]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree-vect-stmts.c
3d5e6ada2e4822b3e065d5782d0a20935e087f95
[thirdparty/gcc.git] / gcc / tree-vect-stmts.c
1 /* Statement Analysis and Transformation for Vectorization
2 Copyright (C) 2003-2017 Free Software Foundation, Inc.
3 Contributed by Dorit Naishlos <dorit@il.ibm.com>
4 and Ira Rosen <irar@il.ibm.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #include "config.h"
23 #include "system.h"
24 #include "coretypes.h"
25 #include "backend.h"
26 #include "target.h"
27 #include "rtl.h"
28 #include "tree.h"
29 #include "gimple.h"
30 #include "ssa.h"
31 #include "optabs-tree.h"
32 #include "insn-config.h"
33 #include "recog.h" /* FIXME: for insn_data */
34 #include "cgraph.h"
35 #include "dumpfile.h"
36 #include "alias.h"
37 #include "fold-const.h"
38 #include "stor-layout.h"
39 #include "tree-eh.h"
40 #include "gimplify.h"
41 #include "gimple-iterator.h"
42 #include "gimplify-me.h"
43 #include "tree-cfg.h"
44 #include "tree-ssa-loop-manip.h"
45 #include "cfgloop.h"
46 #include "tree-ssa-loop.h"
47 #include "tree-scalar-evolution.h"
48 #include "tree-vectorizer.h"
49 #include "builtins.h"
50 #include "internal-fn.h"
51
52 /* For lang_hooks.types.type_for_mode. */
53 #include "langhooks.h"
54
55 /* Says whether a statement is a load, a store of a vectorized statement
56 result, or a store of an invariant value. */
57 enum vec_load_store_type {
58 VLS_LOAD,
59 VLS_STORE,
60 VLS_STORE_INVARIANT
61 };
62
63 /* Return the vectorized type for the given statement. */
64
65 tree
66 stmt_vectype (struct _stmt_vec_info *stmt_info)
67 {
68 return STMT_VINFO_VECTYPE (stmt_info);
69 }
70
71 /* Return TRUE iff the given statement is in an inner loop relative to
72 the loop being vectorized. */
73 bool
74 stmt_in_inner_loop_p (struct _stmt_vec_info *stmt_info)
75 {
76 gimple *stmt = STMT_VINFO_STMT (stmt_info);
77 basic_block bb = gimple_bb (stmt);
78 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
79 struct loop* loop;
80
81 if (!loop_vinfo)
82 return false;
83
84 loop = LOOP_VINFO_LOOP (loop_vinfo);
85
86 return (bb->loop_father == loop->inner);
87 }
88
89 /* Record the cost of a statement, either by directly informing the
90 target model or by saving it in a vector for later processing.
91 Return a preliminary estimate of the statement's cost. */
92
93 unsigned
94 record_stmt_cost (stmt_vector_for_cost *body_cost_vec, int count,
95 enum vect_cost_for_stmt kind, stmt_vec_info stmt_info,
96 int misalign, enum vect_cost_model_location where)
97 {
98 if (body_cost_vec)
99 {
100 tree vectype = stmt_info ? stmt_vectype (stmt_info) : NULL_TREE;
101 stmt_info_for_cost si = { count, kind,
102 stmt_info ? STMT_VINFO_STMT (stmt_info) : NULL,
103 misalign };
104 body_cost_vec->safe_push (si);
105 return (unsigned)
106 (builtin_vectorization_cost (kind, vectype, misalign) * count);
107 }
108 else
109 return add_stmt_cost (stmt_info->vinfo->target_cost_data,
110 count, kind, stmt_info, misalign, where);
111 }
112
113 /* Return a variable of type ELEM_TYPE[NELEMS]. */
114
115 static tree
116 create_vector_array (tree elem_type, unsigned HOST_WIDE_INT nelems)
117 {
118 return create_tmp_var (build_array_type_nelts (elem_type, nelems),
119 "vect_array");
120 }
121
122 /* ARRAY is an array of vectors created by create_vector_array.
123 Return an SSA_NAME for the vector in index N. The reference
124 is part of the vectorization of STMT and the vector is associated
125 with scalar destination SCALAR_DEST. */
126
127 static tree
128 read_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree scalar_dest,
129 tree array, unsigned HOST_WIDE_INT n)
130 {
131 tree vect_type, vect, vect_name, array_ref;
132 gimple *new_stmt;
133
134 gcc_assert (TREE_CODE (TREE_TYPE (array)) == ARRAY_TYPE);
135 vect_type = TREE_TYPE (TREE_TYPE (array));
136 vect = vect_create_destination_var (scalar_dest, vect_type);
137 array_ref = build4 (ARRAY_REF, vect_type, array,
138 build_int_cst (size_type_node, n),
139 NULL_TREE, NULL_TREE);
140
141 new_stmt = gimple_build_assign (vect, array_ref);
142 vect_name = make_ssa_name (vect, new_stmt);
143 gimple_assign_set_lhs (new_stmt, vect_name);
144 vect_finish_stmt_generation (stmt, new_stmt, gsi);
145
146 return vect_name;
147 }
148
149 /* ARRAY is an array of vectors created by create_vector_array.
150 Emit code to store SSA_NAME VECT in index N of the array.
151 The store is part of the vectorization of STMT. */
152
153 static void
154 write_vector_array (gimple *stmt, gimple_stmt_iterator *gsi, tree vect,
155 tree array, unsigned HOST_WIDE_INT n)
156 {
157 tree array_ref;
158 gimple *new_stmt;
159
160 array_ref = build4 (ARRAY_REF, TREE_TYPE (vect), array,
161 build_int_cst (size_type_node, n),
162 NULL_TREE, NULL_TREE);
163
164 new_stmt = gimple_build_assign (array_ref, vect);
165 vect_finish_stmt_generation (stmt, new_stmt, gsi);
166 }
167
168 /* PTR is a pointer to an array of type TYPE. Return a representation
169 of *PTR. The memory reference replaces those in FIRST_DR
170 (and its group). */
171
172 static tree
173 create_array_ref (tree type, tree ptr, tree alias_ptr_type)
174 {
175 tree mem_ref;
176
177 mem_ref = build2 (MEM_REF, type, ptr, build_int_cst (alias_ptr_type, 0));
178 /* Arrays have the same alignment as their type. */
179 set_ptr_info_alignment (get_ptr_info (ptr), TYPE_ALIGN_UNIT (type), 0);
180 return mem_ref;
181 }
182
183 /* Utility functions used by vect_mark_stmts_to_be_vectorized. */
184
185 /* Function vect_mark_relevant.
186
187 Mark STMT as "relevant for vectorization" and add it to WORKLIST. */
188
189 static void
190 vect_mark_relevant (vec<gimple *> *worklist, gimple *stmt,
191 enum vect_relevant relevant, bool live_p)
192 {
193 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
194 enum vect_relevant save_relevant = STMT_VINFO_RELEVANT (stmt_info);
195 bool save_live_p = STMT_VINFO_LIVE_P (stmt_info);
196 gimple *pattern_stmt;
197
198 if (dump_enabled_p ())
199 {
200 dump_printf_loc (MSG_NOTE, vect_location,
201 "mark relevant %d, live %d: ", relevant, live_p);
202 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
203 }
204
205 /* If this stmt is an original stmt in a pattern, we might need to mark its
206 related pattern stmt instead of the original stmt. However, such stmts
207 may have their own uses that are not in any pattern, in such cases the
208 stmt itself should be marked. */
209 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
210 {
211 /* This is the last stmt in a sequence that was detected as a
212 pattern that can potentially be vectorized. Don't mark the stmt
213 as relevant/live because it's not going to be vectorized.
214 Instead mark the pattern-stmt that replaces it. */
215
216 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
217
218 if (dump_enabled_p ())
219 dump_printf_loc (MSG_NOTE, vect_location,
220 "last stmt in pattern. don't mark"
221 " relevant/live.\n");
222 stmt_info = vinfo_for_stmt (pattern_stmt);
223 gcc_assert (STMT_VINFO_RELATED_STMT (stmt_info) == stmt);
224 save_relevant = STMT_VINFO_RELEVANT (stmt_info);
225 save_live_p = STMT_VINFO_LIVE_P (stmt_info);
226 stmt = pattern_stmt;
227 }
228
229 STMT_VINFO_LIVE_P (stmt_info) |= live_p;
230 if (relevant > STMT_VINFO_RELEVANT (stmt_info))
231 STMT_VINFO_RELEVANT (stmt_info) = relevant;
232
233 if (STMT_VINFO_RELEVANT (stmt_info) == save_relevant
234 && STMT_VINFO_LIVE_P (stmt_info) == save_live_p)
235 {
236 if (dump_enabled_p ())
237 dump_printf_loc (MSG_NOTE, vect_location,
238 "already marked relevant/live.\n");
239 return;
240 }
241
242 worklist->safe_push (stmt);
243 }
244
245
246 /* Function is_simple_and_all_uses_invariant
247
248 Return true if STMT is simple and all uses of it are invariant. */
249
250 bool
251 is_simple_and_all_uses_invariant (gimple *stmt, loop_vec_info loop_vinfo)
252 {
253 tree op;
254 gimple *def_stmt;
255 ssa_op_iter iter;
256
257 if (!is_gimple_assign (stmt))
258 return false;
259
260 FOR_EACH_SSA_TREE_OPERAND (op, stmt, iter, SSA_OP_USE)
261 {
262 enum vect_def_type dt = vect_uninitialized_def;
263
264 if (!vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt))
265 {
266 if (dump_enabled_p ())
267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
268 "use not simple.\n");
269 return false;
270 }
271
272 if (dt != vect_external_def && dt != vect_constant_def)
273 return false;
274 }
275 return true;
276 }
277
278 /* Function vect_stmt_relevant_p.
279
280 Return true if STMT in loop that is represented by LOOP_VINFO is
281 "relevant for vectorization".
282
283 A stmt is considered "relevant for vectorization" if:
284 - it has uses outside the loop.
285 - it has vdefs (it alters memory).
286 - control stmts in the loop (except for the exit condition).
287
288 CHECKME: what other side effects would the vectorizer allow? */
289
290 static bool
291 vect_stmt_relevant_p (gimple *stmt, loop_vec_info loop_vinfo,
292 enum vect_relevant *relevant, bool *live_p)
293 {
294 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
295 ssa_op_iter op_iter;
296 imm_use_iterator imm_iter;
297 use_operand_p use_p;
298 def_operand_p def_p;
299
300 *relevant = vect_unused_in_scope;
301 *live_p = false;
302
303 /* cond stmt other than loop exit cond. */
304 if (is_ctrl_stmt (stmt)
305 && STMT_VINFO_TYPE (vinfo_for_stmt (stmt))
306 != loop_exit_ctrl_vec_info_type)
307 *relevant = vect_used_in_scope;
308
309 /* changing memory. */
310 if (gimple_code (stmt) != GIMPLE_PHI)
311 if (gimple_vdef (stmt)
312 && !gimple_clobber_p (stmt))
313 {
314 if (dump_enabled_p ())
315 dump_printf_loc (MSG_NOTE, vect_location,
316 "vec_stmt_relevant_p: stmt has vdefs.\n");
317 *relevant = vect_used_in_scope;
318 }
319
320 /* uses outside the loop. */
321 FOR_EACH_PHI_OR_STMT_DEF (def_p, stmt, op_iter, SSA_OP_DEF)
322 {
323 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, DEF_FROM_PTR (def_p))
324 {
325 basic_block bb = gimple_bb (USE_STMT (use_p));
326 if (!flow_bb_inside_loop_p (loop, bb))
327 {
328 if (dump_enabled_p ())
329 dump_printf_loc (MSG_NOTE, vect_location,
330 "vec_stmt_relevant_p: used out of loop.\n");
331
332 if (is_gimple_debug (USE_STMT (use_p)))
333 continue;
334
335 /* We expect all such uses to be in the loop exit phis
336 (because of loop closed form) */
337 gcc_assert (gimple_code (USE_STMT (use_p)) == GIMPLE_PHI);
338 gcc_assert (bb == single_exit (loop)->dest);
339
340 *live_p = true;
341 }
342 }
343 }
344
345 if (*live_p && *relevant == vect_unused_in_scope
346 && !is_simple_and_all_uses_invariant (stmt, loop_vinfo))
347 {
348 if (dump_enabled_p ())
349 dump_printf_loc (MSG_NOTE, vect_location,
350 "vec_stmt_relevant_p: stmt live but not relevant.\n");
351 *relevant = vect_used_only_live;
352 }
353
354 return (*live_p || *relevant);
355 }
356
357
358 /* Function exist_non_indexing_operands_for_use_p
359
360 USE is one of the uses attached to STMT. Check if USE is
361 used in STMT for anything other than indexing an array. */
362
363 static bool
364 exist_non_indexing_operands_for_use_p (tree use, gimple *stmt)
365 {
366 tree operand;
367 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
368
369 /* USE corresponds to some operand in STMT. If there is no data
370 reference in STMT, then any operand that corresponds to USE
371 is not indexing an array. */
372 if (!STMT_VINFO_DATA_REF (stmt_info))
373 return true;
374
375 /* STMT has a data_ref. FORNOW this means that its of one of
376 the following forms:
377 -1- ARRAY_REF = var
378 -2- var = ARRAY_REF
379 (This should have been verified in analyze_data_refs).
380
381 'var' in the second case corresponds to a def, not a use,
382 so USE cannot correspond to any operands that are not used
383 for array indexing.
384
385 Therefore, all we need to check is if STMT falls into the
386 first case, and whether var corresponds to USE. */
387
388 if (!gimple_assign_copy_p (stmt))
389 {
390 if (is_gimple_call (stmt)
391 && gimple_call_internal_p (stmt))
392 switch (gimple_call_internal_fn (stmt))
393 {
394 case IFN_MASK_STORE:
395 operand = gimple_call_arg (stmt, 3);
396 if (operand == use)
397 return true;
398 /* FALLTHRU */
399 case IFN_MASK_LOAD:
400 operand = gimple_call_arg (stmt, 2);
401 if (operand == use)
402 return true;
403 break;
404 default:
405 break;
406 }
407 return false;
408 }
409
410 if (TREE_CODE (gimple_assign_lhs (stmt)) == SSA_NAME)
411 return false;
412 operand = gimple_assign_rhs1 (stmt);
413 if (TREE_CODE (operand) != SSA_NAME)
414 return false;
415
416 if (operand == use)
417 return true;
418
419 return false;
420 }
421
422
423 /*
424 Function process_use.
425
426 Inputs:
427 - a USE in STMT in a loop represented by LOOP_VINFO
428 - RELEVANT - enum value to be set in the STMT_VINFO of the stmt
429 that defined USE. This is done by calling mark_relevant and passing it
430 the WORKLIST (to add DEF_STMT to the WORKLIST in case it is relevant).
431 - FORCE is true if exist_non_indexing_operands_for_use_p check shouldn't
432 be performed.
433
434 Outputs:
435 Generally, LIVE_P and RELEVANT are used to define the liveness and
436 relevance info of the DEF_STMT of this USE:
437 STMT_VINFO_LIVE_P (DEF_STMT_info) <-- live_p
438 STMT_VINFO_RELEVANT (DEF_STMT_info) <-- relevant
439 Exceptions:
440 - case 1: If USE is used only for address computations (e.g. array indexing),
441 which does not need to be directly vectorized, then the liveness/relevance
442 of the respective DEF_STMT is left unchanged.
443 - case 2: If STMT is a reduction phi and DEF_STMT is a reduction stmt, we
444 skip DEF_STMT cause it had already been processed.
445 - case 3: If DEF_STMT and STMT are in different nests, then "relevant" will
446 be modified accordingly.
447
448 Return true if everything is as expected. Return false otherwise. */
449
450 static bool
451 process_use (gimple *stmt, tree use, loop_vec_info loop_vinfo,
452 enum vect_relevant relevant, vec<gimple *> *worklist,
453 bool force)
454 {
455 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
456 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
457 stmt_vec_info dstmt_vinfo;
458 basic_block bb, def_bb;
459 gimple *def_stmt;
460 enum vect_def_type dt;
461
462 /* case 1: we are only interested in uses that need to be vectorized. Uses
463 that are used for address computation are not considered relevant. */
464 if (!force && !exist_non_indexing_operands_for_use_p (use, stmt))
465 return true;
466
467 if (!vect_is_simple_use (use, loop_vinfo, &def_stmt, &dt))
468 {
469 if (dump_enabled_p ())
470 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
471 "not vectorized: unsupported use in stmt.\n");
472 return false;
473 }
474
475 if (!def_stmt || gimple_nop_p (def_stmt))
476 return true;
477
478 def_bb = gimple_bb (def_stmt);
479 if (!flow_bb_inside_loop_p (loop, def_bb))
480 {
481 if (dump_enabled_p ())
482 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt is out of loop.\n");
483 return true;
484 }
485
486 /* case 2: A reduction phi (STMT) defined by a reduction stmt (DEF_STMT).
487 DEF_STMT must have already been processed, because this should be the
488 only way that STMT, which is a reduction-phi, was put in the worklist,
489 as there should be no other uses for DEF_STMT in the loop. So we just
490 check that everything is as expected, and we are done. */
491 dstmt_vinfo = vinfo_for_stmt (def_stmt);
492 bb = gimple_bb (stmt);
493 if (gimple_code (stmt) == GIMPLE_PHI
494 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
495 && gimple_code (def_stmt) != GIMPLE_PHI
496 && STMT_VINFO_DEF_TYPE (dstmt_vinfo) == vect_reduction_def
497 && bb->loop_father == def_bb->loop_father)
498 {
499 if (dump_enabled_p ())
500 dump_printf_loc (MSG_NOTE, vect_location,
501 "reduc-stmt defining reduc-phi in the same nest.\n");
502 if (STMT_VINFO_IN_PATTERN_P (dstmt_vinfo))
503 dstmt_vinfo = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (dstmt_vinfo));
504 gcc_assert (STMT_VINFO_RELEVANT (dstmt_vinfo) < vect_used_by_reduction);
505 gcc_assert (STMT_VINFO_LIVE_P (dstmt_vinfo)
506 || STMT_VINFO_RELEVANT (dstmt_vinfo) > vect_unused_in_scope);
507 return true;
508 }
509
510 /* case 3a: outer-loop stmt defining an inner-loop stmt:
511 outer-loop-header-bb:
512 d = def_stmt
513 inner-loop:
514 stmt # use (d)
515 outer-loop-tail-bb:
516 ... */
517 if (flow_loop_nested_p (def_bb->loop_father, bb->loop_father))
518 {
519 if (dump_enabled_p ())
520 dump_printf_loc (MSG_NOTE, vect_location,
521 "outer-loop def-stmt defining inner-loop stmt.\n");
522
523 switch (relevant)
524 {
525 case vect_unused_in_scope:
526 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_nested_cycle) ?
527 vect_used_in_scope : vect_unused_in_scope;
528 break;
529
530 case vect_used_in_outer_by_reduction:
531 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
532 relevant = vect_used_by_reduction;
533 break;
534
535 case vect_used_in_outer:
536 gcc_assert (STMT_VINFO_DEF_TYPE (stmt_vinfo) != vect_reduction_def);
537 relevant = vect_used_in_scope;
538 break;
539
540 case vect_used_in_scope:
541 break;
542
543 default:
544 gcc_unreachable ();
545 }
546 }
547
548 /* case 3b: inner-loop stmt defining an outer-loop stmt:
549 outer-loop-header-bb:
550 ...
551 inner-loop:
552 d = def_stmt
553 outer-loop-tail-bb (or outer-loop-exit-bb in double reduction):
554 stmt # use (d) */
555 else if (flow_loop_nested_p (bb->loop_father, def_bb->loop_father))
556 {
557 if (dump_enabled_p ())
558 dump_printf_loc (MSG_NOTE, vect_location,
559 "inner-loop def-stmt defining outer-loop stmt.\n");
560
561 switch (relevant)
562 {
563 case vect_unused_in_scope:
564 relevant = (STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_reduction_def
565 || STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_double_reduction_def) ?
566 vect_used_in_outer_by_reduction : vect_unused_in_scope;
567 break;
568
569 case vect_used_by_reduction:
570 case vect_used_only_live:
571 relevant = vect_used_in_outer_by_reduction;
572 break;
573
574 case vect_used_in_scope:
575 relevant = vect_used_in_outer;
576 break;
577
578 default:
579 gcc_unreachable ();
580 }
581 }
582 /* We are also not interested in uses on loop PHI backedges that are
583 inductions. Otherwise we'll needlessly vectorize the IV increment
584 and cause hybrid SLP for SLP inductions. Unless the PHI is live
585 of course. */
586 else if (gimple_code (stmt) == GIMPLE_PHI
587 && STMT_VINFO_DEF_TYPE (stmt_vinfo) == vect_induction_def
588 && ! STMT_VINFO_LIVE_P (stmt_vinfo)
589 && (PHI_ARG_DEF_FROM_EDGE (stmt, loop_latch_edge (bb->loop_father))
590 == use))
591 {
592 if (dump_enabled_p ())
593 dump_printf_loc (MSG_NOTE, vect_location,
594 "induction value on backedge.\n");
595 return true;
596 }
597
598
599 vect_mark_relevant (worklist, def_stmt, relevant, false);
600 return true;
601 }
602
603
604 /* Function vect_mark_stmts_to_be_vectorized.
605
606 Not all stmts in the loop need to be vectorized. For example:
607
608 for i...
609 for j...
610 1. T0 = i + j
611 2. T1 = a[T0]
612
613 3. j = j + 1
614
615 Stmt 1 and 3 do not need to be vectorized, because loop control and
616 addressing of vectorized data-refs are handled differently.
617
618 This pass detects such stmts. */
619
620 bool
621 vect_mark_stmts_to_be_vectorized (loop_vec_info loop_vinfo)
622 {
623 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
624 basic_block *bbs = LOOP_VINFO_BBS (loop_vinfo);
625 unsigned int nbbs = loop->num_nodes;
626 gimple_stmt_iterator si;
627 gimple *stmt;
628 unsigned int i;
629 stmt_vec_info stmt_vinfo;
630 basic_block bb;
631 gimple *phi;
632 bool live_p;
633 enum vect_relevant relevant;
634
635 if (dump_enabled_p ())
636 dump_printf_loc (MSG_NOTE, vect_location,
637 "=== vect_mark_stmts_to_be_vectorized ===\n");
638
639 auto_vec<gimple *, 64> worklist;
640
641 /* 1. Init worklist. */
642 for (i = 0; i < nbbs; i++)
643 {
644 bb = bbs[i];
645 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
646 {
647 phi = gsi_stmt (si);
648 if (dump_enabled_p ())
649 {
650 dump_printf_loc (MSG_NOTE, vect_location, "init: phi relevant? ");
651 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, phi, 0);
652 }
653
654 if (vect_stmt_relevant_p (phi, loop_vinfo, &relevant, &live_p))
655 vect_mark_relevant (&worklist, phi, relevant, live_p);
656 }
657 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
658 {
659 stmt = gsi_stmt (si);
660 if (dump_enabled_p ())
661 {
662 dump_printf_loc (MSG_NOTE, vect_location, "init: stmt relevant? ");
663 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
664 }
665
666 if (vect_stmt_relevant_p (stmt, loop_vinfo, &relevant, &live_p))
667 vect_mark_relevant (&worklist, stmt, relevant, live_p);
668 }
669 }
670
671 /* 2. Process_worklist */
672 while (worklist.length () > 0)
673 {
674 use_operand_p use_p;
675 ssa_op_iter iter;
676
677 stmt = worklist.pop ();
678 if (dump_enabled_p ())
679 {
680 dump_printf_loc (MSG_NOTE, vect_location, "worklist: examine stmt: ");
681 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
682 }
683
684 /* Examine the USEs of STMT. For each USE, mark the stmt that defines it
685 (DEF_STMT) as relevant/irrelevant according to the relevance property
686 of STMT. */
687 stmt_vinfo = vinfo_for_stmt (stmt);
688 relevant = STMT_VINFO_RELEVANT (stmt_vinfo);
689
690 /* Generally, the relevance property of STMT (in STMT_VINFO_RELEVANT) is
691 propagated as is to the DEF_STMTs of its USEs.
692
693 One exception is when STMT has been identified as defining a reduction
694 variable; in this case we set the relevance to vect_used_by_reduction.
695 This is because we distinguish between two kinds of relevant stmts -
696 those that are used by a reduction computation, and those that are
697 (also) used by a regular computation. This allows us later on to
698 identify stmts that are used solely by a reduction, and therefore the
699 order of the results that they produce does not have to be kept. */
700
701 switch (STMT_VINFO_DEF_TYPE (stmt_vinfo))
702 {
703 case vect_reduction_def:
704 gcc_assert (relevant != vect_unused_in_scope);
705 if (relevant != vect_unused_in_scope
706 && relevant != vect_used_in_scope
707 && relevant != vect_used_by_reduction
708 && relevant != vect_used_only_live)
709 {
710 if (dump_enabled_p ())
711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
712 "unsupported use of reduction.\n");
713 return false;
714 }
715 break;
716
717 case vect_nested_cycle:
718 if (relevant != vect_unused_in_scope
719 && relevant != vect_used_in_outer_by_reduction
720 && relevant != vect_used_in_outer)
721 {
722 if (dump_enabled_p ())
723 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
724 "unsupported use of nested cycle.\n");
725
726 return false;
727 }
728 break;
729
730 case vect_double_reduction_def:
731 if (relevant != vect_unused_in_scope
732 && relevant != vect_used_by_reduction
733 && relevant != vect_used_only_live)
734 {
735 if (dump_enabled_p ())
736 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
737 "unsupported use of double reduction.\n");
738
739 return false;
740 }
741 break;
742
743 default:
744 break;
745 }
746
747 if (is_pattern_stmt_p (stmt_vinfo))
748 {
749 /* Pattern statements are not inserted into the code, so
750 FOR_EACH_PHI_OR_STMT_USE optimizes their operands out, and we
751 have to scan the RHS or function arguments instead. */
752 if (is_gimple_assign (stmt))
753 {
754 enum tree_code rhs_code = gimple_assign_rhs_code (stmt);
755 tree op = gimple_assign_rhs1 (stmt);
756
757 i = 1;
758 if (rhs_code == COND_EXPR && COMPARISON_CLASS_P (op))
759 {
760 if (!process_use (stmt, TREE_OPERAND (op, 0), loop_vinfo,
761 relevant, &worklist, false)
762 || !process_use (stmt, TREE_OPERAND (op, 1), loop_vinfo,
763 relevant, &worklist, false))
764 return false;
765 i = 2;
766 }
767 for (; i < gimple_num_ops (stmt); i++)
768 {
769 op = gimple_op (stmt, i);
770 if (TREE_CODE (op) == SSA_NAME
771 && !process_use (stmt, op, loop_vinfo, relevant,
772 &worklist, false))
773 return false;
774 }
775 }
776 else if (is_gimple_call (stmt))
777 {
778 for (i = 0; i < gimple_call_num_args (stmt); i++)
779 {
780 tree arg = gimple_call_arg (stmt, i);
781 if (!process_use (stmt, arg, loop_vinfo, relevant,
782 &worklist, false))
783 return false;
784 }
785 }
786 }
787 else
788 FOR_EACH_PHI_OR_STMT_USE (use_p, stmt, iter, SSA_OP_USE)
789 {
790 tree op = USE_FROM_PTR (use_p);
791 if (!process_use (stmt, op, loop_vinfo, relevant,
792 &worklist, false))
793 return false;
794 }
795
796 if (STMT_VINFO_GATHER_SCATTER_P (stmt_vinfo))
797 {
798 gather_scatter_info gs_info;
799 if (!vect_check_gather_scatter (stmt, loop_vinfo, &gs_info))
800 gcc_unreachable ();
801 if (!process_use (stmt, gs_info.offset, loop_vinfo, relevant,
802 &worklist, true))
803 return false;
804 }
805 } /* while worklist */
806
807 return true;
808 }
809
810
811 /* Function vect_model_simple_cost.
812
813 Models cost for simple operations, i.e. those that only emit ncopies of a
814 single op. Right now, this does not account for multiple insns that could
815 be generated for the single vector op. We will handle that shortly. */
816
817 void
818 vect_model_simple_cost (stmt_vec_info stmt_info, int ncopies,
819 enum vect_def_type *dt,
820 int ndts,
821 stmt_vector_for_cost *prologue_cost_vec,
822 stmt_vector_for_cost *body_cost_vec)
823 {
824 int i;
825 int inside_cost = 0, prologue_cost = 0;
826
827 /* The SLP costs were already calculated during SLP tree build. */
828 if (PURE_SLP_STMT (stmt_info))
829 return;
830
831 /* Cost the "broadcast" of a scalar operand in to a vector operand.
832 Use scalar_to_vec to cost the broadcast, as elsewhere in the vector
833 cost model. */
834 for (i = 0; i < ndts; i++)
835 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
836 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
837 stmt_info, 0, vect_prologue);
838
839 /* Pass the inside-of-loop statements to the target-specific cost model. */
840 inside_cost = record_stmt_cost (body_cost_vec, ncopies, vector_stmt,
841 stmt_info, 0, vect_body);
842
843 if (dump_enabled_p ())
844 dump_printf_loc (MSG_NOTE, vect_location,
845 "vect_model_simple_cost: inside_cost = %d, "
846 "prologue_cost = %d .\n", inside_cost, prologue_cost);
847 }
848
849
850 /* Model cost for type demotion and promotion operations. PWR is normally
851 zero for single-step promotions and demotions. It will be one if
852 two-step promotion/demotion is required, and so on. Each additional
853 step doubles the number of instructions required. */
854
855 static void
856 vect_model_promotion_demotion_cost (stmt_vec_info stmt_info,
857 enum vect_def_type *dt, int pwr)
858 {
859 int i, tmp;
860 int inside_cost = 0, prologue_cost = 0;
861 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
862 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
863 void *target_cost_data;
864
865 /* The SLP costs were already calculated during SLP tree build. */
866 if (PURE_SLP_STMT (stmt_info))
867 return;
868
869 if (loop_vinfo)
870 target_cost_data = LOOP_VINFO_TARGET_COST_DATA (loop_vinfo);
871 else
872 target_cost_data = BB_VINFO_TARGET_COST_DATA (bb_vinfo);
873
874 for (i = 0; i < pwr + 1; i++)
875 {
876 tmp = (STMT_VINFO_TYPE (stmt_info) == type_promotion_vec_info_type) ?
877 (i + 1) : i;
878 inside_cost += add_stmt_cost (target_cost_data, vect_pow2 (tmp),
879 vec_promote_demote, stmt_info, 0,
880 vect_body);
881 }
882
883 /* FORNOW: Assuming maximum 2 args per stmts. */
884 for (i = 0; i < 2; i++)
885 if (dt[i] == vect_constant_def || dt[i] == vect_external_def)
886 prologue_cost += add_stmt_cost (target_cost_data, 1, vector_stmt,
887 stmt_info, 0, vect_prologue);
888
889 if (dump_enabled_p ())
890 dump_printf_loc (MSG_NOTE, vect_location,
891 "vect_model_promotion_demotion_cost: inside_cost = %d, "
892 "prologue_cost = %d .\n", inside_cost, prologue_cost);
893 }
894
895 /* Function vect_model_store_cost
896
897 Models cost for stores. In the case of grouped accesses, one access
898 has the overhead of the grouped access attributed to it. */
899
900 void
901 vect_model_store_cost (stmt_vec_info stmt_info, int ncopies,
902 vect_memory_access_type memory_access_type,
903 enum vect_def_type dt, slp_tree slp_node,
904 stmt_vector_for_cost *prologue_cost_vec,
905 stmt_vector_for_cost *body_cost_vec)
906 {
907 unsigned int inside_cost = 0, prologue_cost = 0;
908 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
909 gimple *first_stmt = STMT_VINFO_STMT (stmt_info);
910 bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info);
911
912 if (dt == vect_constant_def || dt == vect_external_def)
913 prologue_cost += record_stmt_cost (prologue_cost_vec, 1, scalar_to_vec,
914 stmt_info, 0, vect_prologue);
915
916 /* Grouped stores update all elements in the group at once,
917 so we want the DR for the first statement. */
918 if (!slp_node && grouped_access_p)
919 {
920 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
921 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
922 }
923
924 /* True if we should include any once-per-group costs as well as
925 the cost of the statement itself. For SLP we only get called
926 once per group anyhow. */
927 bool first_stmt_p = (first_stmt == STMT_VINFO_STMT (stmt_info));
928
929 /* We assume that the cost of a single store-lanes instruction is
930 equivalent to the cost of GROUP_SIZE separate stores. If a grouped
931 access is instead being provided by a permute-and-store operation,
932 include the cost of the permutes. */
933 if (first_stmt_p
934 && memory_access_type == VMAT_CONTIGUOUS_PERMUTE)
935 {
936 /* Uses a high and low interleave or shuffle operations for each
937 needed permute. */
938 int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
939 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
940 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
941 stmt_info, 0, vect_body);
942
943 if (dump_enabled_p ())
944 dump_printf_loc (MSG_NOTE, vect_location,
945 "vect_model_store_cost: strided group_size = %d .\n",
946 group_size);
947 }
948
949 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
950 /* Costs of the stores. */
951 if (memory_access_type == VMAT_ELEMENTWISE
952 || memory_access_type == VMAT_GATHER_SCATTER)
953 /* N scalar stores plus extracting the elements. */
954 inside_cost += record_stmt_cost (body_cost_vec,
955 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
956 scalar_store, stmt_info, 0, vect_body);
957 else
958 vect_get_store_cost (dr, ncopies, &inside_cost, body_cost_vec);
959
960 if (memory_access_type == VMAT_ELEMENTWISE
961 || memory_access_type == VMAT_STRIDED_SLP)
962 inside_cost += record_stmt_cost (body_cost_vec,
963 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
964 vec_to_scalar, stmt_info, 0, vect_body);
965
966 if (dump_enabled_p ())
967 dump_printf_loc (MSG_NOTE, vect_location,
968 "vect_model_store_cost: inside_cost = %d, "
969 "prologue_cost = %d .\n", inside_cost, prologue_cost);
970 }
971
972
973 /* Calculate cost of DR's memory access. */
974 void
975 vect_get_store_cost (struct data_reference *dr, int ncopies,
976 unsigned int *inside_cost,
977 stmt_vector_for_cost *body_cost_vec)
978 {
979 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
980 gimple *stmt = DR_STMT (dr);
981 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
982
983 switch (alignment_support_scheme)
984 {
985 case dr_aligned:
986 {
987 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
988 vector_store, stmt_info, 0,
989 vect_body);
990
991 if (dump_enabled_p ())
992 dump_printf_loc (MSG_NOTE, vect_location,
993 "vect_model_store_cost: aligned.\n");
994 break;
995 }
996
997 case dr_unaligned_supported:
998 {
999 /* Here, we assign an additional cost for the unaligned store. */
1000 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1001 unaligned_store, stmt_info,
1002 DR_MISALIGNMENT (dr), vect_body);
1003 if (dump_enabled_p ())
1004 dump_printf_loc (MSG_NOTE, vect_location,
1005 "vect_model_store_cost: unaligned supported by "
1006 "hardware.\n");
1007 break;
1008 }
1009
1010 case dr_unaligned_unsupported:
1011 {
1012 *inside_cost = VECT_MAX_COST;
1013
1014 if (dump_enabled_p ())
1015 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1016 "vect_model_store_cost: unsupported access.\n");
1017 break;
1018 }
1019
1020 default:
1021 gcc_unreachable ();
1022 }
1023 }
1024
1025
1026 /* Function vect_model_load_cost
1027
1028 Models cost for loads. In the case of grouped accesses, one access has
1029 the overhead of the grouped access attributed to it. Since unaligned
1030 accesses are supported for loads, we also account for the costs of the
1031 access scheme chosen. */
1032
1033 void
1034 vect_model_load_cost (stmt_vec_info stmt_info, int ncopies,
1035 vect_memory_access_type memory_access_type,
1036 slp_tree slp_node,
1037 stmt_vector_for_cost *prologue_cost_vec,
1038 stmt_vector_for_cost *body_cost_vec)
1039 {
1040 gimple *first_stmt = STMT_VINFO_STMT (stmt_info);
1041 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1042 unsigned int inside_cost = 0, prologue_cost = 0;
1043 bool grouped_access_p = STMT_VINFO_GROUPED_ACCESS (stmt_info);
1044
1045 /* Grouped loads read all elements in the group at once,
1046 so we want the DR for the first statement. */
1047 if (!slp_node && grouped_access_p)
1048 {
1049 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1050 dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
1051 }
1052
1053 /* True if we should include any once-per-group costs as well as
1054 the cost of the statement itself. For SLP we only get called
1055 once per group anyhow. */
1056 bool first_stmt_p = (first_stmt == STMT_VINFO_STMT (stmt_info));
1057
1058 /* We assume that the cost of a single load-lanes instruction is
1059 equivalent to the cost of GROUP_SIZE separate loads. If a grouped
1060 access is instead being provided by a load-and-permute operation,
1061 include the cost of the permutes. */
1062 if (first_stmt_p
1063 && memory_access_type == VMAT_CONTIGUOUS_PERMUTE)
1064 {
1065 /* Uses an even and odd extract operations or shuffle operations
1066 for each needed permute. */
1067 int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
1068 int nstmts = ncopies * ceil_log2 (group_size) * group_size;
1069 inside_cost = record_stmt_cost (body_cost_vec, nstmts, vec_perm,
1070 stmt_info, 0, vect_body);
1071
1072 if (dump_enabled_p ())
1073 dump_printf_loc (MSG_NOTE, vect_location,
1074 "vect_model_load_cost: strided group_size = %d .\n",
1075 group_size);
1076 }
1077
1078 /* The loads themselves. */
1079 if (memory_access_type == VMAT_ELEMENTWISE
1080 || memory_access_type == VMAT_GATHER_SCATTER)
1081 {
1082 /* N scalar loads plus gathering them into a vector. */
1083 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
1084 inside_cost += record_stmt_cost (body_cost_vec,
1085 ncopies * TYPE_VECTOR_SUBPARTS (vectype),
1086 scalar_load, stmt_info, 0, vect_body);
1087 }
1088 else
1089 vect_get_load_cost (dr, ncopies, first_stmt_p,
1090 &inside_cost, &prologue_cost,
1091 prologue_cost_vec, body_cost_vec, true);
1092 if (memory_access_type == VMAT_ELEMENTWISE
1093 || memory_access_type == VMAT_STRIDED_SLP)
1094 inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_construct,
1095 stmt_info, 0, vect_body);
1096
1097 if (dump_enabled_p ())
1098 dump_printf_loc (MSG_NOTE, vect_location,
1099 "vect_model_load_cost: inside_cost = %d, "
1100 "prologue_cost = %d .\n", inside_cost, prologue_cost);
1101 }
1102
1103
1104 /* Calculate cost of DR's memory access. */
1105 void
1106 vect_get_load_cost (struct data_reference *dr, int ncopies,
1107 bool add_realign_cost, unsigned int *inside_cost,
1108 unsigned int *prologue_cost,
1109 stmt_vector_for_cost *prologue_cost_vec,
1110 stmt_vector_for_cost *body_cost_vec,
1111 bool record_prologue_costs)
1112 {
1113 int alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1114 gimple *stmt = DR_STMT (dr);
1115 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1116
1117 switch (alignment_support_scheme)
1118 {
1119 case dr_aligned:
1120 {
1121 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1122 stmt_info, 0, vect_body);
1123
1124 if (dump_enabled_p ())
1125 dump_printf_loc (MSG_NOTE, vect_location,
1126 "vect_model_load_cost: aligned.\n");
1127
1128 break;
1129 }
1130 case dr_unaligned_supported:
1131 {
1132 /* Here, we assign an additional cost for the unaligned load. */
1133 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1134 unaligned_load, stmt_info,
1135 DR_MISALIGNMENT (dr), vect_body);
1136
1137 if (dump_enabled_p ())
1138 dump_printf_loc (MSG_NOTE, vect_location,
1139 "vect_model_load_cost: unaligned supported by "
1140 "hardware.\n");
1141
1142 break;
1143 }
1144 case dr_explicit_realign:
1145 {
1146 *inside_cost += record_stmt_cost (body_cost_vec, ncopies * 2,
1147 vector_load, stmt_info, 0, vect_body);
1148 *inside_cost += record_stmt_cost (body_cost_vec, ncopies,
1149 vec_perm, stmt_info, 0, vect_body);
1150
1151 /* FIXME: If the misalignment remains fixed across the iterations of
1152 the containing loop, the following cost should be added to the
1153 prologue costs. */
1154 if (targetm.vectorize.builtin_mask_for_load)
1155 *inside_cost += record_stmt_cost (body_cost_vec, 1, vector_stmt,
1156 stmt_info, 0, vect_body);
1157
1158 if (dump_enabled_p ())
1159 dump_printf_loc (MSG_NOTE, vect_location,
1160 "vect_model_load_cost: explicit realign\n");
1161
1162 break;
1163 }
1164 case dr_explicit_realign_optimized:
1165 {
1166 if (dump_enabled_p ())
1167 dump_printf_loc (MSG_NOTE, vect_location,
1168 "vect_model_load_cost: unaligned software "
1169 "pipelined.\n");
1170
1171 /* Unaligned software pipeline has a load of an address, an initial
1172 load, and possibly a mask operation to "prime" the loop. However,
1173 if this is an access in a group of loads, which provide grouped
1174 access, then the above cost should only be considered for one
1175 access in the group. Inside the loop, there is a load op
1176 and a realignment op. */
1177
1178 if (add_realign_cost && record_prologue_costs)
1179 {
1180 *prologue_cost += record_stmt_cost (prologue_cost_vec, 2,
1181 vector_stmt, stmt_info,
1182 0, vect_prologue);
1183 if (targetm.vectorize.builtin_mask_for_load)
1184 *prologue_cost += record_stmt_cost (prologue_cost_vec, 1,
1185 vector_stmt, stmt_info,
1186 0, vect_prologue);
1187 }
1188
1189 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vector_load,
1190 stmt_info, 0, vect_body);
1191 *inside_cost += record_stmt_cost (body_cost_vec, ncopies, vec_perm,
1192 stmt_info, 0, vect_body);
1193
1194 if (dump_enabled_p ())
1195 dump_printf_loc (MSG_NOTE, vect_location,
1196 "vect_model_load_cost: explicit realign optimized"
1197 "\n");
1198
1199 break;
1200 }
1201
1202 case dr_unaligned_unsupported:
1203 {
1204 *inside_cost = VECT_MAX_COST;
1205
1206 if (dump_enabled_p ())
1207 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1208 "vect_model_load_cost: unsupported access.\n");
1209 break;
1210 }
1211
1212 default:
1213 gcc_unreachable ();
1214 }
1215 }
1216
1217 /* Insert the new stmt NEW_STMT at *GSI or at the appropriate place in
1218 the loop preheader for the vectorized stmt STMT. */
1219
1220 static void
1221 vect_init_vector_1 (gimple *stmt, gimple *new_stmt, gimple_stmt_iterator *gsi)
1222 {
1223 if (gsi)
1224 vect_finish_stmt_generation (stmt, new_stmt, gsi);
1225 else
1226 {
1227 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1228 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1229
1230 if (loop_vinfo)
1231 {
1232 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
1233 basic_block new_bb;
1234 edge pe;
1235
1236 if (nested_in_vect_loop_p (loop, stmt))
1237 loop = loop->inner;
1238
1239 pe = loop_preheader_edge (loop);
1240 new_bb = gsi_insert_on_edge_immediate (pe, new_stmt);
1241 gcc_assert (!new_bb);
1242 }
1243 else
1244 {
1245 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_vinfo);
1246 basic_block bb;
1247 gimple_stmt_iterator gsi_bb_start;
1248
1249 gcc_assert (bb_vinfo);
1250 bb = BB_VINFO_BB (bb_vinfo);
1251 gsi_bb_start = gsi_after_labels (bb);
1252 gsi_insert_before (&gsi_bb_start, new_stmt, GSI_SAME_STMT);
1253 }
1254 }
1255
1256 if (dump_enabled_p ())
1257 {
1258 dump_printf_loc (MSG_NOTE, vect_location,
1259 "created new init_stmt: ");
1260 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, new_stmt, 0);
1261 }
1262 }
1263
1264 /* Function vect_init_vector.
1265
1266 Insert a new stmt (INIT_STMT) that initializes a new variable of type
1267 TYPE with the value VAL. If TYPE is a vector type and VAL does not have
1268 vector type a vector with all elements equal to VAL is created first.
1269 Place the initialization at BSI if it is not NULL. Otherwise, place the
1270 initialization at the loop preheader.
1271 Return the DEF of INIT_STMT.
1272 It will be used in the vectorization of STMT. */
1273
1274 tree
1275 vect_init_vector (gimple *stmt, tree val, tree type, gimple_stmt_iterator *gsi)
1276 {
1277 gimple *init_stmt;
1278 tree new_temp;
1279
1280 /* We abuse this function to push sth to a SSA name with initial 'val'. */
1281 if (! useless_type_conversion_p (type, TREE_TYPE (val)))
1282 {
1283 gcc_assert (TREE_CODE (type) == VECTOR_TYPE);
1284 if (! types_compatible_p (TREE_TYPE (type), TREE_TYPE (val)))
1285 {
1286 /* Scalar boolean value should be transformed into
1287 all zeros or all ones value before building a vector. */
1288 if (VECTOR_BOOLEAN_TYPE_P (type))
1289 {
1290 tree true_val = build_all_ones_cst (TREE_TYPE (type));
1291 tree false_val = build_zero_cst (TREE_TYPE (type));
1292
1293 if (CONSTANT_CLASS_P (val))
1294 val = integer_zerop (val) ? false_val : true_val;
1295 else
1296 {
1297 new_temp = make_ssa_name (TREE_TYPE (type));
1298 init_stmt = gimple_build_assign (new_temp, COND_EXPR,
1299 val, true_val, false_val);
1300 vect_init_vector_1 (stmt, init_stmt, gsi);
1301 val = new_temp;
1302 }
1303 }
1304 else if (CONSTANT_CLASS_P (val))
1305 val = fold_convert (TREE_TYPE (type), val);
1306 else
1307 {
1308 new_temp = make_ssa_name (TREE_TYPE (type));
1309 if (! INTEGRAL_TYPE_P (TREE_TYPE (val)))
1310 init_stmt = gimple_build_assign (new_temp,
1311 fold_build1 (VIEW_CONVERT_EXPR,
1312 TREE_TYPE (type),
1313 val));
1314 else
1315 init_stmt = gimple_build_assign (new_temp, NOP_EXPR, val);
1316 vect_init_vector_1 (stmt, init_stmt, gsi);
1317 val = new_temp;
1318 }
1319 }
1320 val = build_vector_from_val (type, val);
1321 }
1322
1323 new_temp = vect_get_new_ssa_name (type, vect_simple_var, "cst_");
1324 init_stmt = gimple_build_assign (new_temp, val);
1325 vect_init_vector_1 (stmt, init_stmt, gsi);
1326 return new_temp;
1327 }
1328
1329 /* Function vect_get_vec_def_for_operand_1.
1330
1331 For a defining stmt DEF_STMT of a scalar stmt, return a vector def with type
1332 DT that will be used in the vectorized stmt. */
1333
1334 tree
1335 vect_get_vec_def_for_operand_1 (gimple *def_stmt, enum vect_def_type dt)
1336 {
1337 tree vec_oprnd;
1338 gimple *vec_stmt;
1339 stmt_vec_info def_stmt_info = NULL;
1340
1341 switch (dt)
1342 {
1343 /* operand is a constant or a loop invariant. */
1344 case vect_constant_def:
1345 case vect_external_def:
1346 /* Code should use vect_get_vec_def_for_operand. */
1347 gcc_unreachable ();
1348
1349 /* operand is defined inside the loop. */
1350 case vect_internal_def:
1351 {
1352 /* Get the def from the vectorized stmt. */
1353 def_stmt_info = vinfo_for_stmt (def_stmt);
1354
1355 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1356 /* Get vectorized pattern statement. */
1357 if (!vec_stmt
1358 && STMT_VINFO_IN_PATTERN_P (def_stmt_info)
1359 && !STMT_VINFO_RELEVANT (def_stmt_info))
1360 vec_stmt = STMT_VINFO_VEC_STMT (vinfo_for_stmt (
1361 STMT_VINFO_RELATED_STMT (def_stmt_info)));
1362 gcc_assert (vec_stmt);
1363 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1364 vec_oprnd = PHI_RESULT (vec_stmt);
1365 else if (is_gimple_call (vec_stmt))
1366 vec_oprnd = gimple_call_lhs (vec_stmt);
1367 else
1368 vec_oprnd = gimple_assign_lhs (vec_stmt);
1369 return vec_oprnd;
1370 }
1371
1372 /* operand is defined by a loop header phi. */
1373 case vect_reduction_def:
1374 case vect_double_reduction_def:
1375 case vect_nested_cycle:
1376 case vect_induction_def:
1377 {
1378 gcc_assert (gimple_code (def_stmt) == GIMPLE_PHI);
1379
1380 /* Get the def from the vectorized stmt. */
1381 def_stmt_info = vinfo_for_stmt (def_stmt);
1382 vec_stmt = STMT_VINFO_VEC_STMT (def_stmt_info);
1383 if (gimple_code (vec_stmt) == GIMPLE_PHI)
1384 vec_oprnd = PHI_RESULT (vec_stmt);
1385 else
1386 vec_oprnd = gimple_get_lhs (vec_stmt);
1387 return vec_oprnd;
1388 }
1389
1390 default:
1391 gcc_unreachable ();
1392 }
1393 }
1394
1395
1396 /* Function vect_get_vec_def_for_operand.
1397
1398 OP is an operand in STMT. This function returns a (vector) def that will be
1399 used in the vectorized stmt for STMT.
1400
1401 In the case that OP is an SSA_NAME which is defined in the loop, then
1402 STMT_VINFO_VEC_STMT of the defining stmt holds the relevant def.
1403
1404 In case OP is an invariant or constant, a new stmt that creates a vector def
1405 needs to be introduced. VECTYPE may be used to specify a required type for
1406 vector invariant. */
1407
1408 tree
1409 vect_get_vec_def_for_operand (tree op, gimple *stmt, tree vectype)
1410 {
1411 gimple *def_stmt;
1412 enum vect_def_type dt;
1413 bool is_simple_use;
1414 stmt_vec_info stmt_vinfo = vinfo_for_stmt (stmt);
1415 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_vinfo);
1416
1417 if (dump_enabled_p ())
1418 {
1419 dump_printf_loc (MSG_NOTE, vect_location,
1420 "vect_get_vec_def_for_operand: ");
1421 dump_generic_expr (MSG_NOTE, TDF_SLIM, op);
1422 dump_printf (MSG_NOTE, "\n");
1423 }
1424
1425 is_simple_use = vect_is_simple_use (op, loop_vinfo, &def_stmt, &dt);
1426 gcc_assert (is_simple_use);
1427 if (def_stmt && dump_enabled_p ())
1428 {
1429 dump_printf_loc (MSG_NOTE, vect_location, " def_stmt = ");
1430 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, def_stmt, 0);
1431 }
1432
1433 if (dt == vect_constant_def || dt == vect_external_def)
1434 {
1435 tree stmt_vectype = STMT_VINFO_VECTYPE (stmt_vinfo);
1436 tree vector_type;
1437
1438 if (vectype)
1439 vector_type = vectype;
1440 else if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op))
1441 && VECTOR_BOOLEAN_TYPE_P (stmt_vectype))
1442 vector_type = build_same_sized_truth_vector_type (stmt_vectype);
1443 else
1444 vector_type = get_vectype_for_scalar_type (TREE_TYPE (op));
1445
1446 gcc_assert (vector_type);
1447 return vect_init_vector (stmt, op, vector_type, NULL);
1448 }
1449 else
1450 return vect_get_vec_def_for_operand_1 (def_stmt, dt);
1451 }
1452
1453
1454 /* Function vect_get_vec_def_for_stmt_copy
1455
1456 Return a vector-def for an operand. This function is used when the
1457 vectorized stmt to be created (by the caller to this function) is a "copy"
1458 created in case the vectorized result cannot fit in one vector, and several
1459 copies of the vector-stmt are required. In this case the vector-def is
1460 retrieved from the vector stmt recorded in the STMT_VINFO_RELATED_STMT field
1461 of the stmt that defines VEC_OPRND.
1462 DT is the type of the vector def VEC_OPRND.
1463
1464 Context:
1465 In case the vectorization factor (VF) is bigger than the number
1466 of elements that can fit in a vectype (nunits), we have to generate
1467 more than one vector stmt to vectorize the scalar stmt. This situation
1468 arises when there are multiple data-types operated upon in the loop; the
1469 smallest data-type determines the VF, and as a result, when vectorizing
1470 stmts operating on wider types we need to create 'VF/nunits' "copies" of the
1471 vector stmt (each computing a vector of 'nunits' results, and together
1472 computing 'VF' results in each iteration). This function is called when
1473 vectorizing such a stmt (e.g. vectorizing S2 in the illustration below, in
1474 which VF=16 and nunits=4, so the number of copies required is 4):
1475
1476 scalar stmt: vectorized into: STMT_VINFO_RELATED_STMT
1477
1478 S1: x = load VS1.0: vx.0 = memref0 VS1.1
1479 VS1.1: vx.1 = memref1 VS1.2
1480 VS1.2: vx.2 = memref2 VS1.3
1481 VS1.3: vx.3 = memref3
1482
1483 S2: z = x + ... VSnew.0: vz0 = vx.0 + ... VSnew.1
1484 VSnew.1: vz1 = vx.1 + ... VSnew.2
1485 VSnew.2: vz2 = vx.2 + ... VSnew.3
1486 VSnew.3: vz3 = vx.3 + ...
1487
1488 The vectorization of S1 is explained in vectorizable_load.
1489 The vectorization of S2:
1490 To create the first vector-stmt out of the 4 copies - VSnew.0 -
1491 the function 'vect_get_vec_def_for_operand' is called to
1492 get the relevant vector-def for each operand of S2. For operand x it
1493 returns the vector-def 'vx.0'.
1494
1495 To create the remaining copies of the vector-stmt (VSnew.j), this
1496 function is called to get the relevant vector-def for each operand. It is
1497 obtained from the respective VS1.j stmt, which is recorded in the
1498 STMT_VINFO_RELATED_STMT field of the stmt that defines VEC_OPRND.
1499
1500 For example, to obtain the vector-def 'vx.1' in order to create the
1501 vector stmt 'VSnew.1', this function is called with VEC_OPRND='vx.0'.
1502 Given 'vx0' we obtain the stmt that defines it ('VS1.0'); from the
1503 STMT_VINFO_RELATED_STMT field of 'VS1.0' we obtain the next copy - 'VS1.1',
1504 and return its def ('vx.1').
1505 Overall, to create the above sequence this function will be called 3 times:
1506 vx.1 = vect_get_vec_def_for_stmt_copy (dt, vx.0);
1507 vx.2 = vect_get_vec_def_for_stmt_copy (dt, vx.1);
1508 vx.3 = vect_get_vec_def_for_stmt_copy (dt, vx.2); */
1509
1510 tree
1511 vect_get_vec_def_for_stmt_copy (enum vect_def_type dt, tree vec_oprnd)
1512 {
1513 gimple *vec_stmt_for_operand;
1514 stmt_vec_info def_stmt_info;
1515
1516 /* Do nothing; can reuse same def. */
1517 if (dt == vect_external_def || dt == vect_constant_def )
1518 return vec_oprnd;
1519
1520 vec_stmt_for_operand = SSA_NAME_DEF_STMT (vec_oprnd);
1521 def_stmt_info = vinfo_for_stmt (vec_stmt_for_operand);
1522 gcc_assert (def_stmt_info);
1523 vec_stmt_for_operand = STMT_VINFO_RELATED_STMT (def_stmt_info);
1524 gcc_assert (vec_stmt_for_operand);
1525 if (gimple_code (vec_stmt_for_operand) == GIMPLE_PHI)
1526 vec_oprnd = PHI_RESULT (vec_stmt_for_operand);
1527 else
1528 vec_oprnd = gimple_get_lhs (vec_stmt_for_operand);
1529 return vec_oprnd;
1530 }
1531
1532
1533 /* Get vectorized definitions for the operands to create a copy of an original
1534 stmt. See vect_get_vec_def_for_stmt_copy () for details. */
1535
1536 void
1537 vect_get_vec_defs_for_stmt_copy (enum vect_def_type *dt,
1538 vec<tree> *vec_oprnds0,
1539 vec<tree> *vec_oprnds1)
1540 {
1541 tree vec_oprnd = vec_oprnds0->pop ();
1542
1543 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd);
1544 vec_oprnds0->quick_push (vec_oprnd);
1545
1546 if (vec_oprnds1 && vec_oprnds1->length ())
1547 {
1548 vec_oprnd = vec_oprnds1->pop ();
1549 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt[1], vec_oprnd);
1550 vec_oprnds1->quick_push (vec_oprnd);
1551 }
1552 }
1553
1554
1555 /* Get vectorized definitions for OP0 and OP1. */
1556
1557 void
1558 vect_get_vec_defs (tree op0, tree op1, gimple *stmt,
1559 vec<tree> *vec_oprnds0,
1560 vec<tree> *vec_oprnds1,
1561 slp_tree slp_node)
1562 {
1563 if (slp_node)
1564 {
1565 int nops = (op1 == NULL_TREE) ? 1 : 2;
1566 auto_vec<tree> ops (nops);
1567 auto_vec<vec<tree> > vec_defs (nops);
1568
1569 ops.quick_push (op0);
1570 if (op1)
1571 ops.quick_push (op1);
1572
1573 vect_get_slp_defs (ops, slp_node, &vec_defs);
1574
1575 *vec_oprnds0 = vec_defs[0];
1576 if (op1)
1577 *vec_oprnds1 = vec_defs[1];
1578 }
1579 else
1580 {
1581 tree vec_oprnd;
1582
1583 vec_oprnds0->create (1);
1584 vec_oprnd = vect_get_vec_def_for_operand (op0, stmt);
1585 vec_oprnds0->quick_push (vec_oprnd);
1586
1587 if (op1)
1588 {
1589 vec_oprnds1->create (1);
1590 vec_oprnd = vect_get_vec_def_for_operand (op1, stmt);
1591 vec_oprnds1->quick_push (vec_oprnd);
1592 }
1593 }
1594 }
1595
1596
1597 /* Function vect_finish_stmt_generation.
1598
1599 Insert a new stmt. */
1600
1601 void
1602 vect_finish_stmt_generation (gimple *stmt, gimple *vec_stmt,
1603 gimple_stmt_iterator *gsi)
1604 {
1605 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1606 vec_info *vinfo = stmt_info->vinfo;
1607
1608 gcc_assert (gimple_code (stmt) != GIMPLE_LABEL);
1609
1610 if (!gsi_end_p (*gsi)
1611 && gimple_has_mem_ops (vec_stmt))
1612 {
1613 gimple *at_stmt = gsi_stmt (*gsi);
1614 tree vuse = gimple_vuse (at_stmt);
1615 if (vuse && TREE_CODE (vuse) == SSA_NAME)
1616 {
1617 tree vdef = gimple_vdef (at_stmt);
1618 gimple_set_vuse (vec_stmt, gimple_vuse (at_stmt));
1619 /* If we have an SSA vuse and insert a store, update virtual
1620 SSA form to avoid triggering the renamer. Do so only
1621 if we can easily see all uses - which is what almost always
1622 happens with the way vectorized stmts are inserted. */
1623 if ((vdef && TREE_CODE (vdef) == SSA_NAME)
1624 && ((is_gimple_assign (vec_stmt)
1625 && !is_gimple_reg (gimple_assign_lhs (vec_stmt)))
1626 || (is_gimple_call (vec_stmt)
1627 && !(gimple_call_flags (vec_stmt)
1628 & (ECF_CONST|ECF_PURE|ECF_NOVOPS)))))
1629 {
1630 tree new_vdef = copy_ssa_name (vuse, vec_stmt);
1631 gimple_set_vdef (vec_stmt, new_vdef);
1632 SET_USE (gimple_vuse_op (at_stmt), new_vdef);
1633 }
1634 }
1635 }
1636 gsi_insert_before (gsi, vec_stmt, GSI_SAME_STMT);
1637
1638 set_vinfo_for_stmt (vec_stmt, new_stmt_vec_info (vec_stmt, vinfo));
1639
1640 if (dump_enabled_p ())
1641 {
1642 dump_printf_loc (MSG_NOTE, vect_location, "add new stmt: ");
1643 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, vec_stmt, 0);
1644 }
1645
1646 gimple_set_location (vec_stmt, gimple_location (stmt));
1647
1648 /* While EH edges will generally prevent vectorization, stmt might
1649 e.g. be in a must-not-throw region. Ensure newly created stmts
1650 that could throw are part of the same region. */
1651 int lp_nr = lookup_stmt_eh_lp (stmt);
1652 if (lp_nr != 0 && stmt_could_throw_p (vec_stmt))
1653 add_stmt_to_eh_lp (vec_stmt, lp_nr);
1654 }
1655
1656 /* We want to vectorize a call to combined function CFN with function
1657 decl FNDECL, using VECTYPE_OUT as the type of the output and VECTYPE_IN
1658 as the types of all inputs. Check whether this is possible using
1659 an internal function, returning its code if so or IFN_LAST if not. */
1660
1661 static internal_fn
1662 vectorizable_internal_function (combined_fn cfn, tree fndecl,
1663 tree vectype_out, tree vectype_in)
1664 {
1665 internal_fn ifn;
1666 if (internal_fn_p (cfn))
1667 ifn = as_internal_fn (cfn);
1668 else
1669 ifn = associated_internal_fn (fndecl);
1670 if (ifn != IFN_LAST && direct_internal_fn_p (ifn))
1671 {
1672 const direct_internal_fn_info &info = direct_internal_fn (ifn);
1673 if (info.vectorizable)
1674 {
1675 tree type0 = (info.type0 < 0 ? vectype_out : vectype_in);
1676 tree type1 = (info.type1 < 0 ? vectype_out : vectype_in);
1677 if (direct_internal_fn_supported_p (ifn, tree_pair (type0, type1),
1678 OPTIMIZE_FOR_SPEED))
1679 return ifn;
1680 }
1681 }
1682 return IFN_LAST;
1683 }
1684
1685
1686 static tree permute_vec_elements (tree, tree, tree, gimple *,
1687 gimple_stmt_iterator *);
1688
1689 /* STMT is a non-strided load or store, meaning that it accesses
1690 elements with a known constant step. Return -1 if that step
1691 is negative, 0 if it is zero, and 1 if it is greater than zero. */
1692
1693 static int
1694 compare_step_with_zero (gimple *stmt)
1695 {
1696 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1697 data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1698 return tree_int_cst_compare (vect_dr_behavior (dr)->step,
1699 size_zero_node);
1700 }
1701
1702 /* If the target supports a permute mask that reverses the elements in
1703 a vector of type VECTYPE, return that mask, otherwise return null. */
1704
1705 static tree
1706 perm_mask_for_reverse (tree vectype)
1707 {
1708 int i, nunits;
1709 unsigned char *sel;
1710
1711 nunits = TYPE_VECTOR_SUBPARTS (vectype);
1712 sel = XALLOCAVEC (unsigned char, nunits);
1713
1714 for (i = 0; i < nunits; ++i)
1715 sel[i] = nunits - 1 - i;
1716
1717 if (!can_vec_perm_p (TYPE_MODE (vectype), false, sel))
1718 return NULL_TREE;
1719 return vect_gen_perm_mask_checked (vectype, sel);
1720 }
1721
1722 /* A subroutine of get_load_store_type, with a subset of the same
1723 arguments. Handle the case where STMT is part of a grouped load
1724 or store.
1725
1726 For stores, the statements in the group are all consecutive
1727 and there is no gap at the end. For loads, the statements in the
1728 group might not be consecutive; there can be gaps between statements
1729 as well as at the end. */
1730
1731 static bool
1732 get_group_load_store_type (gimple *stmt, tree vectype, bool slp,
1733 vec_load_store_type vls_type,
1734 vect_memory_access_type *memory_access_type)
1735 {
1736 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1737 vec_info *vinfo = stmt_info->vinfo;
1738 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1739 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
1740 gimple *first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
1741 unsigned int group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
1742 bool single_element_p = (stmt == first_stmt
1743 && !GROUP_NEXT_ELEMENT (stmt_info));
1744 unsigned HOST_WIDE_INT gap = GROUP_GAP (vinfo_for_stmt (first_stmt));
1745 unsigned nunits = TYPE_VECTOR_SUBPARTS (vectype);
1746
1747 /* True if the vectorized statements would access beyond the last
1748 statement in the group. */
1749 bool overrun_p = false;
1750
1751 /* True if we can cope with such overrun by peeling for gaps, so that
1752 there is at least one final scalar iteration after the vector loop. */
1753 bool can_overrun_p = (vls_type == VLS_LOAD && loop_vinfo && !loop->inner);
1754
1755 /* There can only be a gap at the end of the group if the stride is
1756 known at compile time. */
1757 gcc_assert (!STMT_VINFO_STRIDED_P (stmt_info) || gap == 0);
1758
1759 /* Stores can't yet have gaps. */
1760 gcc_assert (slp || vls_type == VLS_LOAD || gap == 0);
1761
1762 if (slp)
1763 {
1764 if (STMT_VINFO_STRIDED_P (stmt_info))
1765 {
1766 /* Try to use consecutive accesses of GROUP_SIZE elements,
1767 separated by the stride, until we have a complete vector.
1768 Fall back to scalar accesses if that isn't possible. */
1769 if (nunits % group_size == 0)
1770 *memory_access_type = VMAT_STRIDED_SLP;
1771 else
1772 *memory_access_type = VMAT_ELEMENTWISE;
1773 }
1774 else
1775 {
1776 overrun_p = loop_vinfo && gap != 0;
1777 if (overrun_p && vls_type != VLS_LOAD)
1778 {
1779 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1780 "Grouped store with gaps requires"
1781 " non-consecutive accesses\n");
1782 return false;
1783 }
1784 /* If the access is aligned an overrun is fine. */
1785 if (overrun_p
1786 && aligned_access_p
1787 (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt))))
1788 overrun_p = false;
1789 if (overrun_p && !can_overrun_p)
1790 {
1791 if (dump_enabled_p ())
1792 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1793 "Peeling for outer loop is not supported\n");
1794 return false;
1795 }
1796 *memory_access_type = VMAT_CONTIGUOUS;
1797 }
1798 }
1799 else
1800 {
1801 /* We can always handle this case using elementwise accesses,
1802 but see if something more efficient is available. */
1803 *memory_access_type = VMAT_ELEMENTWISE;
1804
1805 /* If there is a gap at the end of the group then these optimizations
1806 would access excess elements in the last iteration. */
1807 bool would_overrun_p = (gap != 0);
1808 /* If the access is aligned an overrun is fine, but only if the
1809 overrun is not inside an unused vector (if the gap is as large
1810 or larger than a vector). */
1811 if (would_overrun_p
1812 && gap < nunits
1813 && aligned_access_p
1814 (STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt))))
1815 would_overrun_p = false;
1816 if (!STMT_VINFO_STRIDED_P (stmt_info)
1817 && (can_overrun_p || !would_overrun_p)
1818 && compare_step_with_zero (stmt) > 0)
1819 {
1820 /* First try using LOAD/STORE_LANES. */
1821 if (vls_type == VLS_LOAD
1822 ? vect_load_lanes_supported (vectype, group_size)
1823 : vect_store_lanes_supported (vectype, group_size))
1824 {
1825 *memory_access_type = VMAT_LOAD_STORE_LANES;
1826 overrun_p = would_overrun_p;
1827 }
1828
1829 /* If that fails, try using permuting loads. */
1830 if (*memory_access_type == VMAT_ELEMENTWISE
1831 && (vls_type == VLS_LOAD
1832 ? vect_grouped_load_supported (vectype, single_element_p,
1833 group_size)
1834 : vect_grouped_store_supported (vectype, group_size)))
1835 {
1836 *memory_access_type = VMAT_CONTIGUOUS_PERMUTE;
1837 overrun_p = would_overrun_p;
1838 }
1839 }
1840 }
1841
1842 if (vls_type != VLS_LOAD && first_stmt == stmt)
1843 {
1844 /* STMT is the leader of the group. Check the operands of all the
1845 stmts of the group. */
1846 gimple *next_stmt = GROUP_NEXT_ELEMENT (stmt_info);
1847 while (next_stmt)
1848 {
1849 gcc_assert (gimple_assign_single_p (next_stmt));
1850 tree op = gimple_assign_rhs1 (next_stmt);
1851 gimple *def_stmt;
1852 enum vect_def_type dt;
1853 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt))
1854 {
1855 if (dump_enabled_p ())
1856 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1857 "use not simple.\n");
1858 return false;
1859 }
1860 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
1861 }
1862 }
1863
1864 if (overrun_p)
1865 {
1866 gcc_assert (can_overrun_p);
1867 if (dump_enabled_p ())
1868 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1869 "Data access with gaps requires scalar "
1870 "epilogue loop\n");
1871 LOOP_VINFO_PEELING_FOR_GAPS (loop_vinfo) = true;
1872 }
1873
1874 return true;
1875 }
1876
1877 /* A subroutine of get_load_store_type, with a subset of the same
1878 arguments. Handle the case where STMT is a load or store that
1879 accesses consecutive elements with a negative step. */
1880
1881 static vect_memory_access_type
1882 get_negative_load_store_type (gimple *stmt, tree vectype,
1883 vec_load_store_type vls_type,
1884 unsigned int ncopies)
1885 {
1886 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1887 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
1888 dr_alignment_support alignment_support_scheme;
1889
1890 if (ncopies > 1)
1891 {
1892 if (dump_enabled_p ())
1893 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1894 "multiple types with negative step.\n");
1895 return VMAT_ELEMENTWISE;
1896 }
1897
1898 alignment_support_scheme = vect_supportable_dr_alignment (dr, false);
1899 if (alignment_support_scheme != dr_aligned
1900 && alignment_support_scheme != dr_unaligned_supported)
1901 {
1902 if (dump_enabled_p ())
1903 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1904 "negative step but alignment required.\n");
1905 return VMAT_ELEMENTWISE;
1906 }
1907
1908 if (vls_type == VLS_STORE_INVARIANT)
1909 {
1910 if (dump_enabled_p ())
1911 dump_printf_loc (MSG_NOTE, vect_location,
1912 "negative step with invariant source;"
1913 " no permute needed.\n");
1914 return VMAT_CONTIGUOUS_DOWN;
1915 }
1916
1917 if (!perm_mask_for_reverse (vectype))
1918 {
1919 if (dump_enabled_p ())
1920 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1921 "negative step and reversing not supported.\n");
1922 return VMAT_ELEMENTWISE;
1923 }
1924
1925 return VMAT_CONTIGUOUS_REVERSE;
1926 }
1927
1928 /* Analyze load or store statement STMT of type VLS_TYPE. Return true
1929 if there is a memory access type that the vectorized form can use,
1930 storing it in *MEMORY_ACCESS_TYPE if so. If we decide to use gathers
1931 or scatters, fill in GS_INFO accordingly.
1932
1933 SLP says whether we're performing SLP rather than loop vectorization.
1934 VECTYPE is the vector type that the vectorized statements will use.
1935 NCOPIES is the number of vector statements that will be needed. */
1936
1937 static bool
1938 get_load_store_type (gimple *stmt, tree vectype, bool slp,
1939 vec_load_store_type vls_type, unsigned int ncopies,
1940 vect_memory_access_type *memory_access_type,
1941 gather_scatter_info *gs_info)
1942 {
1943 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
1944 vec_info *vinfo = stmt_info->vinfo;
1945 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
1946 if (STMT_VINFO_GATHER_SCATTER_P (stmt_info))
1947 {
1948 *memory_access_type = VMAT_GATHER_SCATTER;
1949 gimple *def_stmt;
1950 if (!vect_check_gather_scatter (stmt, loop_vinfo, gs_info))
1951 gcc_unreachable ();
1952 else if (!vect_is_simple_use (gs_info->offset, vinfo, &def_stmt,
1953 &gs_info->offset_dt,
1954 &gs_info->offset_vectype))
1955 {
1956 if (dump_enabled_p ())
1957 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1958 "%s index use not simple.\n",
1959 vls_type == VLS_LOAD ? "gather" : "scatter");
1960 return false;
1961 }
1962 }
1963 else if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
1964 {
1965 if (!get_group_load_store_type (stmt, vectype, slp, vls_type,
1966 memory_access_type))
1967 return false;
1968 }
1969 else if (STMT_VINFO_STRIDED_P (stmt_info))
1970 {
1971 gcc_assert (!slp);
1972 *memory_access_type = VMAT_ELEMENTWISE;
1973 }
1974 else
1975 {
1976 int cmp = compare_step_with_zero (stmt);
1977 if (cmp < 0)
1978 *memory_access_type = get_negative_load_store_type
1979 (stmt, vectype, vls_type, ncopies);
1980 else if (cmp == 0)
1981 {
1982 gcc_assert (vls_type == VLS_LOAD);
1983 *memory_access_type = VMAT_INVARIANT;
1984 }
1985 else
1986 *memory_access_type = VMAT_CONTIGUOUS;
1987 }
1988
1989 /* FIXME: At the moment the cost model seems to underestimate the
1990 cost of using elementwise accesses. This check preserves the
1991 traditional behavior until that can be fixed. */
1992 if (*memory_access_type == VMAT_ELEMENTWISE
1993 && !STMT_VINFO_STRIDED_P (stmt_info))
1994 {
1995 if (dump_enabled_p ())
1996 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
1997 "not falling back to elementwise accesses\n");
1998 return false;
1999 }
2000 return true;
2001 }
2002
2003 /* Function vectorizable_mask_load_store.
2004
2005 Check if STMT performs a conditional load or store that can be vectorized.
2006 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2007 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
2008 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2009
2010 static bool
2011 vectorizable_mask_load_store (gimple *stmt, gimple_stmt_iterator *gsi,
2012 gimple **vec_stmt, slp_tree slp_node)
2013 {
2014 tree vec_dest = NULL;
2015 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2016 stmt_vec_info prev_stmt_info;
2017 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2018 struct loop *loop = LOOP_VINFO_LOOP (loop_vinfo);
2019 bool nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
2020 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info);
2021 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
2022 tree rhs_vectype = NULL_TREE;
2023 tree mask_vectype;
2024 tree elem_type;
2025 gimple *new_stmt;
2026 tree dummy;
2027 tree dataref_ptr = NULL_TREE;
2028 gimple *ptr_incr;
2029 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
2030 int ncopies;
2031 int i, j;
2032 bool inv_p;
2033 gather_scatter_info gs_info;
2034 vec_load_store_type vls_type;
2035 tree mask;
2036 gimple *def_stmt;
2037 enum vect_def_type dt;
2038
2039 if (slp_node != NULL)
2040 return false;
2041
2042 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2043 gcc_assert (ncopies >= 1);
2044
2045 mask = gimple_call_arg (stmt, 2);
2046
2047 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (mask)))
2048 return false;
2049
2050 /* FORNOW. This restriction should be relaxed. */
2051 if (nested_in_vect_loop && ncopies > 1)
2052 {
2053 if (dump_enabled_p ())
2054 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2055 "multiple types in nested loop.");
2056 return false;
2057 }
2058
2059 if (!STMT_VINFO_RELEVANT_P (stmt_info))
2060 return false;
2061
2062 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
2063 && ! vec_stmt)
2064 return false;
2065
2066 if (!STMT_VINFO_DATA_REF (stmt_info))
2067 return false;
2068
2069 elem_type = TREE_TYPE (vectype);
2070
2071 if (TREE_CODE (mask) != SSA_NAME)
2072 return false;
2073
2074 if (!vect_is_simple_use (mask, loop_vinfo, &def_stmt, &dt, &mask_vectype))
2075 return false;
2076
2077 if (!mask_vectype)
2078 mask_vectype = get_mask_type_for_scalar_type (TREE_TYPE (vectype));
2079
2080 if (!mask_vectype || !VECTOR_BOOLEAN_TYPE_P (mask_vectype)
2081 || TYPE_VECTOR_SUBPARTS (mask_vectype) != TYPE_VECTOR_SUBPARTS (vectype))
2082 return false;
2083
2084 if (gimple_call_internal_fn (stmt) == IFN_MASK_STORE)
2085 {
2086 tree rhs = gimple_call_arg (stmt, 3);
2087 if (!vect_is_simple_use (rhs, loop_vinfo, &def_stmt, &dt, &rhs_vectype))
2088 return false;
2089 if (dt == vect_constant_def || dt == vect_external_def)
2090 vls_type = VLS_STORE_INVARIANT;
2091 else
2092 vls_type = VLS_STORE;
2093 }
2094 else
2095 vls_type = VLS_LOAD;
2096
2097 vect_memory_access_type memory_access_type;
2098 if (!get_load_store_type (stmt, vectype, false, vls_type, ncopies,
2099 &memory_access_type, &gs_info))
2100 return false;
2101
2102 if (memory_access_type == VMAT_GATHER_SCATTER)
2103 {
2104 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
2105 tree masktype
2106 = TREE_VALUE (TREE_CHAIN (TREE_CHAIN (TREE_CHAIN (arglist))));
2107 if (TREE_CODE (masktype) == INTEGER_TYPE)
2108 {
2109 if (dump_enabled_p ())
2110 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2111 "masked gather with integer mask not supported.");
2112 return false;
2113 }
2114 }
2115 else if (memory_access_type != VMAT_CONTIGUOUS)
2116 {
2117 if (dump_enabled_p ())
2118 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2119 "unsupported access type for masked %s.\n",
2120 vls_type == VLS_LOAD ? "load" : "store");
2121 return false;
2122 }
2123 else if (!VECTOR_MODE_P (TYPE_MODE (vectype))
2124 || !can_vec_mask_load_store_p (TYPE_MODE (vectype),
2125 TYPE_MODE (mask_vectype),
2126 vls_type == VLS_LOAD)
2127 || (rhs_vectype
2128 && !useless_type_conversion_p (vectype, rhs_vectype)))
2129 return false;
2130
2131 if (!vec_stmt) /* transformation not required. */
2132 {
2133 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
2134 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2135 if (vls_type == VLS_LOAD)
2136 vect_model_load_cost (stmt_info, ncopies, memory_access_type,
2137 NULL, NULL, NULL);
2138 else
2139 vect_model_store_cost (stmt_info, ncopies, memory_access_type,
2140 dt, NULL, NULL, NULL);
2141 return true;
2142 }
2143 gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
2144
2145 /* Transform. */
2146
2147 if (memory_access_type == VMAT_GATHER_SCATTER)
2148 {
2149 tree vec_oprnd0 = NULL_TREE, op;
2150 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
2151 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
2152 tree ptr, vec_mask = NULL_TREE, mask_op = NULL_TREE, var, scale;
2153 tree perm_mask = NULL_TREE, prev_res = NULL_TREE;
2154 tree mask_perm_mask = NULL_TREE;
2155 edge pe = loop_preheader_edge (loop);
2156 gimple_seq seq;
2157 basic_block new_bb;
2158 enum { NARROW, NONE, WIDEN } modifier;
2159 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
2160
2161 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
2162 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2163 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2164 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2165 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
2166 scaletype = TREE_VALUE (arglist);
2167 gcc_checking_assert (types_compatible_p (srctype, rettype)
2168 && types_compatible_p (srctype, masktype));
2169
2170 if (nunits == gather_off_nunits)
2171 modifier = NONE;
2172 else if (nunits == gather_off_nunits / 2)
2173 {
2174 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
2175 modifier = WIDEN;
2176
2177 for (i = 0; i < gather_off_nunits; ++i)
2178 sel[i] = i | nunits;
2179
2180 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
2181 }
2182 else if (nunits == gather_off_nunits * 2)
2183 {
2184 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
2185 modifier = NARROW;
2186
2187 for (i = 0; i < nunits; ++i)
2188 sel[i] = i < gather_off_nunits
2189 ? i : i + nunits - gather_off_nunits;
2190
2191 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
2192 ncopies *= 2;
2193 for (i = 0; i < nunits; ++i)
2194 sel[i] = i | gather_off_nunits;
2195 mask_perm_mask = vect_gen_perm_mask_checked (masktype, sel);
2196 }
2197 else
2198 gcc_unreachable ();
2199
2200 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2201
2202 ptr = fold_convert (ptrtype, gs_info.base);
2203 if (!is_gimple_min_invariant (ptr))
2204 {
2205 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
2206 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
2207 gcc_assert (!new_bb);
2208 }
2209
2210 scale = build_int_cst (scaletype, gs_info.scale);
2211
2212 prev_stmt_info = NULL;
2213 for (j = 0; j < ncopies; ++j)
2214 {
2215 if (modifier == WIDEN && (j & 1))
2216 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
2217 perm_mask, stmt, gsi);
2218 else if (j == 0)
2219 op = vec_oprnd0
2220 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
2221 else
2222 op = vec_oprnd0
2223 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt, vec_oprnd0);
2224
2225 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
2226 {
2227 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
2228 == TYPE_VECTOR_SUBPARTS (idxtype));
2229 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
2230 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
2231 new_stmt
2232 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
2233 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2234 op = var;
2235 }
2236
2237 if (mask_perm_mask && (j & 1))
2238 mask_op = permute_vec_elements (mask_op, mask_op,
2239 mask_perm_mask, stmt, gsi);
2240 else
2241 {
2242 if (j == 0)
2243 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2244 else
2245 {
2246 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2247 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2248 }
2249
2250 mask_op = vec_mask;
2251 if (!useless_type_conversion_p (masktype, TREE_TYPE (vec_mask)))
2252 {
2253 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (mask_op))
2254 == TYPE_VECTOR_SUBPARTS (masktype));
2255 var = vect_get_new_ssa_name (masktype, vect_simple_var);
2256 mask_op = build1 (VIEW_CONVERT_EXPR, masktype, mask_op);
2257 new_stmt
2258 = gimple_build_assign (var, VIEW_CONVERT_EXPR, mask_op);
2259 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2260 mask_op = var;
2261 }
2262 }
2263
2264 new_stmt
2265 = gimple_build_call (gs_info.decl, 5, mask_op, ptr, op, mask_op,
2266 scale);
2267
2268 if (!useless_type_conversion_p (vectype, rettype))
2269 {
2270 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
2271 == TYPE_VECTOR_SUBPARTS (rettype));
2272 op = vect_get_new_ssa_name (rettype, vect_simple_var);
2273 gimple_call_set_lhs (new_stmt, op);
2274 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2275 var = make_ssa_name (vec_dest);
2276 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
2277 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
2278 }
2279 else
2280 {
2281 var = make_ssa_name (vec_dest, new_stmt);
2282 gimple_call_set_lhs (new_stmt, var);
2283 }
2284
2285 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2286
2287 if (modifier == NARROW)
2288 {
2289 if ((j & 1) == 0)
2290 {
2291 prev_res = var;
2292 continue;
2293 }
2294 var = permute_vec_elements (prev_res, var,
2295 perm_mask, stmt, gsi);
2296 new_stmt = SSA_NAME_DEF_STMT (var);
2297 }
2298
2299 if (prev_stmt_info == NULL)
2300 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2301 else
2302 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2303 prev_stmt_info = vinfo_for_stmt (new_stmt);
2304 }
2305
2306 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2307 from the IL. */
2308 if (STMT_VINFO_RELATED_STMT (stmt_info))
2309 {
2310 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2311 stmt_info = vinfo_for_stmt (stmt);
2312 }
2313 tree lhs = gimple_call_lhs (stmt);
2314 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2315 set_vinfo_for_stmt (new_stmt, stmt_info);
2316 set_vinfo_for_stmt (stmt, NULL);
2317 STMT_VINFO_STMT (stmt_info) = new_stmt;
2318 gsi_replace (gsi, new_stmt, true);
2319 return true;
2320 }
2321 else if (vls_type != VLS_LOAD)
2322 {
2323 tree vec_rhs = NULL_TREE, vec_mask = NULL_TREE;
2324 prev_stmt_info = NULL;
2325 LOOP_VINFO_HAS_MASK_STORE (loop_vinfo) = true;
2326 for (i = 0; i < ncopies; i++)
2327 {
2328 unsigned align, misalign;
2329
2330 if (i == 0)
2331 {
2332 tree rhs = gimple_call_arg (stmt, 3);
2333 vec_rhs = vect_get_vec_def_for_operand (rhs, stmt);
2334 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2335 /* We should have catched mismatched types earlier. */
2336 gcc_assert (useless_type_conversion_p (vectype,
2337 TREE_TYPE (vec_rhs)));
2338 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2339 NULL_TREE, &dummy, gsi,
2340 &ptr_incr, false, &inv_p);
2341 gcc_assert (!inv_p);
2342 }
2343 else
2344 {
2345 vect_is_simple_use (vec_rhs, loop_vinfo, &def_stmt, &dt);
2346 vec_rhs = vect_get_vec_def_for_stmt_copy (dt, vec_rhs);
2347 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2348 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2349 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2350 TYPE_SIZE_UNIT (vectype));
2351 }
2352
2353 align = TYPE_ALIGN_UNIT (vectype);
2354 if (aligned_access_p (dr))
2355 misalign = 0;
2356 else if (DR_MISALIGNMENT (dr) == -1)
2357 {
2358 align = TYPE_ALIGN_UNIT (elem_type);
2359 misalign = 0;
2360 }
2361 else
2362 misalign = DR_MISALIGNMENT (dr);
2363 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2364 misalign);
2365 tree ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)),
2366 misalign ? least_bit_hwi (misalign) : align);
2367 gcall *call
2368 = gimple_build_call_internal (IFN_MASK_STORE, 4, dataref_ptr,
2369 ptr, vec_mask, vec_rhs);
2370 gimple_call_set_nothrow (call, true);
2371 new_stmt = call;
2372 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2373 if (i == 0)
2374 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2375 else
2376 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2377 prev_stmt_info = vinfo_for_stmt (new_stmt);
2378 }
2379 }
2380 else
2381 {
2382 tree vec_mask = NULL_TREE;
2383 prev_stmt_info = NULL;
2384 vec_dest = vect_create_destination_var (gimple_call_lhs (stmt), vectype);
2385 for (i = 0; i < ncopies; i++)
2386 {
2387 unsigned align, misalign;
2388
2389 if (i == 0)
2390 {
2391 vec_mask = vect_get_vec_def_for_operand (mask, stmt);
2392 dataref_ptr = vect_create_data_ref_ptr (stmt, vectype, NULL,
2393 NULL_TREE, &dummy, gsi,
2394 &ptr_incr, false, &inv_p);
2395 gcc_assert (!inv_p);
2396 }
2397 else
2398 {
2399 vect_is_simple_use (vec_mask, loop_vinfo, &def_stmt, &dt);
2400 vec_mask = vect_get_vec_def_for_stmt_copy (dt, vec_mask);
2401 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
2402 TYPE_SIZE_UNIT (vectype));
2403 }
2404
2405 align = TYPE_ALIGN_UNIT (vectype);
2406 if (aligned_access_p (dr))
2407 misalign = 0;
2408 else if (DR_MISALIGNMENT (dr) == -1)
2409 {
2410 align = TYPE_ALIGN_UNIT (elem_type);
2411 misalign = 0;
2412 }
2413 else
2414 misalign = DR_MISALIGNMENT (dr);
2415 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
2416 misalign);
2417 tree ptr = build_int_cst (TREE_TYPE (gimple_call_arg (stmt, 1)),
2418 misalign ? least_bit_hwi (misalign) : align);
2419 gcall *call
2420 = gimple_build_call_internal (IFN_MASK_LOAD, 3, dataref_ptr,
2421 ptr, vec_mask);
2422 gimple_call_set_lhs (call, make_ssa_name (vec_dest));
2423 gimple_call_set_nothrow (call, true);
2424 vect_finish_stmt_generation (stmt, call, gsi);
2425 if (i == 0)
2426 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = call;
2427 else
2428 STMT_VINFO_RELATED_STMT (prev_stmt_info) = call;
2429 prev_stmt_info = vinfo_for_stmt (call);
2430 }
2431 }
2432
2433 if (vls_type == VLS_LOAD)
2434 {
2435 /* Ensure that even with -fno-tree-dce the scalar MASK_LOAD is removed
2436 from the IL. */
2437 if (STMT_VINFO_RELATED_STMT (stmt_info))
2438 {
2439 stmt = STMT_VINFO_RELATED_STMT (stmt_info);
2440 stmt_info = vinfo_for_stmt (stmt);
2441 }
2442 tree lhs = gimple_call_lhs (stmt);
2443 new_stmt = gimple_build_assign (lhs, build_zero_cst (TREE_TYPE (lhs)));
2444 set_vinfo_for_stmt (new_stmt, stmt_info);
2445 set_vinfo_for_stmt (stmt, NULL);
2446 STMT_VINFO_STMT (stmt_info) = new_stmt;
2447 gsi_replace (gsi, new_stmt, true);
2448 }
2449
2450 return true;
2451 }
2452
2453 /* Check and perform vectorization of BUILT_IN_BSWAP{16,32,64}. */
2454
2455 static bool
2456 vectorizable_bswap (gimple *stmt, gimple_stmt_iterator *gsi,
2457 gimple **vec_stmt, slp_tree slp_node,
2458 tree vectype_in, enum vect_def_type *dt)
2459 {
2460 tree op, vectype;
2461 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
2462 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2463 unsigned ncopies, nunits;
2464
2465 op = gimple_call_arg (stmt, 0);
2466 vectype = STMT_VINFO_VECTYPE (stmt_info);
2467 nunits = TYPE_VECTOR_SUBPARTS (vectype);
2468
2469 /* Multiple types in SLP are handled by creating the appropriate number of
2470 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
2471 case of SLP. */
2472 if (slp_node)
2473 ncopies = 1;
2474 else
2475 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
2476
2477 gcc_assert (ncopies >= 1);
2478
2479 tree char_vectype = get_same_sized_vectype (char_type_node, vectype_in);
2480 if (! char_vectype)
2481 return false;
2482
2483 unsigned char *elts
2484 = XALLOCAVEC (unsigned char, TYPE_VECTOR_SUBPARTS (char_vectype));
2485 unsigned char *elt = elts;
2486 unsigned word_bytes = TYPE_VECTOR_SUBPARTS (char_vectype) / nunits;
2487 for (unsigned i = 0; i < nunits; ++i)
2488 for (unsigned j = 0; j < word_bytes; ++j)
2489 *elt++ = (i + 1) * word_bytes - j - 1;
2490
2491 if (! can_vec_perm_p (TYPE_MODE (char_vectype), false, elts))
2492 return false;
2493
2494 if (! vec_stmt)
2495 {
2496 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2497 if (dump_enabled_p ())
2498 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_bswap ==="
2499 "\n");
2500 if (! PURE_SLP_STMT (stmt_info))
2501 {
2502 add_stmt_cost (stmt_info->vinfo->target_cost_data,
2503 1, vector_stmt, stmt_info, 0, vect_prologue);
2504 add_stmt_cost (stmt_info->vinfo->target_cost_data,
2505 ncopies, vec_perm, stmt_info, 0, vect_body);
2506 }
2507 return true;
2508 }
2509
2510 tree *telts = XALLOCAVEC (tree, TYPE_VECTOR_SUBPARTS (char_vectype));
2511 for (unsigned i = 0; i < TYPE_VECTOR_SUBPARTS (char_vectype); ++i)
2512 telts[i] = build_int_cst (char_type_node, elts[i]);
2513 tree bswap_vconst = build_vector (char_vectype, telts);
2514
2515 /* Transform. */
2516 vec<tree> vec_oprnds = vNULL;
2517 gimple *new_stmt = NULL;
2518 stmt_vec_info prev_stmt_info = NULL;
2519 for (unsigned j = 0; j < ncopies; j++)
2520 {
2521 /* Handle uses. */
2522 if (j == 0)
2523 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
2524 else
2525 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
2526
2527 /* Arguments are ready. create the new vector stmt. */
2528 unsigned i;
2529 tree vop;
2530 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
2531 {
2532 tree tem = make_ssa_name (char_vectype);
2533 new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
2534 char_vectype, vop));
2535 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2536 tree tem2 = make_ssa_name (char_vectype);
2537 new_stmt = gimple_build_assign (tem2, VEC_PERM_EXPR,
2538 tem, tem, bswap_vconst);
2539 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2540 tem = make_ssa_name (vectype);
2541 new_stmt = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
2542 vectype, tem2));
2543 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2544 if (slp_node)
2545 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2546 }
2547
2548 if (slp_node)
2549 continue;
2550
2551 if (j == 0)
2552 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2553 else
2554 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2555
2556 prev_stmt_info = vinfo_for_stmt (new_stmt);
2557 }
2558
2559 vec_oprnds.release ();
2560 return true;
2561 }
2562
2563 /* Return true if vector types VECTYPE_IN and VECTYPE_OUT have
2564 integer elements and if we can narrow VECTYPE_IN to VECTYPE_OUT
2565 in a single step. On success, store the binary pack code in
2566 *CONVERT_CODE. */
2567
2568 static bool
2569 simple_integer_narrowing (tree vectype_out, tree vectype_in,
2570 tree_code *convert_code)
2571 {
2572 if (!INTEGRAL_TYPE_P (TREE_TYPE (vectype_out))
2573 || !INTEGRAL_TYPE_P (TREE_TYPE (vectype_in)))
2574 return false;
2575
2576 tree_code code;
2577 int multi_step_cvt = 0;
2578 auto_vec <tree, 8> interm_types;
2579 if (!supportable_narrowing_operation (NOP_EXPR, vectype_out, vectype_in,
2580 &code, &multi_step_cvt,
2581 &interm_types)
2582 || multi_step_cvt)
2583 return false;
2584
2585 *convert_code = code;
2586 return true;
2587 }
2588
2589 /* Function vectorizable_call.
2590
2591 Check if GS performs a function call that can be vectorized.
2592 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
2593 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
2594 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
2595
2596 static bool
2597 vectorizable_call (gimple *gs, gimple_stmt_iterator *gsi, gimple **vec_stmt,
2598 slp_tree slp_node)
2599 {
2600 gcall *stmt;
2601 tree vec_dest;
2602 tree scalar_dest;
2603 tree op, type;
2604 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
2605 stmt_vec_info stmt_info = vinfo_for_stmt (gs), prev_stmt_info;
2606 tree vectype_out, vectype_in;
2607 int nunits_in;
2608 int nunits_out;
2609 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
2610 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
2611 vec_info *vinfo = stmt_info->vinfo;
2612 tree fndecl, new_temp, rhs_type;
2613 gimple *def_stmt;
2614 enum vect_def_type dt[3]
2615 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
2616 int ndts = 3;
2617 gimple *new_stmt = NULL;
2618 int ncopies, j;
2619 vec<tree> vargs = vNULL;
2620 enum { NARROW, NONE, WIDEN } modifier;
2621 size_t i, nargs;
2622 tree lhs;
2623
2624 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
2625 return false;
2626
2627 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
2628 && ! vec_stmt)
2629 return false;
2630
2631 /* Is GS a vectorizable call? */
2632 stmt = dyn_cast <gcall *> (gs);
2633 if (!stmt)
2634 return false;
2635
2636 if (gimple_call_internal_p (stmt)
2637 && (gimple_call_internal_fn (stmt) == IFN_MASK_LOAD
2638 || gimple_call_internal_fn (stmt) == IFN_MASK_STORE))
2639 return vectorizable_mask_load_store (stmt, gsi, vec_stmt,
2640 slp_node);
2641
2642 if (gimple_call_lhs (stmt) == NULL_TREE
2643 || TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
2644 return false;
2645
2646 gcc_checking_assert (!stmt_can_throw_internal (stmt));
2647
2648 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
2649
2650 /* Process function arguments. */
2651 rhs_type = NULL_TREE;
2652 vectype_in = NULL_TREE;
2653 nargs = gimple_call_num_args (stmt);
2654
2655 /* Bail out if the function has more than three arguments, we do not have
2656 interesting builtin functions to vectorize with more than two arguments
2657 except for fma. No arguments is also not good. */
2658 if (nargs == 0 || nargs > 3)
2659 return false;
2660
2661 /* Ignore the argument of IFN_GOMP_SIMD_LANE, it is magic. */
2662 if (gimple_call_internal_p (stmt)
2663 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2664 {
2665 nargs = 0;
2666 rhs_type = unsigned_type_node;
2667 }
2668
2669 for (i = 0; i < nargs; i++)
2670 {
2671 tree opvectype;
2672
2673 op = gimple_call_arg (stmt, i);
2674
2675 /* We can only handle calls with arguments of the same type. */
2676 if (rhs_type
2677 && !types_compatible_p (rhs_type, TREE_TYPE (op)))
2678 {
2679 if (dump_enabled_p ())
2680 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2681 "argument types differ.\n");
2682 return false;
2683 }
2684 if (!rhs_type)
2685 rhs_type = TREE_TYPE (op);
2686
2687 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[i], &opvectype))
2688 {
2689 if (dump_enabled_p ())
2690 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2691 "use not simple.\n");
2692 return false;
2693 }
2694
2695 if (!vectype_in)
2696 vectype_in = opvectype;
2697 else if (opvectype
2698 && opvectype != vectype_in)
2699 {
2700 if (dump_enabled_p ())
2701 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2702 "argument vector types differ.\n");
2703 return false;
2704 }
2705 }
2706 /* If all arguments are external or constant defs use a vector type with
2707 the same size as the output vector type. */
2708 if (!vectype_in)
2709 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
2710 if (vec_stmt)
2711 gcc_assert (vectype_in);
2712 if (!vectype_in)
2713 {
2714 if (dump_enabled_p ())
2715 {
2716 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2717 "no vectype for scalar type ");
2718 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
2719 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
2720 }
2721
2722 return false;
2723 }
2724
2725 /* FORNOW */
2726 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
2727 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
2728 if (nunits_in == nunits_out / 2)
2729 modifier = NARROW;
2730 else if (nunits_out == nunits_in)
2731 modifier = NONE;
2732 else if (nunits_out == nunits_in / 2)
2733 modifier = WIDEN;
2734 else
2735 return false;
2736
2737 /* We only handle functions that do not read or clobber memory. */
2738 if (gimple_vuse (stmt))
2739 {
2740 if (dump_enabled_p ())
2741 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2742 "function reads from or writes to memory.\n");
2743 return false;
2744 }
2745
2746 /* For now, we only vectorize functions if a target specific builtin
2747 is available. TODO -- in some cases, it might be profitable to
2748 insert the calls for pieces of the vector, in order to be able
2749 to vectorize other operations in the loop. */
2750 fndecl = NULL_TREE;
2751 internal_fn ifn = IFN_LAST;
2752 combined_fn cfn = gimple_call_combined_fn (stmt);
2753 tree callee = gimple_call_fndecl (stmt);
2754
2755 /* First try using an internal function. */
2756 tree_code convert_code = ERROR_MARK;
2757 if (cfn != CFN_LAST
2758 && (modifier == NONE
2759 || (modifier == NARROW
2760 && simple_integer_narrowing (vectype_out, vectype_in,
2761 &convert_code))))
2762 ifn = vectorizable_internal_function (cfn, callee, vectype_out,
2763 vectype_in);
2764
2765 /* If that fails, try asking for a target-specific built-in function. */
2766 if (ifn == IFN_LAST)
2767 {
2768 if (cfn != CFN_LAST)
2769 fndecl = targetm.vectorize.builtin_vectorized_function
2770 (cfn, vectype_out, vectype_in);
2771 else
2772 fndecl = targetm.vectorize.builtin_md_vectorized_function
2773 (callee, vectype_out, vectype_in);
2774 }
2775
2776 if (ifn == IFN_LAST && !fndecl)
2777 {
2778 if (cfn == CFN_GOMP_SIMD_LANE
2779 && !slp_node
2780 && loop_vinfo
2781 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2782 && TREE_CODE (gimple_call_arg (stmt, 0)) == SSA_NAME
2783 && LOOP_VINFO_LOOP (loop_vinfo)->simduid
2784 == SSA_NAME_VAR (gimple_call_arg (stmt, 0)))
2785 {
2786 /* We can handle IFN_GOMP_SIMD_LANE by returning a
2787 { 0, 1, 2, ... vf - 1 } vector. */
2788 gcc_assert (nargs == 0);
2789 }
2790 else if (modifier == NONE
2791 && (gimple_call_builtin_p (stmt, BUILT_IN_BSWAP16)
2792 || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP32)
2793 || gimple_call_builtin_p (stmt, BUILT_IN_BSWAP64)))
2794 return vectorizable_bswap (stmt, gsi, vec_stmt, slp_node,
2795 vectype_in, dt);
2796 else
2797 {
2798 if (dump_enabled_p ())
2799 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
2800 "function is not vectorizable.\n");
2801 return false;
2802 }
2803 }
2804
2805 if (slp_node)
2806 ncopies = 1;
2807 else if (modifier == NARROW && ifn == IFN_LAST)
2808 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
2809 else
2810 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
2811
2812 /* Sanity check: make sure that at least one copy of the vectorized stmt
2813 needs to be generated. */
2814 gcc_assert (ncopies >= 1);
2815
2816 if (!vec_stmt) /* transformation not required. */
2817 {
2818 STMT_VINFO_TYPE (stmt_info) = call_vec_info_type;
2819 if (dump_enabled_p ())
2820 dump_printf_loc (MSG_NOTE, vect_location, "=== vectorizable_call ==="
2821 "\n");
2822 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
2823 if (ifn != IFN_LAST && modifier == NARROW && !slp_node)
2824 add_stmt_cost (stmt_info->vinfo->target_cost_data, ncopies / 2,
2825 vec_promote_demote, stmt_info, 0, vect_body);
2826
2827 return true;
2828 }
2829
2830 /* Transform. */
2831
2832 if (dump_enabled_p ())
2833 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
2834
2835 /* Handle def. */
2836 scalar_dest = gimple_call_lhs (stmt);
2837 vec_dest = vect_create_destination_var (scalar_dest, vectype_out);
2838
2839 prev_stmt_info = NULL;
2840 if (modifier == NONE || ifn != IFN_LAST)
2841 {
2842 tree prev_res = NULL_TREE;
2843 for (j = 0; j < ncopies; ++j)
2844 {
2845 /* Build argument list for the vectorized call. */
2846 if (j == 0)
2847 vargs.create (nargs);
2848 else
2849 vargs.truncate (0);
2850
2851 if (slp_node)
2852 {
2853 auto_vec<vec<tree> > vec_defs (nargs);
2854 vec<tree> vec_oprnds0;
2855
2856 for (i = 0; i < nargs; i++)
2857 vargs.quick_push (gimple_call_arg (stmt, i));
2858 vect_get_slp_defs (vargs, slp_node, &vec_defs);
2859 vec_oprnds0 = vec_defs[0];
2860
2861 /* Arguments are ready. Create the new vector stmt. */
2862 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_oprnd0)
2863 {
2864 size_t k;
2865 for (k = 0; k < nargs; k++)
2866 {
2867 vec<tree> vec_oprndsk = vec_defs[k];
2868 vargs[k] = vec_oprndsk[i];
2869 }
2870 if (modifier == NARROW)
2871 {
2872 tree half_res = make_ssa_name (vectype_in);
2873 gcall *call
2874 = gimple_build_call_internal_vec (ifn, vargs);
2875 gimple_call_set_lhs (call, half_res);
2876 gimple_call_set_nothrow (call, true);
2877 new_stmt = call;
2878 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2879 if ((i & 1) == 0)
2880 {
2881 prev_res = half_res;
2882 continue;
2883 }
2884 new_temp = make_ssa_name (vec_dest);
2885 new_stmt = gimple_build_assign (new_temp, convert_code,
2886 prev_res, half_res);
2887 }
2888 else
2889 {
2890 gcall *call;
2891 if (ifn != IFN_LAST)
2892 call = gimple_build_call_internal_vec (ifn, vargs);
2893 else
2894 call = gimple_build_call_vec (fndecl, vargs);
2895 new_temp = make_ssa_name (vec_dest, call);
2896 gimple_call_set_lhs (call, new_temp);
2897 gimple_call_set_nothrow (call, true);
2898 new_stmt = call;
2899 }
2900 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2901 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
2902 }
2903
2904 for (i = 0; i < nargs; i++)
2905 {
2906 vec<tree> vec_oprndsi = vec_defs[i];
2907 vec_oprndsi.release ();
2908 }
2909 continue;
2910 }
2911
2912 for (i = 0; i < nargs; i++)
2913 {
2914 op = gimple_call_arg (stmt, i);
2915 if (j == 0)
2916 vec_oprnd0
2917 = vect_get_vec_def_for_operand (op, stmt);
2918 else
2919 {
2920 vec_oprnd0 = gimple_call_arg (new_stmt, i);
2921 vec_oprnd0
2922 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
2923 }
2924
2925 vargs.quick_push (vec_oprnd0);
2926 }
2927
2928 if (gimple_call_internal_p (stmt)
2929 && gimple_call_internal_fn (stmt) == IFN_GOMP_SIMD_LANE)
2930 {
2931 tree *v = XALLOCAVEC (tree, nunits_out);
2932 int k;
2933 for (k = 0; k < nunits_out; ++k)
2934 v[k] = build_int_cst (unsigned_type_node, j * nunits_out + k);
2935 tree cst = build_vector (vectype_out, v);
2936 tree new_var
2937 = vect_get_new_ssa_name (vectype_out, vect_simple_var, "cst_");
2938 gimple *init_stmt = gimple_build_assign (new_var, cst);
2939 vect_init_vector_1 (stmt, init_stmt, NULL);
2940 new_temp = make_ssa_name (vec_dest);
2941 new_stmt = gimple_build_assign (new_temp, new_var);
2942 }
2943 else if (modifier == NARROW)
2944 {
2945 tree half_res = make_ssa_name (vectype_in);
2946 gcall *call = gimple_build_call_internal_vec (ifn, vargs);
2947 gimple_call_set_lhs (call, half_res);
2948 gimple_call_set_nothrow (call, true);
2949 new_stmt = call;
2950 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2951 if ((j & 1) == 0)
2952 {
2953 prev_res = half_res;
2954 continue;
2955 }
2956 new_temp = make_ssa_name (vec_dest);
2957 new_stmt = gimple_build_assign (new_temp, convert_code,
2958 prev_res, half_res);
2959 }
2960 else
2961 {
2962 gcall *call;
2963 if (ifn != IFN_LAST)
2964 call = gimple_build_call_internal_vec (ifn, vargs);
2965 else
2966 call = gimple_build_call_vec (fndecl, vargs);
2967 new_temp = make_ssa_name (vec_dest, new_stmt);
2968 gimple_call_set_lhs (call, new_temp);
2969 gimple_call_set_nothrow (call, true);
2970 new_stmt = call;
2971 }
2972 vect_finish_stmt_generation (stmt, new_stmt, gsi);
2973
2974 if (j == (modifier == NARROW ? 1 : 0))
2975 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
2976 else
2977 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
2978
2979 prev_stmt_info = vinfo_for_stmt (new_stmt);
2980 }
2981 }
2982 else if (modifier == NARROW)
2983 {
2984 for (j = 0; j < ncopies; ++j)
2985 {
2986 /* Build argument list for the vectorized call. */
2987 if (j == 0)
2988 vargs.create (nargs * 2);
2989 else
2990 vargs.truncate (0);
2991
2992 if (slp_node)
2993 {
2994 auto_vec<vec<tree> > vec_defs (nargs);
2995 vec<tree> vec_oprnds0;
2996
2997 for (i = 0; i < nargs; i++)
2998 vargs.quick_push (gimple_call_arg (stmt, i));
2999 vect_get_slp_defs (vargs, slp_node, &vec_defs);
3000 vec_oprnds0 = vec_defs[0];
3001
3002 /* Arguments are ready. Create the new vector stmt. */
3003 for (i = 0; vec_oprnds0.iterate (i, &vec_oprnd0); i += 2)
3004 {
3005 size_t k;
3006 vargs.truncate (0);
3007 for (k = 0; k < nargs; k++)
3008 {
3009 vec<tree> vec_oprndsk = vec_defs[k];
3010 vargs.quick_push (vec_oprndsk[i]);
3011 vargs.quick_push (vec_oprndsk[i + 1]);
3012 }
3013 gcall *call;
3014 if (ifn != IFN_LAST)
3015 call = gimple_build_call_internal_vec (ifn, vargs);
3016 else
3017 call = gimple_build_call_vec (fndecl, vargs);
3018 new_temp = make_ssa_name (vec_dest, call);
3019 gimple_call_set_lhs (call, new_temp);
3020 gimple_call_set_nothrow (call, true);
3021 new_stmt = call;
3022 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3023 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3024 }
3025
3026 for (i = 0; i < nargs; i++)
3027 {
3028 vec<tree> vec_oprndsi = vec_defs[i];
3029 vec_oprndsi.release ();
3030 }
3031 continue;
3032 }
3033
3034 for (i = 0; i < nargs; i++)
3035 {
3036 op = gimple_call_arg (stmt, i);
3037 if (j == 0)
3038 {
3039 vec_oprnd0
3040 = vect_get_vec_def_for_operand (op, stmt);
3041 vec_oprnd1
3042 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
3043 }
3044 else
3045 {
3046 vec_oprnd1 = gimple_call_arg (new_stmt, 2*i + 1);
3047 vec_oprnd0
3048 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd1);
3049 vec_oprnd1
3050 = vect_get_vec_def_for_stmt_copy (dt[i], vec_oprnd0);
3051 }
3052
3053 vargs.quick_push (vec_oprnd0);
3054 vargs.quick_push (vec_oprnd1);
3055 }
3056
3057 new_stmt = gimple_build_call_vec (fndecl, vargs);
3058 new_temp = make_ssa_name (vec_dest, new_stmt);
3059 gimple_call_set_lhs (new_stmt, new_temp);
3060 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3061
3062 if (j == 0)
3063 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3064 else
3065 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3066
3067 prev_stmt_info = vinfo_for_stmt (new_stmt);
3068 }
3069
3070 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
3071 }
3072 else
3073 /* No current target implements this case. */
3074 return false;
3075
3076 vargs.release ();
3077
3078 /* The call in STMT might prevent it from being removed in dce.
3079 We however cannot remove it here, due to the way the ssa name
3080 it defines is mapped to the new definition. So just replace
3081 rhs of the statement with something harmless. */
3082
3083 if (slp_node)
3084 return true;
3085
3086 type = TREE_TYPE (scalar_dest);
3087 if (is_pattern_stmt_p (stmt_info))
3088 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3089 else
3090 lhs = gimple_call_lhs (stmt);
3091
3092 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3093 set_vinfo_for_stmt (new_stmt, stmt_info);
3094 set_vinfo_for_stmt (stmt, NULL);
3095 STMT_VINFO_STMT (stmt_info) = new_stmt;
3096 gsi_replace (gsi, new_stmt, false);
3097
3098 return true;
3099 }
3100
3101
3102 struct simd_call_arg_info
3103 {
3104 tree vectype;
3105 tree op;
3106 HOST_WIDE_INT linear_step;
3107 enum vect_def_type dt;
3108 unsigned int align;
3109 bool simd_lane_linear;
3110 };
3111
3112 /* Helper function of vectorizable_simd_clone_call. If OP, an SSA_NAME,
3113 is linear within simd lane (but not within whole loop), note it in
3114 *ARGINFO. */
3115
3116 static void
3117 vect_simd_lane_linear (tree op, struct loop *loop,
3118 struct simd_call_arg_info *arginfo)
3119 {
3120 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
3121
3122 if (!is_gimple_assign (def_stmt)
3123 || gimple_assign_rhs_code (def_stmt) != POINTER_PLUS_EXPR
3124 || !is_gimple_min_invariant (gimple_assign_rhs1 (def_stmt)))
3125 return;
3126
3127 tree base = gimple_assign_rhs1 (def_stmt);
3128 HOST_WIDE_INT linear_step = 0;
3129 tree v = gimple_assign_rhs2 (def_stmt);
3130 while (TREE_CODE (v) == SSA_NAME)
3131 {
3132 tree t;
3133 def_stmt = SSA_NAME_DEF_STMT (v);
3134 if (is_gimple_assign (def_stmt))
3135 switch (gimple_assign_rhs_code (def_stmt))
3136 {
3137 case PLUS_EXPR:
3138 t = gimple_assign_rhs2 (def_stmt);
3139 if (linear_step || TREE_CODE (t) != INTEGER_CST)
3140 return;
3141 base = fold_build2 (POINTER_PLUS_EXPR, TREE_TYPE (base), base, t);
3142 v = gimple_assign_rhs1 (def_stmt);
3143 continue;
3144 case MULT_EXPR:
3145 t = gimple_assign_rhs2 (def_stmt);
3146 if (linear_step || !tree_fits_shwi_p (t) || integer_zerop (t))
3147 return;
3148 linear_step = tree_to_shwi (t);
3149 v = gimple_assign_rhs1 (def_stmt);
3150 continue;
3151 CASE_CONVERT:
3152 t = gimple_assign_rhs1 (def_stmt);
3153 if (TREE_CODE (TREE_TYPE (t)) != INTEGER_TYPE
3154 || (TYPE_PRECISION (TREE_TYPE (v))
3155 < TYPE_PRECISION (TREE_TYPE (t))))
3156 return;
3157 if (!linear_step)
3158 linear_step = 1;
3159 v = t;
3160 continue;
3161 default:
3162 return;
3163 }
3164 else if (gimple_call_internal_p (def_stmt, IFN_GOMP_SIMD_LANE)
3165 && loop->simduid
3166 && TREE_CODE (gimple_call_arg (def_stmt, 0)) == SSA_NAME
3167 && (SSA_NAME_VAR (gimple_call_arg (def_stmt, 0))
3168 == loop->simduid))
3169 {
3170 if (!linear_step)
3171 linear_step = 1;
3172 arginfo->linear_step = linear_step;
3173 arginfo->op = base;
3174 arginfo->simd_lane_linear = true;
3175 return;
3176 }
3177 }
3178 }
3179
3180 /* Function vectorizable_simd_clone_call.
3181
3182 Check if STMT performs a function call that can be vectorized
3183 by calling a simd clone of the function.
3184 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
3185 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
3186 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
3187
3188 static bool
3189 vectorizable_simd_clone_call (gimple *stmt, gimple_stmt_iterator *gsi,
3190 gimple **vec_stmt, slp_tree slp_node)
3191 {
3192 tree vec_dest;
3193 tree scalar_dest;
3194 tree op, type;
3195 tree vec_oprnd0 = NULL_TREE;
3196 stmt_vec_info stmt_info = vinfo_for_stmt (stmt), prev_stmt_info;
3197 tree vectype;
3198 unsigned int nunits;
3199 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
3200 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
3201 vec_info *vinfo = stmt_info->vinfo;
3202 struct loop *loop = loop_vinfo ? LOOP_VINFO_LOOP (loop_vinfo) : NULL;
3203 tree fndecl, new_temp;
3204 gimple *def_stmt;
3205 gimple *new_stmt = NULL;
3206 int ncopies, j;
3207 auto_vec<simd_call_arg_info> arginfo;
3208 vec<tree> vargs = vNULL;
3209 size_t i, nargs;
3210 tree lhs, rtype, ratype;
3211 vec<constructor_elt, va_gc> *ret_ctor_elts;
3212
3213 /* Is STMT a vectorizable call? */
3214 if (!is_gimple_call (stmt))
3215 return false;
3216
3217 fndecl = gimple_call_fndecl (stmt);
3218 if (fndecl == NULL_TREE)
3219 return false;
3220
3221 struct cgraph_node *node = cgraph_node::get (fndecl);
3222 if (node == NULL || node->simd_clones == NULL)
3223 return false;
3224
3225 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
3226 return false;
3227
3228 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
3229 && ! vec_stmt)
3230 return false;
3231
3232 if (gimple_call_lhs (stmt)
3233 && TREE_CODE (gimple_call_lhs (stmt)) != SSA_NAME)
3234 return false;
3235
3236 gcc_checking_assert (!stmt_can_throw_internal (stmt));
3237
3238 vectype = STMT_VINFO_VECTYPE (stmt_info);
3239
3240 if (loop_vinfo && nested_in_vect_loop_p (loop, stmt))
3241 return false;
3242
3243 /* FORNOW */
3244 if (slp_node)
3245 return false;
3246
3247 /* Process function arguments. */
3248 nargs = gimple_call_num_args (stmt);
3249
3250 /* Bail out if the function has zero arguments. */
3251 if (nargs == 0)
3252 return false;
3253
3254 arginfo.reserve (nargs, true);
3255
3256 for (i = 0; i < nargs; i++)
3257 {
3258 simd_call_arg_info thisarginfo;
3259 affine_iv iv;
3260
3261 thisarginfo.linear_step = 0;
3262 thisarginfo.align = 0;
3263 thisarginfo.op = NULL_TREE;
3264 thisarginfo.simd_lane_linear = false;
3265
3266 op = gimple_call_arg (stmt, i);
3267 if (!vect_is_simple_use (op, vinfo, &def_stmt, &thisarginfo.dt,
3268 &thisarginfo.vectype)
3269 || thisarginfo.dt == vect_uninitialized_def)
3270 {
3271 if (dump_enabled_p ())
3272 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
3273 "use not simple.\n");
3274 return false;
3275 }
3276
3277 if (thisarginfo.dt == vect_constant_def
3278 || thisarginfo.dt == vect_external_def)
3279 gcc_assert (thisarginfo.vectype == NULL_TREE);
3280 else
3281 gcc_assert (thisarginfo.vectype != NULL_TREE);
3282
3283 /* For linear arguments, the analyze phase should have saved
3284 the base and step in STMT_VINFO_SIMD_CLONE_INFO. */
3285 if (i * 3 + 4 <= STMT_VINFO_SIMD_CLONE_INFO (stmt_info).length ()
3286 && STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2])
3287 {
3288 gcc_assert (vec_stmt);
3289 thisarginfo.linear_step
3290 = tree_to_shwi (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2]);
3291 thisarginfo.op
3292 = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 1];
3293 thisarginfo.simd_lane_linear
3294 = (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 3]
3295 == boolean_true_node);
3296 /* If loop has been peeled for alignment, we need to adjust it. */
3297 tree n1 = LOOP_VINFO_NITERS_UNCHANGED (loop_vinfo);
3298 tree n2 = LOOP_VINFO_NITERS (loop_vinfo);
3299 if (n1 != n2 && !thisarginfo.simd_lane_linear)
3300 {
3301 tree bias = fold_build2 (MINUS_EXPR, TREE_TYPE (n1), n1, n2);
3302 tree step = STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[i * 3 + 2];
3303 tree opt = TREE_TYPE (thisarginfo.op);
3304 bias = fold_convert (TREE_TYPE (step), bias);
3305 bias = fold_build2 (MULT_EXPR, TREE_TYPE (step), bias, step);
3306 thisarginfo.op
3307 = fold_build2 (POINTER_TYPE_P (opt)
3308 ? POINTER_PLUS_EXPR : PLUS_EXPR, opt,
3309 thisarginfo.op, bias);
3310 }
3311 }
3312 else if (!vec_stmt
3313 && thisarginfo.dt != vect_constant_def
3314 && thisarginfo.dt != vect_external_def
3315 && loop_vinfo
3316 && TREE_CODE (op) == SSA_NAME
3317 && simple_iv (loop, loop_containing_stmt (stmt), op,
3318 &iv, false)
3319 && tree_fits_shwi_p (iv.step))
3320 {
3321 thisarginfo.linear_step = tree_to_shwi (iv.step);
3322 thisarginfo.op = iv.base;
3323 }
3324 else if ((thisarginfo.dt == vect_constant_def
3325 || thisarginfo.dt == vect_external_def)
3326 && POINTER_TYPE_P (TREE_TYPE (op)))
3327 thisarginfo.align = get_pointer_alignment (op) / BITS_PER_UNIT;
3328 /* Addresses of array elements indexed by GOMP_SIMD_LANE are
3329 linear too. */
3330 if (POINTER_TYPE_P (TREE_TYPE (op))
3331 && !thisarginfo.linear_step
3332 && !vec_stmt
3333 && thisarginfo.dt != vect_constant_def
3334 && thisarginfo.dt != vect_external_def
3335 && loop_vinfo
3336 && !slp_node
3337 && TREE_CODE (op) == SSA_NAME)
3338 vect_simd_lane_linear (op, loop, &thisarginfo);
3339
3340 arginfo.quick_push (thisarginfo);
3341 }
3342
3343 unsigned int badness = 0;
3344 struct cgraph_node *bestn = NULL;
3345 if (STMT_VINFO_SIMD_CLONE_INFO (stmt_info).exists ())
3346 bestn = cgraph_node::get (STMT_VINFO_SIMD_CLONE_INFO (stmt_info)[0]);
3347 else
3348 for (struct cgraph_node *n = node->simd_clones; n != NULL;
3349 n = n->simdclone->next_clone)
3350 {
3351 unsigned int this_badness = 0;
3352 if (n->simdclone->simdlen
3353 > (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo)
3354 || n->simdclone->nargs != nargs)
3355 continue;
3356 if (n->simdclone->simdlen
3357 < (unsigned) LOOP_VINFO_VECT_FACTOR (loop_vinfo))
3358 this_badness += (exact_log2 (LOOP_VINFO_VECT_FACTOR (loop_vinfo))
3359 - exact_log2 (n->simdclone->simdlen)) * 1024;
3360 if (n->simdclone->inbranch)
3361 this_badness += 2048;
3362 int target_badness = targetm.simd_clone.usable (n);
3363 if (target_badness < 0)
3364 continue;
3365 this_badness += target_badness * 512;
3366 /* FORNOW: Have to add code to add the mask argument. */
3367 if (n->simdclone->inbranch)
3368 continue;
3369 for (i = 0; i < nargs; i++)
3370 {
3371 switch (n->simdclone->args[i].arg_type)
3372 {
3373 case SIMD_CLONE_ARG_TYPE_VECTOR:
3374 if (!useless_type_conversion_p
3375 (n->simdclone->args[i].orig_type,
3376 TREE_TYPE (gimple_call_arg (stmt, i))))
3377 i = -1;
3378 else if (arginfo[i].dt == vect_constant_def
3379 || arginfo[i].dt == vect_external_def
3380 || arginfo[i].linear_step)
3381 this_badness += 64;
3382 break;
3383 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3384 if (arginfo[i].dt != vect_constant_def
3385 && arginfo[i].dt != vect_external_def)
3386 i = -1;
3387 break;
3388 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3389 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP:
3390 if (arginfo[i].dt == vect_constant_def
3391 || arginfo[i].dt == vect_external_def
3392 || (arginfo[i].linear_step
3393 != n->simdclone->args[i].linear_step))
3394 i = -1;
3395 break;
3396 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3397 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP:
3398 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP:
3399 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
3400 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
3401 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
3402 /* FORNOW */
3403 i = -1;
3404 break;
3405 case SIMD_CLONE_ARG_TYPE_MASK:
3406 gcc_unreachable ();
3407 }
3408 if (i == (size_t) -1)
3409 break;
3410 if (n->simdclone->args[i].alignment > arginfo[i].align)
3411 {
3412 i = -1;
3413 break;
3414 }
3415 if (arginfo[i].align)
3416 this_badness += (exact_log2 (arginfo[i].align)
3417 - exact_log2 (n->simdclone->args[i].alignment));
3418 }
3419 if (i == (size_t) -1)
3420 continue;
3421 if (bestn == NULL || this_badness < badness)
3422 {
3423 bestn = n;
3424 badness = this_badness;
3425 }
3426 }
3427
3428 if (bestn == NULL)
3429 return false;
3430
3431 for (i = 0; i < nargs; i++)
3432 if ((arginfo[i].dt == vect_constant_def
3433 || arginfo[i].dt == vect_external_def)
3434 && bestn->simdclone->args[i].arg_type == SIMD_CLONE_ARG_TYPE_VECTOR)
3435 {
3436 arginfo[i].vectype
3437 = get_vectype_for_scalar_type (TREE_TYPE (gimple_call_arg (stmt,
3438 i)));
3439 if (arginfo[i].vectype == NULL
3440 || (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
3441 > bestn->simdclone->simdlen))
3442 return false;
3443 }
3444
3445 fndecl = bestn->decl;
3446 nunits = bestn->simdclone->simdlen;
3447 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
3448
3449 /* If the function isn't const, only allow it in simd loops where user
3450 has asserted that at least nunits consecutive iterations can be
3451 performed using SIMD instructions. */
3452 if ((loop == NULL || (unsigned) loop->safelen < nunits)
3453 && gimple_vuse (stmt))
3454 return false;
3455
3456 /* Sanity check: make sure that at least one copy of the vectorized stmt
3457 needs to be generated. */
3458 gcc_assert (ncopies >= 1);
3459
3460 if (!vec_stmt) /* transformation not required. */
3461 {
3462 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (bestn->decl);
3463 for (i = 0; i < nargs; i++)
3464 if ((bestn->simdclone->args[i].arg_type
3465 == SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP)
3466 || (bestn->simdclone->args[i].arg_type
3467 == SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP))
3468 {
3469 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_grow_cleared (i * 3
3470 + 1);
3471 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (arginfo[i].op);
3472 tree lst = POINTER_TYPE_P (TREE_TYPE (arginfo[i].op))
3473 ? size_type_node : TREE_TYPE (arginfo[i].op);
3474 tree ls = build_int_cst (lst, arginfo[i].linear_step);
3475 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (ls);
3476 tree sll = arginfo[i].simd_lane_linear
3477 ? boolean_true_node : boolean_false_node;
3478 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).safe_push (sll);
3479 }
3480 STMT_VINFO_TYPE (stmt_info) = call_simd_clone_vec_info_type;
3481 if (dump_enabled_p ())
3482 dump_printf_loc (MSG_NOTE, vect_location,
3483 "=== vectorizable_simd_clone_call ===\n");
3484 /* vect_model_simple_cost (stmt_info, ncopies, dt, NULL, NULL); */
3485 return true;
3486 }
3487
3488 /* Transform. */
3489
3490 if (dump_enabled_p ())
3491 dump_printf_loc (MSG_NOTE, vect_location, "transform call.\n");
3492
3493 /* Handle def. */
3494 scalar_dest = gimple_call_lhs (stmt);
3495 vec_dest = NULL_TREE;
3496 rtype = NULL_TREE;
3497 ratype = NULL_TREE;
3498 if (scalar_dest)
3499 {
3500 vec_dest = vect_create_destination_var (scalar_dest, vectype);
3501 rtype = TREE_TYPE (TREE_TYPE (fndecl));
3502 if (TREE_CODE (rtype) == ARRAY_TYPE)
3503 {
3504 ratype = rtype;
3505 rtype = TREE_TYPE (ratype);
3506 }
3507 }
3508
3509 prev_stmt_info = NULL;
3510 for (j = 0; j < ncopies; ++j)
3511 {
3512 /* Build argument list for the vectorized call. */
3513 if (j == 0)
3514 vargs.create (nargs);
3515 else
3516 vargs.truncate (0);
3517
3518 for (i = 0; i < nargs; i++)
3519 {
3520 unsigned int k, l, m, o;
3521 tree atype;
3522 op = gimple_call_arg (stmt, i);
3523 switch (bestn->simdclone->args[i].arg_type)
3524 {
3525 case SIMD_CLONE_ARG_TYPE_VECTOR:
3526 atype = bestn->simdclone->args[i].vector_type;
3527 o = nunits / TYPE_VECTOR_SUBPARTS (atype);
3528 for (m = j * o; m < (j + 1) * o; m++)
3529 {
3530 if (TYPE_VECTOR_SUBPARTS (atype)
3531 < TYPE_VECTOR_SUBPARTS (arginfo[i].vectype))
3532 {
3533 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (atype));
3534 k = (TYPE_VECTOR_SUBPARTS (arginfo[i].vectype)
3535 / TYPE_VECTOR_SUBPARTS (atype));
3536 gcc_assert ((k & (k - 1)) == 0);
3537 if (m == 0)
3538 vec_oprnd0
3539 = vect_get_vec_def_for_operand (op, stmt);
3540 else
3541 {
3542 vec_oprnd0 = arginfo[i].op;
3543 if ((m & (k - 1)) == 0)
3544 vec_oprnd0
3545 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3546 vec_oprnd0);
3547 }
3548 arginfo[i].op = vec_oprnd0;
3549 vec_oprnd0
3550 = build3 (BIT_FIELD_REF, atype, vec_oprnd0,
3551 bitsize_int (prec),
3552 bitsize_int ((m & (k - 1)) * prec));
3553 new_stmt
3554 = gimple_build_assign (make_ssa_name (atype),
3555 vec_oprnd0);
3556 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3557 vargs.safe_push (gimple_assign_lhs (new_stmt));
3558 }
3559 else
3560 {
3561 k = (TYPE_VECTOR_SUBPARTS (atype)
3562 / TYPE_VECTOR_SUBPARTS (arginfo[i].vectype));
3563 gcc_assert ((k & (k - 1)) == 0);
3564 vec<constructor_elt, va_gc> *ctor_elts;
3565 if (k != 1)
3566 vec_alloc (ctor_elts, k);
3567 else
3568 ctor_elts = NULL;
3569 for (l = 0; l < k; l++)
3570 {
3571 if (m == 0 && l == 0)
3572 vec_oprnd0
3573 = vect_get_vec_def_for_operand (op, stmt);
3574 else
3575 vec_oprnd0
3576 = vect_get_vec_def_for_stmt_copy (arginfo[i].dt,
3577 arginfo[i].op);
3578 arginfo[i].op = vec_oprnd0;
3579 if (k == 1)
3580 break;
3581 CONSTRUCTOR_APPEND_ELT (ctor_elts, NULL_TREE,
3582 vec_oprnd0);
3583 }
3584 if (k == 1)
3585 vargs.safe_push (vec_oprnd0);
3586 else
3587 {
3588 vec_oprnd0 = build_constructor (atype, ctor_elts);
3589 new_stmt
3590 = gimple_build_assign (make_ssa_name (atype),
3591 vec_oprnd0);
3592 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3593 vargs.safe_push (gimple_assign_lhs (new_stmt));
3594 }
3595 }
3596 }
3597 break;
3598 case SIMD_CLONE_ARG_TYPE_UNIFORM:
3599 vargs.safe_push (op);
3600 break;
3601 case SIMD_CLONE_ARG_TYPE_LINEAR_CONSTANT_STEP:
3602 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_CONSTANT_STEP:
3603 if (j == 0)
3604 {
3605 gimple_seq stmts;
3606 arginfo[i].op
3607 = force_gimple_operand (arginfo[i].op, &stmts, true,
3608 NULL_TREE);
3609 if (stmts != NULL)
3610 {
3611 basic_block new_bb;
3612 edge pe = loop_preheader_edge (loop);
3613 new_bb = gsi_insert_seq_on_edge_immediate (pe, stmts);
3614 gcc_assert (!new_bb);
3615 }
3616 if (arginfo[i].simd_lane_linear)
3617 {
3618 vargs.safe_push (arginfo[i].op);
3619 break;
3620 }
3621 tree phi_res = copy_ssa_name (op);
3622 gphi *new_phi = create_phi_node (phi_res, loop->header);
3623 set_vinfo_for_stmt (new_phi,
3624 new_stmt_vec_info (new_phi, loop_vinfo));
3625 add_phi_arg (new_phi, arginfo[i].op,
3626 loop_preheader_edge (loop), UNKNOWN_LOCATION);
3627 enum tree_code code
3628 = POINTER_TYPE_P (TREE_TYPE (op))
3629 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3630 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3631 ? sizetype : TREE_TYPE (op);
3632 widest_int cst
3633 = wi::mul (bestn->simdclone->args[i].linear_step,
3634 ncopies * nunits);
3635 tree tcst = wide_int_to_tree (type, cst);
3636 tree phi_arg = copy_ssa_name (op);
3637 new_stmt
3638 = gimple_build_assign (phi_arg, code, phi_res, tcst);
3639 gimple_stmt_iterator si = gsi_after_labels (loop->header);
3640 gsi_insert_after (&si, new_stmt, GSI_NEW_STMT);
3641 set_vinfo_for_stmt (new_stmt,
3642 new_stmt_vec_info (new_stmt, loop_vinfo));
3643 add_phi_arg (new_phi, phi_arg, loop_latch_edge (loop),
3644 UNKNOWN_LOCATION);
3645 arginfo[i].op = phi_res;
3646 vargs.safe_push (phi_res);
3647 }
3648 else
3649 {
3650 enum tree_code code
3651 = POINTER_TYPE_P (TREE_TYPE (op))
3652 ? POINTER_PLUS_EXPR : PLUS_EXPR;
3653 tree type = POINTER_TYPE_P (TREE_TYPE (op))
3654 ? sizetype : TREE_TYPE (op);
3655 widest_int cst
3656 = wi::mul (bestn->simdclone->args[i].linear_step,
3657 j * nunits);
3658 tree tcst = wide_int_to_tree (type, cst);
3659 new_temp = make_ssa_name (TREE_TYPE (op));
3660 new_stmt = gimple_build_assign (new_temp, code,
3661 arginfo[i].op, tcst);
3662 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3663 vargs.safe_push (new_temp);
3664 }
3665 break;
3666 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_CONSTANT_STEP:
3667 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_CONSTANT_STEP:
3668 case SIMD_CLONE_ARG_TYPE_LINEAR_VARIABLE_STEP:
3669 case SIMD_CLONE_ARG_TYPE_LINEAR_REF_VARIABLE_STEP:
3670 case SIMD_CLONE_ARG_TYPE_LINEAR_VAL_VARIABLE_STEP:
3671 case SIMD_CLONE_ARG_TYPE_LINEAR_UVAL_VARIABLE_STEP:
3672 default:
3673 gcc_unreachable ();
3674 }
3675 }
3676
3677 new_stmt = gimple_build_call_vec (fndecl, vargs);
3678 if (vec_dest)
3679 {
3680 gcc_assert (ratype || TYPE_VECTOR_SUBPARTS (rtype) == nunits);
3681 if (ratype)
3682 new_temp = create_tmp_var (ratype);
3683 else if (TYPE_VECTOR_SUBPARTS (vectype)
3684 == TYPE_VECTOR_SUBPARTS (rtype))
3685 new_temp = make_ssa_name (vec_dest, new_stmt);
3686 else
3687 new_temp = make_ssa_name (rtype, new_stmt);
3688 gimple_call_set_lhs (new_stmt, new_temp);
3689 }
3690 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3691
3692 if (vec_dest)
3693 {
3694 if (TYPE_VECTOR_SUBPARTS (vectype) < nunits)
3695 {
3696 unsigned int k, l;
3697 unsigned int prec = GET_MODE_BITSIZE (TYPE_MODE (vectype));
3698 k = nunits / TYPE_VECTOR_SUBPARTS (vectype);
3699 gcc_assert ((k & (k - 1)) == 0);
3700 for (l = 0; l < k; l++)
3701 {
3702 tree t;
3703 if (ratype)
3704 {
3705 t = build_fold_addr_expr (new_temp);
3706 t = build2 (MEM_REF, vectype, t,
3707 build_int_cst (TREE_TYPE (t),
3708 l * prec / BITS_PER_UNIT));
3709 }
3710 else
3711 t = build3 (BIT_FIELD_REF, vectype, new_temp,
3712 bitsize_int (prec), bitsize_int (l * prec));
3713 new_stmt
3714 = gimple_build_assign (make_ssa_name (vectype), t);
3715 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3716 if (j == 0 && l == 0)
3717 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3718 else
3719 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3720
3721 prev_stmt_info = vinfo_for_stmt (new_stmt);
3722 }
3723
3724 if (ratype)
3725 {
3726 tree clobber = build_constructor (ratype, NULL);
3727 TREE_THIS_VOLATILE (clobber) = 1;
3728 new_stmt = gimple_build_assign (new_temp, clobber);
3729 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3730 }
3731 continue;
3732 }
3733 else if (TYPE_VECTOR_SUBPARTS (vectype) > nunits)
3734 {
3735 unsigned int k = (TYPE_VECTOR_SUBPARTS (vectype)
3736 / TYPE_VECTOR_SUBPARTS (rtype));
3737 gcc_assert ((k & (k - 1)) == 0);
3738 if ((j & (k - 1)) == 0)
3739 vec_alloc (ret_ctor_elts, k);
3740 if (ratype)
3741 {
3742 unsigned int m, o = nunits / TYPE_VECTOR_SUBPARTS (rtype);
3743 for (m = 0; m < o; m++)
3744 {
3745 tree tem = build4 (ARRAY_REF, rtype, new_temp,
3746 size_int (m), NULL_TREE, NULL_TREE);
3747 new_stmt
3748 = gimple_build_assign (make_ssa_name (rtype), tem);
3749 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3750 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE,
3751 gimple_assign_lhs (new_stmt));
3752 }
3753 tree clobber = build_constructor (ratype, NULL);
3754 TREE_THIS_VOLATILE (clobber) = 1;
3755 new_stmt = gimple_build_assign (new_temp, clobber);
3756 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3757 }
3758 else
3759 CONSTRUCTOR_APPEND_ELT (ret_ctor_elts, NULL_TREE, new_temp);
3760 if ((j & (k - 1)) != k - 1)
3761 continue;
3762 vec_oprnd0 = build_constructor (vectype, ret_ctor_elts);
3763 new_stmt
3764 = gimple_build_assign (make_ssa_name (vec_dest), vec_oprnd0);
3765 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3766
3767 if ((unsigned) j == k - 1)
3768 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3769 else
3770 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3771
3772 prev_stmt_info = vinfo_for_stmt (new_stmt);
3773 continue;
3774 }
3775 else if (ratype)
3776 {
3777 tree t = build_fold_addr_expr (new_temp);
3778 t = build2 (MEM_REF, vectype, t,
3779 build_int_cst (TREE_TYPE (t), 0));
3780 new_stmt
3781 = gimple_build_assign (make_ssa_name (vec_dest), t);
3782 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3783 tree clobber = build_constructor (ratype, NULL);
3784 TREE_THIS_VOLATILE (clobber) = 1;
3785 vect_finish_stmt_generation (stmt,
3786 gimple_build_assign (new_temp,
3787 clobber), gsi);
3788 }
3789 }
3790
3791 if (j == 0)
3792 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
3793 else
3794 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
3795
3796 prev_stmt_info = vinfo_for_stmt (new_stmt);
3797 }
3798
3799 vargs.release ();
3800
3801 /* The call in STMT might prevent it from being removed in dce.
3802 We however cannot remove it here, due to the way the ssa name
3803 it defines is mapped to the new definition. So just replace
3804 rhs of the statement with something harmless. */
3805
3806 if (slp_node)
3807 return true;
3808
3809 if (scalar_dest)
3810 {
3811 type = TREE_TYPE (scalar_dest);
3812 if (is_pattern_stmt_p (stmt_info))
3813 lhs = gimple_call_lhs (STMT_VINFO_RELATED_STMT (stmt_info));
3814 else
3815 lhs = gimple_call_lhs (stmt);
3816 new_stmt = gimple_build_assign (lhs, build_zero_cst (type));
3817 }
3818 else
3819 new_stmt = gimple_build_nop ();
3820 set_vinfo_for_stmt (new_stmt, stmt_info);
3821 set_vinfo_for_stmt (stmt, NULL);
3822 STMT_VINFO_STMT (stmt_info) = new_stmt;
3823 gsi_replace (gsi, new_stmt, true);
3824 unlink_stmt_vdef (stmt);
3825
3826 return true;
3827 }
3828
3829
3830 /* Function vect_gen_widened_results_half
3831
3832 Create a vector stmt whose code, type, number of arguments, and result
3833 variable are CODE, OP_TYPE, and VEC_DEST, and its arguments are
3834 VEC_OPRND0 and VEC_OPRND1. The new vector stmt is to be inserted at BSI.
3835 In the case that CODE is a CALL_EXPR, this means that a call to DECL
3836 needs to be created (DECL is a function-decl of a target-builtin).
3837 STMT is the original scalar stmt that we are vectorizing. */
3838
3839 static gimple *
3840 vect_gen_widened_results_half (enum tree_code code,
3841 tree decl,
3842 tree vec_oprnd0, tree vec_oprnd1, int op_type,
3843 tree vec_dest, gimple_stmt_iterator *gsi,
3844 gimple *stmt)
3845 {
3846 gimple *new_stmt;
3847 tree new_temp;
3848
3849 /* Generate half of the widened result: */
3850 if (code == CALL_EXPR)
3851 {
3852 /* Target specific support */
3853 if (op_type == binary_op)
3854 new_stmt = gimple_build_call (decl, 2, vec_oprnd0, vec_oprnd1);
3855 else
3856 new_stmt = gimple_build_call (decl, 1, vec_oprnd0);
3857 new_temp = make_ssa_name (vec_dest, new_stmt);
3858 gimple_call_set_lhs (new_stmt, new_temp);
3859 }
3860 else
3861 {
3862 /* Generic support */
3863 gcc_assert (op_type == TREE_CODE_LENGTH (code));
3864 if (op_type != binary_op)
3865 vec_oprnd1 = NULL;
3866 new_stmt = gimple_build_assign (vec_dest, code, vec_oprnd0, vec_oprnd1);
3867 new_temp = make_ssa_name (vec_dest, new_stmt);
3868 gimple_assign_set_lhs (new_stmt, new_temp);
3869 }
3870 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3871
3872 return new_stmt;
3873 }
3874
3875
3876 /* Get vectorized definitions for loop-based vectorization. For the first
3877 operand we call vect_get_vec_def_for_operand() (with OPRND containing
3878 scalar operand), and for the rest we get a copy with
3879 vect_get_vec_def_for_stmt_copy() using the previous vector definition
3880 (stored in OPRND). See vect_get_vec_def_for_stmt_copy() for details.
3881 The vectors are collected into VEC_OPRNDS. */
3882
3883 static void
3884 vect_get_loop_based_defs (tree *oprnd, gimple *stmt, enum vect_def_type dt,
3885 vec<tree> *vec_oprnds, int multi_step_cvt)
3886 {
3887 tree vec_oprnd;
3888
3889 /* Get first vector operand. */
3890 /* All the vector operands except the very first one (that is scalar oprnd)
3891 are stmt copies. */
3892 if (TREE_CODE (TREE_TYPE (*oprnd)) != VECTOR_TYPE)
3893 vec_oprnd = vect_get_vec_def_for_operand (*oprnd, stmt);
3894 else
3895 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, *oprnd);
3896
3897 vec_oprnds->quick_push (vec_oprnd);
3898
3899 /* Get second vector operand. */
3900 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
3901 vec_oprnds->quick_push (vec_oprnd);
3902
3903 *oprnd = vec_oprnd;
3904
3905 /* For conversion in multiple steps, continue to get operands
3906 recursively. */
3907 if (multi_step_cvt)
3908 vect_get_loop_based_defs (oprnd, stmt, dt, vec_oprnds, multi_step_cvt - 1);
3909 }
3910
3911
3912 /* Create vectorized demotion statements for vector operands from VEC_OPRNDS.
3913 For multi-step conversions store the resulting vectors and call the function
3914 recursively. */
3915
3916 static void
3917 vect_create_vectorized_demotion_stmts (vec<tree> *vec_oprnds,
3918 int multi_step_cvt, gimple *stmt,
3919 vec<tree> vec_dsts,
3920 gimple_stmt_iterator *gsi,
3921 slp_tree slp_node, enum tree_code code,
3922 stmt_vec_info *prev_stmt_info)
3923 {
3924 unsigned int i;
3925 tree vop0, vop1, new_tmp, vec_dest;
3926 gimple *new_stmt;
3927 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
3928
3929 vec_dest = vec_dsts.pop ();
3930
3931 for (i = 0; i < vec_oprnds->length (); i += 2)
3932 {
3933 /* Create demotion operation. */
3934 vop0 = (*vec_oprnds)[i];
3935 vop1 = (*vec_oprnds)[i + 1];
3936 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
3937 new_tmp = make_ssa_name (vec_dest, new_stmt);
3938 gimple_assign_set_lhs (new_stmt, new_tmp);
3939 vect_finish_stmt_generation (stmt, new_stmt, gsi);
3940
3941 if (multi_step_cvt)
3942 /* Store the resulting vector for next recursive call. */
3943 (*vec_oprnds)[i/2] = new_tmp;
3944 else
3945 {
3946 /* This is the last step of the conversion sequence. Store the
3947 vectors in SLP_NODE or in vector info of the scalar statement
3948 (or in STMT_VINFO_RELATED_STMT chain). */
3949 if (slp_node)
3950 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
3951 else
3952 {
3953 if (!*prev_stmt_info)
3954 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
3955 else
3956 STMT_VINFO_RELATED_STMT (*prev_stmt_info) = new_stmt;
3957
3958 *prev_stmt_info = vinfo_for_stmt (new_stmt);
3959 }
3960 }
3961 }
3962
3963 /* For multi-step demotion operations we first generate demotion operations
3964 from the source type to the intermediate types, and then combine the
3965 results (stored in VEC_OPRNDS) in demotion operation to the destination
3966 type. */
3967 if (multi_step_cvt)
3968 {
3969 /* At each level of recursion we have half of the operands we had at the
3970 previous level. */
3971 vec_oprnds->truncate ((i+1)/2);
3972 vect_create_vectorized_demotion_stmts (vec_oprnds, multi_step_cvt - 1,
3973 stmt, vec_dsts, gsi, slp_node,
3974 VEC_PACK_TRUNC_EXPR,
3975 prev_stmt_info);
3976 }
3977
3978 vec_dsts.quick_push (vec_dest);
3979 }
3980
3981
3982 /* Create vectorized promotion statements for vector operands from VEC_OPRNDS0
3983 and VEC_OPRNDS1 (for binary operations). For multi-step conversions store
3984 the resulting vectors and call the function recursively. */
3985
3986 static void
3987 vect_create_vectorized_promotion_stmts (vec<tree> *vec_oprnds0,
3988 vec<tree> *vec_oprnds1,
3989 gimple *stmt, tree vec_dest,
3990 gimple_stmt_iterator *gsi,
3991 enum tree_code code1,
3992 enum tree_code code2, tree decl1,
3993 tree decl2, int op_type)
3994 {
3995 int i;
3996 tree vop0, vop1, new_tmp1, new_tmp2;
3997 gimple *new_stmt1, *new_stmt2;
3998 vec<tree> vec_tmp = vNULL;
3999
4000 vec_tmp.create (vec_oprnds0->length () * 2);
4001 FOR_EACH_VEC_ELT (*vec_oprnds0, i, vop0)
4002 {
4003 if (op_type == binary_op)
4004 vop1 = (*vec_oprnds1)[i];
4005 else
4006 vop1 = NULL_TREE;
4007
4008 /* Generate the two halves of promotion operation. */
4009 new_stmt1 = vect_gen_widened_results_half (code1, decl1, vop0, vop1,
4010 op_type, vec_dest, gsi, stmt);
4011 new_stmt2 = vect_gen_widened_results_half (code2, decl2, vop0, vop1,
4012 op_type, vec_dest, gsi, stmt);
4013 if (is_gimple_call (new_stmt1))
4014 {
4015 new_tmp1 = gimple_call_lhs (new_stmt1);
4016 new_tmp2 = gimple_call_lhs (new_stmt2);
4017 }
4018 else
4019 {
4020 new_tmp1 = gimple_assign_lhs (new_stmt1);
4021 new_tmp2 = gimple_assign_lhs (new_stmt2);
4022 }
4023
4024 /* Store the results for the next step. */
4025 vec_tmp.quick_push (new_tmp1);
4026 vec_tmp.quick_push (new_tmp2);
4027 }
4028
4029 vec_oprnds0->release ();
4030 *vec_oprnds0 = vec_tmp;
4031 }
4032
4033
4034 /* Check if STMT performs a conversion operation, that can be vectorized.
4035 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4036 stmt to replace it, put it in VEC_STMT, and insert it at GSI.
4037 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4038
4039 static bool
4040 vectorizable_conversion (gimple *stmt, gimple_stmt_iterator *gsi,
4041 gimple **vec_stmt, slp_tree slp_node)
4042 {
4043 tree vec_dest;
4044 tree scalar_dest;
4045 tree op0, op1 = NULL_TREE;
4046 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE;
4047 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4048 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4049 enum tree_code code, code1 = ERROR_MARK, code2 = ERROR_MARK;
4050 enum tree_code codecvt1 = ERROR_MARK, codecvt2 = ERROR_MARK;
4051 tree decl1 = NULL_TREE, decl2 = NULL_TREE;
4052 tree new_temp;
4053 gimple *def_stmt;
4054 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4055 int ndts = 2;
4056 gimple *new_stmt = NULL;
4057 stmt_vec_info prev_stmt_info;
4058 int nunits_in;
4059 int nunits_out;
4060 tree vectype_out, vectype_in;
4061 int ncopies, i, j;
4062 tree lhs_type, rhs_type;
4063 enum { NARROW, NONE, WIDEN } modifier;
4064 vec<tree> vec_oprnds0 = vNULL;
4065 vec<tree> vec_oprnds1 = vNULL;
4066 tree vop0;
4067 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4068 vec_info *vinfo = stmt_info->vinfo;
4069 int multi_step_cvt = 0;
4070 vec<tree> interm_types = vNULL;
4071 tree last_oprnd, intermediate_type, cvt_type = NULL_TREE;
4072 int op_type;
4073 machine_mode rhs_mode;
4074 unsigned short fltsz;
4075
4076 /* Is STMT a vectorizable conversion? */
4077
4078 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4079 return false;
4080
4081 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4082 && ! vec_stmt)
4083 return false;
4084
4085 if (!is_gimple_assign (stmt))
4086 return false;
4087
4088 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4089 return false;
4090
4091 code = gimple_assign_rhs_code (stmt);
4092 if (!CONVERT_EXPR_CODE_P (code)
4093 && code != FIX_TRUNC_EXPR
4094 && code != FLOAT_EXPR
4095 && code != WIDEN_MULT_EXPR
4096 && code != WIDEN_LSHIFT_EXPR)
4097 return false;
4098
4099 op_type = TREE_CODE_LENGTH (code);
4100
4101 /* Check types of lhs and rhs. */
4102 scalar_dest = gimple_assign_lhs (stmt);
4103 lhs_type = TREE_TYPE (scalar_dest);
4104 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4105
4106 op0 = gimple_assign_rhs1 (stmt);
4107 rhs_type = TREE_TYPE (op0);
4108
4109 if ((code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
4110 && !((INTEGRAL_TYPE_P (lhs_type)
4111 && INTEGRAL_TYPE_P (rhs_type))
4112 || (SCALAR_FLOAT_TYPE_P (lhs_type)
4113 && SCALAR_FLOAT_TYPE_P (rhs_type))))
4114 return false;
4115
4116 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
4117 && ((INTEGRAL_TYPE_P (lhs_type)
4118 && !type_has_mode_precision_p (lhs_type))
4119 || (INTEGRAL_TYPE_P (rhs_type)
4120 && !type_has_mode_precision_p (rhs_type))))
4121 {
4122 if (dump_enabled_p ())
4123 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4124 "type conversion to/from bit-precision unsupported."
4125 "\n");
4126 return false;
4127 }
4128
4129 /* Check the operands of the operation. */
4130 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype_in))
4131 {
4132 if (dump_enabled_p ())
4133 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4134 "use not simple.\n");
4135 return false;
4136 }
4137 if (op_type == binary_op)
4138 {
4139 bool ok;
4140
4141 op1 = gimple_assign_rhs2 (stmt);
4142 gcc_assert (code == WIDEN_MULT_EXPR || code == WIDEN_LSHIFT_EXPR);
4143 /* For WIDEN_MULT_EXPR, if OP0 is a constant, use the type of
4144 OP1. */
4145 if (CONSTANT_CLASS_P (op0))
4146 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &vectype_in);
4147 else
4148 ok = vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]);
4149
4150 if (!ok)
4151 {
4152 if (dump_enabled_p ())
4153 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4154 "use not simple.\n");
4155 return false;
4156 }
4157 }
4158
4159 /* If op0 is an external or constant defs use a vector type of
4160 the same size as the output vector type. */
4161 if (!vectype_in)
4162 vectype_in = get_same_sized_vectype (rhs_type, vectype_out);
4163 if (vec_stmt)
4164 gcc_assert (vectype_in);
4165 if (!vectype_in)
4166 {
4167 if (dump_enabled_p ())
4168 {
4169 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4170 "no vectype for scalar type ");
4171 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
4172 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4173 }
4174
4175 return false;
4176 }
4177
4178 if (VECTOR_BOOLEAN_TYPE_P (vectype_out)
4179 && !VECTOR_BOOLEAN_TYPE_P (vectype_in))
4180 {
4181 if (dump_enabled_p ())
4182 {
4183 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4184 "can't convert between boolean and non "
4185 "boolean vectors");
4186 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM, rhs_type);
4187 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
4188 }
4189
4190 return false;
4191 }
4192
4193 nunits_in = TYPE_VECTOR_SUBPARTS (vectype_in);
4194 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4195 if (nunits_in < nunits_out)
4196 modifier = NARROW;
4197 else if (nunits_out == nunits_in)
4198 modifier = NONE;
4199 else
4200 modifier = WIDEN;
4201
4202 /* Multiple types in SLP are handled by creating the appropriate number of
4203 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4204 case of SLP. */
4205 if (slp_node)
4206 ncopies = 1;
4207 else if (modifier == NARROW)
4208 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_out;
4209 else
4210 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4211
4212 /* Sanity check: make sure that at least one copy of the vectorized stmt
4213 needs to be generated. */
4214 gcc_assert (ncopies >= 1);
4215
4216 /* Supportable by target? */
4217 switch (modifier)
4218 {
4219 case NONE:
4220 if (code != FIX_TRUNC_EXPR && code != FLOAT_EXPR)
4221 return false;
4222 if (supportable_convert_operation (code, vectype_out, vectype_in,
4223 &decl1, &code1))
4224 break;
4225 /* FALLTHRU */
4226 unsupported:
4227 if (dump_enabled_p ())
4228 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4229 "conversion not supported by target.\n");
4230 return false;
4231
4232 case WIDEN:
4233 if (supportable_widening_operation (code, stmt, vectype_out, vectype_in,
4234 &code1, &code2, &multi_step_cvt,
4235 &interm_types))
4236 {
4237 /* Binary widening operation can only be supported directly by the
4238 architecture. */
4239 gcc_assert (!(multi_step_cvt && op_type == binary_op));
4240 break;
4241 }
4242
4243 if (code != FLOAT_EXPR
4244 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
4245 <= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
4246 goto unsupported;
4247
4248 fltsz = GET_MODE_SIZE (TYPE_MODE (lhs_type));
4249 FOR_EACH_2XWIDER_MODE (rhs_mode, TYPE_MODE (rhs_type))
4250 {
4251 if (GET_MODE_SIZE (rhs_mode) > fltsz)
4252 break;
4253
4254 cvt_type
4255 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
4256 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
4257 if (cvt_type == NULL_TREE)
4258 goto unsupported;
4259
4260 if (GET_MODE_SIZE (rhs_mode) == fltsz)
4261 {
4262 if (!supportable_convert_operation (code, vectype_out,
4263 cvt_type, &decl1, &codecvt1))
4264 goto unsupported;
4265 }
4266 else if (!supportable_widening_operation (code, stmt, vectype_out,
4267 cvt_type, &codecvt1,
4268 &codecvt2, &multi_step_cvt,
4269 &interm_types))
4270 continue;
4271 else
4272 gcc_assert (multi_step_cvt == 0);
4273
4274 if (supportable_widening_operation (NOP_EXPR, stmt, cvt_type,
4275 vectype_in, &code1, &code2,
4276 &multi_step_cvt, &interm_types))
4277 break;
4278 }
4279
4280 if (rhs_mode == VOIDmode || GET_MODE_SIZE (rhs_mode) > fltsz)
4281 goto unsupported;
4282
4283 if (GET_MODE_SIZE (rhs_mode) == fltsz)
4284 codecvt2 = ERROR_MARK;
4285 else
4286 {
4287 multi_step_cvt++;
4288 interm_types.safe_push (cvt_type);
4289 cvt_type = NULL_TREE;
4290 }
4291 break;
4292
4293 case NARROW:
4294 gcc_assert (op_type == unary_op);
4295 if (supportable_narrowing_operation (code, vectype_out, vectype_in,
4296 &code1, &multi_step_cvt,
4297 &interm_types))
4298 break;
4299
4300 if (code != FIX_TRUNC_EXPR
4301 || (GET_MODE_SIZE (TYPE_MODE (lhs_type))
4302 >= GET_MODE_SIZE (TYPE_MODE (rhs_type))))
4303 goto unsupported;
4304
4305 rhs_mode = TYPE_MODE (rhs_type);
4306 cvt_type
4307 = build_nonstandard_integer_type (GET_MODE_BITSIZE (rhs_mode), 0);
4308 cvt_type = get_same_sized_vectype (cvt_type, vectype_in);
4309 if (cvt_type == NULL_TREE)
4310 goto unsupported;
4311 if (!supportable_convert_operation (code, cvt_type, vectype_in,
4312 &decl1, &codecvt1))
4313 goto unsupported;
4314 if (supportable_narrowing_operation (NOP_EXPR, vectype_out, cvt_type,
4315 &code1, &multi_step_cvt,
4316 &interm_types))
4317 break;
4318 goto unsupported;
4319
4320 default:
4321 gcc_unreachable ();
4322 }
4323
4324 if (!vec_stmt) /* transformation not required. */
4325 {
4326 if (dump_enabled_p ())
4327 dump_printf_loc (MSG_NOTE, vect_location,
4328 "=== vectorizable_conversion ===\n");
4329 if (code == FIX_TRUNC_EXPR || code == FLOAT_EXPR)
4330 {
4331 STMT_VINFO_TYPE (stmt_info) = type_conversion_vec_info_type;
4332 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
4333 }
4334 else if (modifier == NARROW)
4335 {
4336 STMT_VINFO_TYPE (stmt_info) = type_demotion_vec_info_type;
4337 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
4338 }
4339 else
4340 {
4341 STMT_VINFO_TYPE (stmt_info) = type_promotion_vec_info_type;
4342 vect_model_promotion_demotion_cost (stmt_info, dt, multi_step_cvt);
4343 }
4344 interm_types.release ();
4345 return true;
4346 }
4347
4348 /* Transform. */
4349 if (dump_enabled_p ())
4350 dump_printf_loc (MSG_NOTE, vect_location,
4351 "transform conversion. ncopies = %d.\n", ncopies);
4352
4353 if (op_type == binary_op)
4354 {
4355 if (CONSTANT_CLASS_P (op0))
4356 op0 = fold_convert (TREE_TYPE (op1), op0);
4357 else if (CONSTANT_CLASS_P (op1))
4358 op1 = fold_convert (TREE_TYPE (op0), op1);
4359 }
4360
4361 /* In case of multi-step conversion, we first generate conversion operations
4362 to the intermediate types, and then from that types to the final one.
4363 We create vector destinations for the intermediate type (TYPES) received
4364 from supportable_*_operation, and store them in the correct order
4365 for future use in vect_create_vectorized_*_stmts (). */
4366 auto_vec<tree> vec_dsts (multi_step_cvt + 1);
4367 vec_dest = vect_create_destination_var (scalar_dest,
4368 (cvt_type && modifier == WIDEN)
4369 ? cvt_type : vectype_out);
4370 vec_dsts.quick_push (vec_dest);
4371
4372 if (multi_step_cvt)
4373 {
4374 for (i = interm_types.length () - 1;
4375 interm_types.iterate (i, &intermediate_type); i--)
4376 {
4377 vec_dest = vect_create_destination_var (scalar_dest,
4378 intermediate_type);
4379 vec_dsts.quick_push (vec_dest);
4380 }
4381 }
4382
4383 if (cvt_type)
4384 vec_dest = vect_create_destination_var (scalar_dest,
4385 modifier == WIDEN
4386 ? vectype_out : cvt_type);
4387
4388 if (!slp_node)
4389 {
4390 if (modifier == WIDEN)
4391 {
4392 vec_oprnds0.create (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1);
4393 if (op_type == binary_op)
4394 vec_oprnds1.create (1);
4395 }
4396 else if (modifier == NARROW)
4397 vec_oprnds0.create (
4398 2 * (multi_step_cvt ? vect_pow2 (multi_step_cvt) : 1));
4399 }
4400 else if (code == WIDEN_LSHIFT_EXPR)
4401 vec_oprnds1.create (slp_node->vec_stmts_size);
4402
4403 last_oprnd = op0;
4404 prev_stmt_info = NULL;
4405 switch (modifier)
4406 {
4407 case NONE:
4408 for (j = 0; j < ncopies; j++)
4409 {
4410 if (j == 0)
4411 vect_get_vec_defs (op0, NULL, stmt, &vec_oprnds0, NULL, slp_node);
4412 else
4413 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, NULL);
4414
4415 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4416 {
4417 /* Arguments are ready, create the new vector stmt. */
4418 if (code1 == CALL_EXPR)
4419 {
4420 new_stmt = gimple_build_call (decl1, 1, vop0);
4421 new_temp = make_ssa_name (vec_dest, new_stmt);
4422 gimple_call_set_lhs (new_stmt, new_temp);
4423 }
4424 else
4425 {
4426 gcc_assert (TREE_CODE_LENGTH (code1) == unary_op);
4427 new_stmt = gimple_build_assign (vec_dest, code1, vop0);
4428 new_temp = make_ssa_name (vec_dest, new_stmt);
4429 gimple_assign_set_lhs (new_stmt, new_temp);
4430 }
4431
4432 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4433 if (slp_node)
4434 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4435 else
4436 {
4437 if (!prev_stmt_info)
4438 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4439 else
4440 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4441 prev_stmt_info = vinfo_for_stmt (new_stmt);
4442 }
4443 }
4444 }
4445 break;
4446
4447 case WIDEN:
4448 /* In case the vectorization factor (VF) is bigger than the number
4449 of elements that we can fit in a vectype (nunits), we have to
4450 generate more than one vector stmt - i.e - we need to "unroll"
4451 the vector stmt by a factor VF/nunits. */
4452 for (j = 0; j < ncopies; j++)
4453 {
4454 /* Handle uses. */
4455 if (j == 0)
4456 {
4457 if (slp_node)
4458 {
4459 if (code == WIDEN_LSHIFT_EXPR)
4460 {
4461 unsigned int k;
4462
4463 vec_oprnd1 = op1;
4464 /* Store vec_oprnd1 for every vector stmt to be created
4465 for SLP_NODE. We check during the analysis that all
4466 the shift arguments are the same. */
4467 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
4468 vec_oprnds1.quick_push (vec_oprnd1);
4469
4470 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4471 slp_node);
4472 }
4473 else
4474 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0,
4475 &vec_oprnds1, slp_node);
4476 }
4477 else
4478 {
4479 vec_oprnd0 = vect_get_vec_def_for_operand (op0, stmt);
4480 vec_oprnds0.quick_push (vec_oprnd0);
4481 if (op_type == binary_op)
4482 {
4483 if (code == WIDEN_LSHIFT_EXPR)
4484 vec_oprnd1 = op1;
4485 else
4486 vec_oprnd1 = vect_get_vec_def_for_operand (op1, stmt);
4487 vec_oprnds1.quick_push (vec_oprnd1);
4488 }
4489 }
4490 }
4491 else
4492 {
4493 vec_oprnd0 = vect_get_vec_def_for_stmt_copy (dt[0], vec_oprnd0);
4494 vec_oprnds0.truncate (0);
4495 vec_oprnds0.quick_push (vec_oprnd0);
4496 if (op_type == binary_op)
4497 {
4498 if (code == WIDEN_LSHIFT_EXPR)
4499 vec_oprnd1 = op1;
4500 else
4501 vec_oprnd1 = vect_get_vec_def_for_stmt_copy (dt[1],
4502 vec_oprnd1);
4503 vec_oprnds1.truncate (0);
4504 vec_oprnds1.quick_push (vec_oprnd1);
4505 }
4506 }
4507
4508 /* Arguments are ready. Create the new vector stmts. */
4509 for (i = multi_step_cvt; i >= 0; i--)
4510 {
4511 tree this_dest = vec_dsts[i];
4512 enum tree_code c1 = code1, c2 = code2;
4513 if (i == 0 && codecvt2 != ERROR_MARK)
4514 {
4515 c1 = codecvt1;
4516 c2 = codecvt2;
4517 }
4518 vect_create_vectorized_promotion_stmts (&vec_oprnds0,
4519 &vec_oprnds1,
4520 stmt, this_dest, gsi,
4521 c1, c2, decl1, decl2,
4522 op_type);
4523 }
4524
4525 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4526 {
4527 if (cvt_type)
4528 {
4529 if (codecvt1 == CALL_EXPR)
4530 {
4531 new_stmt = gimple_build_call (decl1, 1, vop0);
4532 new_temp = make_ssa_name (vec_dest, new_stmt);
4533 gimple_call_set_lhs (new_stmt, new_temp);
4534 }
4535 else
4536 {
4537 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4538 new_temp = make_ssa_name (vec_dest);
4539 new_stmt = gimple_build_assign (new_temp, codecvt1,
4540 vop0);
4541 }
4542
4543 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4544 }
4545 else
4546 new_stmt = SSA_NAME_DEF_STMT (vop0);
4547
4548 if (slp_node)
4549 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4550 else
4551 {
4552 if (!prev_stmt_info)
4553 STMT_VINFO_VEC_STMT (stmt_info) = new_stmt;
4554 else
4555 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4556 prev_stmt_info = vinfo_for_stmt (new_stmt);
4557 }
4558 }
4559 }
4560
4561 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4562 break;
4563
4564 case NARROW:
4565 /* In case the vectorization factor (VF) is bigger than the number
4566 of elements that we can fit in a vectype (nunits), we have to
4567 generate more than one vector stmt - i.e - we need to "unroll"
4568 the vector stmt by a factor VF/nunits. */
4569 for (j = 0; j < ncopies; j++)
4570 {
4571 /* Handle uses. */
4572 if (slp_node)
4573 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
4574 slp_node);
4575 else
4576 {
4577 vec_oprnds0.truncate (0);
4578 vect_get_loop_based_defs (&last_oprnd, stmt, dt[0], &vec_oprnds0,
4579 vect_pow2 (multi_step_cvt) - 1);
4580 }
4581
4582 /* Arguments are ready. Create the new vector stmts. */
4583 if (cvt_type)
4584 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
4585 {
4586 if (codecvt1 == CALL_EXPR)
4587 {
4588 new_stmt = gimple_build_call (decl1, 1, vop0);
4589 new_temp = make_ssa_name (vec_dest, new_stmt);
4590 gimple_call_set_lhs (new_stmt, new_temp);
4591 }
4592 else
4593 {
4594 gcc_assert (TREE_CODE_LENGTH (codecvt1) == unary_op);
4595 new_temp = make_ssa_name (vec_dest);
4596 new_stmt = gimple_build_assign (new_temp, codecvt1,
4597 vop0);
4598 }
4599
4600 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4601 vec_oprnds0[i] = new_temp;
4602 }
4603
4604 vect_create_vectorized_demotion_stmts (&vec_oprnds0, multi_step_cvt,
4605 stmt, vec_dsts, gsi,
4606 slp_node, code1,
4607 &prev_stmt_info);
4608 }
4609
4610 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
4611 break;
4612 }
4613
4614 vec_oprnds0.release ();
4615 vec_oprnds1.release ();
4616 interm_types.release ();
4617
4618 return true;
4619 }
4620
4621
4622 /* Function vectorizable_assignment.
4623
4624 Check if STMT performs an assignment (copy) that can be vectorized.
4625 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4626 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4627 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4628
4629 static bool
4630 vectorizable_assignment (gimple *stmt, gimple_stmt_iterator *gsi,
4631 gimple **vec_stmt, slp_tree slp_node)
4632 {
4633 tree vec_dest;
4634 tree scalar_dest;
4635 tree op;
4636 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4637 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4638 tree new_temp;
4639 gimple *def_stmt;
4640 enum vect_def_type dt[1] = {vect_unknown_def_type};
4641 int ndts = 1;
4642 int ncopies;
4643 int i, j;
4644 vec<tree> vec_oprnds = vNULL;
4645 tree vop;
4646 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4647 vec_info *vinfo = stmt_info->vinfo;
4648 gimple *new_stmt = NULL;
4649 stmt_vec_info prev_stmt_info = NULL;
4650 enum tree_code code;
4651 tree vectype_in;
4652
4653 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4654 return false;
4655
4656 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4657 && ! vec_stmt)
4658 return false;
4659
4660 /* Is vectorizable assignment? */
4661 if (!is_gimple_assign (stmt))
4662 return false;
4663
4664 scalar_dest = gimple_assign_lhs (stmt);
4665 if (TREE_CODE (scalar_dest) != SSA_NAME)
4666 return false;
4667
4668 code = gimple_assign_rhs_code (stmt);
4669 if (gimple_assign_single_p (stmt)
4670 || code == PAREN_EXPR
4671 || CONVERT_EXPR_CODE_P (code))
4672 op = gimple_assign_rhs1 (stmt);
4673 else
4674 return false;
4675
4676 if (code == VIEW_CONVERT_EXPR)
4677 op = TREE_OPERAND (op, 0);
4678
4679 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
4680 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
4681
4682 /* Multiple types in SLP are handled by creating the appropriate number of
4683 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4684 case of SLP. */
4685 if (slp_node)
4686 ncopies = 1;
4687 else
4688 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
4689
4690 gcc_assert (ncopies >= 1);
4691
4692 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt[0], &vectype_in))
4693 {
4694 if (dump_enabled_p ())
4695 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4696 "use not simple.\n");
4697 return false;
4698 }
4699
4700 /* We can handle NOP_EXPR conversions that do not change the number
4701 of elements or the vector size. */
4702 if ((CONVERT_EXPR_CODE_P (code)
4703 || code == VIEW_CONVERT_EXPR)
4704 && (!vectype_in
4705 || TYPE_VECTOR_SUBPARTS (vectype_in) != nunits
4706 || (GET_MODE_SIZE (TYPE_MODE (vectype))
4707 != GET_MODE_SIZE (TYPE_MODE (vectype_in)))))
4708 return false;
4709
4710 /* We do not handle bit-precision changes. */
4711 if ((CONVERT_EXPR_CODE_P (code)
4712 || code == VIEW_CONVERT_EXPR)
4713 && INTEGRAL_TYPE_P (TREE_TYPE (scalar_dest))
4714 && (!type_has_mode_precision_p (TREE_TYPE (scalar_dest))
4715 || !type_has_mode_precision_p (TREE_TYPE (op)))
4716 /* But a conversion that does not change the bit-pattern is ok. */
4717 && !((TYPE_PRECISION (TREE_TYPE (scalar_dest))
4718 > TYPE_PRECISION (TREE_TYPE (op)))
4719 && TYPE_UNSIGNED (TREE_TYPE (op)))
4720 /* Conversion between boolean types of different sizes is
4721 a simple assignment in case their vectypes are same
4722 boolean vectors. */
4723 && (!VECTOR_BOOLEAN_TYPE_P (vectype)
4724 || !VECTOR_BOOLEAN_TYPE_P (vectype_in)))
4725 {
4726 if (dump_enabled_p ())
4727 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4728 "type conversion to/from bit-precision "
4729 "unsupported.\n");
4730 return false;
4731 }
4732
4733 if (!vec_stmt) /* transformation not required. */
4734 {
4735 STMT_VINFO_TYPE (stmt_info) = assignment_vec_info_type;
4736 if (dump_enabled_p ())
4737 dump_printf_loc (MSG_NOTE, vect_location,
4738 "=== vectorizable_assignment ===\n");
4739 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
4740 return true;
4741 }
4742
4743 /* Transform. */
4744 if (dump_enabled_p ())
4745 dump_printf_loc (MSG_NOTE, vect_location, "transform assignment.\n");
4746
4747 /* Handle def. */
4748 vec_dest = vect_create_destination_var (scalar_dest, vectype);
4749
4750 /* Handle use. */
4751 for (j = 0; j < ncopies; j++)
4752 {
4753 /* Handle uses. */
4754 if (j == 0)
4755 vect_get_vec_defs (op, NULL, stmt, &vec_oprnds, NULL, slp_node);
4756 else
4757 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds, NULL);
4758
4759 /* Arguments are ready. create the new vector stmt. */
4760 FOR_EACH_VEC_ELT (vec_oprnds, i, vop)
4761 {
4762 if (CONVERT_EXPR_CODE_P (code)
4763 || code == VIEW_CONVERT_EXPR)
4764 vop = build1 (VIEW_CONVERT_EXPR, vectype, vop);
4765 new_stmt = gimple_build_assign (vec_dest, vop);
4766 new_temp = make_ssa_name (vec_dest, new_stmt);
4767 gimple_assign_set_lhs (new_stmt, new_temp);
4768 vect_finish_stmt_generation (stmt, new_stmt, gsi);
4769 if (slp_node)
4770 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
4771 }
4772
4773 if (slp_node)
4774 continue;
4775
4776 if (j == 0)
4777 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
4778 else
4779 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
4780
4781 prev_stmt_info = vinfo_for_stmt (new_stmt);
4782 }
4783
4784 vec_oprnds.release ();
4785 return true;
4786 }
4787
4788
4789 /* Return TRUE if CODE (a shift operation) is supported for SCALAR_TYPE
4790 either as shift by a scalar or by a vector. */
4791
4792 bool
4793 vect_supportable_shift (enum tree_code code, tree scalar_type)
4794 {
4795
4796 machine_mode vec_mode;
4797 optab optab;
4798 int icode;
4799 tree vectype;
4800
4801 vectype = get_vectype_for_scalar_type (scalar_type);
4802 if (!vectype)
4803 return false;
4804
4805 optab = optab_for_tree_code (code, vectype, optab_scalar);
4806 if (!optab
4807 || optab_handler (optab, TYPE_MODE (vectype)) == CODE_FOR_nothing)
4808 {
4809 optab = optab_for_tree_code (code, vectype, optab_vector);
4810 if (!optab
4811 || (optab_handler (optab, TYPE_MODE (vectype))
4812 == CODE_FOR_nothing))
4813 return false;
4814 }
4815
4816 vec_mode = TYPE_MODE (vectype);
4817 icode = (int) optab_handler (optab, vec_mode);
4818 if (icode == CODE_FOR_nothing)
4819 return false;
4820
4821 return true;
4822 }
4823
4824
4825 /* Function vectorizable_shift.
4826
4827 Check if STMT performs a shift operation that can be vectorized.
4828 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
4829 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
4830 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
4831
4832 static bool
4833 vectorizable_shift (gimple *stmt, gimple_stmt_iterator *gsi,
4834 gimple **vec_stmt, slp_tree slp_node)
4835 {
4836 tree vec_dest;
4837 tree scalar_dest;
4838 tree op0, op1 = NULL;
4839 tree vec_oprnd1 = NULL_TREE;
4840 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
4841 tree vectype;
4842 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
4843 enum tree_code code;
4844 machine_mode vec_mode;
4845 tree new_temp;
4846 optab optab;
4847 int icode;
4848 machine_mode optab_op2_mode;
4849 gimple *def_stmt;
4850 enum vect_def_type dt[2] = {vect_unknown_def_type, vect_unknown_def_type};
4851 int ndts = 2;
4852 gimple *new_stmt = NULL;
4853 stmt_vec_info prev_stmt_info;
4854 int nunits_in;
4855 int nunits_out;
4856 tree vectype_out;
4857 tree op1_vectype;
4858 int ncopies;
4859 int j, i;
4860 vec<tree> vec_oprnds0 = vNULL;
4861 vec<tree> vec_oprnds1 = vNULL;
4862 tree vop0, vop1;
4863 unsigned int k;
4864 bool scalar_shift_arg = true;
4865 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
4866 vec_info *vinfo = stmt_info->vinfo;
4867 int vf;
4868
4869 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
4870 return false;
4871
4872 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
4873 && ! vec_stmt)
4874 return false;
4875
4876 /* Is STMT a vectorizable binary/unary operation? */
4877 if (!is_gimple_assign (stmt))
4878 return false;
4879
4880 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
4881 return false;
4882
4883 code = gimple_assign_rhs_code (stmt);
4884
4885 if (!(code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
4886 || code == RROTATE_EXPR))
4887 return false;
4888
4889 scalar_dest = gimple_assign_lhs (stmt);
4890 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
4891 if (!type_has_mode_precision_p (TREE_TYPE (scalar_dest)))
4892 {
4893 if (dump_enabled_p ())
4894 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4895 "bit-precision shifts not supported.\n");
4896 return false;
4897 }
4898
4899 op0 = gimple_assign_rhs1 (stmt);
4900 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
4901 {
4902 if (dump_enabled_p ())
4903 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4904 "use not simple.\n");
4905 return false;
4906 }
4907 /* If op0 is an external or constant def use a vector type with
4908 the same size as the output vector type. */
4909 if (!vectype)
4910 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
4911 if (vec_stmt)
4912 gcc_assert (vectype);
4913 if (!vectype)
4914 {
4915 if (dump_enabled_p ())
4916 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4917 "no vectype for scalar type\n");
4918 return false;
4919 }
4920
4921 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
4922 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
4923 if (nunits_out != nunits_in)
4924 return false;
4925
4926 op1 = gimple_assign_rhs2 (stmt);
4927 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1], &op1_vectype))
4928 {
4929 if (dump_enabled_p ())
4930 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4931 "use not simple.\n");
4932 return false;
4933 }
4934
4935 if (loop_vinfo)
4936 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
4937 else
4938 vf = 1;
4939
4940 /* Multiple types in SLP are handled by creating the appropriate number of
4941 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
4942 case of SLP. */
4943 if (slp_node)
4944 ncopies = 1;
4945 else
4946 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
4947
4948 gcc_assert (ncopies >= 1);
4949
4950 /* Determine whether the shift amount is a vector, or scalar. If the
4951 shift/rotate amount is a vector, use the vector/vector shift optabs. */
4952
4953 if ((dt[1] == vect_internal_def
4954 || dt[1] == vect_induction_def)
4955 && !slp_node)
4956 scalar_shift_arg = false;
4957 else if (dt[1] == vect_constant_def
4958 || dt[1] == vect_external_def
4959 || dt[1] == vect_internal_def)
4960 {
4961 /* In SLP, need to check whether the shift count is the same,
4962 in loops if it is a constant or invariant, it is always
4963 a scalar shift. */
4964 if (slp_node)
4965 {
4966 vec<gimple *> stmts = SLP_TREE_SCALAR_STMTS (slp_node);
4967 gimple *slpstmt;
4968
4969 FOR_EACH_VEC_ELT (stmts, k, slpstmt)
4970 if (!operand_equal_p (gimple_assign_rhs2 (slpstmt), op1, 0))
4971 scalar_shift_arg = false;
4972 }
4973
4974 /* If the shift amount is computed by a pattern stmt we cannot
4975 use the scalar amount directly thus give up and use a vector
4976 shift. */
4977 if (dt[1] == vect_internal_def)
4978 {
4979 gimple *def = SSA_NAME_DEF_STMT (op1);
4980 if (is_pattern_stmt_p (vinfo_for_stmt (def)))
4981 scalar_shift_arg = false;
4982 }
4983 }
4984 else
4985 {
4986 if (dump_enabled_p ())
4987 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
4988 "operand mode requires invariant argument.\n");
4989 return false;
4990 }
4991
4992 /* Vector shifted by vector. */
4993 if (!scalar_shift_arg)
4994 {
4995 optab = optab_for_tree_code (code, vectype, optab_vector);
4996 if (dump_enabled_p ())
4997 dump_printf_loc (MSG_NOTE, vect_location,
4998 "vector/vector shift/rotate found.\n");
4999
5000 if (!op1_vectype)
5001 op1_vectype = get_same_sized_vectype (TREE_TYPE (op1), vectype_out);
5002 if (op1_vectype == NULL_TREE
5003 || TYPE_MODE (op1_vectype) != TYPE_MODE (vectype))
5004 {
5005 if (dump_enabled_p ())
5006 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5007 "unusable type for last operand in"
5008 " vector/vector shift/rotate.\n");
5009 return false;
5010 }
5011 }
5012 /* See if the machine has a vector shifted by scalar insn and if not
5013 then see if it has a vector shifted by vector insn. */
5014 else
5015 {
5016 optab = optab_for_tree_code (code, vectype, optab_scalar);
5017 if (optab
5018 && optab_handler (optab, TYPE_MODE (vectype)) != CODE_FOR_nothing)
5019 {
5020 if (dump_enabled_p ())
5021 dump_printf_loc (MSG_NOTE, vect_location,
5022 "vector/scalar shift/rotate found.\n");
5023 }
5024 else
5025 {
5026 optab = optab_for_tree_code (code, vectype, optab_vector);
5027 if (optab
5028 && (optab_handler (optab, TYPE_MODE (vectype))
5029 != CODE_FOR_nothing))
5030 {
5031 scalar_shift_arg = false;
5032
5033 if (dump_enabled_p ())
5034 dump_printf_loc (MSG_NOTE, vect_location,
5035 "vector/vector shift/rotate found.\n");
5036
5037 /* Unlike the other binary operators, shifts/rotates have
5038 the rhs being int, instead of the same type as the lhs,
5039 so make sure the scalar is the right type if we are
5040 dealing with vectors of long long/long/short/char. */
5041 if (dt[1] == vect_constant_def)
5042 op1 = fold_convert (TREE_TYPE (vectype), op1);
5043 else if (!useless_type_conversion_p (TREE_TYPE (vectype),
5044 TREE_TYPE (op1)))
5045 {
5046 if (slp_node
5047 && TYPE_MODE (TREE_TYPE (vectype))
5048 != TYPE_MODE (TREE_TYPE (op1)))
5049 {
5050 if (dump_enabled_p ())
5051 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5052 "unusable type for last operand in"
5053 " vector/vector shift/rotate.\n");
5054 return false;
5055 }
5056 if (vec_stmt && !slp_node)
5057 {
5058 op1 = fold_convert (TREE_TYPE (vectype), op1);
5059 op1 = vect_init_vector (stmt, op1,
5060 TREE_TYPE (vectype), NULL);
5061 }
5062 }
5063 }
5064 }
5065 }
5066
5067 /* Supportable by target? */
5068 if (!optab)
5069 {
5070 if (dump_enabled_p ())
5071 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5072 "no optab.\n");
5073 return false;
5074 }
5075 vec_mode = TYPE_MODE (vectype);
5076 icode = (int) optab_handler (optab, vec_mode);
5077 if (icode == CODE_FOR_nothing)
5078 {
5079 if (dump_enabled_p ())
5080 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5081 "op not supported by target.\n");
5082 /* Check only during analysis. */
5083 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5084 || (vf < vect_min_worthwhile_factor (code)
5085 && !vec_stmt))
5086 return false;
5087 if (dump_enabled_p ())
5088 dump_printf_loc (MSG_NOTE, vect_location,
5089 "proceeding using word mode.\n");
5090 }
5091
5092 /* Worthwhile without SIMD support? Check only during analysis. */
5093 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
5094 && vf < vect_min_worthwhile_factor (code)
5095 && !vec_stmt)
5096 {
5097 if (dump_enabled_p ())
5098 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5099 "not worthwhile without SIMD support.\n");
5100 return false;
5101 }
5102
5103 if (!vec_stmt) /* transformation not required. */
5104 {
5105 STMT_VINFO_TYPE (stmt_info) = shift_vec_info_type;
5106 if (dump_enabled_p ())
5107 dump_printf_loc (MSG_NOTE, vect_location,
5108 "=== vectorizable_shift ===\n");
5109 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
5110 return true;
5111 }
5112
5113 /* Transform. */
5114
5115 if (dump_enabled_p ())
5116 dump_printf_loc (MSG_NOTE, vect_location,
5117 "transform binary/unary operation.\n");
5118
5119 /* Handle def. */
5120 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5121
5122 prev_stmt_info = NULL;
5123 for (j = 0; j < ncopies; j++)
5124 {
5125 /* Handle uses. */
5126 if (j == 0)
5127 {
5128 if (scalar_shift_arg)
5129 {
5130 /* Vector shl and shr insn patterns can be defined with scalar
5131 operand 2 (shift operand). In this case, use constant or loop
5132 invariant op1 directly, without extending it to vector mode
5133 first. */
5134 optab_op2_mode = insn_data[icode].operand[2].mode;
5135 if (!VECTOR_MODE_P (optab_op2_mode))
5136 {
5137 if (dump_enabled_p ())
5138 dump_printf_loc (MSG_NOTE, vect_location,
5139 "operand 1 using scalar mode.\n");
5140 vec_oprnd1 = op1;
5141 vec_oprnds1.create (slp_node ? slp_node->vec_stmts_size : 1);
5142 vec_oprnds1.quick_push (vec_oprnd1);
5143 if (slp_node)
5144 {
5145 /* Store vec_oprnd1 for every vector stmt to be created
5146 for SLP_NODE. We check during the analysis that all
5147 the shift arguments are the same.
5148 TODO: Allow different constants for different vector
5149 stmts generated for an SLP instance. */
5150 for (k = 0; k < slp_node->vec_stmts_size - 1; k++)
5151 vec_oprnds1.quick_push (vec_oprnd1);
5152 }
5153 }
5154 }
5155
5156 /* vec_oprnd1 is available if operand 1 should be of a scalar-type
5157 (a special case for certain kind of vector shifts); otherwise,
5158 operand 1 should be of a vector type (the usual case). */
5159 if (vec_oprnd1)
5160 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
5161 slp_node);
5162 else
5163 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5164 slp_node);
5165 }
5166 else
5167 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
5168
5169 /* Arguments are ready. Create the new vector stmt. */
5170 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
5171 {
5172 vop1 = vec_oprnds1[i];
5173 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1);
5174 new_temp = make_ssa_name (vec_dest, new_stmt);
5175 gimple_assign_set_lhs (new_stmt, new_temp);
5176 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5177 if (slp_node)
5178 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5179 }
5180
5181 if (slp_node)
5182 continue;
5183
5184 if (j == 0)
5185 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5186 else
5187 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5188 prev_stmt_info = vinfo_for_stmt (new_stmt);
5189 }
5190
5191 vec_oprnds0.release ();
5192 vec_oprnds1.release ();
5193
5194 return true;
5195 }
5196
5197
5198 /* Function vectorizable_operation.
5199
5200 Check if STMT performs a binary, unary or ternary operation that can
5201 be vectorized.
5202 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5203 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5204 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5205
5206 static bool
5207 vectorizable_operation (gimple *stmt, gimple_stmt_iterator *gsi,
5208 gimple **vec_stmt, slp_tree slp_node)
5209 {
5210 tree vec_dest;
5211 tree scalar_dest;
5212 tree op0, op1 = NULL_TREE, op2 = NULL_TREE;
5213 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5214 tree vectype;
5215 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5216 enum tree_code code;
5217 machine_mode vec_mode;
5218 tree new_temp;
5219 int op_type;
5220 optab optab;
5221 bool target_support_p;
5222 gimple *def_stmt;
5223 enum vect_def_type dt[3]
5224 = {vect_unknown_def_type, vect_unknown_def_type, vect_unknown_def_type};
5225 int ndts = 3;
5226 gimple *new_stmt = NULL;
5227 stmt_vec_info prev_stmt_info;
5228 int nunits_in;
5229 int nunits_out;
5230 tree vectype_out;
5231 int ncopies;
5232 int j, i;
5233 vec<tree> vec_oprnds0 = vNULL;
5234 vec<tree> vec_oprnds1 = vNULL;
5235 vec<tree> vec_oprnds2 = vNULL;
5236 tree vop0, vop1, vop2;
5237 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5238 vec_info *vinfo = stmt_info->vinfo;
5239 int vf;
5240
5241 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5242 return false;
5243
5244 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5245 && ! vec_stmt)
5246 return false;
5247
5248 /* Is STMT a vectorizable binary/unary operation? */
5249 if (!is_gimple_assign (stmt))
5250 return false;
5251
5252 if (TREE_CODE (gimple_assign_lhs (stmt)) != SSA_NAME)
5253 return false;
5254
5255 code = gimple_assign_rhs_code (stmt);
5256
5257 /* For pointer addition, we should use the normal plus for
5258 the vector addition. */
5259 if (code == POINTER_PLUS_EXPR)
5260 code = PLUS_EXPR;
5261
5262 /* Support only unary or binary operations. */
5263 op_type = TREE_CODE_LENGTH (code);
5264 if (op_type != unary_op && op_type != binary_op && op_type != ternary_op)
5265 {
5266 if (dump_enabled_p ())
5267 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5268 "num. args = %d (not unary/binary/ternary op).\n",
5269 op_type);
5270 return false;
5271 }
5272
5273 scalar_dest = gimple_assign_lhs (stmt);
5274 vectype_out = STMT_VINFO_VECTYPE (stmt_info);
5275
5276 /* Most operations cannot handle bit-precision types without extra
5277 truncations. */
5278 if (!VECTOR_BOOLEAN_TYPE_P (vectype_out)
5279 && !type_has_mode_precision_p (TREE_TYPE (scalar_dest))
5280 /* Exception are bitwise binary operations. */
5281 && code != BIT_IOR_EXPR
5282 && code != BIT_XOR_EXPR
5283 && code != BIT_AND_EXPR)
5284 {
5285 if (dump_enabled_p ())
5286 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5287 "bit-precision arithmetic not supported.\n");
5288 return false;
5289 }
5290
5291 op0 = gimple_assign_rhs1 (stmt);
5292 if (!vect_is_simple_use (op0, vinfo, &def_stmt, &dt[0], &vectype))
5293 {
5294 if (dump_enabled_p ())
5295 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5296 "use not simple.\n");
5297 return false;
5298 }
5299 /* If op0 is an external or constant def use a vector type with
5300 the same size as the output vector type. */
5301 if (!vectype)
5302 {
5303 /* For boolean type we cannot determine vectype by
5304 invariant value (don't know whether it is a vector
5305 of booleans or vector of integers). We use output
5306 vectype because operations on boolean don't change
5307 type. */
5308 if (VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (op0)))
5309 {
5310 if (!VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (scalar_dest)))
5311 {
5312 if (dump_enabled_p ())
5313 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5314 "not supported operation on bool value.\n");
5315 return false;
5316 }
5317 vectype = vectype_out;
5318 }
5319 else
5320 vectype = get_same_sized_vectype (TREE_TYPE (op0), vectype_out);
5321 }
5322 if (vec_stmt)
5323 gcc_assert (vectype);
5324 if (!vectype)
5325 {
5326 if (dump_enabled_p ())
5327 {
5328 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5329 "no vectype for scalar type ");
5330 dump_generic_expr (MSG_MISSED_OPTIMIZATION, TDF_SLIM,
5331 TREE_TYPE (op0));
5332 dump_printf (MSG_MISSED_OPTIMIZATION, "\n");
5333 }
5334
5335 return false;
5336 }
5337
5338 nunits_out = TYPE_VECTOR_SUBPARTS (vectype_out);
5339 nunits_in = TYPE_VECTOR_SUBPARTS (vectype);
5340 if (nunits_out != nunits_in)
5341 return false;
5342
5343 if (op_type == binary_op || op_type == ternary_op)
5344 {
5345 op1 = gimple_assign_rhs2 (stmt);
5346 if (!vect_is_simple_use (op1, vinfo, &def_stmt, &dt[1]))
5347 {
5348 if (dump_enabled_p ())
5349 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5350 "use not simple.\n");
5351 return false;
5352 }
5353 }
5354 if (op_type == ternary_op)
5355 {
5356 op2 = gimple_assign_rhs3 (stmt);
5357 if (!vect_is_simple_use (op2, vinfo, &def_stmt, &dt[2]))
5358 {
5359 if (dump_enabled_p ())
5360 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5361 "use not simple.\n");
5362 return false;
5363 }
5364 }
5365
5366 if (loop_vinfo)
5367 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5368 else
5369 vf = 1;
5370
5371 /* Multiple types in SLP are handled by creating the appropriate number of
5372 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5373 case of SLP. */
5374 if (slp_node)
5375 ncopies = 1;
5376 else
5377 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits_in;
5378
5379 gcc_assert (ncopies >= 1);
5380
5381 /* Shifts are handled in vectorizable_shift (). */
5382 if (code == LSHIFT_EXPR || code == RSHIFT_EXPR || code == LROTATE_EXPR
5383 || code == RROTATE_EXPR)
5384 return false;
5385
5386 /* Supportable by target? */
5387
5388 vec_mode = TYPE_MODE (vectype);
5389 if (code == MULT_HIGHPART_EXPR)
5390 target_support_p = can_mult_highpart_p (vec_mode, TYPE_UNSIGNED (vectype));
5391 else
5392 {
5393 optab = optab_for_tree_code (code, vectype, optab_default);
5394 if (!optab)
5395 {
5396 if (dump_enabled_p ())
5397 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5398 "no optab.\n");
5399 return false;
5400 }
5401 target_support_p = (optab_handler (optab, vec_mode)
5402 != CODE_FOR_nothing);
5403 }
5404
5405 if (!target_support_p)
5406 {
5407 if (dump_enabled_p ())
5408 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5409 "op not supported by target.\n");
5410 /* Check only during analysis. */
5411 if (GET_MODE_SIZE (vec_mode) != UNITS_PER_WORD
5412 || (!vec_stmt && vf < vect_min_worthwhile_factor (code)))
5413 return false;
5414 if (dump_enabled_p ())
5415 dump_printf_loc (MSG_NOTE, vect_location,
5416 "proceeding using word mode.\n");
5417 }
5418
5419 /* Worthwhile without SIMD support? Check only during analysis. */
5420 if (!VECTOR_MODE_P (vec_mode)
5421 && !vec_stmt
5422 && vf < vect_min_worthwhile_factor (code))
5423 {
5424 if (dump_enabled_p ())
5425 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5426 "not worthwhile without SIMD support.\n");
5427 return false;
5428 }
5429
5430 if (!vec_stmt) /* transformation not required. */
5431 {
5432 STMT_VINFO_TYPE (stmt_info) = op_vec_info_type;
5433 if (dump_enabled_p ())
5434 dump_printf_loc (MSG_NOTE, vect_location,
5435 "=== vectorizable_operation ===\n");
5436 vect_model_simple_cost (stmt_info, ncopies, dt, ndts, NULL, NULL);
5437 return true;
5438 }
5439
5440 /* Transform. */
5441
5442 if (dump_enabled_p ())
5443 dump_printf_loc (MSG_NOTE, vect_location,
5444 "transform binary/unary operation.\n");
5445
5446 /* Handle def. */
5447 vec_dest = vect_create_destination_var (scalar_dest, vectype);
5448
5449 /* In case the vectorization factor (VF) is bigger than the number
5450 of elements that we can fit in a vectype (nunits), we have to generate
5451 more than one vector stmt - i.e - we need to "unroll" the
5452 vector stmt by a factor VF/nunits. In doing so, we record a pointer
5453 from one copy of the vector stmt to the next, in the field
5454 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
5455 stages to find the correct vector defs to be used when vectorizing
5456 stmts that use the defs of the current stmt. The example below
5457 illustrates the vectorization process when VF=16 and nunits=4 (i.e.,
5458 we need to create 4 vectorized stmts):
5459
5460 before vectorization:
5461 RELATED_STMT VEC_STMT
5462 S1: x = memref - -
5463 S2: z = x + 1 - -
5464
5465 step 1: vectorize stmt S1 (done in vectorizable_load. See more details
5466 there):
5467 RELATED_STMT VEC_STMT
5468 VS1_0: vx0 = memref0 VS1_1 -
5469 VS1_1: vx1 = memref1 VS1_2 -
5470 VS1_2: vx2 = memref2 VS1_3 -
5471 VS1_3: vx3 = memref3 - -
5472 S1: x = load - VS1_0
5473 S2: z = x + 1 - -
5474
5475 step2: vectorize stmt S2 (done here):
5476 To vectorize stmt S2 we first need to find the relevant vector
5477 def for the first operand 'x'. This is, as usual, obtained from
5478 the vector stmt recorded in the STMT_VINFO_VEC_STMT of the stmt
5479 that defines 'x' (S1). This way we find the stmt VS1_0, and the
5480 relevant vector def 'vx0'. Having found 'vx0' we can generate
5481 the vector stmt VS2_0, and as usual, record it in the
5482 STMT_VINFO_VEC_STMT of stmt S2.
5483 When creating the second copy (VS2_1), we obtain the relevant vector
5484 def from the vector stmt recorded in the STMT_VINFO_RELATED_STMT of
5485 stmt VS1_0. This way we find the stmt VS1_1 and the relevant
5486 vector def 'vx1'. Using 'vx1' we create stmt VS2_1 and record a
5487 pointer to it in the STMT_VINFO_RELATED_STMT of the vector stmt VS2_0.
5488 Similarly when creating stmts VS2_2 and VS2_3. This is the resulting
5489 chain of stmts and pointers:
5490 RELATED_STMT VEC_STMT
5491 VS1_0: vx0 = memref0 VS1_1 -
5492 VS1_1: vx1 = memref1 VS1_2 -
5493 VS1_2: vx2 = memref2 VS1_3 -
5494 VS1_3: vx3 = memref3 - -
5495 S1: x = load - VS1_0
5496 VS2_0: vz0 = vx0 + v1 VS2_1 -
5497 VS2_1: vz1 = vx1 + v1 VS2_2 -
5498 VS2_2: vz2 = vx2 + v1 VS2_3 -
5499 VS2_3: vz3 = vx3 + v1 - -
5500 S2: z = x + 1 - VS2_0 */
5501
5502 prev_stmt_info = NULL;
5503 for (j = 0; j < ncopies; j++)
5504 {
5505 /* Handle uses. */
5506 if (j == 0)
5507 {
5508 if (op_type == binary_op || op_type == ternary_op)
5509 vect_get_vec_defs (op0, op1, stmt, &vec_oprnds0, &vec_oprnds1,
5510 slp_node);
5511 else
5512 vect_get_vec_defs (op0, NULL_TREE, stmt, &vec_oprnds0, NULL,
5513 slp_node);
5514 if (op_type == ternary_op)
5515 vect_get_vec_defs (op2, NULL_TREE, stmt, &vec_oprnds2, NULL,
5516 slp_node);
5517 }
5518 else
5519 {
5520 vect_get_vec_defs_for_stmt_copy (dt, &vec_oprnds0, &vec_oprnds1);
5521 if (op_type == ternary_op)
5522 {
5523 tree vec_oprnd = vec_oprnds2.pop ();
5524 vec_oprnds2.quick_push (vect_get_vec_def_for_stmt_copy (dt[2],
5525 vec_oprnd));
5526 }
5527 }
5528
5529 /* Arguments are ready. Create the new vector stmt. */
5530 FOR_EACH_VEC_ELT (vec_oprnds0, i, vop0)
5531 {
5532 vop1 = ((op_type == binary_op || op_type == ternary_op)
5533 ? vec_oprnds1[i] : NULL_TREE);
5534 vop2 = ((op_type == ternary_op)
5535 ? vec_oprnds2[i] : NULL_TREE);
5536 new_stmt = gimple_build_assign (vec_dest, code, vop0, vop1, vop2);
5537 new_temp = make_ssa_name (vec_dest, new_stmt);
5538 gimple_assign_set_lhs (new_stmt, new_temp);
5539 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5540 if (slp_node)
5541 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
5542 }
5543
5544 if (slp_node)
5545 continue;
5546
5547 if (j == 0)
5548 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5549 else
5550 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5551 prev_stmt_info = vinfo_for_stmt (new_stmt);
5552 }
5553
5554 vec_oprnds0.release ();
5555 vec_oprnds1.release ();
5556 vec_oprnds2.release ();
5557
5558 return true;
5559 }
5560
5561 /* A helper function to ensure data reference DR's base alignment
5562 for STMT_INFO. */
5563
5564 static void
5565 ensure_base_align (stmt_vec_info stmt_info, struct data_reference *dr)
5566 {
5567 if (!dr->aux)
5568 return;
5569
5570 if (DR_VECT_AUX (dr)->base_misaligned)
5571 {
5572 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
5573 tree base_decl = DR_VECT_AUX (dr)->base_decl;
5574
5575 if (decl_in_symtab_p (base_decl))
5576 symtab_node::get (base_decl)->increase_alignment (TYPE_ALIGN (vectype));
5577 else
5578 {
5579 SET_DECL_ALIGN (base_decl, TYPE_ALIGN (vectype));
5580 DECL_USER_ALIGN (base_decl) = 1;
5581 }
5582 DR_VECT_AUX (dr)->base_misaligned = false;
5583 }
5584 }
5585
5586
5587 /* Function get_group_alias_ptr_type.
5588
5589 Return the alias type for the group starting at FIRST_STMT. */
5590
5591 static tree
5592 get_group_alias_ptr_type (gimple *first_stmt)
5593 {
5594 struct data_reference *first_dr, *next_dr;
5595 gimple *next_stmt;
5596
5597 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5598 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (first_stmt));
5599 while (next_stmt)
5600 {
5601 next_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (next_stmt));
5602 if (get_alias_set (DR_REF (first_dr))
5603 != get_alias_set (DR_REF (next_dr)))
5604 {
5605 if (dump_enabled_p ())
5606 dump_printf_loc (MSG_NOTE, vect_location,
5607 "conflicting alias set types.\n");
5608 return ptr_type_node;
5609 }
5610 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
5611 }
5612 return reference_alias_ptr_type (DR_REF (first_dr));
5613 }
5614
5615
5616 /* Function vectorizable_store.
5617
5618 Check if STMT defines a non scalar data-ref (array/pointer/structure) that
5619 can be vectorized.
5620 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
5621 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
5622 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
5623
5624 static bool
5625 vectorizable_store (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
5626 slp_tree slp_node)
5627 {
5628 tree scalar_dest;
5629 tree data_ref;
5630 tree op;
5631 tree vec_oprnd = NULL_TREE;
5632 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
5633 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
5634 tree elem_type;
5635 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
5636 struct loop *loop = NULL;
5637 machine_mode vec_mode;
5638 tree dummy;
5639 enum dr_alignment_support alignment_support_scheme;
5640 gimple *def_stmt;
5641 enum vect_def_type dt;
5642 stmt_vec_info prev_stmt_info = NULL;
5643 tree dataref_ptr = NULL_TREE;
5644 tree dataref_offset = NULL_TREE;
5645 gimple *ptr_incr = NULL;
5646 int ncopies;
5647 int j;
5648 gimple *next_stmt, *first_stmt;
5649 bool grouped_store;
5650 unsigned int group_size, i;
5651 vec<tree> oprnds = vNULL;
5652 vec<tree> result_chain = vNULL;
5653 bool inv_p;
5654 tree offset = NULL_TREE;
5655 vec<tree> vec_oprnds = vNULL;
5656 bool slp = (slp_node != NULL);
5657 unsigned int vec_num;
5658 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
5659 vec_info *vinfo = stmt_info->vinfo;
5660 tree aggr_type;
5661 gather_scatter_info gs_info;
5662 enum vect_def_type scatter_src_dt = vect_unknown_def_type;
5663 gimple *new_stmt;
5664 int vf;
5665 vec_load_store_type vls_type;
5666 tree ref_type;
5667
5668 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
5669 return false;
5670
5671 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
5672 && ! vec_stmt)
5673 return false;
5674
5675 /* Is vectorizable store? */
5676
5677 if (!is_gimple_assign (stmt))
5678 return false;
5679
5680 scalar_dest = gimple_assign_lhs (stmt);
5681 if (TREE_CODE (scalar_dest) == VIEW_CONVERT_EXPR
5682 && is_pattern_stmt_p (stmt_info))
5683 scalar_dest = TREE_OPERAND (scalar_dest, 0);
5684 if (TREE_CODE (scalar_dest) != ARRAY_REF
5685 && TREE_CODE (scalar_dest) != BIT_FIELD_REF
5686 && TREE_CODE (scalar_dest) != INDIRECT_REF
5687 && TREE_CODE (scalar_dest) != COMPONENT_REF
5688 && TREE_CODE (scalar_dest) != IMAGPART_EXPR
5689 && TREE_CODE (scalar_dest) != REALPART_EXPR
5690 && TREE_CODE (scalar_dest) != MEM_REF)
5691 return false;
5692
5693 /* Cannot have hybrid store SLP -- that would mean storing to the
5694 same location twice. */
5695 gcc_assert (slp == PURE_SLP_STMT (stmt_info));
5696
5697 gcc_assert (gimple_assign_single_p (stmt));
5698
5699 tree vectype = STMT_VINFO_VECTYPE (stmt_info), rhs_vectype = NULL_TREE;
5700 unsigned int nunits = TYPE_VECTOR_SUBPARTS (vectype);
5701
5702 if (loop_vinfo)
5703 {
5704 loop = LOOP_VINFO_LOOP (loop_vinfo);
5705 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
5706 }
5707 else
5708 vf = 1;
5709
5710 /* Multiple types in SLP are handled by creating the appropriate number of
5711 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
5712 case of SLP. */
5713 if (slp)
5714 ncopies = 1;
5715 else
5716 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
5717
5718 gcc_assert (ncopies >= 1);
5719
5720 /* FORNOW. This restriction should be relaxed. */
5721 if (loop && nested_in_vect_loop_p (loop, stmt) && ncopies > 1)
5722 {
5723 if (dump_enabled_p ())
5724 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5725 "multiple types in nested loop.\n");
5726 return false;
5727 }
5728
5729 op = gimple_assign_rhs1 (stmt);
5730
5731 if (!vect_is_simple_use (op, vinfo, &def_stmt, &dt, &rhs_vectype))
5732 {
5733 if (dump_enabled_p ())
5734 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
5735 "use not simple.\n");
5736 return false;
5737 }
5738
5739 if (dt == vect_constant_def || dt == vect_external_def)
5740 vls_type = VLS_STORE_INVARIANT;
5741 else
5742 vls_type = VLS_STORE;
5743
5744 if (rhs_vectype && !useless_type_conversion_p (vectype, rhs_vectype))
5745 return false;
5746
5747 elem_type = TREE_TYPE (vectype);
5748 vec_mode = TYPE_MODE (vectype);
5749
5750 /* FORNOW. In some cases can vectorize even if data-type not supported
5751 (e.g. - array initialization with 0). */
5752 if (optab_handler (mov_optab, vec_mode) == CODE_FOR_nothing)
5753 return false;
5754
5755 if (!STMT_VINFO_DATA_REF (stmt_info))
5756 return false;
5757
5758 vect_memory_access_type memory_access_type;
5759 if (!get_load_store_type (stmt, vectype, slp, vls_type, ncopies,
5760 &memory_access_type, &gs_info))
5761 return false;
5762
5763 if (!vec_stmt) /* transformation not required. */
5764 {
5765 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
5766 STMT_VINFO_TYPE (stmt_info) = store_vec_info_type;
5767 /* The SLP costs are calculated during SLP analysis. */
5768 if (!PURE_SLP_STMT (stmt_info))
5769 vect_model_store_cost (stmt_info, ncopies, memory_access_type, dt,
5770 NULL, NULL, NULL);
5771 return true;
5772 }
5773 gcc_assert (memory_access_type == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
5774
5775 /* Transform. */
5776
5777 ensure_base_align (stmt_info, dr);
5778
5779 if (memory_access_type == VMAT_GATHER_SCATTER)
5780 {
5781 tree vec_oprnd0 = NULL_TREE, vec_oprnd1 = NULL_TREE, op, src;
5782 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
5783 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
5784 tree ptr, mask, var, scale, perm_mask = NULL_TREE;
5785 edge pe = loop_preheader_edge (loop);
5786 gimple_seq seq;
5787 basic_block new_bb;
5788 enum { NARROW, NONE, WIDEN } modifier;
5789 int scatter_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
5790
5791 if (nunits == (unsigned int) scatter_off_nunits)
5792 modifier = NONE;
5793 else if (nunits == (unsigned int) scatter_off_nunits / 2)
5794 {
5795 unsigned char *sel = XALLOCAVEC (unsigned char, scatter_off_nunits);
5796 modifier = WIDEN;
5797
5798 for (i = 0; i < (unsigned int) scatter_off_nunits; ++i)
5799 sel[i] = i | nunits;
5800
5801 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
5802 gcc_assert (perm_mask != NULL_TREE);
5803 }
5804 else if (nunits == (unsigned int) scatter_off_nunits * 2)
5805 {
5806 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
5807 modifier = NARROW;
5808
5809 for (i = 0; i < (unsigned int) nunits; ++i)
5810 sel[i] = i | scatter_off_nunits;
5811
5812 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
5813 gcc_assert (perm_mask != NULL_TREE);
5814 ncopies *= 2;
5815 }
5816 else
5817 gcc_unreachable ();
5818
5819 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
5820 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5821 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5822 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5823 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
5824 scaletype = TREE_VALUE (arglist);
5825
5826 gcc_checking_assert (TREE_CODE (masktype) == INTEGER_TYPE
5827 && TREE_CODE (rettype) == VOID_TYPE);
5828
5829 ptr = fold_convert (ptrtype, gs_info.base);
5830 if (!is_gimple_min_invariant (ptr))
5831 {
5832 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
5833 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
5834 gcc_assert (!new_bb);
5835 }
5836
5837 /* Currently we support only unconditional scatter stores,
5838 so mask should be all ones. */
5839 mask = build_int_cst (masktype, -1);
5840 mask = vect_init_vector (stmt, mask, masktype, NULL);
5841
5842 scale = build_int_cst (scaletype, gs_info.scale);
5843
5844 prev_stmt_info = NULL;
5845 for (j = 0; j < ncopies; ++j)
5846 {
5847 if (j == 0)
5848 {
5849 src = vec_oprnd1
5850 = vect_get_vec_def_for_operand (gimple_assign_rhs1 (stmt), stmt);
5851 op = vec_oprnd0
5852 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
5853 }
5854 else if (modifier != NONE && (j & 1))
5855 {
5856 if (modifier == WIDEN)
5857 {
5858 src = vec_oprnd1
5859 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5860 op = permute_vec_elements (vec_oprnd0, vec_oprnd0, perm_mask,
5861 stmt, gsi);
5862 }
5863 else if (modifier == NARROW)
5864 {
5865 src = permute_vec_elements (vec_oprnd1, vec_oprnd1, perm_mask,
5866 stmt, gsi);
5867 op = vec_oprnd0
5868 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt,
5869 vec_oprnd0);
5870 }
5871 else
5872 gcc_unreachable ();
5873 }
5874 else
5875 {
5876 src = vec_oprnd1
5877 = vect_get_vec_def_for_stmt_copy (scatter_src_dt, vec_oprnd1);
5878 op = vec_oprnd0
5879 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt,
5880 vec_oprnd0);
5881 }
5882
5883 if (!useless_type_conversion_p (srctype, TREE_TYPE (src)))
5884 {
5885 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (src))
5886 == TYPE_VECTOR_SUBPARTS (srctype));
5887 var = vect_get_new_ssa_name (srctype, vect_simple_var);
5888 src = build1 (VIEW_CONVERT_EXPR, srctype, src);
5889 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, src);
5890 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5891 src = var;
5892 }
5893
5894 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
5895 {
5896 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
5897 == TYPE_VECTOR_SUBPARTS (idxtype));
5898 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
5899 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
5900 new_stmt = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
5901 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5902 op = var;
5903 }
5904
5905 new_stmt
5906 = gimple_build_call (gs_info.decl, 5, ptr, mask, op, src, scale);
5907
5908 vect_finish_stmt_generation (stmt, new_stmt, gsi);
5909
5910 if (prev_stmt_info == NULL)
5911 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
5912 else
5913 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
5914 prev_stmt_info = vinfo_for_stmt (new_stmt);
5915 }
5916 return true;
5917 }
5918
5919 grouped_store = STMT_VINFO_GROUPED_ACCESS (stmt_info);
5920 if (grouped_store)
5921 {
5922 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
5923 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5924 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
5925
5926 GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))++;
5927
5928 /* FORNOW */
5929 gcc_assert (!loop || !nested_in_vect_loop_p (loop, stmt));
5930
5931 /* We vectorize all the stmts of the interleaving group when we
5932 reach the last stmt in the group. */
5933 if (GROUP_STORE_COUNT (vinfo_for_stmt (first_stmt))
5934 < GROUP_SIZE (vinfo_for_stmt (first_stmt))
5935 && !slp)
5936 {
5937 *vec_stmt = NULL;
5938 return true;
5939 }
5940
5941 if (slp)
5942 {
5943 grouped_store = false;
5944 /* VEC_NUM is the number of vect stmts to be created for this
5945 group. */
5946 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
5947 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
5948 gcc_assert (GROUP_FIRST_ELEMENT (vinfo_for_stmt (first_stmt)) == first_stmt);
5949 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
5950 op = gimple_assign_rhs1 (first_stmt);
5951 }
5952 else
5953 /* VEC_NUM is the number of vect stmts to be created for this
5954 group. */
5955 vec_num = group_size;
5956
5957 ref_type = get_group_alias_ptr_type (first_stmt);
5958 }
5959 else
5960 {
5961 first_stmt = stmt;
5962 first_dr = dr;
5963 group_size = vec_num = 1;
5964 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
5965 }
5966
5967 if (dump_enabled_p ())
5968 dump_printf_loc (MSG_NOTE, vect_location,
5969 "transform store. ncopies = %d\n", ncopies);
5970
5971 if (memory_access_type == VMAT_ELEMENTWISE
5972 || memory_access_type == VMAT_STRIDED_SLP)
5973 {
5974 gimple_stmt_iterator incr_gsi;
5975 bool insert_after;
5976 gimple *incr;
5977 tree offvar;
5978 tree ivstep;
5979 tree running_off;
5980 gimple_seq stmts = NULL;
5981 tree stride_base, stride_step, alias_off;
5982 tree vec_oprnd;
5983 unsigned int g;
5984
5985 gcc_assert (!nested_in_vect_loop_p (loop, stmt));
5986
5987 stride_base
5988 = fold_build_pointer_plus
5989 (unshare_expr (DR_BASE_ADDRESS (first_dr)),
5990 size_binop (PLUS_EXPR,
5991 convert_to_ptrofftype (unshare_expr (DR_OFFSET (first_dr))),
5992 convert_to_ptrofftype (DR_INIT (first_dr))));
5993 stride_step = fold_convert (sizetype, unshare_expr (DR_STEP (first_dr)));
5994
5995 /* For a store with loop-invariant (but other than power-of-2)
5996 stride (i.e. not a grouped access) like so:
5997
5998 for (i = 0; i < n; i += stride)
5999 array[i] = ...;
6000
6001 we generate a new induction variable and new stores from
6002 the components of the (vectorized) rhs:
6003
6004 for (j = 0; ; j += VF*stride)
6005 vectemp = ...;
6006 tmp1 = vectemp[0];
6007 array[j] = tmp1;
6008 tmp2 = vectemp[1];
6009 array[j + stride] = tmp2;
6010 ...
6011 */
6012
6013 unsigned nstores = nunits;
6014 unsigned lnel = 1;
6015 tree ltype = elem_type;
6016 tree lvectype = vectype;
6017 if (slp)
6018 {
6019 if (group_size < nunits
6020 && nunits % group_size == 0)
6021 {
6022 nstores = nunits / group_size;
6023 lnel = group_size;
6024 ltype = build_vector_type (elem_type, group_size);
6025 lvectype = vectype;
6026
6027 /* First check if vec_extract optab doesn't support extraction
6028 of vector elts directly. */
6029 machine_mode elmode = TYPE_MODE (elem_type);
6030 machine_mode vmode = mode_for_vector (elmode, group_size);
6031 if (! VECTOR_MODE_P (vmode)
6032 || (convert_optab_handler (vec_extract_optab,
6033 TYPE_MODE (vectype), vmode)
6034 == CODE_FOR_nothing))
6035 {
6036 /* Try to avoid emitting an extract of vector elements
6037 by performing the extracts using an integer type of the
6038 same size, extracting from a vector of those and then
6039 re-interpreting it as the original vector type if
6040 supported. */
6041 unsigned lsize
6042 = group_size * GET_MODE_BITSIZE (elmode);
6043 elmode = int_mode_for_size (lsize, 0).require ();
6044 vmode = mode_for_vector (elmode, nunits / group_size);
6045 /* If we can't construct such a vector fall back to
6046 element extracts from the original vector type and
6047 element size stores. */
6048 if (VECTOR_MODE_P (vmode)
6049 && (convert_optab_handler (vec_extract_optab,
6050 vmode, elmode)
6051 != CODE_FOR_nothing))
6052 {
6053 nstores = nunits / group_size;
6054 lnel = group_size;
6055 ltype = build_nonstandard_integer_type (lsize, 1);
6056 lvectype = build_vector_type (ltype, nstores);
6057 }
6058 /* Else fall back to vector extraction anyway.
6059 Fewer stores are more important than avoiding spilling
6060 of the vector we extract from. Compared to the
6061 construction case in vectorizable_load no store-forwarding
6062 issue exists here for reasonable archs. */
6063 }
6064 }
6065 else if (group_size >= nunits
6066 && group_size % nunits == 0)
6067 {
6068 nstores = 1;
6069 lnel = nunits;
6070 ltype = vectype;
6071 lvectype = vectype;
6072 }
6073 ltype = build_aligned_type (ltype, TYPE_ALIGN (elem_type));
6074 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
6075 }
6076
6077 ivstep = stride_step;
6078 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (ivstep), ivstep,
6079 build_int_cst (TREE_TYPE (ivstep), vf));
6080
6081 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
6082
6083 create_iv (stride_base, ivstep, NULL,
6084 loop, &incr_gsi, insert_after,
6085 &offvar, NULL);
6086 incr = gsi_stmt (incr_gsi);
6087 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
6088
6089 stride_step = force_gimple_operand (stride_step, &stmts, true, NULL_TREE);
6090 if (stmts)
6091 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
6092
6093 prev_stmt_info = NULL;
6094 alias_off = build_int_cst (ref_type, 0);
6095 next_stmt = first_stmt;
6096 for (g = 0; g < group_size; g++)
6097 {
6098 running_off = offvar;
6099 if (g)
6100 {
6101 tree size = TYPE_SIZE_UNIT (ltype);
6102 tree pos = fold_build2 (MULT_EXPR, sizetype, size_int (g),
6103 size);
6104 tree newoff = copy_ssa_name (running_off, NULL);
6105 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6106 running_off, pos);
6107 vect_finish_stmt_generation (stmt, incr, gsi);
6108 running_off = newoff;
6109 }
6110 unsigned int group_el = 0;
6111 unsigned HOST_WIDE_INT
6112 elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
6113 for (j = 0; j < ncopies; j++)
6114 {
6115 /* We've set op and dt above, from gimple_assign_rhs1(stmt),
6116 and first_stmt == stmt. */
6117 if (j == 0)
6118 {
6119 if (slp)
6120 {
6121 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds, NULL,
6122 slp_node);
6123 vec_oprnd = vec_oprnds[0];
6124 }
6125 else
6126 {
6127 gcc_assert (gimple_assign_single_p (next_stmt));
6128 op = gimple_assign_rhs1 (next_stmt);
6129 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
6130 }
6131 }
6132 else
6133 {
6134 if (slp)
6135 vec_oprnd = vec_oprnds[j];
6136 else
6137 {
6138 vect_is_simple_use (vec_oprnd, vinfo, &def_stmt, &dt);
6139 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, vec_oprnd);
6140 }
6141 }
6142 /* Pun the vector to extract from if necessary. */
6143 if (lvectype != vectype)
6144 {
6145 tree tem = make_ssa_name (lvectype);
6146 gimple *pun
6147 = gimple_build_assign (tem, build1 (VIEW_CONVERT_EXPR,
6148 lvectype, vec_oprnd));
6149 vect_finish_stmt_generation (stmt, pun, gsi);
6150 vec_oprnd = tem;
6151 }
6152 for (i = 0; i < nstores; i++)
6153 {
6154 tree newref, newoff;
6155 gimple *incr, *assign;
6156 tree size = TYPE_SIZE (ltype);
6157 /* Extract the i'th component. */
6158 tree pos = fold_build2 (MULT_EXPR, bitsizetype,
6159 bitsize_int (i), size);
6160 tree elem = fold_build3 (BIT_FIELD_REF, ltype, vec_oprnd,
6161 size, pos);
6162
6163 elem = force_gimple_operand_gsi (gsi, elem, true,
6164 NULL_TREE, true,
6165 GSI_SAME_STMT);
6166
6167 tree this_off = build_int_cst (TREE_TYPE (alias_off),
6168 group_el * elsz);
6169 newref = build2 (MEM_REF, ltype,
6170 running_off, this_off);
6171
6172 /* And store it to *running_off. */
6173 assign = gimple_build_assign (newref, elem);
6174 vect_finish_stmt_generation (stmt, assign, gsi);
6175
6176 group_el += lnel;
6177 if (! slp
6178 || group_el == group_size)
6179 {
6180 newoff = copy_ssa_name (running_off, NULL);
6181 incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
6182 running_off, stride_step);
6183 vect_finish_stmt_generation (stmt, incr, gsi);
6184
6185 running_off = newoff;
6186 group_el = 0;
6187 }
6188 if (g == group_size - 1
6189 && !slp)
6190 {
6191 if (j == 0 && i == 0)
6192 STMT_VINFO_VEC_STMT (stmt_info)
6193 = *vec_stmt = assign;
6194 else
6195 STMT_VINFO_RELATED_STMT (prev_stmt_info) = assign;
6196 prev_stmt_info = vinfo_for_stmt (assign);
6197 }
6198 }
6199 }
6200 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6201 if (slp)
6202 break;
6203 }
6204
6205 vec_oprnds.release ();
6206 return true;
6207 }
6208
6209 auto_vec<tree> dr_chain (group_size);
6210 oprnds.create (group_size);
6211
6212 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
6213 gcc_assert (alignment_support_scheme);
6214 /* Targets with store-lane instructions must not require explicit
6215 realignment. */
6216 gcc_assert (memory_access_type != VMAT_LOAD_STORE_LANES
6217 || alignment_support_scheme == dr_aligned
6218 || alignment_support_scheme == dr_unaligned_supported);
6219
6220 if (memory_access_type == VMAT_CONTIGUOUS_DOWN
6221 || memory_access_type == VMAT_CONTIGUOUS_REVERSE)
6222 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
6223
6224 if (memory_access_type == VMAT_LOAD_STORE_LANES)
6225 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
6226 else
6227 aggr_type = vectype;
6228
6229 /* In case the vectorization factor (VF) is bigger than the number
6230 of elements that we can fit in a vectype (nunits), we have to generate
6231 more than one vector stmt - i.e - we need to "unroll" the
6232 vector stmt by a factor VF/nunits. For more details see documentation in
6233 vect_get_vec_def_for_copy_stmt. */
6234
6235 /* In case of interleaving (non-unit grouped access):
6236
6237 S1: &base + 2 = x2
6238 S2: &base = x0
6239 S3: &base + 1 = x1
6240 S4: &base + 3 = x3
6241
6242 We create vectorized stores starting from base address (the access of the
6243 first stmt in the chain (S2 in the above example), when the last store stmt
6244 of the chain (S4) is reached:
6245
6246 VS1: &base = vx2
6247 VS2: &base + vec_size*1 = vx0
6248 VS3: &base + vec_size*2 = vx1
6249 VS4: &base + vec_size*3 = vx3
6250
6251 Then permutation statements are generated:
6252
6253 VS5: vx5 = VEC_PERM_EXPR < vx0, vx3, {0, 8, 1, 9, 2, 10, 3, 11} >
6254 VS6: vx6 = VEC_PERM_EXPR < vx0, vx3, {4, 12, 5, 13, 6, 14, 7, 15} >
6255 ...
6256
6257 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
6258 (the order of the data-refs in the output of vect_permute_store_chain
6259 corresponds to the order of scalar stmts in the interleaving chain - see
6260 the documentation of vect_permute_store_chain()).
6261
6262 In case of both multiple types and interleaving, above vector stores and
6263 permutation stmts are created for every copy. The result vector stmts are
6264 put in STMT_VINFO_VEC_STMT for the first copy and in the corresponding
6265 STMT_VINFO_RELATED_STMT for the next copies.
6266 */
6267
6268 prev_stmt_info = NULL;
6269 for (j = 0; j < ncopies; j++)
6270 {
6271
6272 if (j == 0)
6273 {
6274 if (slp)
6275 {
6276 /* Get vectorized arguments for SLP_NODE. */
6277 vect_get_vec_defs (op, NULL_TREE, stmt, &vec_oprnds,
6278 NULL, slp_node);
6279
6280 vec_oprnd = vec_oprnds[0];
6281 }
6282 else
6283 {
6284 /* For interleaved stores we collect vectorized defs for all the
6285 stores in the group in DR_CHAIN and OPRNDS. DR_CHAIN is then
6286 used as an input to vect_permute_store_chain(), and OPRNDS as
6287 an input to vect_get_vec_def_for_stmt_copy() for the next copy.
6288
6289 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
6290 OPRNDS are of size 1. */
6291 next_stmt = first_stmt;
6292 for (i = 0; i < group_size; i++)
6293 {
6294 /* Since gaps are not supported for interleaved stores,
6295 GROUP_SIZE is the exact number of stmts in the chain.
6296 Therefore, NEXT_STMT can't be NULL_TREE. In case that
6297 there is no interleaving, GROUP_SIZE is 1, and only one
6298 iteration of the loop will be executed. */
6299 gcc_assert (next_stmt
6300 && gimple_assign_single_p (next_stmt));
6301 op = gimple_assign_rhs1 (next_stmt);
6302
6303 vec_oprnd = vect_get_vec_def_for_operand (op, next_stmt);
6304 dr_chain.quick_push (vec_oprnd);
6305 oprnds.quick_push (vec_oprnd);
6306 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6307 }
6308 }
6309
6310 /* We should have catched mismatched types earlier. */
6311 gcc_assert (useless_type_conversion_p (vectype,
6312 TREE_TYPE (vec_oprnd)));
6313 bool simd_lane_access_p
6314 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
6315 if (simd_lane_access_p
6316 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
6317 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
6318 && integer_zerop (DR_OFFSET (first_dr))
6319 && integer_zerop (DR_INIT (first_dr))
6320 && alias_sets_conflict_p (get_alias_set (aggr_type),
6321 get_alias_set (TREE_TYPE (ref_type))))
6322 {
6323 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
6324 dataref_offset = build_int_cst (ref_type, 0);
6325 inv_p = false;
6326 }
6327 else
6328 dataref_ptr
6329 = vect_create_data_ref_ptr (first_stmt, aggr_type,
6330 simd_lane_access_p ? loop : NULL,
6331 offset, &dummy, gsi, &ptr_incr,
6332 simd_lane_access_p, &inv_p);
6333 gcc_assert (bb_vinfo || !inv_p);
6334 }
6335 else
6336 {
6337 /* For interleaved stores we created vectorized defs for all the
6338 defs stored in OPRNDS in the previous iteration (previous copy).
6339 DR_CHAIN is then used as an input to vect_permute_store_chain(),
6340 and OPRNDS as an input to vect_get_vec_def_for_stmt_copy() for the
6341 next copy.
6342 If the store is not grouped, GROUP_SIZE is 1, and DR_CHAIN and
6343 OPRNDS are of size 1. */
6344 for (i = 0; i < group_size; i++)
6345 {
6346 op = oprnds[i];
6347 vect_is_simple_use (op, vinfo, &def_stmt, &dt);
6348 vec_oprnd = vect_get_vec_def_for_stmt_copy (dt, op);
6349 dr_chain[i] = vec_oprnd;
6350 oprnds[i] = vec_oprnd;
6351 }
6352 if (dataref_offset)
6353 dataref_offset
6354 = int_const_binop (PLUS_EXPR, dataref_offset,
6355 TYPE_SIZE_UNIT (aggr_type));
6356 else
6357 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
6358 TYPE_SIZE_UNIT (aggr_type));
6359 }
6360
6361 if (memory_access_type == VMAT_LOAD_STORE_LANES)
6362 {
6363 tree vec_array;
6364
6365 /* Combine all the vectors into an array. */
6366 vec_array = create_vector_array (vectype, vec_num);
6367 for (i = 0; i < vec_num; i++)
6368 {
6369 vec_oprnd = dr_chain[i];
6370 write_vector_array (stmt, gsi, vec_oprnd, vec_array, i);
6371 }
6372
6373 /* Emit:
6374 MEM_REF[...all elements...] = STORE_LANES (VEC_ARRAY). */
6375 data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type);
6376 gcall *call = gimple_build_call_internal (IFN_STORE_LANES, 1,
6377 vec_array);
6378 gimple_call_set_lhs (call, data_ref);
6379 gimple_call_set_nothrow (call, true);
6380 new_stmt = call;
6381 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6382 }
6383 else
6384 {
6385 new_stmt = NULL;
6386 if (grouped_store)
6387 {
6388 if (j == 0)
6389 result_chain.create (group_size);
6390 /* Permute. */
6391 vect_permute_store_chain (dr_chain, group_size, stmt, gsi,
6392 &result_chain);
6393 }
6394
6395 next_stmt = first_stmt;
6396 for (i = 0; i < vec_num; i++)
6397 {
6398 unsigned align, misalign;
6399
6400 if (i > 0)
6401 /* Bump the vector pointer. */
6402 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
6403 stmt, NULL_TREE);
6404
6405 if (slp)
6406 vec_oprnd = vec_oprnds[i];
6407 else if (grouped_store)
6408 /* For grouped stores vectorized defs are interleaved in
6409 vect_permute_store_chain(). */
6410 vec_oprnd = result_chain[i];
6411
6412 data_ref = fold_build2 (MEM_REF, vectype,
6413 dataref_ptr,
6414 dataref_offset
6415 ? dataref_offset
6416 : build_int_cst (ref_type, 0));
6417 align = TYPE_ALIGN_UNIT (vectype);
6418 if (aligned_access_p (first_dr))
6419 misalign = 0;
6420 else if (DR_MISALIGNMENT (first_dr) == -1)
6421 {
6422 align = dr_alignment (vect_dr_behavior (first_dr));
6423 misalign = 0;
6424 TREE_TYPE (data_ref)
6425 = build_aligned_type (TREE_TYPE (data_ref),
6426 align * BITS_PER_UNIT);
6427 }
6428 else
6429 {
6430 TREE_TYPE (data_ref)
6431 = build_aligned_type (TREE_TYPE (data_ref),
6432 TYPE_ALIGN (elem_type));
6433 misalign = DR_MISALIGNMENT (first_dr);
6434 }
6435 if (dataref_offset == NULL_TREE
6436 && TREE_CODE (dataref_ptr) == SSA_NAME)
6437 set_ptr_info_alignment (get_ptr_info (dataref_ptr), align,
6438 misalign);
6439
6440 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
6441 {
6442 tree perm_mask = perm_mask_for_reverse (vectype);
6443 tree perm_dest
6444 = vect_create_destination_var (gimple_assign_rhs1 (stmt),
6445 vectype);
6446 tree new_temp = make_ssa_name (perm_dest);
6447
6448 /* Generate the permute statement. */
6449 gimple *perm_stmt
6450 = gimple_build_assign (new_temp, VEC_PERM_EXPR, vec_oprnd,
6451 vec_oprnd, perm_mask);
6452 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6453
6454 perm_stmt = SSA_NAME_DEF_STMT (new_temp);
6455 vec_oprnd = new_temp;
6456 }
6457
6458 /* Arguments are ready. Create the new vector stmt. */
6459 new_stmt = gimple_build_assign (data_ref, vec_oprnd);
6460 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6461
6462 if (slp)
6463 continue;
6464
6465 next_stmt = GROUP_NEXT_ELEMENT (vinfo_for_stmt (next_stmt));
6466 if (!next_stmt)
6467 break;
6468 }
6469 }
6470 if (!slp)
6471 {
6472 if (j == 0)
6473 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6474 else
6475 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6476 prev_stmt_info = vinfo_for_stmt (new_stmt);
6477 }
6478 }
6479
6480 oprnds.release ();
6481 result_chain.release ();
6482 vec_oprnds.release ();
6483
6484 return true;
6485 }
6486
6487 /* Given a vector type VECTYPE, turns permutation SEL into the equivalent
6488 VECTOR_CST mask. No checks are made that the target platform supports the
6489 mask, so callers may wish to test can_vec_perm_p separately, or use
6490 vect_gen_perm_mask_checked. */
6491
6492 tree
6493 vect_gen_perm_mask_any (tree vectype, const unsigned char *sel)
6494 {
6495 tree mask_elt_type, mask_type, mask_vec, *mask_elts;
6496 int i, nunits;
6497
6498 nunits = TYPE_VECTOR_SUBPARTS (vectype);
6499
6500 mask_elt_type = lang_hooks.types.type_for_mode
6501 (int_mode_for_mode (TYPE_MODE (TREE_TYPE (vectype))), 1);
6502 mask_type = get_vectype_for_scalar_type (mask_elt_type);
6503
6504 mask_elts = XALLOCAVEC (tree, nunits);
6505 for (i = nunits - 1; i >= 0; i--)
6506 mask_elts[i] = build_int_cst (mask_elt_type, sel[i]);
6507 mask_vec = build_vector (mask_type, mask_elts);
6508
6509 return mask_vec;
6510 }
6511
6512 /* Checked version of vect_gen_perm_mask_any. Asserts can_vec_perm_p,
6513 i.e. that the target supports the pattern _for arbitrary input vectors_. */
6514
6515 tree
6516 vect_gen_perm_mask_checked (tree vectype, const unsigned char *sel)
6517 {
6518 gcc_assert (can_vec_perm_p (TYPE_MODE (vectype), false, sel));
6519 return vect_gen_perm_mask_any (vectype, sel);
6520 }
6521
6522 /* Given a vector variable X and Y, that was generated for the scalar
6523 STMT, generate instructions to permute the vector elements of X and Y
6524 using permutation mask MASK_VEC, insert them at *GSI and return the
6525 permuted vector variable. */
6526
6527 static tree
6528 permute_vec_elements (tree x, tree y, tree mask_vec, gimple *stmt,
6529 gimple_stmt_iterator *gsi)
6530 {
6531 tree vectype = TREE_TYPE (x);
6532 tree perm_dest, data_ref;
6533 gimple *perm_stmt;
6534
6535 perm_dest = vect_create_destination_var (gimple_get_lhs (stmt), vectype);
6536 data_ref = make_ssa_name (perm_dest);
6537
6538 /* Generate the permute statement. */
6539 perm_stmt = gimple_build_assign (data_ref, VEC_PERM_EXPR, x, y, mask_vec);
6540 vect_finish_stmt_generation (stmt, perm_stmt, gsi);
6541
6542 return data_ref;
6543 }
6544
6545 /* Hoist the definitions of all SSA uses on STMT out of the loop LOOP,
6546 inserting them on the loops preheader edge. Returns true if we
6547 were successful in doing so (and thus STMT can be moved then),
6548 otherwise returns false. */
6549
6550 static bool
6551 hoist_defs_of_uses (gimple *stmt, struct loop *loop)
6552 {
6553 ssa_op_iter i;
6554 tree op;
6555 bool any = false;
6556
6557 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6558 {
6559 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6560 if (!gimple_nop_p (def_stmt)
6561 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6562 {
6563 /* Make sure we don't need to recurse. While we could do
6564 so in simple cases when there are more complex use webs
6565 we don't have an easy way to preserve stmt order to fulfil
6566 dependencies within them. */
6567 tree op2;
6568 ssa_op_iter i2;
6569 if (gimple_code (def_stmt) == GIMPLE_PHI)
6570 return false;
6571 FOR_EACH_SSA_TREE_OPERAND (op2, def_stmt, i2, SSA_OP_USE)
6572 {
6573 gimple *def_stmt2 = SSA_NAME_DEF_STMT (op2);
6574 if (!gimple_nop_p (def_stmt2)
6575 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt2)))
6576 return false;
6577 }
6578 any = true;
6579 }
6580 }
6581
6582 if (!any)
6583 return true;
6584
6585 FOR_EACH_SSA_TREE_OPERAND (op, stmt, i, SSA_OP_USE)
6586 {
6587 gimple *def_stmt = SSA_NAME_DEF_STMT (op);
6588 if (!gimple_nop_p (def_stmt)
6589 && flow_bb_inside_loop_p (loop, gimple_bb (def_stmt)))
6590 {
6591 gimple_stmt_iterator gsi = gsi_for_stmt (def_stmt);
6592 gsi_remove (&gsi, false);
6593 gsi_insert_on_edge_immediate (loop_preheader_edge (loop), def_stmt);
6594 }
6595 }
6596
6597 return true;
6598 }
6599
6600 /* vectorizable_load.
6601
6602 Check if STMT reads a non scalar data-ref (array/pointer/structure) that
6603 can be vectorized.
6604 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
6605 stmt to replace it, put it in VEC_STMT, and insert it at BSI.
6606 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
6607
6608 static bool
6609 vectorizable_load (gimple *stmt, gimple_stmt_iterator *gsi, gimple **vec_stmt,
6610 slp_tree slp_node, slp_instance slp_node_instance)
6611 {
6612 tree scalar_dest;
6613 tree vec_dest = NULL;
6614 tree data_ref = NULL;
6615 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
6616 stmt_vec_info prev_stmt_info;
6617 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
6618 struct loop *loop = NULL;
6619 struct loop *containing_loop = (gimple_bb (stmt))->loop_father;
6620 bool nested_in_vect_loop = false;
6621 struct data_reference *dr = STMT_VINFO_DATA_REF (stmt_info), *first_dr = NULL;
6622 tree elem_type;
6623 tree new_temp;
6624 machine_mode mode;
6625 gimple *new_stmt = NULL;
6626 tree dummy;
6627 enum dr_alignment_support alignment_support_scheme;
6628 tree dataref_ptr = NULL_TREE;
6629 tree dataref_offset = NULL_TREE;
6630 gimple *ptr_incr = NULL;
6631 int ncopies;
6632 int i, j, group_size, group_gap_adj;
6633 tree msq = NULL_TREE, lsq;
6634 tree offset = NULL_TREE;
6635 tree byte_offset = NULL_TREE;
6636 tree realignment_token = NULL_TREE;
6637 gphi *phi = NULL;
6638 vec<tree> dr_chain = vNULL;
6639 bool grouped_load = false;
6640 gimple *first_stmt;
6641 gimple *first_stmt_for_drptr = NULL;
6642 bool inv_p;
6643 bool compute_in_loop = false;
6644 struct loop *at_loop;
6645 int vec_num;
6646 bool slp = (slp_node != NULL);
6647 bool slp_perm = false;
6648 enum tree_code code;
6649 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
6650 int vf;
6651 tree aggr_type;
6652 gather_scatter_info gs_info;
6653 vec_info *vinfo = stmt_info->vinfo;
6654 tree ref_type;
6655
6656 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
6657 return false;
6658
6659 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
6660 && ! vec_stmt)
6661 return false;
6662
6663 /* Is vectorizable load? */
6664 if (!is_gimple_assign (stmt))
6665 return false;
6666
6667 scalar_dest = gimple_assign_lhs (stmt);
6668 if (TREE_CODE (scalar_dest) != SSA_NAME)
6669 return false;
6670
6671 code = gimple_assign_rhs_code (stmt);
6672 if (code != ARRAY_REF
6673 && code != BIT_FIELD_REF
6674 && code != INDIRECT_REF
6675 && code != COMPONENT_REF
6676 && code != IMAGPART_EXPR
6677 && code != REALPART_EXPR
6678 && code != MEM_REF
6679 && TREE_CODE_CLASS (code) != tcc_declaration)
6680 return false;
6681
6682 if (!STMT_VINFO_DATA_REF (stmt_info))
6683 return false;
6684
6685 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
6686 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
6687
6688 if (loop_vinfo)
6689 {
6690 loop = LOOP_VINFO_LOOP (loop_vinfo);
6691 nested_in_vect_loop = nested_in_vect_loop_p (loop, stmt);
6692 vf = LOOP_VINFO_VECT_FACTOR (loop_vinfo);
6693 }
6694 else
6695 vf = 1;
6696
6697 /* Multiple types in SLP are handled by creating the appropriate number of
6698 vectorized stmts for each SLP node. Hence, NCOPIES is always 1 in
6699 case of SLP. */
6700 if (slp)
6701 ncopies = 1;
6702 else
6703 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
6704
6705 gcc_assert (ncopies >= 1);
6706
6707 /* FORNOW. This restriction should be relaxed. */
6708 if (nested_in_vect_loop && ncopies > 1)
6709 {
6710 if (dump_enabled_p ())
6711 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6712 "multiple types in nested loop.\n");
6713 return false;
6714 }
6715
6716 /* Invalidate assumptions made by dependence analysis when vectorization
6717 on the unrolled body effectively re-orders stmts. */
6718 if (ncopies > 1
6719 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6720 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6721 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6722 {
6723 if (dump_enabled_p ())
6724 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6725 "cannot perform implicit CSE when unrolling "
6726 "with negative dependence distance\n");
6727 return false;
6728 }
6729
6730 elem_type = TREE_TYPE (vectype);
6731 mode = TYPE_MODE (vectype);
6732
6733 /* FORNOW. In some cases can vectorize even if data-type not supported
6734 (e.g. - data copies). */
6735 if (optab_handler (mov_optab, mode) == CODE_FOR_nothing)
6736 {
6737 if (dump_enabled_p ())
6738 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6739 "Aligned load, but unsupported type.\n");
6740 return false;
6741 }
6742
6743 /* Check if the load is a part of an interleaving chain. */
6744 if (STMT_VINFO_GROUPED_ACCESS (stmt_info))
6745 {
6746 grouped_load = true;
6747 /* FORNOW */
6748 gcc_assert (!nested_in_vect_loop);
6749 gcc_assert (!STMT_VINFO_GATHER_SCATTER_P (stmt_info));
6750
6751 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
6752 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
6753
6754 if (slp && SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
6755 slp_perm = true;
6756
6757 /* Invalidate assumptions made by dependence analysis when vectorization
6758 on the unrolled body effectively re-orders stmts. */
6759 if (!PURE_SLP_STMT (stmt_info)
6760 && STMT_VINFO_MIN_NEG_DIST (stmt_info) != 0
6761 && ((unsigned)LOOP_VINFO_VECT_FACTOR (loop_vinfo)
6762 > STMT_VINFO_MIN_NEG_DIST (stmt_info)))
6763 {
6764 if (dump_enabled_p ())
6765 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6766 "cannot perform implicit CSE when performing "
6767 "group loads with negative dependence distance\n");
6768 return false;
6769 }
6770
6771 /* Similarly when the stmt is a load that is both part of a SLP
6772 instance and a loop vectorized stmt via the same-dr mechanism
6773 we have to give up. */
6774 if (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)
6775 && (STMT_SLP_TYPE (stmt_info)
6776 != STMT_SLP_TYPE (vinfo_for_stmt
6777 (STMT_VINFO_GROUP_SAME_DR_STMT (stmt_info)))))
6778 {
6779 if (dump_enabled_p ())
6780 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
6781 "conflicting SLP types for CSEd load\n");
6782 return false;
6783 }
6784 }
6785
6786 vect_memory_access_type memory_access_type;
6787 if (!get_load_store_type (stmt, vectype, slp, VLS_LOAD, ncopies,
6788 &memory_access_type, &gs_info))
6789 return false;
6790
6791 if (!vec_stmt) /* transformation not required. */
6792 {
6793 if (!slp)
6794 STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info) = memory_access_type;
6795 STMT_VINFO_TYPE (stmt_info) = load_vec_info_type;
6796 /* The SLP costs are calculated during SLP analysis. */
6797 if (!PURE_SLP_STMT (stmt_info))
6798 vect_model_load_cost (stmt_info, ncopies, memory_access_type,
6799 NULL, NULL, NULL);
6800 return true;
6801 }
6802
6803 if (!slp)
6804 gcc_assert (memory_access_type
6805 == STMT_VINFO_MEMORY_ACCESS_TYPE (stmt_info));
6806
6807 if (dump_enabled_p ())
6808 dump_printf_loc (MSG_NOTE, vect_location,
6809 "transform load. ncopies = %d\n", ncopies);
6810
6811 /* Transform. */
6812
6813 ensure_base_align (stmt_info, dr);
6814
6815 if (memory_access_type == VMAT_GATHER_SCATTER)
6816 {
6817 tree vec_oprnd0 = NULL_TREE, op;
6818 tree arglist = TYPE_ARG_TYPES (TREE_TYPE (gs_info.decl));
6819 tree rettype, srctype, ptrtype, idxtype, masktype, scaletype;
6820 tree ptr, mask, var, scale, merge, perm_mask = NULL_TREE, prev_res = NULL_TREE;
6821 edge pe = loop_preheader_edge (loop);
6822 gimple_seq seq;
6823 basic_block new_bb;
6824 enum { NARROW, NONE, WIDEN } modifier;
6825 int gather_off_nunits = TYPE_VECTOR_SUBPARTS (gs_info.offset_vectype);
6826
6827 if (nunits == gather_off_nunits)
6828 modifier = NONE;
6829 else if (nunits == gather_off_nunits / 2)
6830 {
6831 unsigned char *sel = XALLOCAVEC (unsigned char, gather_off_nunits);
6832 modifier = WIDEN;
6833
6834 for (i = 0; i < gather_off_nunits; ++i)
6835 sel[i] = i | nunits;
6836
6837 perm_mask = vect_gen_perm_mask_checked (gs_info.offset_vectype, sel);
6838 }
6839 else if (nunits == gather_off_nunits * 2)
6840 {
6841 unsigned char *sel = XALLOCAVEC (unsigned char, nunits);
6842 modifier = NARROW;
6843
6844 for (i = 0; i < nunits; ++i)
6845 sel[i] = i < gather_off_nunits
6846 ? i : i + nunits - gather_off_nunits;
6847
6848 perm_mask = vect_gen_perm_mask_checked (vectype, sel);
6849 ncopies *= 2;
6850 }
6851 else
6852 gcc_unreachable ();
6853
6854 rettype = TREE_TYPE (TREE_TYPE (gs_info.decl));
6855 srctype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6856 ptrtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6857 idxtype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6858 masktype = TREE_VALUE (arglist); arglist = TREE_CHAIN (arglist);
6859 scaletype = TREE_VALUE (arglist);
6860 gcc_checking_assert (types_compatible_p (srctype, rettype));
6861
6862 vec_dest = vect_create_destination_var (scalar_dest, vectype);
6863
6864 ptr = fold_convert (ptrtype, gs_info.base);
6865 if (!is_gimple_min_invariant (ptr))
6866 {
6867 ptr = force_gimple_operand (ptr, &seq, true, NULL_TREE);
6868 new_bb = gsi_insert_seq_on_edge_immediate (pe, seq);
6869 gcc_assert (!new_bb);
6870 }
6871
6872 /* Currently we support only unconditional gather loads,
6873 so mask should be all ones. */
6874 if (TREE_CODE (masktype) == INTEGER_TYPE)
6875 mask = build_int_cst (masktype, -1);
6876 else if (TREE_CODE (TREE_TYPE (masktype)) == INTEGER_TYPE)
6877 {
6878 mask = build_int_cst (TREE_TYPE (masktype), -1);
6879 mask = build_vector_from_val (masktype, mask);
6880 mask = vect_init_vector (stmt, mask, masktype, NULL);
6881 }
6882 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (masktype)))
6883 {
6884 REAL_VALUE_TYPE r;
6885 long tmp[6];
6886 for (j = 0; j < 6; ++j)
6887 tmp[j] = -1;
6888 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (masktype)));
6889 mask = build_real (TREE_TYPE (masktype), r);
6890 mask = build_vector_from_val (masktype, mask);
6891 mask = vect_init_vector (stmt, mask, masktype, NULL);
6892 }
6893 else
6894 gcc_unreachable ();
6895
6896 scale = build_int_cst (scaletype, gs_info.scale);
6897
6898 if (TREE_CODE (TREE_TYPE (rettype)) == INTEGER_TYPE)
6899 merge = build_int_cst (TREE_TYPE (rettype), 0);
6900 else if (SCALAR_FLOAT_TYPE_P (TREE_TYPE (rettype)))
6901 {
6902 REAL_VALUE_TYPE r;
6903 long tmp[6];
6904 for (j = 0; j < 6; ++j)
6905 tmp[j] = 0;
6906 real_from_target (&r, tmp, TYPE_MODE (TREE_TYPE (rettype)));
6907 merge = build_real (TREE_TYPE (rettype), r);
6908 }
6909 else
6910 gcc_unreachable ();
6911 merge = build_vector_from_val (rettype, merge);
6912 merge = vect_init_vector (stmt, merge, rettype, NULL);
6913
6914 prev_stmt_info = NULL;
6915 for (j = 0; j < ncopies; ++j)
6916 {
6917 if (modifier == WIDEN && (j & 1))
6918 op = permute_vec_elements (vec_oprnd0, vec_oprnd0,
6919 perm_mask, stmt, gsi);
6920 else if (j == 0)
6921 op = vec_oprnd0
6922 = vect_get_vec_def_for_operand (gs_info.offset, stmt);
6923 else
6924 op = vec_oprnd0
6925 = vect_get_vec_def_for_stmt_copy (gs_info.offset_dt, vec_oprnd0);
6926
6927 if (!useless_type_conversion_p (idxtype, TREE_TYPE (op)))
6928 {
6929 gcc_assert (TYPE_VECTOR_SUBPARTS (TREE_TYPE (op))
6930 == TYPE_VECTOR_SUBPARTS (idxtype));
6931 var = vect_get_new_ssa_name (idxtype, vect_simple_var);
6932 op = build1 (VIEW_CONVERT_EXPR, idxtype, op);
6933 new_stmt
6934 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6935 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6936 op = var;
6937 }
6938
6939 new_stmt
6940 = gimple_build_call (gs_info.decl, 5, merge, ptr, op, mask, scale);
6941
6942 if (!useless_type_conversion_p (vectype, rettype))
6943 {
6944 gcc_assert (TYPE_VECTOR_SUBPARTS (vectype)
6945 == TYPE_VECTOR_SUBPARTS (rettype));
6946 op = vect_get_new_ssa_name (rettype, vect_simple_var);
6947 gimple_call_set_lhs (new_stmt, op);
6948 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6949 var = make_ssa_name (vec_dest);
6950 op = build1 (VIEW_CONVERT_EXPR, vectype, op);
6951 new_stmt
6952 = gimple_build_assign (var, VIEW_CONVERT_EXPR, op);
6953 }
6954 else
6955 {
6956 var = make_ssa_name (vec_dest, new_stmt);
6957 gimple_call_set_lhs (new_stmt, var);
6958 }
6959
6960 vect_finish_stmt_generation (stmt, new_stmt, gsi);
6961
6962 if (modifier == NARROW)
6963 {
6964 if ((j & 1) == 0)
6965 {
6966 prev_res = var;
6967 continue;
6968 }
6969 var = permute_vec_elements (prev_res, var,
6970 perm_mask, stmt, gsi);
6971 new_stmt = SSA_NAME_DEF_STMT (var);
6972 }
6973
6974 if (prev_stmt_info == NULL)
6975 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
6976 else
6977 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
6978 prev_stmt_info = vinfo_for_stmt (new_stmt);
6979 }
6980 return true;
6981 }
6982
6983 if (memory_access_type == VMAT_ELEMENTWISE
6984 || memory_access_type == VMAT_STRIDED_SLP)
6985 {
6986 gimple_stmt_iterator incr_gsi;
6987 bool insert_after;
6988 gimple *incr;
6989 tree offvar;
6990 tree ivstep;
6991 tree running_off;
6992 vec<constructor_elt, va_gc> *v = NULL;
6993 gimple_seq stmts = NULL;
6994 tree stride_base, stride_step, alias_off;
6995
6996 gcc_assert (!nested_in_vect_loop);
6997
6998 if (slp && grouped_load)
6999 {
7000 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
7001 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
7002 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
7003 ref_type = get_group_alias_ptr_type (first_stmt);
7004 }
7005 else
7006 {
7007 first_stmt = stmt;
7008 first_dr = dr;
7009 group_size = 1;
7010 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
7011 }
7012
7013 stride_base
7014 = fold_build_pointer_plus
7015 (DR_BASE_ADDRESS (first_dr),
7016 size_binop (PLUS_EXPR,
7017 convert_to_ptrofftype (DR_OFFSET (first_dr)),
7018 convert_to_ptrofftype (DR_INIT (first_dr))));
7019 stride_step = fold_convert (sizetype, DR_STEP (first_dr));
7020
7021 /* For a load with loop-invariant (but other than power-of-2)
7022 stride (i.e. not a grouped access) like so:
7023
7024 for (i = 0; i < n; i += stride)
7025 ... = array[i];
7026
7027 we generate a new induction variable and new accesses to
7028 form a new vector (or vectors, depending on ncopies):
7029
7030 for (j = 0; ; j += VF*stride)
7031 tmp1 = array[j];
7032 tmp2 = array[j + stride];
7033 ...
7034 vectemp = {tmp1, tmp2, ...}
7035 */
7036
7037 ivstep = fold_build2 (MULT_EXPR, TREE_TYPE (stride_step), stride_step,
7038 build_int_cst (TREE_TYPE (stride_step), vf));
7039
7040 standard_iv_increment_position (loop, &incr_gsi, &insert_after);
7041
7042 create_iv (unshare_expr (stride_base), unshare_expr (ivstep), NULL,
7043 loop, &incr_gsi, insert_after,
7044 &offvar, NULL);
7045 incr = gsi_stmt (incr_gsi);
7046 set_vinfo_for_stmt (incr, new_stmt_vec_info (incr, loop_vinfo));
7047
7048 stride_step = force_gimple_operand (unshare_expr (stride_step),
7049 &stmts, true, NULL_TREE);
7050 if (stmts)
7051 gsi_insert_seq_on_edge_immediate (loop_preheader_edge (loop), stmts);
7052
7053 prev_stmt_info = NULL;
7054 running_off = offvar;
7055 alias_off = build_int_cst (ref_type, 0);
7056 int nloads = nunits;
7057 int lnel = 1;
7058 tree ltype = TREE_TYPE (vectype);
7059 tree lvectype = vectype;
7060 auto_vec<tree> dr_chain;
7061 if (memory_access_type == VMAT_STRIDED_SLP)
7062 {
7063 if (group_size < nunits)
7064 {
7065 /* First check if vec_init optab supports construction from
7066 vector elts directly. */
7067 machine_mode elmode = TYPE_MODE (TREE_TYPE (vectype));
7068 machine_mode vmode = mode_for_vector (elmode, group_size);
7069 if (VECTOR_MODE_P (vmode)
7070 && (convert_optab_handler (vec_init_optab,
7071 TYPE_MODE (vectype), vmode)
7072 != CODE_FOR_nothing))
7073 {
7074 nloads = nunits / group_size;
7075 lnel = group_size;
7076 ltype = build_vector_type (TREE_TYPE (vectype), group_size);
7077 }
7078 else
7079 {
7080 /* Otherwise avoid emitting a constructor of vector elements
7081 by performing the loads using an integer type of the same
7082 size, constructing a vector of those and then
7083 re-interpreting it as the original vector type.
7084 This avoids a huge runtime penalty due to the general
7085 inability to perform store forwarding from smaller stores
7086 to a larger load. */
7087 unsigned lsize
7088 = group_size * TYPE_PRECISION (TREE_TYPE (vectype));
7089 elmode = int_mode_for_size (lsize, 0).require ();
7090 vmode = mode_for_vector (elmode, nunits / group_size);
7091 /* If we can't construct such a vector fall back to
7092 element loads of the original vector type. */
7093 if (VECTOR_MODE_P (vmode)
7094 && (convert_optab_handler (vec_init_optab, vmode, elmode)
7095 != CODE_FOR_nothing))
7096 {
7097 nloads = nunits / group_size;
7098 lnel = group_size;
7099 ltype = build_nonstandard_integer_type (lsize, 1);
7100 lvectype = build_vector_type (ltype, nloads);
7101 }
7102 }
7103 }
7104 else
7105 {
7106 nloads = 1;
7107 lnel = nunits;
7108 ltype = vectype;
7109 }
7110 ltype = build_aligned_type (ltype, TYPE_ALIGN (TREE_TYPE (vectype)));
7111 }
7112 if (slp)
7113 {
7114 /* For SLP permutation support we need to load the whole group,
7115 not only the number of vector stmts the permutation result
7116 fits in. */
7117 if (slp_perm)
7118 {
7119 ncopies = (group_size * vf + nunits - 1) / nunits;
7120 dr_chain.create (ncopies);
7121 }
7122 else
7123 ncopies = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7124 }
7125 int group_el = 0;
7126 unsigned HOST_WIDE_INT
7127 elsz = tree_to_uhwi (TYPE_SIZE_UNIT (TREE_TYPE (vectype)));
7128 for (j = 0; j < ncopies; j++)
7129 {
7130 if (nloads > 1)
7131 vec_alloc (v, nloads);
7132 for (i = 0; i < nloads; i++)
7133 {
7134 tree this_off = build_int_cst (TREE_TYPE (alias_off),
7135 group_el * elsz);
7136 new_stmt = gimple_build_assign (make_ssa_name (ltype),
7137 build2 (MEM_REF, ltype,
7138 running_off, this_off));
7139 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7140 if (nloads > 1)
7141 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE,
7142 gimple_assign_lhs (new_stmt));
7143
7144 group_el += lnel;
7145 if (! slp
7146 || group_el == group_size)
7147 {
7148 tree newoff = copy_ssa_name (running_off);
7149 gimple *incr = gimple_build_assign (newoff, POINTER_PLUS_EXPR,
7150 running_off, stride_step);
7151 vect_finish_stmt_generation (stmt, incr, gsi);
7152
7153 running_off = newoff;
7154 group_el = 0;
7155 }
7156 }
7157 if (nloads > 1)
7158 {
7159 tree vec_inv = build_constructor (lvectype, v);
7160 new_temp = vect_init_vector (stmt, vec_inv, lvectype, gsi);
7161 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7162 if (lvectype != vectype)
7163 {
7164 new_stmt = gimple_build_assign (make_ssa_name (vectype),
7165 VIEW_CONVERT_EXPR,
7166 build1 (VIEW_CONVERT_EXPR,
7167 vectype, new_temp));
7168 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7169 }
7170 }
7171
7172 if (slp)
7173 {
7174 if (slp_perm)
7175 dr_chain.quick_push (gimple_assign_lhs (new_stmt));
7176 else
7177 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7178 }
7179 else
7180 {
7181 if (j == 0)
7182 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7183 else
7184 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7185 prev_stmt_info = vinfo_for_stmt (new_stmt);
7186 }
7187 }
7188 if (slp_perm)
7189 {
7190 unsigned n_perms;
7191 vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
7192 slp_node_instance, false, &n_perms);
7193 }
7194 return true;
7195 }
7196
7197 if (grouped_load)
7198 {
7199 first_stmt = GROUP_FIRST_ELEMENT (stmt_info);
7200 group_size = GROUP_SIZE (vinfo_for_stmt (first_stmt));
7201 int group_gap = GROUP_GAP (vinfo_for_stmt (first_stmt));
7202 /* For SLP vectorization we directly vectorize a subchain
7203 without permutation. */
7204 if (slp && ! SLP_TREE_LOAD_PERMUTATION (slp_node).exists ())
7205 first_stmt = SLP_TREE_SCALAR_STMTS (slp_node)[0];
7206 /* For BB vectorization always use the first stmt to base
7207 the data ref pointer on. */
7208 if (bb_vinfo)
7209 first_stmt_for_drptr = SLP_TREE_SCALAR_STMTS (slp_node)[0];
7210
7211 /* Check if the chain of loads is already vectorized. */
7212 if (STMT_VINFO_VEC_STMT (vinfo_for_stmt (first_stmt))
7213 /* For SLP we would need to copy over SLP_TREE_VEC_STMTS.
7214 ??? But we can only do so if there is exactly one
7215 as we have no way to get at the rest. Leave the CSE
7216 opportunity alone.
7217 ??? With the group load eventually participating
7218 in multiple different permutations (having multiple
7219 slp nodes which refer to the same group) the CSE
7220 is even wrong code. See PR56270. */
7221 && !slp)
7222 {
7223 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7224 return true;
7225 }
7226 first_dr = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt));
7227 group_gap_adj = 0;
7228
7229 /* VEC_NUM is the number of vect stmts to be created for this group. */
7230 if (slp)
7231 {
7232 grouped_load = false;
7233 /* For SLP permutation support we need to load the whole group,
7234 not only the number of vector stmts the permutation result
7235 fits in. */
7236 if (slp_perm)
7237 {
7238 vec_num = (group_size * vf + nunits - 1) / nunits;
7239 group_gap_adj = vf * group_size - nunits * vec_num;
7240 }
7241 else
7242 {
7243 vec_num = SLP_TREE_NUMBER_OF_VEC_STMTS (slp_node);
7244 group_gap_adj = group_gap;
7245 }
7246 }
7247 else
7248 vec_num = group_size;
7249
7250 ref_type = get_group_alias_ptr_type (first_stmt);
7251 }
7252 else
7253 {
7254 first_stmt = stmt;
7255 first_dr = dr;
7256 group_size = vec_num = 1;
7257 group_gap_adj = 0;
7258 ref_type = reference_alias_ptr_type (DR_REF (first_dr));
7259 }
7260
7261 alignment_support_scheme = vect_supportable_dr_alignment (first_dr, false);
7262 gcc_assert (alignment_support_scheme);
7263 /* Targets with load-lane instructions must not require explicit
7264 realignment. */
7265 gcc_assert (memory_access_type != VMAT_LOAD_STORE_LANES
7266 || alignment_support_scheme == dr_aligned
7267 || alignment_support_scheme == dr_unaligned_supported);
7268
7269 /* In case the vectorization factor (VF) is bigger than the number
7270 of elements that we can fit in a vectype (nunits), we have to generate
7271 more than one vector stmt - i.e - we need to "unroll" the
7272 vector stmt by a factor VF/nunits. In doing so, we record a pointer
7273 from one copy of the vector stmt to the next, in the field
7274 STMT_VINFO_RELATED_STMT. This is necessary in order to allow following
7275 stages to find the correct vector defs to be used when vectorizing
7276 stmts that use the defs of the current stmt. The example below
7277 illustrates the vectorization process when VF=16 and nunits=4 (i.e., we
7278 need to create 4 vectorized stmts):
7279
7280 before vectorization:
7281 RELATED_STMT VEC_STMT
7282 S1: x = memref - -
7283 S2: z = x + 1 - -
7284
7285 step 1: vectorize stmt S1:
7286 We first create the vector stmt VS1_0, and, as usual, record a
7287 pointer to it in the STMT_VINFO_VEC_STMT of the scalar stmt S1.
7288 Next, we create the vector stmt VS1_1, and record a pointer to
7289 it in the STMT_VINFO_RELATED_STMT of the vector stmt VS1_0.
7290 Similarly, for VS1_2 and VS1_3. This is the resulting chain of
7291 stmts and pointers:
7292 RELATED_STMT VEC_STMT
7293 VS1_0: vx0 = memref0 VS1_1 -
7294 VS1_1: vx1 = memref1 VS1_2 -
7295 VS1_2: vx2 = memref2 VS1_3 -
7296 VS1_3: vx3 = memref3 - -
7297 S1: x = load - VS1_0
7298 S2: z = x + 1 - -
7299
7300 See in documentation in vect_get_vec_def_for_stmt_copy for how the
7301 information we recorded in RELATED_STMT field is used to vectorize
7302 stmt S2. */
7303
7304 /* In case of interleaving (non-unit grouped access):
7305
7306 S1: x2 = &base + 2
7307 S2: x0 = &base
7308 S3: x1 = &base + 1
7309 S4: x3 = &base + 3
7310
7311 Vectorized loads are created in the order of memory accesses
7312 starting from the access of the first stmt of the chain:
7313
7314 VS1: vx0 = &base
7315 VS2: vx1 = &base + vec_size*1
7316 VS3: vx3 = &base + vec_size*2
7317 VS4: vx4 = &base + vec_size*3
7318
7319 Then permutation statements are generated:
7320
7321 VS5: vx5 = VEC_PERM_EXPR < vx0, vx1, { 0, 2, ..., i*2 } >
7322 VS6: vx6 = VEC_PERM_EXPR < vx0, vx1, { 1, 3, ..., i*2+1 } >
7323 ...
7324
7325 And they are put in STMT_VINFO_VEC_STMT of the corresponding scalar stmts
7326 (the order of the data-refs in the output of vect_permute_load_chain
7327 corresponds to the order of scalar stmts in the interleaving chain - see
7328 the documentation of vect_permute_load_chain()).
7329 The generation of permutation stmts and recording them in
7330 STMT_VINFO_VEC_STMT is done in vect_transform_grouped_load().
7331
7332 In case of both multiple types and interleaving, the vector loads and
7333 permutation stmts above are created for every copy. The result vector
7334 stmts are put in STMT_VINFO_VEC_STMT for the first copy and in the
7335 corresponding STMT_VINFO_RELATED_STMT for the next copies. */
7336
7337 /* If the data reference is aligned (dr_aligned) or potentially unaligned
7338 on a target that supports unaligned accesses (dr_unaligned_supported)
7339 we generate the following code:
7340 p = initial_addr;
7341 indx = 0;
7342 loop {
7343 p = p + indx * vectype_size;
7344 vec_dest = *(p);
7345 indx = indx + 1;
7346 }
7347
7348 Otherwise, the data reference is potentially unaligned on a target that
7349 does not support unaligned accesses (dr_explicit_realign_optimized) -
7350 then generate the following code, in which the data in each iteration is
7351 obtained by two vector loads, one from the previous iteration, and one
7352 from the current iteration:
7353 p1 = initial_addr;
7354 msq_init = *(floor(p1))
7355 p2 = initial_addr + VS - 1;
7356 realignment_token = call target_builtin;
7357 indx = 0;
7358 loop {
7359 p2 = p2 + indx * vectype_size
7360 lsq = *(floor(p2))
7361 vec_dest = realign_load (msq, lsq, realignment_token)
7362 indx = indx + 1;
7363 msq = lsq;
7364 } */
7365
7366 /* If the misalignment remains the same throughout the execution of the
7367 loop, we can create the init_addr and permutation mask at the loop
7368 preheader. Otherwise, it needs to be created inside the loop.
7369 This can only occur when vectorizing memory accesses in the inner-loop
7370 nested within an outer-loop that is being vectorized. */
7371
7372 if (nested_in_vect_loop
7373 && (DR_STEP_ALIGNMENT (dr) % GET_MODE_SIZE (TYPE_MODE (vectype))) != 0)
7374 {
7375 gcc_assert (alignment_support_scheme != dr_explicit_realign_optimized);
7376 compute_in_loop = true;
7377 }
7378
7379 if ((alignment_support_scheme == dr_explicit_realign_optimized
7380 || alignment_support_scheme == dr_explicit_realign)
7381 && !compute_in_loop)
7382 {
7383 msq = vect_setup_realignment (first_stmt, gsi, &realignment_token,
7384 alignment_support_scheme, NULL_TREE,
7385 &at_loop);
7386 if (alignment_support_scheme == dr_explicit_realign_optimized)
7387 {
7388 phi = as_a <gphi *> (SSA_NAME_DEF_STMT (msq));
7389 byte_offset = size_binop (MINUS_EXPR, TYPE_SIZE_UNIT (vectype),
7390 size_one_node);
7391 }
7392 }
7393 else
7394 at_loop = loop;
7395
7396 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
7397 offset = size_int (-TYPE_VECTOR_SUBPARTS (vectype) + 1);
7398
7399 if (memory_access_type == VMAT_LOAD_STORE_LANES)
7400 aggr_type = build_array_type_nelts (elem_type, vec_num * nunits);
7401 else
7402 aggr_type = vectype;
7403
7404 prev_stmt_info = NULL;
7405 int group_elt = 0;
7406 for (j = 0; j < ncopies; j++)
7407 {
7408 /* 1. Create the vector or array pointer update chain. */
7409 if (j == 0)
7410 {
7411 bool simd_lane_access_p
7412 = STMT_VINFO_SIMD_LANE_ACCESS_P (stmt_info);
7413 if (simd_lane_access_p
7414 && TREE_CODE (DR_BASE_ADDRESS (first_dr)) == ADDR_EXPR
7415 && VAR_P (TREE_OPERAND (DR_BASE_ADDRESS (first_dr), 0))
7416 && integer_zerop (DR_OFFSET (first_dr))
7417 && integer_zerop (DR_INIT (first_dr))
7418 && alias_sets_conflict_p (get_alias_set (aggr_type),
7419 get_alias_set (TREE_TYPE (ref_type)))
7420 && (alignment_support_scheme == dr_aligned
7421 || alignment_support_scheme == dr_unaligned_supported))
7422 {
7423 dataref_ptr = unshare_expr (DR_BASE_ADDRESS (first_dr));
7424 dataref_offset = build_int_cst (ref_type, 0);
7425 inv_p = false;
7426 }
7427 else if (first_stmt_for_drptr
7428 && first_stmt != first_stmt_for_drptr)
7429 {
7430 dataref_ptr
7431 = vect_create_data_ref_ptr (first_stmt_for_drptr, aggr_type,
7432 at_loop, offset, &dummy, gsi,
7433 &ptr_incr, simd_lane_access_p,
7434 &inv_p, byte_offset);
7435 /* Adjust the pointer by the difference to first_stmt. */
7436 data_reference_p ptrdr
7437 = STMT_VINFO_DATA_REF (vinfo_for_stmt (first_stmt_for_drptr));
7438 tree diff = fold_convert (sizetype,
7439 size_binop (MINUS_EXPR,
7440 DR_INIT (first_dr),
7441 DR_INIT (ptrdr)));
7442 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7443 stmt, diff);
7444 }
7445 else
7446 dataref_ptr
7447 = vect_create_data_ref_ptr (first_stmt, aggr_type, at_loop,
7448 offset, &dummy, gsi, &ptr_incr,
7449 simd_lane_access_p, &inv_p,
7450 byte_offset);
7451 }
7452 else if (dataref_offset)
7453 dataref_offset = int_const_binop (PLUS_EXPR, dataref_offset,
7454 TYPE_SIZE_UNIT (aggr_type));
7455 else
7456 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi, stmt,
7457 TYPE_SIZE_UNIT (aggr_type));
7458
7459 if (grouped_load || slp_perm)
7460 dr_chain.create (vec_num);
7461
7462 if (memory_access_type == VMAT_LOAD_STORE_LANES)
7463 {
7464 tree vec_array;
7465
7466 vec_array = create_vector_array (vectype, vec_num);
7467
7468 /* Emit:
7469 VEC_ARRAY = LOAD_LANES (MEM_REF[...all elements...]). */
7470 data_ref = create_array_ref (aggr_type, dataref_ptr, ref_type);
7471 gcall *call = gimple_build_call_internal (IFN_LOAD_LANES, 1,
7472 data_ref);
7473 gimple_call_set_lhs (call, vec_array);
7474 gimple_call_set_nothrow (call, true);
7475 new_stmt = call;
7476 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7477
7478 /* Extract each vector into an SSA_NAME. */
7479 for (i = 0; i < vec_num; i++)
7480 {
7481 new_temp = read_vector_array (stmt, gsi, scalar_dest,
7482 vec_array, i);
7483 dr_chain.quick_push (new_temp);
7484 }
7485
7486 /* Record the mapping between SSA_NAMEs and statements. */
7487 vect_record_grouped_load_vectors (stmt, dr_chain);
7488 }
7489 else
7490 {
7491 for (i = 0; i < vec_num; i++)
7492 {
7493 if (i > 0)
7494 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7495 stmt, NULL_TREE);
7496
7497 /* 2. Create the vector-load in the loop. */
7498 switch (alignment_support_scheme)
7499 {
7500 case dr_aligned:
7501 case dr_unaligned_supported:
7502 {
7503 unsigned int align, misalign;
7504
7505 data_ref
7506 = fold_build2 (MEM_REF, vectype, dataref_ptr,
7507 dataref_offset
7508 ? dataref_offset
7509 : build_int_cst (ref_type, 0));
7510 align = TYPE_ALIGN_UNIT (vectype);
7511 if (alignment_support_scheme == dr_aligned)
7512 {
7513 gcc_assert (aligned_access_p (first_dr));
7514 misalign = 0;
7515 }
7516 else if (DR_MISALIGNMENT (first_dr) == -1)
7517 {
7518 align = dr_alignment (vect_dr_behavior (first_dr));
7519 misalign = 0;
7520 TREE_TYPE (data_ref)
7521 = build_aligned_type (TREE_TYPE (data_ref),
7522 align * BITS_PER_UNIT);
7523 }
7524 else
7525 {
7526 TREE_TYPE (data_ref)
7527 = build_aligned_type (TREE_TYPE (data_ref),
7528 TYPE_ALIGN (elem_type));
7529 misalign = DR_MISALIGNMENT (first_dr);
7530 }
7531 if (dataref_offset == NULL_TREE
7532 && TREE_CODE (dataref_ptr) == SSA_NAME)
7533 set_ptr_info_alignment (get_ptr_info (dataref_ptr),
7534 align, misalign);
7535 break;
7536 }
7537 case dr_explicit_realign:
7538 {
7539 tree ptr, bump;
7540
7541 tree vs = size_int (TYPE_VECTOR_SUBPARTS (vectype));
7542
7543 if (compute_in_loop)
7544 msq = vect_setup_realignment (first_stmt, gsi,
7545 &realignment_token,
7546 dr_explicit_realign,
7547 dataref_ptr, NULL);
7548
7549 if (TREE_CODE (dataref_ptr) == SSA_NAME)
7550 ptr = copy_ssa_name (dataref_ptr);
7551 else
7552 ptr = make_ssa_name (TREE_TYPE (dataref_ptr));
7553 new_stmt = gimple_build_assign
7554 (ptr, BIT_AND_EXPR, dataref_ptr,
7555 build_int_cst
7556 (TREE_TYPE (dataref_ptr),
7557 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7558 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7559 data_ref
7560 = build2 (MEM_REF, vectype, ptr,
7561 build_int_cst (ref_type, 0));
7562 vec_dest = vect_create_destination_var (scalar_dest,
7563 vectype);
7564 new_stmt = gimple_build_assign (vec_dest, data_ref);
7565 new_temp = make_ssa_name (vec_dest, new_stmt);
7566 gimple_assign_set_lhs (new_stmt, new_temp);
7567 gimple_set_vdef (new_stmt, gimple_vdef (stmt));
7568 gimple_set_vuse (new_stmt, gimple_vuse (stmt));
7569 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7570 msq = new_temp;
7571
7572 bump = size_binop (MULT_EXPR, vs,
7573 TYPE_SIZE_UNIT (elem_type));
7574 bump = size_binop (MINUS_EXPR, bump, size_one_node);
7575 ptr = bump_vector_ptr (dataref_ptr, NULL, gsi, stmt, bump);
7576 new_stmt = gimple_build_assign
7577 (NULL_TREE, BIT_AND_EXPR, ptr,
7578 build_int_cst
7579 (TREE_TYPE (ptr),
7580 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7581 ptr = copy_ssa_name (ptr, new_stmt);
7582 gimple_assign_set_lhs (new_stmt, ptr);
7583 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7584 data_ref
7585 = build2 (MEM_REF, vectype, ptr,
7586 build_int_cst (ref_type, 0));
7587 break;
7588 }
7589 case dr_explicit_realign_optimized:
7590 if (TREE_CODE (dataref_ptr) == SSA_NAME)
7591 new_temp = copy_ssa_name (dataref_ptr);
7592 else
7593 new_temp = make_ssa_name (TREE_TYPE (dataref_ptr));
7594 new_stmt = gimple_build_assign
7595 (new_temp, BIT_AND_EXPR, dataref_ptr,
7596 build_int_cst
7597 (TREE_TYPE (dataref_ptr),
7598 -(HOST_WIDE_INT)TYPE_ALIGN_UNIT (vectype)));
7599 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7600 data_ref
7601 = build2 (MEM_REF, vectype, new_temp,
7602 build_int_cst (ref_type, 0));
7603 break;
7604 default:
7605 gcc_unreachable ();
7606 }
7607 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7608 new_stmt = gimple_build_assign (vec_dest, data_ref);
7609 new_temp = make_ssa_name (vec_dest, new_stmt);
7610 gimple_assign_set_lhs (new_stmt, new_temp);
7611 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7612
7613 /* 3. Handle explicit realignment if necessary/supported.
7614 Create in loop:
7615 vec_dest = realign_load (msq, lsq, realignment_token) */
7616 if (alignment_support_scheme == dr_explicit_realign_optimized
7617 || alignment_support_scheme == dr_explicit_realign)
7618 {
7619 lsq = gimple_assign_lhs (new_stmt);
7620 if (!realignment_token)
7621 realignment_token = dataref_ptr;
7622 vec_dest = vect_create_destination_var (scalar_dest, vectype);
7623 new_stmt = gimple_build_assign (vec_dest, REALIGN_LOAD_EXPR,
7624 msq, lsq, realignment_token);
7625 new_temp = make_ssa_name (vec_dest, new_stmt);
7626 gimple_assign_set_lhs (new_stmt, new_temp);
7627 vect_finish_stmt_generation (stmt, new_stmt, gsi);
7628
7629 if (alignment_support_scheme == dr_explicit_realign_optimized)
7630 {
7631 gcc_assert (phi);
7632 if (i == vec_num - 1 && j == ncopies - 1)
7633 add_phi_arg (phi, lsq,
7634 loop_latch_edge (containing_loop),
7635 UNKNOWN_LOCATION);
7636 msq = lsq;
7637 }
7638 }
7639
7640 /* 4. Handle invariant-load. */
7641 if (inv_p && !bb_vinfo)
7642 {
7643 gcc_assert (!grouped_load);
7644 /* If we have versioned for aliasing or the loop doesn't
7645 have any data dependencies that would preclude this,
7646 then we are sure this is a loop invariant load and
7647 thus we can insert it on the preheader edge. */
7648 if (LOOP_VINFO_NO_DATA_DEPENDENCIES (loop_vinfo)
7649 && !nested_in_vect_loop
7650 && hoist_defs_of_uses (stmt, loop))
7651 {
7652 if (dump_enabled_p ())
7653 {
7654 dump_printf_loc (MSG_NOTE, vect_location,
7655 "hoisting out of the vectorized "
7656 "loop: ");
7657 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
7658 }
7659 tree tem = copy_ssa_name (scalar_dest);
7660 gsi_insert_on_edge_immediate
7661 (loop_preheader_edge (loop),
7662 gimple_build_assign (tem,
7663 unshare_expr
7664 (gimple_assign_rhs1 (stmt))));
7665 new_temp = vect_init_vector (stmt, tem, vectype, NULL);
7666 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7667 set_vinfo_for_stmt (new_stmt,
7668 new_stmt_vec_info (new_stmt, vinfo));
7669 }
7670 else
7671 {
7672 gimple_stmt_iterator gsi2 = *gsi;
7673 gsi_next (&gsi2);
7674 new_temp = vect_init_vector (stmt, scalar_dest,
7675 vectype, &gsi2);
7676 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7677 }
7678 }
7679
7680 if (memory_access_type == VMAT_CONTIGUOUS_REVERSE)
7681 {
7682 tree perm_mask = perm_mask_for_reverse (vectype);
7683 new_temp = permute_vec_elements (new_temp, new_temp,
7684 perm_mask, stmt, gsi);
7685 new_stmt = SSA_NAME_DEF_STMT (new_temp);
7686 }
7687
7688 /* Collect vector loads and later create their permutation in
7689 vect_transform_grouped_load (). */
7690 if (grouped_load || slp_perm)
7691 dr_chain.quick_push (new_temp);
7692
7693 /* Store vector loads in the corresponding SLP_NODE. */
7694 if (slp && !slp_perm)
7695 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
7696
7697 /* With SLP permutation we load the gaps as well, without
7698 we need to skip the gaps after we manage to fully load
7699 all elements. group_gap_adj is GROUP_SIZE here. */
7700 group_elt += nunits;
7701 if (group_gap_adj != 0 && ! slp_perm
7702 && group_elt == group_size - group_gap_adj)
7703 {
7704 bool ovf;
7705 tree bump
7706 = wide_int_to_tree (sizetype,
7707 wi::smul (TYPE_SIZE_UNIT (elem_type),
7708 group_gap_adj, &ovf));
7709 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7710 stmt, bump);
7711 group_elt = 0;
7712 }
7713 }
7714 /* Bump the vector pointer to account for a gap or for excess
7715 elements loaded for a permuted SLP load. */
7716 if (group_gap_adj != 0 && slp_perm)
7717 {
7718 bool ovf;
7719 tree bump
7720 = wide_int_to_tree (sizetype,
7721 wi::smul (TYPE_SIZE_UNIT (elem_type),
7722 group_gap_adj, &ovf));
7723 dataref_ptr = bump_vector_ptr (dataref_ptr, ptr_incr, gsi,
7724 stmt, bump);
7725 }
7726 }
7727
7728 if (slp && !slp_perm)
7729 continue;
7730
7731 if (slp_perm)
7732 {
7733 unsigned n_perms;
7734 if (!vect_transform_slp_perm_load (slp_node, dr_chain, gsi, vf,
7735 slp_node_instance, false,
7736 &n_perms))
7737 {
7738 dr_chain.release ();
7739 return false;
7740 }
7741 }
7742 else
7743 {
7744 if (grouped_load)
7745 {
7746 if (memory_access_type != VMAT_LOAD_STORE_LANES)
7747 vect_transform_grouped_load (stmt, dr_chain, group_size, gsi);
7748 *vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
7749 }
7750 else
7751 {
7752 if (j == 0)
7753 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
7754 else
7755 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
7756 prev_stmt_info = vinfo_for_stmt (new_stmt);
7757 }
7758 }
7759 dr_chain.release ();
7760 }
7761
7762 return true;
7763 }
7764
7765 /* Function vect_is_simple_cond.
7766
7767 Input:
7768 LOOP - the loop that is being vectorized.
7769 COND - Condition that is checked for simple use.
7770
7771 Output:
7772 *COMP_VECTYPE - the vector type for the comparison.
7773 *DTS - The def types for the arguments of the comparison
7774
7775 Returns whether a COND can be vectorized. Checks whether
7776 condition operands are supportable using vec_is_simple_use. */
7777
7778 static bool
7779 vect_is_simple_cond (tree cond, vec_info *vinfo,
7780 tree *comp_vectype, enum vect_def_type *dts)
7781 {
7782 tree lhs, rhs;
7783 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7784
7785 /* Mask case. */
7786 if (TREE_CODE (cond) == SSA_NAME
7787 && VECT_SCALAR_BOOLEAN_TYPE_P (TREE_TYPE (cond)))
7788 {
7789 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (cond);
7790 if (!vect_is_simple_use (cond, vinfo, &lhs_def_stmt,
7791 &dts[0], comp_vectype)
7792 || !*comp_vectype
7793 || !VECTOR_BOOLEAN_TYPE_P (*comp_vectype))
7794 return false;
7795 return true;
7796 }
7797
7798 if (!COMPARISON_CLASS_P (cond))
7799 return false;
7800
7801 lhs = TREE_OPERAND (cond, 0);
7802 rhs = TREE_OPERAND (cond, 1);
7803
7804 if (TREE_CODE (lhs) == SSA_NAME)
7805 {
7806 gimple *lhs_def_stmt = SSA_NAME_DEF_STMT (lhs);
7807 if (!vect_is_simple_use (lhs, vinfo, &lhs_def_stmt, &dts[0], &vectype1))
7808 return false;
7809 }
7810 else if (TREE_CODE (lhs) == INTEGER_CST || TREE_CODE (lhs) == REAL_CST
7811 || TREE_CODE (lhs) == FIXED_CST)
7812 dts[0] = vect_constant_def;
7813 else
7814 return false;
7815
7816 if (TREE_CODE (rhs) == SSA_NAME)
7817 {
7818 gimple *rhs_def_stmt = SSA_NAME_DEF_STMT (rhs);
7819 if (!vect_is_simple_use (rhs, vinfo, &rhs_def_stmt, &dts[1], &vectype2))
7820 return false;
7821 }
7822 else if (TREE_CODE (rhs) == INTEGER_CST || TREE_CODE (rhs) == REAL_CST
7823 || TREE_CODE (rhs) == FIXED_CST)
7824 dts[1] = vect_constant_def;
7825 else
7826 return false;
7827
7828 if (vectype1 && vectype2
7829 && TYPE_VECTOR_SUBPARTS (vectype1) != TYPE_VECTOR_SUBPARTS (vectype2))
7830 return false;
7831
7832 *comp_vectype = vectype1 ? vectype1 : vectype2;
7833 return true;
7834 }
7835
7836 /* vectorizable_condition.
7837
7838 Check if STMT is conditional modify expression that can be vectorized.
7839 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
7840 stmt using VEC_COND_EXPR to replace it, put it in VEC_STMT, and insert it
7841 at GSI.
7842
7843 When STMT is vectorized as nested cycle, REDUC_DEF is the vector variable
7844 to be used at REDUC_INDEX (in then clause if REDUC_INDEX is 1, and in
7845 else clause if it is 2).
7846
7847 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
7848
7849 bool
7850 vectorizable_condition (gimple *stmt, gimple_stmt_iterator *gsi,
7851 gimple **vec_stmt, tree reduc_def, int reduc_index,
7852 slp_tree slp_node)
7853 {
7854 tree scalar_dest = NULL_TREE;
7855 tree vec_dest = NULL_TREE;
7856 tree cond_expr, cond_expr0 = NULL_TREE, cond_expr1 = NULL_TREE;
7857 tree then_clause, else_clause;
7858 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
7859 tree comp_vectype = NULL_TREE;
7860 tree vec_cond_lhs = NULL_TREE, vec_cond_rhs = NULL_TREE;
7861 tree vec_then_clause = NULL_TREE, vec_else_clause = NULL_TREE;
7862 tree vec_compare;
7863 tree new_temp;
7864 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
7865 enum vect_def_type dts[4]
7866 = {vect_unknown_def_type, vect_unknown_def_type,
7867 vect_unknown_def_type, vect_unknown_def_type};
7868 int ndts = 4;
7869 int ncopies;
7870 enum tree_code code, cond_code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR;
7871 stmt_vec_info prev_stmt_info = NULL;
7872 int i, j;
7873 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
7874 vec<tree> vec_oprnds0 = vNULL;
7875 vec<tree> vec_oprnds1 = vNULL;
7876 vec<tree> vec_oprnds2 = vNULL;
7877 vec<tree> vec_oprnds3 = vNULL;
7878 tree vec_cmp_type;
7879 bool masked = false;
7880
7881 if (reduc_index && STMT_SLP_TYPE (stmt_info))
7882 return false;
7883
7884 if (STMT_VINFO_VEC_REDUCTION_TYPE (stmt_info) == TREE_CODE_REDUCTION)
7885 {
7886 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
7887 return false;
7888
7889 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
7890 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
7891 && reduc_def))
7892 return false;
7893
7894 /* FORNOW: not yet supported. */
7895 if (STMT_VINFO_LIVE_P (stmt_info))
7896 {
7897 if (dump_enabled_p ())
7898 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
7899 "value used after loop.\n");
7900 return false;
7901 }
7902 }
7903
7904 /* Is vectorizable conditional operation? */
7905 if (!is_gimple_assign (stmt))
7906 return false;
7907
7908 code = gimple_assign_rhs_code (stmt);
7909
7910 if (code != COND_EXPR)
7911 return false;
7912
7913 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
7914 int nunits = TYPE_VECTOR_SUBPARTS (vectype);
7915 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
7916
7917 if (slp_node)
7918 ncopies = 1;
7919 else
7920 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
7921
7922 gcc_assert (ncopies >= 1);
7923 if (reduc_index && ncopies > 1)
7924 return false; /* FORNOW */
7925
7926 cond_expr = gimple_assign_rhs1 (stmt);
7927 then_clause = gimple_assign_rhs2 (stmt);
7928 else_clause = gimple_assign_rhs3 (stmt);
7929
7930 if (!vect_is_simple_cond (cond_expr, stmt_info->vinfo,
7931 &comp_vectype, &dts[0])
7932 || !comp_vectype)
7933 return false;
7934
7935 gimple *def_stmt;
7936 if (!vect_is_simple_use (then_clause, stmt_info->vinfo, &def_stmt, &dts[2],
7937 &vectype1))
7938 return false;
7939 if (!vect_is_simple_use (else_clause, stmt_info->vinfo, &def_stmt, &dts[3],
7940 &vectype2))
7941 return false;
7942
7943 if (vectype1 && !useless_type_conversion_p (vectype, vectype1))
7944 return false;
7945
7946 if (vectype2 && !useless_type_conversion_p (vectype, vectype2))
7947 return false;
7948
7949 masked = !COMPARISON_CLASS_P (cond_expr);
7950 vec_cmp_type = build_same_sized_truth_vector_type (comp_vectype);
7951
7952 if (vec_cmp_type == NULL_TREE)
7953 return false;
7954
7955 cond_code = TREE_CODE (cond_expr);
7956 if (!masked)
7957 {
7958 cond_expr0 = TREE_OPERAND (cond_expr, 0);
7959 cond_expr1 = TREE_OPERAND (cond_expr, 1);
7960 }
7961
7962 if (!masked && VECTOR_BOOLEAN_TYPE_P (comp_vectype))
7963 {
7964 /* Boolean values may have another representation in vectors
7965 and therefore we prefer bit operations over comparison for
7966 them (which also works for scalar masks). We store opcodes
7967 to use in bitop1 and bitop2. Statement is vectorized as
7968 BITOP2 (rhs1 BITOP1 rhs2) or rhs1 BITOP2 (BITOP1 rhs2)
7969 depending on bitop1 and bitop2 arity. */
7970 switch (cond_code)
7971 {
7972 case GT_EXPR:
7973 bitop1 = BIT_NOT_EXPR;
7974 bitop2 = BIT_AND_EXPR;
7975 break;
7976 case GE_EXPR:
7977 bitop1 = BIT_NOT_EXPR;
7978 bitop2 = BIT_IOR_EXPR;
7979 break;
7980 case LT_EXPR:
7981 bitop1 = BIT_NOT_EXPR;
7982 bitop2 = BIT_AND_EXPR;
7983 std::swap (cond_expr0, cond_expr1);
7984 break;
7985 case LE_EXPR:
7986 bitop1 = BIT_NOT_EXPR;
7987 bitop2 = BIT_IOR_EXPR;
7988 std::swap (cond_expr0, cond_expr1);
7989 break;
7990 case NE_EXPR:
7991 bitop1 = BIT_XOR_EXPR;
7992 break;
7993 case EQ_EXPR:
7994 bitop1 = BIT_XOR_EXPR;
7995 bitop2 = BIT_NOT_EXPR;
7996 break;
7997 default:
7998 return false;
7999 }
8000 cond_code = SSA_NAME;
8001 }
8002
8003 if (!vec_stmt)
8004 {
8005 STMT_VINFO_TYPE (stmt_info) = condition_vec_info_type;
8006 if (bitop1 != NOP_EXPR)
8007 {
8008 machine_mode mode = TYPE_MODE (comp_vectype);
8009 optab optab;
8010
8011 optab = optab_for_tree_code (bitop1, comp_vectype, optab_default);
8012 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8013 return false;
8014
8015 if (bitop2 != NOP_EXPR)
8016 {
8017 optab = optab_for_tree_code (bitop2, comp_vectype,
8018 optab_default);
8019 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8020 return false;
8021 }
8022 }
8023 if (expand_vec_cond_expr_p (vectype, comp_vectype,
8024 cond_code))
8025 {
8026 vect_model_simple_cost (stmt_info, ncopies, dts, ndts, NULL, NULL);
8027 return true;
8028 }
8029 return false;
8030 }
8031
8032 /* Transform. */
8033
8034 if (!slp_node)
8035 {
8036 vec_oprnds0.create (1);
8037 vec_oprnds1.create (1);
8038 vec_oprnds2.create (1);
8039 vec_oprnds3.create (1);
8040 }
8041
8042 /* Handle def. */
8043 scalar_dest = gimple_assign_lhs (stmt);
8044 vec_dest = vect_create_destination_var (scalar_dest, vectype);
8045
8046 /* Handle cond expr. */
8047 for (j = 0; j < ncopies; j++)
8048 {
8049 gassign *new_stmt = NULL;
8050 if (j == 0)
8051 {
8052 if (slp_node)
8053 {
8054 auto_vec<tree, 4> ops;
8055 auto_vec<vec<tree>, 4> vec_defs;
8056
8057 if (masked)
8058 ops.safe_push (cond_expr);
8059 else
8060 {
8061 ops.safe_push (cond_expr0);
8062 ops.safe_push (cond_expr1);
8063 }
8064 ops.safe_push (then_clause);
8065 ops.safe_push (else_clause);
8066 vect_get_slp_defs (ops, slp_node, &vec_defs);
8067 vec_oprnds3 = vec_defs.pop ();
8068 vec_oprnds2 = vec_defs.pop ();
8069 if (!masked)
8070 vec_oprnds1 = vec_defs.pop ();
8071 vec_oprnds0 = vec_defs.pop ();
8072 }
8073 else
8074 {
8075 gimple *gtemp;
8076 if (masked)
8077 {
8078 vec_cond_lhs
8079 = vect_get_vec_def_for_operand (cond_expr, stmt,
8080 comp_vectype);
8081 vect_is_simple_use (cond_expr, stmt_info->vinfo,
8082 &gtemp, &dts[0]);
8083 }
8084 else
8085 {
8086 vec_cond_lhs
8087 = vect_get_vec_def_for_operand (cond_expr0,
8088 stmt, comp_vectype);
8089 vect_is_simple_use (cond_expr0, loop_vinfo, &gtemp, &dts[0]);
8090
8091 vec_cond_rhs
8092 = vect_get_vec_def_for_operand (cond_expr1,
8093 stmt, comp_vectype);
8094 vect_is_simple_use (cond_expr1, loop_vinfo, &gtemp, &dts[1]);
8095 }
8096 if (reduc_index == 1)
8097 vec_then_clause = reduc_def;
8098 else
8099 {
8100 vec_then_clause = vect_get_vec_def_for_operand (then_clause,
8101 stmt);
8102 vect_is_simple_use (then_clause, loop_vinfo,
8103 &gtemp, &dts[2]);
8104 }
8105 if (reduc_index == 2)
8106 vec_else_clause = reduc_def;
8107 else
8108 {
8109 vec_else_clause = vect_get_vec_def_for_operand (else_clause,
8110 stmt);
8111 vect_is_simple_use (else_clause, loop_vinfo, &gtemp, &dts[3]);
8112 }
8113 }
8114 }
8115 else
8116 {
8117 vec_cond_lhs
8118 = vect_get_vec_def_for_stmt_copy (dts[0],
8119 vec_oprnds0.pop ());
8120 if (!masked)
8121 vec_cond_rhs
8122 = vect_get_vec_def_for_stmt_copy (dts[1],
8123 vec_oprnds1.pop ());
8124
8125 vec_then_clause = vect_get_vec_def_for_stmt_copy (dts[2],
8126 vec_oprnds2.pop ());
8127 vec_else_clause = vect_get_vec_def_for_stmt_copy (dts[3],
8128 vec_oprnds3.pop ());
8129 }
8130
8131 if (!slp_node)
8132 {
8133 vec_oprnds0.quick_push (vec_cond_lhs);
8134 if (!masked)
8135 vec_oprnds1.quick_push (vec_cond_rhs);
8136 vec_oprnds2.quick_push (vec_then_clause);
8137 vec_oprnds3.quick_push (vec_else_clause);
8138 }
8139
8140 /* Arguments are ready. Create the new vector stmt. */
8141 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_cond_lhs)
8142 {
8143 vec_then_clause = vec_oprnds2[i];
8144 vec_else_clause = vec_oprnds3[i];
8145
8146 if (masked)
8147 vec_compare = vec_cond_lhs;
8148 else
8149 {
8150 vec_cond_rhs = vec_oprnds1[i];
8151 if (bitop1 == NOP_EXPR)
8152 vec_compare = build2 (cond_code, vec_cmp_type,
8153 vec_cond_lhs, vec_cond_rhs);
8154 else
8155 {
8156 new_temp = make_ssa_name (vec_cmp_type);
8157 if (bitop1 == BIT_NOT_EXPR)
8158 new_stmt = gimple_build_assign (new_temp, bitop1,
8159 vec_cond_rhs);
8160 else
8161 new_stmt
8162 = gimple_build_assign (new_temp, bitop1, vec_cond_lhs,
8163 vec_cond_rhs);
8164 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8165 if (bitop2 == NOP_EXPR)
8166 vec_compare = new_temp;
8167 else if (bitop2 == BIT_NOT_EXPR)
8168 {
8169 /* Instead of doing ~x ? y : z do x ? z : y. */
8170 vec_compare = new_temp;
8171 std::swap (vec_then_clause, vec_else_clause);
8172 }
8173 else
8174 {
8175 vec_compare = make_ssa_name (vec_cmp_type);
8176 new_stmt
8177 = gimple_build_assign (vec_compare, bitop2,
8178 vec_cond_lhs, new_temp);
8179 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8180 }
8181 }
8182 }
8183 new_temp = make_ssa_name (vec_dest);
8184 new_stmt = gimple_build_assign (new_temp, VEC_COND_EXPR,
8185 vec_compare, vec_then_clause,
8186 vec_else_clause);
8187 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8188 if (slp_node)
8189 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
8190 }
8191
8192 if (slp_node)
8193 continue;
8194
8195 if (j == 0)
8196 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
8197 else
8198 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
8199
8200 prev_stmt_info = vinfo_for_stmt (new_stmt);
8201 }
8202
8203 vec_oprnds0.release ();
8204 vec_oprnds1.release ();
8205 vec_oprnds2.release ();
8206 vec_oprnds3.release ();
8207
8208 return true;
8209 }
8210
8211 /* vectorizable_comparison.
8212
8213 Check if STMT is comparison expression that can be vectorized.
8214 If VEC_STMT is also passed, vectorize the STMT: create a vectorized
8215 comparison, put it in VEC_STMT, and insert it at GSI.
8216
8217 Return FALSE if not a vectorizable STMT, TRUE otherwise. */
8218
8219 static bool
8220 vectorizable_comparison (gimple *stmt, gimple_stmt_iterator *gsi,
8221 gimple **vec_stmt, tree reduc_def,
8222 slp_tree slp_node)
8223 {
8224 tree lhs, rhs1, rhs2;
8225 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8226 tree vectype1 = NULL_TREE, vectype2 = NULL_TREE;
8227 tree vectype = STMT_VINFO_VECTYPE (stmt_info);
8228 tree vec_rhs1 = NULL_TREE, vec_rhs2 = NULL_TREE;
8229 tree new_temp;
8230 loop_vec_info loop_vinfo = STMT_VINFO_LOOP_VINFO (stmt_info);
8231 enum vect_def_type dts[2] = {vect_unknown_def_type, vect_unknown_def_type};
8232 int ndts = 2;
8233 unsigned nunits;
8234 int ncopies;
8235 enum tree_code code, bitop1 = NOP_EXPR, bitop2 = NOP_EXPR;
8236 stmt_vec_info prev_stmt_info = NULL;
8237 int i, j;
8238 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
8239 vec<tree> vec_oprnds0 = vNULL;
8240 vec<tree> vec_oprnds1 = vNULL;
8241 gimple *def_stmt;
8242 tree mask_type;
8243 tree mask;
8244
8245 if (!STMT_VINFO_RELEVANT_P (stmt_info) && !bb_vinfo)
8246 return false;
8247
8248 if (!vectype || !VECTOR_BOOLEAN_TYPE_P (vectype))
8249 return false;
8250
8251 mask_type = vectype;
8252 nunits = TYPE_VECTOR_SUBPARTS (vectype);
8253
8254 if (slp_node)
8255 ncopies = 1;
8256 else
8257 ncopies = LOOP_VINFO_VECT_FACTOR (loop_vinfo) / nunits;
8258
8259 gcc_assert (ncopies >= 1);
8260 if (STMT_VINFO_DEF_TYPE (stmt_info) != vect_internal_def
8261 && !(STMT_VINFO_DEF_TYPE (stmt_info) == vect_nested_cycle
8262 && reduc_def))
8263 return false;
8264
8265 if (STMT_VINFO_LIVE_P (stmt_info))
8266 {
8267 if (dump_enabled_p ())
8268 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8269 "value used after loop.\n");
8270 return false;
8271 }
8272
8273 if (!is_gimple_assign (stmt))
8274 return false;
8275
8276 code = gimple_assign_rhs_code (stmt);
8277
8278 if (TREE_CODE_CLASS (code) != tcc_comparison)
8279 return false;
8280
8281 rhs1 = gimple_assign_rhs1 (stmt);
8282 rhs2 = gimple_assign_rhs2 (stmt);
8283
8284 if (!vect_is_simple_use (rhs1, stmt_info->vinfo, &def_stmt,
8285 &dts[0], &vectype1))
8286 return false;
8287
8288 if (!vect_is_simple_use (rhs2, stmt_info->vinfo, &def_stmt,
8289 &dts[1], &vectype2))
8290 return false;
8291
8292 if (vectype1 && vectype2
8293 && TYPE_VECTOR_SUBPARTS (vectype1) != TYPE_VECTOR_SUBPARTS (vectype2))
8294 return false;
8295
8296 vectype = vectype1 ? vectype1 : vectype2;
8297
8298 /* Invariant comparison. */
8299 if (!vectype)
8300 {
8301 vectype = get_vectype_for_scalar_type (TREE_TYPE (rhs1));
8302 if (TYPE_VECTOR_SUBPARTS (vectype) != nunits)
8303 return false;
8304 }
8305 else if (nunits != TYPE_VECTOR_SUBPARTS (vectype))
8306 return false;
8307
8308 /* Can't compare mask and non-mask types. */
8309 if (vectype1 && vectype2
8310 && (VECTOR_BOOLEAN_TYPE_P (vectype1) ^ VECTOR_BOOLEAN_TYPE_P (vectype2)))
8311 return false;
8312
8313 /* Boolean values may have another representation in vectors
8314 and therefore we prefer bit operations over comparison for
8315 them (which also works for scalar masks). We store opcodes
8316 to use in bitop1 and bitop2. Statement is vectorized as
8317 BITOP2 (rhs1 BITOP1 rhs2) or
8318 rhs1 BITOP2 (BITOP1 rhs2)
8319 depending on bitop1 and bitop2 arity. */
8320 if (VECTOR_BOOLEAN_TYPE_P (vectype))
8321 {
8322 if (code == GT_EXPR)
8323 {
8324 bitop1 = BIT_NOT_EXPR;
8325 bitop2 = BIT_AND_EXPR;
8326 }
8327 else if (code == GE_EXPR)
8328 {
8329 bitop1 = BIT_NOT_EXPR;
8330 bitop2 = BIT_IOR_EXPR;
8331 }
8332 else if (code == LT_EXPR)
8333 {
8334 bitop1 = BIT_NOT_EXPR;
8335 bitop2 = BIT_AND_EXPR;
8336 std::swap (rhs1, rhs2);
8337 std::swap (dts[0], dts[1]);
8338 }
8339 else if (code == LE_EXPR)
8340 {
8341 bitop1 = BIT_NOT_EXPR;
8342 bitop2 = BIT_IOR_EXPR;
8343 std::swap (rhs1, rhs2);
8344 std::swap (dts[0], dts[1]);
8345 }
8346 else
8347 {
8348 bitop1 = BIT_XOR_EXPR;
8349 if (code == EQ_EXPR)
8350 bitop2 = BIT_NOT_EXPR;
8351 }
8352 }
8353
8354 if (!vec_stmt)
8355 {
8356 STMT_VINFO_TYPE (stmt_info) = comparison_vec_info_type;
8357 vect_model_simple_cost (stmt_info, ncopies * (1 + (bitop2 != NOP_EXPR)),
8358 dts, ndts, NULL, NULL);
8359 if (bitop1 == NOP_EXPR)
8360 return expand_vec_cmp_expr_p (vectype, mask_type, code);
8361 else
8362 {
8363 machine_mode mode = TYPE_MODE (vectype);
8364 optab optab;
8365
8366 optab = optab_for_tree_code (bitop1, vectype, optab_default);
8367 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8368 return false;
8369
8370 if (bitop2 != NOP_EXPR)
8371 {
8372 optab = optab_for_tree_code (bitop2, vectype, optab_default);
8373 if (!optab || optab_handler (optab, mode) == CODE_FOR_nothing)
8374 return false;
8375 }
8376 return true;
8377 }
8378 }
8379
8380 /* Transform. */
8381 if (!slp_node)
8382 {
8383 vec_oprnds0.create (1);
8384 vec_oprnds1.create (1);
8385 }
8386
8387 /* Handle def. */
8388 lhs = gimple_assign_lhs (stmt);
8389 mask = vect_create_destination_var (lhs, mask_type);
8390
8391 /* Handle cmp expr. */
8392 for (j = 0; j < ncopies; j++)
8393 {
8394 gassign *new_stmt = NULL;
8395 if (j == 0)
8396 {
8397 if (slp_node)
8398 {
8399 auto_vec<tree, 2> ops;
8400 auto_vec<vec<tree>, 2> vec_defs;
8401
8402 ops.safe_push (rhs1);
8403 ops.safe_push (rhs2);
8404 vect_get_slp_defs (ops, slp_node, &vec_defs);
8405 vec_oprnds1 = vec_defs.pop ();
8406 vec_oprnds0 = vec_defs.pop ();
8407 }
8408 else
8409 {
8410 vec_rhs1 = vect_get_vec_def_for_operand (rhs1, stmt, vectype);
8411 vec_rhs2 = vect_get_vec_def_for_operand (rhs2, stmt, vectype);
8412 }
8413 }
8414 else
8415 {
8416 vec_rhs1 = vect_get_vec_def_for_stmt_copy (dts[0],
8417 vec_oprnds0.pop ());
8418 vec_rhs2 = vect_get_vec_def_for_stmt_copy (dts[1],
8419 vec_oprnds1.pop ());
8420 }
8421
8422 if (!slp_node)
8423 {
8424 vec_oprnds0.quick_push (vec_rhs1);
8425 vec_oprnds1.quick_push (vec_rhs2);
8426 }
8427
8428 /* Arguments are ready. Create the new vector stmt. */
8429 FOR_EACH_VEC_ELT (vec_oprnds0, i, vec_rhs1)
8430 {
8431 vec_rhs2 = vec_oprnds1[i];
8432
8433 new_temp = make_ssa_name (mask);
8434 if (bitop1 == NOP_EXPR)
8435 {
8436 new_stmt = gimple_build_assign (new_temp, code,
8437 vec_rhs1, vec_rhs2);
8438 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8439 }
8440 else
8441 {
8442 if (bitop1 == BIT_NOT_EXPR)
8443 new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs2);
8444 else
8445 new_stmt = gimple_build_assign (new_temp, bitop1, vec_rhs1,
8446 vec_rhs2);
8447 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8448 if (bitop2 != NOP_EXPR)
8449 {
8450 tree res = make_ssa_name (mask);
8451 if (bitop2 == BIT_NOT_EXPR)
8452 new_stmt = gimple_build_assign (res, bitop2, new_temp);
8453 else
8454 new_stmt = gimple_build_assign (res, bitop2, vec_rhs1,
8455 new_temp);
8456 vect_finish_stmt_generation (stmt, new_stmt, gsi);
8457 }
8458 }
8459 if (slp_node)
8460 SLP_TREE_VEC_STMTS (slp_node).quick_push (new_stmt);
8461 }
8462
8463 if (slp_node)
8464 continue;
8465
8466 if (j == 0)
8467 STMT_VINFO_VEC_STMT (stmt_info) = *vec_stmt = new_stmt;
8468 else
8469 STMT_VINFO_RELATED_STMT (prev_stmt_info) = new_stmt;
8470
8471 prev_stmt_info = vinfo_for_stmt (new_stmt);
8472 }
8473
8474 vec_oprnds0.release ();
8475 vec_oprnds1.release ();
8476
8477 return true;
8478 }
8479
8480 /* Make sure the statement is vectorizable. */
8481
8482 bool
8483 vect_analyze_stmt (gimple *stmt, bool *need_to_vectorize, slp_tree node,
8484 slp_instance node_instance)
8485 {
8486 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8487 bb_vec_info bb_vinfo = STMT_VINFO_BB_VINFO (stmt_info);
8488 enum vect_relevant relevance = STMT_VINFO_RELEVANT (stmt_info);
8489 bool ok;
8490 gimple *pattern_stmt;
8491 gimple_seq pattern_def_seq;
8492
8493 if (dump_enabled_p ())
8494 {
8495 dump_printf_loc (MSG_NOTE, vect_location, "==> examining statement: ");
8496 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8497 }
8498
8499 if (gimple_has_volatile_ops (stmt))
8500 {
8501 if (dump_enabled_p ())
8502 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8503 "not vectorized: stmt has volatile operands\n");
8504
8505 return false;
8506 }
8507
8508 /* Skip stmts that do not need to be vectorized. In loops this is expected
8509 to include:
8510 - the COND_EXPR which is the loop exit condition
8511 - any LABEL_EXPRs in the loop
8512 - computations that are used only for array indexing or loop control.
8513 In basic blocks we only analyze statements that are a part of some SLP
8514 instance, therefore, all the statements are relevant.
8515
8516 Pattern statement needs to be analyzed instead of the original statement
8517 if the original statement is not relevant. Otherwise, we analyze both
8518 statements. In basic blocks we are called from some SLP instance
8519 traversal, don't analyze pattern stmts instead, the pattern stmts
8520 already will be part of SLP instance. */
8521
8522 pattern_stmt = STMT_VINFO_RELATED_STMT (stmt_info);
8523 if (!STMT_VINFO_RELEVANT_P (stmt_info)
8524 && !STMT_VINFO_LIVE_P (stmt_info))
8525 {
8526 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8527 && pattern_stmt
8528 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
8529 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
8530 {
8531 /* Analyze PATTERN_STMT instead of the original stmt. */
8532 stmt = pattern_stmt;
8533 stmt_info = vinfo_for_stmt (pattern_stmt);
8534 if (dump_enabled_p ())
8535 {
8536 dump_printf_loc (MSG_NOTE, vect_location,
8537 "==> examining pattern statement: ");
8538 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8539 }
8540 }
8541 else
8542 {
8543 if (dump_enabled_p ())
8544 dump_printf_loc (MSG_NOTE, vect_location, "irrelevant.\n");
8545
8546 return true;
8547 }
8548 }
8549 else if (STMT_VINFO_IN_PATTERN_P (stmt_info)
8550 && node == NULL
8551 && pattern_stmt
8552 && (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_stmt))
8553 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_stmt))))
8554 {
8555 /* Analyze PATTERN_STMT too. */
8556 if (dump_enabled_p ())
8557 {
8558 dump_printf_loc (MSG_NOTE, vect_location,
8559 "==> examining pattern statement: ");
8560 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, stmt, 0);
8561 }
8562
8563 if (!vect_analyze_stmt (pattern_stmt, need_to_vectorize, node,
8564 node_instance))
8565 return false;
8566 }
8567
8568 if (is_pattern_stmt_p (stmt_info)
8569 && node == NULL
8570 && (pattern_def_seq = STMT_VINFO_PATTERN_DEF_SEQ (stmt_info)))
8571 {
8572 gimple_stmt_iterator si;
8573
8574 for (si = gsi_start (pattern_def_seq); !gsi_end_p (si); gsi_next (&si))
8575 {
8576 gimple *pattern_def_stmt = gsi_stmt (si);
8577 if (STMT_VINFO_RELEVANT_P (vinfo_for_stmt (pattern_def_stmt))
8578 || STMT_VINFO_LIVE_P (vinfo_for_stmt (pattern_def_stmt)))
8579 {
8580 /* Analyze def stmt of STMT if it's a pattern stmt. */
8581 if (dump_enabled_p ())
8582 {
8583 dump_printf_loc (MSG_NOTE, vect_location,
8584 "==> examining pattern def statement: ");
8585 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, pattern_def_stmt, 0);
8586 }
8587
8588 if (!vect_analyze_stmt (pattern_def_stmt,
8589 need_to_vectorize, node, node_instance))
8590 return false;
8591 }
8592 }
8593 }
8594
8595 switch (STMT_VINFO_DEF_TYPE (stmt_info))
8596 {
8597 case vect_internal_def:
8598 break;
8599
8600 case vect_reduction_def:
8601 case vect_nested_cycle:
8602 gcc_assert (!bb_vinfo
8603 && (relevance == vect_used_in_outer
8604 || relevance == vect_used_in_outer_by_reduction
8605 || relevance == vect_used_by_reduction
8606 || relevance == vect_unused_in_scope
8607 || relevance == vect_used_only_live));
8608 break;
8609
8610 case vect_induction_def:
8611 gcc_assert (!bb_vinfo);
8612 break;
8613
8614 case vect_constant_def:
8615 case vect_external_def:
8616 case vect_unknown_def_type:
8617 default:
8618 gcc_unreachable ();
8619 }
8620
8621 if (STMT_VINFO_RELEVANT_P (stmt_info))
8622 {
8623 gcc_assert (!VECTOR_MODE_P (TYPE_MODE (gimple_expr_type (stmt))));
8624 gcc_assert (STMT_VINFO_VECTYPE (stmt_info)
8625 || (is_gimple_call (stmt)
8626 && gimple_call_lhs (stmt) == NULL_TREE));
8627 *need_to_vectorize = true;
8628 }
8629
8630 if (PURE_SLP_STMT (stmt_info) && !node)
8631 {
8632 dump_printf_loc (MSG_NOTE, vect_location,
8633 "handled only by SLP analysis\n");
8634 return true;
8635 }
8636
8637 ok = true;
8638 if (!bb_vinfo
8639 && (STMT_VINFO_RELEVANT_P (stmt_info)
8640 || STMT_VINFO_DEF_TYPE (stmt_info) == vect_reduction_def))
8641 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
8642 || vectorizable_conversion (stmt, NULL, NULL, node)
8643 || vectorizable_shift (stmt, NULL, NULL, node)
8644 || vectorizable_operation (stmt, NULL, NULL, node)
8645 || vectorizable_assignment (stmt, NULL, NULL, node)
8646 || vectorizable_load (stmt, NULL, NULL, node, NULL)
8647 || vectorizable_call (stmt, NULL, NULL, node)
8648 || vectorizable_store (stmt, NULL, NULL, node)
8649 || vectorizable_reduction (stmt, NULL, NULL, node, node_instance)
8650 || vectorizable_induction (stmt, NULL, NULL, node)
8651 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
8652 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
8653 else
8654 {
8655 if (bb_vinfo)
8656 ok = (vectorizable_simd_clone_call (stmt, NULL, NULL, node)
8657 || vectorizable_conversion (stmt, NULL, NULL, node)
8658 || vectorizable_shift (stmt, NULL, NULL, node)
8659 || vectorizable_operation (stmt, NULL, NULL, node)
8660 || vectorizable_assignment (stmt, NULL, NULL, node)
8661 || vectorizable_load (stmt, NULL, NULL, node, NULL)
8662 || vectorizable_call (stmt, NULL, NULL, node)
8663 || vectorizable_store (stmt, NULL, NULL, node)
8664 || vectorizable_condition (stmt, NULL, NULL, NULL, 0, node)
8665 || vectorizable_comparison (stmt, NULL, NULL, NULL, node));
8666 }
8667
8668 if (!ok)
8669 {
8670 if (dump_enabled_p ())
8671 {
8672 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8673 "not vectorized: relevant stmt not ");
8674 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
8675 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
8676 }
8677
8678 return false;
8679 }
8680
8681 if (bb_vinfo)
8682 return true;
8683
8684 /* Stmts that are (also) "live" (i.e. - that are used out of the loop)
8685 need extra handling, except for vectorizable reductions. */
8686 if (STMT_VINFO_LIVE_P (stmt_info)
8687 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8688 ok = vectorizable_live_operation (stmt, NULL, NULL, -1, NULL);
8689
8690 if (!ok)
8691 {
8692 if (dump_enabled_p ())
8693 {
8694 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8695 "not vectorized: live stmt not ");
8696 dump_printf (MSG_MISSED_OPTIMIZATION, "supported: ");
8697 dump_gimple_stmt (MSG_MISSED_OPTIMIZATION, TDF_SLIM, stmt, 0);
8698 }
8699
8700 return false;
8701 }
8702
8703 return true;
8704 }
8705
8706
8707 /* Function vect_transform_stmt.
8708
8709 Create a vectorized stmt to replace STMT, and insert it at BSI. */
8710
8711 bool
8712 vect_transform_stmt (gimple *stmt, gimple_stmt_iterator *gsi,
8713 bool *grouped_store, slp_tree slp_node,
8714 slp_instance slp_node_instance)
8715 {
8716 bool is_store = false;
8717 gimple *vec_stmt = NULL;
8718 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8719 bool done;
8720
8721 gcc_assert (slp_node || !PURE_SLP_STMT (stmt_info));
8722 gimple *old_vec_stmt = STMT_VINFO_VEC_STMT (stmt_info);
8723
8724 switch (STMT_VINFO_TYPE (stmt_info))
8725 {
8726 case type_demotion_vec_info_type:
8727 case type_promotion_vec_info_type:
8728 case type_conversion_vec_info_type:
8729 done = vectorizable_conversion (stmt, gsi, &vec_stmt, slp_node);
8730 gcc_assert (done);
8731 break;
8732
8733 case induc_vec_info_type:
8734 done = vectorizable_induction (stmt, gsi, &vec_stmt, slp_node);
8735 gcc_assert (done);
8736 break;
8737
8738 case shift_vec_info_type:
8739 done = vectorizable_shift (stmt, gsi, &vec_stmt, slp_node);
8740 gcc_assert (done);
8741 break;
8742
8743 case op_vec_info_type:
8744 done = vectorizable_operation (stmt, gsi, &vec_stmt, slp_node);
8745 gcc_assert (done);
8746 break;
8747
8748 case assignment_vec_info_type:
8749 done = vectorizable_assignment (stmt, gsi, &vec_stmt, slp_node);
8750 gcc_assert (done);
8751 break;
8752
8753 case load_vec_info_type:
8754 done = vectorizable_load (stmt, gsi, &vec_stmt, slp_node,
8755 slp_node_instance);
8756 gcc_assert (done);
8757 break;
8758
8759 case store_vec_info_type:
8760 done = vectorizable_store (stmt, gsi, &vec_stmt, slp_node);
8761 gcc_assert (done);
8762 if (STMT_VINFO_GROUPED_ACCESS (stmt_info) && !slp_node)
8763 {
8764 /* In case of interleaving, the whole chain is vectorized when the
8765 last store in the chain is reached. Store stmts before the last
8766 one are skipped, and there vec_stmt_info shouldn't be freed
8767 meanwhile. */
8768 *grouped_store = true;
8769 if (STMT_VINFO_VEC_STMT (stmt_info))
8770 is_store = true;
8771 }
8772 else
8773 is_store = true;
8774 break;
8775
8776 case condition_vec_info_type:
8777 done = vectorizable_condition (stmt, gsi, &vec_stmt, NULL, 0, slp_node);
8778 gcc_assert (done);
8779 break;
8780
8781 case comparison_vec_info_type:
8782 done = vectorizable_comparison (stmt, gsi, &vec_stmt, NULL, slp_node);
8783 gcc_assert (done);
8784 break;
8785
8786 case call_vec_info_type:
8787 done = vectorizable_call (stmt, gsi, &vec_stmt, slp_node);
8788 stmt = gsi_stmt (*gsi);
8789 if (gimple_call_internal_p (stmt, IFN_MASK_STORE))
8790 is_store = true;
8791 break;
8792
8793 case call_simd_clone_vec_info_type:
8794 done = vectorizable_simd_clone_call (stmt, gsi, &vec_stmt, slp_node);
8795 stmt = gsi_stmt (*gsi);
8796 break;
8797
8798 case reduc_vec_info_type:
8799 done = vectorizable_reduction (stmt, gsi, &vec_stmt, slp_node,
8800 slp_node_instance);
8801 gcc_assert (done);
8802 break;
8803
8804 default:
8805 if (!STMT_VINFO_LIVE_P (stmt_info))
8806 {
8807 if (dump_enabled_p ())
8808 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
8809 "stmt not supported.\n");
8810 gcc_unreachable ();
8811 }
8812 }
8813
8814 /* Verify SLP vectorization doesn't mess with STMT_VINFO_VEC_STMT.
8815 This would break hybrid SLP vectorization. */
8816 if (slp_node)
8817 gcc_assert (!vec_stmt
8818 && STMT_VINFO_VEC_STMT (stmt_info) == old_vec_stmt);
8819
8820 /* Handle inner-loop stmts whose DEF is used in the loop-nest that
8821 is being vectorized, but outside the immediately enclosing loop. */
8822 if (vec_stmt
8823 && STMT_VINFO_LOOP_VINFO (stmt_info)
8824 && nested_in_vect_loop_p (LOOP_VINFO_LOOP (
8825 STMT_VINFO_LOOP_VINFO (stmt_info)), stmt)
8826 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type
8827 && (STMT_VINFO_RELEVANT (stmt_info) == vect_used_in_outer
8828 || STMT_VINFO_RELEVANT (stmt_info) ==
8829 vect_used_in_outer_by_reduction))
8830 {
8831 struct loop *innerloop = LOOP_VINFO_LOOP (
8832 STMT_VINFO_LOOP_VINFO (stmt_info))->inner;
8833 imm_use_iterator imm_iter;
8834 use_operand_p use_p;
8835 tree scalar_dest;
8836 gimple *exit_phi;
8837
8838 if (dump_enabled_p ())
8839 dump_printf_loc (MSG_NOTE, vect_location,
8840 "Record the vdef for outer-loop vectorization.\n");
8841
8842 /* Find the relevant loop-exit phi-node, and reord the vec_stmt there
8843 (to be used when vectorizing outer-loop stmts that use the DEF of
8844 STMT). */
8845 if (gimple_code (stmt) == GIMPLE_PHI)
8846 scalar_dest = PHI_RESULT (stmt);
8847 else
8848 scalar_dest = gimple_assign_lhs (stmt);
8849
8850 FOR_EACH_IMM_USE_FAST (use_p, imm_iter, scalar_dest)
8851 {
8852 if (!flow_bb_inside_loop_p (innerloop, gimple_bb (USE_STMT (use_p))))
8853 {
8854 exit_phi = USE_STMT (use_p);
8855 STMT_VINFO_VEC_STMT (vinfo_for_stmt (exit_phi)) = vec_stmt;
8856 }
8857 }
8858 }
8859
8860 /* Handle stmts whose DEF is used outside the loop-nest that is
8861 being vectorized. */
8862 if (slp_node)
8863 {
8864 gimple *slp_stmt;
8865 int i;
8866 if (STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8867 FOR_EACH_VEC_ELT (SLP_TREE_SCALAR_STMTS (slp_node), i, slp_stmt)
8868 {
8869 stmt_vec_info slp_stmt_info = vinfo_for_stmt (slp_stmt);
8870 if (STMT_VINFO_LIVE_P (slp_stmt_info))
8871 {
8872 done = vectorizable_live_operation (slp_stmt, gsi, slp_node, i,
8873 &vec_stmt);
8874 gcc_assert (done);
8875 }
8876 }
8877 }
8878 else if (STMT_VINFO_LIVE_P (stmt_info)
8879 && STMT_VINFO_TYPE (stmt_info) != reduc_vec_info_type)
8880 {
8881 done = vectorizable_live_operation (stmt, gsi, slp_node, -1, &vec_stmt);
8882 gcc_assert (done);
8883 }
8884
8885 if (vec_stmt)
8886 STMT_VINFO_VEC_STMT (stmt_info) = vec_stmt;
8887
8888 return is_store;
8889 }
8890
8891
8892 /* Remove a group of stores (for SLP or interleaving), free their
8893 stmt_vec_info. */
8894
8895 void
8896 vect_remove_stores (gimple *first_stmt)
8897 {
8898 gimple *next = first_stmt;
8899 gimple *tmp;
8900 gimple_stmt_iterator next_si;
8901
8902 while (next)
8903 {
8904 stmt_vec_info stmt_info = vinfo_for_stmt (next);
8905
8906 tmp = GROUP_NEXT_ELEMENT (stmt_info);
8907 if (is_pattern_stmt_p (stmt_info))
8908 next = STMT_VINFO_RELATED_STMT (stmt_info);
8909 /* Free the attached stmt_vec_info and remove the stmt. */
8910 next_si = gsi_for_stmt (next);
8911 unlink_stmt_vdef (next);
8912 gsi_remove (&next_si, true);
8913 release_defs (next);
8914 free_stmt_vec_info (next);
8915 next = tmp;
8916 }
8917 }
8918
8919
8920 /* Function new_stmt_vec_info.
8921
8922 Create and initialize a new stmt_vec_info struct for STMT. */
8923
8924 stmt_vec_info
8925 new_stmt_vec_info (gimple *stmt, vec_info *vinfo)
8926 {
8927 stmt_vec_info res;
8928 res = (stmt_vec_info) xcalloc (1, sizeof (struct _stmt_vec_info));
8929
8930 STMT_VINFO_TYPE (res) = undef_vec_info_type;
8931 STMT_VINFO_STMT (res) = stmt;
8932 res->vinfo = vinfo;
8933 STMT_VINFO_RELEVANT (res) = vect_unused_in_scope;
8934 STMT_VINFO_LIVE_P (res) = false;
8935 STMT_VINFO_VECTYPE (res) = NULL;
8936 STMT_VINFO_VEC_STMT (res) = NULL;
8937 STMT_VINFO_VECTORIZABLE (res) = true;
8938 STMT_VINFO_IN_PATTERN_P (res) = false;
8939 STMT_VINFO_RELATED_STMT (res) = NULL;
8940 STMT_VINFO_PATTERN_DEF_SEQ (res) = NULL;
8941 STMT_VINFO_DATA_REF (res) = NULL;
8942 STMT_VINFO_VEC_REDUCTION_TYPE (res) = TREE_CODE_REDUCTION;
8943 STMT_VINFO_VEC_CONST_COND_REDUC_CODE (res) = ERROR_MARK;
8944
8945 if (gimple_code (stmt) == GIMPLE_PHI
8946 && is_loop_header_bb_p (gimple_bb (stmt)))
8947 STMT_VINFO_DEF_TYPE (res) = vect_unknown_def_type;
8948 else
8949 STMT_VINFO_DEF_TYPE (res) = vect_internal_def;
8950
8951 STMT_VINFO_SAME_ALIGN_REFS (res).create (0);
8952 STMT_SLP_TYPE (res) = loop_vect;
8953 STMT_VINFO_NUM_SLP_USES (res) = 0;
8954
8955 GROUP_FIRST_ELEMENT (res) = NULL;
8956 GROUP_NEXT_ELEMENT (res) = NULL;
8957 GROUP_SIZE (res) = 0;
8958 GROUP_STORE_COUNT (res) = 0;
8959 GROUP_GAP (res) = 0;
8960 GROUP_SAME_DR_STMT (res) = NULL;
8961
8962 return res;
8963 }
8964
8965
8966 /* Create a hash table for stmt_vec_info. */
8967
8968 void
8969 init_stmt_vec_info_vec (void)
8970 {
8971 gcc_assert (!stmt_vec_info_vec.exists ());
8972 stmt_vec_info_vec.create (50);
8973 }
8974
8975
8976 /* Free hash table for stmt_vec_info. */
8977
8978 void
8979 free_stmt_vec_info_vec (void)
8980 {
8981 unsigned int i;
8982 stmt_vec_info info;
8983 FOR_EACH_VEC_ELT (stmt_vec_info_vec, i, info)
8984 if (info != NULL)
8985 free_stmt_vec_info (STMT_VINFO_STMT (info));
8986 gcc_assert (stmt_vec_info_vec.exists ());
8987 stmt_vec_info_vec.release ();
8988 }
8989
8990
8991 /* Free stmt vectorization related info. */
8992
8993 void
8994 free_stmt_vec_info (gimple *stmt)
8995 {
8996 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
8997
8998 if (!stmt_info)
8999 return;
9000
9001 /* Check if this statement has a related "pattern stmt"
9002 (introduced by the vectorizer during the pattern recognition
9003 pass). Free pattern's stmt_vec_info and def stmt's stmt_vec_info
9004 too. */
9005 if (STMT_VINFO_IN_PATTERN_P (stmt_info))
9006 {
9007 stmt_vec_info patt_info
9008 = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
9009 if (patt_info)
9010 {
9011 gimple_seq seq = STMT_VINFO_PATTERN_DEF_SEQ (patt_info);
9012 gimple *patt_stmt = STMT_VINFO_STMT (patt_info);
9013 gimple_set_bb (patt_stmt, NULL);
9014 tree lhs = gimple_get_lhs (patt_stmt);
9015 if (lhs && TREE_CODE (lhs) == SSA_NAME)
9016 release_ssa_name (lhs);
9017 if (seq)
9018 {
9019 gimple_stmt_iterator si;
9020 for (si = gsi_start (seq); !gsi_end_p (si); gsi_next (&si))
9021 {
9022 gimple *seq_stmt = gsi_stmt (si);
9023 gimple_set_bb (seq_stmt, NULL);
9024 lhs = gimple_get_lhs (seq_stmt);
9025 if (lhs && TREE_CODE (lhs) == SSA_NAME)
9026 release_ssa_name (lhs);
9027 free_stmt_vec_info (seq_stmt);
9028 }
9029 }
9030 free_stmt_vec_info (patt_stmt);
9031 }
9032 }
9033
9034 STMT_VINFO_SAME_ALIGN_REFS (stmt_info).release ();
9035 STMT_VINFO_SIMD_CLONE_INFO (stmt_info).release ();
9036 set_vinfo_for_stmt (stmt, NULL);
9037 free (stmt_info);
9038 }
9039
9040
9041 /* Function get_vectype_for_scalar_type_and_size.
9042
9043 Returns the vector type corresponding to SCALAR_TYPE and SIZE as supported
9044 by the target. */
9045
9046 static tree
9047 get_vectype_for_scalar_type_and_size (tree scalar_type, unsigned size)
9048 {
9049 tree orig_scalar_type = scalar_type;
9050 machine_mode inner_mode = TYPE_MODE (scalar_type);
9051 machine_mode simd_mode;
9052 unsigned int nbytes = GET_MODE_SIZE (inner_mode);
9053 int nunits;
9054 tree vectype;
9055
9056 if (nbytes == 0)
9057 return NULL_TREE;
9058
9059 if (GET_MODE_CLASS (inner_mode) != MODE_INT
9060 && GET_MODE_CLASS (inner_mode) != MODE_FLOAT)
9061 return NULL_TREE;
9062
9063 /* For vector types of elements whose mode precision doesn't
9064 match their types precision we use a element type of mode
9065 precision. The vectorization routines will have to make sure
9066 they support the proper result truncation/extension.
9067 We also make sure to build vector types with INTEGER_TYPE
9068 component type only. */
9069 if (INTEGRAL_TYPE_P (scalar_type)
9070 && (GET_MODE_BITSIZE (inner_mode) != TYPE_PRECISION (scalar_type)
9071 || TREE_CODE (scalar_type) != INTEGER_TYPE))
9072 scalar_type = build_nonstandard_integer_type (GET_MODE_BITSIZE (inner_mode),
9073 TYPE_UNSIGNED (scalar_type));
9074
9075 /* We shouldn't end up building VECTOR_TYPEs of non-scalar components.
9076 When the component mode passes the above test simply use a type
9077 corresponding to that mode. The theory is that any use that
9078 would cause problems with this will disable vectorization anyway. */
9079 else if (!SCALAR_FLOAT_TYPE_P (scalar_type)
9080 && !INTEGRAL_TYPE_P (scalar_type))
9081 scalar_type = lang_hooks.types.type_for_mode (inner_mode, 1);
9082
9083 /* We can't build a vector type of elements with alignment bigger than
9084 their size. */
9085 else if (nbytes < TYPE_ALIGN_UNIT (scalar_type))
9086 scalar_type = lang_hooks.types.type_for_mode (inner_mode,
9087 TYPE_UNSIGNED (scalar_type));
9088
9089 /* If we felt back to using the mode fail if there was
9090 no scalar type for it. */
9091 if (scalar_type == NULL_TREE)
9092 return NULL_TREE;
9093
9094 /* If no size was supplied use the mode the target prefers. Otherwise
9095 lookup a vector mode of the specified size. */
9096 if (size == 0)
9097 simd_mode = targetm.vectorize.preferred_simd_mode (inner_mode);
9098 else
9099 simd_mode = mode_for_vector (inner_mode, size / nbytes);
9100 nunits = GET_MODE_SIZE (simd_mode) / nbytes;
9101 if (nunits <= 1)
9102 return NULL_TREE;
9103
9104 vectype = build_vector_type (scalar_type, nunits);
9105
9106 if (!VECTOR_MODE_P (TYPE_MODE (vectype))
9107 && !INTEGRAL_MODE_P (TYPE_MODE (vectype)))
9108 return NULL_TREE;
9109
9110 /* Re-attach the address-space qualifier if we canonicalized the scalar
9111 type. */
9112 if (TYPE_ADDR_SPACE (orig_scalar_type) != TYPE_ADDR_SPACE (vectype))
9113 return build_qualified_type
9114 (vectype, KEEP_QUAL_ADDR_SPACE (TYPE_QUALS (orig_scalar_type)));
9115
9116 return vectype;
9117 }
9118
9119 unsigned int current_vector_size;
9120
9121 /* Function get_vectype_for_scalar_type.
9122
9123 Returns the vector type corresponding to SCALAR_TYPE as supported
9124 by the target. */
9125
9126 tree
9127 get_vectype_for_scalar_type (tree scalar_type)
9128 {
9129 tree vectype;
9130 vectype = get_vectype_for_scalar_type_and_size (scalar_type,
9131 current_vector_size);
9132 if (vectype
9133 && current_vector_size == 0)
9134 current_vector_size = GET_MODE_SIZE (TYPE_MODE (vectype));
9135 return vectype;
9136 }
9137
9138 /* Function get_mask_type_for_scalar_type.
9139
9140 Returns the mask type corresponding to a result of comparison
9141 of vectors of specified SCALAR_TYPE as supported by target. */
9142
9143 tree
9144 get_mask_type_for_scalar_type (tree scalar_type)
9145 {
9146 tree vectype = get_vectype_for_scalar_type (scalar_type);
9147
9148 if (!vectype)
9149 return NULL;
9150
9151 return build_truth_vector_type (TYPE_VECTOR_SUBPARTS (vectype),
9152 current_vector_size);
9153 }
9154
9155 /* Function get_same_sized_vectype
9156
9157 Returns a vector type corresponding to SCALAR_TYPE of size
9158 VECTOR_TYPE if supported by the target. */
9159
9160 tree
9161 get_same_sized_vectype (tree scalar_type, tree vector_type)
9162 {
9163 if (VECT_SCALAR_BOOLEAN_TYPE_P (scalar_type))
9164 return build_same_sized_truth_vector_type (vector_type);
9165
9166 return get_vectype_for_scalar_type_and_size
9167 (scalar_type, GET_MODE_SIZE (TYPE_MODE (vector_type)));
9168 }
9169
9170 /* Function vect_is_simple_use.
9171
9172 Input:
9173 VINFO - the vect info of the loop or basic block that is being vectorized.
9174 OPERAND - operand in the loop or bb.
9175 Output:
9176 DEF_STMT - the defining stmt in case OPERAND is an SSA_NAME.
9177 DT - the type of definition
9178
9179 Returns whether a stmt with OPERAND can be vectorized.
9180 For loops, supportable operands are constants, loop invariants, and operands
9181 that are defined by the current iteration of the loop. Unsupportable
9182 operands are those that are defined by a previous iteration of the loop (as
9183 is the case in reduction/induction computations).
9184 For basic blocks, supportable operands are constants and bb invariants.
9185 For now, operands defined outside the basic block are not supported. */
9186
9187 bool
9188 vect_is_simple_use (tree operand, vec_info *vinfo,
9189 gimple **def_stmt, enum vect_def_type *dt)
9190 {
9191 *def_stmt = NULL;
9192 *dt = vect_unknown_def_type;
9193
9194 if (dump_enabled_p ())
9195 {
9196 dump_printf_loc (MSG_NOTE, vect_location,
9197 "vect_is_simple_use: operand ");
9198 dump_generic_expr (MSG_NOTE, TDF_SLIM, operand);
9199 dump_printf (MSG_NOTE, "\n");
9200 }
9201
9202 if (CONSTANT_CLASS_P (operand))
9203 {
9204 *dt = vect_constant_def;
9205 return true;
9206 }
9207
9208 if (is_gimple_min_invariant (operand))
9209 {
9210 *dt = vect_external_def;
9211 return true;
9212 }
9213
9214 if (TREE_CODE (operand) != SSA_NAME)
9215 {
9216 if (dump_enabled_p ())
9217 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9218 "not ssa-name.\n");
9219 return false;
9220 }
9221
9222 if (SSA_NAME_IS_DEFAULT_DEF (operand))
9223 {
9224 *dt = vect_external_def;
9225 return true;
9226 }
9227
9228 *def_stmt = SSA_NAME_DEF_STMT (operand);
9229 if (dump_enabled_p ())
9230 {
9231 dump_printf_loc (MSG_NOTE, vect_location, "def_stmt: ");
9232 dump_gimple_stmt (MSG_NOTE, TDF_SLIM, *def_stmt, 0);
9233 }
9234
9235 if (! vect_stmt_in_region_p (vinfo, *def_stmt))
9236 *dt = vect_external_def;
9237 else
9238 {
9239 stmt_vec_info stmt_vinfo = vinfo_for_stmt (*def_stmt);
9240 *dt = STMT_VINFO_DEF_TYPE (stmt_vinfo);
9241 }
9242
9243 if (dump_enabled_p ())
9244 {
9245 dump_printf_loc (MSG_NOTE, vect_location, "type of def: ");
9246 switch (*dt)
9247 {
9248 case vect_uninitialized_def:
9249 dump_printf (MSG_NOTE, "uninitialized\n");
9250 break;
9251 case vect_constant_def:
9252 dump_printf (MSG_NOTE, "constant\n");
9253 break;
9254 case vect_external_def:
9255 dump_printf (MSG_NOTE, "external\n");
9256 break;
9257 case vect_internal_def:
9258 dump_printf (MSG_NOTE, "internal\n");
9259 break;
9260 case vect_induction_def:
9261 dump_printf (MSG_NOTE, "induction\n");
9262 break;
9263 case vect_reduction_def:
9264 dump_printf (MSG_NOTE, "reduction\n");
9265 break;
9266 case vect_double_reduction_def:
9267 dump_printf (MSG_NOTE, "double reduction\n");
9268 break;
9269 case vect_nested_cycle:
9270 dump_printf (MSG_NOTE, "nested cycle\n");
9271 break;
9272 case vect_unknown_def_type:
9273 dump_printf (MSG_NOTE, "unknown\n");
9274 break;
9275 }
9276 }
9277
9278 if (*dt == vect_unknown_def_type)
9279 {
9280 if (dump_enabled_p ())
9281 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9282 "Unsupported pattern.\n");
9283 return false;
9284 }
9285
9286 switch (gimple_code (*def_stmt))
9287 {
9288 case GIMPLE_PHI:
9289 case GIMPLE_ASSIGN:
9290 case GIMPLE_CALL:
9291 break;
9292 default:
9293 if (dump_enabled_p ())
9294 dump_printf_loc (MSG_MISSED_OPTIMIZATION, vect_location,
9295 "unsupported defining stmt:\n");
9296 return false;
9297 }
9298
9299 return true;
9300 }
9301
9302 /* Function vect_is_simple_use.
9303
9304 Same as vect_is_simple_use but also determines the vector operand
9305 type of OPERAND and stores it to *VECTYPE. If the definition of
9306 OPERAND is vect_uninitialized_def, vect_constant_def or
9307 vect_external_def *VECTYPE will be set to NULL_TREE and the caller
9308 is responsible to compute the best suited vector type for the
9309 scalar operand. */
9310
9311 bool
9312 vect_is_simple_use (tree operand, vec_info *vinfo,
9313 gimple **def_stmt, enum vect_def_type *dt, tree *vectype)
9314 {
9315 if (!vect_is_simple_use (operand, vinfo, def_stmt, dt))
9316 return false;
9317
9318 /* Now get a vector type if the def is internal, otherwise supply
9319 NULL_TREE and leave it up to the caller to figure out a proper
9320 type for the use stmt. */
9321 if (*dt == vect_internal_def
9322 || *dt == vect_induction_def
9323 || *dt == vect_reduction_def
9324 || *dt == vect_double_reduction_def
9325 || *dt == vect_nested_cycle)
9326 {
9327 stmt_vec_info stmt_info = vinfo_for_stmt (*def_stmt);
9328
9329 if (STMT_VINFO_IN_PATTERN_P (stmt_info)
9330 && !STMT_VINFO_RELEVANT (stmt_info)
9331 && !STMT_VINFO_LIVE_P (stmt_info))
9332 stmt_info = vinfo_for_stmt (STMT_VINFO_RELATED_STMT (stmt_info));
9333
9334 *vectype = STMT_VINFO_VECTYPE (stmt_info);
9335 gcc_assert (*vectype != NULL_TREE);
9336 }
9337 else if (*dt == vect_uninitialized_def
9338 || *dt == vect_constant_def
9339 || *dt == vect_external_def)
9340 *vectype = NULL_TREE;
9341 else
9342 gcc_unreachable ();
9343
9344 return true;
9345 }
9346
9347
9348 /* Function supportable_widening_operation
9349
9350 Check whether an operation represented by the code CODE is a
9351 widening operation that is supported by the target platform in
9352 vector form (i.e., when operating on arguments of type VECTYPE_IN
9353 producing a result of type VECTYPE_OUT).
9354
9355 Widening operations we currently support are NOP (CONVERT), FLOAT
9356 and WIDEN_MULT. This function checks if these operations are supported
9357 by the target platform either directly (via vector tree-codes), or via
9358 target builtins.
9359
9360 Output:
9361 - CODE1 and CODE2 are codes of vector operations to be used when
9362 vectorizing the operation, if available.
9363 - MULTI_STEP_CVT determines the number of required intermediate steps in
9364 case of multi-step conversion (like char->short->int - in that case
9365 MULTI_STEP_CVT will be 1).
9366 - INTERM_TYPES contains the intermediate type required to perform the
9367 widening operation (short in the above example). */
9368
9369 bool
9370 supportable_widening_operation (enum tree_code code, gimple *stmt,
9371 tree vectype_out, tree vectype_in,
9372 enum tree_code *code1, enum tree_code *code2,
9373 int *multi_step_cvt,
9374 vec<tree> *interm_types)
9375 {
9376 stmt_vec_info stmt_info = vinfo_for_stmt (stmt);
9377 loop_vec_info loop_info = STMT_VINFO_LOOP_VINFO (stmt_info);
9378 struct loop *vect_loop = NULL;
9379 machine_mode vec_mode;
9380 enum insn_code icode1, icode2;
9381 optab optab1, optab2;
9382 tree vectype = vectype_in;
9383 tree wide_vectype = vectype_out;
9384 enum tree_code c1, c2;
9385 int i;
9386 tree prev_type, intermediate_type;
9387 machine_mode intermediate_mode, prev_mode;
9388 optab optab3, optab4;
9389
9390 *multi_step_cvt = 0;
9391 if (loop_info)
9392 vect_loop = LOOP_VINFO_LOOP (loop_info);
9393
9394 switch (code)
9395 {
9396 case WIDEN_MULT_EXPR:
9397 /* The result of a vectorized widening operation usually requires
9398 two vectors (because the widened results do not fit into one vector).
9399 The generated vector results would normally be expected to be
9400 generated in the same order as in the original scalar computation,
9401 i.e. if 8 results are generated in each vector iteration, they are
9402 to be organized as follows:
9403 vect1: [res1,res2,res3,res4],
9404 vect2: [res5,res6,res7,res8].
9405
9406 However, in the special case that the result of the widening
9407 operation is used in a reduction computation only, the order doesn't
9408 matter (because when vectorizing a reduction we change the order of
9409 the computation). Some targets can take advantage of this and
9410 generate more efficient code. For example, targets like Altivec,
9411 that support widen_mult using a sequence of {mult_even,mult_odd}
9412 generate the following vectors:
9413 vect1: [res1,res3,res5,res7],
9414 vect2: [res2,res4,res6,res8].
9415
9416 When vectorizing outer-loops, we execute the inner-loop sequentially
9417 (each vectorized inner-loop iteration contributes to VF outer-loop
9418 iterations in parallel). We therefore don't allow to change the
9419 order of the computation in the inner-loop during outer-loop
9420 vectorization. */
9421 /* TODO: Another case in which order doesn't *really* matter is when we
9422 widen and then contract again, e.g. (short)((int)x * y >> 8).
9423 Normally, pack_trunc performs an even/odd permute, whereas the
9424 repack from an even/odd expansion would be an interleave, which
9425 would be significantly simpler for e.g. AVX2. */
9426 /* In any case, in order to avoid duplicating the code below, recurse
9427 on VEC_WIDEN_MULT_EVEN_EXPR. If it succeeds, all the return values
9428 are properly set up for the caller. If we fail, we'll continue with
9429 a VEC_WIDEN_MULT_LO/HI_EXPR check. */
9430 if (vect_loop
9431 && STMT_VINFO_RELEVANT (stmt_info) == vect_used_by_reduction
9432 && !nested_in_vect_loop_p (vect_loop, stmt)
9433 && supportable_widening_operation (VEC_WIDEN_MULT_EVEN_EXPR,
9434 stmt, vectype_out, vectype_in,
9435 code1, code2, multi_step_cvt,
9436 interm_types))
9437 {
9438 /* Elements in a vector with vect_used_by_reduction property cannot
9439 be reordered if the use chain with this property does not have the
9440 same operation. One such an example is s += a * b, where elements
9441 in a and b cannot be reordered. Here we check if the vector defined
9442 by STMT is only directly used in the reduction statement. */
9443 tree lhs = gimple_assign_lhs (stmt);
9444 use_operand_p dummy;
9445 gimple *use_stmt;
9446 stmt_vec_info use_stmt_info = NULL;
9447 if (single_imm_use (lhs, &dummy, &use_stmt)
9448 && (use_stmt_info = vinfo_for_stmt (use_stmt))
9449 && STMT_VINFO_DEF_TYPE (use_stmt_info) == vect_reduction_def)
9450 return true;
9451 }
9452 c1 = VEC_WIDEN_MULT_LO_EXPR;
9453 c2 = VEC_WIDEN_MULT_HI_EXPR;
9454 break;
9455
9456 case DOT_PROD_EXPR:
9457 c1 = DOT_PROD_EXPR;
9458 c2 = DOT_PROD_EXPR;
9459 break;
9460
9461 case SAD_EXPR:
9462 c1 = SAD_EXPR;
9463 c2 = SAD_EXPR;
9464 break;
9465
9466 case VEC_WIDEN_MULT_EVEN_EXPR:
9467 /* Support the recursion induced just above. */
9468 c1 = VEC_WIDEN_MULT_EVEN_EXPR;
9469 c2 = VEC_WIDEN_MULT_ODD_EXPR;
9470 break;
9471
9472 case WIDEN_LSHIFT_EXPR:
9473 c1 = VEC_WIDEN_LSHIFT_LO_EXPR;
9474 c2 = VEC_WIDEN_LSHIFT_HI_EXPR;
9475 break;
9476
9477 CASE_CONVERT:
9478 c1 = VEC_UNPACK_LO_EXPR;
9479 c2 = VEC_UNPACK_HI_EXPR;
9480 break;
9481
9482 case FLOAT_EXPR:
9483 c1 = VEC_UNPACK_FLOAT_LO_EXPR;
9484 c2 = VEC_UNPACK_FLOAT_HI_EXPR;
9485 break;
9486
9487 case FIX_TRUNC_EXPR:
9488 /* ??? Not yet implemented due to missing VEC_UNPACK_FIX_TRUNC_HI_EXPR/
9489 VEC_UNPACK_FIX_TRUNC_LO_EXPR tree codes and optabs used for
9490 computing the operation. */
9491 return false;
9492
9493 default:
9494 gcc_unreachable ();
9495 }
9496
9497 if (BYTES_BIG_ENDIAN && c1 != VEC_WIDEN_MULT_EVEN_EXPR)
9498 std::swap (c1, c2);
9499
9500 if (code == FIX_TRUNC_EXPR)
9501 {
9502 /* The signedness is determined from output operand. */
9503 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
9504 optab2 = optab_for_tree_code (c2, vectype_out, optab_default);
9505 }
9506 else
9507 {
9508 optab1 = optab_for_tree_code (c1, vectype, optab_default);
9509 optab2 = optab_for_tree_code (c2, vectype, optab_default);
9510 }
9511
9512 if (!optab1 || !optab2)
9513 return false;
9514
9515 vec_mode = TYPE_MODE (vectype);
9516 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing
9517 || (icode2 = optab_handler (optab2, vec_mode)) == CODE_FOR_nothing)
9518 return false;
9519
9520 *code1 = c1;
9521 *code2 = c2;
9522
9523 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
9524 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
9525 /* For scalar masks we may have different boolean
9526 vector types having the same QImode. Thus we
9527 add additional check for elements number. */
9528 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9529 || (TYPE_VECTOR_SUBPARTS (vectype) / 2
9530 == TYPE_VECTOR_SUBPARTS (wide_vectype)));
9531
9532 /* Check if it's a multi-step conversion that can be done using intermediate
9533 types. */
9534
9535 prev_type = vectype;
9536 prev_mode = vec_mode;
9537
9538 if (!CONVERT_EXPR_CODE_P (code))
9539 return false;
9540
9541 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
9542 intermediate steps in promotion sequence. We try
9543 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do
9544 not. */
9545 interm_types->create (MAX_INTERM_CVT_STEPS);
9546 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
9547 {
9548 intermediate_mode = insn_data[icode1].operand[0].mode;
9549 if (VECTOR_BOOLEAN_TYPE_P (prev_type))
9550 {
9551 intermediate_type
9552 = build_truth_vector_type (TYPE_VECTOR_SUBPARTS (prev_type) / 2,
9553 current_vector_size);
9554 if (intermediate_mode != TYPE_MODE (intermediate_type))
9555 return false;
9556 }
9557 else
9558 intermediate_type
9559 = lang_hooks.types.type_for_mode (intermediate_mode,
9560 TYPE_UNSIGNED (prev_type));
9561
9562 optab3 = optab_for_tree_code (c1, intermediate_type, optab_default);
9563 optab4 = optab_for_tree_code (c2, intermediate_type, optab_default);
9564
9565 if (!optab3 || !optab4
9566 || (icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing
9567 || insn_data[icode1].operand[0].mode != intermediate_mode
9568 || (icode2 = optab_handler (optab2, prev_mode)) == CODE_FOR_nothing
9569 || insn_data[icode2].operand[0].mode != intermediate_mode
9570 || ((icode1 = optab_handler (optab3, intermediate_mode))
9571 == CODE_FOR_nothing)
9572 || ((icode2 = optab_handler (optab4, intermediate_mode))
9573 == CODE_FOR_nothing))
9574 break;
9575
9576 interm_types->quick_push (intermediate_type);
9577 (*multi_step_cvt)++;
9578
9579 if (insn_data[icode1].operand[0].mode == TYPE_MODE (wide_vectype)
9580 && insn_data[icode2].operand[0].mode == TYPE_MODE (wide_vectype))
9581 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9582 || (TYPE_VECTOR_SUBPARTS (intermediate_type) / 2
9583 == TYPE_VECTOR_SUBPARTS (wide_vectype)));
9584
9585 prev_type = intermediate_type;
9586 prev_mode = intermediate_mode;
9587 }
9588
9589 interm_types->release ();
9590 return false;
9591 }
9592
9593
9594 /* Function supportable_narrowing_operation
9595
9596 Check whether an operation represented by the code CODE is a
9597 narrowing operation that is supported by the target platform in
9598 vector form (i.e., when operating on arguments of type VECTYPE_IN
9599 and producing a result of type VECTYPE_OUT).
9600
9601 Narrowing operations we currently support are NOP (CONVERT) and
9602 FIX_TRUNC. This function checks if these operations are supported by
9603 the target platform directly via vector tree-codes.
9604
9605 Output:
9606 - CODE1 is the code of a vector operation to be used when
9607 vectorizing the operation, if available.
9608 - MULTI_STEP_CVT determines the number of required intermediate steps in
9609 case of multi-step conversion (like int->short->char - in that case
9610 MULTI_STEP_CVT will be 1).
9611 - INTERM_TYPES contains the intermediate type required to perform the
9612 narrowing operation (short in the above example). */
9613
9614 bool
9615 supportable_narrowing_operation (enum tree_code code,
9616 tree vectype_out, tree vectype_in,
9617 enum tree_code *code1, int *multi_step_cvt,
9618 vec<tree> *interm_types)
9619 {
9620 machine_mode vec_mode;
9621 enum insn_code icode1;
9622 optab optab1, interm_optab;
9623 tree vectype = vectype_in;
9624 tree narrow_vectype = vectype_out;
9625 enum tree_code c1;
9626 tree intermediate_type, prev_type;
9627 machine_mode intermediate_mode, prev_mode;
9628 int i;
9629 bool uns;
9630
9631 *multi_step_cvt = 0;
9632 switch (code)
9633 {
9634 CASE_CONVERT:
9635 c1 = VEC_PACK_TRUNC_EXPR;
9636 break;
9637
9638 case FIX_TRUNC_EXPR:
9639 c1 = VEC_PACK_FIX_TRUNC_EXPR;
9640 break;
9641
9642 case FLOAT_EXPR:
9643 /* ??? Not yet implemented due to missing VEC_PACK_FLOAT_EXPR
9644 tree code and optabs used for computing the operation. */
9645 return false;
9646
9647 default:
9648 gcc_unreachable ();
9649 }
9650
9651 if (code == FIX_TRUNC_EXPR)
9652 /* The signedness is determined from output operand. */
9653 optab1 = optab_for_tree_code (c1, vectype_out, optab_default);
9654 else
9655 optab1 = optab_for_tree_code (c1, vectype, optab_default);
9656
9657 if (!optab1)
9658 return false;
9659
9660 vec_mode = TYPE_MODE (vectype);
9661 if ((icode1 = optab_handler (optab1, vec_mode)) == CODE_FOR_nothing)
9662 return false;
9663
9664 *code1 = c1;
9665
9666 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
9667 /* For scalar masks we may have different boolean
9668 vector types having the same QImode. Thus we
9669 add additional check for elements number. */
9670 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9671 || (TYPE_VECTOR_SUBPARTS (vectype) * 2
9672 == TYPE_VECTOR_SUBPARTS (narrow_vectype)));
9673
9674 /* Check if it's a multi-step conversion that can be done using intermediate
9675 types. */
9676 prev_mode = vec_mode;
9677 prev_type = vectype;
9678 if (code == FIX_TRUNC_EXPR)
9679 uns = TYPE_UNSIGNED (vectype_out);
9680 else
9681 uns = TYPE_UNSIGNED (vectype);
9682
9683 /* For multi-step FIX_TRUNC_EXPR prefer signed floating to integer
9684 conversion over unsigned, as unsigned FIX_TRUNC_EXPR is often more
9685 costly than signed. */
9686 if (code == FIX_TRUNC_EXPR && uns)
9687 {
9688 enum insn_code icode2;
9689
9690 intermediate_type
9691 = lang_hooks.types.type_for_mode (TYPE_MODE (vectype_out), 0);
9692 interm_optab
9693 = optab_for_tree_code (c1, intermediate_type, optab_default);
9694 if (interm_optab != unknown_optab
9695 && (icode2 = optab_handler (optab1, vec_mode)) != CODE_FOR_nothing
9696 && insn_data[icode1].operand[0].mode
9697 == insn_data[icode2].operand[0].mode)
9698 {
9699 uns = false;
9700 optab1 = interm_optab;
9701 icode1 = icode2;
9702 }
9703 }
9704
9705 /* We assume here that there will not be more than MAX_INTERM_CVT_STEPS
9706 intermediate steps in promotion sequence. We try
9707 MAX_INTERM_CVT_STEPS to get to NARROW_VECTYPE, and fail if we do not. */
9708 interm_types->create (MAX_INTERM_CVT_STEPS);
9709 for (i = 0; i < MAX_INTERM_CVT_STEPS; i++)
9710 {
9711 intermediate_mode = insn_data[icode1].operand[0].mode;
9712 if (VECTOR_BOOLEAN_TYPE_P (prev_type))
9713 {
9714 intermediate_type
9715 = build_truth_vector_type (TYPE_VECTOR_SUBPARTS (prev_type) * 2,
9716 current_vector_size);
9717 if (intermediate_mode != TYPE_MODE (intermediate_type))
9718 return false;
9719 }
9720 else
9721 intermediate_type
9722 = lang_hooks.types.type_for_mode (intermediate_mode, uns);
9723 interm_optab
9724 = optab_for_tree_code (VEC_PACK_TRUNC_EXPR, intermediate_type,
9725 optab_default);
9726 if (!interm_optab
9727 || ((icode1 = optab_handler (optab1, prev_mode)) == CODE_FOR_nothing)
9728 || insn_data[icode1].operand[0].mode != intermediate_mode
9729 || ((icode1 = optab_handler (interm_optab, intermediate_mode))
9730 == CODE_FOR_nothing))
9731 break;
9732
9733 interm_types->quick_push (intermediate_type);
9734 (*multi_step_cvt)++;
9735
9736 if (insn_data[icode1].operand[0].mode == TYPE_MODE (narrow_vectype))
9737 return (!VECTOR_BOOLEAN_TYPE_P (vectype)
9738 || (TYPE_VECTOR_SUBPARTS (intermediate_type) * 2
9739 == TYPE_VECTOR_SUBPARTS (narrow_vectype)));
9740
9741 prev_mode = intermediate_mode;
9742 prev_type = intermediate_type;
9743 optab1 = interm_optab;
9744 }
9745
9746 interm_types->release ();
9747 return false;
9748 }