) >= 2)
51 #endif
52
53 /* This pass combines COND_EXPRs to simplify control flow. It
54 currently recognizes bit tests and comparisons in chains that
55 represent logical and or logical or of two COND_EXPRs.
56
57 It does so by walking basic blocks in a approximate reverse
58 post-dominator order and trying to match CFG patterns that
59 represent logical and or logical or of two COND_EXPRs.
60 Transformations are done if the COND_EXPR conditions match
61 either
62
63 1. two single bit tests X & (1 << Yn) (for logical and)
64
65 2. two bit tests X & Yn (for logical or)
66
67 3. two comparisons X OPn Y (for logical or)
68
69 To simplify this pass, removing basic blocks and dead code
70 is left to CFG cleanup and DCE. */
71
72
73 /* Recognize a if-then-else CFG pattern starting to match with the
74 COND_BB basic-block containing the COND_EXPR. The recognized
75 then end else blocks are stored to *THEN_BB and *ELSE_BB. If
76 *THEN_BB and/or *ELSE_BB are already set, they are required to
77 match the then and else basic-blocks to make the pattern match.
78 Returns true if the pattern matched, false otherwise. */
79
80 static bool
81 recognize_if_then_else (basic_block cond_bb,
82 basic_block *then_bb, basic_block *else_bb)
83 {
84 edge t, e;
85
86 if (EDGE_COUNT (cond_bb->succs) != 2)
87 return false;
88
89 /* Find the then/else edges. */
90 t = EDGE_SUCC (cond_bb, 0);
91 e = EDGE_SUCC (cond_bb, 1);
92 if (!(t->flags & EDGE_TRUE_VALUE))
93 {
94 edge tmp = t;
95 t = e;
96 e = tmp;
97 }
98 if (!(t->flags & EDGE_TRUE_VALUE)
99 || !(e->flags & EDGE_FALSE_VALUE))
100 return false;
101
102 /* Check if the edge destinations point to the required block. */
103 if (*then_bb
104 && t->dest != *then_bb)
105 return false;
106 if (*else_bb
107 && e->dest != *else_bb)
108 return false;
109
110 if (!*then_bb)
111 *then_bb = t->dest;
112 if (!*else_bb)
113 *else_bb = e->dest;
114
115 return true;
116 }
117
118 /* Verify if the basic block BB does not have side-effects. Return
119 true in this case, else false. */
120
121 static bool
122 bb_no_side_effects_p (basic_block bb)
123 {
124 gimple_stmt_iterator gsi;
125
126 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
127 {
128 gimple stmt = gsi_stmt (gsi);
129
130 if (gimple_has_side_effects (stmt)
131 || gimple_vuse (stmt))
132 return false;
133 }
134
135 return true;
136 }
137
138 /* Return true if BB is an empty forwarder block to TO_BB. */
139
140 static bool
141 forwarder_block_to (basic_block bb, basic_block to_bb)
142 {
143 return empty_block_p (bb)
144 && single_succ_p (bb)
145 && single_succ (bb) == to_bb;
146 }
147
148 /* Verify if all PHI node arguments in DEST for edges from BB1 or
149 BB2 to DEST are the same. This makes the CFG merge point
150 free from side-effects. Return true in this case, else false. */
151
152 static bool
153 same_phi_args_p (basic_block bb1, basic_block bb2, basic_block dest)
154 {
155 edge e1 = find_edge (bb1, dest);
156 edge e2 = find_edge (bb2, dest);
157 gimple_stmt_iterator gsi;
158 gimple phi;
159
160 for (gsi = gsi_start_phis (dest); !gsi_end_p (gsi); gsi_next (&gsi))
161 {
162 phi = gsi_stmt (gsi);
163 if (!operand_equal_p (PHI_ARG_DEF_FROM_EDGE (phi, e1),
164 PHI_ARG_DEF_FROM_EDGE (phi, e2), 0))
165 return false;
166 }
167
168 return true;
169 }
170
171 /* Return the best representative SSA name for CANDIDATE which is used
172 in a bit test. */
173
174 static tree
175 get_name_for_bit_test (tree candidate)
176 {
177 /* Skip single-use names in favor of using the name from a
178 non-widening conversion definition. */
179 if (TREE_CODE (candidate) == SSA_NAME
180 && has_single_use (candidate))
181 {
182 gimple def_stmt = SSA_NAME_DEF_STMT (candidate);
183 if (is_gimple_assign (def_stmt)
184 && CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (def_stmt)))
185 {
186 if (TYPE_PRECISION (TREE_TYPE (candidate))
187 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (def_stmt))))
188 return gimple_assign_rhs1 (def_stmt);
189 }
190 }
191
192 return candidate;
193 }
194
195 /* Recognize a single bit test pattern in GIMPLE_COND and its defining
196 statements. Store the name being tested in *NAME and the bit
197 in *BIT. The GIMPLE_COND computes *NAME & (1 << *BIT).
198 Returns true if the pattern matched, false otherwise. */
199
200 static bool
201 recognize_single_bit_test (gimple cond, tree *name, tree *bit, bool inv)
202 {
203 gimple stmt;
204
205 /* Get at the definition of the result of the bit test. */
206 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
207 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
208 || !integer_zerop (gimple_cond_rhs (cond)))
209 return false;
210 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
211 if (!is_gimple_assign (stmt))
212 return false;
213
214 /* Look at which bit is tested. One form to recognize is
215 D.1985_5 = state_3(D) >> control1_4(D);
216 D.1986_6 = (int) D.1985_5;
217 D.1987_7 = op0 & 1;
218 if (D.1987_7 != 0) */
219 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
220 && integer_onep (gimple_assign_rhs2 (stmt))
221 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME)
222 {
223 tree orig_name = gimple_assign_rhs1 (stmt);
224
225 /* Look through copies and conversions to eventually
226 find the stmt that computes the shift. */
227 stmt = SSA_NAME_DEF_STMT (orig_name);
228
229 while (is_gimple_assign (stmt)
230 && ((CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt))
231 && (TYPE_PRECISION (TREE_TYPE (gimple_assign_lhs (stmt)))
232 <= TYPE_PRECISION (TREE_TYPE (gimple_assign_rhs1 (stmt)))))
233 || gimple_assign_ssa_name_copy_p (stmt)))
234 stmt = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
235
236 /* If we found such, decompose it. */
237 if (is_gimple_assign (stmt)
238 && gimple_assign_rhs_code (stmt) == RSHIFT_EXPR)
239 {
240 /* op0 & (1 << op1) */
241 *bit = gimple_assign_rhs2 (stmt);
242 *name = gimple_assign_rhs1 (stmt);
243 }
244 else
245 {
246 /* t & 1 */
247 *bit = integer_zero_node;
248 *name = get_name_for_bit_test (orig_name);
249 }
250
251 return true;
252 }
253
254 /* Another form is
255 D.1987_7 = op0 & (1 << CST)
256 if (D.1987_7 != 0) */
257 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
258 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
259 && integer_pow2p (gimple_assign_rhs2 (stmt)))
260 {
261 *name = gimple_assign_rhs1 (stmt);
262 *bit = build_int_cst (integer_type_node,
263 tree_log2 (gimple_assign_rhs2 (stmt)));
264 return true;
265 }
266
267 /* Another form is
268 D.1986_6 = 1 << control1_4(D)
269 D.1987_7 = op0 & D.1986_6
270 if (D.1987_7 != 0) */
271 if (gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
272 && TREE_CODE (gimple_assign_rhs1 (stmt)) == SSA_NAME
273 && TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
274 {
275 gimple tmp;
276
277 /* Both arguments of the BIT_AND_EXPR can be the single-bit
278 specifying expression. */
279 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
280 if (is_gimple_assign (tmp)
281 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
282 && integer_onep (gimple_assign_rhs1 (tmp)))
283 {
284 *name = gimple_assign_rhs2 (stmt);
285 *bit = gimple_assign_rhs2 (tmp);
286 return true;
287 }
288
289 tmp = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
290 if (is_gimple_assign (tmp)
291 && gimple_assign_rhs_code (tmp) == LSHIFT_EXPR
292 && integer_onep (gimple_assign_rhs1 (tmp)))
293 {
294 *name = gimple_assign_rhs1 (stmt);
295 *bit = gimple_assign_rhs2 (tmp);
296 return true;
297 }
298 }
299
300 return false;
301 }
302
303 /* Recognize a bit test pattern in a GIMPLE_COND and its defining
304 statements. Store the name being tested in *NAME and the bits
305 in *BITS. The COND_EXPR computes *NAME & *BITS.
306 Returns true if the pattern matched, false otherwise. */
307
308 static bool
309 recognize_bits_test (gimple cond, tree *name, tree *bits, bool inv)
310 {
311 gimple stmt;
312
313 /* Get at the definition of the result of the bit test. */
314 if (gimple_cond_code (cond) != (inv ? EQ_EXPR : NE_EXPR)
315 || TREE_CODE (gimple_cond_lhs (cond)) != SSA_NAME
316 || !integer_zerop (gimple_cond_rhs (cond)))
317 return false;
318 stmt = SSA_NAME_DEF_STMT (gimple_cond_lhs (cond));
319 if (!is_gimple_assign (stmt)
320 || gimple_assign_rhs_code (stmt) != BIT_AND_EXPR)
321 return false;
322
323 *name = get_name_for_bit_test (gimple_assign_rhs1 (stmt));
324 *bits = gimple_assign_rhs2 (stmt);
325
326 return true;
327 }
328
329 /* If-convert on a and pattern with a common else block. The inner
330 if is specified by its INNER_COND_BB, the outer by OUTER_COND_BB.
331 inner_inv, outer_inv and result_inv indicate whether the conditions
332 are inverted.
333 Returns true if the edges to the common else basic-block were merged. */
334
335 static bool
336 ifcombine_ifandif (basic_block inner_cond_bb, bool inner_inv,
337 basic_block outer_cond_bb, bool outer_inv, bool result_inv)
338 {
339 gimple_stmt_iterator gsi;
340 gimple inner_cond, outer_cond;
341 tree name1, name2, bit1, bit2, bits1, bits2;
342
343 inner_cond = last_stmt (inner_cond_bb);
344 if (!inner_cond
345 || gimple_code (inner_cond) != GIMPLE_COND)
346 return false;
347
348 outer_cond = last_stmt (outer_cond_bb);
349 if (!outer_cond
350 || gimple_code (outer_cond) != GIMPLE_COND)
351 return false;
352
353 /* See if we test a single bit of the same name in both tests. In
354 that case remove the outer test, merging both else edges,
355 and change the inner one to test for
356 name & (bit1 | bit2) == (bit1 | bit2). */
357 if (recognize_single_bit_test (inner_cond, &name1, &bit1, inner_inv)
358 && recognize_single_bit_test (outer_cond, &name2, &bit2, outer_inv)
359 && name1 == name2)
360 {
361 tree t, t2;
362
363 /* Do it. */
364 gsi = gsi_for_stmt (inner_cond);
365 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
366 build_int_cst (TREE_TYPE (name1), 1), bit1);
367 t2 = fold_build2 (LSHIFT_EXPR, TREE_TYPE (name1),
368 build_int_cst (TREE_TYPE (name1), 1), bit2);
369 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), t, t2);
370 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
371 true, GSI_SAME_STMT);
372 t2 = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
373 t2 = force_gimple_operand_gsi (&gsi, t2, true, NULL_TREE,
374 true, GSI_SAME_STMT);
375 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR,
376 boolean_type_node, t2, t);
377 t = canonicalize_cond_expr_cond (t);
378 if (!t)
379 return false;
380 gimple_cond_set_condition_from_tree (inner_cond, t);
381 update_stmt (inner_cond);
382
383 /* Leave CFG optimization to cfg_cleanup. */
384 gimple_cond_set_condition_from_tree (outer_cond,
385 outer_inv ? boolean_false_node : boolean_true_node);
386 update_stmt (outer_cond);
387
388 if (dump_file)
389 {
390 fprintf (dump_file, "optimizing double bit test to ");
391 print_generic_expr (dump_file, name1, 0);
392 fprintf (dump_file, " & T == T\nwith temporary T = (1 << ");
393 print_generic_expr (dump_file, bit1, 0);
394 fprintf (dump_file, ") | (1 << ");
395 print_generic_expr (dump_file, bit2, 0);
396 fprintf (dump_file, ")\n");
397 }
398
399 return true;
400 }
401
402 /* See if we have two bit tests of the same name in both tests.
403 In that case remove the outer test and change the inner one to
404 test for name & (bits1 | bits2) != 0. */
405 else if (recognize_bits_test (inner_cond, &name1, &bits1, !inner_inv)
406 && recognize_bits_test (outer_cond, &name2, &bits2, !outer_inv))
407 {
408 gimple_stmt_iterator gsi;
409 tree t;
410
411 /* Find the common name which is bit-tested. */
412 if (name1 == name2)
413 ;
414 else if (bits1 == bits2)
415 {
416 t = name2;
417 name2 = bits2;
418 bits2 = t;
419 t = name1;
420 name1 = bits1;
421 bits1 = t;
422 }
423 else if (name1 == bits2)
424 {
425 t = name2;
426 name2 = bits2;
427 bits2 = t;
428 }
429 else if (bits1 == name2)
430 {
431 t = name1;
432 name1 = bits1;
433 bits1 = t;
434 }
435 else
436 return false;
437
438 /* As we strip non-widening conversions in finding a common
439 name that is tested make sure to end up with an integral
440 type for building the bit operations. */
441 if (TYPE_PRECISION (TREE_TYPE (bits1))
442 >= TYPE_PRECISION (TREE_TYPE (bits2)))
443 {
444 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
445 name1 = fold_convert (TREE_TYPE (bits1), name1);
446 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
447 bits2 = fold_convert (TREE_TYPE (bits1), bits2);
448 }
449 else
450 {
451 bits2 = fold_convert (unsigned_type_for (TREE_TYPE (bits2)), bits2);
452 name1 = fold_convert (TREE_TYPE (bits2), name1);
453 bits1 = fold_convert (unsigned_type_for (TREE_TYPE (bits1)), bits1);
454 bits1 = fold_convert (TREE_TYPE (bits2), bits1);
455 }
456
457 /* Do it. */
458 gsi = gsi_for_stmt (inner_cond);
459 t = fold_build2 (BIT_IOR_EXPR, TREE_TYPE (name1), bits1, bits2);
460 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
461 true, GSI_SAME_STMT);
462 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (name1), name1, t);
463 t = force_gimple_operand_gsi (&gsi, t, true, NULL_TREE,
464 true, GSI_SAME_STMT);
465 t = fold_build2 (result_inv ? NE_EXPR : EQ_EXPR, boolean_type_node, t,
466 build_int_cst (TREE_TYPE (t), 0));
467 t = canonicalize_cond_expr_cond (t);
468 if (!t)
469 return false;
470 gimple_cond_set_condition_from_tree (inner_cond, t);
471 update_stmt (inner_cond);
472
473 /* Leave CFG optimization to cfg_cleanup. */
474 gimple_cond_set_condition_from_tree (outer_cond,
475 outer_inv ? boolean_false_node : boolean_true_node);
476 update_stmt (outer_cond);
477
478 if (dump_file)
479 {
480 fprintf (dump_file, "optimizing bits or bits test to ");
481 print_generic_expr (dump_file, name1, 0);
482 fprintf (dump_file, " & T != 0\nwith temporary T = ");
483 print_generic_expr (dump_file, bits1, 0);
484 fprintf (dump_file, " | ");
485 print_generic_expr (dump_file, bits2, 0);
486 fprintf (dump_file, "\n");
487 }
488
489 return true;
490 }
491
492 /* See if we have two comparisons that we can merge into one. */
493 else if (TREE_CODE_CLASS (gimple_cond_code (inner_cond)) == tcc_comparison
494 && TREE_CODE_CLASS (gimple_cond_code (outer_cond)) == tcc_comparison)
495 {
496 tree t;
497 enum tree_code inner_cond_code = gimple_cond_code (inner_cond);
498 enum tree_code outer_cond_code = gimple_cond_code (outer_cond);
499
500 /* Invert comparisons if necessary (and possible). */
501 if (inner_inv)
502 inner_cond_code = invert_tree_comparison (inner_cond_code,
503 HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (inner_cond)))));
504 if (inner_cond_code == ERROR_MARK)
505 return false;
506 if (outer_inv)
507 outer_cond_code = invert_tree_comparison (outer_cond_code,
508 HONOR_NANS (TYPE_MODE (TREE_TYPE (gimple_cond_lhs (outer_cond)))));
509 if (outer_cond_code == ERROR_MARK)
510 return false;
511 /* Don't return false so fast, try maybe_fold_or_comparisons? */
512
513 if (!(t = maybe_fold_and_comparisons (inner_cond_code,
514 gimple_cond_lhs (inner_cond),
515 gimple_cond_rhs (inner_cond),
516 outer_cond_code,
517 gimple_cond_lhs (outer_cond),
518 gimple_cond_rhs (outer_cond))))
519 {
520 tree t1, t2;
521 gimple_stmt_iterator gsi;
522 if (!LOGICAL_OP_NON_SHORT_CIRCUIT)
523 return false;
524 /* Only do this optimization if the inner bb contains only the conditional. */
525 if (!gsi_one_before_end_p (gsi_start_nondebug_after_labels_bb (inner_cond_bb)))
526 return false;
527 t1 = fold_build2_loc (gimple_location (inner_cond),
528 inner_cond_code,
529 boolean_type_node,
530 gimple_cond_lhs (inner_cond),
531 gimple_cond_rhs (inner_cond));
532 t2 = fold_build2_loc (gimple_location (outer_cond),
533 outer_cond_code,
534 boolean_type_node,
535 gimple_cond_lhs (outer_cond),
536 gimple_cond_rhs (outer_cond));
537 t = fold_build2_loc (gimple_location (inner_cond),
538 TRUTH_AND_EXPR, boolean_type_node, t1, t2);
539 if (result_inv)
540 {
541 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
542 result_inv = false;
543 }
544 gsi = gsi_for_stmt (inner_cond);
545 t = force_gimple_operand_gsi_1 (&gsi, t, is_gimple_condexpr, NULL, true,
546 GSI_SAME_STMT);
547 }
548 if (result_inv)
549 t = fold_build1 (TRUTH_NOT_EXPR, TREE_TYPE (t), t);
550 t = canonicalize_cond_expr_cond (t);
551 if (!t)
552 return false;
553 gimple_cond_set_condition_from_tree (inner_cond, t);
554 update_stmt (inner_cond);
555
556 /* Leave CFG optimization to cfg_cleanup. */
557 gimple_cond_set_condition_from_tree (outer_cond,
558 outer_inv ? boolean_false_node : boolean_true_node);
559 update_stmt (outer_cond);
560
561 if (dump_file)
562 {
563 fprintf (dump_file, "optimizing two comparisons to ");
564 print_generic_expr (dump_file, t, 0);
565 fprintf (dump_file, "\n");
566 }
567
568 return true;
569 }
570
571 return false;
572 }
573
574 /* Helper function for tree_ssa_ifcombine_bb. Recognize a CFG pattern and
575 dispatch to the appropriate if-conversion helper for a particular
576 set of INNER_COND_BB, OUTER_COND_BB, THEN_BB and ELSE_BB.
577 PHI_PRED_BB should be one of INNER_COND_BB, THEN_BB or ELSE_BB. */
578
579 static bool
580 tree_ssa_ifcombine_bb_1 (basic_block inner_cond_bb, basic_block outer_cond_bb,
581 basic_block then_bb, basic_block else_bb,
582 basic_block phi_pred_bb)
583 {
584 /* The && form is characterized by a common else_bb with
585 the two edges leading to it mergable. The latter is
586 guaranteed by matching PHI arguments in the else_bb and
587 the inner cond_bb having no side-effects. */
588 if (phi_pred_bb != else_bb
589 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &else_bb)
590 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)
591 && bb_no_side_effects_p (inner_cond_bb))
592 {
593 /* We have
594 <outer_cond_bb>
595 if (q) goto inner_cond_bb; else goto else_bb;
596 <inner_cond_bb>
597 if (p) goto ...; else goto else_bb;
598 ...
599 <else_bb>
600 ...
601 */
602 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, false,
603 false);
604 }
605
606 /* And a version where the outer condition is negated. */
607 if (phi_pred_bb != else_bb
608 && recognize_if_then_else (outer_cond_bb, &else_bb, &inner_cond_bb)
609 && same_phi_args_p (outer_cond_bb, phi_pred_bb, else_bb)
610 && bb_no_side_effects_p (inner_cond_bb))
611 {
612 /* We have
613 <outer_cond_bb>
614 if (q) goto else_bb; else goto inner_cond_bb;
615 <inner_cond_bb>
616 if (p) goto ...; else goto else_bb;
617 ...
618 <else_bb>
619 ...
620 */
621 return ifcombine_ifandif (inner_cond_bb, false, outer_cond_bb, true,
622 false);
623 }
624
625 /* The || form is characterized by a common then_bb with the
626 two edges leading to it mergable. The latter is guaranteed
627 by matching PHI arguments in the then_bb and the inner cond_bb
628 having no side-effects. */
629 if (phi_pred_bb != then_bb
630 && recognize_if_then_else (outer_cond_bb, &then_bb, &inner_cond_bb)
631 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)
632 && bb_no_side_effects_p (inner_cond_bb))
633 {
634 /* We have
635 <outer_cond_bb>
636 if (q) goto then_bb; else goto inner_cond_bb;
637 <inner_cond_bb>
638 if (q) goto then_bb; else goto ...;
639 <then_bb>
640 ...
641 */
642 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, true,
643 true);
644 }
645
646 /* And a version where the outer condition is negated. */
647 if (phi_pred_bb != then_bb
648 && recognize_if_then_else (outer_cond_bb, &inner_cond_bb, &then_bb)
649 && same_phi_args_p (outer_cond_bb, phi_pred_bb, then_bb)
650 && bb_no_side_effects_p (inner_cond_bb))
651 {
652 /* We have
653 <outer_cond_bb>
654 if (q) goto inner_cond_bb; else goto then_bb;
655 <inner_cond_bb>
656 if (q) goto then_bb; else goto ...;
657 <then_bb>
658 ...
659 */
660 return ifcombine_ifandif (inner_cond_bb, true, outer_cond_bb, false,
661 true);
662 }
663
664 return false;
665 }
666
667 /* Recognize a CFG pattern and dispatch to the appropriate
668 if-conversion helper. We start with BB as the innermost
669 worker basic-block. Returns true if a transformation was done. */
670
671 static bool
672 tree_ssa_ifcombine_bb (basic_block inner_cond_bb)
673 {
674 basic_block then_bb = NULL, else_bb = NULL;
675
676 if (!recognize_if_then_else (inner_cond_bb, &then_bb, &else_bb))
677 return false;
678
679 /* Recognize && and || of two conditions with a common
680 then/else block which entry edges we can merge. That is:
681 if (a || b)
682 ;
683 and
684 if (a && b)
685 ;
686 This requires a single predecessor of the inner cond_bb. */
687 if (single_pred_p (inner_cond_bb))
688 {
689 basic_block outer_cond_bb = single_pred (inner_cond_bb);
690
691 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb,
692 then_bb, else_bb, inner_cond_bb))
693 return true;
694
695 if (forwarder_block_to (else_bb, then_bb))
696 {
697 /* Other possibilities for the && form, if else_bb is
698 empty forwarder block to then_bb. Compared to the above simpler
699 forms this can be treated as if then_bb and else_bb were swapped,
700 and the corresponding inner_cond_bb not inverted because of that.
701 For same_phi_args_p we look at equality of arguments between
702 edge from outer_cond_bb and the forwarder block. */
703 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
704 then_bb, else_bb))
705 return true;
706 }
707 else if (forwarder_block_to (then_bb, else_bb))
708 {
709 /* Other possibilities for the || form, if then_bb is
710 empty forwarder block to else_bb. Compared to the above simpler
711 forms this can be treated as if then_bb and else_bb were swapped,
712 and the corresponding inner_cond_bb not inverted because of that.
713 For same_phi_args_p we look at equality of arguments between
714 edge from outer_cond_bb and the forwarder block. */
715 if (tree_ssa_ifcombine_bb_1 (inner_cond_bb, outer_cond_bb, else_bb,
716 then_bb, then_bb))
717 return true;
718 }
719 }
720
721 return false;
722 }
723
724 /* Main entry for the tree if-conversion pass. */
725
726 static unsigned int
727 tree_ssa_ifcombine (void)
728 {
729 basic_block *bbs;
730 bool cfg_changed = false;
731 int i;
732
733 bbs = single_pred_before_succ_order ();
734 calculate_dominance_info (CDI_DOMINATORS);
735
736 /* Search every basic block for COND_EXPR we may be able to optimize.
737
738 We walk the blocks in order that guarantees that a block with
739 a single predecessor is processed after the predecessor.
740 This ensures that we collapse outter ifs before visiting the
741 inner ones, and also that we do not try to visit a removed
742 block. This is opposite of PHI-OPT, because we cascade the
743 combining rather than cascading PHIs. */
744 for (i = n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS - 1; i >= 0; i--)
745 {
746 basic_block bb = bbs[i];
747 gimple stmt = last_stmt (bb);
748
749 if (stmt
750 && gimple_code (stmt) == GIMPLE_COND)
751 cfg_changed |= tree_ssa_ifcombine_bb (bb);
752 }
753
754 free (bbs);
755
756 return cfg_changed ? TODO_cleanup_cfg : 0;
757 }
758
759 namespace {
760
761 const pass_data pass_data_tree_ifcombine =
762 {
763 GIMPLE_PASS, /* type */
764 "ifcombine", /* name */
765 OPTGROUP_NONE, /* optinfo_flags */
766 true, /* has_execute */
767 TV_TREE_IFCOMBINE, /* tv_id */
768 ( PROP_cfg | PROP_ssa ), /* properties_required */
769 0, /* properties_provided */
770 0, /* properties_destroyed */
771 0, /* todo_flags_start */
772 ( TODO_update_ssa | TODO_verify_ssa ), /* todo_flags_finish */
773 };
774
775 class pass_tree_ifcombine : public gimple_opt_pass
776 {
777 public:
778 pass_tree_ifcombine (gcc::context *ctxt)
779 : gimple_opt_pass (pass_data_tree_ifcombine, ctxt)
780 {}
781
782 /* opt_pass methods: */
783 unsigned int execute () { return tree_ssa_ifcombine (); }
784
785 }; // class pass_tree_ifcombine
786
787 } // anon namespace
788
789 gimple_opt_pass *
790 make_pass_tree_ifcombine (gcc::context *ctxt)
791 {
792 return new pass_tree_ifcombine (ctxt);
793 }