]> git.ipfire.org Git - thirdparty/gcc.git/blob - gcc/tree.c
f70a3073a21d5e227979ceb5ba2946ec56885017
[thirdparty/gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 2, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING. If not, write to the Free
20 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
21 02110-1301, USA. */
22
23 /* This file contains the low level primitives for operating on tree nodes,
24 including allocation, list operations, interning of identifiers,
25 construction of data type nodes and statement nodes,
26 and construction of type conversion nodes. It also contains
27 tables index by tree code that describe how to take apart
28 nodes of that code.
29
30 It is intended to be language-independent, but occasionally
31 calls language-dependent routines defined (for C) in typecheck.c. */
32
33 #include "config.h"
34 #include "system.h"
35 #include "coretypes.h"
36 #include "tm.h"
37 #include "flags.h"
38 #include "tree.h"
39 #include "real.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47 #include "target.h"
48 #include "langhooks.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54
55 /* Each tree code class has an associated string representation.
56 These must correspond to the tree_code_class entries. */
57
58 const char *const tree_code_class_strings[] =
59 {
60 "exceptional",
61 "constant",
62 "type",
63 "declaration",
64 "reference",
65 "comparison",
66 "unary",
67 "binary",
68 "statement",
69 "vl_exp",
70 "expression",
71 "gimple_stmt"
72 };
73
74 /* obstack.[ch] explicitly declined to prototype this. */
75 extern int _obstack_allocated_p (struct obstack *h, void *obj);
76
77 #ifdef GATHER_STATISTICS
78 /* Statistics-gathering stuff. */
79
80 int tree_node_counts[(int) all_kinds];
81 int tree_node_sizes[(int) all_kinds];
82
83 /* Keep in sync with tree.h:enum tree_node_kind. */
84 static const char * const tree_node_kind_names[] = {
85 "decls",
86 "types",
87 "blocks",
88 "stmts",
89 "refs",
90 "exprs",
91 "constants",
92 "identifiers",
93 "perm_tree_lists",
94 "temp_tree_lists",
95 "vecs",
96 "binfos",
97 "phi_nodes",
98 "ssa names",
99 "constructors",
100 "random kinds",
101 "lang_decl kinds",
102 "lang_type kinds",
103 "omp clauses",
104 "gimple statements"
105 };
106 #endif /* GATHER_STATISTICS */
107
108 /* Unique id for next decl created. */
109 static GTY(()) int next_decl_uid;
110 /* Unique id for next type created. */
111 static GTY(()) int next_type_uid = 1;
112
113 /* Since we cannot rehash a type after it is in the table, we have to
114 keep the hash code. */
115
116 struct type_hash GTY(())
117 {
118 unsigned long hash;
119 tree type;
120 };
121
122 /* Initial size of the hash table (rounded to next prime). */
123 #define TYPE_HASH_INITIAL_SIZE 1000
124
125 /* Now here is the hash table. When recording a type, it is added to
126 the slot whose index is the hash code. Note that the hash table is
127 used for several kinds of types (function types, array types and
128 array index range types, for now). While all these live in the
129 same table, they are completely independent, and the hash code is
130 computed differently for each of these. */
131
132 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
133 htab_t type_hash_table;
134
135 /* Hash table and temporary node for larger integer const values. */
136 static GTY (()) tree int_cst_node;
137 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
138 htab_t int_cst_hash_table;
139
140 /* General tree->tree mapping structure for use in hash tables. */
141
142
143 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
144 htab_t debug_expr_for_decl;
145
146 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
147 htab_t value_expr_for_decl;
148
149 static GTY ((if_marked ("tree_priority_map_marked_p"),
150 param_is (struct tree_priority_map)))
151 htab_t init_priority_for_decl;
152
153 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
154 htab_t restrict_base_for_decl;
155
156 static void set_type_quals (tree, int);
157 static int type_hash_eq (const void *, const void *);
158 static hashval_t type_hash_hash (const void *);
159 static hashval_t int_cst_hash_hash (const void *);
160 static int int_cst_hash_eq (const void *, const void *);
161 static void print_type_hash_statistics (void);
162 static void print_debug_expr_statistics (void);
163 static void print_value_expr_statistics (void);
164 static int type_hash_marked_p (const void *);
165 static unsigned int type_hash_list (tree, hashval_t);
166 static unsigned int attribute_hash_list (tree, hashval_t);
167
168 tree global_trees[TI_MAX];
169 tree integer_types[itk_none];
170
171 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
172
173 /* Number of operands for each OpenMP clause. */
174 unsigned const char omp_clause_num_ops[] =
175 {
176 0, /* OMP_CLAUSE_ERROR */
177 1, /* OMP_CLAUSE_PRIVATE */
178 1, /* OMP_CLAUSE_SHARED */
179 1, /* OMP_CLAUSE_FIRSTPRIVATE */
180 1, /* OMP_CLAUSE_LASTPRIVATE */
181 4, /* OMP_CLAUSE_REDUCTION */
182 1, /* OMP_CLAUSE_COPYIN */
183 1, /* OMP_CLAUSE_COPYPRIVATE */
184 1, /* OMP_CLAUSE_IF */
185 1, /* OMP_CLAUSE_NUM_THREADS */
186 1, /* OMP_CLAUSE_SCHEDULE */
187 0, /* OMP_CLAUSE_NOWAIT */
188 0, /* OMP_CLAUSE_ORDERED */
189 0 /* OMP_CLAUSE_DEFAULT */
190 };
191
192 const char * const omp_clause_code_name[] =
193 {
194 "error_clause",
195 "private",
196 "shared",
197 "firstprivate",
198 "lastprivate",
199 "reduction",
200 "copyin",
201 "copyprivate",
202 "if",
203 "num_threads",
204 "schedule",
205 "nowait",
206 "ordered",
207 "default"
208 };
209 \f
210 /* Init tree.c. */
211
212 void
213 init_ttree (void)
214 {
215 /* Initialize the hash table of types. */
216 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
217 type_hash_eq, 0);
218
219 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
220 tree_map_eq, 0);
221
222 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
223 tree_map_eq, 0);
224 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
225 tree_priority_map_eq, 0);
226 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
227 tree_map_eq, 0);
228
229 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
230 int_cst_hash_eq, NULL);
231
232 int_cst_node = make_node (INTEGER_CST);
233
234 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
235 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
236 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
237
238
239 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
240 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
241 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
242 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
243 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
244 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
245 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
246 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
247 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
248
249
250 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
251 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
252 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
253 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
254 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
255 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
256
257 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
258 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
259 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
260 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
261 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
262 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
263 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
264 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
265 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
266 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
267 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
268 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
269 tree_contains_struct[MEMORY_PARTITION_TAG][TS_DECL_MINIMAL] = 1;
270
271 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
272 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
273 tree_contains_struct[SYMBOL_MEMORY_TAG][TS_MEMORY_TAG] = 1;
274 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_TAG] = 1;
275
276 tree_contains_struct[STRUCT_FIELD_TAG][TS_STRUCT_FIELD_TAG] = 1;
277 tree_contains_struct[MEMORY_PARTITION_TAG][TS_MEMORY_PARTITION_TAG] = 1;
278
279 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
280 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
281 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
282 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
283
284 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
285 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
286 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
287 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
288 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
289 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
290 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
291 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
292
293 lang_hooks.init_ts ();
294 }
295
296 \f
297 /* The name of the object as the assembler will see it (but before any
298 translations made by ASM_OUTPUT_LABELREF). Often this is the same
299 as DECL_NAME. It is an IDENTIFIER_NODE. */
300 tree
301 decl_assembler_name (tree decl)
302 {
303 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
304 lang_hooks.set_decl_assembler_name (decl);
305 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
306 }
307
308 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
309
310 bool
311 decl_assembler_name_equal (tree decl, tree asmname)
312 {
313 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
314
315 if (decl_asmname == asmname)
316 return true;
317
318 /* If the target assembler name was set by the user, things are trickier.
319 We have a leading '*' to begin with. After that, it's arguable what
320 is the correct thing to do with -fleading-underscore. Arguably, we've
321 historically been doing the wrong thing in assemble_alias by always
322 printing the leading underscore. Since we're not changing that, make
323 sure user_label_prefix follows the '*' before matching. */
324 if (IDENTIFIER_POINTER (decl_asmname)[0] == '*')
325 {
326 const char *decl_str = IDENTIFIER_POINTER (decl_asmname) + 1;
327 size_t ulp_len = strlen (user_label_prefix);
328
329 if (ulp_len == 0)
330 ;
331 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
332 decl_str += ulp_len;
333 else
334 return false;
335
336 return strcmp (decl_str, IDENTIFIER_POINTER (asmname)) == 0;
337 }
338
339 return false;
340 }
341
342 /* Compute the number of bytes occupied by a tree with code CODE.
343 This function cannot be used for nodes that have variable sizes,
344 including TREE_VEC, PHI_NODE, STRING_CST, and CALL_EXPR. */
345 size_t
346 tree_code_size (enum tree_code code)
347 {
348 switch (TREE_CODE_CLASS (code))
349 {
350 case tcc_declaration: /* A decl node */
351 {
352 switch (code)
353 {
354 case FIELD_DECL:
355 return sizeof (struct tree_field_decl);
356 case PARM_DECL:
357 return sizeof (struct tree_parm_decl);
358 case VAR_DECL:
359 return sizeof (struct tree_var_decl);
360 case LABEL_DECL:
361 return sizeof (struct tree_label_decl);
362 case RESULT_DECL:
363 return sizeof (struct tree_result_decl);
364 case CONST_DECL:
365 return sizeof (struct tree_const_decl);
366 case TYPE_DECL:
367 return sizeof (struct tree_type_decl);
368 case FUNCTION_DECL:
369 return sizeof (struct tree_function_decl);
370 case NAME_MEMORY_TAG:
371 case SYMBOL_MEMORY_TAG:
372 return sizeof (struct tree_memory_tag);
373 case STRUCT_FIELD_TAG:
374 return sizeof (struct tree_struct_field_tag);
375 case MEMORY_PARTITION_TAG:
376 return sizeof (struct tree_memory_partition_tag);
377 default:
378 return sizeof (struct tree_decl_non_common);
379 }
380 }
381
382 case tcc_type: /* a type node */
383 return sizeof (struct tree_type);
384
385 case tcc_reference: /* a reference */
386 case tcc_expression: /* an expression */
387 case tcc_statement: /* an expression with side effects */
388 case tcc_comparison: /* a comparison expression */
389 case tcc_unary: /* a unary arithmetic expression */
390 case tcc_binary: /* a binary arithmetic expression */
391 return (sizeof (struct tree_exp)
392 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
393
394 case tcc_gimple_stmt:
395 return (sizeof (struct gimple_stmt)
396 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
397
398 case tcc_constant: /* a constant */
399 switch (code)
400 {
401 case INTEGER_CST: return sizeof (struct tree_int_cst);
402 case REAL_CST: return sizeof (struct tree_real_cst);
403 case COMPLEX_CST: return sizeof (struct tree_complex);
404 case VECTOR_CST: return sizeof (struct tree_vector);
405 case STRING_CST: gcc_unreachable ();
406 default:
407 return lang_hooks.tree_size (code);
408 }
409
410 case tcc_exceptional: /* something random, like an identifier. */
411 switch (code)
412 {
413 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
414 case TREE_LIST: return sizeof (struct tree_list);
415
416 case ERROR_MARK:
417 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
418
419 case TREE_VEC:
420 case OMP_CLAUSE:
421 case PHI_NODE: gcc_unreachable ();
422
423 case SSA_NAME: return sizeof (struct tree_ssa_name);
424
425 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
426 case BLOCK: return sizeof (struct tree_block);
427 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
428 case CONSTRUCTOR: return sizeof (struct tree_constructor);
429
430 default:
431 return lang_hooks.tree_size (code);
432 }
433
434 default:
435 gcc_unreachable ();
436 }
437 }
438
439 /* Compute the number of bytes occupied by NODE. This routine only
440 looks at TREE_CODE, except for those nodes that have variable sizes. */
441 size_t
442 tree_size (tree node)
443 {
444 enum tree_code code = TREE_CODE (node);
445 switch (code)
446 {
447 case PHI_NODE:
448 return (sizeof (struct tree_phi_node)
449 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
450
451 case TREE_BINFO:
452 return (offsetof (struct tree_binfo, base_binfos)
453 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
454
455 case TREE_VEC:
456 return (sizeof (struct tree_vec)
457 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
458
459 case STRING_CST:
460 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
461
462 case OMP_CLAUSE:
463 return (sizeof (struct tree_omp_clause)
464 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
465 * sizeof (tree));
466
467 default:
468 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
469 return (sizeof (struct tree_exp)
470 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
471 else
472 return tree_code_size (code);
473 }
474 }
475
476 /* Return a newly allocated node of code CODE. For decl and type
477 nodes, some other fields are initialized. The rest of the node is
478 initialized to zero. This function cannot be used for PHI_NODE,
479 TREE_VEC or OMP_CLAUSE nodes, which is enforced by asserts in
480 tree_code_size.
481
482 Achoo! I got a code in the node. */
483
484 tree
485 make_node_stat (enum tree_code code MEM_STAT_DECL)
486 {
487 tree t;
488 enum tree_code_class type = TREE_CODE_CLASS (code);
489 size_t length = tree_code_size (code);
490 #ifdef GATHER_STATISTICS
491 tree_node_kind kind;
492
493 switch (type)
494 {
495 case tcc_declaration: /* A decl node */
496 kind = d_kind;
497 break;
498
499 case tcc_type: /* a type node */
500 kind = t_kind;
501 break;
502
503 case tcc_statement: /* an expression with side effects */
504 kind = s_kind;
505 break;
506
507 case tcc_reference: /* a reference */
508 kind = r_kind;
509 break;
510
511 case tcc_expression: /* an expression */
512 case tcc_comparison: /* a comparison expression */
513 case tcc_unary: /* a unary arithmetic expression */
514 case tcc_binary: /* a binary arithmetic expression */
515 kind = e_kind;
516 break;
517
518 case tcc_constant: /* a constant */
519 kind = c_kind;
520 break;
521
522 case tcc_gimple_stmt:
523 kind = gimple_stmt_kind;
524 break;
525
526 case tcc_exceptional: /* something random, like an identifier. */
527 switch (code)
528 {
529 case IDENTIFIER_NODE:
530 kind = id_kind;
531 break;
532
533 case TREE_VEC:
534 kind = vec_kind;
535 break;
536
537 case TREE_BINFO:
538 kind = binfo_kind;
539 break;
540
541 case PHI_NODE:
542 kind = phi_kind;
543 break;
544
545 case SSA_NAME:
546 kind = ssa_name_kind;
547 break;
548
549 case BLOCK:
550 kind = b_kind;
551 break;
552
553 case CONSTRUCTOR:
554 kind = constr_kind;
555 break;
556
557 default:
558 kind = x_kind;
559 break;
560 }
561 break;
562
563 default:
564 gcc_unreachable ();
565 }
566
567 tree_node_counts[(int) kind]++;
568 tree_node_sizes[(int) kind] += length;
569 #endif
570
571 if (code == IDENTIFIER_NODE)
572 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
573 else
574 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
575
576 memset (t, 0, length);
577
578 TREE_SET_CODE (t, code);
579
580 switch (type)
581 {
582 case tcc_statement:
583 TREE_SIDE_EFFECTS (t) = 1;
584 break;
585
586 case tcc_declaration:
587 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
588 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
589 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
590 {
591 if (code != FUNCTION_DECL)
592 DECL_ALIGN (t) = 1;
593 DECL_USER_ALIGN (t) = 0;
594 /* We have not yet computed the alias set for this declaration. */
595 DECL_POINTER_ALIAS_SET (t) = -1;
596 }
597 DECL_SOURCE_LOCATION (t) = input_location;
598 DECL_UID (t) = next_decl_uid++;
599
600 break;
601
602 case tcc_type:
603 TYPE_UID (t) = next_type_uid++;
604 TYPE_ALIGN (t) = BITS_PER_UNIT;
605 TYPE_USER_ALIGN (t) = 0;
606 TYPE_MAIN_VARIANT (t) = t;
607 TYPE_CANONICAL (t) = t;
608
609 /* Default to no attributes for type, but let target change that. */
610 TYPE_ATTRIBUTES (t) = NULL_TREE;
611 targetm.set_default_type_attributes (t);
612
613 /* We have not yet computed the alias set for this type. */
614 TYPE_ALIAS_SET (t) = -1;
615 break;
616
617 case tcc_constant:
618 TREE_CONSTANT (t) = 1;
619 TREE_INVARIANT (t) = 1;
620 break;
621
622 case tcc_expression:
623 switch (code)
624 {
625 case INIT_EXPR:
626 case MODIFY_EXPR:
627 case VA_ARG_EXPR:
628 case PREDECREMENT_EXPR:
629 case PREINCREMENT_EXPR:
630 case POSTDECREMENT_EXPR:
631 case POSTINCREMENT_EXPR:
632 /* All of these have side-effects, no matter what their
633 operands are. */
634 TREE_SIDE_EFFECTS (t) = 1;
635 break;
636
637 default:
638 break;
639 }
640 break;
641
642 case tcc_gimple_stmt:
643 switch (code)
644 {
645 case GIMPLE_MODIFY_STMT:
646 TREE_SIDE_EFFECTS (t) = 1;
647 break;
648
649 default:
650 break;
651 }
652
653 default:
654 /* Other classes need no special treatment. */
655 break;
656 }
657
658 return t;
659 }
660 \f
661 /* Return a new node with the same contents as NODE except that its
662 TREE_CHAIN is zero and it has a fresh uid. */
663
664 tree
665 copy_node_stat (tree node MEM_STAT_DECL)
666 {
667 tree t;
668 enum tree_code code = TREE_CODE (node);
669 size_t length;
670
671 gcc_assert (code != STATEMENT_LIST);
672
673 length = tree_size (node);
674 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
675 memcpy (t, node, length);
676
677 if (!GIMPLE_TUPLE_P (node))
678 TREE_CHAIN (t) = 0;
679 TREE_ASM_WRITTEN (t) = 0;
680 TREE_VISITED (t) = 0;
681 t->base.ann = 0;
682
683 if (TREE_CODE_CLASS (code) == tcc_declaration)
684 {
685 DECL_UID (t) = next_decl_uid++;
686 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
687 && DECL_HAS_VALUE_EXPR_P (node))
688 {
689 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
690 DECL_HAS_VALUE_EXPR_P (t) = 1;
691 }
692 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
693 {
694 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
695 DECL_HAS_INIT_PRIORITY_P (t) = 1;
696 }
697 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
698 {
699 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
700 DECL_BASED_ON_RESTRICT_P (t) = 1;
701 }
702 }
703 else if (TREE_CODE_CLASS (code) == tcc_type)
704 {
705 TYPE_UID (t) = next_type_uid++;
706 /* The following is so that the debug code for
707 the copy is different from the original type.
708 The two statements usually duplicate each other
709 (because they clear fields of the same union),
710 but the optimizer should catch that. */
711 TYPE_SYMTAB_POINTER (t) = 0;
712 TYPE_SYMTAB_ADDRESS (t) = 0;
713
714 /* Do not copy the values cache. */
715 if (TYPE_CACHED_VALUES_P(t))
716 {
717 TYPE_CACHED_VALUES_P (t) = 0;
718 TYPE_CACHED_VALUES (t) = NULL_TREE;
719 }
720 }
721
722 return t;
723 }
724
725 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
726 For example, this can copy a list made of TREE_LIST nodes. */
727
728 tree
729 copy_list (tree list)
730 {
731 tree head;
732 tree prev, next;
733
734 if (list == 0)
735 return 0;
736
737 head = prev = copy_node (list);
738 next = TREE_CHAIN (list);
739 while (next)
740 {
741 TREE_CHAIN (prev) = copy_node (next);
742 prev = TREE_CHAIN (prev);
743 next = TREE_CHAIN (next);
744 }
745 return head;
746 }
747
748 \f
749 /* Create an INT_CST node with a LOW value sign extended. */
750
751 tree
752 build_int_cst (tree type, HOST_WIDE_INT low)
753 {
754 /* Support legacy code. */
755 if (!type)
756 type = integer_type_node;
757
758 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
759 }
760
761 /* Create an INT_CST node with a LOW value zero extended. */
762
763 tree
764 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
765 {
766 return build_int_cst_wide (type, low, 0);
767 }
768
769 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
770 if it is negative. This function is similar to build_int_cst, but
771 the extra bits outside of the type precision are cleared. Constants
772 with these extra bits may confuse the fold so that it detects overflows
773 even in cases when they do not occur, and in general should be avoided.
774 We cannot however make this a default behavior of build_int_cst without
775 more intrusive changes, since there are parts of gcc that rely on the extra
776 precision of the integer constants. */
777
778 tree
779 build_int_cst_type (tree type, HOST_WIDE_INT low)
780 {
781 unsigned HOST_WIDE_INT low1;
782 HOST_WIDE_INT hi;
783
784 gcc_assert (type);
785
786 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
787
788 return build_int_cst_wide (type, low1, hi);
789 }
790
791 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
792 and sign extended according to the value range of TYPE. */
793
794 tree
795 build_int_cst_wide_type (tree type,
796 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
797 {
798 fit_double_type (low, high, &low, &high, type);
799 return build_int_cst_wide (type, low, high);
800 }
801
802 /* These are the hash table functions for the hash table of INTEGER_CST
803 nodes of a sizetype. */
804
805 /* Return the hash code code X, an INTEGER_CST. */
806
807 static hashval_t
808 int_cst_hash_hash (const void *x)
809 {
810 tree t = (tree) x;
811
812 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
813 ^ htab_hash_pointer (TREE_TYPE (t)));
814 }
815
816 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
817 is the same as that given by *Y, which is the same. */
818
819 static int
820 int_cst_hash_eq (const void *x, const void *y)
821 {
822 tree xt = (tree) x;
823 tree yt = (tree) y;
824
825 return (TREE_TYPE (xt) == TREE_TYPE (yt)
826 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
827 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
828 }
829
830 /* Create an INT_CST node of TYPE and value HI:LOW.
831 The returned node is always shared. For small integers we use a
832 per-type vector cache, for larger ones we use a single hash table. */
833
834 tree
835 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
836 {
837 tree t;
838 int ix = -1;
839 int limit = 0;
840
841 gcc_assert (type);
842
843 switch (TREE_CODE (type))
844 {
845 case POINTER_TYPE:
846 case REFERENCE_TYPE:
847 /* Cache NULL pointer. */
848 if (!hi && !low)
849 {
850 limit = 1;
851 ix = 0;
852 }
853 break;
854
855 case BOOLEAN_TYPE:
856 /* Cache false or true. */
857 limit = 2;
858 if (!hi && low < 2)
859 ix = low;
860 break;
861
862 case INTEGER_TYPE:
863 case OFFSET_TYPE:
864 if (TYPE_UNSIGNED (type))
865 {
866 /* Cache 0..N */
867 limit = INTEGER_SHARE_LIMIT;
868 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
869 ix = low;
870 }
871 else
872 {
873 /* Cache -1..N */
874 limit = INTEGER_SHARE_LIMIT + 1;
875 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
876 ix = low + 1;
877 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
878 ix = 0;
879 }
880 break;
881
882 case ENUMERAL_TYPE:
883 break;
884
885 default:
886 gcc_unreachable ();
887 }
888
889 if (ix >= 0)
890 {
891 /* Look for it in the type's vector of small shared ints. */
892 if (!TYPE_CACHED_VALUES_P (type))
893 {
894 TYPE_CACHED_VALUES_P (type) = 1;
895 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
896 }
897
898 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
899 if (t)
900 {
901 /* Make sure no one is clobbering the shared constant. */
902 gcc_assert (TREE_TYPE (t) == type);
903 gcc_assert (TREE_INT_CST_LOW (t) == low);
904 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
905 }
906 else
907 {
908 /* Create a new shared int. */
909 t = make_node (INTEGER_CST);
910
911 TREE_INT_CST_LOW (t) = low;
912 TREE_INT_CST_HIGH (t) = hi;
913 TREE_TYPE (t) = type;
914
915 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
916 }
917 }
918 else
919 {
920 /* Use the cache of larger shared ints. */
921 void **slot;
922
923 TREE_INT_CST_LOW (int_cst_node) = low;
924 TREE_INT_CST_HIGH (int_cst_node) = hi;
925 TREE_TYPE (int_cst_node) = type;
926
927 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
928 t = *slot;
929 if (!t)
930 {
931 /* Insert this one into the hash table. */
932 t = int_cst_node;
933 *slot = t;
934 /* Make a new node for next time round. */
935 int_cst_node = make_node (INTEGER_CST);
936 }
937 }
938
939 return t;
940 }
941
942 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
943 and the rest are zeros. */
944
945 tree
946 build_low_bits_mask (tree type, unsigned bits)
947 {
948 unsigned HOST_WIDE_INT low;
949 HOST_WIDE_INT high;
950 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
951
952 gcc_assert (bits <= TYPE_PRECISION (type));
953
954 if (bits == TYPE_PRECISION (type)
955 && !TYPE_UNSIGNED (type))
956 {
957 /* Sign extended all-ones mask. */
958 low = all_ones;
959 high = -1;
960 }
961 else if (bits <= HOST_BITS_PER_WIDE_INT)
962 {
963 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
964 high = 0;
965 }
966 else
967 {
968 bits -= HOST_BITS_PER_WIDE_INT;
969 low = all_ones;
970 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
971 }
972
973 return build_int_cst_wide (type, low, high);
974 }
975
976 /* Checks that X is integer constant that can be expressed in (unsigned)
977 HOST_WIDE_INT without loss of precision. */
978
979 bool
980 cst_and_fits_in_hwi (tree x)
981 {
982 if (TREE_CODE (x) != INTEGER_CST)
983 return false;
984
985 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
986 return false;
987
988 return (TREE_INT_CST_HIGH (x) == 0
989 || TREE_INT_CST_HIGH (x) == -1);
990 }
991
992 /* Return a new VECTOR_CST node whose type is TYPE and whose values
993 are in a list pointed to by VALS. */
994
995 tree
996 build_vector (tree type, tree vals)
997 {
998 tree v = make_node (VECTOR_CST);
999 int over = 0;
1000 tree link;
1001
1002 TREE_VECTOR_CST_ELTS (v) = vals;
1003 TREE_TYPE (v) = type;
1004
1005 /* Iterate through elements and check for overflow. */
1006 for (link = vals; link; link = TREE_CHAIN (link))
1007 {
1008 tree value = TREE_VALUE (link);
1009
1010 /* Don't crash if we get an address constant. */
1011 if (!CONSTANT_CLASS_P (value))
1012 continue;
1013
1014 over |= TREE_OVERFLOW (value);
1015 }
1016
1017 TREE_OVERFLOW (v) = over;
1018 return v;
1019 }
1020
1021 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1022 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1023
1024 tree
1025 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1026 {
1027 tree list = NULL_TREE;
1028 unsigned HOST_WIDE_INT idx;
1029 tree value;
1030
1031 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1032 list = tree_cons (NULL_TREE, value, list);
1033 return build_vector (type, nreverse (list));
1034 }
1035
1036 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1037 are in the VEC pointed to by VALS. */
1038 tree
1039 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1040 {
1041 tree c = make_node (CONSTRUCTOR);
1042 TREE_TYPE (c) = type;
1043 CONSTRUCTOR_ELTS (c) = vals;
1044 return c;
1045 }
1046
1047 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1048 INDEX and VALUE. */
1049 tree
1050 build_constructor_single (tree type, tree index, tree value)
1051 {
1052 VEC(constructor_elt,gc) *v;
1053 constructor_elt *elt;
1054 tree t;
1055
1056 v = VEC_alloc (constructor_elt, gc, 1);
1057 elt = VEC_quick_push (constructor_elt, v, NULL);
1058 elt->index = index;
1059 elt->value = value;
1060
1061 t = build_constructor (type, v);
1062 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1063 return t;
1064 }
1065
1066
1067 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1068 are in a list pointed to by VALS. */
1069 tree
1070 build_constructor_from_list (tree type, tree vals)
1071 {
1072 tree t, val;
1073 VEC(constructor_elt,gc) *v = NULL;
1074 bool constant_p = true;
1075
1076 if (vals)
1077 {
1078 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1079 for (t = vals; t; t = TREE_CHAIN (t))
1080 {
1081 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1082 val = TREE_VALUE (t);
1083 elt->index = TREE_PURPOSE (t);
1084 elt->value = val;
1085 if (!TREE_CONSTANT (val))
1086 constant_p = false;
1087 }
1088 }
1089
1090 t = build_constructor (type, v);
1091 TREE_CONSTANT (t) = constant_p;
1092 return t;
1093 }
1094
1095
1096 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1097
1098 tree
1099 build_real (tree type, REAL_VALUE_TYPE d)
1100 {
1101 tree v;
1102 REAL_VALUE_TYPE *dp;
1103 int overflow = 0;
1104
1105 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1106 Consider doing it via real_convert now. */
1107
1108 v = make_node (REAL_CST);
1109 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1110 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1111
1112 TREE_TYPE (v) = type;
1113 TREE_REAL_CST_PTR (v) = dp;
1114 TREE_OVERFLOW (v) = overflow;
1115 return v;
1116 }
1117
1118 /* Return a new REAL_CST node whose type is TYPE
1119 and whose value is the integer value of the INTEGER_CST node I. */
1120
1121 REAL_VALUE_TYPE
1122 real_value_from_int_cst (tree type, tree i)
1123 {
1124 REAL_VALUE_TYPE d;
1125
1126 /* Clear all bits of the real value type so that we can later do
1127 bitwise comparisons to see if two values are the same. */
1128 memset (&d, 0, sizeof d);
1129
1130 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1131 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1132 TYPE_UNSIGNED (TREE_TYPE (i)));
1133 return d;
1134 }
1135
1136 /* Given a tree representing an integer constant I, return a tree
1137 representing the same value as a floating-point constant of type TYPE. */
1138
1139 tree
1140 build_real_from_int_cst (tree type, tree i)
1141 {
1142 tree v;
1143 int overflow = TREE_OVERFLOW (i);
1144
1145 v = build_real (type, real_value_from_int_cst (type, i));
1146
1147 TREE_OVERFLOW (v) |= overflow;
1148 return v;
1149 }
1150
1151 /* Return a newly constructed STRING_CST node whose value is
1152 the LEN characters at STR.
1153 The TREE_TYPE is not initialized. */
1154
1155 tree
1156 build_string (int len, const char *str)
1157 {
1158 tree s;
1159 size_t length;
1160
1161 /* Do not waste bytes provided by padding of struct tree_string. */
1162 length = len + offsetof (struct tree_string, str) + 1;
1163
1164 #ifdef GATHER_STATISTICS
1165 tree_node_counts[(int) c_kind]++;
1166 tree_node_sizes[(int) c_kind] += length;
1167 #endif
1168
1169 s = ggc_alloc_tree (length);
1170
1171 memset (s, 0, sizeof (struct tree_common));
1172 TREE_SET_CODE (s, STRING_CST);
1173 TREE_CONSTANT (s) = 1;
1174 TREE_INVARIANT (s) = 1;
1175 TREE_STRING_LENGTH (s) = len;
1176 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1177 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1178
1179 return s;
1180 }
1181
1182 /* Return a newly constructed COMPLEX_CST node whose value is
1183 specified by the real and imaginary parts REAL and IMAG.
1184 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1185 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1186
1187 tree
1188 build_complex (tree type, tree real, tree imag)
1189 {
1190 tree t = make_node (COMPLEX_CST);
1191
1192 TREE_REALPART (t) = real;
1193 TREE_IMAGPART (t) = imag;
1194 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1195 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1196 return t;
1197 }
1198
1199 /* Return a constant of arithmetic type TYPE which is the
1200 multiplicative identity of the set TYPE. */
1201
1202 tree
1203 build_one_cst (tree type)
1204 {
1205 switch (TREE_CODE (type))
1206 {
1207 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1208 case POINTER_TYPE: case REFERENCE_TYPE:
1209 case OFFSET_TYPE:
1210 return build_int_cst (type, 1);
1211
1212 case REAL_TYPE:
1213 return build_real (type, dconst1);
1214
1215 case VECTOR_TYPE:
1216 {
1217 tree scalar, cst;
1218 int i;
1219
1220 scalar = build_one_cst (TREE_TYPE (type));
1221
1222 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1223 cst = NULL_TREE;
1224 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1225 cst = tree_cons (NULL_TREE, scalar, cst);
1226
1227 return build_vector (type, cst);
1228 }
1229
1230 case COMPLEX_TYPE:
1231 return build_complex (type,
1232 build_one_cst (TREE_TYPE (type)),
1233 fold_convert (TREE_TYPE (type), integer_zero_node));
1234
1235 default:
1236 gcc_unreachable ();
1237 }
1238 }
1239
1240 /* Build a BINFO with LEN language slots. */
1241
1242 tree
1243 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1244 {
1245 tree t;
1246 size_t length = (offsetof (struct tree_binfo, base_binfos)
1247 + VEC_embedded_size (tree, base_binfos));
1248
1249 #ifdef GATHER_STATISTICS
1250 tree_node_counts[(int) binfo_kind]++;
1251 tree_node_sizes[(int) binfo_kind] += length;
1252 #endif
1253
1254 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1255
1256 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1257
1258 TREE_SET_CODE (t, TREE_BINFO);
1259
1260 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1261
1262 return t;
1263 }
1264
1265
1266 /* Build a newly constructed TREE_VEC node of length LEN. */
1267
1268 tree
1269 make_tree_vec_stat (int len MEM_STAT_DECL)
1270 {
1271 tree t;
1272 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1273
1274 #ifdef GATHER_STATISTICS
1275 tree_node_counts[(int) vec_kind]++;
1276 tree_node_sizes[(int) vec_kind] += length;
1277 #endif
1278
1279 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1280
1281 memset (t, 0, length);
1282
1283 TREE_SET_CODE (t, TREE_VEC);
1284 TREE_VEC_LENGTH (t) = len;
1285
1286 return t;
1287 }
1288 \f
1289 /* Return 1 if EXPR is the integer constant zero or a complex constant
1290 of zero. */
1291
1292 int
1293 integer_zerop (tree expr)
1294 {
1295 STRIP_NOPS (expr);
1296
1297 return ((TREE_CODE (expr) == INTEGER_CST
1298 && TREE_INT_CST_LOW (expr) == 0
1299 && TREE_INT_CST_HIGH (expr) == 0)
1300 || (TREE_CODE (expr) == COMPLEX_CST
1301 && integer_zerop (TREE_REALPART (expr))
1302 && integer_zerop (TREE_IMAGPART (expr))));
1303 }
1304
1305 /* Return 1 if EXPR is the integer constant one or the corresponding
1306 complex constant. */
1307
1308 int
1309 integer_onep (tree expr)
1310 {
1311 STRIP_NOPS (expr);
1312
1313 return ((TREE_CODE (expr) == INTEGER_CST
1314 && TREE_INT_CST_LOW (expr) == 1
1315 && TREE_INT_CST_HIGH (expr) == 0)
1316 || (TREE_CODE (expr) == COMPLEX_CST
1317 && integer_onep (TREE_REALPART (expr))
1318 && integer_zerop (TREE_IMAGPART (expr))));
1319 }
1320
1321 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1322 it contains. Likewise for the corresponding complex constant. */
1323
1324 int
1325 integer_all_onesp (tree expr)
1326 {
1327 int prec;
1328 int uns;
1329
1330 STRIP_NOPS (expr);
1331
1332 if (TREE_CODE (expr) == COMPLEX_CST
1333 && integer_all_onesp (TREE_REALPART (expr))
1334 && integer_zerop (TREE_IMAGPART (expr)))
1335 return 1;
1336
1337 else if (TREE_CODE (expr) != INTEGER_CST)
1338 return 0;
1339
1340 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1341 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1342 && TREE_INT_CST_HIGH (expr) == -1)
1343 return 1;
1344 if (!uns)
1345 return 0;
1346
1347 /* Note that using TYPE_PRECISION here is wrong. We care about the
1348 actual bits, not the (arbitrary) range of the type. */
1349 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1350 if (prec >= HOST_BITS_PER_WIDE_INT)
1351 {
1352 HOST_WIDE_INT high_value;
1353 int shift_amount;
1354
1355 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1356
1357 /* Can not handle precisions greater than twice the host int size. */
1358 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1359 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1360 /* Shifting by the host word size is undefined according to the ANSI
1361 standard, so we must handle this as a special case. */
1362 high_value = -1;
1363 else
1364 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1365
1366 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1367 && TREE_INT_CST_HIGH (expr) == high_value);
1368 }
1369 else
1370 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1371 }
1372
1373 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1374 one bit on). */
1375
1376 int
1377 integer_pow2p (tree expr)
1378 {
1379 int prec;
1380 HOST_WIDE_INT high, low;
1381
1382 STRIP_NOPS (expr);
1383
1384 if (TREE_CODE (expr) == COMPLEX_CST
1385 && integer_pow2p (TREE_REALPART (expr))
1386 && integer_zerop (TREE_IMAGPART (expr)))
1387 return 1;
1388
1389 if (TREE_CODE (expr) != INTEGER_CST)
1390 return 0;
1391
1392 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1393 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1394 high = TREE_INT_CST_HIGH (expr);
1395 low = TREE_INT_CST_LOW (expr);
1396
1397 /* First clear all bits that are beyond the type's precision in case
1398 we've been sign extended. */
1399
1400 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1401 ;
1402 else if (prec > HOST_BITS_PER_WIDE_INT)
1403 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1404 else
1405 {
1406 high = 0;
1407 if (prec < HOST_BITS_PER_WIDE_INT)
1408 low &= ~((HOST_WIDE_INT) (-1) << prec);
1409 }
1410
1411 if (high == 0 && low == 0)
1412 return 0;
1413
1414 return ((high == 0 && (low & (low - 1)) == 0)
1415 || (low == 0 && (high & (high - 1)) == 0));
1416 }
1417
1418 /* Return 1 if EXPR is an integer constant other than zero or a
1419 complex constant other than zero. */
1420
1421 int
1422 integer_nonzerop (tree expr)
1423 {
1424 STRIP_NOPS (expr);
1425
1426 return ((TREE_CODE (expr) == INTEGER_CST
1427 && (TREE_INT_CST_LOW (expr) != 0
1428 || TREE_INT_CST_HIGH (expr) != 0))
1429 || (TREE_CODE (expr) == COMPLEX_CST
1430 && (integer_nonzerop (TREE_REALPART (expr))
1431 || integer_nonzerop (TREE_IMAGPART (expr)))));
1432 }
1433
1434 /* Return the power of two represented by a tree node known to be a
1435 power of two. */
1436
1437 int
1438 tree_log2 (tree expr)
1439 {
1440 int prec;
1441 HOST_WIDE_INT high, low;
1442
1443 STRIP_NOPS (expr);
1444
1445 if (TREE_CODE (expr) == COMPLEX_CST)
1446 return tree_log2 (TREE_REALPART (expr));
1447
1448 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1449 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1450
1451 high = TREE_INT_CST_HIGH (expr);
1452 low = TREE_INT_CST_LOW (expr);
1453
1454 /* First clear all bits that are beyond the type's precision in case
1455 we've been sign extended. */
1456
1457 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1458 ;
1459 else if (prec > HOST_BITS_PER_WIDE_INT)
1460 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1461 else
1462 {
1463 high = 0;
1464 if (prec < HOST_BITS_PER_WIDE_INT)
1465 low &= ~((HOST_WIDE_INT) (-1) << prec);
1466 }
1467
1468 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1469 : exact_log2 (low));
1470 }
1471
1472 /* Similar, but return the largest integer Y such that 2 ** Y is less
1473 than or equal to EXPR. */
1474
1475 int
1476 tree_floor_log2 (tree expr)
1477 {
1478 int prec;
1479 HOST_WIDE_INT high, low;
1480
1481 STRIP_NOPS (expr);
1482
1483 if (TREE_CODE (expr) == COMPLEX_CST)
1484 return tree_log2 (TREE_REALPART (expr));
1485
1486 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1487 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1488
1489 high = TREE_INT_CST_HIGH (expr);
1490 low = TREE_INT_CST_LOW (expr);
1491
1492 /* First clear all bits that are beyond the type's precision in case
1493 we've been sign extended. Ignore if type's precision hasn't been set
1494 since what we are doing is setting it. */
1495
1496 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1497 ;
1498 else if (prec > HOST_BITS_PER_WIDE_INT)
1499 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1500 else
1501 {
1502 high = 0;
1503 if (prec < HOST_BITS_PER_WIDE_INT)
1504 low &= ~((HOST_WIDE_INT) (-1) << prec);
1505 }
1506
1507 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1508 : floor_log2 (low));
1509 }
1510
1511 /* Return 1 if EXPR is the real constant zero. */
1512
1513 int
1514 real_zerop (tree expr)
1515 {
1516 STRIP_NOPS (expr);
1517
1518 return ((TREE_CODE (expr) == REAL_CST
1519 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1520 || (TREE_CODE (expr) == COMPLEX_CST
1521 && real_zerop (TREE_REALPART (expr))
1522 && real_zerop (TREE_IMAGPART (expr))));
1523 }
1524
1525 /* Return 1 if EXPR is the real constant one in real or complex form. */
1526
1527 int
1528 real_onep (tree expr)
1529 {
1530 STRIP_NOPS (expr);
1531
1532 return ((TREE_CODE (expr) == REAL_CST
1533 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1534 || (TREE_CODE (expr) == COMPLEX_CST
1535 && real_onep (TREE_REALPART (expr))
1536 && real_zerop (TREE_IMAGPART (expr))));
1537 }
1538
1539 /* Return 1 if EXPR is the real constant two. */
1540
1541 int
1542 real_twop (tree expr)
1543 {
1544 STRIP_NOPS (expr);
1545
1546 return ((TREE_CODE (expr) == REAL_CST
1547 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1548 || (TREE_CODE (expr) == COMPLEX_CST
1549 && real_twop (TREE_REALPART (expr))
1550 && real_zerop (TREE_IMAGPART (expr))));
1551 }
1552
1553 /* Return 1 if EXPR is the real constant minus one. */
1554
1555 int
1556 real_minus_onep (tree expr)
1557 {
1558 STRIP_NOPS (expr);
1559
1560 return ((TREE_CODE (expr) == REAL_CST
1561 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1562 || (TREE_CODE (expr) == COMPLEX_CST
1563 && real_minus_onep (TREE_REALPART (expr))
1564 && real_zerop (TREE_IMAGPART (expr))));
1565 }
1566
1567 /* Nonzero if EXP is a constant or a cast of a constant. */
1568
1569 int
1570 really_constant_p (tree exp)
1571 {
1572 /* This is not quite the same as STRIP_NOPS. It does more. */
1573 while (TREE_CODE (exp) == NOP_EXPR
1574 || TREE_CODE (exp) == CONVERT_EXPR
1575 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1576 exp = TREE_OPERAND (exp, 0);
1577 return TREE_CONSTANT (exp);
1578 }
1579 \f
1580 /* Return first list element whose TREE_VALUE is ELEM.
1581 Return 0 if ELEM is not in LIST. */
1582
1583 tree
1584 value_member (tree elem, tree list)
1585 {
1586 while (list)
1587 {
1588 if (elem == TREE_VALUE (list))
1589 return list;
1590 list = TREE_CHAIN (list);
1591 }
1592 return NULL_TREE;
1593 }
1594
1595 /* Return first list element whose TREE_PURPOSE is ELEM.
1596 Return 0 if ELEM is not in LIST. */
1597
1598 tree
1599 purpose_member (tree elem, tree list)
1600 {
1601 while (list)
1602 {
1603 if (elem == TREE_PURPOSE (list))
1604 return list;
1605 list = TREE_CHAIN (list);
1606 }
1607 return NULL_TREE;
1608 }
1609
1610 /* Return nonzero if ELEM is part of the chain CHAIN. */
1611
1612 int
1613 chain_member (tree elem, tree chain)
1614 {
1615 while (chain)
1616 {
1617 if (elem == chain)
1618 return 1;
1619 chain = TREE_CHAIN (chain);
1620 }
1621
1622 return 0;
1623 }
1624
1625 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1626 We expect a null pointer to mark the end of the chain.
1627 This is the Lisp primitive `length'. */
1628
1629 int
1630 list_length (tree t)
1631 {
1632 tree p = t;
1633 #ifdef ENABLE_TREE_CHECKING
1634 tree q = t;
1635 #endif
1636 int len = 0;
1637
1638 while (p)
1639 {
1640 p = TREE_CHAIN (p);
1641 #ifdef ENABLE_TREE_CHECKING
1642 if (len % 2)
1643 q = TREE_CHAIN (q);
1644 gcc_assert (p != q);
1645 #endif
1646 len++;
1647 }
1648
1649 return len;
1650 }
1651
1652 /* Returns the number of FIELD_DECLs in TYPE. */
1653
1654 int
1655 fields_length (tree type)
1656 {
1657 tree t = TYPE_FIELDS (type);
1658 int count = 0;
1659
1660 for (; t; t = TREE_CHAIN (t))
1661 if (TREE_CODE (t) == FIELD_DECL)
1662 ++count;
1663
1664 return count;
1665 }
1666
1667 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1668 by modifying the last node in chain 1 to point to chain 2.
1669 This is the Lisp primitive `nconc'. */
1670
1671 tree
1672 chainon (tree op1, tree op2)
1673 {
1674 tree t1;
1675
1676 if (!op1)
1677 return op2;
1678 if (!op2)
1679 return op1;
1680
1681 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1682 continue;
1683 TREE_CHAIN (t1) = op2;
1684
1685 #ifdef ENABLE_TREE_CHECKING
1686 {
1687 tree t2;
1688 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1689 gcc_assert (t2 != t1);
1690 }
1691 #endif
1692
1693 return op1;
1694 }
1695
1696 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1697
1698 tree
1699 tree_last (tree chain)
1700 {
1701 tree next;
1702 if (chain)
1703 while ((next = TREE_CHAIN (chain)))
1704 chain = next;
1705 return chain;
1706 }
1707
1708 /* Reverse the order of elements in the chain T,
1709 and return the new head of the chain (old last element). */
1710
1711 tree
1712 nreverse (tree t)
1713 {
1714 tree prev = 0, decl, next;
1715 for (decl = t; decl; decl = next)
1716 {
1717 next = TREE_CHAIN (decl);
1718 TREE_CHAIN (decl) = prev;
1719 prev = decl;
1720 }
1721 return prev;
1722 }
1723 \f
1724 /* Return a newly created TREE_LIST node whose
1725 purpose and value fields are PARM and VALUE. */
1726
1727 tree
1728 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1729 {
1730 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1731 TREE_PURPOSE (t) = parm;
1732 TREE_VALUE (t) = value;
1733 return t;
1734 }
1735
1736 /* Return a newly created TREE_LIST node whose
1737 purpose and value fields are PURPOSE and VALUE
1738 and whose TREE_CHAIN is CHAIN. */
1739
1740 tree
1741 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1742 {
1743 tree node;
1744
1745 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1746
1747 memset (node, 0, sizeof (struct tree_common));
1748
1749 #ifdef GATHER_STATISTICS
1750 tree_node_counts[(int) x_kind]++;
1751 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1752 #endif
1753
1754 TREE_SET_CODE (node, TREE_LIST);
1755 TREE_CHAIN (node) = chain;
1756 TREE_PURPOSE (node) = purpose;
1757 TREE_VALUE (node) = value;
1758 return node;
1759 }
1760
1761 \f
1762 /* Return the size nominally occupied by an object of type TYPE
1763 when it resides in memory. The value is measured in units of bytes,
1764 and its data type is that normally used for type sizes
1765 (which is the first type created by make_signed_type or
1766 make_unsigned_type). */
1767
1768 tree
1769 size_in_bytes (tree type)
1770 {
1771 tree t;
1772
1773 if (type == error_mark_node)
1774 return integer_zero_node;
1775
1776 type = TYPE_MAIN_VARIANT (type);
1777 t = TYPE_SIZE_UNIT (type);
1778
1779 if (t == 0)
1780 {
1781 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1782 return size_zero_node;
1783 }
1784
1785 return t;
1786 }
1787
1788 /* Return the size of TYPE (in bytes) as a wide integer
1789 or return -1 if the size can vary or is larger than an integer. */
1790
1791 HOST_WIDE_INT
1792 int_size_in_bytes (tree type)
1793 {
1794 tree t;
1795
1796 if (type == error_mark_node)
1797 return 0;
1798
1799 type = TYPE_MAIN_VARIANT (type);
1800 t = TYPE_SIZE_UNIT (type);
1801 if (t == 0
1802 || TREE_CODE (t) != INTEGER_CST
1803 || TREE_INT_CST_HIGH (t) != 0
1804 /* If the result would appear negative, it's too big to represent. */
1805 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1806 return -1;
1807
1808 return TREE_INT_CST_LOW (t);
1809 }
1810
1811 /* Return the maximum size of TYPE (in bytes) as a wide integer
1812 or return -1 if the size can vary or is larger than an integer. */
1813
1814 HOST_WIDE_INT
1815 max_int_size_in_bytes (tree type)
1816 {
1817 HOST_WIDE_INT size = -1;
1818 tree size_tree;
1819
1820 /* If this is an array type, check for a possible MAX_SIZE attached. */
1821
1822 if (TREE_CODE (type) == ARRAY_TYPE)
1823 {
1824 size_tree = TYPE_ARRAY_MAX_SIZE (type);
1825
1826 if (size_tree && host_integerp (size_tree, 1))
1827 size = tree_low_cst (size_tree, 1);
1828 }
1829
1830 /* If we still haven't been able to get a size, see if the language
1831 can compute a maximum size. */
1832
1833 if (size == -1)
1834 {
1835 size_tree = lang_hooks.types.max_size (type);
1836
1837 if (size_tree && host_integerp (size_tree, 1))
1838 size = tree_low_cst (size_tree, 1);
1839 }
1840
1841 return size;
1842 }
1843 \f
1844 /* Return the bit position of FIELD, in bits from the start of the record.
1845 This is a tree of type bitsizetype. */
1846
1847 tree
1848 bit_position (tree field)
1849 {
1850 return bit_from_pos (DECL_FIELD_OFFSET (field),
1851 DECL_FIELD_BIT_OFFSET (field));
1852 }
1853
1854 /* Likewise, but return as an integer. It must be representable in
1855 that way (since it could be a signed value, we don't have the
1856 option of returning -1 like int_size_in_byte can. */
1857
1858 HOST_WIDE_INT
1859 int_bit_position (tree field)
1860 {
1861 return tree_low_cst (bit_position (field), 0);
1862 }
1863 \f
1864 /* Return the byte position of FIELD, in bytes from the start of the record.
1865 This is a tree of type sizetype. */
1866
1867 tree
1868 byte_position (tree field)
1869 {
1870 return byte_from_pos (DECL_FIELD_OFFSET (field),
1871 DECL_FIELD_BIT_OFFSET (field));
1872 }
1873
1874 /* Likewise, but return as an integer. It must be representable in
1875 that way (since it could be a signed value, we don't have the
1876 option of returning -1 like int_size_in_byte can. */
1877
1878 HOST_WIDE_INT
1879 int_byte_position (tree field)
1880 {
1881 return tree_low_cst (byte_position (field), 0);
1882 }
1883 \f
1884 /* Return the strictest alignment, in bits, that T is known to have. */
1885
1886 unsigned int
1887 expr_align (tree t)
1888 {
1889 unsigned int align0, align1;
1890
1891 switch (TREE_CODE (t))
1892 {
1893 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1894 /* If we have conversions, we know that the alignment of the
1895 object must meet each of the alignments of the types. */
1896 align0 = expr_align (TREE_OPERAND (t, 0));
1897 align1 = TYPE_ALIGN (TREE_TYPE (t));
1898 return MAX (align0, align1);
1899
1900 case GIMPLE_MODIFY_STMT:
1901 /* We should never ask for the alignment of a gimple statement. */
1902 gcc_unreachable ();
1903
1904 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1905 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1906 case CLEANUP_POINT_EXPR:
1907 /* These don't change the alignment of an object. */
1908 return expr_align (TREE_OPERAND (t, 0));
1909
1910 case COND_EXPR:
1911 /* The best we can do is say that the alignment is the least aligned
1912 of the two arms. */
1913 align0 = expr_align (TREE_OPERAND (t, 1));
1914 align1 = expr_align (TREE_OPERAND (t, 2));
1915 return MIN (align0, align1);
1916
1917 case LABEL_DECL: case CONST_DECL:
1918 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1919 if (DECL_ALIGN (t) != 0)
1920 return DECL_ALIGN (t);
1921 break;
1922
1923 case FUNCTION_DECL:
1924 return FUNCTION_BOUNDARY;
1925
1926 default:
1927 break;
1928 }
1929
1930 /* Otherwise take the alignment from that of the type. */
1931 return TYPE_ALIGN (TREE_TYPE (t));
1932 }
1933 \f
1934 /* Return, as a tree node, the number of elements for TYPE (which is an
1935 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1936
1937 tree
1938 array_type_nelts (tree type)
1939 {
1940 tree index_type, min, max;
1941
1942 /* If they did it with unspecified bounds, then we should have already
1943 given an error about it before we got here. */
1944 if (! TYPE_DOMAIN (type))
1945 return error_mark_node;
1946
1947 index_type = TYPE_DOMAIN (type);
1948 min = TYPE_MIN_VALUE (index_type);
1949 max = TYPE_MAX_VALUE (index_type);
1950
1951 return (integer_zerop (min)
1952 ? max
1953 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1954 }
1955 \f
1956 /* If arg is static -- a reference to an object in static storage -- then
1957 return the object. This is not the same as the C meaning of `static'.
1958 If arg isn't static, return NULL. */
1959
1960 tree
1961 staticp (tree arg)
1962 {
1963 switch (TREE_CODE (arg))
1964 {
1965 case FUNCTION_DECL:
1966 /* Nested functions are static, even though taking their address will
1967 involve a trampoline as we unnest the nested function and create
1968 the trampoline on the tree level. */
1969 return arg;
1970
1971 case VAR_DECL:
1972 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1973 && ! DECL_THREAD_LOCAL_P (arg)
1974 && ! DECL_DLLIMPORT_P (arg)
1975 ? arg : NULL);
1976
1977 case CONST_DECL:
1978 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1979 ? arg : NULL);
1980
1981 case CONSTRUCTOR:
1982 return TREE_STATIC (arg) ? arg : NULL;
1983
1984 case LABEL_DECL:
1985 case STRING_CST:
1986 return arg;
1987
1988 case COMPONENT_REF:
1989 /* If the thing being referenced is not a field, then it is
1990 something language specific. */
1991 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1992 return (*lang_hooks.staticp) (arg);
1993
1994 /* If we are referencing a bitfield, we can't evaluate an
1995 ADDR_EXPR at compile time and so it isn't a constant. */
1996 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1997 return NULL;
1998
1999 return staticp (TREE_OPERAND (arg, 0));
2000
2001 case BIT_FIELD_REF:
2002 return NULL;
2003
2004 case MISALIGNED_INDIRECT_REF:
2005 case ALIGN_INDIRECT_REF:
2006 case INDIRECT_REF:
2007 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2008
2009 case ARRAY_REF:
2010 case ARRAY_RANGE_REF:
2011 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2012 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2013 return staticp (TREE_OPERAND (arg, 0));
2014 else
2015 return false;
2016
2017 default:
2018 if ((unsigned int) TREE_CODE (arg)
2019 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
2020 return lang_hooks.staticp (arg);
2021 else
2022 return NULL;
2023 }
2024 }
2025 \f
2026 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2027 Do this to any expression which may be used in more than one place,
2028 but must be evaluated only once.
2029
2030 Normally, expand_expr would reevaluate the expression each time.
2031 Calling save_expr produces something that is evaluated and recorded
2032 the first time expand_expr is called on it. Subsequent calls to
2033 expand_expr just reuse the recorded value.
2034
2035 The call to expand_expr that generates code that actually computes
2036 the value is the first call *at compile time*. Subsequent calls
2037 *at compile time* generate code to use the saved value.
2038 This produces correct result provided that *at run time* control
2039 always flows through the insns made by the first expand_expr
2040 before reaching the other places where the save_expr was evaluated.
2041 You, the caller of save_expr, must make sure this is so.
2042
2043 Constants, and certain read-only nodes, are returned with no
2044 SAVE_EXPR because that is safe. Expressions containing placeholders
2045 are not touched; see tree.def for an explanation of what these
2046 are used for. */
2047
2048 tree
2049 save_expr (tree expr)
2050 {
2051 tree t = fold (expr);
2052 tree inner;
2053
2054 /* If the tree evaluates to a constant, then we don't want to hide that
2055 fact (i.e. this allows further folding, and direct checks for constants).
2056 However, a read-only object that has side effects cannot be bypassed.
2057 Since it is no problem to reevaluate literals, we just return the
2058 literal node. */
2059 inner = skip_simple_arithmetic (t);
2060
2061 if (TREE_INVARIANT (inner)
2062 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
2063 || TREE_CODE (inner) == SAVE_EXPR
2064 || TREE_CODE (inner) == ERROR_MARK)
2065 return t;
2066
2067 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2068 it means that the size or offset of some field of an object depends on
2069 the value within another field.
2070
2071 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2072 and some variable since it would then need to be both evaluated once and
2073 evaluated more than once. Front-ends must assure this case cannot
2074 happen by surrounding any such subexpressions in their own SAVE_EXPR
2075 and forcing evaluation at the proper time. */
2076 if (contains_placeholder_p (inner))
2077 return t;
2078
2079 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2080
2081 /* This expression might be placed ahead of a jump to ensure that the
2082 value was computed on both sides of the jump. So make sure it isn't
2083 eliminated as dead. */
2084 TREE_SIDE_EFFECTS (t) = 1;
2085 TREE_INVARIANT (t) = 1;
2086 return t;
2087 }
2088
2089 /* Look inside EXPR and into any simple arithmetic operations. Return
2090 the innermost non-arithmetic node. */
2091
2092 tree
2093 skip_simple_arithmetic (tree expr)
2094 {
2095 tree inner;
2096
2097 /* We don't care about whether this can be used as an lvalue in this
2098 context. */
2099 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2100 expr = TREE_OPERAND (expr, 0);
2101
2102 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2103 a constant, it will be more efficient to not make another SAVE_EXPR since
2104 it will allow better simplification and GCSE will be able to merge the
2105 computations if they actually occur. */
2106 inner = expr;
2107 while (1)
2108 {
2109 if (UNARY_CLASS_P (inner))
2110 inner = TREE_OPERAND (inner, 0);
2111 else if (BINARY_CLASS_P (inner))
2112 {
2113 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
2114 inner = TREE_OPERAND (inner, 0);
2115 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
2116 inner = TREE_OPERAND (inner, 1);
2117 else
2118 break;
2119 }
2120 else
2121 break;
2122 }
2123
2124 return inner;
2125 }
2126
2127 /* Return which tree structure is used by T. */
2128
2129 enum tree_node_structure_enum
2130 tree_node_structure (tree t)
2131 {
2132 enum tree_code code = TREE_CODE (t);
2133
2134 switch (TREE_CODE_CLASS (code))
2135 {
2136 case tcc_declaration:
2137 {
2138 switch (code)
2139 {
2140 case FIELD_DECL:
2141 return TS_FIELD_DECL;
2142 case PARM_DECL:
2143 return TS_PARM_DECL;
2144 case VAR_DECL:
2145 return TS_VAR_DECL;
2146 case LABEL_DECL:
2147 return TS_LABEL_DECL;
2148 case RESULT_DECL:
2149 return TS_RESULT_DECL;
2150 case CONST_DECL:
2151 return TS_CONST_DECL;
2152 case TYPE_DECL:
2153 return TS_TYPE_DECL;
2154 case FUNCTION_DECL:
2155 return TS_FUNCTION_DECL;
2156 case SYMBOL_MEMORY_TAG:
2157 case NAME_MEMORY_TAG:
2158 case STRUCT_FIELD_TAG:
2159 case MEMORY_PARTITION_TAG:
2160 return TS_MEMORY_TAG;
2161 default:
2162 return TS_DECL_NON_COMMON;
2163 }
2164 }
2165 case tcc_type:
2166 return TS_TYPE;
2167 case tcc_reference:
2168 case tcc_comparison:
2169 case tcc_unary:
2170 case tcc_binary:
2171 case tcc_expression:
2172 case tcc_statement:
2173 case tcc_vl_exp:
2174 return TS_EXP;
2175 case tcc_gimple_stmt:
2176 return TS_GIMPLE_STATEMENT;
2177 default: /* tcc_constant and tcc_exceptional */
2178 break;
2179 }
2180 switch (code)
2181 {
2182 /* tcc_constant cases. */
2183 case INTEGER_CST: return TS_INT_CST;
2184 case REAL_CST: return TS_REAL_CST;
2185 case COMPLEX_CST: return TS_COMPLEX;
2186 case VECTOR_CST: return TS_VECTOR;
2187 case STRING_CST: return TS_STRING;
2188 /* tcc_exceptional cases. */
2189 /* FIXME tuples: eventually this should be TS_BASE. For now, nothing
2190 returns TS_BASE. */
2191 case ERROR_MARK: return TS_COMMON;
2192 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2193 case TREE_LIST: return TS_LIST;
2194 case TREE_VEC: return TS_VEC;
2195 case PHI_NODE: return TS_PHI_NODE;
2196 case SSA_NAME: return TS_SSA_NAME;
2197 case PLACEHOLDER_EXPR: return TS_COMMON;
2198 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2199 case BLOCK: return TS_BLOCK;
2200 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2201 case TREE_BINFO: return TS_BINFO;
2202 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2203 case OMP_CLAUSE: return TS_OMP_CLAUSE;
2204
2205 default:
2206 gcc_unreachable ();
2207 }
2208 }
2209 \f
2210 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2211 or offset that depends on a field within a record. */
2212
2213 bool
2214 contains_placeholder_p (tree exp)
2215 {
2216 enum tree_code code;
2217
2218 if (!exp)
2219 return 0;
2220
2221 code = TREE_CODE (exp);
2222 if (code == PLACEHOLDER_EXPR)
2223 return 1;
2224
2225 switch (TREE_CODE_CLASS (code))
2226 {
2227 case tcc_reference:
2228 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2229 position computations since they will be converted into a
2230 WITH_RECORD_EXPR involving the reference, which will assume
2231 here will be valid. */
2232 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2233
2234 case tcc_exceptional:
2235 if (code == TREE_LIST)
2236 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2237 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2238 break;
2239
2240 case tcc_unary:
2241 case tcc_binary:
2242 case tcc_comparison:
2243 case tcc_expression:
2244 switch (code)
2245 {
2246 case COMPOUND_EXPR:
2247 /* Ignoring the first operand isn't quite right, but works best. */
2248 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2249
2250 case COND_EXPR:
2251 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2252 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2253 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2254
2255 default:
2256 break;
2257 }
2258
2259 switch (TREE_CODE_LENGTH (code))
2260 {
2261 case 1:
2262 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2263 case 2:
2264 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2265 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2266 default:
2267 return 0;
2268 }
2269
2270 case tcc_vl_exp:
2271 switch (code)
2272 {
2273 case CALL_EXPR:
2274 {
2275 tree arg;
2276 call_expr_arg_iterator iter;
2277 FOR_EACH_CALL_EXPR_ARG (arg, iter, exp)
2278 if (CONTAINS_PLACEHOLDER_P (arg))
2279 return 1;
2280 return 0;
2281 }
2282 default:
2283 return 0;
2284 }
2285
2286 default:
2287 return 0;
2288 }
2289 return 0;
2290 }
2291
2292 /* Return true if any part of the computation of TYPE involves a
2293 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2294 (for QUAL_UNION_TYPE) and field positions. */
2295
2296 static bool
2297 type_contains_placeholder_1 (tree type)
2298 {
2299 /* If the size contains a placeholder or the parent type (component type in
2300 the case of arrays) type involves a placeholder, this type does. */
2301 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2302 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2303 || (TREE_TYPE (type) != 0
2304 && type_contains_placeholder_p (TREE_TYPE (type))))
2305 return true;
2306
2307 /* Now do type-specific checks. Note that the last part of the check above
2308 greatly limits what we have to do below. */
2309 switch (TREE_CODE (type))
2310 {
2311 case VOID_TYPE:
2312 case COMPLEX_TYPE:
2313 case ENUMERAL_TYPE:
2314 case BOOLEAN_TYPE:
2315 case POINTER_TYPE:
2316 case OFFSET_TYPE:
2317 case REFERENCE_TYPE:
2318 case METHOD_TYPE:
2319 case FUNCTION_TYPE:
2320 case VECTOR_TYPE:
2321 return false;
2322
2323 case INTEGER_TYPE:
2324 case REAL_TYPE:
2325 /* Here we just check the bounds. */
2326 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2327 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2328
2329 case ARRAY_TYPE:
2330 /* We're already checked the component type (TREE_TYPE), so just check
2331 the index type. */
2332 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2333
2334 case RECORD_TYPE:
2335 case UNION_TYPE:
2336 case QUAL_UNION_TYPE:
2337 {
2338 tree field;
2339
2340 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2341 if (TREE_CODE (field) == FIELD_DECL
2342 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2343 || (TREE_CODE (type) == QUAL_UNION_TYPE
2344 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2345 || type_contains_placeholder_p (TREE_TYPE (field))))
2346 return true;
2347
2348 return false;
2349 }
2350
2351 default:
2352 gcc_unreachable ();
2353 }
2354 }
2355
2356 bool
2357 type_contains_placeholder_p (tree type)
2358 {
2359 bool result;
2360
2361 /* If the contains_placeholder_bits field has been initialized,
2362 then we know the answer. */
2363 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2364 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2365
2366 /* Indicate that we've seen this type node, and the answer is false.
2367 This is what we want to return if we run into recursion via fields. */
2368 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2369
2370 /* Compute the real value. */
2371 result = type_contains_placeholder_1 (type);
2372
2373 /* Store the real value. */
2374 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2375
2376 return result;
2377 }
2378 \f
2379 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2380 return a tree with all occurrences of references to F in a
2381 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2382 contains only arithmetic expressions or a CALL_EXPR with a
2383 PLACEHOLDER_EXPR occurring only in its arglist. */
2384
2385 tree
2386 substitute_in_expr (tree exp, tree f, tree r)
2387 {
2388 enum tree_code code = TREE_CODE (exp);
2389 tree op0, op1, op2, op3;
2390 tree new;
2391 tree inner;
2392
2393 /* We handle TREE_LIST and COMPONENT_REF separately. */
2394 if (code == TREE_LIST)
2395 {
2396 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2397 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2398 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2399 return exp;
2400
2401 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2402 }
2403 else if (code == COMPONENT_REF)
2404 {
2405 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2406 and it is the right field, replace it with R. */
2407 for (inner = TREE_OPERAND (exp, 0);
2408 REFERENCE_CLASS_P (inner);
2409 inner = TREE_OPERAND (inner, 0))
2410 ;
2411 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2412 && TREE_OPERAND (exp, 1) == f)
2413 return r;
2414
2415 /* If this expression hasn't been completed let, leave it alone. */
2416 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2417 return exp;
2418
2419 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2420 if (op0 == TREE_OPERAND (exp, 0))
2421 return exp;
2422
2423 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2424 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2425 }
2426 else
2427 switch (TREE_CODE_CLASS (code))
2428 {
2429 case tcc_constant:
2430 case tcc_declaration:
2431 return exp;
2432
2433 case tcc_exceptional:
2434 case tcc_unary:
2435 case tcc_binary:
2436 case tcc_comparison:
2437 case tcc_expression:
2438 case tcc_reference:
2439 switch (TREE_CODE_LENGTH (code))
2440 {
2441 case 0:
2442 return exp;
2443
2444 case 1:
2445 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2446 if (op0 == TREE_OPERAND (exp, 0))
2447 return exp;
2448
2449 new = fold_build1 (code, TREE_TYPE (exp), op0);
2450 break;
2451
2452 case 2:
2453 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2454 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2455
2456 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2457 return exp;
2458
2459 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2460 break;
2461
2462 case 3:
2463 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2464 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2465 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2466
2467 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2468 && op2 == TREE_OPERAND (exp, 2))
2469 return exp;
2470
2471 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2472 break;
2473
2474 case 4:
2475 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2476 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2477 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2478 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2479
2480 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2481 && op2 == TREE_OPERAND (exp, 2)
2482 && op3 == TREE_OPERAND (exp, 3))
2483 return exp;
2484
2485 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2486 break;
2487
2488 default:
2489 gcc_unreachable ();
2490 }
2491 break;
2492
2493 case tcc_vl_exp:
2494 {
2495 tree copy = NULL_TREE;
2496 int i;
2497 int n = TREE_OPERAND_LENGTH (exp);
2498 for (i = 1; i < n; i++)
2499 {
2500 tree op = TREE_OPERAND (exp, i);
2501 tree newop = SUBSTITUTE_IN_EXPR (op, f, r);
2502 if (newop != op)
2503 {
2504 copy = copy_node (exp);
2505 TREE_OPERAND (copy, i) = newop;
2506 }
2507 }
2508 if (copy)
2509 new = fold (copy);
2510 else
2511 return exp;
2512 }
2513
2514 default:
2515 gcc_unreachable ();
2516 }
2517
2518 TREE_READONLY (new) = TREE_READONLY (exp);
2519 return new;
2520 }
2521
2522 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2523 for it within OBJ, a tree that is an object or a chain of references. */
2524
2525 tree
2526 substitute_placeholder_in_expr (tree exp, tree obj)
2527 {
2528 enum tree_code code = TREE_CODE (exp);
2529 tree op0, op1, op2, op3;
2530
2531 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2532 in the chain of OBJ. */
2533 if (code == PLACEHOLDER_EXPR)
2534 {
2535 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2536 tree elt;
2537
2538 for (elt = obj; elt != 0;
2539 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2540 || TREE_CODE (elt) == COND_EXPR)
2541 ? TREE_OPERAND (elt, 1)
2542 : (REFERENCE_CLASS_P (elt)
2543 || UNARY_CLASS_P (elt)
2544 || BINARY_CLASS_P (elt)
2545 || VL_EXP_CLASS_P (elt)
2546 || EXPRESSION_CLASS_P (elt))
2547 ? TREE_OPERAND (elt, 0) : 0))
2548 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2549 return elt;
2550
2551 for (elt = obj; elt != 0;
2552 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2553 || TREE_CODE (elt) == COND_EXPR)
2554 ? TREE_OPERAND (elt, 1)
2555 : (REFERENCE_CLASS_P (elt)
2556 || UNARY_CLASS_P (elt)
2557 || BINARY_CLASS_P (elt)
2558 || VL_EXP_CLASS_P (elt)
2559 || EXPRESSION_CLASS_P (elt))
2560 ? TREE_OPERAND (elt, 0) : 0))
2561 if (POINTER_TYPE_P (TREE_TYPE (elt))
2562 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2563 == need_type))
2564 return fold_build1 (INDIRECT_REF, need_type, elt);
2565
2566 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2567 survives until RTL generation, there will be an error. */
2568 return exp;
2569 }
2570
2571 /* TREE_LIST is special because we need to look at TREE_VALUE
2572 and TREE_CHAIN, not TREE_OPERANDS. */
2573 else if (code == TREE_LIST)
2574 {
2575 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2576 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2577 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2578 return exp;
2579
2580 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2581 }
2582 else
2583 switch (TREE_CODE_CLASS (code))
2584 {
2585 case tcc_constant:
2586 case tcc_declaration:
2587 return exp;
2588
2589 case tcc_exceptional:
2590 case tcc_unary:
2591 case tcc_binary:
2592 case tcc_comparison:
2593 case tcc_expression:
2594 case tcc_reference:
2595 case tcc_statement:
2596 switch (TREE_CODE_LENGTH (code))
2597 {
2598 case 0:
2599 return exp;
2600
2601 case 1:
2602 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2603 if (op0 == TREE_OPERAND (exp, 0))
2604 return exp;
2605 else
2606 return fold_build1 (code, TREE_TYPE (exp), op0);
2607
2608 case 2:
2609 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2610 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2611
2612 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2613 return exp;
2614 else
2615 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2616
2617 case 3:
2618 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2619 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2620 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2621
2622 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2623 && op2 == TREE_OPERAND (exp, 2))
2624 return exp;
2625 else
2626 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2627
2628 case 4:
2629 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2630 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2631 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2632 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2633
2634 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2635 && op2 == TREE_OPERAND (exp, 2)
2636 && op3 == TREE_OPERAND (exp, 3))
2637 return exp;
2638 else
2639 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2640
2641 default:
2642 gcc_unreachable ();
2643 }
2644 break;
2645
2646 case tcc_vl_exp:
2647 {
2648 tree copy = NULL_TREE;
2649 int i;
2650 int n = TREE_OPERAND_LENGTH (exp);
2651 for (i = 1; i < n; i++)
2652 {
2653 tree op = TREE_OPERAND (exp, i);
2654 tree newop = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
2655 if (newop != op)
2656 {
2657 if (!copy)
2658 copy = copy_node (exp);
2659 TREE_OPERAND (copy, i) = newop;
2660 }
2661 }
2662 if (copy)
2663 return fold (copy);
2664 else
2665 return exp;
2666 }
2667
2668 default:
2669 gcc_unreachable ();
2670 }
2671 }
2672 \f
2673 /* Stabilize a reference so that we can use it any number of times
2674 without causing its operands to be evaluated more than once.
2675 Returns the stabilized reference. This works by means of save_expr,
2676 so see the caveats in the comments about save_expr.
2677
2678 Also allows conversion expressions whose operands are references.
2679 Any other kind of expression is returned unchanged. */
2680
2681 tree
2682 stabilize_reference (tree ref)
2683 {
2684 tree result;
2685 enum tree_code code = TREE_CODE (ref);
2686
2687 switch (code)
2688 {
2689 case VAR_DECL:
2690 case PARM_DECL:
2691 case RESULT_DECL:
2692 /* No action is needed in this case. */
2693 return ref;
2694
2695 case NOP_EXPR:
2696 case CONVERT_EXPR:
2697 case FLOAT_EXPR:
2698 case FIX_TRUNC_EXPR:
2699 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2700 break;
2701
2702 case INDIRECT_REF:
2703 result = build_nt (INDIRECT_REF,
2704 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2705 break;
2706
2707 case COMPONENT_REF:
2708 result = build_nt (COMPONENT_REF,
2709 stabilize_reference (TREE_OPERAND (ref, 0)),
2710 TREE_OPERAND (ref, 1), NULL_TREE);
2711 break;
2712
2713 case BIT_FIELD_REF:
2714 result = build_nt (BIT_FIELD_REF,
2715 stabilize_reference (TREE_OPERAND (ref, 0)),
2716 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2717 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2718 break;
2719
2720 case ARRAY_REF:
2721 result = build_nt (ARRAY_REF,
2722 stabilize_reference (TREE_OPERAND (ref, 0)),
2723 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2724 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2725 break;
2726
2727 case ARRAY_RANGE_REF:
2728 result = build_nt (ARRAY_RANGE_REF,
2729 stabilize_reference (TREE_OPERAND (ref, 0)),
2730 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2731 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2732 break;
2733
2734 case COMPOUND_EXPR:
2735 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2736 it wouldn't be ignored. This matters when dealing with
2737 volatiles. */
2738 return stabilize_reference_1 (ref);
2739
2740 /* If arg isn't a kind of lvalue we recognize, make no change.
2741 Caller should recognize the error for an invalid lvalue. */
2742 default:
2743 return ref;
2744
2745 case ERROR_MARK:
2746 return error_mark_node;
2747 }
2748
2749 TREE_TYPE (result) = TREE_TYPE (ref);
2750 TREE_READONLY (result) = TREE_READONLY (ref);
2751 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2752 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2753
2754 return result;
2755 }
2756
2757 /* Subroutine of stabilize_reference; this is called for subtrees of
2758 references. Any expression with side-effects must be put in a SAVE_EXPR
2759 to ensure that it is only evaluated once.
2760
2761 We don't put SAVE_EXPR nodes around everything, because assigning very
2762 simple expressions to temporaries causes us to miss good opportunities
2763 for optimizations. Among other things, the opportunity to fold in the
2764 addition of a constant into an addressing mode often gets lost, e.g.
2765 "y[i+1] += x;". In general, we take the approach that we should not make
2766 an assignment unless we are forced into it - i.e., that any non-side effect
2767 operator should be allowed, and that cse should take care of coalescing
2768 multiple utterances of the same expression should that prove fruitful. */
2769
2770 tree
2771 stabilize_reference_1 (tree e)
2772 {
2773 tree result;
2774 enum tree_code code = TREE_CODE (e);
2775
2776 /* We cannot ignore const expressions because it might be a reference
2777 to a const array but whose index contains side-effects. But we can
2778 ignore things that are actual constant or that already have been
2779 handled by this function. */
2780
2781 if (TREE_INVARIANT (e))
2782 return e;
2783
2784 switch (TREE_CODE_CLASS (code))
2785 {
2786 case tcc_exceptional:
2787 case tcc_type:
2788 case tcc_declaration:
2789 case tcc_comparison:
2790 case tcc_statement:
2791 case tcc_expression:
2792 case tcc_reference:
2793 case tcc_vl_exp:
2794 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2795 so that it will only be evaluated once. */
2796 /* The reference (r) and comparison (<) classes could be handled as
2797 below, but it is generally faster to only evaluate them once. */
2798 if (TREE_SIDE_EFFECTS (e))
2799 return save_expr (e);
2800 return e;
2801
2802 case tcc_constant:
2803 /* Constants need no processing. In fact, we should never reach
2804 here. */
2805 return e;
2806
2807 case tcc_binary:
2808 /* Division is slow and tends to be compiled with jumps,
2809 especially the division by powers of 2 that is often
2810 found inside of an array reference. So do it just once. */
2811 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2812 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2813 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2814 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2815 return save_expr (e);
2816 /* Recursively stabilize each operand. */
2817 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2818 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2819 break;
2820
2821 case tcc_unary:
2822 /* Recursively stabilize each operand. */
2823 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2824 break;
2825
2826 default:
2827 gcc_unreachable ();
2828 }
2829
2830 TREE_TYPE (result) = TREE_TYPE (e);
2831 TREE_READONLY (result) = TREE_READONLY (e);
2832 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2833 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2834 TREE_INVARIANT (result) = 1;
2835
2836 return result;
2837 }
2838 \f
2839 /* Low-level constructors for expressions. */
2840
2841 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2842 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2843
2844 void
2845 recompute_tree_invariant_for_addr_expr (tree t)
2846 {
2847 tree node;
2848 bool tc = true, ti = true, se = false;
2849
2850 /* We started out assuming this address is both invariant and constant, but
2851 does not have side effects. Now go down any handled components and see if
2852 any of them involve offsets that are either non-constant or non-invariant.
2853 Also check for side-effects.
2854
2855 ??? Note that this code makes no attempt to deal with the case where
2856 taking the address of something causes a copy due to misalignment. */
2857
2858 #define UPDATE_TITCSE(NODE) \
2859 do { tree _node = (NODE); \
2860 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2861 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2862 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2863
2864 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2865 node = TREE_OPERAND (node, 0))
2866 {
2867 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2868 array reference (probably made temporarily by the G++ front end),
2869 so ignore all the operands. */
2870 if ((TREE_CODE (node) == ARRAY_REF
2871 || TREE_CODE (node) == ARRAY_RANGE_REF)
2872 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2873 {
2874 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2875 if (TREE_OPERAND (node, 2))
2876 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2877 if (TREE_OPERAND (node, 3))
2878 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2879 }
2880 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2881 FIELD_DECL, apparently. The G++ front end can put something else
2882 there, at least temporarily. */
2883 else if (TREE_CODE (node) == COMPONENT_REF
2884 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2885 {
2886 if (TREE_OPERAND (node, 2))
2887 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2888 }
2889 else if (TREE_CODE (node) == BIT_FIELD_REF)
2890 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2891 }
2892
2893 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2894
2895 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2896 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2897 invariant and constant if the decl is static. It's also invariant if it's
2898 a decl in the current function. Taking the address of a volatile variable
2899 is not volatile. If it's a constant, the address is both invariant and
2900 constant. Otherwise it's neither. */
2901 if (TREE_CODE (node) == INDIRECT_REF)
2902 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2903 else if (DECL_P (node))
2904 {
2905 if (staticp (node))
2906 ;
2907 else if (decl_function_context (node) == current_function_decl
2908 /* Addresses of thread-local variables are invariant. */
2909 || (TREE_CODE (node) == VAR_DECL
2910 && DECL_THREAD_LOCAL_P (node)))
2911 tc = false;
2912 else
2913 ti = tc = false;
2914 }
2915 else if (CONSTANT_CLASS_P (node))
2916 ;
2917 else
2918 {
2919 ti = tc = false;
2920 se |= TREE_SIDE_EFFECTS (node);
2921 }
2922
2923 TREE_CONSTANT (t) = tc;
2924 TREE_INVARIANT (t) = ti;
2925 TREE_SIDE_EFFECTS (t) = se;
2926 #undef UPDATE_TITCSE
2927 }
2928
2929 /* Build an expression of code CODE, data type TYPE, and operands as
2930 specified. Expressions and reference nodes can be created this way.
2931 Constants, decls, types and misc nodes cannot be.
2932
2933 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2934 enough for all extant tree codes. */
2935
2936 tree
2937 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2938 {
2939 tree t;
2940
2941 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2942
2943 t = make_node_stat (code PASS_MEM_STAT);
2944 TREE_TYPE (t) = tt;
2945
2946 return t;
2947 }
2948
2949 tree
2950 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2951 {
2952 int length = sizeof (struct tree_exp);
2953 #ifdef GATHER_STATISTICS
2954 tree_node_kind kind;
2955 #endif
2956 tree t;
2957
2958 #ifdef GATHER_STATISTICS
2959 switch (TREE_CODE_CLASS (code))
2960 {
2961 case tcc_statement: /* an expression with side effects */
2962 kind = s_kind;
2963 break;
2964 case tcc_reference: /* a reference */
2965 kind = r_kind;
2966 break;
2967 default:
2968 kind = e_kind;
2969 break;
2970 }
2971
2972 tree_node_counts[(int) kind]++;
2973 tree_node_sizes[(int) kind] += length;
2974 #endif
2975
2976 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2977
2978 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2979
2980 memset (t, 0, sizeof (struct tree_common));
2981
2982 TREE_SET_CODE (t, code);
2983
2984 TREE_TYPE (t) = type;
2985 #ifdef USE_MAPPED_LOCATION
2986 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2987 #else
2988 SET_EXPR_LOCUS (t, NULL);
2989 #endif
2990 TREE_OPERAND (t, 0) = node;
2991 TREE_BLOCK (t) = NULL_TREE;
2992 if (node && !TYPE_P (node))
2993 {
2994 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2995 TREE_READONLY (t) = TREE_READONLY (node);
2996 }
2997
2998 if (TREE_CODE_CLASS (code) == tcc_statement)
2999 TREE_SIDE_EFFECTS (t) = 1;
3000 else switch (code)
3001 {
3002 case VA_ARG_EXPR:
3003 /* All of these have side-effects, no matter what their
3004 operands are. */
3005 TREE_SIDE_EFFECTS (t) = 1;
3006 TREE_READONLY (t) = 0;
3007 break;
3008
3009 case MISALIGNED_INDIRECT_REF:
3010 case ALIGN_INDIRECT_REF:
3011 case INDIRECT_REF:
3012 /* Whether a dereference is readonly has nothing to do with whether
3013 its operand is readonly. */
3014 TREE_READONLY (t) = 0;
3015 break;
3016
3017 case ADDR_EXPR:
3018 if (node)
3019 recompute_tree_invariant_for_addr_expr (t);
3020 break;
3021
3022 default:
3023 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3024 && node && !TYPE_P (node)
3025 && TREE_CONSTANT (node))
3026 TREE_CONSTANT (t) = 1;
3027 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3028 && node && TREE_INVARIANT (node))
3029 TREE_INVARIANT (t) = 1;
3030 if (TREE_CODE_CLASS (code) == tcc_reference
3031 && node && TREE_THIS_VOLATILE (node))
3032 TREE_THIS_VOLATILE (t) = 1;
3033 break;
3034 }
3035
3036 return t;
3037 }
3038
3039 #define PROCESS_ARG(N) \
3040 do { \
3041 TREE_OPERAND (t, N) = arg##N; \
3042 if (arg##N &&!TYPE_P (arg##N)) \
3043 { \
3044 if (TREE_SIDE_EFFECTS (arg##N)) \
3045 side_effects = 1; \
3046 if (!TREE_READONLY (arg##N)) \
3047 read_only = 0; \
3048 if (!TREE_CONSTANT (arg##N)) \
3049 constant = 0; \
3050 if (!TREE_INVARIANT (arg##N)) \
3051 invariant = 0; \
3052 } \
3053 } while (0)
3054
3055 tree
3056 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3057 {
3058 bool constant, read_only, side_effects, invariant;
3059 tree t;
3060
3061 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3062
3063 #if 1
3064 /* FIXME tuples: Statement's aren't expressions! */
3065 if (code == GIMPLE_MODIFY_STMT)
3066 return build_gimple_modify_stmt_stat (arg0, arg1 PASS_MEM_STAT);
3067 #else
3068 /* Must use build_gimple_modify_stmt to construct GIMPLE_MODIFY_STMTs. */
3069 gcc_assert (code != GIMPLE_MODIFY_STMT);
3070 #endif
3071
3072 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3073 && arg0 && arg1 && tt && POINTER_TYPE_P (tt))
3074 gcc_assert (TREE_CODE (arg0) == INTEGER_CST && TREE_CODE (arg1) == INTEGER_CST);
3075
3076 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3077 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3078 && TREE_CODE (TREE_TYPE (arg1)) == INTEGER_TYPE
3079 && tree_ssa_useless_type_conversion_1 (sizetype,
3080 TREE_TYPE (arg1)));
3081
3082 t = make_node_stat (code PASS_MEM_STAT);
3083 TREE_TYPE (t) = tt;
3084
3085 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3086 result based on those same flags for the arguments. But if the
3087 arguments aren't really even `tree' expressions, we shouldn't be trying
3088 to do this. */
3089
3090 /* Expressions without side effects may be constant if their
3091 arguments are as well. */
3092 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3093 || TREE_CODE_CLASS (code) == tcc_binary);
3094 read_only = 1;
3095 side_effects = TREE_SIDE_EFFECTS (t);
3096 invariant = constant;
3097
3098 PROCESS_ARG(0);
3099 PROCESS_ARG(1);
3100
3101 TREE_READONLY (t) = read_only;
3102 TREE_CONSTANT (t) = constant;
3103 TREE_INVARIANT (t) = invariant;
3104 TREE_SIDE_EFFECTS (t) = side_effects;
3105 TREE_THIS_VOLATILE (t)
3106 = (TREE_CODE_CLASS (code) == tcc_reference
3107 && arg0 && TREE_THIS_VOLATILE (arg0));
3108
3109 return t;
3110 }
3111
3112
3113 /* Build a GIMPLE_MODIFY_STMT node. This tree code doesn't have a
3114 type, so we can't use build2 (a.k.a. build2_stat). */
3115
3116 tree
3117 build_gimple_modify_stmt_stat (tree arg0, tree arg1 MEM_STAT_DECL)
3118 {
3119 tree t;
3120
3121 t = make_node_stat (GIMPLE_MODIFY_STMT PASS_MEM_STAT);
3122 /* ?? We don't care about setting flags for tuples... */
3123 GIMPLE_STMT_OPERAND (t, 0) = arg0;
3124 GIMPLE_STMT_OPERAND (t, 1) = arg1;
3125 return t;
3126 }
3127
3128 tree
3129 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3130 tree arg2 MEM_STAT_DECL)
3131 {
3132 bool constant, read_only, side_effects, invariant;
3133 tree t;
3134
3135 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3136 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3137
3138 t = make_node_stat (code PASS_MEM_STAT);
3139 TREE_TYPE (t) = tt;
3140
3141 /* As a special exception, if COND_EXPR has NULL branches, we
3142 assume that it is a gimple statement and always consider
3143 it to have side effects. */
3144 if (code == COND_EXPR
3145 && tt == void_type_node
3146 && arg1 == NULL_TREE
3147 && arg2 == NULL_TREE)
3148 side_effects = true;
3149 else
3150 side_effects = TREE_SIDE_EFFECTS (t);
3151
3152 PROCESS_ARG(0);
3153 PROCESS_ARG(1);
3154 PROCESS_ARG(2);
3155
3156 TREE_SIDE_EFFECTS (t) = side_effects;
3157 TREE_THIS_VOLATILE (t)
3158 = (TREE_CODE_CLASS (code) == tcc_reference
3159 && arg0 && TREE_THIS_VOLATILE (arg0));
3160
3161 return t;
3162 }
3163
3164 tree
3165 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3166 tree arg2, tree arg3 MEM_STAT_DECL)
3167 {
3168 bool constant, read_only, side_effects, invariant;
3169 tree t;
3170
3171 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3172
3173 t = make_node_stat (code PASS_MEM_STAT);
3174 TREE_TYPE (t) = tt;
3175
3176 side_effects = TREE_SIDE_EFFECTS (t);
3177
3178 PROCESS_ARG(0);
3179 PROCESS_ARG(1);
3180 PROCESS_ARG(2);
3181 PROCESS_ARG(3);
3182
3183 TREE_SIDE_EFFECTS (t) = side_effects;
3184 TREE_THIS_VOLATILE (t)
3185 = (TREE_CODE_CLASS (code) == tcc_reference
3186 && arg0 && TREE_THIS_VOLATILE (arg0));
3187
3188 return t;
3189 }
3190
3191 tree
3192 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3193 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3194 {
3195 bool constant, read_only, side_effects, invariant;
3196 tree t;
3197
3198 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3199
3200 t = make_node_stat (code PASS_MEM_STAT);
3201 TREE_TYPE (t) = tt;
3202
3203 side_effects = TREE_SIDE_EFFECTS (t);
3204
3205 PROCESS_ARG(0);
3206 PROCESS_ARG(1);
3207 PROCESS_ARG(2);
3208 PROCESS_ARG(3);
3209 PROCESS_ARG(4);
3210
3211 TREE_SIDE_EFFECTS (t) = side_effects;
3212 TREE_THIS_VOLATILE (t)
3213 = (TREE_CODE_CLASS (code) == tcc_reference
3214 && arg0 && TREE_THIS_VOLATILE (arg0));
3215
3216 return t;
3217 }
3218
3219 tree
3220 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3221 tree arg2, tree arg3, tree arg4, tree arg5,
3222 tree arg6 MEM_STAT_DECL)
3223 {
3224 bool constant, read_only, side_effects, invariant;
3225 tree t;
3226
3227 gcc_assert (code == TARGET_MEM_REF);
3228
3229 t = make_node_stat (code PASS_MEM_STAT);
3230 TREE_TYPE (t) = tt;
3231
3232 side_effects = TREE_SIDE_EFFECTS (t);
3233
3234 PROCESS_ARG(0);
3235 PROCESS_ARG(1);
3236 PROCESS_ARG(2);
3237 PROCESS_ARG(3);
3238 PROCESS_ARG(4);
3239 PROCESS_ARG(5);
3240 PROCESS_ARG(6);
3241
3242 TREE_SIDE_EFFECTS (t) = side_effects;
3243 TREE_THIS_VOLATILE (t) = 0;
3244
3245 return t;
3246 }
3247
3248 /* Similar except don't specify the TREE_TYPE
3249 and leave the TREE_SIDE_EFFECTS as 0.
3250 It is permissible for arguments to be null,
3251 or even garbage if their values do not matter. */
3252
3253 tree
3254 build_nt (enum tree_code code, ...)
3255 {
3256 tree t;
3257 int length;
3258 int i;
3259 va_list p;
3260
3261 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3262
3263 va_start (p, code);
3264
3265 t = make_node (code);
3266 length = TREE_CODE_LENGTH (code);
3267
3268 for (i = 0; i < length; i++)
3269 TREE_OPERAND (t, i) = va_arg (p, tree);
3270
3271 va_end (p);
3272 return t;
3273 }
3274
3275 /* Similar to build_nt, but for creating a CALL_EXPR object with
3276 ARGLIST passed as a list. */
3277
3278 tree
3279 build_nt_call_list (tree fn, tree arglist)
3280 {
3281 tree t;
3282 int i;
3283
3284 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3285 CALL_EXPR_FN (t) = fn;
3286 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3287 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3288 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3289 return t;
3290 }
3291 \f
3292 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3293 We do NOT enter this node in any sort of symbol table.
3294
3295 layout_decl is used to set up the decl's storage layout.
3296 Other slots are initialized to 0 or null pointers. */
3297
3298 tree
3299 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3300 {
3301 tree t;
3302
3303 t = make_node_stat (code PASS_MEM_STAT);
3304
3305 /* if (type == error_mark_node)
3306 type = integer_type_node; */
3307 /* That is not done, deliberately, so that having error_mark_node
3308 as the type can suppress useless errors in the use of this variable. */
3309
3310 DECL_NAME (t) = name;
3311 TREE_TYPE (t) = type;
3312
3313 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3314 layout_decl (t, 0);
3315 else if (code == FUNCTION_DECL)
3316 DECL_MODE (t) = FUNCTION_MODE;
3317
3318 return t;
3319 }
3320
3321 /* Builds and returns function declaration with NAME and TYPE. */
3322
3323 tree
3324 build_fn_decl (const char *name, tree type)
3325 {
3326 tree id = get_identifier (name);
3327 tree decl = build_decl (FUNCTION_DECL, id, type);
3328
3329 DECL_EXTERNAL (decl) = 1;
3330 TREE_PUBLIC (decl) = 1;
3331 DECL_ARTIFICIAL (decl) = 1;
3332 TREE_NOTHROW (decl) = 1;
3333
3334 return decl;
3335 }
3336
3337 \f
3338 /* BLOCK nodes are used to represent the structure of binding contours
3339 and declarations, once those contours have been exited and their contents
3340 compiled. This information is used for outputting debugging info. */
3341
3342 tree
3343 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3344 {
3345 tree block = make_node (BLOCK);
3346
3347 BLOCK_VARS (block) = vars;
3348 BLOCK_SUBBLOCKS (block) = subblocks;
3349 BLOCK_SUPERCONTEXT (block) = supercontext;
3350 BLOCK_CHAIN (block) = chain;
3351 return block;
3352 }
3353
3354 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3355 /* ??? gengtype doesn't handle conditionals */
3356 static GTY(()) source_locus last_annotated_node;
3357 #endif
3358
3359 #ifdef USE_MAPPED_LOCATION
3360
3361 expanded_location
3362 expand_location (source_location loc)
3363 {
3364 expanded_location xloc;
3365 if (loc == 0)
3366 {
3367 xloc.file = NULL;
3368 xloc.line = 0;
3369 xloc.column = 0;
3370 }
3371 else
3372 {
3373 const struct line_map *map = linemap_lookup (&line_table, loc);
3374 xloc.file = map->to_file;
3375 xloc.line = SOURCE_LINE (map, loc);
3376 xloc.column = SOURCE_COLUMN (map, loc);
3377 };
3378 return xloc;
3379 }
3380
3381 #else
3382
3383 /* Record the exact location where an expression or an identifier were
3384 encountered. */
3385
3386 void
3387 annotate_with_file_line (tree node, const char *file, int line)
3388 {
3389 /* Roughly one percent of the calls to this function are to annotate
3390 a node with the same information already attached to that node!
3391 Just return instead of wasting memory. */
3392 if (EXPR_LOCUS (node)
3393 && EXPR_LINENO (node) == line
3394 && (EXPR_FILENAME (node) == file
3395 || !strcmp (EXPR_FILENAME (node), file)))
3396 {
3397 last_annotated_node = EXPR_LOCUS (node);
3398 return;
3399 }
3400
3401 /* In heavily macroized code (such as GCC itself) this single
3402 entry cache can reduce the number of allocations by more
3403 than half. */
3404 if (last_annotated_node
3405 && last_annotated_node->line == line
3406 && (last_annotated_node->file == file
3407 || !strcmp (last_annotated_node->file, file)))
3408 {
3409 SET_EXPR_LOCUS (node, last_annotated_node);
3410 return;
3411 }
3412
3413 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3414 EXPR_LINENO (node) = line;
3415 EXPR_FILENAME (node) = file;
3416 last_annotated_node = EXPR_LOCUS (node);
3417 }
3418
3419 void
3420 annotate_with_locus (tree node, location_t locus)
3421 {
3422 annotate_with_file_line (node, locus.file, locus.line);
3423 }
3424 #endif
3425 \f
3426 /* Source location accessor functions. */
3427
3428
3429 /* The source location of this expression. Non-tree_exp nodes such as
3430 decls and constants can be shared among multiple locations, so
3431 return nothing. */
3432 location_t
3433 expr_location (tree node)
3434 {
3435 #ifdef USE_MAPPED_LOCATION
3436 if (GIMPLE_STMT_P (node))
3437 return GIMPLE_STMT_LOCUS (node);
3438 return EXPR_P (node) ? node->exp.locus : UNKNOWN_LOCATION;
3439 #else
3440 if (GIMPLE_STMT_P (node))
3441 return EXPR_HAS_LOCATION (node)
3442 ? *GIMPLE_STMT_LOCUS (node) : UNKNOWN_LOCATION;
3443 return EXPR_HAS_LOCATION (node) ? *node->exp.locus : UNKNOWN_LOCATION;
3444 #endif
3445 }
3446
3447 void
3448 set_expr_location (tree node, location_t locus)
3449 {
3450 #ifdef USE_MAPPED_LOCATION
3451 if (GIMPLE_STMT_P (node))
3452 GIMPLE_STMT_LOCUS (node) = locus;
3453 else
3454 EXPR_CHECK (node)->exp.locus = locus;
3455 #else
3456 annotate_with_locus (node, locus);
3457 #endif
3458 }
3459
3460 bool
3461 expr_has_location (tree node)
3462 {
3463 #ifdef USE_MAPPED_LOCATION
3464 return expr_location (node) != UNKNOWN_LOCATION;
3465 #else
3466 return expr_locus (node) != NULL;
3467 #endif
3468 }
3469
3470 #ifdef USE_MAPPED_LOCATION
3471 source_location *
3472 #else
3473 source_locus
3474 #endif
3475 expr_locus (tree node)
3476 {
3477 #ifdef USE_MAPPED_LOCATION
3478 if (GIMPLE_STMT_P (node))
3479 return &GIMPLE_STMT_LOCUS (node);
3480 return EXPR_P (node) ? &node->exp.locus : (location_t *) NULL;
3481 #else
3482 if (GIMPLE_STMT_P (node))
3483 return GIMPLE_STMT_LOCUS (node);
3484 /* ?? The cast below was originally "(location_t *)" in the macro,
3485 but that makes no sense. ?? */
3486 return EXPR_P (node) ? node->exp.locus : (source_locus) NULL;
3487 #endif
3488 }
3489
3490 void
3491 set_expr_locus (tree node,
3492 #ifdef USE_MAPPED_LOCATION
3493 source_location *loc
3494 #else
3495 source_locus loc
3496 #endif
3497 )
3498 {
3499 #ifdef USE_MAPPED_LOCATION
3500 if (loc == NULL)
3501 {
3502 if (GIMPLE_STMT_P (node))
3503 GIMPLE_STMT_LOCUS (node) = UNKNOWN_LOCATION;
3504 else
3505 EXPR_CHECK (node)->exp.locus = UNKNOWN_LOCATION;
3506 }
3507 else
3508 {
3509 if (GIMPLE_STMT_P (node))
3510 GIMPLE_STMT_LOCUS (node) = *loc;
3511 else
3512 EXPR_CHECK (node)->exp.locus = *loc;
3513 }
3514 #else
3515 if (GIMPLE_STMT_P (node))
3516 GIMPLE_STMT_LOCUS (node) = loc;
3517 else
3518 EXPR_CHECK (node)->exp.locus = loc;
3519 #endif
3520 }
3521
3522 const char **
3523 expr_filename (tree node)
3524 {
3525 #ifdef USE_MAPPED_LOCATION
3526 if (GIMPLE_STMT_P (node))
3527 return &LOCATION_FILE (GIMPLE_STMT_LOCUS (node));
3528 return &LOCATION_FILE (EXPR_CHECK (node)->exp.locus);
3529 #else
3530 if (GIMPLE_STMT_P (node))
3531 return &GIMPLE_STMT_LOCUS (node)->file;
3532 return &(EXPR_CHECK (node)->exp.locus->file);
3533 #endif
3534 }
3535
3536 int *
3537 expr_lineno (tree node)
3538 {
3539 #ifdef USE_MAPPED_LOCATION
3540 if (GIMPLE_STMT_P (node))
3541 return &LOCATION_LINE (GIMPLE_STMT_LOCUS (node));
3542 return &LOCATION_LINE (EXPR_CHECK (node)->exp.locus);
3543 #else
3544 if (GIMPLE_STMT_P (node))
3545 return &GIMPLE_STMT_LOCUS (node)->line;
3546 return &EXPR_CHECK (node)->exp.locus->line;
3547 #endif
3548 }
3549 \f
3550 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3551 is ATTRIBUTE. */
3552
3553 tree
3554 build_decl_attribute_variant (tree ddecl, tree attribute)
3555 {
3556 DECL_ATTRIBUTES (ddecl) = attribute;
3557 return ddecl;
3558 }
3559
3560 /* Borrowed from hashtab.c iterative_hash implementation. */
3561 #define mix(a,b,c) \
3562 { \
3563 a -= b; a -= c; a ^= (c>>13); \
3564 b -= c; b -= a; b ^= (a<< 8); \
3565 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3566 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3567 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3568 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3569 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3570 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3571 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3572 }
3573
3574
3575 /* Produce good hash value combining VAL and VAL2. */
3576 static inline hashval_t
3577 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3578 {
3579 /* the golden ratio; an arbitrary value. */
3580 hashval_t a = 0x9e3779b9;
3581
3582 mix (a, val, val2);
3583 return val2;
3584 }
3585
3586 /* Produce good hash value combining PTR and VAL2. */
3587 static inline hashval_t
3588 iterative_hash_pointer (void *ptr, hashval_t val2)
3589 {
3590 if (sizeof (ptr) == sizeof (hashval_t))
3591 return iterative_hash_hashval_t ((size_t) ptr, val2);
3592 else
3593 {
3594 hashval_t a = (hashval_t) (size_t) ptr;
3595 /* Avoid warnings about shifting of more than the width of the type on
3596 hosts that won't execute this path. */
3597 int zero = 0;
3598 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3599 mix (a, b, val2);
3600 return val2;
3601 }
3602 }
3603
3604 /* Produce good hash value combining VAL and VAL2. */
3605 static inline hashval_t
3606 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3607 {
3608 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3609 return iterative_hash_hashval_t (val, val2);
3610 else
3611 {
3612 hashval_t a = (hashval_t) val;
3613 /* Avoid warnings about shifting of more than the width of the type on
3614 hosts that won't execute this path. */
3615 int zero = 0;
3616 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3617 mix (a, b, val2);
3618 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3619 {
3620 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3621 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3622 mix (a, b, val2);
3623 }
3624 return val2;
3625 }
3626 }
3627
3628 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3629 is ATTRIBUTE and its qualifiers are QUALS.
3630
3631 Record such modified types already made so we don't make duplicates. */
3632
3633 static tree
3634 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
3635 {
3636 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3637 {
3638 hashval_t hashcode = 0;
3639 tree ntype;
3640 enum tree_code code = TREE_CODE (ttype);
3641
3642 ntype = copy_node (ttype);
3643
3644 TYPE_POINTER_TO (ntype) = 0;
3645 TYPE_REFERENCE_TO (ntype) = 0;
3646 TYPE_ATTRIBUTES (ntype) = attribute;
3647
3648 if (TYPE_STRUCTURAL_EQUALITY_P (ttype))
3649 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3650 else
3651 TYPE_CANONICAL (ntype)
3652 = build_qualified_type (TYPE_CANONICAL (ttype), quals);
3653
3654 /* Create a new main variant of TYPE. */
3655 TYPE_MAIN_VARIANT (ntype) = ntype;
3656 TYPE_NEXT_VARIANT (ntype) = 0;
3657 set_type_quals (ntype, TYPE_UNQUALIFIED);
3658
3659 hashcode = iterative_hash_object (code, hashcode);
3660 if (TREE_TYPE (ntype))
3661 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3662 hashcode);
3663 hashcode = attribute_hash_list (attribute, hashcode);
3664
3665 switch (TREE_CODE (ntype))
3666 {
3667 case FUNCTION_TYPE:
3668 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3669 break;
3670 case ARRAY_TYPE:
3671 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3672 hashcode);
3673 break;
3674 case INTEGER_TYPE:
3675 hashcode = iterative_hash_object
3676 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3677 hashcode = iterative_hash_object
3678 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3679 break;
3680 case REAL_TYPE:
3681 {
3682 unsigned int precision = TYPE_PRECISION (ntype);
3683 hashcode = iterative_hash_object (precision, hashcode);
3684 }
3685 break;
3686 default:
3687 break;
3688 }
3689
3690 ntype = type_hash_canon (hashcode, ntype);
3691
3692 /* If the target-dependent attributes make NTYPE different from
3693 its canonical type, we will need to use structural equality
3694 checks for this qualified type. */
3695 if (!targetm.comp_type_attributes (ntype, ttype))
3696 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
3697
3698 ttype = build_qualified_type (ntype, quals);
3699 }
3700
3701 return ttype;
3702 }
3703
3704
3705 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3706 is ATTRIBUTE.
3707
3708 Record such modified types already made so we don't make duplicates. */
3709
3710 tree
3711 build_type_attribute_variant (tree ttype, tree attribute)
3712 {
3713 return build_type_attribute_qual_variant (ttype, attribute,
3714 TYPE_QUALS (ttype));
3715 }
3716
3717 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3718 or zero if not.
3719
3720 We try both `text' and `__text__', ATTR may be either one. */
3721 /* ??? It might be a reasonable simplification to require ATTR to be only
3722 `text'. One might then also require attribute lists to be stored in
3723 their canonicalized form. */
3724
3725 static int
3726 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3727 {
3728 int ident_len;
3729 const char *p;
3730
3731 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3732 return 0;
3733
3734 p = IDENTIFIER_POINTER (ident);
3735 ident_len = IDENTIFIER_LENGTH (ident);
3736
3737 if (ident_len == attr_len
3738 && strcmp (attr, p) == 0)
3739 return 1;
3740
3741 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3742 if (attr[0] == '_')
3743 {
3744 gcc_assert (attr[1] == '_');
3745 gcc_assert (attr[attr_len - 2] == '_');
3746 gcc_assert (attr[attr_len - 1] == '_');
3747 if (ident_len == attr_len - 4
3748 && strncmp (attr + 2, p, attr_len - 4) == 0)
3749 return 1;
3750 }
3751 else
3752 {
3753 if (ident_len == attr_len + 4
3754 && p[0] == '_' && p[1] == '_'
3755 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3756 && strncmp (attr, p + 2, attr_len) == 0)
3757 return 1;
3758 }
3759
3760 return 0;
3761 }
3762
3763 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3764 or zero if not.
3765
3766 We try both `text' and `__text__', ATTR may be either one. */
3767
3768 int
3769 is_attribute_p (const char *attr, tree ident)
3770 {
3771 return is_attribute_with_length_p (attr, strlen (attr), ident);
3772 }
3773
3774 /* Given an attribute name and a list of attributes, return a pointer to the
3775 attribute's list element if the attribute is part of the list, or NULL_TREE
3776 if not found. If the attribute appears more than once, this only
3777 returns the first occurrence; the TREE_CHAIN of the return value should
3778 be passed back in if further occurrences are wanted. */
3779
3780 tree
3781 lookup_attribute (const char *attr_name, tree list)
3782 {
3783 tree l;
3784 size_t attr_len = strlen (attr_name);
3785
3786 for (l = list; l; l = TREE_CHAIN (l))
3787 {
3788 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3789 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3790 return l;
3791 }
3792
3793 return NULL_TREE;
3794 }
3795
3796 /* Remove any instances of attribute ATTR_NAME in LIST and return the
3797 modified list. */
3798
3799 tree
3800 remove_attribute (const char *attr_name, tree list)
3801 {
3802 tree *p;
3803 size_t attr_len = strlen (attr_name);
3804
3805 for (p = &list; *p; )
3806 {
3807 tree l = *p;
3808 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3809 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3810 *p = TREE_CHAIN (l);
3811 else
3812 p = &TREE_CHAIN (l);
3813 }
3814
3815 return list;
3816 }
3817
3818 /* Return an attribute list that is the union of a1 and a2. */
3819
3820 tree
3821 merge_attributes (tree a1, tree a2)
3822 {
3823 tree attributes;
3824
3825 /* Either one unset? Take the set one. */
3826
3827 if ((attributes = a1) == 0)
3828 attributes = a2;
3829
3830 /* One that completely contains the other? Take it. */
3831
3832 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3833 {
3834 if (attribute_list_contained (a2, a1))
3835 attributes = a2;
3836 else
3837 {
3838 /* Pick the longest list, and hang on the other list. */
3839
3840 if (list_length (a1) < list_length (a2))
3841 attributes = a2, a2 = a1;
3842
3843 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3844 {
3845 tree a;
3846 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3847 attributes);
3848 a != NULL_TREE;
3849 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3850 TREE_CHAIN (a)))
3851 {
3852 if (TREE_VALUE (a) != NULL
3853 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
3854 && TREE_VALUE (a2) != NULL
3855 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
3856 {
3857 if (simple_cst_list_equal (TREE_VALUE (a),
3858 TREE_VALUE (a2)) == 1)
3859 break;
3860 }
3861 else if (simple_cst_equal (TREE_VALUE (a),
3862 TREE_VALUE (a2)) == 1)
3863 break;
3864 }
3865 if (a == NULL_TREE)
3866 {
3867 a1 = copy_node (a2);
3868 TREE_CHAIN (a1) = attributes;
3869 attributes = a1;
3870 }
3871 }
3872 }
3873 }
3874 return attributes;
3875 }
3876
3877 /* Given types T1 and T2, merge their attributes and return
3878 the result. */
3879
3880 tree
3881 merge_type_attributes (tree t1, tree t2)
3882 {
3883 return merge_attributes (TYPE_ATTRIBUTES (t1),
3884 TYPE_ATTRIBUTES (t2));
3885 }
3886
3887 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3888 the result. */
3889
3890 tree
3891 merge_decl_attributes (tree olddecl, tree newdecl)
3892 {
3893 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3894 DECL_ATTRIBUTES (newdecl));
3895 }
3896
3897 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3898
3899 /* Specialization of merge_decl_attributes for various Windows targets.
3900
3901 This handles the following situation:
3902
3903 __declspec (dllimport) int foo;
3904 int foo;
3905
3906 The second instance of `foo' nullifies the dllimport. */
3907
3908 tree
3909 merge_dllimport_decl_attributes (tree old, tree new)
3910 {
3911 tree a;
3912 int delete_dllimport_p = 1;
3913
3914 /* What we need to do here is remove from `old' dllimport if it doesn't
3915 appear in `new'. dllimport behaves like extern: if a declaration is
3916 marked dllimport and a definition appears later, then the object
3917 is not dllimport'd. We also remove a `new' dllimport if the old list
3918 contains dllexport: dllexport always overrides dllimport, regardless
3919 of the order of declaration. */
3920 if (!VAR_OR_FUNCTION_DECL_P (new))
3921 delete_dllimport_p = 0;
3922 else if (DECL_DLLIMPORT_P (new)
3923 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3924 {
3925 DECL_DLLIMPORT_P (new) = 0;
3926 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3927 "dllimport ignored", new);
3928 }
3929 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3930 {
3931 /* Warn about overriding a symbol that has already been used. eg:
3932 extern int __attribute__ ((dllimport)) foo;
3933 int* bar () {return &foo;}
3934 int foo;
3935 */
3936 if (TREE_USED (old))
3937 {
3938 warning (0, "%q+D redeclared without dllimport attribute "
3939 "after being referenced with dll linkage", new);
3940 /* If we have used a variable's address with dllimport linkage,
3941 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3942 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3943 computed.
3944 We still remove the attribute so that assembler code refers
3945 to '&foo rather than '_imp__foo'. */
3946 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3947 DECL_DLLIMPORT_P (new) = 1;
3948 }
3949
3950 /* Let an inline definition silently override the external reference,
3951 but otherwise warn about attribute inconsistency. */
3952 else if (TREE_CODE (new) == VAR_DECL
3953 || !DECL_DECLARED_INLINE_P (new))
3954 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3955 "previous dllimport ignored", new);
3956 }
3957 else
3958 delete_dllimport_p = 0;
3959
3960 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3961
3962 if (delete_dllimport_p)
3963 {
3964 tree prev, t;
3965 const size_t attr_len = strlen ("dllimport");
3966
3967 /* Scan the list for dllimport and delete it. */
3968 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3969 {
3970 if (is_attribute_with_length_p ("dllimport", attr_len,
3971 TREE_PURPOSE (t)))
3972 {
3973 if (prev == NULL_TREE)
3974 a = TREE_CHAIN (a);
3975 else
3976 TREE_CHAIN (prev) = TREE_CHAIN (t);
3977 break;
3978 }
3979 }
3980 }
3981
3982 return a;
3983 }
3984
3985 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3986 struct attribute_spec.handler. */
3987
3988 tree
3989 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3990 bool *no_add_attrs)
3991 {
3992 tree node = *pnode;
3993
3994 /* These attributes may apply to structure and union types being created,
3995 but otherwise should pass to the declaration involved. */
3996 if (!DECL_P (node))
3997 {
3998 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3999 | (int) ATTR_FLAG_ARRAY_NEXT))
4000 {
4001 *no_add_attrs = true;
4002 return tree_cons (name, args, NULL_TREE);
4003 }
4004 if (TREE_CODE (node) == RECORD_TYPE
4005 || TREE_CODE (node) == UNION_TYPE)
4006 {
4007 node = TYPE_NAME (node);
4008 if (!node)
4009 return NULL_TREE;
4010 }
4011 else
4012 {
4013 warning (OPT_Wattributes, "%qs attribute ignored",
4014 IDENTIFIER_POINTER (name));
4015 *no_add_attrs = true;
4016 return NULL_TREE;
4017 }
4018 }
4019
4020 if (TREE_CODE (node) != FUNCTION_DECL
4021 && TREE_CODE (node) != VAR_DECL
4022 && TREE_CODE (node) != TYPE_DECL)
4023 {
4024 *no_add_attrs = true;
4025 warning (OPT_Wattributes, "%qs attribute ignored",
4026 IDENTIFIER_POINTER (name));
4027 return NULL_TREE;
4028 }
4029
4030 /* Report error on dllimport ambiguities seen now before they cause
4031 any damage. */
4032 else if (is_attribute_p ("dllimport", name))
4033 {
4034 /* Honor any target-specific overrides. */
4035 if (!targetm.valid_dllimport_attribute_p (node))
4036 *no_add_attrs = true;
4037
4038 else if (TREE_CODE (node) == FUNCTION_DECL
4039 && DECL_DECLARED_INLINE_P (node))
4040 {
4041 warning (OPT_Wattributes, "inline function %q+D declared as "
4042 " dllimport: attribute ignored", node);
4043 *no_add_attrs = true;
4044 }
4045 /* Like MS, treat definition of dllimported variables and
4046 non-inlined functions on declaration as syntax errors. */
4047 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
4048 {
4049 error ("function %q+D definition is marked dllimport", node);
4050 *no_add_attrs = true;
4051 }
4052
4053 else if (TREE_CODE (node) == VAR_DECL)
4054 {
4055 if (DECL_INITIAL (node))
4056 {
4057 error ("variable %q+D definition is marked dllimport",
4058 node);
4059 *no_add_attrs = true;
4060 }
4061
4062 /* `extern' needn't be specified with dllimport.
4063 Specify `extern' now and hope for the best. Sigh. */
4064 DECL_EXTERNAL (node) = 1;
4065 /* Also, implicitly give dllimport'd variables declared within
4066 a function global scope, unless declared static. */
4067 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
4068 TREE_PUBLIC (node) = 1;
4069 }
4070
4071 if (*no_add_attrs == false)
4072 DECL_DLLIMPORT_P (node) = 1;
4073 }
4074
4075 /* Report error if symbol is not accessible at global scope. */
4076 if (!TREE_PUBLIC (node)
4077 && (TREE_CODE (node) == VAR_DECL
4078 || TREE_CODE (node) == FUNCTION_DECL))
4079 {
4080 error ("external linkage required for symbol %q+D because of "
4081 "%qs attribute", node, IDENTIFIER_POINTER (name));
4082 *no_add_attrs = true;
4083 }
4084
4085 /* A dllexport'd entity must have default visibility so that other
4086 program units (shared libraries or the main executable) can see
4087 it. A dllimport'd entity must have default visibility so that
4088 the linker knows that undefined references within this program
4089 unit can be resolved by the dynamic linker. */
4090 if (!*no_add_attrs)
4091 {
4092 if (DECL_VISIBILITY_SPECIFIED (node)
4093 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
4094 error ("%qs implies default visibility, but %qD has already "
4095 "been declared with a different visibility",
4096 IDENTIFIER_POINTER (name), node);
4097 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
4098 DECL_VISIBILITY_SPECIFIED (node) = 1;
4099 }
4100
4101 return NULL_TREE;
4102 }
4103
4104 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
4105 \f
4106 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
4107 of the various TYPE_QUAL values. */
4108
4109 static void
4110 set_type_quals (tree type, int type_quals)
4111 {
4112 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
4113 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
4114 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
4115 }
4116
4117 /* Returns true iff cand is equivalent to base with type_quals. */
4118
4119 bool
4120 check_qualified_type (tree cand, tree base, int type_quals)
4121 {
4122 return (TYPE_QUALS (cand) == type_quals
4123 && TYPE_NAME (cand) == TYPE_NAME (base)
4124 /* Apparently this is needed for Objective-C. */
4125 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
4126 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
4127 TYPE_ATTRIBUTES (base)));
4128 }
4129
4130 /* Return a version of the TYPE, qualified as indicated by the
4131 TYPE_QUALS, if one exists. If no qualified version exists yet,
4132 return NULL_TREE. */
4133
4134 tree
4135 get_qualified_type (tree type, int type_quals)
4136 {
4137 tree t;
4138
4139 if (TYPE_QUALS (type) == type_quals)
4140 return type;
4141
4142 /* Search the chain of variants to see if there is already one there just
4143 like the one we need to have. If so, use that existing one. We must
4144 preserve the TYPE_NAME, since there is code that depends on this. */
4145 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
4146 if (check_qualified_type (t, type, type_quals))
4147 return t;
4148
4149 return NULL_TREE;
4150 }
4151
4152 /* Like get_qualified_type, but creates the type if it does not
4153 exist. This function never returns NULL_TREE. */
4154
4155 tree
4156 build_qualified_type (tree type, int type_quals)
4157 {
4158 tree t;
4159
4160 /* See if we already have the appropriate qualified variant. */
4161 t = get_qualified_type (type, type_quals);
4162
4163 /* If not, build it. */
4164 if (!t)
4165 {
4166 t = build_variant_type_copy (type);
4167 set_type_quals (t, type_quals);
4168
4169 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4170 /* Propagate structural equality. */
4171 SET_TYPE_STRUCTURAL_EQUALITY (t);
4172 else if (TYPE_CANONICAL (type) != type)
4173 /* Build the underlying canonical type, since it is different
4174 from TYPE. */
4175 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
4176 type_quals);
4177 else
4178 /* T is its own canonical type. */
4179 TYPE_CANONICAL (t) = t;
4180
4181 }
4182
4183 return t;
4184 }
4185
4186 /* Create a new distinct copy of TYPE. The new type is made its own
4187 MAIN_VARIANT. If TYPE requires structural equality checks, the
4188 resulting type requires structural equality checks; otherwise, its
4189 TYPE_CANONICAL points to itself. */
4190
4191 tree
4192 build_distinct_type_copy (tree type)
4193 {
4194 tree t = copy_node (type);
4195
4196 TYPE_POINTER_TO (t) = 0;
4197 TYPE_REFERENCE_TO (t) = 0;
4198
4199 /* Set the canonical type either to a new equivalence class, or
4200 propagate the need for structural equality checks. */
4201 if (TYPE_STRUCTURAL_EQUALITY_P (type))
4202 SET_TYPE_STRUCTURAL_EQUALITY (t);
4203 else
4204 TYPE_CANONICAL (t) = t;
4205
4206 /* Make it its own variant. */
4207 TYPE_MAIN_VARIANT (t) = t;
4208 TYPE_NEXT_VARIANT (t) = 0;
4209
4210 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
4211 whose TREE_TYPE is not t. This can also happen in the Ada
4212 frontend when using subtypes. */
4213
4214 return t;
4215 }
4216
4217 /* Create a new variant of TYPE, equivalent but distinct. This is so
4218 the caller can modify it. TYPE_CANONICAL for the return type will
4219 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
4220 are considered equal by the language itself (or that both types
4221 require structural equality checks). */
4222
4223 tree
4224 build_variant_type_copy (tree type)
4225 {
4226 tree t, m = TYPE_MAIN_VARIANT (type);
4227
4228 t = build_distinct_type_copy (type);
4229
4230 /* Since we're building a variant, assume that it is a non-semantic
4231 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
4232 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
4233
4234 /* Add the new type to the chain of variants of TYPE. */
4235 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
4236 TYPE_NEXT_VARIANT (m) = t;
4237 TYPE_MAIN_VARIANT (t) = m;
4238
4239 return t;
4240 }
4241 \f
4242 /* Return true if the from tree in both tree maps are equal. */
4243
4244 int
4245 tree_map_base_eq (const void *va, const void *vb)
4246 {
4247 const struct tree_map_base *a = va, *b = vb;
4248 return (a->from == b->from);
4249 }
4250
4251 /* Hash a from tree in a tree_map. */
4252
4253 unsigned int
4254 tree_map_base_hash (const void *item)
4255 {
4256 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
4257 }
4258
4259 /* Return true if this tree map structure is marked for garbage collection
4260 purposes. We simply return true if the from tree is marked, so that this
4261 structure goes away when the from tree goes away. */
4262
4263 int
4264 tree_map_base_marked_p (const void *p)
4265 {
4266 return ggc_marked_p (((struct tree_map_base *) p)->from);
4267 }
4268
4269 unsigned int
4270 tree_map_hash (const void *item)
4271 {
4272 return (((const struct tree_map *) item)->hash);
4273 }
4274
4275 /* Return the initialization priority for DECL. */
4276
4277 priority_type
4278 decl_init_priority_lookup (tree decl)
4279 {
4280 struct tree_priority_map *h;
4281 struct tree_map_base in;
4282
4283 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4284 gcc_assert (TREE_CODE (decl) == VAR_DECL
4285 ? DECL_HAS_INIT_PRIORITY_P (decl)
4286 : DECL_STATIC_CONSTRUCTOR (decl));
4287 in.from = decl;
4288 h = htab_find (init_priority_for_decl, &in);
4289 return h ? h->init : DEFAULT_INIT_PRIORITY;
4290 }
4291
4292 /* Return the finalization priority for DECL. */
4293
4294 priority_type
4295 decl_fini_priority_lookup (tree decl)
4296 {
4297 struct tree_priority_map *h;
4298 struct tree_map_base in;
4299
4300 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4301 gcc_assert (DECL_STATIC_DESTRUCTOR (decl));
4302 in.from = decl;
4303 h = htab_find (init_priority_for_decl, &in);
4304 return h ? h->fini : DEFAULT_INIT_PRIORITY;
4305 }
4306
4307 /* Return the initialization and finalization priority information for
4308 DECL. If there is no previous priority information, a freshly
4309 allocated structure is returned. */
4310
4311 static struct tree_priority_map *
4312 decl_priority_info (tree decl)
4313 {
4314 struct tree_priority_map in;
4315 struct tree_priority_map *h;
4316 void **loc;
4317
4318 in.base.from = decl;
4319 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
4320 h = *loc;
4321 if (!h)
4322 {
4323 h = GGC_CNEW (struct tree_priority_map);
4324 *loc = h;
4325 h->base.from = decl;
4326 h->init = DEFAULT_INIT_PRIORITY;
4327 h->fini = DEFAULT_INIT_PRIORITY;
4328 }
4329
4330 return h;
4331 }
4332
4333 /* Set the initialization priority for DECL to PRIORITY. */
4334
4335 void
4336 decl_init_priority_insert (tree decl, priority_type priority)
4337 {
4338 struct tree_priority_map *h;
4339
4340 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
4341 h = decl_priority_info (decl);
4342 h->init = priority;
4343 }
4344
4345 /* Set the finalization priority for DECL to PRIORITY. */
4346
4347 void
4348 decl_fini_priority_insert (tree decl, priority_type priority)
4349 {
4350 struct tree_priority_map *h;
4351
4352 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
4353 h = decl_priority_info (decl);
4354 h->fini = priority;
4355 }
4356
4357 /* Look up a restrict qualified base decl for FROM. */
4358
4359 tree
4360 decl_restrict_base_lookup (tree from)
4361 {
4362 struct tree_map *h;
4363 struct tree_map in;
4364
4365 in.base.from = from;
4366 h = htab_find_with_hash (restrict_base_for_decl, &in,
4367 htab_hash_pointer (from));
4368 return h ? h->to : NULL_TREE;
4369 }
4370
4371 /* Record the restrict qualified base TO for FROM. */
4372
4373 void
4374 decl_restrict_base_insert (tree from, tree to)
4375 {
4376 struct tree_map *h;
4377 void **loc;
4378
4379 h = ggc_alloc (sizeof (struct tree_map));
4380 h->hash = htab_hash_pointer (from);
4381 h->base.from = from;
4382 h->to = to;
4383 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
4384 *(struct tree_map **) loc = h;
4385 }
4386
4387 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
4388
4389 static void
4390 print_debug_expr_statistics (void)
4391 {
4392 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
4393 (long) htab_size (debug_expr_for_decl),
4394 (long) htab_elements (debug_expr_for_decl),
4395 htab_collisions (debug_expr_for_decl));
4396 }
4397
4398 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
4399
4400 static void
4401 print_value_expr_statistics (void)
4402 {
4403 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
4404 (long) htab_size (value_expr_for_decl),
4405 (long) htab_elements (value_expr_for_decl),
4406 htab_collisions (value_expr_for_decl));
4407 }
4408
4409 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
4410 don't print anything if the table is empty. */
4411
4412 static void
4413 print_restrict_base_statistics (void)
4414 {
4415 if (htab_elements (restrict_base_for_decl) != 0)
4416 fprintf (stderr,
4417 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
4418 (long) htab_size (restrict_base_for_decl),
4419 (long) htab_elements (restrict_base_for_decl),
4420 htab_collisions (restrict_base_for_decl));
4421 }
4422
4423 /* Lookup a debug expression for FROM, and return it if we find one. */
4424
4425 tree
4426 decl_debug_expr_lookup (tree from)
4427 {
4428 struct tree_map *h, in;
4429 in.base.from = from;
4430
4431 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
4432 if (h)
4433 return h->to;
4434 return NULL_TREE;
4435 }
4436
4437 /* Insert a mapping FROM->TO in the debug expression hashtable. */
4438
4439 void
4440 decl_debug_expr_insert (tree from, tree to)
4441 {
4442 struct tree_map *h;
4443 void **loc;
4444
4445 h = ggc_alloc (sizeof (struct tree_map));
4446 h->hash = htab_hash_pointer (from);
4447 h->base.from = from;
4448 h->to = to;
4449 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
4450 *(struct tree_map **) loc = h;
4451 }
4452
4453 /* Lookup a value expression for FROM, and return it if we find one. */
4454
4455 tree
4456 decl_value_expr_lookup (tree from)
4457 {
4458 struct tree_map *h, in;
4459 in.base.from = from;
4460
4461 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
4462 if (h)
4463 return h->to;
4464 return NULL_TREE;
4465 }
4466
4467 /* Insert a mapping FROM->TO in the value expression hashtable. */
4468
4469 void
4470 decl_value_expr_insert (tree from, tree to)
4471 {
4472 struct tree_map *h;
4473 void **loc;
4474
4475 h = ggc_alloc (sizeof (struct tree_map));
4476 h->hash = htab_hash_pointer (from);
4477 h->base.from = from;
4478 h->to = to;
4479 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
4480 *(struct tree_map **) loc = h;
4481 }
4482
4483 /* Hashing of types so that we don't make duplicates.
4484 The entry point is `type_hash_canon'. */
4485
4486 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
4487 with types in the TREE_VALUE slots), by adding the hash codes
4488 of the individual types. */
4489
4490 unsigned int
4491 type_hash_list (tree list, hashval_t hashcode)
4492 {
4493 tree tail;
4494
4495 for (tail = list; tail; tail = TREE_CHAIN (tail))
4496 if (TREE_VALUE (tail) != error_mark_node)
4497 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
4498 hashcode);
4499
4500 return hashcode;
4501 }
4502
4503 /* These are the Hashtable callback functions. */
4504
4505 /* Returns true iff the types are equivalent. */
4506
4507 static int
4508 type_hash_eq (const void *va, const void *vb)
4509 {
4510 const struct type_hash *a = va, *b = vb;
4511
4512 /* First test the things that are the same for all types. */
4513 if (a->hash != b->hash
4514 || TREE_CODE (a->type) != TREE_CODE (b->type)
4515 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
4516 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
4517 TYPE_ATTRIBUTES (b->type))
4518 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
4519 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
4520 return 0;
4521
4522 switch (TREE_CODE (a->type))
4523 {
4524 case VOID_TYPE:
4525 case COMPLEX_TYPE:
4526 case POINTER_TYPE:
4527 case REFERENCE_TYPE:
4528 return 1;
4529
4530 case VECTOR_TYPE:
4531 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
4532
4533 case ENUMERAL_TYPE:
4534 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
4535 && !(TYPE_VALUES (a->type)
4536 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
4537 && TYPE_VALUES (b->type)
4538 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
4539 && type_list_equal (TYPE_VALUES (a->type),
4540 TYPE_VALUES (b->type))))
4541 return 0;
4542
4543 /* ... fall through ... */
4544
4545 case INTEGER_TYPE:
4546 case REAL_TYPE:
4547 case BOOLEAN_TYPE:
4548 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4549 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4550 TYPE_MAX_VALUE (b->type)))
4551 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4552 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4553 TYPE_MIN_VALUE (b->type))));
4554
4555 case OFFSET_TYPE:
4556 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4557
4558 case METHOD_TYPE:
4559 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4560 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4561 || (TYPE_ARG_TYPES (a->type)
4562 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4563 && TYPE_ARG_TYPES (b->type)
4564 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4565 && type_list_equal (TYPE_ARG_TYPES (a->type),
4566 TYPE_ARG_TYPES (b->type)))));
4567
4568 case ARRAY_TYPE:
4569 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4570
4571 case RECORD_TYPE:
4572 case UNION_TYPE:
4573 case QUAL_UNION_TYPE:
4574 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4575 || (TYPE_FIELDS (a->type)
4576 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4577 && TYPE_FIELDS (b->type)
4578 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4579 && type_list_equal (TYPE_FIELDS (a->type),
4580 TYPE_FIELDS (b->type))));
4581
4582 case FUNCTION_TYPE:
4583 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4584 || (TYPE_ARG_TYPES (a->type)
4585 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4586 && TYPE_ARG_TYPES (b->type)
4587 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4588 && type_list_equal (TYPE_ARG_TYPES (a->type),
4589 TYPE_ARG_TYPES (b->type))));
4590
4591 default:
4592 return 0;
4593 }
4594 }
4595
4596 /* Return the cached hash value. */
4597
4598 static hashval_t
4599 type_hash_hash (const void *item)
4600 {
4601 return ((const struct type_hash *) item)->hash;
4602 }
4603
4604 /* Look in the type hash table for a type isomorphic to TYPE.
4605 If one is found, return it. Otherwise return 0. */
4606
4607 tree
4608 type_hash_lookup (hashval_t hashcode, tree type)
4609 {
4610 struct type_hash *h, in;
4611
4612 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4613 must call that routine before comparing TYPE_ALIGNs. */
4614 layout_type (type);
4615
4616 in.hash = hashcode;
4617 in.type = type;
4618
4619 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4620 if (h)
4621 return h->type;
4622 return NULL_TREE;
4623 }
4624
4625 /* Add an entry to the type-hash-table
4626 for a type TYPE whose hash code is HASHCODE. */
4627
4628 void
4629 type_hash_add (hashval_t hashcode, tree type)
4630 {
4631 struct type_hash *h;
4632 void **loc;
4633
4634 h = ggc_alloc (sizeof (struct type_hash));
4635 h->hash = hashcode;
4636 h->type = type;
4637 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4638 *(struct type_hash **) loc = h;
4639 }
4640
4641 /* Given TYPE, and HASHCODE its hash code, return the canonical
4642 object for an identical type if one already exists.
4643 Otherwise, return TYPE, and record it as the canonical object.
4644
4645 To use this function, first create a type of the sort you want.
4646 Then compute its hash code from the fields of the type that
4647 make it different from other similar types.
4648 Then call this function and use the value. */
4649
4650 tree
4651 type_hash_canon (unsigned int hashcode, tree type)
4652 {
4653 tree t1;
4654
4655 /* The hash table only contains main variants, so ensure that's what we're
4656 being passed. */
4657 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4658
4659 if (!lang_hooks.types.hash_types)
4660 return type;
4661
4662 /* See if the type is in the hash table already. If so, return it.
4663 Otherwise, add the type. */
4664 t1 = type_hash_lookup (hashcode, type);
4665 if (t1 != 0)
4666 {
4667 #ifdef GATHER_STATISTICS
4668 tree_node_counts[(int) t_kind]--;
4669 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4670 #endif
4671 return t1;
4672 }
4673 else
4674 {
4675 type_hash_add (hashcode, type);
4676 return type;
4677 }
4678 }
4679
4680 /* See if the data pointed to by the type hash table is marked. We consider
4681 it marked if the type is marked or if a debug type number or symbol
4682 table entry has been made for the type. This reduces the amount of
4683 debugging output and eliminates that dependency of the debug output on
4684 the number of garbage collections. */
4685
4686 static int
4687 type_hash_marked_p (const void *p)
4688 {
4689 tree type = ((struct type_hash *) p)->type;
4690
4691 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4692 }
4693
4694 static void
4695 print_type_hash_statistics (void)
4696 {
4697 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4698 (long) htab_size (type_hash_table),
4699 (long) htab_elements (type_hash_table),
4700 htab_collisions (type_hash_table));
4701 }
4702
4703 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4704 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4705 by adding the hash codes of the individual attributes. */
4706
4707 unsigned int
4708 attribute_hash_list (tree list, hashval_t hashcode)
4709 {
4710 tree tail;
4711
4712 for (tail = list; tail; tail = TREE_CHAIN (tail))
4713 /* ??? Do we want to add in TREE_VALUE too? */
4714 hashcode = iterative_hash_object
4715 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4716 return hashcode;
4717 }
4718
4719 /* Given two lists of attributes, return true if list l2 is
4720 equivalent to l1. */
4721
4722 int
4723 attribute_list_equal (tree l1, tree l2)
4724 {
4725 return attribute_list_contained (l1, l2)
4726 && attribute_list_contained (l2, l1);
4727 }
4728
4729 /* Given two lists of attributes, return true if list L2 is
4730 completely contained within L1. */
4731 /* ??? This would be faster if attribute names were stored in a canonicalized
4732 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4733 must be used to show these elements are equivalent (which they are). */
4734 /* ??? It's not clear that attributes with arguments will always be handled
4735 correctly. */
4736
4737 int
4738 attribute_list_contained (tree l1, tree l2)
4739 {
4740 tree t1, t2;
4741
4742 /* First check the obvious, maybe the lists are identical. */
4743 if (l1 == l2)
4744 return 1;
4745
4746 /* Maybe the lists are similar. */
4747 for (t1 = l1, t2 = l2;
4748 t1 != 0 && t2 != 0
4749 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4750 && TREE_VALUE (t1) == TREE_VALUE (t2);
4751 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4752
4753 /* Maybe the lists are equal. */
4754 if (t1 == 0 && t2 == 0)
4755 return 1;
4756
4757 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4758 {
4759 tree attr;
4760 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4761 attr != NULL_TREE;
4762 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4763 TREE_CHAIN (attr)))
4764 {
4765 if (TREE_VALUE (t2) != NULL
4766 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
4767 && TREE_VALUE (attr) != NULL
4768 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
4769 {
4770 if (simple_cst_list_equal (TREE_VALUE (t2),
4771 TREE_VALUE (attr)) == 1)
4772 break;
4773 }
4774 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4775 break;
4776 }
4777
4778 if (attr == 0)
4779 return 0;
4780 }
4781
4782 return 1;
4783 }
4784
4785 /* Given two lists of types
4786 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4787 return 1 if the lists contain the same types in the same order.
4788 Also, the TREE_PURPOSEs must match. */
4789
4790 int
4791 type_list_equal (tree l1, tree l2)
4792 {
4793 tree t1, t2;
4794
4795 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4796 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4797 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4798 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4799 && (TREE_TYPE (TREE_PURPOSE (t1))
4800 == TREE_TYPE (TREE_PURPOSE (t2))))))
4801 return 0;
4802
4803 return t1 == t2;
4804 }
4805
4806 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4807 given by TYPE. If the argument list accepts variable arguments,
4808 then this function counts only the ordinary arguments. */
4809
4810 int
4811 type_num_arguments (tree type)
4812 {
4813 int i = 0;
4814 tree t;
4815
4816 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4817 /* If the function does not take a variable number of arguments,
4818 the last element in the list will have type `void'. */
4819 if (VOID_TYPE_P (TREE_VALUE (t)))
4820 break;
4821 else
4822 ++i;
4823
4824 return i;
4825 }
4826
4827 /* Nonzero if integer constants T1 and T2
4828 represent the same constant value. */
4829
4830 int
4831 tree_int_cst_equal (tree t1, tree t2)
4832 {
4833 if (t1 == t2)
4834 return 1;
4835
4836 if (t1 == 0 || t2 == 0)
4837 return 0;
4838
4839 if (TREE_CODE (t1) == INTEGER_CST
4840 && TREE_CODE (t2) == INTEGER_CST
4841 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4842 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4843 return 1;
4844
4845 return 0;
4846 }
4847
4848 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4849 The precise way of comparison depends on their data type. */
4850
4851 int
4852 tree_int_cst_lt (tree t1, tree t2)
4853 {
4854 if (t1 == t2)
4855 return 0;
4856
4857 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4858 {
4859 int t1_sgn = tree_int_cst_sgn (t1);
4860 int t2_sgn = tree_int_cst_sgn (t2);
4861
4862 if (t1_sgn < t2_sgn)
4863 return 1;
4864 else if (t1_sgn > t2_sgn)
4865 return 0;
4866 /* Otherwise, both are non-negative, so we compare them as
4867 unsigned just in case one of them would overflow a signed
4868 type. */
4869 }
4870 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4871 return INT_CST_LT (t1, t2);
4872
4873 return INT_CST_LT_UNSIGNED (t1, t2);
4874 }
4875
4876 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4877
4878 int
4879 tree_int_cst_compare (tree t1, tree t2)
4880 {
4881 if (tree_int_cst_lt (t1, t2))
4882 return -1;
4883 else if (tree_int_cst_lt (t2, t1))
4884 return 1;
4885 else
4886 return 0;
4887 }
4888
4889 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4890 the host. If POS is zero, the value can be represented in a single
4891 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4892 be represented in a single unsigned HOST_WIDE_INT. */
4893
4894 int
4895 host_integerp (tree t, int pos)
4896 {
4897 return (TREE_CODE (t) == INTEGER_CST
4898 && ((TREE_INT_CST_HIGH (t) == 0
4899 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4900 || (! pos && TREE_INT_CST_HIGH (t) == -1
4901 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4902 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4903 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4904 }
4905
4906 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4907 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4908 be non-negative. We must be able to satisfy the above conditions. */
4909
4910 HOST_WIDE_INT
4911 tree_low_cst (tree t, int pos)
4912 {
4913 gcc_assert (host_integerp (t, pos));
4914 return TREE_INT_CST_LOW (t);
4915 }
4916
4917 /* Return the most significant bit of the integer constant T. */
4918
4919 int
4920 tree_int_cst_msb (tree t)
4921 {
4922 int prec;
4923 HOST_WIDE_INT h;
4924 unsigned HOST_WIDE_INT l;
4925
4926 /* Note that using TYPE_PRECISION here is wrong. We care about the
4927 actual bits, not the (arbitrary) range of the type. */
4928 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4929 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4930 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4931 return (l & 1) == 1;
4932 }
4933
4934 /* Return an indication of the sign of the integer constant T.
4935 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4936 Note that -1 will never be returned if T's type is unsigned. */
4937
4938 int
4939 tree_int_cst_sgn (tree t)
4940 {
4941 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4942 return 0;
4943 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4944 return 1;
4945 else if (TREE_INT_CST_HIGH (t) < 0)
4946 return -1;
4947 else
4948 return 1;
4949 }
4950
4951 /* Compare two constructor-element-type constants. Return 1 if the lists
4952 are known to be equal; otherwise return 0. */
4953
4954 int
4955 simple_cst_list_equal (tree l1, tree l2)
4956 {
4957 while (l1 != NULL_TREE && l2 != NULL_TREE)
4958 {
4959 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4960 return 0;
4961
4962 l1 = TREE_CHAIN (l1);
4963 l2 = TREE_CHAIN (l2);
4964 }
4965
4966 return l1 == l2;
4967 }
4968
4969 /* Return truthvalue of whether T1 is the same tree structure as T2.
4970 Return 1 if they are the same.
4971 Return 0 if they are understandably different.
4972 Return -1 if either contains tree structure not understood by
4973 this function. */
4974
4975 int
4976 simple_cst_equal (tree t1, tree t2)
4977 {
4978 enum tree_code code1, code2;
4979 int cmp;
4980 int i;
4981
4982 if (t1 == t2)
4983 return 1;
4984 if (t1 == 0 || t2 == 0)
4985 return 0;
4986
4987 code1 = TREE_CODE (t1);
4988 code2 = TREE_CODE (t2);
4989
4990 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4991 {
4992 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4993 || code2 == NON_LVALUE_EXPR)
4994 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4995 else
4996 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4997 }
4998
4999 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
5000 || code2 == NON_LVALUE_EXPR)
5001 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
5002
5003 if (code1 != code2)
5004 return 0;
5005
5006 switch (code1)
5007 {
5008 case INTEGER_CST:
5009 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
5010 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
5011
5012 case REAL_CST:
5013 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
5014
5015 case STRING_CST:
5016 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
5017 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
5018 TREE_STRING_LENGTH (t1)));
5019
5020 case CONSTRUCTOR:
5021 {
5022 unsigned HOST_WIDE_INT idx;
5023 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
5024 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
5025
5026 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
5027 return false;
5028
5029 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
5030 /* ??? Should we handle also fields here? */
5031 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
5032 VEC_index (constructor_elt, v2, idx)->value))
5033 return false;
5034 return true;
5035 }
5036
5037 case SAVE_EXPR:
5038 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5039
5040 case CALL_EXPR:
5041 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
5042 if (cmp <= 0)
5043 return cmp;
5044 if (call_expr_nargs (t1) != call_expr_nargs (t2))
5045 return 0;
5046 {
5047 tree arg1, arg2;
5048 call_expr_arg_iterator iter1, iter2;
5049 for (arg1 = first_call_expr_arg (t1, &iter1),
5050 arg2 = first_call_expr_arg (t2, &iter2);
5051 arg1 && arg2;
5052 arg1 = next_call_expr_arg (&iter1),
5053 arg2 = next_call_expr_arg (&iter2))
5054 {
5055 cmp = simple_cst_equal (arg1, arg2);
5056 if (cmp <= 0)
5057 return cmp;
5058 }
5059 return arg1 == arg2;
5060 }
5061
5062 case TARGET_EXPR:
5063 /* Special case: if either target is an unallocated VAR_DECL,
5064 it means that it's going to be unified with whatever the
5065 TARGET_EXPR is really supposed to initialize, so treat it
5066 as being equivalent to anything. */
5067 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
5068 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
5069 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
5070 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
5071 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
5072 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
5073 cmp = 1;
5074 else
5075 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5076
5077 if (cmp <= 0)
5078 return cmp;
5079
5080 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
5081
5082 case WITH_CLEANUP_EXPR:
5083 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5084 if (cmp <= 0)
5085 return cmp;
5086
5087 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
5088
5089 case COMPONENT_REF:
5090 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
5091 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
5092
5093 return 0;
5094
5095 case VAR_DECL:
5096 case PARM_DECL:
5097 case CONST_DECL:
5098 case FUNCTION_DECL:
5099 return 0;
5100
5101 default:
5102 break;
5103 }
5104
5105 /* This general rule works for most tree codes. All exceptions should be
5106 handled above. If this is a language-specific tree code, we can't
5107 trust what might be in the operand, so say we don't know
5108 the situation. */
5109 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
5110 return -1;
5111
5112 switch (TREE_CODE_CLASS (code1))
5113 {
5114 case tcc_unary:
5115 case tcc_binary:
5116 case tcc_comparison:
5117 case tcc_expression:
5118 case tcc_reference:
5119 case tcc_statement:
5120 cmp = 1;
5121 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
5122 {
5123 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
5124 if (cmp <= 0)
5125 return cmp;
5126 }
5127
5128 return cmp;
5129
5130 default:
5131 return -1;
5132 }
5133 }
5134
5135 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
5136 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
5137 than U, respectively. */
5138
5139 int
5140 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
5141 {
5142 if (tree_int_cst_sgn (t) < 0)
5143 return -1;
5144 else if (TREE_INT_CST_HIGH (t) != 0)
5145 return 1;
5146 else if (TREE_INT_CST_LOW (t) == u)
5147 return 0;
5148 else if (TREE_INT_CST_LOW (t) < u)
5149 return -1;
5150 else
5151 return 1;
5152 }
5153
5154 /* Return true if CODE represents an associative tree code. Otherwise
5155 return false. */
5156 bool
5157 associative_tree_code (enum tree_code code)
5158 {
5159 switch (code)
5160 {
5161 case BIT_IOR_EXPR:
5162 case BIT_AND_EXPR:
5163 case BIT_XOR_EXPR:
5164 case PLUS_EXPR:
5165 case MULT_EXPR:
5166 case MIN_EXPR:
5167 case MAX_EXPR:
5168 return true;
5169
5170 default:
5171 break;
5172 }
5173 return false;
5174 }
5175
5176 /* Return true if CODE represents a commutative tree code. Otherwise
5177 return false. */
5178 bool
5179 commutative_tree_code (enum tree_code code)
5180 {
5181 switch (code)
5182 {
5183 case PLUS_EXPR:
5184 case MULT_EXPR:
5185 case MIN_EXPR:
5186 case MAX_EXPR:
5187 case BIT_IOR_EXPR:
5188 case BIT_XOR_EXPR:
5189 case BIT_AND_EXPR:
5190 case NE_EXPR:
5191 case EQ_EXPR:
5192 case UNORDERED_EXPR:
5193 case ORDERED_EXPR:
5194 case UNEQ_EXPR:
5195 case LTGT_EXPR:
5196 case TRUTH_AND_EXPR:
5197 case TRUTH_XOR_EXPR:
5198 case TRUTH_OR_EXPR:
5199 return true;
5200
5201 default:
5202 break;
5203 }
5204 return false;
5205 }
5206
5207 /* Generate a hash value for an expression. This can be used iteratively
5208 by passing a previous result as the "val" argument.
5209
5210 This function is intended to produce the same hash for expressions which
5211 would compare equal using operand_equal_p. */
5212
5213 hashval_t
5214 iterative_hash_expr (tree t, hashval_t val)
5215 {
5216 int i;
5217 enum tree_code code;
5218 char class;
5219
5220 if (t == NULL_TREE)
5221 return iterative_hash_pointer (t, val);
5222
5223 code = TREE_CODE (t);
5224
5225 switch (code)
5226 {
5227 /* Alas, constants aren't shared, so we can't rely on pointer
5228 identity. */
5229 case INTEGER_CST:
5230 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
5231 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
5232 case REAL_CST:
5233 {
5234 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
5235
5236 return iterative_hash_hashval_t (val2, val);
5237 }
5238 case STRING_CST:
5239 return iterative_hash (TREE_STRING_POINTER (t),
5240 TREE_STRING_LENGTH (t), val);
5241 case COMPLEX_CST:
5242 val = iterative_hash_expr (TREE_REALPART (t), val);
5243 return iterative_hash_expr (TREE_IMAGPART (t), val);
5244 case VECTOR_CST:
5245 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
5246
5247 case SSA_NAME:
5248 case VALUE_HANDLE:
5249 /* we can just compare by pointer. */
5250 return iterative_hash_pointer (t, val);
5251
5252 case TREE_LIST:
5253 /* A list of expressions, for a CALL_EXPR or as the elements of a
5254 VECTOR_CST. */
5255 for (; t; t = TREE_CHAIN (t))
5256 val = iterative_hash_expr (TREE_VALUE (t), val);
5257 return val;
5258 case CONSTRUCTOR:
5259 {
5260 unsigned HOST_WIDE_INT idx;
5261 tree field, value;
5262 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
5263 {
5264 val = iterative_hash_expr (field, val);
5265 val = iterative_hash_expr (value, val);
5266 }
5267 return val;
5268 }
5269 case FUNCTION_DECL:
5270 /* When referring to a built-in FUNCTION_DECL, use the
5271 __builtin__ form. Otherwise nodes that compare equal
5272 according to operand_equal_p might get different
5273 hash codes. */
5274 if (DECL_BUILT_IN (t))
5275 {
5276 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
5277 val);
5278 return val;
5279 }
5280 /* else FALL THROUGH */
5281 default:
5282 class = TREE_CODE_CLASS (code);
5283
5284 if (class == tcc_declaration)
5285 {
5286 /* DECL's have a unique ID */
5287 val = iterative_hash_host_wide_int (DECL_UID (t), val);
5288 }
5289 else
5290 {
5291 gcc_assert (IS_EXPR_CODE_CLASS (class));
5292
5293 val = iterative_hash_object (code, val);
5294
5295 /* Don't hash the type, that can lead to having nodes which
5296 compare equal according to operand_equal_p, but which
5297 have different hash codes. */
5298 if (code == NOP_EXPR
5299 || code == CONVERT_EXPR
5300 || code == NON_LVALUE_EXPR)
5301 {
5302 /* Make sure to include signness in the hash computation. */
5303 val += TYPE_UNSIGNED (TREE_TYPE (t));
5304 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
5305 }
5306
5307 else if (commutative_tree_code (code))
5308 {
5309 /* It's a commutative expression. We want to hash it the same
5310 however it appears. We do this by first hashing both operands
5311 and then rehashing based on the order of their independent
5312 hashes. */
5313 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
5314 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
5315 hashval_t t;
5316
5317 if (one > two)
5318 t = one, one = two, two = t;
5319
5320 val = iterative_hash_hashval_t (one, val);
5321 val = iterative_hash_hashval_t (two, val);
5322 }
5323 else
5324 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
5325 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
5326 }
5327 return val;
5328 break;
5329 }
5330 }
5331 \f
5332 /* Constructors for pointer, array and function types.
5333 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
5334 constructed by language-dependent code, not here.) */
5335
5336 /* Construct, lay out and return the type of pointers to TO_TYPE with
5337 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
5338 reference all of memory. If such a type has already been
5339 constructed, reuse it. */
5340
5341 tree
5342 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
5343 bool can_alias_all)
5344 {
5345 tree t;
5346
5347 if (to_type == error_mark_node)
5348 return error_mark_node;
5349
5350 /* In some cases, languages will have things that aren't a POINTER_TYPE
5351 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
5352 In that case, return that type without regard to the rest of our
5353 operands.
5354
5355 ??? This is a kludge, but consistent with the way this function has
5356 always operated and there doesn't seem to be a good way to avoid this
5357 at the moment. */
5358 if (TYPE_POINTER_TO (to_type) != 0
5359 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
5360 return TYPE_POINTER_TO (to_type);
5361
5362 /* First, if we already have a type for pointers to TO_TYPE and it's
5363 the proper mode, use it. */
5364 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
5365 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5366 return t;
5367
5368 t = make_node (POINTER_TYPE);
5369
5370 TREE_TYPE (t) = to_type;
5371 TYPE_MODE (t) = mode;
5372 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5373 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
5374 TYPE_POINTER_TO (to_type) = t;
5375
5376 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5377 SET_TYPE_STRUCTURAL_EQUALITY (t);
5378 else if (TYPE_CANONICAL (to_type) != to_type)
5379 TYPE_CANONICAL (t)
5380 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
5381 mode, can_alias_all);
5382
5383 /* Lay out the type. This function has many callers that are concerned
5384 with expression-construction, and this simplifies them all. */
5385 layout_type (t);
5386
5387 return t;
5388 }
5389
5390 /* By default build pointers in ptr_mode. */
5391
5392 tree
5393 build_pointer_type (tree to_type)
5394 {
5395 return build_pointer_type_for_mode (to_type, ptr_mode, false);
5396 }
5397
5398 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
5399
5400 tree
5401 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
5402 bool can_alias_all)
5403 {
5404 tree t;
5405
5406 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
5407 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
5408 In that case, return that type without regard to the rest of our
5409 operands.
5410
5411 ??? This is a kludge, but consistent with the way this function has
5412 always operated and there doesn't seem to be a good way to avoid this
5413 at the moment. */
5414 if (TYPE_REFERENCE_TO (to_type) != 0
5415 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
5416 return TYPE_REFERENCE_TO (to_type);
5417
5418 /* First, if we already have a type for pointers to TO_TYPE and it's
5419 the proper mode, use it. */
5420 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
5421 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
5422 return t;
5423
5424 t = make_node (REFERENCE_TYPE);
5425
5426 TREE_TYPE (t) = to_type;
5427 TYPE_MODE (t) = mode;
5428 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
5429 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
5430 TYPE_REFERENCE_TO (to_type) = t;
5431
5432 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
5433 SET_TYPE_STRUCTURAL_EQUALITY (t);
5434 else if (TYPE_CANONICAL (to_type) != to_type)
5435 TYPE_CANONICAL (t)
5436 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
5437 mode, can_alias_all);
5438
5439 layout_type (t);
5440
5441 return t;
5442 }
5443
5444
5445 /* Build the node for the type of references-to-TO_TYPE by default
5446 in ptr_mode. */
5447
5448 tree
5449 build_reference_type (tree to_type)
5450 {
5451 return build_reference_type_for_mode (to_type, ptr_mode, false);
5452 }
5453
5454 /* Build a type that is compatible with t but has no cv quals anywhere
5455 in its type, thus
5456
5457 const char *const *const * -> char ***. */
5458
5459 tree
5460 build_type_no_quals (tree t)
5461 {
5462 switch (TREE_CODE (t))
5463 {
5464 case POINTER_TYPE:
5465 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5466 TYPE_MODE (t),
5467 TYPE_REF_CAN_ALIAS_ALL (t));
5468 case REFERENCE_TYPE:
5469 return
5470 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
5471 TYPE_MODE (t),
5472 TYPE_REF_CAN_ALIAS_ALL (t));
5473 default:
5474 return TYPE_MAIN_VARIANT (t);
5475 }
5476 }
5477
5478 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
5479 MAXVAL should be the maximum value in the domain
5480 (one less than the length of the array).
5481
5482 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
5483 We don't enforce this limit, that is up to caller (e.g. language front end).
5484 The limit exists because the result is a signed type and we don't handle
5485 sizes that use more than one HOST_WIDE_INT. */
5486
5487 tree
5488 build_index_type (tree maxval)
5489 {
5490 tree itype = make_node (INTEGER_TYPE);
5491
5492 TREE_TYPE (itype) = sizetype;
5493 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
5494 TYPE_MIN_VALUE (itype) = size_zero_node;
5495 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
5496 TYPE_MODE (itype) = TYPE_MODE (sizetype);
5497 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
5498 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
5499 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
5500 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
5501
5502 if (host_integerp (maxval, 1))
5503 return type_hash_canon (tree_low_cst (maxval, 1), itype);
5504 else
5505 {
5506 /* Since we cannot hash this type, we need to compare it using
5507 structural equality checks. */
5508 SET_TYPE_STRUCTURAL_EQUALITY (itype);
5509 return itype;
5510 }
5511 }
5512
5513 /* Builds a signed or unsigned integer type of precision PRECISION.
5514 Used for C bitfields whose precision does not match that of
5515 built-in target types. */
5516 tree
5517 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
5518 int unsignedp)
5519 {
5520 tree itype = make_node (INTEGER_TYPE);
5521
5522 TYPE_PRECISION (itype) = precision;
5523
5524 if (unsignedp)
5525 fixup_unsigned_type (itype);
5526 else
5527 fixup_signed_type (itype);
5528
5529 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
5530 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
5531
5532 return itype;
5533 }
5534
5535 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
5536 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
5537 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
5538
5539 tree
5540 build_range_type (tree type, tree lowval, tree highval)
5541 {
5542 tree itype = make_node (INTEGER_TYPE);
5543
5544 TREE_TYPE (itype) = type;
5545 if (type == NULL_TREE)
5546 type = sizetype;
5547
5548 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
5549 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
5550
5551 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
5552 TYPE_MODE (itype) = TYPE_MODE (type);
5553 TYPE_SIZE (itype) = TYPE_SIZE (type);
5554 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
5555 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
5556 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
5557
5558 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
5559 return type_hash_canon (tree_low_cst (highval, 0)
5560 - tree_low_cst (lowval, 0),
5561 itype);
5562 else
5563 return itype;
5564 }
5565
5566 /* Just like build_index_type, but takes lowval and highval instead
5567 of just highval (maxval). */
5568
5569 tree
5570 build_index_2_type (tree lowval, tree highval)
5571 {
5572 return build_range_type (sizetype, lowval, highval);
5573 }
5574
5575 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
5576 and number of elements specified by the range of values of INDEX_TYPE.
5577 If such a type has already been constructed, reuse it. */
5578
5579 tree
5580 build_array_type (tree elt_type, tree index_type)
5581 {
5582 tree t;
5583 hashval_t hashcode = 0;
5584
5585 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5586 {
5587 error ("arrays of functions are not meaningful");
5588 elt_type = integer_type_node;
5589 }
5590
5591 t = make_node (ARRAY_TYPE);
5592 TREE_TYPE (t) = elt_type;
5593 TYPE_DOMAIN (t) = index_type;
5594
5595 if (index_type == 0)
5596 {
5597 tree save = t;
5598 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5599 t = type_hash_canon (hashcode, t);
5600 if (save == t)
5601 layout_type (t);
5602
5603 if (TYPE_CANONICAL (t) == t)
5604 {
5605 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type))
5606 SET_TYPE_STRUCTURAL_EQUALITY (t);
5607 else if (TYPE_CANONICAL (elt_type) != elt_type)
5608 TYPE_CANONICAL (t)
5609 = build_array_type (TYPE_CANONICAL (elt_type), index_type);
5610 }
5611
5612 return t;
5613 }
5614
5615 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5616 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5617 t = type_hash_canon (hashcode, t);
5618
5619 if (!COMPLETE_TYPE_P (t))
5620 layout_type (t);
5621
5622 if (TYPE_CANONICAL (t) == t)
5623 {
5624 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
5625 || TYPE_STRUCTURAL_EQUALITY_P (index_type))
5626 SET_TYPE_STRUCTURAL_EQUALITY (t);
5627 else if (TYPE_CANONICAL (elt_type) != elt_type
5628 || TYPE_CANONICAL (index_type) != index_type)
5629 TYPE_CANONICAL (t)
5630 = build_array_type (TYPE_CANONICAL (elt_type),
5631 TYPE_CANONICAL (index_type));
5632 }
5633
5634 return t;
5635 }
5636
5637 /* Return the TYPE of the elements comprising
5638 the innermost dimension of ARRAY. */
5639
5640 tree
5641 get_inner_array_type (tree array)
5642 {
5643 tree type = TREE_TYPE (array);
5644
5645 while (TREE_CODE (type) == ARRAY_TYPE)
5646 type = TREE_TYPE (type);
5647
5648 return type;
5649 }
5650
5651 /* Construct, lay out and return
5652 the type of functions returning type VALUE_TYPE
5653 given arguments of types ARG_TYPES.
5654 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5655 are data type nodes for the arguments of the function.
5656 If such a type has already been constructed, reuse it. */
5657
5658 tree
5659 build_function_type (tree value_type, tree arg_types)
5660 {
5661 tree t;
5662 hashval_t hashcode = 0;
5663
5664 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5665 {
5666 error ("function return type cannot be function");
5667 value_type = integer_type_node;
5668 }
5669
5670 /* Make a node of the sort we want. */
5671 t = make_node (FUNCTION_TYPE);
5672 TREE_TYPE (t) = value_type;
5673 TYPE_ARG_TYPES (t) = arg_types;
5674
5675 /* We don't have canonicalization of function types, yet. */
5676 SET_TYPE_STRUCTURAL_EQUALITY (t);
5677
5678 /* If we already have such a type, use the old one. */
5679 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5680 hashcode = type_hash_list (arg_types, hashcode);
5681 t = type_hash_canon (hashcode, t);
5682
5683 if (!COMPLETE_TYPE_P (t))
5684 layout_type (t);
5685 return t;
5686 }
5687
5688 /* Build a function type. The RETURN_TYPE is the type returned by the
5689 function. If additional arguments are provided, they are
5690 additional argument types. The list of argument types must always
5691 be terminated by NULL_TREE. */
5692
5693 tree
5694 build_function_type_list (tree return_type, ...)
5695 {
5696 tree t, args, last;
5697 va_list p;
5698
5699 va_start (p, return_type);
5700
5701 t = va_arg (p, tree);
5702 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5703 args = tree_cons (NULL_TREE, t, args);
5704
5705 if (args == NULL_TREE)
5706 args = void_list_node;
5707 else
5708 {
5709 last = args;
5710 args = nreverse (args);
5711 TREE_CHAIN (last) = void_list_node;
5712 }
5713 args = build_function_type (return_type, args);
5714
5715 va_end (p);
5716 return args;
5717 }
5718
5719 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5720 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5721 for the method. An implicit additional parameter (of type
5722 pointer-to-BASETYPE) is added to the ARGTYPES. */
5723
5724 tree
5725 build_method_type_directly (tree basetype,
5726 tree rettype,
5727 tree argtypes)
5728 {
5729 tree t;
5730 tree ptype;
5731 int hashcode = 0;
5732
5733 /* Make a node of the sort we want. */
5734 t = make_node (METHOD_TYPE);
5735
5736 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5737 TREE_TYPE (t) = rettype;
5738 ptype = build_pointer_type (basetype);
5739
5740 /* The actual arglist for this function includes a "hidden" argument
5741 which is "this". Put it into the list of argument types. */
5742 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5743 TYPE_ARG_TYPES (t) = argtypes;
5744
5745 /* We don't have canonicalization of method types yet. */
5746 SET_TYPE_STRUCTURAL_EQUALITY (t);
5747
5748 /* If we already have such a type, use the old one. */
5749 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5750 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5751 hashcode = type_hash_list (argtypes, hashcode);
5752 t = type_hash_canon (hashcode, t);
5753
5754 if (!COMPLETE_TYPE_P (t))
5755 layout_type (t);
5756
5757 return t;
5758 }
5759
5760 /* Construct, lay out and return the type of methods belonging to class
5761 BASETYPE and whose arguments and values are described by TYPE.
5762 If that type exists already, reuse it.
5763 TYPE must be a FUNCTION_TYPE node. */
5764
5765 tree
5766 build_method_type (tree basetype, tree type)
5767 {
5768 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5769
5770 return build_method_type_directly (basetype,
5771 TREE_TYPE (type),
5772 TYPE_ARG_TYPES (type));
5773 }
5774
5775 /* Construct, lay out and return the type of offsets to a value
5776 of type TYPE, within an object of type BASETYPE.
5777 If a suitable offset type exists already, reuse it. */
5778
5779 tree
5780 build_offset_type (tree basetype, tree type)
5781 {
5782 tree t;
5783 hashval_t hashcode = 0;
5784
5785 /* Make a node of the sort we want. */
5786 t = make_node (OFFSET_TYPE);
5787
5788 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5789 TREE_TYPE (t) = type;
5790
5791 /* If we already have such a type, use the old one. */
5792 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5793 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5794 t = type_hash_canon (hashcode, t);
5795
5796 if (!COMPLETE_TYPE_P (t))
5797 layout_type (t);
5798
5799 if (TYPE_CANONICAL (t) == t)
5800 {
5801 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
5802 || TYPE_STRUCTURAL_EQUALITY_P (type))
5803 SET_TYPE_STRUCTURAL_EQUALITY (t);
5804 else if (TYPE_CANONICAL (basetype) != basetype
5805 || TYPE_CANONICAL (type) != type)
5806 TYPE_CANONICAL (t)
5807 = build_offset_type (TYPE_CANONICAL (basetype),
5808 TYPE_CANONICAL (type));
5809 }
5810
5811 return t;
5812 }
5813
5814 /* Create a complex type whose components are COMPONENT_TYPE. */
5815
5816 tree
5817 build_complex_type (tree component_type)
5818 {
5819 tree t;
5820 hashval_t hashcode;
5821
5822 /* Make a node of the sort we want. */
5823 t = make_node (COMPLEX_TYPE);
5824
5825 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5826
5827 /* If we already have such a type, use the old one. */
5828 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5829 t = type_hash_canon (hashcode, t);
5830
5831 if (!COMPLETE_TYPE_P (t))
5832 layout_type (t);
5833
5834 if (TYPE_CANONICAL (t) == t)
5835 {
5836 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
5837 SET_TYPE_STRUCTURAL_EQUALITY (t);
5838 else if (TYPE_CANONICAL (component_type) != component_type)
5839 TYPE_CANONICAL (t)
5840 = build_complex_type (TYPE_CANONICAL (component_type));
5841 }
5842
5843 /* If we are writing Dwarf2 output we need to create a name,
5844 since complex is a fundamental type. */
5845 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5846 && ! TYPE_NAME (t))
5847 {
5848 const char *name;
5849 if (component_type == char_type_node)
5850 name = "complex char";
5851 else if (component_type == signed_char_type_node)
5852 name = "complex signed char";
5853 else if (component_type == unsigned_char_type_node)
5854 name = "complex unsigned char";
5855 else if (component_type == short_integer_type_node)
5856 name = "complex short int";
5857 else if (component_type == short_unsigned_type_node)
5858 name = "complex short unsigned int";
5859 else if (component_type == integer_type_node)
5860 name = "complex int";
5861 else if (component_type == unsigned_type_node)
5862 name = "complex unsigned int";
5863 else if (component_type == long_integer_type_node)
5864 name = "complex long int";
5865 else if (component_type == long_unsigned_type_node)
5866 name = "complex long unsigned int";
5867 else if (component_type == long_long_integer_type_node)
5868 name = "complex long long int";
5869 else if (component_type == long_long_unsigned_type_node)
5870 name = "complex long long unsigned int";
5871 else
5872 name = 0;
5873
5874 if (name != 0)
5875 TYPE_NAME (t) = build_decl (TYPE_DECL, get_identifier (name), t);
5876 }
5877
5878 return build_qualified_type (t, TYPE_QUALS (component_type));
5879 }
5880 \f
5881 /* Return OP, stripped of any conversions to wider types as much as is safe.
5882 Converting the value back to OP's type makes a value equivalent to OP.
5883
5884 If FOR_TYPE is nonzero, we return a value which, if converted to
5885 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5886
5887 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5888 narrowest type that can hold the value, even if they don't exactly fit.
5889 Otherwise, bit-field references are changed to a narrower type
5890 only if they can be fetched directly from memory in that type.
5891
5892 OP must have integer, real or enumeral type. Pointers are not allowed!
5893
5894 There are some cases where the obvious value we could return
5895 would regenerate to OP if converted to OP's type,
5896 but would not extend like OP to wider types.
5897 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5898 For example, if OP is (unsigned short)(signed char)-1,
5899 we avoid returning (signed char)-1 if FOR_TYPE is int,
5900 even though extending that to an unsigned short would regenerate OP,
5901 since the result of extending (signed char)-1 to (int)
5902 is different from (int) OP. */
5903
5904 tree
5905 get_unwidened (tree op, tree for_type)
5906 {
5907 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5908 tree type = TREE_TYPE (op);
5909 unsigned final_prec
5910 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5911 int uns
5912 = (for_type != 0 && for_type != type
5913 && final_prec > TYPE_PRECISION (type)
5914 && TYPE_UNSIGNED (type));
5915 tree win = op;
5916
5917 while (TREE_CODE (op) == NOP_EXPR
5918 || TREE_CODE (op) == CONVERT_EXPR)
5919 {
5920 int bitschange;
5921
5922 /* TYPE_PRECISION on vector types has different meaning
5923 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5924 so avoid them here. */
5925 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5926 break;
5927
5928 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5929 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5930
5931 /* Truncations are many-one so cannot be removed.
5932 Unless we are later going to truncate down even farther. */
5933 if (bitschange < 0
5934 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5935 break;
5936
5937 /* See what's inside this conversion. If we decide to strip it,
5938 we will set WIN. */
5939 op = TREE_OPERAND (op, 0);
5940
5941 /* If we have not stripped any zero-extensions (uns is 0),
5942 we can strip any kind of extension.
5943 If we have previously stripped a zero-extension,
5944 only zero-extensions can safely be stripped.
5945 Any extension can be stripped if the bits it would produce
5946 are all going to be discarded later by truncating to FOR_TYPE. */
5947
5948 if (bitschange > 0)
5949 {
5950 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5951 win = op;
5952 /* TYPE_UNSIGNED says whether this is a zero-extension.
5953 Let's avoid computing it if it does not affect WIN
5954 and if UNS will not be needed again. */
5955 if ((uns
5956 || TREE_CODE (op) == NOP_EXPR
5957 || TREE_CODE (op) == CONVERT_EXPR)
5958 && TYPE_UNSIGNED (TREE_TYPE (op)))
5959 {
5960 uns = 1;
5961 win = op;
5962 }
5963 }
5964 }
5965
5966 if (TREE_CODE (op) == COMPONENT_REF
5967 /* Since type_for_size always gives an integer type. */
5968 && TREE_CODE (type) != REAL_TYPE
5969 /* Don't crash if field not laid out yet. */
5970 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5971 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5972 {
5973 unsigned int innerprec
5974 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5975 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5976 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5977 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5978
5979 /* We can get this structure field in the narrowest type it fits in.
5980 If FOR_TYPE is 0, do this only for a field that matches the
5981 narrower type exactly and is aligned for it
5982 The resulting extension to its nominal type (a fullword type)
5983 must fit the same conditions as for other extensions. */
5984
5985 if (type != 0
5986 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5987 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5988 && (! uns || final_prec <= innerprec || unsignedp))
5989 {
5990 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5991 TREE_OPERAND (op, 1), NULL_TREE);
5992 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5993 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5994 }
5995 }
5996
5997 return win;
5998 }
5999 \f
6000 /* Return OP or a simpler expression for a narrower value
6001 which can be sign-extended or zero-extended to give back OP.
6002 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
6003 or 0 if the value should be sign-extended. */
6004
6005 tree
6006 get_narrower (tree op, int *unsignedp_ptr)
6007 {
6008 int uns = 0;
6009 int first = 1;
6010 tree win = op;
6011 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
6012
6013 while (TREE_CODE (op) == NOP_EXPR)
6014 {
6015 int bitschange
6016 = (TYPE_PRECISION (TREE_TYPE (op))
6017 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
6018
6019 /* Truncations are many-one so cannot be removed. */
6020 if (bitschange < 0)
6021 break;
6022
6023 /* See what's inside this conversion. If we decide to strip it,
6024 we will set WIN. */
6025
6026 if (bitschange > 0)
6027 {
6028 op = TREE_OPERAND (op, 0);
6029 /* An extension: the outermost one can be stripped,
6030 but remember whether it is zero or sign extension. */
6031 if (first)
6032 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6033 /* Otherwise, if a sign extension has been stripped,
6034 only sign extensions can now be stripped;
6035 if a zero extension has been stripped, only zero-extensions. */
6036 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
6037 break;
6038 first = 0;
6039 }
6040 else /* bitschange == 0 */
6041 {
6042 /* A change in nominal type can always be stripped, but we must
6043 preserve the unsignedness. */
6044 if (first)
6045 uns = TYPE_UNSIGNED (TREE_TYPE (op));
6046 first = 0;
6047 op = TREE_OPERAND (op, 0);
6048 /* Keep trying to narrow, but don't assign op to win if it
6049 would turn an integral type into something else. */
6050 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
6051 continue;
6052 }
6053
6054 win = op;
6055 }
6056
6057 if (TREE_CODE (op) == COMPONENT_REF
6058 /* Since type_for_size always gives an integer type. */
6059 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
6060 /* Ensure field is laid out already. */
6061 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
6062 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
6063 {
6064 unsigned HOST_WIDE_INT innerprec
6065 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
6066 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
6067 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
6068 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
6069
6070 /* We can get this structure field in a narrower type that fits it,
6071 but the resulting extension to its nominal type (a fullword type)
6072 must satisfy the same conditions as for other extensions.
6073
6074 Do this only for fields that are aligned (not bit-fields),
6075 because when bit-field insns will be used there is no
6076 advantage in doing this. */
6077
6078 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
6079 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
6080 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
6081 && type != 0)
6082 {
6083 if (first)
6084 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
6085 win = fold_convert (type, op);
6086 }
6087 }
6088
6089 *unsignedp_ptr = uns;
6090 return win;
6091 }
6092 \f
6093 /* Nonzero if integer constant C has a value that is permissible
6094 for type TYPE (an INTEGER_TYPE). */
6095
6096 int
6097 int_fits_type_p (tree c, tree type)
6098 {
6099 tree type_low_bound = TYPE_MIN_VALUE (type);
6100 tree type_high_bound = TYPE_MAX_VALUE (type);
6101 bool ok_for_low_bound, ok_for_high_bound;
6102 unsigned HOST_WIDE_INT low;
6103 HOST_WIDE_INT high;
6104
6105 /* If at least one bound of the type is a constant integer, we can check
6106 ourselves and maybe make a decision. If no such decision is possible, but
6107 this type is a subtype, try checking against that. Otherwise, use
6108 fit_double_type, which checks against the precision.
6109
6110 Compute the status for each possibly constant bound, and return if we see
6111 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
6112 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
6113 for "constant known to fit". */
6114
6115 /* Check if C >= type_low_bound. */
6116 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
6117 {
6118 if (tree_int_cst_lt (c, type_low_bound))
6119 return 0;
6120 ok_for_low_bound = true;
6121 }
6122 else
6123 ok_for_low_bound = false;
6124
6125 /* Check if c <= type_high_bound. */
6126 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
6127 {
6128 if (tree_int_cst_lt (type_high_bound, c))
6129 return 0;
6130 ok_for_high_bound = true;
6131 }
6132 else
6133 ok_for_high_bound = false;
6134
6135 /* If the constant fits both bounds, the result is known. */
6136 if (ok_for_low_bound && ok_for_high_bound)
6137 return 1;
6138
6139 /* Perform some generic filtering which may allow making a decision
6140 even if the bounds are not constant. First, negative integers
6141 never fit in unsigned types, */
6142 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
6143 return 0;
6144
6145 /* Second, narrower types always fit in wider ones. */
6146 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
6147 return 1;
6148
6149 /* Third, unsigned integers with top bit set never fit signed types. */
6150 if (! TYPE_UNSIGNED (type)
6151 && TYPE_UNSIGNED (TREE_TYPE (c))
6152 && tree_int_cst_msb (c))
6153 return 0;
6154
6155 /* If we haven't been able to decide at this point, there nothing more we
6156 can check ourselves here. Look at the base type if we have one and it
6157 has the same precision. */
6158 if (TREE_CODE (type) == INTEGER_TYPE
6159 && TREE_TYPE (type) != 0
6160 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
6161 return int_fits_type_p (c, TREE_TYPE (type));
6162
6163 /* Or to fit_double_type, if nothing else. */
6164 low = TREE_INT_CST_LOW (c);
6165 high = TREE_INT_CST_HIGH (c);
6166 return !fit_double_type (low, high, &low, &high, type);
6167 }
6168
6169 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
6170 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
6171 represented (assuming two's-complement arithmetic) within the bit
6172 precision of the type are returned instead. */
6173
6174 void
6175 get_type_static_bounds (tree type, mpz_t min, mpz_t max)
6176 {
6177 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
6178 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
6179 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
6180 TYPE_UNSIGNED (type));
6181 else
6182 {
6183 if (TYPE_UNSIGNED (type))
6184 mpz_set_ui (min, 0);
6185 else
6186 {
6187 double_int mn;
6188 mn = double_int_mask (TYPE_PRECISION (type) - 1);
6189 mn = double_int_sext (double_int_add (mn, double_int_one),
6190 TYPE_PRECISION (type));
6191 mpz_set_double_int (min, mn, false);
6192 }
6193 }
6194
6195 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
6196 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
6197 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
6198 TYPE_UNSIGNED (type));
6199 else
6200 {
6201 if (TYPE_UNSIGNED (type))
6202 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
6203 true);
6204 else
6205 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
6206 true);
6207 }
6208 }
6209
6210 /* Subprogram of following function. Called by walk_tree.
6211
6212 Return *TP if it is an automatic variable or parameter of the
6213 function passed in as DATA. */
6214
6215 static tree
6216 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
6217 {
6218 tree fn = (tree) data;
6219
6220 if (TYPE_P (*tp))
6221 *walk_subtrees = 0;
6222
6223 else if (DECL_P (*tp)
6224 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
6225 return *tp;
6226
6227 return NULL_TREE;
6228 }
6229
6230 /* Returns true if T is, contains, or refers to a type with variable
6231 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
6232 arguments, but not the return type. If FN is nonzero, only return
6233 true if a modifier of the type or position of FN is a variable or
6234 parameter inside FN.
6235
6236 This concept is more general than that of C99 'variably modified types':
6237 in C99, a struct type is never variably modified because a VLA may not
6238 appear as a structure member. However, in GNU C code like:
6239
6240 struct S { int i[f()]; };
6241
6242 is valid, and other languages may define similar constructs. */
6243
6244 bool
6245 variably_modified_type_p (tree type, tree fn)
6246 {
6247 tree t;
6248
6249 /* Test if T is either variable (if FN is zero) or an expression containing
6250 a variable in FN. */
6251 #define RETURN_TRUE_IF_VAR(T) \
6252 do { tree _t = (T); \
6253 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
6254 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
6255 return true; } while (0)
6256
6257 if (type == error_mark_node)
6258 return false;
6259
6260 /* If TYPE itself has variable size, it is variably modified. */
6261 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
6262 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
6263
6264 switch (TREE_CODE (type))
6265 {
6266 case POINTER_TYPE:
6267 case REFERENCE_TYPE:
6268 case VECTOR_TYPE:
6269 if (variably_modified_type_p (TREE_TYPE (type), fn))
6270 return true;
6271 break;
6272
6273 case FUNCTION_TYPE:
6274 case METHOD_TYPE:
6275 /* If TYPE is a function type, it is variably modified if the
6276 return type is variably modified. */
6277 if (variably_modified_type_p (TREE_TYPE (type), fn))
6278 return true;
6279 break;
6280
6281 case INTEGER_TYPE:
6282 case REAL_TYPE:
6283 case ENUMERAL_TYPE:
6284 case BOOLEAN_TYPE:
6285 /* Scalar types are variably modified if their end points
6286 aren't constant. */
6287 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
6288 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
6289 break;
6290
6291 case RECORD_TYPE:
6292 case UNION_TYPE:
6293 case QUAL_UNION_TYPE:
6294 /* We can't see if any of the fields are variably-modified by the
6295 definition we normally use, since that would produce infinite
6296 recursion via pointers. */
6297 /* This is variably modified if some field's type is. */
6298 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
6299 if (TREE_CODE (t) == FIELD_DECL)
6300 {
6301 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
6302 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
6303 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
6304
6305 if (TREE_CODE (type) == QUAL_UNION_TYPE)
6306 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
6307 }
6308 break;
6309
6310 case ARRAY_TYPE:
6311 /* Do not call ourselves to avoid infinite recursion. This is
6312 variably modified if the element type is. */
6313 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
6314 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
6315 break;
6316
6317 default:
6318 break;
6319 }
6320
6321 /* The current language may have other cases to check, but in general,
6322 all other types are not variably modified. */
6323 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
6324
6325 #undef RETURN_TRUE_IF_VAR
6326 }
6327
6328 /* Given a DECL or TYPE, return the scope in which it was declared, or
6329 NULL_TREE if there is no containing scope. */
6330
6331 tree
6332 get_containing_scope (tree t)
6333 {
6334 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
6335 }
6336
6337 /* Return the innermost context enclosing DECL that is
6338 a FUNCTION_DECL, or zero if none. */
6339
6340 tree
6341 decl_function_context (tree decl)
6342 {
6343 tree context;
6344
6345 if (TREE_CODE (decl) == ERROR_MARK)
6346 return 0;
6347
6348 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
6349 where we look up the function at runtime. Such functions always take
6350 a first argument of type 'pointer to real context'.
6351
6352 C++ should really be fixed to use DECL_CONTEXT for the real context,
6353 and use something else for the "virtual context". */
6354 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
6355 context
6356 = TYPE_MAIN_VARIANT
6357 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
6358 else
6359 context = DECL_CONTEXT (decl);
6360
6361 while (context && TREE_CODE (context) != FUNCTION_DECL)
6362 {
6363 if (TREE_CODE (context) == BLOCK)
6364 context = BLOCK_SUPERCONTEXT (context);
6365 else
6366 context = get_containing_scope (context);
6367 }
6368
6369 return context;
6370 }
6371
6372 /* Return the innermost context enclosing DECL that is
6373 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
6374 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
6375
6376 tree
6377 decl_type_context (tree decl)
6378 {
6379 tree context = DECL_CONTEXT (decl);
6380
6381 while (context)
6382 switch (TREE_CODE (context))
6383 {
6384 case NAMESPACE_DECL:
6385 case TRANSLATION_UNIT_DECL:
6386 return NULL_TREE;
6387
6388 case RECORD_TYPE:
6389 case UNION_TYPE:
6390 case QUAL_UNION_TYPE:
6391 return context;
6392
6393 case TYPE_DECL:
6394 case FUNCTION_DECL:
6395 context = DECL_CONTEXT (context);
6396 break;
6397
6398 case BLOCK:
6399 context = BLOCK_SUPERCONTEXT (context);
6400 break;
6401
6402 default:
6403 gcc_unreachable ();
6404 }
6405
6406 return NULL_TREE;
6407 }
6408
6409 /* CALL is a CALL_EXPR. Return the declaration for the function
6410 called, or NULL_TREE if the called function cannot be
6411 determined. */
6412
6413 tree
6414 get_callee_fndecl (tree call)
6415 {
6416 tree addr;
6417
6418 if (call == error_mark_node)
6419 return call;
6420
6421 /* It's invalid to call this function with anything but a
6422 CALL_EXPR. */
6423 gcc_assert (TREE_CODE (call) == CALL_EXPR);
6424
6425 /* The first operand to the CALL is the address of the function
6426 called. */
6427 addr = CALL_EXPR_FN (call);
6428
6429 STRIP_NOPS (addr);
6430
6431 /* If this is a readonly function pointer, extract its initial value. */
6432 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
6433 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
6434 && DECL_INITIAL (addr))
6435 addr = DECL_INITIAL (addr);
6436
6437 /* If the address is just `&f' for some function `f', then we know
6438 that `f' is being called. */
6439 if (TREE_CODE (addr) == ADDR_EXPR
6440 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
6441 return TREE_OPERAND (addr, 0);
6442
6443 /* We couldn't figure out what was being called. Maybe the front
6444 end has some idea. */
6445 return lang_hooks.lang_get_callee_fndecl (call);
6446 }
6447
6448 /* Print debugging information about tree nodes generated during the compile,
6449 and any language-specific information. */
6450
6451 void
6452 dump_tree_statistics (void)
6453 {
6454 #ifdef GATHER_STATISTICS
6455 int i;
6456 int total_nodes, total_bytes;
6457 #endif
6458
6459 fprintf (stderr, "\n??? tree nodes created\n\n");
6460 #ifdef GATHER_STATISTICS
6461 fprintf (stderr, "Kind Nodes Bytes\n");
6462 fprintf (stderr, "---------------------------------------\n");
6463 total_nodes = total_bytes = 0;
6464 for (i = 0; i < (int) all_kinds; i++)
6465 {
6466 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
6467 tree_node_counts[i], tree_node_sizes[i]);
6468 total_nodes += tree_node_counts[i];
6469 total_bytes += tree_node_sizes[i];
6470 }
6471 fprintf (stderr, "---------------------------------------\n");
6472 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
6473 fprintf (stderr, "---------------------------------------\n");
6474 ssanames_print_statistics ();
6475 phinodes_print_statistics ();
6476 #else
6477 fprintf (stderr, "(No per-node statistics)\n");
6478 #endif
6479 print_type_hash_statistics ();
6480 print_debug_expr_statistics ();
6481 print_value_expr_statistics ();
6482 print_restrict_base_statistics ();
6483 lang_hooks.print_statistics ();
6484 }
6485 \f
6486 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
6487
6488 /* Generate a crc32 of a string. */
6489
6490 unsigned
6491 crc32_string (unsigned chksum, const char *string)
6492 {
6493 do
6494 {
6495 unsigned value = *string << 24;
6496 unsigned ix;
6497
6498 for (ix = 8; ix--; value <<= 1)
6499 {
6500 unsigned feedback;
6501
6502 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
6503 chksum <<= 1;
6504 chksum ^= feedback;
6505 }
6506 }
6507 while (*string++);
6508 return chksum;
6509 }
6510
6511 /* P is a string that will be used in a symbol. Mask out any characters
6512 that are not valid in that context. */
6513
6514 void
6515 clean_symbol_name (char *p)
6516 {
6517 for (; *p; p++)
6518 if (! (ISALNUM (*p)
6519 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
6520 || *p == '$'
6521 #endif
6522 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
6523 || *p == '.'
6524 #endif
6525 ))
6526 *p = '_';
6527 }
6528
6529 /* Generate a name for a special-purpose function function.
6530 The generated name may need to be unique across the whole link.
6531 TYPE is some string to identify the purpose of this function to the
6532 linker or collect2; it must start with an uppercase letter,
6533 one of:
6534 I - for constructors
6535 D - for destructors
6536 N - for C++ anonymous namespaces
6537 F - for DWARF unwind frame information. */
6538
6539 tree
6540 get_file_function_name (const char *type)
6541 {
6542 char *buf;
6543 const char *p;
6544 char *q;
6545
6546 /* If we already have a name we know to be unique, just use that. */
6547 if (first_global_object_name)
6548 p = first_global_object_name;
6549 /* If the target is handling the constructors/destructors, they
6550 will be local to this file and the name is only necessary for
6551 debugging purposes. */
6552 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
6553 {
6554 const char *file = main_input_filename;
6555 if (! file)
6556 file = input_filename;
6557 /* Just use the file's basename, because the full pathname
6558 might be quite long. */
6559 p = strrchr (file, '/');
6560 if (p)
6561 p++;
6562 else
6563 p = file;
6564 p = q = ASTRDUP (p);
6565 clean_symbol_name (q);
6566 }
6567 else
6568 {
6569 /* Otherwise, the name must be unique across the entire link.
6570 We don't have anything that we know to be unique to this translation
6571 unit, so use what we do have and throw in some randomness. */
6572 unsigned len;
6573 const char *name = weak_global_object_name;
6574 const char *file = main_input_filename;
6575
6576 if (! name)
6577 name = "";
6578 if (! file)
6579 file = input_filename;
6580
6581 len = strlen (file);
6582 q = alloca (9 * 2 + len + 1);
6583 memcpy (q, file, len + 1);
6584 clean_symbol_name (q);
6585
6586 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
6587 crc32_string (0, get_random_seed (false)));
6588
6589 p = q;
6590 }
6591
6592 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
6593
6594 /* Set up the name of the file-level functions we may need.
6595 Use a global object (which is already required to be unique over
6596 the program) rather than the file name (which imposes extra
6597 constraints). */
6598 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
6599
6600 return get_identifier (buf);
6601 }
6602 \f
6603 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
6604
6605 /* Complain that the tree code of NODE does not match the expected 0
6606 terminated list of trailing codes. The trailing code list can be
6607 empty, for a more vague error message. FILE, LINE, and FUNCTION
6608 are of the caller. */
6609
6610 void
6611 tree_check_failed (const tree node, const char *file,
6612 int line, const char *function, ...)
6613 {
6614 va_list args;
6615 char *buffer;
6616 unsigned length = 0;
6617 int code;
6618
6619 va_start (args, function);
6620 while ((code = va_arg (args, int)))
6621 length += 4 + strlen (tree_code_name[code]);
6622 va_end (args);
6623 if (length)
6624 {
6625 va_start (args, function);
6626 length += strlen ("expected ");
6627 buffer = alloca (length);
6628 length = 0;
6629 while ((code = va_arg (args, int)))
6630 {
6631 const char *prefix = length ? " or " : "expected ";
6632
6633 strcpy (buffer + length, prefix);
6634 length += strlen (prefix);
6635 strcpy (buffer + length, tree_code_name[code]);
6636 length += strlen (tree_code_name[code]);
6637 }
6638 va_end (args);
6639 }
6640 else
6641 buffer = (char *)"unexpected node";
6642
6643 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6644 buffer, tree_code_name[TREE_CODE (node)],
6645 function, trim_filename (file), line);
6646 }
6647
6648 /* Complain that the tree code of NODE does match the expected 0
6649 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
6650 the caller. */
6651
6652 void
6653 tree_not_check_failed (const tree node, const char *file,
6654 int line, const char *function, ...)
6655 {
6656 va_list args;
6657 char *buffer;
6658 unsigned length = 0;
6659 int code;
6660
6661 va_start (args, function);
6662 while ((code = va_arg (args, int)))
6663 length += 4 + strlen (tree_code_name[code]);
6664 va_end (args);
6665 va_start (args, function);
6666 buffer = alloca (length);
6667 length = 0;
6668 while ((code = va_arg (args, int)))
6669 {
6670 if (length)
6671 {
6672 strcpy (buffer + length, " or ");
6673 length += 4;
6674 }
6675 strcpy (buffer + length, tree_code_name[code]);
6676 length += strlen (tree_code_name[code]);
6677 }
6678 va_end (args);
6679
6680 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
6681 buffer, tree_code_name[TREE_CODE (node)],
6682 function, trim_filename (file), line);
6683 }
6684
6685 /* Similar to tree_check_failed, except that we check for a class of tree
6686 code, given in CL. */
6687
6688 void
6689 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6690 const char *file, int line, const char *function)
6691 {
6692 internal_error
6693 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6694 TREE_CODE_CLASS_STRING (cl),
6695 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6696 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6697 }
6698
6699 /* Similar to tree_check_failed, except that instead of specifying a
6700 dozen codes, use the knowledge that they're all sequential. */
6701
6702 void
6703 tree_range_check_failed (const tree node, const char *file, int line,
6704 const char *function, enum tree_code c1,
6705 enum tree_code c2)
6706 {
6707 char *buffer;
6708 unsigned length = 0;
6709 enum tree_code c;
6710
6711 for (c = c1; c <= c2; ++c)
6712 length += 4 + strlen (tree_code_name[c]);
6713
6714 length += strlen ("expected ");
6715 buffer = alloca (length);
6716 length = 0;
6717
6718 for (c = c1; c <= c2; ++c)
6719 {
6720 const char *prefix = length ? " or " : "expected ";
6721
6722 strcpy (buffer + length, prefix);
6723 length += strlen (prefix);
6724 strcpy (buffer + length, tree_code_name[c]);
6725 length += strlen (tree_code_name[c]);
6726 }
6727
6728 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6729 buffer, tree_code_name[TREE_CODE (node)],
6730 function, trim_filename (file), line);
6731 }
6732
6733
6734 /* Similar to tree_check_failed, except that we check that a tree does
6735 not have the specified code, given in CL. */
6736
6737 void
6738 tree_not_class_check_failed (const tree node, const enum tree_code_class cl,
6739 const char *file, int line, const char *function)
6740 {
6741 internal_error
6742 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
6743 TREE_CODE_CLASS_STRING (cl),
6744 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6745 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6746 }
6747
6748
6749 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
6750
6751 void
6752 omp_clause_check_failed (const tree node, const char *file, int line,
6753 const char *function, enum omp_clause_code code)
6754 {
6755 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
6756 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
6757 function, trim_filename (file), line);
6758 }
6759
6760
6761 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
6762
6763 void
6764 omp_clause_range_check_failed (const tree node, const char *file, int line,
6765 const char *function, enum omp_clause_code c1,
6766 enum omp_clause_code c2)
6767 {
6768 char *buffer;
6769 unsigned length = 0;
6770 enum omp_clause_code c;
6771
6772 for (c = c1; c <= c2; ++c)
6773 length += 4 + strlen (omp_clause_code_name[c]);
6774
6775 length += strlen ("expected ");
6776 buffer = alloca (length);
6777 length = 0;
6778
6779 for (c = c1; c <= c2; ++c)
6780 {
6781 const char *prefix = length ? " or " : "expected ";
6782
6783 strcpy (buffer + length, prefix);
6784 length += strlen (prefix);
6785 strcpy (buffer + length, omp_clause_code_name[c]);
6786 length += strlen (omp_clause_code_name[c]);
6787 }
6788
6789 internal_error ("tree check: %s, have %s in %s, at %s:%d",
6790 buffer, omp_clause_code_name[TREE_CODE (node)],
6791 function, trim_filename (file), line);
6792 }
6793
6794
6795 #undef DEFTREESTRUCT
6796 #define DEFTREESTRUCT(VAL, NAME) NAME,
6797
6798 static const char *ts_enum_names[] = {
6799 #include "treestruct.def"
6800 };
6801 #undef DEFTREESTRUCT
6802
6803 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6804
6805 /* Similar to tree_class_check_failed, except that we check for
6806 whether CODE contains the tree structure identified by EN. */
6807
6808 void
6809 tree_contains_struct_check_failed (const tree node,
6810 const enum tree_node_structure_enum en,
6811 const char *file, int line,
6812 const char *function)
6813 {
6814 internal_error
6815 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6816 TS_ENUM_NAME(en),
6817 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6818 }
6819
6820
6821 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6822 (dynamically sized) vector. */
6823
6824 void
6825 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6826 const char *function)
6827 {
6828 internal_error
6829 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6830 idx + 1, len, function, trim_filename (file), line);
6831 }
6832
6833 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6834 (dynamically sized) vector. */
6835
6836 void
6837 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6838 const char *function)
6839 {
6840 internal_error
6841 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6842 idx + 1, len, function, trim_filename (file), line);
6843 }
6844
6845 /* Similar to above, except that the check is for the bounds of the operand
6846 vector of an expression node EXP. */
6847
6848 void
6849 tree_operand_check_failed (int idx, tree exp, const char *file,
6850 int line, const char *function)
6851 {
6852 int code = TREE_CODE (exp);
6853 internal_error
6854 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6855 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
6856 function, trim_filename (file), line);
6857 }
6858
6859 /* Similar to above, except that the check is for the number of
6860 operands of an OMP_CLAUSE node. */
6861
6862 void
6863 omp_clause_operand_check_failed (int idx, tree t, const char *file,
6864 int line, const char *function)
6865 {
6866 internal_error
6867 ("tree check: accessed operand %d of omp_clause %s with %d operands "
6868 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
6869 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
6870 trim_filename (file), line);
6871 }
6872 #endif /* ENABLE_TREE_CHECKING */
6873 \f
6874 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6875 and mapped to the machine mode MODE. Initialize its fields and build
6876 the information necessary for debugging output. */
6877
6878 static tree
6879 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6880 {
6881 tree t;
6882 hashval_t hashcode = 0;
6883
6884 /* Build a main variant, based on the main variant of the inner type, then
6885 use it to build the variant we return. */
6886 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
6887 && TYPE_MAIN_VARIANT (innertype) != innertype)
6888 return build_type_attribute_qual_variant (
6889 make_vector_type (TYPE_MAIN_VARIANT (innertype), nunits, mode),
6890 TYPE_ATTRIBUTES (innertype),
6891 TYPE_QUALS (innertype));
6892
6893 t = make_node (VECTOR_TYPE);
6894 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6895 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6896 TYPE_MODE (t) = mode;
6897 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6898 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6899
6900 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
6901 SET_TYPE_STRUCTURAL_EQUALITY (t);
6902 else if (TYPE_CANONICAL (innertype) != innertype
6903 || mode != VOIDmode)
6904 TYPE_CANONICAL (t)
6905 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
6906
6907 layout_type (t);
6908
6909 {
6910 tree index = build_int_cst (NULL_TREE, nunits - 1);
6911 tree array = build_array_type (innertype, build_index_type (index));
6912 tree rt = make_node (RECORD_TYPE);
6913
6914 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6915 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6916 layout_type (rt);
6917 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6918 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6919 the representation type, and we want to find that die when looking up
6920 the vector type. This is most easily achieved by making the TYPE_UID
6921 numbers equal. */
6922 TYPE_UID (rt) = TYPE_UID (t);
6923 }
6924
6925 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
6926 hashcode = iterative_hash_host_wide_int (mode, hashcode);
6927 hashcode = iterative_hash_object (TYPE_HASH (innertype), hashcode);
6928 return type_hash_canon (hashcode, t);
6929 }
6930
6931 static tree
6932 make_or_reuse_type (unsigned size, int unsignedp)
6933 {
6934 if (size == INT_TYPE_SIZE)
6935 return unsignedp ? unsigned_type_node : integer_type_node;
6936 if (size == CHAR_TYPE_SIZE)
6937 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6938 if (size == SHORT_TYPE_SIZE)
6939 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6940 if (size == LONG_TYPE_SIZE)
6941 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6942 if (size == LONG_LONG_TYPE_SIZE)
6943 return (unsignedp ? long_long_unsigned_type_node
6944 : long_long_integer_type_node);
6945
6946 if (unsignedp)
6947 return make_unsigned_type (size);
6948 else
6949 return make_signed_type (size);
6950 }
6951
6952 /* Create nodes for all integer types (and error_mark_node) using the sizes
6953 of C datatypes. The caller should call set_sizetype soon after calling
6954 this function to select one of the types as sizetype. */
6955
6956 void
6957 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6958 {
6959 error_mark_node = make_node (ERROR_MARK);
6960 TREE_TYPE (error_mark_node) = error_mark_node;
6961
6962 initialize_sizetypes (signed_sizetype);
6963
6964 /* Define both `signed char' and `unsigned char'. */
6965 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6966 TYPE_STRING_FLAG (signed_char_type_node) = 1;
6967 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6968 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
6969
6970 /* Define `char', which is like either `signed char' or `unsigned char'
6971 but not the same as either. */
6972 char_type_node
6973 = (signed_char
6974 ? make_signed_type (CHAR_TYPE_SIZE)
6975 : make_unsigned_type (CHAR_TYPE_SIZE));
6976 TYPE_STRING_FLAG (char_type_node) = 1;
6977
6978 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6979 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6980 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6981 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6982 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6983 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6984 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6985 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6986
6987 /* Define a boolean type. This type only represents boolean values but
6988 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6989 Front ends which want to override this size (i.e. Java) can redefine
6990 boolean_type_node before calling build_common_tree_nodes_2. */
6991 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6992 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6993 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6994 TYPE_PRECISION (boolean_type_node) = 1;
6995
6996 /* Fill in the rest of the sized types. Reuse existing type nodes
6997 when possible. */
6998 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6999 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
7000 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
7001 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
7002 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
7003
7004 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
7005 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
7006 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
7007 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
7008 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
7009
7010 access_public_node = get_identifier ("public");
7011 access_protected_node = get_identifier ("protected");
7012 access_private_node = get_identifier ("private");
7013 }
7014
7015 /* Call this function after calling build_common_tree_nodes and set_sizetype.
7016 It will create several other common tree nodes. */
7017
7018 void
7019 build_common_tree_nodes_2 (int short_double)
7020 {
7021 /* Define these next since types below may used them. */
7022 integer_zero_node = build_int_cst (NULL_TREE, 0);
7023 integer_one_node = build_int_cst (NULL_TREE, 1);
7024 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
7025
7026 size_zero_node = size_int (0);
7027 size_one_node = size_int (1);
7028 bitsize_zero_node = bitsize_int (0);
7029 bitsize_one_node = bitsize_int (1);
7030 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
7031
7032 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
7033 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
7034
7035 void_type_node = make_node (VOID_TYPE);
7036 layout_type (void_type_node);
7037
7038 /* We are not going to have real types in C with less than byte alignment,
7039 so we might as well not have any types that claim to have it. */
7040 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
7041 TYPE_USER_ALIGN (void_type_node) = 0;
7042
7043 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
7044 layout_type (TREE_TYPE (null_pointer_node));
7045
7046 ptr_type_node = build_pointer_type (void_type_node);
7047 const_ptr_type_node
7048 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
7049 fileptr_type_node = ptr_type_node;
7050
7051 float_type_node = make_node (REAL_TYPE);
7052 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
7053 layout_type (float_type_node);
7054
7055 double_type_node = make_node (REAL_TYPE);
7056 if (short_double)
7057 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
7058 else
7059 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
7060 layout_type (double_type_node);
7061
7062 long_double_type_node = make_node (REAL_TYPE);
7063 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
7064 layout_type (long_double_type_node);
7065
7066 float_ptr_type_node = build_pointer_type (float_type_node);
7067 double_ptr_type_node = build_pointer_type (double_type_node);
7068 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
7069 integer_ptr_type_node = build_pointer_type (integer_type_node);
7070
7071 /* Fixed size integer types. */
7072 uint32_type_node = build_nonstandard_integer_type (32, true);
7073 uint64_type_node = build_nonstandard_integer_type (64, true);
7074
7075 /* Decimal float types. */
7076 dfloat32_type_node = make_node (REAL_TYPE);
7077 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
7078 layout_type (dfloat32_type_node);
7079 TYPE_MODE (dfloat32_type_node) = SDmode;
7080 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
7081
7082 dfloat64_type_node = make_node (REAL_TYPE);
7083 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
7084 layout_type (dfloat64_type_node);
7085 TYPE_MODE (dfloat64_type_node) = DDmode;
7086 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
7087
7088 dfloat128_type_node = make_node (REAL_TYPE);
7089 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
7090 layout_type (dfloat128_type_node);
7091 TYPE_MODE (dfloat128_type_node) = TDmode;
7092 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
7093
7094 complex_integer_type_node = build_complex_type (integer_type_node);
7095 complex_float_type_node = build_complex_type (float_type_node);
7096 complex_double_type_node = build_complex_type (double_type_node);
7097 complex_long_double_type_node = build_complex_type (long_double_type_node);
7098
7099 {
7100 tree t = targetm.build_builtin_va_list ();
7101
7102 /* Many back-ends define record types without setting TYPE_NAME.
7103 If we copied the record type here, we'd keep the original
7104 record type without a name. This breaks name mangling. So,
7105 don't copy record types and let c_common_nodes_and_builtins()
7106 declare the type to be __builtin_va_list. */
7107 if (TREE_CODE (t) != RECORD_TYPE)
7108 t = build_variant_type_copy (t);
7109
7110 va_list_type_node = t;
7111 }
7112 }
7113
7114 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
7115
7116 static void
7117 local_define_builtin (const char *name, tree type, enum built_in_function code,
7118 const char *library_name, int ecf_flags)
7119 {
7120 tree decl;
7121
7122 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
7123 library_name, NULL_TREE);
7124 if (ecf_flags & ECF_CONST)
7125 TREE_READONLY (decl) = 1;
7126 if (ecf_flags & ECF_PURE)
7127 DECL_IS_PURE (decl) = 1;
7128 if (ecf_flags & ECF_NORETURN)
7129 TREE_THIS_VOLATILE (decl) = 1;
7130 if (ecf_flags & ECF_NOTHROW)
7131 TREE_NOTHROW (decl) = 1;
7132 if (ecf_flags & ECF_MALLOC)
7133 DECL_IS_MALLOC (decl) = 1;
7134
7135 built_in_decls[code] = decl;
7136 implicit_built_in_decls[code] = decl;
7137 }
7138
7139 /* Call this function after instantiating all builtins that the language
7140 front end cares about. This will build the rest of the builtins that
7141 are relied upon by the tree optimizers and the middle-end. */
7142
7143 void
7144 build_common_builtin_nodes (void)
7145 {
7146 tree tmp, ftype;
7147
7148 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
7149 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7150 {
7151 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7152 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7153 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7154 ftype = build_function_type (ptr_type_node, tmp);
7155
7156 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
7157 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
7158 "memcpy", ECF_NOTHROW);
7159 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
7160 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
7161 "memmove", ECF_NOTHROW);
7162 }
7163
7164 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
7165 {
7166 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7167 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7168 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
7169 ftype = build_function_type (integer_type_node, tmp);
7170 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
7171 "memcmp", ECF_PURE | ECF_NOTHROW);
7172 }
7173
7174 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
7175 {
7176 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7177 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
7178 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7179 ftype = build_function_type (ptr_type_node, tmp);
7180 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
7181 "memset", ECF_NOTHROW);
7182 }
7183
7184 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
7185 {
7186 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
7187 ftype = build_function_type (ptr_type_node, tmp);
7188 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
7189 "alloca", ECF_NOTHROW | ECF_MALLOC);
7190 }
7191
7192 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7193 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7194 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7195 ftype = build_function_type (void_type_node, tmp);
7196 local_define_builtin ("__builtin_init_trampoline", ftype,
7197 BUILT_IN_INIT_TRAMPOLINE,
7198 "__builtin_init_trampoline", ECF_NOTHROW);
7199
7200 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7201 ftype = build_function_type (ptr_type_node, tmp);
7202 local_define_builtin ("__builtin_adjust_trampoline", ftype,
7203 BUILT_IN_ADJUST_TRAMPOLINE,
7204 "__builtin_adjust_trampoline",
7205 ECF_CONST | ECF_NOTHROW);
7206
7207 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7208 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7209 ftype = build_function_type (void_type_node, tmp);
7210 local_define_builtin ("__builtin_nonlocal_goto", ftype,
7211 BUILT_IN_NONLOCAL_GOTO,
7212 "__builtin_nonlocal_goto",
7213 ECF_NORETURN | ECF_NOTHROW);
7214
7215 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7216 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
7217 ftype = build_function_type (void_type_node, tmp);
7218 local_define_builtin ("__builtin_setjmp_setup", ftype,
7219 BUILT_IN_SETJMP_SETUP,
7220 "__builtin_setjmp_setup", ECF_NOTHROW);
7221
7222 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7223 ftype = build_function_type (ptr_type_node, tmp);
7224 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
7225 BUILT_IN_SETJMP_DISPATCHER,
7226 "__builtin_setjmp_dispatcher",
7227 ECF_PURE | ECF_NOTHROW);
7228
7229 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7230 ftype = build_function_type (void_type_node, tmp);
7231 local_define_builtin ("__builtin_setjmp_receiver", ftype,
7232 BUILT_IN_SETJMP_RECEIVER,
7233 "__builtin_setjmp_receiver", ECF_NOTHROW);
7234
7235 ftype = build_function_type (ptr_type_node, void_list_node);
7236 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
7237 "__builtin_stack_save", ECF_NOTHROW);
7238
7239 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
7240 ftype = build_function_type (void_type_node, tmp);
7241 local_define_builtin ("__builtin_stack_restore", ftype,
7242 BUILT_IN_STACK_RESTORE,
7243 "__builtin_stack_restore", ECF_NOTHROW);
7244
7245 ftype = build_function_type (void_type_node, void_list_node);
7246 local_define_builtin ("__builtin_profile_func_enter", ftype,
7247 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
7248 local_define_builtin ("__builtin_profile_func_exit", ftype,
7249 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
7250
7251 /* Complex multiplication and division. These are handled as builtins
7252 rather than optabs because emit_library_call_value doesn't support
7253 complex. Further, we can do slightly better with folding these
7254 beasties if the real and complex parts of the arguments are separate. */
7255 {
7256 enum machine_mode mode;
7257
7258 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
7259 {
7260 char mode_name_buf[4], *q;
7261 const char *p;
7262 enum built_in_function mcode, dcode;
7263 tree type, inner_type;
7264
7265 type = lang_hooks.types.type_for_mode (mode, 0);
7266 if (type == NULL)
7267 continue;
7268 inner_type = TREE_TYPE (type);
7269
7270 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
7271 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7272 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7273 tmp = tree_cons (NULL_TREE, inner_type, tmp);
7274 ftype = build_function_type (type, tmp);
7275
7276 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7277 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
7278
7279 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
7280 *q = TOLOWER (*p);
7281 *q = '\0';
7282
7283 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
7284 local_define_builtin (built_in_names[mcode], ftype, mcode,
7285 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
7286
7287 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
7288 local_define_builtin (built_in_names[dcode], ftype, dcode,
7289 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
7290 }
7291 }
7292 }
7293
7294 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
7295 better way.
7296
7297 If we requested a pointer to a vector, build up the pointers that
7298 we stripped off while looking for the inner type. Similarly for
7299 return values from functions.
7300
7301 The argument TYPE is the top of the chain, and BOTTOM is the
7302 new type which we will point to. */
7303
7304 tree
7305 reconstruct_complex_type (tree type, tree bottom)
7306 {
7307 tree inner, outer;
7308
7309 if (TREE_CODE (type) == POINTER_TYPE)
7310 {
7311 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7312 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
7313 TYPE_REF_CAN_ALIAS_ALL (type));
7314 }
7315 else if (TREE_CODE (type) == REFERENCE_TYPE)
7316 {
7317 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7318 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
7319 TYPE_REF_CAN_ALIAS_ALL (type));
7320 }
7321 else if (TREE_CODE (type) == ARRAY_TYPE)
7322 {
7323 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7324 outer = build_array_type (inner, TYPE_DOMAIN (type));
7325 }
7326 else if (TREE_CODE (type) == FUNCTION_TYPE)
7327 {
7328 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7329 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
7330 }
7331 else if (TREE_CODE (type) == METHOD_TYPE)
7332 {
7333 tree argtypes;
7334 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
7335 /* The build_method_type_directly() routine prepends 'this' to argument list,
7336 so we must compensate by getting rid of it. */
7337 argtypes = TYPE_ARG_TYPES (type);
7338 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
7339 inner,
7340 TYPE_ARG_TYPES (type));
7341 TYPE_ARG_TYPES (outer) = argtypes;
7342 }
7343 else
7344 return bottom;
7345
7346 TYPE_READONLY (outer) = TYPE_READONLY (type);
7347 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
7348
7349 return outer;
7350 }
7351
7352 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
7353 the inner type. */
7354 tree
7355 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
7356 {
7357 int nunits;
7358
7359 switch (GET_MODE_CLASS (mode))
7360 {
7361 case MODE_VECTOR_INT:
7362 case MODE_VECTOR_FLOAT:
7363 nunits = GET_MODE_NUNITS (mode);
7364 break;
7365
7366 case MODE_INT:
7367 /* Check that there are no leftover bits. */
7368 gcc_assert (GET_MODE_BITSIZE (mode)
7369 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
7370
7371 nunits = GET_MODE_BITSIZE (mode)
7372 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
7373 break;
7374
7375 default:
7376 gcc_unreachable ();
7377 }
7378
7379 return make_vector_type (innertype, nunits, mode);
7380 }
7381
7382 /* Similarly, but takes the inner type and number of units, which must be
7383 a power of two. */
7384
7385 tree
7386 build_vector_type (tree innertype, int nunits)
7387 {
7388 return make_vector_type (innertype, nunits, VOIDmode);
7389 }
7390
7391
7392 /* Build RESX_EXPR with given REGION_NUMBER. */
7393 tree
7394 build_resx (int region_number)
7395 {
7396 tree t;
7397 t = build1 (RESX_EXPR, void_type_node,
7398 build_int_cst (NULL_TREE, region_number));
7399 return t;
7400 }
7401
7402 /* Given an initializer INIT, return TRUE if INIT is zero or some
7403 aggregate of zeros. Otherwise return FALSE. */
7404 bool
7405 initializer_zerop (tree init)
7406 {
7407 tree elt;
7408
7409 STRIP_NOPS (init);
7410
7411 switch (TREE_CODE (init))
7412 {
7413 case INTEGER_CST:
7414 return integer_zerop (init);
7415
7416 case REAL_CST:
7417 /* ??? Note that this is not correct for C4X float formats. There,
7418 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
7419 negative exponent. */
7420 return real_zerop (init)
7421 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
7422
7423 case COMPLEX_CST:
7424 return integer_zerop (init)
7425 || (real_zerop (init)
7426 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
7427 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
7428
7429 case VECTOR_CST:
7430 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
7431 if (!initializer_zerop (TREE_VALUE (elt)))
7432 return false;
7433 return true;
7434
7435 case CONSTRUCTOR:
7436 {
7437 unsigned HOST_WIDE_INT idx;
7438
7439 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
7440 if (!initializer_zerop (elt))
7441 return false;
7442 return true;
7443 }
7444
7445 default:
7446 return false;
7447 }
7448 }
7449
7450 /* Build an empty statement. */
7451
7452 tree
7453 build_empty_stmt (void)
7454 {
7455 return build1 (NOP_EXPR, void_type_node, size_zero_node);
7456 }
7457
7458
7459 /* Build an OpenMP clause with code CODE. */
7460
7461 tree
7462 build_omp_clause (enum omp_clause_code code)
7463 {
7464 tree t;
7465 int size, length;
7466
7467 length = omp_clause_num_ops[code];
7468 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
7469
7470 t = ggc_alloc (size);
7471 memset (t, 0, size);
7472 TREE_SET_CODE (t, OMP_CLAUSE);
7473 OMP_CLAUSE_SET_CODE (t, code);
7474
7475 #ifdef GATHER_STATISTICS
7476 tree_node_counts[(int) omp_clause_kind]++;
7477 tree_node_sizes[(int) omp_clause_kind] += size;
7478 #endif
7479
7480 return t;
7481 }
7482
7483 /* Set various status flags when building a CALL_EXPR object T. */
7484
7485 static void
7486 process_call_operands (tree t)
7487 {
7488 bool side_effects;
7489
7490 side_effects = TREE_SIDE_EFFECTS (t);
7491 if (!side_effects)
7492 {
7493 int i, n;
7494 n = TREE_OPERAND_LENGTH (t);
7495 for (i = 1; i < n; i++)
7496 {
7497 tree op = TREE_OPERAND (t, i);
7498 if (op && TREE_SIDE_EFFECTS (op))
7499 {
7500 side_effects = 1;
7501 break;
7502 }
7503 }
7504 }
7505 if (!side_effects)
7506 {
7507 int i;
7508
7509 /* Calls have side-effects, except those to const or
7510 pure functions. */
7511 i = call_expr_flags (t);
7512 if (!(i & (ECF_CONST | ECF_PURE)))
7513 side_effects = 1;
7514 }
7515 TREE_SIDE_EFFECTS (t) = side_effects;
7516 }
7517
7518 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
7519 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
7520 Except for the CODE and operand count field, other storage for the
7521 object is initialized to zeros. */
7522
7523 tree
7524 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
7525 {
7526 tree t;
7527 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
7528
7529 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
7530 gcc_assert (len >= 1);
7531
7532 #ifdef GATHER_STATISTICS
7533 tree_node_counts[(int) e_kind]++;
7534 tree_node_sizes[(int) e_kind] += length;
7535 #endif
7536
7537 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
7538
7539 memset (t, 0, length);
7540
7541 TREE_SET_CODE (t, code);
7542
7543 /* Can't use TREE_OPERAND to store the length because if checking is
7544 enabled, it will try to check the length before we store it. :-P */
7545 t->exp.operands[0] = build_int_cst (sizetype, len);
7546
7547 return t;
7548 }
7549
7550
7551 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
7552 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
7553 arguments. */
7554
7555 tree
7556 build_call_list (tree return_type, tree fn, tree arglist)
7557 {
7558 tree t;
7559 int i;
7560
7561 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
7562 TREE_TYPE (t) = return_type;
7563 CALL_EXPR_FN (t) = fn;
7564 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7565 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
7566 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
7567 process_call_operands (t);
7568 return t;
7569 }
7570
7571 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7572 FN and a null static chain slot. NARGS is the number of call arguments
7573 which are specified as "..." arguments. */
7574
7575 tree
7576 build_call_nary (tree return_type, tree fn, int nargs, ...)
7577 {
7578 tree ret;
7579 va_list args;
7580 va_start (args, nargs);
7581 ret = build_call_valist (return_type, fn, nargs, args);
7582 va_end (args);
7583 return ret;
7584 }
7585
7586 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7587 FN and a null static chain slot. NARGS is the number of call arguments
7588 which are specified as a va_list ARGS. */
7589
7590 tree
7591 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
7592 {
7593 tree t;
7594 int i;
7595
7596 t = build_vl_exp (CALL_EXPR, nargs + 3);
7597 TREE_TYPE (t) = return_type;
7598 CALL_EXPR_FN (t) = fn;
7599 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7600 for (i = 0; i < nargs; i++)
7601 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
7602 process_call_operands (t);
7603 return t;
7604 }
7605
7606 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
7607 FN and a null static chain slot. NARGS is the number of call arguments
7608 which are specified as a tree array ARGS. */
7609
7610 tree
7611 build_call_array (tree return_type, tree fn, int nargs, tree *args)
7612 {
7613 tree t;
7614 int i;
7615
7616 t = build_vl_exp (CALL_EXPR, nargs + 3);
7617 TREE_TYPE (t) = return_type;
7618 CALL_EXPR_FN (t) = fn;
7619 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
7620 for (i = 0; i < nargs; i++)
7621 CALL_EXPR_ARG (t, i) = args[i];
7622 process_call_operands (t);
7623 return t;
7624 }
7625
7626
7627 /* Returns true if it is possible to prove that the index of
7628 an array access REF (an ARRAY_REF expression) falls into the
7629 array bounds. */
7630
7631 bool
7632 in_array_bounds_p (tree ref)
7633 {
7634 tree idx = TREE_OPERAND (ref, 1);
7635 tree min, max;
7636
7637 if (TREE_CODE (idx) != INTEGER_CST)
7638 return false;
7639
7640 min = array_ref_low_bound (ref);
7641 max = array_ref_up_bound (ref);
7642 if (!min
7643 || !max
7644 || TREE_CODE (min) != INTEGER_CST
7645 || TREE_CODE (max) != INTEGER_CST)
7646 return false;
7647
7648 if (tree_int_cst_lt (idx, min)
7649 || tree_int_cst_lt (max, idx))
7650 return false;
7651
7652 return true;
7653 }
7654
7655 /* Returns true if it is possible to prove that the range of
7656 an array access REF (an ARRAY_RANGE_REF expression) falls
7657 into the array bounds. */
7658
7659 bool
7660 range_in_array_bounds_p (tree ref)
7661 {
7662 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
7663 tree range_min, range_max, min, max;
7664
7665 range_min = TYPE_MIN_VALUE (domain_type);
7666 range_max = TYPE_MAX_VALUE (domain_type);
7667 if (!range_min
7668 || !range_max
7669 || TREE_CODE (range_min) != INTEGER_CST
7670 || TREE_CODE (range_max) != INTEGER_CST)
7671 return false;
7672
7673 min = array_ref_low_bound (ref);
7674 max = array_ref_up_bound (ref);
7675 if (!min
7676 || !max
7677 || TREE_CODE (min) != INTEGER_CST
7678 || TREE_CODE (max) != INTEGER_CST)
7679 return false;
7680
7681 if (tree_int_cst_lt (range_min, min)
7682 || tree_int_cst_lt (max, range_max))
7683 return false;
7684
7685 return true;
7686 }
7687
7688 /* Return true if T (assumed to be a DECL) must be assigned a memory
7689 location. */
7690
7691 bool
7692 needs_to_live_in_memory (tree t)
7693 {
7694 if (TREE_CODE (t) == SSA_NAME)
7695 t = SSA_NAME_VAR (t);
7696
7697 return (TREE_ADDRESSABLE (t)
7698 || is_global_var (t)
7699 || (TREE_CODE (t) == RESULT_DECL
7700 && aggregate_value_p (t, current_function_decl)));
7701 }
7702
7703 /* There are situations in which a language considers record types
7704 compatible which have different field lists. Decide if two fields
7705 are compatible. It is assumed that the parent records are compatible. */
7706
7707 bool
7708 fields_compatible_p (tree f1, tree f2)
7709 {
7710 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
7711 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
7712 return false;
7713
7714 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
7715 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
7716 return false;
7717
7718 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
7719 return false;
7720
7721 return true;
7722 }
7723
7724 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
7725
7726 tree
7727 find_compatible_field (tree record, tree orig_field)
7728 {
7729 tree f;
7730
7731 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
7732 if (TREE_CODE (f) == FIELD_DECL
7733 && fields_compatible_p (f, orig_field))
7734 return f;
7735
7736 /* ??? Why isn't this on the main fields list? */
7737 f = TYPE_VFIELD (record);
7738 if (f && TREE_CODE (f) == FIELD_DECL
7739 && fields_compatible_p (f, orig_field))
7740 return f;
7741
7742 /* ??? We should abort here, but Java appears to do Bad Things
7743 with inherited fields. */
7744 return orig_field;
7745 }
7746
7747 /* Return value of a constant X. */
7748
7749 HOST_WIDE_INT
7750 int_cst_value (tree x)
7751 {
7752 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
7753 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
7754 bool negative = ((val >> (bits - 1)) & 1) != 0;
7755
7756 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
7757
7758 if (negative)
7759 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
7760 else
7761 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
7762
7763 return val;
7764 }
7765
7766 /* If TYPE is an integral type, return an equivalent type which is
7767 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
7768 return TYPE itself. */
7769
7770 tree
7771 signed_or_unsigned_type_for (int unsignedp, tree type)
7772 {
7773 tree t = type;
7774 if (POINTER_TYPE_P (type))
7775 t = size_type_node;
7776
7777 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
7778 return t;
7779
7780 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
7781 }
7782
7783 /* Returns unsigned variant of TYPE. */
7784
7785 tree
7786 unsigned_type_for (tree type)
7787 {
7788 return signed_or_unsigned_type_for (1, type);
7789 }
7790
7791 /* Returns signed variant of TYPE. */
7792
7793 tree
7794 signed_type_for (tree type)
7795 {
7796 return signed_or_unsigned_type_for (0, type);
7797 }
7798
7799 /* Returns the largest value obtainable by casting something in INNER type to
7800 OUTER type. */
7801
7802 tree
7803 upper_bound_in_type (tree outer, tree inner)
7804 {
7805 unsigned HOST_WIDE_INT lo, hi;
7806 unsigned int det = 0;
7807 unsigned oprec = TYPE_PRECISION (outer);
7808 unsigned iprec = TYPE_PRECISION (inner);
7809 unsigned prec;
7810
7811 /* Compute a unique number for every combination. */
7812 det |= (oprec > iprec) ? 4 : 0;
7813 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
7814 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
7815
7816 /* Determine the exponent to use. */
7817 switch (det)
7818 {
7819 case 0:
7820 case 1:
7821 /* oprec <= iprec, outer: signed, inner: don't care. */
7822 prec = oprec - 1;
7823 break;
7824 case 2:
7825 case 3:
7826 /* oprec <= iprec, outer: unsigned, inner: don't care. */
7827 prec = oprec;
7828 break;
7829 case 4:
7830 /* oprec > iprec, outer: signed, inner: signed. */
7831 prec = iprec - 1;
7832 break;
7833 case 5:
7834 /* oprec > iprec, outer: signed, inner: unsigned. */
7835 prec = iprec;
7836 break;
7837 case 6:
7838 /* oprec > iprec, outer: unsigned, inner: signed. */
7839 prec = oprec;
7840 break;
7841 case 7:
7842 /* oprec > iprec, outer: unsigned, inner: unsigned. */
7843 prec = iprec;
7844 break;
7845 default:
7846 gcc_unreachable ();
7847 }
7848
7849 /* Compute 2^^prec - 1. */
7850 if (prec <= HOST_BITS_PER_WIDE_INT)
7851 {
7852 hi = 0;
7853 lo = ((~(unsigned HOST_WIDE_INT) 0)
7854 >> (HOST_BITS_PER_WIDE_INT - prec));
7855 }
7856 else
7857 {
7858 hi = ((~(unsigned HOST_WIDE_INT) 0)
7859 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
7860 lo = ~(unsigned HOST_WIDE_INT) 0;
7861 }
7862
7863 return build_int_cst_wide (outer, lo, hi);
7864 }
7865
7866 /* Returns the smallest value obtainable by casting something in INNER type to
7867 OUTER type. */
7868
7869 tree
7870 lower_bound_in_type (tree outer, tree inner)
7871 {
7872 unsigned HOST_WIDE_INT lo, hi;
7873 unsigned oprec = TYPE_PRECISION (outer);
7874 unsigned iprec = TYPE_PRECISION (inner);
7875
7876 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
7877 and obtain 0. */
7878 if (TYPE_UNSIGNED (outer)
7879 /* If we are widening something of an unsigned type, OUTER type
7880 contains all values of INNER type. In particular, both INNER
7881 and OUTER types have zero in common. */
7882 || (oprec > iprec && TYPE_UNSIGNED (inner)))
7883 lo = hi = 0;
7884 else
7885 {
7886 /* If we are widening a signed type to another signed type, we
7887 want to obtain -2^^(iprec-1). If we are keeping the
7888 precision or narrowing to a signed type, we want to obtain
7889 -2^(oprec-1). */
7890 unsigned prec = oprec > iprec ? iprec : oprec;
7891
7892 if (prec <= HOST_BITS_PER_WIDE_INT)
7893 {
7894 hi = ~(unsigned HOST_WIDE_INT) 0;
7895 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
7896 }
7897 else
7898 {
7899 hi = ((~(unsigned HOST_WIDE_INT) 0)
7900 << (prec - HOST_BITS_PER_WIDE_INT - 1));
7901 lo = 0;
7902 }
7903 }
7904
7905 return build_int_cst_wide (outer, lo, hi);
7906 }
7907
7908 /* Return nonzero if two operands that are suitable for PHI nodes are
7909 necessarily equal. Specifically, both ARG0 and ARG1 must be either
7910 SSA_NAME or invariant. Note that this is strictly an optimization.
7911 That is, callers of this function can directly call operand_equal_p
7912 and get the same result, only slower. */
7913
7914 int
7915 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
7916 {
7917 if (arg0 == arg1)
7918 return 1;
7919 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
7920 return 0;
7921 return operand_equal_p (arg0, arg1, 0);
7922 }
7923
7924 /* Returns number of zeros at the end of binary representation of X.
7925
7926 ??? Use ffs if available? */
7927
7928 tree
7929 num_ending_zeros (tree x)
7930 {
7931 unsigned HOST_WIDE_INT fr, nfr;
7932 unsigned num, abits;
7933 tree type = TREE_TYPE (x);
7934
7935 if (TREE_INT_CST_LOW (x) == 0)
7936 {
7937 num = HOST_BITS_PER_WIDE_INT;
7938 fr = TREE_INT_CST_HIGH (x);
7939 }
7940 else
7941 {
7942 num = 0;
7943 fr = TREE_INT_CST_LOW (x);
7944 }
7945
7946 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
7947 {
7948 nfr = fr >> abits;
7949 if (nfr << abits == fr)
7950 {
7951 num += abits;
7952 fr = nfr;
7953 }
7954 }
7955
7956 if (num > TYPE_PRECISION (type))
7957 num = TYPE_PRECISION (type);
7958
7959 return build_int_cst_type (type, num);
7960 }
7961
7962
7963 #define WALK_SUBTREE(NODE) \
7964 do \
7965 { \
7966 result = walk_tree (&(NODE), func, data, pset); \
7967 if (result) \
7968 return result; \
7969 } \
7970 while (0)
7971
7972 /* This is a subroutine of walk_tree that walks field of TYPE that are to
7973 be walked whenever a type is seen in the tree. Rest of operands and return
7974 value are as for walk_tree. */
7975
7976 static tree
7977 walk_type_fields (tree type, walk_tree_fn func, void *data,
7978 struct pointer_set_t *pset)
7979 {
7980 tree result = NULL_TREE;
7981
7982 switch (TREE_CODE (type))
7983 {
7984 case POINTER_TYPE:
7985 case REFERENCE_TYPE:
7986 /* We have to worry about mutually recursive pointers. These can't
7987 be written in C. They can in Ada. It's pathological, but
7988 there's an ACATS test (c38102a) that checks it. Deal with this
7989 by checking if we're pointing to another pointer, that one
7990 points to another pointer, that one does too, and we have no htab.
7991 If so, get a hash table. We check three levels deep to avoid
7992 the cost of the hash table if we don't need one. */
7993 if (POINTER_TYPE_P (TREE_TYPE (type))
7994 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
7995 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
7996 && !pset)
7997 {
7998 result = walk_tree_without_duplicates (&TREE_TYPE (type),
7999 func, data);
8000 if (result)
8001 return result;
8002
8003 break;
8004 }
8005
8006 /* ... fall through ... */
8007
8008 case COMPLEX_TYPE:
8009 WALK_SUBTREE (TREE_TYPE (type));
8010 break;
8011
8012 case METHOD_TYPE:
8013 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
8014
8015 /* Fall through. */
8016
8017 case FUNCTION_TYPE:
8018 WALK_SUBTREE (TREE_TYPE (type));
8019 {
8020 tree arg;
8021
8022 /* We never want to walk into default arguments. */
8023 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
8024 WALK_SUBTREE (TREE_VALUE (arg));
8025 }
8026 break;
8027
8028 case ARRAY_TYPE:
8029 /* Don't follow this nodes's type if a pointer for fear that
8030 we'll have infinite recursion. If we have a PSET, then we
8031 need not fear. */
8032 if (pset
8033 || (!POINTER_TYPE_P (TREE_TYPE (type))
8034 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
8035 WALK_SUBTREE (TREE_TYPE (type));
8036 WALK_SUBTREE (TYPE_DOMAIN (type));
8037 break;
8038
8039 case OFFSET_TYPE:
8040 WALK_SUBTREE (TREE_TYPE (type));
8041 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
8042 break;
8043
8044 default:
8045 break;
8046 }
8047
8048 return NULL_TREE;
8049 }
8050
8051 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
8052 called with the DATA and the address of each sub-tree. If FUNC returns a
8053 non-NULL value, the traversal is stopped, and the value returned by FUNC
8054 is returned. If PSET is non-NULL it is used to record the nodes visited,
8055 and to avoid visiting a node more than once. */
8056
8057 tree
8058 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
8059 {
8060 enum tree_code code;
8061 int walk_subtrees;
8062 tree result;
8063
8064 #define WALK_SUBTREE_TAIL(NODE) \
8065 do \
8066 { \
8067 tp = & (NODE); \
8068 goto tail_recurse; \
8069 } \
8070 while (0)
8071
8072 tail_recurse:
8073 /* Skip empty subtrees. */
8074 if (!*tp)
8075 return NULL_TREE;
8076
8077 /* Don't walk the same tree twice, if the user has requested
8078 that we avoid doing so. */
8079 if (pset && pointer_set_insert (pset, *tp))
8080 return NULL_TREE;
8081
8082 /* Call the function. */
8083 walk_subtrees = 1;
8084 result = (*func) (tp, &walk_subtrees, data);
8085
8086 /* If we found something, return it. */
8087 if (result)
8088 return result;
8089
8090 code = TREE_CODE (*tp);
8091
8092 /* Even if we didn't, FUNC may have decided that there was nothing
8093 interesting below this point in the tree. */
8094 if (!walk_subtrees)
8095 {
8096 /* But we still need to check our siblings. */
8097 if (code == TREE_LIST)
8098 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8099 else if (code == OMP_CLAUSE)
8100 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8101 else
8102 return NULL_TREE;
8103 }
8104
8105 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
8106 data, pset);
8107 if (result || !walk_subtrees)
8108 return result;
8109
8110 switch (code)
8111 {
8112 case ERROR_MARK:
8113 case IDENTIFIER_NODE:
8114 case INTEGER_CST:
8115 case REAL_CST:
8116 case VECTOR_CST:
8117 case STRING_CST:
8118 case BLOCK:
8119 case PLACEHOLDER_EXPR:
8120 case SSA_NAME:
8121 case FIELD_DECL:
8122 case RESULT_DECL:
8123 /* None of these have subtrees other than those already walked
8124 above. */
8125 break;
8126
8127 case TREE_LIST:
8128 WALK_SUBTREE (TREE_VALUE (*tp));
8129 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
8130 break;
8131
8132 case TREE_VEC:
8133 {
8134 int len = TREE_VEC_LENGTH (*tp);
8135
8136 if (len == 0)
8137 break;
8138
8139 /* Walk all elements but the first. */
8140 while (--len)
8141 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
8142
8143 /* Now walk the first one as a tail call. */
8144 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
8145 }
8146
8147 case COMPLEX_CST:
8148 WALK_SUBTREE (TREE_REALPART (*tp));
8149 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
8150
8151 case CONSTRUCTOR:
8152 {
8153 unsigned HOST_WIDE_INT idx;
8154 constructor_elt *ce;
8155
8156 for (idx = 0;
8157 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
8158 idx++)
8159 WALK_SUBTREE (ce->value);
8160 }
8161 break;
8162
8163 case SAVE_EXPR:
8164 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
8165
8166 case BIND_EXPR:
8167 {
8168 tree decl;
8169 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
8170 {
8171 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
8172 into declarations that are just mentioned, rather than
8173 declared; they don't really belong to this part of the tree.
8174 And, we can see cycles: the initializer for a declaration
8175 can refer to the declaration itself. */
8176 WALK_SUBTREE (DECL_INITIAL (decl));
8177 WALK_SUBTREE (DECL_SIZE (decl));
8178 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
8179 }
8180 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
8181 }
8182
8183 case STATEMENT_LIST:
8184 {
8185 tree_stmt_iterator i;
8186 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
8187 WALK_SUBTREE (*tsi_stmt_ptr (i));
8188 }
8189 break;
8190
8191 case OMP_CLAUSE:
8192 switch (OMP_CLAUSE_CODE (*tp))
8193 {
8194 case OMP_CLAUSE_PRIVATE:
8195 case OMP_CLAUSE_SHARED:
8196 case OMP_CLAUSE_FIRSTPRIVATE:
8197 case OMP_CLAUSE_LASTPRIVATE:
8198 case OMP_CLAUSE_COPYIN:
8199 case OMP_CLAUSE_COPYPRIVATE:
8200 case OMP_CLAUSE_IF:
8201 case OMP_CLAUSE_NUM_THREADS:
8202 case OMP_CLAUSE_SCHEDULE:
8203 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
8204 /* FALLTHRU */
8205
8206 case OMP_CLAUSE_NOWAIT:
8207 case OMP_CLAUSE_ORDERED:
8208 case OMP_CLAUSE_DEFAULT:
8209 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8210
8211 case OMP_CLAUSE_REDUCTION:
8212 {
8213 int i;
8214 for (i = 0; i < 4; i++)
8215 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
8216 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
8217 }
8218
8219 default:
8220 gcc_unreachable ();
8221 }
8222 break;
8223
8224 case TARGET_EXPR:
8225 {
8226 int i, len;
8227
8228 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
8229 But, we only want to walk once. */
8230 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
8231 for (i = 0; i < len; ++i)
8232 WALK_SUBTREE (TREE_OPERAND (*tp, i));
8233 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
8234 }
8235
8236 case DECL_EXPR:
8237 /* If this is a TYPE_DECL, walk into the fields of the type that it's
8238 defining. We only want to walk into these fields of a type in this
8239 case and not in the general case of a mere reference to the type.
8240
8241 The criterion is as follows: if the field can be an expression, it
8242 must be walked only here. This should be in keeping with the fields
8243 that are directly gimplified in gimplify_type_sizes in order for the
8244 mark/copy-if-shared/unmark machinery of the gimplifier to work with
8245 variable-sized types.
8246
8247 Note that DECLs get walked as part of processing the BIND_EXPR. */
8248 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
8249 {
8250 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
8251 if (TREE_CODE (*type_p) == ERROR_MARK)
8252 return NULL_TREE;
8253
8254 /* Call the function for the type. See if it returns anything or
8255 doesn't want us to continue. If we are to continue, walk both
8256 the normal fields and those for the declaration case. */
8257 result = (*func) (type_p, &walk_subtrees, data);
8258 if (result || !walk_subtrees)
8259 return result;
8260
8261 result = walk_type_fields (*type_p, func, data, pset);
8262 if (result)
8263 return result;
8264
8265 /* If this is a record type, also walk the fields. */
8266 if (TREE_CODE (*type_p) == RECORD_TYPE
8267 || TREE_CODE (*type_p) == UNION_TYPE
8268 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8269 {
8270 tree field;
8271
8272 for (field = TYPE_FIELDS (*type_p); field;
8273 field = TREE_CHAIN (field))
8274 {
8275 /* We'd like to look at the type of the field, but we can
8276 easily get infinite recursion. So assume it's pointed
8277 to elsewhere in the tree. Also, ignore things that
8278 aren't fields. */
8279 if (TREE_CODE (field) != FIELD_DECL)
8280 continue;
8281
8282 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
8283 WALK_SUBTREE (DECL_SIZE (field));
8284 WALK_SUBTREE (DECL_SIZE_UNIT (field));
8285 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
8286 WALK_SUBTREE (DECL_QUALIFIER (field));
8287 }
8288 }
8289
8290 /* Same for scalar types. */
8291 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
8292 || TREE_CODE (*type_p) == ENUMERAL_TYPE
8293 || TREE_CODE (*type_p) == INTEGER_TYPE
8294 || TREE_CODE (*type_p) == REAL_TYPE)
8295 {
8296 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
8297 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
8298 }
8299
8300 WALK_SUBTREE (TYPE_SIZE (*type_p));
8301 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
8302 }
8303 /* FALLTHRU */
8304
8305 default:
8306 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code))
8307 || IS_GIMPLE_STMT_CODE_CLASS (TREE_CODE_CLASS (code)))
8308 {
8309 int i, len;
8310
8311 /* Walk over all the sub-trees of this operand. */
8312 len = TREE_OPERAND_LENGTH (*tp);
8313
8314 /* Go through the subtrees. We need to do this in forward order so
8315 that the scope of a FOR_EXPR is handled properly. */
8316 if (len)
8317 {
8318 for (i = 0; i < len - 1; ++i)
8319 WALK_SUBTREE (GENERIC_TREE_OPERAND (*tp, i));
8320 WALK_SUBTREE_TAIL (GENERIC_TREE_OPERAND (*tp, len - 1));
8321 }
8322 }
8323 /* If this is a type, walk the needed fields in the type. */
8324 else if (TYPE_P (*tp))
8325 return walk_type_fields (*tp, func, data, pset);
8326 break;
8327 }
8328
8329 /* We didn't find what we were looking for. */
8330 return NULL_TREE;
8331
8332 #undef WALK_SUBTREE_TAIL
8333 }
8334 #undef WALK_SUBTREE
8335
8336 /* Like walk_tree, but does not walk duplicate nodes more than once. */
8337
8338 tree
8339 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
8340 {
8341 tree result;
8342 struct pointer_set_t *pset;
8343
8344 pset = pointer_set_create ();
8345 result = walk_tree (tp, func, data, pset);
8346 pointer_set_destroy (pset);
8347 return result;
8348 }
8349
8350
8351 /* Return true if STMT is an empty statement or contains nothing but
8352 empty statements. */
8353
8354 bool
8355 empty_body_p (tree stmt)
8356 {
8357 tree_stmt_iterator i;
8358 tree body;
8359
8360 if (IS_EMPTY_STMT (stmt))
8361 return true;
8362 else if (TREE_CODE (stmt) == BIND_EXPR)
8363 body = BIND_EXPR_BODY (stmt);
8364 else if (TREE_CODE (stmt) == STATEMENT_LIST)
8365 body = stmt;
8366 else
8367 return false;
8368
8369 for (i = tsi_start (body); !tsi_end_p (i); tsi_next (&i))
8370 if (!empty_body_p (tsi_stmt (i)))
8371 return false;
8372
8373 return true;
8374 }
8375
8376 tree *
8377 tree_block (tree t)
8378 {
8379 char const c = TREE_CODE_CLASS (TREE_CODE (t));
8380
8381 if (IS_EXPR_CODE_CLASS (c))
8382 return &t->exp.block;
8383 else if (IS_GIMPLE_STMT_CODE_CLASS (c))
8384 return &GIMPLE_STMT_BLOCK (t);
8385 gcc_unreachable ();
8386 return NULL;
8387 }
8388
8389 tree *
8390 generic_tree_operand (tree node, int i)
8391 {
8392 if (GIMPLE_STMT_P (node))
8393 return &GIMPLE_STMT_OPERAND (node, i);
8394 return &TREE_OPERAND (node, i);
8395 }
8396
8397 tree *
8398 generic_tree_type (tree node)
8399 {
8400 if (GIMPLE_STMT_P (node))
8401 return &void_type_node;
8402 return &TREE_TYPE (node);
8403 }
8404
8405 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
8406 FIXME: don't use this function. It exists for compatibility with
8407 the old representation of CALL_EXPRs where a list was used to hold the
8408 arguments. Places that currently extract the arglist from a CALL_EXPR
8409 ought to be rewritten to use the CALL_EXPR itself. */
8410 tree
8411 call_expr_arglist (tree exp)
8412 {
8413 tree arglist = NULL_TREE;
8414 int i;
8415 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
8416 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
8417 return arglist;
8418 }
8419
8420 #include "gt-tree.h"