]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-loop-im.c
9aba79ba776944ec6fba8459354deabe8c126b75
[thirdparty/gcc.git] / gcc / tree-ssa-loop-im.c
1 /* Loop invariant motion.
2 Copyright (C) 2003-2015 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "tm.h"
24 #include "hash-set.h"
25 #include "machmode.h"
26 #include "vec.h"
27 #include "double-int.h"
28 #include "input.h"
29 #include "alias.h"
30 #include "symtab.h"
31 #include "wide-int.h"
32 #include "inchash.h"
33 #include "tree.h"
34 #include "fold-const.h"
35 #include "tm_p.h"
36 #include "predict.h"
37 #include "hard-reg-set.h"
38 #include "input.h"
39 #include "function.h"
40 #include "dominance.h"
41 #include "cfg.h"
42 #include "cfganal.h"
43 #include "basic-block.h"
44 #include "gimple-pretty-print.h"
45 #include "hash-map.h"
46 #include "hash-table.h"
47 #include "tree-ssa-alias.h"
48 #include "internal-fn.h"
49 #include "tree-eh.h"
50 #include "gimple-expr.h"
51 #include "is-a.h"
52 #include "gimple.h"
53 #include "gimplify.h"
54 #include "gimple-iterator.h"
55 #include "gimple-ssa.h"
56 #include "tree-cfg.h"
57 #include "tree-phinodes.h"
58 #include "ssa-iterators.h"
59 #include "stringpool.h"
60 #include "tree-ssanames.h"
61 #include "tree-ssa-loop-manip.h"
62 #include "tree-ssa-loop.h"
63 #include "tree-into-ssa.h"
64 #include "cfgloop.h"
65 #include "domwalk.h"
66 #include "params.h"
67 #include "tree-pass.h"
68 #include "flags.h"
69 #include "tree-affine.h"
70 #include "tree-ssa-propagate.h"
71 #include "trans-mem.h"
72 #include "gimple-fold.h"
73
74 /* TODO: Support for predicated code motion. I.e.
75
76 while (1)
77 {
78 if (cond)
79 {
80 a = inv;
81 something;
82 }
83 }
84
85 Where COND and INV are invariants, but evaluating INV may trap or be
86 invalid from some other reason if !COND. This may be transformed to
87
88 if (cond)
89 a = inv;
90 while (1)
91 {
92 if (cond)
93 something;
94 } */
95
96 /* The auxiliary data kept for each statement. */
97
98 struct lim_aux_data
99 {
100 struct loop *max_loop; /* The outermost loop in that the statement
101 is invariant. */
102
103 struct loop *tgt_loop; /* The loop out of that we want to move the
104 invariant. */
105
106 struct loop *always_executed_in;
107 /* The outermost loop for that we are sure
108 the statement is executed if the loop
109 is entered. */
110
111 unsigned cost; /* Cost of the computation performed by the
112 statement. */
113
114 vec<gimple> depends; /* Vector of statements that must be also
115 hoisted out of the loop when this statement
116 is hoisted; i.e. those that define the
117 operands of the statement and are inside of
118 the MAX_LOOP loop. */
119 };
120
121 /* Maps statements to their lim_aux_data. */
122
123 static hash_map<gimple, lim_aux_data *> *lim_aux_data_map;
124
125 /* Description of a memory reference location. */
126
127 typedef struct mem_ref_loc
128 {
129 tree *ref; /* The reference itself. */
130 gimple stmt; /* The statement in that it occurs. */
131 } *mem_ref_loc_p;
132
133
134 /* Description of a memory reference. */
135
136 typedef struct im_mem_ref
137 {
138 unsigned id; /* ID assigned to the memory reference
139 (its index in memory_accesses.refs_list) */
140 hashval_t hash; /* Its hash value. */
141
142 /* The memory access itself and associated caching of alias-oracle
143 query meta-data. */
144 ao_ref mem;
145
146 bitmap stored; /* The set of loops in that this memory location
147 is stored to. */
148 vec<mem_ref_loc> accesses_in_loop;
149 /* The locations of the accesses. Vector
150 indexed by the loop number. */
151
152 /* The following sets are computed on demand. We keep both set and
153 its complement, so that we know whether the information was
154 already computed or not. */
155 bitmap_head indep_loop; /* The set of loops in that the memory
156 reference is independent, meaning:
157 If it is stored in the loop, this store
158 is independent on all other loads and
159 stores.
160 If it is only loaded, then it is independent
161 on all stores in the loop. */
162 bitmap_head dep_loop; /* The complement of INDEP_LOOP. */
163 } *mem_ref_p;
164
165 /* We use two bits per loop in the ref->{in,}dep_loop bitmaps, the first
166 to record (in)dependence against stores in the loop and its subloops, the
167 second to record (in)dependence against all references in the loop
168 and its subloops. */
169 #define LOOP_DEP_BIT(loopnum, storedp) (2 * (loopnum) + (storedp ? 1 : 0))
170
171 /* Mem_ref hashtable helpers. */
172
173 struct mem_ref_hasher : typed_noop_remove <im_mem_ref>
174 {
175 typedef im_mem_ref value_type;
176 typedef tree_node compare_type;
177 static inline hashval_t hash (const value_type *);
178 static inline bool equal (const value_type *, const compare_type *);
179 };
180
181 /* A hash function for struct im_mem_ref object OBJ. */
182
183 inline hashval_t
184 mem_ref_hasher::hash (const value_type *mem)
185 {
186 return mem->hash;
187 }
188
189 /* An equality function for struct im_mem_ref object MEM1 with
190 memory reference OBJ2. */
191
192 inline bool
193 mem_ref_hasher::equal (const value_type *mem1, const compare_type *obj2)
194 {
195 return operand_equal_p (mem1->mem.ref, (const_tree) obj2, 0);
196 }
197
198
199 /* Description of memory accesses in loops. */
200
201 static struct
202 {
203 /* The hash table of memory references accessed in loops. */
204 hash_table<mem_ref_hasher> *refs;
205
206 /* The list of memory references. */
207 vec<mem_ref_p> refs_list;
208
209 /* The set of memory references accessed in each loop. */
210 vec<bitmap_head> refs_in_loop;
211
212 /* The set of memory references stored in each loop. */
213 vec<bitmap_head> refs_stored_in_loop;
214
215 /* The set of memory references stored in each loop, including subloops . */
216 vec<bitmap_head> all_refs_stored_in_loop;
217
218 /* Cache for expanding memory addresses. */
219 hash_map<tree, name_expansion *> *ttae_cache;
220 } memory_accesses;
221
222 /* Obstack for the bitmaps in the above data structures. */
223 static bitmap_obstack lim_bitmap_obstack;
224 static obstack mem_ref_obstack;
225
226 static bool ref_indep_loop_p (struct loop *, mem_ref_p);
227
228 /* Minimum cost of an expensive expression. */
229 #define LIM_EXPENSIVE ((unsigned) PARAM_VALUE (PARAM_LIM_EXPENSIVE))
230
231 /* The outermost loop for which execution of the header guarantees that the
232 block will be executed. */
233 #define ALWAYS_EXECUTED_IN(BB) ((struct loop *) (BB)->aux)
234 #define SET_ALWAYS_EXECUTED_IN(BB, VAL) ((BB)->aux = (void *) (VAL))
235
236 /* ID of the shared unanalyzable mem. */
237 #define UNANALYZABLE_MEM_ID 0
238
239 /* Whether the reference was analyzable. */
240 #define MEM_ANALYZABLE(REF) ((REF)->id != UNANALYZABLE_MEM_ID)
241
242 static struct lim_aux_data *
243 init_lim_data (gimple stmt)
244 {
245 lim_aux_data *p = XCNEW (struct lim_aux_data);
246 lim_aux_data_map->put (stmt, p);
247
248 return p;
249 }
250
251 static struct lim_aux_data *
252 get_lim_data (gimple stmt)
253 {
254 lim_aux_data **p = lim_aux_data_map->get (stmt);
255 if (!p)
256 return NULL;
257
258 return *p;
259 }
260
261 /* Releases the memory occupied by DATA. */
262
263 static void
264 free_lim_aux_data (struct lim_aux_data *data)
265 {
266 data->depends.release ();
267 free (data);
268 }
269
270 static void
271 clear_lim_data (gimple stmt)
272 {
273 lim_aux_data **p = lim_aux_data_map->get (stmt);
274 if (!p)
275 return;
276
277 free_lim_aux_data (*p);
278 *p = NULL;
279 }
280
281
282 /* The possibilities of statement movement. */
283 enum move_pos
284 {
285 MOVE_IMPOSSIBLE, /* No movement -- side effect expression. */
286 MOVE_PRESERVE_EXECUTION, /* Must not cause the non-executed statement
287 become executed -- memory accesses, ... */
288 MOVE_POSSIBLE /* Unlimited movement. */
289 };
290
291
292 /* If it is possible to hoist the statement STMT unconditionally,
293 returns MOVE_POSSIBLE.
294 If it is possible to hoist the statement STMT, but we must avoid making
295 it executed if it would not be executed in the original program (e.g.
296 because it may trap), return MOVE_PRESERVE_EXECUTION.
297 Otherwise return MOVE_IMPOSSIBLE. */
298
299 enum move_pos
300 movement_possibility (gimple stmt)
301 {
302 tree lhs;
303 enum move_pos ret = MOVE_POSSIBLE;
304
305 if (flag_unswitch_loops
306 && gimple_code (stmt) == GIMPLE_COND)
307 {
308 /* If we perform unswitching, force the operands of the invariant
309 condition to be moved out of the loop. */
310 return MOVE_POSSIBLE;
311 }
312
313 if (gimple_code (stmt) == GIMPLE_PHI
314 && gimple_phi_num_args (stmt) <= 2
315 && !virtual_operand_p (gimple_phi_result (stmt))
316 && !SSA_NAME_OCCURS_IN_ABNORMAL_PHI (gimple_phi_result (stmt)))
317 return MOVE_POSSIBLE;
318
319 if (gimple_get_lhs (stmt) == NULL_TREE)
320 return MOVE_IMPOSSIBLE;
321
322 if (gimple_vdef (stmt))
323 return MOVE_IMPOSSIBLE;
324
325 if (stmt_ends_bb_p (stmt)
326 || gimple_has_volatile_ops (stmt)
327 || gimple_has_side_effects (stmt)
328 || stmt_could_throw_p (stmt))
329 return MOVE_IMPOSSIBLE;
330
331 if (is_gimple_call (stmt))
332 {
333 /* While pure or const call is guaranteed to have no side effects, we
334 cannot move it arbitrarily. Consider code like
335
336 char *s = something ();
337
338 while (1)
339 {
340 if (s)
341 t = strlen (s);
342 else
343 t = 0;
344 }
345
346 Here the strlen call cannot be moved out of the loop, even though
347 s is invariant. In addition to possibly creating a call with
348 invalid arguments, moving out a function call that is not executed
349 may cause performance regressions in case the call is costly and
350 not executed at all. */
351 ret = MOVE_PRESERVE_EXECUTION;
352 lhs = gimple_call_lhs (stmt);
353 }
354 else if (is_gimple_assign (stmt))
355 lhs = gimple_assign_lhs (stmt);
356 else
357 return MOVE_IMPOSSIBLE;
358
359 if (TREE_CODE (lhs) == SSA_NAME
360 && SSA_NAME_OCCURS_IN_ABNORMAL_PHI (lhs))
361 return MOVE_IMPOSSIBLE;
362
363 if (TREE_CODE (lhs) != SSA_NAME
364 || gimple_could_trap_p (stmt))
365 return MOVE_PRESERVE_EXECUTION;
366
367 /* Non local loads in a transaction cannot be hoisted out. Well,
368 unless the load happens on every path out of the loop, but we
369 don't take this into account yet. */
370 if (flag_tm
371 && gimple_in_transaction (stmt)
372 && gimple_assign_single_p (stmt))
373 {
374 tree rhs = gimple_assign_rhs1 (stmt);
375 if (DECL_P (rhs) && is_global_var (rhs))
376 {
377 if (dump_file)
378 {
379 fprintf (dump_file, "Cannot hoist conditional load of ");
380 print_generic_expr (dump_file, rhs, TDF_SLIM);
381 fprintf (dump_file, " because it is in a transaction.\n");
382 }
383 return MOVE_IMPOSSIBLE;
384 }
385 }
386
387 return ret;
388 }
389
390 /* Suppose that operand DEF is used inside the LOOP. Returns the outermost
391 loop to that we could move the expression using DEF if it did not have
392 other operands, i.e. the outermost loop enclosing LOOP in that the value
393 of DEF is invariant. */
394
395 static struct loop *
396 outermost_invariant_loop (tree def, struct loop *loop)
397 {
398 gimple def_stmt;
399 basic_block def_bb;
400 struct loop *max_loop;
401 struct lim_aux_data *lim_data;
402
403 if (!def)
404 return superloop_at_depth (loop, 1);
405
406 if (TREE_CODE (def) != SSA_NAME)
407 {
408 gcc_assert (is_gimple_min_invariant (def));
409 return superloop_at_depth (loop, 1);
410 }
411
412 def_stmt = SSA_NAME_DEF_STMT (def);
413 def_bb = gimple_bb (def_stmt);
414 if (!def_bb)
415 return superloop_at_depth (loop, 1);
416
417 max_loop = find_common_loop (loop, def_bb->loop_father);
418
419 lim_data = get_lim_data (def_stmt);
420 if (lim_data != NULL && lim_data->max_loop != NULL)
421 max_loop = find_common_loop (max_loop,
422 loop_outer (lim_data->max_loop));
423 if (max_loop == loop)
424 return NULL;
425 max_loop = superloop_at_depth (loop, loop_depth (max_loop) + 1);
426
427 return max_loop;
428 }
429
430 /* DATA is a structure containing information associated with a statement
431 inside LOOP. DEF is one of the operands of this statement.
432
433 Find the outermost loop enclosing LOOP in that value of DEF is invariant
434 and record this in DATA->max_loop field. If DEF itself is defined inside
435 this loop as well (i.e. we need to hoist it out of the loop if we want
436 to hoist the statement represented by DATA), record the statement in that
437 DEF is defined to the DATA->depends list. Additionally if ADD_COST is true,
438 add the cost of the computation of DEF to the DATA->cost.
439
440 If DEF is not invariant in LOOP, return false. Otherwise return TRUE. */
441
442 static bool
443 add_dependency (tree def, struct lim_aux_data *data, struct loop *loop,
444 bool add_cost)
445 {
446 gimple def_stmt = SSA_NAME_DEF_STMT (def);
447 basic_block def_bb = gimple_bb (def_stmt);
448 struct loop *max_loop;
449 struct lim_aux_data *def_data;
450
451 if (!def_bb)
452 return true;
453
454 max_loop = outermost_invariant_loop (def, loop);
455 if (!max_loop)
456 return false;
457
458 if (flow_loop_nested_p (data->max_loop, max_loop))
459 data->max_loop = max_loop;
460
461 def_data = get_lim_data (def_stmt);
462 if (!def_data)
463 return true;
464
465 if (add_cost
466 /* Only add the cost if the statement defining DEF is inside LOOP,
467 i.e. if it is likely that by moving the invariants dependent
468 on it, we will be able to avoid creating a new register for
469 it (since it will be only used in these dependent invariants). */
470 && def_bb->loop_father == loop)
471 data->cost += def_data->cost;
472
473 data->depends.safe_push (def_stmt);
474
475 return true;
476 }
477
478 /* Returns an estimate for a cost of statement STMT. The values here
479 are just ad-hoc constants, similar to costs for inlining. */
480
481 static unsigned
482 stmt_cost (gimple stmt)
483 {
484 /* Always try to create possibilities for unswitching. */
485 if (gimple_code (stmt) == GIMPLE_COND
486 || gimple_code (stmt) == GIMPLE_PHI)
487 return LIM_EXPENSIVE;
488
489 /* We should be hoisting calls if possible. */
490 if (is_gimple_call (stmt))
491 {
492 tree fndecl;
493
494 /* Unless the call is a builtin_constant_p; this always folds to a
495 constant, so moving it is useless. */
496 fndecl = gimple_call_fndecl (stmt);
497 if (fndecl
498 && DECL_BUILT_IN_CLASS (fndecl) == BUILT_IN_NORMAL
499 && DECL_FUNCTION_CODE (fndecl) == BUILT_IN_CONSTANT_P)
500 return 0;
501
502 return LIM_EXPENSIVE;
503 }
504
505 /* Hoisting memory references out should almost surely be a win. */
506 if (gimple_references_memory_p (stmt))
507 return LIM_EXPENSIVE;
508
509 if (gimple_code (stmt) != GIMPLE_ASSIGN)
510 return 1;
511
512 switch (gimple_assign_rhs_code (stmt))
513 {
514 case MULT_EXPR:
515 case WIDEN_MULT_EXPR:
516 case WIDEN_MULT_PLUS_EXPR:
517 case WIDEN_MULT_MINUS_EXPR:
518 case DOT_PROD_EXPR:
519 case FMA_EXPR:
520 case TRUNC_DIV_EXPR:
521 case CEIL_DIV_EXPR:
522 case FLOOR_DIV_EXPR:
523 case ROUND_DIV_EXPR:
524 case EXACT_DIV_EXPR:
525 case CEIL_MOD_EXPR:
526 case FLOOR_MOD_EXPR:
527 case ROUND_MOD_EXPR:
528 case TRUNC_MOD_EXPR:
529 case RDIV_EXPR:
530 /* Division and multiplication are usually expensive. */
531 return LIM_EXPENSIVE;
532
533 case LSHIFT_EXPR:
534 case RSHIFT_EXPR:
535 case WIDEN_LSHIFT_EXPR:
536 case LROTATE_EXPR:
537 case RROTATE_EXPR:
538 /* Shifts and rotates are usually expensive. */
539 return LIM_EXPENSIVE;
540
541 case CONSTRUCTOR:
542 /* Make vector construction cost proportional to the number
543 of elements. */
544 return CONSTRUCTOR_NELTS (gimple_assign_rhs1 (stmt));
545
546 case SSA_NAME:
547 case PAREN_EXPR:
548 /* Whether or not something is wrapped inside a PAREN_EXPR
549 should not change move cost. Nor should an intermediate
550 unpropagated SSA name copy. */
551 return 0;
552
553 default:
554 return 1;
555 }
556 }
557
558 /* Finds the outermost loop between OUTER and LOOP in that the memory reference
559 REF is independent. If REF is not independent in LOOP, NULL is returned
560 instead. */
561
562 static struct loop *
563 outermost_indep_loop (struct loop *outer, struct loop *loop, mem_ref_p ref)
564 {
565 struct loop *aloop;
566
567 if (ref->stored && bitmap_bit_p (ref->stored, loop->num))
568 return NULL;
569
570 for (aloop = outer;
571 aloop != loop;
572 aloop = superloop_at_depth (loop, loop_depth (aloop) + 1))
573 if ((!ref->stored || !bitmap_bit_p (ref->stored, aloop->num))
574 && ref_indep_loop_p (aloop, ref))
575 return aloop;
576
577 if (ref_indep_loop_p (loop, ref))
578 return loop;
579 else
580 return NULL;
581 }
582
583 /* If there is a simple load or store to a memory reference in STMT, returns
584 the location of the memory reference, and sets IS_STORE according to whether
585 it is a store or load. Otherwise, returns NULL. */
586
587 static tree *
588 simple_mem_ref_in_stmt (gimple stmt, bool *is_store)
589 {
590 tree *lhs, *rhs;
591
592 /* Recognize SSA_NAME = MEM and MEM = (SSA_NAME | invariant) patterns. */
593 if (!gimple_assign_single_p (stmt))
594 return NULL;
595
596 lhs = gimple_assign_lhs_ptr (stmt);
597 rhs = gimple_assign_rhs1_ptr (stmt);
598
599 if (TREE_CODE (*lhs) == SSA_NAME && gimple_vuse (stmt))
600 {
601 *is_store = false;
602 return rhs;
603 }
604 else if (gimple_vdef (stmt)
605 && (TREE_CODE (*rhs) == SSA_NAME || is_gimple_min_invariant (*rhs)))
606 {
607 *is_store = true;
608 return lhs;
609 }
610 else
611 return NULL;
612 }
613
614 /* Returns the memory reference contained in STMT. */
615
616 static mem_ref_p
617 mem_ref_in_stmt (gimple stmt)
618 {
619 bool store;
620 tree *mem = simple_mem_ref_in_stmt (stmt, &store);
621 hashval_t hash;
622 mem_ref_p ref;
623
624 if (!mem)
625 return NULL;
626 gcc_assert (!store);
627
628 hash = iterative_hash_expr (*mem, 0);
629 ref = memory_accesses.refs->find_with_hash (*mem, hash);
630
631 gcc_assert (ref != NULL);
632 return ref;
633 }
634
635 /* From a controlling predicate in DOM determine the arguments from
636 the PHI node PHI that are chosen if the predicate evaluates to
637 true and false and store them to *TRUE_ARG_P and *FALSE_ARG_P if
638 they are non-NULL. Returns true if the arguments can be determined,
639 else return false. */
640
641 static bool
642 extract_true_false_args_from_phi (basic_block dom, gphi *phi,
643 tree *true_arg_p, tree *false_arg_p)
644 {
645 basic_block bb = gimple_bb (phi);
646 edge true_edge, false_edge, tem;
647 tree arg0 = NULL_TREE, arg1 = NULL_TREE;
648
649 /* We have to verify that one edge into the PHI node is dominated
650 by the true edge of the predicate block and the other edge
651 dominated by the false edge. This ensures that the PHI argument
652 we are going to take is completely determined by the path we
653 take from the predicate block.
654 We can only use BB dominance checks below if the destination of
655 the true/false edges are dominated by their edge, thus only
656 have a single predecessor. */
657 extract_true_false_edges_from_block (dom, &true_edge, &false_edge);
658 tem = EDGE_PRED (bb, 0);
659 if (tem == true_edge
660 || (single_pred_p (true_edge->dest)
661 && (tem->src == true_edge->dest
662 || dominated_by_p (CDI_DOMINATORS,
663 tem->src, true_edge->dest))))
664 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
665 else if (tem == false_edge
666 || (single_pred_p (false_edge->dest)
667 && (tem->src == false_edge->dest
668 || dominated_by_p (CDI_DOMINATORS,
669 tem->src, false_edge->dest))))
670 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
671 else
672 return false;
673 tem = EDGE_PRED (bb, 1);
674 if (tem == true_edge
675 || (single_pred_p (true_edge->dest)
676 && (tem->src == true_edge->dest
677 || dominated_by_p (CDI_DOMINATORS,
678 tem->src, true_edge->dest))))
679 arg0 = PHI_ARG_DEF (phi, tem->dest_idx);
680 else if (tem == false_edge
681 || (single_pred_p (false_edge->dest)
682 && (tem->src == false_edge->dest
683 || dominated_by_p (CDI_DOMINATORS,
684 tem->src, false_edge->dest))))
685 arg1 = PHI_ARG_DEF (phi, tem->dest_idx);
686 else
687 return false;
688 if (!arg0 || !arg1)
689 return false;
690
691 if (true_arg_p)
692 *true_arg_p = arg0;
693 if (false_arg_p)
694 *false_arg_p = arg1;
695
696 return true;
697 }
698
699 /* Determine the outermost loop to that it is possible to hoist a statement
700 STMT and store it to LIM_DATA (STMT)->max_loop. To do this we determine
701 the outermost loop in that the value computed by STMT is invariant.
702 If MUST_PRESERVE_EXEC is true, additionally choose such a loop that
703 we preserve the fact whether STMT is executed. It also fills other related
704 information to LIM_DATA (STMT).
705
706 The function returns false if STMT cannot be hoisted outside of the loop it
707 is defined in, and true otherwise. */
708
709 static bool
710 determine_max_movement (gimple stmt, bool must_preserve_exec)
711 {
712 basic_block bb = gimple_bb (stmt);
713 struct loop *loop = bb->loop_father;
714 struct loop *level;
715 struct lim_aux_data *lim_data = get_lim_data (stmt);
716 tree val;
717 ssa_op_iter iter;
718
719 if (must_preserve_exec)
720 level = ALWAYS_EXECUTED_IN (bb);
721 else
722 level = superloop_at_depth (loop, 1);
723 lim_data->max_loop = level;
724
725 if (gphi *phi = dyn_cast <gphi *> (stmt))
726 {
727 use_operand_p use_p;
728 unsigned min_cost = UINT_MAX;
729 unsigned total_cost = 0;
730 struct lim_aux_data *def_data;
731
732 /* We will end up promoting dependencies to be unconditionally
733 evaluated. For this reason the PHI cost (and thus the
734 cost we remove from the loop by doing the invariant motion)
735 is that of the cheapest PHI argument dependency chain. */
736 FOR_EACH_PHI_ARG (use_p, phi, iter, SSA_OP_USE)
737 {
738 val = USE_FROM_PTR (use_p);
739
740 if (TREE_CODE (val) != SSA_NAME)
741 {
742 /* Assign const 1 to constants. */
743 min_cost = MIN (min_cost, 1);
744 total_cost += 1;
745 continue;
746 }
747 if (!add_dependency (val, lim_data, loop, false))
748 return false;
749
750 gimple def_stmt = SSA_NAME_DEF_STMT (val);
751 if (gimple_bb (def_stmt)
752 && gimple_bb (def_stmt)->loop_father == loop)
753 {
754 def_data = get_lim_data (def_stmt);
755 if (def_data)
756 {
757 min_cost = MIN (min_cost, def_data->cost);
758 total_cost += def_data->cost;
759 }
760 }
761 }
762
763 min_cost = MIN (min_cost, total_cost);
764 lim_data->cost += min_cost;
765
766 if (gimple_phi_num_args (phi) > 1)
767 {
768 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
769 gimple cond;
770 if (gsi_end_p (gsi_last_bb (dom)))
771 return false;
772 cond = gsi_stmt (gsi_last_bb (dom));
773 if (gimple_code (cond) != GIMPLE_COND)
774 return false;
775 /* Verify that this is an extended form of a diamond and
776 the PHI arguments are completely controlled by the
777 predicate in DOM. */
778 if (!extract_true_false_args_from_phi (dom, phi, NULL, NULL))
779 return false;
780
781 /* Fold in dependencies and cost of the condition. */
782 FOR_EACH_SSA_TREE_OPERAND (val, cond, iter, SSA_OP_USE)
783 {
784 if (!add_dependency (val, lim_data, loop, false))
785 return false;
786 def_data = get_lim_data (SSA_NAME_DEF_STMT (val));
787 if (def_data)
788 total_cost += def_data->cost;
789 }
790
791 /* We want to avoid unconditionally executing very expensive
792 operations. As costs for our dependencies cannot be
793 negative just claim we are not invariand for this case.
794 We also are not sure whether the control-flow inside the
795 loop will vanish. */
796 if (total_cost - min_cost >= 2 * LIM_EXPENSIVE
797 && !(min_cost != 0
798 && total_cost / min_cost <= 2))
799 return false;
800
801 /* Assume that the control-flow in the loop will vanish.
802 ??? We should verify this and not artificially increase
803 the cost if that is not the case. */
804 lim_data->cost += stmt_cost (stmt);
805 }
806
807 return true;
808 }
809 else
810 FOR_EACH_SSA_TREE_OPERAND (val, stmt, iter, SSA_OP_USE)
811 if (!add_dependency (val, lim_data, loop, true))
812 return false;
813
814 if (gimple_vuse (stmt))
815 {
816 mem_ref_p ref = mem_ref_in_stmt (stmt);
817
818 if (ref)
819 {
820 lim_data->max_loop
821 = outermost_indep_loop (lim_data->max_loop, loop, ref);
822 if (!lim_data->max_loop)
823 return false;
824 }
825 else
826 {
827 if ((val = gimple_vuse (stmt)) != NULL_TREE)
828 {
829 if (!add_dependency (val, lim_data, loop, false))
830 return false;
831 }
832 }
833 }
834
835 lim_data->cost += stmt_cost (stmt);
836
837 return true;
838 }
839
840 /* Suppose that some statement in ORIG_LOOP is hoisted to the loop LEVEL,
841 and that one of the operands of this statement is computed by STMT.
842 Ensure that STMT (together with all the statements that define its
843 operands) is hoisted at least out of the loop LEVEL. */
844
845 static void
846 set_level (gimple stmt, struct loop *orig_loop, struct loop *level)
847 {
848 struct loop *stmt_loop = gimple_bb (stmt)->loop_father;
849 struct lim_aux_data *lim_data;
850 gimple dep_stmt;
851 unsigned i;
852
853 stmt_loop = find_common_loop (orig_loop, stmt_loop);
854 lim_data = get_lim_data (stmt);
855 if (lim_data != NULL && lim_data->tgt_loop != NULL)
856 stmt_loop = find_common_loop (stmt_loop,
857 loop_outer (lim_data->tgt_loop));
858 if (flow_loop_nested_p (stmt_loop, level))
859 return;
860
861 gcc_assert (level == lim_data->max_loop
862 || flow_loop_nested_p (lim_data->max_loop, level));
863
864 lim_data->tgt_loop = level;
865 FOR_EACH_VEC_ELT (lim_data->depends, i, dep_stmt)
866 set_level (dep_stmt, orig_loop, level);
867 }
868
869 /* Determines an outermost loop from that we want to hoist the statement STMT.
870 For now we chose the outermost possible loop. TODO -- use profiling
871 information to set it more sanely. */
872
873 static void
874 set_profitable_level (gimple stmt)
875 {
876 set_level (stmt, gimple_bb (stmt)->loop_father, get_lim_data (stmt)->max_loop);
877 }
878
879 /* Returns true if STMT is a call that has side effects. */
880
881 static bool
882 nonpure_call_p (gimple stmt)
883 {
884 if (gimple_code (stmt) != GIMPLE_CALL)
885 return false;
886
887 return gimple_has_side_effects (stmt);
888 }
889
890 /* Rewrite a/b to a*(1/b). Return the invariant stmt to process. */
891
892 static gimple
893 rewrite_reciprocal (gimple_stmt_iterator *bsi)
894 {
895 gassign *stmt, *stmt1, *stmt2;
896 tree name, lhs, type;
897 tree real_one;
898 gimple_stmt_iterator gsi;
899
900 stmt = as_a <gassign *> (gsi_stmt (*bsi));
901 lhs = gimple_assign_lhs (stmt);
902 type = TREE_TYPE (lhs);
903
904 real_one = build_one_cst (type);
905
906 name = make_temp_ssa_name (type, NULL, "reciptmp");
907 stmt1 = gimple_build_assign (name, RDIV_EXPR, real_one,
908 gimple_assign_rhs2 (stmt));
909 stmt2 = gimple_build_assign (lhs, MULT_EXPR, name,
910 gimple_assign_rhs1 (stmt));
911
912 /* Replace division stmt with reciprocal and multiply stmts.
913 The multiply stmt is not invariant, so update iterator
914 and avoid rescanning. */
915 gsi = *bsi;
916 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
917 gsi_replace (&gsi, stmt2, true);
918
919 /* Continue processing with invariant reciprocal statement. */
920 return stmt1;
921 }
922
923 /* Check if the pattern at *BSI is a bittest of the form
924 (A >> B) & 1 != 0 and in this case rewrite it to A & (1 << B) != 0. */
925
926 static gimple
927 rewrite_bittest (gimple_stmt_iterator *bsi)
928 {
929 gassign *stmt;
930 gimple stmt1;
931 gassign *stmt2;
932 gimple use_stmt;
933 gcond *cond_stmt;
934 tree lhs, name, t, a, b;
935 use_operand_p use;
936
937 stmt = as_a <gassign *> (gsi_stmt (*bsi));
938 lhs = gimple_assign_lhs (stmt);
939
940 /* Verify that the single use of lhs is a comparison against zero. */
941 if (TREE_CODE (lhs) != SSA_NAME
942 || !single_imm_use (lhs, &use, &use_stmt))
943 return stmt;
944 cond_stmt = dyn_cast <gcond *> (use_stmt);
945 if (!cond_stmt)
946 return stmt;
947 if (gimple_cond_lhs (cond_stmt) != lhs
948 || (gimple_cond_code (cond_stmt) != NE_EXPR
949 && gimple_cond_code (cond_stmt) != EQ_EXPR)
950 || !integer_zerop (gimple_cond_rhs (cond_stmt)))
951 return stmt;
952
953 /* Get at the operands of the shift. The rhs is TMP1 & 1. */
954 stmt1 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
955 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
956 return stmt;
957
958 /* There is a conversion in between possibly inserted by fold. */
959 if (CONVERT_EXPR_CODE_P (gimple_assign_rhs_code (stmt1)))
960 {
961 t = gimple_assign_rhs1 (stmt1);
962 if (TREE_CODE (t) != SSA_NAME
963 || !has_single_use (t))
964 return stmt;
965 stmt1 = SSA_NAME_DEF_STMT (t);
966 if (gimple_code (stmt1) != GIMPLE_ASSIGN)
967 return stmt;
968 }
969
970 /* Verify that B is loop invariant but A is not. Verify that with
971 all the stmt walking we are still in the same loop. */
972 if (gimple_assign_rhs_code (stmt1) != RSHIFT_EXPR
973 || loop_containing_stmt (stmt1) != loop_containing_stmt (stmt))
974 return stmt;
975
976 a = gimple_assign_rhs1 (stmt1);
977 b = gimple_assign_rhs2 (stmt1);
978
979 if (outermost_invariant_loop (b, loop_containing_stmt (stmt1)) != NULL
980 && outermost_invariant_loop (a, loop_containing_stmt (stmt1)) == NULL)
981 {
982 gimple_stmt_iterator rsi;
983
984 /* 1 << B */
985 t = fold_build2 (LSHIFT_EXPR, TREE_TYPE (a),
986 build_int_cst (TREE_TYPE (a), 1), b);
987 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
988 stmt1 = gimple_build_assign (name, t);
989
990 /* A & (1 << B) */
991 t = fold_build2 (BIT_AND_EXPR, TREE_TYPE (a), a, name);
992 name = make_temp_ssa_name (TREE_TYPE (a), NULL, "shifttmp");
993 stmt2 = gimple_build_assign (name, t);
994
995 /* Replace the SSA_NAME we compare against zero. Adjust
996 the type of zero accordingly. */
997 SET_USE (use, name);
998 gimple_cond_set_rhs (cond_stmt,
999 build_int_cst_type (TREE_TYPE (name),
1000 0));
1001
1002 /* Don't use gsi_replace here, none of the new assignments sets
1003 the variable originally set in stmt. Move bsi to stmt1, and
1004 then remove the original stmt, so that we get a chance to
1005 retain debug info for it. */
1006 rsi = *bsi;
1007 gsi_insert_before (bsi, stmt1, GSI_NEW_STMT);
1008 gsi_insert_before (&rsi, stmt2, GSI_SAME_STMT);
1009 gsi_remove (&rsi, true);
1010
1011 return stmt1;
1012 }
1013
1014 return stmt;
1015 }
1016
1017 /* For each statement determines the outermost loop in that it is invariant,
1018 - statements on whose motion it depends and the cost of the computation.
1019 - This information is stored to the LIM_DATA structure associated with
1020 - each statement. */
1021 class invariantness_dom_walker : public dom_walker
1022 {
1023 public:
1024 invariantness_dom_walker (cdi_direction direction)
1025 : dom_walker (direction) {}
1026
1027 virtual void before_dom_children (basic_block);
1028 };
1029
1030 /* Determine the outermost loops in that statements in basic block BB are
1031 invariant, and record them to the LIM_DATA associated with the statements.
1032 Callback for dom_walker. */
1033
1034 void
1035 invariantness_dom_walker::before_dom_children (basic_block bb)
1036 {
1037 enum move_pos pos;
1038 gimple_stmt_iterator bsi;
1039 gimple stmt;
1040 bool maybe_never = ALWAYS_EXECUTED_IN (bb) == NULL;
1041 struct loop *outermost = ALWAYS_EXECUTED_IN (bb);
1042 struct lim_aux_data *lim_data;
1043
1044 if (!loop_outer (bb->loop_father))
1045 return;
1046
1047 if (dump_file && (dump_flags & TDF_DETAILS))
1048 fprintf (dump_file, "Basic block %d (loop %d -- depth %d):\n\n",
1049 bb->index, bb->loop_father->num, loop_depth (bb->loop_father));
1050
1051 /* Look at PHI nodes, but only if there is at most two.
1052 ??? We could relax this further by post-processing the inserted
1053 code and transforming adjacent cond-exprs with the same predicate
1054 to control flow again. */
1055 bsi = gsi_start_phis (bb);
1056 if (!gsi_end_p (bsi)
1057 && ((gsi_next (&bsi), gsi_end_p (bsi))
1058 || (gsi_next (&bsi), gsi_end_p (bsi))))
1059 for (bsi = gsi_start_phis (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1060 {
1061 stmt = gsi_stmt (bsi);
1062
1063 pos = movement_possibility (stmt);
1064 if (pos == MOVE_IMPOSSIBLE)
1065 continue;
1066
1067 lim_data = init_lim_data (stmt);
1068 lim_data->always_executed_in = outermost;
1069
1070 if (!determine_max_movement (stmt, false))
1071 {
1072 lim_data->max_loop = NULL;
1073 continue;
1074 }
1075
1076 if (dump_file && (dump_flags & TDF_DETAILS))
1077 {
1078 print_gimple_stmt (dump_file, stmt, 2, 0);
1079 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1080 loop_depth (lim_data->max_loop),
1081 lim_data->cost);
1082 }
1083
1084 if (lim_data->cost >= LIM_EXPENSIVE)
1085 set_profitable_level (stmt);
1086 }
1087
1088 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1089 {
1090 stmt = gsi_stmt (bsi);
1091
1092 pos = movement_possibility (stmt);
1093 if (pos == MOVE_IMPOSSIBLE)
1094 {
1095 if (nonpure_call_p (stmt))
1096 {
1097 maybe_never = true;
1098 outermost = NULL;
1099 }
1100 /* Make sure to note always_executed_in for stores to make
1101 store-motion work. */
1102 else if (stmt_makes_single_store (stmt))
1103 {
1104 struct lim_aux_data *lim_data = init_lim_data (stmt);
1105 lim_data->always_executed_in = outermost;
1106 }
1107 continue;
1108 }
1109
1110 if (is_gimple_assign (stmt)
1111 && (get_gimple_rhs_class (gimple_assign_rhs_code (stmt))
1112 == GIMPLE_BINARY_RHS))
1113 {
1114 tree op0 = gimple_assign_rhs1 (stmt);
1115 tree op1 = gimple_assign_rhs2 (stmt);
1116 struct loop *ol1 = outermost_invariant_loop (op1,
1117 loop_containing_stmt (stmt));
1118
1119 /* If divisor is invariant, convert a/b to a*(1/b), allowing reciprocal
1120 to be hoisted out of loop, saving expensive divide. */
1121 if (pos == MOVE_POSSIBLE
1122 && gimple_assign_rhs_code (stmt) == RDIV_EXPR
1123 && flag_unsafe_math_optimizations
1124 && !flag_trapping_math
1125 && ol1 != NULL
1126 && outermost_invariant_loop (op0, ol1) == NULL)
1127 stmt = rewrite_reciprocal (&bsi);
1128
1129 /* If the shift count is invariant, convert (A >> B) & 1 to
1130 A & (1 << B) allowing the bit mask to be hoisted out of the loop
1131 saving an expensive shift. */
1132 if (pos == MOVE_POSSIBLE
1133 && gimple_assign_rhs_code (stmt) == BIT_AND_EXPR
1134 && integer_onep (op1)
1135 && TREE_CODE (op0) == SSA_NAME
1136 && has_single_use (op0))
1137 stmt = rewrite_bittest (&bsi);
1138 }
1139
1140 lim_data = init_lim_data (stmt);
1141 lim_data->always_executed_in = outermost;
1142
1143 if (maybe_never && pos == MOVE_PRESERVE_EXECUTION)
1144 continue;
1145
1146 if (!determine_max_movement (stmt, pos == MOVE_PRESERVE_EXECUTION))
1147 {
1148 lim_data->max_loop = NULL;
1149 continue;
1150 }
1151
1152 if (dump_file && (dump_flags & TDF_DETAILS))
1153 {
1154 print_gimple_stmt (dump_file, stmt, 2, 0);
1155 fprintf (dump_file, " invariant up to level %d, cost %d.\n\n",
1156 loop_depth (lim_data->max_loop),
1157 lim_data->cost);
1158 }
1159
1160 if (lim_data->cost >= LIM_EXPENSIVE)
1161 set_profitable_level (stmt);
1162 }
1163 }
1164
1165 class move_computations_dom_walker : public dom_walker
1166 {
1167 public:
1168 move_computations_dom_walker (cdi_direction direction)
1169 : dom_walker (direction), todo_ (0) {}
1170
1171 virtual void before_dom_children (basic_block);
1172
1173 unsigned int todo_;
1174 };
1175
1176 /* Hoist the statements in basic block BB out of the loops prescribed by
1177 data stored in LIM_DATA structures associated with each statement. Callback
1178 for walk_dominator_tree. */
1179
1180 void
1181 move_computations_dom_walker::before_dom_children (basic_block bb)
1182 {
1183 struct loop *level;
1184 unsigned cost = 0;
1185 struct lim_aux_data *lim_data;
1186
1187 if (!loop_outer (bb->loop_father))
1188 return;
1189
1190 for (gphi_iterator bsi = gsi_start_phis (bb); !gsi_end_p (bsi); )
1191 {
1192 gassign *new_stmt;
1193 gphi *stmt = bsi.phi ();
1194
1195 lim_data = get_lim_data (stmt);
1196 if (lim_data == NULL)
1197 {
1198 gsi_next (&bsi);
1199 continue;
1200 }
1201
1202 cost = lim_data->cost;
1203 level = lim_data->tgt_loop;
1204 clear_lim_data (stmt);
1205
1206 if (!level)
1207 {
1208 gsi_next (&bsi);
1209 continue;
1210 }
1211
1212 if (dump_file && (dump_flags & TDF_DETAILS))
1213 {
1214 fprintf (dump_file, "Moving PHI node\n");
1215 print_gimple_stmt (dump_file, stmt, 0, 0);
1216 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1217 cost, level->num);
1218 }
1219
1220 if (gimple_phi_num_args (stmt) == 1)
1221 {
1222 tree arg = PHI_ARG_DEF (stmt, 0);
1223 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1224 TREE_CODE (arg), arg);
1225 }
1226 else
1227 {
1228 basic_block dom = get_immediate_dominator (CDI_DOMINATORS, bb);
1229 gimple cond = gsi_stmt (gsi_last_bb (dom));
1230 tree arg0 = NULL_TREE, arg1 = NULL_TREE, t;
1231 /* Get the PHI arguments corresponding to the true and false
1232 edges of COND. */
1233 extract_true_false_args_from_phi (dom, stmt, &arg0, &arg1);
1234 gcc_assert (arg0 && arg1);
1235 t = build2 (gimple_cond_code (cond), boolean_type_node,
1236 gimple_cond_lhs (cond), gimple_cond_rhs (cond));
1237 new_stmt = gimple_build_assign (gimple_phi_result (stmt),
1238 COND_EXPR, t, arg0, arg1);
1239 todo_ |= TODO_cleanup_cfg;
1240 }
1241 if (INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (new_stmt)))
1242 && (!ALWAYS_EXECUTED_IN (bb)
1243 || (ALWAYS_EXECUTED_IN (bb) != level
1244 && !flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1245 {
1246 tree lhs = gimple_assign_lhs (new_stmt);
1247 SSA_NAME_RANGE_INFO (lhs) = NULL;
1248 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
1249 }
1250 gsi_insert_on_edge (loop_preheader_edge (level), new_stmt);
1251 remove_phi_node (&bsi, false);
1252 }
1253
1254 for (gimple_stmt_iterator bsi = gsi_start_bb (bb); !gsi_end_p (bsi); )
1255 {
1256 edge e;
1257
1258 gimple stmt = gsi_stmt (bsi);
1259
1260 lim_data = get_lim_data (stmt);
1261 if (lim_data == NULL)
1262 {
1263 gsi_next (&bsi);
1264 continue;
1265 }
1266
1267 cost = lim_data->cost;
1268 level = lim_data->tgt_loop;
1269 clear_lim_data (stmt);
1270
1271 if (!level)
1272 {
1273 gsi_next (&bsi);
1274 continue;
1275 }
1276
1277 /* We do not really want to move conditionals out of the loop; we just
1278 placed it here to force its operands to be moved if necessary. */
1279 if (gimple_code (stmt) == GIMPLE_COND)
1280 continue;
1281
1282 if (dump_file && (dump_flags & TDF_DETAILS))
1283 {
1284 fprintf (dump_file, "Moving statement\n");
1285 print_gimple_stmt (dump_file, stmt, 0, 0);
1286 fprintf (dump_file, "(cost %u) out of loop %d.\n\n",
1287 cost, level->num);
1288 }
1289
1290 e = loop_preheader_edge (level);
1291 gcc_assert (!gimple_vdef (stmt));
1292 if (gimple_vuse (stmt))
1293 {
1294 /* The new VUSE is the one from the virtual PHI in the loop
1295 header or the one already present. */
1296 gphi_iterator gsi2;
1297 for (gsi2 = gsi_start_phis (e->dest);
1298 !gsi_end_p (gsi2); gsi_next (&gsi2))
1299 {
1300 gphi *phi = gsi2.phi ();
1301 if (virtual_operand_p (gimple_phi_result (phi)))
1302 {
1303 gimple_set_vuse (stmt, PHI_ARG_DEF_FROM_EDGE (phi, e));
1304 break;
1305 }
1306 }
1307 }
1308 gsi_remove (&bsi, false);
1309 if (gimple_has_lhs (stmt)
1310 && TREE_CODE (gimple_get_lhs (stmt)) == SSA_NAME
1311 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_get_lhs (stmt)))
1312 && (!ALWAYS_EXECUTED_IN (bb)
1313 || !(ALWAYS_EXECUTED_IN (bb) == level
1314 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1315 {
1316 tree lhs = gimple_get_lhs (stmt);
1317 SSA_NAME_RANGE_INFO (lhs) = NULL;
1318 SSA_NAME_ANTI_RANGE_P (lhs) = 0;
1319 }
1320 /* In case this is a stmt that is not unconditionally executed
1321 when the target loop header is executed and the stmt may
1322 invoke undefined integer or pointer overflow rewrite it to
1323 unsigned arithmetic. */
1324 if (is_gimple_assign (stmt)
1325 && INTEGRAL_TYPE_P (TREE_TYPE (gimple_assign_lhs (stmt)))
1326 && TYPE_OVERFLOW_UNDEFINED (TREE_TYPE (gimple_assign_lhs (stmt)))
1327 && arith_code_with_undefined_signed_overflow
1328 (gimple_assign_rhs_code (stmt))
1329 && (!ALWAYS_EXECUTED_IN (bb)
1330 || !(ALWAYS_EXECUTED_IN (bb) == level
1331 || flow_loop_nested_p (ALWAYS_EXECUTED_IN (bb), level))))
1332 gsi_insert_seq_on_edge (e, rewrite_to_defined_overflow (stmt));
1333 else
1334 gsi_insert_on_edge (e, stmt);
1335 }
1336 }
1337
1338 /* Hoist the statements out of the loops prescribed by data stored in
1339 LIM_DATA structures associated with each statement.*/
1340
1341 static unsigned int
1342 move_computations (void)
1343 {
1344 move_computations_dom_walker walker (CDI_DOMINATORS);
1345 walker.walk (cfun->cfg->x_entry_block_ptr);
1346
1347 gsi_commit_edge_inserts ();
1348 if (need_ssa_update_p (cfun))
1349 rewrite_into_loop_closed_ssa (NULL, TODO_update_ssa);
1350
1351 return walker.todo_;
1352 }
1353
1354 /* Checks whether the statement defining variable *INDEX can be hoisted
1355 out of the loop passed in DATA. Callback for for_each_index. */
1356
1357 static bool
1358 may_move_till (tree ref, tree *index, void *data)
1359 {
1360 struct loop *loop = (struct loop *) data, *max_loop;
1361
1362 /* If REF is an array reference, check also that the step and the lower
1363 bound is invariant in LOOP. */
1364 if (TREE_CODE (ref) == ARRAY_REF)
1365 {
1366 tree step = TREE_OPERAND (ref, 3);
1367 tree lbound = TREE_OPERAND (ref, 2);
1368
1369 max_loop = outermost_invariant_loop (step, loop);
1370 if (!max_loop)
1371 return false;
1372
1373 max_loop = outermost_invariant_loop (lbound, loop);
1374 if (!max_loop)
1375 return false;
1376 }
1377
1378 max_loop = outermost_invariant_loop (*index, loop);
1379 if (!max_loop)
1380 return false;
1381
1382 return true;
1383 }
1384
1385 /* If OP is SSA NAME, force the statement that defines it to be
1386 moved out of the LOOP. ORIG_LOOP is the loop in that EXPR is used. */
1387
1388 static void
1389 force_move_till_op (tree op, struct loop *orig_loop, struct loop *loop)
1390 {
1391 gimple stmt;
1392
1393 if (!op
1394 || is_gimple_min_invariant (op))
1395 return;
1396
1397 gcc_assert (TREE_CODE (op) == SSA_NAME);
1398
1399 stmt = SSA_NAME_DEF_STMT (op);
1400 if (gimple_nop_p (stmt))
1401 return;
1402
1403 set_level (stmt, orig_loop, loop);
1404 }
1405
1406 /* Forces statement defining invariants in REF (and *INDEX) to be moved out of
1407 the LOOP. The reference REF is used in the loop ORIG_LOOP. Callback for
1408 for_each_index. */
1409
1410 struct fmt_data
1411 {
1412 struct loop *loop;
1413 struct loop *orig_loop;
1414 };
1415
1416 static bool
1417 force_move_till (tree ref, tree *index, void *data)
1418 {
1419 struct fmt_data *fmt_data = (struct fmt_data *) data;
1420
1421 if (TREE_CODE (ref) == ARRAY_REF)
1422 {
1423 tree step = TREE_OPERAND (ref, 3);
1424 tree lbound = TREE_OPERAND (ref, 2);
1425
1426 force_move_till_op (step, fmt_data->orig_loop, fmt_data->loop);
1427 force_move_till_op (lbound, fmt_data->orig_loop, fmt_data->loop);
1428 }
1429
1430 force_move_till_op (*index, fmt_data->orig_loop, fmt_data->loop);
1431
1432 return true;
1433 }
1434
1435 /* A function to free the mem_ref object OBJ. */
1436
1437 static void
1438 memref_free (struct im_mem_ref *mem)
1439 {
1440 mem->accesses_in_loop.release ();
1441 }
1442
1443 /* Allocates and returns a memory reference description for MEM whose hash
1444 value is HASH and id is ID. */
1445
1446 static mem_ref_p
1447 mem_ref_alloc (tree mem, unsigned hash, unsigned id)
1448 {
1449 mem_ref_p ref = XOBNEW (&mem_ref_obstack, struct im_mem_ref);
1450 ao_ref_init (&ref->mem, mem);
1451 ref->id = id;
1452 ref->hash = hash;
1453 ref->stored = NULL;
1454 bitmap_initialize (&ref->indep_loop, &lim_bitmap_obstack);
1455 bitmap_initialize (&ref->dep_loop, &lim_bitmap_obstack);
1456 ref->accesses_in_loop.create (1);
1457
1458 return ref;
1459 }
1460
1461 /* Records memory reference location *LOC in LOOP to the memory reference
1462 description REF. The reference occurs in statement STMT. */
1463
1464 static void
1465 record_mem_ref_loc (mem_ref_p ref, gimple stmt, tree *loc)
1466 {
1467 mem_ref_loc aref;
1468 aref.stmt = stmt;
1469 aref.ref = loc;
1470 ref->accesses_in_loop.safe_push (aref);
1471 }
1472
1473 /* Set the LOOP bit in REF stored bitmap and allocate that if
1474 necessary. Return whether a bit was changed. */
1475
1476 static bool
1477 set_ref_stored_in_loop (mem_ref_p ref, struct loop *loop)
1478 {
1479 if (!ref->stored)
1480 ref->stored = BITMAP_ALLOC (&lim_bitmap_obstack);
1481 return bitmap_set_bit (ref->stored, loop->num);
1482 }
1483
1484 /* Marks reference REF as stored in LOOP. */
1485
1486 static void
1487 mark_ref_stored (mem_ref_p ref, struct loop *loop)
1488 {
1489 while (loop != current_loops->tree_root
1490 && set_ref_stored_in_loop (ref, loop))
1491 loop = loop_outer (loop);
1492 }
1493
1494 /* Gathers memory references in statement STMT in LOOP, storing the
1495 information about them in the memory_accesses structure. Marks
1496 the vops accessed through unrecognized statements there as
1497 well. */
1498
1499 static void
1500 gather_mem_refs_stmt (struct loop *loop, gimple stmt)
1501 {
1502 tree *mem = NULL;
1503 hashval_t hash;
1504 im_mem_ref **slot;
1505 mem_ref_p ref;
1506 bool is_stored;
1507 unsigned id;
1508
1509 if (!gimple_vuse (stmt))
1510 return;
1511
1512 mem = simple_mem_ref_in_stmt (stmt, &is_stored);
1513 if (!mem)
1514 {
1515 /* We use the shared mem_ref for all unanalyzable refs. */
1516 id = UNANALYZABLE_MEM_ID;
1517 ref = memory_accesses.refs_list[id];
1518 if (dump_file && (dump_flags & TDF_DETAILS))
1519 {
1520 fprintf (dump_file, "Unanalyzed memory reference %u: ", id);
1521 print_gimple_stmt (dump_file, stmt, 0, TDF_SLIM);
1522 }
1523 is_stored = gimple_vdef (stmt);
1524 }
1525 else
1526 {
1527 hash = iterative_hash_expr (*mem, 0);
1528 slot = memory_accesses.refs->find_slot_with_hash (*mem, hash, INSERT);
1529 if (*slot)
1530 {
1531 ref = (mem_ref_p) *slot;
1532 id = ref->id;
1533 }
1534 else
1535 {
1536 id = memory_accesses.refs_list.length ();
1537 ref = mem_ref_alloc (*mem, hash, id);
1538 memory_accesses.refs_list.safe_push (ref);
1539 *slot = ref;
1540
1541 if (dump_file && (dump_flags & TDF_DETAILS))
1542 {
1543 fprintf (dump_file, "Memory reference %u: ", id);
1544 print_generic_expr (dump_file, ref->mem.ref, TDF_SLIM);
1545 fprintf (dump_file, "\n");
1546 }
1547 }
1548
1549 record_mem_ref_loc (ref, stmt, mem);
1550 }
1551 bitmap_set_bit (&memory_accesses.refs_in_loop[loop->num], ref->id);
1552 if (is_stored)
1553 {
1554 bitmap_set_bit (&memory_accesses.refs_stored_in_loop[loop->num], ref->id);
1555 mark_ref_stored (ref, loop);
1556 }
1557 return;
1558 }
1559
1560 static unsigned *bb_loop_postorder;
1561
1562 /* qsort sort function to sort blocks after their loop fathers postorder. */
1563
1564 static int
1565 sort_bbs_in_loop_postorder_cmp (const void *bb1_, const void *bb2_)
1566 {
1567 basic_block bb1 = *(basic_block *)const_cast<void *>(bb1_);
1568 basic_block bb2 = *(basic_block *)const_cast<void *>(bb2_);
1569 struct loop *loop1 = bb1->loop_father;
1570 struct loop *loop2 = bb2->loop_father;
1571 if (loop1->num == loop2->num)
1572 return 0;
1573 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1574 }
1575
1576 /* qsort sort function to sort ref locs after their loop fathers postorder. */
1577
1578 static int
1579 sort_locs_in_loop_postorder_cmp (const void *loc1_, const void *loc2_)
1580 {
1581 mem_ref_loc *loc1 = (mem_ref_loc *)const_cast<void *>(loc1_);
1582 mem_ref_loc *loc2 = (mem_ref_loc *)const_cast<void *>(loc2_);
1583 struct loop *loop1 = gimple_bb (loc1->stmt)->loop_father;
1584 struct loop *loop2 = gimple_bb (loc2->stmt)->loop_father;
1585 if (loop1->num == loop2->num)
1586 return 0;
1587 return bb_loop_postorder[loop1->num] < bb_loop_postorder[loop2->num] ? -1 : 1;
1588 }
1589
1590 /* Gathers memory references in loops. */
1591
1592 static void
1593 analyze_memory_references (void)
1594 {
1595 gimple_stmt_iterator bsi;
1596 basic_block bb, *bbs;
1597 struct loop *loop, *outer;
1598 unsigned i, n;
1599
1600 /* Collect all basic-blocks in loops and sort them after their
1601 loops postorder. */
1602 i = 0;
1603 bbs = XNEWVEC (basic_block, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
1604 FOR_EACH_BB_FN (bb, cfun)
1605 if (bb->loop_father != current_loops->tree_root)
1606 bbs[i++] = bb;
1607 n = i;
1608 qsort (bbs, n, sizeof (basic_block), sort_bbs_in_loop_postorder_cmp);
1609
1610 /* Visit blocks in loop postorder and assign mem-ref IDs in that order.
1611 That results in better locality for all the bitmaps. */
1612 for (i = 0; i < n; ++i)
1613 {
1614 basic_block bb = bbs[i];
1615 for (bsi = gsi_start_bb (bb); !gsi_end_p (bsi); gsi_next (&bsi))
1616 gather_mem_refs_stmt (bb->loop_father, gsi_stmt (bsi));
1617 }
1618
1619 /* Sort the location list of gathered memory references after their
1620 loop postorder number. */
1621 im_mem_ref *ref;
1622 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
1623 ref->accesses_in_loop.qsort (sort_locs_in_loop_postorder_cmp);
1624
1625 free (bbs);
1626 // free (bb_loop_postorder);
1627
1628 /* Propagate the information about accessed memory references up
1629 the loop hierarchy. */
1630 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
1631 {
1632 /* Finalize the overall touched references (including subloops). */
1633 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[loop->num],
1634 &memory_accesses.refs_stored_in_loop[loop->num]);
1635
1636 /* Propagate the information about accessed memory references up
1637 the loop hierarchy. */
1638 outer = loop_outer (loop);
1639 if (outer == current_loops->tree_root)
1640 continue;
1641
1642 bitmap_ior_into (&memory_accesses.all_refs_stored_in_loop[outer->num],
1643 &memory_accesses.all_refs_stored_in_loop[loop->num]);
1644 }
1645 }
1646
1647 /* Returns true if MEM1 and MEM2 may alias. TTAE_CACHE is used as a cache in
1648 tree_to_aff_combination_expand. */
1649
1650 static bool
1651 mem_refs_may_alias_p (mem_ref_p mem1, mem_ref_p mem2,
1652 hash_map<tree, name_expansion *> **ttae_cache)
1653 {
1654 /* Perform BASE + OFFSET analysis -- if MEM1 and MEM2 are based on the same
1655 object and their offset differ in such a way that the locations cannot
1656 overlap, then they cannot alias. */
1657 widest_int size1, size2;
1658 aff_tree off1, off2;
1659
1660 /* Perform basic offset and type-based disambiguation. */
1661 if (!refs_may_alias_p_1 (&mem1->mem, &mem2->mem, true))
1662 return false;
1663
1664 /* The expansion of addresses may be a bit expensive, thus we only do
1665 the check at -O2 and higher optimization levels. */
1666 if (optimize < 2)
1667 return true;
1668
1669 get_inner_reference_aff (mem1->mem.ref, &off1, &size1);
1670 get_inner_reference_aff (mem2->mem.ref, &off2, &size2);
1671 aff_combination_expand (&off1, ttae_cache);
1672 aff_combination_expand (&off2, ttae_cache);
1673 aff_combination_scale (&off1, -1);
1674 aff_combination_add (&off2, &off1);
1675
1676 if (aff_comb_cannot_overlap_p (&off2, size1, size2))
1677 return false;
1678
1679 return true;
1680 }
1681
1682 /* Compare function for bsearch searching for reference locations
1683 in a loop. */
1684
1685 static int
1686 find_ref_loc_in_loop_cmp (const void *loop_, const void *loc_)
1687 {
1688 struct loop *loop = (struct loop *)const_cast<void *>(loop_);
1689 mem_ref_loc *loc = (mem_ref_loc *)const_cast<void *>(loc_);
1690 struct loop *loc_loop = gimple_bb (loc->stmt)->loop_father;
1691 if (loop->num == loc_loop->num
1692 || flow_loop_nested_p (loop, loc_loop))
1693 return 0;
1694 return (bb_loop_postorder[loop->num] < bb_loop_postorder[loc_loop->num]
1695 ? -1 : 1);
1696 }
1697
1698 /* Iterates over all locations of REF in LOOP and its subloops calling
1699 fn.operator() with the location as argument. When that operator
1700 returns true the iteration is stopped and true is returned.
1701 Otherwise false is returned. */
1702
1703 template <typename FN>
1704 static bool
1705 for_all_locs_in_loop (struct loop *loop, mem_ref_p ref, FN fn)
1706 {
1707 unsigned i;
1708 mem_ref_loc_p loc;
1709
1710 /* Search for the cluster of locs in the accesses_in_loop vector
1711 which is sorted after postorder index of the loop father. */
1712 loc = ref->accesses_in_loop.bsearch (loop, find_ref_loc_in_loop_cmp);
1713 if (!loc)
1714 return false;
1715
1716 /* We have found one location inside loop or its sub-loops. Iterate
1717 both forward and backward to cover the whole cluster. */
1718 i = loc - ref->accesses_in_loop.address ();
1719 while (i > 0)
1720 {
1721 --i;
1722 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1723 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1724 break;
1725 if (fn (l))
1726 return true;
1727 }
1728 for (i = loc - ref->accesses_in_loop.address ();
1729 i < ref->accesses_in_loop.length (); ++i)
1730 {
1731 mem_ref_loc_p l = &ref->accesses_in_loop[i];
1732 if (!flow_bb_inside_loop_p (loop, gimple_bb (l->stmt)))
1733 break;
1734 if (fn (l))
1735 return true;
1736 }
1737
1738 return false;
1739 }
1740
1741 /* Rewrites location LOC by TMP_VAR. */
1742
1743 struct rewrite_mem_ref_loc
1744 {
1745 rewrite_mem_ref_loc (tree tmp_var_) : tmp_var (tmp_var_) {}
1746 bool operator () (mem_ref_loc_p loc);
1747 tree tmp_var;
1748 };
1749
1750 bool
1751 rewrite_mem_ref_loc::operator () (mem_ref_loc_p loc)
1752 {
1753 *loc->ref = tmp_var;
1754 update_stmt (loc->stmt);
1755 return false;
1756 }
1757
1758 /* Rewrites all references to REF in LOOP by variable TMP_VAR. */
1759
1760 static void
1761 rewrite_mem_refs (struct loop *loop, mem_ref_p ref, tree tmp_var)
1762 {
1763 for_all_locs_in_loop (loop, ref, rewrite_mem_ref_loc (tmp_var));
1764 }
1765
1766 /* Stores the first reference location in LOCP. */
1767
1768 struct first_mem_ref_loc_1
1769 {
1770 first_mem_ref_loc_1 (mem_ref_loc_p *locp_) : locp (locp_) {}
1771 bool operator () (mem_ref_loc_p loc);
1772 mem_ref_loc_p *locp;
1773 };
1774
1775 bool
1776 first_mem_ref_loc_1::operator () (mem_ref_loc_p loc)
1777 {
1778 *locp = loc;
1779 return true;
1780 }
1781
1782 /* Returns the first reference location to REF in LOOP. */
1783
1784 static mem_ref_loc_p
1785 first_mem_ref_loc (struct loop *loop, mem_ref_p ref)
1786 {
1787 mem_ref_loc_p locp = NULL;
1788 for_all_locs_in_loop (loop, ref, first_mem_ref_loc_1 (&locp));
1789 return locp;
1790 }
1791
1792 struct prev_flag_edges {
1793 /* Edge to insert new flag comparison code. */
1794 edge append_cond_position;
1795
1796 /* Edge for fall through from previous flag comparison. */
1797 edge last_cond_fallthru;
1798 };
1799
1800 /* Helper function for execute_sm. Emit code to store TMP_VAR into
1801 MEM along edge EX.
1802
1803 The store is only done if MEM has changed. We do this so no
1804 changes to MEM occur on code paths that did not originally store
1805 into it.
1806
1807 The common case for execute_sm will transform:
1808
1809 for (...) {
1810 if (foo)
1811 stuff;
1812 else
1813 MEM = TMP_VAR;
1814 }
1815
1816 into:
1817
1818 lsm = MEM;
1819 for (...) {
1820 if (foo)
1821 stuff;
1822 else
1823 lsm = TMP_VAR;
1824 }
1825 MEM = lsm;
1826
1827 This function will generate:
1828
1829 lsm = MEM;
1830
1831 lsm_flag = false;
1832 ...
1833 for (...) {
1834 if (foo)
1835 stuff;
1836 else {
1837 lsm = TMP_VAR;
1838 lsm_flag = true;
1839 }
1840 }
1841 if (lsm_flag) <--
1842 MEM = lsm; <--
1843 */
1844
1845 static void
1846 execute_sm_if_changed (edge ex, tree mem, tree tmp_var, tree flag)
1847 {
1848 basic_block new_bb, then_bb, old_dest;
1849 bool loop_has_only_one_exit;
1850 edge then_old_edge, orig_ex = ex;
1851 gimple_stmt_iterator gsi;
1852 gimple stmt;
1853 struct prev_flag_edges *prev_edges = (struct prev_flag_edges *) ex->aux;
1854 bool irr = ex->flags & EDGE_IRREDUCIBLE_LOOP;
1855
1856 /* ?? Insert store after previous store if applicable. See note
1857 below. */
1858 if (prev_edges)
1859 ex = prev_edges->append_cond_position;
1860
1861 loop_has_only_one_exit = single_pred_p (ex->dest);
1862
1863 if (loop_has_only_one_exit)
1864 ex = split_block_after_labels (ex->dest);
1865
1866 old_dest = ex->dest;
1867 new_bb = split_edge (ex);
1868 then_bb = create_empty_bb (new_bb);
1869 if (irr)
1870 then_bb->flags = BB_IRREDUCIBLE_LOOP;
1871 add_bb_to_loop (then_bb, new_bb->loop_father);
1872
1873 gsi = gsi_start_bb (new_bb);
1874 stmt = gimple_build_cond (NE_EXPR, flag, boolean_false_node,
1875 NULL_TREE, NULL_TREE);
1876 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1877
1878 gsi = gsi_start_bb (then_bb);
1879 /* Insert actual store. */
1880 stmt = gimple_build_assign (unshare_expr (mem), tmp_var);
1881 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1882
1883 make_edge (new_bb, then_bb,
1884 EDGE_TRUE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1885 make_edge (new_bb, old_dest,
1886 EDGE_FALSE_VALUE | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1887 then_old_edge = make_edge (then_bb, old_dest,
1888 EDGE_FALLTHRU | (irr ? EDGE_IRREDUCIBLE_LOOP : 0));
1889
1890 set_immediate_dominator (CDI_DOMINATORS, then_bb, new_bb);
1891
1892 if (prev_edges)
1893 {
1894 basic_block prevbb = prev_edges->last_cond_fallthru->src;
1895 redirect_edge_succ (prev_edges->last_cond_fallthru, new_bb);
1896 set_immediate_dominator (CDI_DOMINATORS, new_bb, prevbb);
1897 set_immediate_dominator (CDI_DOMINATORS, old_dest,
1898 recompute_dominator (CDI_DOMINATORS, old_dest));
1899 }
1900
1901 /* ?? Because stores may alias, they must happen in the exact
1902 sequence they originally happened. Save the position right after
1903 the (_lsm) store we just created so we can continue appending after
1904 it and maintain the original order. */
1905 {
1906 struct prev_flag_edges *p;
1907
1908 if (orig_ex->aux)
1909 orig_ex->aux = NULL;
1910 alloc_aux_for_edge (orig_ex, sizeof (struct prev_flag_edges));
1911 p = (struct prev_flag_edges *) orig_ex->aux;
1912 p->append_cond_position = then_old_edge;
1913 p->last_cond_fallthru = find_edge (new_bb, old_dest);
1914 orig_ex->aux = (void *) p;
1915 }
1916
1917 if (!loop_has_only_one_exit)
1918 for (gphi_iterator gpi = gsi_start_phis (old_dest);
1919 !gsi_end_p (gpi); gsi_next (&gpi))
1920 {
1921 gphi *phi = gpi.phi ();
1922 unsigned i;
1923
1924 for (i = 0; i < gimple_phi_num_args (phi); i++)
1925 if (gimple_phi_arg_edge (phi, i)->src == new_bb)
1926 {
1927 tree arg = gimple_phi_arg_def (phi, i);
1928 add_phi_arg (phi, arg, then_old_edge, UNKNOWN_LOCATION);
1929 update_stmt (phi);
1930 }
1931 }
1932 /* Remove the original fall through edge. This was the
1933 single_succ_edge (new_bb). */
1934 EDGE_SUCC (new_bb, 0)->flags &= ~EDGE_FALLTHRU;
1935 }
1936
1937 /* When REF is set on the location, set flag indicating the store. */
1938
1939 struct sm_set_flag_if_changed
1940 {
1941 sm_set_flag_if_changed (tree flag_) : flag (flag_) {}
1942 bool operator () (mem_ref_loc_p loc);
1943 tree flag;
1944 };
1945
1946 bool
1947 sm_set_flag_if_changed::operator () (mem_ref_loc_p loc)
1948 {
1949 /* Only set the flag for writes. */
1950 if (is_gimple_assign (loc->stmt)
1951 && gimple_assign_lhs_ptr (loc->stmt) == loc->ref)
1952 {
1953 gimple_stmt_iterator gsi = gsi_for_stmt (loc->stmt);
1954 gimple stmt = gimple_build_assign (flag, boolean_true_node);
1955 gsi_insert_after (&gsi, stmt, GSI_CONTINUE_LINKING);
1956 }
1957 return false;
1958 }
1959
1960 /* Helper function for execute_sm. On every location where REF is
1961 set, set an appropriate flag indicating the store. */
1962
1963 static tree
1964 execute_sm_if_changed_flag_set (struct loop *loop, mem_ref_p ref)
1965 {
1966 tree flag;
1967 char *str = get_lsm_tmp_name (ref->mem.ref, ~0, "_flag");
1968 flag = create_tmp_reg (boolean_type_node, str);
1969 for_all_locs_in_loop (loop, ref, sm_set_flag_if_changed (flag));
1970 return flag;
1971 }
1972
1973 /* Executes store motion of memory reference REF from LOOP.
1974 Exits from the LOOP are stored in EXITS. The initialization of the
1975 temporary variable is put to the preheader of the loop, and assignments
1976 to the reference from the temporary variable are emitted to exits. */
1977
1978 static void
1979 execute_sm (struct loop *loop, vec<edge> exits, mem_ref_p ref)
1980 {
1981 tree tmp_var, store_flag = NULL_TREE;
1982 unsigned i;
1983 gassign *load;
1984 struct fmt_data fmt_data;
1985 edge ex;
1986 struct lim_aux_data *lim_data;
1987 bool multi_threaded_model_p = false;
1988 gimple_stmt_iterator gsi;
1989
1990 if (dump_file && (dump_flags & TDF_DETAILS))
1991 {
1992 fprintf (dump_file, "Executing store motion of ");
1993 print_generic_expr (dump_file, ref->mem.ref, 0);
1994 fprintf (dump_file, " from loop %d\n", loop->num);
1995 }
1996
1997 tmp_var = create_tmp_reg (TREE_TYPE (ref->mem.ref),
1998 get_lsm_tmp_name (ref->mem.ref, ~0));
1999
2000 fmt_data.loop = loop;
2001 fmt_data.orig_loop = loop;
2002 for_each_index (&ref->mem.ref, force_move_till, &fmt_data);
2003
2004 if (bb_in_transaction (loop_preheader_edge (loop)->src)
2005 || !PARAM_VALUE (PARAM_ALLOW_STORE_DATA_RACES))
2006 multi_threaded_model_p = true;
2007
2008 if (multi_threaded_model_p)
2009 store_flag = execute_sm_if_changed_flag_set (loop, ref);
2010
2011 rewrite_mem_refs (loop, ref, tmp_var);
2012
2013 /* Emit the load code on a random exit edge or into the latch if
2014 the loop does not exit, so that we are sure it will be processed
2015 by move_computations after all dependencies. */
2016 gsi = gsi_for_stmt (first_mem_ref_loc (loop, ref)->stmt);
2017
2018 /* FIXME/TODO: For the multi-threaded variant, we could avoid this
2019 load altogether, since the store is predicated by a flag. We
2020 could, do the load only if it was originally in the loop. */
2021 load = gimple_build_assign (tmp_var, unshare_expr (ref->mem.ref));
2022 lim_data = init_lim_data (load);
2023 lim_data->max_loop = loop;
2024 lim_data->tgt_loop = loop;
2025 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2026
2027 if (multi_threaded_model_p)
2028 {
2029 load = gimple_build_assign (store_flag, boolean_false_node);
2030 lim_data = init_lim_data (load);
2031 lim_data->max_loop = loop;
2032 lim_data->tgt_loop = loop;
2033 gsi_insert_before (&gsi, load, GSI_SAME_STMT);
2034 }
2035
2036 /* Sink the store to every exit from the loop. */
2037 FOR_EACH_VEC_ELT (exits, i, ex)
2038 if (!multi_threaded_model_p)
2039 {
2040 gassign *store;
2041 store = gimple_build_assign (unshare_expr (ref->mem.ref), tmp_var);
2042 gsi_insert_on_edge (ex, store);
2043 }
2044 else
2045 execute_sm_if_changed (ex, ref->mem.ref, tmp_var, store_flag);
2046 }
2047
2048 /* Hoists memory references MEM_REFS out of LOOP. EXITS is the list of exit
2049 edges of the LOOP. */
2050
2051 static void
2052 hoist_memory_references (struct loop *loop, bitmap mem_refs,
2053 vec<edge> exits)
2054 {
2055 mem_ref_p ref;
2056 unsigned i;
2057 bitmap_iterator bi;
2058
2059 EXECUTE_IF_SET_IN_BITMAP (mem_refs, 0, i, bi)
2060 {
2061 ref = memory_accesses.refs_list[i];
2062 execute_sm (loop, exits, ref);
2063 }
2064 }
2065
2066 struct ref_always_accessed
2067 {
2068 ref_always_accessed (struct loop *loop_, bool stored_p_)
2069 : loop (loop_), stored_p (stored_p_) {}
2070 bool operator () (mem_ref_loc_p loc);
2071 struct loop *loop;
2072 bool stored_p;
2073 };
2074
2075 bool
2076 ref_always_accessed::operator () (mem_ref_loc_p loc)
2077 {
2078 struct loop *must_exec;
2079
2080 if (!get_lim_data (loc->stmt))
2081 return false;
2082
2083 /* If we require an always executed store make sure the statement
2084 stores to the reference. */
2085 if (stored_p)
2086 {
2087 tree lhs = gimple_get_lhs (loc->stmt);
2088 if (!lhs
2089 || lhs != *loc->ref)
2090 return false;
2091 }
2092
2093 must_exec = get_lim_data (loc->stmt)->always_executed_in;
2094 if (!must_exec)
2095 return false;
2096
2097 if (must_exec == loop
2098 || flow_loop_nested_p (must_exec, loop))
2099 return true;
2100
2101 return false;
2102 }
2103
2104 /* Returns true if REF is always accessed in LOOP. If STORED_P is true
2105 make sure REF is always stored to in LOOP. */
2106
2107 static bool
2108 ref_always_accessed_p (struct loop *loop, mem_ref_p ref, bool stored_p)
2109 {
2110 return for_all_locs_in_loop (loop, ref,
2111 ref_always_accessed (loop, stored_p));
2112 }
2113
2114 /* Returns true if REF1 and REF2 are independent. */
2115
2116 static bool
2117 refs_independent_p (mem_ref_p ref1, mem_ref_p ref2)
2118 {
2119 if (ref1 == ref2)
2120 return true;
2121
2122 if (dump_file && (dump_flags & TDF_DETAILS))
2123 fprintf (dump_file, "Querying dependency of refs %u and %u: ",
2124 ref1->id, ref2->id);
2125
2126 if (mem_refs_may_alias_p (ref1, ref2, &memory_accesses.ttae_cache))
2127 {
2128 if (dump_file && (dump_flags & TDF_DETAILS))
2129 fprintf (dump_file, "dependent.\n");
2130 return false;
2131 }
2132 else
2133 {
2134 if (dump_file && (dump_flags & TDF_DETAILS))
2135 fprintf (dump_file, "independent.\n");
2136 return true;
2137 }
2138 }
2139
2140 /* Mark REF dependent on stores or loads (according to STORED_P) in LOOP
2141 and its super-loops. */
2142
2143 static void
2144 record_dep_loop (struct loop *loop, mem_ref_p ref, bool stored_p)
2145 {
2146 /* We can propagate dependent-in-loop bits up the loop
2147 hierarchy to all outer loops. */
2148 while (loop != current_loops->tree_root
2149 && bitmap_set_bit (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2150 loop = loop_outer (loop);
2151 }
2152
2153 /* Returns true if REF is independent on all other memory references in
2154 LOOP. */
2155
2156 static bool
2157 ref_indep_loop_p_1 (struct loop *loop, mem_ref_p ref, bool stored_p)
2158 {
2159 bitmap refs_to_check;
2160 unsigned i;
2161 bitmap_iterator bi;
2162 mem_ref_p aref;
2163
2164 if (stored_p)
2165 refs_to_check = &memory_accesses.refs_in_loop[loop->num];
2166 else
2167 refs_to_check = &memory_accesses.refs_stored_in_loop[loop->num];
2168
2169 if (bitmap_bit_p (refs_to_check, UNANALYZABLE_MEM_ID))
2170 return false;
2171
2172 EXECUTE_IF_SET_IN_BITMAP (refs_to_check, 0, i, bi)
2173 {
2174 aref = memory_accesses.refs_list[i];
2175 if (!refs_independent_p (ref, aref))
2176 return false;
2177 }
2178
2179 return true;
2180 }
2181
2182 /* Returns true if REF is independent on all other memory references in
2183 LOOP. Wrapper over ref_indep_loop_p_1, caching its results. */
2184
2185 static bool
2186 ref_indep_loop_p_2 (struct loop *loop, mem_ref_p ref, bool stored_p)
2187 {
2188 stored_p |= (ref->stored && bitmap_bit_p (ref->stored, loop->num));
2189
2190 if (bitmap_bit_p (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2191 return true;
2192 if (bitmap_bit_p (&ref->dep_loop, LOOP_DEP_BIT (loop->num, stored_p)))
2193 return false;
2194
2195 struct loop *inner = loop->inner;
2196 while (inner)
2197 {
2198 if (!ref_indep_loop_p_2 (inner, ref, stored_p))
2199 return false;
2200 inner = inner->next;
2201 }
2202
2203 bool indep_p = ref_indep_loop_p_1 (loop, ref, stored_p);
2204
2205 if (dump_file && (dump_flags & TDF_DETAILS))
2206 fprintf (dump_file, "Querying dependencies of ref %u in loop %d: %s\n",
2207 ref->id, loop->num, indep_p ? "independent" : "dependent");
2208
2209 /* Record the computed result in the cache. */
2210 if (indep_p)
2211 {
2212 if (bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, stored_p))
2213 && stored_p)
2214 {
2215 /* If it's independend against all refs then it's independent
2216 against stores, too. */
2217 bitmap_set_bit (&ref->indep_loop, LOOP_DEP_BIT (loop->num, false));
2218 }
2219 }
2220 else
2221 {
2222 record_dep_loop (loop, ref, stored_p);
2223 if (!stored_p)
2224 {
2225 /* If it's dependent against stores it's dependent against
2226 all refs, too. */
2227 record_dep_loop (loop, ref, true);
2228 }
2229 }
2230
2231 return indep_p;
2232 }
2233
2234 /* Returns true if REF is independent on all other memory references in
2235 LOOP. */
2236
2237 static bool
2238 ref_indep_loop_p (struct loop *loop, mem_ref_p ref)
2239 {
2240 gcc_checking_assert (MEM_ANALYZABLE (ref));
2241
2242 return ref_indep_loop_p_2 (loop, ref, false);
2243 }
2244
2245 /* Returns true if we can perform store motion of REF from LOOP. */
2246
2247 static bool
2248 can_sm_ref_p (struct loop *loop, mem_ref_p ref)
2249 {
2250 tree base;
2251
2252 /* Can't hoist unanalyzable refs. */
2253 if (!MEM_ANALYZABLE (ref))
2254 return false;
2255
2256 /* It should be movable. */
2257 if (!is_gimple_reg_type (TREE_TYPE (ref->mem.ref))
2258 || TREE_THIS_VOLATILE (ref->mem.ref)
2259 || !for_each_index (&ref->mem.ref, may_move_till, loop))
2260 return false;
2261
2262 /* If it can throw fail, we do not properly update EH info. */
2263 if (tree_could_throw_p (ref->mem.ref))
2264 return false;
2265
2266 /* If it can trap, it must be always executed in LOOP.
2267 Readonly memory locations may trap when storing to them, but
2268 tree_could_trap_p is a predicate for rvalues, so check that
2269 explicitly. */
2270 base = get_base_address (ref->mem.ref);
2271 if ((tree_could_trap_p (ref->mem.ref)
2272 || (DECL_P (base) && TREE_READONLY (base)))
2273 && !ref_always_accessed_p (loop, ref, true))
2274 return false;
2275
2276 /* And it must be independent on all other memory references
2277 in LOOP. */
2278 if (!ref_indep_loop_p (loop, ref))
2279 return false;
2280
2281 return true;
2282 }
2283
2284 /* Marks the references in LOOP for that store motion should be performed
2285 in REFS_TO_SM. SM_EXECUTED is the set of references for that store
2286 motion was performed in one of the outer loops. */
2287
2288 static void
2289 find_refs_for_sm (struct loop *loop, bitmap sm_executed, bitmap refs_to_sm)
2290 {
2291 bitmap refs = &memory_accesses.all_refs_stored_in_loop[loop->num];
2292 unsigned i;
2293 bitmap_iterator bi;
2294 mem_ref_p ref;
2295
2296 EXECUTE_IF_AND_COMPL_IN_BITMAP (refs, sm_executed, 0, i, bi)
2297 {
2298 ref = memory_accesses.refs_list[i];
2299 if (can_sm_ref_p (loop, ref))
2300 bitmap_set_bit (refs_to_sm, i);
2301 }
2302 }
2303
2304 /* Checks whether LOOP (with exits stored in EXITS array) is suitable
2305 for a store motion optimization (i.e. whether we can insert statement
2306 on its exits). */
2307
2308 static bool
2309 loop_suitable_for_sm (struct loop *loop ATTRIBUTE_UNUSED,
2310 vec<edge> exits)
2311 {
2312 unsigned i;
2313 edge ex;
2314
2315 FOR_EACH_VEC_ELT (exits, i, ex)
2316 if (ex->flags & (EDGE_ABNORMAL | EDGE_EH))
2317 return false;
2318
2319 return true;
2320 }
2321
2322 /* Try to perform store motion for all memory references modified inside
2323 LOOP. SM_EXECUTED is the bitmap of the memory references for that
2324 store motion was executed in one of the outer loops. */
2325
2326 static void
2327 store_motion_loop (struct loop *loop, bitmap sm_executed)
2328 {
2329 vec<edge> exits = get_loop_exit_edges (loop);
2330 struct loop *subloop;
2331 bitmap sm_in_loop = BITMAP_ALLOC (&lim_bitmap_obstack);
2332
2333 if (loop_suitable_for_sm (loop, exits))
2334 {
2335 find_refs_for_sm (loop, sm_executed, sm_in_loop);
2336 hoist_memory_references (loop, sm_in_loop, exits);
2337 }
2338 exits.release ();
2339
2340 bitmap_ior_into (sm_executed, sm_in_loop);
2341 for (subloop = loop->inner; subloop != NULL; subloop = subloop->next)
2342 store_motion_loop (subloop, sm_executed);
2343 bitmap_and_compl_into (sm_executed, sm_in_loop);
2344 BITMAP_FREE (sm_in_loop);
2345 }
2346
2347 /* Try to perform store motion for all memory references modified inside
2348 loops. */
2349
2350 static void
2351 store_motion (void)
2352 {
2353 struct loop *loop;
2354 bitmap sm_executed = BITMAP_ALLOC (&lim_bitmap_obstack);
2355
2356 for (loop = current_loops->tree_root->inner; loop != NULL; loop = loop->next)
2357 store_motion_loop (loop, sm_executed);
2358
2359 BITMAP_FREE (sm_executed);
2360 gsi_commit_edge_inserts ();
2361 }
2362
2363 /* Fills ALWAYS_EXECUTED_IN information for basic blocks of LOOP, i.e.
2364 for each such basic block bb records the outermost loop for that execution
2365 of its header implies execution of bb. CONTAINS_CALL is the bitmap of
2366 blocks that contain a nonpure call. */
2367
2368 static void
2369 fill_always_executed_in_1 (struct loop *loop, sbitmap contains_call)
2370 {
2371 basic_block bb = NULL, *bbs, last = NULL;
2372 unsigned i;
2373 edge e;
2374 struct loop *inn_loop = loop;
2375
2376 if (ALWAYS_EXECUTED_IN (loop->header) == NULL)
2377 {
2378 bbs = get_loop_body_in_dom_order (loop);
2379
2380 for (i = 0; i < loop->num_nodes; i++)
2381 {
2382 edge_iterator ei;
2383 bb = bbs[i];
2384
2385 if (dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2386 last = bb;
2387
2388 if (bitmap_bit_p (contains_call, bb->index))
2389 break;
2390
2391 FOR_EACH_EDGE (e, ei, bb->succs)
2392 if (!flow_bb_inside_loop_p (loop, e->dest))
2393 break;
2394 if (e)
2395 break;
2396
2397 /* A loop might be infinite (TODO use simple loop analysis
2398 to disprove this if possible). */
2399 if (bb->flags & BB_IRREDUCIBLE_LOOP)
2400 break;
2401
2402 if (!flow_bb_inside_loop_p (inn_loop, bb))
2403 break;
2404
2405 if (bb->loop_father->header == bb)
2406 {
2407 if (!dominated_by_p (CDI_DOMINATORS, loop->latch, bb))
2408 break;
2409
2410 /* In a loop that is always entered we may proceed anyway.
2411 But record that we entered it and stop once we leave it. */
2412 inn_loop = bb->loop_father;
2413 }
2414 }
2415
2416 while (1)
2417 {
2418 SET_ALWAYS_EXECUTED_IN (last, loop);
2419 if (last == loop->header)
2420 break;
2421 last = get_immediate_dominator (CDI_DOMINATORS, last);
2422 }
2423
2424 free (bbs);
2425 }
2426
2427 for (loop = loop->inner; loop; loop = loop->next)
2428 fill_always_executed_in_1 (loop, contains_call);
2429 }
2430
2431 /* Fills ALWAYS_EXECUTED_IN information for basic blocks, i.e.
2432 for each such basic block bb records the outermost loop for that execution
2433 of its header implies execution of bb. */
2434
2435 static void
2436 fill_always_executed_in (void)
2437 {
2438 sbitmap contains_call = sbitmap_alloc (last_basic_block_for_fn (cfun));
2439 basic_block bb;
2440 struct loop *loop;
2441
2442 bitmap_clear (contains_call);
2443 FOR_EACH_BB_FN (bb, cfun)
2444 {
2445 gimple_stmt_iterator gsi;
2446 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
2447 {
2448 if (nonpure_call_p (gsi_stmt (gsi)))
2449 break;
2450 }
2451
2452 if (!gsi_end_p (gsi))
2453 bitmap_set_bit (contains_call, bb->index);
2454 }
2455
2456 for (loop = current_loops->tree_root->inner; loop; loop = loop->next)
2457 fill_always_executed_in_1 (loop, contains_call);
2458
2459 sbitmap_free (contains_call);
2460 }
2461
2462
2463 /* Compute the global information needed by the loop invariant motion pass. */
2464
2465 static void
2466 tree_ssa_lim_initialize (void)
2467 {
2468 struct loop *loop;
2469 unsigned i;
2470
2471 bitmap_obstack_initialize (&lim_bitmap_obstack);
2472 gcc_obstack_init (&mem_ref_obstack);
2473 lim_aux_data_map = new hash_map<gimple, lim_aux_data *>;
2474
2475 if (flag_tm)
2476 compute_transaction_bits ();
2477
2478 alloc_aux_for_edges (0);
2479
2480 memory_accesses.refs = new hash_table<mem_ref_hasher> (100);
2481 memory_accesses.refs_list.create (100);
2482 /* Allocate a special, unanalyzable mem-ref with ID zero. */
2483 memory_accesses.refs_list.quick_push
2484 (mem_ref_alloc (error_mark_node, 0, UNANALYZABLE_MEM_ID));
2485
2486 memory_accesses.refs_in_loop.create (number_of_loops (cfun));
2487 memory_accesses.refs_in_loop.quick_grow (number_of_loops (cfun));
2488 memory_accesses.refs_stored_in_loop.create (number_of_loops (cfun));
2489 memory_accesses.refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2490 memory_accesses.all_refs_stored_in_loop.create (number_of_loops (cfun));
2491 memory_accesses.all_refs_stored_in_loop.quick_grow (number_of_loops (cfun));
2492
2493 for (i = 0; i < number_of_loops (cfun); i++)
2494 {
2495 bitmap_initialize (&memory_accesses.refs_in_loop[i],
2496 &lim_bitmap_obstack);
2497 bitmap_initialize (&memory_accesses.refs_stored_in_loop[i],
2498 &lim_bitmap_obstack);
2499 bitmap_initialize (&memory_accesses.all_refs_stored_in_loop[i],
2500 &lim_bitmap_obstack);
2501 }
2502
2503 memory_accesses.ttae_cache = NULL;
2504
2505 /* Initialize bb_loop_postorder with a mapping from loop->num to
2506 its postorder index. */
2507 i = 0;
2508 bb_loop_postorder = XNEWVEC (unsigned, number_of_loops (cfun));
2509 FOR_EACH_LOOP (loop, LI_FROM_INNERMOST)
2510 bb_loop_postorder[loop->num] = i++;
2511 }
2512
2513 /* Cleans up after the invariant motion pass. */
2514
2515 static void
2516 tree_ssa_lim_finalize (void)
2517 {
2518 basic_block bb;
2519 unsigned i;
2520 mem_ref_p ref;
2521
2522 free_aux_for_edges ();
2523
2524 FOR_EACH_BB_FN (bb, cfun)
2525 SET_ALWAYS_EXECUTED_IN (bb, NULL);
2526
2527 bitmap_obstack_release (&lim_bitmap_obstack);
2528 delete lim_aux_data_map;
2529
2530 delete memory_accesses.refs;
2531 memory_accesses.refs = NULL;
2532
2533 FOR_EACH_VEC_ELT (memory_accesses.refs_list, i, ref)
2534 memref_free (ref);
2535 memory_accesses.refs_list.release ();
2536 obstack_free (&mem_ref_obstack, NULL);
2537
2538 memory_accesses.refs_in_loop.release ();
2539 memory_accesses.refs_stored_in_loop.release ();
2540 memory_accesses.all_refs_stored_in_loop.release ();
2541
2542 if (memory_accesses.ttae_cache)
2543 free_affine_expand_cache (&memory_accesses.ttae_cache);
2544
2545 free (bb_loop_postorder);
2546 }
2547
2548 /* Moves invariants from loops. Only "expensive" invariants are moved out --
2549 i.e. those that are likely to be win regardless of the register pressure. */
2550
2551 unsigned int
2552 tree_ssa_lim (void)
2553 {
2554 unsigned int todo;
2555
2556 tree_ssa_lim_initialize ();
2557
2558 /* Gathers information about memory accesses in the loops. */
2559 analyze_memory_references ();
2560
2561 /* Fills ALWAYS_EXECUTED_IN information for basic blocks. */
2562 fill_always_executed_in ();
2563
2564 /* For each statement determine the outermost loop in that it is
2565 invariant and cost for computing the invariant. */
2566 invariantness_dom_walker (CDI_DOMINATORS)
2567 .walk (cfun->cfg->x_entry_block_ptr);
2568
2569 /* Execute store motion. Force the necessary invariants to be moved
2570 out of the loops as well. */
2571 store_motion ();
2572
2573 /* Move the expressions that are expensive enough. */
2574 todo = move_computations ();
2575
2576 tree_ssa_lim_finalize ();
2577
2578 return todo;
2579 }
2580
2581 /* Loop invariant motion pass. */
2582
2583 namespace {
2584
2585 const pass_data pass_data_lim =
2586 {
2587 GIMPLE_PASS, /* type */
2588 "lim", /* name */
2589 OPTGROUP_LOOP, /* optinfo_flags */
2590 TV_LIM, /* tv_id */
2591 PROP_cfg, /* properties_required */
2592 0, /* properties_provided */
2593 0, /* properties_destroyed */
2594 0, /* todo_flags_start */
2595 0, /* todo_flags_finish */
2596 };
2597
2598 class pass_lim : public gimple_opt_pass
2599 {
2600 public:
2601 pass_lim (gcc::context *ctxt)
2602 : gimple_opt_pass (pass_data_lim, ctxt)
2603 {}
2604
2605 /* opt_pass methods: */
2606 opt_pass * clone () { return new pass_lim (m_ctxt); }
2607 virtual bool gate (function *) { return flag_tree_loop_im != 0; }
2608 virtual unsigned int execute (function *);
2609
2610 }; // class pass_lim
2611
2612 unsigned int
2613 pass_lim::execute (function *fun)
2614 {
2615 if (number_of_loops (fun) <= 1)
2616 return 0;
2617
2618 return tree_ssa_lim ();
2619 }
2620
2621 } // anon namespace
2622
2623 gimple_opt_pass *
2624 make_pass_lim (gcc::context *ctxt)
2625 {
2626 return new pass_lim (ctxt);
2627 }
2628
2629