]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-ssa-reassoc.c
2009-04-03 Richard Guenther <rguenther@suse.de>
[thirdparty/gcc.git] / gcc / tree-ssa-reassoc.c
1 /* Reassociation for trees.
2 Copyright (C) 2005, 2007, 2008, 2009 Free Software Foundation, Inc.
3 Contributed by Daniel Berlin <dan@dberlin.org>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "ggc.h"
26 #include "tree.h"
27 #include "basic-block.h"
28 #include "diagnostic.h"
29 #include "tree-inline.h"
30 #include "tree-flow.h"
31 #include "gimple.h"
32 #include "tree-dump.h"
33 #include "timevar.h"
34 #include "tree-iterator.h"
35 #include "tree-pass.h"
36 #include "alloc-pool.h"
37 #include "vec.h"
38 #include "langhooks.h"
39 #include "pointer-set.h"
40 #include "cfgloop.h"
41 #include "flags.h"
42
43 /* This is a simple global reassociation pass. It is, in part, based
44 on the LLVM pass of the same name (They do some things more/less
45 than we do, in different orders, etc).
46
47 It consists of five steps:
48
49 1. Breaking up subtract operations into addition + negate, where
50 it would promote the reassociation of adds.
51
52 2. Left linearization of the expression trees, so that (A+B)+(C+D)
53 becomes (((A+B)+C)+D), which is easier for us to rewrite later.
54 During linearization, we place the operands of the binary
55 expressions into a vector of operand_entry_t
56
57 3. Optimization of the operand lists, eliminating things like a +
58 -a, a & a, etc.
59
60 4. Rewrite the expression trees we linearized and optimized so
61 they are in proper rank order.
62
63 5. Repropagate negates, as nothing else will clean it up ATM.
64
65 A bit of theory on #4, since nobody seems to write anything down
66 about why it makes sense to do it the way they do it:
67
68 We could do this much nicer theoretically, but don't (for reasons
69 explained after how to do it theoretically nice :P).
70
71 In order to promote the most redundancy elimination, you want
72 binary expressions whose operands are the same rank (or
73 preferably, the same value) exposed to the redundancy eliminator,
74 for possible elimination.
75
76 So the way to do this if we really cared, is to build the new op
77 tree from the leaves to the roots, merging as you go, and putting the
78 new op on the end of the worklist, until you are left with one
79 thing on the worklist.
80
81 IE if you have to rewrite the following set of operands (listed with
82 rank in parentheses), with opcode PLUS_EXPR:
83
84 a (1), b (1), c (1), d (2), e (2)
85
86
87 We start with our merge worklist empty, and the ops list with all of
88 those on it.
89
90 You want to first merge all leaves of the same rank, as much as
91 possible.
92
93 So first build a binary op of
94
95 mergetmp = a + b, and put "mergetmp" on the merge worklist.
96
97 Because there is no three operand form of PLUS_EXPR, c is not going to
98 be exposed to redundancy elimination as a rank 1 operand.
99
100 So you might as well throw it on the merge worklist (you could also
101 consider it to now be a rank two operand, and merge it with d and e,
102 but in this case, you then have evicted e from a binary op. So at
103 least in this situation, you can't win.)
104
105 Then build a binary op of d + e
106 mergetmp2 = d + e
107
108 and put mergetmp2 on the merge worklist.
109
110 so merge worklist = {mergetmp, c, mergetmp2}
111
112 Continue building binary ops of these operations until you have only
113 one operation left on the worklist.
114
115 So we have
116
117 build binary op
118 mergetmp3 = mergetmp + c
119
120 worklist = {mergetmp2, mergetmp3}
121
122 mergetmp4 = mergetmp2 + mergetmp3
123
124 worklist = {mergetmp4}
125
126 because we have one operation left, we can now just set the original
127 statement equal to the result of that operation.
128
129 This will at least expose a + b and d + e to redundancy elimination
130 as binary operations.
131
132 For extra points, you can reuse the old statements to build the
133 mergetmps, since you shouldn't run out.
134
135 So why don't we do this?
136
137 Because it's expensive, and rarely will help. Most trees we are
138 reassociating have 3 or less ops. If they have 2 ops, they already
139 will be written into a nice single binary op. If you have 3 ops, a
140 single simple check suffices to tell you whether the first two are of the
141 same rank. If so, you know to order it
142
143 mergetmp = op1 + op2
144 newstmt = mergetmp + op3
145
146 instead of
147 mergetmp = op2 + op3
148 newstmt = mergetmp + op1
149
150 If all three are of the same rank, you can't expose them all in a
151 single binary operator anyway, so the above is *still* the best you
152 can do.
153
154 Thus, this is what we do. When we have three ops left, we check to see
155 what order to put them in, and call it a day. As a nod to vector sum
156 reduction, we check if any of the ops are really a phi node that is a
157 destructive update for the associating op, and keep the destructive
158 update together for vector sum reduction recognition. */
159
160
161 /* Statistics */
162 static struct
163 {
164 int linearized;
165 int constants_eliminated;
166 int ops_eliminated;
167 int rewritten;
168 } reassociate_stats;
169
170 /* Operator, rank pair. */
171 typedef struct operand_entry
172 {
173 unsigned int rank;
174 tree op;
175 } *operand_entry_t;
176
177 static alloc_pool operand_entry_pool;
178
179
180 /* Starting rank number for a given basic block, so that we can rank
181 operations using unmovable instructions in that BB based on the bb
182 depth. */
183 static long *bb_rank;
184
185 /* Operand->rank hashtable. */
186 static struct pointer_map_t *operand_rank;
187
188
189 /* Look up the operand rank structure for expression E. */
190
191 static inline long
192 find_operand_rank (tree e)
193 {
194 void **slot = pointer_map_contains (operand_rank, e);
195 return slot ? (long) *slot : -1;
196 }
197
198 /* Insert {E,RANK} into the operand rank hashtable. */
199
200 static inline void
201 insert_operand_rank (tree e, long rank)
202 {
203 void **slot;
204 gcc_assert (rank > 0);
205 slot = pointer_map_insert (operand_rank, e);
206 gcc_assert (!*slot);
207 *slot = (void *) rank;
208 }
209
210 /* Given an expression E, return the rank of the expression. */
211
212 static long
213 get_rank (tree e)
214 {
215 /* Constants have rank 0. */
216 if (is_gimple_min_invariant (e))
217 return 0;
218
219 /* SSA_NAME's have the rank of the expression they are the result
220 of.
221 For globals and uninitialized values, the rank is 0.
222 For function arguments, use the pre-setup rank.
223 For PHI nodes, stores, asm statements, etc, we use the rank of
224 the BB.
225 For simple operations, the rank is the maximum rank of any of
226 its operands, or the bb_rank, whichever is less.
227 I make no claims that this is optimal, however, it gives good
228 results. */
229
230 if (TREE_CODE (e) == SSA_NAME)
231 {
232 gimple stmt;
233 long rank, maxrank;
234 int i, n;
235
236 if (TREE_CODE (SSA_NAME_VAR (e)) == PARM_DECL
237 && SSA_NAME_IS_DEFAULT_DEF (e))
238 return find_operand_rank (e);
239
240 stmt = SSA_NAME_DEF_STMT (e);
241 if (gimple_bb (stmt) == NULL)
242 return 0;
243
244 if (!is_gimple_assign (stmt)
245 || gimple_vdef (stmt))
246 return bb_rank[gimple_bb (stmt)->index];
247
248 /* If we already have a rank for this expression, use that. */
249 rank = find_operand_rank (e);
250 if (rank != -1)
251 return rank;
252
253 /* Otherwise, find the maximum rank for the operands, or the bb
254 rank, whichever is less. */
255 rank = 0;
256 maxrank = bb_rank[gimple_bb(stmt)->index];
257 if (gimple_assign_single_p (stmt))
258 {
259 tree rhs = gimple_assign_rhs1 (stmt);
260 n = TREE_OPERAND_LENGTH (rhs);
261 if (n == 0)
262 rank = MAX (rank, get_rank (rhs));
263 else
264 {
265 for (i = 0;
266 i < n && TREE_OPERAND (rhs, i) && rank != maxrank; i++)
267 rank = MAX(rank, get_rank (TREE_OPERAND (rhs, i)));
268 }
269 }
270 else
271 {
272 n = gimple_num_ops (stmt);
273 for (i = 1; i < n && rank != maxrank; i++)
274 {
275 gcc_assert (gimple_op (stmt, i));
276 rank = MAX(rank, get_rank (gimple_op (stmt, i)));
277 }
278 }
279
280 if (dump_file && (dump_flags & TDF_DETAILS))
281 {
282 fprintf (dump_file, "Rank for ");
283 print_generic_expr (dump_file, e, 0);
284 fprintf (dump_file, " is %ld\n", (rank + 1));
285 }
286
287 /* Note the rank in the hashtable so we don't recompute it. */
288 insert_operand_rank (e, (rank + 1));
289 return (rank + 1);
290 }
291
292 /* Globals, etc, are rank 0 */
293 return 0;
294 }
295
296 DEF_VEC_P(operand_entry_t);
297 DEF_VEC_ALLOC_P(operand_entry_t, heap);
298
299 /* We want integer ones to end up last no matter what, since they are
300 the ones we can do the most with. */
301 #define INTEGER_CONST_TYPE 1 << 3
302 #define FLOAT_CONST_TYPE 1 << 2
303 #define OTHER_CONST_TYPE 1 << 1
304
305 /* Classify an invariant tree into integer, float, or other, so that
306 we can sort them to be near other constants of the same type. */
307 static inline int
308 constant_type (tree t)
309 {
310 if (INTEGRAL_TYPE_P (TREE_TYPE (t)))
311 return INTEGER_CONST_TYPE;
312 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (t)))
313 return FLOAT_CONST_TYPE;
314 else
315 return OTHER_CONST_TYPE;
316 }
317
318 /* qsort comparison function to sort operand entries PA and PB by rank
319 so that the sorted array is ordered by rank in decreasing order. */
320 static int
321 sort_by_operand_rank (const void *pa, const void *pb)
322 {
323 const operand_entry_t oea = *(const operand_entry_t *)pa;
324 const operand_entry_t oeb = *(const operand_entry_t *)pb;
325
326 /* It's nicer for optimize_expression if constants that are likely
327 to fold when added/multiplied//whatever are put next to each
328 other. Since all constants have rank 0, order them by type. */
329 if (oeb->rank == 0 && oea->rank == 0)
330 return constant_type (oeb->op) - constant_type (oea->op);
331
332 /* Lastly, make sure the versions that are the same go next to each
333 other. We use SSA_NAME_VERSION because it's stable. */
334 if ((oeb->rank - oea->rank == 0)
335 && TREE_CODE (oea->op) == SSA_NAME
336 && TREE_CODE (oeb->op) == SSA_NAME)
337 return SSA_NAME_VERSION (oeb->op) - SSA_NAME_VERSION (oea->op);
338
339 return oeb->rank - oea->rank;
340 }
341
342 /* Add an operand entry to *OPS for the tree operand OP. */
343
344 static void
345 add_to_ops_vec (VEC(operand_entry_t, heap) **ops, tree op)
346 {
347 operand_entry_t oe = (operand_entry_t) pool_alloc (operand_entry_pool);
348
349 oe->op = op;
350 oe->rank = get_rank (op);
351 VEC_safe_push (operand_entry_t, heap, *ops, oe);
352 }
353
354 /* Return true if STMT is reassociable operation containing a binary
355 operation with tree code CODE, and is inside LOOP. */
356
357 static bool
358 is_reassociable_op (gimple stmt, enum tree_code code, struct loop *loop)
359 {
360 basic_block bb = gimple_bb (stmt);
361
362 if (gimple_bb (stmt) == NULL)
363 return false;
364
365 if (!flow_bb_inside_loop_p (loop, bb))
366 return false;
367
368 if (is_gimple_assign (stmt)
369 && gimple_assign_rhs_code (stmt) == code
370 && has_single_use (gimple_assign_lhs (stmt)))
371 return true;
372
373 return false;
374 }
375
376
377 /* Given NAME, if NAME is defined by a unary operation OPCODE, return the
378 operand of the negate operation. Otherwise, return NULL. */
379
380 static tree
381 get_unary_op (tree name, enum tree_code opcode)
382 {
383 gimple stmt = SSA_NAME_DEF_STMT (name);
384
385 if (!is_gimple_assign (stmt))
386 return NULL_TREE;
387
388 if (gimple_assign_rhs_code (stmt) == opcode)
389 return gimple_assign_rhs1 (stmt);
390 return NULL_TREE;
391 }
392
393 /* If CURR and LAST are a pair of ops that OPCODE allows us to
394 eliminate through equivalences, do so, remove them from OPS, and
395 return true. Otherwise, return false. */
396
397 static bool
398 eliminate_duplicate_pair (enum tree_code opcode,
399 VEC (operand_entry_t, heap) **ops,
400 bool *all_done,
401 unsigned int i,
402 operand_entry_t curr,
403 operand_entry_t last)
404 {
405
406 /* If we have two of the same op, and the opcode is & |, min, or max,
407 we can eliminate one of them.
408 If we have two of the same op, and the opcode is ^, we can
409 eliminate both of them. */
410
411 if (last && last->op == curr->op)
412 {
413 switch (opcode)
414 {
415 case MAX_EXPR:
416 case MIN_EXPR:
417 case BIT_IOR_EXPR:
418 case BIT_AND_EXPR:
419 if (dump_file && (dump_flags & TDF_DETAILS))
420 {
421 fprintf (dump_file, "Equivalence: ");
422 print_generic_expr (dump_file, curr->op, 0);
423 fprintf (dump_file, " [&|minmax] ");
424 print_generic_expr (dump_file, last->op, 0);
425 fprintf (dump_file, " -> ");
426 print_generic_stmt (dump_file, last->op, 0);
427 }
428
429 VEC_ordered_remove (operand_entry_t, *ops, i);
430 reassociate_stats.ops_eliminated ++;
431
432 return true;
433
434 case BIT_XOR_EXPR:
435 if (dump_file && (dump_flags & TDF_DETAILS))
436 {
437 fprintf (dump_file, "Equivalence: ");
438 print_generic_expr (dump_file, curr->op, 0);
439 fprintf (dump_file, " ^ ");
440 print_generic_expr (dump_file, last->op, 0);
441 fprintf (dump_file, " -> nothing\n");
442 }
443
444 reassociate_stats.ops_eliminated += 2;
445
446 if (VEC_length (operand_entry_t, *ops) == 2)
447 {
448 VEC_free (operand_entry_t, heap, *ops);
449 *ops = NULL;
450 add_to_ops_vec (ops, fold_convert (TREE_TYPE (last->op),
451 integer_zero_node));
452 *all_done = true;
453 }
454 else
455 {
456 VEC_ordered_remove (operand_entry_t, *ops, i-1);
457 VEC_ordered_remove (operand_entry_t, *ops, i-1);
458 }
459
460 return true;
461
462 default:
463 break;
464 }
465 }
466 return false;
467 }
468
469 /* If OPCODE is PLUS_EXPR, CURR->OP is really a negate expression,
470 look in OPS for a corresponding positive operation to cancel it
471 out. If we find one, remove the other from OPS, replace
472 OPS[CURRINDEX] with 0, and return true. Otherwise, return
473 false. */
474
475 static bool
476 eliminate_plus_minus_pair (enum tree_code opcode,
477 VEC (operand_entry_t, heap) **ops,
478 unsigned int currindex,
479 operand_entry_t curr)
480 {
481 tree negateop;
482 unsigned int i;
483 operand_entry_t oe;
484
485 if (opcode != PLUS_EXPR || TREE_CODE (curr->op) != SSA_NAME)
486 return false;
487
488 negateop = get_unary_op (curr->op, NEGATE_EXPR);
489 if (negateop == NULL_TREE)
490 return false;
491
492 /* Any non-negated version will have a rank that is one less than
493 the current rank. So once we hit those ranks, if we don't find
494 one, we can stop. */
495
496 for (i = currindex + 1;
497 VEC_iterate (operand_entry_t, *ops, i, oe)
498 && oe->rank >= curr->rank - 1 ;
499 i++)
500 {
501 if (oe->op == negateop)
502 {
503
504 if (dump_file && (dump_flags & TDF_DETAILS))
505 {
506 fprintf (dump_file, "Equivalence: ");
507 print_generic_expr (dump_file, negateop, 0);
508 fprintf (dump_file, " + -");
509 print_generic_expr (dump_file, oe->op, 0);
510 fprintf (dump_file, " -> 0\n");
511 }
512
513 VEC_ordered_remove (operand_entry_t, *ops, i);
514 add_to_ops_vec (ops, fold_convert(TREE_TYPE (oe->op),
515 integer_zero_node));
516 VEC_ordered_remove (operand_entry_t, *ops, currindex);
517 reassociate_stats.ops_eliminated ++;
518
519 return true;
520 }
521 }
522
523 return false;
524 }
525
526 /* If OPCODE is BIT_IOR_EXPR, BIT_AND_EXPR, and, CURR->OP is really a
527 bitwise not expression, look in OPS for a corresponding operand to
528 cancel it out. If we find one, remove the other from OPS, replace
529 OPS[CURRINDEX] with 0, and return true. Otherwise, return
530 false. */
531
532 static bool
533 eliminate_not_pairs (enum tree_code opcode,
534 VEC (operand_entry_t, heap) **ops,
535 unsigned int currindex,
536 operand_entry_t curr)
537 {
538 tree notop;
539 unsigned int i;
540 operand_entry_t oe;
541
542 if ((opcode != BIT_IOR_EXPR && opcode != BIT_AND_EXPR)
543 || TREE_CODE (curr->op) != SSA_NAME)
544 return false;
545
546 notop = get_unary_op (curr->op, BIT_NOT_EXPR);
547 if (notop == NULL_TREE)
548 return false;
549
550 /* Any non-not version will have a rank that is one less than
551 the current rank. So once we hit those ranks, if we don't find
552 one, we can stop. */
553
554 for (i = currindex + 1;
555 VEC_iterate (operand_entry_t, *ops, i, oe)
556 && oe->rank >= curr->rank - 1;
557 i++)
558 {
559 if (oe->op == notop)
560 {
561 if (dump_file && (dump_flags & TDF_DETAILS))
562 {
563 fprintf (dump_file, "Equivalence: ");
564 print_generic_expr (dump_file, notop, 0);
565 if (opcode == BIT_AND_EXPR)
566 fprintf (dump_file, " & ~");
567 else if (opcode == BIT_IOR_EXPR)
568 fprintf (dump_file, " | ~");
569 print_generic_expr (dump_file, oe->op, 0);
570 if (opcode == BIT_AND_EXPR)
571 fprintf (dump_file, " -> 0\n");
572 else if (opcode == BIT_IOR_EXPR)
573 fprintf (dump_file, " -> -1\n");
574 }
575
576 if (opcode == BIT_AND_EXPR)
577 oe->op = fold_convert (TREE_TYPE (oe->op), integer_zero_node);
578 else if (opcode == BIT_IOR_EXPR)
579 oe->op = build_low_bits_mask (TREE_TYPE (oe->op),
580 TYPE_PRECISION (TREE_TYPE (oe->op)));
581
582 reassociate_stats.ops_eliminated
583 += VEC_length (operand_entry_t, *ops) - 1;
584 VEC_free (operand_entry_t, heap, *ops);
585 *ops = NULL;
586 VEC_safe_push (operand_entry_t, heap, *ops, oe);
587 return true;
588 }
589 }
590
591 return false;
592 }
593
594 /* Use constant value that may be present in OPS to try to eliminate
595 operands. Note that this function is only really used when we've
596 eliminated ops for other reasons, or merged constants. Across
597 single statements, fold already does all of this, plus more. There
598 is little point in duplicating logic, so I've only included the
599 identities that I could ever construct testcases to trigger. */
600
601 static void
602 eliminate_using_constants (enum tree_code opcode,
603 VEC(operand_entry_t, heap) **ops)
604 {
605 operand_entry_t oelast = VEC_last (operand_entry_t, *ops);
606 tree type = TREE_TYPE (oelast->op);
607
608 if (oelast->rank == 0
609 && (INTEGRAL_TYPE_P (type) || FLOAT_TYPE_P (type)))
610 {
611 switch (opcode)
612 {
613 case BIT_AND_EXPR:
614 if (integer_zerop (oelast->op))
615 {
616 if (VEC_length (operand_entry_t, *ops) != 1)
617 {
618 if (dump_file && (dump_flags & TDF_DETAILS))
619 fprintf (dump_file, "Found & 0, removing all other ops\n");
620
621 reassociate_stats.ops_eliminated
622 += VEC_length (operand_entry_t, *ops) - 1;
623
624 VEC_free (operand_entry_t, heap, *ops);
625 *ops = NULL;
626 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
627 return;
628 }
629 }
630 else if (integer_all_onesp (oelast->op))
631 {
632 if (VEC_length (operand_entry_t, *ops) != 1)
633 {
634 if (dump_file && (dump_flags & TDF_DETAILS))
635 fprintf (dump_file, "Found & -1, removing\n");
636 VEC_pop (operand_entry_t, *ops);
637 reassociate_stats.ops_eliminated++;
638 }
639 }
640 break;
641 case BIT_IOR_EXPR:
642 if (integer_all_onesp (oelast->op))
643 {
644 if (VEC_length (operand_entry_t, *ops) != 1)
645 {
646 if (dump_file && (dump_flags & TDF_DETAILS))
647 fprintf (dump_file, "Found | -1, removing all other ops\n");
648
649 reassociate_stats.ops_eliminated
650 += VEC_length (operand_entry_t, *ops) - 1;
651
652 VEC_free (operand_entry_t, heap, *ops);
653 *ops = NULL;
654 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
655 return;
656 }
657 }
658 else if (integer_zerop (oelast->op))
659 {
660 if (VEC_length (operand_entry_t, *ops) != 1)
661 {
662 if (dump_file && (dump_flags & TDF_DETAILS))
663 fprintf (dump_file, "Found | 0, removing\n");
664 VEC_pop (operand_entry_t, *ops);
665 reassociate_stats.ops_eliminated++;
666 }
667 }
668 break;
669 case MULT_EXPR:
670 if (integer_zerop (oelast->op)
671 || (FLOAT_TYPE_P (type)
672 && !HONOR_NANS (TYPE_MODE (type))
673 && !HONOR_SIGNED_ZEROS (TYPE_MODE (type))
674 && real_zerop (oelast->op)))
675 {
676 if (VEC_length (operand_entry_t, *ops) != 1)
677 {
678 if (dump_file && (dump_flags & TDF_DETAILS))
679 fprintf (dump_file, "Found * 0, removing all other ops\n");
680
681 reassociate_stats.ops_eliminated
682 += VEC_length (operand_entry_t, *ops) - 1;
683 VEC_free (operand_entry_t, heap, *ops);
684 *ops = NULL;
685 VEC_safe_push (operand_entry_t, heap, *ops, oelast);
686 return;
687 }
688 }
689 else if (integer_onep (oelast->op)
690 || (FLOAT_TYPE_P (type)
691 && !HONOR_SNANS (TYPE_MODE (type))
692 && real_onep (oelast->op)))
693 {
694 if (VEC_length (operand_entry_t, *ops) != 1)
695 {
696 if (dump_file && (dump_flags & TDF_DETAILS))
697 fprintf (dump_file, "Found * 1, removing\n");
698 VEC_pop (operand_entry_t, *ops);
699 reassociate_stats.ops_eliminated++;
700 return;
701 }
702 }
703 break;
704 case BIT_XOR_EXPR:
705 case PLUS_EXPR:
706 case MINUS_EXPR:
707 if (integer_zerop (oelast->op)
708 || (FLOAT_TYPE_P (type)
709 && (opcode == PLUS_EXPR || opcode == MINUS_EXPR)
710 && fold_real_zero_addition_p (type, oelast->op,
711 opcode == MINUS_EXPR)))
712 {
713 if (VEC_length (operand_entry_t, *ops) != 1)
714 {
715 if (dump_file && (dump_flags & TDF_DETAILS))
716 fprintf (dump_file, "Found [|^+] 0, removing\n");
717 VEC_pop (operand_entry_t, *ops);
718 reassociate_stats.ops_eliminated++;
719 return;
720 }
721 }
722 break;
723 default:
724 break;
725 }
726 }
727 }
728
729
730 static void linearize_expr_tree (VEC(operand_entry_t, heap) **, gimple,
731 bool, bool);
732
733 /* Structure for tracking and counting operands. */
734 typedef struct oecount_s {
735 int cnt;
736 enum tree_code oecode;
737 tree op;
738 } oecount;
739
740 DEF_VEC_O(oecount);
741 DEF_VEC_ALLOC_O(oecount,heap);
742
743 /* The heap for the oecount hashtable and the sorted list of operands. */
744 static VEC (oecount, heap) *cvec;
745
746 /* Hash function for oecount. */
747
748 static hashval_t
749 oecount_hash (const void *p)
750 {
751 const oecount *c = VEC_index (oecount, cvec, (size_t)p - 42);
752 return htab_hash_pointer (c->op) ^ (hashval_t)c->oecode;
753 }
754
755 /* Comparison function for oecount. */
756
757 static int
758 oecount_eq (const void *p1, const void *p2)
759 {
760 const oecount *c1 = VEC_index (oecount, cvec, (size_t)p1 - 42);
761 const oecount *c2 = VEC_index (oecount, cvec, (size_t)p2 - 42);
762 return (c1->oecode == c2->oecode
763 && c1->op == c2->op);
764 }
765
766 /* Comparison function for qsort sorting oecount elements by count. */
767
768 static int
769 oecount_cmp (const void *p1, const void *p2)
770 {
771 const oecount *c1 = (const oecount *)p1;
772 const oecount *c2 = (const oecount *)p2;
773 return c1->cnt - c2->cnt;
774 }
775
776 /* Walks the linear chain with result *DEF searching for an operation
777 with operand OP and code OPCODE removing that from the chain. *DEF
778 is updated if there is only one operand but no operation left. */
779
780 static void
781 zero_one_operation (tree *def, enum tree_code opcode, tree op)
782 {
783 gimple stmt = SSA_NAME_DEF_STMT (*def);
784
785 do
786 {
787 tree name = gimple_assign_rhs1 (stmt);
788
789 /* If this is the operation we look for and one of the operands
790 is ours simply propagate the other operand into the stmts
791 single use. */
792 if (gimple_assign_rhs_code (stmt) == opcode
793 && (name == op
794 || gimple_assign_rhs2 (stmt) == op))
795 {
796 gimple use_stmt;
797 use_operand_p use;
798 gimple_stmt_iterator gsi;
799 if (name == op)
800 name = gimple_assign_rhs2 (stmt);
801 gcc_assert (has_single_use (gimple_assign_lhs (stmt)));
802 single_imm_use (gimple_assign_lhs (stmt), &use, &use_stmt);
803 if (gimple_assign_lhs (stmt) == *def)
804 *def = name;
805 SET_USE (use, name);
806 if (TREE_CODE (name) != SSA_NAME)
807 update_stmt (use_stmt);
808 gsi = gsi_for_stmt (stmt);
809 gsi_remove (&gsi, true);
810 release_defs (stmt);
811 return;
812 }
813
814 /* Continue walking the chain. */
815 gcc_assert (name != op
816 && TREE_CODE (name) == SSA_NAME);
817 stmt = SSA_NAME_DEF_STMT (name);
818 }
819 while (1);
820 }
821
822 /* Builds one statement performing OP1 OPCODE OP2 using TMPVAR for
823 the result. Places the statement after the definition of either
824 OP1 or OP2. Returns the new statement. */
825
826 static gimple
827 build_and_add_sum (tree tmpvar, tree op1, tree op2, enum tree_code opcode)
828 {
829 gimple op1def = NULL, op2def = NULL;
830 gimple_stmt_iterator gsi;
831 tree op;
832 gimple sum;
833
834 /* Create the addition statement. */
835 sum = gimple_build_assign_with_ops (opcode, tmpvar, op1, op2);
836 op = make_ssa_name (tmpvar, sum);
837 gimple_assign_set_lhs (sum, op);
838
839 /* Find an insertion place and insert. */
840 if (TREE_CODE (op1) == SSA_NAME)
841 op1def = SSA_NAME_DEF_STMT (op1);
842 if (TREE_CODE (op2) == SSA_NAME)
843 op2def = SSA_NAME_DEF_STMT (op2);
844 if ((!op1def || gimple_nop_p (op1def))
845 && (!op2def || gimple_nop_p (op2def)))
846 {
847 gsi = gsi_start_bb (single_succ (ENTRY_BLOCK_PTR));
848 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
849 }
850 else if ((!op1def || gimple_nop_p (op1def))
851 || (op2def && !gimple_nop_p (op2def)
852 && stmt_dominates_stmt_p (op1def, op2def)))
853 {
854 if (gimple_code (op2def) == GIMPLE_PHI)
855 {
856 gsi = gsi_start_bb (gimple_bb (op2def));
857 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
858 }
859 else
860 {
861 if (!stmt_ends_bb_p (op2def))
862 {
863 gsi = gsi_for_stmt (op2def);
864 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
865 }
866 else
867 {
868 edge e;
869 edge_iterator ei;
870
871 FOR_EACH_EDGE (e, ei, gimple_bb (op2def)->succs)
872 if (e->flags & EDGE_FALLTHRU)
873 gsi_insert_on_edge_immediate (e, sum);
874 }
875 }
876 }
877 else
878 {
879 if (gimple_code (op1def) == GIMPLE_PHI)
880 {
881 gsi = gsi_start_bb (gimple_bb (op1def));
882 gsi_insert_before (&gsi, sum, GSI_NEW_STMT);
883 }
884 else
885 {
886 if (!stmt_ends_bb_p (op1def))
887 {
888 gsi = gsi_for_stmt (op1def);
889 gsi_insert_after (&gsi, sum, GSI_NEW_STMT);
890 }
891 else
892 {
893 edge e;
894 edge_iterator ei;
895
896 FOR_EACH_EDGE (e, ei, gimple_bb (op1def)->succs)
897 if (e->flags & EDGE_FALLTHRU)
898 gsi_insert_on_edge_immediate (e, sum);
899 }
900 }
901 }
902 update_stmt (sum);
903
904 return sum;
905 }
906
907 /* Perform un-distribution of divisions and multiplications.
908 A * X + B * X is transformed into (A + B) * X and A / X + B / X
909 to (A + B) / X for real X.
910
911 The algorithm is organized as follows.
912
913 - First we walk the addition chain *OPS looking for summands that
914 are defined by a multiplication or a real division. This results
915 in the candidates bitmap with relevant indices into *OPS.
916
917 - Second we build the chains of multiplications or divisions for
918 these candidates, counting the number of occurences of (operand, code)
919 pairs in all of the candidates chains.
920
921 - Third we sort the (operand, code) pairs by number of occurence and
922 process them starting with the pair with the most uses.
923
924 * For each such pair we walk the candidates again to build a
925 second candidate bitmap noting all multiplication/division chains
926 that have at least one occurence of (operand, code).
927
928 * We build an alternate addition chain only covering these
929 candidates with one (operand, code) operation removed from their
930 multiplication/division chain.
931
932 * The first candidate gets replaced by the alternate addition chain
933 multiplied/divided by the operand.
934
935 * All candidate chains get disabled for further processing and
936 processing of (operand, code) pairs continues.
937
938 The alternate addition chains built are re-processed by the main
939 reassociation algorithm which allows optimizing a * x * y + b * y * x
940 to (a + b ) * x * y in one invocation of the reassociation pass. */
941
942 static bool
943 undistribute_ops_list (enum tree_code opcode,
944 VEC (operand_entry_t, heap) **ops, struct loop *loop)
945 {
946 unsigned int length = VEC_length (operand_entry_t, *ops);
947 operand_entry_t oe1;
948 unsigned i, j;
949 sbitmap candidates, candidates2;
950 unsigned nr_candidates, nr_candidates2;
951 sbitmap_iterator sbi0;
952 VEC (operand_entry_t, heap) **subops;
953 htab_t ctable;
954 bool changed = false;
955
956 if (length <= 1
957 || opcode != PLUS_EXPR)
958 return false;
959
960 /* Build a list of candidates to process. */
961 candidates = sbitmap_alloc (length);
962 sbitmap_zero (candidates);
963 nr_candidates = 0;
964 for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe1); ++i)
965 {
966 enum tree_code dcode;
967 gimple oe1def;
968
969 if (TREE_CODE (oe1->op) != SSA_NAME)
970 continue;
971 oe1def = SSA_NAME_DEF_STMT (oe1->op);
972 if (!is_gimple_assign (oe1def))
973 continue;
974 dcode = gimple_assign_rhs_code (oe1def);
975 if ((dcode != MULT_EXPR
976 && dcode != RDIV_EXPR)
977 || !is_reassociable_op (oe1def, dcode, loop))
978 continue;
979
980 SET_BIT (candidates, i);
981 nr_candidates++;
982 }
983
984 if (nr_candidates < 2)
985 {
986 sbitmap_free (candidates);
987 return false;
988 }
989
990 if (dump_file && (dump_flags & TDF_DETAILS))
991 {
992 fprintf (dump_file, "searching for un-distribute opportunities ");
993 print_generic_expr (dump_file,
994 VEC_index (operand_entry_t, *ops,
995 sbitmap_first_set_bit (candidates))->op, 0);
996 fprintf (dump_file, " %d\n", nr_candidates);
997 }
998
999 /* Build linearized sub-operand lists and the counting table. */
1000 cvec = NULL;
1001 ctable = htab_create (15, oecount_hash, oecount_eq, NULL);
1002 subops = XCNEWVEC (VEC (operand_entry_t, heap) *,
1003 VEC_length (operand_entry_t, *ops));
1004 EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
1005 {
1006 gimple oedef;
1007 enum tree_code oecode;
1008 unsigned j;
1009
1010 oedef = SSA_NAME_DEF_STMT (VEC_index (operand_entry_t, *ops, i)->op);
1011 oecode = gimple_assign_rhs_code (oedef);
1012 linearize_expr_tree (&subops[i], oedef,
1013 associative_tree_code (oecode), false);
1014
1015 for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
1016 {
1017 oecount c;
1018 void **slot;
1019 size_t idx;
1020 c.oecode = oecode;
1021 c.cnt = 1;
1022 c.op = oe1->op;
1023 VEC_safe_push (oecount, heap, cvec, &c);
1024 idx = VEC_length (oecount, cvec) + 41;
1025 slot = htab_find_slot (ctable, (void *)idx, INSERT);
1026 if (!*slot)
1027 {
1028 *slot = (void *)idx;
1029 }
1030 else
1031 {
1032 VEC_pop (oecount, cvec);
1033 VEC_index (oecount, cvec, (size_t)*slot - 42)->cnt++;
1034 }
1035 }
1036 }
1037 htab_delete (ctable);
1038
1039 /* Sort the counting table. */
1040 qsort (VEC_address (oecount, cvec), VEC_length (oecount, cvec),
1041 sizeof (oecount), oecount_cmp);
1042
1043 if (dump_file && (dump_flags & TDF_DETAILS))
1044 {
1045 oecount *c;
1046 fprintf (dump_file, "Candidates:\n");
1047 for (j = 0; VEC_iterate (oecount, cvec, j, c); ++j)
1048 {
1049 fprintf (dump_file, " %u %s: ", c->cnt,
1050 c->oecode == MULT_EXPR
1051 ? "*" : c->oecode == RDIV_EXPR ? "/" : "?");
1052 print_generic_expr (dump_file, c->op, 0);
1053 fprintf (dump_file, "\n");
1054 }
1055 }
1056
1057 /* Process the (operand, code) pairs in order of most occurence. */
1058 candidates2 = sbitmap_alloc (length);
1059 while (!VEC_empty (oecount, cvec))
1060 {
1061 oecount *c = VEC_last (oecount, cvec);
1062 if (c->cnt < 2)
1063 break;
1064
1065 /* Now collect the operands in the outer chain that contain
1066 the common operand in their inner chain. */
1067 sbitmap_zero (candidates2);
1068 nr_candidates2 = 0;
1069 EXECUTE_IF_SET_IN_SBITMAP (candidates, 0, i, sbi0)
1070 {
1071 gimple oedef;
1072 enum tree_code oecode;
1073 unsigned j;
1074 tree op = VEC_index (operand_entry_t, *ops, i)->op;
1075
1076 /* If we undistributed in this chain already this may be
1077 a constant. */
1078 if (TREE_CODE (op) != SSA_NAME)
1079 continue;
1080
1081 oedef = SSA_NAME_DEF_STMT (op);
1082 oecode = gimple_assign_rhs_code (oedef);
1083 if (oecode != c->oecode)
1084 continue;
1085
1086 for (j = 0; VEC_iterate (operand_entry_t, subops[i], j, oe1); ++j)
1087 {
1088 if (oe1->op == c->op)
1089 {
1090 SET_BIT (candidates2, i);
1091 ++nr_candidates2;
1092 break;
1093 }
1094 }
1095 }
1096
1097 if (nr_candidates2 >= 2)
1098 {
1099 operand_entry_t oe1, oe2;
1100 tree tmpvar;
1101 gimple prod;
1102 int first = sbitmap_first_set_bit (candidates2);
1103
1104 /* Build the new addition chain. */
1105 oe1 = VEC_index (operand_entry_t, *ops, first);
1106 if (dump_file && (dump_flags & TDF_DETAILS))
1107 {
1108 fprintf (dump_file, "Building (");
1109 print_generic_expr (dump_file, oe1->op, 0);
1110 }
1111 tmpvar = create_tmp_var (TREE_TYPE (oe1->op), NULL);
1112 add_referenced_var (tmpvar);
1113 zero_one_operation (&oe1->op, c->oecode, c->op);
1114 EXECUTE_IF_SET_IN_SBITMAP (candidates2, first+1, i, sbi0)
1115 {
1116 gimple sum;
1117 oe2 = VEC_index (operand_entry_t, *ops, i);
1118 if (dump_file && (dump_flags & TDF_DETAILS))
1119 {
1120 fprintf (dump_file, " + ");
1121 print_generic_expr (dump_file, oe2->op, 0);
1122 }
1123 zero_one_operation (&oe2->op, c->oecode, c->op);
1124 sum = build_and_add_sum (tmpvar, oe1->op, oe2->op, opcode);
1125 oe2->op = fold_convert (TREE_TYPE (oe2->op), integer_zero_node);
1126 oe2->rank = 0;
1127 oe1->op = gimple_get_lhs (sum);
1128 }
1129
1130 /* Apply the multiplication/division. */
1131 prod = build_and_add_sum (tmpvar, oe1->op, c->op, c->oecode);
1132 if (dump_file && (dump_flags & TDF_DETAILS))
1133 {
1134 fprintf (dump_file, ") %s ", c->oecode == MULT_EXPR ? "*" : "/");
1135 print_generic_expr (dump_file, c->op, 0);
1136 fprintf (dump_file, "\n");
1137 }
1138
1139 /* Record it in the addition chain and disable further
1140 undistribution with this op. */
1141 oe1->op = gimple_assign_lhs (prod);
1142 oe1->rank = get_rank (oe1->op);
1143 VEC_free (operand_entry_t, heap, subops[first]);
1144
1145 changed = true;
1146 }
1147
1148 VEC_pop (oecount, cvec);
1149 }
1150
1151 for (i = 0; i < VEC_length (operand_entry_t, *ops); ++i)
1152 VEC_free (operand_entry_t, heap, subops[i]);
1153 free (subops);
1154 VEC_free (oecount, heap, cvec);
1155 sbitmap_free (candidates);
1156 sbitmap_free (candidates2);
1157
1158 return changed;
1159 }
1160
1161
1162 /* Perform various identities and other optimizations on the list of
1163 operand entries, stored in OPS. The tree code for the binary
1164 operation between all the operands is OPCODE. */
1165
1166 static void
1167 optimize_ops_list (enum tree_code opcode,
1168 VEC (operand_entry_t, heap) **ops)
1169 {
1170 unsigned int length = VEC_length (operand_entry_t, *ops);
1171 unsigned int i;
1172 operand_entry_t oe;
1173 operand_entry_t oelast = NULL;
1174 bool iterate = false;
1175
1176 if (length == 1)
1177 return;
1178
1179 oelast = VEC_last (operand_entry_t, *ops);
1180
1181 /* If the last two are constants, pop the constants off, merge them
1182 and try the next two. */
1183 if (oelast->rank == 0 && is_gimple_min_invariant (oelast->op))
1184 {
1185 operand_entry_t oelm1 = VEC_index (operand_entry_t, *ops, length - 2);
1186
1187 if (oelm1->rank == 0
1188 && is_gimple_min_invariant (oelm1->op)
1189 && useless_type_conversion_p (TREE_TYPE (oelm1->op),
1190 TREE_TYPE (oelast->op)))
1191 {
1192 tree folded = fold_binary (opcode, TREE_TYPE (oelm1->op),
1193 oelm1->op, oelast->op);
1194
1195 if (folded && is_gimple_min_invariant (folded))
1196 {
1197 if (dump_file && (dump_flags & TDF_DETAILS))
1198 fprintf (dump_file, "Merging constants\n");
1199
1200 VEC_pop (operand_entry_t, *ops);
1201 VEC_pop (operand_entry_t, *ops);
1202
1203 add_to_ops_vec (ops, folded);
1204 reassociate_stats.constants_eliminated++;
1205
1206 optimize_ops_list (opcode, ops);
1207 return;
1208 }
1209 }
1210 }
1211
1212 eliminate_using_constants (opcode, ops);
1213 oelast = NULL;
1214
1215 for (i = 0; VEC_iterate (operand_entry_t, *ops, i, oe);)
1216 {
1217 bool done = false;
1218
1219 if (eliminate_not_pairs (opcode, ops, i, oe))
1220 return;
1221 if (eliminate_duplicate_pair (opcode, ops, &done, i, oe, oelast)
1222 || (!done && eliminate_plus_minus_pair (opcode, ops, i, oe)))
1223 {
1224 if (done)
1225 return;
1226 iterate = true;
1227 oelast = NULL;
1228 continue;
1229 }
1230 oelast = oe;
1231 i++;
1232 }
1233
1234 length = VEC_length (operand_entry_t, *ops);
1235 oelast = VEC_last (operand_entry_t, *ops);
1236
1237 if (iterate)
1238 optimize_ops_list (opcode, ops);
1239 }
1240
1241 /* Return true if OPERAND is defined by a PHI node which uses the LHS
1242 of STMT in it's operands. This is also known as a "destructive
1243 update" operation. */
1244
1245 static bool
1246 is_phi_for_stmt (gimple stmt, tree operand)
1247 {
1248 gimple def_stmt;
1249 tree lhs;
1250 use_operand_p arg_p;
1251 ssa_op_iter i;
1252
1253 if (TREE_CODE (operand) != SSA_NAME)
1254 return false;
1255
1256 lhs = gimple_assign_lhs (stmt);
1257
1258 def_stmt = SSA_NAME_DEF_STMT (operand);
1259 if (gimple_code (def_stmt) != GIMPLE_PHI)
1260 return false;
1261
1262 FOR_EACH_PHI_ARG (arg_p, def_stmt, i, SSA_OP_USE)
1263 if (lhs == USE_FROM_PTR (arg_p))
1264 return true;
1265 return false;
1266 }
1267
1268 /* Remove def stmt of VAR if VAR has zero uses and recurse
1269 on rhs1 operand if so. */
1270
1271 static void
1272 remove_visited_stmt_chain (tree var)
1273 {
1274 gimple stmt;
1275 gimple_stmt_iterator gsi;
1276
1277 while (1)
1278 {
1279 if (TREE_CODE (var) != SSA_NAME || !has_zero_uses (var))
1280 return;
1281 stmt = SSA_NAME_DEF_STMT (var);
1282 if (!is_gimple_assign (stmt)
1283 || !gimple_visited_p (stmt))
1284 return;
1285 var = gimple_assign_rhs1 (stmt);
1286 gsi = gsi_for_stmt (stmt);
1287 gsi_remove (&gsi, true);
1288 release_defs (stmt);
1289 }
1290 }
1291
1292 /* Recursively rewrite our linearized statements so that the operators
1293 match those in OPS[OPINDEX], putting the computation in rank
1294 order. */
1295
1296 static void
1297 rewrite_expr_tree (gimple stmt, unsigned int opindex,
1298 VEC(operand_entry_t, heap) * ops, bool moved)
1299 {
1300 tree rhs1 = gimple_assign_rhs1 (stmt);
1301 tree rhs2 = gimple_assign_rhs2 (stmt);
1302 operand_entry_t oe;
1303
1304 /* If we have three operands left, then we want to make sure the one
1305 that gets the double binary op are the ones with the same rank.
1306
1307 The alternative we try is to see if this is a destructive
1308 update style statement, which is like:
1309 b = phi (a, ...)
1310 a = c + b;
1311 In that case, we want to use the destructive update form to
1312 expose the possible vectorizer sum reduction opportunity.
1313 In that case, the third operand will be the phi node.
1314
1315 We could, of course, try to be better as noted above, and do a
1316 lot of work to try to find these opportunities in >3 operand
1317 cases, but it is unlikely to be worth it. */
1318 if (opindex + 3 == VEC_length (operand_entry_t, ops))
1319 {
1320 operand_entry_t oe1, oe2, oe3;
1321
1322 oe1 = VEC_index (operand_entry_t, ops, opindex);
1323 oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
1324 oe3 = VEC_index (operand_entry_t, ops, opindex + 2);
1325
1326 if ((oe1->rank == oe2->rank
1327 && oe2->rank != oe3->rank)
1328 || (is_phi_for_stmt (stmt, oe3->op)
1329 && !is_phi_for_stmt (stmt, oe1->op)
1330 && !is_phi_for_stmt (stmt, oe2->op)))
1331 {
1332 struct operand_entry temp = *oe3;
1333 oe3->op = oe1->op;
1334 oe3->rank = oe1->rank;
1335 oe1->op = temp.op;
1336 oe1->rank= temp.rank;
1337 }
1338 else if ((oe1->rank == oe3->rank
1339 && oe2->rank != oe3->rank)
1340 || (is_phi_for_stmt (stmt, oe2->op)
1341 && !is_phi_for_stmt (stmt, oe1->op)
1342 && !is_phi_for_stmt (stmt, oe3->op)))
1343 {
1344 struct operand_entry temp = *oe2;
1345 oe2->op = oe1->op;
1346 oe2->rank = oe1->rank;
1347 oe1->op = temp.op;
1348 oe1->rank= temp.rank;
1349 }
1350 }
1351
1352 /* The final recursion case for this function is that you have
1353 exactly two operations left.
1354 If we had one exactly one op in the entire list to start with, we
1355 would have never called this function, and the tail recursion
1356 rewrites them one at a time. */
1357 if (opindex + 2 == VEC_length (operand_entry_t, ops))
1358 {
1359 operand_entry_t oe1, oe2;
1360
1361 oe1 = VEC_index (operand_entry_t, ops, opindex);
1362 oe2 = VEC_index (operand_entry_t, ops, opindex + 1);
1363
1364 if (rhs1 != oe1->op || rhs2 != oe2->op)
1365 {
1366 if (dump_file && (dump_flags & TDF_DETAILS))
1367 {
1368 fprintf (dump_file, "Transforming ");
1369 print_gimple_stmt (dump_file, stmt, 0, 0);
1370 }
1371
1372 gimple_assign_set_rhs1 (stmt, oe1->op);
1373 gimple_assign_set_rhs2 (stmt, oe2->op);
1374 update_stmt (stmt);
1375 if (rhs1 != oe1->op && rhs1 != oe2->op)
1376 remove_visited_stmt_chain (rhs1);
1377
1378 if (dump_file && (dump_flags & TDF_DETAILS))
1379 {
1380 fprintf (dump_file, " into ");
1381 print_gimple_stmt (dump_file, stmt, 0, 0);
1382 }
1383
1384 }
1385 return;
1386 }
1387
1388 /* If we hit here, we should have 3 or more ops left. */
1389 gcc_assert (opindex + 2 < VEC_length (operand_entry_t, ops));
1390
1391 /* Rewrite the next operator. */
1392 oe = VEC_index (operand_entry_t, ops, opindex);
1393
1394 if (oe->op != rhs2)
1395 {
1396 if (!moved)
1397 {
1398 gimple_stmt_iterator gsinow, gsirhs1;
1399 gimple stmt1 = stmt, stmt2;
1400 unsigned int count;
1401
1402 gsinow = gsi_for_stmt (stmt);
1403 count = VEC_length (operand_entry_t, ops) - opindex - 2;
1404 while (count-- != 0)
1405 {
1406 stmt2 = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt1));
1407 gsirhs1 = gsi_for_stmt (stmt2);
1408 gsi_move_before (&gsirhs1, &gsinow);
1409 gsi_prev (&gsinow);
1410 stmt1 = stmt2;
1411 }
1412 moved = true;
1413 }
1414
1415 if (dump_file && (dump_flags & TDF_DETAILS))
1416 {
1417 fprintf (dump_file, "Transforming ");
1418 print_gimple_stmt (dump_file, stmt, 0, 0);
1419 }
1420
1421 gimple_assign_set_rhs2 (stmt, oe->op);
1422 update_stmt (stmt);
1423
1424 if (dump_file && (dump_flags & TDF_DETAILS))
1425 {
1426 fprintf (dump_file, " into ");
1427 print_gimple_stmt (dump_file, stmt, 0, 0);
1428 }
1429 }
1430 /* Recurse on the LHS of the binary operator, which is guaranteed to
1431 be the non-leaf side. */
1432 rewrite_expr_tree (SSA_NAME_DEF_STMT (rhs1), opindex + 1, ops, moved);
1433 }
1434
1435 /* Transform STMT, which is really (A +B) + (C + D) into the left
1436 linear form, ((A+B)+C)+D.
1437 Recurse on D if necessary. */
1438
1439 static void
1440 linearize_expr (gimple stmt)
1441 {
1442 gimple_stmt_iterator gsinow, gsirhs;
1443 gimple binlhs = SSA_NAME_DEF_STMT (gimple_assign_rhs1 (stmt));
1444 gimple binrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1445 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
1446 gimple newbinrhs = NULL;
1447 struct loop *loop = loop_containing_stmt (stmt);
1448
1449 gcc_assert (is_reassociable_op (binlhs, rhscode, loop)
1450 && is_reassociable_op (binrhs, rhscode, loop));
1451
1452 gsinow = gsi_for_stmt (stmt);
1453 gsirhs = gsi_for_stmt (binrhs);
1454 gsi_move_before (&gsirhs, &gsinow);
1455
1456 gimple_assign_set_rhs2 (stmt, gimple_assign_rhs1 (binrhs));
1457 gimple_assign_set_rhs1 (binrhs, gimple_assign_lhs (binlhs));
1458 gimple_assign_set_rhs1 (stmt, gimple_assign_lhs (binrhs));
1459
1460 if (TREE_CODE (gimple_assign_rhs2 (stmt)) == SSA_NAME)
1461 newbinrhs = SSA_NAME_DEF_STMT (gimple_assign_rhs2 (stmt));
1462
1463 if (dump_file && (dump_flags & TDF_DETAILS))
1464 {
1465 fprintf (dump_file, "Linearized: ");
1466 print_gimple_stmt (dump_file, stmt, 0, 0);
1467 }
1468
1469 reassociate_stats.linearized++;
1470 update_stmt (binrhs);
1471 update_stmt (binlhs);
1472 update_stmt (stmt);
1473
1474 gimple_set_visited (stmt, true);
1475 gimple_set_visited (binlhs, true);
1476 gimple_set_visited (binrhs, true);
1477
1478 /* Tail recurse on the new rhs if it still needs reassociation. */
1479 if (newbinrhs && is_reassociable_op (newbinrhs, rhscode, loop))
1480 /* ??? This should probably be linearize_expr (newbinrhs) but I don't
1481 want to change the algorithm while converting to tuples. */
1482 linearize_expr (stmt);
1483 }
1484
1485 /* If LHS has a single immediate use that is a GIMPLE_ASSIGN statement, return
1486 it. Otherwise, return NULL. */
1487
1488 static gimple
1489 get_single_immediate_use (tree lhs)
1490 {
1491 use_operand_p immuse;
1492 gimple immusestmt;
1493
1494 if (TREE_CODE (lhs) == SSA_NAME
1495 && single_imm_use (lhs, &immuse, &immusestmt)
1496 && is_gimple_assign (immusestmt))
1497 return immusestmt;
1498
1499 return NULL;
1500 }
1501
1502 static VEC(tree, heap) *broken_up_subtracts;
1503
1504 /* Recursively negate the value of TONEGATE, and return the SSA_NAME
1505 representing the negated value. Insertions of any necessary
1506 instructions go before GSI.
1507 This function is recursive in that, if you hand it "a_5" as the
1508 value to negate, and a_5 is defined by "a_5 = b_3 + b_4", it will
1509 transform b_3 + b_4 into a_5 = -b_3 + -b_4. */
1510
1511 static tree
1512 negate_value (tree tonegate, gimple_stmt_iterator *gsi)
1513 {
1514 gimple negatedefstmt= NULL;
1515 tree resultofnegate;
1516
1517 /* If we are trying to negate a name, defined by an add, negate the
1518 add operands instead. */
1519 if (TREE_CODE (tonegate) == SSA_NAME)
1520 negatedefstmt = SSA_NAME_DEF_STMT (tonegate);
1521 if (TREE_CODE (tonegate) == SSA_NAME
1522 && is_gimple_assign (negatedefstmt)
1523 && TREE_CODE (gimple_assign_lhs (negatedefstmt)) == SSA_NAME
1524 && has_single_use (gimple_assign_lhs (negatedefstmt))
1525 && gimple_assign_rhs_code (negatedefstmt) == PLUS_EXPR)
1526 {
1527 gimple_stmt_iterator gsi;
1528 tree rhs1 = gimple_assign_rhs1 (negatedefstmt);
1529 tree rhs2 = gimple_assign_rhs2 (negatedefstmt);
1530
1531 gsi = gsi_for_stmt (negatedefstmt);
1532 rhs1 = negate_value (rhs1, &gsi);
1533 gimple_assign_set_rhs1 (negatedefstmt, rhs1);
1534
1535 gsi = gsi_for_stmt (negatedefstmt);
1536 rhs2 = negate_value (rhs2, &gsi);
1537 gimple_assign_set_rhs2 (negatedefstmt, rhs2);
1538
1539 update_stmt (negatedefstmt);
1540 return gimple_assign_lhs (negatedefstmt);
1541 }
1542
1543 tonegate = fold_build1 (NEGATE_EXPR, TREE_TYPE (tonegate), tonegate);
1544 resultofnegate = force_gimple_operand_gsi (gsi, tonegate, true,
1545 NULL_TREE, true, GSI_SAME_STMT);
1546 VEC_safe_push (tree, heap, broken_up_subtracts, resultofnegate);
1547 return resultofnegate;
1548 }
1549
1550 /* Return true if we should break up the subtract in STMT into an add
1551 with negate. This is true when we the subtract operands are really
1552 adds, or the subtract itself is used in an add expression. In
1553 either case, breaking up the subtract into an add with negate
1554 exposes the adds to reassociation. */
1555
1556 static bool
1557 should_break_up_subtract (gimple stmt)
1558 {
1559 tree lhs = gimple_assign_lhs (stmt);
1560 tree binlhs = gimple_assign_rhs1 (stmt);
1561 tree binrhs = gimple_assign_rhs2 (stmt);
1562 gimple immusestmt;
1563 struct loop *loop = loop_containing_stmt (stmt);
1564
1565 if (TREE_CODE (binlhs) == SSA_NAME
1566 && is_reassociable_op (SSA_NAME_DEF_STMT (binlhs), PLUS_EXPR, loop))
1567 return true;
1568
1569 if (TREE_CODE (binrhs) == SSA_NAME
1570 && is_reassociable_op (SSA_NAME_DEF_STMT (binrhs), PLUS_EXPR, loop))
1571 return true;
1572
1573 if (TREE_CODE (lhs) == SSA_NAME
1574 && (immusestmt = get_single_immediate_use (lhs))
1575 && is_gimple_assign (immusestmt)
1576 && (gimple_assign_rhs_code (immusestmt) == PLUS_EXPR
1577 || gimple_assign_rhs_code (immusestmt) == MULT_EXPR))
1578 return true;
1579 return false;
1580 }
1581
1582 /* Transform STMT from A - B into A + -B. */
1583
1584 static void
1585 break_up_subtract (gimple stmt, gimple_stmt_iterator *gsip)
1586 {
1587 tree rhs1 = gimple_assign_rhs1 (stmt);
1588 tree rhs2 = gimple_assign_rhs2 (stmt);
1589
1590 if (dump_file && (dump_flags & TDF_DETAILS))
1591 {
1592 fprintf (dump_file, "Breaking up subtract ");
1593 print_gimple_stmt (dump_file, stmt, 0, 0);
1594 }
1595
1596 rhs2 = negate_value (rhs2, gsip);
1597 gimple_assign_set_rhs_with_ops (gsip, PLUS_EXPR, rhs1, rhs2);
1598 update_stmt (stmt);
1599 }
1600
1601 /* Recursively linearize a binary expression that is the RHS of STMT.
1602 Place the operands of the expression tree in the vector named OPS. */
1603
1604 static void
1605 linearize_expr_tree (VEC(operand_entry_t, heap) **ops, gimple stmt,
1606 bool is_associative, bool set_visited)
1607 {
1608 tree binlhs = gimple_assign_rhs1 (stmt);
1609 tree binrhs = gimple_assign_rhs2 (stmt);
1610 gimple binlhsdef, binrhsdef;
1611 bool binlhsisreassoc = false;
1612 bool binrhsisreassoc = false;
1613 enum tree_code rhscode = gimple_assign_rhs_code (stmt);
1614 struct loop *loop = loop_containing_stmt (stmt);
1615
1616 if (set_visited)
1617 gimple_set_visited (stmt, true);
1618
1619 if (TREE_CODE (binlhs) == SSA_NAME)
1620 {
1621 binlhsdef = SSA_NAME_DEF_STMT (binlhs);
1622 binlhsisreassoc = is_reassociable_op (binlhsdef, rhscode, loop);
1623 }
1624
1625 if (TREE_CODE (binrhs) == SSA_NAME)
1626 {
1627 binrhsdef = SSA_NAME_DEF_STMT (binrhs);
1628 binrhsisreassoc = is_reassociable_op (binrhsdef, rhscode, loop);
1629 }
1630
1631 /* If the LHS is not reassociable, but the RHS is, we need to swap
1632 them. If neither is reassociable, there is nothing we can do, so
1633 just put them in the ops vector. If the LHS is reassociable,
1634 linearize it. If both are reassociable, then linearize the RHS
1635 and the LHS. */
1636
1637 if (!binlhsisreassoc)
1638 {
1639 tree temp;
1640
1641 /* If this is not a associative operation like division, give up. */
1642 if (!is_associative)
1643 {
1644 add_to_ops_vec (ops, binrhs);
1645 return;
1646 }
1647
1648 if (!binrhsisreassoc)
1649 {
1650 add_to_ops_vec (ops, binrhs);
1651 add_to_ops_vec (ops, binlhs);
1652 return;
1653 }
1654
1655 if (dump_file && (dump_flags & TDF_DETAILS))
1656 {
1657 fprintf (dump_file, "swapping operands of ");
1658 print_gimple_stmt (dump_file, stmt, 0, 0);
1659 }
1660
1661 swap_tree_operands (stmt,
1662 gimple_assign_rhs1_ptr (stmt),
1663 gimple_assign_rhs2_ptr (stmt));
1664 update_stmt (stmt);
1665
1666 if (dump_file && (dump_flags & TDF_DETAILS))
1667 {
1668 fprintf (dump_file, " is now ");
1669 print_gimple_stmt (dump_file, stmt, 0, 0);
1670 }
1671
1672 /* We want to make it so the lhs is always the reassociative op,
1673 so swap. */
1674 temp = binlhs;
1675 binlhs = binrhs;
1676 binrhs = temp;
1677 }
1678 else if (binrhsisreassoc)
1679 {
1680 linearize_expr (stmt);
1681 binlhs = gimple_assign_rhs1 (stmt);
1682 binrhs = gimple_assign_rhs2 (stmt);
1683 }
1684
1685 gcc_assert (TREE_CODE (binrhs) != SSA_NAME
1686 || !is_reassociable_op (SSA_NAME_DEF_STMT (binrhs),
1687 rhscode, loop));
1688 linearize_expr_tree (ops, SSA_NAME_DEF_STMT (binlhs),
1689 is_associative, set_visited);
1690 add_to_ops_vec (ops, binrhs);
1691 }
1692
1693 /* Repropagate the negates back into subtracts, since no other pass
1694 currently does it. */
1695
1696 static void
1697 repropagate_negates (void)
1698 {
1699 unsigned int i = 0;
1700 tree negate;
1701
1702 for (i = 0; VEC_iterate (tree, broken_up_subtracts, i, negate); i++)
1703 {
1704 gimple user = get_single_immediate_use (negate);
1705
1706 /* The negate operand can be either operand of a PLUS_EXPR
1707 (it can be the LHS if the RHS is a constant for example).
1708
1709 Force the negate operand to the RHS of the PLUS_EXPR, then
1710 transform the PLUS_EXPR into a MINUS_EXPR. */
1711 if (user
1712 && is_gimple_assign (user)
1713 && gimple_assign_rhs_code (user) == PLUS_EXPR)
1714 {
1715 /* If the negated operand appears on the LHS of the
1716 PLUS_EXPR, exchange the operands of the PLUS_EXPR
1717 to force the negated operand to the RHS of the PLUS_EXPR. */
1718 if (gimple_assign_rhs1 (user) == negate)
1719 {
1720 swap_tree_operands (user,
1721 gimple_assign_rhs1_ptr (user),
1722 gimple_assign_rhs2_ptr (user));
1723 }
1724
1725 /* Now transform the PLUS_EXPR into a MINUS_EXPR and replace
1726 the RHS of the PLUS_EXPR with the operand of the NEGATE_EXPR. */
1727 if (gimple_assign_rhs2 (user) == negate)
1728 {
1729 tree rhs1 = gimple_assign_rhs1 (user);
1730 tree rhs2 = get_unary_op (negate, NEGATE_EXPR);
1731 gimple_stmt_iterator gsi = gsi_for_stmt (user);
1732 gimple_assign_set_rhs_with_ops (&gsi, MINUS_EXPR, rhs1, rhs2);
1733 update_stmt (user);
1734 }
1735 }
1736 }
1737 }
1738
1739 /* Break up subtract operations in block BB.
1740
1741 We do this top down because we don't know whether the subtract is
1742 part of a possible chain of reassociation except at the top.
1743
1744 IE given
1745 d = f + g
1746 c = a + e
1747 b = c - d
1748 q = b - r
1749 k = t - q
1750
1751 we want to break up k = t - q, but we won't until we've transformed q
1752 = b - r, which won't be broken up until we transform b = c - d.
1753
1754 En passant, clear the GIMPLE visited flag on every statement. */
1755
1756 static void
1757 break_up_subtract_bb (basic_block bb)
1758 {
1759 gimple_stmt_iterator gsi;
1760 basic_block son;
1761
1762 for (gsi = gsi_start_bb (bb); !gsi_end_p (gsi); gsi_next (&gsi))
1763 {
1764 gimple stmt = gsi_stmt (gsi);
1765 gimple_set_visited (stmt, false);
1766
1767 /* Look for simple gimple subtract operations. */
1768 if (is_gimple_assign (stmt)
1769 && gimple_assign_rhs_code (stmt) == MINUS_EXPR)
1770 {
1771 tree lhs = gimple_assign_lhs (stmt);
1772 tree rhs1 = gimple_assign_rhs1 (stmt);
1773 tree rhs2 = gimple_assign_rhs2 (stmt);
1774
1775 /* If associative-math we can do reassociation for
1776 non-integral types. Or, we can do reassociation for
1777 non-saturating fixed-point types. */
1778 if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1779 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1780 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
1781 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
1782 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
1783 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
1784 || !flag_associative_math)
1785 && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
1786 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
1787 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
1788 continue;
1789
1790 /* Check for a subtract used only in an addition. If this
1791 is the case, transform it into add of a negate for better
1792 reassociation. IE transform C = A-B into C = A + -B if C
1793 is only used in an addition. */
1794 if (should_break_up_subtract (stmt))
1795 break_up_subtract (stmt, &gsi);
1796 }
1797 }
1798 for (son = first_dom_son (CDI_DOMINATORS, bb);
1799 son;
1800 son = next_dom_son (CDI_DOMINATORS, son))
1801 break_up_subtract_bb (son);
1802 }
1803
1804 /* Reassociate expressions in basic block BB and its post-dominator as
1805 children. */
1806
1807 static void
1808 reassociate_bb (basic_block bb)
1809 {
1810 gimple_stmt_iterator gsi;
1811 basic_block son;
1812
1813 for (gsi = gsi_last_bb (bb); !gsi_end_p (gsi); gsi_prev (&gsi))
1814 {
1815 gimple stmt = gsi_stmt (gsi);
1816
1817 if (is_gimple_assign (stmt))
1818 {
1819 tree lhs, rhs1, rhs2;
1820 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
1821
1822 /* If this is not a gimple binary expression, there is
1823 nothing for us to do with it. */
1824 if (get_gimple_rhs_class (rhs_code) != GIMPLE_BINARY_RHS)
1825 continue;
1826
1827 /* If this was part of an already processed statement,
1828 we don't need to touch it again. */
1829 if (gimple_visited_p (stmt))
1830 {
1831 /* This statement might have become dead because of previous
1832 reassociations. */
1833 if (has_zero_uses (gimple_get_lhs (stmt)))
1834 {
1835 gsi_remove (&gsi, true);
1836 release_defs (stmt);
1837 /* We might end up removing the last stmt above which
1838 places the iterator to the end of the sequence.
1839 Reset it to the last stmt in this case which might
1840 be the end of the sequence as well if we removed
1841 the last statement of the sequence. In which case
1842 we need to bail out. */
1843 if (gsi_end_p (gsi))
1844 {
1845 gsi = gsi_last_bb (bb);
1846 if (gsi_end_p (gsi))
1847 break;
1848 }
1849 }
1850 continue;
1851 }
1852
1853 lhs = gimple_assign_lhs (stmt);
1854 rhs1 = gimple_assign_rhs1 (stmt);
1855 rhs2 = gimple_assign_rhs2 (stmt);
1856
1857 /* If associative-math we can do reassociation for
1858 non-integral types. Or, we can do reassociation for
1859 non-saturating fixed-point types. */
1860 if ((!INTEGRAL_TYPE_P (TREE_TYPE (lhs))
1861 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs1))
1862 || !INTEGRAL_TYPE_P (TREE_TYPE (rhs2)))
1863 && (!SCALAR_FLOAT_TYPE_P (TREE_TYPE (lhs))
1864 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs1))
1865 || !SCALAR_FLOAT_TYPE_P (TREE_TYPE(rhs2))
1866 || !flag_associative_math)
1867 && (!NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE (lhs))
1868 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs1))
1869 || !NON_SAT_FIXED_POINT_TYPE_P (TREE_TYPE(rhs2))))
1870 continue;
1871
1872 if (associative_tree_code (rhs_code))
1873 {
1874 VEC(operand_entry_t, heap) *ops = NULL;
1875
1876 /* There may be no immediate uses left by the time we
1877 get here because we may have eliminated them all. */
1878 if (TREE_CODE (lhs) == SSA_NAME && has_zero_uses (lhs))
1879 continue;
1880
1881 gimple_set_visited (stmt, true);
1882 linearize_expr_tree (&ops, stmt, true, true);
1883 qsort (VEC_address (operand_entry_t, ops),
1884 VEC_length (operand_entry_t, ops),
1885 sizeof (operand_entry_t),
1886 sort_by_operand_rank);
1887 optimize_ops_list (rhs_code, &ops);
1888 if (undistribute_ops_list (rhs_code, &ops,
1889 loop_containing_stmt (stmt)))
1890 {
1891 qsort (VEC_address (operand_entry_t, ops),
1892 VEC_length (operand_entry_t, ops),
1893 sizeof (operand_entry_t),
1894 sort_by_operand_rank);
1895 optimize_ops_list (rhs_code, &ops);
1896 }
1897
1898 if (VEC_length (operand_entry_t, ops) == 1)
1899 {
1900 if (dump_file && (dump_flags & TDF_DETAILS))
1901 {
1902 fprintf (dump_file, "Transforming ");
1903 print_gimple_stmt (dump_file, stmt, 0, 0);
1904 }
1905
1906 rhs1 = gimple_assign_rhs1 (stmt);
1907 gimple_assign_set_rhs_from_tree (&gsi,
1908 VEC_last (operand_entry_t,
1909 ops)->op);
1910 update_stmt (stmt);
1911 remove_visited_stmt_chain (rhs1);
1912
1913 if (dump_file && (dump_flags & TDF_DETAILS))
1914 {
1915 fprintf (dump_file, " into ");
1916 print_gimple_stmt (dump_file, stmt, 0, 0);
1917 }
1918 }
1919 else
1920 rewrite_expr_tree (stmt, 0, ops, false);
1921
1922 VEC_free (operand_entry_t, heap, ops);
1923 }
1924 }
1925 }
1926 for (son = first_dom_son (CDI_POST_DOMINATORS, bb);
1927 son;
1928 son = next_dom_son (CDI_POST_DOMINATORS, son))
1929 reassociate_bb (son);
1930 }
1931
1932 void dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops);
1933 void debug_ops_vector (VEC (operand_entry_t, heap) *ops);
1934
1935 /* Dump the operand entry vector OPS to FILE. */
1936
1937 void
1938 dump_ops_vector (FILE *file, VEC (operand_entry_t, heap) *ops)
1939 {
1940 operand_entry_t oe;
1941 unsigned int i;
1942
1943 for (i = 0; VEC_iterate (operand_entry_t, ops, i, oe); i++)
1944 {
1945 fprintf (file, "Op %d -> rank: %d, tree: ", i, oe->rank);
1946 print_generic_expr (file, oe->op, 0);
1947 }
1948 }
1949
1950 /* Dump the operand entry vector OPS to STDERR. */
1951
1952 void
1953 debug_ops_vector (VEC (operand_entry_t, heap) *ops)
1954 {
1955 dump_ops_vector (stderr, ops);
1956 }
1957
1958 static void
1959 do_reassoc (void)
1960 {
1961 break_up_subtract_bb (ENTRY_BLOCK_PTR);
1962 reassociate_bb (EXIT_BLOCK_PTR);
1963 }
1964
1965 /* Initialize the reassociation pass. */
1966
1967 static void
1968 init_reassoc (void)
1969 {
1970 int i;
1971 long rank = 2;
1972 tree param;
1973 int *bbs = XNEWVEC (int, last_basic_block + 1);
1974
1975 /* Find the loops, so that we can prevent moving calculations in
1976 them. */
1977 loop_optimizer_init (AVOID_CFG_MODIFICATIONS);
1978
1979 memset (&reassociate_stats, 0, sizeof (reassociate_stats));
1980
1981 operand_entry_pool = create_alloc_pool ("operand entry pool",
1982 sizeof (struct operand_entry), 30);
1983
1984 /* Reverse RPO (Reverse Post Order) will give us something where
1985 deeper loops come later. */
1986 pre_and_rev_post_order_compute (NULL, bbs, false);
1987 bb_rank = XCNEWVEC (long, last_basic_block + 1);
1988 operand_rank = pointer_map_create ();
1989
1990 /* Give each argument a distinct rank. */
1991 for (param = DECL_ARGUMENTS (current_function_decl);
1992 param;
1993 param = TREE_CHAIN (param))
1994 {
1995 if (gimple_default_def (cfun, param) != NULL)
1996 {
1997 tree def = gimple_default_def (cfun, param);
1998 insert_operand_rank (def, ++rank);
1999 }
2000 }
2001
2002 /* Give the chain decl a distinct rank. */
2003 if (cfun->static_chain_decl != NULL)
2004 {
2005 tree def = gimple_default_def (cfun, cfun->static_chain_decl);
2006 if (def != NULL)
2007 insert_operand_rank (def, ++rank);
2008 }
2009
2010 /* Set up rank for each BB */
2011 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
2012 bb_rank[bbs[i]] = ++rank << 16;
2013
2014 free (bbs);
2015 calculate_dominance_info (CDI_POST_DOMINATORS);
2016 broken_up_subtracts = NULL;
2017 }
2018
2019 /* Cleanup after the reassociation pass, and print stats if
2020 requested. */
2021
2022 static void
2023 fini_reassoc (void)
2024 {
2025 statistics_counter_event (cfun, "Linearized",
2026 reassociate_stats.linearized);
2027 statistics_counter_event (cfun, "Constants eliminated",
2028 reassociate_stats.constants_eliminated);
2029 statistics_counter_event (cfun, "Ops eliminated",
2030 reassociate_stats.ops_eliminated);
2031 statistics_counter_event (cfun, "Statements rewritten",
2032 reassociate_stats.rewritten);
2033
2034 pointer_map_destroy (operand_rank);
2035 free_alloc_pool (operand_entry_pool);
2036 free (bb_rank);
2037 VEC_free (tree, heap, broken_up_subtracts);
2038 free_dominance_info (CDI_POST_DOMINATORS);
2039 loop_optimizer_finalize ();
2040 }
2041
2042 /* Gate and execute functions for Reassociation. */
2043
2044 static unsigned int
2045 execute_reassoc (void)
2046 {
2047 init_reassoc ();
2048
2049 do_reassoc ();
2050 repropagate_negates ();
2051
2052 fini_reassoc ();
2053 return 0;
2054 }
2055
2056 static bool
2057 gate_tree_ssa_reassoc (void)
2058 {
2059 return flag_tree_reassoc != 0;
2060 }
2061
2062 struct gimple_opt_pass pass_reassoc =
2063 {
2064 {
2065 GIMPLE_PASS,
2066 "reassoc", /* name */
2067 gate_tree_ssa_reassoc, /* gate */
2068 execute_reassoc, /* execute */
2069 NULL, /* sub */
2070 NULL, /* next */
2071 0, /* static_pass_number */
2072 TV_TREE_REASSOC, /* tv_id */
2073 PROP_cfg | PROP_ssa | PROP_alias, /* properties_required */
2074 0, /* properties_provided */
2075 0, /* properties_destroyed */
2076 0, /* todo_flags_start */
2077 TODO_dump_func | TODO_ggc_collect | TODO_verify_ssa /* todo_flags_finish */
2078 }
2079 };
2080