]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-phiopt.c
7f4a3fddb8073cd739214b6bc3a0e66f5adf053f
[thirdparty/gcc.git] / gcc / tree-ssa-phiopt.c
1 /* Optimization of PHI nodes by converting them into straightline code.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by the
8 Free Software Foundation; either version 3, or (at your option) any
9 later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
14 for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 #include "config.h"
21 #include "system.h"
22 #include "coretypes.h"
23 #include "hash-table.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "flags.h"
28 #include "tm_p.h"
29 #include "basic-block.h"
30 #include "gimple.h"
31 #include "gimplify.h"
32 #include "gimple-iterator.h"
33 #include "gimplify-me.h"
34 #include "gimple-ssa.h"
35 #include "tree-cfg.h"
36 #include "tree-phinodes.h"
37 #include "ssa-iterators.h"
38 #include "tree-ssanames.h"
39 #include "tree-dfa.h"
40 #include "tree-pass.h"
41 #include "langhooks.h"
42 #include "pointer-set.h"
43 #include "domwalk.h"
44 #include "cfgloop.h"
45 #include "tree-data-ref.h"
46 #include "gimple-pretty-print.h"
47 #include "insn-config.h"
48 #include "expr.h"
49 #include "optabs.h"
50 #include "tree-scalar-evolution.h"
51
52 #ifndef HAVE_conditional_move
53 #define HAVE_conditional_move (0)
54 #endif
55
56 static unsigned int tree_ssa_phiopt (void);
57 static unsigned int tree_ssa_phiopt_worker (bool, bool);
58 static bool conditional_replacement (basic_block, basic_block,
59 edge, edge, gimple, tree, tree);
60 static int value_replacement (basic_block, basic_block,
61 edge, edge, gimple, tree, tree);
62 static bool minmax_replacement (basic_block, basic_block,
63 edge, edge, gimple, tree, tree);
64 static bool abs_replacement (basic_block, basic_block,
65 edge, edge, gimple, tree, tree);
66 static bool cond_store_replacement (basic_block, basic_block, edge, edge,
67 struct pointer_set_t *);
68 static bool cond_if_else_store_replacement (basic_block, basic_block, basic_block);
69 static struct pointer_set_t * get_non_trapping (void);
70 static void replace_phi_edge_with_variable (basic_block, edge, gimple, tree);
71 static void hoist_adjacent_loads (basic_block, basic_block,
72 basic_block, basic_block);
73 static bool gate_hoist_loads (void);
74
75 /* This pass tries to replaces an if-then-else block with an
76 assignment. We have four kinds of transformations. Some of these
77 transformations are also performed by the ifcvt RTL optimizer.
78
79 Conditional Replacement
80 -----------------------
81
82 This transformation, implemented in conditional_replacement,
83 replaces
84
85 bb0:
86 if (cond) goto bb2; else goto bb1;
87 bb1:
88 bb2:
89 x = PHI <0 (bb1), 1 (bb0), ...>;
90
91 with
92
93 bb0:
94 x' = cond;
95 goto bb2;
96 bb2:
97 x = PHI <x' (bb0), ...>;
98
99 We remove bb1 as it becomes unreachable. This occurs often due to
100 gimplification of conditionals.
101
102 Value Replacement
103 -----------------
104
105 This transformation, implemented in value_replacement, replaces
106
107 bb0:
108 if (a != b) goto bb2; else goto bb1;
109 bb1:
110 bb2:
111 x = PHI <a (bb1), b (bb0), ...>;
112
113 with
114
115 bb0:
116 bb2:
117 x = PHI <b (bb0), ...>;
118
119 This opportunity can sometimes occur as a result of other
120 optimizations.
121
122
123 Another case caught by value replacement looks like this:
124
125 bb0:
126 t1 = a == CONST;
127 t2 = b > c;
128 t3 = t1 & t2;
129 if (t3 != 0) goto bb1; else goto bb2;
130 bb1:
131 bb2:
132 x = PHI (CONST, a)
133
134 Gets replaced with:
135 bb0:
136 bb2:
137 t1 = a == CONST;
138 t2 = b > c;
139 t3 = t1 & t2;
140 x = a;
141
142 ABS Replacement
143 ---------------
144
145 This transformation, implemented in abs_replacement, replaces
146
147 bb0:
148 if (a >= 0) goto bb2; else goto bb1;
149 bb1:
150 x = -a;
151 bb2:
152 x = PHI <x (bb1), a (bb0), ...>;
153
154 with
155
156 bb0:
157 x' = ABS_EXPR< a >;
158 bb2:
159 x = PHI <x' (bb0), ...>;
160
161 MIN/MAX Replacement
162 -------------------
163
164 This transformation, minmax_replacement replaces
165
166 bb0:
167 if (a <= b) goto bb2; else goto bb1;
168 bb1:
169 bb2:
170 x = PHI <b (bb1), a (bb0), ...>;
171
172 with
173
174 bb0:
175 x' = MIN_EXPR (a, b)
176 bb2:
177 x = PHI <x' (bb0), ...>;
178
179 A similar transformation is done for MAX_EXPR.
180
181
182 This pass also performs a fifth transformation of a slightly different
183 flavor.
184
185 Adjacent Load Hoisting
186 ----------------------
187
188 This transformation replaces
189
190 bb0:
191 if (...) goto bb2; else goto bb1;
192 bb1:
193 x1 = (<expr>).field1;
194 goto bb3;
195 bb2:
196 x2 = (<expr>).field2;
197 bb3:
198 # x = PHI <x1, x2>;
199
200 with
201
202 bb0:
203 x1 = (<expr>).field1;
204 x2 = (<expr>).field2;
205 if (...) goto bb2; else goto bb1;
206 bb1:
207 goto bb3;
208 bb2:
209 bb3:
210 # x = PHI <x1, x2>;
211
212 The purpose of this transformation is to enable generation of conditional
213 move instructions such as Intel CMOVE or PowerPC ISEL. Because one of
214 the loads is speculative, the transformation is restricted to very
215 specific cases to avoid introducing a page fault. We are looking for
216 the common idiom:
217
218 if (...)
219 x = y->left;
220 else
221 x = y->right;
222
223 where left and right are typically adjacent pointers in a tree structure. */
224
225 static unsigned int
226 tree_ssa_phiopt (void)
227 {
228 return tree_ssa_phiopt_worker (false, gate_hoist_loads ());
229 }
230
231 /* This pass tries to transform conditional stores into unconditional
232 ones, enabling further simplifications with the simpler then and else
233 blocks. In particular it replaces this:
234
235 bb0:
236 if (cond) goto bb2; else goto bb1;
237 bb1:
238 *p = RHS;
239 bb2:
240
241 with
242
243 bb0:
244 if (cond) goto bb1; else goto bb2;
245 bb1:
246 condtmp' = *p;
247 bb2:
248 condtmp = PHI <RHS, condtmp'>
249 *p = condtmp;
250
251 This transformation can only be done under several constraints,
252 documented below. It also replaces:
253
254 bb0:
255 if (cond) goto bb2; else goto bb1;
256 bb1:
257 *p = RHS1;
258 goto bb3;
259 bb2:
260 *p = RHS2;
261 bb3:
262
263 with
264
265 bb0:
266 if (cond) goto bb3; else goto bb1;
267 bb1:
268 bb3:
269 condtmp = PHI <RHS1, RHS2>
270 *p = condtmp; */
271
272 static unsigned int
273 tree_ssa_cs_elim (void)
274 {
275 unsigned todo;
276 /* ??? We are not interested in loop related info, but the following
277 will create it, ICEing as we didn't init loops with pre-headers.
278 An interfacing issue of find_data_references_in_bb. */
279 loop_optimizer_init (LOOPS_NORMAL);
280 scev_initialize ();
281 todo = tree_ssa_phiopt_worker (true, false);
282 scev_finalize ();
283 loop_optimizer_finalize ();
284 return todo;
285 }
286
287 /* Return the singleton PHI in the SEQ of PHIs for edges E0 and E1. */
288
289 static gimple
290 single_non_singleton_phi_for_edges (gimple_seq seq, edge e0, edge e1)
291 {
292 gimple_stmt_iterator i;
293 gimple phi = NULL;
294 if (gimple_seq_singleton_p (seq))
295 return gsi_stmt (gsi_start (seq));
296 for (i = gsi_start (seq); !gsi_end_p (i); gsi_next (&i))
297 {
298 gimple p = gsi_stmt (i);
299 /* If the PHI arguments are equal then we can skip this PHI. */
300 if (operand_equal_for_phi_arg_p (gimple_phi_arg_def (p, e0->dest_idx),
301 gimple_phi_arg_def (p, e1->dest_idx)))
302 continue;
303
304 /* If we already have a PHI that has the two edge arguments are
305 different, then return it is not a singleton for these PHIs. */
306 if (phi)
307 return NULL;
308
309 phi = p;
310 }
311 return phi;
312 }
313
314 /* The core routine of conditional store replacement and normal
315 phi optimizations. Both share much of the infrastructure in how
316 to match applicable basic block patterns. DO_STORE_ELIM is true
317 when we want to do conditional store replacement, false otherwise.
318 DO_HOIST_LOADS is true when we want to hoist adjacent loads out
319 of diamond control flow patterns, false otherwise. */
320 static unsigned int
321 tree_ssa_phiopt_worker (bool do_store_elim, bool do_hoist_loads)
322 {
323 basic_block bb;
324 basic_block *bb_order;
325 unsigned n, i;
326 bool cfgchanged = false;
327 struct pointer_set_t *nontrap = 0;
328
329 if (do_store_elim)
330 /* Calculate the set of non-trapping memory accesses. */
331 nontrap = get_non_trapping ();
332
333 /* Search every basic block for COND_EXPR we may be able to optimize.
334
335 We walk the blocks in order that guarantees that a block with
336 a single predecessor is processed before the predecessor.
337 This ensures that we collapse inner ifs before visiting the
338 outer ones, and also that we do not try to visit a removed
339 block. */
340 bb_order = single_pred_before_succ_order ();
341 n = n_basic_blocks - NUM_FIXED_BLOCKS;
342
343 for (i = 0; i < n; i++)
344 {
345 gimple cond_stmt, phi;
346 basic_block bb1, bb2;
347 edge e1, e2;
348 tree arg0, arg1;
349
350 bb = bb_order[i];
351
352 cond_stmt = last_stmt (bb);
353 /* Check to see if the last statement is a GIMPLE_COND. */
354 if (!cond_stmt
355 || gimple_code (cond_stmt) != GIMPLE_COND)
356 continue;
357
358 e1 = EDGE_SUCC (bb, 0);
359 bb1 = e1->dest;
360 e2 = EDGE_SUCC (bb, 1);
361 bb2 = e2->dest;
362
363 /* We cannot do the optimization on abnormal edges. */
364 if ((e1->flags & EDGE_ABNORMAL) != 0
365 || (e2->flags & EDGE_ABNORMAL) != 0)
366 continue;
367
368 /* If either bb1's succ or bb2 or bb2's succ is non NULL. */
369 if (EDGE_COUNT (bb1->succs) == 0
370 || bb2 == NULL
371 || EDGE_COUNT (bb2->succs) == 0)
372 continue;
373
374 /* Find the bb which is the fall through to the other. */
375 if (EDGE_SUCC (bb1, 0)->dest == bb2)
376 ;
377 else if (EDGE_SUCC (bb2, 0)->dest == bb1)
378 {
379 basic_block bb_tmp = bb1;
380 edge e_tmp = e1;
381 bb1 = bb2;
382 bb2 = bb_tmp;
383 e1 = e2;
384 e2 = e_tmp;
385 }
386 else if (do_store_elim
387 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
388 {
389 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
390
391 if (!single_succ_p (bb1)
392 || (EDGE_SUCC (bb1, 0)->flags & EDGE_FALLTHRU) == 0
393 || !single_succ_p (bb2)
394 || (EDGE_SUCC (bb2, 0)->flags & EDGE_FALLTHRU) == 0
395 || EDGE_COUNT (bb3->preds) != 2)
396 continue;
397 if (cond_if_else_store_replacement (bb1, bb2, bb3))
398 cfgchanged = true;
399 continue;
400 }
401 else if (do_hoist_loads
402 && EDGE_SUCC (bb1, 0)->dest == EDGE_SUCC (bb2, 0)->dest)
403 {
404 basic_block bb3 = EDGE_SUCC (bb1, 0)->dest;
405
406 if (!FLOAT_TYPE_P (TREE_TYPE (gimple_cond_lhs (cond_stmt)))
407 && single_succ_p (bb1)
408 && single_succ_p (bb2)
409 && single_pred_p (bb1)
410 && single_pred_p (bb2)
411 && EDGE_COUNT (bb->succs) == 2
412 && EDGE_COUNT (bb3->preds) == 2
413 /* If one edge or the other is dominant, a conditional move
414 is likely to perform worse than the well-predicted branch. */
415 && !predictable_edge_p (EDGE_SUCC (bb, 0))
416 && !predictable_edge_p (EDGE_SUCC (bb, 1)))
417 hoist_adjacent_loads (bb, bb1, bb2, bb3);
418 continue;
419 }
420 else
421 continue;
422
423 e1 = EDGE_SUCC (bb1, 0);
424
425 /* Make sure that bb1 is just a fall through. */
426 if (!single_succ_p (bb1)
427 || (e1->flags & EDGE_FALLTHRU) == 0)
428 continue;
429
430 /* Also make sure that bb1 only have one predecessor and that it
431 is bb. */
432 if (!single_pred_p (bb1)
433 || single_pred (bb1) != bb)
434 continue;
435
436 if (do_store_elim)
437 {
438 /* bb1 is the middle block, bb2 the join block, bb the split block,
439 e1 the fallthrough edge from bb1 to bb2. We can't do the
440 optimization if the join block has more than two predecessors. */
441 if (EDGE_COUNT (bb2->preds) > 2)
442 continue;
443 if (cond_store_replacement (bb1, bb2, e1, e2, nontrap))
444 cfgchanged = true;
445 }
446 else
447 {
448 gimple_seq phis = phi_nodes (bb2);
449 gimple_stmt_iterator gsi;
450 bool candorest = true;
451
452 /* Value replacement can work with more than one PHI
453 so try that first. */
454 for (gsi = gsi_start (phis); !gsi_end_p (gsi); gsi_next (&gsi))
455 {
456 phi = gsi_stmt (gsi);
457 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
458 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
459 if (value_replacement (bb, bb1, e1, e2, phi, arg0, arg1) == 2)
460 {
461 candorest = false;
462 cfgchanged = true;
463 break;
464 }
465 }
466
467 if (!candorest)
468 continue;
469
470 phi = single_non_singleton_phi_for_edges (phis, e1, e2);
471 if (!phi)
472 continue;
473
474 arg0 = gimple_phi_arg_def (phi, e1->dest_idx);
475 arg1 = gimple_phi_arg_def (phi, e2->dest_idx);
476
477 /* Something is wrong if we cannot find the arguments in the PHI
478 node. */
479 gcc_assert (arg0 != NULL && arg1 != NULL);
480
481 /* Do the replacement of conditional if it can be done. */
482 if (conditional_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
483 cfgchanged = true;
484 else if (abs_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
485 cfgchanged = true;
486 else if (minmax_replacement (bb, bb1, e1, e2, phi, arg0, arg1))
487 cfgchanged = true;
488 }
489 }
490
491 free (bb_order);
492
493 if (do_store_elim)
494 pointer_set_destroy (nontrap);
495 /* If the CFG has changed, we should cleanup the CFG. */
496 if (cfgchanged && do_store_elim)
497 {
498 /* In cond-store replacement we have added some loads on edges
499 and new VOPS (as we moved the store, and created a load). */
500 gsi_commit_edge_inserts ();
501 return TODO_cleanup_cfg | TODO_update_ssa_only_virtuals;
502 }
503 else if (cfgchanged)
504 return TODO_cleanup_cfg;
505 return 0;
506 }
507
508 /* Replace PHI node element whose edge is E in block BB with variable NEW.
509 Remove the edge from COND_BLOCK which does not lead to BB (COND_BLOCK
510 is known to have two edges, one of which must reach BB). */
511
512 static void
513 replace_phi_edge_with_variable (basic_block cond_block,
514 edge e, gimple phi, tree new_tree)
515 {
516 basic_block bb = gimple_bb (phi);
517 basic_block block_to_remove;
518 gimple_stmt_iterator gsi;
519
520 /* Change the PHI argument to new. */
521 SET_USE (PHI_ARG_DEF_PTR (phi, e->dest_idx), new_tree);
522
523 /* Remove the empty basic block. */
524 if (EDGE_SUCC (cond_block, 0)->dest == bb)
525 {
526 EDGE_SUCC (cond_block, 0)->flags |= EDGE_FALLTHRU;
527 EDGE_SUCC (cond_block, 0)->flags &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
528 EDGE_SUCC (cond_block, 0)->probability = REG_BR_PROB_BASE;
529 EDGE_SUCC (cond_block, 0)->count += EDGE_SUCC (cond_block, 1)->count;
530
531 block_to_remove = EDGE_SUCC (cond_block, 1)->dest;
532 }
533 else
534 {
535 EDGE_SUCC (cond_block, 1)->flags |= EDGE_FALLTHRU;
536 EDGE_SUCC (cond_block, 1)->flags
537 &= ~(EDGE_TRUE_VALUE | EDGE_FALSE_VALUE);
538 EDGE_SUCC (cond_block, 1)->probability = REG_BR_PROB_BASE;
539 EDGE_SUCC (cond_block, 1)->count += EDGE_SUCC (cond_block, 0)->count;
540
541 block_to_remove = EDGE_SUCC (cond_block, 0)->dest;
542 }
543 delete_basic_block (block_to_remove);
544
545 /* Eliminate the COND_EXPR at the end of COND_BLOCK. */
546 gsi = gsi_last_bb (cond_block);
547 gsi_remove (&gsi, true);
548
549 if (dump_file && (dump_flags & TDF_DETAILS))
550 fprintf (dump_file,
551 "COND_EXPR in block %d and PHI in block %d converted to straightline code.\n",
552 cond_block->index,
553 bb->index);
554 }
555
556 /* The function conditional_replacement does the main work of doing the
557 conditional replacement. Return true if the replacement is done.
558 Otherwise return false.
559 BB is the basic block where the replacement is going to be done on. ARG0
560 is argument 0 from PHI. Likewise for ARG1. */
561
562 static bool
563 conditional_replacement (basic_block cond_bb, basic_block middle_bb,
564 edge e0, edge e1, gimple phi,
565 tree arg0, tree arg1)
566 {
567 tree result;
568 gimple stmt, new_stmt;
569 tree cond;
570 gimple_stmt_iterator gsi;
571 edge true_edge, false_edge;
572 tree new_var, new_var2;
573 bool neg;
574
575 /* FIXME: Gimplification of complex type is too hard for now. */
576 /* We aren't prepared to handle vectors either (and it is a question
577 if it would be worthwhile anyway). */
578 if (!(INTEGRAL_TYPE_P (TREE_TYPE (arg0))
579 || POINTER_TYPE_P (TREE_TYPE (arg0)))
580 || !(INTEGRAL_TYPE_P (TREE_TYPE (arg1))
581 || POINTER_TYPE_P (TREE_TYPE (arg1))))
582 return false;
583
584 /* The PHI arguments have the constants 0 and 1, or 0 and -1, then
585 convert it to the conditional. */
586 if ((integer_zerop (arg0) && integer_onep (arg1))
587 || (integer_zerop (arg1) && integer_onep (arg0)))
588 neg = false;
589 else if ((integer_zerop (arg0) && integer_all_onesp (arg1))
590 || (integer_zerop (arg1) && integer_all_onesp (arg0)))
591 neg = true;
592 else
593 return false;
594
595 if (!empty_block_p (middle_bb))
596 return false;
597
598 /* At this point we know we have a GIMPLE_COND with two successors.
599 One successor is BB, the other successor is an empty block which
600 falls through into BB.
601
602 There is a single PHI node at the join point (BB) and its arguments
603 are constants (0, 1) or (0, -1).
604
605 So, given the condition COND, and the two PHI arguments, we can
606 rewrite this PHI into non-branching code:
607
608 dest = (COND) or dest = COND'
609
610 We use the condition as-is if the argument associated with the
611 true edge has the value one or the argument associated with the
612 false edge as the value zero. Note that those conditions are not
613 the same since only one of the outgoing edges from the GIMPLE_COND
614 will directly reach BB and thus be associated with an argument. */
615
616 stmt = last_stmt (cond_bb);
617 result = PHI_RESULT (phi);
618
619 /* To handle special cases like floating point comparison, it is easier and
620 less error-prone to build a tree and gimplify it on the fly though it is
621 less efficient. */
622 cond = fold_build2_loc (gimple_location (stmt),
623 gimple_cond_code (stmt), boolean_type_node,
624 gimple_cond_lhs (stmt), gimple_cond_rhs (stmt));
625
626 /* We need to know which is the true edge and which is the false
627 edge so that we know when to invert the condition below. */
628 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
629 if ((e0 == true_edge && integer_zerop (arg0))
630 || (e0 == false_edge && !integer_zerop (arg0))
631 || (e1 == true_edge && integer_zerop (arg1))
632 || (e1 == false_edge && !integer_zerop (arg1)))
633 cond = fold_build1_loc (gimple_location (stmt),
634 TRUTH_NOT_EXPR, TREE_TYPE (cond), cond);
635
636 if (neg)
637 {
638 cond = fold_convert_loc (gimple_location (stmt),
639 TREE_TYPE (result), cond);
640 cond = fold_build1_loc (gimple_location (stmt),
641 NEGATE_EXPR, TREE_TYPE (cond), cond);
642 }
643
644 /* Insert our new statements at the end of conditional block before the
645 COND_STMT. */
646 gsi = gsi_for_stmt (stmt);
647 new_var = force_gimple_operand_gsi (&gsi, cond, true, NULL, true,
648 GSI_SAME_STMT);
649
650 if (!useless_type_conversion_p (TREE_TYPE (result), TREE_TYPE (new_var)))
651 {
652 source_location locus_0, locus_1;
653
654 new_var2 = make_ssa_name (TREE_TYPE (result), NULL);
655 new_stmt = gimple_build_assign_with_ops (CONVERT_EXPR, new_var2,
656 new_var, NULL);
657 gsi_insert_before (&gsi, new_stmt, GSI_SAME_STMT);
658 new_var = new_var2;
659
660 /* Set the locus to the first argument, unless is doesn't have one. */
661 locus_0 = gimple_phi_arg_location (phi, 0);
662 locus_1 = gimple_phi_arg_location (phi, 1);
663 if (locus_0 == UNKNOWN_LOCATION)
664 locus_0 = locus_1;
665 gimple_set_location (new_stmt, locus_0);
666 }
667
668 replace_phi_edge_with_variable (cond_bb, e1, phi, new_var);
669
670 /* Note that we optimized this PHI. */
671 return true;
672 }
673
674 /* Update *ARG which is defined in STMT so that it contains the
675 computed value if that seems profitable. Return true if the
676 statement is made dead by that rewriting. */
677
678 static bool
679 jump_function_from_stmt (tree *arg, gimple stmt)
680 {
681 enum tree_code code = gimple_assign_rhs_code (stmt);
682 if (code == ADDR_EXPR)
683 {
684 /* For arg = &p->i transform it to p, if possible. */
685 tree rhs1 = gimple_assign_rhs1 (stmt);
686 HOST_WIDE_INT offset;
687 tree tem = get_addr_base_and_unit_offset (TREE_OPERAND (rhs1, 0),
688 &offset);
689 if (tem
690 && TREE_CODE (tem) == MEM_REF
691 && (mem_ref_offset (tem) + double_int::from_shwi (offset)).is_zero ())
692 {
693 *arg = TREE_OPERAND (tem, 0);
694 return true;
695 }
696 }
697 /* TODO: Much like IPA-CP jump-functions we want to handle constant
698 additions symbolically here, and we'd need to update the comparison
699 code that compares the arg + cst tuples in our caller. For now the
700 code above exactly handles the VEC_BASE pattern from vec.h. */
701 return false;
702 }
703
704 /* RHS is a source argument in a BIT_AND_EXPR which feeds a conditional
705 of the form SSA_NAME NE 0.
706
707 If RHS is fed by a simple EQ_EXPR comparison of two values, see if
708 the two input values of the EQ_EXPR match arg0 and arg1.
709
710 If so update *code and return TRUE. Otherwise return FALSE. */
711
712 static bool
713 rhs_is_fed_for_value_replacement (const_tree arg0, const_tree arg1,
714 enum tree_code *code, const_tree rhs)
715 {
716 /* Obviously if RHS is not an SSA_NAME, we can't look at the defining
717 statement. */
718 if (TREE_CODE (rhs) == SSA_NAME)
719 {
720 gimple def1 = SSA_NAME_DEF_STMT (rhs);
721
722 /* Verify the defining statement has an EQ_EXPR on the RHS. */
723 if (is_gimple_assign (def1) && gimple_assign_rhs_code (def1) == EQ_EXPR)
724 {
725 /* Finally verify the source operands of the EQ_EXPR are equal
726 to arg0 and arg1. */
727 tree op0 = gimple_assign_rhs1 (def1);
728 tree op1 = gimple_assign_rhs2 (def1);
729 if ((operand_equal_for_phi_arg_p (arg0, op0)
730 && operand_equal_for_phi_arg_p (arg1, op1))
731 || (operand_equal_for_phi_arg_p (arg0, op1)
732 && operand_equal_for_phi_arg_p (arg1, op0)))
733 {
734 /* We will perform the optimization. */
735 *code = gimple_assign_rhs_code (def1);
736 return true;
737 }
738 }
739 }
740 return false;
741 }
742
743 /* Return TRUE if arg0/arg1 are equal to the rhs/lhs or lhs/rhs of COND.
744
745 Also return TRUE if arg0/arg1 are equal to the source arguments of a
746 an EQ comparison feeding a BIT_AND_EXPR which feeds COND.
747
748 Return FALSE otherwise. */
749
750 static bool
751 operand_equal_for_value_replacement (const_tree arg0, const_tree arg1,
752 enum tree_code *code, gimple cond)
753 {
754 gimple def;
755 tree lhs = gimple_cond_lhs (cond);
756 tree rhs = gimple_cond_rhs (cond);
757
758 if ((operand_equal_for_phi_arg_p (arg0, lhs)
759 && operand_equal_for_phi_arg_p (arg1, rhs))
760 || (operand_equal_for_phi_arg_p (arg1, lhs)
761 && operand_equal_for_phi_arg_p (arg0, rhs)))
762 return true;
763
764 /* Now handle more complex case where we have an EQ comparison
765 which feeds a BIT_AND_EXPR which feeds COND.
766
767 First verify that COND is of the form SSA_NAME NE 0. */
768 if (*code != NE_EXPR || !integer_zerop (rhs)
769 || TREE_CODE (lhs) != SSA_NAME)
770 return false;
771
772 /* Now ensure that SSA_NAME is set by a BIT_AND_EXPR. */
773 def = SSA_NAME_DEF_STMT (lhs);
774 if (!is_gimple_assign (def) || gimple_assign_rhs_code (def) != BIT_AND_EXPR)
775 return false;
776
777 /* Now verify arg0/arg1 correspond to the source arguments of an
778 EQ comparison feeding the BIT_AND_EXPR. */
779
780 tree tmp = gimple_assign_rhs1 (def);
781 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
782 return true;
783
784 tmp = gimple_assign_rhs2 (def);
785 if (rhs_is_fed_for_value_replacement (arg0, arg1, code, tmp))
786 return true;
787
788 return false;
789 }
790
791 /* The function value_replacement does the main work of doing the value
792 replacement. Return non-zero if the replacement is done. Otherwise return
793 0. If we remove the middle basic block, return 2.
794 BB is the basic block where the replacement is going to be done on. ARG0
795 is argument 0 from the PHI. Likewise for ARG1. */
796
797 static int
798 value_replacement (basic_block cond_bb, basic_block middle_bb,
799 edge e0, edge e1, gimple phi,
800 tree arg0, tree arg1)
801 {
802 gimple_stmt_iterator gsi;
803 gimple cond;
804 edge true_edge, false_edge;
805 enum tree_code code;
806 bool emtpy_or_with_defined_p = true;
807
808 /* If the type says honor signed zeros we cannot do this
809 optimization. */
810 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
811 return 0;
812
813 /* If there is a statement in MIDDLE_BB that defines one of the PHI
814 arguments, then adjust arg0 or arg1. */
815 gsi = gsi_after_labels (middle_bb);
816 if (!gsi_end_p (gsi) && is_gimple_debug (gsi_stmt (gsi)))
817 gsi_next_nondebug (&gsi);
818 while (!gsi_end_p (gsi))
819 {
820 gimple stmt = gsi_stmt (gsi);
821 tree lhs;
822 gsi_next_nondebug (&gsi);
823 if (!is_gimple_assign (stmt))
824 {
825 emtpy_or_with_defined_p = false;
826 continue;
827 }
828 /* Now try to adjust arg0 or arg1 according to the computation
829 in the statement. */
830 lhs = gimple_assign_lhs (stmt);
831 if (!(lhs == arg0
832 && jump_function_from_stmt (&arg0, stmt))
833 || (lhs == arg1
834 && jump_function_from_stmt (&arg1, stmt)))
835 emtpy_or_with_defined_p = false;
836 }
837
838 cond = last_stmt (cond_bb);
839 code = gimple_cond_code (cond);
840
841 /* This transformation is only valid for equality comparisons. */
842 if (code != NE_EXPR && code != EQ_EXPR)
843 return 0;
844
845 /* We need to know which is the true edge and which is the false
846 edge so that we know if have abs or negative abs. */
847 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
848
849 /* At this point we know we have a COND_EXPR with two successors.
850 One successor is BB, the other successor is an empty block which
851 falls through into BB.
852
853 The condition for the COND_EXPR is known to be NE_EXPR or EQ_EXPR.
854
855 There is a single PHI node at the join point (BB) with two arguments.
856
857 We now need to verify that the two arguments in the PHI node match
858 the two arguments to the equality comparison. */
859
860 if (operand_equal_for_value_replacement (arg0, arg1, &code, cond))
861 {
862 edge e;
863 tree arg;
864
865 /* For NE_EXPR, we want to build an assignment result = arg where
866 arg is the PHI argument associated with the true edge. For
867 EQ_EXPR we want the PHI argument associated with the false edge. */
868 e = (code == NE_EXPR ? true_edge : false_edge);
869
870 /* Unfortunately, E may not reach BB (it may instead have gone to
871 OTHER_BLOCK). If that is the case, then we want the single outgoing
872 edge from OTHER_BLOCK which reaches BB and represents the desired
873 path from COND_BLOCK. */
874 if (e->dest == middle_bb)
875 e = single_succ_edge (e->dest);
876
877 /* Now we know the incoming edge to BB that has the argument for the
878 RHS of our new assignment statement. */
879 if (e0 == e)
880 arg = arg0;
881 else
882 arg = arg1;
883
884 /* If the middle basic block was empty or is defining the
885 PHI arguments and this is a single phi where the args are different
886 for the edges e0 and e1 then we can remove the middle basic block. */
887 if (emtpy_or_with_defined_p
888 && single_non_singleton_phi_for_edges (phi_nodes (gimple_bb (phi)),
889 e0, e1))
890 {
891 replace_phi_edge_with_variable (cond_bb, e1, phi, arg);
892 /* Note that we optimized this PHI. */
893 return 2;
894 }
895 else
896 {
897 /* Replace the PHI arguments with arg. */
898 SET_PHI_ARG_DEF (phi, e0->dest_idx, arg);
899 SET_PHI_ARG_DEF (phi, e1->dest_idx, arg);
900 if (dump_file && (dump_flags & TDF_DETAILS))
901 {
902 fprintf (dump_file, "PHI ");
903 print_generic_expr (dump_file, gimple_phi_result (phi), 0);
904 fprintf (dump_file, " reduced for COND_EXPR in block %d to ",
905 cond_bb->index);
906 print_generic_expr (dump_file, arg, 0);
907 fprintf (dump_file, ".\n");
908 }
909 return 1;
910 }
911
912 }
913 return 0;
914 }
915
916 /* The function minmax_replacement does the main work of doing the minmax
917 replacement. Return true if the replacement is done. Otherwise return
918 false.
919 BB is the basic block where the replacement is going to be done on. ARG0
920 is argument 0 from the PHI. Likewise for ARG1. */
921
922 static bool
923 minmax_replacement (basic_block cond_bb, basic_block middle_bb,
924 edge e0, edge e1, gimple phi,
925 tree arg0, tree arg1)
926 {
927 tree result, type;
928 gimple cond, new_stmt;
929 edge true_edge, false_edge;
930 enum tree_code cmp, minmax, ass_code;
931 tree smaller, larger, arg_true, arg_false;
932 gimple_stmt_iterator gsi, gsi_from;
933
934 type = TREE_TYPE (PHI_RESULT (phi));
935
936 /* The optimization may be unsafe due to NaNs. */
937 if (HONOR_NANS (TYPE_MODE (type)))
938 return false;
939
940 cond = last_stmt (cond_bb);
941 cmp = gimple_cond_code (cond);
942
943 /* This transformation is only valid for order comparisons. Record which
944 operand is smaller/larger if the result of the comparison is true. */
945 if (cmp == LT_EXPR || cmp == LE_EXPR)
946 {
947 smaller = gimple_cond_lhs (cond);
948 larger = gimple_cond_rhs (cond);
949 }
950 else if (cmp == GT_EXPR || cmp == GE_EXPR)
951 {
952 smaller = gimple_cond_rhs (cond);
953 larger = gimple_cond_lhs (cond);
954 }
955 else
956 return false;
957
958 /* We need to know which is the true edge and which is the false
959 edge so that we know if have abs or negative abs. */
960 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
961
962 /* Forward the edges over the middle basic block. */
963 if (true_edge->dest == middle_bb)
964 true_edge = EDGE_SUCC (true_edge->dest, 0);
965 if (false_edge->dest == middle_bb)
966 false_edge = EDGE_SUCC (false_edge->dest, 0);
967
968 if (true_edge == e0)
969 {
970 gcc_assert (false_edge == e1);
971 arg_true = arg0;
972 arg_false = arg1;
973 }
974 else
975 {
976 gcc_assert (false_edge == e0);
977 gcc_assert (true_edge == e1);
978 arg_true = arg1;
979 arg_false = arg0;
980 }
981
982 if (empty_block_p (middle_bb))
983 {
984 if (operand_equal_for_phi_arg_p (arg_true, smaller)
985 && operand_equal_for_phi_arg_p (arg_false, larger))
986 {
987 /* Case
988
989 if (smaller < larger)
990 rslt = smaller;
991 else
992 rslt = larger; */
993 minmax = MIN_EXPR;
994 }
995 else if (operand_equal_for_phi_arg_p (arg_false, smaller)
996 && operand_equal_for_phi_arg_p (arg_true, larger))
997 minmax = MAX_EXPR;
998 else
999 return false;
1000 }
1001 else
1002 {
1003 /* Recognize the following case, assuming d <= u:
1004
1005 if (a <= u)
1006 b = MAX (a, d);
1007 x = PHI <b, u>
1008
1009 This is equivalent to
1010
1011 b = MAX (a, d);
1012 x = MIN (b, u); */
1013
1014 gimple assign = last_and_only_stmt (middle_bb);
1015 tree lhs, op0, op1, bound;
1016
1017 if (!assign
1018 || gimple_code (assign) != GIMPLE_ASSIGN)
1019 return false;
1020
1021 lhs = gimple_assign_lhs (assign);
1022 ass_code = gimple_assign_rhs_code (assign);
1023 if (ass_code != MAX_EXPR && ass_code != MIN_EXPR)
1024 return false;
1025 op0 = gimple_assign_rhs1 (assign);
1026 op1 = gimple_assign_rhs2 (assign);
1027
1028 if (true_edge->src == middle_bb)
1029 {
1030 /* We got here if the condition is true, i.e., SMALLER < LARGER. */
1031 if (!operand_equal_for_phi_arg_p (lhs, arg_true))
1032 return false;
1033
1034 if (operand_equal_for_phi_arg_p (arg_false, larger))
1035 {
1036 /* Case
1037
1038 if (smaller < larger)
1039 {
1040 r' = MAX_EXPR (smaller, bound)
1041 }
1042 r = PHI <r', larger> --> to be turned to MIN_EXPR. */
1043 if (ass_code != MAX_EXPR)
1044 return false;
1045
1046 minmax = MIN_EXPR;
1047 if (operand_equal_for_phi_arg_p (op0, smaller))
1048 bound = op1;
1049 else if (operand_equal_for_phi_arg_p (op1, smaller))
1050 bound = op0;
1051 else
1052 return false;
1053
1054 /* We need BOUND <= LARGER. */
1055 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1056 bound, larger)))
1057 return false;
1058 }
1059 else if (operand_equal_for_phi_arg_p (arg_false, smaller))
1060 {
1061 /* Case
1062
1063 if (smaller < larger)
1064 {
1065 r' = MIN_EXPR (larger, bound)
1066 }
1067 r = PHI <r', smaller> --> to be turned to MAX_EXPR. */
1068 if (ass_code != MIN_EXPR)
1069 return false;
1070
1071 minmax = MAX_EXPR;
1072 if (operand_equal_for_phi_arg_p (op0, larger))
1073 bound = op1;
1074 else if (operand_equal_for_phi_arg_p (op1, larger))
1075 bound = op0;
1076 else
1077 return false;
1078
1079 /* We need BOUND >= SMALLER. */
1080 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1081 bound, smaller)))
1082 return false;
1083 }
1084 else
1085 return false;
1086 }
1087 else
1088 {
1089 /* We got here if the condition is false, i.e., SMALLER > LARGER. */
1090 if (!operand_equal_for_phi_arg_p (lhs, arg_false))
1091 return false;
1092
1093 if (operand_equal_for_phi_arg_p (arg_true, larger))
1094 {
1095 /* Case
1096
1097 if (smaller > larger)
1098 {
1099 r' = MIN_EXPR (smaller, bound)
1100 }
1101 r = PHI <r', larger> --> to be turned to MAX_EXPR. */
1102 if (ass_code != MIN_EXPR)
1103 return false;
1104
1105 minmax = MAX_EXPR;
1106 if (operand_equal_for_phi_arg_p (op0, smaller))
1107 bound = op1;
1108 else if (operand_equal_for_phi_arg_p (op1, smaller))
1109 bound = op0;
1110 else
1111 return false;
1112
1113 /* We need BOUND >= LARGER. */
1114 if (!integer_nonzerop (fold_build2 (GE_EXPR, boolean_type_node,
1115 bound, larger)))
1116 return false;
1117 }
1118 else if (operand_equal_for_phi_arg_p (arg_true, smaller))
1119 {
1120 /* Case
1121
1122 if (smaller > larger)
1123 {
1124 r' = MAX_EXPR (larger, bound)
1125 }
1126 r = PHI <r', smaller> --> to be turned to MIN_EXPR. */
1127 if (ass_code != MAX_EXPR)
1128 return false;
1129
1130 minmax = MIN_EXPR;
1131 if (operand_equal_for_phi_arg_p (op0, larger))
1132 bound = op1;
1133 else if (operand_equal_for_phi_arg_p (op1, larger))
1134 bound = op0;
1135 else
1136 return false;
1137
1138 /* We need BOUND <= SMALLER. */
1139 if (!integer_nonzerop (fold_build2 (LE_EXPR, boolean_type_node,
1140 bound, smaller)))
1141 return false;
1142 }
1143 else
1144 return false;
1145 }
1146
1147 /* Move the statement from the middle block. */
1148 gsi = gsi_last_bb (cond_bb);
1149 gsi_from = gsi_last_nondebug_bb (middle_bb);
1150 gsi_move_before (&gsi_from, &gsi);
1151 }
1152
1153 /* Emit the statement to compute min/max. */
1154 result = duplicate_ssa_name (PHI_RESULT (phi), NULL);
1155 new_stmt = gimple_build_assign_with_ops (minmax, result, arg0, arg1);
1156 gsi = gsi_last_bb (cond_bb);
1157 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1158
1159 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1160 return true;
1161 }
1162
1163 /* The function absolute_replacement does the main work of doing the absolute
1164 replacement. Return true if the replacement is done. Otherwise return
1165 false.
1166 bb is the basic block where the replacement is going to be done on. arg0
1167 is argument 0 from the phi. Likewise for arg1. */
1168
1169 static bool
1170 abs_replacement (basic_block cond_bb, basic_block middle_bb,
1171 edge e0 ATTRIBUTE_UNUSED, edge e1,
1172 gimple phi, tree arg0, tree arg1)
1173 {
1174 tree result;
1175 gimple new_stmt, cond;
1176 gimple_stmt_iterator gsi;
1177 edge true_edge, false_edge;
1178 gimple assign;
1179 edge e;
1180 tree rhs, lhs;
1181 bool negate;
1182 enum tree_code cond_code;
1183
1184 /* If the type says honor signed zeros we cannot do this
1185 optimization. */
1186 if (HONOR_SIGNED_ZEROS (TYPE_MODE (TREE_TYPE (arg1))))
1187 return false;
1188
1189 /* OTHER_BLOCK must have only one executable statement which must have the
1190 form arg0 = -arg1 or arg1 = -arg0. */
1191
1192 assign = last_and_only_stmt (middle_bb);
1193 /* If we did not find the proper negation assignment, then we can not
1194 optimize. */
1195 if (assign == NULL)
1196 return false;
1197
1198 /* If we got here, then we have found the only executable statement
1199 in OTHER_BLOCK. If it is anything other than arg = -arg1 or
1200 arg1 = -arg0, then we can not optimize. */
1201 if (gimple_code (assign) != GIMPLE_ASSIGN)
1202 return false;
1203
1204 lhs = gimple_assign_lhs (assign);
1205
1206 if (gimple_assign_rhs_code (assign) != NEGATE_EXPR)
1207 return false;
1208
1209 rhs = gimple_assign_rhs1 (assign);
1210
1211 /* The assignment has to be arg0 = -arg1 or arg1 = -arg0. */
1212 if (!(lhs == arg0 && rhs == arg1)
1213 && !(lhs == arg1 && rhs == arg0))
1214 return false;
1215
1216 cond = last_stmt (cond_bb);
1217 result = PHI_RESULT (phi);
1218
1219 /* Only relationals comparing arg[01] against zero are interesting. */
1220 cond_code = gimple_cond_code (cond);
1221 if (cond_code != GT_EXPR && cond_code != GE_EXPR
1222 && cond_code != LT_EXPR && cond_code != LE_EXPR)
1223 return false;
1224
1225 /* Make sure the conditional is arg[01] OP y. */
1226 if (gimple_cond_lhs (cond) != rhs)
1227 return false;
1228
1229 if (FLOAT_TYPE_P (TREE_TYPE (gimple_cond_rhs (cond)))
1230 ? real_zerop (gimple_cond_rhs (cond))
1231 : integer_zerop (gimple_cond_rhs (cond)))
1232 ;
1233 else
1234 return false;
1235
1236 /* We need to know which is the true edge and which is the false
1237 edge so that we know if have abs or negative abs. */
1238 extract_true_false_edges_from_block (cond_bb, &true_edge, &false_edge);
1239
1240 /* For GT_EXPR/GE_EXPR, if the true edge goes to OTHER_BLOCK, then we
1241 will need to negate the result. Similarly for LT_EXPR/LE_EXPR if
1242 the false edge goes to OTHER_BLOCK. */
1243 if (cond_code == GT_EXPR || cond_code == GE_EXPR)
1244 e = true_edge;
1245 else
1246 e = false_edge;
1247
1248 if (e->dest == middle_bb)
1249 negate = true;
1250 else
1251 negate = false;
1252
1253 result = duplicate_ssa_name (result, NULL);
1254
1255 if (negate)
1256 lhs = make_ssa_name (TREE_TYPE (result), NULL);
1257 else
1258 lhs = result;
1259
1260 /* Build the modify expression with abs expression. */
1261 new_stmt = gimple_build_assign_with_ops (ABS_EXPR, lhs, rhs, NULL);
1262
1263 gsi = gsi_last_bb (cond_bb);
1264 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1265
1266 if (negate)
1267 {
1268 /* Get the right GSI. We want to insert after the recently
1269 added ABS_EXPR statement (which we know is the first statement
1270 in the block. */
1271 new_stmt = gimple_build_assign_with_ops (NEGATE_EXPR, result, lhs, NULL);
1272
1273 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1274 }
1275
1276 replace_phi_edge_with_variable (cond_bb, e1, phi, result);
1277
1278 /* Note that we optimized this PHI. */
1279 return true;
1280 }
1281
1282 /* Auxiliary functions to determine the set of memory accesses which
1283 can't trap because they are preceded by accesses to the same memory
1284 portion. We do that for MEM_REFs, so we only need to track
1285 the SSA_NAME of the pointer indirectly referenced. The algorithm
1286 simply is a walk over all instructions in dominator order. When
1287 we see an MEM_REF we determine if we've already seen a same
1288 ref anywhere up to the root of the dominator tree. If we do the
1289 current access can't trap. If we don't see any dominating access
1290 the current access might trap, but might also make later accesses
1291 non-trapping, so we remember it. We need to be careful with loads
1292 or stores, for instance a load might not trap, while a store would,
1293 so if we see a dominating read access this doesn't mean that a later
1294 write access would not trap. Hence we also need to differentiate the
1295 type of access(es) seen.
1296
1297 ??? We currently are very conservative and assume that a load might
1298 trap even if a store doesn't (write-only memory). This probably is
1299 overly conservative. */
1300
1301 /* A hash-table of SSA_NAMEs, and in which basic block an MEM_REF
1302 through it was seen, which would constitute a no-trap region for
1303 same accesses. */
1304 struct name_to_bb
1305 {
1306 unsigned int ssa_name_ver;
1307 unsigned int phase;
1308 bool store;
1309 HOST_WIDE_INT offset, size;
1310 basic_block bb;
1311 };
1312
1313 /* Hashtable helpers. */
1314
1315 struct ssa_names_hasher : typed_free_remove <name_to_bb>
1316 {
1317 typedef name_to_bb value_type;
1318 typedef name_to_bb compare_type;
1319 static inline hashval_t hash (const value_type *);
1320 static inline bool equal (const value_type *, const compare_type *);
1321 };
1322
1323 /* Used for quick clearing of the hash-table when we see calls.
1324 Hash entries with phase < nt_call_phase are invalid. */
1325 static unsigned int nt_call_phase;
1326
1327 /* The hash function. */
1328
1329 inline hashval_t
1330 ssa_names_hasher::hash (const value_type *n)
1331 {
1332 return n->ssa_name_ver ^ (((hashval_t) n->store) << 31)
1333 ^ (n->offset << 6) ^ (n->size << 3);
1334 }
1335
1336 /* The equality function of *P1 and *P2. */
1337
1338 inline bool
1339 ssa_names_hasher::equal (const value_type *n1, const compare_type *n2)
1340 {
1341 return n1->ssa_name_ver == n2->ssa_name_ver
1342 && n1->store == n2->store
1343 && n1->offset == n2->offset
1344 && n1->size == n2->size;
1345 }
1346
1347 /* The hash table for remembering what we've seen. */
1348 static hash_table <ssa_names_hasher> seen_ssa_names;
1349
1350 /* We see the expression EXP in basic block BB. If it's an interesting
1351 expression (an MEM_REF through an SSA_NAME) possibly insert the
1352 expression into the set NONTRAP or the hash table of seen expressions.
1353 STORE is true if this expression is on the LHS, otherwise it's on
1354 the RHS. */
1355 static void
1356 add_or_mark_expr (basic_block bb, tree exp,
1357 struct pointer_set_t *nontrap, bool store)
1358 {
1359 HOST_WIDE_INT size;
1360
1361 if (TREE_CODE (exp) == MEM_REF
1362 && TREE_CODE (TREE_OPERAND (exp, 0)) == SSA_NAME
1363 && host_integerp (TREE_OPERAND (exp, 1), 0)
1364 && (size = int_size_in_bytes (TREE_TYPE (exp))) > 0)
1365 {
1366 tree name = TREE_OPERAND (exp, 0);
1367 struct name_to_bb map;
1368 name_to_bb **slot;
1369 struct name_to_bb *n2bb;
1370 basic_block found_bb = 0;
1371
1372 /* Try to find the last seen MEM_REF through the same
1373 SSA_NAME, which can trap. */
1374 map.ssa_name_ver = SSA_NAME_VERSION (name);
1375 map.phase = 0;
1376 map.bb = 0;
1377 map.store = store;
1378 map.offset = tree_low_cst (TREE_OPERAND (exp, 1), 0);
1379 map.size = size;
1380
1381 slot = seen_ssa_names.find_slot (&map, INSERT);
1382 n2bb = *slot;
1383 if (n2bb && n2bb->phase >= nt_call_phase)
1384 found_bb = n2bb->bb;
1385
1386 /* If we've found a trapping MEM_REF, _and_ it dominates EXP
1387 (it's in a basic block on the path from us to the dominator root)
1388 then we can't trap. */
1389 if (found_bb && (((size_t)found_bb->aux) & 1) == 1)
1390 {
1391 pointer_set_insert (nontrap, exp);
1392 }
1393 else
1394 {
1395 /* EXP might trap, so insert it into the hash table. */
1396 if (n2bb)
1397 {
1398 n2bb->phase = nt_call_phase;
1399 n2bb->bb = bb;
1400 }
1401 else
1402 {
1403 n2bb = XNEW (struct name_to_bb);
1404 n2bb->ssa_name_ver = SSA_NAME_VERSION (name);
1405 n2bb->phase = nt_call_phase;
1406 n2bb->bb = bb;
1407 n2bb->store = store;
1408 n2bb->offset = map.offset;
1409 n2bb->size = size;
1410 *slot = n2bb;
1411 }
1412 }
1413 }
1414 }
1415
1416 class nontrapping_dom_walker : public dom_walker
1417 {
1418 public:
1419 nontrapping_dom_walker (cdi_direction direction, pointer_set_t *ps)
1420 : dom_walker (direction), m_nontrapping (ps) {}
1421
1422 virtual void before_dom_children (basic_block);
1423 virtual void after_dom_children (basic_block);
1424
1425 private:
1426 pointer_set_t *m_nontrapping;
1427 };
1428
1429 /* Called by walk_dominator_tree, when entering the block BB. */
1430 void
1431 nontrapping_dom_walker::before_dom_children (basic_block bb)
1432 {
1433 edge e;
1434 edge_iterator ei;
1435 gimple_stmt_iterator gsi;
1436
1437 /* If we haven't seen all our predecessors, clear the hash-table. */
1438 FOR_EACH_EDGE (e, ei, bb->preds)
1439 if ((((size_t)e->src->aux) & 2) == 0)
1440 {
1441 nt_call_phase++;
1442 break;
1443 }
1444
1445 /* Mark this BB as being on the path to dominator root and as visited. */
1446 bb->aux = (void*)(1 | 2);
1447
1448 /* And walk the statements in order. */
1449 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1450 {
1451 gimple stmt = gsi_stmt (gsi);
1452
1453 if (is_gimple_call (stmt) && !nonfreeing_call_p (stmt))
1454 nt_call_phase++;
1455 else if (gimple_assign_single_p (stmt) && !gimple_has_volatile_ops (stmt))
1456 {
1457 add_or_mark_expr (bb, gimple_assign_lhs (stmt), m_nontrapping, true);
1458 add_or_mark_expr (bb, gimple_assign_rhs1 (stmt), m_nontrapping, false);
1459 }
1460 }
1461 }
1462
1463 /* Called by walk_dominator_tree, when basic block BB is exited. */
1464 void
1465 nontrapping_dom_walker::after_dom_children (basic_block bb)
1466 {
1467 /* This BB isn't on the path to dominator root anymore. */
1468 bb->aux = (void*)2;
1469 }
1470
1471 /* This is the entry point of gathering non trapping memory accesses.
1472 It will do a dominator walk over the whole function, and it will
1473 make use of the bb->aux pointers. It returns a set of trees
1474 (the MEM_REFs itself) which can't trap. */
1475 static struct pointer_set_t *
1476 get_non_trapping (void)
1477 {
1478 nt_call_phase = 0;
1479 pointer_set_t *nontrap = pointer_set_create ();
1480 seen_ssa_names.create (128);
1481 /* We're going to do a dominator walk, so ensure that we have
1482 dominance information. */
1483 calculate_dominance_info (CDI_DOMINATORS);
1484
1485 nontrapping_dom_walker (CDI_DOMINATORS, nontrap)
1486 .walk (cfun->cfg->x_entry_block_ptr);
1487
1488 seen_ssa_names.dispose ();
1489
1490 clear_aux_for_blocks ();
1491 return nontrap;
1492 }
1493
1494 /* Do the main work of conditional store replacement. We already know
1495 that the recognized pattern looks like so:
1496
1497 split:
1498 if (cond) goto MIDDLE_BB; else goto JOIN_BB (edge E1)
1499 MIDDLE_BB:
1500 something
1501 fallthrough (edge E0)
1502 JOIN_BB:
1503 some more
1504
1505 We check that MIDDLE_BB contains only one store, that that store
1506 doesn't trap (not via NOTRAP, but via checking if an access to the same
1507 memory location dominates us) and that the store has a "simple" RHS. */
1508
1509 static bool
1510 cond_store_replacement (basic_block middle_bb, basic_block join_bb,
1511 edge e0, edge e1, struct pointer_set_t *nontrap)
1512 {
1513 gimple assign = last_and_only_stmt (middle_bb);
1514 tree lhs, rhs, name, name2;
1515 gimple newphi, new_stmt;
1516 gimple_stmt_iterator gsi;
1517 source_location locus;
1518
1519 /* Check if middle_bb contains of only one store. */
1520 if (!assign
1521 || !gimple_assign_single_p (assign)
1522 || gimple_has_volatile_ops (assign))
1523 return false;
1524
1525 locus = gimple_location (assign);
1526 lhs = gimple_assign_lhs (assign);
1527 rhs = gimple_assign_rhs1 (assign);
1528 if (TREE_CODE (lhs) != MEM_REF
1529 || TREE_CODE (TREE_OPERAND (lhs, 0)) != SSA_NAME
1530 || !is_gimple_reg_type (TREE_TYPE (lhs)))
1531 return false;
1532
1533 /* Prove that we can move the store down. We could also check
1534 TREE_THIS_NOTRAP here, but in that case we also could move stores,
1535 whose value is not available readily, which we want to avoid. */
1536 if (!pointer_set_contains (nontrap, lhs))
1537 return false;
1538
1539 /* Now we've checked the constraints, so do the transformation:
1540 1) Remove the single store. */
1541 gsi = gsi_for_stmt (assign);
1542 unlink_stmt_vdef (assign);
1543 gsi_remove (&gsi, true);
1544 release_defs (assign);
1545
1546 /* 2) Insert a load from the memory of the store to the temporary
1547 on the edge which did not contain the store. */
1548 lhs = unshare_expr (lhs);
1549 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1550 new_stmt = gimple_build_assign (name, lhs);
1551 gimple_set_location (new_stmt, locus);
1552 gsi_insert_on_edge (e1, new_stmt);
1553
1554 /* 3) Create a PHI node at the join block, with one argument
1555 holding the old RHS, and the other holding the temporary
1556 where we stored the old memory contents. */
1557 name2 = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1558 newphi = create_phi_node (name2, join_bb);
1559 add_phi_arg (newphi, rhs, e0, locus);
1560 add_phi_arg (newphi, name, e1, locus);
1561
1562 lhs = unshare_expr (lhs);
1563 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1564
1565 /* 4) Insert that PHI node. */
1566 gsi = gsi_after_labels (join_bb);
1567 if (gsi_end_p (gsi))
1568 {
1569 gsi = gsi_last_bb (join_bb);
1570 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1571 }
1572 else
1573 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1574
1575 return true;
1576 }
1577
1578 /* Do the main work of conditional store replacement. */
1579
1580 static bool
1581 cond_if_else_store_replacement_1 (basic_block then_bb, basic_block else_bb,
1582 basic_block join_bb, gimple then_assign,
1583 gimple else_assign)
1584 {
1585 tree lhs_base, lhs, then_rhs, else_rhs, name;
1586 source_location then_locus, else_locus;
1587 gimple_stmt_iterator gsi;
1588 gimple newphi, new_stmt;
1589
1590 if (then_assign == NULL
1591 || !gimple_assign_single_p (then_assign)
1592 || gimple_clobber_p (then_assign)
1593 || gimple_has_volatile_ops (then_assign)
1594 || else_assign == NULL
1595 || !gimple_assign_single_p (else_assign)
1596 || gimple_clobber_p (else_assign)
1597 || gimple_has_volatile_ops (else_assign))
1598 return false;
1599
1600 lhs = gimple_assign_lhs (then_assign);
1601 if (!is_gimple_reg_type (TREE_TYPE (lhs))
1602 || !operand_equal_p (lhs, gimple_assign_lhs (else_assign), 0))
1603 return false;
1604
1605 lhs_base = get_base_address (lhs);
1606 if (lhs_base == NULL_TREE
1607 || (!DECL_P (lhs_base) && TREE_CODE (lhs_base) != MEM_REF))
1608 return false;
1609
1610 then_rhs = gimple_assign_rhs1 (then_assign);
1611 else_rhs = gimple_assign_rhs1 (else_assign);
1612 then_locus = gimple_location (then_assign);
1613 else_locus = gimple_location (else_assign);
1614
1615 /* Now we've checked the constraints, so do the transformation:
1616 1) Remove the stores. */
1617 gsi = gsi_for_stmt (then_assign);
1618 unlink_stmt_vdef (then_assign);
1619 gsi_remove (&gsi, true);
1620 release_defs (then_assign);
1621
1622 gsi = gsi_for_stmt (else_assign);
1623 unlink_stmt_vdef (else_assign);
1624 gsi_remove (&gsi, true);
1625 release_defs (else_assign);
1626
1627 /* 2) Create a PHI node at the join block, with one argument
1628 holding the old RHS, and the other holding the temporary
1629 where we stored the old memory contents. */
1630 name = make_temp_ssa_name (TREE_TYPE (lhs), NULL, "cstore");
1631 newphi = create_phi_node (name, join_bb);
1632 add_phi_arg (newphi, then_rhs, EDGE_SUCC (then_bb, 0), then_locus);
1633 add_phi_arg (newphi, else_rhs, EDGE_SUCC (else_bb, 0), else_locus);
1634
1635 new_stmt = gimple_build_assign (lhs, PHI_RESULT (newphi));
1636
1637 /* 3) Insert that PHI node. */
1638 gsi = gsi_after_labels (join_bb);
1639 if (gsi_end_p (gsi))
1640 {
1641 gsi = gsi_last_bb (join_bb);
1642 gsi_insert_after (&gsi, new_stmt, GSI_NEW_STMT);
1643 }
1644 else
1645 gsi_insert_before (&gsi, new_stmt, GSI_NEW_STMT);
1646
1647 return true;
1648 }
1649
1650 /* Conditional store replacement. We already know
1651 that the recognized pattern looks like so:
1652
1653 split:
1654 if (cond) goto THEN_BB; else goto ELSE_BB (edge E1)
1655 THEN_BB:
1656 ...
1657 X = Y;
1658 ...
1659 goto JOIN_BB;
1660 ELSE_BB:
1661 ...
1662 X = Z;
1663 ...
1664 fallthrough (edge E0)
1665 JOIN_BB:
1666 some more
1667
1668 We check that it is safe to sink the store to JOIN_BB by verifying that
1669 there are no read-after-write or write-after-write dependencies in
1670 THEN_BB and ELSE_BB. */
1671
1672 static bool
1673 cond_if_else_store_replacement (basic_block then_bb, basic_block else_bb,
1674 basic_block join_bb)
1675 {
1676 gimple then_assign = last_and_only_stmt (then_bb);
1677 gimple else_assign = last_and_only_stmt (else_bb);
1678 vec<data_reference_p> then_datarefs, else_datarefs;
1679 vec<ddr_p> then_ddrs, else_ddrs;
1680 gimple then_store, else_store;
1681 bool found, ok = false, res;
1682 struct data_dependence_relation *ddr;
1683 data_reference_p then_dr, else_dr;
1684 int i, j;
1685 tree then_lhs, else_lhs;
1686 basic_block blocks[3];
1687
1688 if (MAX_STORES_TO_SINK == 0)
1689 return false;
1690
1691 /* Handle the case with single statement in THEN_BB and ELSE_BB. */
1692 if (then_assign && else_assign)
1693 return cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1694 then_assign, else_assign);
1695
1696 /* Find data references. */
1697 then_datarefs.create (1);
1698 else_datarefs.create (1);
1699 if ((find_data_references_in_bb (NULL, then_bb, &then_datarefs)
1700 == chrec_dont_know)
1701 || !then_datarefs.length ()
1702 || (find_data_references_in_bb (NULL, else_bb, &else_datarefs)
1703 == chrec_dont_know)
1704 || !else_datarefs.length ())
1705 {
1706 free_data_refs (then_datarefs);
1707 free_data_refs (else_datarefs);
1708 return false;
1709 }
1710
1711 /* Find pairs of stores with equal LHS. */
1712 stack_vec<gimple, 1> then_stores, else_stores;
1713 FOR_EACH_VEC_ELT (then_datarefs, i, then_dr)
1714 {
1715 if (DR_IS_READ (then_dr))
1716 continue;
1717
1718 then_store = DR_STMT (then_dr);
1719 then_lhs = gimple_get_lhs (then_store);
1720 found = false;
1721
1722 FOR_EACH_VEC_ELT (else_datarefs, j, else_dr)
1723 {
1724 if (DR_IS_READ (else_dr))
1725 continue;
1726
1727 else_store = DR_STMT (else_dr);
1728 else_lhs = gimple_get_lhs (else_store);
1729
1730 if (operand_equal_p (then_lhs, else_lhs, 0))
1731 {
1732 found = true;
1733 break;
1734 }
1735 }
1736
1737 if (!found)
1738 continue;
1739
1740 then_stores.safe_push (then_store);
1741 else_stores.safe_push (else_store);
1742 }
1743
1744 /* No pairs of stores found. */
1745 if (!then_stores.length ()
1746 || then_stores.length () > (unsigned) MAX_STORES_TO_SINK)
1747 {
1748 free_data_refs (then_datarefs);
1749 free_data_refs (else_datarefs);
1750 return false;
1751 }
1752
1753 /* Compute and check data dependencies in both basic blocks. */
1754 then_ddrs.create (1);
1755 else_ddrs.create (1);
1756 if (!compute_all_dependences (then_datarefs, &then_ddrs,
1757 vNULL, false)
1758 || !compute_all_dependences (else_datarefs, &else_ddrs,
1759 vNULL, false))
1760 {
1761 free_dependence_relations (then_ddrs);
1762 free_dependence_relations (else_ddrs);
1763 free_data_refs (then_datarefs);
1764 free_data_refs (else_datarefs);
1765 return false;
1766 }
1767 blocks[0] = then_bb;
1768 blocks[1] = else_bb;
1769 blocks[2] = join_bb;
1770 renumber_gimple_stmt_uids_in_blocks (blocks, 3);
1771
1772 /* Check that there are no read-after-write or write-after-write dependencies
1773 in THEN_BB. */
1774 FOR_EACH_VEC_ELT (then_ddrs, i, ddr)
1775 {
1776 struct data_reference *dra = DDR_A (ddr);
1777 struct data_reference *drb = DDR_B (ddr);
1778
1779 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1780 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1781 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1782 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1783 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1784 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1785 {
1786 free_dependence_relations (then_ddrs);
1787 free_dependence_relations (else_ddrs);
1788 free_data_refs (then_datarefs);
1789 free_data_refs (else_datarefs);
1790 return false;
1791 }
1792 }
1793
1794 /* Check that there are no read-after-write or write-after-write dependencies
1795 in ELSE_BB. */
1796 FOR_EACH_VEC_ELT (else_ddrs, i, ddr)
1797 {
1798 struct data_reference *dra = DDR_A (ddr);
1799 struct data_reference *drb = DDR_B (ddr);
1800
1801 if (DDR_ARE_DEPENDENT (ddr) != chrec_known
1802 && ((DR_IS_READ (dra) && DR_IS_WRITE (drb)
1803 && gimple_uid (DR_STMT (dra)) > gimple_uid (DR_STMT (drb)))
1804 || (DR_IS_READ (drb) && DR_IS_WRITE (dra)
1805 && gimple_uid (DR_STMT (drb)) > gimple_uid (DR_STMT (dra)))
1806 || (DR_IS_WRITE (dra) && DR_IS_WRITE (drb))))
1807 {
1808 free_dependence_relations (then_ddrs);
1809 free_dependence_relations (else_ddrs);
1810 free_data_refs (then_datarefs);
1811 free_data_refs (else_datarefs);
1812 return false;
1813 }
1814 }
1815
1816 /* Sink stores with same LHS. */
1817 FOR_EACH_VEC_ELT (then_stores, i, then_store)
1818 {
1819 else_store = else_stores[i];
1820 res = cond_if_else_store_replacement_1 (then_bb, else_bb, join_bb,
1821 then_store, else_store);
1822 ok = ok || res;
1823 }
1824
1825 free_dependence_relations (then_ddrs);
1826 free_dependence_relations (else_ddrs);
1827 free_data_refs (then_datarefs);
1828 free_data_refs (else_datarefs);
1829
1830 return ok;
1831 }
1832
1833 /* Return TRUE if STMT has a VUSE whose corresponding VDEF is in BB. */
1834
1835 static bool
1836 local_mem_dependence (gimple stmt, basic_block bb)
1837 {
1838 tree vuse = gimple_vuse (stmt);
1839 gimple def;
1840
1841 if (!vuse)
1842 return false;
1843
1844 def = SSA_NAME_DEF_STMT (vuse);
1845 return (def && gimple_bb (def) == bb);
1846 }
1847
1848 /* Given a "diamond" control-flow pattern where BB0 tests a condition,
1849 BB1 and BB2 are "then" and "else" blocks dependent on this test,
1850 and BB3 rejoins control flow following BB1 and BB2, look for
1851 opportunities to hoist loads as follows. If BB3 contains a PHI of
1852 two loads, one each occurring in BB1 and BB2, and the loads are
1853 provably of adjacent fields in the same structure, then move both
1854 loads into BB0. Of course this can only be done if there are no
1855 dependencies preventing such motion.
1856
1857 One of the hoisted loads will always be speculative, so the
1858 transformation is currently conservative:
1859
1860 - The fields must be strictly adjacent.
1861 - The two fields must occupy a single memory block that is
1862 guaranteed to not cross a page boundary.
1863
1864 The last is difficult to prove, as such memory blocks should be
1865 aligned on the minimum of the stack alignment boundary and the
1866 alignment guaranteed by heap allocation interfaces. Thus we rely
1867 on a parameter for the alignment value.
1868
1869 Provided a good value is used for the last case, the first
1870 restriction could possibly be relaxed. */
1871
1872 static void
1873 hoist_adjacent_loads (basic_block bb0, basic_block bb1,
1874 basic_block bb2, basic_block bb3)
1875 {
1876 int param_align = PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE);
1877 unsigned param_align_bits = (unsigned) (param_align * BITS_PER_UNIT);
1878 gimple_stmt_iterator gsi;
1879
1880 /* Walk the phis in bb3 looking for an opportunity. We are looking
1881 for phis of two SSA names, one each of which is defined in bb1 and
1882 bb2. */
1883 for (gsi = gsi_start_phis (bb3); !gsi_end_p (gsi); gsi_next (&gsi))
1884 {
1885 gimple phi_stmt = gsi_stmt (gsi);
1886 gimple def1, def2, defswap;
1887 tree arg1, arg2, ref1, ref2, field1, field2, fieldswap;
1888 tree tree_offset1, tree_offset2, tree_size2, next;
1889 int offset1, offset2, size2;
1890 unsigned align1;
1891 gimple_stmt_iterator gsi2;
1892 basic_block bb_for_def1, bb_for_def2;
1893
1894 if (gimple_phi_num_args (phi_stmt) != 2
1895 || virtual_operand_p (gimple_phi_result (phi_stmt)))
1896 continue;
1897
1898 arg1 = gimple_phi_arg_def (phi_stmt, 0);
1899 arg2 = gimple_phi_arg_def (phi_stmt, 1);
1900
1901 if (TREE_CODE (arg1) != SSA_NAME
1902 || TREE_CODE (arg2) != SSA_NAME
1903 || SSA_NAME_IS_DEFAULT_DEF (arg1)
1904 || SSA_NAME_IS_DEFAULT_DEF (arg2))
1905 continue;
1906
1907 def1 = SSA_NAME_DEF_STMT (arg1);
1908 def2 = SSA_NAME_DEF_STMT (arg2);
1909
1910 if ((gimple_bb (def1) != bb1 || gimple_bb (def2) != bb2)
1911 && (gimple_bb (def2) != bb1 || gimple_bb (def1) != bb2))
1912 continue;
1913
1914 /* Check the mode of the arguments to be sure a conditional move
1915 can be generated for it. */
1916 if (optab_handler (movcc_optab, TYPE_MODE (TREE_TYPE (arg1)))
1917 == CODE_FOR_nothing)
1918 continue;
1919
1920 /* Both statements must be assignments whose RHS is a COMPONENT_REF. */
1921 if (!gimple_assign_single_p (def1)
1922 || !gimple_assign_single_p (def2)
1923 || gimple_has_volatile_ops (def1)
1924 || gimple_has_volatile_ops (def2))
1925 continue;
1926
1927 ref1 = gimple_assign_rhs1 (def1);
1928 ref2 = gimple_assign_rhs1 (def2);
1929
1930 if (TREE_CODE (ref1) != COMPONENT_REF
1931 || TREE_CODE (ref2) != COMPONENT_REF)
1932 continue;
1933
1934 /* The zeroth operand of the two component references must be
1935 identical. It is not sufficient to compare get_base_address of
1936 the two references, because this could allow for different
1937 elements of the same array in the two trees. It is not safe to
1938 assume that the existence of one array element implies the
1939 existence of a different one. */
1940 if (!operand_equal_p (TREE_OPERAND (ref1, 0), TREE_OPERAND (ref2, 0), 0))
1941 continue;
1942
1943 field1 = TREE_OPERAND (ref1, 1);
1944 field2 = TREE_OPERAND (ref2, 1);
1945
1946 /* Check for field adjacency, and ensure field1 comes first. */
1947 for (next = DECL_CHAIN (field1);
1948 next && TREE_CODE (next) != FIELD_DECL;
1949 next = DECL_CHAIN (next))
1950 ;
1951
1952 if (next != field2)
1953 {
1954 for (next = DECL_CHAIN (field2);
1955 next && TREE_CODE (next) != FIELD_DECL;
1956 next = DECL_CHAIN (next))
1957 ;
1958
1959 if (next != field1)
1960 continue;
1961
1962 fieldswap = field1;
1963 field1 = field2;
1964 field2 = fieldswap;
1965 defswap = def1;
1966 def1 = def2;
1967 def2 = defswap;
1968 }
1969
1970 bb_for_def1 = gimple_bb (def1);
1971 bb_for_def2 = gimple_bb (def2);
1972
1973 /* Check for proper alignment of the first field. */
1974 tree_offset1 = bit_position (field1);
1975 tree_offset2 = bit_position (field2);
1976 tree_size2 = DECL_SIZE (field2);
1977
1978 if (!host_integerp (tree_offset1, 1)
1979 || !host_integerp (tree_offset2, 1)
1980 || !host_integerp (tree_size2, 1))
1981 continue;
1982
1983 offset1 = TREE_INT_CST_LOW (tree_offset1);
1984 offset2 = TREE_INT_CST_LOW (tree_offset2);
1985 size2 = TREE_INT_CST_LOW (tree_size2);
1986 align1 = DECL_ALIGN (field1) % param_align_bits;
1987
1988 if (offset1 % BITS_PER_UNIT != 0)
1989 continue;
1990
1991 /* For profitability, the two field references should fit within
1992 a single cache line. */
1993 if (align1 + offset2 - offset1 + size2 > param_align_bits)
1994 continue;
1995
1996 /* The two expressions cannot be dependent upon vdefs defined
1997 in bb1/bb2. */
1998 if (local_mem_dependence (def1, bb_for_def1)
1999 || local_mem_dependence (def2, bb_for_def2))
2000 continue;
2001
2002 /* The conditions are satisfied; hoist the loads from bb1 and bb2 into
2003 bb0. We hoist the first one first so that a cache miss is handled
2004 efficiently regardless of hardware cache-fill policy. */
2005 gsi2 = gsi_for_stmt (def1);
2006 gsi_move_to_bb_end (&gsi2, bb0);
2007 gsi2 = gsi_for_stmt (def2);
2008 gsi_move_to_bb_end (&gsi2, bb0);
2009
2010 if (dump_file && (dump_flags & TDF_DETAILS))
2011 {
2012 fprintf (dump_file,
2013 "\nHoisting adjacent loads from %d and %d into %d: \n",
2014 bb_for_def1->index, bb_for_def2->index, bb0->index);
2015 print_gimple_stmt (dump_file, def1, 0, TDF_VOPS|TDF_MEMSYMS);
2016 print_gimple_stmt (dump_file, def2, 0, TDF_VOPS|TDF_MEMSYMS);
2017 }
2018 }
2019 }
2020
2021 /* Determine whether we should attempt to hoist adjacent loads out of
2022 diamond patterns in pass_phiopt. Always hoist loads if
2023 -fhoist-adjacent-loads is specified and the target machine has
2024 both a conditional move instruction and a defined cache line size. */
2025
2026 static bool
2027 gate_hoist_loads (void)
2028 {
2029 return (flag_hoist_adjacent_loads == 1
2030 && PARAM_VALUE (PARAM_L1_CACHE_LINE_SIZE)
2031 && HAVE_conditional_move);
2032 }
2033
2034 /* Always do these optimizations if we have SSA
2035 trees to work on. */
2036 static bool
2037 gate_phiopt (void)
2038 {
2039 return 1;
2040 }
2041
2042 namespace {
2043
2044 const pass_data pass_data_phiopt =
2045 {
2046 GIMPLE_PASS, /* type */
2047 "phiopt", /* name */
2048 OPTGROUP_NONE, /* optinfo_flags */
2049 true, /* has_gate */
2050 true, /* has_execute */
2051 TV_TREE_PHIOPT, /* tv_id */
2052 ( PROP_cfg | PROP_ssa ), /* properties_required */
2053 0, /* properties_provided */
2054 0, /* properties_destroyed */
2055 0, /* todo_flags_start */
2056 ( TODO_verify_ssa | TODO_verify_flow
2057 | TODO_verify_stmts ), /* todo_flags_finish */
2058 };
2059
2060 class pass_phiopt : public gimple_opt_pass
2061 {
2062 public:
2063 pass_phiopt (gcc::context *ctxt)
2064 : gimple_opt_pass (pass_data_phiopt, ctxt)
2065 {}
2066
2067 /* opt_pass methods: */
2068 opt_pass * clone () { return new pass_phiopt (m_ctxt); }
2069 bool gate () { return gate_phiopt (); }
2070 unsigned int execute () { return tree_ssa_phiopt (); }
2071
2072 }; // class pass_phiopt
2073
2074 } // anon namespace
2075
2076 gimple_opt_pass *
2077 make_pass_phiopt (gcc::context *ctxt)
2078 {
2079 return new pass_phiopt (ctxt);
2080 }
2081
2082 static bool
2083 gate_cselim (void)
2084 {
2085 return flag_tree_cselim;
2086 }
2087
2088 namespace {
2089
2090 const pass_data pass_data_cselim =
2091 {
2092 GIMPLE_PASS, /* type */
2093 "cselim", /* name */
2094 OPTGROUP_NONE, /* optinfo_flags */
2095 true, /* has_gate */
2096 true, /* has_execute */
2097 TV_TREE_PHIOPT, /* tv_id */
2098 ( PROP_cfg | PROP_ssa ), /* properties_required */
2099 0, /* properties_provided */
2100 0, /* properties_destroyed */
2101 0, /* todo_flags_start */
2102 ( TODO_verify_ssa | TODO_verify_flow
2103 | TODO_verify_stmts ), /* todo_flags_finish */
2104 };
2105
2106 class pass_cselim : public gimple_opt_pass
2107 {
2108 public:
2109 pass_cselim (gcc::context *ctxt)
2110 : gimple_opt_pass (pass_data_cselim, ctxt)
2111 {}
2112
2113 /* opt_pass methods: */
2114 bool gate () { return gate_cselim (); }
2115 unsigned int execute () { return tree_ssa_cs_elim (); }
2116
2117 }; // class pass_cselim
2118
2119 } // anon namespace
2120
2121 gimple_opt_pass *
2122 make_pass_cselim (gcc::context *ctxt)
2123 {
2124 return new pass_cselim (ctxt);
2125 }