]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
11939d77986b4ba035e028cad4351011535d07f8
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'.
545 The result is good until the next call. */
546
547 static char *
548 add_angle_brackets (const char *str)
549 {
550 static char *result = NULL;
551
552 xfree (result);
553 result = xstrprintf ("<%s>", str);
554 return result;
555 }
556
557 static const char *
558 ada_get_gdb_completer_word_break_characters (void)
559 {
560 return ada_completer_word_break_characters;
561 }
562
563 /* Print an array element index using the Ada syntax. */
564
565 static void
566 ada_print_array_index (struct value *index_value, struct ui_file *stream,
567 const struct value_print_options *options)
568 {
569 LA_VALUE_PRINT (index_value, stream, options);
570 fprintf_filtered (stream, " => ");
571 }
572
573 /* Assuming VECT points to an array of *SIZE objects of size
574 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
575 updating *SIZE as necessary and returning the (new) array. */
576
577 void *
578 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
579 {
580 if (*size < min_size)
581 {
582 *size *= 2;
583 if (*size < min_size)
584 *size = min_size;
585 vect = xrealloc (vect, *size * element_size);
586 }
587 return vect;
588 }
589
590 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
591 suffix of FIELD_NAME beginning "___". */
592
593 static int
594 field_name_match (const char *field_name, const char *target)
595 {
596 int len = strlen (target);
597
598 return
599 (strncmp (field_name, target, len) == 0
600 && (field_name[len] == '\0'
601 || (startswith (field_name + len, "___")
602 && strcmp (field_name + strlen (field_name) - 6,
603 "___XVN") != 0)));
604 }
605
606
607 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
608 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
609 and return its index. This function also handles fields whose name
610 have ___ suffixes because the compiler sometimes alters their name
611 by adding such a suffix to represent fields with certain constraints.
612 If the field could not be found, return a negative number if
613 MAYBE_MISSING is set. Otherwise raise an error. */
614
615 int
616 ada_get_field_index (const struct type *type, const char *field_name,
617 int maybe_missing)
618 {
619 int fieldno;
620 struct type *struct_type = check_typedef ((struct type *) type);
621
622 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
623 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
624 return fieldno;
625
626 if (!maybe_missing)
627 error (_("Unable to find field %s in struct %s. Aborting"),
628 field_name, TYPE_NAME (struct_type));
629
630 return -1;
631 }
632
633 /* The length of the prefix of NAME prior to any "___" suffix. */
634
635 int
636 ada_name_prefix_len (const char *name)
637 {
638 if (name == NULL)
639 return 0;
640 else
641 {
642 const char *p = strstr (name, "___");
643
644 if (p == NULL)
645 return strlen (name);
646 else
647 return p - name;
648 }
649 }
650
651 /* Return non-zero if SUFFIX is a suffix of STR.
652 Return zero if STR is null. */
653
654 static int
655 is_suffix (const char *str, const char *suffix)
656 {
657 int len1, len2;
658
659 if (str == NULL)
660 return 0;
661 len1 = strlen (str);
662 len2 = strlen (suffix);
663 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
664 }
665
666 /* The contents of value VAL, treated as a value of type TYPE. The
667 result is an lval in memory if VAL is. */
668
669 static struct value *
670 coerce_unspec_val_to_type (struct value *val, struct type *type)
671 {
672 type = ada_check_typedef (type);
673 if (value_type (val) == type)
674 return val;
675 else
676 {
677 struct value *result;
678
679 /* Make sure that the object size is not unreasonable before
680 trying to allocate some memory for it. */
681 ada_ensure_varsize_limit (type);
682
683 if (value_lazy (val)
684 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
685 result = allocate_value_lazy (type);
686 else
687 {
688 result = allocate_value (type);
689 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
690 }
691 set_value_component_location (result, val);
692 set_value_bitsize (result, value_bitsize (val));
693 set_value_bitpos (result, value_bitpos (val));
694 set_value_address (result, value_address (val));
695 return result;
696 }
697 }
698
699 static const gdb_byte *
700 cond_offset_host (const gdb_byte *valaddr, long offset)
701 {
702 if (valaddr == NULL)
703 return NULL;
704 else
705 return valaddr + offset;
706 }
707
708 static CORE_ADDR
709 cond_offset_target (CORE_ADDR address, long offset)
710 {
711 if (address == 0)
712 return 0;
713 else
714 return address + offset;
715 }
716
717 /* Issue a warning (as for the definition of warning in utils.c, but
718 with exactly one argument rather than ...), unless the limit on the
719 number of warnings has passed during the evaluation of the current
720 expression. */
721
722 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
723 provided by "complaint". */
724 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
725
726 static void
727 lim_warning (const char *format, ...)
728 {
729 va_list args;
730
731 va_start (args, format);
732 warnings_issued += 1;
733 if (warnings_issued <= warning_limit)
734 vwarning (format, args);
735
736 va_end (args);
737 }
738
739 /* Issue an error if the size of an object of type T is unreasonable,
740 i.e. if it would be a bad idea to allocate a value of this type in
741 GDB. */
742
743 void
744 ada_ensure_varsize_limit (const struct type *type)
745 {
746 if (TYPE_LENGTH (type) > varsize_limit)
747 error (_("object size is larger than varsize-limit"));
748 }
749
750 /* Maximum value of a SIZE-byte signed integer type. */
751 static LONGEST
752 max_of_size (int size)
753 {
754 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
755
756 return top_bit | (top_bit - 1);
757 }
758
759 /* Minimum value of a SIZE-byte signed integer type. */
760 static LONGEST
761 min_of_size (int size)
762 {
763 return -max_of_size (size) - 1;
764 }
765
766 /* Maximum value of a SIZE-byte unsigned integer type. */
767 static ULONGEST
768 umax_of_size (int size)
769 {
770 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
771
772 return top_bit | (top_bit - 1);
773 }
774
775 /* Maximum value of integral type T, as a signed quantity. */
776 static LONGEST
777 max_of_type (struct type *t)
778 {
779 if (TYPE_UNSIGNED (t))
780 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
781 else
782 return max_of_size (TYPE_LENGTH (t));
783 }
784
785 /* Minimum value of integral type T, as a signed quantity. */
786 static LONGEST
787 min_of_type (struct type *t)
788 {
789 if (TYPE_UNSIGNED (t))
790 return 0;
791 else
792 return min_of_size (TYPE_LENGTH (t));
793 }
794
795 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
796 LONGEST
797 ada_discrete_type_high_bound (struct type *type)
798 {
799 type = resolve_dynamic_type (type, NULL, 0);
800 switch (TYPE_CODE (type))
801 {
802 case TYPE_CODE_RANGE:
803 return TYPE_HIGH_BOUND (type);
804 case TYPE_CODE_ENUM:
805 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
806 case TYPE_CODE_BOOL:
807 return 1;
808 case TYPE_CODE_CHAR:
809 case TYPE_CODE_INT:
810 return max_of_type (type);
811 default:
812 error (_("Unexpected type in ada_discrete_type_high_bound."));
813 }
814 }
815
816 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
817 LONGEST
818 ada_discrete_type_low_bound (struct type *type)
819 {
820 type = resolve_dynamic_type (type, NULL, 0);
821 switch (TYPE_CODE (type))
822 {
823 case TYPE_CODE_RANGE:
824 return TYPE_LOW_BOUND (type);
825 case TYPE_CODE_ENUM:
826 return TYPE_FIELD_ENUMVAL (type, 0);
827 case TYPE_CODE_BOOL:
828 return 0;
829 case TYPE_CODE_CHAR:
830 case TYPE_CODE_INT:
831 return min_of_type (type);
832 default:
833 error (_("Unexpected type in ada_discrete_type_low_bound."));
834 }
835 }
836
837 /* The identity on non-range types. For range types, the underlying
838 non-range scalar type. */
839
840 static struct type *
841 get_base_type (struct type *type)
842 {
843 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
844 {
845 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
846 return type;
847 type = TYPE_TARGET_TYPE (type);
848 }
849 return type;
850 }
851
852 /* Return a decoded version of the given VALUE. This means returning
853 a value whose type is obtained by applying all the GNAT-specific
854 encondings, making the resulting type a static but standard description
855 of the initial type. */
856
857 struct value *
858 ada_get_decoded_value (struct value *value)
859 {
860 struct type *type = ada_check_typedef (value_type (value));
861
862 if (ada_is_array_descriptor_type (type)
863 || (ada_is_constrained_packed_array_type (type)
864 && TYPE_CODE (type) != TYPE_CODE_PTR))
865 {
866 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
867 value = ada_coerce_to_simple_array_ptr (value);
868 else
869 value = ada_coerce_to_simple_array (value);
870 }
871 else
872 value = ada_to_fixed_value (value);
873
874 return value;
875 }
876
877 /* Same as ada_get_decoded_value, but with the given TYPE.
878 Because there is no associated actual value for this type,
879 the resulting type might be a best-effort approximation in
880 the case of dynamic types. */
881
882 struct type *
883 ada_get_decoded_type (struct type *type)
884 {
885 type = to_static_fixed_type (type);
886 if (ada_is_constrained_packed_array_type (type))
887 type = ada_coerce_to_simple_array_type (type);
888 return type;
889 }
890
891 \f
892
893 /* Language Selection */
894
895 /* If the main program is in Ada, return language_ada, otherwise return LANG
896 (the main program is in Ada iif the adainit symbol is found). */
897
898 enum language
899 ada_update_initial_language (enum language lang)
900 {
901 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
902 (struct objfile *) NULL).minsym != NULL)
903 return language_ada;
904
905 return lang;
906 }
907
908 /* If the main procedure is written in Ada, then return its name.
909 The result is good until the next call. Return NULL if the main
910 procedure doesn't appear to be in Ada. */
911
912 char *
913 ada_main_name (void)
914 {
915 struct bound_minimal_symbol msym;
916 static gdb::unique_xmalloc_ptr<char> main_program_name;
917
918 /* For Ada, the name of the main procedure is stored in a specific
919 string constant, generated by the binder. Look for that symbol,
920 extract its address, and then read that string. If we didn't find
921 that string, then most probably the main procedure is not written
922 in Ada. */
923 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
924
925 if (msym.minsym != NULL)
926 {
927 CORE_ADDR main_program_name_addr;
928 int err_code;
929
930 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
931 if (main_program_name_addr == 0)
932 error (_("Invalid address for Ada main program name."));
933
934 target_read_string (main_program_name_addr, &main_program_name,
935 1024, &err_code);
936
937 if (err_code != 0)
938 return NULL;
939 return main_program_name.get ();
940 }
941
942 /* The main procedure doesn't seem to be in Ada. */
943 return NULL;
944 }
945 \f
946 /* Symbols */
947
948 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
949 of NULLs. */
950
951 const struct ada_opname_map ada_opname_table[] = {
952 {"Oadd", "\"+\"", BINOP_ADD},
953 {"Osubtract", "\"-\"", BINOP_SUB},
954 {"Omultiply", "\"*\"", BINOP_MUL},
955 {"Odivide", "\"/\"", BINOP_DIV},
956 {"Omod", "\"mod\"", BINOP_MOD},
957 {"Orem", "\"rem\"", BINOP_REM},
958 {"Oexpon", "\"**\"", BINOP_EXP},
959 {"Olt", "\"<\"", BINOP_LESS},
960 {"Ole", "\"<=\"", BINOP_LEQ},
961 {"Ogt", "\">\"", BINOP_GTR},
962 {"Oge", "\">=\"", BINOP_GEQ},
963 {"Oeq", "\"=\"", BINOP_EQUAL},
964 {"One", "\"/=\"", BINOP_NOTEQUAL},
965 {"Oand", "\"and\"", BINOP_BITWISE_AND},
966 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
967 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
968 {"Oconcat", "\"&\"", BINOP_CONCAT},
969 {"Oabs", "\"abs\"", UNOP_ABS},
970 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
971 {"Oadd", "\"+\"", UNOP_PLUS},
972 {"Osubtract", "\"-\"", UNOP_NEG},
973 {NULL, NULL}
974 };
975
976 /* The "encoded" form of DECODED, according to GNAT conventions. The
977 result is valid until the next call to ada_encode. If
978 THROW_ERRORS, throw an error if invalid operator name is found.
979 Otherwise, return NULL in that case. */
980
981 static char *
982 ada_encode_1 (const char *decoded, bool throw_errors)
983 {
984 static char *encoding_buffer = NULL;
985 static size_t encoding_buffer_size = 0;
986 const char *p;
987 int k;
988
989 if (decoded == NULL)
990 return NULL;
991
992 GROW_VECT (encoding_buffer, encoding_buffer_size,
993 2 * strlen (decoded) + 10);
994
995 k = 0;
996 for (p = decoded; *p != '\0'; p += 1)
997 {
998 if (*p == '.')
999 {
1000 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
1001 k += 2;
1002 }
1003 else if (*p == '"')
1004 {
1005 const struct ada_opname_map *mapping;
1006
1007 for (mapping = ada_opname_table;
1008 mapping->encoded != NULL
1009 && !startswith (p, mapping->decoded); mapping += 1)
1010 ;
1011 if (mapping->encoded == NULL)
1012 {
1013 if (throw_errors)
1014 error (_("invalid Ada operator name: %s"), p);
1015 else
1016 return NULL;
1017 }
1018 strcpy (encoding_buffer + k, mapping->encoded);
1019 k += strlen (mapping->encoded);
1020 break;
1021 }
1022 else
1023 {
1024 encoding_buffer[k] = *p;
1025 k += 1;
1026 }
1027 }
1028
1029 encoding_buffer[k] = '\0';
1030 return encoding_buffer;
1031 }
1032
1033 /* The "encoded" form of DECODED, according to GNAT conventions.
1034 The result is valid until the next call to ada_encode. */
1035
1036 char *
1037 ada_encode (const char *decoded)
1038 {
1039 return ada_encode_1 (decoded, true);
1040 }
1041
1042 /* Return NAME folded to lower case, or, if surrounded by single
1043 quotes, unfolded, but with the quotes stripped away. Result good
1044 to next call. */
1045
1046 char *
1047 ada_fold_name (const char *name)
1048 {
1049 static char *fold_buffer = NULL;
1050 static size_t fold_buffer_size = 0;
1051
1052 int len = strlen (name);
1053 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1054
1055 if (name[0] == '\'')
1056 {
1057 strncpy (fold_buffer, name + 1, len - 2);
1058 fold_buffer[len - 2] = '\000';
1059 }
1060 else
1061 {
1062 int i;
1063
1064 for (i = 0; i <= len; i += 1)
1065 fold_buffer[i] = tolower (name[i]);
1066 }
1067
1068 return fold_buffer;
1069 }
1070
1071 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1072
1073 static int
1074 is_lower_alphanum (const char c)
1075 {
1076 return (isdigit (c) || (isalpha (c) && islower (c)));
1077 }
1078
1079 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1080 This function saves in LEN the length of that same symbol name but
1081 without either of these suffixes:
1082 . .{DIGIT}+
1083 . ${DIGIT}+
1084 . ___{DIGIT}+
1085 . __{DIGIT}+.
1086
1087 These are suffixes introduced by the compiler for entities such as
1088 nested subprogram for instance, in order to avoid name clashes.
1089 They do not serve any purpose for the debugger. */
1090
1091 static void
1092 ada_remove_trailing_digits (const char *encoded, int *len)
1093 {
1094 if (*len > 1 && isdigit (encoded[*len - 1]))
1095 {
1096 int i = *len - 2;
1097
1098 while (i > 0 && isdigit (encoded[i]))
1099 i--;
1100 if (i >= 0 && encoded[i] == '.')
1101 *len = i;
1102 else if (i >= 0 && encoded[i] == '$')
1103 *len = i;
1104 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1105 *len = i - 2;
1106 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1107 *len = i - 1;
1108 }
1109 }
1110
1111 /* Remove the suffix introduced by the compiler for protected object
1112 subprograms. */
1113
1114 static void
1115 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1116 {
1117 /* Remove trailing N. */
1118
1119 /* Protected entry subprograms are broken into two
1120 separate subprograms: The first one is unprotected, and has
1121 a 'N' suffix; the second is the protected version, and has
1122 the 'P' suffix. The second calls the first one after handling
1123 the protection. Since the P subprograms are internally generated,
1124 we leave these names undecoded, giving the user a clue that this
1125 entity is internal. */
1126
1127 if (*len > 1
1128 && encoded[*len - 1] == 'N'
1129 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1130 *len = *len - 1;
1131 }
1132
1133 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1134
1135 static void
1136 ada_remove_Xbn_suffix (const char *encoded, int *len)
1137 {
1138 int i = *len - 1;
1139
1140 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1141 i--;
1142
1143 if (encoded[i] != 'X')
1144 return;
1145
1146 if (i == 0)
1147 return;
1148
1149 if (isalnum (encoded[i-1]))
1150 *len = i;
1151 }
1152
1153 /* If ENCODED follows the GNAT entity encoding conventions, then return
1154 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1155 replaced by ENCODED.
1156
1157 The resulting string is valid until the next call of ada_decode.
1158 If the string is unchanged by decoding, the original string pointer
1159 is returned. */
1160
1161 const char *
1162 ada_decode (const char *encoded)
1163 {
1164 int i, j;
1165 int len0;
1166 const char *p;
1167 char *decoded;
1168 int at_start_name;
1169 static char *decoding_buffer = NULL;
1170 static size_t decoding_buffer_size = 0;
1171
1172 /* The name of the Ada main procedure starts with "_ada_".
1173 This prefix is not part of the decoded name, so skip this part
1174 if we see this prefix. */
1175 if (startswith (encoded, "_ada_"))
1176 encoded += 5;
1177
1178 /* If the name starts with '_', then it is not a properly encoded
1179 name, so do not attempt to decode it. Similarly, if the name
1180 starts with '<', the name should not be decoded. */
1181 if (encoded[0] == '_' || encoded[0] == '<')
1182 goto Suppress;
1183
1184 len0 = strlen (encoded);
1185
1186 ada_remove_trailing_digits (encoded, &len0);
1187 ada_remove_po_subprogram_suffix (encoded, &len0);
1188
1189 /* Remove the ___X.* suffix if present. Do not forget to verify that
1190 the suffix is located before the current "end" of ENCODED. We want
1191 to avoid re-matching parts of ENCODED that have previously been
1192 marked as discarded (by decrementing LEN0). */
1193 p = strstr (encoded, "___");
1194 if (p != NULL && p - encoded < len0 - 3)
1195 {
1196 if (p[3] == 'X')
1197 len0 = p - encoded;
1198 else
1199 goto Suppress;
1200 }
1201
1202 /* Remove any trailing TKB suffix. It tells us that this symbol
1203 is for the body of a task, but that information does not actually
1204 appear in the decoded name. */
1205
1206 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1207 len0 -= 3;
1208
1209 /* Remove any trailing TB suffix. The TB suffix is slightly different
1210 from the TKB suffix because it is used for non-anonymous task
1211 bodies. */
1212
1213 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1214 len0 -= 2;
1215
1216 /* Remove trailing "B" suffixes. */
1217 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1218
1219 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1220 len0 -= 1;
1221
1222 /* Make decoded big enough for possible expansion by operator name. */
1223
1224 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1225 decoded = decoding_buffer;
1226
1227 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1228
1229 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1230 {
1231 i = len0 - 2;
1232 while ((i >= 0 && isdigit (encoded[i]))
1233 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1234 i -= 1;
1235 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1236 len0 = i - 1;
1237 else if (encoded[i] == '$')
1238 len0 = i;
1239 }
1240
1241 /* The first few characters that are not alphabetic are not part
1242 of any encoding we use, so we can copy them over verbatim. */
1243
1244 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1245 decoded[j] = encoded[i];
1246
1247 at_start_name = 1;
1248 while (i < len0)
1249 {
1250 /* Is this a symbol function? */
1251 if (at_start_name && encoded[i] == 'O')
1252 {
1253 int k;
1254
1255 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1256 {
1257 int op_len = strlen (ada_opname_table[k].encoded);
1258 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1259 op_len - 1) == 0)
1260 && !isalnum (encoded[i + op_len]))
1261 {
1262 strcpy (decoded + j, ada_opname_table[k].decoded);
1263 at_start_name = 0;
1264 i += op_len;
1265 j += strlen (ada_opname_table[k].decoded);
1266 break;
1267 }
1268 }
1269 if (ada_opname_table[k].encoded != NULL)
1270 continue;
1271 }
1272 at_start_name = 0;
1273
1274 /* Replace "TK__" with "__", which will eventually be translated
1275 into "." (just below). */
1276
1277 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1278 i += 2;
1279
1280 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1281 be translated into "." (just below). These are internal names
1282 generated for anonymous blocks inside which our symbol is nested. */
1283
1284 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1285 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1286 && isdigit (encoded [i+4]))
1287 {
1288 int k = i + 5;
1289
1290 while (k < len0 && isdigit (encoded[k]))
1291 k++; /* Skip any extra digit. */
1292
1293 /* Double-check that the "__B_{DIGITS}+" sequence we found
1294 is indeed followed by "__". */
1295 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1296 i = k;
1297 }
1298
1299 /* Remove _E{DIGITS}+[sb] */
1300
1301 /* Just as for protected object subprograms, there are 2 categories
1302 of subprograms created by the compiler for each entry. The first
1303 one implements the actual entry code, and has a suffix following
1304 the convention above; the second one implements the barrier and
1305 uses the same convention as above, except that the 'E' is replaced
1306 by a 'B'.
1307
1308 Just as above, we do not decode the name of barrier functions
1309 to give the user a clue that the code he is debugging has been
1310 internally generated. */
1311
1312 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1313 && isdigit (encoded[i+2]))
1314 {
1315 int k = i + 3;
1316
1317 while (k < len0 && isdigit (encoded[k]))
1318 k++;
1319
1320 if (k < len0
1321 && (encoded[k] == 'b' || encoded[k] == 's'))
1322 {
1323 k++;
1324 /* Just as an extra precaution, make sure that if this
1325 suffix is followed by anything else, it is a '_'.
1326 Otherwise, we matched this sequence by accident. */
1327 if (k == len0
1328 || (k < len0 && encoded[k] == '_'))
1329 i = k;
1330 }
1331 }
1332
1333 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1334 the GNAT front-end in protected object subprograms. */
1335
1336 if (i < len0 + 3
1337 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1338 {
1339 /* Backtrack a bit up until we reach either the begining of
1340 the encoded name, or "__". Make sure that we only find
1341 digits or lowercase characters. */
1342 const char *ptr = encoded + i - 1;
1343
1344 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1345 ptr--;
1346 if (ptr < encoded
1347 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1348 i++;
1349 }
1350
1351 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1352 {
1353 /* This is a X[bn]* sequence not separated from the previous
1354 part of the name with a non-alpha-numeric character (in other
1355 words, immediately following an alpha-numeric character), then
1356 verify that it is placed at the end of the encoded name. If
1357 not, then the encoding is not valid and we should abort the
1358 decoding. Otherwise, just skip it, it is used in body-nested
1359 package names. */
1360 do
1361 i += 1;
1362 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1363 if (i < len0)
1364 goto Suppress;
1365 }
1366 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1367 {
1368 /* Replace '__' by '.'. */
1369 decoded[j] = '.';
1370 at_start_name = 1;
1371 i += 2;
1372 j += 1;
1373 }
1374 else
1375 {
1376 /* It's a character part of the decoded name, so just copy it
1377 over. */
1378 decoded[j] = encoded[i];
1379 i += 1;
1380 j += 1;
1381 }
1382 }
1383 decoded[j] = '\000';
1384
1385 /* Decoded names should never contain any uppercase character.
1386 Double-check this, and abort the decoding if we find one. */
1387
1388 for (i = 0; decoded[i] != '\0'; i += 1)
1389 if (isupper (decoded[i]) || decoded[i] == ' ')
1390 goto Suppress;
1391
1392 if (strcmp (decoded, encoded) == 0)
1393 return encoded;
1394 else
1395 return decoded;
1396
1397 Suppress:
1398 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1399 decoded = decoding_buffer;
1400 if (encoded[0] == '<')
1401 strcpy (decoded, encoded);
1402 else
1403 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1404 return decoded;
1405
1406 }
1407
1408 /* Table for keeping permanent unique copies of decoded names. Once
1409 allocated, names in this table are never released. While this is a
1410 storage leak, it should not be significant unless there are massive
1411 changes in the set of decoded names in successive versions of a
1412 symbol table loaded during a single session. */
1413 static struct htab *decoded_names_store;
1414
1415 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1416 in the language-specific part of GSYMBOL, if it has not been
1417 previously computed. Tries to save the decoded name in the same
1418 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1419 in any case, the decoded symbol has a lifetime at least that of
1420 GSYMBOL).
1421 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1422 const, but nevertheless modified to a semantically equivalent form
1423 when a decoded name is cached in it. */
1424
1425 const char *
1426 ada_decode_symbol (const struct general_symbol_info *arg)
1427 {
1428 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1429 const char **resultp =
1430 &gsymbol->language_specific.demangled_name;
1431
1432 if (!gsymbol->ada_mangled)
1433 {
1434 const char *decoded = ada_decode (gsymbol->name);
1435 struct obstack *obstack = gsymbol->language_specific.obstack;
1436
1437 gsymbol->ada_mangled = 1;
1438
1439 if (obstack != NULL)
1440 *resultp
1441 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1442 else
1443 {
1444 /* Sometimes, we can't find a corresponding objfile, in
1445 which case, we put the result on the heap. Since we only
1446 decode when needed, we hope this usually does not cause a
1447 significant memory leak (FIXME). */
1448
1449 char **slot = (char **) htab_find_slot (decoded_names_store,
1450 decoded, INSERT);
1451
1452 if (*slot == NULL)
1453 *slot = xstrdup (decoded);
1454 *resultp = *slot;
1455 }
1456 }
1457
1458 return *resultp;
1459 }
1460
1461 static char *
1462 ada_la_decode (const char *encoded, int options)
1463 {
1464 return xstrdup (ada_decode (encoded));
1465 }
1466
1467 /* Implement la_sniff_from_mangled_name for Ada. */
1468
1469 static int
1470 ada_sniff_from_mangled_name (const char *mangled, char **out)
1471 {
1472 const char *demangled = ada_decode (mangled);
1473
1474 *out = NULL;
1475
1476 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1477 {
1478 /* Set the gsymbol language to Ada, but still return 0.
1479 Two reasons for that:
1480
1481 1. For Ada, we prefer computing the symbol's decoded name
1482 on the fly rather than pre-compute it, in order to save
1483 memory (Ada projects are typically very large).
1484
1485 2. There are some areas in the definition of the GNAT
1486 encoding where, with a bit of bad luck, we might be able
1487 to decode a non-Ada symbol, generating an incorrect
1488 demangled name (Eg: names ending with "TB" for instance
1489 are identified as task bodies and so stripped from
1490 the decoded name returned).
1491
1492 Returning 1, here, but not setting *DEMANGLED, helps us get a
1493 little bit of the best of both worlds. Because we're last,
1494 we should not affect any of the other languages that were
1495 able to demangle the symbol before us; we get to correctly
1496 tag Ada symbols as such; and even if we incorrectly tagged a
1497 non-Ada symbol, which should be rare, any routing through the
1498 Ada language should be transparent (Ada tries to behave much
1499 like C/C++ with non-Ada symbols). */
1500 return 1;
1501 }
1502
1503 return 0;
1504 }
1505
1506 \f
1507
1508 /* Arrays */
1509
1510 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1511 generated by the GNAT compiler to describe the index type used
1512 for each dimension of an array, check whether it follows the latest
1513 known encoding. If not, fix it up to conform to the latest encoding.
1514 Otherwise, do nothing. This function also does nothing if
1515 INDEX_DESC_TYPE is NULL.
1516
1517 The GNAT encoding used to describle the array index type evolved a bit.
1518 Initially, the information would be provided through the name of each
1519 field of the structure type only, while the type of these fields was
1520 described as unspecified and irrelevant. The debugger was then expected
1521 to perform a global type lookup using the name of that field in order
1522 to get access to the full index type description. Because these global
1523 lookups can be very expensive, the encoding was later enhanced to make
1524 the global lookup unnecessary by defining the field type as being
1525 the full index type description.
1526
1527 The purpose of this routine is to allow us to support older versions
1528 of the compiler by detecting the use of the older encoding, and by
1529 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1530 we essentially replace each field's meaningless type by the associated
1531 index subtype). */
1532
1533 void
1534 ada_fixup_array_indexes_type (struct type *index_desc_type)
1535 {
1536 int i;
1537
1538 if (index_desc_type == NULL)
1539 return;
1540 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1541
1542 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1543 to check one field only, no need to check them all). If not, return
1544 now.
1545
1546 If our INDEX_DESC_TYPE was generated using the older encoding,
1547 the field type should be a meaningless integer type whose name
1548 is not equal to the field name. */
1549 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1550 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1551 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1552 return;
1553
1554 /* Fixup each field of INDEX_DESC_TYPE. */
1555 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1556 {
1557 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1558 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1559
1560 if (raw_type)
1561 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1562 }
1563 }
1564
1565 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1566
1567 static const char *bound_name[] = {
1568 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1569 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1570 };
1571
1572 /* Maximum number of array dimensions we are prepared to handle. */
1573
1574 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1575
1576
1577 /* The desc_* routines return primitive portions of array descriptors
1578 (fat pointers). */
1579
1580 /* The descriptor or array type, if any, indicated by TYPE; removes
1581 level of indirection, if needed. */
1582
1583 static struct type *
1584 desc_base_type (struct type *type)
1585 {
1586 if (type == NULL)
1587 return NULL;
1588 type = ada_check_typedef (type);
1589 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1590 type = ada_typedef_target_type (type);
1591
1592 if (type != NULL
1593 && (TYPE_CODE (type) == TYPE_CODE_PTR
1594 || TYPE_CODE (type) == TYPE_CODE_REF))
1595 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1596 else
1597 return type;
1598 }
1599
1600 /* True iff TYPE indicates a "thin" array pointer type. */
1601
1602 static int
1603 is_thin_pntr (struct type *type)
1604 {
1605 return
1606 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1607 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1608 }
1609
1610 /* The descriptor type for thin pointer type TYPE. */
1611
1612 static struct type *
1613 thin_descriptor_type (struct type *type)
1614 {
1615 struct type *base_type = desc_base_type (type);
1616
1617 if (base_type == NULL)
1618 return NULL;
1619 if (is_suffix (ada_type_name (base_type), "___XVE"))
1620 return base_type;
1621 else
1622 {
1623 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1624
1625 if (alt_type == NULL)
1626 return base_type;
1627 else
1628 return alt_type;
1629 }
1630 }
1631
1632 /* A pointer to the array data for thin-pointer value VAL. */
1633
1634 static struct value *
1635 thin_data_pntr (struct value *val)
1636 {
1637 struct type *type = ada_check_typedef (value_type (val));
1638 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1639
1640 data_type = lookup_pointer_type (data_type);
1641
1642 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1643 return value_cast (data_type, value_copy (val));
1644 else
1645 return value_from_longest (data_type, value_address (val));
1646 }
1647
1648 /* True iff TYPE indicates a "thick" array pointer type. */
1649
1650 static int
1651 is_thick_pntr (struct type *type)
1652 {
1653 type = desc_base_type (type);
1654 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1655 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1656 }
1657
1658 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1659 pointer to one, the type of its bounds data; otherwise, NULL. */
1660
1661 static struct type *
1662 desc_bounds_type (struct type *type)
1663 {
1664 struct type *r;
1665
1666 type = desc_base_type (type);
1667
1668 if (type == NULL)
1669 return NULL;
1670 else if (is_thin_pntr (type))
1671 {
1672 type = thin_descriptor_type (type);
1673 if (type == NULL)
1674 return NULL;
1675 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1676 if (r != NULL)
1677 return ada_check_typedef (r);
1678 }
1679 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1680 {
1681 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1682 if (r != NULL)
1683 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1684 }
1685 return NULL;
1686 }
1687
1688 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1689 one, a pointer to its bounds data. Otherwise NULL. */
1690
1691 static struct value *
1692 desc_bounds (struct value *arr)
1693 {
1694 struct type *type = ada_check_typedef (value_type (arr));
1695
1696 if (is_thin_pntr (type))
1697 {
1698 struct type *bounds_type =
1699 desc_bounds_type (thin_descriptor_type (type));
1700 LONGEST addr;
1701
1702 if (bounds_type == NULL)
1703 error (_("Bad GNAT array descriptor"));
1704
1705 /* NOTE: The following calculation is not really kosher, but
1706 since desc_type is an XVE-encoded type (and shouldn't be),
1707 the correct calculation is a real pain. FIXME (and fix GCC). */
1708 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1709 addr = value_as_long (arr);
1710 else
1711 addr = value_address (arr);
1712
1713 return
1714 value_from_longest (lookup_pointer_type (bounds_type),
1715 addr - TYPE_LENGTH (bounds_type));
1716 }
1717
1718 else if (is_thick_pntr (type))
1719 {
1720 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1721 _("Bad GNAT array descriptor"));
1722 struct type *p_bounds_type = value_type (p_bounds);
1723
1724 if (p_bounds_type
1725 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1726 {
1727 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1728
1729 if (TYPE_STUB (target_type))
1730 p_bounds = value_cast (lookup_pointer_type
1731 (ada_check_typedef (target_type)),
1732 p_bounds);
1733 }
1734 else
1735 error (_("Bad GNAT array descriptor"));
1736
1737 return p_bounds;
1738 }
1739 else
1740 return NULL;
1741 }
1742
1743 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1744 position of the field containing the address of the bounds data. */
1745
1746 static int
1747 fat_pntr_bounds_bitpos (struct type *type)
1748 {
1749 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1750 }
1751
1752 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1753 size of the field containing the address of the bounds data. */
1754
1755 static int
1756 fat_pntr_bounds_bitsize (struct type *type)
1757 {
1758 type = desc_base_type (type);
1759
1760 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1761 return TYPE_FIELD_BITSIZE (type, 1);
1762 else
1763 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1764 }
1765
1766 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1767 pointer to one, the type of its array data (a array-with-no-bounds type);
1768 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1769 data. */
1770
1771 static struct type *
1772 desc_data_target_type (struct type *type)
1773 {
1774 type = desc_base_type (type);
1775
1776 /* NOTE: The following is bogus; see comment in desc_bounds. */
1777 if (is_thin_pntr (type))
1778 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1779 else if (is_thick_pntr (type))
1780 {
1781 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1782
1783 if (data_type
1784 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1785 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1786 }
1787
1788 return NULL;
1789 }
1790
1791 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1792 its array data. */
1793
1794 static struct value *
1795 desc_data (struct value *arr)
1796 {
1797 struct type *type = value_type (arr);
1798
1799 if (is_thin_pntr (type))
1800 return thin_data_pntr (arr);
1801 else if (is_thick_pntr (type))
1802 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1803 _("Bad GNAT array descriptor"));
1804 else
1805 return NULL;
1806 }
1807
1808
1809 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1810 position of the field containing the address of the data. */
1811
1812 static int
1813 fat_pntr_data_bitpos (struct type *type)
1814 {
1815 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1816 }
1817
1818 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1819 size of the field containing the address of the data. */
1820
1821 static int
1822 fat_pntr_data_bitsize (struct type *type)
1823 {
1824 type = desc_base_type (type);
1825
1826 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1827 return TYPE_FIELD_BITSIZE (type, 0);
1828 else
1829 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1830 }
1831
1832 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1833 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1834 bound, if WHICH is 1. The first bound is I=1. */
1835
1836 static struct value *
1837 desc_one_bound (struct value *bounds, int i, int which)
1838 {
1839 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1840 _("Bad GNAT array descriptor bounds"));
1841 }
1842
1843 /* If BOUNDS is an array-bounds structure type, return the bit position
1844 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1845 bound, if WHICH is 1. The first bound is I=1. */
1846
1847 static int
1848 desc_bound_bitpos (struct type *type, int i, int which)
1849 {
1850 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1851 }
1852
1853 /* If BOUNDS is an array-bounds structure type, return the bit field size
1854 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1855 bound, if WHICH is 1. The first bound is I=1. */
1856
1857 static int
1858 desc_bound_bitsize (struct type *type, int i, int which)
1859 {
1860 type = desc_base_type (type);
1861
1862 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1863 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1864 else
1865 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1866 }
1867
1868 /* If TYPE is the type of an array-bounds structure, the type of its
1869 Ith bound (numbering from 1). Otherwise, NULL. */
1870
1871 static struct type *
1872 desc_index_type (struct type *type, int i)
1873 {
1874 type = desc_base_type (type);
1875
1876 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1877 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1878 else
1879 return NULL;
1880 }
1881
1882 /* The number of index positions in the array-bounds type TYPE.
1883 Return 0 if TYPE is NULL. */
1884
1885 static int
1886 desc_arity (struct type *type)
1887 {
1888 type = desc_base_type (type);
1889
1890 if (type != NULL)
1891 return TYPE_NFIELDS (type) / 2;
1892 return 0;
1893 }
1894
1895 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1896 an array descriptor type (representing an unconstrained array
1897 type). */
1898
1899 static int
1900 ada_is_direct_array_type (struct type *type)
1901 {
1902 if (type == NULL)
1903 return 0;
1904 type = ada_check_typedef (type);
1905 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1906 || ada_is_array_descriptor_type (type));
1907 }
1908
1909 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1910 * to one. */
1911
1912 static int
1913 ada_is_array_type (struct type *type)
1914 {
1915 while (type != NULL
1916 && (TYPE_CODE (type) == TYPE_CODE_PTR
1917 || TYPE_CODE (type) == TYPE_CODE_REF))
1918 type = TYPE_TARGET_TYPE (type);
1919 return ada_is_direct_array_type (type);
1920 }
1921
1922 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1923
1924 int
1925 ada_is_simple_array_type (struct type *type)
1926 {
1927 if (type == NULL)
1928 return 0;
1929 type = ada_check_typedef (type);
1930 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1931 || (TYPE_CODE (type) == TYPE_CODE_PTR
1932 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1933 == TYPE_CODE_ARRAY));
1934 }
1935
1936 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1937
1938 int
1939 ada_is_array_descriptor_type (struct type *type)
1940 {
1941 struct type *data_type = desc_data_target_type (type);
1942
1943 if (type == NULL)
1944 return 0;
1945 type = ada_check_typedef (type);
1946 return (data_type != NULL
1947 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1948 && desc_arity (desc_bounds_type (type)) > 0);
1949 }
1950
1951 /* Non-zero iff type is a partially mal-formed GNAT array
1952 descriptor. FIXME: This is to compensate for some problems with
1953 debugging output from GNAT. Re-examine periodically to see if it
1954 is still needed. */
1955
1956 int
1957 ada_is_bogus_array_descriptor (struct type *type)
1958 {
1959 return
1960 type != NULL
1961 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1962 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1963 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1964 && !ada_is_array_descriptor_type (type);
1965 }
1966
1967
1968 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1969 (fat pointer) returns the type of the array data described---specifically,
1970 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1971 in from the descriptor; otherwise, they are left unspecified. If
1972 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1973 returns NULL. The result is simply the type of ARR if ARR is not
1974 a descriptor. */
1975 struct type *
1976 ada_type_of_array (struct value *arr, int bounds)
1977 {
1978 if (ada_is_constrained_packed_array_type (value_type (arr)))
1979 return decode_constrained_packed_array_type (value_type (arr));
1980
1981 if (!ada_is_array_descriptor_type (value_type (arr)))
1982 return value_type (arr);
1983
1984 if (!bounds)
1985 {
1986 struct type *array_type =
1987 ada_check_typedef (desc_data_target_type (value_type (arr)));
1988
1989 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1990 TYPE_FIELD_BITSIZE (array_type, 0) =
1991 decode_packed_array_bitsize (value_type (arr));
1992
1993 return array_type;
1994 }
1995 else
1996 {
1997 struct type *elt_type;
1998 int arity;
1999 struct value *descriptor;
2000
2001 elt_type = ada_array_element_type (value_type (arr), -1);
2002 arity = ada_array_arity (value_type (arr));
2003
2004 if (elt_type == NULL || arity == 0)
2005 return ada_check_typedef (value_type (arr));
2006
2007 descriptor = desc_bounds (arr);
2008 if (value_as_long (descriptor) == 0)
2009 return NULL;
2010 while (arity > 0)
2011 {
2012 struct type *range_type = alloc_type_copy (value_type (arr));
2013 struct type *array_type = alloc_type_copy (value_type (arr));
2014 struct value *low = desc_one_bound (descriptor, arity, 0);
2015 struct value *high = desc_one_bound (descriptor, arity, 1);
2016
2017 arity -= 1;
2018 create_static_range_type (range_type, value_type (low),
2019 longest_to_int (value_as_long (low)),
2020 longest_to_int (value_as_long (high)));
2021 elt_type = create_array_type (array_type, elt_type, range_type);
2022
2023 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2024 {
2025 /* We need to store the element packed bitsize, as well as
2026 recompute the array size, because it was previously
2027 computed based on the unpacked element size. */
2028 LONGEST lo = value_as_long (low);
2029 LONGEST hi = value_as_long (high);
2030
2031 TYPE_FIELD_BITSIZE (elt_type, 0) =
2032 decode_packed_array_bitsize (value_type (arr));
2033 /* If the array has no element, then the size is already
2034 zero, and does not need to be recomputed. */
2035 if (lo < hi)
2036 {
2037 int array_bitsize =
2038 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2039
2040 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2041 }
2042 }
2043 }
2044
2045 return lookup_pointer_type (elt_type);
2046 }
2047 }
2048
2049 /* If ARR does not represent an array, returns ARR unchanged.
2050 Otherwise, returns either a standard GDB array with bounds set
2051 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2052 GDB array. Returns NULL if ARR is a null fat pointer. */
2053
2054 struct value *
2055 ada_coerce_to_simple_array_ptr (struct value *arr)
2056 {
2057 if (ada_is_array_descriptor_type (value_type (arr)))
2058 {
2059 struct type *arrType = ada_type_of_array (arr, 1);
2060
2061 if (arrType == NULL)
2062 return NULL;
2063 return value_cast (arrType, value_copy (desc_data (arr)));
2064 }
2065 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2066 return decode_constrained_packed_array (arr);
2067 else
2068 return arr;
2069 }
2070
2071 /* If ARR does not represent an array, returns ARR unchanged.
2072 Otherwise, returns a standard GDB array describing ARR (which may
2073 be ARR itself if it already is in the proper form). */
2074
2075 struct value *
2076 ada_coerce_to_simple_array (struct value *arr)
2077 {
2078 if (ada_is_array_descriptor_type (value_type (arr)))
2079 {
2080 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2081
2082 if (arrVal == NULL)
2083 error (_("Bounds unavailable for null array pointer."));
2084 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2085 return value_ind (arrVal);
2086 }
2087 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2088 return decode_constrained_packed_array (arr);
2089 else
2090 return arr;
2091 }
2092
2093 /* If TYPE represents a GNAT array type, return it translated to an
2094 ordinary GDB array type (possibly with BITSIZE fields indicating
2095 packing). For other types, is the identity. */
2096
2097 struct type *
2098 ada_coerce_to_simple_array_type (struct type *type)
2099 {
2100 if (ada_is_constrained_packed_array_type (type))
2101 return decode_constrained_packed_array_type (type);
2102
2103 if (ada_is_array_descriptor_type (type))
2104 return ada_check_typedef (desc_data_target_type (type));
2105
2106 return type;
2107 }
2108
2109 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2110
2111 static int
2112 ada_is_packed_array_type (struct type *type)
2113 {
2114 if (type == NULL)
2115 return 0;
2116 type = desc_base_type (type);
2117 type = ada_check_typedef (type);
2118 return
2119 ada_type_name (type) != NULL
2120 && strstr (ada_type_name (type), "___XP") != NULL;
2121 }
2122
2123 /* Non-zero iff TYPE represents a standard GNAT constrained
2124 packed-array type. */
2125
2126 int
2127 ada_is_constrained_packed_array_type (struct type *type)
2128 {
2129 return ada_is_packed_array_type (type)
2130 && !ada_is_array_descriptor_type (type);
2131 }
2132
2133 /* Non-zero iff TYPE represents an array descriptor for a
2134 unconstrained packed-array type. */
2135
2136 static int
2137 ada_is_unconstrained_packed_array_type (struct type *type)
2138 {
2139 return ada_is_packed_array_type (type)
2140 && ada_is_array_descriptor_type (type);
2141 }
2142
2143 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2144 return the size of its elements in bits. */
2145
2146 static long
2147 decode_packed_array_bitsize (struct type *type)
2148 {
2149 const char *raw_name;
2150 const char *tail;
2151 long bits;
2152
2153 /* Access to arrays implemented as fat pointers are encoded as a typedef
2154 of the fat pointer type. We need the name of the fat pointer type
2155 to do the decoding, so strip the typedef layer. */
2156 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2157 type = ada_typedef_target_type (type);
2158
2159 raw_name = ada_type_name (ada_check_typedef (type));
2160 if (!raw_name)
2161 raw_name = ada_type_name (desc_base_type (type));
2162
2163 if (!raw_name)
2164 return 0;
2165
2166 tail = strstr (raw_name, "___XP");
2167 gdb_assert (tail != NULL);
2168
2169 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2170 {
2171 lim_warning
2172 (_("could not understand bit size information on packed array"));
2173 return 0;
2174 }
2175
2176 return bits;
2177 }
2178
2179 /* Given that TYPE is a standard GDB array type with all bounds filled
2180 in, and that the element size of its ultimate scalar constituents
2181 (that is, either its elements, or, if it is an array of arrays, its
2182 elements' elements, etc.) is *ELT_BITS, return an identical type,
2183 but with the bit sizes of its elements (and those of any
2184 constituent arrays) recorded in the BITSIZE components of its
2185 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2186 in bits.
2187
2188 Note that, for arrays whose index type has an XA encoding where
2189 a bound references a record discriminant, getting that discriminant,
2190 and therefore the actual value of that bound, is not possible
2191 because none of the given parameters gives us access to the record.
2192 This function assumes that it is OK in the context where it is being
2193 used to return an array whose bounds are still dynamic and where
2194 the length is arbitrary. */
2195
2196 static struct type *
2197 constrained_packed_array_type (struct type *type, long *elt_bits)
2198 {
2199 struct type *new_elt_type;
2200 struct type *new_type;
2201 struct type *index_type_desc;
2202 struct type *index_type;
2203 LONGEST low_bound, high_bound;
2204
2205 type = ada_check_typedef (type);
2206 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2207 return type;
2208
2209 index_type_desc = ada_find_parallel_type (type, "___XA");
2210 if (index_type_desc)
2211 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2212 NULL);
2213 else
2214 index_type = TYPE_INDEX_TYPE (type);
2215
2216 new_type = alloc_type_copy (type);
2217 new_elt_type =
2218 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2219 elt_bits);
2220 create_array_type (new_type, new_elt_type, index_type);
2221 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2222 TYPE_NAME (new_type) = ada_type_name (type);
2223
2224 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2225 && is_dynamic_type (check_typedef (index_type)))
2226 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2227 low_bound = high_bound = 0;
2228 if (high_bound < low_bound)
2229 *elt_bits = TYPE_LENGTH (new_type) = 0;
2230 else
2231 {
2232 *elt_bits *= (high_bound - low_bound + 1);
2233 TYPE_LENGTH (new_type) =
2234 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2235 }
2236
2237 TYPE_FIXED_INSTANCE (new_type) = 1;
2238 return new_type;
2239 }
2240
2241 /* The array type encoded by TYPE, where
2242 ada_is_constrained_packed_array_type (TYPE). */
2243
2244 static struct type *
2245 decode_constrained_packed_array_type (struct type *type)
2246 {
2247 const char *raw_name = ada_type_name (ada_check_typedef (type));
2248 char *name;
2249 const char *tail;
2250 struct type *shadow_type;
2251 long bits;
2252
2253 if (!raw_name)
2254 raw_name = ada_type_name (desc_base_type (type));
2255
2256 if (!raw_name)
2257 return NULL;
2258
2259 name = (char *) alloca (strlen (raw_name) + 1);
2260 tail = strstr (raw_name, "___XP");
2261 type = desc_base_type (type);
2262
2263 memcpy (name, raw_name, tail - raw_name);
2264 name[tail - raw_name] = '\000';
2265
2266 shadow_type = ada_find_parallel_type_with_name (type, name);
2267
2268 if (shadow_type == NULL)
2269 {
2270 lim_warning (_("could not find bounds information on packed array"));
2271 return NULL;
2272 }
2273 shadow_type = check_typedef (shadow_type);
2274
2275 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2276 {
2277 lim_warning (_("could not understand bounds "
2278 "information on packed array"));
2279 return NULL;
2280 }
2281
2282 bits = decode_packed_array_bitsize (type);
2283 return constrained_packed_array_type (shadow_type, &bits);
2284 }
2285
2286 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2287 array, returns a simple array that denotes that array. Its type is a
2288 standard GDB array type except that the BITSIZEs of the array
2289 target types are set to the number of bits in each element, and the
2290 type length is set appropriately. */
2291
2292 static struct value *
2293 decode_constrained_packed_array (struct value *arr)
2294 {
2295 struct type *type;
2296
2297 /* If our value is a pointer, then dereference it. Likewise if
2298 the value is a reference. Make sure that this operation does not
2299 cause the target type to be fixed, as this would indirectly cause
2300 this array to be decoded. The rest of the routine assumes that
2301 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2302 and "value_ind" routines to perform the dereferencing, as opposed
2303 to using "ada_coerce_ref" or "ada_value_ind". */
2304 arr = coerce_ref (arr);
2305 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2306 arr = value_ind (arr);
2307
2308 type = decode_constrained_packed_array_type (value_type (arr));
2309 if (type == NULL)
2310 {
2311 error (_("can't unpack array"));
2312 return NULL;
2313 }
2314
2315 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2316 && ada_is_modular_type (value_type (arr)))
2317 {
2318 /* This is a (right-justified) modular type representing a packed
2319 array with no wrapper. In order to interpret the value through
2320 the (left-justified) packed array type we just built, we must
2321 first left-justify it. */
2322 int bit_size, bit_pos;
2323 ULONGEST mod;
2324
2325 mod = ada_modulus (value_type (arr)) - 1;
2326 bit_size = 0;
2327 while (mod > 0)
2328 {
2329 bit_size += 1;
2330 mod >>= 1;
2331 }
2332 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2333 arr = ada_value_primitive_packed_val (arr, NULL,
2334 bit_pos / HOST_CHAR_BIT,
2335 bit_pos % HOST_CHAR_BIT,
2336 bit_size,
2337 type);
2338 }
2339
2340 return coerce_unspec_val_to_type (arr, type);
2341 }
2342
2343
2344 /* The value of the element of packed array ARR at the ARITY indices
2345 given in IND. ARR must be a simple array. */
2346
2347 static struct value *
2348 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2349 {
2350 int i;
2351 int bits, elt_off, bit_off;
2352 long elt_total_bit_offset;
2353 struct type *elt_type;
2354 struct value *v;
2355
2356 bits = 0;
2357 elt_total_bit_offset = 0;
2358 elt_type = ada_check_typedef (value_type (arr));
2359 for (i = 0; i < arity; i += 1)
2360 {
2361 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2362 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2363 error
2364 (_("attempt to do packed indexing of "
2365 "something other than a packed array"));
2366 else
2367 {
2368 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2369 LONGEST lowerbound, upperbound;
2370 LONGEST idx;
2371
2372 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2373 {
2374 lim_warning (_("don't know bounds of array"));
2375 lowerbound = upperbound = 0;
2376 }
2377
2378 idx = pos_atr (ind[i]);
2379 if (idx < lowerbound || idx > upperbound)
2380 lim_warning (_("packed array index %ld out of bounds"),
2381 (long) idx);
2382 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2383 elt_total_bit_offset += (idx - lowerbound) * bits;
2384 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2385 }
2386 }
2387 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2388 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2389
2390 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2391 bits, elt_type);
2392 return v;
2393 }
2394
2395 /* Non-zero iff TYPE includes negative integer values. */
2396
2397 static int
2398 has_negatives (struct type *type)
2399 {
2400 switch (TYPE_CODE (type))
2401 {
2402 default:
2403 return 0;
2404 case TYPE_CODE_INT:
2405 return !TYPE_UNSIGNED (type);
2406 case TYPE_CODE_RANGE:
2407 return TYPE_LOW_BOUND (type) < 0;
2408 }
2409 }
2410
2411 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2412 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2413 the unpacked buffer.
2414
2415 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2416 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2417
2418 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2419 zero otherwise.
2420
2421 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2422
2423 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2424
2425 static void
2426 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2427 gdb_byte *unpacked, int unpacked_len,
2428 int is_big_endian, int is_signed_type,
2429 int is_scalar)
2430 {
2431 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2432 int src_idx; /* Index into the source area */
2433 int src_bytes_left; /* Number of source bytes left to process. */
2434 int srcBitsLeft; /* Number of source bits left to move */
2435 int unusedLS; /* Number of bits in next significant
2436 byte of source that are unused */
2437
2438 int unpacked_idx; /* Index into the unpacked buffer */
2439 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2440
2441 unsigned long accum; /* Staging area for bits being transferred */
2442 int accumSize; /* Number of meaningful bits in accum */
2443 unsigned char sign;
2444
2445 /* Transmit bytes from least to most significant; delta is the direction
2446 the indices move. */
2447 int delta = is_big_endian ? -1 : 1;
2448
2449 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2450 bits from SRC. .*/
2451 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2452 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2453 bit_size, unpacked_len);
2454
2455 srcBitsLeft = bit_size;
2456 src_bytes_left = src_len;
2457 unpacked_bytes_left = unpacked_len;
2458 sign = 0;
2459
2460 if (is_big_endian)
2461 {
2462 src_idx = src_len - 1;
2463 if (is_signed_type
2464 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2465 sign = ~0;
2466
2467 unusedLS =
2468 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2469 % HOST_CHAR_BIT;
2470
2471 if (is_scalar)
2472 {
2473 accumSize = 0;
2474 unpacked_idx = unpacked_len - 1;
2475 }
2476 else
2477 {
2478 /* Non-scalar values must be aligned at a byte boundary... */
2479 accumSize =
2480 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2481 /* ... And are placed at the beginning (most-significant) bytes
2482 of the target. */
2483 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2484 unpacked_bytes_left = unpacked_idx + 1;
2485 }
2486 }
2487 else
2488 {
2489 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2490
2491 src_idx = unpacked_idx = 0;
2492 unusedLS = bit_offset;
2493 accumSize = 0;
2494
2495 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2496 sign = ~0;
2497 }
2498
2499 accum = 0;
2500 while (src_bytes_left > 0)
2501 {
2502 /* Mask for removing bits of the next source byte that are not
2503 part of the value. */
2504 unsigned int unusedMSMask =
2505 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2506 1;
2507 /* Sign-extend bits for this byte. */
2508 unsigned int signMask = sign & ~unusedMSMask;
2509
2510 accum |=
2511 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2512 accumSize += HOST_CHAR_BIT - unusedLS;
2513 if (accumSize >= HOST_CHAR_BIT)
2514 {
2515 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2516 accumSize -= HOST_CHAR_BIT;
2517 accum >>= HOST_CHAR_BIT;
2518 unpacked_bytes_left -= 1;
2519 unpacked_idx += delta;
2520 }
2521 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2522 unusedLS = 0;
2523 src_bytes_left -= 1;
2524 src_idx += delta;
2525 }
2526 while (unpacked_bytes_left > 0)
2527 {
2528 accum |= sign << accumSize;
2529 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2530 accumSize -= HOST_CHAR_BIT;
2531 if (accumSize < 0)
2532 accumSize = 0;
2533 accum >>= HOST_CHAR_BIT;
2534 unpacked_bytes_left -= 1;
2535 unpacked_idx += delta;
2536 }
2537 }
2538
2539 /* Create a new value of type TYPE from the contents of OBJ starting
2540 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2541 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2542 assigning through the result will set the field fetched from.
2543 VALADDR is ignored unless OBJ is NULL, in which case,
2544 VALADDR+OFFSET must address the start of storage containing the
2545 packed value. The value returned in this case is never an lval.
2546 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2547
2548 struct value *
2549 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2550 long offset, int bit_offset, int bit_size,
2551 struct type *type)
2552 {
2553 struct value *v;
2554 const gdb_byte *src; /* First byte containing data to unpack */
2555 gdb_byte *unpacked;
2556 const int is_scalar = is_scalar_type (type);
2557 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2558 gdb::byte_vector staging;
2559
2560 type = ada_check_typedef (type);
2561
2562 if (obj == NULL)
2563 src = valaddr + offset;
2564 else
2565 src = value_contents (obj) + offset;
2566
2567 if (is_dynamic_type (type))
2568 {
2569 /* The length of TYPE might by dynamic, so we need to resolve
2570 TYPE in order to know its actual size, which we then use
2571 to create the contents buffer of the value we return.
2572 The difficulty is that the data containing our object is
2573 packed, and therefore maybe not at a byte boundary. So, what
2574 we do, is unpack the data into a byte-aligned buffer, and then
2575 use that buffer as our object's value for resolving the type. */
2576 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2577 staging.resize (staging_len);
2578
2579 ada_unpack_from_contents (src, bit_offset, bit_size,
2580 staging.data (), staging.size (),
2581 is_big_endian, has_negatives (type),
2582 is_scalar);
2583 type = resolve_dynamic_type (type, staging.data (), 0);
2584 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2585 {
2586 /* This happens when the length of the object is dynamic,
2587 and is actually smaller than the space reserved for it.
2588 For instance, in an array of variant records, the bit_size
2589 we're given is the array stride, which is constant and
2590 normally equal to the maximum size of its element.
2591 But, in reality, each element only actually spans a portion
2592 of that stride. */
2593 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2594 }
2595 }
2596
2597 if (obj == NULL)
2598 {
2599 v = allocate_value (type);
2600 src = valaddr + offset;
2601 }
2602 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2603 {
2604 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2605 gdb_byte *buf;
2606
2607 v = value_at (type, value_address (obj) + offset);
2608 buf = (gdb_byte *) alloca (src_len);
2609 read_memory (value_address (v), buf, src_len);
2610 src = buf;
2611 }
2612 else
2613 {
2614 v = allocate_value (type);
2615 src = value_contents (obj) + offset;
2616 }
2617
2618 if (obj != NULL)
2619 {
2620 long new_offset = offset;
2621
2622 set_value_component_location (v, obj);
2623 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2624 set_value_bitsize (v, bit_size);
2625 if (value_bitpos (v) >= HOST_CHAR_BIT)
2626 {
2627 ++new_offset;
2628 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2629 }
2630 set_value_offset (v, new_offset);
2631
2632 /* Also set the parent value. This is needed when trying to
2633 assign a new value (in inferior memory). */
2634 set_value_parent (v, obj);
2635 }
2636 else
2637 set_value_bitsize (v, bit_size);
2638 unpacked = value_contents_writeable (v);
2639
2640 if (bit_size == 0)
2641 {
2642 memset (unpacked, 0, TYPE_LENGTH (type));
2643 return v;
2644 }
2645
2646 if (staging.size () == TYPE_LENGTH (type))
2647 {
2648 /* Small short-cut: If we've unpacked the data into a buffer
2649 of the same size as TYPE's length, then we can reuse that,
2650 instead of doing the unpacking again. */
2651 memcpy (unpacked, staging.data (), staging.size ());
2652 }
2653 else
2654 ada_unpack_from_contents (src, bit_offset, bit_size,
2655 unpacked, TYPE_LENGTH (type),
2656 is_big_endian, has_negatives (type), is_scalar);
2657
2658 return v;
2659 }
2660
2661 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2662 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2663 not overlap. */
2664 static void
2665 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2666 int src_offset, int n, int bits_big_endian_p)
2667 {
2668 unsigned int accum, mask;
2669 int accum_bits, chunk_size;
2670
2671 target += targ_offset / HOST_CHAR_BIT;
2672 targ_offset %= HOST_CHAR_BIT;
2673 source += src_offset / HOST_CHAR_BIT;
2674 src_offset %= HOST_CHAR_BIT;
2675 if (bits_big_endian_p)
2676 {
2677 accum = (unsigned char) *source;
2678 source += 1;
2679 accum_bits = HOST_CHAR_BIT - src_offset;
2680
2681 while (n > 0)
2682 {
2683 int unused_right;
2684
2685 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2686 accum_bits += HOST_CHAR_BIT;
2687 source += 1;
2688 chunk_size = HOST_CHAR_BIT - targ_offset;
2689 if (chunk_size > n)
2690 chunk_size = n;
2691 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2692 mask = ((1 << chunk_size) - 1) << unused_right;
2693 *target =
2694 (*target & ~mask)
2695 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2696 n -= chunk_size;
2697 accum_bits -= chunk_size;
2698 target += 1;
2699 targ_offset = 0;
2700 }
2701 }
2702 else
2703 {
2704 accum = (unsigned char) *source >> src_offset;
2705 source += 1;
2706 accum_bits = HOST_CHAR_BIT - src_offset;
2707
2708 while (n > 0)
2709 {
2710 accum = accum + ((unsigned char) *source << accum_bits);
2711 accum_bits += HOST_CHAR_BIT;
2712 source += 1;
2713 chunk_size = HOST_CHAR_BIT - targ_offset;
2714 if (chunk_size > n)
2715 chunk_size = n;
2716 mask = ((1 << chunk_size) - 1) << targ_offset;
2717 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2718 n -= chunk_size;
2719 accum_bits -= chunk_size;
2720 accum >>= chunk_size;
2721 target += 1;
2722 targ_offset = 0;
2723 }
2724 }
2725 }
2726
2727 /* Store the contents of FROMVAL into the location of TOVAL.
2728 Return a new value with the location of TOVAL and contents of
2729 FROMVAL. Handles assignment into packed fields that have
2730 floating-point or non-scalar types. */
2731
2732 static struct value *
2733 ada_value_assign (struct value *toval, struct value *fromval)
2734 {
2735 struct type *type = value_type (toval);
2736 int bits = value_bitsize (toval);
2737
2738 toval = ada_coerce_ref (toval);
2739 fromval = ada_coerce_ref (fromval);
2740
2741 if (ada_is_direct_array_type (value_type (toval)))
2742 toval = ada_coerce_to_simple_array (toval);
2743 if (ada_is_direct_array_type (value_type (fromval)))
2744 fromval = ada_coerce_to_simple_array (fromval);
2745
2746 if (!deprecated_value_modifiable (toval))
2747 error (_("Left operand of assignment is not a modifiable lvalue."));
2748
2749 if (VALUE_LVAL (toval) == lval_memory
2750 && bits > 0
2751 && (TYPE_CODE (type) == TYPE_CODE_FLT
2752 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2753 {
2754 int len = (value_bitpos (toval)
2755 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2756 int from_size;
2757 gdb_byte *buffer = (gdb_byte *) alloca (len);
2758 struct value *val;
2759 CORE_ADDR to_addr = value_address (toval);
2760
2761 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2762 fromval = value_cast (type, fromval);
2763
2764 read_memory (to_addr, buffer, len);
2765 from_size = value_bitsize (fromval);
2766 if (from_size == 0)
2767 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2768 if (gdbarch_bits_big_endian (get_type_arch (type)))
2769 move_bits (buffer, value_bitpos (toval),
2770 value_contents (fromval), from_size - bits, bits, 1);
2771 else
2772 move_bits (buffer, value_bitpos (toval),
2773 value_contents (fromval), 0, bits, 0);
2774 write_memory_with_notification (to_addr, buffer, len);
2775
2776 val = value_copy (toval);
2777 memcpy (value_contents_raw (val), value_contents (fromval),
2778 TYPE_LENGTH (type));
2779 deprecated_set_value_type (val, type);
2780
2781 return val;
2782 }
2783
2784 return value_assign (toval, fromval);
2785 }
2786
2787
2788 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2789 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2790 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2791 COMPONENT, and not the inferior's memory. The current contents
2792 of COMPONENT are ignored.
2793
2794 Although not part of the initial design, this function also works
2795 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2796 had a null address, and COMPONENT had an address which is equal to
2797 its offset inside CONTAINER. */
2798
2799 static void
2800 value_assign_to_component (struct value *container, struct value *component,
2801 struct value *val)
2802 {
2803 LONGEST offset_in_container =
2804 (LONGEST) (value_address (component) - value_address (container));
2805 int bit_offset_in_container =
2806 value_bitpos (component) - value_bitpos (container);
2807 int bits;
2808
2809 val = value_cast (value_type (component), val);
2810
2811 if (value_bitsize (component) == 0)
2812 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2813 else
2814 bits = value_bitsize (component);
2815
2816 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2817 move_bits (value_contents_writeable (container) + offset_in_container,
2818 value_bitpos (container) + bit_offset_in_container,
2819 value_contents (val),
2820 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2821 bits, 1);
2822 else
2823 move_bits (value_contents_writeable (container) + offset_in_container,
2824 value_bitpos (container) + bit_offset_in_container,
2825 value_contents (val), 0, bits, 0);
2826 }
2827
2828 /* The value of the element of array ARR at the ARITY indices given in IND.
2829 ARR may be either a simple array, GNAT array descriptor, or pointer
2830 thereto. */
2831
2832 struct value *
2833 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2834 {
2835 int k;
2836 struct value *elt;
2837 struct type *elt_type;
2838
2839 elt = ada_coerce_to_simple_array (arr);
2840
2841 elt_type = ada_check_typedef (value_type (elt));
2842 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2843 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2844 return value_subscript_packed (elt, arity, ind);
2845
2846 for (k = 0; k < arity; k += 1)
2847 {
2848 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2849 error (_("too many subscripts (%d expected)"), k);
2850 elt = value_subscript (elt, pos_atr (ind[k]));
2851 }
2852 return elt;
2853 }
2854
2855 /* Assuming ARR is a pointer to a GDB array, the value of the element
2856 of *ARR at the ARITY indices given in IND.
2857 Does not read the entire array into memory.
2858
2859 Note: Unlike what one would expect, this function is used instead of
2860 ada_value_subscript for basically all non-packed array types. The reason
2861 for this is that a side effect of doing our own pointer arithmetics instead
2862 of relying on value_subscript is that there is no implicit typedef peeling.
2863 This is important for arrays of array accesses, where it allows us to
2864 preserve the fact that the array's element is an array access, where the
2865 access part os encoded in a typedef layer. */
2866
2867 static struct value *
2868 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2869 {
2870 int k;
2871 struct value *array_ind = ada_value_ind (arr);
2872 struct type *type
2873 = check_typedef (value_enclosing_type (array_ind));
2874
2875 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2876 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2877 return value_subscript_packed (array_ind, arity, ind);
2878
2879 for (k = 0; k < arity; k += 1)
2880 {
2881 LONGEST lwb, upb;
2882 struct value *lwb_value;
2883
2884 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2885 error (_("too many subscripts (%d expected)"), k);
2886 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2887 value_copy (arr));
2888 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2889 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2890 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2891 type = TYPE_TARGET_TYPE (type);
2892 }
2893
2894 return value_ind (arr);
2895 }
2896
2897 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2898 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2899 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2900 this array is LOW, as per Ada rules. */
2901 static struct value *
2902 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2903 int low, int high)
2904 {
2905 struct type *type0 = ada_check_typedef (type);
2906 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2907 struct type *index_type
2908 = create_static_range_type (NULL, base_index_type, low, high);
2909 struct type *slice_type = create_array_type_with_stride
2910 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2911 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2912 TYPE_FIELD_BITSIZE (type0, 0));
2913 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2914 LONGEST base_low_pos, low_pos;
2915 CORE_ADDR base;
2916
2917 if (!discrete_position (base_index_type, low, &low_pos)
2918 || !discrete_position (base_index_type, base_low, &base_low_pos))
2919 {
2920 warning (_("unable to get positions in slice, use bounds instead"));
2921 low_pos = low;
2922 base_low_pos = base_low;
2923 }
2924
2925 base = value_as_address (array_ptr)
2926 + ((low_pos - base_low_pos)
2927 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2928 return value_at_lazy (slice_type, base);
2929 }
2930
2931
2932 static struct value *
2933 ada_value_slice (struct value *array, int low, int high)
2934 {
2935 struct type *type = ada_check_typedef (value_type (array));
2936 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2937 struct type *index_type
2938 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2939 struct type *slice_type = create_array_type_with_stride
2940 (NULL, TYPE_TARGET_TYPE (type), index_type,
2941 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2942 TYPE_FIELD_BITSIZE (type, 0));
2943 LONGEST low_pos, high_pos;
2944
2945 if (!discrete_position (base_index_type, low, &low_pos)
2946 || !discrete_position (base_index_type, high, &high_pos))
2947 {
2948 warning (_("unable to get positions in slice, use bounds instead"));
2949 low_pos = low;
2950 high_pos = high;
2951 }
2952
2953 return value_cast (slice_type,
2954 value_slice (array, low, high_pos - low_pos + 1));
2955 }
2956
2957 /* If type is a record type in the form of a standard GNAT array
2958 descriptor, returns the number of dimensions for type. If arr is a
2959 simple array, returns the number of "array of"s that prefix its
2960 type designation. Otherwise, returns 0. */
2961
2962 int
2963 ada_array_arity (struct type *type)
2964 {
2965 int arity;
2966
2967 if (type == NULL)
2968 return 0;
2969
2970 type = desc_base_type (type);
2971
2972 arity = 0;
2973 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2974 return desc_arity (desc_bounds_type (type));
2975 else
2976 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2977 {
2978 arity += 1;
2979 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2980 }
2981
2982 return arity;
2983 }
2984
2985 /* If TYPE is a record type in the form of a standard GNAT array
2986 descriptor or a simple array type, returns the element type for
2987 TYPE after indexing by NINDICES indices, or by all indices if
2988 NINDICES is -1. Otherwise, returns NULL. */
2989
2990 struct type *
2991 ada_array_element_type (struct type *type, int nindices)
2992 {
2993 type = desc_base_type (type);
2994
2995 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2996 {
2997 int k;
2998 struct type *p_array_type;
2999
3000 p_array_type = desc_data_target_type (type);
3001
3002 k = ada_array_arity (type);
3003 if (k == 0)
3004 return NULL;
3005
3006 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3007 if (nindices >= 0 && k > nindices)
3008 k = nindices;
3009 while (k > 0 && p_array_type != NULL)
3010 {
3011 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3012 k -= 1;
3013 }
3014 return p_array_type;
3015 }
3016 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3017 {
3018 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3019 {
3020 type = TYPE_TARGET_TYPE (type);
3021 nindices -= 1;
3022 }
3023 return type;
3024 }
3025
3026 return NULL;
3027 }
3028
3029 /* The type of nth index in arrays of given type (n numbering from 1).
3030 Does not examine memory. Throws an error if N is invalid or TYPE
3031 is not an array type. NAME is the name of the Ada attribute being
3032 evaluated ('range, 'first, 'last, or 'length); it is used in building
3033 the error message. */
3034
3035 static struct type *
3036 ada_index_type (struct type *type, int n, const char *name)
3037 {
3038 struct type *result_type;
3039
3040 type = desc_base_type (type);
3041
3042 if (n < 0 || n > ada_array_arity (type))
3043 error (_("invalid dimension number to '%s"), name);
3044
3045 if (ada_is_simple_array_type (type))
3046 {
3047 int i;
3048
3049 for (i = 1; i < n; i += 1)
3050 type = TYPE_TARGET_TYPE (type);
3051 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3052 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3053 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3054 perhaps stabsread.c would make more sense. */
3055 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3056 result_type = NULL;
3057 }
3058 else
3059 {
3060 result_type = desc_index_type (desc_bounds_type (type), n);
3061 if (result_type == NULL)
3062 error (_("attempt to take bound of something that is not an array"));
3063 }
3064
3065 return result_type;
3066 }
3067
3068 /* Given that arr is an array type, returns the lower bound of the
3069 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3070 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3071 array-descriptor type. It works for other arrays with bounds supplied
3072 by run-time quantities other than discriminants. */
3073
3074 static LONGEST
3075 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3076 {
3077 struct type *type, *index_type_desc, *index_type;
3078 int i;
3079
3080 gdb_assert (which == 0 || which == 1);
3081
3082 if (ada_is_constrained_packed_array_type (arr_type))
3083 arr_type = decode_constrained_packed_array_type (arr_type);
3084
3085 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3086 return (LONGEST) - which;
3087
3088 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3089 type = TYPE_TARGET_TYPE (arr_type);
3090 else
3091 type = arr_type;
3092
3093 if (TYPE_FIXED_INSTANCE (type))
3094 {
3095 /* The array has already been fixed, so we do not need to
3096 check the parallel ___XA type again. That encoding has
3097 already been applied, so ignore it now. */
3098 index_type_desc = NULL;
3099 }
3100 else
3101 {
3102 index_type_desc = ada_find_parallel_type (type, "___XA");
3103 ada_fixup_array_indexes_type (index_type_desc);
3104 }
3105
3106 if (index_type_desc != NULL)
3107 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3108 NULL);
3109 else
3110 {
3111 struct type *elt_type = check_typedef (type);
3112
3113 for (i = 1; i < n; i++)
3114 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3115
3116 index_type = TYPE_INDEX_TYPE (elt_type);
3117 }
3118
3119 return
3120 (LONGEST) (which == 0
3121 ? ada_discrete_type_low_bound (index_type)
3122 : ada_discrete_type_high_bound (index_type));
3123 }
3124
3125 /* Given that arr is an array value, returns the lower bound of the
3126 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3127 WHICH is 1. This routine will also work for arrays with bounds
3128 supplied by run-time quantities other than discriminants. */
3129
3130 static LONGEST
3131 ada_array_bound (struct value *arr, int n, int which)
3132 {
3133 struct type *arr_type;
3134
3135 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3136 arr = value_ind (arr);
3137 arr_type = value_enclosing_type (arr);
3138
3139 if (ada_is_constrained_packed_array_type (arr_type))
3140 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3141 else if (ada_is_simple_array_type (arr_type))
3142 return ada_array_bound_from_type (arr_type, n, which);
3143 else
3144 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3145 }
3146
3147 /* Given that arr is an array value, returns the length of the
3148 nth index. This routine will also work for arrays with bounds
3149 supplied by run-time quantities other than discriminants.
3150 Does not work for arrays indexed by enumeration types with representation
3151 clauses at the moment. */
3152
3153 static LONGEST
3154 ada_array_length (struct value *arr, int n)
3155 {
3156 struct type *arr_type, *index_type;
3157 int low, high;
3158
3159 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3160 arr = value_ind (arr);
3161 arr_type = value_enclosing_type (arr);
3162
3163 if (ada_is_constrained_packed_array_type (arr_type))
3164 return ada_array_length (decode_constrained_packed_array (arr), n);
3165
3166 if (ada_is_simple_array_type (arr_type))
3167 {
3168 low = ada_array_bound_from_type (arr_type, n, 0);
3169 high = ada_array_bound_from_type (arr_type, n, 1);
3170 }
3171 else
3172 {
3173 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3174 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3175 }
3176
3177 arr_type = check_typedef (arr_type);
3178 index_type = ada_index_type (arr_type, n, "length");
3179 if (index_type != NULL)
3180 {
3181 struct type *base_type;
3182 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3183 base_type = TYPE_TARGET_TYPE (index_type);
3184 else
3185 base_type = index_type;
3186
3187 low = pos_atr (value_from_longest (base_type, low));
3188 high = pos_atr (value_from_longest (base_type, high));
3189 }
3190 return high - low + 1;
3191 }
3192
3193 /* An empty array whose type is that of ARR_TYPE (an array type),
3194 with bounds LOW to LOW-1. */
3195
3196 static struct value *
3197 empty_array (struct type *arr_type, int low)
3198 {
3199 struct type *arr_type0 = ada_check_typedef (arr_type);
3200 struct type *index_type
3201 = create_static_range_type
3202 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3203 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3204
3205 return allocate_value (create_array_type (NULL, elt_type, index_type));
3206 }
3207 \f
3208
3209 /* Name resolution */
3210
3211 /* The "decoded" name for the user-definable Ada operator corresponding
3212 to OP. */
3213
3214 static const char *
3215 ada_decoded_op_name (enum exp_opcode op)
3216 {
3217 int i;
3218
3219 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3220 {
3221 if (ada_opname_table[i].op == op)
3222 return ada_opname_table[i].decoded;
3223 }
3224 error (_("Could not find operator name for opcode"));
3225 }
3226
3227
3228 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3229 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3230 undefined namespace) and converts operators that are
3231 user-defined into appropriate function calls. If CONTEXT_TYPE is
3232 non-null, it provides a preferred result type [at the moment, only
3233 type void has any effect---causing procedures to be preferred over
3234 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3235 return type is preferred. May change (expand) *EXP. */
3236
3237 static void
3238 resolve (expression_up *expp, int void_context_p)
3239 {
3240 struct type *context_type = NULL;
3241 int pc = 0;
3242
3243 if (void_context_p)
3244 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3245
3246 resolve_subexp (expp, &pc, 1, context_type);
3247 }
3248
3249 /* Resolve the operator of the subexpression beginning at
3250 position *POS of *EXPP. "Resolving" consists of replacing
3251 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3252 with their resolutions, replacing built-in operators with
3253 function calls to user-defined operators, where appropriate, and,
3254 when DEPROCEDURE_P is non-zero, converting function-valued variables
3255 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3256 are as in ada_resolve, above. */
3257
3258 static struct value *
3259 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3260 struct type *context_type)
3261 {
3262 int pc = *pos;
3263 int i;
3264 struct expression *exp; /* Convenience: == *expp. */
3265 enum exp_opcode op = (*expp)->elts[pc].opcode;
3266 struct value **argvec; /* Vector of operand types (alloca'ed). */
3267 int nargs; /* Number of operands. */
3268 int oplen;
3269 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
3270
3271 argvec = NULL;
3272 nargs = 0;
3273 exp = expp->get ();
3274
3275 /* Pass one: resolve operands, saving their types and updating *pos,
3276 if needed. */
3277 switch (op)
3278 {
3279 case OP_FUNCALL:
3280 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3281 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3282 *pos += 7;
3283 else
3284 {
3285 *pos += 3;
3286 resolve_subexp (expp, pos, 0, NULL);
3287 }
3288 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3289 break;
3290
3291 case UNOP_ADDR:
3292 *pos += 1;
3293 resolve_subexp (expp, pos, 0, NULL);
3294 break;
3295
3296 case UNOP_QUAL:
3297 *pos += 3;
3298 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3299 break;
3300
3301 case OP_ATR_MODULUS:
3302 case OP_ATR_SIZE:
3303 case OP_ATR_TAG:
3304 case OP_ATR_FIRST:
3305 case OP_ATR_LAST:
3306 case OP_ATR_LENGTH:
3307 case OP_ATR_POS:
3308 case OP_ATR_VAL:
3309 case OP_ATR_MIN:
3310 case OP_ATR_MAX:
3311 case TERNOP_IN_RANGE:
3312 case BINOP_IN_BOUNDS:
3313 case UNOP_IN_RANGE:
3314 case OP_AGGREGATE:
3315 case OP_OTHERS:
3316 case OP_CHOICES:
3317 case OP_POSITIONAL:
3318 case OP_DISCRETE_RANGE:
3319 case OP_NAME:
3320 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3321 *pos += oplen;
3322 break;
3323
3324 case BINOP_ASSIGN:
3325 {
3326 struct value *arg1;
3327
3328 *pos += 1;
3329 arg1 = resolve_subexp (expp, pos, 0, NULL);
3330 if (arg1 == NULL)
3331 resolve_subexp (expp, pos, 1, NULL);
3332 else
3333 resolve_subexp (expp, pos, 1, value_type (arg1));
3334 break;
3335 }
3336
3337 case UNOP_CAST:
3338 *pos += 3;
3339 nargs = 1;
3340 break;
3341
3342 case BINOP_ADD:
3343 case BINOP_SUB:
3344 case BINOP_MUL:
3345 case BINOP_DIV:
3346 case BINOP_REM:
3347 case BINOP_MOD:
3348 case BINOP_EXP:
3349 case BINOP_CONCAT:
3350 case BINOP_LOGICAL_AND:
3351 case BINOP_LOGICAL_OR:
3352 case BINOP_BITWISE_AND:
3353 case BINOP_BITWISE_IOR:
3354 case BINOP_BITWISE_XOR:
3355
3356 case BINOP_EQUAL:
3357 case BINOP_NOTEQUAL:
3358 case BINOP_LESS:
3359 case BINOP_GTR:
3360 case BINOP_LEQ:
3361 case BINOP_GEQ:
3362
3363 case BINOP_REPEAT:
3364 case BINOP_SUBSCRIPT:
3365 case BINOP_COMMA:
3366 *pos += 1;
3367 nargs = 2;
3368 break;
3369
3370 case UNOP_NEG:
3371 case UNOP_PLUS:
3372 case UNOP_LOGICAL_NOT:
3373 case UNOP_ABS:
3374 case UNOP_IND:
3375 *pos += 1;
3376 nargs = 1;
3377 break;
3378
3379 case OP_LONG:
3380 case OP_FLOAT:
3381 case OP_VAR_VALUE:
3382 case OP_VAR_MSYM_VALUE:
3383 *pos += 4;
3384 break;
3385
3386 case OP_TYPE:
3387 case OP_BOOL:
3388 case OP_LAST:
3389 case OP_INTERNALVAR:
3390 *pos += 3;
3391 break;
3392
3393 case UNOP_MEMVAL:
3394 *pos += 3;
3395 nargs = 1;
3396 break;
3397
3398 case OP_REGISTER:
3399 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3400 break;
3401
3402 case STRUCTOP_STRUCT:
3403 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3404 nargs = 1;
3405 break;
3406
3407 case TERNOP_SLICE:
3408 *pos += 1;
3409 nargs = 3;
3410 break;
3411
3412 case OP_STRING:
3413 break;
3414
3415 default:
3416 error (_("Unexpected operator during name resolution"));
3417 }
3418
3419 argvec = XALLOCAVEC (struct value *, nargs + 1);
3420 for (i = 0; i < nargs; i += 1)
3421 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3422 argvec[i] = NULL;
3423 exp = expp->get ();
3424
3425 /* Pass two: perform any resolution on principal operator. */
3426 switch (op)
3427 {
3428 default:
3429 break;
3430
3431 case OP_VAR_VALUE:
3432 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3433 {
3434 struct block_symbol *candidates;
3435 int n_candidates;
3436
3437 n_candidates =
3438 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3439 (exp->elts[pc + 2].symbol),
3440 exp->elts[pc + 1].block, VAR_DOMAIN,
3441 &candidates);
3442 make_cleanup (xfree, candidates);
3443
3444 if (n_candidates > 1)
3445 {
3446 /* Types tend to get re-introduced locally, so if there
3447 are any local symbols that are not types, first filter
3448 out all types. */
3449 int j;
3450 for (j = 0; j < n_candidates; j += 1)
3451 switch (SYMBOL_CLASS (candidates[j].symbol))
3452 {
3453 case LOC_REGISTER:
3454 case LOC_ARG:
3455 case LOC_REF_ARG:
3456 case LOC_REGPARM_ADDR:
3457 case LOC_LOCAL:
3458 case LOC_COMPUTED:
3459 goto FoundNonType;
3460 default:
3461 break;
3462 }
3463 FoundNonType:
3464 if (j < n_candidates)
3465 {
3466 j = 0;
3467 while (j < n_candidates)
3468 {
3469 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3470 {
3471 candidates[j] = candidates[n_candidates - 1];
3472 n_candidates -= 1;
3473 }
3474 else
3475 j += 1;
3476 }
3477 }
3478 }
3479
3480 if (n_candidates == 0)
3481 error (_("No definition found for %s"),
3482 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3483 else if (n_candidates == 1)
3484 i = 0;
3485 else if (deprocedure_p
3486 && !is_nonfunction (candidates, n_candidates))
3487 {
3488 i = ada_resolve_function
3489 (candidates, n_candidates, NULL, 0,
3490 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3491 context_type);
3492 if (i < 0)
3493 error (_("Could not find a match for %s"),
3494 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3495 }
3496 else
3497 {
3498 printf_filtered (_("Multiple matches for %s\n"),
3499 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3500 user_select_syms (candidates, n_candidates, 1);
3501 i = 0;
3502 }
3503
3504 exp->elts[pc + 1].block = candidates[i].block;
3505 exp->elts[pc + 2].symbol = candidates[i].symbol;
3506 innermost_block.update (candidates[i]);
3507 }
3508
3509 if (deprocedure_p
3510 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3511 == TYPE_CODE_FUNC))
3512 {
3513 replace_operator_with_call (expp, pc, 0, 0,
3514 exp->elts[pc + 2].symbol,
3515 exp->elts[pc + 1].block);
3516 exp = expp->get ();
3517 }
3518 break;
3519
3520 case OP_FUNCALL:
3521 {
3522 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3523 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3524 {
3525 struct block_symbol *candidates;
3526 int n_candidates;
3527
3528 n_candidates =
3529 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3530 (exp->elts[pc + 5].symbol),
3531 exp->elts[pc + 4].block, VAR_DOMAIN,
3532 &candidates);
3533 make_cleanup (xfree, candidates);
3534
3535 if (n_candidates == 1)
3536 i = 0;
3537 else
3538 {
3539 i = ada_resolve_function
3540 (candidates, n_candidates,
3541 argvec, nargs,
3542 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3543 context_type);
3544 if (i < 0)
3545 error (_("Could not find a match for %s"),
3546 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3547 }
3548
3549 exp->elts[pc + 4].block = candidates[i].block;
3550 exp->elts[pc + 5].symbol = candidates[i].symbol;
3551 innermost_block.update (candidates[i]);
3552 }
3553 }
3554 break;
3555 case BINOP_ADD:
3556 case BINOP_SUB:
3557 case BINOP_MUL:
3558 case BINOP_DIV:
3559 case BINOP_REM:
3560 case BINOP_MOD:
3561 case BINOP_CONCAT:
3562 case BINOP_BITWISE_AND:
3563 case BINOP_BITWISE_IOR:
3564 case BINOP_BITWISE_XOR:
3565 case BINOP_EQUAL:
3566 case BINOP_NOTEQUAL:
3567 case BINOP_LESS:
3568 case BINOP_GTR:
3569 case BINOP_LEQ:
3570 case BINOP_GEQ:
3571 case BINOP_EXP:
3572 case UNOP_NEG:
3573 case UNOP_PLUS:
3574 case UNOP_LOGICAL_NOT:
3575 case UNOP_ABS:
3576 if (possible_user_operator_p (op, argvec))
3577 {
3578 struct block_symbol *candidates;
3579 int n_candidates;
3580
3581 n_candidates =
3582 ada_lookup_symbol_list (ada_decoded_op_name (op),
3583 (struct block *) NULL, VAR_DOMAIN,
3584 &candidates);
3585 make_cleanup (xfree, candidates);
3586
3587 i = ada_resolve_function (candidates, n_candidates, argvec, nargs,
3588 ada_decoded_op_name (op), NULL);
3589 if (i < 0)
3590 break;
3591
3592 replace_operator_with_call (expp, pc, nargs, 1,
3593 candidates[i].symbol,
3594 candidates[i].block);
3595 exp = expp->get ();
3596 }
3597 break;
3598
3599 case OP_TYPE:
3600 case OP_REGISTER:
3601 do_cleanups (old_chain);
3602 return NULL;
3603 }
3604
3605 *pos = pc;
3606 do_cleanups (old_chain);
3607 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3608 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3609 exp->elts[pc + 1].objfile,
3610 exp->elts[pc + 2].msymbol);
3611 else
3612 return evaluate_subexp_type (exp, pos);
3613 }
3614
3615 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3616 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3617 a non-pointer. */
3618 /* The term "match" here is rather loose. The match is heuristic and
3619 liberal. */
3620
3621 static int
3622 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3623 {
3624 ftype = ada_check_typedef (ftype);
3625 atype = ada_check_typedef (atype);
3626
3627 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3628 ftype = TYPE_TARGET_TYPE (ftype);
3629 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3630 atype = TYPE_TARGET_TYPE (atype);
3631
3632 switch (TYPE_CODE (ftype))
3633 {
3634 default:
3635 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3636 case TYPE_CODE_PTR:
3637 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3638 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3639 TYPE_TARGET_TYPE (atype), 0);
3640 else
3641 return (may_deref
3642 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3643 case TYPE_CODE_INT:
3644 case TYPE_CODE_ENUM:
3645 case TYPE_CODE_RANGE:
3646 switch (TYPE_CODE (atype))
3647 {
3648 case TYPE_CODE_INT:
3649 case TYPE_CODE_ENUM:
3650 case TYPE_CODE_RANGE:
3651 return 1;
3652 default:
3653 return 0;
3654 }
3655
3656 case TYPE_CODE_ARRAY:
3657 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3658 || ada_is_array_descriptor_type (atype));
3659
3660 case TYPE_CODE_STRUCT:
3661 if (ada_is_array_descriptor_type (ftype))
3662 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3663 || ada_is_array_descriptor_type (atype));
3664 else
3665 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3666 && !ada_is_array_descriptor_type (atype));
3667
3668 case TYPE_CODE_UNION:
3669 case TYPE_CODE_FLT:
3670 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3671 }
3672 }
3673
3674 /* Return non-zero if the formals of FUNC "sufficiently match" the
3675 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3676 may also be an enumeral, in which case it is treated as a 0-
3677 argument function. */
3678
3679 static int
3680 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3681 {
3682 int i;
3683 struct type *func_type = SYMBOL_TYPE (func);
3684
3685 if (SYMBOL_CLASS (func) == LOC_CONST
3686 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3687 return (n_actuals == 0);
3688 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3689 return 0;
3690
3691 if (TYPE_NFIELDS (func_type) != n_actuals)
3692 return 0;
3693
3694 for (i = 0; i < n_actuals; i += 1)
3695 {
3696 if (actuals[i] == NULL)
3697 return 0;
3698 else
3699 {
3700 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3701 i));
3702 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3703
3704 if (!ada_type_match (ftype, atype, 1))
3705 return 0;
3706 }
3707 }
3708 return 1;
3709 }
3710
3711 /* False iff function type FUNC_TYPE definitely does not produce a value
3712 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3713 FUNC_TYPE is not a valid function type with a non-null return type
3714 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3715
3716 static int
3717 return_match (struct type *func_type, struct type *context_type)
3718 {
3719 struct type *return_type;
3720
3721 if (func_type == NULL)
3722 return 1;
3723
3724 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3725 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3726 else
3727 return_type = get_base_type (func_type);
3728 if (return_type == NULL)
3729 return 1;
3730
3731 context_type = get_base_type (context_type);
3732
3733 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3734 return context_type == NULL || return_type == context_type;
3735 else if (context_type == NULL)
3736 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3737 else
3738 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3739 }
3740
3741
3742 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3743 function (if any) that matches the types of the NARGS arguments in
3744 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3745 that returns that type, then eliminate matches that don't. If
3746 CONTEXT_TYPE is void and there is at least one match that does not
3747 return void, eliminate all matches that do.
3748
3749 Asks the user if there is more than one match remaining. Returns -1
3750 if there is no such symbol or none is selected. NAME is used
3751 solely for messages. May re-arrange and modify SYMS in
3752 the process; the index returned is for the modified vector. */
3753
3754 static int
3755 ada_resolve_function (struct block_symbol syms[],
3756 int nsyms, struct value **args, int nargs,
3757 const char *name, struct type *context_type)
3758 {
3759 int fallback;
3760 int k;
3761 int m; /* Number of hits */
3762
3763 m = 0;
3764 /* In the first pass of the loop, we only accept functions matching
3765 context_type. If none are found, we add a second pass of the loop
3766 where every function is accepted. */
3767 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3768 {
3769 for (k = 0; k < nsyms; k += 1)
3770 {
3771 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3772
3773 if (ada_args_match (syms[k].symbol, args, nargs)
3774 && (fallback || return_match (type, context_type)))
3775 {
3776 syms[m] = syms[k];
3777 m += 1;
3778 }
3779 }
3780 }
3781
3782 /* If we got multiple matches, ask the user which one to use. Don't do this
3783 interactive thing during completion, though, as the purpose of the
3784 completion is providing a list of all possible matches. Prompting the
3785 user to filter it down would be completely unexpected in this case. */
3786 if (m == 0)
3787 return -1;
3788 else if (m > 1 && !parse_completion)
3789 {
3790 printf_filtered (_("Multiple matches for %s\n"), name);
3791 user_select_syms (syms, m, 1);
3792 return 0;
3793 }
3794 return 0;
3795 }
3796
3797 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3798 in a listing of choices during disambiguation (see sort_choices, below).
3799 The idea is that overloadings of a subprogram name from the
3800 same package should sort in their source order. We settle for ordering
3801 such symbols by their trailing number (__N or $N). */
3802
3803 static int
3804 encoded_ordered_before (const char *N0, const char *N1)
3805 {
3806 if (N1 == NULL)
3807 return 0;
3808 else if (N0 == NULL)
3809 return 1;
3810 else
3811 {
3812 int k0, k1;
3813
3814 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3815 ;
3816 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3817 ;
3818 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3819 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3820 {
3821 int n0, n1;
3822
3823 n0 = k0;
3824 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3825 n0 -= 1;
3826 n1 = k1;
3827 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3828 n1 -= 1;
3829 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3830 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3831 }
3832 return (strcmp (N0, N1) < 0);
3833 }
3834 }
3835
3836 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3837 encoded names. */
3838
3839 static void
3840 sort_choices (struct block_symbol syms[], int nsyms)
3841 {
3842 int i;
3843
3844 for (i = 1; i < nsyms; i += 1)
3845 {
3846 struct block_symbol sym = syms[i];
3847 int j;
3848
3849 for (j = i - 1; j >= 0; j -= 1)
3850 {
3851 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3852 SYMBOL_LINKAGE_NAME (sym.symbol)))
3853 break;
3854 syms[j + 1] = syms[j];
3855 }
3856 syms[j + 1] = sym;
3857 }
3858 }
3859
3860 /* Whether GDB should display formals and return types for functions in the
3861 overloads selection menu. */
3862 static int print_signatures = 1;
3863
3864 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3865 all but functions, the signature is just the name of the symbol. For
3866 functions, this is the name of the function, the list of types for formals
3867 and the return type (if any). */
3868
3869 static void
3870 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3871 const struct type_print_options *flags)
3872 {
3873 struct type *type = SYMBOL_TYPE (sym);
3874
3875 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3876 if (!print_signatures
3877 || type == NULL
3878 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3879 return;
3880
3881 if (TYPE_NFIELDS (type) > 0)
3882 {
3883 int i;
3884
3885 fprintf_filtered (stream, " (");
3886 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3887 {
3888 if (i > 0)
3889 fprintf_filtered (stream, "; ");
3890 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3891 flags);
3892 }
3893 fprintf_filtered (stream, ")");
3894 }
3895 if (TYPE_TARGET_TYPE (type) != NULL
3896 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3897 {
3898 fprintf_filtered (stream, " return ");
3899 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3900 }
3901 }
3902
3903 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3904 by asking the user (if necessary), returning the number selected,
3905 and setting the first elements of SYMS items. Error if no symbols
3906 selected. */
3907
3908 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3909 to be re-integrated one of these days. */
3910
3911 int
3912 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3913 {
3914 int i;
3915 int *chosen = XALLOCAVEC (int , nsyms);
3916 int n_chosen;
3917 int first_choice = (max_results == 1) ? 1 : 2;
3918 const char *select_mode = multiple_symbols_select_mode ();
3919
3920 if (max_results < 1)
3921 error (_("Request to select 0 symbols!"));
3922 if (nsyms <= 1)
3923 return nsyms;
3924
3925 if (select_mode == multiple_symbols_cancel)
3926 error (_("\
3927 canceled because the command is ambiguous\n\
3928 See set/show multiple-symbol."));
3929
3930 /* If select_mode is "all", then return all possible symbols.
3931 Only do that if more than one symbol can be selected, of course.
3932 Otherwise, display the menu as usual. */
3933 if (select_mode == multiple_symbols_all && max_results > 1)
3934 return nsyms;
3935
3936 printf_unfiltered (_("[0] cancel\n"));
3937 if (max_results > 1)
3938 printf_unfiltered (_("[1] all\n"));
3939
3940 sort_choices (syms, nsyms);
3941
3942 for (i = 0; i < nsyms; i += 1)
3943 {
3944 if (syms[i].symbol == NULL)
3945 continue;
3946
3947 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3948 {
3949 struct symtab_and_line sal =
3950 find_function_start_sal (syms[i].symbol, 1);
3951
3952 printf_unfiltered ("[%d] ", i + first_choice);
3953 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3954 &type_print_raw_options);
3955 if (sal.symtab == NULL)
3956 printf_unfiltered (_(" at <no source file available>:%d\n"),
3957 sal.line);
3958 else
3959 printf_unfiltered (_(" at %s:%d\n"),
3960 symtab_to_filename_for_display (sal.symtab),
3961 sal.line);
3962 continue;
3963 }
3964 else
3965 {
3966 int is_enumeral =
3967 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3968 && SYMBOL_TYPE (syms[i].symbol) != NULL
3969 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3970 struct symtab *symtab = NULL;
3971
3972 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3973 symtab = symbol_symtab (syms[i].symbol);
3974
3975 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3976 {
3977 printf_unfiltered ("[%d] ", i + first_choice);
3978 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3979 &type_print_raw_options);
3980 printf_unfiltered (_(" at %s:%d\n"),
3981 symtab_to_filename_for_display (symtab),
3982 SYMBOL_LINE (syms[i].symbol));
3983 }
3984 else if (is_enumeral
3985 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3986 {
3987 printf_unfiltered (("[%d] "), i + first_choice);
3988 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3989 gdb_stdout, -1, 0, &type_print_raw_options);
3990 printf_unfiltered (_("'(%s) (enumeral)\n"),
3991 SYMBOL_PRINT_NAME (syms[i].symbol));
3992 }
3993 else
3994 {
3995 printf_unfiltered ("[%d] ", i + first_choice);
3996 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3997 &type_print_raw_options);
3998
3999 if (symtab != NULL)
4000 printf_unfiltered (is_enumeral
4001 ? _(" in %s (enumeral)\n")
4002 : _(" at %s:?\n"),
4003 symtab_to_filename_for_display (symtab));
4004 else
4005 printf_unfiltered (is_enumeral
4006 ? _(" (enumeral)\n")
4007 : _(" at ?\n"));
4008 }
4009 }
4010 }
4011
4012 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4013 "overload-choice");
4014
4015 for (i = 0; i < n_chosen; i += 1)
4016 syms[i] = syms[chosen[i]];
4017
4018 return n_chosen;
4019 }
4020
4021 /* Read and validate a set of numeric choices from the user in the
4022 range 0 .. N_CHOICES-1. Place the results in increasing
4023 order in CHOICES[0 .. N-1], and return N.
4024
4025 The user types choices as a sequence of numbers on one line
4026 separated by blanks, encoding them as follows:
4027
4028 + A choice of 0 means to cancel the selection, throwing an error.
4029 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4030 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4031
4032 The user is not allowed to choose more than MAX_RESULTS values.
4033
4034 ANNOTATION_SUFFIX, if present, is used to annotate the input
4035 prompts (for use with the -f switch). */
4036
4037 int
4038 get_selections (int *choices, int n_choices, int max_results,
4039 int is_all_choice, const char *annotation_suffix)
4040 {
4041 char *args;
4042 const char *prompt;
4043 int n_chosen;
4044 int first_choice = is_all_choice ? 2 : 1;
4045
4046 prompt = getenv ("PS2");
4047 if (prompt == NULL)
4048 prompt = "> ";
4049
4050 args = command_line_input (prompt, 0, annotation_suffix);
4051
4052 if (args == NULL)
4053 error_no_arg (_("one or more choice numbers"));
4054
4055 n_chosen = 0;
4056
4057 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4058 order, as given in args. Choices are validated. */
4059 while (1)
4060 {
4061 char *args2;
4062 int choice, j;
4063
4064 args = skip_spaces (args);
4065 if (*args == '\0' && n_chosen == 0)
4066 error_no_arg (_("one or more choice numbers"));
4067 else if (*args == '\0')
4068 break;
4069
4070 choice = strtol (args, &args2, 10);
4071 if (args == args2 || choice < 0
4072 || choice > n_choices + first_choice - 1)
4073 error (_("Argument must be choice number"));
4074 args = args2;
4075
4076 if (choice == 0)
4077 error (_("cancelled"));
4078
4079 if (choice < first_choice)
4080 {
4081 n_chosen = n_choices;
4082 for (j = 0; j < n_choices; j += 1)
4083 choices[j] = j;
4084 break;
4085 }
4086 choice -= first_choice;
4087
4088 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4089 {
4090 }
4091
4092 if (j < 0 || choice != choices[j])
4093 {
4094 int k;
4095
4096 for (k = n_chosen - 1; k > j; k -= 1)
4097 choices[k + 1] = choices[k];
4098 choices[j + 1] = choice;
4099 n_chosen += 1;
4100 }
4101 }
4102
4103 if (n_chosen > max_results)
4104 error (_("Select no more than %d of the above"), max_results);
4105
4106 return n_chosen;
4107 }
4108
4109 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4110 on the function identified by SYM and BLOCK, and taking NARGS
4111 arguments. Update *EXPP as needed to hold more space. */
4112
4113 static void
4114 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4115 int oplen, struct symbol *sym,
4116 const struct block *block)
4117 {
4118 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4119 symbol, -oplen for operator being replaced). */
4120 struct expression *newexp = (struct expression *)
4121 xzalloc (sizeof (struct expression)
4122 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4123 struct expression *exp = expp->get ();
4124
4125 newexp->nelts = exp->nelts + 7 - oplen;
4126 newexp->language_defn = exp->language_defn;
4127 newexp->gdbarch = exp->gdbarch;
4128 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4129 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4130 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4131
4132 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4133 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4134
4135 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4136 newexp->elts[pc + 4].block = block;
4137 newexp->elts[pc + 5].symbol = sym;
4138
4139 expp->reset (newexp);
4140 }
4141
4142 /* Type-class predicates */
4143
4144 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4145 or FLOAT). */
4146
4147 static int
4148 numeric_type_p (struct type *type)
4149 {
4150 if (type == NULL)
4151 return 0;
4152 else
4153 {
4154 switch (TYPE_CODE (type))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_FLT:
4158 return 1;
4159 case TYPE_CODE_RANGE:
4160 return (type == TYPE_TARGET_TYPE (type)
4161 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4162 default:
4163 return 0;
4164 }
4165 }
4166 }
4167
4168 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4169
4170 static int
4171 integer_type_p (struct type *type)
4172 {
4173 if (type == NULL)
4174 return 0;
4175 else
4176 {
4177 switch (TYPE_CODE (type))
4178 {
4179 case TYPE_CODE_INT:
4180 return 1;
4181 case TYPE_CODE_RANGE:
4182 return (type == TYPE_TARGET_TYPE (type)
4183 || integer_type_p (TYPE_TARGET_TYPE (type)));
4184 default:
4185 return 0;
4186 }
4187 }
4188 }
4189
4190 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4191
4192 static int
4193 scalar_type_p (struct type *type)
4194 {
4195 if (type == NULL)
4196 return 0;
4197 else
4198 {
4199 switch (TYPE_CODE (type))
4200 {
4201 case TYPE_CODE_INT:
4202 case TYPE_CODE_RANGE:
4203 case TYPE_CODE_ENUM:
4204 case TYPE_CODE_FLT:
4205 return 1;
4206 default:
4207 return 0;
4208 }
4209 }
4210 }
4211
4212 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4213
4214 static int
4215 discrete_type_p (struct type *type)
4216 {
4217 if (type == NULL)
4218 return 0;
4219 else
4220 {
4221 switch (TYPE_CODE (type))
4222 {
4223 case TYPE_CODE_INT:
4224 case TYPE_CODE_RANGE:
4225 case TYPE_CODE_ENUM:
4226 case TYPE_CODE_BOOL:
4227 return 1;
4228 default:
4229 return 0;
4230 }
4231 }
4232 }
4233
4234 /* Returns non-zero if OP with operands in the vector ARGS could be
4235 a user-defined function. Errs on the side of pre-defined operators
4236 (i.e., result 0). */
4237
4238 static int
4239 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4240 {
4241 struct type *type0 =
4242 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4243 struct type *type1 =
4244 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4245
4246 if (type0 == NULL)
4247 return 0;
4248
4249 switch (op)
4250 {
4251 default:
4252 return 0;
4253
4254 case BINOP_ADD:
4255 case BINOP_SUB:
4256 case BINOP_MUL:
4257 case BINOP_DIV:
4258 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4259
4260 case BINOP_REM:
4261 case BINOP_MOD:
4262 case BINOP_BITWISE_AND:
4263 case BINOP_BITWISE_IOR:
4264 case BINOP_BITWISE_XOR:
4265 return (!(integer_type_p (type0) && integer_type_p (type1)));
4266
4267 case BINOP_EQUAL:
4268 case BINOP_NOTEQUAL:
4269 case BINOP_LESS:
4270 case BINOP_GTR:
4271 case BINOP_LEQ:
4272 case BINOP_GEQ:
4273 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4274
4275 case BINOP_CONCAT:
4276 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4277
4278 case BINOP_EXP:
4279 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4280
4281 case UNOP_NEG:
4282 case UNOP_PLUS:
4283 case UNOP_LOGICAL_NOT:
4284 case UNOP_ABS:
4285 return (!numeric_type_p (type0));
4286
4287 }
4288 }
4289 \f
4290 /* Renaming */
4291
4292 /* NOTES:
4293
4294 1. In the following, we assume that a renaming type's name may
4295 have an ___XD suffix. It would be nice if this went away at some
4296 point.
4297 2. We handle both the (old) purely type-based representation of
4298 renamings and the (new) variable-based encoding. At some point,
4299 it is devoutly to be hoped that the former goes away
4300 (FIXME: hilfinger-2007-07-09).
4301 3. Subprogram renamings are not implemented, although the XRS
4302 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4303
4304 /* If SYM encodes a renaming,
4305
4306 <renaming> renames <renamed entity>,
4307
4308 sets *LEN to the length of the renamed entity's name,
4309 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4310 the string describing the subcomponent selected from the renamed
4311 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4312 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4313 are undefined). Otherwise, returns a value indicating the category
4314 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4315 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4316 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4317 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4318 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4319 may be NULL, in which case they are not assigned.
4320
4321 [Currently, however, GCC does not generate subprogram renamings.] */
4322
4323 enum ada_renaming_category
4324 ada_parse_renaming (struct symbol *sym,
4325 const char **renamed_entity, int *len,
4326 const char **renaming_expr)
4327 {
4328 enum ada_renaming_category kind;
4329 const char *info;
4330 const char *suffix;
4331
4332 if (sym == NULL)
4333 return ADA_NOT_RENAMING;
4334 switch (SYMBOL_CLASS (sym))
4335 {
4336 default:
4337 return ADA_NOT_RENAMING;
4338 case LOC_TYPEDEF:
4339 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4340 renamed_entity, len, renaming_expr);
4341 case LOC_LOCAL:
4342 case LOC_STATIC:
4343 case LOC_COMPUTED:
4344 case LOC_OPTIMIZED_OUT:
4345 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4346 if (info == NULL)
4347 return ADA_NOT_RENAMING;
4348 switch (info[5])
4349 {
4350 case '_':
4351 kind = ADA_OBJECT_RENAMING;
4352 info += 6;
4353 break;
4354 case 'E':
4355 kind = ADA_EXCEPTION_RENAMING;
4356 info += 7;
4357 break;
4358 case 'P':
4359 kind = ADA_PACKAGE_RENAMING;
4360 info += 7;
4361 break;
4362 case 'S':
4363 kind = ADA_SUBPROGRAM_RENAMING;
4364 info += 7;
4365 break;
4366 default:
4367 return ADA_NOT_RENAMING;
4368 }
4369 }
4370
4371 if (renamed_entity != NULL)
4372 *renamed_entity = info;
4373 suffix = strstr (info, "___XE");
4374 if (suffix == NULL || suffix == info)
4375 return ADA_NOT_RENAMING;
4376 if (len != NULL)
4377 *len = strlen (info) - strlen (suffix);
4378 suffix += 5;
4379 if (renaming_expr != NULL)
4380 *renaming_expr = suffix;
4381 return kind;
4382 }
4383
4384 /* Assuming TYPE encodes a renaming according to the old encoding in
4385 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4386 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4387 ADA_NOT_RENAMING otherwise. */
4388 static enum ada_renaming_category
4389 parse_old_style_renaming (struct type *type,
4390 const char **renamed_entity, int *len,
4391 const char **renaming_expr)
4392 {
4393 enum ada_renaming_category kind;
4394 const char *name;
4395 const char *info;
4396 const char *suffix;
4397
4398 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4399 || TYPE_NFIELDS (type) != 1)
4400 return ADA_NOT_RENAMING;
4401
4402 name = type_name_no_tag (type);
4403 if (name == NULL)
4404 return ADA_NOT_RENAMING;
4405
4406 name = strstr (name, "___XR");
4407 if (name == NULL)
4408 return ADA_NOT_RENAMING;
4409 switch (name[5])
4410 {
4411 case '\0':
4412 case '_':
4413 kind = ADA_OBJECT_RENAMING;
4414 break;
4415 case 'E':
4416 kind = ADA_EXCEPTION_RENAMING;
4417 break;
4418 case 'P':
4419 kind = ADA_PACKAGE_RENAMING;
4420 break;
4421 case 'S':
4422 kind = ADA_SUBPROGRAM_RENAMING;
4423 break;
4424 default:
4425 return ADA_NOT_RENAMING;
4426 }
4427
4428 info = TYPE_FIELD_NAME (type, 0);
4429 if (info == NULL)
4430 return ADA_NOT_RENAMING;
4431 if (renamed_entity != NULL)
4432 *renamed_entity = info;
4433 suffix = strstr (info, "___XE");
4434 if (renaming_expr != NULL)
4435 *renaming_expr = suffix + 5;
4436 if (suffix == NULL || suffix == info)
4437 return ADA_NOT_RENAMING;
4438 if (len != NULL)
4439 *len = suffix - info;
4440 return kind;
4441 }
4442
4443 /* Compute the value of the given RENAMING_SYM, which is expected to
4444 be a symbol encoding a renaming expression. BLOCK is the block
4445 used to evaluate the renaming. */
4446
4447 static struct value *
4448 ada_read_renaming_var_value (struct symbol *renaming_sym,
4449 const struct block *block)
4450 {
4451 const char *sym_name;
4452
4453 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4454 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4455 return evaluate_expression (expr.get ());
4456 }
4457 \f
4458
4459 /* Evaluation: Function Calls */
4460
4461 /* Return an lvalue containing the value VAL. This is the identity on
4462 lvalues, and otherwise has the side-effect of allocating memory
4463 in the inferior where a copy of the value contents is copied. */
4464
4465 static struct value *
4466 ensure_lval (struct value *val)
4467 {
4468 if (VALUE_LVAL (val) == not_lval
4469 || VALUE_LVAL (val) == lval_internalvar)
4470 {
4471 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4472 const CORE_ADDR addr =
4473 value_as_long (value_allocate_space_in_inferior (len));
4474
4475 VALUE_LVAL (val) = lval_memory;
4476 set_value_address (val, addr);
4477 write_memory (addr, value_contents (val), len);
4478 }
4479
4480 return val;
4481 }
4482
4483 /* Return the value ACTUAL, converted to be an appropriate value for a
4484 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4485 allocating any necessary descriptors (fat pointers), or copies of
4486 values not residing in memory, updating it as needed. */
4487
4488 struct value *
4489 ada_convert_actual (struct value *actual, struct type *formal_type0)
4490 {
4491 struct type *actual_type = ada_check_typedef (value_type (actual));
4492 struct type *formal_type = ada_check_typedef (formal_type0);
4493 struct type *formal_target =
4494 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4495 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4496 struct type *actual_target =
4497 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4498 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4499
4500 if (ada_is_array_descriptor_type (formal_target)
4501 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4502 return make_array_descriptor (formal_type, actual);
4503 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4504 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4505 {
4506 struct value *result;
4507
4508 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4509 && ada_is_array_descriptor_type (actual_target))
4510 result = desc_data (actual);
4511 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4512 {
4513 if (VALUE_LVAL (actual) != lval_memory)
4514 {
4515 struct value *val;
4516
4517 actual_type = ada_check_typedef (value_type (actual));
4518 val = allocate_value (actual_type);
4519 memcpy ((char *) value_contents_raw (val),
4520 (char *) value_contents (actual),
4521 TYPE_LENGTH (actual_type));
4522 actual = ensure_lval (val);
4523 }
4524 result = value_addr (actual);
4525 }
4526 else
4527 return actual;
4528 return value_cast_pointers (formal_type, result, 0);
4529 }
4530 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4531 return ada_value_ind (actual);
4532 else if (ada_is_aligner_type (formal_type))
4533 {
4534 /* We need to turn this parameter into an aligner type
4535 as well. */
4536 struct value *aligner = allocate_value (formal_type);
4537 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4538
4539 value_assign_to_component (aligner, component, actual);
4540 return aligner;
4541 }
4542
4543 return actual;
4544 }
4545
4546 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4547 type TYPE. This is usually an inefficient no-op except on some targets
4548 (such as AVR) where the representation of a pointer and an address
4549 differs. */
4550
4551 static CORE_ADDR
4552 value_pointer (struct value *value, struct type *type)
4553 {
4554 struct gdbarch *gdbarch = get_type_arch (type);
4555 unsigned len = TYPE_LENGTH (type);
4556 gdb_byte *buf = (gdb_byte *) alloca (len);
4557 CORE_ADDR addr;
4558
4559 addr = value_address (value);
4560 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4561 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4562 return addr;
4563 }
4564
4565
4566 /* Push a descriptor of type TYPE for array value ARR on the stack at
4567 *SP, updating *SP to reflect the new descriptor. Return either
4568 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4569 to-descriptor type rather than a descriptor type), a struct value *
4570 representing a pointer to this descriptor. */
4571
4572 static struct value *
4573 make_array_descriptor (struct type *type, struct value *arr)
4574 {
4575 struct type *bounds_type = desc_bounds_type (type);
4576 struct type *desc_type = desc_base_type (type);
4577 struct value *descriptor = allocate_value (desc_type);
4578 struct value *bounds = allocate_value (bounds_type);
4579 int i;
4580
4581 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4582 i > 0; i -= 1)
4583 {
4584 modify_field (value_type (bounds), value_contents_writeable (bounds),
4585 ada_array_bound (arr, i, 0),
4586 desc_bound_bitpos (bounds_type, i, 0),
4587 desc_bound_bitsize (bounds_type, i, 0));
4588 modify_field (value_type (bounds), value_contents_writeable (bounds),
4589 ada_array_bound (arr, i, 1),
4590 desc_bound_bitpos (bounds_type, i, 1),
4591 desc_bound_bitsize (bounds_type, i, 1));
4592 }
4593
4594 bounds = ensure_lval (bounds);
4595
4596 modify_field (value_type (descriptor),
4597 value_contents_writeable (descriptor),
4598 value_pointer (ensure_lval (arr),
4599 TYPE_FIELD_TYPE (desc_type, 0)),
4600 fat_pntr_data_bitpos (desc_type),
4601 fat_pntr_data_bitsize (desc_type));
4602
4603 modify_field (value_type (descriptor),
4604 value_contents_writeable (descriptor),
4605 value_pointer (bounds,
4606 TYPE_FIELD_TYPE (desc_type, 1)),
4607 fat_pntr_bounds_bitpos (desc_type),
4608 fat_pntr_bounds_bitsize (desc_type));
4609
4610 descriptor = ensure_lval (descriptor);
4611
4612 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4613 return value_addr (descriptor);
4614 else
4615 return descriptor;
4616 }
4617 \f
4618 /* Symbol Cache Module */
4619
4620 /* Performance measurements made as of 2010-01-15 indicate that
4621 this cache does bring some noticeable improvements. Depending
4622 on the type of entity being printed, the cache can make it as much
4623 as an order of magnitude faster than without it.
4624
4625 The descriptive type DWARF extension has significantly reduced
4626 the need for this cache, at least when DWARF is being used. However,
4627 even in this case, some expensive name-based symbol searches are still
4628 sometimes necessary - to find an XVZ variable, mostly. */
4629
4630 /* Initialize the contents of SYM_CACHE. */
4631
4632 static void
4633 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4634 {
4635 obstack_init (&sym_cache->cache_space);
4636 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4637 }
4638
4639 /* Free the memory used by SYM_CACHE. */
4640
4641 static void
4642 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4643 {
4644 obstack_free (&sym_cache->cache_space, NULL);
4645 xfree (sym_cache);
4646 }
4647
4648 /* Return the symbol cache associated to the given program space PSPACE.
4649 If not allocated for this PSPACE yet, allocate and initialize one. */
4650
4651 static struct ada_symbol_cache *
4652 ada_get_symbol_cache (struct program_space *pspace)
4653 {
4654 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4655
4656 if (pspace_data->sym_cache == NULL)
4657 {
4658 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4659 ada_init_symbol_cache (pspace_data->sym_cache);
4660 }
4661
4662 return pspace_data->sym_cache;
4663 }
4664
4665 /* Clear all entries from the symbol cache. */
4666
4667 static void
4668 ada_clear_symbol_cache (void)
4669 {
4670 struct ada_symbol_cache *sym_cache
4671 = ada_get_symbol_cache (current_program_space);
4672
4673 obstack_free (&sym_cache->cache_space, NULL);
4674 ada_init_symbol_cache (sym_cache);
4675 }
4676
4677 /* Search our cache for an entry matching NAME and DOMAIN.
4678 Return it if found, or NULL otherwise. */
4679
4680 static struct cache_entry **
4681 find_entry (const char *name, domain_enum domain)
4682 {
4683 struct ada_symbol_cache *sym_cache
4684 = ada_get_symbol_cache (current_program_space);
4685 int h = msymbol_hash (name) % HASH_SIZE;
4686 struct cache_entry **e;
4687
4688 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4689 {
4690 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4691 return e;
4692 }
4693 return NULL;
4694 }
4695
4696 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4697 Return 1 if found, 0 otherwise.
4698
4699 If an entry was found and SYM is not NULL, set *SYM to the entry's
4700 SYM. Same principle for BLOCK if not NULL. */
4701
4702 static int
4703 lookup_cached_symbol (const char *name, domain_enum domain,
4704 struct symbol **sym, const struct block **block)
4705 {
4706 struct cache_entry **e = find_entry (name, domain);
4707
4708 if (e == NULL)
4709 return 0;
4710 if (sym != NULL)
4711 *sym = (*e)->sym;
4712 if (block != NULL)
4713 *block = (*e)->block;
4714 return 1;
4715 }
4716
4717 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4718 in domain DOMAIN, save this result in our symbol cache. */
4719
4720 static void
4721 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4722 const struct block *block)
4723 {
4724 struct ada_symbol_cache *sym_cache
4725 = ada_get_symbol_cache (current_program_space);
4726 int h;
4727 char *copy;
4728 struct cache_entry *e;
4729
4730 /* Symbols for builtin types don't have a block.
4731 For now don't cache such symbols. */
4732 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4733 return;
4734
4735 /* If the symbol is a local symbol, then do not cache it, as a search
4736 for that symbol depends on the context. To determine whether
4737 the symbol is local or not, we check the block where we found it
4738 against the global and static blocks of its associated symtab. */
4739 if (sym
4740 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4741 GLOBAL_BLOCK) != block
4742 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4743 STATIC_BLOCK) != block)
4744 return;
4745
4746 h = msymbol_hash (name) % HASH_SIZE;
4747 e = (struct cache_entry *) obstack_alloc (&sym_cache->cache_space,
4748 sizeof (*e));
4749 e->next = sym_cache->root[h];
4750 sym_cache->root[h] = e;
4751 e->name = copy
4752 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4753 strcpy (copy, name);
4754 e->sym = sym;
4755 e->domain = domain;
4756 e->block = block;
4757 }
4758 \f
4759 /* Symbol Lookup */
4760
4761 /* Return the symbol name match type that should be used used when
4762 searching for all symbols matching LOOKUP_NAME.
4763
4764 LOOKUP_NAME is expected to be a symbol name after transformation
4765 for Ada lookups. */
4766
4767 static symbol_name_match_type
4768 name_match_type_from_name (const char *lookup_name)
4769 {
4770 return (strstr (lookup_name, "__") == NULL
4771 ? symbol_name_match_type::WILD
4772 : symbol_name_match_type::FULL);
4773 }
4774
4775 /* Return the result of a standard (literal, C-like) lookup of NAME in
4776 given DOMAIN, visible from lexical block BLOCK. */
4777
4778 static struct symbol *
4779 standard_lookup (const char *name, const struct block *block,
4780 domain_enum domain)
4781 {
4782 /* Initialize it just to avoid a GCC false warning. */
4783 struct block_symbol sym = {NULL, NULL};
4784
4785 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4786 return sym.symbol;
4787 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4788 cache_symbol (name, domain, sym.symbol, sym.block);
4789 return sym.symbol;
4790 }
4791
4792
4793 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4794 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4795 since they contend in overloading in the same way. */
4796 static int
4797 is_nonfunction (struct block_symbol syms[], int n)
4798 {
4799 int i;
4800
4801 for (i = 0; i < n; i += 1)
4802 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4803 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4804 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4805 return 1;
4806
4807 return 0;
4808 }
4809
4810 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4811 struct types. Otherwise, they may not. */
4812
4813 static int
4814 equiv_types (struct type *type0, struct type *type1)
4815 {
4816 if (type0 == type1)
4817 return 1;
4818 if (type0 == NULL || type1 == NULL
4819 || TYPE_CODE (type0) != TYPE_CODE (type1))
4820 return 0;
4821 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4822 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4823 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4824 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4825 return 1;
4826
4827 return 0;
4828 }
4829
4830 /* True iff SYM0 represents the same entity as SYM1, or one that is
4831 no more defined than that of SYM1. */
4832
4833 static int
4834 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4835 {
4836 if (sym0 == sym1)
4837 return 1;
4838 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4839 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4840 return 0;
4841
4842 switch (SYMBOL_CLASS (sym0))
4843 {
4844 case LOC_UNDEF:
4845 return 1;
4846 case LOC_TYPEDEF:
4847 {
4848 struct type *type0 = SYMBOL_TYPE (sym0);
4849 struct type *type1 = SYMBOL_TYPE (sym1);
4850 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4851 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4852 int len0 = strlen (name0);
4853
4854 return
4855 TYPE_CODE (type0) == TYPE_CODE (type1)
4856 && (equiv_types (type0, type1)
4857 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4858 && startswith (name1 + len0, "___XV")));
4859 }
4860 case LOC_CONST:
4861 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4862 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4863 default:
4864 return 0;
4865 }
4866 }
4867
4868 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4869 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4870
4871 static void
4872 add_defn_to_vec (struct obstack *obstackp,
4873 struct symbol *sym,
4874 const struct block *block)
4875 {
4876 int i;
4877 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4878
4879 /* Do not try to complete stub types, as the debugger is probably
4880 already scanning all symbols matching a certain name at the
4881 time when this function is called. Trying to replace the stub
4882 type by its associated full type will cause us to restart a scan
4883 which may lead to an infinite recursion. Instead, the client
4884 collecting the matching symbols will end up collecting several
4885 matches, with at least one of them complete. It can then filter
4886 out the stub ones if needed. */
4887
4888 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4889 {
4890 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4891 return;
4892 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4893 {
4894 prevDefns[i].symbol = sym;
4895 prevDefns[i].block = block;
4896 return;
4897 }
4898 }
4899
4900 {
4901 struct block_symbol info;
4902
4903 info.symbol = sym;
4904 info.block = block;
4905 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4906 }
4907 }
4908
4909 /* Number of block_symbol structures currently collected in current vector in
4910 OBSTACKP. */
4911
4912 static int
4913 num_defns_collected (struct obstack *obstackp)
4914 {
4915 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4916 }
4917
4918 /* Vector of block_symbol structures currently collected in current vector in
4919 OBSTACKP. If FINISH, close off the vector and return its final address. */
4920
4921 static struct block_symbol *
4922 defns_collected (struct obstack *obstackp, int finish)
4923 {
4924 if (finish)
4925 return (struct block_symbol *) obstack_finish (obstackp);
4926 else
4927 return (struct block_symbol *) obstack_base (obstackp);
4928 }
4929
4930 /* Return a bound minimal symbol matching NAME according to Ada
4931 decoding rules. Returns an invalid symbol if there is no such
4932 minimal symbol. Names prefixed with "standard__" are handled
4933 specially: "standard__" is first stripped off, and only static and
4934 global symbols are searched. */
4935
4936 struct bound_minimal_symbol
4937 ada_lookup_simple_minsym (const char *name)
4938 {
4939 struct bound_minimal_symbol result;
4940 struct objfile *objfile;
4941 struct minimal_symbol *msymbol;
4942
4943 memset (&result, 0, sizeof (result));
4944
4945 symbol_name_match_type match_type = name_match_type_from_name (name);
4946 lookup_name_info lookup_name (name, match_type);
4947
4948 symbol_name_matcher_ftype *match_name
4949 = ada_get_symbol_name_matcher (lookup_name);
4950
4951 ALL_MSYMBOLS (objfile, msymbol)
4952 {
4953 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4954 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4955 {
4956 result.minsym = msymbol;
4957 result.objfile = objfile;
4958 break;
4959 }
4960 }
4961
4962 return result;
4963 }
4964
4965 /* For all subprograms that statically enclose the subprogram of the
4966 selected frame, add symbols matching identifier NAME in DOMAIN
4967 and their blocks to the list of data in OBSTACKP, as for
4968 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4969 with a wildcard prefix. */
4970
4971 static void
4972 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4973 const lookup_name_info &lookup_name,
4974 domain_enum domain)
4975 {
4976 }
4977
4978 /* True if TYPE is definitely an artificial type supplied to a symbol
4979 for which no debugging information was given in the symbol file. */
4980
4981 static int
4982 is_nondebugging_type (struct type *type)
4983 {
4984 const char *name = ada_type_name (type);
4985
4986 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4987 }
4988
4989 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4990 that are deemed "identical" for practical purposes.
4991
4992 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4993 types and that their number of enumerals is identical (in other
4994 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4995
4996 static int
4997 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4998 {
4999 int i;
5000
5001 /* The heuristic we use here is fairly conservative. We consider
5002 that 2 enumerate types are identical if they have the same
5003 number of enumerals and that all enumerals have the same
5004 underlying value and name. */
5005
5006 /* All enums in the type should have an identical underlying value. */
5007 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5008 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
5009 return 0;
5010
5011 /* All enumerals should also have the same name (modulo any numerical
5012 suffix). */
5013 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5014 {
5015 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5016 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5017 int len_1 = strlen (name_1);
5018 int len_2 = strlen (name_2);
5019
5020 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5021 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5022 if (len_1 != len_2
5023 || strncmp (TYPE_FIELD_NAME (type1, i),
5024 TYPE_FIELD_NAME (type2, i),
5025 len_1) != 0)
5026 return 0;
5027 }
5028
5029 return 1;
5030 }
5031
5032 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5033 that are deemed "identical" for practical purposes. Sometimes,
5034 enumerals are not strictly identical, but their types are so similar
5035 that they can be considered identical.
5036
5037 For instance, consider the following code:
5038
5039 type Color is (Black, Red, Green, Blue, White);
5040 type RGB_Color is new Color range Red .. Blue;
5041
5042 Type RGB_Color is a subrange of an implicit type which is a copy
5043 of type Color. If we call that implicit type RGB_ColorB ("B" is
5044 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5045 As a result, when an expression references any of the enumeral
5046 by name (Eg. "print green"), the expression is technically
5047 ambiguous and the user should be asked to disambiguate. But
5048 doing so would only hinder the user, since it wouldn't matter
5049 what choice he makes, the outcome would always be the same.
5050 So, for practical purposes, we consider them as the same. */
5051
5052 static int
5053 symbols_are_identical_enums (struct block_symbol *syms, int nsyms)
5054 {
5055 int i;
5056
5057 /* Before performing a thorough comparison check of each type,
5058 we perform a series of inexpensive checks. We expect that these
5059 checks will quickly fail in the vast majority of cases, and thus
5060 help prevent the unnecessary use of a more expensive comparison.
5061 Said comparison also expects us to make some of these checks
5062 (see ada_identical_enum_types_p). */
5063
5064 /* Quick check: All symbols should have an enum type. */
5065 for (i = 0; i < nsyms; i++)
5066 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5067 return 0;
5068
5069 /* Quick check: They should all have the same value. */
5070 for (i = 1; i < nsyms; i++)
5071 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5072 return 0;
5073
5074 /* Quick check: They should all have the same number of enumerals. */
5075 for (i = 1; i < nsyms; i++)
5076 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5077 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5078 return 0;
5079
5080 /* All the sanity checks passed, so we might have a set of
5081 identical enumeration types. Perform a more complete
5082 comparison of the type of each symbol. */
5083 for (i = 1; i < nsyms; i++)
5084 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5085 SYMBOL_TYPE (syms[0].symbol)))
5086 return 0;
5087
5088 return 1;
5089 }
5090
5091 /* Remove any non-debugging symbols in SYMS[0 .. NSYMS-1] that definitely
5092 duplicate other symbols in the list (The only case I know of where
5093 this happens is when object files containing stabs-in-ecoff are
5094 linked with files containing ordinary ecoff debugging symbols (or no
5095 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5096 Returns the number of items in the modified list. */
5097
5098 static int
5099 remove_extra_symbols (struct block_symbol *syms, int nsyms)
5100 {
5101 int i, j;
5102
5103 /* We should never be called with less than 2 symbols, as there
5104 cannot be any extra symbol in that case. But it's easy to
5105 handle, since we have nothing to do in that case. */
5106 if (nsyms < 2)
5107 return nsyms;
5108
5109 i = 0;
5110 while (i < nsyms)
5111 {
5112 int remove_p = 0;
5113
5114 /* If two symbols have the same name and one of them is a stub type,
5115 the get rid of the stub. */
5116
5117 if (TYPE_STUB (SYMBOL_TYPE (syms[i].symbol))
5118 && SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL)
5119 {
5120 for (j = 0; j < nsyms; j++)
5121 {
5122 if (j != i
5123 && !TYPE_STUB (SYMBOL_TYPE (syms[j].symbol))
5124 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5125 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5126 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0)
5127 remove_p = 1;
5128 }
5129 }
5130
5131 /* Two symbols with the same name, same class and same address
5132 should be identical. */
5133
5134 else if (SYMBOL_LINKAGE_NAME (syms[i].symbol) != NULL
5135 && SYMBOL_CLASS (syms[i].symbol) == LOC_STATIC
5136 && is_nondebugging_type (SYMBOL_TYPE (syms[i].symbol)))
5137 {
5138 for (j = 0; j < nsyms; j += 1)
5139 {
5140 if (i != j
5141 && SYMBOL_LINKAGE_NAME (syms[j].symbol) != NULL
5142 && strcmp (SYMBOL_LINKAGE_NAME (syms[i].symbol),
5143 SYMBOL_LINKAGE_NAME (syms[j].symbol)) == 0
5144 && SYMBOL_CLASS (syms[i].symbol)
5145 == SYMBOL_CLASS (syms[j].symbol)
5146 && SYMBOL_VALUE_ADDRESS (syms[i].symbol)
5147 == SYMBOL_VALUE_ADDRESS (syms[j].symbol))
5148 remove_p = 1;
5149 }
5150 }
5151
5152 if (remove_p)
5153 {
5154 for (j = i + 1; j < nsyms; j += 1)
5155 syms[j - 1] = syms[j];
5156 nsyms -= 1;
5157 }
5158
5159 i += 1;
5160 }
5161
5162 /* If all the remaining symbols are identical enumerals, then
5163 just keep the first one and discard the rest.
5164
5165 Unlike what we did previously, we do not discard any entry
5166 unless they are ALL identical. This is because the symbol
5167 comparison is not a strict comparison, but rather a practical
5168 comparison. If all symbols are considered identical, then
5169 we can just go ahead and use the first one and discard the rest.
5170 But if we cannot reduce the list to a single element, we have
5171 to ask the user to disambiguate anyways. And if we have to
5172 present a multiple-choice menu, it's less confusing if the list
5173 isn't missing some choices that were identical and yet distinct. */
5174 if (symbols_are_identical_enums (syms, nsyms))
5175 nsyms = 1;
5176
5177 return nsyms;
5178 }
5179
5180 /* Given a type that corresponds to a renaming entity, use the type name
5181 to extract the scope (package name or function name, fully qualified,
5182 and following the GNAT encoding convention) where this renaming has been
5183 defined. The string returned needs to be deallocated after use. */
5184
5185 static char *
5186 xget_renaming_scope (struct type *renaming_type)
5187 {
5188 /* The renaming types adhere to the following convention:
5189 <scope>__<rename>___<XR extension>.
5190 So, to extract the scope, we search for the "___XR" extension,
5191 and then backtrack until we find the first "__". */
5192
5193 const char *name = type_name_no_tag (renaming_type);
5194 const char *suffix = strstr (name, "___XR");
5195 const char *last;
5196 int scope_len;
5197 char *scope;
5198
5199 /* Now, backtrack a bit until we find the first "__". Start looking
5200 at suffix - 3, as the <rename> part is at least one character long. */
5201
5202 for (last = suffix - 3; last > name; last--)
5203 if (last[0] == '_' && last[1] == '_')
5204 break;
5205
5206 /* Make a copy of scope and return it. */
5207
5208 scope_len = last - name;
5209 scope = (char *) xmalloc ((scope_len + 1) * sizeof (char));
5210
5211 strncpy (scope, name, scope_len);
5212 scope[scope_len] = '\0';
5213
5214 return scope;
5215 }
5216
5217 /* Return nonzero if NAME corresponds to a package name. */
5218
5219 static int
5220 is_package_name (const char *name)
5221 {
5222 /* Here, We take advantage of the fact that no symbols are generated
5223 for packages, while symbols are generated for each function.
5224 So the condition for NAME represent a package becomes equivalent
5225 to NAME not existing in our list of symbols. There is only one
5226 small complication with library-level functions (see below). */
5227
5228 char *fun_name;
5229
5230 /* If it is a function that has not been defined at library level,
5231 then we should be able to look it up in the symbols. */
5232 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5233 return 0;
5234
5235 /* Library-level function names start with "_ada_". See if function
5236 "_ada_" followed by NAME can be found. */
5237
5238 /* Do a quick check that NAME does not contain "__", since library-level
5239 functions names cannot contain "__" in them. */
5240 if (strstr (name, "__") != NULL)
5241 return 0;
5242
5243 fun_name = xstrprintf ("_ada_%s", name);
5244
5245 return (standard_lookup (fun_name, NULL, VAR_DOMAIN) == NULL);
5246 }
5247
5248 /* Return nonzero if SYM corresponds to a renaming entity that is
5249 not visible from FUNCTION_NAME. */
5250
5251 static int
5252 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5253 {
5254 char *scope;
5255 struct cleanup *old_chain;
5256
5257 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5258 return 0;
5259
5260 scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5261 old_chain = make_cleanup (xfree, scope);
5262
5263 /* If the rename has been defined in a package, then it is visible. */
5264 if (is_package_name (scope))
5265 {
5266 do_cleanups (old_chain);
5267 return 0;
5268 }
5269
5270 /* Check that the rename is in the current function scope by checking
5271 that its name starts with SCOPE. */
5272
5273 /* If the function name starts with "_ada_", it means that it is
5274 a library-level function. Strip this prefix before doing the
5275 comparison, as the encoding for the renaming does not contain
5276 this prefix. */
5277 if (startswith (function_name, "_ada_"))
5278 function_name += 5;
5279
5280 {
5281 int is_invisible = !startswith (function_name, scope);
5282
5283 do_cleanups (old_chain);
5284 return is_invisible;
5285 }
5286 }
5287
5288 /* Remove entries from SYMS that corresponds to a renaming entity that
5289 is not visible from the function associated with CURRENT_BLOCK or
5290 that is superfluous due to the presence of more specific renaming
5291 information. Places surviving symbols in the initial entries of
5292 SYMS and returns the number of surviving symbols.
5293
5294 Rationale:
5295 First, in cases where an object renaming is implemented as a
5296 reference variable, GNAT may produce both the actual reference
5297 variable and the renaming encoding. In this case, we discard the
5298 latter.
5299
5300 Second, GNAT emits a type following a specified encoding for each renaming
5301 entity. Unfortunately, STABS currently does not support the definition
5302 of types that are local to a given lexical block, so all renamings types
5303 are emitted at library level. As a consequence, if an application
5304 contains two renaming entities using the same name, and a user tries to
5305 print the value of one of these entities, the result of the ada symbol
5306 lookup will also contain the wrong renaming type.
5307
5308 This function partially covers for this limitation by attempting to
5309 remove from the SYMS list renaming symbols that should be visible
5310 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5311 method with the current information available. The implementation
5312 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5313
5314 - When the user tries to print a rename in a function while there
5315 is another rename entity defined in a package: Normally, the
5316 rename in the function has precedence over the rename in the
5317 package, so the latter should be removed from the list. This is
5318 currently not the case.
5319
5320 - This function will incorrectly remove valid renames if
5321 the CURRENT_BLOCK corresponds to a function which symbol name
5322 has been changed by an "Export" pragma. As a consequence,
5323 the user will be unable to print such rename entities. */
5324
5325 static int
5326 remove_irrelevant_renamings (struct block_symbol *syms,
5327 int nsyms, const struct block *current_block)
5328 {
5329 struct symbol *current_function;
5330 const char *current_function_name;
5331 int i;
5332 int is_new_style_renaming;
5333
5334 /* If there is both a renaming foo___XR... encoded as a variable and
5335 a simple variable foo in the same block, discard the latter.
5336 First, zero out such symbols, then compress. */
5337 is_new_style_renaming = 0;
5338 for (i = 0; i < nsyms; i += 1)
5339 {
5340 struct symbol *sym = syms[i].symbol;
5341 const struct block *block = syms[i].block;
5342 const char *name;
5343 const char *suffix;
5344
5345 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5346 continue;
5347 name = SYMBOL_LINKAGE_NAME (sym);
5348 suffix = strstr (name, "___XR");
5349
5350 if (suffix != NULL)
5351 {
5352 int name_len = suffix - name;
5353 int j;
5354
5355 is_new_style_renaming = 1;
5356 for (j = 0; j < nsyms; j += 1)
5357 if (i != j && syms[j].symbol != NULL
5358 && strncmp (name, SYMBOL_LINKAGE_NAME (syms[j].symbol),
5359 name_len) == 0
5360 && block == syms[j].block)
5361 syms[j].symbol = NULL;
5362 }
5363 }
5364 if (is_new_style_renaming)
5365 {
5366 int j, k;
5367
5368 for (j = k = 0; j < nsyms; j += 1)
5369 if (syms[j].symbol != NULL)
5370 {
5371 syms[k] = syms[j];
5372 k += 1;
5373 }
5374 return k;
5375 }
5376
5377 /* Extract the function name associated to CURRENT_BLOCK.
5378 Abort if unable to do so. */
5379
5380 if (current_block == NULL)
5381 return nsyms;
5382
5383 current_function = block_linkage_function (current_block);
5384 if (current_function == NULL)
5385 return nsyms;
5386
5387 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5388 if (current_function_name == NULL)
5389 return nsyms;
5390
5391 /* Check each of the symbols, and remove it from the list if it is
5392 a type corresponding to a renaming that is out of the scope of
5393 the current block. */
5394
5395 i = 0;
5396 while (i < nsyms)
5397 {
5398 if (ada_parse_renaming (syms[i].symbol, NULL, NULL, NULL)
5399 == ADA_OBJECT_RENAMING
5400 && old_renaming_is_invisible (syms[i].symbol, current_function_name))
5401 {
5402 int j;
5403
5404 for (j = i + 1; j < nsyms; j += 1)
5405 syms[j - 1] = syms[j];
5406 nsyms -= 1;
5407 }
5408 else
5409 i += 1;
5410 }
5411
5412 return nsyms;
5413 }
5414
5415 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5416 whose name and domain match NAME and DOMAIN respectively.
5417 If no match was found, then extend the search to "enclosing"
5418 routines (in other words, if we're inside a nested function,
5419 search the symbols defined inside the enclosing functions).
5420 If WILD_MATCH_P is nonzero, perform the naming matching in
5421 "wild" mode (see function "wild_match" for more info).
5422
5423 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5424
5425 static void
5426 ada_add_local_symbols (struct obstack *obstackp,
5427 const lookup_name_info &lookup_name,
5428 const struct block *block, domain_enum domain)
5429 {
5430 int block_depth = 0;
5431
5432 while (block != NULL)
5433 {
5434 block_depth += 1;
5435 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5436
5437 /* If we found a non-function match, assume that's the one. */
5438 if (is_nonfunction (defns_collected (obstackp, 0),
5439 num_defns_collected (obstackp)))
5440 return;
5441
5442 block = BLOCK_SUPERBLOCK (block);
5443 }
5444
5445 /* If no luck so far, try to find NAME as a local symbol in some lexically
5446 enclosing subprogram. */
5447 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5448 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5449 }
5450
5451 /* An object of this type is used as the user_data argument when
5452 calling the map_matching_symbols method. */
5453
5454 struct match_data
5455 {
5456 struct objfile *objfile;
5457 struct obstack *obstackp;
5458 struct symbol *arg_sym;
5459 int found_sym;
5460 };
5461
5462 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5463 to a list of symbols. DATA0 is a pointer to a struct match_data *
5464 containing the obstack that collects the symbol list, the file that SYM
5465 must come from, a flag indicating whether a non-argument symbol has
5466 been found in the current block, and the last argument symbol
5467 passed in SYM within the current block (if any). When SYM is null,
5468 marking the end of a block, the argument symbol is added if no
5469 other has been found. */
5470
5471 static int
5472 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5473 {
5474 struct match_data *data = (struct match_data *) data0;
5475
5476 if (sym == NULL)
5477 {
5478 if (!data->found_sym && data->arg_sym != NULL)
5479 add_defn_to_vec (data->obstackp,
5480 fixup_symbol_section (data->arg_sym, data->objfile),
5481 block);
5482 data->found_sym = 0;
5483 data->arg_sym = NULL;
5484 }
5485 else
5486 {
5487 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5488 return 0;
5489 else if (SYMBOL_IS_ARGUMENT (sym))
5490 data->arg_sym = sym;
5491 else
5492 {
5493 data->found_sym = 1;
5494 add_defn_to_vec (data->obstackp,
5495 fixup_symbol_section (sym, data->objfile),
5496 block);
5497 }
5498 }
5499 return 0;
5500 }
5501
5502 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5503 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5504 symbols to OBSTACKP. Return whether we found such symbols. */
5505
5506 static int
5507 ada_add_block_renamings (struct obstack *obstackp,
5508 const struct block *block,
5509 const lookup_name_info &lookup_name,
5510 domain_enum domain)
5511 {
5512 struct using_direct *renaming;
5513 int defns_mark = num_defns_collected (obstackp);
5514
5515 symbol_name_matcher_ftype *name_match
5516 = ada_get_symbol_name_matcher (lookup_name);
5517
5518 for (renaming = block_using (block);
5519 renaming != NULL;
5520 renaming = renaming->next)
5521 {
5522 const char *r_name;
5523
5524 /* Avoid infinite recursions: skip this renaming if we are actually
5525 already traversing it.
5526
5527 Currently, symbol lookup in Ada don't use the namespace machinery from
5528 C++/Fortran support: skip namespace imports that use them. */
5529 if (renaming->searched
5530 || (renaming->import_src != NULL
5531 && renaming->import_src[0] != '\0')
5532 || (renaming->import_dest != NULL
5533 && renaming->import_dest[0] != '\0'))
5534 continue;
5535 renaming->searched = 1;
5536
5537 /* TODO: here, we perform another name-based symbol lookup, which can
5538 pull its own multiple overloads. In theory, we should be able to do
5539 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5540 not a simple name. But in order to do this, we would need to enhance
5541 the DWARF reader to associate a symbol to this renaming, instead of a
5542 name. So, for now, we do something simpler: re-use the C++/Fortran
5543 namespace machinery. */
5544 r_name = (renaming->alias != NULL
5545 ? renaming->alias
5546 : renaming->declaration);
5547 if (name_match (r_name, lookup_name, NULL))
5548 {
5549 lookup_name_info decl_lookup_name (renaming->declaration,
5550 lookup_name.match_type ());
5551 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5552 1, NULL);
5553 }
5554 renaming->searched = 0;
5555 }
5556 return num_defns_collected (obstackp) != defns_mark;
5557 }
5558
5559 /* Implements compare_names, but only applying the comparision using
5560 the given CASING. */
5561
5562 static int
5563 compare_names_with_case (const char *string1, const char *string2,
5564 enum case_sensitivity casing)
5565 {
5566 while (*string1 != '\0' && *string2 != '\0')
5567 {
5568 char c1, c2;
5569
5570 if (isspace (*string1) || isspace (*string2))
5571 return strcmp_iw_ordered (string1, string2);
5572
5573 if (casing == case_sensitive_off)
5574 {
5575 c1 = tolower (*string1);
5576 c2 = tolower (*string2);
5577 }
5578 else
5579 {
5580 c1 = *string1;
5581 c2 = *string2;
5582 }
5583 if (c1 != c2)
5584 break;
5585
5586 string1 += 1;
5587 string2 += 1;
5588 }
5589
5590 switch (*string1)
5591 {
5592 case '(':
5593 return strcmp_iw_ordered (string1, string2);
5594 case '_':
5595 if (*string2 == '\0')
5596 {
5597 if (is_name_suffix (string1))
5598 return 0;
5599 else
5600 return 1;
5601 }
5602 /* FALLTHROUGH */
5603 default:
5604 if (*string2 == '(')
5605 return strcmp_iw_ordered (string1, string2);
5606 else
5607 {
5608 if (casing == case_sensitive_off)
5609 return tolower (*string1) - tolower (*string2);
5610 else
5611 return *string1 - *string2;
5612 }
5613 }
5614 }
5615
5616 /* Compare STRING1 to STRING2, with results as for strcmp.
5617 Compatible with strcmp_iw_ordered in that...
5618
5619 strcmp_iw_ordered (STRING1, STRING2) <= 0
5620
5621 ... implies...
5622
5623 compare_names (STRING1, STRING2) <= 0
5624
5625 (they may differ as to what symbols compare equal). */
5626
5627 static int
5628 compare_names (const char *string1, const char *string2)
5629 {
5630 int result;
5631
5632 /* Similar to what strcmp_iw_ordered does, we need to perform
5633 a case-insensitive comparison first, and only resort to
5634 a second, case-sensitive, comparison if the first one was
5635 not sufficient to differentiate the two strings. */
5636
5637 result = compare_names_with_case (string1, string2, case_sensitive_off);
5638 if (result == 0)
5639 result = compare_names_with_case (string1, string2, case_sensitive_on);
5640
5641 return result;
5642 }
5643
5644 /* Convenience function to get at the Ada encoded lookup name for
5645 LOOKUP_NAME, as a C string. */
5646
5647 static const char *
5648 ada_lookup_name (const lookup_name_info &lookup_name)
5649 {
5650 return lookup_name.ada ().lookup_name ().c_str ();
5651 }
5652
5653 /* Add to OBSTACKP all non-local symbols whose name and domain match
5654 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5655 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5656 symbols otherwise. */
5657
5658 static void
5659 add_nonlocal_symbols (struct obstack *obstackp,
5660 const lookup_name_info &lookup_name,
5661 domain_enum domain, int global)
5662 {
5663 struct objfile *objfile;
5664 struct compunit_symtab *cu;
5665 struct match_data data;
5666
5667 memset (&data, 0, sizeof data);
5668 data.obstackp = obstackp;
5669
5670 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5671
5672 ALL_OBJFILES (objfile)
5673 {
5674 data.objfile = objfile;
5675
5676 if (is_wild_match)
5677 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5678 domain, global,
5679 aux_add_nonlocal_symbols, &data,
5680 symbol_name_match_type::WILD,
5681 NULL);
5682 else
5683 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5684 domain, global,
5685 aux_add_nonlocal_symbols, &data,
5686 symbol_name_match_type::FULL,
5687 compare_names);
5688
5689 ALL_OBJFILE_COMPUNITS (objfile, cu)
5690 {
5691 const struct block *global_block
5692 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5693
5694 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5695 domain))
5696 data.found_sym = 1;
5697 }
5698 }
5699
5700 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5701 {
5702 const char *name = ada_lookup_name (lookup_name);
5703 std::string name1 = std::string ("<_ada_") + name + '>';
5704
5705 ALL_OBJFILES (objfile)
5706 {
5707 data.objfile = objfile;
5708 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5709 domain, global,
5710 aux_add_nonlocal_symbols,
5711 &data,
5712 symbol_name_match_type::FULL,
5713 compare_names);
5714 }
5715 }
5716 }
5717
5718 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5719 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5720 returning the number of matches. Add these to OBSTACKP.
5721
5722 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5723 symbol match within the nest of blocks whose innermost member is BLOCK,
5724 is the one match returned (no other matches in that or
5725 enclosing blocks is returned). If there are any matches in or
5726 surrounding BLOCK, then these alone are returned.
5727
5728 Names prefixed with "standard__" are handled specially:
5729 "standard__" is first stripped off (by the lookup_name
5730 constructor), and only static and global symbols are searched.
5731
5732 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5733 to lookup global symbols. */
5734
5735 static void
5736 ada_add_all_symbols (struct obstack *obstackp,
5737 const struct block *block,
5738 const lookup_name_info &lookup_name,
5739 domain_enum domain,
5740 int full_search,
5741 int *made_global_lookup_p)
5742 {
5743 struct symbol *sym;
5744
5745 if (made_global_lookup_p)
5746 *made_global_lookup_p = 0;
5747
5748 /* Special case: If the user specifies a symbol name inside package
5749 Standard, do a non-wild matching of the symbol name without
5750 the "standard__" prefix. This was primarily introduced in order
5751 to allow the user to specifically access the standard exceptions
5752 using, for instance, Standard.Constraint_Error when Constraint_Error
5753 is ambiguous (due to the user defining its own Constraint_Error
5754 entity inside its program). */
5755 if (lookup_name.ada ().standard_p ())
5756 block = NULL;
5757
5758 /* Check the non-global symbols. If we have ANY match, then we're done. */
5759
5760 if (block != NULL)
5761 {
5762 if (full_search)
5763 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5764 else
5765 {
5766 /* In the !full_search case we're are being called by
5767 ada_iterate_over_symbols, and we don't want to search
5768 superblocks. */
5769 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5770 }
5771 if (num_defns_collected (obstackp) > 0 || !full_search)
5772 return;
5773 }
5774
5775 /* No non-global symbols found. Check our cache to see if we have
5776 already performed this search before. If we have, then return
5777 the same result. */
5778
5779 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5780 domain, &sym, &block))
5781 {
5782 if (sym != NULL)
5783 add_defn_to_vec (obstackp, sym, block);
5784 return;
5785 }
5786
5787 if (made_global_lookup_p)
5788 *made_global_lookup_p = 1;
5789
5790 /* Search symbols from all global blocks. */
5791
5792 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5793
5794 /* Now add symbols from all per-file blocks if we've gotten no hits
5795 (not strictly correct, but perhaps better than an error). */
5796
5797 if (num_defns_collected (obstackp) == 0)
5798 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5799 }
5800
5801 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5802 is non-zero, enclosing scope and in global scopes, returning the number of
5803 matches.
5804 Sets *RESULTS to point to a newly allocated vector of (SYM,BLOCK) tuples,
5805 indicating the symbols found and the blocks and symbol tables (if
5806 any) in which they were found. This vector should be freed when
5807 no longer useful.
5808
5809 When full_search is non-zero, any non-function/non-enumeral
5810 symbol match within the nest of blocks whose innermost member is BLOCK,
5811 is the one match returned (no other matches in that or
5812 enclosing blocks is returned). If there are any matches in or
5813 surrounding BLOCK, then these alone are returned.
5814
5815 Names prefixed with "standard__" are handled specially: "standard__"
5816 is first stripped off, and only static and global symbols are searched. */
5817
5818 static int
5819 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5820 const struct block *block,
5821 domain_enum domain,
5822 struct block_symbol **results,
5823 int full_search)
5824 {
5825 int syms_from_global_search;
5826 int ndefns;
5827 int results_size;
5828 auto_obstack obstack;
5829
5830 ada_add_all_symbols (&obstack, block, lookup_name,
5831 domain, full_search, &syms_from_global_search);
5832
5833 ndefns = num_defns_collected (&obstack);
5834
5835 results_size = obstack_object_size (&obstack);
5836 *results = (struct block_symbol *) malloc (results_size);
5837 memcpy (*results, defns_collected (&obstack, 1), results_size);
5838
5839 ndefns = remove_extra_symbols (*results, ndefns);
5840
5841 if (ndefns == 0 && full_search && syms_from_global_search)
5842 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5843
5844 if (ndefns == 1 && full_search && syms_from_global_search)
5845 cache_symbol (ada_lookup_name (lookup_name), domain,
5846 (*results)[0].symbol, (*results)[0].block);
5847
5848 ndefns = remove_irrelevant_renamings (*results, ndefns, block);
5849
5850 return ndefns;
5851 }
5852
5853 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5854 in global scopes, returning the number of matches, and setting *RESULTS
5855 to a newly-allocated vector of (SYM,BLOCK) tuples. This newly-allocated
5856 vector should be freed when no longer useful.
5857
5858 See ada_lookup_symbol_list_worker for further details. */
5859
5860 int
5861 ada_lookup_symbol_list (const char *name, const struct block *block,
5862 domain_enum domain, struct block_symbol **results)
5863 {
5864 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5865 lookup_name_info lookup_name (name, name_match_type);
5866
5867 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5868 }
5869
5870 /* Implementation of the la_iterate_over_symbols method. */
5871
5872 static void
5873 ada_iterate_over_symbols
5874 (const struct block *block, const lookup_name_info &name,
5875 domain_enum domain,
5876 gdb::function_view<symbol_found_callback_ftype> callback)
5877 {
5878 int ndefs, i;
5879 struct block_symbol *results;
5880 struct cleanup *old_chain;
5881
5882 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5883 old_chain = make_cleanup (xfree, results);
5884
5885 for (i = 0; i < ndefs; ++i)
5886 {
5887 if (!callback (results[i].symbol))
5888 break;
5889 }
5890
5891 do_cleanups (old_chain);
5892 }
5893
5894 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5895 to 1, but choosing the first symbol found if there are multiple
5896 choices.
5897
5898 The result is stored in *INFO, which must be non-NULL.
5899 If no match is found, INFO->SYM is set to NULL. */
5900
5901 void
5902 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5903 domain_enum domain,
5904 struct block_symbol *info)
5905 {
5906 /* Since we already have an encoded name, wrap it in '<>' to force a
5907 verbatim match. Otherwise, if the name happens to not look like
5908 an encoded name (because it doesn't include a "__"),
5909 ada_lookup_name_info would re-encode/fold it again, and that
5910 would e.g., incorrectly lowercase object renaming names like
5911 "R28b" -> "r28b". */
5912 std::string verbatim = std::string ("<") + name + '>';
5913
5914 gdb_assert (info != NULL);
5915 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5916 }
5917
5918 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5919 scope and in global scopes, or NULL if none. NAME is folded and
5920 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5921 choosing the first symbol if there are multiple choices.
5922 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5923
5924 struct block_symbol
5925 ada_lookup_symbol (const char *name, const struct block *block0,
5926 domain_enum domain, int *is_a_field_of_this)
5927 {
5928 if (is_a_field_of_this != NULL)
5929 *is_a_field_of_this = 0;
5930
5931 struct block_symbol *candidates;
5932 int n_candidates;
5933 struct cleanup *old_chain;
5934
5935 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5936 old_chain = make_cleanup (xfree, candidates);
5937
5938 if (n_candidates == 0)
5939 {
5940 do_cleanups (old_chain);
5941 return {};
5942 }
5943
5944 block_symbol info = candidates[0];
5945 info.symbol = fixup_symbol_section (info.symbol, NULL);
5946
5947 do_cleanups (old_chain);
5948
5949 return info;
5950 }
5951
5952 static struct block_symbol
5953 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5954 const char *name,
5955 const struct block *block,
5956 const domain_enum domain)
5957 {
5958 struct block_symbol sym;
5959
5960 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5961 if (sym.symbol != NULL)
5962 return sym;
5963
5964 /* If we haven't found a match at this point, try the primitive
5965 types. In other languages, this search is performed before
5966 searching for global symbols in order to short-circuit that
5967 global-symbol search if it happens that the name corresponds
5968 to a primitive type. But we cannot do the same in Ada, because
5969 it is perfectly legitimate for a program to declare a type which
5970 has the same name as a standard type. If looking up a type in
5971 that situation, we have traditionally ignored the primitive type
5972 in favor of user-defined types. This is why, unlike most other
5973 languages, we search the primitive types this late and only after
5974 having searched the global symbols without success. */
5975
5976 if (domain == VAR_DOMAIN)
5977 {
5978 struct gdbarch *gdbarch;
5979
5980 if (block == NULL)
5981 gdbarch = target_gdbarch ();
5982 else
5983 gdbarch = block_gdbarch (block);
5984 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5985 if (sym.symbol != NULL)
5986 return sym;
5987 }
5988
5989 return (struct block_symbol) {NULL, NULL};
5990 }
5991
5992
5993 /* True iff STR is a possible encoded suffix of a normal Ada name
5994 that is to be ignored for matching purposes. Suffixes of parallel
5995 names (e.g., XVE) are not included here. Currently, the possible suffixes
5996 are given by any of the regular expressions:
5997
5998 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5999 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
6000 TKB [subprogram suffix for task bodies]
6001 _E[0-9]+[bs]$ [protected object entry suffixes]
6002 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
6003
6004 Also, any leading "__[0-9]+" sequence is skipped before the suffix
6005 match is performed. This sequence is used to differentiate homonyms,
6006 is an optional part of a valid name suffix. */
6007
6008 static int
6009 is_name_suffix (const char *str)
6010 {
6011 int k;
6012 const char *matching;
6013 const int len = strlen (str);
6014
6015 /* Skip optional leading __[0-9]+. */
6016
6017 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
6018 {
6019 str += 3;
6020 while (isdigit (str[0]))
6021 str += 1;
6022 }
6023
6024 /* [.$][0-9]+ */
6025
6026 if (str[0] == '.' || str[0] == '$')
6027 {
6028 matching = str + 1;
6029 while (isdigit (matching[0]))
6030 matching += 1;
6031 if (matching[0] == '\0')
6032 return 1;
6033 }
6034
6035 /* ___[0-9]+ */
6036
6037 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
6038 {
6039 matching = str + 3;
6040 while (isdigit (matching[0]))
6041 matching += 1;
6042 if (matching[0] == '\0')
6043 return 1;
6044 }
6045
6046 /* "TKB" suffixes are used for subprograms implementing task bodies. */
6047
6048 if (strcmp (str, "TKB") == 0)
6049 return 1;
6050
6051 #if 0
6052 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
6053 with a N at the end. Unfortunately, the compiler uses the same
6054 convention for other internal types it creates. So treating
6055 all entity names that end with an "N" as a name suffix causes
6056 some regressions. For instance, consider the case of an enumerated
6057 type. To support the 'Image attribute, it creates an array whose
6058 name ends with N.
6059 Having a single character like this as a suffix carrying some
6060 information is a bit risky. Perhaps we should change the encoding
6061 to be something like "_N" instead. In the meantime, do not do
6062 the following check. */
6063 /* Protected Object Subprograms */
6064 if (len == 1 && str [0] == 'N')
6065 return 1;
6066 #endif
6067
6068 /* _E[0-9]+[bs]$ */
6069 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6070 {
6071 matching = str + 3;
6072 while (isdigit (matching[0]))
6073 matching += 1;
6074 if ((matching[0] == 'b' || matching[0] == 's')
6075 && matching [1] == '\0')
6076 return 1;
6077 }
6078
6079 /* ??? We should not modify STR directly, as we are doing below. This
6080 is fine in this case, but may become problematic later if we find
6081 that this alternative did not work, and want to try matching
6082 another one from the begining of STR. Since we modified it, we
6083 won't be able to find the begining of the string anymore! */
6084 if (str[0] == 'X')
6085 {
6086 str += 1;
6087 while (str[0] != '_' && str[0] != '\0')
6088 {
6089 if (str[0] != 'n' && str[0] != 'b')
6090 return 0;
6091 str += 1;
6092 }
6093 }
6094
6095 if (str[0] == '\000')
6096 return 1;
6097
6098 if (str[0] == '_')
6099 {
6100 if (str[1] != '_' || str[2] == '\000')
6101 return 0;
6102 if (str[2] == '_')
6103 {
6104 if (strcmp (str + 3, "JM") == 0)
6105 return 1;
6106 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6107 the LJM suffix in favor of the JM one. But we will
6108 still accept LJM as a valid suffix for a reasonable
6109 amount of time, just to allow ourselves to debug programs
6110 compiled using an older version of GNAT. */
6111 if (strcmp (str + 3, "LJM") == 0)
6112 return 1;
6113 if (str[3] != 'X')
6114 return 0;
6115 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6116 || str[4] == 'U' || str[4] == 'P')
6117 return 1;
6118 if (str[4] == 'R' && str[5] != 'T')
6119 return 1;
6120 return 0;
6121 }
6122 if (!isdigit (str[2]))
6123 return 0;
6124 for (k = 3; str[k] != '\0'; k += 1)
6125 if (!isdigit (str[k]) && str[k] != '_')
6126 return 0;
6127 return 1;
6128 }
6129 if (str[0] == '$' && isdigit (str[1]))
6130 {
6131 for (k = 2; str[k] != '\0'; k += 1)
6132 if (!isdigit (str[k]) && str[k] != '_')
6133 return 0;
6134 return 1;
6135 }
6136 return 0;
6137 }
6138
6139 /* Return non-zero if the string starting at NAME and ending before
6140 NAME_END contains no capital letters. */
6141
6142 static int
6143 is_valid_name_for_wild_match (const char *name0)
6144 {
6145 const char *decoded_name = ada_decode (name0);
6146 int i;
6147
6148 /* If the decoded name starts with an angle bracket, it means that
6149 NAME0 does not follow the GNAT encoding format. It should then
6150 not be allowed as a possible wild match. */
6151 if (decoded_name[0] == '<')
6152 return 0;
6153
6154 for (i=0; decoded_name[i] != '\0'; i++)
6155 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6156 return 0;
6157
6158 return 1;
6159 }
6160
6161 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6162 that could start a simple name. Assumes that *NAMEP points into
6163 the string beginning at NAME0. */
6164
6165 static int
6166 advance_wild_match (const char **namep, const char *name0, int target0)
6167 {
6168 const char *name = *namep;
6169
6170 while (1)
6171 {
6172 int t0, t1;
6173
6174 t0 = *name;
6175 if (t0 == '_')
6176 {
6177 t1 = name[1];
6178 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6179 {
6180 name += 1;
6181 if (name == name0 + 5 && startswith (name0, "_ada"))
6182 break;
6183 else
6184 name += 1;
6185 }
6186 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6187 || name[2] == target0))
6188 {
6189 name += 2;
6190 break;
6191 }
6192 else
6193 return 0;
6194 }
6195 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6196 name += 1;
6197 else
6198 return 0;
6199 }
6200
6201 *namep = name;
6202 return 1;
6203 }
6204
6205 /* Return true iff NAME encodes a name of the form prefix.PATN.
6206 Ignores any informational suffixes of NAME (i.e., for which
6207 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6208 simple name. */
6209
6210 static bool
6211 wild_match (const char *name, const char *patn)
6212 {
6213 const char *p;
6214 const char *name0 = name;
6215
6216 while (1)
6217 {
6218 const char *match = name;
6219
6220 if (*name == *patn)
6221 {
6222 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6223 if (*p != *name)
6224 break;
6225 if (*p == '\0' && is_name_suffix (name))
6226 return match == name0 || is_valid_name_for_wild_match (name0);
6227
6228 if (name[-1] == '_')
6229 name -= 1;
6230 }
6231 if (!advance_wild_match (&name, name0, *patn))
6232 return false;
6233 }
6234 }
6235
6236 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6237 any trailing suffixes that encode debugging information or leading
6238 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6239 information that is ignored). */
6240
6241 static bool
6242 full_match (const char *sym_name, const char *search_name)
6243 {
6244 size_t search_name_len = strlen (search_name);
6245
6246 if (strncmp (sym_name, search_name, search_name_len) == 0
6247 && is_name_suffix (sym_name + search_name_len))
6248 return true;
6249
6250 if (startswith (sym_name, "_ada_")
6251 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6252 && is_name_suffix (sym_name + search_name_len + 5))
6253 return true;
6254
6255 return false;
6256 }
6257
6258 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6259 *defn_symbols, updating the list of symbols in OBSTACKP (if
6260 necessary). OBJFILE is the section containing BLOCK. */
6261
6262 static void
6263 ada_add_block_symbols (struct obstack *obstackp,
6264 const struct block *block,
6265 const lookup_name_info &lookup_name,
6266 domain_enum domain, struct objfile *objfile)
6267 {
6268 struct block_iterator iter;
6269 /* A matching argument symbol, if any. */
6270 struct symbol *arg_sym;
6271 /* Set true when we find a matching non-argument symbol. */
6272 int found_sym;
6273 struct symbol *sym;
6274
6275 arg_sym = NULL;
6276 found_sym = 0;
6277 for (sym = block_iter_match_first (block, lookup_name, &iter);
6278 sym != NULL;
6279 sym = block_iter_match_next (lookup_name, &iter))
6280 {
6281 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6282 SYMBOL_DOMAIN (sym), domain))
6283 {
6284 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6285 {
6286 if (SYMBOL_IS_ARGUMENT (sym))
6287 arg_sym = sym;
6288 else
6289 {
6290 found_sym = 1;
6291 add_defn_to_vec (obstackp,
6292 fixup_symbol_section (sym, objfile),
6293 block);
6294 }
6295 }
6296 }
6297 }
6298
6299 /* Handle renamings. */
6300
6301 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6302 found_sym = 1;
6303
6304 if (!found_sym && arg_sym != NULL)
6305 {
6306 add_defn_to_vec (obstackp,
6307 fixup_symbol_section (arg_sym, objfile),
6308 block);
6309 }
6310
6311 if (!lookup_name.ada ().wild_match_p ())
6312 {
6313 arg_sym = NULL;
6314 found_sym = 0;
6315 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6316 const char *name = ada_lookup_name.c_str ();
6317 size_t name_len = ada_lookup_name.size ();
6318
6319 ALL_BLOCK_SYMBOLS (block, iter, sym)
6320 {
6321 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6322 SYMBOL_DOMAIN (sym), domain))
6323 {
6324 int cmp;
6325
6326 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6327 if (cmp == 0)
6328 {
6329 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6330 if (cmp == 0)
6331 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6332 name_len);
6333 }
6334
6335 if (cmp == 0
6336 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6337 {
6338 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6339 {
6340 if (SYMBOL_IS_ARGUMENT (sym))
6341 arg_sym = sym;
6342 else
6343 {
6344 found_sym = 1;
6345 add_defn_to_vec (obstackp,
6346 fixup_symbol_section (sym, objfile),
6347 block);
6348 }
6349 }
6350 }
6351 }
6352 }
6353
6354 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6355 They aren't parameters, right? */
6356 if (!found_sym && arg_sym != NULL)
6357 {
6358 add_defn_to_vec (obstackp,
6359 fixup_symbol_section (arg_sym, objfile),
6360 block);
6361 }
6362 }
6363 }
6364 \f
6365
6366 /* Symbol Completion */
6367
6368 /* See symtab.h. */
6369
6370 bool
6371 ada_lookup_name_info::matches
6372 (const char *sym_name,
6373 symbol_name_match_type match_type,
6374 completion_match_result *comp_match_res) const
6375 {
6376 bool match = false;
6377 const char *text = m_encoded_name.c_str ();
6378 size_t text_len = m_encoded_name.size ();
6379
6380 /* First, test against the fully qualified name of the symbol. */
6381
6382 if (strncmp (sym_name, text, text_len) == 0)
6383 match = true;
6384
6385 if (match && !m_encoded_p)
6386 {
6387 /* One needed check before declaring a positive match is to verify
6388 that iff we are doing a verbatim match, the decoded version
6389 of the symbol name starts with '<'. Otherwise, this symbol name
6390 is not a suitable completion. */
6391 const char *sym_name_copy = sym_name;
6392 bool has_angle_bracket;
6393
6394 sym_name = ada_decode (sym_name);
6395 has_angle_bracket = (sym_name[0] == '<');
6396 match = (has_angle_bracket == m_verbatim_p);
6397 sym_name = sym_name_copy;
6398 }
6399
6400 if (match && !m_verbatim_p)
6401 {
6402 /* When doing non-verbatim match, another check that needs to
6403 be done is to verify that the potentially matching symbol name
6404 does not include capital letters, because the ada-mode would
6405 not be able to understand these symbol names without the
6406 angle bracket notation. */
6407 const char *tmp;
6408
6409 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6410 if (*tmp != '\0')
6411 match = false;
6412 }
6413
6414 /* Second: Try wild matching... */
6415
6416 if (!match && m_wild_match_p)
6417 {
6418 /* Since we are doing wild matching, this means that TEXT
6419 may represent an unqualified symbol name. We therefore must
6420 also compare TEXT against the unqualified name of the symbol. */
6421 sym_name = ada_unqualified_name (ada_decode (sym_name));
6422
6423 if (strncmp (sym_name, text, text_len) == 0)
6424 match = true;
6425 }
6426
6427 /* Finally: If we found a match, prepare the result to return. */
6428
6429 if (!match)
6430 return false;
6431
6432 if (comp_match_res != NULL)
6433 {
6434 std::string &match_str = comp_match_res->match.storage ();
6435
6436 if (!m_encoded_p)
6437 match_str = ada_decode (sym_name);
6438 else
6439 {
6440 if (m_verbatim_p)
6441 match_str = add_angle_brackets (sym_name);
6442 else
6443 match_str = sym_name;
6444
6445 }
6446
6447 comp_match_res->set_match (match_str.c_str ());
6448 }
6449
6450 return true;
6451 }
6452
6453 /* Add the list of possible symbol names completing TEXT to TRACKER.
6454 WORD is the entire command on which completion is made. */
6455
6456 static void
6457 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6458 complete_symbol_mode mode,
6459 symbol_name_match_type name_match_type,
6460 const char *text, const char *word,
6461 enum type_code code)
6462 {
6463 struct symbol *sym;
6464 struct compunit_symtab *s;
6465 struct minimal_symbol *msymbol;
6466 struct objfile *objfile;
6467 const struct block *b, *surrounding_static_block = 0;
6468 struct block_iterator iter;
6469 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
6470
6471 gdb_assert (code == TYPE_CODE_UNDEF);
6472
6473 lookup_name_info lookup_name (text, name_match_type, true);
6474
6475 /* First, look at the partial symtab symbols. */
6476 expand_symtabs_matching (NULL,
6477 lookup_name,
6478 NULL,
6479 NULL,
6480 ALL_DOMAIN);
6481
6482 /* At this point scan through the misc symbol vectors and add each
6483 symbol you find to the list. Eventually we want to ignore
6484 anything that isn't a text symbol (everything else will be
6485 handled by the psymtab code above). */
6486
6487 ALL_MSYMBOLS (objfile, msymbol)
6488 {
6489 QUIT;
6490
6491 if (completion_skip_symbol (mode, msymbol))
6492 continue;
6493
6494 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6495
6496 /* Ada minimal symbols won't have their language set to Ada. If
6497 we let completion_list_add_name compare using the
6498 default/C-like matcher, then when completing e.g., symbols in a
6499 package named "pck", we'd match internal Ada symbols like
6500 "pckS", which are invalid in an Ada expression, unless you wrap
6501 them in '<' '>' to request a verbatim match.
6502
6503 Unfortunately, some Ada encoded names successfully demangle as
6504 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6505 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6506 with the wrong language set. Paper over that issue here. */
6507 if (symbol_language == language_auto
6508 || symbol_language == language_cplus)
6509 symbol_language = language_ada;
6510
6511 completion_list_add_name (tracker,
6512 symbol_language,
6513 MSYMBOL_LINKAGE_NAME (msymbol),
6514 lookup_name, text, word);
6515 }
6516
6517 /* Search upwards from currently selected frame (so that we can
6518 complete on local vars. */
6519
6520 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6521 {
6522 if (!BLOCK_SUPERBLOCK (b))
6523 surrounding_static_block = b; /* For elmin of dups */
6524
6525 ALL_BLOCK_SYMBOLS (b, iter, sym)
6526 {
6527 if (completion_skip_symbol (mode, sym))
6528 continue;
6529
6530 completion_list_add_name (tracker,
6531 SYMBOL_LANGUAGE (sym),
6532 SYMBOL_LINKAGE_NAME (sym),
6533 lookup_name, text, word);
6534 }
6535 }
6536
6537 /* Go through the symtabs and check the externs and statics for
6538 symbols which match. */
6539
6540 ALL_COMPUNITS (objfile, s)
6541 {
6542 QUIT;
6543 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6544 ALL_BLOCK_SYMBOLS (b, iter, sym)
6545 {
6546 if (completion_skip_symbol (mode, sym))
6547 continue;
6548
6549 completion_list_add_name (tracker,
6550 SYMBOL_LANGUAGE (sym),
6551 SYMBOL_LINKAGE_NAME (sym),
6552 lookup_name, text, word);
6553 }
6554 }
6555
6556 ALL_COMPUNITS (objfile, s)
6557 {
6558 QUIT;
6559 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6560 /* Don't do this block twice. */
6561 if (b == surrounding_static_block)
6562 continue;
6563 ALL_BLOCK_SYMBOLS (b, iter, sym)
6564 {
6565 if (completion_skip_symbol (mode, sym))
6566 continue;
6567
6568 completion_list_add_name (tracker,
6569 SYMBOL_LANGUAGE (sym),
6570 SYMBOL_LINKAGE_NAME (sym),
6571 lookup_name, text, word);
6572 }
6573 }
6574
6575 do_cleanups (old_chain);
6576 }
6577
6578 /* Field Access */
6579
6580 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6581 for tagged types. */
6582
6583 static int
6584 ada_is_dispatch_table_ptr_type (struct type *type)
6585 {
6586 const char *name;
6587
6588 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6589 return 0;
6590
6591 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6592 if (name == NULL)
6593 return 0;
6594
6595 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6596 }
6597
6598 /* Return non-zero if TYPE is an interface tag. */
6599
6600 static int
6601 ada_is_interface_tag (struct type *type)
6602 {
6603 const char *name = TYPE_NAME (type);
6604
6605 if (name == NULL)
6606 return 0;
6607
6608 return (strcmp (name, "ada__tags__interface_tag") == 0);
6609 }
6610
6611 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6612 to be invisible to users. */
6613
6614 int
6615 ada_is_ignored_field (struct type *type, int field_num)
6616 {
6617 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6618 return 1;
6619
6620 /* Check the name of that field. */
6621 {
6622 const char *name = TYPE_FIELD_NAME (type, field_num);
6623
6624 /* Anonymous field names should not be printed.
6625 brobecker/2007-02-20: I don't think this can actually happen
6626 but we don't want to print the value of annonymous fields anyway. */
6627 if (name == NULL)
6628 return 1;
6629
6630 /* Normally, fields whose name start with an underscore ("_")
6631 are fields that have been internally generated by the compiler,
6632 and thus should not be printed. The "_parent" field is special,
6633 however: This is a field internally generated by the compiler
6634 for tagged types, and it contains the components inherited from
6635 the parent type. This field should not be printed as is, but
6636 should not be ignored either. */
6637 if (name[0] == '_' && !startswith (name, "_parent"))
6638 return 1;
6639 }
6640
6641 /* If this is the dispatch table of a tagged type or an interface tag,
6642 then ignore. */
6643 if (ada_is_tagged_type (type, 1)
6644 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6645 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6646 return 1;
6647
6648 /* Not a special field, so it should not be ignored. */
6649 return 0;
6650 }
6651
6652 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6653 pointer or reference type whose ultimate target has a tag field. */
6654
6655 int
6656 ada_is_tagged_type (struct type *type, int refok)
6657 {
6658 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6659 }
6660
6661 /* True iff TYPE represents the type of X'Tag */
6662
6663 int
6664 ada_is_tag_type (struct type *type)
6665 {
6666 type = ada_check_typedef (type);
6667
6668 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6669 return 0;
6670 else
6671 {
6672 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6673
6674 return (name != NULL
6675 && strcmp (name, "ada__tags__dispatch_table") == 0);
6676 }
6677 }
6678
6679 /* The type of the tag on VAL. */
6680
6681 struct type *
6682 ada_tag_type (struct value *val)
6683 {
6684 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6685 }
6686
6687 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6688 retired at Ada 05). */
6689
6690 static int
6691 is_ada95_tag (struct value *tag)
6692 {
6693 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6694 }
6695
6696 /* The value of the tag on VAL. */
6697
6698 struct value *
6699 ada_value_tag (struct value *val)
6700 {
6701 return ada_value_struct_elt (val, "_tag", 0);
6702 }
6703
6704 /* The value of the tag on the object of type TYPE whose contents are
6705 saved at VALADDR, if it is non-null, or is at memory address
6706 ADDRESS. */
6707
6708 static struct value *
6709 value_tag_from_contents_and_address (struct type *type,
6710 const gdb_byte *valaddr,
6711 CORE_ADDR address)
6712 {
6713 int tag_byte_offset;
6714 struct type *tag_type;
6715
6716 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6717 NULL, NULL, NULL))
6718 {
6719 const gdb_byte *valaddr1 = ((valaddr == NULL)
6720 ? NULL
6721 : valaddr + tag_byte_offset);
6722 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6723
6724 return value_from_contents_and_address (tag_type, valaddr1, address1);
6725 }
6726 return NULL;
6727 }
6728
6729 static struct type *
6730 type_from_tag (struct value *tag)
6731 {
6732 const char *type_name = ada_tag_name (tag);
6733
6734 if (type_name != NULL)
6735 return ada_find_any_type (ada_encode (type_name));
6736 return NULL;
6737 }
6738
6739 /* Given a value OBJ of a tagged type, return a value of this
6740 type at the base address of the object. The base address, as
6741 defined in Ada.Tags, it is the address of the primary tag of
6742 the object, and therefore where the field values of its full
6743 view can be fetched. */
6744
6745 struct value *
6746 ada_tag_value_at_base_address (struct value *obj)
6747 {
6748 struct value *val;
6749 LONGEST offset_to_top = 0;
6750 struct type *ptr_type, *obj_type;
6751 struct value *tag;
6752 CORE_ADDR base_address;
6753
6754 obj_type = value_type (obj);
6755
6756 /* It is the responsability of the caller to deref pointers. */
6757
6758 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6759 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6760 return obj;
6761
6762 tag = ada_value_tag (obj);
6763 if (!tag)
6764 return obj;
6765
6766 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6767
6768 if (is_ada95_tag (tag))
6769 return obj;
6770
6771 ptr_type = language_lookup_primitive_type
6772 (language_def (language_ada), target_gdbarch(), "storage_offset");
6773 ptr_type = lookup_pointer_type (ptr_type);
6774 val = value_cast (ptr_type, tag);
6775 if (!val)
6776 return obj;
6777
6778 /* It is perfectly possible that an exception be raised while
6779 trying to determine the base address, just like for the tag;
6780 see ada_tag_name for more details. We do not print the error
6781 message for the same reason. */
6782
6783 TRY
6784 {
6785 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6786 }
6787
6788 CATCH (e, RETURN_MASK_ERROR)
6789 {
6790 return obj;
6791 }
6792 END_CATCH
6793
6794 /* If offset is null, nothing to do. */
6795
6796 if (offset_to_top == 0)
6797 return obj;
6798
6799 /* -1 is a special case in Ada.Tags; however, what should be done
6800 is not quite clear from the documentation. So do nothing for
6801 now. */
6802
6803 if (offset_to_top == -1)
6804 return obj;
6805
6806 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6807 from the base address. This was however incompatible with
6808 C++ dispatch table: C++ uses a *negative* value to *add*
6809 to the base address. Ada's convention has therefore been
6810 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6811 use the same convention. Here, we support both cases by
6812 checking the sign of OFFSET_TO_TOP. */
6813
6814 if (offset_to_top > 0)
6815 offset_to_top = -offset_to_top;
6816
6817 base_address = value_address (obj) + offset_to_top;
6818 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6819
6820 /* Make sure that we have a proper tag at the new address.
6821 Otherwise, offset_to_top is bogus (which can happen when
6822 the object is not initialized yet). */
6823
6824 if (!tag)
6825 return obj;
6826
6827 obj_type = type_from_tag (tag);
6828
6829 if (!obj_type)
6830 return obj;
6831
6832 return value_from_contents_and_address (obj_type, NULL, base_address);
6833 }
6834
6835 /* Return the "ada__tags__type_specific_data" type. */
6836
6837 static struct type *
6838 ada_get_tsd_type (struct inferior *inf)
6839 {
6840 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6841
6842 if (data->tsd_type == 0)
6843 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6844 return data->tsd_type;
6845 }
6846
6847 /* Return the TSD (type-specific data) associated to the given TAG.
6848 TAG is assumed to be the tag of a tagged-type entity.
6849
6850 May return NULL if we are unable to get the TSD. */
6851
6852 static struct value *
6853 ada_get_tsd_from_tag (struct value *tag)
6854 {
6855 struct value *val;
6856 struct type *type;
6857
6858 /* First option: The TSD is simply stored as a field of our TAG.
6859 Only older versions of GNAT would use this format, but we have
6860 to test it first, because there are no visible markers for
6861 the current approach except the absence of that field. */
6862
6863 val = ada_value_struct_elt (tag, "tsd", 1);
6864 if (val)
6865 return val;
6866
6867 /* Try the second representation for the dispatch table (in which
6868 there is no explicit 'tsd' field in the referent of the tag pointer,
6869 and instead the tsd pointer is stored just before the dispatch
6870 table. */
6871
6872 type = ada_get_tsd_type (current_inferior());
6873 if (type == NULL)
6874 return NULL;
6875 type = lookup_pointer_type (lookup_pointer_type (type));
6876 val = value_cast (type, tag);
6877 if (val == NULL)
6878 return NULL;
6879 return value_ind (value_ptradd (val, -1));
6880 }
6881
6882 /* Given the TSD of a tag (type-specific data), return a string
6883 containing the name of the associated type.
6884
6885 The returned value is good until the next call. May return NULL
6886 if we are unable to determine the tag name. */
6887
6888 static char *
6889 ada_tag_name_from_tsd (struct value *tsd)
6890 {
6891 static char name[1024];
6892 char *p;
6893 struct value *val;
6894
6895 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6896 if (val == NULL)
6897 return NULL;
6898 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6899 for (p = name; *p != '\0'; p += 1)
6900 if (isalpha (*p))
6901 *p = tolower (*p);
6902 return name;
6903 }
6904
6905 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6906 a C string.
6907
6908 Return NULL if the TAG is not an Ada tag, or if we were unable to
6909 determine the name of that tag. The result is good until the next
6910 call. */
6911
6912 const char *
6913 ada_tag_name (struct value *tag)
6914 {
6915 char *name = NULL;
6916
6917 if (!ada_is_tag_type (value_type (tag)))
6918 return NULL;
6919
6920 /* It is perfectly possible that an exception be raised while trying
6921 to determine the TAG's name, even under normal circumstances:
6922 The associated variable may be uninitialized or corrupted, for
6923 instance. We do not let any exception propagate past this point.
6924 instead we return NULL.
6925
6926 We also do not print the error message either (which often is very
6927 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6928 the caller print a more meaningful message if necessary. */
6929 TRY
6930 {
6931 struct value *tsd = ada_get_tsd_from_tag (tag);
6932
6933 if (tsd != NULL)
6934 name = ada_tag_name_from_tsd (tsd);
6935 }
6936 CATCH (e, RETURN_MASK_ERROR)
6937 {
6938 }
6939 END_CATCH
6940
6941 return name;
6942 }
6943
6944 /* The parent type of TYPE, or NULL if none. */
6945
6946 struct type *
6947 ada_parent_type (struct type *type)
6948 {
6949 int i;
6950
6951 type = ada_check_typedef (type);
6952
6953 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6954 return NULL;
6955
6956 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6957 if (ada_is_parent_field (type, i))
6958 {
6959 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6960
6961 /* If the _parent field is a pointer, then dereference it. */
6962 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6963 parent_type = TYPE_TARGET_TYPE (parent_type);
6964 /* If there is a parallel XVS type, get the actual base type. */
6965 parent_type = ada_get_base_type (parent_type);
6966
6967 return ada_check_typedef (parent_type);
6968 }
6969
6970 return NULL;
6971 }
6972
6973 /* True iff field number FIELD_NUM of structure type TYPE contains the
6974 parent-type (inherited) fields of a derived type. Assumes TYPE is
6975 a structure type with at least FIELD_NUM+1 fields. */
6976
6977 int
6978 ada_is_parent_field (struct type *type, int field_num)
6979 {
6980 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6981
6982 return (name != NULL
6983 && (startswith (name, "PARENT")
6984 || startswith (name, "_parent")));
6985 }
6986
6987 /* True iff field number FIELD_NUM of structure type TYPE is a
6988 transparent wrapper field (which should be silently traversed when doing
6989 field selection and flattened when printing). Assumes TYPE is a
6990 structure type with at least FIELD_NUM+1 fields. Such fields are always
6991 structures. */
6992
6993 int
6994 ada_is_wrapper_field (struct type *type, int field_num)
6995 {
6996 const char *name = TYPE_FIELD_NAME (type, field_num);
6997
6998 if (name != NULL && strcmp (name, "RETVAL") == 0)
6999 {
7000 /* This happens in functions with "out" or "in out" parameters
7001 which are passed by copy. For such functions, GNAT describes
7002 the function's return type as being a struct where the return
7003 value is in a field called RETVAL, and where the other "out"
7004 or "in out" parameters are fields of that struct. This is not
7005 a wrapper. */
7006 return 0;
7007 }
7008
7009 return (name != NULL
7010 && (startswith (name, "PARENT")
7011 || strcmp (name, "REP") == 0
7012 || startswith (name, "_parent")
7013 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
7014 }
7015
7016 /* True iff field number FIELD_NUM of structure or union type TYPE
7017 is a variant wrapper. Assumes TYPE is a structure type with at least
7018 FIELD_NUM+1 fields. */
7019
7020 int
7021 ada_is_variant_part (struct type *type, int field_num)
7022 {
7023 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
7024
7025 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
7026 || (is_dynamic_field (type, field_num)
7027 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
7028 == TYPE_CODE_UNION)));
7029 }
7030
7031 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
7032 whose discriminants are contained in the record type OUTER_TYPE,
7033 returns the type of the controlling discriminant for the variant.
7034 May return NULL if the type could not be found. */
7035
7036 struct type *
7037 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
7038 {
7039 const char *name = ada_variant_discrim_name (var_type);
7040
7041 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
7042 }
7043
7044 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
7045 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
7046 represents a 'when others' clause; otherwise 0. */
7047
7048 int
7049 ada_is_others_clause (struct type *type, int field_num)
7050 {
7051 const char *name = TYPE_FIELD_NAME (type, field_num);
7052
7053 return (name != NULL && name[0] == 'O');
7054 }
7055
7056 /* Assuming that TYPE0 is the type of the variant part of a record,
7057 returns the name of the discriminant controlling the variant.
7058 The value is valid until the next call to ada_variant_discrim_name. */
7059
7060 const char *
7061 ada_variant_discrim_name (struct type *type0)
7062 {
7063 static char *result = NULL;
7064 static size_t result_len = 0;
7065 struct type *type;
7066 const char *name;
7067 const char *discrim_end;
7068 const char *discrim_start;
7069
7070 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7071 type = TYPE_TARGET_TYPE (type0);
7072 else
7073 type = type0;
7074
7075 name = ada_type_name (type);
7076
7077 if (name == NULL || name[0] == '\000')
7078 return "";
7079
7080 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7081 discrim_end -= 1)
7082 {
7083 if (startswith (discrim_end, "___XVN"))
7084 break;
7085 }
7086 if (discrim_end == name)
7087 return "";
7088
7089 for (discrim_start = discrim_end; discrim_start != name + 3;
7090 discrim_start -= 1)
7091 {
7092 if (discrim_start == name + 1)
7093 return "";
7094 if ((discrim_start > name + 3
7095 && startswith (discrim_start - 3, "___"))
7096 || discrim_start[-1] == '.')
7097 break;
7098 }
7099
7100 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7101 strncpy (result, discrim_start, discrim_end - discrim_start);
7102 result[discrim_end - discrim_start] = '\0';
7103 return result;
7104 }
7105
7106 /* Scan STR for a subtype-encoded number, beginning at position K.
7107 Put the position of the character just past the number scanned in
7108 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7109 Return 1 if there was a valid number at the given position, and 0
7110 otherwise. A "subtype-encoded" number consists of the absolute value
7111 in decimal, followed by the letter 'm' to indicate a negative number.
7112 Assumes 0m does not occur. */
7113
7114 int
7115 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7116 {
7117 ULONGEST RU;
7118
7119 if (!isdigit (str[k]))
7120 return 0;
7121
7122 /* Do it the hard way so as not to make any assumption about
7123 the relationship of unsigned long (%lu scan format code) and
7124 LONGEST. */
7125 RU = 0;
7126 while (isdigit (str[k]))
7127 {
7128 RU = RU * 10 + (str[k] - '0');
7129 k += 1;
7130 }
7131
7132 if (str[k] == 'm')
7133 {
7134 if (R != NULL)
7135 *R = (-(LONGEST) (RU - 1)) - 1;
7136 k += 1;
7137 }
7138 else if (R != NULL)
7139 *R = (LONGEST) RU;
7140
7141 /* NOTE on the above: Technically, C does not say what the results of
7142 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7143 number representable as a LONGEST (although either would probably work
7144 in most implementations). When RU>0, the locution in the then branch
7145 above is always equivalent to the negative of RU. */
7146
7147 if (new_k != NULL)
7148 *new_k = k;
7149 return 1;
7150 }
7151
7152 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7153 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7154 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7155
7156 int
7157 ada_in_variant (LONGEST val, struct type *type, int field_num)
7158 {
7159 const char *name = TYPE_FIELD_NAME (type, field_num);
7160 int p;
7161
7162 p = 0;
7163 while (1)
7164 {
7165 switch (name[p])
7166 {
7167 case '\0':
7168 return 0;
7169 case 'S':
7170 {
7171 LONGEST W;
7172
7173 if (!ada_scan_number (name, p + 1, &W, &p))
7174 return 0;
7175 if (val == W)
7176 return 1;
7177 break;
7178 }
7179 case 'R':
7180 {
7181 LONGEST L, U;
7182
7183 if (!ada_scan_number (name, p + 1, &L, &p)
7184 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7185 return 0;
7186 if (val >= L && val <= U)
7187 return 1;
7188 break;
7189 }
7190 case 'O':
7191 return 1;
7192 default:
7193 return 0;
7194 }
7195 }
7196 }
7197
7198 /* FIXME: Lots of redundancy below. Try to consolidate. */
7199
7200 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7201 ARG_TYPE, extract and return the value of one of its (non-static)
7202 fields. FIELDNO says which field. Differs from value_primitive_field
7203 only in that it can handle packed values of arbitrary type. */
7204
7205 static struct value *
7206 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7207 struct type *arg_type)
7208 {
7209 struct type *type;
7210
7211 arg_type = ada_check_typedef (arg_type);
7212 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7213
7214 /* Handle packed fields. */
7215
7216 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7217 {
7218 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7219 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7220
7221 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7222 offset + bit_pos / 8,
7223 bit_pos % 8, bit_size, type);
7224 }
7225 else
7226 return value_primitive_field (arg1, offset, fieldno, arg_type);
7227 }
7228
7229 /* Find field with name NAME in object of type TYPE. If found,
7230 set the following for each argument that is non-null:
7231 - *FIELD_TYPE_P to the field's type;
7232 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7233 an object of that type;
7234 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7235 - *BIT_SIZE_P to its size in bits if the field is packed, and
7236 0 otherwise;
7237 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7238 fields up to but not including the desired field, or by the total
7239 number of fields if not found. A NULL value of NAME never
7240 matches; the function just counts visible fields in this case.
7241
7242 Notice that we need to handle when a tagged record hierarchy
7243 has some components with the same name, like in this scenario:
7244
7245 type Top_T is tagged record
7246 N : Integer := 1;
7247 U : Integer := 974;
7248 A : Integer := 48;
7249 end record;
7250
7251 type Middle_T is new Top.Top_T with record
7252 N : Character := 'a';
7253 C : Integer := 3;
7254 end record;
7255
7256 type Bottom_T is new Middle.Middle_T with record
7257 N : Float := 4.0;
7258 C : Character := '5';
7259 X : Integer := 6;
7260 A : Character := 'J';
7261 end record;
7262
7263 Let's say we now have a variable declared and initialized as follow:
7264
7265 TC : Top_A := new Bottom_T;
7266
7267 And then we use this variable to call this function
7268
7269 procedure Assign (Obj: in out Top_T; TV : Integer);
7270
7271 as follow:
7272
7273 Assign (Top_T (B), 12);
7274
7275 Now, we're in the debugger, and we're inside that procedure
7276 then and we want to print the value of obj.c:
7277
7278 Usually, the tagged record or one of the parent type owns the
7279 component to print and there's no issue but in this particular
7280 case, what does it mean to ask for Obj.C? Since the actual
7281 type for object is type Bottom_T, it could mean two things: type
7282 component C from the Middle_T view, but also component C from
7283 Bottom_T. So in that "undefined" case, when the component is
7284 not found in the non-resolved type (which includes all the
7285 components of the parent type), then resolve it and see if we
7286 get better luck once expanded.
7287
7288 In the case of homonyms in the derived tagged type, we don't
7289 guaranty anything, and pick the one that's easiest for us
7290 to program.
7291
7292 Returns 1 if found, 0 otherwise. */
7293
7294 static int
7295 find_struct_field (const char *name, struct type *type, int offset,
7296 struct type **field_type_p,
7297 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7298 int *index_p)
7299 {
7300 int i;
7301 int parent_offset = -1;
7302
7303 type = ada_check_typedef (type);
7304
7305 if (field_type_p != NULL)
7306 *field_type_p = NULL;
7307 if (byte_offset_p != NULL)
7308 *byte_offset_p = 0;
7309 if (bit_offset_p != NULL)
7310 *bit_offset_p = 0;
7311 if (bit_size_p != NULL)
7312 *bit_size_p = 0;
7313
7314 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7315 {
7316 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7317 int fld_offset = offset + bit_pos / 8;
7318 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7319
7320 if (t_field_name == NULL)
7321 continue;
7322
7323 else if (ada_is_parent_field (type, i))
7324 {
7325 /* This is a field pointing us to the parent type of a tagged
7326 type. As hinted in this function's documentation, we give
7327 preference to fields in the current record first, so what
7328 we do here is just record the index of this field before
7329 we skip it. If it turns out we couldn't find our field
7330 in the current record, then we'll get back to it and search
7331 inside it whether the field might exist in the parent. */
7332
7333 parent_offset = i;
7334 continue;
7335 }
7336
7337 else if (name != NULL && field_name_match (t_field_name, name))
7338 {
7339 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7340
7341 if (field_type_p != NULL)
7342 *field_type_p = TYPE_FIELD_TYPE (type, i);
7343 if (byte_offset_p != NULL)
7344 *byte_offset_p = fld_offset;
7345 if (bit_offset_p != NULL)
7346 *bit_offset_p = bit_pos % 8;
7347 if (bit_size_p != NULL)
7348 *bit_size_p = bit_size;
7349 return 1;
7350 }
7351 else if (ada_is_wrapper_field (type, i))
7352 {
7353 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7354 field_type_p, byte_offset_p, bit_offset_p,
7355 bit_size_p, index_p))
7356 return 1;
7357 }
7358 else if (ada_is_variant_part (type, i))
7359 {
7360 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7361 fixed type?? */
7362 int j;
7363 struct type *field_type
7364 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7365
7366 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7367 {
7368 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7369 fld_offset
7370 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7371 field_type_p, byte_offset_p,
7372 bit_offset_p, bit_size_p, index_p))
7373 return 1;
7374 }
7375 }
7376 else if (index_p != NULL)
7377 *index_p += 1;
7378 }
7379
7380 /* Field not found so far. If this is a tagged type which
7381 has a parent, try finding that field in the parent now. */
7382
7383 if (parent_offset != -1)
7384 {
7385 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7386 int fld_offset = offset + bit_pos / 8;
7387
7388 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7389 fld_offset, field_type_p, byte_offset_p,
7390 bit_offset_p, bit_size_p, index_p))
7391 return 1;
7392 }
7393
7394 return 0;
7395 }
7396
7397 /* Number of user-visible fields in record type TYPE. */
7398
7399 static int
7400 num_visible_fields (struct type *type)
7401 {
7402 int n;
7403
7404 n = 0;
7405 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7406 return n;
7407 }
7408
7409 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7410 and search in it assuming it has (class) type TYPE.
7411 If found, return value, else return NULL.
7412
7413 Searches recursively through wrapper fields (e.g., '_parent').
7414
7415 In the case of homonyms in the tagged types, please refer to the
7416 long explanation in find_struct_field's function documentation. */
7417
7418 static struct value *
7419 ada_search_struct_field (const char *name, struct value *arg, int offset,
7420 struct type *type)
7421 {
7422 int i;
7423 int parent_offset = -1;
7424
7425 type = ada_check_typedef (type);
7426 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7427 {
7428 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7429
7430 if (t_field_name == NULL)
7431 continue;
7432
7433 else if (ada_is_parent_field (type, i))
7434 {
7435 /* This is a field pointing us to the parent type of a tagged
7436 type. As hinted in this function's documentation, we give
7437 preference to fields in the current record first, so what
7438 we do here is just record the index of this field before
7439 we skip it. If it turns out we couldn't find our field
7440 in the current record, then we'll get back to it and search
7441 inside it whether the field might exist in the parent. */
7442
7443 parent_offset = i;
7444 continue;
7445 }
7446
7447 else if (field_name_match (t_field_name, name))
7448 return ada_value_primitive_field (arg, offset, i, type);
7449
7450 else if (ada_is_wrapper_field (type, i))
7451 {
7452 struct value *v = /* Do not let indent join lines here. */
7453 ada_search_struct_field (name, arg,
7454 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7455 TYPE_FIELD_TYPE (type, i));
7456
7457 if (v != NULL)
7458 return v;
7459 }
7460
7461 else if (ada_is_variant_part (type, i))
7462 {
7463 /* PNH: Do we ever get here? See find_struct_field. */
7464 int j;
7465 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7466 i));
7467 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7468
7469 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7470 {
7471 struct value *v = ada_search_struct_field /* Force line
7472 break. */
7473 (name, arg,
7474 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7475 TYPE_FIELD_TYPE (field_type, j));
7476
7477 if (v != NULL)
7478 return v;
7479 }
7480 }
7481 }
7482
7483 /* Field not found so far. If this is a tagged type which
7484 has a parent, try finding that field in the parent now. */
7485
7486 if (parent_offset != -1)
7487 {
7488 struct value *v = ada_search_struct_field (
7489 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7490 TYPE_FIELD_TYPE (type, parent_offset));
7491
7492 if (v != NULL)
7493 return v;
7494 }
7495
7496 return NULL;
7497 }
7498
7499 static struct value *ada_index_struct_field_1 (int *, struct value *,
7500 int, struct type *);
7501
7502
7503 /* Return field #INDEX in ARG, where the index is that returned by
7504 * find_struct_field through its INDEX_P argument. Adjust the address
7505 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7506 * If found, return value, else return NULL. */
7507
7508 static struct value *
7509 ada_index_struct_field (int index, struct value *arg, int offset,
7510 struct type *type)
7511 {
7512 return ada_index_struct_field_1 (&index, arg, offset, type);
7513 }
7514
7515
7516 /* Auxiliary function for ada_index_struct_field. Like
7517 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7518 * *INDEX_P. */
7519
7520 static struct value *
7521 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7522 struct type *type)
7523 {
7524 int i;
7525 type = ada_check_typedef (type);
7526
7527 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7528 {
7529 if (TYPE_FIELD_NAME (type, i) == NULL)
7530 continue;
7531 else if (ada_is_wrapper_field (type, i))
7532 {
7533 struct value *v = /* Do not let indent join lines here. */
7534 ada_index_struct_field_1 (index_p, arg,
7535 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7536 TYPE_FIELD_TYPE (type, i));
7537
7538 if (v != NULL)
7539 return v;
7540 }
7541
7542 else if (ada_is_variant_part (type, i))
7543 {
7544 /* PNH: Do we ever get here? See ada_search_struct_field,
7545 find_struct_field. */
7546 error (_("Cannot assign this kind of variant record"));
7547 }
7548 else if (*index_p == 0)
7549 return ada_value_primitive_field (arg, offset, i, type);
7550 else
7551 *index_p -= 1;
7552 }
7553 return NULL;
7554 }
7555
7556 /* Given ARG, a value of type (pointer or reference to a)*
7557 structure/union, extract the component named NAME from the ultimate
7558 target structure/union and return it as a value with its
7559 appropriate type.
7560
7561 The routine searches for NAME among all members of the structure itself
7562 and (recursively) among all members of any wrapper members
7563 (e.g., '_parent').
7564
7565 If NO_ERR, then simply return NULL in case of error, rather than
7566 calling error. */
7567
7568 struct value *
7569 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7570 {
7571 struct type *t, *t1;
7572 struct value *v;
7573
7574 v = NULL;
7575 t1 = t = ada_check_typedef (value_type (arg));
7576 if (TYPE_CODE (t) == TYPE_CODE_REF)
7577 {
7578 t1 = TYPE_TARGET_TYPE (t);
7579 if (t1 == NULL)
7580 goto BadValue;
7581 t1 = ada_check_typedef (t1);
7582 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7583 {
7584 arg = coerce_ref (arg);
7585 t = t1;
7586 }
7587 }
7588
7589 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7590 {
7591 t1 = TYPE_TARGET_TYPE (t);
7592 if (t1 == NULL)
7593 goto BadValue;
7594 t1 = ada_check_typedef (t1);
7595 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7596 {
7597 arg = value_ind (arg);
7598 t = t1;
7599 }
7600 else
7601 break;
7602 }
7603
7604 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7605 goto BadValue;
7606
7607 if (t1 == t)
7608 v = ada_search_struct_field (name, arg, 0, t);
7609 else
7610 {
7611 int bit_offset, bit_size, byte_offset;
7612 struct type *field_type;
7613 CORE_ADDR address;
7614
7615 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7616 address = value_address (ada_value_ind (arg));
7617 else
7618 address = value_address (ada_coerce_ref (arg));
7619
7620 /* Check to see if this is a tagged type. We also need to handle
7621 the case where the type is a reference to a tagged type, but
7622 we have to be careful to exclude pointers to tagged types.
7623 The latter should be shown as usual (as a pointer), whereas
7624 a reference should mostly be transparent to the user. */
7625
7626 if (ada_is_tagged_type (t1, 0)
7627 || (TYPE_CODE (t1) == TYPE_CODE_REF
7628 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7629 {
7630 /* We first try to find the searched field in the current type.
7631 If not found then let's look in the fixed type. */
7632
7633 if (!find_struct_field (name, t1, 0,
7634 &field_type, &byte_offset, &bit_offset,
7635 &bit_size, NULL))
7636 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7637 address, NULL, 1);
7638 }
7639 else
7640 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7641 address, NULL, 1);
7642
7643 if (find_struct_field (name, t1, 0,
7644 &field_type, &byte_offset, &bit_offset,
7645 &bit_size, NULL))
7646 {
7647 if (bit_size != 0)
7648 {
7649 if (TYPE_CODE (t) == TYPE_CODE_REF)
7650 arg = ada_coerce_ref (arg);
7651 else
7652 arg = ada_value_ind (arg);
7653 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7654 bit_offset, bit_size,
7655 field_type);
7656 }
7657 else
7658 v = value_at_lazy (field_type, address + byte_offset);
7659 }
7660 }
7661
7662 if (v != NULL || no_err)
7663 return v;
7664 else
7665 error (_("There is no member named %s."), name);
7666
7667 BadValue:
7668 if (no_err)
7669 return NULL;
7670 else
7671 error (_("Attempt to extract a component of "
7672 "a value that is not a record."));
7673 }
7674
7675 /* Return a string representation of type TYPE. */
7676
7677 static std::string
7678 type_as_string (struct type *type)
7679 {
7680 string_file tmp_stream;
7681
7682 type_print (type, "", &tmp_stream, -1);
7683
7684 return std::move (tmp_stream.string ());
7685 }
7686
7687 /* Given a type TYPE, look up the type of the component of type named NAME.
7688 If DISPP is non-null, add its byte displacement from the beginning of a
7689 structure (pointed to by a value) of type TYPE to *DISPP (does not
7690 work for packed fields).
7691
7692 Matches any field whose name has NAME as a prefix, possibly
7693 followed by "___".
7694
7695 TYPE can be either a struct or union. If REFOK, TYPE may also
7696 be a (pointer or reference)+ to a struct or union, and the
7697 ultimate target type will be searched.
7698
7699 Looks recursively into variant clauses and parent types.
7700
7701 In the case of homonyms in the tagged types, please refer to the
7702 long explanation in find_struct_field's function documentation.
7703
7704 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7705 TYPE is not a type of the right kind. */
7706
7707 static struct type *
7708 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7709 int noerr)
7710 {
7711 int i;
7712 int parent_offset = -1;
7713
7714 if (name == NULL)
7715 goto BadName;
7716
7717 if (refok && type != NULL)
7718 while (1)
7719 {
7720 type = ada_check_typedef (type);
7721 if (TYPE_CODE (type) != TYPE_CODE_PTR
7722 && TYPE_CODE (type) != TYPE_CODE_REF)
7723 break;
7724 type = TYPE_TARGET_TYPE (type);
7725 }
7726
7727 if (type == NULL
7728 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7729 && TYPE_CODE (type) != TYPE_CODE_UNION))
7730 {
7731 if (noerr)
7732 return NULL;
7733
7734 error (_("Type %s is not a structure or union type"),
7735 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7736 }
7737
7738 type = to_static_fixed_type (type);
7739
7740 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7741 {
7742 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7743 struct type *t;
7744
7745 if (t_field_name == NULL)
7746 continue;
7747
7748 else if (ada_is_parent_field (type, i))
7749 {
7750 /* This is a field pointing us to the parent type of a tagged
7751 type. As hinted in this function's documentation, we give
7752 preference to fields in the current record first, so what
7753 we do here is just record the index of this field before
7754 we skip it. If it turns out we couldn't find our field
7755 in the current record, then we'll get back to it and search
7756 inside it whether the field might exist in the parent. */
7757
7758 parent_offset = i;
7759 continue;
7760 }
7761
7762 else if (field_name_match (t_field_name, name))
7763 return TYPE_FIELD_TYPE (type, i);
7764
7765 else if (ada_is_wrapper_field (type, i))
7766 {
7767 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7768 0, 1);
7769 if (t != NULL)
7770 return t;
7771 }
7772
7773 else if (ada_is_variant_part (type, i))
7774 {
7775 int j;
7776 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7777 i));
7778
7779 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7780 {
7781 /* FIXME pnh 2008/01/26: We check for a field that is
7782 NOT wrapped in a struct, since the compiler sometimes
7783 generates these for unchecked variant types. Revisit
7784 if the compiler changes this practice. */
7785 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7786
7787 if (v_field_name != NULL
7788 && field_name_match (v_field_name, name))
7789 t = TYPE_FIELD_TYPE (field_type, j);
7790 else
7791 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7792 j),
7793 name, 0, 1);
7794
7795 if (t != NULL)
7796 return t;
7797 }
7798 }
7799
7800 }
7801
7802 /* Field not found so far. If this is a tagged type which
7803 has a parent, try finding that field in the parent now. */
7804
7805 if (parent_offset != -1)
7806 {
7807 struct type *t;
7808
7809 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7810 name, 0, 1);
7811 if (t != NULL)
7812 return t;
7813 }
7814
7815 BadName:
7816 if (!noerr)
7817 {
7818 const char *name_str = name != NULL ? name : _("<null>");
7819
7820 error (_("Type %s has no component named %s"),
7821 type_as_string (type).c_str (), name_str);
7822 }
7823
7824 return NULL;
7825 }
7826
7827 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7828 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7829 represents an unchecked union (that is, the variant part of a
7830 record that is named in an Unchecked_Union pragma). */
7831
7832 static int
7833 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7834 {
7835 const char *discrim_name = ada_variant_discrim_name (var_type);
7836
7837 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7838 }
7839
7840
7841 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7842 within a value of type OUTER_TYPE that is stored in GDB at
7843 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7844 numbering from 0) is applicable. Returns -1 if none are. */
7845
7846 int
7847 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7848 const gdb_byte *outer_valaddr)
7849 {
7850 int others_clause;
7851 int i;
7852 const char *discrim_name = ada_variant_discrim_name (var_type);
7853 struct value *outer;
7854 struct value *discrim;
7855 LONGEST discrim_val;
7856
7857 /* Using plain value_from_contents_and_address here causes problems
7858 because we will end up trying to resolve a type that is currently
7859 being constructed. */
7860 outer = value_from_contents_and_address_unresolved (outer_type,
7861 outer_valaddr, 0);
7862 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7863 if (discrim == NULL)
7864 return -1;
7865 discrim_val = value_as_long (discrim);
7866
7867 others_clause = -1;
7868 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7869 {
7870 if (ada_is_others_clause (var_type, i))
7871 others_clause = i;
7872 else if (ada_in_variant (discrim_val, var_type, i))
7873 return i;
7874 }
7875
7876 return others_clause;
7877 }
7878 \f
7879
7880
7881 /* Dynamic-Sized Records */
7882
7883 /* Strategy: The type ostensibly attached to a value with dynamic size
7884 (i.e., a size that is not statically recorded in the debugging
7885 data) does not accurately reflect the size or layout of the value.
7886 Our strategy is to convert these values to values with accurate,
7887 conventional types that are constructed on the fly. */
7888
7889 /* There is a subtle and tricky problem here. In general, we cannot
7890 determine the size of dynamic records without its data. However,
7891 the 'struct value' data structure, which GDB uses to represent
7892 quantities in the inferior process (the target), requires the size
7893 of the type at the time of its allocation in order to reserve space
7894 for GDB's internal copy of the data. That's why the
7895 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7896 rather than struct value*s.
7897
7898 However, GDB's internal history variables ($1, $2, etc.) are
7899 struct value*s containing internal copies of the data that are not, in
7900 general, the same as the data at their corresponding addresses in
7901 the target. Fortunately, the types we give to these values are all
7902 conventional, fixed-size types (as per the strategy described
7903 above), so that we don't usually have to perform the
7904 'to_fixed_xxx_type' conversions to look at their values.
7905 Unfortunately, there is one exception: if one of the internal
7906 history variables is an array whose elements are unconstrained
7907 records, then we will need to create distinct fixed types for each
7908 element selected. */
7909
7910 /* The upshot of all of this is that many routines take a (type, host
7911 address, target address) triple as arguments to represent a value.
7912 The host address, if non-null, is supposed to contain an internal
7913 copy of the relevant data; otherwise, the program is to consult the
7914 target at the target address. */
7915
7916 /* Assuming that VAL0 represents a pointer value, the result of
7917 dereferencing it. Differs from value_ind in its treatment of
7918 dynamic-sized types. */
7919
7920 struct value *
7921 ada_value_ind (struct value *val0)
7922 {
7923 struct value *val = value_ind (val0);
7924
7925 if (ada_is_tagged_type (value_type (val), 0))
7926 val = ada_tag_value_at_base_address (val);
7927
7928 return ada_to_fixed_value (val);
7929 }
7930
7931 /* The value resulting from dereferencing any "reference to"
7932 qualifiers on VAL0. */
7933
7934 static struct value *
7935 ada_coerce_ref (struct value *val0)
7936 {
7937 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7938 {
7939 struct value *val = val0;
7940
7941 val = coerce_ref (val);
7942
7943 if (ada_is_tagged_type (value_type (val), 0))
7944 val = ada_tag_value_at_base_address (val);
7945
7946 return ada_to_fixed_value (val);
7947 }
7948 else
7949 return val0;
7950 }
7951
7952 /* Return OFF rounded upward if necessary to a multiple of
7953 ALIGNMENT (a power of 2). */
7954
7955 static unsigned int
7956 align_value (unsigned int off, unsigned int alignment)
7957 {
7958 return (off + alignment - 1) & ~(alignment - 1);
7959 }
7960
7961 /* Return the bit alignment required for field #F of template type TYPE. */
7962
7963 static unsigned int
7964 field_alignment (struct type *type, int f)
7965 {
7966 const char *name = TYPE_FIELD_NAME (type, f);
7967 int len;
7968 int align_offset;
7969
7970 /* The field name should never be null, unless the debugging information
7971 is somehow malformed. In this case, we assume the field does not
7972 require any alignment. */
7973 if (name == NULL)
7974 return 1;
7975
7976 len = strlen (name);
7977
7978 if (!isdigit (name[len - 1]))
7979 return 1;
7980
7981 if (isdigit (name[len - 2]))
7982 align_offset = len - 2;
7983 else
7984 align_offset = len - 1;
7985
7986 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7987 return TARGET_CHAR_BIT;
7988
7989 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7990 }
7991
7992 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7993
7994 static struct symbol *
7995 ada_find_any_type_symbol (const char *name)
7996 {
7997 struct symbol *sym;
7998
7999 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
8000 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
8001 return sym;
8002
8003 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
8004 return sym;
8005 }
8006
8007 /* Find a type named NAME. Ignores ambiguity. This routine will look
8008 solely for types defined by debug info, it will not search the GDB
8009 primitive types. */
8010
8011 static struct type *
8012 ada_find_any_type (const char *name)
8013 {
8014 struct symbol *sym = ada_find_any_type_symbol (name);
8015
8016 if (sym != NULL)
8017 return SYMBOL_TYPE (sym);
8018
8019 return NULL;
8020 }
8021
8022 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
8023 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
8024 symbol, in which case it is returned. Otherwise, this looks for
8025 symbols whose name is that of NAME_SYM suffixed with "___XR".
8026 Return symbol if found, and NULL otherwise. */
8027
8028 struct symbol *
8029 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
8030 {
8031 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
8032 struct symbol *sym;
8033
8034 if (strstr (name, "___XR") != NULL)
8035 return name_sym;
8036
8037 sym = find_old_style_renaming_symbol (name, block);
8038
8039 if (sym != NULL)
8040 return sym;
8041
8042 /* Not right yet. FIXME pnh 7/20/2007. */
8043 sym = ada_find_any_type_symbol (name);
8044 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
8045 return sym;
8046 else
8047 return NULL;
8048 }
8049
8050 static struct symbol *
8051 find_old_style_renaming_symbol (const char *name, const struct block *block)
8052 {
8053 const struct symbol *function_sym = block_linkage_function (block);
8054 char *rename;
8055
8056 if (function_sym != NULL)
8057 {
8058 /* If the symbol is defined inside a function, NAME is not fully
8059 qualified. This means we need to prepend the function name
8060 as well as adding the ``___XR'' suffix to build the name of
8061 the associated renaming symbol. */
8062 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8063 /* Function names sometimes contain suffixes used
8064 for instance to qualify nested subprograms. When building
8065 the XR type name, we need to make sure that this suffix is
8066 not included. So do not include any suffix in the function
8067 name length below. */
8068 int function_name_len = ada_name_prefix_len (function_name);
8069 const int rename_len = function_name_len + 2 /* "__" */
8070 + strlen (name) + 6 /* "___XR\0" */ ;
8071
8072 /* Strip the suffix if necessary. */
8073 ada_remove_trailing_digits (function_name, &function_name_len);
8074 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8075 ada_remove_Xbn_suffix (function_name, &function_name_len);
8076
8077 /* Library-level functions are a special case, as GNAT adds
8078 a ``_ada_'' prefix to the function name to avoid namespace
8079 pollution. However, the renaming symbols themselves do not
8080 have this prefix, so we need to skip this prefix if present. */
8081 if (function_name_len > 5 /* "_ada_" */
8082 && strstr (function_name, "_ada_") == function_name)
8083 {
8084 function_name += 5;
8085 function_name_len -= 5;
8086 }
8087
8088 rename = (char *) alloca (rename_len * sizeof (char));
8089 strncpy (rename, function_name, function_name_len);
8090 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8091 "__%s___XR", name);
8092 }
8093 else
8094 {
8095 const int rename_len = strlen (name) + 6;
8096
8097 rename = (char *) alloca (rename_len * sizeof (char));
8098 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8099 }
8100
8101 return ada_find_any_type_symbol (rename);
8102 }
8103
8104 /* Because of GNAT encoding conventions, several GDB symbols may match a
8105 given type name. If the type denoted by TYPE0 is to be preferred to
8106 that of TYPE1 for purposes of type printing, return non-zero;
8107 otherwise return 0. */
8108
8109 int
8110 ada_prefer_type (struct type *type0, struct type *type1)
8111 {
8112 if (type1 == NULL)
8113 return 1;
8114 else if (type0 == NULL)
8115 return 0;
8116 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8117 return 1;
8118 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8119 return 0;
8120 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8121 return 1;
8122 else if (ada_is_constrained_packed_array_type (type0))
8123 return 1;
8124 else if (ada_is_array_descriptor_type (type0)
8125 && !ada_is_array_descriptor_type (type1))
8126 return 1;
8127 else
8128 {
8129 const char *type0_name = type_name_no_tag (type0);
8130 const char *type1_name = type_name_no_tag (type1);
8131
8132 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8133 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8134 return 1;
8135 }
8136 return 0;
8137 }
8138
8139 /* The name of TYPE, which is either its TYPE_NAME, or, if that is
8140 null, its TYPE_TAG_NAME. Null if TYPE is null. */
8141
8142 const char *
8143 ada_type_name (struct type *type)
8144 {
8145 if (type == NULL)
8146 return NULL;
8147 else if (TYPE_NAME (type) != NULL)
8148 return TYPE_NAME (type);
8149 else
8150 return TYPE_TAG_NAME (type);
8151 }
8152
8153 /* Search the list of "descriptive" types associated to TYPE for a type
8154 whose name is NAME. */
8155
8156 static struct type *
8157 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8158 {
8159 struct type *result, *tmp;
8160
8161 if (ada_ignore_descriptive_types_p)
8162 return NULL;
8163
8164 /* If there no descriptive-type info, then there is no parallel type
8165 to be found. */
8166 if (!HAVE_GNAT_AUX_INFO (type))
8167 return NULL;
8168
8169 result = TYPE_DESCRIPTIVE_TYPE (type);
8170 while (result != NULL)
8171 {
8172 const char *result_name = ada_type_name (result);
8173
8174 if (result_name == NULL)
8175 {
8176 warning (_("unexpected null name on descriptive type"));
8177 return NULL;
8178 }
8179
8180 /* If the names match, stop. */
8181 if (strcmp (result_name, name) == 0)
8182 break;
8183
8184 /* Otherwise, look at the next item on the list, if any. */
8185 if (HAVE_GNAT_AUX_INFO (result))
8186 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8187 else
8188 tmp = NULL;
8189
8190 /* If not found either, try after having resolved the typedef. */
8191 if (tmp != NULL)
8192 result = tmp;
8193 else
8194 {
8195 result = check_typedef (result);
8196 if (HAVE_GNAT_AUX_INFO (result))
8197 result = TYPE_DESCRIPTIVE_TYPE (result);
8198 else
8199 result = NULL;
8200 }
8201 }
8202
8203 /* If we didn't find a match, see whether this is a packed array. With
8204 older compilers, the descriptive type information is either absent or
8205 irrelevant when it comes to packed arrays so the above lookup fails.
8206 Fall back to using a parallel lookup by name in this case. */
8207 if (result == NULL && ada_is_constrained_packed_array_type (type))
8208 return ada_find_any_type (name);
8209
8210 return result;
8211 }
8212
8213 /* Find a parallel type to TYPE with the specified NAME, using the
8214 descriptive type taken from the debugging information, if available,
8215 and otherwise using the (slower) name-based method. */
8216
8217 static struct type *
8218 ada_find_parallel_type_with_name (struct type *type, const char *name)
8219 {
8220 struct type *result = NULL;
8221
8222 if (HAVE_GNAT_AUX_INFO (type))
8223 result = find_parallel_type_by_descriptive_type (type, name);
8224 else
8225 result = ada_find_any_type (name);
8226
8227 return result;
8228 }
8229
8230 /* Same as above, but specify the name of the parallel type by appending
8231 SUFFIX to the name of TYPE. */
8232
8233 struct type *
8234 ada_find_parallel_type (struct type *type, const char *suffix)
8235 {
8236 char *name;
8237 const char *type_name = ada_type_name (type);
8238 int len;
8239
8240 if (type_name == NULL)
8241 return NULL;
8242
8243 len = strlen (type_name);
8244
8245 name = (char *) alloca (len + strlen (suffix) + 1);
8246
8247 strcpy (name, type_name);
8248 strcpy (name + len, suffix);
8249
8250 return ada_find_parallel_type_with_name (type, name);
8251 }
8252
8253 /* If TYPE is a variable-size record type, return the corresponding template
8254 type describing its fields. Otherwise, return NULL. */
8255
8256 static struct type *
8257 dynamic_template_type (struct type *type)
8258 {
8259 type = ada_check_typedef (type);
8260
8261 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8262 || ada_type_name (type) == NULL)
8263 return NULL;
8264 else
8265 {
8266 int len = strlen (ada_type_name (type));
8267
8268 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8269 return type;
8270 else
8271 return ada_find_parallel_type (type, "___XVE");
8272 }
8273 }
8274
8275 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8276 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8277
8278 static int
8279 is_dynamic_field (struct type *templ_type, int field_num)
8280 {
8281 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8282
8283 return name != NULL
8284 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8285 && strstr (name, "___XVL") != NULL;
8286 }
8287
8288 /* The index of the variant field of TYPE, or -1 if TYPE does not
8289 represent a variant record type. */
8290
8291 static int
8292 variant_field_index (struct type *type)
8293 {
8294 int f;
8295
8296 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8297 return -1;
8298
8299 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8300 {
8301 if (ada_is_variant_part (type, f))
8302 return f;
8303 }
8304 return -1;
8305 }
8306
8307 /* A record type with no fields. */
8308
8309 static struct type *
8310 empty_record (struct type *templ)
8311 {
8312 struct type *type = alloc_type_copy (templ);
8313
8314 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8315 TYPE_NFIELDS (type) = 0;
8316 TYPE_FIELDS (type) = NULL;
8317 INIT_CPLUS_SPECIFIC (type);
8318 TYPE_NAME (type) = "<empty>";
8319 TYPE_TAG_NAME (type) = NULL;
8320 TYPE_LENGTH (type) = 0;
8321 return type;
8322 }
8323
8324 /* An ordinary record type (with fixed-length fields) that describes
8325 the value of type TYPE at VALADDR or ADDRESS (see comments at
8326 the beginning of this section) VAL according to GNAT conventions.
8327 DVAL0 should describe the (portion of a) record that contains any
8328 necessary discriminants. It should be NULL if value_type (VAL) is
8329 an outer-level type (i.e., as opposed to a branch of a variant.) A
8330 variant field (unless unchecked) is replaced by a particular branch
8331 of the variant.
8332
8333 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8334 length are not statically known are discarded. As a consequence,
8335 VALADDR, ADDRESS and DVAL0 are ignored.
8336
8337 NOTE: Limitations: For now, we assume that dynamic fields and
8338 variants occupy whole numbers of bytes. However, they need not be
8339 byte-aligned. */
8340
8341 struct type *
8342 ada_template_to_fixed_record_type_1 (struct type *type,
8343 const gdb_byte *valaddr,
8344 CORE_ADDR address, struct value *dval0,
8345 int keep_dynamic_fields)
8346 {
8347 struct value *mark = value_mark ();
8348 struct value *dval;
8349 struct type *rtype;
8350 int nfields, bit_len;
8351 int variant_field;
8352 long off;
8353 int fld_bit_len;
8354 int f;
8355
8356 /* Compute the number of fields in this record type that are going
8357 to be processed: unless keep_dynamic_fields, this includes only
8358 fields whose position and length are static will be processed. */
8359 if (keep_dynamic_fields)
8360 nfields = TYPE_NFIELDS (type);
8361 else
8362 {
8363 nfields = 0;
8364 while (nfields < TYPE_NFIELDS (type)
8365 && !ada_is_variant_part (type, nfields)
8366 && !is_dynamic_field (type, nfields))
8367 nfields++;
8368 }
8369
8370 rtype = alloc_type_copy (type);
8371 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8372 INIT_CPLUS_SPECIFIC (rtype);
8373 TYPE_NFIELDS (rtype) = nfields;
8374 TYPE_FIELDS (rtype) = (struct field *)
8375 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8376 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8377 TYPE_NAME (rtype) = ada_type_name (type);
8378 TYPE_TAG_NAME (rtype) = NULL;
8379 TYPE_FIXED_INSTANCE (rtype) = 1;
8380
8381 off = 0;
8382 bit_len = 0;
8383 variant_field = -1;
8384
8385 for (f = 0; f < nfields; f += 1)
8386 {
8387 off = align_value (off, field_alignment (type, f))
8388 + TYPE_FIELD_BITPOS (type, f);
8389 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8390 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8391
8392 if (ada_is_variant_part (type, f))
8393 {
8394 variant_field = f;
8395 fld_bit_len = 0;
8396 }
8397 else if (is_dynamic_field (type, f))
8398 {
8399 const gdb_byte *field_valaddr = valaddr;
8400 CORE_ADDR field_address = address;
8401 struct type *field_type =
8402 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8403
8404 if (dval0 == NULL)
8405 {
8406 /* rtype's length is computed based on the run-time
8407 value of discriminants. If the discriminants are not
8408 initialized, the type size may be completely bogus and
8409 GDB may fail to allocate a value for it. So check the
8410 size first before creating the value. */
8411 ada_ensure_varsize_limit (rtype);
8412 /* Using plain value_from_contents_and_address here
8413 causes problems because we will end up trying to
8414 resolve a type that is currently being
8415 constructed. */
8416 dval = value_from_contents_and_address_unresolved (rtype,
8417 valaddr,
8418 address);
8419 rtype = value_type (dval);
8420 }
8421 else
8422 dval = dval0;
8423
8424 /* If the type referenced by this field is an aligner type, we need
8425 to unwrap that aligner type, because its size might not be set.
8426 Keeping the aligner type would cause us to compute the wrong
8427 size for this field, impacting the offset of the all the fields
8428 that follow this one. */
8429 if (ada_is_aligner_type (field_type))
8430 {
8431 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8432
8433 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8434 field_address = cond_offset_target (field_address, field_offset);
8435 field_type = ada_aligned_type (field_type);
8436 }
8437
8438 field_valaddr = cond_offset_host (field_valaddr,
8439 off / TARGET_CHAR_BIT);
8440 field_address = cond_offset_target (field_address,
8441 off / TARGET_CHAR_BIT);
8442
8443 /* Get the fixed type of the field. Note that, in this case,
8444 we do not want to get the real type out of the tag: if
8445 the current field is the parent part of a tagged record,
8446 we will get the tag of the object. Clearly wrong: the real
8447 type of the parent is not the real type of the child. We
8448 would end up in an infinite loop. */
8449 field_type = ada_get_base_type (field_type);
8450 field_type = ada_to_fixed_type (field_type, field_valaddr,
8451 field_address, dval, 0);
8452 /* If the field size is already larger than the maximum
8453 object size, then the record itself will necessarily
8454 be larger than the maximum object size. We need to make
8455 this check now, because the size might be so ridiculously
8456 large (due to an uninitialized variable in the inferior)
8457 that it would cause an overflow when adding it to the
8458 record size. */
8459 ada_ensure_varsize_limit (field_type);
8460
8461 TYPE_FIELD_TYPE (rtype, f) = field_type;
8462 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8463 /* The multiplication can potentially overflow. But because
8464 the field length has been size-checked just above, and
8465 assuming that the maximum size is a reasonable value,
8466 an overflow should not happen in practice. So rather than
8467 adding overflow recovery code to this already complex code,
8468 we just assume that it's not going to happen. */
8469 fld_bit_len =
8470 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8471 }
8472 else
8473 {
8474 /* Note: If this field's type is a typedef, it is important
8475 to preserve the typedef layer.
8476
8477 Otherwise, we might be transforming a typedef to a fat
8478 pointer (encoding a pointer to an unconstrained array),
8479 into a basic fat pointer (encoding an unconstrained
8480 array). As both types are implemented using the same
8481 structure, the typedef is the only clue which allows us
8482 to distinguish between the two options. Stripping it
8483 would prevent us from printing this field appropriately. */
8484 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8485 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8486 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8487 fld_bit_len =
8488 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8489 else
8490 {
8491 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8492
8493 /* We need to be careful of typedefs when computing
8494 the length of our field. If this is a typedef,
8495 get the length of the target type, not the length
8496 of the typedef. */
8497 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8498 field_type = ada_typedef_target_type (field_type);
8499
8500 fld_bit_len =
8501 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8502 }
8503 }
8504 if (off + fld_bit_len > bit_len)
8505 bit_len = off + fld_bit_len;
8506 off += fld_bit_len;
8507 TYPE_LENGTH (rtype) =
8508 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8509 }
8510
8511 /* We handle the variant part, if any, at the end because of certain
8512 odd cases in which it is re-ordered so as NOT to be the last field of
8513 the record. This can happen in the presence of representation
8514 clauses. */
8515 if (variant_field >= 0)
8516 {
8517 struct type *branch_type;
8518
8519 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8520
8521 if (dval0 == NULL)
8522 {
8523 /* Using plain value_from_contents_and_address here causes
8524 problems because we will end up trying to resolve a type
8525 that is currently being constructed. */
8526 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8527 address);
8528 rtype = value_type (dval);
8529 }
8530 else
8531 dval = dval0;
8532
8533 branch_type =
8534 to_fixed_variant_branch_type
8535 (TYPE_FIELD_TYPE (type, variant_field),
8536 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8537 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8538 if (branch_type == NULL)
8539 {
8540 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8541 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8542 TYPE_NFIELDS (rtype) -= 1;
8543 }
8544 else
8545 {
8546 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8547 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8548 fld_bit_len =
8549 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8550 TARGET_CHAR_BIT;
8551 if (off + fld_bit_len > bit_len)
8552 bit_len = off + fld_bit_len;
8553 TYPE_LENGTH (rtype) =
8554 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8555 }
8556 }
8557
8558 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8559 should contain the alignment of that record, which should be a strictly
8560 positive value. If null or negative, then something is wrong, most
8561 probably in the debug info. In that case, we don't round up the size
8562 of the resulting type. If this record is not part of another structure,
8563 the current RTYPE length might be good enough for our purposes. */
8564 if (TYPE_LENGTH (type) <= 0)
8565 {
8566 if (TYPE_NAME (rtype))
8567 warning (_("Invalid type size for `%s' detected: %d."),
8568 TYPE_NAME (rtype), TYPE_LENGTH (type));
8569 else
8570 warning (_("Invalid type size for <unnamed> detected: %d."),
8571 TYPE_LENGTH (type));
8572 }
8573 else
8574 {
8575 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8576 TYPE_LENGTH (type));
8577 }
8578
8579 value_free_to_mark (mark);
8580 if (TYPE_LENGTH (rtype) > varsize_limit)
8581 error (_("record type with dynamic size is larger than varsize-limit"));
8582 return rtype;
8583 }
8584
8585 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8586 of 1. */
8587
8588 static struct type *
8589 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8590 CORE_ADDR address, struct value *dval0)
8591 {
8592 return ada_template_to_fixed_record_type_1 (type, valaddr,
8593 address, dval0, 1);
8594 }
8595
8596 /* An ordinary record type in which ___XVL-convention fields and
8597 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8598 static approximations, containing all possible fields. Uses
8599 no runtime values. Useless for use in values, but that's OK,
8600 since the results are used only for type determinations. Works on both
8601 structs and unions. Representation note: to save space, we memorize
8602 the result of this function in the TYPE_TARGET_TYPE of the
8603 template type. */
8604
8605 static struct type *
8606 template_to_static_fixed_type (struct type *type0)
8607 {
8608 struct type *type;
8609 int nfields;
8610 int f;
8611
8612 /* No need no do anything if the input type is already fixed. */
8613 if (TYPE_FIXED_INSTANCE (type0))
8614 return type0;
8615
8616 /* Likewise if we already have computed the static approximation. */
8617 if (TYPE_TARGET_TYPE (type0) != NULL)
8618 return TYPE_TARGET_TYPE (type0);
8619
8620 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8621 type = type0;
8622 nfields = TYPE_NFIELDS (type0);
8623
8624 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8625 recompute all over next time. */
8626 TYPE_TARGET_TYPE (type0) = type;
8627
8628 for (f = 0; f < nfields; f += 1)
8629 {
8630 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8631 struct type *new_type;
8632
8633 if (is_dynamic_field (type0, f))
8634 {
8635 field_type = ada_check_typedef (field_type);
8636 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8637 }
8638 else
8639 new_type = static_unwrap_type (field_type);
8640
8641 if (new_type != field_type)
8642 {
8643 /* Clone TYPE0 only the first time we get a new field type. */
8644 if (type == type0)
8645 {
8646 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8647 TYPE_CODE (type) = TYPE_CODE (type0);
8648 INIT_CPLUS_SPECIFIC (type);
8649 TYPE_NFIELDS (type) = nfields;
8650 TYPE_FIELDS (type) = (struct field *)
8651 TYPE_ALLOC (type, nfields * sizeof (struct field));
8652 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8653 sizeof (struct field) * nfields);
8654 TYPE_NAME (type) = ada_type_name (type0);
8655 TYPE_TAG_NAME (type) = NULL;
8656 TYPE_FIXED_INSTANCE (type) = 1;
8657 TYPE_LENGTH (type) = 0;
8658 }
8659 TYPE_FIELD_TYPE (type, f) = new_type;
8660 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8661 }
8662 }
8663
8664 return type;
8665 }
8666
8667 /* Given an object of type TYPE whose contents are at VALADDR and
8668 whose address in memory is ADDRESS, returns a revision of TYPE,
8669 which should be a non-dynamic-sized record, in which the variant
8670 part, if any, is replaced with the appropriate branch. Looks
8671 for discriminant values in DVAL0, which can be NULL if the record
8672 contains the necessary discriminant values. */
8673
8674 static struct type *
8675 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8676 CORE_ADDR address, struct value *dval0)
8677 {
8678 struct value *mark = value_mark ();
8679 struct value *dval;
8680 struct type *rtype;
8681 struct type *branch_type;
8682 int nfields = TYPE_NFIELDS (type);
8683 int variant_field = variant_field_index (type);
8684
8685 if (variant_field == -1)
8686 return type;
8687
8688 if (dval0 == NULL)
8689 {
8690 dval = value_from_contents_and_address (type, valaddr, address);
8691 type = value_type (dval);
8692 }
8693 else
8694 dval = dval0;
8695
8696 rtype = alloc_type_copy (type);
8697 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8698 INIT_CPLUS_SPECIFIC (rtype);
8699 TYPE_NFIELDS (rtype) = nfields;
8700 TYPE_FIELDS (rtype) =
8701 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8702 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8703 sizeof (struct field) * nfields);
8704 TYPE_NAME (rtype) = ada_type_name (type);
8705 TYPE_TAG_NAME (rtype) = NULL;
8706 TYPE_FIXED_INSTANCE (rtype) = 1;
8707 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8708
8709 branch_type = to_fixed_variant_branch_type
8710 (TYPE_FIELD_TYPE (type, variant_field),
8711 cond_offset_host (valaddr,
8712 TYPE_FIELD_BITPOS (type, variant_field)
8713 / TARGET_CHAR_BIT),
8714 cond_offset_target (address,
8715 TYPE_FIELD_BITPOS (type, variant_field)
8716 / TARGET_CHAR_BIT), dval);
8717 if (branch_type == NULL)
8718 {
8719 int f;
8720
8721 for (f = variant_field + 1; f < nfields; f += 1)
8722 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8723 TYPE_NFIELDS (rtype) -= 1;
8724 }
8725 else
8726 {
8727 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8728 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8729 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8730 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8731 }
8732 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8733
8734 value_free_to_mark (mark);
8735 return rtype;
8736 }
8737
8738 /* An ordinary record type (with fixed-length fields) that describes
8739 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8740 beginning of this section]. Any necessary discriminants' values
8741 should be in DVAL, a record value; it may be NULL if the object
8742 at ADDR itself contains any necessary discriminant values.
8743 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8744 values from the record are needed. Except in the case that DVAL,
8745 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8746 unchecked) is replaced by a particular branch of the variant.
8747
8748 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8749 is questionable and may be removed. It can arise during the
8750 processing of an unconstrained-array-of-record type where all the
8751 variant branches have exactly the same size. This is because in
8752 such cases, the compiler does not bother to use the XVS convention
8753 when encoding the record. I am currently dubious of this
8754 shortcut and suspect the compiler should be altered. FIXME. */
8755
8756 static struct type *
8757 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8758 CORE_ADDR address, struct value *dval)
8759 {
8760 struct type *templ_type;
8761
8762 if (TYPE_FIXED_INSTANCE (type0))
8763 return type0;
8764
8765 templ_type = dynamic_template_type (type0);
8766
8767 if (templ_type != NULL)
8768 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8769 else if (variant_field_index (type0) >= 0)
8770 {
8771 if (dval == NULL && valaddr == NULL && address == 0)
8772 return type0;
8773 return to_record_with_fixed_variant_part (type0, valaddr, address,
8774 dval);
8775 }
8776 else
8777 {
8778 TYPE_FIXED_INSTANCE (type0) = 1;
8779 return type0;
8780 }
8781
8782 }
8783
8784 /* An ordinary record type (with fixed-length fields) that describes
8785 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8786 union type. Any necessary discriminants' values should be in DVAL,
8787 a record value. That is, this routine selects the appropriate
8788 branch of the union at ADDR according to the discriminant value
8789 indicated in the union's type name. Returns VAR_TYPE0 itself if
8790 it represents a variant subject to a pragma Unchecked_Union. */
8791
8792 static struct type *
8793 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8794 CORE_ADDR address, struct value *dval)
8795 {
8796 int which;
8797 struct type *templ_type;
8798 struct type *var_type;
8799
8800 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8801 var_type = TYPE_TARGET_TYPE (var_type0);
8802 else
8803 var_type = var_type0;
8804
8805 templ_type = ada_find_parallel_type (var_type, "___XVU");
8806
8807 if (templ_type != NULL)
8808 var_type = templ_type;
8809
8810 if (is_unchecked_variant (var_type, value_type (dval)))
8811 return var_type0;
8812 which =
8813 ada_which_variant_applies (var_type,
8814 value_type (dval), value_contents (dval));
8815
8816 if (which < 0)
8817 return empty_record (var_type);
8818 else if (is_dynamic_field (var_type, which))
8819 return to_fixed_record_type
8820 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8821 valaddr, address, dval);
8822 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8823 return
8824 to_fixed_record_type
8825 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8826 else
8827 return TYPE_FIELD_TYPE (var_type, which);
8828 }
8829
8830 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8831 ENCODING_TYPE, a type following the GNAT conventions for discrete
8832 type encodings, only carries redundant information. */
8833
8834 static int
8835 ada_is_redundant_range_encoding (struct type *range_type,
8836 struct type *encoding_type)
8837 {
8838 const char *bounds_str;
8839 int n;
8840 LONGEST lo, hi;
8841
8842 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8843
8844 if (TYPE_CODE (get_base_type (range_type))
8845 != TYPE_CODE (get_base_type (encoding_type)))
8846 {
8847 /* The compiler probably used a simple base type to describe
8848 the range type instead of the range's actual base type,
8849 expecting us to get the real base type from the encoding
8850 anyway. In this situation, the encoding cannot be ignored
8851 as redundant. */
8852 return 0;
8853 }
8854
8855 if (is_dynamic_type (range_type))
8856 return 0;
8857
8858 if (TYPE_NAME (encoding_type) == NULL)
8859 return 0;
8860
8861 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8862 if (bounds_str == NULL)
8863 return 0;
8864
8865 n = 8; /* Skip "___XDLU_". */
8866 if (!ada_scan_number (bounds_str, n, &lo, &n))
8867 return 0;
8868 if (TYPE_LOW_BOUND (range_type) != lo)
8869 return 0;
8870
8871 n += 2; /* Skip the "__" separator between the two bounds. */
8872 if (!ada_scan_number (bounds_str, n, &hi, &n))
8873 return 0;
8874 if (TYPE_HIGH_BOUND (range_type) != hi)
8875 return 0;
8876
8877 return 1;
8878 }
8879
8880 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8881 a type following the GNAT encoding for describing array type
8882 indices, only carries redundant information. */
8883
8884 static int
8885 ada_is_redundant_index_type_desc (struct type *array_type,
8886 struct type *desc_type)
8887 {
8888 struct type *this_layer = check_typedef (array_type);
8889 int i;
8890
8891 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8892 {
8893 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8894 TYPE_FIELD_TYPE (desc_type, i)))
8895 return 0;
8896 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8897 }
8898
8899 return 1;
8900 }
8901
8902 /* Assuming that TYPE0 is an array type describing the type of a value
8903 at ADDR, and that DVAL describes a record containing any
8904 discriminants used in TYPE0, returns a type for the value that
8905 contains no dynamic components (that is, no components whose sizes
8906 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8907 true, gives an error message if the resulting type's size is over
8908 varsize_limit. */
8909
8910 static struct type *
8911 to_fixed_array_type (struct type *type0, struct value *dval,
8912 int ignore_too_big)
8913 {
8914 struct type *index_type_desc;
8915 struct type *result;
8916 int constrained_packed_array_p;
8917 static const char *xa_suffix = "___XA";
8918
8919 type0 = ada_check_typedef (type0);
8920 if (TYPE_FIXED_INSTANCE (type0))
8921 return type0;
8922
8923 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8924 if (constrained_packed_array_p)
8925 type0 = decode_constrained_packed_array_type (type0);
8926
8927 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8928
8929 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8930 encoding suffixed with 'P' may still be generated. If so,
8931 it should be used to find the XA type. */
8932
8933 if (index_type_desc == NULL)
8934 {
8935 const char *type_name = ada_type_name (type0);
8936
8937 if (type_name != NULL)
8938 {
8939 const int len = strlen (type_name);
8940 char *name = (char *) alloca (len + strlen (xa_suffix));
8941
8942 if (type_name[len - 1] == 'P')
8943 {
8944 strcpy (name, type_name);
8945 strcpy (name + len - 1, xa_suffix);
8946 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8947 }
8948 }
8949 }
8950
8951 ada_fixup_array_indexes_type (index_type_desc);
8952 if (index_type_desc != NULL
8953 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8954 {
8955 /* Ignore this ___XA parallel type, as it does not bring any
8956 useful information. This allows us to avoid creating fixed
8957 versions of the array's index types, which would be identical
8958 to the original ones. This, in turn, can also help avoid
8959 the creation of fixed versions of the array itself. */
8960 index_type_desc = NULL;
8961 }
8962
8963 if (index_type_desc == NULL)
8964 {
8965 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8966
8967 /* NOTE: elt_type---the fixed version of elt_type0---should never
8968 depend on the contents of the array in properly constructed
8969 debugging data. */
8970 /* Create a fixed version of the array element type.
8971 We're not providing the address of an element here,
8972 and thus the actual object value cannot be inspected to do
8973 the conversion. This should not be a problem, since arrays of
8974 unconstrained objects are not allowed. In particular, all
8975 the elements of an array of a tagged type should all be of
8976 the same type specified in the debugging info. No need to
8977 consult the object tag. */
8978 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8979
8980 /* Make sure we always create a new array type when dealing with
8981 packed array types, since we're going to fix-up the array
8982 type length and element bitsize a little further down. */
8983 if (elt_type0 == elt_type && !constrained_packed_array_p)
8984 result = type0;
8985 else
8986 result = create_array_type (alloc_type_copy (type0),
8987 elt_type, TYPE_INDEX_TYPE (type0));
8988 }
8989 else
8990 {
8991 int i;
8992 struct type *elt_type0;
8993
8994 elt_type0 = type0;
8995 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8996 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8997
8998 /* NOTE: result---the fixed version of elt_type0---should never
8999 depend on the contents of the array in properly constructed
9000 debugging data. */
9001 /* Create a fixed version of the array element type.
9002 We're not providing the address of an element here,
9003 and thus the actual object value cannot be inspected to do
9004 the conversion. This should not be a problem, since arrays of
9005 unconstrained objects are not allowed. In particular, all
9006 the elements of an array of a tagged type should all be of
9007 the same type specified in the debugging info. No need to
9008 consult the object tag. */
9009 result =
9010 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
9011
9012 elt_type0 = type0;
9013 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
9014 {
9015 struct type *range_type =
9016 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
9017
9018 result = create_array_type (alloc_type_copy (elt_type0),
9019 result, range_type);
9020 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
9021 }
9022 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
9023 error (_("array type with dynamic size is larger than varsize-limit"));
9024 }
9025
9026 /* We want to preserve the type name. This can be useful when
9027 trying to get the type name of a value that has already been
9028 printed (for instance, if the user did "print VAR; whatis $". */
9029 TYPE_NAME (result) = TYPE_NAME (type0);
9030
9031 if (constrained_packed_array_p)
9032 {
9033 /* So far, the resulting type has been created as if the original
9034 type was a regular (non-packed) array type. As a result, the
9035 bitsize of the array elements needs to be set again, and the array
9036 length needs to be recomputed based on that bitsize. */
9037 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
9038 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
9039
9040 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
9041 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
9042 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
9043 TYPE_LENGTH (result)++;
9044 }
9045
9046 TYPE_FIXED_INSTANCE (result) = 1;
9047 return result;
9048 }
9049
9050
9051 /* A standard type (containing no dynamically sized components)
9052 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
9053 DVAL describes a record containing any discriminants used in TYPE0,
9054 and may be NULL if there are none, or if the object of type TYPE at
9055 ADDRESS or in VALADDR contains these discriminants.
9056
9057 If CHECK_TAG is not null, in the case of tagged types, this function
9058 attempts to locate the object's tag and use it to compute the actual
9059 type. However, when ADDRESS is null, we cannot use it to determine the
9060 location of the tag, and therefore compute the tagged type's actual type.
9061 So we return the tagged type without consulting the tag. */
9062
9063 static struct type *
9064 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
9065 CORE_ADDR address, struct value *dval, int check_tag)
9066 {
9067 type = ada_check_typedef (type);
9068 switch (TYPE_CODE (type))
9069 {
9070 default:
9071 return type;
9072 case TYPE_CODE_STRUCT:
9073 {
9074 struct type *static_type = to_static_fixed_type (type);
9075 struct type *fixed_record_type =
9076 to_fixed_record_type (type, valaddr, address, NULL);
9077
9078 /* If STATIC_TYPE is a tagged type and we know the object's address,
9079 then we can determine its tag, and compute the object's actual
9080 type from there. Note that we have to use the fixed record
9081 type (the parent part of the record may have dynamic fields
9082 and the way the location of _tag is expressed may depend on
9083 them). */
9084
9085 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9086 {
9087 struct value *tag =
9088 value_tag_from_contents_and_address
9089 (fixed_record_type,
9090 valaddr,
9091 address);
9092 struct type *real_type = type_from_tag (tag);
9093 struct value *obj =
9094 value_from_contents_and_address (fixed_record_type,
9095 valaddr,
9096 address);
9097 fixed_record_type = value_type (obj);
9098 if (real_type != NULL)
9099 return to_fixed_record_type
9100 (real_type, NULL,
9101 value_address (ada_tag_value_at_base_address (obj)), NULL);
9102 }
9103
9104 /* Check to see if there is a parallel ___XVZ variable.
9105 If there is, then it provides the actual size of our type. */
9106 else if (ada_type_name (fixed_record_type) != NULL)
9107 {
9108 const char *name = ada_type_name (fixed_record_type);
9109 char *xvz_name
9110 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9111 bool xvz_found = false;
9112 LONGEST size;
9113
9114 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9115 TRY
9116 {
9117 xvz_found = get_int_var_value (xvz_name, size);
9118 }
9119 CATCH (except, RETURN_MASK_ERROR)
9120 {
9121 /* We found the variable, but somehow failed to read
9122 its value. Rethrow the same error, but with a little
9123 bit more information, to help the user understand
9124 what went wrong (Eg: the variable might have been
9125 optimized out). */
9126 throw_error (except.error,
9127 _("unable to read value of %s (%s)"),
9128 xvz_name, except.message);
9129 }
9130 END_CATCH
9131
9132 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9133 {
9134 fixed_record_type = copy_type (fixed_record_type);
9135 TYPE_LENGTH (fixed_record_type) = size;
9136
9137 /* The FIXED_RECORD_TYPE may have be a stub. We have
9138 observed this when the debugging info is STABS, and
9139 apparently it is something that is hard to fix.
9140
9141 In practice, we don't need the actual type definition
9142 at all, because the presence of the XVZ variable allows us
9143 to assume that there must be a XVS type as well, which we
9144 should be able to use later, when we need the actual type
9145 definition.
9146
9147 In the meantime, pretend that the "fixed" type we are
9148 returning is NOT a stub, because this can cause trouble
9149 when using this type to create new types targeting it.
9150 Indeed, the associated creation routines often check
9151 whether the target type is a stub and will try to replace
9152 it, thus using a type with the wrong size. This, in turn,
9153 might cause the new type to have the wrong size too.
9154 Consider the case of an array, for instance, where the size
9155 of the array is computed from the number of elements in
9156 our array multiplied by the size of its element. */
9157 TYPE_STUB (fixed_record_type) = 0;
9158 }
9159 }
9160 return fixed_record_type;
9161 }
9162 case TYPE_CODE_ARRAY:
9163 return to_fixed_array_type (type, dval, 1);
9164 case TYPE_CODE_UNION:
9165 if (dval == NULL)
9166 return type;
9167 else
9168 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9169 }
9170 }
9171
9172 /* The same as ada_to_fixed_type_1, except that it preserves the type
9173 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9174
9175 The typedef layer needs be preserved in order to differentiate between
9176 arrays and array pointers when both types are implemented using the same
9177 fat pointer. In the array pointer case, the pointer is encoded as
9178 a typedef of the pointer type. For instance, considering:
9179
9180 type String_Access is access String;
9181 S1 : String_Access := null;
9182
9183 To the debugger, S1 is defined as a typedef of type String. But
9184 to the user, it is a pointer. So if the user tries to print S1,
9185 we should not dereference the array, but print the array address
9186 instead.
9187
9188 If we didn't preserve the typedef layer, we would lose the fact that
9189 the type is to be presented as a pointer (needs de-reference before
9190 being printed). And we would also use the source-level type name. */
9191
9192 struct type *
9193 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9194 CORE_ADDR address, struct value *dval, int check_tag)
9195
9196 {
9197 struct type *fixed_type =
9198 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9199
9200 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9201 then preserve the typedef layer.
9202
9203 Implementation note: We can only check the main-type portion of
9204 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9205 from TYPE now returns a type that has the same instance flags
9206 as TYPE. For instance, if TYPE is a "typedef const", and its
9207 target type is a "struct", then the typedef elimination will return
9208 a "const" version of the target type. See check_typedef for more
9209 details about how the typedef layer elimination is done.
9210
9211 brobecker/2010-11-19: It seems to me that the only case where it is
9212 useful to preserve the typedef layer is when dealing with fat pointers.
9213 Perhaps, we could add a check for that and preserve the typedef layer
9214 only in that situation. But this seems unecessary so far, probably
9215 because we call check_typedef/ada_check_typedef pretty much everywhere.
9216 */
9217 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9218 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9219 == TYPE_MAIN_TYPE (fixed_type)))
9220 return type;
9221
9222 return fixed_type;
9223 }
9224
9225 /* A standard (static-sized) type corresponding as well as possible to
9226 TYPE0, but based on no runtime data. */
9227
9228 static struct type *
9229 to_static_fixed_type (struct type *type0)
9230 {
9231 struct type *type;
9232
9233 if (type0 == NULL)
9234 return NULL;
9235
9236 if (TYPE_FIXED_INSTANCE (type0))
9237 return type0;
9238
9239 type0 = ada_check_typedef (type0);
9240
9241 switch (TYPE_CODE (type0))
9242 {
9243 default:
9244 return type0;
9245 case TYPE_CODE_STRUCT:
9246 type = dynamic_template_type (type0);
9247 if (type != NULL)
9248 return template_to_static_fixed_type (type);
9249 else
9250 return template_to_static_fixed_type (type0);
9251 case TYPE_CODE_UNION:
9252 type = ada_find_parallel_type (type0, "___XVU");
9253 if (type != NULL)
9254 return template_to_static_fixed_type (type);
9255 else
9256 return template_to_static_fixed_type (type0);
9257 }
9258 }
9259
9260 /* A static approximation of TYPE with all type wrappers removed. */
9261
9262 static struct type *
9263 static_unwrap_type (struct type *type)
9264 {
9265 if (ada_is_aligner_type (type))
9266 {
9267 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9268 if (ada_type_name (type1) == NULL)
9269 TYPE_NAME (type1) = ada_type_name (type);
9270
9271 return static_unwrap_type (type1);
9272 }
9273 else
9274 {
9275 struct type *raw_real_type = ada_get_base_type (type);
9276
9277 if (raw_real_type == type)
9278 return type;
9279 else
9280 return to_static_fixed_type (raw_real_type);
9281 }
9282 }
9283
9284 /* In some cases, incomplete and private types require
9285 cross-references that are not resolved as records (for example,
9286 type Foo;
9287 type FooP is access Foo;
9288 V: FooP;
9289 type Foo is array ...;
9290 ). In these cases, since there is no mechanism for producing
9291 cross-references to such types, we instead substitute for FooP a
9292 stub enumeration type that is nowhere resolved, and whose tag is
9293 the name of the actual type. Call these types "non-record stubs". */
9294
9295 /* A type equivalent to TYPE that is not a non-record stub, if one
9296 exists, otherwise TYPE. */
9297
9298 struct type *
9299 ada_check_typedef (struct type *type)
9300 {
9301 if (type == NULL)
9302 return NULL;
9303
9304 /* If our type is a typedef type of a fat pointer, then we're done.
9305 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9306 what allows us to distinguish between fat pointers that represent
9307 array types, and fat pointers that represent array access types
9308 (in both cases, the compiler implements them as fat pointers). */
9309 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9310 && is_thick_pntr (ada_typedef_target_type (type)))
9311 return type;
9312
9313 type = check_typedef (type);
9314 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9315 || !TYPE_STUB (type)
9316 || TYPE_TAG_NAME (type) == NULL)
9317 return type;
9318 else
9319 {
9320 const char *name = TYPE_TAG_NAME (type);
9321 struct type *type1 = ada_find_any_type (name);
9322
9323 if (type1 == NULL)
9324 return type;
9325
9326 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9327 stubs pointing to arrays, as we don't create symbols for array
9328 types, only for the typedef-to-array types). If that's the case,
9329 strip the typedef layer. */
9330 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9331 type1 = ada_check_typedef (type1);
9332
9333 return type1;
9334 }
9335 }
9336
9337 /* A value representing the data at VALADDR/ADDRESS as described by
9338 type TYPE0, but with a standard (static-sized) type that correctly
9339 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9340 type, then return VAL0 [this feature is simply to avoid redundant
9341 creation of struct values]. */
9342
9343 static struct value *
9344 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9345 struct value *val0)
9346 {
9347 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9348
9349 if (type == type0 && val0 != NULL)
9350 return val0;
9351
9352 if (VALUE_LVAL (val0) != lval_memory)
9353 {
9354 /* Our value does not live in memory; it could be a convenience
9355 variable, for instance. Create a not_lval value using val0's
9356 contents. */
9357 return value_from_contents (type, value_contents (val0));
9358 }
9359
9360 return value_from_contents_and_address (type, 0, address);
9361 }
9362
9363 /* A value representing VAL, but with a standard (static-sized) type
9364 that correctly describes it. Does not necessarily create a new
9365 value. */
9366
9367 struct value *
9368 ada_to_fixed_value (struct value *val)
9369 {
9370 val = unwrap_value (val);
9371 val = ada_to_fixed_value_create (value_type (val),
9372 value_address (val),
9373 val);
9374 return val;
9375 }
9376 \f
9377
9378 /* Attributes */
9379
9380 /* Table mapping attribute numbers to names.
9381 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9382
9383 static const char *attribute_names[] = {
9384 "<?>",
9385
9386 "first",
9387 "last",
9388 "length",
9389 "image",
9390 "max",
9391 "min",
9392 "modulus",
9393 "pos",
9394 "size",
9395 "tag",
9396 "val",
9397 0
9398 };
9399
9400 const char *
9401 ada_attribute_name (enum exp_opcode n)
9402 {
9403 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9404 return attribute_names[n - OP_ATR_FIRST + 1];
9405 else
9406 return attribute_names[0];
9407 }
9408
9409 /* Evaluate the 'POS attribute applied to ARG. */
9410
9411 static LONGEST
9412 pos_atr (struct value *arg)
9413 {
9414 struct value *val = coerce_ref (arg);
9415 struct type *type = value_type (val);
9416 LONGEST result;
9417
9418 if (!discrete_type_p (type))
9419 error (_("'POS only defined on discrete types"));
9420
9421 if (!discrete_position (type, value_as_long (val), &result))
9422 error (_("enumeration value is invalid: can't find 'POS"));
9423
9424 return result;
9425 }
9426
9427 static struct value *
9428 value_pos_atr (struct type *type, struct value *arg)
9429 {
9430 return value_from_longest (type, pos_atr (arg));
9431 }
9432
9433 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9434
9435 static struct value *
9436 value_val_atr (struct type *type, struct value *arg)
9437 {
9438 if (!discrete_type_p (type))
9439 error (_("'VAL only defined on discrete types"));
9440 if (!integer_type_p (value_type (arg)))
9441 error (_("'VAL requires integral argument"));
9442
9443 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9444 {
9445 long pos = value_as_long (arg);
9446
9447 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9448 error (_("argument to 'VAL out of range"));
9449 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9450 }
9451 else
9452 return value_from_longest (type, value_as_long (arg));
9453 }
9454 \f
9455
9456 /* Evaluation */
9457
9458 /* True if TYPE appears to be an Ada character type.
9459 [At the moment, this is true only for Character and Wide_Character;
9460 It is a heuristic test that could stand improvement]. */
9461
9462 int
9463 ada_is_character_type (struct type *type)
9464 {
9465 const char *name;
9466
9467 /* If the type code says it's a character, then assume it really is,
9468 and don't check any further. */
9469 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9470 return 1;
9471
9472 /* Otherwise, assume it's a character type iff it is a discrete type
9473 with a known character type name. */
9474 name = ada_type_name (type);
9475 return (name != NULL
9476 && (TYPE_CODE (type) == TYPE_CODE_INT
9477 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9478 && (strcmp (name, "character") == 0
9479 || strcmp (name, "wide_character") == 0
9480 || strcmp (name, "wide_wide_character") == 0
9481 || strcmp (name, "unsigned char") == 0));
9482 }
9483
9484 /* True if TYPE appears to be an Ada string type. */
9485
9486 int
9487 ada_is_string_type (struct type *type)
9488 {
9489 type = ada_check_typedef (type);
9490 if (type != NULL
9491 && TYPE_CODE (type) != TYPE_CODE_PTR
9492 && (ada_is_simple_array_type (type)
9493 || ada_is_array_descriptor_type (type))
9494 && ada_array_arity (type) == 1)
9495 {
9496 struct type *elttype = ada_array_element_type (type, 1);
9497
9498 return ada_is_character_type (elttype);
9499 }
9500 else
9501 return 0;
9502 }
9503
9504 /* The compiler sometimes provides a parallel XVS type for a given
9505 PAD type. Normally, it is safe to follow the PAD type directly,
9506 but older versions of the compiler have a bug that causes the offset
9507 of its "F" field to be wrong. Following that field in that case
9508 would lead to incorrect results, but this can be worked around
9509 by ignoring the PAD type and using the associated XVS type instead.
9510
9511 Set to True if the debugger should trust the contents of PAD types.
9512 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9513 static int trust_pad_over_xvs = 1;
9514
9515 /* True if TYPE is a struct type introduced by the compiler to force the
9516 alignment of a value. Such types have a single field with a
9517 distinctive name. */
9518
9519 int
9520 ada_is_aligner_type (struct type *type)
9521 {
9522 type = ada_check_typedef (type);
9523
9524 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9525 return 0;
9526
9527 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9528 && TYPE_NFIELDS (type) == 1
9529 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9530 }
9531
9532 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9533 the parallel type. */
9534
9535 struct type *
9536 ada_get_base_type (struct type *raw_type)
9537 {
9538 struct type *real_type_namer;
9539 struct type *raw_real_type;
9540
9541 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9542 return raw_type;
9543
9544 if (ada_is_aligner_type (raw_type))
9545 /* The encoding specifies that we should always use the aligner type.
9546 So, even if this aligner type has an associated XVS type, we should
9547 simply ignore it.
9548
9549 According to the compiler gurus, an XVS type parallel to an aligner
9550 type may exist because of a stabs limitation. In stabs, aligner
9551 types are empty because the field has a variable-sized type, and
9552 thus cannot actually be used as an aligner type. As a result,
9553 we need the associated parallel XVS type to decode the type.
9554 Since the policy in the compiler is to not change the internal
9555 representation based on the debugging info format, we sometimes
9556 end up having a redundant XVS type parallel to the aligner type. */
9557 return raw_type;
9558
9559 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9560 if (real_type_namer == NULL
9561 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9562 || TYPE_NFIELDS (real_type_namer) != 1)
9563 return raw_type;
9564
9565 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9566 {
9567 /* This is an older encoding form where the base type needs to be
9568 looked up by name. We prefer the newer enconding because it is
9569 more efficient. */
9570 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9571 if (raw_real_type == NULL)
9572 return raw_type;
9573 else
9574 return raw_real_type;
9575 }
9576
9577 /* The field in our XVS type is a reference to the base type. */
9578 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9579 }
9580
9581 /* The type of value designated by TYPE, with all aligners removed. */
9582
9583 struct type *
9584 ada_aligned_type (struct type *type)
9585 {
9586 if (ada_is_aligner_type (type))
9587 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9588 else
9589 return ada_get_base_type (type);
9590 }
9591
9592
9593 /* The address of the aligned value in an object at address VALADDR
9594 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9595
9596 const gdb_byte *
9597 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9598 {
9599 if (ada_is_aligner_type (type))
9600 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9601 valaddr +
9602 TYPE_FIELD_BITPOS (type,
9603 0) / TARGET_CHAR_BIT);
9604 else
9605 return valaddr;
9606 }
9607
9608
9609
9610 /* The printed representation of an enumeration literal with encoded
9611 name NAME. The value is good to the next call of ada_enum_name. */
9612 const char *
9613 ada_enum_name (const char *name)
9614 {
9615 static char *result;
9616 static size_t result_len = 0;
9617 const char *tmp;
9618
9619 /* First, unqualify the enumeration name:
9620 1. Search for the last '.' character. If we find one, then skip
9621 all the preceding characters, the unqualified name starts
9622 right after that dot.
9623 2. Otherwise, we may be debugging on a target where the compiler
9624 translates dots into "__". Search forward for double underscores,
9625 but stop searching when we hit an overloading suffix, which is
9626 of the form "__" followed by digits. */
9627
9628 tmp = strrchr (name, '.');
9629 if (tmp != NULL)
9630 name = tmp + 1;
9631 else
9632 {
9633 while ((tmp = strstr (name, "__")) != NULL)
9634 {
9635 if (isdigit (tmp[2]))
9636 break;
9637 else
9638 name = tmp + 2;
9639 }
9640 }
9641
9642 if (name[0] == 'Q')
9643 {
9644 int v;
9645
9646 if (name[1] == 'U' || name[1] == 'W')
9647 {
9648 if (sscanf (name + 2, "%x", &v) != 1)
9649 return name;
9650 }
9651 else
9652 return name;
9653
9654 GROW_VECT (result, result_len, 16);
9655 if (isascii (v) && isprint (v))
9656 xsnprintf (result, result_len, "'%c'", v);
9657 else if (name[1] == 'U')
9658 xsnprintf (result, result_len, "[\"%02x\"]", v);
9659 else
9660 xsnprintf (result, result_len, "[\"%04x\"]", v);
9661
9662 return result;
9663 }
9664 else
9665 {
9666 tmp = strstr (name, "__");
9667 if (tmp == NULL)
9668 tmp = strstr (name, "$");
9669 if (tmp != NULL)
9670 {
9671 GROW_VECT (result, result_len, tmp - name + 1);
9672 strncpy (result, name, tmp - name);
9673 result[tmp - name] = '\0';
9674 return result;
9675 }
9676
9677 return name;
9678 }
9679 }
9680
9681 /* Evaluate the subexpression of EXP starting at *POS as for
9682 evaluate_type, updating *POS to point just past the evaluated
9683 expression. */
9684
9685 static struct value *
9686 evaluate_subexp_type (struct expression *exp, int *pos)
9687 {
9688 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9689 }
9690
9691 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9692 value it wraps. */
9693
9694 static struct value *
9695 unwrap_value (struct value *val)
9696 {
9697 struct type *type = ada_check_typedef (value_type (val));
9698
9699 if (ada_is_aligner_type (type))
9700 {
9701 struct value *v = ada_value_struct_elt (val, "F", 0);
9702 struct type *val_type = ada_check_typedef (value_type (v));
9703
9704 if (ada_type_name (val_type) == NULL)
9705 TYPE_NAME (val_type) = ada_type_name (type);
9706
9707 return unwrap_value (v);
9708 }
9709 else
9710 {
9711 struct type *raw_real_type =
9712 ada_check_typedef (ada_get_base_type (type));
9713
9714 /* If there is no parallel XVS or XVE type, then the value is
9715 already unwrapped. Return it without further modification. */
9716 if ((type == raw_real_type)
9717 && ada_find_parallel_type (type, "___XVE") == NULL)
9718 return val;
9719
9720 return
9721 coerce_unspec_val_to_type
9722 (val, ada_to_fixed_type (raw_real_type, 0,
9723 value_address (val),
9724 NULL, 1));
9725 }
9726 }
9727
9728 static struct value *
9729 cast_from_fixed (struct type *type, struct value *arg)
9730 {
9731 struct value *scale = ada_scaling_factor (value_type (arg));
9732 arg = value_cast (value_type (scale), arg);
9733
9734 arg = value_binop (arg, scale, BINOP_MUL);
9735 return value_cast (type, arg);
9736 }
9737
9738 static struct value *
9739 cast_to_fixed (struct type *type, struct value *arg)
9740 {
9741 if (type == value_type (arg))
9742 return arg;
9743
9744 struct value *scale = ada_scaling_factor (type);
9745 if (ada_is_fixed_point_type (value_type (arg)))
9746 arg = cast_from_fixed (value_type (scale), arg);
9747 else
9748 arg = value_cast (value_type (scale), arg);
9749
9750 arg = value_binop (arg, scale, BINOP_DIV);
9751 return value_cast (type, arg);
9752 }
9753
9754 /* Given two array types T1 and T2, return nonzero iff both arrays
9755 contain the same number of elements. */
9756
9757 static int
9758 ada_same_array_size_p (struct type *t1, struct type *t2)
9759 {
9760 LONGEST lo1, hi1, lo2, hi2;
9761
9762 /* Get the array bounds in order to verify that the size of
9763 the two arrays match. */
9764 if (!get_array_bounds (t1, &lo1, &hi1)
9765 || !get_array_bounds (t2, &lo2, &hi2))
9766 error (_("unable to determine array bounds"));
9767
9768 /* To make things easier for size comparison, normalize a bit
9769 the case of empty arrays by making sure that the difference
9770 between upper bound and lower bound is always -1. */
9771 if (lo1 > hi1)
9772 hi1 = lo1 - 1;
9773 if (lo2 > hi2)
9774 hi2 = lo2 - 1;
9775
9776 return (hi1 - lo1 == hi2 - lo2);
9777 }
9778
9779 /* Assuming that VAL is an array of integrals, and TYPE represents
9780 an array with the same number of elements, but with wider integral
9781 elements, return an array "casted" to TYPE. In practice, this
9782 means that the returned array is built by casting each element
9783 of the original array into TYPE's (wider) element type. */
9784
9785 static struct value *
9786 ada_promote_array_of_integrals (struct type *type, struct value *val)
9787 {
9788 struct type *elt_type = TYPE_TARGET_TYPE (type);
9789 LONGEST lo, hi;
9790 struct value *res;
9791 LONGEST i;
9792
9793 /* Verify that both val and type are arrays of scalars, and
9794 that the size of val's elements is smaller than the size
9795 of type's element. */
9796 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9797 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9798 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9799 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9800 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9801 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9802
9803 if (!get_array_bounds (type, &lo, &hi))
9804 error (_("unable to determine array bounds"));
9805
9806 res = allocate_value (type);
9807
9808 /* Promote each array element. */
9809 for (i = 0; i < hi - lo + 1; i++)
9810 {
9811 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9812
9813 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9814 value_contents_all (elt), TYPE_LENGTH (elt_type));
9815 }
9816
9817 return res;
9818 }
9819
9820 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9821 return the converted value. */
9822
9823 static struct value *
9824 coerce_for_assign (struct type *type, struct value *val)
9825 {
9826 struct type *type2 = value_type (val);
9827
9828 if (type == type2)
9829 return val;
9830
9831 type2 = ada_check_typedef (type2);
9832 type = ada_check_typedef (type);
9833
9834 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9835 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9836 {
9837 val = ada_value_ind (val);
9838 type2 = value_type (val);
9839 }
9840
9841 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9842 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9843 {
9844 if (!ada_same_array_size_p (type, type2))
9845 error (_("cannot assign arrays of different length"));
9846
9847 if (is_integral_type (TYPE_TARGET_TYPE (type))
9848 && is_integral_type (TYPE_TARGET_TYPE (type2))
9849 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9850 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9851 {
9852 /* Allow implicit promotion of the array elements to
9853 a wider type. */
9854 return ada_promote_array_of_integrals (type, val);
9855 }
9856
9857 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9858 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9859 error (_("Incompatible types in assignment"));
9860 deprecated_set_value_type (val, type);
9861 }
9862 return val;
9863 }
9864
9865 static struct value *
9866 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9867 {
9868 struct value *val;
9869 struct type *type1, *type2;
9870 LONGEST v, v1, v2;
9871
9872 arg1 = coerce_ref (arg1);
9873 arg2 = coerce_ref (arg2);
9874 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9875 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9876
9877 if (TYPE_CODE (type1) != TYPE_CODE_INT
9878 || TYPE_CODE (type2) != TYPE_CODE_INT)
9879 return value_binop (arg1, arg2, op);
9880
9881 switch (op)
9882 {
9883 case BINOP_MOD:
9884 case BINOP_DIV:
9885 case BINOP_REM:
9886 break;
9887 default:
9888 return value_binop (arg1, arg2, op);
9889 }
9890
9891 v2 = value_as_long (arg2);
9892 if (v2 == 0)
9893 error (_("second operand of %s must not be zero."), op_string (op));
9894
9895 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9896 return value_binop (arg1, arg2, op);
9897
9898 v1 = value_as_long (arg1);
9899 switch (op)
9900 {
9901 case BINOP_DIV:
9902 v = v1 / v2;
9903 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9904 v += v > 0 ? -1 : 1;
9905 break;
9906 case BINOP_REM:
9907 v = v1 % v2;
9908 if (v * v1 < 0)
9909 v -= v2;
9910 break;
9911 default:
9912 /* Should not reach this point. */
9913 v = 0;
9914 }
9915
9916 val = allocate_value (type1);
9917 store_unsigned_integer (value_contents_raw (val),
9918 TYPE_LENGTH (value_type (val)),
9919 gdbarch_byte_order (get_type_arch (type1)), v);
9920 return val;
9921 }
9922
9923 static int
9924 ada_value_equal (struct value *arg1, struct value *arg2)
9925 {
9926 if (ada_is_direct_array_type (value_type (arg1))
9927 || ada_is_direct_array_type (value_type (arg2)))
9928 {
9929 struct type *arg1_type, *arg2_type;
9930
9931 /* Automatically dereference any array reference before
9932 we attempt to perform the comparison. */
9933 arg1 = ada_coerce_ref (arg1);
9934 arg2 = ada_coerce_ref (arg2);
9935
9936 arg1 = ada_coerce_to_simple_array (arg1);
9937 arg2 = ada_coerce_to_simple_array (arg2);
9938
9939 arg1_type = ada_check_typedef (value_type (arg1));
9940 arg2_type = ada_check_typedef (value_type (arg2));
9941
9942 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9943 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9944 error (_("Attempt to compare array with non-array"));
9945 /* FIXME: The following works only for types whose
9946 representations use all bits (no padding or undefined bits)
9947 and do not have user-defined equality. */
9948 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9949 && memcmp (value_contents (arg1), value_contents (arg2),
9950 TYPE_LENGTH (arg1_type)) == 0);
9951 }
9952 return value_equal (arg1, arg2);
9953 }
9954
9955 /* Total number of component associations in the aggregate starting at
9956 index PC in EXP. Assumes that index PC is the start of an
9957 OP_AGGREGATE. */
9958
9959 static int
9960 num_component_specs (struct expression *exp, int pc)
9961 {
9962 int n, m, i;
9963
9964 m = exp->elts[pc + 1].longconst;
9965 pc += 3;
9966 n = 0;
9967 for (i = 0; i < m; i += 1)
9968 {
9969 switch (exp->elts[pc].opcode)
9970 {
9971 default:
9972 n += 1;
9973 break;
9974 case OP_CHOICES:
9975 n += exp->elts[pc + 1].longconst;
9976 break;
9977 }
9978 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9979 }
9980 return n;
9981 }
9982
9983 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9984 component of LHS (a simple array or a record), updating *POS past
9985 the expression, assuming that LHS is contained in CONTAINER. Does
9986 not modify the inferior's memory, nor does it modify LHS (unless
9987 LHS == CONTAINER). */
9988
9989 static void
9990 assign_component (struct value *container, struct value *lhs, LONGEST index,
9991 struct expression *exp, int *pos)
9992 {
9993 struct value *mark = value_mark ();
9994 struct value *elt;
9995 struct type *lhs_type = check_typedef (value_type (lhs));
9996
9997 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9998 {
9999 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
10000 struct value *index_val = value_from_longest (index_type, index);
10001
10002 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
10003 }
10004 else
10005 {
10006 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
10007 elt = ada_to_fixed_value (elt);
10008 }
10009
10010 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10011 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
10012 else
10013 value_assign_to_component (container, elt,
10014 ada_evaluate_subexp (NULL, exp, pos,
10015 EVAL_NORMAL));
10016
10017 value_free_to_mark (mark);
10018 }
10019
10020 /* Assuming that LHS represents an lvalue having a record or array
10021 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
10022 of that aggregate's value to LHS, advancing *POS past the
10023 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
10024 lvalue containing LHS (possibly LHS itself). Does not modify
10025 the inferior's memory, nor does it modify the contents of
10026 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
10027
10028 static struct value *
10029 assign_aggregate (struct value *container,
10030 struct value *lhs, struct expression *exp,
10031 int *pos, enum noside noside)
10032 {
10033 struct type *lhs_type;
10034 int n = exp->elts[*pos+1].longconst;
10035 LONGEST low_index, high_index;
10036 int num_specs;
10037 LONGEST *indices;
10038 int max_indices, num_indices;
10039 int i;
10040
10041 *pos += 3;
10042 if (noside != EVAL_NORMAL)
10043 {
10044 for (i = 0; i < n; i += 1)
10045 ada_evaluate_subexp (NULL, exp, pos, noside);
10046 return container;
10047 }
10048
10049 container = ada_coerce_ref (container);
10050 if (ada_is_direct_array_type (value_type (container)))
10051 container = ada_coerce_to_simple_array (container);
10052 lhs = ada_coerce_ref (lhs);
10053 if (!deprecated_value_modifiable (lhs))
10054 error (_("Left operand of assignment is not a modifiable lvalue."));
10055
10056 lhs_type = check_typedef (value_type (lhs));
10057 if (ada_is_direct_array_type (lhs_type))
10058 {
10059 lhs = ada_coerce_to_simple_array (lhs);
10060 lhs_type = check_typedef (value_type (lhs));
10061 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
10062 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
10063 }
10064 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
10065 {
10066 low_index = 0;
10067 high_index = num_visible_fields (lhs_type) - 1;
10068 }
10069 else
10070 error (_("Left-hand side must be array or record."));
10071
10072 num_specs = num_component_specs (exp, *pos - 3);
10073 max_indices = 4 * num_specs + 4;
10074 indices = XALLOCAVEC (LONGEST, max_indices);
10075 indices[0] = indices[1] = low_index - 1;
10076 indices[2] = indices[3] = high_index + 1;
10077 num_indices = 4;
10078
10079 for (i = 0; i < n; i += 1)
10080 {
10081 switch (exp->elts[*pos].opcode)
10082 {
10083 case OP_CHOICES:
10084 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10085 &num_indices, max_indices,
10086 low_index, high_index);
10087 break;
10088 case OP_POSITIONAL:
10089 aggregate_assign_positional (container, lhs, exp, pos, indices,
10090 &num_indices, max_indices,
10091 low_index, high_index);
10092 break;
10093 case OP_OTHERS:
10094 if (i != n-1)
10095 error (_("Misplaced 'others' clause"));
10096 aggregate_assign_others (container, lhs, exp, pos, indices,
10097 num_indices, low_index, high_index);
10098 break;
10099 default:
10100 error (_("Internal error: bad aggregate clause"));
10101 }
10102 }
10103
10104 return container;
10105 }
10106
10107 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10108 construct at *POS, updating *POS past the construct, given that
10109 the positions are relative to lower bound LOW, where HIGH is the
10110 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10111 updating *NUM_INDICES as needed. CONTAINER is as for
10112 assign_aggregate. */
10113 static void
10114 aggregate_assign_positional (struct value *container,
10115 struct value *lhs, struct expression *exp,
10116 int *pos, LONGEST *indices, int *num_indices,
10117 int max_indices, LONGEST low, LONGEST high)
10118 {
10119 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10120
10121 if (ind - 1 == high)
10122 warning (_("Extra components in aggregate ignored."));
10123 if (ind <= high)
10124 {
10125 add_component_interval (ind, ind, indices, num_indices, max_indices);
10126 *pos += 3;
10127 assign_component (container, lhs, ind, exp, pos);
10128 }
10129 else
10130 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10131 }
10132
10133 /* Assign into the components of LHS indexed by the OP_CHOICES
10134 construct at *POS, updating *POS past the construct, given that
10135 the allowable indices are LOW..HIGH. Record the indices assigned
10136 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10137 needed. CONTAINER is as for assign_aggregate. */
10138 static void
10139 aggregate_assign_from_choices (struct value *container,
10140 struct value *lhs, struct expression *exp,
10141 int *pos, LONGEST *indices, int *num_indices,
10142 int max_indices, LONGEST low, LONGEST high)
10143 {
10144 int j;
10145 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10146 int choice_pos, expr_pc;
10147 int is_array = ada_is_direct_array_type (value_type (lhs));
10148
10149 choice_pos = *pos += 3;
10150
10151 for (j = 0; j < n_choices; j += 1)
10152 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10153 expr_pc = *pos;
10154 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10155
10156 for (j = 0; j < n_choices; j += 1)
10157 {
10158 LONGEST lower, upper;
10159 enum exp_opcode op = exp->elts[choice_pos].opcode;
10160
10161 if (op == OP_DISCRETE_RANGE)
10162 {
10163 choice_pos += 1;
10164 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10165 EVAL_NORMAL));
10166 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10167 EVAL_NORMAL));
10168 }
10169 else if (is_array)
10170 {
10171 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10172 EVAL_NORMAL));
10173 upper = lower;
10174 }
10175 else
10176 {
10177 int ind;
10178 const char *name;
10179
10180 switch (op)
10181 {
10182 case OP_NAME:
10183 name = &exp->elts[choice_pos + 2].string;
10184 break;
10185 case OP_VAR_VALUE:
10186 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10187 break;
10188 default:
10189 error (_("Invalid record component association."));
10190 }
10191 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10192 ind = 0;
10193 if (! find_struct_field (name, value_type (lhs), 0,
10194 NULL, NULL, NULL, NULL, &ind))
10195 error (_("Unknown component name: %s."), name);
10196 lower = upper = ind;
10197 }
10198
10199 if (lower <= upper && (lower < low || upper > high))
10200 error (_("Index in component association out of bounds."));
10201
10202 add_component_interval (lower, upper, indices, num_indices,
10203 max_indices);
10204 while (lower <= upper)
10205 {
10206 int pos1;
10207
10208 pos1 = expr_pc;
10209 assign_component (container, lhs, lower, exp, &pos1);
10210 lower += 1;
10211 }
10212 }
10213 }
10214
10215 /* Assign the value of the expression in the OP_OTHERS construct in
10216 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10217 have not been previously assigned. The index intervals already assigned
10218 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10219 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10220 static void
10221 aggregate_assign_others (struct value *container,
10222 struct value *lhs, struct expression *exp,
10223 int *pos, LONGEST *indices, int num_indices,
10224 LONGEST low, LONGEST high)
10225 {
10226 int i;
10227 int expr_pc = *pos + 1;
10228
10229 for (i = 0; i < num_indices - 2; i += 2)
10230 {
10231 LONGEST ind;
10232
10233 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10234 {
10235 int localpos;
10236
10237 localpos = expr_pc;
10238 assign_component (container, lhs, ind, exp, &localpos);
10239 }
10240 }
10241 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10242 }
10243
10244 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10245 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10246 modifying *SIZE as needed. It is an error if *SIZE exceeds
10247 MAX_SIZE. The resulting intervals do not overlap. */
10248 static void
10249 add_component_interval (LONGEST low, LONGEST high,
10250 LONGEST* indices, int *size, int max_size)
10251 {
10252 int i, j;
10253
10254 for (i = 0; i < *size; i += 2) {
10255 if (high >= indices[i] && low <= indices[i + 1])
10256 {
10257 int kh;
10258
10259 for (kh = i + 2; kh < *size; kh += 2)
10260 if (high < indices[kh])
10261 break;
10262 if (low < indices[i])
10263 indices[i] = low;
10264 indices[i + 1] = indices[kh - 1];
10265 if (high > indices[i + 1])
10266 indices[i + 1] = high;
10267 memcpy (indices + i + 2, indices + kh, *size - kh);
10268 *size -= kh - i - 2;
10269 return;
10270 }
10271 else if (high < indices[i])
10272 break;
10273 }
10274
10275 if (*size == max_size)
10276 error (_("Internal error: miscounted aggregate components."));
10277 *size += 2;
10278 for (j = *size-1; j >= i+2; j -= 1)
10279 indices[j] = indices[j - 2];
10280 indices[i] = low;
10281 indices[i + 1] = high;
10282 }
10283
10284 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10285 is different. */
10286
10287 static struct value *
10288 ada_value_cast (struct type *type, struct value *arg2)
10289 {
10290 if (type == ada_check_typedef (value_type (arg2)))
10291 return arg2;
10292
10293 if (ada_is_fixed_point_type (type))
10294 return (cast_to_fixed (type, arg2));
10295
10296 if (ada_is_fixed_point_type (value_type (arg2)))
10297 return cast_from_fixed (type, arg2);
10298
10299 return value_cast (type, arg2);
10300 }
10301
10302 /* Evaluating Ada expressions, and printing their result.
10303 ------------------------------------------------------
10304
10305 1. Introduction:
10306 ----------------
10307
10308 We usually evaluate an Ada expression in order to print its value.
10309 We also evaluate an expression in order to print its type, which
10310 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10311 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10312 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10313 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10314 similar.
10315
10316 Evaluating expressions is a little more complicated for Ada entities
10317 than it is for entities in languages such as C. The main reason for
10318 this is that Ada provides types whose definition might be dynamic.
10319 One example of such types is variant records. Or another example
10320 would be an array whose bounds can only be known at run time.
10321
10322 The following description is a general guide as to what should be
10323 done (and what should NOT be done) in order to evaluate an expression
10324 involving such types, and when. This does not cover how the semantic
10325 information is encoded by GNAT as this is covered separatly. For the
10326 document used as the reference for the GNAT encoding, see exp_dbug.ads
10327 in the GNAT sources.
10328
10329 Ideally, we should embed each part of this description next to its
10330 associated code. Unfortunately, the amount of code is so vast right
10331 now that it's hard to see whether the code handling a particular
10332 situation might be duplicated or not. One day, when the code is
10333 cleaned up, this guide might become redundant with the comments
10334 inserted in the code, and we might want to remove it.
10335
10336 2. ``Fixing'' an Entity, the Simple Case:
10337 -----------------------------------------
10338
10339 When evaluating Ada expressions, the tricky issue is that they may
10340 reference entities whose type contents and size are not statically
10341 known. Consider for instance a variant record:
10342
10343 type Rec (Empty : Boolean := True) is record
10344 case Empty is
10345 when True => null;
10346 when False => Value : Integer;
10347 end case;
10348 end record;
10349 Yes : Rec := (Empty => False, Value => 1);
10350 No : Rec := (empty => True);
10351
10352 The size and contents of that record depends on the value of the
10353 descriminant (Rec.Empty). At this point, neither the debugging
10354 information nor the associated type structure in GDB are able to
10355 express such dynamic types. So what the debugger does is to create
10356 "fixed" versions of the type that applies to the specific object.
10357 We also informally refer to this opperation as "fixing" an object,
10358 which means creating its associated fixed type.
10359
10360 Example: when printing the value of variable "Yes" above, its fixed
10361 type would look like this:
10362
10363 type Rec is record
10364 Empty : Boolean;
10365 Value : Integer;
10366 end record;
10367
10368 On the other hand, if we printed the value of "No", its fixed type
10369 would become:
10370
10371 type Rec is record
10372 Empty : Boolean;
10373 end record;
10374
10375 Things become a little more complicated when trying to fix an entity
10376 with a dynamic type that directly contains another dynamic type,
10377 such as an array of variant records, for instance. There are
10378 two possible cases: Arrays, and records.
10379
10380 3. ``Fixing'' Arrays:
10381 ---------------------
10382
10383 The type structure in GDB describes an array in terms of its bounds,
10384 and the type of its elements. By design, all elements in the array
10385 have the same type and we cannot represent an array of variant elements
10386 using the current type structure in GDB. When fixing an array,
10387 we cannot fix the array element, as we would potentially need one
10388 fixed type per element of the array. As a result, the best we can do
10389 when fixing an array is to produce an array whose bounds and size
10390 are correct (allowing us to read it from memory), but without having
10391 touched its element type. Fixing each element will be done later,
10392 when (if) necessary.
10393
10394 Arrays are a little simpler to handle than records, because the same
10395 amount of memory is allocated for each element of the array, even if
10396 the amount of space actually used by each element differs from element
10397 to element. Consider for instance the following array of type Rec:
10398
10399 type Rec_Array is array (1 .. 2) of Rec;
10400
10401 The actual amount of memory occupied by each element might be different
10402 from element to element, depending on the value of their discriminant.
10403 But the amount of space reserved for each element in the array remains
10404 fixed regardless. So we simply need to compute that size using
10405 the debugging information available, from which we can then determine
10406 the array size (we multiply the number of elements of the array by
10407 the size of each element).
10408
10409 The simplest case is when we have an array of a constrained element
10410 type. For instance, consider the following type declarations:
10411
10412 type Bounded_String (Max_Size : Integer) is
10413 Length : Integer;
10414 Buffer : String (1 .. Max_Size);
10415 end record;
10416 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10417
10418 In this case, the compiler describes the array as an array of
10419 variable-size elements (identified by its XVS suffix) for which
10420 the size can be read in the parallel XVZ variable.
10421
10422 In the case of an array of an unconstrained element type, the compiler
10423 wraps the array element inside a private PAD type. This type should not
10424 be shown to the user, and must be "unwrap"'ed before printing. Note
10425 that we also use the adjective "aligner" in our code to designate
10426 these wrapper types.
10427
10428 In some cases, the size allocated for each element is statically
10429 known. In that case, the PAD type already has the correct size,
10430 and the array element should remain unfixed.
10431
10432 But there are cases when this size is not statically known.
10433 For instance, assuming that "Five" is an integer variable:
10434
10435 type Dynamic is array (1 .. Five) of Integer;
10436 type Wrapper (Has_Length : Boolean := False) is record
10437 Data : Dynamic;
10438 case Has_Length is
10439 when True => Length : Integer;
10440 when False => null;
10441 end case;
10442 end record;
10443 type Wrapper_Array is array (1 .. 2) of Wrapper;
10444
10445 Hello : Wrapper_Array := (others => (Has_Length => True,
10446 Data => (others => 17),
10447 Length => 1));
10448
10449
10450 The debugging info would describe variable Hello as being an
10451 array of a PAD type. The size of that PAD type is not statically
10452 known, but can be determined using a parallel XVZ variable.
10453 In that case, a copy of the PAD type with the correct size should
10454 be used for the fixed array.
10455
10456 3. ``Fixing'' record type objects:
10457 ----------------------------------
10458
10459 Things are slightly different from arrays in the case of dynamic
10460 record types. In this case, in order to compute the associated
10461 fixed type, we need to determine the size and offset of each of
10462 its components. This, in turn, requires us to compute the fixed
10463 type of each of these components.
10464
10465 Consider for instance the example:
10466
10467 type Bounded_String (Max_Size : Natural) is record
10468 Str : String (1 .. Max_Size);
10469 Length : Natural;
10470 end record;
10471 My_String : Bounded_String (Max_Size => 10);
10472
10473 In that case, the position of field "Length" depends on the size
10474 of field Str, which itself depends on the value of the Max_Size
10475 discriminant. In order to fix the type of variable My_String,
10476 we need to fix the type of field Str. Therefore, fixing a variant
10477 record requires us to fix each of its components.
10478
10479 However, if a component does not have a dynamic size, the component
10480 should not be fixed. In particular, fields that use a PAD type
10481 should not fixed. Here is an example where this might happen
10482 (assuming type Rec above):
10483
10484 type Container (Big : Boolean) is record
10485 First : Rec;
10486 After : Integer;
10487 case Big is
10488 when True => Another : Integer;
10489 when False => null;
10490 end case;
10491 end record;
10492 My_Container : Container := (Big => False,
10493 First => (Empty => True),
10494 After => 42);
10495
10496 In that example, the compiler creates a PAD type for component First,
10497 whose size is constant, and then positions the component After just
10498 right after it. The offset of component After is therefore constant
10499 in this case.
10500
10501 The debugger computes the position of each field based on an algorithm
10502 that uses, among other things, the actual position and size of the field
10503 preceding it. Let's now imagine that the user is trying to print
10504 the value of My_Container. If the type fixing was recursive, we would
10505 end up computing the offset of field After based on the size of the
10506 fixed version of field First. And since in our example First has
10507 only one actual field, the size of the fixed type is actually smaller
10508 than the amount of space allocated to that field, and thus we would
10509 compute the wrong offset of field After.
10510
10511 To make things more complicated, we need to watch out for dynamic
10512 components of variant records (identified by the ___XVL suffix in
10513 the component name). Even if the target type is a PAD type, the size
10514 of that type might not be statically known. So the PAD type needs
10515 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10516 we might end up with the wrong size for our component. This can be
10517 observed with the following type declarations:
10518
10519 type Octal is new Integer range 0 .. 7;
10520 type Octal_Array is array (Positive range <>) of Octal;
10521 pragma Pack (Octal_Array);
10522
10523 type Octal_Buffer (Size : Positive) is record
10524 Buffer : Octal_Array (1 .. Size);
10525 Length : Integer;
10526 end record;
10527
10528 In that case, Buffer is a PAD type whose size is unset and needs
10529 to be computed by fixing the unwrapped type.
10530
10531 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10532 ----------------------------------------------------------
10533
10534 Lastly, when should the sub-elements of an entity that remained unfixed
10535 thus far, be actually fixed?
10536
10537 The answer is: Only when referencing that element. For instance
10538 when selecting one component of a record, this specific component
10539 should be fixed at that point in time. Or when printing the value
10540 of a record, each component should be fixed before its value gets
10541 printed. Similarly for arrays, the element of the array should be
10542 fixed when printing each element of the array, or when extracting
10543 one element out of that array. On the other hand, fixing should
10544 not be performed on the elements when taking a slice of an array!
10545
10546 Note that one of the side effects of miscomputing the offset and
10547 size of each field is that we end up also miscomputing the size
10548 of the containing type. This can have adverse results when computing
10549 the value of an entity. GDB fetches the value of an entity based
10550 on the size of its type, and thus a wrong size causes GDB to fetch
10551 the wrong amount of memory. In the case where the computed size is
10552 too small, GDB fetches too little data to print the value of our
10553 entity. Results in this case are unpredictable, as we usually read
10554 past the buffer containing the data =:-o. */
10555
10556 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10557 for that subexpression cast to TO_TYPE. Advance *POS over the
10558 subexpression. */
10559
10560 static value *
10561 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10562 enum noside noside, struct type *to_type)
10563 {
10564 int pc = *pos;
10565
10566 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10567 || exp->elts[pc].opcode == OP_VAR_VALUE)
10568 {
10569 (*pos) += 4;
10570
10571 value *val;
10572 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10573 {
10574 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10575 return value_zero (to_type, not_lval);
10576
10577 val = evaluate_var_msym_value (noside,
10578 exp->elts[pc + 1].objfile,
10579 exp->elts[pc + 2].msymbol);
10580 }
10581 else
10582 val = evaluate_var_value (noside,
10583 exp->elts[pc + 1].block,
10584 exp->elts[pc + 2].symbol);
10585
10586 if (noside == EVAL_SKIP)
10587 return eval_skip_value (exp);
10588
10589 val = ada_value_cast (to_type, val);
10590
10591 /* Follow the Ada language semantics that do not allow taking
10592 an address of the result of a cast (view conversion in Ada). */
10593 if (VALUE_LVAL (val) == lval_memory)
10594 {
10595 if (value_lazy (val))
10596 value_fetch_lazy (val);
10597 VALUE_LVAL (val) = not_lval;
10598 }
10599 return val;
10600 }
10601
10602 value *val = evaluate_subexp (to_type, exp, pos, noside);
10603 if (noside == EVAL_SKIP)
10604 return eval_skip_value (exp);
10605 return ada_value_cast (to_type, val);
10606 }
10607
10608 /* Implement the evaluate_exp routine in the exp_descriptor structure
10609 for the Ada language. */
10610
10611 static struct value *
10612 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10613 int *pos, enum noside noside)
10614 {
10615 enum exp_opcode op;
10616 int tem;
10617 int pc;
10618 int preeval_pos;
10619 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10620 struct type *type;
10621 int nargs, oplen;
10622 struct value **argvec;
10623
10624 pc = *pos;
10625 *pos += 1;
10626 op = exp->elts[pc].opcode;
10627
10628 switch (op)
10629 {
10630 default:
10631 *pos -= 1;
10632 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10633
10634 if (noside == EVAL_NORMAL)
10635 arg1 = unwrap_value (arg1);
10636
10637 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10638 then we need to perform the conversion manually, because
10639 evaluate_subexp_standard doesn't do it. This conversion is
10640 necessary in Ada because the different kinds of float/fixed
10641 types in Ada have different representations.
10642
10643 Similarly, we need to perform the conversion from OP_LONG
10644 ourselves. */
10645 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10646 arg1 = ada_value_cast (expect_type, arg1);
10647
10648 return arg1;
10649
10650 case OP_STRING:
10651 {
10652 struct value *result;
10653
10654 *pos -= 1;
10655 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10656 /* The result type will have code OP_STRING, bashed there from
10657 OP_ARRAY. Bash it back. */
10658 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10659 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10660 return result;
10661 }
10662
10663 case UNOP_CAST:
10664 (*pos) += 2;
10665 type = exp->elts[pc + 1].type;
10666 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10667
10668 case UNOP_QUAL:
10669 (*pos) += 2;
10670 type = exp->elts[pc + 1].type;
10671 return ada_evaluate_subexp (type, exp, pos, noside);
10672
10673 case BINOP_ASSIGN:
10674 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10675 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10676 {
10677 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10678 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10679 return arg1;
10680 return ada_value_assign (arg1, arg1);
10681 }
10682 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10683 except if the lhs of our assignment is a convenience variable.
10684 In the case of assigning to a convenience variable, the lhs
10685 should be exactly the result of the evaluation of the rhs. */
10686 type = value_type (arg1);
10687 if (VALUE_LVAL (arg1) == lval_internalvar)
10688 type = NULL;
10689 arg2 = evaluate_subexp (type, exp, pos, noside);
10690 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10691 return arg1;
10692 if (ada_is_fixed_point_type (value_type (arg1)))
10693 arg2 = cast_to_fixed (value_type (arg1), arg2);
10694 else if (ada_is_fixed_point_type (value_type (arg2)))
10695 error
10696 (_("Fixed-point values must be assigned to fixed-point variables"));
10697 else
10698 arg2 = coerce_for_assign (value_type (arg1), arg2);
10699 return ada_value_assign (arg1, arg2);
10700
10701 case BINOP_ADD:
10702 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10703 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10704 if (noside == EVAL_SKIP)
10705 goto nosideret;
10706 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10707 return (value_from_longest
10708 (value_type (arg1),
10709 value_as_long (arg1) + value_as_long (arg2)));
10710 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10711 return (value_from_longest
10712 (value_type (arg2),
10713 value_as_long (arg1) + value_as_long (arg2)));
10714 if ((ada_is_fixed_point_type (value_type (arg1))
10715 || ada_is_fixed_point_type (value_type (arg2)))
10716 && value_type (arg1) != value_type (arg2))
10717 error (_("Operands of fixed-point addition must have the same type"));
10718 /* Do the addition, and cast the result to the type of the first
10719 argument. We cannot cast the result to a reference type, so if
10720 ARG1 is a reference type, find its underlying type. */
10721 type = value_type (arg1);
10722 while (TYPE_CODE (type) == TYPE_CODE_REF)
10723 type = TYPE_TARGET_TYPE (type);
10724 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10725 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10726
10727 case BINOP_SUB:
10728 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10729 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10733 return (value_from_longest
10734 (value_type (arg1),
10735 value_as_long (arg1) - value_as_long (arg2)));
10736 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10737 return (value_from_longest
10738 (value_type (arg2),
10739 value_as_long (arg1) - value_as_long (arg2)));
10740 if ((ada_is_fixed_point_type (value_type (arg1))
10741 || ada_is_fixed_point_type (value_type (arg2)))
10742 && value_type (arg1) != value_type (arg2))
10743 error (_("Operands of fixed-point subtraction "
10744 "must have the same type"));
10745 /* Do the substraction, and cast the result to the type of the first
10746 argument. We cannot cast the result to a reference type, so if
10747 ARG1 is a reference type, find its underlying type. */
10748 type = value_type (arg1);
10749 while (TYPE_CODE (type) == TYPE_CODE_REF)
10750 type = TYPE_TARGET_TYPE (type);
10751 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10752 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10753
10754 case BINOP_MUL:
10755 case BINOP_DIV:
10756 case BINOP_REM:
10757 case BINOP_MOD:
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10759 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10760 if (noside == EVAL_SKIP)
10761 goto nosideret;
10762 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10763 {
10764 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10765 return value_zero (value_type (arg1), not_lval);
10766 }
10767 else
10768 {
10769 type = builtin_type (exp->gdbarch)->builtin_double;
10770 if (ada_is_fixed_point_type (value_type (arg1)))
10771 arg1 = cast_from_fixed (type, arg1);
10772 if (ada_is_fixed_point_type (value_type (arg2)))
10773 arg2 = cast_from_fixed (type, arg2);
10774 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10775 return ada_value_binop (arg1, arg2, op);
10776 }
10777
10778 case BINOP_EQUAL:
10779 case BINOP_NOTEQUAL:
10780 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10781 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10782 if (noside == EVAL_SKIP)
10783 goto nosideret;
10784 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10785 tem = 0;
10786 else
10787 {
10788 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10789 tem = ada_value_equal (arg1, arg2);
10790 }
10791 if (op == BINOP_NOTEQUAL)
10792 tem = !tem;
10793 type = language_bool_type (exp->language_defn, exp->gdbarch);
10794 return value_from_longest (type, (LONGEST) tem);
10795
10796 case UNOP_NEG:
10797 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10798 if (noside == EVAL_SKIP)
10799 goto nosideret;
10800 else if (ada_is_fixed_point_type (value_type (arg1)))
10801 return value_cast (value_type (arg1), value_neg (arg1));
10802 else
10803 {
10804 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10805 return value_neg (arg1);
10806 }
10807
10808 case BINOP_LOGICAL_AND:
10809 case BINOP_LOGICAL_OR:
10810 case UNOP_LOGICAL_NOT:
10811 {
10812 struct value *val;
10813
10814 *pos -= 1;
10815 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10816 type = language_bool_type (exp->language_defn, exp->gdbarch);
10817 return value_cast (type, val);
10818 }
10819
10820 case BINOP_BITWISE_AND:
10821 case BINOP_BITWISE_IOR:
10822 case BINOP_BITWISE_XOR:
10823 {
10824 struct value *val;
10825
10826 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10827 *pos = pc;
10828 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10829
10830 return value_cast (value_type (arg1), val);
10831 }
10832
10833 case OP_VAR_VALUE:
10834 *pos -= 1;
10835
10836 if (noside == EVAL_SKIP)
10837 {
10838 *pos += 4;
10839 goto nosideret;
10840 }
10841
10842 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10843 /* Only encountered when an unresolved symbol occurs in a
10844 context other than a function call, in which case, it is
10845 invalid. */
10846 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10847 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10848
10849 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10850 {
10851 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10852 /* Check to see if this is a tagged type. We also need to handle
10853 the case where the type is a reference to a tagged type, but
10854 we have to be careful to exclude pointers to tagged types.
10855 The latter should be shown as usual (as a pointer), whereas
10856 a reference should mostly be transparent to the user. */
10857 if (ada_is_tagged_type (type, 0)
10858 || (TYPE_CODE (type) == TYPE_CODE_REF
10859 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10860 {
10861 /* Tagged types are a little special in the fact that the real
10862 type is dynamic and can only be determined by inspecting the
10863 object's tag. This means that we need to get the object's
10864 value first (EVAL_NORMAL) and then extract the actual object
10865 type from its tag.
10866
10867 Note that we cannot skip the final step where we extract
10868 the object type from its tag, because the EVAL_NORMAL phase
10869 results in dynamic components being resolved into fixed ones.
10870 This can cause problems when trying to print the type
10871 description of tagged types whose parent has a dynamic size:
10872 We use the type name of the "_parent" component in order
10873 to print the name of the ancestor type in the type description.
10874 If that component had a dynamic size, the resolution into
10875 a fixed type would result in the loss of that type name,
10876 thus preventing us from printing the name of the ancestor
10877 type in the type description. */
10878 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10879
10880 if (TYPE_CODE (type) != TYPE_CODE_REF)
10881 {
10882 struct type *actual_type;
10883
10884 actual_type = type_from_tag (ada_value_tag (arg1));
10885 if (actual_type == NULL)
10886 /* If, for some reason, we were unable to determine
10887 the actual type from the tag, then use the static
10888 approximation that we just computed as a fallback.
10889 This can happen if the debugging information is
10890 incomplete, for instance. */
10891 actual_type = type;
10892 return value_zero (actual_type, not_lval);
10893 }
10894 else
10895 {
10896 /* In the case of a ref, ada_coerce_ref takes care
10897 of determining the actual type. But the evaluation
10898 should return a ref as it should be valid to ask
10899 for its address; so rebuild a ref after coerce. */
10900 arg1 = ada_coerce_ref (arg1);
10901 return value_ref (arg1, TYPE_CODE_REF);
10902 }
10903 }
10904
10905 /* Records and unions for which GNAT encodings have been
10906 generated need to be statically fixed as well.
10907 Otherwise, non-static fixing produces a type where
10908 all dynamic properties are removed, which prevents "ptype"
10909 from being able to completely describe the type.
10910 For instance, a case statement in a variant record would be
10911 replaced by the relevant components based on the actual
10912 value of the discriminants. */
10913 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10914 && dynamic_template_type (type) != NULL)
10915 || (TYPE_CODE (type) == TYPE_CODE_UNION
10916 && ada_find_parallel_type (type, "___XVU") != NULL))
10917 {
10918 *pos += 4;
10919 return value_zero (to_static_fixed_type (type), not_lval);
10920 }
10921 }
10922
10923 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10924 return ada_to_fixed_value (arg1);
10925
10926 case OP_FUNCALL:
10927 (*pos) += 2;
10928
10929 /* Allocate arg vector, including space for the function to be
10930 called in argvec[0] and a terminating NULL. */
10931 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10932 argvec = XALLOCAVEC (struct value *, nargs + 2);
10933
10934 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10935 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10936 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10937 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10938 else
10939 {
10940 for (tem = 0; tem <= nargs; tem += 1)
10941 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10942 argvec[tem] = 0;
10943
10944 if (noside == EVAL_SKIP)
10945 goto nosideret;
10946 }
10947
10948 if (ada_is_constrained_packed_array_type
10949 (desc_base_type (value_type (argvec[0]))))
10950 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10951 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10952 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10953 /* This is a packed array that has already been fixed, and
10954 therefore already coerced to a simple array. Nothing further
10955 to do. */
10956 ;
10957 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10958 {
10959 /* Make sure we dereference references so that all the code below
10960 feels like it's really handling the referenced value. Wrapping
10961 types (for alignment) may be there, so make sure we strip them as
10962 well. */
10963 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10964 }
10965 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10966 && VALUE_LVAL (argvec[0]) == lval_memory)
10967 argvec[0] = value_addr (argvec[0]);
10968
10969 type = ada_check_typedef (value_type (argvec[0]));
10970
10971 /* Ada allows us to implicitly dereference arrays when subscripting
10972 them. So, if this is an array typedef (encoding use for array
10973 access types encoded as fat pointers), strip it now. */
10974 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10975 type = ada_typedef_target_type (type);
10976
10977 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10978 {
10979 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10980 {
10981 case TYPE_CODE_FUNC:
10982 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10983 break;
10984 case TYPE_CODE_ARRAY:
10985 break;
10986 case TYPE_CODE_STRUCT:
10987 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10988 argvec[0] = ada_value_ind (argvec[0]);
10989 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10990 break;
10991 default:
10992 error (_("cannot subscript or call something of type `%s'"),
10993 ada_type_name (value_type (argvec[0])));
10994 break;
10995 }
10996 }
10997
10998 switch (TYPE_CODE (type))
10999 {
11000 case TYPE_CODE_FUNC:
11001 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11002 {
11003 if (TYPE_TARGET_TYPE (type) == NULL)
11004 error_call_unknown_return_type (NULL);
11005 return allocate_value (TYPE_TARGET_TYPE (type));
11006 }
11007 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
11008 case TYPE_CODE_INTERNAL_FUNCTION:
11009 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11010 /* We don't know anything about what the internal
11011 function might return, but we have to return
11012 something. */
11013 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11014 not_lval);
11015 else
11016 return call_internal_function (exp->gdbarch, exp->language_defn,
11017 argvec[0], nargs, argvec + 1);
11018
11019 case TYPE_CODE_STRUCT:
11020 {
11021 int arity;
11022
11023 arity = ada_array_arity (type);
11024 type = ada_array_element_type (type, nargs);
11025 if (type == NULL)
11026 error (_("cannot subscript or call a record"));
11027 if (arity != nargs)
11028 error (_("wrong number of subscripts; expecting %d"), arity);
11029 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11030 return value_zero (ada_aligned_type (type), lval_memory);
11031 return
11032 unwrap_value (ada_value_subscript
11033 (argvec[0], nargs, argvec + 1));
11034 }
11035 case TYPE_CODE_ARRAY:
11036 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11037 {
11038 type = ada_array_element_type (type, nargs);
11039 if (type == NULL)
11040 error (_("element type of array unknown"));
11041 else
11042 return value_zero (ada_aligned_type (type), lval_memory);
11043 }
11044 return
11045 unwrap_value (ada_value_subscript
11046 (ada_coerce_to_simple_array (argvec[0]),
11047 nargs, argvec + 1));
11048 case TYPE_CODE_PTR: /* Pointer to array */
11049 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11050 {
11051 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
11052 type = ada_array_element_type (type, nargs);
11053 if (type == NULL)
11054 error (_("element type of array unknown"));
11055 else
11056 return value_zero (ada_aligned_type (type), lval_memory);
11057 }
11058 return
11059 unwrap_value (ada_value_ptr_subscript (argvec[0],
11060 nargs, argvec + 1));
11061
11062 default:
11063 error (_("Attempt to index or call something other than an "
11064 "array or function"));
11065 }
11066
11067 case TERNOP_SLICE:
11068 {
11069 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11070 struct value *low_bound_val =
11071 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11072 struct value *high_bound_val =
11073 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11074 LONGEST low_bound;
11075 LONGEST high_bound;
11076
11077 low_bound_val = coerce_ref (low_bound_val);
11078 high_bound_val = coerce_ref (high_bound_val);
11079 low_bound = value_as_long (low_bound_val);
11080 high_bound = value_as_long (high_bound_val);
11081
11082 if (noside == EVAL_SKIP)
11083 goto nosideret;
11084
11085 /* If this is a reference to an aligner type, then remove all
11086 the aligners. */
11087 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11088 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11089 TYPE_TARGET_TYPE (value_type (array)) =
11090 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11091
11092 if (ada_is_constrained_packed_array_type (value_type (array)))
11093 error (_("cannot slice a packed array"));
11094
11095 /* If this is a reference to an array or an array lvalue,
11096 convert to a pointer. */
11097 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11098 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11099 && VALUE_LVAL (array) == lval_memory))
11100 array = value_addr (array);
11101
11102 if (noside == EVAL_AVOID_SIDE_EFFECTS
11103 && ada_is_array_descriptor_type (ada_check_typedef
11104 (value_type (array))))
11105 return empty_array (ada_type_of_array (array, 0), low_bound);
11106
11107 array = ada_coerce_to_simple_array_ptr (array);
11108
11109 /* If we have more than one level of pointer indirection,
11110 dereference the value until we get only one level. */
11111 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11112 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11113 == TYPE_CODE_PTR))
11114 array = value_ind (array);
11115
11116 /* Make sure we really do have an array type before going further,
11117 to avoid a SEGV when trying to get the index type or the target
11118 type later down the road if the debug info generated by
11119 the compiler is incorrect or incomplete. */
11120 if (!ada_is_simple_array_type (value_type (array)))
11121 error (_("cannot take slice of non-array"));
11122
11123 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11124 == TYPE_CODE_PTR)
11125 {
11126 struct type *type0 = ada_check_typedef (value_type (array));
11127
11128 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11129 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11130 else
11131 {
11132 struct type *arr_type0 =
11133 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11134
11135 return ada_value_slice_from_ptr (array, arr_type0,
11136 longest_to_int (low_bound),
11137 longest_to_int (high_bound));
11138 }
11139 }
11140 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11141 return array;
11142 else if (high_bound < low_bound)
11143 return empty_array (value_type (array), low_bound);
11144 else
11145 return ada_value_slice (array, longest_to_int (low_bound),
11146 longest_to_int (high_bound));
11147 }
11148
11149 case UNOP_IN_RANGE:
11150 (*pos) += 2;
11151 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11152 type = check_typedef (exp->elts[pc + 1].type);
11153
11154 if (noside == EVAL_SKIP)
11155 goto nosideret;
11156
11157 switch (TYPE_CODE (type))
11158 {
11159 default:
11160 lim_warning (_("Membership test incompletely implemented; "
11161 "always returns true"));
11162 type = language_bool_type (exp->language_defn, exp->gdbarch);
11163 return value_from_longest (type, (LONGEST) 1);
11164
11165 case TYPE_CODE_RANGE:
11166 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11167 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11168 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11169 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11170 type = language_bool_type (exp->language_defn, exp->gdbarch);
11171 return
11172 value_from_longest (type,
11173 (value_less (arg1, arg3)
11174 || value_equal (arg1, arg3))
11175 && (value_less (arg2, arg1)
11176 || value_equal (arg2, arg1)));
11177 }
11178
11179 case BINOP_IN_BOUNDS:
11180 (*pos) += 2;
11181 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11182 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11183
11184 if (noside == EVAL_SKIP)
11185 goto nosideret;
11186
11187 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11188 {
11189 type = language_bool_type (exp->language_defn, exp->gdbarch);
11190 return value_zero (type, not_lval);
11191 }
11192
11193 tem = longest_to_int (exp->elts[pc + 1].longconst);
11194
11195 type = ada_index_type (value_type (arg2), tem, "range");
11196 if (!type)
11197 type = value_type (arg1);
11198
11199 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11200 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11201
11202 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11203 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11204 type = language_bool_type (exp->language_defn, exp->gdbarch);
11205 return
11206 value_from_longest (type,
11207 (value_less (arg1, arg3)
11208 || value_equal (arg1, arg3))
11209 && (value_less (arg2, arg1)
11210 || value_equal (arg2, arg1)));
11211
11212 case TERNOP_IN_RANGE:
11213 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11214 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11215 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11216
11217 if (noside == EVAL_SKIP)
11218 goto nosideret;
11219
11220 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11221 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11222 type = language_bool_type (exp->language_defn, exp->gdbarch);
11223 return
11224 value_from_longest (type,
11225 (value_less (arg1, arg3)
11226 || value_equal (arg1, arg3))
11227 && (value_less (arg2, arg1)
11228 || value_equal (arg2, arg1)));
11229
11230 case OP_ATR_FIRST:
11231 case OP_ATR_LAST:
11232 case OP_ATR_LENGTH:
11233 {
11234 struct type *type_arg;
11235
11236 if (exp->elts[*pos].opcode == OP_TYPE)
11237 {
11238 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11239 arg1 = NULL;
11240 type_arg = check_typedef (exp->elts[pc + 2].type);
11241 }
11242 else
11243 {
11244 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11245 type_arg = NULL;
11246 }
11247
11248 if (exp->elts[*pos].opcode != OP_LONG)
11249 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11250 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11251 *pos += 4;
11252
11253 if (noside == EVAL_SKIP)
11254 goto nosideret;
11255
11256 if (type_arg == NULL)
11257 {
11258 arg1 = ada_coerce_ref (arg1);
11259
11260 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11261 arg1 = ada_coerce_to_simple_array (arg1);
11262
11263 if (op == OP_ATR_LENGTH)
11264 type = builtin_type (exp->gdbarch)->builtin_int;
11265 else
11266 {
11267 type = ada_index_type (value_type (arg1), tem,
11268 ada_attribute_name (op));
11269 if (type == NULL)
11270 type = builtin_type (exp->gdbarch)->builtin_int;
11271 }
11272
11273 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11274 return allocate_value (type);
11275
11276 switch (op)
11277 {
11278 default: /* Should never happen. */
11279 error (_("unexpected attribute encountered"));
11280 case OP_ATR_FIRST:
11281 return value_from_longest
11282 (type, ada_array_bound (arg1, tem, 0));
11283 case OP_ATR_LAST:
11284 return value_from_longest
11285 (type, ada_array_bound (arg1, tem, 1));
11286 case OP_ATR_LENGTH:
11287 return value_from_longest
11288 (type, ada_array_length (arg1, tem));
11289 }
11290 }
11291 else if (discrete_type_p (type_arg))
11292 {
11293 struct type *range_type;
11294 const char *name = ada_type_name (type_arg);
11295
11296 range_type = NULL;
11297 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11298 range_type = to_fixed_range_type (type_arg, NULL);
11299 if (range_type == NULL)
11300 range_type = type_arg;
11301 switch (op)
11302 {
11303 default:
11304 error (_("unexpected attribute encountered"));
11305 case OP_ATR_FIRST:
11306 return value_from_longest
11307 (range_type, ada_discrete_type_low_bound (range_type));
11308 case OP_ATR_LAST:
11309 return value_from_longest
11310 (range_type, ada_discrete_type_high_bound (range_type));
11311 case OP_ATR_LENGTH:
11312 error (_("the 'length attribute applies only to array types"));
11313 }
11314 }
11315 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11316 error (_("unimplemented type attribute"));
11317 else
11318 {
11319 LONGEST low, high;
11320
11321 if (ada_is_constrained_packed_array_type (type_arg))
11322 type_arg = decode_constrained_packed_array_type (type_arg);
11323
11324 if (op == OP_ATR_LENGTH)
11325 type = builtin_type (exp->gdbarch)->builtin_int;
11326 else
11327 {
11328 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11329 if (type == NULL)
11330 type = builtin_type (exp->gdbarch)->builtin_int;
11331 }
11332
11333 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11334 return allocate_value (type);
11335
11336 switch (op)
11337 {
11338 default:
11339 error (_("unexpected attribute encountered"));
11340 case OP_ATR_FIRST:
11341 low = ada_array_bound_from_type (type_arg, tem, 0);
11342 return value_from_longest (type, low);
11343 case OP_ATR_LAST:
11344 high = ada_array_bound_from_type (type_arg, tem, 1);
11345 return value_from_longest (type, high);
11346 case OP_ATR_LENGTH:
11347 low = ada_array_bound_from_type (type_arg, tem, 0);
11348 high = ada_array_bound_from_type (type_arg, tem, 1);
11349 return value_from_longest (type, high - low + 1);
11350 }
11351 }
11352 }
11353
11354 case OP_ATR_TAG:
11355 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11356 if (noside == EVAL_SKIP)
11357 goto nosideret;
11358
11359 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11360 return value_zero (ada_tag_type (arg1), not_lval);
11361
11362 return ada_value_tag (arg1);
11363
11364 case OP_ATR_MIN:
11365 case OP_ATR_MAX:
11366 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11367 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11368 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11369 if (noside == EVAL_SKIP)
11370 goto nosideret;
11371 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11372 return value_zero (value_type (arg1), not_lval);
11373 else
11374 {
11375 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11376 return value_binop (arg1, arg2,
11377 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11378 }
11379
11380 case OP_ATR_MODULUS:
11381 {
11382 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11383
11384 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11385 if (noside == EVAL_SKIP)
11386 goto nosideret;
11387
11388 if (!ada_is_modular_type (type_arg))
11389 error (_("'modulus must be applied to modular type"));
11390
11391 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11392 ada_modulus (type_arg));
11393 }
11394
11395
11396 case OP_ATR_POS:
11397 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11398 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11399 if (noside == EVAL_SKIP)
11400 goto nosideret;
11401 type = builtin_type (exp->gdbarch)->builtin_int;
11402 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11403 return value_zero (type, not_lval);
11404 else
11405 return value_pos_atr (type, arg1);
11406
11407 case OP_ATR_SIZE:
11408 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11409 type = value_type (arg1);
11410
11411 /* If the argument is a reference, then dereference its type, since
11412 the user is really asking for the size of the actual object,
11413 not the size of the pointer. */
11414 if (TYPE_CODE (type) == TYPE_CODE_REF)
11415 type = TYPE_TARGET_TYPE (type);
11416
11417 if (noside == EVAL_SKIP)
11418 goto nosideret;
11419 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11420 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11421 else
11422 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11423 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11424
11425 case OP_ATR_VAL:
11426 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11427 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11428 type = exp->elts[pc + 2].type;
11429 if (noside == EVAL_SKIP)
11430 goto nosideret;
11431 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11432 return value_zero (type, not_lval);
11433 else
11434 return value_val_atr (type, arg1);
11435
11436 case BINOP_EXP:
11437 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11438 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11439 if (noside == EVAL_SKIP)
11440 goto nosideret;
11441 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11442 return value_zero (value_type (arg1), not_lval);
11443 else
11444 {
11445 /* For integer exponentiation operations,
11446 only promote the first argument. */
11447 if (is_integral_type (value_type (arg2)))
11448 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11449 else
11450 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11451
11452 return value_binop (arg1, arg2, op);
11453 }
11454
11455 case UNOP_PLUS:
11456 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11457 if (noside == EVAL_SKIP)
11458 goto nosideret;
11459 else
11460 return arg1;
11461
11462 case UNOP_ABS:
11463 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11464 if (noside == EVAL_SKIP)
11465 goto nosideret;
11466 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11467 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11468 return value_neg (arg1);
11469 else
11470 return arg1;
11471
11472 case UNOP_IND:
11473 preeval_pos = *pos;
11474 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11475 if (noside == EVAL_SKIP)
11476 goto nosideret;
11477 type = ada_check_typedef (value_type (arg1));
11478 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11479 {
11480 if (ada_is_array_descriptor_type (type))
11481 /* GDB allows dereferencing GNAT array descriptors. */
11482 {
11483 struct type *arrType = ada_type_of_array (arg1, 0);
11484
11485 if (arrType == NULL)
11486 error (_("Attempt to dereference null array pointer."));
11487 return value_at_lazy (arrType, 0);
11488 }
11489 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11490 || TYPE_CODE (type) == TYPE_CODE_REF
11491 /* In C you can dereference an array to get the 1st elt. */
11492 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11493 {
11494 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11495 only be determined by inspecting the object's tag.
11496 This means that we need to evaluate completely the
11497 expression in order to get its type. */
11498
11499 if ((TYPE_CODE (type) == TYPE_CODE_REF
11500 || TYPE_CODE (type) == TYPE_CODE_PTR)
11501 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11502 {
11503 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11504 EVAL_NORMAL);
11505 type = value_type (ada_value_ind (arg1));
11506 }
11507 else
11508 {
11509 type = to_static_fixed_type
11510 (ada_aligned_type
11511 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11512 }
11513 ada_ensure_varsize_limit (type);
11514 return value_zero (type, lval_memory);
11515 }
11516 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11517 {
11518 /* GDB allows dereferencing an int. */
11519 if (expect_type == NULL)
11520 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11521 lval_memory);
11522 else
11523 {
11524 expect_type =
11525 to_static_fixed_type (ada_aligned_type (expect_type));
11526 return value_zero (expect_type, lval_memory);
11527 }
11528 }
11529 else
11530 error (_("Attempt to take contents of a non-pointer value."));
11531 }
11532 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11533 type = ada_check_typedef (value_type (arg1));
11534
11535 if (TYPE_CODE (type) == TYPE_CODE_INT)
11536 /* GDB allows dereferencing an int. If we were given
11537 the expect_type, then use that as the target type.
11538 Otherwise, assume that the target type is an int. */
11539 {
11540 if (expect_type != NULL)
11541 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11542 arg1));
11543 else
11544 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11545 (CORE_ADDR) value_as_address (arg1));
11546 }
11547
11548 if (ada_is_array_descriptor_type (type))
11549 /* GDB allows dereferencing GNAT array descriptors. */
11550 return ada_coerce_to_simple_array (arg1);
11551 else
11552 return ada_value_ind (arg1);
11553
11554 case STRUCTOP_STRUCT:
11555 tem = longest_to_int (exp->elts[pc + 1].longconst);
11556 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11557 preeval_pos = *pos;
11558 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11559 if (noside == EVAL_SKIP)
11560 goto nosideret;
11561 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11562 {
11563 struct type *type1 = value_type (arg1);
11564
11565 if (ada_is_tagged_type (type1, 1))
11566 {
11567 type = ada_lookup_struct_elt_type (type1,
11568 &exp->elts[pc + 2].string,
11569 1, 1);
11570
11571 /* If the field is not found, check if it exists in the
11572 extension of this object's type. This means that we
11573 need to evaluate completely the expression. */
11574
11575 if (type == NULL)
11576 {
11577 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11578 EVAL_NORMAL);
11579 arg1 = ada_value_struct_elt (arg1,
11580 &exp->elts[pc + 2].string,
11581 0);
11582 arg1 = unwrap_value (arg1);
11583 type = value_type (ada_to_fixed_value (arg1));
11584 }
11585 }
11586 else
11587 type =
11588 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11589 0);
11590
11591 return value_zero (ada_aligned_type (type), lval_memory);
11592 }
11593 else
11594 {
11595 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11596 arg1 = unwrap_value (arg1);
11597 return ada_to_fixed_value (arg1);
11598 }
11599
11600 case OP_TYPE:
11601 /* The value is not supposed to be used. This is here to make it
11602 easier to accommodate expressions that contain types. */
11603 (*pos) += 2;
11604 if (noside == EVAL_SKIP)
11605 goto nosideret;
11606 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11607 return allocate_value (exp->elts[pc + 1].type);
11608 else
11609 error (_("Attempt to use a type name as an expression"));
11610
11611 case OP_AGGREGATE:
11612 case OP_CHOICES:
11613 case OP_OTHERS:
11614 case OP_DISCRETE_RANGE:
11615 case OP_POSITIONAL:
11616 case OP_NAME:
11617 if (noside == EVAL_NORMAL)
11618 switch (op)
11619 {
11620 case OP_NAME:
11621 error (_("Undefined name, ambiguous name, or renaming used in "
11622 "component association: %s."), &exp->elts[pc+2].string);
11623 case OP_AGGREGATE:
11624 error (_("Aggregates only allowed on the right of an assignment"));
11625 default:
11626 internal_error (__FILE__, __LINE__,
11627 _("aggregate apparently mangled"));
11628 }
11629
11630 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11631 *pos += oplen - 1;
11632 for (tem = 0; tem < nargs; tem += 1)
11633 ada_evaluate_subexp (NULL, exp, pos, noside);
11634 goto nosideret;
11635 }
11636
11637 nosideret:
11638 return eval_skip_value (exp);
11639 }
11640 \f
11641
11642 /* Fixed point */
11643
11644 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11645 type name that encodes the 'small and 'delta information.
11646 Otherwise, return NULL. */
11647
11648 static const char *
11649 fixed_type_info (struct type *type)
11650 {
11651 const char *name = ada_type_name (type);
11652 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11653
11654 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11655 {
11656 const char *tail = strstr (name, "___XF_");
11657
11658 if (tail == NULL)
11659 return NULL;
11660 else
11661 return tail + 5;
11662 }
11663 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11664 return fixed_type_info (TYPE_TARGET_TYPE (type));
11665 else
11666 return NULL;
11667 }
11668
11669 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11670
11671 int
11672 ada_is_fixed_point_type (struct type *type)
11673 {
11674 return fixed_type_info (type) != NULL;
11675 }
11676
11677 /* Return non-zero iff TYPE represents a System.Address type. */
11678
11679 int
11680 ada_is_system_address_type (struct type *type)
11681 {
11682 return (TYPE_NAME (type)
11683 && strcmp (TYPE_NAME (type), "system__address") == 0);
11684 }
11685
11686 /* Assuming that TYPE is the representation of an Ada fixed-point
11687 type, return the target floating-point type to be used to represent
11688 of this type during internal computation. */
11689
11690 static struct type *
11691 ada_scaling_type (struct type *type)
11692 {
11693 return builtin_type (get_type_arch (type))->builtin_long_double;
11694 }
11695
11696 /* Assuming that TYPE is the representation of an Ada fixed-point
11697 type, return its delta, or NULL if the type is malformed and the
11698 delta cannot be determined. */
11699
11700 struct value *
11701 ada_delta (struct type *type)
11702 {
11703 const char *encoding = fixed_type_info (type);
11704 struct type *scale_type = ada_scaling_type (type);
11705
11706 long long num, den;
11707
11708 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11709 return nullptr;
11710 else
11711 return value_binop (value_from_longest (scale_type, num),
11712 value_from_longest (scale_type, den), BINOP_DIV);
11713 }
11714
11715 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11716 factor ('SMALL value) associated with the type. */
11717
11718 struct value *
11719 ada_scaling_factor (struct type *type)
11720 {
11721 const char *encoding = fixed_type_info (type);
11722 struct type *scale_type = ada_scaling_type (type);
11723
11724 long long num0, den0, num1, den1;
11725 int n;
11726
11727 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11728 &num0, &den0, &num1, &den1);
11729
11730 if (n < 2)
11731 return value_from_longest (scale_type, 1);
11732 else if (n == 4)
11733 return value_binop (value_from_longest (scale_type, num1),
11734 value_from_longest (scale_type, den1), BINOP_DIV);
11735 else
11736 return value_binop (value_from_longest (scale_type, num0),
11737 value_from_longest (scale_type, den0), BINOP_DIV);
11738 }
11739
11740 \f
11741
11742 /* Range types */
11743
11744 /* Scan STR beginning at position K for a discriminant name, and
11745 return the value of that discriminant field of DVAL in *PX. If
11746 PNEW_K is not null, put the position of the character beyond the
11747 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11748 not alter *PX and *PNEW_K if unsuccessful. */
11749
11750 static int
11751 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11752 int *pnew_k)
11753 {
11754 static char *bound_buffer = NULL;
11755 static size_t bound_buffer_len = 0;
11756 const char *pstart, *pend, *bound;
11757 struct value *bound_val;
11758
11759 if (dval == NULL || str == NULL || str[k] == '\0')
11760 return 0;
11761
11762 pstart = str + k;
11763 pend = strstr (pstart, "__");
11764 if (pend == NULL)
11765 {
11766 bound = pstart;
11767 k += strlen (bound);
11768 }
11769 else
11770 {
11771 int len = pend - pstart;
11772
11773 /* Strip __ and beyond. */
11774 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11775 strncpy (bound_buffer, pstart, len);
11776 bound_buffer[len] = '\0';
11777
11778 bound = bound_buffer;
11779 k = pend - str;
11780 }
11781
11782 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11783 if (bound_val == NULL)
11784 return 0;
11785
11786 *px = value_as_long (bound_val);
11787 if (pnew_k != NULL)
11788 *pnew_k = k;
11789 return 1;
11790 }
11791
11792 /* Value of variable named NAME in the current environment. If
11793 no such variable found, then if ERR_MSG is null, returns 0, and
11794 otherwise causes an error with message ERR_MSG. */
11795
11796 static struct value *
11797 get_var_value (const char *name, const char *err_msg)
11798 {
11799 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11800
11801 struct block_symbol *syms;
11802 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11803 get_selected_block (0),
11804 VAR_DOMAIN, &syms, 1);
11805 struct cleanup *old_chain = make_cleanup (xfree, syms);
11806
11807 if (nsyms != 1)
11808 {
11809 do_cleanups (old_chain);
11810 if (err_msg == NULL)
11811 return 0;
11812 else
11813 error (("%s"), err_msg);
11814 }
11815
11816 struct value *result = value_of_variable (syms[0].symbol, syms[0].block);
11817 do_cleanups (old_chain);
11818 return result;
11819 }
11820
11821 /* Value of integer variable named NAME in the current environment.
11822 If no such variable is found, returns false. Otherwise, sets VALUE
11823 to the variable's value and returns true. */
11824
11825 bool
11826 get_int_var_value (const char *name, LONGEST &value)
11827 {
11828 struct value *var_val = get_var_value (name, 0);
11829
11830 if (var_val == 0)
11831 return false;
11832
11833 value = value_as_long (var_val);
11834 return true;
11835 }
11836
11837
11838 /* Return a range type whose base type is that of the range type named
11839 NAME in the current environment, and whose bounds are calculated
11840 from NAME according to the GNAT range encoding conventions.
11841 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11842 corresponding range type from debug information; fall back to using it
11843 if symbol lookup fails. If a new type must be created, allocate it
11844 like ORIG_TYPE was. The bounds information, in general, is encoded
11845 in NAME, the base type given in the named range type. */
11846
11847 static struct type *
11848 to_fixed_range_type (struct type *raw_type, struct value *dval)
11849 {
11850 const char *name;
11851 struct type *base_type;
11852 const char *subtype_info;
11853
11854 gdb_assert (raw_type != NULL);
11855 gdb_assert (TYPE_NAME (raw_type) != NULL);
11856
11857 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11858 base_type = TYPE_TARGET_TYPE (raw_type);
11859 else
11860 base_type = raw_type;
11861
11862 name = TYPE_NAME (raw_type);
11863 subtype_info = strstr (name, "___XD");
11864 if (subtype_info == NULL)
11865 {
11866 LONGEST L = ada_discrete_type_low_bound (raw_type);
11867 LONGEST U = ada_discrete_type_high_bound (raw_type);
11868
11869 if (L < INT_MIN || U > INT_MAX)
11870 return raw_type;
11871 else
11872 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11873 L, U);
11874 }
11875 else
11876 {
11877 static char *name_buf = NULL;
11878 static size_t name_len = 0;
11879 int prefix_len = subtype_info - name;
11880 LONGEST L, U;
11881 struct type *type;
11882 const char *bounds_str;
11883 int n;
11884
11885 GROW_VECT (name_buf, name_len, prefix_len + 5);
11886 strncpy (name_buf, name, prefix_len);
11887 name_buf[prefix_len] = '\0';
11888
11889 subtype_info += 5;
11890 bounds_str = strchr (subtype_info, '_');
11891 n = 1;
11892
11893 if (*subtype_info == 'L')
11894 {
11895 if (!ada_scan_number (bounds_str, n, &L, &n)
11896 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11897 return raw_type;
11898 if (bounds_str[n] == '_')
11899 n += 2;
11900 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11901 n += 1;
11902 subtype_info += 1;
11903 }
11904 else
11905 {
11906 strcpy (name_buf + prefix_len, "___L");
11907 if (!get_int_var_value (name_buf, L))
11908 {
11909 lim_warning (_("Unknown lower bound, using 1."));
11910 L = 1;
11911 }
11912 }
11913
11914 if (*subtype_info == 'U')
11915 {
11916 if (!ada_scan_number (bounds_str, n, &U, &n)
11917 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11918 return raw_type;
11919 }
11920 else
11921 {
11922 strcpy (name_buf + prefix_len, "___U");
11923 if (!get_int_var_value (name_buf, U))
11924 {
11925 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11926 U = L;
11927 }
11928 }
11929
11930 type = create_static_range_type (alloc_type_copy (raw_type),
11931 base_type, L, U);
11932 /* create_static_range_type alters the resulting type's length
11933 to match the size of the base_type, which is not what we want.
11934 Set it back to the original range type's length. */
11935 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11936 TYPE_NAME (type) = name;
11937 return type;
11938 }
11939 }
11940
11941 /* True iff NAME is the name of a range type. */
11942
11943 int
11944 ada_is_range_type_name (const char *name)
11945 {
11946 return (name != NULL && strstr (name, "___XD"));
11947 }
11948 \f
11949
11950 /* Modular types */
11951
11952 /* True iff TYPE is an Ada modular type. */
11953
11954 int
11955 ada_is_modular_type (struct type *type)
11956 {
11957 struct type *subranged_type = get_base_type (type);
11958
11959 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11960 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11961 && TYPE_UNSIGNED (subranged_type));
11962 }
11963
11964 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11965
11966 ULONGEST
11967 ada_modulus (struct type *type)
11968 {
11969 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11970 }
11971 \f
11972
11973 /* Ada exception catchpoint support:
11974 ---------------------------------
11975
11976 We support 3 kinds of exception catchpoints:
11977 . catchpoints on Ada exceptions
11978 . catchpoints on unhandled Ada exceptions
11979 . catchpoints on failed assertions
11980
11981 Exceptions raised during failed assertions, or unhandled exceptions
11982 could perfectly be caught with the general catchpoint on Ada exceptions.
11983 However, we can easily differentiate these two special cases, and having
11984 the option to distinguish these two cases from the rest can be useful
11985 to zero-in on certain situations.
11986
11987 Exception catchpoints are a specialized form of breakpoint,
11988 since they rely on inserting breakpoints inside known routines
11989 of the GNAT runtime. The implementation therefore uses a standard
11990 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11991 of breakpoint_ops.
11992
11993 Support in the runtime for exception catchpoints have been changed
11994 a few times already, and these changes affect the implementation
11995 of these catchpoints. In order to be able to support several
11996 variants of the runtime, we use a sniffer that will determine
11997 the runtime variant used by the program being debugged. */
11998
11999 /* Ada's standard exceptions.
12000
12001 The Ada 83 standard also defined Numeric_Error. But there so many
12002 situations where it was unclear from the Ada 83 Reference Manual
12003 (RM) whether Constraint_Error or Numeric_Error should be raised,
12004 that the ARG (Ada Rapporteur Group) eventually issued a Binding
12005 Interpretation saying that anytime the RM says that Numeric_Error
12006 should be raised, the implementation may raise Constraint_Error.
12007 Ada 95 went one step further and pretty much removed Numeric_Error
12008 from the list of standard exceptions (it made it a renaming of
12009 Constraint_Error, to help preserve compatibility when compiling
12010 an Ada83 compiler). As such, we do not include Numeric_Error from
12011 this list of standard exceptions. */
12012
12013 static const char *standard_exc[] = {
12014 "constraint_error",
12015 "program_error",
12016 "storage_error",
12017 "tasking_error"
12018 };
12019
12020 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
12021
12022 /* A structure that describes how to support exception catchpoints
12023 for a given executable. */
12024
12025 struct exception_support_info
12026 {
12027 /* The name of the symbol to break on in order to insert
12028 a catchpoint on exceptions. */
12029 const char *catch_exception_sym;
12030
12031 /* The name of the symbol to break on in order to insert
12032 a catchpoint on unhandled exceptions. */
12033 const char *catch_exception_unhandled_sym;
12034
12035 /* The name of the symbol to break on in order to insert
12036 a catchpoint on failed assertions. */
12037 const char *catch_assert_sym;
12038
12039 /* The name of the symbol to break on in order to insert
12040 a catchpoint on exception handling. */
12041 const char *catch_handlers_sym;
12042
12043 /* Assuming that the inferior just triggered an unhandled exception
12044 catchpoint, this function is responsible for returning the address
12045 in inferior memory where the name of that exception is stored.
12046 Return zero if the address could not be computed. */
12047 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
12048 };
12049
12050 static CORE_ADDR ada_unhandled_exception_name_addr (void);
12051 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
12052
12053 /* The following exception support info structure describes how to
12054 implement exception catchpoints with the latest version of the
12055 Ada runtime (as of 2007-03-06). */
12056
12057 static const struct exception_support_info default_exception_support_info =
12058 {
12059 "__gnat_debug_raise_exception", /* catch_exception_sym */
12060 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12061 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
12062 "__gnat_begin_handler", /* catch_handlers_sym */
12063 ada_unhandled_exception_name_addr
12064 };
12065
12066 /* The following exception support info structure describes how to
12067 implement exception catchpoints with a slightly older version
12068 of the Ada runtime. */
12069
12070 static const struct exception_support_info exception_support_info_fallback =
12071 {
12072 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12073 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12074 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12075 "__gnat_begin_handler", /* catch_handlers_sym */
12076 ada_unhandled_exception_name_addr_from_raise
12077 };
12078
12079 /* Return nonzero if we can detect the exception support routines
12080 described in EINFO.
12081
12082 This function errors out if an abnormal situation is detected
12083 (for instance, if we find the exception support routines, but
12084 that support is found to be incomplete). */
12085
12086 static int
12087 ada_has_this_exception_support (const struct exception_support_info *einfo)
12088 {
12089 struct symbol *sym;
12090
12091 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12092 that should be compiled with debugging information. As a result, we
12093 expect to find that symbol in the symtabs. */
12094
12095 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12096 if (sym == NULL)
12097 {
12098 /* Perhaps we did not find our symbol because the Ada runtime was
12099 compiled without debugging info, or simply stripped of it.
12100 It happens on some GNU/Linux distributions for instance, where
12101 users have to install a separate debug package in order to get
12102 the runtime's debugging info. In that situation, let the user
12103 know why we cannot insert an Ada exception catchpoint.
12104
12105 Note: Just for the purpose of inserting our Ada exception
12106 catchpoint, we could rely purely on the associated minimal symbol.
12107 But we would be operating in degraded mode anyway, since we are
12108 still lacking the debugging info needed later on to extract
12109 the name of the exception being raised (this name is printed in
12110 the catchpoint message, and is also used when trying to catch
12111 a specific exception). We do not handle this case for now. */
12112 struct bound_minimal_symbol msym
12113 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12114
12115 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12116 error (_("Your Ada runtime appears to be missing some debugging "
12117 "information.\nCannot insert Ada exception catchpoint "
12118 "in this configuration."));
12119
12120 return 0;
12121 }
12122
12123 /* Make sure that the symbol we found corresponds to a function. */
12124
12125 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12126 error (_("Symbol \"%s\" is not a function (class = %d)"),
12127 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12128
12129 return 1;
12130 }
12131
12132 /* Inspect the Ada runtime and determine which exception info structure
12133 should be used to provide support for exception catchpoints.
12134
12135 This function will always set the per-inferior exception_info,
12136 or raise an error. */
12137
12138 static void
12139 ada_exception_support_info_sniffer (void)
12140 {
12141 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12142
12143 /* If the exception info is already known, then no need to recompute it. */
12144 if (data->exception_info != NULL)
12145 return;
12146
12147 /* Check the latest (default) exception support info. */
12148 if (ada_has_this_exception_support (&default_exception_support_info))
12149 {
12150 data->exception_info = &default_exception_support_info;
12151 return;
12152 }
12153
12154 /* Try our fallback exception suport info. */
12155 if (ada_has_this_exception_support (&exception_support_info_fallback))
12156 {
12157 data->exception_info = &exception_support_info_fallback;
12158 return;
12159 }
12160
12161 /* Sometimes, it is normal for us to not be able to find the routine
12162 we are looking for. This happens when the program is linked with
12163 the shared version of the GNAT runtime, and the program has not been
12164 started yet. Inform the user of these two possible causes if
12165 applicable. */
12166
12167 if (ada_update_initial_language (language_unknown) != language_ada)
12168 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12169
12170 /* If the symbol does not exist, then check that the program is
12171 already started, to make sure that shared libraries have been
12172 loaded. If it is not started, this may mean that the symbol is
12173 in a shared library. */
12174
12175 if (ptid_get_pid (inferior_ptid) == 0)
12176 error (_("Unable to insert catchpoint. Try to start the program first."));
12177
12178 /* At this point, we know that we are debugging an Ada program and
12179 that the inferior has been started, but we still are not able to
12180 find the run-time symbols. That can mean that we are in
12181 configurable run time mode, or that a-except as been optimized
12182 out by the linker... In any case, at this point it is not worth
12183 supporting this feature. */
12184
12185 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12186 }
12187
12188 /* True iff FRAME is very likely to be that of a function that is
12189 part of the runtime system. This is all very heuristic, but is
12190 intended to be used as advice as to what frames are uninteresting
12191 to most users. */
12192
12193 static int
12194 is_known_support_routine (struct frame_info *frame)
12195 {
12196 enum language func_lang;
12197 int i;
12198 const char *fullname;
12199
12200 /* If this code does not have any debugging information (no symtab),
12201 This cannot be any user code. */
12202
12203 symtab_and_line sal = find_frame_sal (frame);
12204 if (sal.symtab == NULL)
12205 return 1;
12206
12207 /* If there is a symtab, but the associated source file cannot be
12208 located, then assume this is not user code: Selecting a frame
12209 for which we cannot display the code would not be very helpful
12210 for the user. This should also take care of case such as VxWorks
12211 where the kernel has some debugging info provided for a few units. */
12212
12213 fullname = symtab_to_fullname (sal.symtab);
12214 if (access (fullname, R_OK) != 0)
12215 return 1;
12216
12217 /* Check the unit filename againt the Ada runtime file naming.
12218 We also check the name of the objfile against the name of some
12219 known system libraries that sometimes come with debugging info
12220 too. */
12221
12222 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12223 {
12224 re_comp (known_runtime_file_name_patterns[i]);
12225 if (re_exec (lbasename (sal.symtab->filename)))
12226 return 1;
12227 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12228 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12229 return 1;
12230 }
12231
12232 /* Check whether the function is a GNAT-generated entity. */
12233
12234 gdb::unique_xmalloc_ptr<char> func_name
12235 = find_frame_funname (frame, &func_lang, NULL);
12236 if (func_name == NULL)
12237 return 1;
12238
12239 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12240 {
12241 re_comp (known_auxiliary_function_name_patterns[i]);
12242 if (re_exec (func_name.get ()))
12243 return 1;
12244 }
12245
12246 return 0;
12247 }
12248
12249 /* Find the first frame that contains debugging information and that is not
12250 part of the Ada run-time, starting from FI and moving upward. */
12251
12252 void
12253 ada_find_printable_frame (struct frame_info *fi)
12254 {
12255 for (; fi != NULL; fi = get_prev_frame (fi))
12256 {
12257 if (!is_known_support_routine (fi))
12258 {
12259 select_frame (fi);
12260 break;
12261 }
12262 }
12263
12264 }
12265
12266 /* Assuming that the inferior just triggered an unhandled exception
12267 catchpoint, return the address in inferior memory where the name
12268 of the exception is stored.
12269
12270 Return zero if the address could not be computed. */
12271
12272 static CORE_ADDR
12273 ada_unhandled_exception_name_addr (void)
12274 {
12275 return parse_and_eval_address ("e.full_name");
12276 }
12277
12278 /* Same as ada_unhandled_exception_name_addr, except that this function
12279 should be used when the inferior uses an older version of the runtime,
12280 where the exception name needs to be extracted from a specific frame
12281 several frames up in the callstack. */
12282
12283 static CORE_ADDR
12284 ada_unhandled_exception_name_addr_from_raise (void)
12285 {
12286 int frame_level;
12287 struct frame_info *fi;
12288 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12289
12290 /* To determine the name of this exception, we need to select
12291 the frame corresponding to RAISE_SYM_NAME. This frame is
12292 at least 3 levels up, so we simply skip the first 3 frames
12293 without checking the name of their associated function. */
12294 fi = get_current_frame ();
12295 for (frame_level = 0; frame_level < 3; frame_level += 1)
12296 if (fi != NULL)
12297 fi = get_prev_frame (fi);
12298
12299 while (fi != NULL)
12300 {
12301 enum language func_lang;
12302
12303 gdb::unique_xmalloc_ptr<char> func_name
12304 = find_frame_funname (fi, &func_lang, NULL);
12305 if (func_name != NULL)
12306 {
12307 if (strcmp (func_name.get (),
12308 data->exception_info->catch_exception_sym) == 0)
12309 break; /* We found the frame we were looking for... */
12310 fi = get_prev_frame (fi);
12311 }
12312 }
12313
12314 if (fi == NULL)
12315 return 0;
12316
12317 select_frame (fi);
12318 return parse_and_eval_address ("id.full_name");
12319 }
12320
12321 /* Assuming the inferior just triggered an Ada exception catchpoint
12322 (of any type), return the address in inferior memory where the name
12323 of the exception is stored, if applicable.
12324
12325 Assumes the selected frame is the current frame.
12326
12327 Return zero if the address could not be computed, or if not relevant. */
12328
12329 static CORE_ADDR
12330 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12331 struct breakpoint *b)
12332 {
12333 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12334
12335 switch (ex)
12336 {
12337 case ada_catch_exception:
12338 return (parse_and_eval_address ("e.full_name"));
12339 break;
12340
12341 case ada_catch_exception_unhandled:
12342 return data->exception_info->unhandled_exception_name_addr ();
12343 break;
12344
12345 case ada_catch_handlers:
12346 return 0; /* The runtimes does not provide access to the exception
12347 name. */
12348 break;
12349
12350 case ada_catch_assert:
12351 return 0; /* Exception name is not relevant in this case. */
12352 break;
12353
12354 default:
12355 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12356 break;
12357 }
12358
12359 return 0; /* Should never be reached. */
12360 }
12361
12362 /* Assuming the inferior is stopped at an exception catchpoint,
12363 return the message which was associated to the exception, if
12364 available. Return NULL if the message could not be retrieved.
12365
12366 The caller must xfree the string after use.
12367
12368 Note: The exception message can be associated to an exception
12369 either through the use of the Raise_Exception function, or
12370 more simply (Ada 2005 and later), via:
12371
12372 raise Exception_Name with "exception message";
12373
12374 */
12375
12376 static char *
12377 ada_exception_message_1 (void)
12378 {
12379 struct value *e_msg_val;
12380 char *e_msg = NULL;
12381 int e_msg_len;
12382 struct cleanup *cleanups;
12383
12384 /* For runtimes that support this feature, the exception message
12385 is passed as an unbounded string argument called "message". */
12386 e_msg_val = parse_and_eval ("message");
12387 if (e_msg_val == NULL)
12388 return NULL; /* Exception message not supported. */
12389
12390 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12391 gdb_assert (e_msg_val != NULL);
12392 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12393
12394 /* If the message string is empty, then treat it as if there was
12395 no exception message. */
12396 if (e_msg_len <= 0)
12397 return NULL;
12398
12399 e_msg = (char *) xmalloc (e_msg_len + 1);
12400 cleanups = make_cleanup (xfree, e_msg);
12401 read_memory_string (value_address (e_msg_val), e_msg, e_msg_len + 1);
12402 e_msg[e_msg_len] = '\0';
12403
12404 discard_cleanups (cleanups);
12405 return e_msg;
12406 }
12407
12408 /* Same as ada_exception_message_1, except that all exceptions are
12409 contained here (returning NULL instead). */
12410
12411 static char *
12412 ada_exception_message (void)
12413 {
12414 char *e_msg = NULL; /* Avoid a spurious uninitialized warning. */
12415
12416 TRY
12417 {
12418 e_msg = ada_exception_message_1 ();
12419 }
12420 CATCH (e, RETURN_MASK_ERROR)
12421 {
12422 e_msg = NULL;
12423 }
12424 END_CATCH
12425
12426 return e_msg;
12427 }
12428
12429 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12430 any error that ada_exception_name_addr_1 might cause to be thrown.
12431 When an error is intercepted, a warning with the error message is printed,
12432 and zero is returned. */
12433
12434 static CORE_ADDR
12435 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12436 struct breakpoint *b)
12437 {
12438 CORE_ADDR result = 0;
12439
12440 TRY
12441 {
12442 result = ada_exception_name_addr_1 (ex, b);
12443 }
12444
12445 CATCH (e, RETURN_MASK_ERROR)
12446 {
12447 warning (_("failed to get exception name: %s"), e.message);
12448 return 0;
12449 }
12450 END_CATCH
12451
12452 return result;
12453 }
12454
12455 static char *ada_exception_catchpoint_cond_string
12456 (const char *excep_string,
12457 enum ada_exception_catchpoint_kind ex);
12458
12459 /* Ada catchpoints.
12460
12461 In the case of catchpoints on Ada exceptions, the catchpoint will
12462 stop the target on every exception the program throws. When a user
12463 specifies the name of a specific exception, we translate this
12464 request into a condition expression (in text form), and then parse
12465 it into an expression stored in each of the catchpoint's locations.
12466 We then use this condition to check whether the exception that was
12467 raised is the one the user is interested in. If not, then the
12468 target is resumed again. We store the name of the requested
12469 exception, in order to be able to re-set the condition expression
12470 when symbols change. */
12471
12472 /* An instance of this type is used to represent an Ada catchpoint
12473 breakpoint location. */
12474
12475 class ada_catchpoint_location : public bp_location
12476 {
12477 public:
12478 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12479 : bp_location (ops, owner)
12480 {}
12481
12482 /* The condition that checks whether the exception that was raised
12483 is the specific exception the user specified on catchpoint
12484 creation. */
12485 expression_up excep_cond_expr;
12486 };
12487
12488 /* Implement the DTOR method in the bp_location_ops structure for all
12489 Ada exception catchpoint kinds. */
12490
12491 static void
12492 ada_catchpoint_location_dtor (struct bp_location *bl)
12493 {
12494 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12495
12496 al->excep_cond_expr.reset ();
12497 }
12498
12499 /* The vtable to be used in Ada catchpoint locations. */
12500
12501 static const struct bp_location_ops ada_catchpoint_location_ops =
12502 {
12503 ada_catchpoint_location_dtor
12504 };
12505
12506 /* An instance of this type is used to represent an Ada catchpoint. */
12507
12508 struct ada_catchpoint : public breakpoint
12509 {
12510 ~ada_catchpoint () override;
12511
12512 /* The name of the specific exception the user specified. */
12513 char *excep_string;
12514 };
12515
12516 /* Parse the exception condition string in the context of each of the
12517 catchpoint's locations, and store them for later evaluation. */
12518
12519 static void
12520 create_excep_cond_exprs (struct ada_catchpoint *c,
12521 enum ada_exception_catchpoint_kind ex)
12522 {
12523 struct cleanup *old_chain;
12524 struct bp_location *bl;
12525 char *cond_string;
12526
12527 /* Nothing to do if there's no specific exception to catch. */
12528 if (c->excep_string == NULL)
12529 return;
12530
12531 /* Same if there are no locations... */
12532 if (c->loc == NULL)
12533 return;
12534
12535 /* Compute the condition expression in text form, from the specific
12536 expection we want to catch. */
12537 cond_string = ada_exception_catchpoint_cond_string (c->excep_string, ex);
12538 old_chain = make_cleanup (xfree, cond_string);
12539
12540 /* Iterate over all the catchpoint's locations, and parse an
12541 expression for each. */
12542 for (bl = c->loc; bl != NULL; bl = bl->next)
12543 {
12544 struct ada_catchpoint_location *ada_loc
12545 = (struct ada_catchpoint_location *) bl;
12546 expression_up exp;
12547
12548 if (!bl->shlib_disabled)
12549 {
12550 const char *s;
12551
12552 s = cond_string;
12553 TRY
12554 {
12555 exp = parse_exp_1 (&s, bl->address,
12556 block_for_pc (bl->address),
12557 0);
12558 }
12559 CATCH (e, RETURN_MASK_ERROR)
12560 {
12561 warning (_("failed to reevaluate internal exception condition "
12562 "for catchpoint %d: %s"),
12563 c->number, e.message);
12564 }
12565 END_CATCH
12566 }
12567
12568 ada_loc->excep_cond_expr = std::move (exp);
12569 }
12570
12571 do_cleanups (old_chain);
12572 }
12573
12574 /* ada_catchpoint destructor. */
12575
12576 ada_catchpoint::~ada_catchpoint ()
12577 {
12578 xfree (this->excep_string);
12579 }
12580
12581 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12582 structure for all exception catchpoint kinds. */
12583
12584 static struct bp_location *
12585 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12586 struct breakpoint *self)
12587 {
12588 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12589 }
12590
12591 /* Implement the RE_SET method in the breakpoint_ops structure for all
12592 exception catchpoint kinds. */
12593
12594 static void
12595 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12596 {
12597 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12598
12599 /* Call the base class's method. This updates the catchpoint's
12600 locations. */
12601 bkpt_breakpoint_ops.re_set (b);
12602
12603 /* Reparse the exception conditional expressions. One for each
12604 location. */
12605 create_excep_cond_exprs (c, ex);
12606 }
12607
12608 /* Returns true if we should stop for this breakpoint hit. If the
12609 user specified a specific exception, we only want to cause a stop
12610 if the program thrown that exception. */
12611
12612 static int
12613 should_stop_exception (const struct bp_location *bl)
12614 {
12615 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12616 const struct ada_catchpoint_location *ada_loc
12617 = (const struct ada_catchpoint_location *) bl;
12618 int stop;
12619
12620 /* With no specific exception, should always stop. */
12621 if (c->excep_string == NULL)
12622 return 1;
12623
12624 if (ada_loc->excep_cond_expr == NULL)
12625 {
12626 /* We will have a NULL expression if back when we were creating
12627 the expressions, this location's had failed to parse. */
12628 return 1;
12629 }
12630
12631 stop = 1;
12632 TRY
12633 {
12634 struct value *mark;
12635
12636 mark = value_mark ();
12637 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12638 value_free_to_mark (mark);
12639 }
12640 CATCH (ex, RETURN_MASK_ALL)
12641 {
12642 exception_fprintf (gdb_stderr, ex,
12643 _("Error in testing exception condition:\n"));
12644 }
12645 END_CATCH
12646
12647 return stop;
12648 }
12649
12650 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12651 for all exception catchpoint kinds. */
12652
12653 static void
12654 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12655 {
12656 bs->stop = should_stop_exception (bs->bp_location_at);
12657 }
12658
12659 /* Implement the PRINT_IT method in the breakpoint_ops structure
12660 for all exception catchpoint kinds. */
12661
12662 static enum print_stop_action
12663 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12664 {
12665 struct ui_out *uiout = current_uiout;
12666 struct breakpoint *b = bs->breakpoint_at;
12667 char *exception_message;
12668
12669 annotate_catchpoint (b->number);
12670
12671 if (uiout->is_mi_like_p ())
12672 {
12673 uiout->field_string ("reason",
12674 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12675 uiout->field_string ("disp", bpdisp_text (b->disposition));
12676 }
12677
12678 uiout->text (b->disposition == disp_del
12679 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12680 uiout->field_int ("bkptno", b->number);
12681 uiout->text (", ");
12682
12683 /* ada_exception_name_addr relies on the selected frame being the
12684 current frame. Need to do this here because this function may be
12685 called more than once when printing a stop, and below, we'll
12686 select the first frame past the Ada run-time (see
12687 ada_find_printable_frame). */
12688 select_frame (get_current_frame ());
12689
12690 switch (ex)
12691 {
12692 case ada_catch_exception:
12693 case ada_catch_exception_unhandled:
12694 case ada_catch_handlers:
12695 {
12696 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12697 char exception_name[256];
12698
12699 if (addr != 0)
12700 {
12701 read_memory (addr, (gdb_byte *) exception_name,
12702 sizeof (exception_name) - 1);
12703 exception_name [sizeof (exception_name) - 1] = '\0';
12704 }
12705 else
12706 {
12707 /* For some reason, we were unable to read the exception
12708 name. This could happen if the Runtime was compiled
12709 without debugging info, for instance. In that case,
12710 just replace the exception name by the generic string
12711 "exception" - it will read as "an exception" in the
12712 notification we are about to print. */
12713 memcpy (exception_name, "exception", sizeof ("exception"));
12714 }
12715 /* In the case of unhandled exception breakpoints, we print
12716 the exception name as "unhandled EXCEPTION_NAME", to make
12717 it clearer to the user which kind of catchpoint just got
12718 hit. We used ui_out_text to make sure that this extra
12719 info does not pollute the exception name in the MI case. */
12720 if (ex == ada_catch_exception_unhandled)
12721 uiout->text ("unhandled ");
12722 uiout->field_string ("exception-name", exception_name);
12723 }
12724 break;
12725 case ada_catch_assert:
12726 /* In this case, the name of the exception is not really
12727 important. Just print "failed assertion" to make it clearer
12728 that his program just hit an assertion-failure catchpoint.
12729 We used ui_out_text because this info does not belong in
12730 the MI output. */
12731 uiout->text ("failed assertion");
12732 break;
12733 }
12734
12735 exception_message = ada_exception_message ();
12736 if (exception_message != NULL)
12737 {
12738 struct cleanup *cleanups = make_cleanup (xfree, exception_message);
12739
12740 uiout->text (" (");
12741 uiout->field_string ("exception-message", exception_message);
12742 uiout->text (")");
12743
12744 do_cleanups (cleanups);
12745 }
12746
12747 uiout->text (" at ");
12748 ada_find_printable_frame (get_current_frame ());
12749
12750 return PRINT_SRC_AND_LOC;
12751 }
12752
12753 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12754 for all exception catchpoint kinds. */
12755
12756 static void
12757 print_one_exception (enum ada_exception_catchpoint_kind ex,
12758 struct breakpoint *b, struct bp_location **last_loc)
12759 {
12760 struct ui_out *uiout = current_uiout;
12761 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12762 struct value_print_options opts;
12763
12764 get_user_print_options (&opts);
12765 if (opts.addressprint)
12766 {
12767 annotate_field (4);
12768 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12769 }
12770
12771 annotate_field (5);
12772 *last_loc = b->loc;
12773 switch (ex)
12774 {
12775 case ada_catch_exception:
12776 if (c->excep_string != NULL)
12777 {
12778 char *msg = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12779
12780 uiout->field_string ("what", msg);
12781 xfree (msg);
12782 }
12783 else
12784 uiout->field_string ("what", "all Ada exceptions");
12785
12786 break;
12787
12788 case ada_catch_exception_unhandled:
12789 uiout->field_string ("what", "unhandled Ada exceptions");
12790 break;
12791
12792 case ada_catch_handlers:
12793 if (c->excep_string != NULL)
12794 {
12795 uiout->field_fmt ("what",
12796 _("`%s' Ada exception handlers"),
12797 c->excep_string);
12798 }
12799 else
12800 uiout->field_string ("what", "all Ada exceptions handlers");
12801 break;
12802
12803 case ada_catch_assert:
12804 uiout->field_string ("what", "failed Ada assertions");
12805 break;
12806
12807 default:
12808 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12809 break;
12810 }
12811 }
12812
12813 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12814 for all exception catchpoint kinds. */
12815
12816 static void
12817 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12818 struct breakpoint *b)
12819 {
12820 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12821 struct ui_out *uiout = current_uiout;
12822
12823 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12824 : _("Catchpoint "));
12825 uiout->field_int ("bkptno", b->number);
12826 uiout->text (": ");
12827
12828 switch (ex)
12829 {
12830 case ada_catch_exception:
12831 if (c->excep_string != NULL)
12832 {
12833 char *info = xstrprintf (_("`%s' Ada exception"), c->excep_string);
12834 struct cleanup *old_chain = make_cleanup (xfree, info);
12835
12836 uiout->text (info);
12837 do_cleanups (old_chain);
12838 }
12839 else
12840 uiout->text (_("all Ada exceptions"));
12841 break;
12842
12843 case ada_catch_exception_unhandled:
12844 uiout->text (_("unhandled Ada exceptions"));
12845 break;
12846
12847 case ada_catch_handlers:
12848 if (c->excep_string != NULL)
12849 {
12850 std::string info
12851 = string_printf (_("`%s' Ada exception handlers"),
12852 c->excep_string);
12853 uiout->text (info.c_str ());
12854 }
12855 else
12856 uiout->text (_("all Ada exceptions handlers"));
12857 break;
12858
12859 case ada_catch_assert:
12860 uiout->text (_("failed Ada assertions"));
12861 break;
12862
12863 default:
12864 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12865 break;
12866 }
12867 }
12868
12869 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12870 for all exception catchpoint kinds. */
12871
12872 static void
12873 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12874 struct breakpoint *b, struct ui_file *fp)
12875 {
12876 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12877
12878 switch (ex)
12879 {
12880 case ada_catch_exception:
12881 fprintf_filtered (fp, "catch exception");
12882 if (c->excep_string != NULL)
12883 fprintf_filtered (fp, " %s", c->excep_string);
12884 break;
12885
12886 case ada_catch_exception_unhandled:
12887 fprintf_filtered (fp, "catch exception unhandled");
12888 break;
12889
12890 case ada_catch_handlers:
12891 fprintf_filtered (fp, "catch handlers");
12892 break;
12893
12894 case ada_catch_assert:
12895 fprintf_filtered (fp, "catch assert");
12896 break;
12897
12898 default:
12899 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12900 }
12901 print_recreate_thread (b, fp);
12902 }
12903
12904 /* Virtual table for "catch exception" breakpoints. */
12905
12906 static struct bp_location *
12907 allocate_location_catch_exception (struct breakpoint *self)
12908 {
12909 return allocate_location_exception (ada_catch_exception, self);
12910 }
12911
12912 static void
12913 re_set_catch_exception (struct breakpoint *b)
12914 {
12915 re_set_exception (ada_catch_exception, b);
12916 }
12917
12918 static void
12919 check_status_catch_exception (bpstat bs)
12920 {
12921 check_status_exception (ada_catch_exception, bs);
12922 }
12923
12924 static enum print_stop_action
12925 print_it_catch_exception (bpstat bs)
12926 {
12927 return print_it_exception (ada_catch_exception, bs);
12928 }
12929
12930 static void
12931 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12932 {
12933 print_one_exception (ada_catch_exception, b, last_loc);
12934 }
12935
12936 static void
12937 print_mention_catch_exception (struct breakpoint *b)
12938 {
12939 print_mention_exception (ada_catch_exception, b);
12940 }
12941
12942 static void
12943 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12944 {
12945 print_recreate_exception (ada_catch_exception, b, fp);
12946 }
12947
12948 static struct breakpoint_ops catch_exception_breakpoint_ops;
12949
12950 /* Virtual table for "catch exception unhandled" breakpoints. */
12951
12952 static struct bp_location *
12953 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12954 {
12955 return allocate_location_exception (ada_catch_exception_unhandled, self);
12956 }
12957
12958 static void
12959 re_set_catch_exception_unhandled (struct breakpoint *b)
12960 {
12961 re_set_exception (ada_catch_exception_unhandled, b);
12962 }
12963
12964 static void
12965 check_status_catch_exception_unhandled (bpstat bs)
12966 {
12967 check_status_exception (ada_catch_exception_unhandled, bs);
12968 }
12969
12970 static enum print_stop_action
12971 print_it_catch_exception_unhandled (bpstat bs)
12972 {
12973 return print_it_exception (ada_catch_exception_unhandled, bs);
12974 }
12975
12976 static void
12977 print_one_catch_exception_unhandled (struct breakpoint *b,
12978 struct bp_location **last_loc)
12979 {
12980 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12981 }
12982
12983 static void
12984 print_mention_catch_exception_unhandled (struct breakpoint *b)
12985 {
12986 print_mention_exception (ada_catch_exception_unhandled, b);
12987 }
12988
12989 static void
12990 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12991 struct ui_file *fp)
12992 {
12993 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12994 }
12995
12996 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12997
12998 /* Virtual table for "catch assert" breakpoints. */
12999
13000 static struct bp_location *
13001 allocate_location_catch_assert (struct breakpoint *self)
13002 {
13003 return allocate_location_exception (ada_catch_assert, self);
13004 }
13005
13006 static void
13007 re_set_catch_assert (struct breakpoint *b)
13008 {
13009 re_set_exception (ada_catch_assert, b);
13010 }
13011
13012 static void
13013 check_status_catch_assert (bpstat bs)
13014 {
13015 check_status_exception (ada_catch_assert, bs);
13016 }
13017
13018 static enum print_stop_action
13019 print_it_catch_assert (bpstat bs)
13020 {
13021 return print_it_exception (ada_catch_assert, bs);
13022 }
13023
13024 static void
13025 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
13026 {
13027 print_one_exception (ada_catch_assert, b, last_loc);
13028 }
13029
13030 static void
13031 print_mention_catch_assert (struct breakpoint *b)
13032 {
13033 print_mention_exception (ada_catch_assert, b);
13034 }
13035
13036 static void
13037 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
13038 {
13039 print_recreate_exception (ada_catch_assert, b, fp);
13040 }
13041
13042 static struct breakpoint_ops catch_assert_breakpoint_ops;
13043
13044 /* Virtual table for "catch handlers" breakpoints. */
13045
13046 static struct bp_location *
13047 allocate_location_catch_handlers (struct breakpoint *self)
13048 {
13049 return allocate_location_exception (ada_catch_handlers, self);
13050 }
13051
13052 static void
13053 re_set_catch_handlers (struct breakpoint *b)
13054 {
13055 re_set_exception (ada_catch_handlers, b);
13056 }
13057
13058 static void
13059 check_status_catch_handlers (bpstat bs)
13060 {
13061 check_status_exception (ada_catch_handlers, bs);
13062 }
13063
13064 static enum print_stop_action
13065 print_it_catch_handlers (bpstat bs)
13066 {
13067 return print_it_exception (ada_catch_handlers, bs);
13068 }
13069
13070 static void
13071 print_one_catch_handlers (struct breakpoint *b,
13072 struct bp_location **last_loc)
13073 {
13074 print_one_exception (ada_catch_handlers, b, last_loc);
13075 }
13076
13077 static void
13078 print_mention_catch_handlers (struct breakpoint *b)
13079 {
13080 print_mention_exception (ada_catch_handlers, b);
13081 }
13082
13083 static void
13084 print_recreate_catch_handlers (struct breakpoint *b,
13085 struct ui_file *fp)
13086 {
13087 print_recreate_exception (ada_catch_handlers, b, fp);
13088 }
13089
13090 static struct breakpoint_ops catch_handlers_breakpoint_ops;
13091
13092 /* Return a newly allocated copy of the first space-separated token
13093 in ARGSP, and then adjust ARGSP to point immediately after that
13094 token.
13095
13096 Return NULL if ARGPS does not contain any more tokens. */
13097
13098 static char *
13099 ada_get_next_arg (const char **argsp)
13100 {
13101 const char *args = *argsp;
13102 const char *end;
13103 char *result;
13104
13105 args = skip_spaces (args);
13106 if (args[0] == '\0')
13107 return NULL; /* No more arguments. */
13108
13109 /* Find the end of the current argument. */
13110
13111 end = skip_to_space (args);
13112
13113 /* Adjust ARGSP to point to the start of the next argument. */
13114
13115 *argsp = end;
13116
13117 /* Make a copy of the current argument and return it. */
13118
13119 result = (char *) xmalloc (end - args + 1);
13120 strncpy (result, args, end - args);
13121 result[end - args] = '\0';
13122
13123 return result;
13124 }
13125
13126 /* Split the arguments specified in a "catch exception" command.
13127 Set EX to the appropriate catchpoint type.
13128 Set EXCEP_STRING to the name of the specific exception if
13129 specified by the user.
13130 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
13131 "catch handlers" command. False otherwise.
13132 If a condition is found at the end of the arguments, the condition
13133 expression is stored in COND_STRING (memory must be deallocated
13134 after use). Otherwise COND_STRING is set to NULL. */
13135
13136 static void
13137 catch_ada_exception_command_split (const char *args,
13138 bool is_catch_handlers_cmd,
13139 enum ada_exception_catchpoint_kind *ex,
13140 char **excep_string,
13141 std::string &cond_string)
13142 {
13143 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
13144 char *exception_name;
13145 char *cond = NULL;
13146
13147 exception_name = ada_get_next_arg (&args);
13148 if (exception_name != NULL && strcmp (exception_name, "if") == 0)
13149 {
13150 /* This is not an exception name; this is the start of a condition
13151 expression for a catchpoint on all exceptions. So, "un-get"
13152 this token, and set exception_name to NULL. */
13153 xfree (exception_name);
13154 exception_name = NULL;
13155 args -= 2;
13156 }
13157 make_cleanup (xfree, exception_name);
13158
13159 /* Check to see if we have a condition. */
13160
13161 args = skip_spaces (args);
13162 if (startswith (args, "if")
13163 && (isspace (args[2]) || args[2] == '\0'))
13164 {
13165 args += 2;
13166 args = skip_spaces (args);
13167
13168 if (args[0] == '\0')
13169 error (_("Condition missing after `if' keyword"));
13170 cond = xstrdup (args);
13171 make_cleanup (xfree, cond);
13172
13173 args += strlen (args);
13174 }
13175
13176 /* Check that we do not have any more arguments. Anything else
13177 is unexpected. */
13178
13179 if (args[0] != '\0')
13180 error (_("Junk at end of expression"));
13181
13182 discard_cleanups (old_chain);
13183
13184 if (is_catch_handlers_cmd)
13185 {
13186 /* Catch handling of exceptions. */
13187 *ex = ada_catch_handlers;
13188 *excep_string = exception_name;
13189 }
13190 else if (exception_name == NULL)
13191 {
13192 /* Catch all exceptions. */
13193 *ex = ada_catch_exception;
13194 *excep_string = NULL;
13195 }
13196 else if (strcmp (exception_name, "unhandled") == 0)
13197 {
13198 /* Catch unhandled exceptions. */
13199 *ex = ada_catch_exception_unhandled;
13200 *excep_string = NULL;
13201 }
13202 else
13203 {
13204 /* Catch a specific exception. */
13205 *ex = ada_catch_exception;
13206 *excep_string = exception_name;
13207 }
13208 if (cond != NULL)
13209 cond_string.assign (cond);
13210 }
13211
13212 /* Return the name of the symbol on which we should break in order to
13213 implement a catchpoint of the EX kind. */
13214
13215 static const char *
13216 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13217 {
13218 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13219
13220 gdb_assert (data->exception_info != NULL);
13221
13222 switch (ex)
13223 {
13224 case ada_catch_exception:
13225 return (data->exception_info->catch_exception_sym);
13226 break;
13227 case ada_catch_exception_unhandled:
13228 return (data->exception_info->catch_exception_unhandled_sym);
13229 break;
13230 case ada_catch_assert:
13231 return (data->exception_info->catch_assert_sym);
13232 break;
13233 case ada_catch_handlers:
13234 return (data->exception_info->catch_handlers_sym);
13235 break;
13236 default:
13237 internal_error (__FILE__, __LINE__,
13238 _("unexpected catchpoint kind (%d)"), ex);
13239 }
13240 }
13241
13242 /* Return the breakpoint ops "virtual table" used for catchpoints
13243 of the EX kind. */
13244
13245 static const struct breakpoint_ops *
13246 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13247 {
13248 switch (ex)
13249 {
13250 case ada_catch_exception:
13251 return (&catch_exception_breakpoint_ops);
13252 break;
13253 case ada_catch_exception_unhandled:
13254 return (&catch_exception_unhandled_breakpoint_ops);
13255 break;
13256 case ada_catch_assert:
13257 return (&catch_assert_breakpoint_ops);
13258 break;
13259 case ada_catch_handlers:
13260 return (&catch_handlers_breakpoint_ops);
13261 break;
13262 default:
13263 internal_error (__FILE__, __LINE__,
13264 _("unexpected catchpoint kind (%d)"), ex);
13265 }
13266 }
13267
13268 /* Return the condition that will be used to match the current exception
13269 being raised with the exception that the user wants to catch. This
13270 assumes that this condition is used when the inferior just triggered
13271 an exception catchpoint.
13272 EX: the type of catchpoints used for catching Ada exceptions.
13273
13274 The string returned is a newly allocated string that needs to be
13275 deallocated later. */
13276
13277 static char *
13278 ada_exception_catchpoint_cond_string (const char *excep_string,
13279 enum ada_exception_catchpoint_kind ex)
13280 {
13281 int i;
13282 bool is_standard_exc = false;
13283 const char *actual_exc_expr;
13284 char *ref_exc_expr;
13285
13286 if (ex == ada_catch_handlers)
13287 {
13288 /* For exception handlers catchpoints, the condition string does
13289 not use the same parameter as for the other exceptions. */
13290 actual_exc_expr = ("long_integer (GNAT_GCC_exception_Access"
13291 "(gcc_exception).all.occurrence.id)");
13292 }
13293 else
13294 actual_exc_expr = "long_integer (e)";
13295
13296 /* The standard exceptions are a special case. They are defined in
13297 runtime units that have been compiled without debugging info; if
13298 EXCEP_STRING is the not-fully-qualified name of a standard
13299 exception (e.g. "constraint_error") then, during the evaluation
13300 of the condition expression, the symbol lookup on this name would
13301 *not* return this standard exception. The catchpoint condition
13302 may then be set only on user-defined exceptions which have the
13303 same not-fully-qualified name (e.g. my_package.constraint_error).
13304
13305 To avoid this unexcepted behavior, these standard exceptions are
13306 systematically prefixed by "standard". This means that "catch
13307 exception constraint_error" is rewritten into "catch exception
13308 standard.constraint_error".
13309
13310 If an exception named contraint_error is defined in another package of
13311 the inferior program, then the only way to specify this exception as a
13312 breakpoint condition is to use its fully-qualified named:
13313 e.g. my_package.constraint_error. */
13314
13315 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13316 {
13317 if (strcmp (standard_exc [i], excep_string) == 0)
13318 {
13319 is_standard_exc = true;
13320 break;
13321 }
13322 }
13323
13324 if (is_standard_exc)
13325 ref_exc_expr = xstrprintf ("long_integer (&standard.%s)", excep_string);
13326 else
13327 ref_exc_expr = xstrprintf ("long_integer (&%s)", excep_string);
13328
13329 char *result = xstrprintf ("%s = %s", actual_exc_expr, ref_exc_expr);
13330 xfree (ref_exc_expr);
13331 return result;
13332 }
13333
13334 /* Return the symtab_and_line that should be used to insert an exception
13335 catchpoint of the TYPE kind.
13336
13337 EXCEP_STRING should contain the name of a specific exception that
13338 the catchpoint should catch, or NULL otherwise.
13339
13340 ADDR_STRING returns the name of the function where the real
13341 breakpoint that implements the catchpoints is set, depending on the
13342 type of catchpoint we need to create. */
13343
13344 static struct symtab_and_line
13345 ada_exception_sal (enum ada_exception_catchpoint_kind ex, char *excep_string,
13346 const char **addr_string, const struct breakpoint_ops **ops)
13347 {
13348 const char *sym_name;
13349 struct symbol *sym;
13350
13351 /* First, find out which exception support info to use. */
13352 ada_exception_support_info_sniffer ();
13353
13354 /* Then lookup the function on which we will break in order to catch
13355 the Ada exceptions requested by the user. */
13356 sym_name = ada_exception_sym_name (ex);
13357 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13358
13359 /* We can assume that SYM is not NULL at this stage. If the symbol
13360 did not exist, ada_exception_support_info_sniffer would have
13361 raised an exception.
13362
13363 Also, ada_exception_support_info_sniffer should have already
13364 verified that SYM is a function symbol. */
13365 gdb_assert (sym != NULL);
13366 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13367
13368 /* Set ADDR_STRING. */
13369 *addr_string = xstrdup (sym_name);
13370
13371 /* Set OPS. */
13372 *ops = ada_exception_breakpoint_ops (ex);
13373
13374 return find_function_start_sal (sym, 1);
13375 }
13376
13377 /* Create an Ada exception catchpoint.
13378
13379 EX_KIND is the kind of exception catchpoint to be created.
13380
13381 If EXCEPT_STRING is NULL, this catchpoint is expected to trigger
13382 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13383 of the exception to which this catchpoint applies. When not NULL,
13384 the string must be allocated on the heap, and its deallocation
13385 is no longer the responsibility of the caller.
13386
13387 COND_STRING, if not NULL, is the catchpoint condition. This string
13388 must be allocated on the heap, and its deallocation is no longer
13389 the responsibility of the caller.
13390
13391 TEMPFLAG, if nonzero, means that the underlying breakpoint
13392 should be temporary.
13393
13394 FROM_TTY is the usual argument passed to all commands implementations. */
13395
13396 void
13397 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13398 enum ada_exception_catchpoint_kind ex_kind,
13399 char *excep_string,
13400 const std::string &cond_string,
13401 int tempflag,
13402 int disabled,
13403 int from_tty)
13404 {
13405 const char *addr_string = NULL;
13406 const struct breakpoint_ops *ops = NULL;
13407 struct symtab_and_line sal
13408 = ada_exception_sal (ex_kind, excep_string, &addr_string, &ops);
13409
13410 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13411 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13412 ops, tempflag, disabled, from_tty);
13413 c->excep_string = excep_string;
13414 create_excep_cond_exprs (c.get (), ex_kind);
13415 if (!cond_string.empty ())
13416 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13417 install_breakpoint (0, std::move (c), 1);
13418 }
13419
13420 /* Implement the "catch exception" command. */
13421
13422 static void
13423 catch_ada_exception_command (const char *arg_entry, int from_tty,
13424 struct cmd_list_element *command)
13425 {
13426 const char *arg = arg_entry;
13427 struct gdbarch *gdbarch = get_current_arch ();
13428 int tempflag;
13429 enum ada_exception_catchpoint_kind ex_kind;
13430 char *excep_string = NULL;
13431 std::string cond_string;
13432
13433 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13434
13435 if (!arg)
13436 arg = "";
13437 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13438 cond_string);
13439 create_ada_exception_catchpoint (gdbarch, ex_kind,
13440 excep_string, cond_string,
13441 tempflag, 1 /* enabled */,
13442 from_tty);
13443 }
13444
13445 /* Implement the "catch handlers" command. */
13446
13447 static void
13448 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13449 struct cmd_list_element *command)
13450 {
13451 const char *arg = arg_entry;
13452 struct gdbarch *gdbarch = get_current_arch ();
13453 int tempflag;
13454 enum ada_exception_catchpoint_kind ex_kind;
13455 char *excep_string = NULL;
13456 std::string cond_string;
13457
13458 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13459
13460 if (!arg)
13461 arg = "";
13462 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13463 cond_string);
13464 create_ada_exception_catchpoint (gdbarch, ex_kind,
13465 excep_string, cond_string,
13466 tempflag, 1 /* enabled */,
13467 from_tty);
13468 }
13469
13470 /* Split the arguments specified in a "catch assert" command.
13471
13472 ARGS contains the command's arguments (or the empty string if
13473 no arguments were passed).
13474
13475 If ARGS contains a condition, set COND_STRING to that condition
13476 (the memory needs to be deallocated after use). */
13477
13478 static void
13479 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13480 {
13481 args = skip_spaces (args);
13482
13483 /* Check whether a condition was provided. */
13484 if (startswith (args, "if")
13485 && (isspace (args[2]) || args[2] == '\0'))
13486 {
13487 args += 2;
13488 args = skip_spaces (args);
13489 if (args[0] == '\0')
13490 error (_("condition missing after `if' keyword"));
13491 cond_string.assign (args);
13492 }
13493
13494 /* Otherwise, there should be no other argument at the end of
13495 the command. */
13496 else if (args[0] != '\0')
13497 error (_("Junk at end of arguments."));
13498 }
13499
13500 /* Implement the "catch assert" command. */
13501
13502 static void
13503 catch_assert_command (const char *arg_entry, int from_tty,
13504 struct cmd_list_element *command)
13505 {
13506 const char *arg = arg_entry;
13507 struct gdbarch *gdbarch = get_current_arch ();
13508 int tempflag;
13509 std::string cond_string;
13510
13511 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13512
13513 if (!arg)
13514 arg = "";
13515 catch_ada_assert_command_split (arg, cond_string);
13516 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13517 NULL, cond_string,
13518 tempflag, 1 /* enabled */,
13519 from_tty);
13520 }
13521
13522 /* Return non-zero if the symbol SYM is an Ada exception object. */
13523
13524 static int
13525 ada_is_exception_sym (struct symbol *sym)
13526 {
13527 const char *type_name = type_name_no_tag (SYMBOL_TYPE (sym));
13528
13529 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13530 && SYMBOL_CLASS (sym) != LOC_BLOCK
13531 && SYMBOL_CLASS (sym) != LOC_CONST
13532 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13533 && type_name != NULL && strcmp (type_name, "exception") == 0);
13534 }
13535
13536 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13537 Ada exception object. This matches all exceptions except the ones
13538 defined by the Ada language. */
13539
13540 static int
13541 ada_is_non_standard_exception_sym (struct symbol *sym)
13542 {
13543 int i;
13544
13545 if (!ada_is_exception_sym (sym))
13546 return 0;
13547
13548 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13549 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13550 return 0; /* A standard exception. */
13551
13552 /* Numeric_Error is also a standard exception, so exclude it.
13553 See the STANDARD_EXC description for more details as to why
13554 this exception is not listed in that array. */
13555 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13556 return 0;
13557
13558 return 1;
13559 }
13560
13561 /* A helper function for std::sort, comparing two struct ada_exc_info
13562 objects.
13563
13564 The comparison is determined first by exception name, and then
13565 by exception address. */
13566
13567 bool
13568 ada_exc_info::operator< (const ada_exc_info &other) const
13569 {
13570 int result;
13571
13572 result = strcmp (name, other.name);
13573 if (result < 0)
13574 return true;
13575 if (result == 0 && addr < other.addr)
13576 return true;
13577 return false;
13578 }
13579
13580 bool
13581 ada_exc_info::operator== (const ada_exc_info &other) const
13582 {
13583 return addr == other.addr && strcmp (name, other.name) == 0;
13584 }
13585
13586 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13587 routine, but keeping the first SKIP elements untouched.
13588
13589 All duplicates are also removed. */
13590
13591 static void
13592 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13593 int skip)
13594 {
13595 std::sort (exceptions->begin () + skip, exceptions->end ());
13596 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13597 exceptions->end ());
13598 }
13599
13600 /* Add all exceptions defined by the Ada standard whose name match
13601 a regular expression.
13602
13603 If PREG is not NULL, then this regexp_t object is used to
13604 perform the symbol name matching. Otherwise, no name-based
13605 filtering is performed.
13606
13607 EXCEPTIONS is a vector of exceptions to which matching exceptions
13608 gets pushed. */
13609
13610 static void
13611 ada_add_standard_exceptions (compiled_regex *preg,
13612 std::vector<ada_exc_info> *exceptions)
13613 {
13614 int i;
13615
13616 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13617 {
13618 if (preg == NULL
13619 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13620 {
13621 struct bound_minimal_symbol msymbol
13622 = ada_lookup_simple_minsym (standard_exc[i]);
13623
13624 if (msymbol.minsym != NULL)
13625 {
13626 struct ada_exc_info info
13627 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13628
13629 exceptions->push_back (info);
13630 }
13631 }
13632 }
13633 }
13634
13635 /* Add all Ada exceptions defined locally and accessible from the given
13636 FRAME.
13637
13638 If PREG is not NULL, then this regexp_t object is used to
13639 perform the symbol name matching. Otherwise, no name-based
13640 filtering is performed.
13641
13642 EXCEPTIONS is a vector of exceptions to which matching exceptions
13643 gets pushed. */
13644
13645 static void
13646 ada_add_exceptions_from_frame (compiled_regex *preg,
13647 struct frame_info *frame,
13648 std::vector<ada_exc_info> *exceptions)
13649 {
13650 const struct block *block = get_frame_block (frame, 0);
13651
13652 while (block != 0)
13653 {
13654 struct block_iterator iter;
13655 struct symbol *sym;
13656
13657 ALL_BLOCK_SYMBOLS (block, iter, sym)
13658 {
13659 switch (SYMBOL_CLASS (sym))
13660 {
13661 case LOC_TYPEDEF:
13662 case LOC_BLOCK:
13663 case LOC_CONST:
13664 break;
13665 default:
13666 if (ada_is_exception_sym (sym))
13667 {
13668 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13669 SYMBOL_VALUE_ADDRESS (sym)};
13670
13671 exceptions->push_back (info);
13672 }
13673 }
13674 }
13675 if (BLOCK_FUNCTION (block) != NULL)
13676 break;
13677 block = BLOCK_SUPERBLOCK (block);
13678 }
13679 }
13680
13681 /* Return true if NAME matches PREG or if PREG is NULL. */
13682
13683 static bool
13684 name_matches_regex (const char *name, compiled_regex *preg)
13685 {
13686 return (preg == NULL
13687 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13688 }
13689
13690 /* Add all exceptions defined globally whose name name match
13691 a regular expression, excluding standard exceptions.
13692
13693 The reason we exclude standard exceptions is that they need
13694 to be handled separately: Standard exceptions are defined inside
13695 a runtime unit which is normally not compiled with debugging info,
13696 and thus usually do not show up in our symbol search. However,
13697 if the unit was in fact built with debugging info, we need to
13698 exclude them because they would duplicate the entry we found
13699 during the special loop that specifically searches for those
13700 standard exceptions.
13701
13702 If PREG is not NULL, then this regexp_t object is used to
13703 perform the symbol name matching. Otherwise, no name-based
13704 filtering is performed.
13705
13706 EXCEPTIONS is a vector of exceptions to which matching exceptions
13707 gets pushed. */
13708
13709 static void
13710 ada_add_global_exceptions (compiled_regex *preg,
13711 std::vector<ada_exc_info> *exceptions)
13712 {
13713 struct objfile *objfile;
13714 struct compunit_symtab *s;
13715
13716 /* In Ada, the symbol "search name" is a linkage name, whereas the
13717 regular expression used to do the matching refers to the natural
13718 name. So match against the decoded name. */
13719 expand_symtabs_matching (NULL,
13720 lookup_name_info::match_any (),
13721 [&] (const char *search_name)
13722 {
13723 const char *decoded = ada_decode (search_name);
13724 return name_matches_regex (decoded, preg);
13725 },
13726 NULL,
13727 VARIABLES_DOMAIN);
13728
13729 ALL_COMPUNITS (objfile, s)
13730 {
13731 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13732 int i;
13733
13734 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13735 {
13736 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13737 struct block_iterator iter;
13738 struct symbol *sym;
13739
13740 ALL_BLOCK_SYMBOLS (b, iter, sym)
13741 if (ada_is_non_standard_exception_sym (sym)
13742 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13743 {
13744 struct ada_exc_info info
13745 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13746
13747 exceptions->push_back (info);
13748 }
13749 }
13750 }
13751 }
13752
13753 /* Implements ada_exceptions_list with the regular expression passed
13754 as a regex_t, rather than a string.
13755
13756 If not NULL, PREG is used to filter out exceptions whose names
13757 do not match. Otherwise, all exceptions are listed. */
13758
13759 static std::vector<ada_exc_info>
13760 ada_exceptions_list_1 (compiled_regex *preg)
13761 {
13762 std::vector<ada_exc_info> result;
13763 int prev_len;
13764
13765 /* First, list the known standard exceptions. These exceptions
13766 need to be handled separately, as they are usually defined in
13767 runtime units that have been compiled without debugging info. */
13768
13769 ada_add_standard_exceptions (preg, &result);
13770
13771 /* Next, find all exceptions whose scope is local and accessible
13772 from the currently selected frame. */
13773
13774 if (has_stack_frames ())
13775 {
13776 prev_len = result.size ();
13777 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13778 &result);
13779 if (result.size () > prev_len)
13780 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13781 }
13782
13783 /* Add all exceptions whose scope is global. */
13784
13785 prev_len = result.size ();
13786 ada_add_global_exceptions (preg, &result);
13787 if (result.size () > prev_len)
13788 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13789
13790 return result;
13791 }
13792
13793 /* Return a vector of ada_exc_info.
13794
13795 If REGEXP is NULL, all exceptions are included in the result.
13796 Otherwise, it should contain a valid regular expression,
13797 and only the exceptions whose names match that regular expression
13798 are included in the result.
13799
13800 The exceptions are sorted in the following order:
13801 - Standard exceptions (defined by the Ada language), in
13802 alphabetical order;
13803 - Exceptions only visible from the current frame, in
13804 alphabetical order;
13805 - Exceptions whose scope is global, in alphabetical order. */
13806
13807 std::vector<ada_exc_info>
13808 ada_exceptions_list (const char *regexp)
13809 {
13810 if (regexp == NULL)
13811 return ada_exceptions_list_1 (NULL);
13812
13813 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13814 return ada_exceptions_list_1 (&reg);
13815 }
13816
13817 /* Implement the "info exceptions" command. */
13818
13819 static void
13820 info_exceptions_command (const char *regexp, int from_tty)
13821 {
13822 struct gdbarch *gdbarch = get_current_arch ();
13823
13824 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13825
13826 if (regexp != NULL)
13827 printf_filtered
13828 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13829 else
13830 printf_filtered (_("All defined Ada exceptions:\n"));
13831
13832 for (const ada_exc_info &info : exceptions)
13833 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13834 }
13835
13836 /* Operators */
13837 /* Information about operators given special treatment in functions
13838 below. */
13839 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13840
13841 #define ADA_OPERATORS \
13842 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13843 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13844 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13845 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13846 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13847 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13848 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13849 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13850 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13851 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13852 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13853 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13854 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13855 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13856 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13857 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13858 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13859 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13860 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13861
13862 static void
13863 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13864 int *argsp)
13865 {
13866 switch (exp->elts[pc - 1].opcode)
13867 {
13868 default:
13869 operator_length_standard (exp, pc, oplenp, argsp);
13870 break;
13871
13872 #define OP_DEFN(op, len, args, binop) \
13873 case op: *oplenp = len; *argsp = args; break;
13874 ADA_OPERATORS;
13875 #undef OP_DEFN
13876
13877 case OP_AGGREGATE:
13878 *oplenp = 3;
13879 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13880 break;
13881
13882 case OP_CHOICES:
13883 *oplenp = 3;
13884 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13885 break;
13886 }
13887 }
13888
13889 /* Implementation of the exp_descriptor method operator_check. */
13890
13891 static int
13892 ada_operator_check (struct expression *exp, int pos,
13893 int (*objfile_func) (struct objfile *objfile, void *data),
13894 void *data)
13895 {
13896 const union exp_element *const elts = exp->elts;
13897 struct type *type = NULL;
13898
13899 switch (elts[pos].opcode)
13900 {
13901 case UNOP_IN_RANGE:
13902 case UNOP_QUAL:
13903 type = elts[pos + 1].type;
13904 break;
13905
13906 default:
13907 return operator_check_standard (exp, pos, objfile_func, data);
13908 }
13909
13910 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13911
13912 if (type && TYPE_OBJFILE (type)
13913 && (*objfile_func) (TYPE_OBJFILE (type), data))
13914 return 1;
13915
13916 return 0;
13917 }
13918
13919 static const char *
13920 ada_op_name (enum exp_opcode opcode)
13921 {
13922 switch (opcode)
13923 {
13924 default:
13925 return op_name_standard (opcode);
13926
13927 #define OP_DEFN(op, len, args, binop) case op: return #op;
13928 ADA_OPERATORS;
13929 #undef OP_DEFN
13930
13931 case OP_AGGREGATE:
13932 return "OP_AGGREGATE";
13933 case OP_CHOICES:
13934 return "OP_CHOICES";
13935 case OP_NAME:
13936 return "OP_NAME";
13937 }
13938 }
13939
13940 /* As for operator_length, but assumes PC is pointing at the first
13941 element of the operator, and gives meaningful results only for the
13942 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13943
13944 static void
13945 ada_forward_operator_length (struct expression *exp, int pc,
13946 int *oplenp, int *argsp)
13947 {
13948 switch (exp->elts[pc].opcode)
13949 {
13950 default:
13951 *oplenp = *argsp = 0;
13952 break;
13953
13954 #define OP_DEFN(op, len, args, binop) \
13955 case op: *oplenp = len; *argsp = args; break;
13956 ADA_OPERATORS;
13957 #undef OP_DEFN
13958
13959 case OP_AGGREGATE:
13960 *oplenp = 3;
13961 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13962 break;
13963
13964 case OP_CHOICES:
13965 *oplenp = 3;
13966 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13967 break;
13968
13969 case OP_STRING:
13970 case OP_NAME:
13971 {
13972 int len = longest_to_int (exp->elts[pc + 1].longconst);
13973
13974 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13975 *argsp = 0;
13976 break;
13977 }
13978 }
13979 }
13980
13981 static int
13982 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13983 {
13984 enum exp_opcode op = exp->elts[elt].opcode;
13985 int oplen, nargs;
13986 int pc = elt;
13987 int i;
13988
13989 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13990
13991 switch (op)
13992 {
13993 /* Ada attributes ('Foo). */
13994 case OP_ATR_FIRST:
13995 case OP_ATR_LAST:
13996 case OP_ATR_LENGTH:
13997 case OP_ATR_IMAGE:
13998 case OP_ATR_MAX:
13999 case OP_ATR_MIN:
14000 case OP_ATR_MODULUS:
14001 case OP_ATR_POS:
14002 case OP_ATR_SIZE:
14003 case OP_ATR_TAG:
14004 case OP_ATR_VAL:
14005 break;
14006
14007 case UNOP_IN_RANGE:
14008 case UNOP_QUAL:
14009 /* XXX: gdb_sprint_host_address, type_sprint */
14010 fprintf_filtered (stream, _("Type @"));
14011 gdb_print_host_address (exp->elts[pc + 1].type, stream);
14012 fprintf_filtered (stream, " (");
14013 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
14014 fprintf_filtered (stream, ")");
14015 break;
14016 case BINOP_IN_BOUNDS:
14017 fprintf_filtered (stream, " (%d)",
14018 longest_to_int (exp->elts[pc + 2].longconst));
14019 break;
14020 case TERNOP_IN_RANGE:
14021 break;
14022
14023 case OP_AGGREGATE:
14024 case OP_OTHERS:
14025 case OP_DISCRETE_RANGE:
14026 case OP_POSITIONAL:
14027 case OP_CHOICES:
14028 break;
14029
14030 case OP_NAME:
14031 case OP_STRING:
14032 {
14033 char *name = &exp->elts[elt + 2].string;
14034 int len = longest_to_int (exp->elts[elt + 1].longconst);
14035
14036 fprintf_filtered (stream, "Text: `%.*s'", len, name);
14037 break;
14038 }
14039
14040 default:
14041 return dump_subexp_body_standard (exp, stream, elt);
14042 }
14043
14044 elt += oplen;
14045 for (i = 0; i < nargs; i += 1)
14046 elt = dump_subexp (exp, stream, elt);
14047
14048 return elt;
14049 }
14050
14051 /* The Ada extension of print_subexp (q.v.). */
14052
14053 static void
14054 ada_print_subexp (struct expression *exp, int *pos,
14055 struct ui_file *stream, enum precedence prec)
14056 {
14057 int oplen, nargs, i;
14058 int pc = *pos;
14059 enum exp_opcode op = exp->elts[pc].opcode;
14060
14061 ada_forward_operator_length (exp, pc, &oplen, &nargs);
14062
14063 *pos += oplen;
14064 switch (op)
14065 {
14066 default:
14067 *pos -= oplen;
14068 print_subexp_standard (exp, pos, stream, prec);
14069 return;
14070
14071 case OP_VAR_VALUE:
14072 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
14073 return;
14074
14075 case BINOP_IN_BOUNDS:
14076 /* XXX: sprint_subexp */
14077 print_subexp (exp, pos, stream, PREC_SUFFIX);
14078 fputs_filtered (" in ", stream);
14079 print_subexp (exp, pos, stream, PREC_SUFFIX);
14080 fputs_filtered ("'range", stream);
14081 if (exp->elts[pc + 1].longconst > 1)
14082 fprintf_filtered (stream, "(%ld)",
14083 (long) exp->elts[pc + 1].longconst);
14084 return;
14085
14086 case TERNOP_IN_RANGE:
14087 if (prec >= PREC_EQUAL)
14088 fputs_filtered ("(", stream);
14089 /* XXX: sprint_subexp */
14090 print_subexp (exp, pos, stream, PREC_SUFFIX);
14091 fputs_filtered (" in ", stream);
14092 print_subexp (exp, pos, stream, PREC_EQUAL);
14093 fputs_filtered (" .. ", stream);
14094 print_subexp (exp, pos, stream, PREC_EQUAL);
14095 if (prec >= PREC_EQUAL)
14096 fputs_filtered (")", stream);
14097 return;
14098
14099 case OP_ATR_FIRST:
14100 case OP_ATR_LAST:
14101 case OP_ATR_LENGTH:
14102 case OP_ATR_IMAGE:
14103 case OP_ATR_MAX:
14104 case OP_ATR_MIN:
14105 case OP_ATR_MODULUS:
14106 case OP_ATR_POS:
14107 case OP_ATR_SIZE:
14108 case OP_ATR_TAG:
14109 case OP_ATR_VAL:
14110 if (exp->elts[*pos].opcode == OP_TYPE)
14111 {
14112 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
14113 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
14114 &type_print_raw_options);
14115 *pos += 3;
14116 }
14117 else
14118 print_subexp (exp, pos, stream, PREC_SUFFIX);
14119 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
14120 if (nargs > 1)
14121 {
14122 int tem;
14123
14124 for (tem = 1; tem < nargs; tem += 1)
14125 {
14126 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
14127 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
14128 }
14129 fputs_filtered (")", stream);
14130 }
14131 return;
14132
14133 case UNOP_QUAL:
14134 type_print (exp->elts[pc + 1].type, "", stream, 0);
14135 fputs_filtered ("'(", stream);
14136 print_subexp (exp, pos, stream, PREC_PREFIX);
14137 fputs_filtered (")", stream);
14138 return;
14139
14140 case UNOP_IN_RANGE:
14141 /* XXX: sprint_subexp */
14142 print_subexp (exp, pos, stream, PREC_SUFFIX);
14143 fputs_filtered (" in ", stream);
14144 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
14145 &type_print_raw_options);
14146 return;
14147
14148 case OP_DISCRETE_RANGE:
14149 print_subexp (exp, pos, stream, PREC_SUFFIX);
14150 fputs_filtered ("..", stream);
14151 print_subexp (exp, pos, stream, PREC_SUFFIX);
14152 return;
14153
14154 case OP_OTHERS:
14155 fputs_filtered ("others => ", stream);
14156 print_subexp (exp, pos, stream, PREC_SUFFIX);
14157 return;
14158
14159 case OP_CHOICES:
14160 for (i = 0; i < nargs-1; i += 1)
14161 {
14162 if (i > 0)
14163 fputs_filtered ("|", stream);
14164 print_subexp (exp, pos, stream, PREC_SUFFIX);
14165 }
14166 fputs_filtered (" => ", stream);
14167 print_subexp (exp, pos, stream, PREC_SUFFIX);
14168 return;
14169
14170 case OP_POSITIONAL:
14171 print_subexp (exp, pos, stream, PREC_SUFFIX);
14172 return;
14173
14174 case OP_AGGREGATE:
14175 fputs_filtered ("(", stream);
14176 for (i = 0; i < nargs; i += 1)
14177 {
14178 if (i > 0)
14179 fputs_filtered (", ", stream);
14180 print_subexp (exp, pos, stream, PREC_SUFFIX);
14181 }
14182 fputs_filtered (")", stream);
14183 return;
14184 }
14185 }
14186
14187 /* Table mapping opcodes into strings for printing operators
14188 and precedences of the operators. */
14189
14190 static const struct op_print ada_op_print_tab[] = {
14191 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14192 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14193 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14194 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14195 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14196 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14197 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14198 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14199 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14200 {">=", BINOP_GEQ, PREC_ORDER, 0},
14201 {">", BINOP_GTR, PREC_ORDER, 0},
14202 {"<", BINOP_LESS, PREC_ORDER, 0},
14203 {">>", BINOP_RSH, PREC_SHIFT, 0},
14204 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14205 {"+", BINOP_ADD, PREC_ADD, 0},
14206 {"-", BINOP_SUB, PREC_ADD, 0},
14207 {"&", BINOP_CONCAT, PREC_ADD, 0},
14208 {"*", BINOP_MUL, PREC_MUL, 0},
14209 {"/", BINOP_DIV, PREC_MUL, 0},
14210 {"rem", BINOP_REM, PREC_MUL, 0},
14211 {"mod", BINOP_MOD, PREC_MUL, 0},
14212 {"**", BINOP_EXP, PREC_REPEAT, 0},
14213 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14214 {"-", UNOP_NEG, PREC_PREFIX, 0},
14215 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14216 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14217 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14218 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14219 {".all", UNOP_IND, PREC_SUFFIX, 1},
14220 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14221 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14222 {NULL, OP_NULL, PREC_SUFFIX, 0}
14223 };
14224 \f
14225 enum ada_primitive_types {
14226 ada_primitive_type_int,
14227 ada_primitive_type_long,
14228 ada_primitive_type_short,
14229 ada_primitive_type_char,
14230 ada_primitive_type_float,
14231 ada_primitive_type_double,
14232 ada_primitive_type_void,
14233 ada_primitive_type_long_long,
14234 ada_primitive_type_long_double,
14235 ada_primitive_type_natural,
14236 ada_primitive_type_positive,
14237 ada_primitive_type_system_address,
14238 ada_primitive_type_storage_offset,
14239 nr_ada_primitive_types
14240 };
14241
14242 static void
14243 ada_language_arch_info (struct gdbarch *gdbarch,
14244 struct language_arch_info *lai)
14245 {
14246 const struct builtin_type *builtin = builtin_type (gdbarch);
14247
14248 lai->primitive_type_vector
14249 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14250 struct type *);
14251
14252 lai->primitive_type_vector [ada_primitive_type_int]
14253 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14254 0, "integer");
14255 lai->primitive_type_vector [ada_primitive_type_long]
14256 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14257 0, "long_integer");
14258 lai->primitive_type_vector [ada_primitive_type_short]
14259 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14260 0, "short_integer");
14261 lai->string_char_type
14262 = lai->primitive_type_vector [ada_primitive_type_char]
14263 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14264 lai->primitive_type_vector [ada_primitive_type_float]
14265 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14266 "float", gdbarch_float_format (gdbarch));
14267 lai->primitive_type_vector [ada_primitive_type_double]
14268 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14269 "long_float", gdbarch_double_format (gdbarch));
14270 lai->primitive_type_vector [ada_primitive_type_long_long]
14271 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14272 0, "long_long_integer");
14273 lai->primitive_type_vector [ada_primitive_type_long_double]
14274 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14275 "long_long_float", gdbarch_long_double_format (gdbarch));
14276 lai->primitive_type_vector [ada_primitive_type_natural]
14277 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14278 0, "natural");
14279 lai->primitive_type_vector [ada_primitive_type_positive]
14280 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14281 0, "positive");
14282 lai->primitive_type_vector [ada_primitive_type_void]
14283 = builtin->builtin_void;
14284
14285 lai->primitive_type_vector [ada_primitive_type_system_address]
14286 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14287 "void"));
14288 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14289 = "system__address";
14290
14291 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14292 type. This is a signed integral type whose size is the same as
14293 the size of addresses. */
14294 {
14295 unsigned int addr_length = TYPE_LENGTH
14296 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14297
14298 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14299 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14300 "storage_offset");
14301 }
14302
14303 lai->bool_type_symbol = NULL;
14304 lai->bool_type_default = builtin->builtin_bool;
14305 }
14306 \f
14307 /* Language vector */
14308
14309 /* Not really used, but needed in the ada_language_defn. */
14310
14311 static void
14312 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14313 {
14314 ada_emit_char (c, type, stream, quoter, 1);
14315 }
14316
14317 static int
14318 parse (struct parser_state *ps)
14319 {
14320 warnings_issued = 0;
14321 return ada_parse (ps);
14322 }
14323
14324 static const struct exp_descriptor ada_exp_descriptor = {
14325 ada_print_subexp,
14326 ada_operator_length,
14327 ada_operator_check,
14328 ada_op_name,
14329 ada_dump_subexp_body,
14330 ada_evaluate_subexp
14331 };
14332
14333 /* symbol_name_matcher_ftype adapter for wild_match. */
14334
14335 static bool
14336 do_wild_match (const char *symbol_search_name,
14337 const lookup_name_info &lookup_name,
14338 completion_match_result *comp_match_res)
14339 {
14340 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14341 }
14342
14343 /* symbol_name_matcher_ftype adapter for full_match. */
14344
14345 static bool
14346 do_full_match (const char *symbol_search_name,
14347 const lookup_name_info &lookup_name,
14348 completion_match_result *comp_match_res)
14349 {
14350 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14351 }
14352
14353 /* Build the Ada lookup name for LOOKUP_NAME. */
14354
14355 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14356 {
14357 const std::string &user_name = lookup_name.name ();
14358
14359 if (user_name[0] == '<')
14360 {
14361 if (user_name.back () == '>')
14362 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14363 else
14364 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14365 m_encoded_p = true;
14366 m_verbatim_p = true;
14367 m_wild_match_p = false;
14368 m_standard_p = false;
14369 }
14370 else
14371 {
14372 m_verbatim_p = false;
14373
14374 m_encoded_p = user_name.find ("__") != std::string::npos;
14375
14376 if (!m_encoded_p)
14377 {
14378 const char *folded = ada_fold_name (user_name.c_str ());
14379 const char *encoded = ada_encode_1 (folded, false);
14380 if (encoded != NULL)
14381 m_encoded_name = encoded;
14382 else
14383 m_encoded_name = user_name;
14384 }
14385 else
14386 m_encoded_name = user_name;
14387
14388 /* Handle the 'package Standard' special case. See description
14389 of m_standard_p. */
14390 if (startswith (m_encoded_name.c_str (), "standard__"))
14391 {
14392 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14393 m_standard_p = true;
14394 }
14395 else
14396 m_standard_p = false;
14397
14398 /* If the name contains a ".", then the user is entering a fully
14399 qualified entity name, and the match must not be done in wild
14400 mode. Similarly, if the user wants to complete what looks
14401 like an encoded name, the match must not be done in wild
14402 mode. Also, in the standard__ special case always do
14403 non-wild matching. */
14404 m_wild_match_p
14405 = (lookup_name.match_type () != symbol_name_match_type::FULL
14406 && !m_encoded_p
14407 && !m_standard_p
14408 && user_name.find ('.') == std::string::npos);
14409 }
14410 }
14411
14412 /* symbol_name_matcher_ftype method for Ada. This only handles
14413 completion mode. */
14414
14415 static bool
14416 ada_symbol_name_matches (const char *symbol_search_name,
14417 const lookup_name_info &lookup_name,
14418 completion_match_result *comp_match_res)
14419 {
14420 return lookup_name.ada ().matches (symbol_search_name,
14421 lookup_name.match_type (),
14422 comp_match_res);
14423 }
14424
14425 /* A name matcher that matches the symbol name exactly, with
14426 strcmp. */
14427
14428 static bool
14429 literal_symbol_name_matcher (const char *symbol_search_name,
14430 const lookup_name_info &lookup_name,
14431 completion_match_result *comp_match_res)
14432 {
14433 const std::string &name = lookup_name.name ();
14434
14435 int cmp = (lookup_name.completion_mode ()
14436 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14437 : strcmp (symbol_search_name, name.c_str ()));
14438 if (cmp == 0)
14439 {
14440 if (comp_match_res != NULL)
14441 comp_match_res->set_match (symbol_search_name);
14442 return true;
14443 }
14444 else
14445 return false;
14446 }
14447
14448 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14449 Ada. */
14450
14451 static symbol_name_matcher_ftype *
14452 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14453 {
14454 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14455 return literal_symbol_name_matcher;
14456
14457 if (lookup_name.completion_mode ())
14458 return ada_symbol_name_matches;
14459 else
14460 {
14461 if (lookup_name.ada ().wild_match_p ())
14462 return do_wild_match;
14463 else
14464 return do_full_match;
14465 }
14466 }
14467
14468 /* Implement the "la_read_var_value" language_defn method for Ada. */
14469
14470 static struct value *
14471 ada_read_var_value (struct symbol *var, const struct block *var_block,
14472 struct frame_info *frame)
14473 {
14474 const struct block *frame_block = NULL;
14475 struct symbol *renaming_sym = NULL;
14476
14477 /* The only case where default_read_var_value is not sufficient
14478 is when VAR is a renaming... */
14479 if (frame)
14480 frame_block = get_frame_block (frame, NULL);
14481 if (frame_block)
14482 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14483 if (renaming_sym != NULL)
14484 return ada_read_renaming_var_value (renaming_sym, frame_block);
14485
14486 /* This is a typical case where we expect the default_read_var_value
14487 function to work. */
14488 return default_read_var_value (var, var_block, frame);
14489 }
14490
14491 static const char *ada_extensions[] =
14492 {
14493 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14494 };
14495
14496 extern const struct language_defn ada_language_defn = {
14497 "ada", /* Language name */
14498 "Ada",
14499 language_ada,
14500 range_check_off,
14501 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14502 that's not quite what this means. */
14503 array_row_major,
14504 macro_expansion_no,
14505 ada_extensions,
14506 &ada_exp_descriptor,
14507 parse,
14508 ada_yyerror,
14509 resolve,
14510 ada_printchar, /* Print a character constant */
14511 ada_printstr, /* Function to print string constant */
14512 emit_char, /* Function to print single char (not used) */
14513 ada_print_type, /* Print a type using appropriate syntax */
14514 ada_print_typedef, /* Print a typedef using appropriate syntax */
14515 ada_val_print, /* Print a value using appropriate syntax */
14516 ada_value_print, /* Print a top-level value */
14517 ada_read_var_value, /* la_read_var_value */
14518 NULL, /* Language specific skip_trampoline */
14519 NULL, /* name_of_this */
14520 true, /* la_store_sym_names_in_linkage_form_p */
14521 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14522 basic_lookup_transparent_type, /* lookup_transparent_type */
14523 ada_la_decode, /* Language specific symbol demangler */
14524 ada_sniff_from_mangled_name,
14525 NULL, /* Language specific
14526 class_name_from_physname */
14527 ada_op_print_tab, /* expression operators for printing */
14528 0, /* c-style arrays */
14529 1, /* String lower bound */
14530 ada_get_gdb_completer_word_break_characters,
14531 ada_collect_symbol_completion_matches,
14532 ada_language_arch_info,
14533 ada_print_array_index,
14534 default_pass_by_reference,
14535 c_get_string,
14536 c_watch_location_expression,
14537 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14538 ada_iterate_over_symbols,
14539 default_search_name_hash,
14540 &ada_varobj_ops,
14541 NULL,
14542 NULL,
14543 LANG_MAGIC
14544 };
14545
14546 /* Command-list for the "set/show ada" prefix command. */
14547 static struct cmd_list_element *set_ada_list;
14548 static struct cmd_list_element *show_ada_list;
14549
14550 /* Implement the "set ada" prefix command. */
14551
14552 static void
14553 set_ada_command (const char *arg, int from_tty)
14554 {
14555 printf_unfiltered (_(\
14556 "\"set ada\" must be followed by the name of a setting.\n"));
14557 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14558 }
14559
14560 /* Implement the "show ada" prefix command. */
14561
14562 static void
14563 show_ada_command (const char *args, int from_tty)
14564 {
14565 cmd_show_list (show_ada_list, from_tty, "");
14566 }
14567
14568 static void
14569 initialize_ada_catchpoint_ops (void)
14570 {
14571 struct breakpoint_ops *ops;
14572
14573 initialize_breakpoint_ops ();
14574
14575 ops = &catch_exception_breakpoint_ops;
14576 *ops = bkpt_breakpoint_ops;
14577 ops->allocate_location = allocate_location_catch_exception;
14578 ops->re_set = re_set_catch_exception;
14579 ops->check_status = check_status_catch_exception;
14580 ops->print_it = print_it_catch_exception;
14581 ops->print_one = print_one_catch_exception;
14582 ops->print_mention = print_mention_catch_exception;
14583 ops->print_recreate = print_recreate_catch_exception;
14584
14585 ops = &catch_exception_unhandled_breakpoint_ops;
14586 *ops = bkpt_breakpoint_ops;
14587 ops->allocate_location = allocate_location_catch_exception_unhandled;
14588 ops->re_set = re_set_catch_exception_unhandled;
14589 ops->check_status = check_status_catch_exception_unhandled;
14590 ops->print_it = print_it_catch_exception_unhandled;
14591 ops->print_one = print_one_catch_exception_unhandled;
14592 ops->print_mention = print_mention_catch_exception_unhandled;
14593 ops->print_recreate = print_recreate_catch_exception_unhandled;
14594
14595 ops = &catch_assert_breakpoint_ops;
14596 *ops = bkpt_breakpoint_ops;
14597 ops->allocate_location = allocate_location_catch_assert;
14598 ops->re_set = re_set_catch_assert;
14599 ops->check_status = check_status_catch_assert;
14600 ops->print_it = print_it_catch_assert;
14601 ops->print_one = print_one_catch_assert;
14602 ops->print_mention = print_mention_catch_assert;
14603 ops->print_recreate = print_recreate_catch_assert;
14604
14605 ops = &catch_handlers_breakpoint_ops;
14606 *ops = bkpt_breakpoint_ops;
14607 ops->allocate_location = allocate_location_catch_handlers;
14608 ops->re_set = re_set_catch_handlers;
14609 ops->check_status = check_status_catch_handlers;
14610 ops->print_it = print_it_catch_handlers;
14611 ops->print_one = print_one_catch_handlers;
14612 ops->print_mention = print_mention_catch_handlers;
14613 ops->print_recreate = print_recreate_catch_handlers;
14614 }
14615
14616 /* This module's 'new_objfile' observer. */
14617
14618 static void
14619 ada_new_objfile_observer (struct objfile *objfile)
14620 {
14621 ada_clear_symbol_cache ();
14622 }
14623
14624 /* This module's 'free_objfile' observer. */
14625
14626 static void
14627 ada_free_objfile_observer (struct objfile *objfile)
14628 {
14629 ada_clear_symbol_cache ();
14630 }
14631
14632 void
14633 _initialize_ada_language (void)
14634 {
14635 initialize_ada_catchpoint_ops ();
14636
14637 add_prefix_cmd ("ada", no_class, set_ada_command,
14638 _("Prefix command for changing Ada-specfic settings"),
14639 &set_ada_list, "set ada ", 0, &setlist);
14640
14641 add_prefix_cmd ("ada", no_class, show_ada_command,
14642 _("Generic command for showing Ada-specific settings."),
14643 &show_ada_list, "show ada ", 0, &showlist);
14644
14645 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14646 &trust_pad_over_xvs, _("\
14647 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14648 Show whether an optimization trusting PAD types over XVS types is activated"),
14649 _("\
14650 This is related to the encoding used by the GNAT compiler. The debugger\n\
14651 should normally trust the contents of PAD types, but certain older versions\n\
14652 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14653 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14654 work around this bug. It is always safe to turn this option \"off\", but\n\
14655 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14656 this option to \"off\" unless necessary."),
14657 NULL, NULL, &set_ada_list, &show_ada_list);
14658
14659 add_setshow_boolean_cmd ("print-signatures", class_vars,
14660 &print_signatures, _("\
14661 Enable or disable the output of formal and return types for functions in the \
14662 overloads selection menu"), _("\
14663 Show whether the output of formal and return types for functions in the \
14664 overloads selection menu is activated"),
14665 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14666
14667 add_catch_command ("exception", _("\
14668 Catch Ada exceptions, when raised.\n\
14669 With an argument, catch only exceptions with the given name."),
14670 catch_ada_exception_command,
14671 NULL,
14672 CATCH_PERMANENT,
14673 CATCH_TEMPORARY);
14674
14675 add_catch_command ("handlers", _("\
14676 Catch Ada exceptions, when handled.\n\
14677 With an argument, catch only exceptions with the given name."),
14678 catch_ada_handlers_command,
14679 NULL,
14680 CATCH_PERMANENT,
14681 CATCH_TEMPORARY);
14682 add_catch_command ("assert", _("\
14683 Catch failed Ada assertions, when raised.\n\
14684 With an argument, catch only exceptions with the given name."),
14685 catch_assert_command,
14686 NULL,
14687 CATCH_PERMANENT,
14688 CATCH_TEMPORARY);
14689
14690 varsize_limit = 65536;
14691 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14692 &varsize_limit, _("\
14693 Set the maximum number of bytes allowed in a variable-size object."), _("\
14694 Show the maximum number of bytes allowed in a variable-size object."), _("\
14695 Attempts to access an object whose size is not a compile-time constant\n\
14696 and exceeds this limit will cause an error."),
14697 NULL, NULL, &setlist, &showlist);
14698
14699 add_info ("exceptions", info_exceptions_command,
14700 _("\
14701 List all Ada exception names.\n\
14702 If a regular expression is passed as an argument, only those matching\n\
14703 the regular expression are listed."));
14704
14705 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14706 _("Set Ada maintenance-related variables."),
14707 &maint_set_ada_cmdlist, "maintenance set ada ",
14708 0/*allow-unknown*/, &maintenance_set_cmdlist);
14709
14710 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14711 _("Show Ada maintenance-related variables"),
14712 &maint_show_ada_cmdlist, "maintenance show ada ",
14713 0/*allow-unknown*/, &maintenance_show_cmdlist);
14714
14715 add_setshow_boolean_cmd
14716 ("ignore-descriptive-types", class_maintenance,
14717 &ada_ignore_descriptive_types_p,
14718 _("Set whether descriptive types generated by GNAT should be ignored."),
14719 _("Show whether descriptive types generated by GNAT should be ignored."),
14720 _("\
14721 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14722 DWARF attribute."),
14723 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14724
14725 decoded_names_store = htab_create_alloc
14726 (256, htab_hash_string, (int (*)(const void *, const void *)) streq,
14727 NULL, xcalloc, xfree);
14728
14729 /* The ada-lang observers. */
14730 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14731 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14732 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14733
14734 /* Setup various context-specific data. */
14735 ada_inferior_data
14736 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14737 ada_pspace_data_handle
14738 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14739 }