]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/ada-lang.c
ef871642fadd9a10a640f83a41860c4084c8b21e
[thirdparty/binutils-gdb.git] / gdb / ada-lang.c
1 /* Ada language support routines for GDB, the GNU debugger.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 #include "defs.h"
22 #include <ctype.h>
23 #include "demangle.h"
24 #include "gdb_regex.h"
25 #include "frame.h"
26 #include "symtab.h"
27 #include "gdbtypes.h"
28 #include "gdbcmd.h"
29 #include "expression.h"
30 #include "parser-defs.h"
31 #include "language.h"
32 #include "varobj.h"
33 #include "c-lang.h"
34 #include "inferior.h"
35 #include "symfile.h"
36 #include "objfiles.h"
37 #include "breakpoint.h"
38 #include "gdbcore.h"
39 #include "hashtab.h"
40 #include "gdb_obstack.h"
41 #include "ada-lang.h"
42 #include "completer.h"
43 #include <sys/stat.h>
44 #include "ui-out.h"
45 #include "block.h"
46 #include "infcall.h"
47 #include "dictionary.h"
48 #include "annotate.h"
49 #include "valprint.h"
50 #include "source.h"
51 #include "observable.h"
52 #include "vec.h"
53 #include "stack.h"
54 #include "gdb_vecs.h"
55 #include "typeprint.h"
56 #include "namespace.h"
57
58 #include "psymtab.h"
59 #include "value.h"
60 #include "mi/mi-common.h"
61 #include "arch-utils.h"
62 #include "cli/cli-utils.h"
63 #include "common/function-view.h"
64 #include "common/byte-vector.h"
65 #include <algorithm>
66
67 /* Define whether or not the C operator '/' truncates towards zero for
68 differently signed operands (truncation direction is undefined in C).
69 Copied from valarith.c. */
70
71 #ifndef TRUNCATION_TOWARDS_ZERO
72 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
73 #endif
74
75 static struct type *desc_base_type (struct type *);
76
77 static struct type *desc_bounds_type (struct type *);
78
79 static struct value *desc_bounds (struct value *);
80
81 static int fat_pntr_bounds_bitpos (struct type *);
82
83 static int fat_pntr_bounds_bitsize (struct type *);
84
85 static struct type *desc_data_target_type (struct type *);
86
87 static struct value *desc_data (struct value *);
88
89 static int fat_pntr_data_bitpos (struct type *);
90
91 static int fat_pntr_data_bitsize (struct type *);
92
93 static struct value *desc_one_bound (struct value *, int, int);
94
95 static int desc_bound_bitpos (struct type *, int, int);
96
97 static int desc_bound_bitsize (struct type *, int, int);
98
99 static struct type *desc_index_type (struct type *, int);
100
101 static int desc_arity (struct type *);
102
103 static int ada_type_match (struct type *, struct type *, int);
104
105 static int ada_args_match (struct symbol *, struct value **, int);
106
107 static struct value *make_array_descriptor (struct type *, struct value *);
108
109 static void ada_add_block_symbols (struct obstack *,
110 const struct block *,
111 const lookup_name_info &lookup_name,
112 domain_enum, struct objfile *);
113
114 static void ada_add_all_symbols (struct obstack *, const struct block *,
115 const lookup_name_info &lookup_name,
116 domain_enum, int, int *);
117
118 static int is_nonfunction (struct block_symbol *, int);
119
120 static void add_defn_to_vec (struct obstack *, struct symbol *,
121 const struct block *);
122
123 static int num_defns_collected (struct obstack *);
124
125 static struct block_symbol *defns_collected (struct obstack *, int);
126
127 static struct value *resolve_subexp (expression_up *, int *, int,
128 struct type *);
129
130 static void replace_operator_with_call (expression_up *, int, int, int,
131 struct symbol *, const struct block *);
132
133 static int possible_user_operator_p (enum exp_opcode, struct value **);
134
135 static const char *ada_op_name (enum exp_opcode);
136
137 static const char *ada_decoded_op_name (enum exp_opcode);
138
139 static int numeric_type_p (struct type *);
140
141 static int integer_type_p (struct type *);
142
143 static int scalar_type_p (struct type *);
144
145 static int discrete_type_p (struct type *);
146
147 static enum ada_renaming_category parse_old_style_renaming (struct type *,
148 const char **,
149 int *,
150 const char **);
151
152 static struct symbol *find_old_style_renaming_symbol (const char *,
153 const struct block *);
154
155 static struct type *ada_lookup_struct_elt_type (struct type *, const char *,
156 int, int);
157
158 static struct value *evaluate_subexp_type (struct expression *, int *);
159
160 static struct type *ada_find_parallel_type_with_name (struct type *,
161 const char *);
162
163 static int is_dynamic_field (struct type *, int);
164
165 static struct type *to_fixed_variant_branch_type (struct type *,
166 const gdb_byte *,
167 CORE_ADDR, struct value *);
168
169 static struct type *to_fixed_array_type (struct type *, struct value *, int);
170
171 static struct type *to_fixed_range_type (struct type *, struct value *);
172
173 static struct type *to_static_fixed_type (struct type *);
174 static struct type *static_unwrap_type (struct type *type);
175
176 static struct value *unwrap_value (struct value *);
177
178 static struct type *constrained_packed_array_type (struct type *, long *);
179
180 static struct type *decode_constrained_packed_array_type (struct type *);
181
182 static long decode_packed_array_bitsize (struct type *);
183
184 static struct value *decode_constrained_packed_array (struct value *);
185
186 static int ada_is_packed_array_type (struct type *);
187
188 static int ada_is_unconstrained_packed_array_type (struct type *);
189
190 static struct value *value_subscript_packed (struct value *, int,
191 struct value **);
192
193 static void move_bits (gdb_byte *, int, const gdb_byte *, int, int, int);
194
195 static struct value *coerce_unspec_val_to_type (struct value *,
196 struct type *);
197
198 static int lesseq_defined_than (struct symbol *, struct symbol *);
199
200 static int equiv_types (struct type *, struct type *);
201
202 static int is_name_suffix (const char *);
203
204 static int advance_wild_match (const char **, const char *, int);
205
206 static bool wild_match (const char *name, const char *patn);
207
208 static struct value *ada_coerce_ref (struct value *);
209
210 static LONGEST pos_atr (struct value *);
211
212 static struct value *value_pos_atr (struct type *, struct value *);
213
214 static struct value *value_val_atr (struct type *, struct value *);
215
216 static struct symbol *standard_lookup (const char *, const struct block *,
217 domain_enum);
218
219 static struct value *ada_search_struct_field (const char *, struct value *, int,
220 struct type *);
221
222 static struct value *ada_value_primitive_field (struct value *, int, int,
223 struct type *);
224
225 static int find_struct_field (const char *, struct type *, int,
226 struct type **, int *, int *, int *, int *);
227
228 static int ada_resolve_function (struct block_symbol *, int,
229 struct value **, int, const char *,
230 struct type *);
231
232 static int ada_is_direct_array_type (struct type *);
233
234 static void ada_language_arch_info (struct gdbarch *,
235 struct language_arch_info *);
236
237 static struct value *ada_index_struct_field (int, struct value *, int,
238 struct type *);
239
240 static struct value *assign_aggregate (struct value *, struct value *,
241 struct expression *,
242 int *, enum noside);
243
244 static void aggregate_assign_from_choices (struct value *, struct value *,
245 struct expression *,
246 int *, LONGEST *, int *,
247 int, LONGEST, LONGEST);
248
249 static void aggregate_assign_positional (struct value *, struct value *,
250 struct expression *,
251 int *, LONGEST *, int *, int,
252 LONGEST, LONGEST);
253
254
255 static void aggregate_assign_others (struct value *, struct value *,
256 struct expression *,
257 int *, LONGEST *, int, LONGEST, LONGEST);
258
259
260 static void add_component_interval (LONGEST, LONGEST, LONGEST *, int *, int);
261
262
263 static struct value *ada_evaluate_subexp (struct type *, struct expression *,
264 int *, enum noside);
265
266 static void ada_forward_operator_length (struct expression *, int, int *,
267 int *);
268
269 static struct type *ada_find_any_type (const char *name);
270
271 static symbol_name_matcher_ftype *ada_get_symbol_name_matcher
272 (const lookup_name_info &lookup_name);
273
274 \f
275
276 /* The result of a symbol lookup to be stored in our symbol cache. */
277
278 struct cache_entry
279 {
280 /* The name used to perform the lookup. */
281 const char *name;
282 /* The namespace used during the lookup. */
283 domain_enum domain;
284 /* The symbol returned by the lookup, or NULL if no matching symbol
285 was found. */
286 struct symbol *sym;
287 /* The block where the symbol was found, or NULL if no matching
288 symbol was found. */
289 const struct block *block;
290 /* A pointer to the next entry with the same hash. */
291 struct cache_entry *next;
292 };
293
294 /* The Ada symbol cache, used to store the result of Ada-mode symbol
295 lookups in the course of executing the user's commands.
296
297 The cache is implemented using a simple, fixed-sized hash.
298 The size is fixed on the grounds that there are not likely to be
299 all that many symbols looked up during any given session, regardless
300 of the size of the symbol table. If we decide to go to a resizable
301 table, let's just use the stuff from libiberty instead. */
302
303 #define HASH_SIZE 1009
304
305 struct ada_symbol_cache
306 {
307 /* An obstack used to store the entries in our cache. */
308 struct obstack cache_space;
309
310 /* The root of the hash table used to implement our symbol cache. */
311 struct cache_entry *root[HASH_SIZE];
312 };
313
314 static void ada_free_symbol_cache (struct ada_symbol_cache *sym_cache);
315
316 /* Maximum-sized dynamic type. */
317 static unsigned int varsize_limit;
318
319 static const char ada_completer_word_break_characters[] =
320 #ifdef VMS
321 " \t\n!@#%^&*()+=|~`}{[]\";:?/,-";
322 #else
323 " \t\n!@#$%^&*()+=|~`}{[]\";:?/,-";
324 #endif
325
326 /* The name of the symbol to use to get the name of the main subprogram. */
327 static const char ADA_MAIN_PROGRAM_SYMBOL_NAME[]
328 = "__gnat_ada_main_program_name";
329
330 /* Limit on the number of warnings to raise per expression evaluation. */
331 static int warning_limit = 2;
332
333 /* Number of warning messages issued; reset to 0 by cleanups after
334 expression evaluation. */
335 static int warnings_issued = 0;
336
337 static const char *known_runtime_file_name_patterns[] = {
338 ADA_KNOWN_RUNTIME_FILE_NAME_PATTERNS NULL
339 };
340
341 static const char *known_auxiliary_function_name_patterns[] = {
342 ADA_KNOWN_AUXILIARY_FUNCTION_NAME_PATTERNS NULL
343 };
344
345 /* Maintenance-related settings for this module. */
346
347 static struct cmd_list_element *maint_set_ada_cmdlist;
348 static struct cmd_list_element *maint_show_ada_cmdlist;
349
350 /* Implement the "maintenance set ada" (prefix) command. */
351
352 static void
353 maint_set_ada_cmd (const char *args, int from_tty)
354 {
355 help_list (maint_set_ada_cmdlist, "maintenance set ada ", all_commands,
356 gdb_stdout);
357 }
358
359 /* Implement the "maintenance show ada" (prefix) command. */
360
361 static void
362 maint_show_ada_cmd (const char *args, int from_tty)
363 {
364 cmd_show_list (maint_show_ada_cmdlist, from_tty, "");
365 }
366
367 /* The "maintenance ada set/show ignore-descriptive-type" value. */
368
369 static int ada_ignore_descriptive_types_p = 0;
370
371 /* Inferior-specific data. */
372
373 /* Per-inferior data for this module. */
374
375 struct ada_inferior_data
376 {
377 /* The ada__tags__type_specific_data type, which is used when decoding
378 tagged types. With older versions of GNAT, this type was directly
379 accessible through a component ("tsd") in the object tag. But this
380 is no longer the case, so we cache it for each inferior. */
381 struct type *tsd_type;
382
383 /* The exception_support_info data. This data is used to determine
384 how to implement support for Ada exception catchpoints in a given
385 inferior. */
386 const struct exception_support_info *exception_info;
387 };
388
389 /* Our key to this module's inferior data. */
390 static const struct inferior_data *ada_inferior_data;
391
392 /* A cleanup routine for our inferior data. */
393 static void
394 ada_inferior_data_cleanup (struct inferior *inf, void *arg)
395 {
396 struct ada_inferior_data *data;
397
398 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
399 if (data != NULL)
400 xfree (data);
401 }
402
403 /* Return our inferior data for the given inferior (INF).
404
405 This function always returns a valid pointer to an allocated
406 ada_inferior_data structure. If INF's inferior data has not
407 been previously set, this functions creates a new one with all
408 fields set to zero, sets INF's inferior to it, and then returns
409 a pointer to that newly allocated ada_inferior_data. */
410
411 static struct ada_inferior_data *
412 get_ada_inferior_data (struct inferior *inf)
413 {
414 struct ada_inferior_data *data;
415
416 data = (struct ada_inferior_data *) inferior_data (inf, ada_inferior_data);
417 if (data == NULL)
418 {
419 data = XCNEW (struct ada_inferior_data);
420 set_inferior_data (inf, ada_inferior_data, data);
421 }
422
423 return data;
424 }
425
426 /* Perform all necessary cleanups regarding our module's inferior data
427 that is required after the inferior INF just exited. */
428
429 static void
430 ada_inferior_exit (struct inferior *inf)
431 {
432 ada_inferior_data_cleanup (inf, NULL);
433 set_inferior_data (inf, ada_inferior_data, NULL);
434 }
435
436
437 /* program-space-specific data. */
438
439 /* This module's per-program-space data. */
440 struct ada_pspace_data
441 {
442 /* The Ada symbol cache. */
443 struct ada_symbol_cache *sym_cache;
444 };
445
446 /* Key to our per-program-space data. */
447 static const struct program_space_data *ada_pspace_data_handle;
448
449 /* Return this module's data for the given program space (PSPACE).
450 If not is found, add a zero'ed one now.
451
452 This function always returns a valid object. */
453
454 static struct ada_pspace_data *
455 get_ada_pspace_data (struct program_space *pspace)
456 {
457 struct ada_pspace_data *data;
458
459 data = ((struct ada_pspace_data *)
460 program_space_data (pspace, ada_pspace_data_handle));
461 if (data == NULL)
462 {
463 data = XCNEW (struct ada_pspace_data);
464 set_program_space_data (pspace, ada_pspace_data_handle, data);
465 }
466
467 return data;
468 }
469
470 /* The cleanup callback for this module's per-program-space data. */
471
472 static void
473 ada_pspace_data_cleanup (struct program_space *pspace, void *data)
474 {
475 struct ada_pspace_data *pspace_data = (struct ada_pspace_data *) data;
476
477 if (pspace_data->sym_cache != NULL)
478 ada_free_symbol_cache (pspace_data->sym_cache);
479 xfree (pspace_data);
480 }
481
482 /* Utilities */
483
484 /* If TYPE is a TYPE_CODE_TYPEDEF type, return the target type after
485 all typedef layers have been peeled. Otherwise, return TYPE.
486
487 Normally, we really expect a typedef type to only have 1 typedef layer.
488 In other words, we really expect the target type of a typedef type to be
489 a non-typedef type. This is particularly true for Ada units, because
490 the language does not have a typedef vs not-typedef distinction.
491 In that respect, the Ada compiler has been trying to eliminate as many
492 typedef definitions in the debugging information, since they generally
493 do not bring any extra information (we still use typedef under certain
494 circumstances related mostly to the GNAT encoding).
495
496 Unfortunately, we have seen situations where the debugging information
497 generated by the compiler leads to such multiple typedef layers. For
498 instance, consider the following example with stabs:
499
500 .stabs "pck__float_array___XUP:Tt(0,46)=s16P_ARRAY:(0,47)=[...]"[...]
501 .stabs "pck__float_array___XUP:t(0,36)=(0,46)",128,0,6,0
502
503 This is an error in the debugging information which causes type
504 pck__float_array___XUP to be defined twice, and the second time,
505 it is defined as a typedef of a typedef.
506
507 This is on the fringe of legality as far as debugging information is
508 concerned, and certainly unexpected. But it is easy to handle these
509 situations correctly, so we can afford to be lenient in this case. */
510
511 static struct type *
512 ada_typedef_target_type (struct type *type)
513 {
514 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
515 type = TYPE_TARGET_TYPE (type);
516 return type;
517 }
518
519 /* Given DECODED_NAME a string holding a symbol name in its
520 decoded form (ie using the Ada dotted notation), returns
521 its unqualified name. */
522
523 static const char *
524 ada_unqualified_name (const char *decoded_name)
525 {
526 const char *result;
527
528 /* If the decoded name starts with '<', it means that the encoded
529 name does not follow standard naming conventions, and thus that
530 it is not your typical Ada symbol name. Trying to unqualify it
531 is therefore pointless and possibly erroneous. */
532 if (decoded_name[0] == '<')
533 return decoded_name;
534
535 result = strrchr (decoded_name, '.');
536 if (result != NULL)
537 result++; /* Skip the dot... */
538 else
539 result = decoded_name;
540
541 return result;
542 }
543
544 /* Return a string starting with '<', followed by STR, and '>'. */
545
546 static std::string
547 add_angle_brackets (const char *str)
548 {
549 return string_printf ("<%s>", str);
550 }
551
552 static const char *
553 ada_get_gdb_completer_word_break_characters (void)
554 {
555 return ada_completer_word_break_characters;
556 }
557
558 /* Print an array element index using the Ada syntax. */
559
560 static void
561 ada_print_array_index (struct value *index_value, struct ui_file *stream,
562 const struct value_print_options *options)
563 {
564 LA_VALUE_PRINT (index_value, stream, options);
565 fprintf_filtered (stream, " => ");
566 }
567
568 /* Assuming VECT points to an array of *SIZE objects of size
569 ELEMENT_SIZE, grow it to contain at least MIN_SIZE objects,
570 updating *SIZE as necessary and returning the (new) array. */
571
572 void *
573 grow_vect (void *vect, size_t *size, size_t min_size, int element_size)
574 {
575 if (*size < min_size)
576 {
577 *size *= 2;
578 if (*size < min_size)
579 *size = min_size;
580 vect = xrealloc (vect, *size * element_size);
581 }
582 return vect;
583 }
584
585 /* True (non-zero) iff TARGET matches FIELD_NAME up to any trailing
586 suffix of FIELD_NAME beginning "___". */
587
588 static int
589 field_name_match (const char *field_name, const char *target)
590 {
591 int len = strlen (target);
592
593 return
594 (strncmp (field_name, target, len) == 0
595 && (field_name[len] == '\0'
596 || (startswith (field_name + len, "___")
597 && strcmp (field_name + strlen (field_name) - 6,
598 "___XVN") != 0)));
599 }
600
601
602 /* Assuming TYPE is a TYPE_CODE_STRUCT or a TYPE_CODE_TYPDEF to
603 a TYPE_CODE_STRUCT, find the field whose name matches FIELD_NAME,
604 and return its index. This function also handles fields whose name
605 have ___ suffixes because the compiler sometimes alters their name
606 by adding such a suffix to represent fields with certain constraints.
607 If the field could not be found, return a negative number if
608 MAYBE_MISSING is set. Otherwise raise an error. */
609
610 int
611 ada_get_field_index (const struct type *type, const char *field_name,
612 int maybe_missing)
613 {
614 int fieldno;
615 struct type *struct_type = check_typedef ((struct type *) type);
616
617 for (fieldno = 0; fieldno < TYPE_NFIELDS (struct_type); fieldno++)
618 if (field_name_match (TYPE_FIELD_NAME (struct_type, fieldno), field_name))
619 return fieldno;
620
621 if (!maybe_missing)
622 error (_("Unable to find field %s in struct %s. Aborting"),
623 field_name, TYPE_NAME (struct_type));
624
625 return -1;
626 }
627
628 /* The length of the prefix of NAME prior to any "___" suffix. */
629
630 int
631 ada_name_prefix_len (const char *name)
632 {
633 if (name == NULL)
634 return 0;
635 else
636 {
637 const char *p = strstr (name, "___");
638
639 if (p == NULL)
640 return strlen (name);
641 else
642 return p - name;
643 }
644 }
645
646 /* Return non-zero if SUFFIX is a suffix of STR.
647 Return zero if STR is null. */
648
649 static int
650 is_suffix (const char *str, const char *suffix)
651 {
652 int len1, len2;
653
654 if (str == NULL)
655 return 0;
656 len1 = strlen (str);
657 len2 = strlen (suffix);
658 return (len1 >= len2 && strcmp (str + len1 - len2, suffix) == 0);
659 }
660
661 /* The contents of value VAL, treated as a value of type TYPE. The
662 result is an lval in memory if VAL is. */
663
664 static struct value *
665 coerce_unspec_val_to_type (struct value *val, struct type *type)
666 {
667 type = ada_check_typedef (type);
668 if (value_type (val) == type)
669 return val;
670 else
671 {
672 struct value *result;
673
674 /* Make sure that the object size is not unreasonable before
675 trying to allocate some memory for it. */
676 ada_ensure_varsize_limit (type);
677
678 if (value_lazy (val)
679 || TYPE_LENGTH (type) > TYPE_LENGTH (value_type (val)))
680 result = allocate_value_lazy (type);
681 else
682 {
683 result = allocate_value (type);
684 value_contents_copy_raw (result, 0, val, 0, TYPE_LENGTH (type));
685 }
686 set_value_component_location (result, val);
687 set_value_bitsize (result, value_bitsize (val));
688 set_value_bitpos (result, value_bitpos (val));
689 set_value_address (result, value_address (val));
690 return result;
691 }
692 }
693
694 static const gdb_byte *
695 cond_offset_host (const gdb_byte *valaddr, long offset)
696 {
697 if (valaddr == NULL)
698 return NULL;
699 else
700 return valaddr + offset;
701 }
702
703 static CORE_ADDR
704 cond_offset_target (CORE_ADDR address, long offset)
705 {
706 if (address == 0)
707 return 0;
708 else
709 return address + offset;
710 }
711
712 /* Issue a warning (as for the definition of warning in utils.c, but
713 with exactly one argument rather than ...), unless the limit on the
714 number of warnings has passed during the evaluation of the current
715 expression. */
716
717 /* FIXME: cagney/2004-10-10: This function is mimicking the behavior
718 provided by "complaint". */
719 static void lim_warning (const char *format, ...) ATTRIBUTE_PRINTF (1, 2);
720
721 static void
722 lim_warning (const char *format, ...)
723 {
724 va_list args;
725
726 va_start (args, format);
727 warnings_issued += 1;
728 if (warnings_issued <= warning_limit)
729 vwarning (format, args);
730
731 va_end (args);
732 }
733
734 /* Issue an error if the size of an object of type T is unreasonable,
735 i.e. if it would be a bad idea to allocate a value of this type in
736 GDB. */
737
738 void
739 ada_ensure_varsize_limit (const struct type *type)
740 {
741 if (TYPE_LENGTH (type) > varsize_limit)
742 error (_("object size is larger than varsize-limit"));
743 }
744
745 /* Maximum value of a SIZE-byte signed integer type. */
746 static LONGEST
747 max_of_size (int size)
748 {
749 LONGEST top_bit = (LONGEST) 1 << (size * 8 - 2);
750
751 return top_bit | (top_bit - 1);
752 }
753
754 /* Minimum value of a SIZE-byte signed integer type. */
755 static LONGEST
756 min_of_size (int size)
757 {
758 return -max_of_size (size) - 1;
759 }
760
761 /* Maximum value of a SIZE-byte unsigned integer type. */
762 static ULONGEST
763 umax_of_size (int size)
764 {
765 ULONGEST top_bit = (ULONGEST) 1 << (size * 8 - 1);
766
767 return top_bit | (top_bit - 1);
768 }
769
770 /* Maximum value of integral type T, as a signed quantity. */
771 static LONGEST
772 max_of_type (struct type *t)
773 {
774 if (TYPE_UNSIGNED (t))
775 return (LONGEST) umax_of_size (TYPE_LENGTH (t));
776 else
777 return max_of_size (TYPE_LENGTH (t));
778 }
779
780 /* Minimum value of integral type T, as a signed quantity. */
781 static LONGEST
782 min_of_type (struct type *t)
783 {
784 if (TYPE_UNSIGNED (t))
785 return 0;
786 else
787 return min_of_size (TYPE_LENGTH (t));
788 }
789
790 /* The largest value in the domain of TYPE, a discrete type, as an integer. */
791 LONGEST
792 ada_discrete_type_high_bound (struct type *type)
793 {
794 type = resolve_dynamic_type (type, NULL, 0);
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_RANGE:
798 return TYPE_HIGH_BOUND (type);
799 case TYPE_CODE_ENUM:
800 return TYPE_FIELD_ENUMVAL (type, TYPE_NFIELDS (type) - 1);
801 case TYPE_CODE_BOOL:
802 return 1;
803 case TYPE_CODE_CHAR:
804 case TYPE_CODE_INT:
805 return max_of_type (type);
806 default:
807 error (_("Unexpected type in ada_discrete_type_high_bound."));
808 }
809 }
810
811 /* The smallest value in the domain of TYPE, a discrete type, as an integer. */
812 LONGEST
813 ada_discrete_type_low_bound (struct type *type)
814 {
815 type = resolve_dynamic_type (type, NULL, 0);
816 switch (TYPE_CODE (type))
817 {
818 case TYPE_CODE_RANGE:
819 return TYPE_LOW_BOUND (type);
820 case TYPE_CODE_ENUM:
821 return TYPE_FIELD_ENUMVAL (type, 0);
822 case TYPE_CODE_BOOL:
823 return 0;
824 case TYPE_CODE_CHAR:
825 case TYPE_CODE_INT:
826 return min_of_type (type);
827 default:
828 error (_("Unexpected type in ada_discrete_type_low_bound."));
829 }
830 }
831
832 /* The identity on non-range types. For range types, the underlying
833 non-range scalar type. */
834
835 static struct type *
836 get_base_type (struct type *type)
837 {
838 while (type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE)
839 {
840 if (type == TYPE_TARGET_TYPE (type) || TYPE_TARGET_TYPE (type) == NULL)
841 return type;
842 type = TYPE_TARGET_TYPE (type);
843 }
844 return type;
845 }
846
847 /* Return a decoded version of the given VALUE. This means returning
848 a value whose type is obtained by applying all the GNAT-specific
849 encondings, making the resulting type a static but standard description
850 of the initial type. */
851
852 struct value *
853 ada_get_decoded_value (struct value *value)
854 {
855 struct type *type = ada_check_typedef (value_type (value));
856
857 if (ada_is_array_descriptor_type (type)
858 || (ada_is_constrained_packed_array_type (type)
859 && TYPE_CODE (type) != TYPE_CODE_PTR))
860 {
861 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF) /* array access type. */
862 value = ada_coerce_to_simple_array_ptr (value);
863 else
864 value = ada_coerce_to_simple_array (value);
865 }
866 else
867 value = ada_to_fixed_value (value);
868
869 return value;
870 }
871
872 /* Same as ada_get_decoded_value, but with the given TYPE.
873 Because there is no associated actual value for this type,
874 the resulting type might be a best-effort approximation in
875 the case of dynamic types. */
876
877 struct type *
878 ada_get_decoded_type (struct type *type)
879 {
880 type = to_static_fixed_type (type);
881 if (ada_is_constrained_packed_array_type (type))
882 type = ada_coerce_to_simple_array_type (type);
883 return type;
884 }
885
886 \f
887
888 /* Language Selection */
889
890 /* If the main program is in Ada, return language_ada, otherwise return LANG
891 (the main program is in Ada iif the adainit symbol is found). */
892
893 enum language
894 ada_update_initial_language (enum language lang)
895 {
896 if (lookup_minimal_symbol ("adainit", (const char *) NULL,
897 (struct objfile *) NULL).minsym != NULL)
898 return language_ada;
899
900 return lang;
901 }
902
903 /* If the main procedure is written in Ada, then return its name.
904 The result is good until the next call. Return NULL if the main
905 procedure doesn't appear to be in Ada. */
906
907 char *
908 ada_main_name (void)
909 {
910 struct bound_minimal_symbol msym;
911 static gdb::unique_xmalloc_ptr<char> main_program_name;
912
913 /* For Ada, the name of the main procedure is stored in a specific
914 string constant, generated by the binder. Look for that symbol,
915 extract its address, and then read that string. If we didn't find
916 that string, then most probably the main procedure is not written
917 in Ada. */
918 msym = lookup_minimal_symbol (ADA_MAIN_PROGRAM_SYMBOL_NAME, NULL, NULL);
919
920 if (msym.minsym != NULL)
921 {
922 CORE_ADDR main_program_name_addr;
923 int err_code;
924
925 main_program_name_addr = BMSYMBOL_VALUE_ADDRESS (msym);
926 if (main_program_name_addr == 0)
927 error (_("Invalid address for Ada main program name."));
928
929 target_read_string (main_program_name_addr, &main_program_name,
930 1024, &err_code);
931
932 if (err_code != 0)
933 return NULL;
934 return main_program_name.get ();
935 }
936
937 /* The main procedure doesn't seem to be in Ada. */
938 return NULL;
939 }
940 \f
941 /* Symbols */
942
943 /* Table of Ada operators and their GNAT-encoded names. Last entry is pair
944 of NULLs. */
945
946 const struct ada_opname_map ada_opname_table[] = {
947 {"Oadd", "\"+\"", BINOP_ADD},
948 {"Osubtract", "\"-\"", BINOP_SUB},
949 {"Omultiply", "\"*\"", BINOP_MUL},
950 {"Odivide", "\"/\"", BINOP_DIV},
951 {"Omod", "\"mod\"", BINOP_MOD},
952 {"Orem", "\"rem\"", BINOP_REM},
953 {"Oexpon", "\"**\"", BINOP_EXP},
954 {"Olt", "\"<\"", BINOP_LESS},
955 {"Ole", "\"<=\"", BINOP_LEQ},
956 {"Ogt", "\">\"", BINOP_GTR},
957 {"Oge", "\">=\"", BINOP_GEQ},
958 {"Oeq", "\"=\"", BINOP_EQUAL},
959 {"One", "\"/=\"", BINOP_NOTEQUAL},
960 {"Oand", "\"and\"", BINOP_BITWISE_AND},
961 {"Oor", "\"or\"", BINOP_BITWISE_IOR},
962 {"Oxor", "\"xor\"", BINOP_BITWISE_XOR},
963 {"Oconcat", "\"&\"", BINOP_CONCAT},
964 {"Oabs", "\"abs\"", UNOP_ABS},
965 {"Onot", "\"not\"", UNOP_LOGICAL_NOT},
966 {"Oadd", "\"+\"", UNOP_PLUS},
967 {"Osubtract", "\"-\"", UNOP_NEG},
968 {NULL, NULL}
969 };
970
971 /* The "encoded" form of DECODED, according to GNAT conventions. The
972 result is valid until the next call to ada_encode. If
973 THROW_ERRORS, throw an error if invalid operator name is found.
974 Otherwise, return NULL in that case. */
975
976 static char *
977 ada_encode_1 (const char *decoded, bool throw_errors)
978 {
979 static char *encoding_buffer = NULL;
980 static size_t encoding_buffer_size = 0;
981 const char *p;
982 int k;
983
984 if (decoded == NULL)
985 return NULL;
986
987 GROW_VECT (encoding_buffer, encoding_buffer_size,
988 2 * strlen (decoded) + 10);
989
990 k = 0;
991 for (p = decoded; *p != '\0'; p += 1)
992 {
993 if (*p == '.')
994 {
995 encoding_buffer[k] = encoding_buffer[k + 1] = '_';
996 k += 2;
997 }
998 else if (*p == '"')
999 {
1000 const struct ada_opname_map *mapping;
1001
1002 for (mapping = ada_opname_table;
1003 mapping->encoded != NULL
1004 && !startswith (p, mapping->decoded); mapping += 1)
1005 ;
1006 if (mapping->encoded == NULL)
1007 {
1008 if (throw_errors)
1009 error (_("invalid Ada operator name: %s"), p);
1010 else
1011 return NULL;
1012 }
1013 strcpy (encoding_buffer + k, mapping->encoded);
1014 k += strlen (mapping->encoded);
1015 break;
1016 }
1017 else
1018 {
1019 encoding_buffer[k] = *p;
1020 k += 1;
1021 }
1022 }
1023
1024 encoding_buffer[k] = '\0';
1025 return encoding_buffer;
1026 }
1027
1028 /* The "encoded" form of DECODED, according to GNAT conventions.
1029 The result is valid until the next call to ada_encode. */
1030
1031 char *
1032 ada_encode (const char *decoded)
1033 {
1034 return ada_encode_1 (decoded, true);
1035 }
1036
1037 /* Return NAME folded to lower case, or, if surrounded by single
1038 quotes, unfolded, but with the quotes stripped away. Result good
1039 to next call. */
1040
1041 char *
1042 ada_fold_name (const char *name)
1043 {
1044 static char *fold_buffer = NULL;
1045 static size_t fold_buffer_size = 0;
1046
1047 int len = strlen (name);
1048 GROW_VECT (fold_buffer, fold_buffer_size, len + 1);
1049
1050 if (name[0] == '\'')
1051 {
1052 strncpy (fold_buffer, name + 1, len - 2);
1053 fold_buffer[len - 2] = '\000';
1054 }
1055 else
1056 {
1057 int i;
1058
1059 for (i = 0; i <= len; i += 1)
1060 fold_buffer[i] = tolower (name[i]);
1061 }
1062
1063 return fold_buffer;
1064 }
1065
1066 /* Return nonzero if C is either a digit or a lowercase alphabet character. */
1067
1068 static int
1069 is_lower_alphanum (const char c)
1070 {
1071 return (isdigit (c) || (isalpha (c) && islower (c)));
1072 }
1073
1074 /* ENCODED is the linkage name of a symbol and LEN contains its length.
1075 This function saves in LEN the length of that same symbol name but
1076 without either of these suffixes:
1077 . .{DIGIT}+
1078 . ${DIGIT}+
1079 . ___{DIGIT}+
1080 . __{DIGIT}+.
1081
1082 These are suffixes introduced by the compiler for entities such as
1083 nested subprogram for instance, in order to avoid name clashes.
1084 They do not serve any purpose for the debugger. */
1085
1086 static void
1087 ada_remove_trailing_digits (const char *encoded, int *len)
1088 {
1089 if (*len > 1 && isdigit (encoded[*len - 1]))
1090 {
1091 int i = *len - 2;
1092
1093 while (i > 0 && isdigit (encoded[i]))
1094 i--;
1095 if (i >= 0 && encoded[i] == '.')
1096 *len = i;
1097 else if (i >= 0 && encoded[i] == '$')
1098 *len = i;
1099 else if (i >= 2 && startswith (encoded + i - 2, "___"))
1100 *len = i - 2;
1101 else if (i >= 1 && startswith (encoded + i - 1, "__"))
1102 *len = i - 1;
1103 }
1104 }
1105
1106 /* Remove the suffix introduced by the compiler for protected object
1107 subprograms. */
1108
1109 static void
1110 ada_remove_po_subprogram_suffix (const char *encoded, int *len)
1111 {
1112 /* Remove trailing N. */
1113
1114 /* Protected entry subprograms are broken into two
1115 separate subprograms: The first one is unprotected, and has
1116 a 'N' suffix; the second is the protected version, and has
1117 the 'P' suffix. The second calls the first one after handling
1118 the protection. Since the P subprograms are internally generated,
1119 we leave these names undecoded, giving the user a clue that this
1120 entity is internal. */
1121
1122 if (*len > 1
1123 && encoded[*len - 1] == 'N'
1124 && (isdigit (encoded[*len - 2]) || islower (encoded[*len - 2])))
1125 *len = *len - 1;
1126 }
1127
1128 /* Remove trailing X[bn]* suffixes (indicating names in package bodies). */
1129
1130 static void
1131 ada_remove_Xbn_suffix (const char *encoded, int *len)
1132 {
1133 int i = *len - 1;
1134
1135 while (i > 0 && (encoded[i] == 'b' || encoded[i] == 'n'))
1136 i--;
1137
1138 if (encoded[i] != 'X')
1139 return;
1140
1141 if (i == 0)
1142 return;
1143
1144 if (isalnum (encoded[i-1]))
1145 *len = i;
1146 }
1147
1148 /* If ENCODED follows the GNAT entity encoding conventions, then return
1149 the decoded form of ENCODED. Otherwise, return "<%s>" where "%s" is
1150 replaced by ENCODED.
1151
1152 The resulting string is valid until the next call of ada_decode.
1153 If the string is unchanged by decoding, the original string pointer
1154 is returned. */
1155
1156 const char *
1157 ada_decode (const char *encoded)
1158 {
1159 int i, j;
1160 int len0;
1161 const char *p;
1162 char *decoded;
1163 int at_start_name;
1164 static char *decoding_buffer = NULL;
1165 static size_t decoding_buffer_size = 0;
1166
1167 /* The name of the Ada main procedure starts with "_ada_".
1168 This prefix is not part of the decoded name, so skip this part
1169 if we see this prefix. */
1170 if (startswith (encoded, "_ada_"))
1171 encoded += 5;
1172
1173 /* If the name starts with '_', then it is not a properly encoded
1174 name, so do not attempt to decode it. Similarly, if the name
1175 starts with '<', the name should not be decoded. */
1176 if (encoded[0] == '_' || encoded[0] == '<')
1177 goto Suppress;
1178
1179 len0 = strlen (encoded);
1180
1181 ada_remove_trailing_digits (encoded, &len0);
1182 ada_remove_po_subprogram_suffix (encoded, &len0);
1183
1184 /* Remove the ___X.* suffix if present. Do not forget to verify that
1185 the suffix is located before the current "end" of ENCODED. We want
1186 to avoid re-matching parts of ENCODED that have previously been
1187 marked as discarded (by decrementing LEN0). */
1188 p = strstr (encoded, "___");
1189 if (p != NULL && p - encoded < len0 - 3)
1190 {
1191 if (p[3] == 'X')
1192 len0 = p - encoded;
1193 else
1194 goto Suppress;
1195 }
1196
1197 /* Remove any trailing TKB suffix. It tells us that this symbol
1198 is for the body of a task, but that information does not actually
1199 appear in the decoded name. */
1200
1201 if (len0 > 3 && startswith (encoded + len0 - 3, "TKB"))
1202 len0 -= 3;
1203
1204 /* Remove any trailing TB suffix. The TB suffix is slightly different
1205 from the TKB suffix because it is used for non-anonymous task
1206 bodies. */
1207
1208 if (len0 > 2 && startswith (encoded + len0 - 2, "TB"))
1209 len0 -= 2;
1210
1211 /* Remove trailing "B" suffixes. */
1212 /* FIXME: brobecker/2006-04-19: Not sure what this are used for... */
1213
1214 if (len0 > 1 && startswith (encoded + len0 - 1, "B"))
1215 len0 -= 1;
1216
1217 /* Make decoded big enough for possible expansion by operator name. */
1218
1219 GROW_VECT (decoding_buffer, decoding_buffer_size, 2 * len0 + 1);
1220 decoded = decoding_buffer;
1221
1222 /* Remove trailing __{digit}+ or trailing ${digit}+. */
1223
1224 if (len0 > 1 && isdigit (encoded[len0 - 1]))
1225 {
1226 i = len0 - 2;
1227 while ((i >= 0 && isdigit (encoded[i]))
1228 || (i >= 1 && encoded[i] == '_' && isdigit (encoded[i - 1])))
1229 i -= 1;
1230 if (i > 1 && encoded[i] == '_' && encoded[i - 1] == '_')
1231 len0 = i - 1;
1232 else if (encoded[i] == '$')
1233 len0 = i;
1234 }
1235
1236 /* The first few characters that are not alphabetic are not part
1237 of any encoding we use, so we can copy them over verbatim. */
1238
1239 for (i = 0, j = 0; i < len0 && !isalpha (encoded[i]); i += 1, j += 1)
1240 decoded[j] = encoded[i];
1241
1242 at_start_name = 1;
1243 while (i < len0)
1244 {
1245 /* Is this a symbol function? */
1246 if (at_start_name && encoded[i] == 'O')
1247 {
1248 int k;
1249
1250 for (k = 0; ada_opname_table[k].encoded != NULL; k += 1)
1251 {
1252 int op_len = strlen (ada_opname_table[k].encoded);
1253 if ((strncmp (ada_opname_table[k].encoded + 1, encoded + i + 1,
1254 op_len - 1) == 0)
1255 && !isalnum (encoded[i + op_len]))
1256 {
1257 strcpy (decoded + j, ada_opname_table[k].decoded);
1258 at_start_name = 0;
1259 i += op_len;
1260 j += strlen (ada_opname_table[k].decoded);
1261 break;
1262 }
1263 }
1264 if (ada_opname_table[k].encoded != NULL)
1265 continue;
1266 }
1267 at_start_name = 0;
1268
1269 /* Replace "TK__" with "__", which will eventually be translated
1270 into "." (just below). */
1271
1272 if (i < len0 - 4 && startswith (encoded + i, "TK__"))
1273 i += 2;
1274
1275 /* Replace "__B_{DIGITS}+__" sequences by "__", which will eventually
1276 be translated into "." (just below). These are internal names
1277 generated for anonymous blocks inside which our symbol is nested. */
1278
1279 if (len0 - i > 5 && encoded [i] == '_' && encoded [i+1] == '_'
1280 && encoded [i+2] == 'B' && encoded [i+3] == '_'
1281 && isdigit (encoded [i+4]))
1282 {
1283 int k = i + 5;
1284
1285 while (k < len0 && isdigit (encoded[k]))
1286 k++; /* Skip any extra digit. */
1287
1288 /* Double-check that the "__B_{DIGITS}+" sequence we found
1289 is indeed followed by "__". */
1290 if (len0 - k > 2 && encoded [k] == '_' && encoded [k+1] == '_')
1291 i = k;
1292 }
1293
1294 /* Remove _E{DIGITS}+[sb] */
1295
1296 /* Just as for protected object subprograms, there are 2 categories
1297 of subprograms created by the compiler for each entry. The first
1298 one implements the actual entry code, and has a suffix following
1299 the convention above; the second one implements the barrier and
1300 uses the same convention as above, except that the 'E' is replaced
1301 by a 'B'.
1302
1303 Just as above, we do not decode the name of barrier functions
1304 to give the user a clue that the code he is debugging has been
1305 internally generated. */
1306
1307 if (len0 - i > 3 && encoded [i] == '_' && encoded[i+1] == 'E'
1308 && isdigit (encoded[i+2]))
1309 {
1310 int k = i + 3;
1311
1312 while (k < len0 && isdigit (encoded[k]))
1313 k++;
1314
1315 if (k < len0
1316 && (encoded[k] == 'b' || encoded[k] == 's'))
1317 {
1318 k++;
1319 /* Just as an extra precaution, make sure that if this
1320 suffix is followed by anything else, it is a '_'.
1321 Otherwise, we matched this sequence by accident. */
1322 if (k == len0
1323 || (k < len0 && encoded[k] == '_'))
1324 i = k;
1325 }
1326 }
1327
1328 /* Remove trailing "N" in [a-z0-9]+N__. The N is added by
1329 the GNAT front-end in protected object subprograms. */
1330
1331 if (i < len0 + 3
1332 && encoded[i] == 'N' && encoded[i+1] == '_' && encoded[i+2] == '_')
1333 {
1334 /* Backtrack a bit up until we reach either the begining of
1335 the encoded name, or "__". Make sure that we only find
1336 digits or lowercase characters. */
1337 const char *ptr = encoded + i - 1;
1338
1339 while (ptr >= encoded && is_lower_alphanum (ptr[0]))
1340 ptr--;
1341 if (ptr < encoded
1342 || (ptr > encoded && ptr[0] == '_' && ptr[-1] == '_'))
1343 i++;
1344 }
1345
1346 if (encoded[i] == 'X' && i != 0 && isalnum (encoded[i - 1]))
1347 {
1348 /* This is a X[bn]* sequence not separated from the previous
1349 part of the name with a non-alpha-numeric character (in other
1350 words, immediately following an alpha-numeric character), then
1351 verify that it is placed at the end of the encoded name. If
1352 not, then the encoding is not valid and we should abort the
1353 decoding. Otherwise, just skip it, it is used in body-nested
1354 package names. */
1355 do
1356 i += 1;
1357 while (i < len0 && (encoded[i] == 'b' || encoded[i] == 'n'));
1358 if (i < len0)
1359 goto Suppress;
1360 }
1361 else if (i < len0 - 2 && encoded[i] == '_' && encoded[i + 1] == '_')
1362 {
1363 /* Replace '__' by '.'. */
1364 decoded[j] = '.';
1365 at_start_name = 1;
1366 i += 2;
1367 j += 1;
1368 }
1369 else
1370 {
1371 /* It's a character part of the decoded name, so just copy it
1372 over. */
1373 decoded[j] = encoded[i];
1374 i += 1;
1375 j += 1;
1376 }
1377 }
1378 decoded[j] = '\000';
1379
1380 /* Decoded names should never contain any uppercase character.
1381 Double-check this, and abort the decoding if we find one. */
1382
1383 for (i = 0; decoded[i] != '\0'; i += 1)
1384 if (isupper (decoded[i]) || decoded[i] == ' ')
1385 goto Suppress;
1386
1387 if (strcmp (decoded, encoded) == 0)
1388 return encoded;
1389 else
1390 return decoded;
1391
1392 Suppress:
1393 GROW_VECT (decoding_buffer, decoding_buffer_size, strlen (encoded) + 3);
1394 decoded = decoding_buffer;
1395 if (encoded[0] == '<')
1396 strcpy (decoded, encoded);
1397 else
1398 xsnprintf (decoded, decoding_buffer_size, "<%s>", encoded);
1399 return decoded;
1400
1401 }
1402
1403 /* Table for keeping permanent unique copies of decoded names. Once
1404 allocated, names in this table are never released. While this is a
1405 storage leak, it should not be significant unless there are massive
1406 changes in the set of decoded names in successive versions of a
1407 symbol table loaded during a single session. */
1408 static struct htab *decoded_names_store;
1409
1410 /* Returns the decoded name of GSYMBOL, as for ada_decode, caching it
1411 in the language-specific part of GSYMBOL, if it has not been
1412 previously computed. Tries to save the decoded name in the same
1413 obstack as GSYMBOL, if possible, and otherwise on the heap (so that,
1414 in any case, the decoded symbol has a lifetime at least that of
1415 GSYMBOL).
1416 The GSYMBOL parameter is "mutable" in the C++ sense: logically
1417 const, but nevertheless modified to a semantically equivalent form
1418 when a decoded name is cached in it. */
1419
1420 const char *
1421 ada_decode_symbol (const struct general_symbol_info *arg)
1422 {
1423 struct general_symbol_info *gsymbol = (struct general_symbol_info *) arg;
1424 const char **resultp =
1425 &gsymbol->language_specific.demangled_name;
1426
1427 if (!gsymbol->ada_mangled)
1428 {
1429 const char *decoded = ada_decode (gsymbol->name);
1430 struct obstack *obstack = gsymbol->language_specific.obstack;
1431
1432 gsymbol->ada_mangled = 1;
1433
1434 if (obstack != NULL)
1435 *resultp
1436 = (const char *) obstack_copy0 (obstack, decoded, strlen (decoded));
1437 else
1438 {
1439 /* Sometimes, we can't find a corresponding objfile, in
1440 which case, we put the result on the heap. Since we only
1441 decode when needed, we hope this usually does not cause a
1442 significant memory leak (FIXME). */
1443
1444 char **slot = (char **) htab_find_slot (decoded_names_store,
1445 decoded, INSERT);
1446
1447 if (*slot == NULL)
1448 *slot = xstrdup (decoded);
1449 *resultp = *slot;
1450 }
1451 }
1452
1453 return *resultp;
1454 }
1455
1456 static char *
1457 ada_la_decode (const char *encoded, int options)
1458 {
1459 return xstrdup (ada_decode (encoded));
1460 }
1461
1462 /* Implement la_sniff_from_mangled_name for Ada. */
1463
1464 static int
1465 ada_sniff_from_mangled_name (const char *mangled, char **out)
1466 {
1467 const char *demangled = ada_decode (mangled);
1468
1469 *out = NULL;
1470
1471 if (demangled != mangled && demangled != NULL && demangled[0] != '<')
1472 {
1473 /* Set the gsymbol language to Ada, but still return 0.
1474 Two reasons for that:
1475
1476 1. For Ada, we prefer computing the symbol's decoded name
1477 on the fly rather than pre-compute it, in order to save
1478 memory (Ada projects are typically very large).
1479
1480 2. There are some areas in the definition of the GNAT
1481 encoding where, with a bit of bad luck, we might be able
1482 to decode a non-Ada symbol, generating an incorrect
1483 demangled name (Eg: names ending with "TB" for instance
1484 are identified as task bodies and so stripped from
1485 the decoded name returned).
1486
1487 Returning 1, here, but not setting *DEMANGLED, helps us get a
1488 little bit of the best of both worlds. Because we're last,
1489 we should not affect any of the other languages that were
1490 able to demangle the symbol before us; we get to correctly
1491 tag Ada symbols as such; and even if we incorrectly tagged a
1492 non-Ada symbol, which should be rare, any routing through the
1493 Ada language should be transparent (Ada tries to behave much
1494 like C/C++ with non-Ada symbols). */
1495 return 1;
1496 }
1497
1498 return 0;
1499 }
1500
1501 \f
1502
1503 /* Arrays */
1504
1505 /* Assuming that INDEX_DESC_TYPE is an ___XA structure, a structure
1506 generated by the GNAT compiler to describe the index type used
1507 for each dimension of an array, check whether it follows the latest
1508 known encoding. If not, fix it up to conform to the latest encoding.
1509 Otherwise, do nothing. This function also does nothing if
1510 INDEX_DESC_TYPE is NULL.
1511
1512 The GNAT encoding used to describle the array index type evolved a bit.
1513 Initially, the information would be provided through the name of each
1514 field of the structure type only, while the type of these fields was
1515 described as unspecified and irrelevant. The debugger was then expected
1516 to perform a global type lookup using the name of that field in order
1517 to get access to the full index type description. Because these global
1518 lookups can be very expensive, the encoding was later enhanced to make
1519 the global lookup unnecessary by defining the field type as being
1520 the full index type description.
1521
1522 The purpose of this routine is to allow us to support older versions
1523 of the compiler by detecting the use of the older encoding, and by
1524 fixing up the INDEX_DESC_TYPE to follow the new one (at this point,
1525 we essentially replace each field's meaningless type by the associated
1526 index subtype). */
1527
1528 void
1529 ada_fixup_array_indexes_type (struct type *index_desc_type)
1530 {
1531 int i;
1532
1533 if (index_desc_type == NULL)
1534 return;
1535 gdb_assert (TYPE_NFIELDS (index_desc_type) > 0);
1536
1537 /* Check if INDEX_DESC_TYPE follows the older encoding (it is sufficient
1538 to check one field only, no need to check them all). If not, return
1539 now.
1540
1541 If our INDEX_DESC_TYPE was generated using the older encoding,
1542 the field type should be a meaningless integer type whose name
1543 is not equal to the field name. */
1544 if (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)) != NULL
1545 && strcmp (TYPE_NAME (TYPE_FIELD_TYPE (index_desc_type, 0)),
1546 TYPE_FIELD_NAME (index_desc_type, 0)) == 0)
1547 return;
1548
1549 /* Fixup each field of INDEX_DESC_TYPE. */
1550 for (i = 0; i < TYPE_NFIELDS (index_desc_type); i++)
1551 {
1552 const char *name = TYPE_FIELD_NAME (index_desc_type, i);
1553 struct type *raw_type = ada_check_typedef (ada_find_any_type (name));
1554
1555 if (raw_type)
1556 TYPE_FIELD_TYPE (index_desc_type, i) = raw_type;
1557 }
1558 }
1559
1560 /* Names of MAX_ADA_DIMENS bounds in P_BOUNDS fields of array descriptors. */
1561
1562 static const char *bound_name[] = {
1563 "LB0", "UB0", "LB1", "UB1", "LB2", "UB2", "LB3", "UB3",
1564 "LB4", "UB4", "LB5", "UB5", "LB6", "UB6", "LB7", "UB7"
1565 };
1566
1567 /* Maximum number of array dimensions we are prepared to handle. */
1568
1569 #define MAX_ADA_DIMENS (sizeof(bound_name) / (2*sizeof(char *)))
1570
1571
1572 /* The desc_* routines return primitive portions of array descriptors
1573 (fat pointers). */
1574
1575 /* The descriptor or array type, if any, indicated by TYPE; removes
1576 level of indirection, if needed. */
1577
1578 static struct type *
1579 desc_base_type (struct type *type)
1580 {
1581 if (type == NULL)
1582 return NULL;
1583 type = ada_check_typedef (type);
1584 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1585 type = ada_typedef_target_type (type);
1586
1587 if (type != NULL
1588 && (TYPE_CODE (type) == TYPE_CODE_PTR
1589 || TYPE_CODE (type) == TYPE_CODE_REF))
1590 return ada_check_typedef (TYPE_TARGET_TYPE (type));
1591 else
1592 return type;
1593 }
1594
1595 /* True iff TYPE indicates a "thin" array pointer type. */
1596
1597 static int
1598 is_thin_pntr (struct type *type)
1599 {
1600 return
1601 is_suffix (ada_type_name (desc_base_type (type)), "___XUT")
1602 || is_suffix (ada_type_name (desc_base_type (type)), "___XUT___XVE");
1603 }
1604
1605 /* The descriptor type for thin pointer type TYPE. */
1606
1607 static struct type *
1608 thin_descriptor_type (struct type *type)
1609 {
1610 struct type *base_type = desc_base_type (type);
1611
1612 if (base_type == NULL)
1613 return NULL;
1614 if (is_suffix (ada_type_name (base_type), "___XVE"))
1615 return base_type;
1616 else
1617 {
1618 struct type *alt_type = ada_find_parallel_type (base_type, "___XVE");
1619
1620 if (alt_type == NULL)
1621 return base_type;
1622 else
1623 return alt_type;
1624 }
1625 }
1626
1627 /* A pointer to the array data for thin-pointer value VAL. */
1628
1629 static struct value *
1630 thin_data_pntr (struct value *val)
1631 {
1632 struct type *type = ada_check_typedef (value_type (val));
1633 struct type *data_type = desc_data_target_type (thin_descriptor_type (type));
1634
1635 data_type = lookup_pointer_type (data_type);
1636
1637 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1638 return value_cast (data_type, value_copy (val));
1639 else
1640 return value_from_longest (data_type, value_address (val));
1641 }
1642
1643 /* True iff TYPE indicates a "thick" array pointer type. */
1644
1645 static int
1646 is_thick_pntr (struct type *type)
1647 {
1648 type = desc_base_type (type);
1649 return (type != NULL && TYPE_CODE (type) == TYPE_CODE_STRUCT
1650 && lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL);
1651 }
1652
1653 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1654 pointer to one, the type of its bounds data; otherwise, NULL. */
1655
1656 static struct type *
1657 desc_bounds_type (struct type *type)
1658 {
1659 struct type *r;
1660
1661 type = desc_base_type (type);
1662
1663 if (type == NULL)
1664 return NULL;
1665 else if (is_thin_pntr (type))
1666 {
1667 type = thin_descriptor_type (type);
1668 if (type == NULL)
1669 return NULL;
1670 r = lookup_struct_elt_type (type, "BOUNDS", 1);
1671 if (r != NULL)
1672 return ada_check_typedef (r);
1673 }
1674 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1675 {
1676 r = lookup_struct_elt_type (type, "P_BOUNDS", 1);
1677 if (r != NULL)
1678 return ada_check_typedef (TYPE_TARGET_TYPE (ada_check_typedef (r)));
1679 }
1680 return NULL;
1681 }
1682
1683 /* If ARR is an array descriptor (fat or thin pointer), or pointer to
1684 one, a pointer to its bounds data. Otherwise NULL. */
1685
1686 static struct value *
1687 desc_bounds (struct value *arr)
1688 {
1689 struct type *type = ada_check_typedef (value_type (arr));
1690
1691 if (is_thin_pntr (type))
1692 {
1693 struct type *bounds_type =
1694 desc_bounds_type (thin_descriptor_type (type));
1695 LONGEST addr;
1696
1697 if (bounds_type == NULL)
1698 error (_("Bad GNAT array descriptor"));
1699
1700 /* NOTE: The following calculation is not really kosher, but
1701 since desc_type is an XVE-encoded type (and shouldn't be),
1702 the correct calculation is a real pain. FIXME (and fix GCC). */
1703 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1704 addr = value_as_long (arr);
1705 else
1706 addr = value_address (arr);
1707
1708 return
1709 value_from_longest (lookup_pointer_type (bounds_type),
1710 addr - TYPE_LENGTH (bounds_type));
1711 }
1712
1713 else if (is_thick_pntr (type))
1714 {
1715 struct value *p_bounds = value_struct_elt (&arr, NULL, "P_BOUNDS", NULL,
1716 _("Bad GNAT array descriptor"));
1717 struct type *p_bounds_type = value_type (p_bounds);
1718
1719 if (p_bounds_type
1720 && TYPE_CODE (p_bounds_type) == TYPE_CODE_PTR)
1721 {
1722 struct type *target_type = TYPE_TARGET_TYPE (p_bounds_type);
1723
1724 if (TYPE_STUB (target_type))
1725 p_bounds = value_cast (lookup_pointer_type
1726 (ada_check_typedef (target_type)),
1727 p_bounds);
1728 }
1729 else
1730 error (_("Bad GNAT array descriptor"));
1731
1732 return p_bounds;
1733 }
1734 else
1735 return NULL;
1736 }
1737
1738 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1739 position of the field containing the address of the bounds data. */
1740
1741 static int
1742 fat_pntr_bounds_bitpos (struct type *type)
1743 {
1744 return TYPE_FIELD_BITPOS (desc_base_type (type), 1);
1745 }
1746
1747 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1748 size of the field containing the address of the bounds data. */
1749
1750 static int
1751 fat_pntr_bounds_bitsize (struct type *type)
1752 {
1753 type = desc_base_type (type);
1754
1755 if (TYPE_FIELD_BITSIZE (type, 1) > 0)
1756 return TYPE_FIELD_BITSIZE (type, 1);
1757 else
1758 return 8 * TYPE_LENGTH (ada_check_typedef (TYPE_FIELD_TYPE (type, 1)));
1759 }
1760
1761 /* If TYPE is the type of an array descriptor (fat or thin pointer) or a
1762 pointer to one, the type of its array data (a array-with-no-bounds type);
1763 otherwise, NULL. Use ada_type_of_array to get an array type with bounds
1764 data. */
1765
1766 static struct type *
1767 desc_data_target_type (struct type *type)
1768 {
1769 type = desc_base_type (type);
1770
1771 /* NOTE: The following is bogus; see comment in desc_bounds. */
1772 if (is_thin_pntr (type))
1773 return desc_base_type (TYPE_FIELD_TYPE (thin_descriptor_type (type), 1));
1774 else if (is_thick_pntr (type))
1775 {
1776 struct type *data_type = lookup_struct_elt_type (type, "P_ARRAY", 1);
1777
1778 if (data_type
1779 && TYPE_CODE (ada_check_typedef (data_type)) == TYPE_CODE_PTR)
1780 return ada_check_typedef (TYPE_TARGET_TYPE (data_type));
1781 }
1782
1783 return NULL;
1784 }
1785
1786 /* If ARR is an array descriptor (fat or thin pointer), a pointer to
1787 its array data. */
1788
1789 static struct value *
1790 desc_data (struct value *arr)
1791 {
1792 struct type *type = value_type (arr);
1793
1794 if (is_thin_pntr (type))
1795 return thin_data_pntr (arr);
1796 else if (is_thick_pntr (type))
1797 return value_struct_elt (&arr, NULL, "P_ARRAY", NULL,
1798 _("Bad GNAT array descriptor"));
1799 else
1800 return NULL;
1801 }
1802
1803
1804 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1805 position of the field containing the address of the data. */
1806
1807 static int
1808 fat_pntr_data_bitpos (struct type *type)
1809 {
1810 return TYPE_FIELD_BITPOS (desc_base_type (type), 0);
1811 }
1812
1813 /* If TYPE is the type of an array-descriptor (fat pointer), the bit
1814 size of the field containing the address of the data. */
1815
1816 static int
1817 fat_pntr_data_bitsize (struct type *type)
1818 {
1819 type = desc_base_type (type);
1820
1821 if (TYPE_FIELD_BITSIZE (type, 0) > 0)
1822 return TYPE_FIELD_BITSIZE (type, 0);
1823 else
1824 return TARGET_CHAR_BIT * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 0));
1825 }
1826
1827 /* If BOUNDS is an array-bounds structure (or pointer to one), return
1828 the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1829 bound, if WHICH is 1. The first bound is I=1. */
1830
1831 static struct value *
1832 desc_one_bound (struct value *bounds, int i, int which)
1833 {
1834 return value_struct_elt (&bounds, NULL, bound_name[2 * i + which - 2], NULL,
1835 _("Bad GNAT array descriptor bounds"));
1836 }
1837
1838 /* If BOUNDS is an array-bounds structure type, return the bit position
1839 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1840 bound, if WHICH is 1. The first bound is I=1. */
1841
1842 static int
1843 desc_bound_bitpos (struct type *type, int i, int which)
1844 {
1845 return TYPE_FIELD_BITPOS (desc_base_type (type), 2 * i + which - 2);
1846 }
1847
1848 /* If BOUNDS is an array-bounds structure type, return the bit field size
1849 of the Ith lower bound stored in it, if WHICH is 0, and the Ith upper
1850 bound, if WHICH is 1. The first bound is I=1. */
1851
1852 static int
1853 desc_bound_bitsize (struct type *type, int i, int which)
1854 {
1855 type = desc_base_type (type);
1856
1857 if (TYPE_FIELD_BITSIZE (type, 2 * i + which - 2) > 0)
1858 return TYPE_FIELD_BITSIZE (type, 2 * i + which - 2);
1859 else
1860 return 8 * TYPE_LENGTH (TYPE_FIELD_TYPE (type, 2 * i + which - 2));
1861 }
1862
1863 /* If TYPE is the type of an array-bounds structure, the type of its
1864 Ith bound (numbering from 1). Otherwise, NULL. */
1865
1866 static struct type *
1867 desc_index_type (struct type *type, int i)
1868 {
1869 type = desc_base_type (type);
1870
1871 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
1872 return lookup_struct_elt_type (type, bound_name[2 * i - 2], 1);
1873 else
1874 return NULL;
1875 }
1876
1877 /* The number of index positions in the array-bounds type TYPE.
1878 Return 0 if TYPE is NULL. */
1879
1880 static int
1881 desc_arity (struct type *type)
1882 {
1883 type = desc_base_type (type);
1884
1885 if (type != NULL)
1886 return TYPE_NFIELDS (type) / 2;
1887 return 0;
1888 }
1889
1890 /* Non-zero iff TYPE is a simple array type (not a pointer to one) or
1891 an array descriptor type (representing an unconstrained array
1892 type). */
1893
1894 static int
1895 ada_is_direct_array_type (struct type *type)
1896 {
1897 if (type == NULL)
1898 return 0;
1899 type = ada_check_typedef (type);
1900 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1901 || ada_is_array_descriptor_type (type));
1902 }
1903
1904 /* Non-zero iff TYPE represents any kind of array in Ada, or a pointer
1905 * to one. */
1906
1907 static int
1908 ada_is_array_type (struct type *type)
1909 {
1910 while (type != NULL
1911 && (TYPE_CODE (type) == TYPE_CODE_PTR
1912 || TYPE_CODE (type) == TYPE_CODE_REF))
1913 type = TYPE_TARGET_TYPE (type);
1914 return ada_is_direct_array_type (type);
1915 }
1916
1917 /* Non-zero iff TYPE is a simple array type or pointer to one. */
1918
1919 int
1920 ada_is_simple_array_type (struct type *type)
1921 {
1922 if (type == NULL)
1923 return 0;
1924 type = ada_check_typedef (type);
1925 return (TYPE_CODE (type) == TYPE_CODE_ARRAY
1926 || (TYPE_CODE (type) == TYPE_CODE_PTR
1927 && TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type)))
1928 == TYPE_CODE_ARRAY));
1929 }
1930
1931 /* Non-zero iff TYPE belongs to a GNAT array descriptor. */
1932
1933 int
1934 ada_is_array_descriptor_type (struct type *type)
1935 {
1936 struct type *data_type = desc_data_target_type (type);
1937
1938 if (type == NULL)
1939 return 0;
1940 type = ada_check_typedef (type);
1941 return (data_type != NULL
1942 && TYPE_CODE (data_type) == TYPE_CODE_ARRAY
1943 && desc_arity (desc_bounds_type (type)) > 0);
1944 }
1945
1946 /* Non-zero iff type is a partially mal-formed GNAT array
1947 descriptor. FIXME: This is to compensate for some problems with
1948 debugging output from GNAT. Re-examine periodically to see if it
1949 is still needed. */
1950
1951 int
1952 ada_is_bogus_array_descriptor (struct type *type)
1953 {
1954 return
1955 type != NULL
1956 && TYPE_CODE (type) == TYPE_CODE_STRUCT
1957 && (lookup_struct_elt_type (type, "P_BOUNDS", 1) != NULL
1958 || lookup_struct_elt_type (type, "P_ARRAY", 1) != NULL)
1959 && !ada_is_array_descriptor_type (type);
1960 }
1961
1962
1963 /* If ARR has a record type in the form of a standard GNAT array descriptor,
1964 (fat pointer) returns the type of the array data described---specifically,
1965 a pointer-to-array type. If BOUNDS is non-zero, the bounds data are filled
1966 in from the descriptor; otherwise, they are left unspecified. If
1967 the ARR denotes a null array descriptor and BOUNDS is non-zero,
1968 returns NULL. The result is simply the type of ARR if ARR is not
1969 a descriptor. */
1970 struct type *
1971 ada_type_of_array (struct value *arr, int bounds)
1972 {
1973 if (ada_is_constrained_packed_array_type (value_type (arr)))
1974 return decode_constrained_packed_array_type (value_type (arr));
1975
1976 if (!ada_is_array_descriptor_type (value_type (arr)))
1977 return value_type (arr);
1978
1979 if (!bounds)
1980 {
1981 struct type *array_type =
1982 ada_check_typedef (desc_data_target_type (value_type (arr)));
1983
1984 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
1985 TYPE_FIELD_BITSIZE (array_type, 0) =
1986 decode_packed_array_bitsize (value_type (arr));
1987
1988 return array_type;
1989 }
1990 else
1991 {
1992 struct type *elt_type;
1993 int arity;
1994 struct value *descriptor;
1995
1996 elt_type = ada_array_element_type (value_type (arr), -1);
1997 arity = ada_array_arity (value_type (arr));
1998
1999 if (elt_type == NULL || arity == 0)
2000 return ada_check_typedef (value_type (arr));
2001
2002 descriptor = desc_bounds (arr);
2003 if (value_as_long (descriptor) == 0)
2004 return NULL;
2005 while (arity > 0)
2006 {
2007 struct type *range_type = alloc_type_copy (value_type (arr));
2008 struct type *array_type = alloc_type_copy (value_type (arr));
2009 struct value *low = desc_one_bound (descriptor, arity, 0);
2010 struct value *high = desc_one_bound (descriptor, arity, 1);
2011
2012 arity -= 1;
2013 create_static_range_type (range_type, value_type (low),
2014 longest_to_int (value_as_long (low)),
2015 longest_to_int (value_as_long (high)));
2016 elt_type = create_array_type (array_type, elt_type, range_type);
2017
2018 if (ada_is_unconstrained_packed_array_type (value_type (arr)))
2019 {
2020 /* We need to store the element packed bitsize, as well as
2021 recompute the array size, because it was previously
2022 computed based on the unpacked element size. */
2023 LONGEST lo = value_as_long (low);
2024 LONGEST hi = value_as_long (high);
2025
2026 TYPE_FIELD_BITSIZE (elt_type, 0) =
2027 decode_packed_array_bitsize (value_type (arr));
2028 /* If the array has no element, then the size is already
2029 zero, and does not need to be recomputed. */
2030 if (lo < hi)
2031 {
2032 int array_bitsize =
2033 (hi - lo + 1) * TYPE_FIELD_BITSIZE (elt_type, 0);
2034
2035 TYPE_LENGTH (array_type) = (array_bitsize + 7) / 8;
2036 }
2037 }
2038 }
2039
2040 return lookup_pointer_type (elt_type);
2041 }
2042 }
2043
2044 /* If ARR does not represent an array, returns ARR unchanged.
2045 Otherwise, returns either a standard GDB array with bounds set
2046 appropriately or, if ARR is a non-null fat pointer, a pointer to a standard
2047 GDB array. Returns NULL if ARR is a null fat pointer. */
2048
2049 struct value *
2050 ada_coerce_to_simple_array_ptr (struct value *arr)
2051 {
2052 if (ada_is_array_descriptor_type (value_type (arr)))
2053 {
2054 struct type *arrType = ada_type_of_array (arr, 1);
2055
2056 if (arrType == NULL)
2057 return NULL;
2058 return value_cast (arrType, value_copy (desc_data (arr)));
2059 }
2060 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2061 return decode_constrained_packed_array (arr);
2062 else
2063 return arr;
2064 }
2065
2066 /* If ARR does not represent an array, returns ARR unchanged.
2067 Otherwise, returns a standard GDB array describing ARR (which may
2068 be ARR itself if it already is in the proper form). */
2069
2070 struct value *
2071 ada_coerce_to_simple_array (struct value *arr)
2072 {
2073 if (ada_is_array_descriptor_type (value_type (arr)))
2074 {
2075 struct value *arrVal = ada_coerce_to_simple_array_ptr (arr);
2076
2077 if (arrVal == NULL)
2078 error (_("Bounds unavailable for null array pointer."));
2079 ada_ensure_varsize_limit (TYPE_TARGET_TYPE (value_type (arrVal)));
2080 return value_ind (arrVal);
2081 }
2082 else if (ada_is_constrained_packed_array_type (value_type (arr)))
2083 return decode_constrained_packed_array (arr);
2084 else
2085 return arr;
2086 }
2087
2088 /* If TYPE represents a GNAT array type, return it translated to an
2089 ordinary GDB array type (possibly with BITSIZE fields indicating
2090 packing). For other types, is the identity. */
2091
2092 struct type *
2093 ada_coerce_to_simple_array_type (struct type *type)
2094 {
2095 if (ada_is_constrained_packed_array_type (type))
2096 return decode_constrained_packed_array_type (type);
2097
2098 if (ada_is_array_descriptor_type (type))
2099 return ada_check_typedef (desc_data_target_type (type));
2100
2101 return type;
2102 }
2103
2104 /* Non-zero iff TYPE represents a standard GNAT packed-array type. */
2105
2106 static int
2107 ada_is_packed_array_type (struct type *type)
2108 {
2109 if (type == NULL)
2110 return 0;
2111 type = desc_base_type (type);
2112 type = ada_check_typedef (type);
2113 return
2114 ada_type_name (type) != NULL
2115 && strstr (ada_type_name (type), "___XP") != NULL;
2116 }
2117
2118 /* Non-zero iff TYPE represents a standard GNAT constrained
2119 packed-array type. */
2120
2121 int
2122 ada_is_constrained_packed_array_type (struct type *type)
2123 {
2124 return ada_is_packed_array_type (type)
2125 && !ada_is_array_descriptor_type (type);
2126 }
2127
2128 /* Non-zero iff TYPE represents an array descriptor for a
2129 unconstrained packed-array type. */
2130
2131 static int
2132 ada_is_unconstrained_packed_array_type (struct type *type)
2133 {
2134 return ada_is_packed_array_type (type)
2135 && ada_is_array_descriptor_type (type);
2136 }
2137
2138 /* Given that TYPE encodes a packed array type (constrained or unconstrained),
2139 return the size of its elements in bits. */
2140
2141 static long
2142 decode_packed_array_bitsize (struct type *type)
2143 {
2144 const char *raw_name;
2145 const char *tail;
2146 long bits;
2147
2148 /* Access to arrays implemented as fat pointers are encoded as a typedef
2149 of the fat pointer type. We need the name of the fat pointer type
2150 to do the decoding, so strip the typedef layer. */
2151 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2152 type = ada_typedef_target_type (type);
2153
2154 raw_name = ada_type_name (ada_check_typedef (type));
2155 if (!raw_name)
2156 raw_name = ada_type_name (desc_base_type (type));
2157
2158 if (!raw_name)
2159 return 0;
2160
2161 tail = strstr (raw_name, "___XP");
2162 gdb_assert (tail != NULL);
2163
2164 if (sscanf (tail + sizeof ("___XP") - 1, "%ld", &bits) != 1)
2165 {
2166 lim_warning
2167 (_("could not understand bit size information on packed array"));
2168 return 0;
2169 }
2170
2171 return bits;
2172 }
2173
2174 /* Given that TYPE is a standard GDB array type with all bounds filled
2175 in, and that the element size of its ultimate scalar constituents
2176 (that is, either its elements, or, if it is an array of arrays, its
2177 elements' elements, etc.) is *ELT_BITS, return an identical type,
2178 but with the bit sizes of its elements (and those of any
2179 constituent arrays) recorded in the BITSIZE components of its
2180 TYPE_FIELD_BITSIZE values, and with *ELT_BITS set to its total size
2181 in bits.
2182
2183 Note that, for arrays whose index type has an XA encoding where
2184 a bound references a record discriminant, getting that discriminant,
2185 and therefore the actual value of that bound, is not possible
2186 because none of the given parameters gives us access to the record.
2187 This function assumes that it is OK in the context where it is being
2188 used to return an array whose bounds are still dynamic and where
2189 the length is arbitrary. */
2190
2191 static struct type *
2192 constrained_packed_array_type (struct type *type, long *elt_bits)
2193 {
2194 struct type *new_elt_type;
2195 struct type *new_type;
2196 struct type *index_type_desc;
2197 struct type *index_type;
2198 LONGEST low_bound, high_bound;
2199
2200 type = ada_check_typedef (type);
2201 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2202 return type;
2203
2204 index_type_desc = ada_find_parallel_type (type, "___XA");
2205 if (index_type_desc)
2206 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, 0),
2207 NULL);
2208 else
2209 index_type = TYPE_INDEX_TYPE (type);
2210
2211 new_type = alloc_type_copy (type);
2212 new_elt_type =
2213 constrained_packed_array_type (ada_check_typedef (TYPE_TARGET_TYPE (type)),
2214 elt_bits);
2215 create_array_type (new_type, new_elt_type, index_type);
2216 TYPE_FIELD_BITSIZE (new_type, 0) = *elt_bits;
2217 TYPE_NAME (new_type) = ada_type_name (type);
2218
2219 if ((TYPE_CODE (check_typedef (index_type)) == TYPE_CODE_RANGE
2220 && is_dynamic_type (check_typedef (index_type)))
2221 || get_discrete_bounds (index_type, &low_bound, &high_bound) < 0)
2222 low_bound = high_bound = 0;
2223 if (high_bound < low_bound)
2224 *elt_bits = TYPE_LENGTH (new_type) = 0;
2225 else
2226 {
2227 *elt_bits *= (high_bound - low_bound + 1);
2228 TYPE_LENGTH (new_type) =
2229 (*elt_bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2230 }
2231
2232 TYPE_FIXED_INSTANCE (new_type) = 1;
2233 return new_type;
2234 }
2235
2236 /* The array type encoded by TYPE, where
2237 ada_is_constrained_packed_array_type (TYPE). */
2238
2239 static struct type *
2240 decode_constrained_packed_array_type (struct type *type)
2241 {
2242 const char *raw_name = ada_type_name (ada_check_typedef (type));
2243 char *name;
2244 const char *tail;
2245 struct type *shadow_type;
2246 long bits;
2247
2248 if (!raw_name)
2249 raw_name = ada_type_name (desc_base_type (type));
2250
2251 if (!raw_name)
2252 return NULL;
2253
2254 name = (char *) alloca (strlen (raw_name) + 1);
2255 tail = strstr (raw_name, "___XP");
2256 type = desc_base_type (type);
2257
2258 memcpy (name, raw_name, tail - raw_name);
2259 name[tail - raw_name] = '\000';
2260
2261 shadow_type = ada_find_parallel_type_with_name (type, name);
2262
2263 if (shadow_type == NULL)
2264 {
2265 lim_warning (_("could not find bounds information on packed array"));
2266 return NULL;
2267 }
2268 shadow_type = check_typedef (shadow_type);
2269
2270 if (TYPE_CODE (shadow_type) != TYPE_CODE_ARRAY)
2271 {
2272 lim_warning (_("could not understand bounds "
2273 "information on packed array"));
2274 return NULL;
2275 }
2276
2277 bits = decode_packed_array_bitsize (type);
2278 return constrained_packed_array_type (shadow_type, &bits);
2279 }
2280
2281 /* Given that ARR is a struct value *indicating a GNAT constrained packed
2282 array, returns a simple array that denotes that array. Its type is a
2283 standard GDB array type except that the BITSIZEs of the array
2284 target types are set to the number of bits in each element, and the
2285 type length is set appropriately. */
2286
2287 static struct value *
2288 decode_constrained_packed_array (struct value *arr)
2289 {
2290 struct type *type;
2291
2292 /* If our value is a pointer, then dereference it. Likewise if
2293 the value is a reference. Make sure that this operation does not
2294 cause the target type to be fixed, as this would indirectly cause
2295 this array to be decoded. The rest of the routine assumes that
2296 the array hasn't been decoded yet, so we use the basic "coerce_ref"
2297 and "value_ind" routines to perform the dereferencing, as opposed
2298 to using "ada_coerce_ref" or "ada_value_ind". */
2299 arr = coerce_ref (arr);
2300 if (TYPE_CODE (ada_check_typedef (value_type (arr))) == TYPE_CODE_PTR)
2301 arr = value_ind (arr);
2302
2303 type = decode_constrained_packed_array_type (value_type (arr));
2304 if (type == NULL)
2305 {
2306 error (_("can't unpack array"));
2307 return NULL;
2308 }
2309
2310 if (gdbarch_bits_big_endian (get_type_arch (value_type (arr)))
2311 && ada_is_modular_type (value_type (arr)))
2312 {
2313 /* This is a (right-justified) modular type representing a packed
2314 array with no wrapper. In order to interpret the value through
2315 the (left-justified) packed array type we just built, we must
2316 first left-justify it. */
2317 int bit_size, bit_pos;
2318 ULONGEST mod;
2319
2320 mod = ada_modulus (value_type (arr)) - 1;
2321 bit_size = 0;
2322 while (mod > 0)
2323 {
2324 bit_size += 1;
2325 mod >>= 1;
2326 }
2327 bit_pos = HOST_CHAR_BIT * TYPE_LENGTH (value_type (arr)) - bit_size;
2328 arr = ada_value_primitive_packed_val (arr, NULL,
2329 bit_pos / HOST_CHAR_BIT,
2330 bit_pos % HOST_CHAR_BIT,
2331 bit_size,
2332 type);
2333 }
2334
2335 return coerce_unspec_val_to_type (arr, type);
2336 }
2337
2338
2339 /* The value of the element of packed array ARR at the ARITY indices
2340 given in IND. ARR must be a simple array. */
2341
2342 static struct value *
2343 value_subscript_packed (struct value *arr, int arity, struct value **ind)
2344 {
2345 int i;
2346 int bits, elt_off, bit_off;
2347 long elt_total_bit_offset;
2348 struct type *elt_type;
2349 struct value *v;
2350
2351 bits = 0;
2352 elt_total_bit_offset = 0;
2353 elt_type = ada_check_typedef (value_type (arr));
2354 for (i = 0; i < arity; i += 1)
2355 {
2356 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY
2357 || TYPE_FIELD_BITSIZE (elt_type, 0) == 0)
2358 error
2359 (_("attempt to do packed indexing of "
2360 "something other than a packed array"));
2361 else
2362 {
2363 struct type *range_type = TYPE_INDEX_TYPE (elt_type);
2364 LONGEST lowerbound, upperbound;
2365 LONGEST idx;
2366
2367 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
2368 {
2369 lim_warning (_("don't know bounds of array"));
2370 lowerbound = upperbound = 0;
2371 }
2372
2373 idx = pos_atr (ind[i]);
2374 if (idx < lowerbound || idx > upperbound)
2375 lim_warning (_("packed array index %ld out of bounds"),
2376 (long) idx);
2377 bits = TYPE_FIELD_BITSIZE (elt_type, 0);
2378 elt_total_bit_offset += (idx - lowerbound) * bits;
2379 elt_type = ada_check_typedef (TYPE_TARGET_TYPE (elt_type));
2380 }
2381 }
2382 elt_off = elt_total_bit_offset / HOST_CHAR_BIT;
2383 bit_off = elt_total_bit_offset % HOST_CHAR_BIT;
2384
2385 v = ada_value_primitive_packed_val (arr, NULL, elt_off, bit_off,
2386 bits, elt_type);
2387 return v;
2388 }
2389
2390 /* Non-zero iff TYPE includes negative integer values. */
2391
2392 static int
2393 has_negatives (struct type *type)
2394 {
2395 switch (TYPE_CODE (type))
2396 {
2397 default:
2398 return 0;
2399 case TYPE_CODE_INT:
2400 return !TYPE_UNSIGNED (type);
2401 case TYPE_CODE_RANGE:
2402 return TYPE_LOW_BOUND (type) < 0;
2403 }
2404 }
2405
2406 /* With SRC being a buffer containing BIT_SIZE bits of data at BIT_OFFSET,
2407 unpack that data into UNPACKED. UNPACKED_LEN is the size in bytes of
2408 the unpacked buffer.
2409
2410 The size of the unpacked buffer (UNPACKED_LEN) is expected to be large
2411 enough to contain at least BIT_OFFSET bits. If not, an error is raised.
2412
2413 IS_BIG_ENDIAN is nonzero if the data is stored in big endian mode,
2414 zero otherwise.
2415
2416 IS_SIGNED_TYPE is nonzero if the data corresponds to a signed type.
2417
2418 IS_SCALAR is nonzero if the data corresponds to a signed type. */
2419
2420 static void
2421 ada_unpack_from_contents (const gdb_byte *src, int bit_offset, int bit_size,
2422 gdb_byte *unpacked, int unpacked_len,
2423 int is_big_endian, int is_signed_type,
2424 int is_scalar)
2425 {
2426 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2427 int src_idx; /* Index into the source area */
2428 int src_bytes_left; /* Number of source bytes left to process. */
2429 int srcBitsLeft; /* Number of source bits left to move */
2430 int unusedLS; /* Number of bits in next significant
2431 byte of source that are unused */
2432
2433 int unpacked_idx; /* Index into the unpacked buffer */
2434 int unpacked_bytes_left; /* Number of bytes left to set in unpacked. */
2435
2436 unsigned long accum; /* Staging area for bits being transferred */
2437 int accumSize; /* Number of meaningful bits in accum */
2438 unsigned char sign;
2439
2440 /* Transmit bytes from least to most significant; delta is the direction
2441 the indices move. */
2442 int delta = is_big_endian ? -1 : 1;
2443
2444 /* Make sure that unpacked is large enough to receive the BIT_SIZE
2445 bits from SRC. .*/
2446 if ((bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT > unpacked_len)
2447 error (_("Cannot unpack %d bits into buffer of %d bytes"),
2448 bit_size, unpacked_len);
2449
2450 srcBitsLeft = bit_size;
2451 src_bytes_left = src_len;
2452 unpacked_bytes_left = unpacked_len;
2453 sign = 0;
2454
2455 if (is_big_endian)
2456 {
2457 src_idx = src_len - 1;
2458 if (is_signed_type
2459 && ((src[0] << bit_offset) & (1 << (HOST_CHAR_BIT - 1))))
2460 sign = ~0;
2461
2462 unusedLS =
2463 (HOST_CHAR_BIT - (bit_size + bit_offset) % HOST_CHAR_BIT)
2464 % HOST_CHAR_BIT;
2465
2466 if (is_scalar)
2467 {
2468 accumSize = 0;
2469 unpacked_idx = unpacked_len - 1;
2470 }
2471 else
2472 {
2473 /* Non-scalar values must be aligned at a byte boundary... */
2474 accumSize =
2475 (HOST_CHAR_BIT - bit_size % HOST_CHAR_BIT) % HOST_CHAR_BIT;
2476 /* ... And are placed at the beginning (most-significant) bytes
2477 of the target. */
2478 unpacked_idx = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT - 1;
2479 unpacked_bytes_left = unpacked_idx + 1;
2480 }
2481 }
2482 else
2483 {
2484 int sign_bit_offset = (bit_size + bit_offset - 1) % 8;
2485
2486 src_idx = unpacked_idx = 0;
2487 unusedLS = bit_offset;
2488 accumSize = 0;
2489
2490 if (is_signed_type && (src[src_len - 1] & (1 << sign_bit_offset)))
2491 sign = ~0;
2492 }
2493
2494 accum = 0;
2495 while (src_bytes_left > 0)
2496 {
2497 /* Mask for removing bits of the next source byte that are not
2498 part of the value. */
2499 unsigned int unusedMSMask =
2500 (1 << (srcBitsLeft >= HOST_CHAR_BIT ? HOST_CHAR_BIT : srcBitsLeft)) -
2501 1;
2502 /* Sign-extend bits for this byte. */
2503 unsigned int signMask = sign & ~unusedMSMask;
2504
2505 accum |=
2506 (((src[src_idx] >> unusedLS) & unusedMSMask) | signMask) << accumSize;
2507 accumSize += HOST_CHAR_BIT - unusedLS;
2508 if (accumSize >= HOST_CHAR_BIT)
2509 {
2510 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2511 accumSize -= HOST_CHAR_BIT;
2512 accum >>= HOST_CHAR_BIT;
2513 unpacked_bytes_left -= 1;
2514 unpacked_idx += delta;
2515 }
2516 srcBitsLeft -= HOST_CHAR_BIT - unusedLS;
2517 unusedLS = 0;
2518 src_bytes_left -= 1;
2519 src_idx += delta;
2520 }
2521 while (unpacked_bytes_left > 0)
2522 {
2523 accum |= sign << accumSize;
2524 unpacked[unpacked_idx] = accum & ~(~0UL << HOST_CHAR_BIT);
2525 accumSize -= HOST_CHAR_BIT;
2526 if (accumSize < 0)
2527 accumSize = 0;
2528 accum >>= HOST_CHAR_BIT;
2529 unpacked_bytes_left -= 1;
2530 unpacked_idx += delta;
2531 }
2532 }
2533
2534 /* Create a new value of type TYPE from the contents of OBJ starting
2535 at byte OFFSET, and bit offset BIT_OFFSET within that byte,
2536 proceeding for BIT_SIZE bits. If OBJ is an lval in memory, then
2537 assigning through the result will set the field fetched from.
2538 VALADDR is ignored unless OBJ is NULL, in which case,
2539 VALADDR+OFFSET must address the start of storage containing the
2540 packed value. The value returned in this case is never an lval.
2541 Assumes 0 <= BIT_OFFSET < HOST_CHAR_BIT. */
2542
2543 struct value *
2544 ada_value_primitive_packed_val (struct value *obj, const gdb_byte *valaddr,
2545 long offset, int bit_offset, int bit_size,
2546 struct type *type)
2547 {
2548 struct value *v;
2549 const gdb_byte *src; /* First byte containing data to unpack */
2550 gdb_byte *unpacked;
2551 const int is_scalar = is_scalar_type (type);
2552 const int is_big_endian = gdbarch_bits_big_endian (get_type_arch (type));
2553 gdb::byte_vector staging;
2554
2555 type = ada_check_typedef (type);
2556
2557 if (obj == NULL)
2558 src = valaddr + offset;
2559 else
2560 src = value_contents (obj) + offset;
2561
2562 if (is_dynamic_type (type))
2563 {
2564 /* The length of TYPE might by dynamic, so we need to resolve
2565 TYPE in order to know its actual size, which we then use
2566 to create the contents buffer of the value we return.
2567 The difficulty is that the data containing our object is
2568 packed, and therefore maybe not at a byte boundary. So, what
2569 we do, is unpack the data into a byte-aligned buffer, and then
2570 use that buffer as our object's value for resolving the type. */
2571 int staging_len = (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2572 staging.resize (staging_len);
2573
2574 ada_unpack_from_contents (src, bit_offset, bit_size,
2575 staging.data (), staging.size (),
2576 is_big_endian, has_negatives (type),
2577 is_scalar);
2578 type = resolve_dynamic_type (type, staging.data (), 0);
2579 if (TYPE_LENGTH (type) < (bit_size + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT)
2580 {
2581 /* This happens when the length of the object is dynamic,
2582 and is actually smaller than the space reserved for it.
2583 For instance, in an array of variant records, the bit_size
2584 we're given is the array stride, which is constant and
2585 normally equal to the maximum size of its element.
2586 But, in reality, each element only actually spans a portion
2587 of that stride. */
2588 bit_size = TYPE_LENGTH (type) * HOST_CHAR_BIT;
2589 }
2590 }
2591
2592 if (obj == NULL)
2593 {
2594 v = allocate_value (type);
2595 src = valaddr + offset;
2596 }
2597 else if (VALUE_LVAL (obj) == lval_memory && value_lazy (obj))
2598 {
2599 int src_len = (bit_size + bit_offset + HOST_CHAR_BIT - 1) / 8;
2600 gdb_byte *buf;
2601
2602 v = value_at (type, value_address (obj) + offset);
2603 buf = (gdb_byte *) alloca (src_len);
2604 read_memory (value_address (v), buf, src_len);
2605 src = buf;
2606 }
2607 else
2608 {
2609 v = allocate_value (type);
2610 src = value_contents (obj) + offset;
2611 }
2612
2613 if (obj != NULL)
2614 {
2615 long new_offset = offset;
2616
2617 set_value_component_location (v, obj);
2618 set_value_bitpos (v, bit_offset + value_bitpos (obj));
2619 set_value_bitsize (v, bit_size);
2620 if (value_bitpos (v) >= HOST_CHAR_BIT)
2621 {
2622 ++new_offset;
2623 set_value_bitpos (v, value_bitpos (v) - HOST_CHAR_BIT);
2624 }
2625 set_value_offset (v, new_offset);
2626
2627 /* Also set the parent value. This is needed when trying to
2628 assign a new value (in inferior memory). */
2629 set_value_parent (v, obj);
2630 }
2631 else
2632 set_value_bitsize (v, bit_size);
2633 unpacked = value_contents_writeable (v);
2634
2635 if (bit_size == 0)
2636 {
2637 memset (unpacked, 0, TYPE_LENGTH (type));
2638 return v;
2639 }
2640
2641 if (staging.size () == TYPE_LENGTH (type))
2642 {
2643 /* Small short-cut: If we've unpacked the data into a buffer
2644 of the same size as TYPE's length, then we can reuse that,
2645 instead of doing the unpacking again. */
2646 memcpy (unpacked, staging.data (), staging.size ());
2647 }
2648 else
2649 ada_unpack_from_contents (src, bit_offset, bit_size,
2650 unpacked, TYPE_LENGTH (type),
2651 is_big_endian, has_negatives (type), is_scalar);
2652
2653 return v;
2654 }
2655
2656 /* Move N bits from SOURCE, starting at bit offset SRC_OFFSET to
2657 TARGET, starting at bit offset TARG_OFFSET. SOURCE and TARGET must
2658 not overlap. */
2659 static void
2660 move_bits (gdb_byte *target, int targ_offset, const gdb_byte *source,
2661 int src_offset, int n, int bits_big_endian_p)
2662 {
2663 unsigned int accum, mask;
2664 int accum_bits, chunk_size;
2665
2666 target += targ_offset / HOST_CHAR_BIT;
2667 targ_offset %= HOST_CHAR_BIT;
2668 source += src_offset / HOST_CHAR_BIT;
2669 src_offset %= HOST_CHAR_BIT;
2670 if (bits_big_endian_p)
2671 {
2672 accum = (unsigned char) *source;
2673 source += 1;
2674 accum_bits = HOST_CHAR_BIT - src_offset;
2675
2676 while (n > 0)
2677 {
2678 int unused_right;
2679
2680 accum = (accum << HOST_CHAR_BIT) + (unsigned char) *source;
2681 accum_bits += HOST_CHAR_BIT;
2682 source += 1;
2683 chunk_size = HOST_CHAR_BIT - targ_offset;
2684 if (chunk_size > n)
2685 chunk_size = n;
2686 unused_right = HOST_CHAR_BIT - (chunk_size + targ_offset);
2687 mask = ((1 << chunk_size) - 1) << unused_right;
2688 *target =
2689 (*target & ~mask)
2690 | ((accum >> (accum_bits - chunk_size - unused_right)) & mask);
2691 n -= chunk_size;
2692 accum_bits -= chunk_size;
2693 target += 1;
2694 targ_offset = 0;
2695 }
2696 }
2697 else
2698 {
2699 accum = (unsigned char) *source >> src_offset;
2700 source += 1;
2701 accum_bits = HOST_CHAR_BIT - src_offset;
2702
2703 while (n > 0)
2704 {
2705 accum = accum + ((unsigned char) *source << accum_bits);
2706 accum_bits += HOST_CHAR_BIT;
2707 source += 1;
2708 chunk_size = HOST_CHAR_BIT - targ_offset;
2709 if (chunk_size > n)
2710 chunk_size = n;
2711 mask = ((1 << chunk_size) - 1) << targ_offset;
2712 *target = (*target & ~mask) | ((accum << targ_offset) & mask);
2713 n -= chunk_size;
2714 accum_bits -= chunk_size;
2715 accum >>= chunk_size;
2716 target += 1;
2717 targ_offset = 0;
2718 }
2719 }
2720 }
2721
2722 /* Store the contents of FROMVAL into the location of TOVAL.
2723 Return a new value with the location of TOVAL and contents of
2724 FROMVAL. Handles assignment into packed fields that have
2725 floating-point or non-scalar types. */
2726
2727 static struct value *
2728 ada_value_assign (struct value *toval, struct value *fromval)
2729 {
2730 struct type *type = value_type (toval);
2731 int bits = value_bitsize (toval);
2732
2733 toval = ada_coerce_ref (toval);
2734 fromval = ada_coerce_ref (fromval);
2735
2736 if (ada_is_direct_array_type (value_type (toval)))
2737 toval = ada_coerce_to_simple_array (toval);
2738 if (ada_is_direct_array_type (value_type (fromval)))
2739 fromval = ada_coerce_to_simple_array (fromval);
2740
2741 if (!deprecated_value_modifiable (toval))
2742 error (_("Left operand of assignment is not a modifiable lvalue."));
2743
2744 if (VALUE_LVAL (toval) == lval_memory
2745 && bits > 0
2746 && (TYPE_CODE (type) == TYPE_CODE_FLT
2747 || TYPE_CODE (type) == TYPE_CODE_STRUCT))
2748 {
2749 int len = (value_bitpos (toval)
2750 + bits + HOST_CHAR_BIT - 1) / HOST_CHAR_BIT;
2751 int from_size;
2752 gdb_byte *buffer = (gdb_byte *) alloca (len);
2753 struct value *val;
2754 CORE_ADDR to_addr = value_address (toval);
2755
2756 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2757 fromval = value_cast (type, fromval);
2758
2759 read_memory (to_addr, buffer, len);
2760 from_size = value_bitsize (fromval);
2761 if (from_size == 0)
2762 from_size = TYPE_LENGTH (value_type (fromval)) * TARGET_CHAR_BIT;
2763 if (gdbarch_bits_big_endian (get_type_arch (type)))
2764 move_bits (buffer, value_bitpos (toval),
2765 value_contents (fromval), from_size - bits, bits, 1);
2766 else
2767 move_bits (buffer, value_bitpos (toval),
2768 value_contents (fromval), 0, bits, 0);
2769 write_memory_with_notification (to_addr, buffer, len);
2770
2771 val = value_copy (toval);
2772 memcpy (value_contents_raw (val), value_contents (fromval),
2773 TYPE_LENGTH (type));
2774 deprecated_set_value_type (val, type);
2775
2776 return val;
2777 }
2778
2779 return value_assign (toval, fromval);
2780 }
2781
2782
2783 /* Given that COMPONENT is a memory lvalue that is part of the lvalue
2784 CONTAINER, assign the contents of VAL to COMPONENTS's place in
2785 CONTAINER. Modifies the VALUE_CONTENTS of CONTAINER only, not
2786 COMPONENT, and not the inferior's memory. The current contents
2787 of COMPONENT are ignored.
2788
2789 Although not part of the initial design, this function also works
2790 when CONTAINER and COMPONENT are not_lval's: it works as if CONTAINER
2791 had a null address, and COMPONENT had an address which is equal to
2792 its offset inside CONTAINER. */
2793
2794 static void
2795 value_assign_to_component (struct value *container, struct value *component,
2796 struct value *val)
2797 {
2798 LONGEST offset_in_container =
2799 (LONGEST) (value_address (component) - value_address (container));
2800 int bit_offset_in_container =
2801 value_bitpos (component) - value_bitpos (container);
2802 int bits;
2803
2804 val = value_cast (value_type (component), val);
2805
2806 if (value_bitsize (component) == 0)
2807 bits = TARGET_CHAR_BIT * TYPE_LENGTH (value_type (component));
2808 else
2809 bits = value_bitsize (component);
2810
2811 if (gdbarch_bits_big_endian (get_type_arch (value_type (container))))
2812 move_bits (value_contents_writeable (container) + offset_in_container,
2813 value_bitpos (container) + bit_offset_in_container,
2814 value_contents (val),
2815 TYPE_LENGTH (value_type (component)) * TARGET_CHAR_BIT - bits,
2816 bits, 1);
2817 else
2818 move_bits (value_contents_writeable (container) + offset_in_container,
2819 value_bitpos (container) + bit_offset_in_container,
2820 value_contents (val), 0, bits, 0);
2821 }
2822
2823 /* The value of the element of array ARR at the ARITY indices given in IND.
2824 ARR may be either a simple array, GNAT array descriptor, or pointer
2825 thereto. */
2826
2827 struct value *
2828 ada_value_subscript (struct value *arr, int arity, struct value **ind)
2829 {
2830 int k;
2831 struct value *elt;
2832 struct type *elt_type;
2833
2834 elt = ada_coerce_to_simple_array (arr);
2835
2836 elt_type = ada_check_typedef (value_type (elt));
2837 if (TYPE_CODE (elt_type) == TYPE_CODE_ARRAY
2838 && TYPE_FIELD_BITSIZE (elt_type, 0) > 0)
2839 return value_subscript_packed (elt, arity, ind);
2840
2841 for (k = 0; k < arity; k += 1)
2842 {
2843 if (TYPE_CODE (elt_type) != TYPE_CODE_ARRAY)
2844 error (_("too many subscripts (%d expected)"), k);
2845 elt = value_subscript (elt, pos_atr (ind[k]));
2846 }
2847 return elt;
2848 }
2849
2850 /* Assuming ARR is a pointer to a GDB array, the value of the element
2851 of *ARR at the ARITY indices given in IND.
2852 Does not read the entire array into memory.
2853
2854 Note: Unlike what one would expect, this function is used instead of
2855 ada_value_subscript for basically all non-packed array types. The reason
2856 for this is that a side effect of doing our own pointer arithmetics instead
2857 of relying on value_subscript is that there is no implicit typedef peeling.
2858 This is important for arrays of array accesses, where it allows us to
2859 preserve the fact that the array's element is an array access, where the
2860 access part os encoded in a typedef layer. */
2861
2862 static struct value *
2863 ada_value_ptr_subscript (struct value *arr, int arity, struct value **ind)
2864 {
2865 int k;
2866 struct value *array_ind = ada_value_ind (arr);
2867 struct type *type
2868 = check_typedef (value_enclosing_type (array_ind));
2869
2870 if (TYPE_CODE (type) == TYPE_CODE_ARRAY
2871 && TYPE_FIELD_BITSIZE (type, 0) > 0)
2872 return value_subscript_packed (array_ind, arity, ind);
2873
2874 for (k = 0; k < arity; k += 1)
2875 {
2876 LONGEST lwb, upb;
2877 struct value *lwb_value;
2878
2879 if (TYPE_CODE (type) != TYPE_CODE_ARRAY)
2880 error (_("too many subscripts (%d expected)"), k);
2881 arr = value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2882 value_copy (arr));
2883 get_discrete_bounds (TYPE_INDEX_TYPE (type), &lwb, &upb);
2884 lwb_value = value_from_longest (value_type(ind[k]), lwb);
2885 arr = value_ptradd (arr, pos_atr (ind[k]) - pos_atr (lwb_value));
2886 type = TYPE_TARGET_TYPE (type);
2887 }
2888
2889 return value_ind (arr);
2890 }
2891
2892 /* Given that ARRAY_PTR is a pointer or reference to an array of type TYPE (the
2893 actual type of ARRAY_PTR is ignored), returns the Ada slice of
2894 HIGH'Pos-LOW'Pos+1 elements starting at index LOW. The lower bound of
2895 this array is LOW, as per Ada rules. */
2896 static struct value *
2897 ada_value_slice_from_ptr (struct value *array_ptr, struct type *type,
2898 int low, int high)
2899 {
2900 struct type *type0 = ada_check_typedef (type);
2901 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type0));
2902 struct type *index_type
2903 = create_static_range_type (NULL, base_index_type, low, high);
2904 struct type *slice_type = create_array_type_with_stride
2905 (NULL, TYPE_TARGET_TYPE (type0), index_type,
2906 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type0),
2907 TYPE_FIELD_BITSIZE (type0, 0));
2908 int base_low = ada_discrete_type_low_bound (TYPE_INDEX_TYPE (type0));
2909 LONGEST base_low_pos, low_pos;
2910 CORE_ADDR base;
2911
2912 if (!discrete_position (base_index_type, low, &low_pos)
2913 || !discrete_position (base_index_type, base_low, &base_low_pos))
2914 {
2915 warning (_("unable to get positions in slice, use bounds instead"));
2916 low_pos = low;
2917 base_low_pos = base_low;
2918 }
2919
2920 base = value_as_address (array_ptr)
2921 + ((low_pos - base_low_pos)
2922 * TYPE_LENGTH (TYPE_TARGET_TYPE (type0)));
2923 return value_at_lazy (slice_type, base);
2924 }
2925
2926
2927 static struct value *
2928 ada_value_slice (struct value *array, int low, int high)
2929 {
2930 struct type *type = ada_check_typedef (value_type (array));
2931 struct type *base_index_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
2932 struct type *index_type
2933 = create_static_range_type (NULL, TYPE_INDEX_TYPE (type), low, high);
2934 struct type *slice_type = create_array_type_with_stride
2935 (NULL, TYPE_TARGET_TYPE (type), index_type,
2936 get_dyn_prop (DYN_PROP_BYTE_STRIDE, type),
2937 TYPE_FIELD_BITSIZE (type, 0));
2938 LONGEST low_pos, high_pos;
2939
2940 if (!discrete_position (base_index_type, low, &low_pos)
2941 || !discrete_position (base_index_type, high, &high_pos))
2942 {
2943 warning (_("unable to get positions in slice, use bounds instead"));
2944 low_pos = low;
2945 high_pos = high;
2946 }
2947
2948 return value_cast (slice_type,
2949 value_slice (array, low, high_pos - low_pos + 1));
2950 }
2951
2952 /* If type is a record type in the form of a standard GNAT array
2953 descriptor, returns the number of dimensions for type. If arr is a
2954 simple array, returns the number of "array of"s that prefix its
2955 type designation. Otherwise, returns 0. */
2956
2957 int
2958 ada_array_arity (struct type *type)
2959 {
2960 int arity;
2961
2962 if (type == NULL)
2963 return 0;
2964
2965 type = desc_base_type (type);
2966
2967 arity = 0;
2968 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2969 return desc_arity (desc_bounds_type (type));
2970 else
2971 while (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2972 {
2973 arity += 1;
2974 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
2975 }
2976
2977 return arity;
2978 }
2979
2980 /* If TYPE is a record type in the form of a standard GNAT array
2981 descriptor or a simple array type, returns the element type for
2982 TYPE after indexing by NINDICES indices, or by all indices if
2983 NINDICES is -1. Otherwise, returns NULL. */
2984
2985 struct type *
2986 ada_array_element_type (struct type *type, int nindices)
2987 {
2988 type = desc_base_type (type);
2989
2990 if (TYPE_CODE (type) == TYPE_CODE_STRUCT)
2991 {
2992 int k;
2993 struct type *p_array_type;
2994
2995 p_array_type = desc_data_target_type (type);
2996
2997 k = ada_array_arity (type);
2998 if (k == 0)
2999 return NULL;
3000
3001 /* Initially p_array_type = elt_type(*)[]...(k times)...[]. */
3002 if (nindices >= 0 && k > nindices)
3003 k = nindices;
3004 while (k > 0 && p_array_type != NULL)
3005 {
3006 p_array_type = ada_check_typedef (TYPE_TARGET_TYPE (p_array_type));
3007 k -= 1;
3008 }
3009 return p_array_type;
3010 }
3011 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
3012 {
3013 while (nindices != 0 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
3014 {
3015 type = TYPE_TARGET_TYPE (type);
3016 nindices -= 1;
3017 }
3018 return type;
3019 }
3020
3021 return NULL;
3022 }
3023
3024 /* The type of nth index in arrays of given type (n numbering from 1).
3025 Does not examine memory. Throws an error if N is invalid or TYPE
3026 is not an array type. NAME is the name of the Ada attribute being
3027 evaluated ('range, 'first, 'last, or 'length); it is used in building
3028 the error message. */
3029
3030 static struct type *
3031 ada_index_type (struct type *type, int n, const char *name)
3032 {
3033 struct type *result_type;
3034
3035 type = desc_base_type (type);
3036
3037 if (n < 0 || n > ada_array_arity (type))
3038 error (_("invalid dimension number to '%s"), name);
3039
3040 if (ada_is_simple_array_type (type))
3041 {
3042 int i;
3043
3044 for (i = 1; i < n; i += 1)
3045 type = TYPE_TARGET_TYPE (type);
3046 result_type = TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (type));
3047 /* FIXME: The stabs type r(0,0);bound;bound in an array type
3048 has a target type of TYPE_CODE_UNDEF. We compensate here, but
3049 perhaps stabsread.c would make more sense. */
3050 if (result_type && TYPE_CODE (result_type) == TYPE_CODE_UNDEF)
3051 result_type = NULL;
3052 }
3053 else
3054 {
3055 result_type = desc_index_type (desc_bounds_type (type), n);
3056 if (result_type == NULL)
3057 error (_("attempt to take bound of something that is not an array"));
3058 }
3059
3060 return result_type;
3061 }
3062
3063 /* Given that arr is an array type, returns the lower bound of the
3064 Nth index (numbering from 1) if WHICH is 0, and the upper bound if
3065 WHICH is 1. This returns bounds 0 .. -1 if ARR_TYPE is an
3066 array-descriptor type. It works for other arrays with bounds supplied
3067 by run-time quantities other than discriminants. */
3068
3069 static LONGEST
3070 ada_array_bound_from_type (struct type *arr_type, int n, int which)
3071 {
3072 struct type *type, *index_type_desc, *index_type;
3073 int i;
3074
3075 gdb_assert (which == 0 || which == 1);
3076
3077 if (ada_is_constrained_packed_array_type (arr_type))
3078 arr_type = decode_constrained_packed_array_type (arr_type);
3079
3080 if (arr_type == NULL || !ada_is_simple_array_type (arr_type))
3081 return (LONGEST) - which;
3082
3083 if (TYPE_CODE (arr_type) == TYPE_CODE_PTR)
3084 type = TYPE_TARGET_TYPE (arr_type);
3085 else
3086 type = arr_type;
3087
3088 if (TYPE_FIXED_INSTANCE (type))
3089 {
3090 /* The array has already been fixed, so we do not need to
3091 check the parallel ___XA type again. That encoding has
3092 already been applied, so ignore it now. */
3093 index_type_desc = NULL;
3094 }
3095 else
3096 {
3097 index_type_desc = ada_find_parallel_type (type, "___XA");
3098 ada_fixup_array_indexes_type (index_type_desc);
3099 }
3100
3101 if (index_type_desc != NULL)
3102 index_type = to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, n - 1),
3103 NULL);
3104 else
3105 {
3106 struct type *elt_type = check_typedef (type);
3107
3108 for (i = 1; i < n; i++)
3109 elt_type = check_typedef (TYPE_TARGET_TYPE (elt_type));
3110
3111 index_type = TYPE_INDEX_TYPE (elt_type);
3112 }
3113
3114 return
3115 (LONGEST) (which == 0
3116 ? ada_discrete_type_low_bound (index_type)
3117 : ada_discrete_type_high_bound (index_type));
3118 }
3119
3120 /* Given that arr is an array value, returns the lower bound of the
3121 nth index (numbering from 1) if WHICH is 0, and the upper bound if
3122 WHICH is 1. This routine will also work for arrays with bounds
3123 supplied by run-time quantities other than discriminants. */
3124
3125 static LONGEST
3126 ada_array_bound (struct value *arr, int n, int which)
3127 {
3128 struct type *arr_type;
3129
3130 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3131 arr = value_ind (arr);
3132 arr_type = value_enclosing_type (arr);
3133
3134 if (ada_is_constrained_packed_array_type (arr_type))
3135 return ada_array_bound (decode_constrained_packed_array (arr), n, which);
3136 else if (ada_is_simple_array_type (arr_type))
3137 return ada_array_bound_from_type (arr_type, n, which);
3138 else
3139 return value_as_long (desc_one_bound (desc_bounds (arr), n, which));
3140 }
3141
3142 /* Given that arr is an array value, returns the length of the
3143 nth index. This routine will also work for arrays with bounds
3144 supplied by run-time quantities other than discriminants.
3145 Does not work for arrays indexed by enumeration types with representation
3146 clauses at the moment. */
3147
3148 static LONGEST
3149 ada_array_length (struct value *arr, int n)
3150 {
3151 struct type *arr_type, *index_type;
3152 int low, high;
3153
3154 if (TYPE_CODE (check_typedef (value_type (arr))) == TYPE_CODE_PTR)
3155 arr = value_ind (arr);
3156 arr_type = value_enclosing_type (arr);
3157
3158 if (ada_is_constrained_packed_array_type (arr_type))
3159 return ada_array_length (decode_constrained_packed_array (arr), n);
3160
3161 if (ada_is_simple_array_type (arr_type))
3162 {
3163 low = ada_array_bound_from_type (arr_type, n, 0);
3164 high = ada_array_bound_from_type (arr_type, n, 1);
3165 }
3166 else
3167 {
3168 low = value_as_long (desc_one_bound (desc_bounds (arr), n, 0));
3169 high = value_as_long (desc_one_bound (desc_bounds (arr), n, 1));
3170 }
3171
3172 arr_type = check_typedef (arr_type);
3173 index_type = ada_index_type (arr_type, n, "length");
3174 if (index_type != NULL)
3175 {
3176 struct type *base_type;
3177 if (TYPE_CODE (index_type) == TYPE_CODE_RANGE)
3178 base_type = TYPE_TARGET_TYPE (index_type);
3179 else
3180 base_type = index_type;
3181
3182 low = pos_atr (value_from_longest (base_type, low));
3183 high = pos_atr (value_from_longest (base_type, high));
3184 }
3185 return high - low + 1;
3186 }
3187
3188 /* An empty array whose type is that of ARR_TYPE (an array type),
3189 with bounds LOW to LOW-1. */
3190
3191 static struct value *
3192 empty_array (struct type *arr_type, int low)
3193 {
3194 struct type *arr_type0 = ada_check_typedef (arr_type);
3195 struct type *index_type
3196 = create_static_range_type
3197 (NULL, TYPE_TARGET_TYPE (TYPE_INDEX_TYPE (arr_type0)), low, low - 1);
3198 struct type *elt_type = ada_array_element_type (arr_type0, 1);
3199
3200 return allocate_value (create_array_type (NULL, elt_type, index_type));
3201 }
3202 \f
3203
3204 /* Name resolution */
3205
3206 /* The "decoded" name for the user-definable Ada operator corresponding
3207 to OP. */
3208
3209 static const char *
3210 ada_decoded_op_name (enum exp_opcode op)
3211 {
3212 int i;
3213
3214 for (i = 0; ada_opname_table[i].encoded != NULL; i += 1)
3215 {
3216 if (ada_opname_table[i].op == op)
3217 return ada_opname_table[i].decoded;
3218 }
3219 error (_("Could not find operator name for opcode"));
3220 }
3221
3222
3223 /* Same as evaluate_type (*EXP), but resolves ambiguous symbol
3224 references (marked by OP_VAR_VALUE nodes in which the symbol has an
3225 undefined namespace) and converts operators that are
3226 user-defined into appropriate function calls. If CONTEXT_TYPE is
3227 non-null, it provides a preferred result type [at the moment, only
3228 type void has any effect---causing procedures to be preferred over
3229 functions in calls]. A null CONTEXT_TYPE indicates that a non-void
3230 return type is preferred. May change (expand) *EXP. */
3231
3232 static void
3233 resolve (expression_up *expp, int void_context_p)
3234 {
3235 struct type *context_type = NULL;
3236 int pc = 0;
3237
3238 if (void_context_p)
3239 context_type = builtin_type ((*expp)->gdbarch)->builtin_void;
3240
3241 resolve_subexp (expp, &pc, 1, context_type);
3242 }
3243
3244 /* Resolve the operator of the subexpression beginning at
3245 position *POS of *EXPP. "Resolving" consists of replacing
3246 the symbols that have undefined namespaces in OP_VAR_VALUE nodes
3247 with their resolutions, replacing built-in operators with
3248 function calls to user-defined operators, where appropriate, and,
3249 when DEPROCEDURE_P is non-zero, converting function-valued variables
3250 into parameterless calls. May expand *EXPP. The CONTEXT_TYPE functions
3251 are as in ada_resolve, above. */
3252
3253 static struct value *
3254 resolve_subexp (expression_up *expp, int *pos, int deprocedure_p,
3255 struct type *context_type)
3256 {
3257 int pc = *pos;
3258 int i;
3259 struct expression *exp; /* Convenience: == *expp. */
3260 enum exp_opcode op = (*expp)->elts[pc].opcode;
3261 struct value **argvec; /* Vector of operand types (alloca'ed). */
3262 int nargs; /* Number of operands. */
3263 int oplen;
3264
3265 argvec = NULL;
3266 nargs = 0;
3267 exp = expp->get ();
3268
3269 /* Pass one: resolve operands, saving their types and updating *pos,
3270 if needed. */
3271 switch (op)
3272 {
3273 case OP_FUNCALL:
3274 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3275 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3276 *pos += 7;
3277 else
3278 {
3279 *pos += 3;
3280 resolve_subexp (expp, pos, 0, NULL);
3281 }
3282 nargs = longest_to_int (exp->elts[pc + 1].longconst);
3283 break;
3284
3285 case UNOP_ADDR:
3286 *pos += 1;
3287 resolve_subexp (expp, pos, 0, NULL);
3288 break;
3289
3290 case UNOP_QUAL:
3291 *pos += 3;
3292 resolve_subexp (expp, pos, 1, check_typedef (exp->elts[pc + 1].type));
3293 break;
3294
3295 case OP_ATR_MODULUS:
3296 case OP_ATR_SIZE:
3297 case OP_ATR_TAG:
3298 case OP_ATR_FIRST:
3299 case OP_ATR_LAST:
3300 case OP_ATR_LENGTH:
3301 case OP_ATR_POS:
3302 case OP_ATR_VAL:
3303 case OP_ATR_MIN:
3304 case OP_ATR_MAX:
3305 case TERNOP_IN_RANGE:
3306 case BINOP_IN_BOUNDS:
3307 case UNOP_IN_RANGE:
3308 case OP_AGGREGATE:
3309 case OP_OTHERS:
3310 case OP_CHOICES:
3311 case OP_POSITIONAL:
3312 case OP_DISCRETE_RANGE:
3313 case OP_NAME:
3314 ada_forward_operator_length (exp, pc, &oplen, &nargs);
3315 *pos += oplen;
3316 break;
3317
3318 case BINOP_ASSIGN:
3319 {
3320 struct value *arg1;
3321
3322 *pos += 1;
3323 arg1 = resolve_subexp (expp, pos, 0, NULL);
3324 if (arg1 == NULL)
3325 resolve_subexp (expp, pos, 1, NULL);
3326 else
3327 resolve_subexp (expp, pos, 1, value_type (arg1));
3328 break;
3329 }
3330
3331 case UNOP_CAST:
3332 *pos += 3;
3333 nargs = 1;
3334 break;
3335
3336 case BINOP_ADD:
3337 case BINOP_SUB:
3338 case BINOP_MUL:
3339 case BINOP_DIV:
3340 case BINOP_REM:
3341 case BINOP_MOD:
3342 case BINOP_EXP:
3343 case BINOP_CONCAT:
3344 case BINOP_LOGICAL_AND:
3345 case BINOP_LOGICAL_OR:
3346 case BINOP_BITWISE_AND:
3347 case BINOP_BITWISE_IOR:
3348 case BINOP_BITWISE_XOR:
3349
3350 case BINOP_EQUAL:
3351 case BINOP_NOTEQUAL:
3352 case BINOP_LESS:
3353 case BINOP_GTR:
3354 case BINOP_LEQ:
3355 case BINOP_GEQ:
3356
3357 case BINOP_REPEAT:
3358 case BINOP_SUBSCRIPT:
3359 case BINOP_COMMA:
3360 *pos += 1;
3361 nargs = 2;
3362 break;
3363
3364 case UNOP_NEG:
3365 case UNOP_PLUS:
3366 case UNOP_LOGICAL_NOT:
3367 case UNOP_ABS:
3368 case UNOP_IND:
3369 *pos += 1;
3370 nargs = 1;
3371 break;
3372
3373 case OP_LONG:
3374 case OP_FLOAT:
3375 case OP_VAR_VALUE:
3376 case OP_VAR_MSYM_VALUE:
3377 *pos += 4;
3378 break;
3379
3380 case OP_TYPE:
3381 case OP_BOOL:
3382 case OP_LAST:
3383 case OP_INTERNALVAR:
3384 *pos += 3;
3385 break;
3386
3387 case UNOP_MEMVAL:
3388 *pos += 3;
3389 nargs = 1;
3390 break;
3391
3392 case OP_REGISTER:
3393 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3394 break;
3395
3396 case STRUCTOP_STRUCT:
3397 *pos += 4 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
3398 nargs = 1;
3399 break;
3400
3401 case TERNOP_SLICE:
3402 *pos += 1;
3403 nargs = 3;
3404 break;
3405
3406 case OP_STRING:
3407 break;
3408
3409 default:
3410 error (_("Unexpected operator during name resolution"));
3411 }
3412
3413 argvec = XALLOCAVEC (struct value *, nargs + 1);
3414 for (i = 0; i < nargs; i += 1)
3415 argvec[i] = resolve_subexp (expp, pos, 1, NULL);
3416 argvec[i] = NULL;
3417 exp = expp->get ();
3418
3419 /* Pass two: perform any resolution on principal operator. */
3420 switch (op)
3421 {
3422 default:
3423 break;
3424
3425 case OP_VAR_VALUE:
3426 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
3427 {
3428 std::vector<struct block_symbol> candidates;
3429 int n_candidates;
3430
3431 n_candidates =
3432 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3433 (exp->elts[pc + 2].symbol),
3434 exp->elts[pc + 1].block, VAR_DOMAIN,
3435 &candidates);
3436
3437 if (n_candidates > 1)
3438 {
3439 /* Types tend to get re-introduced locally, so if there
3440 are any local symbols that are not types, first filter
3441 out all types. */
3442 int j;
3443 for (j = 0; j < n_candidates; j += 1)
3444 switch (SYMBOL_CLASS (candidates[j].symbol))
3445 {
3446 case LOC_REGISTER:
3447 case LOC_ARG:
3448 case LOC_REF_ARG:
3449 case LOC_REGPARM_ADDR:
3450 case LOC_LOCAL:
3451 case LOC_COMPUTED:
3452 goto FoundNonType;
3453 default:
3454 break;
3455 }
3456 FoundNonType:
3457 if (j < n_candidates)
3458 {
3459 j = 0;
3460 while (j < n_candidates)
3461 {
3462 if (SYMBOL_CLASS (candidates[j].symbol) == LOC_TYPEDEF)
3463 {
3464 candidates[j] = candidates[n_candidates - 1];
3465 n_candidates -= 1;
3466 }
3467 else
3468 j += 1;
3469 }
3470 }
3471 }
3472
3473 if (n_candidates == 0)
3474 error (_("No definition found for %s"),
3475 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3476 else if (n_candidates == 1)
3477 i = 0;
3478 else if (deprocedure_p
3479 && !is_nonfunction (candidates.data (), n_candidates))
3480 {
3481 i = ada_resolve_function
3482 (candidates.data (), n_candidates, NULL, 0,
3483 SYMBOL_LINKAGE_NAME (exp->elts[pc + 2].symbol),
3484 context_type);
3485 if (i < 0)
3486 error (_("Could not find a match for %s"),
3487 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3488 }
3489 else
3490 {
3491 printf_filtered (_("Multiple matches for %s\n"),
3492 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
3493 user_select_syms (candidates.data (), n_candidates, 1);
3494 i = 0;
3495 }
3496
3497 exp->elts[pc + 1].block = candidates[i].block;
3498 exp->elts[pc + 2].symbol = candidates[i].symbol;
3499 innermost_block.update (candidates[i]);
3500 }
3501
3502 if (deprocedure_p
3503 && (TYPE_CODE (SYMBOL_TYPE (exp->elts[pc + 2].symbol))
3504 == TYPE_CODE_FUNC))
3505 {
3506 replace_operator_with_call (expp, pc, 0, 0,
3507 exp->elts[pc + 2].symbol,
3508 exp->elts[pc + 1].block);
3509 exp = expp->get ();
3510 }
3511 break;
3512
3513 case OP_FUNCALL:
3514 {
3515 if (exp->elts[pc + 3].opcode == OP_VAR_VALUE
3516 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
3517 {
3518 std::vector<struct block_symbol> candidates;
3519 int n_candidates;
3520
3521 n_candidates =
3522 ada_lookup_symbol_list (SYMBOL_LINKAGE_NAME
3523 (exp->elts[pc + 5].symbol),
3524 exp->elts[pc + 4].block, VAR_DOMAIN,
3525 &candidates);
3526
3527 if (n_candidates == 1)
3528 i = 0;
3529 else
3530 {
3531 i = ada_resolve_function
3532 (candidates.data (), n_candidates,
3533 argvec, nargs,
3534 SYMBOL_LINKAGE_NAME (exp->elts[pc + 5].symbol),
3535 context_type);
3536 if (i < 0)
3537 error (_("Could not find a match for %s"),
3538 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
3539 }
3540
3541 exp->elts[pc + 4].block = candidates[i].block;
3542 exp->elts[pc + 5].symbol = candidates[i].symbol;
3543 innermost_block.update (candidates[i]);
3544 }
3545 }
3546 break;
3547 case BINOP_ADD:
3548 case BINOP_SUB:
3549 case BINOP_MUL:
3550 case BINOP_DIV:
3551 case BINOP_REM:
3552 case BINOP_MOD:
3553 case BINOP_CONCAT:
3554 case BINOP_BITWISE_AND:
3555 case BINOP_BITWISE_IOR:
3556 case BINOP_BITWISE_XOR:
3557 case BINOP_EQUAL:
3558 case BINOP_NOTEQUAL:
3559 case BINOP_LESS:
3560 case BINOP_GTR:
3561 case BINOP_LEQ:
3562 case BINOP_GEQ:
3563 case BINOP_EXP:
3564 case UNOP_NEG:
3565 case UNOP_PLUS:
3566 case UNOP_LOGICAL_NOT:
3567 case UNOP_ABS:
3568 if (possible_user_operator_p (op, argvec))
3569 {
3570 std::vector<struct block_symbol> candidates;
3571 int n_candidates;
3572
3573 n_candidates =
3574 ada_lookup_symbol_list (ada_decoded_op_name (op),
3575 (struct block *) NULL, VAR_DOMAIN,
3576 &candidates);
3577
3578 i = ada_resolve_function (candidates.data (), n_candidates, argvec,
3579 nargs, ada_decoded_op_name (op), NULL);
3580 if (i < 0)
3581 break;
3582
3583 replace_operator_with_call (expp, pc, nargs, 1,
3584 candidates[i].symbol,
3585 candidates[i].block);
3586 exp = expp->get ();
3587 }
3588 break;
3589
3590 case OP_TYPE:
3591 case OP_REGISTER:
3592 return NULL;
3593 }
3594
3595 *pos = pc;
3596 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3597 return evaluate_var_msym_value (EVAL_AVOID_SIDE_EFFECTS,
3598 exp->elts[pc + 1].objfile,
3599 exp->elts[pc + 2].msymbol);
3600 else
3601 return evaluate_subexp_type (exp, pos);
3602 }
3603
3604 /* Return non-zero if formal type FTYPE matches actual type ATYPE. If
3605 MAY_DEREF is non-zero, the formal may be a pointer and the actual
3606 a non-pointer. */
3607 /* The term "match" here is rather loose. The match is heuristic and
3608 liberal. */
3609
3610 static int
3611 ada_type_match (struct type *ftype, struct type *atype, int may_deref)
3612 {
3613 ftype = ada_check_typedef (ftype);
3614 atype = ada_check_typedef (atype);
3615
3616 if (TYPE_CODE (ftype) == TYPE_CODE_REF)
3617 ftype = TYPE_TARGET_TYPE (ftype);
3618 if (TYPE_CODE (atype) == TYPE_CODE_REF)
3619 atype = TYPE_TARGET_TYPE (atype);
3620
3621 switch (TYPE_CODE (ftype))
3622 {
3623 default:
3624 return TYPE_CODE (ftype) == TYPE_CODE (atype);
3625 case TYPE_CODE_PTR:
3626 if (TYPE_CODE (atype) == TYPE_CODE_PTR)
3627 return ada_type_match (TYPE_TARGET_TYPE (ftype),
3628 TYPE_TARGET_TYPE (atype), 0);
3629 else
3630 return (may_deref
3631 && ada_type_match (TYPE_TARGET_TYPE (ftype), atype, 0));
3632 case TYPE_CODE_INT:
3633 case TYPE_CODE_ENUM:
3634 case TYPE_CODE_RANGE:
3635 switch (TYPE_CODE (atype))
3636 {
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_ENUM:
3639 case TYPE_CODE_RANGE:
3640 return 1;
3641 default:
3642 return 0;
3643 }
3644
3645 case TYPE_CODE_ARRAY:
3646 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3647 || ada_is_array_descriptor_type (atype));
3648
3649 case TYPE_CODE_STRUCT:
3650 if (ada_is_array_descriptor_type (ftype))
3651 return (TYPE_CODE (atype) == TYPE_CODE_ARRAY
3652 || ada_is_array_descriptor_type (atype));
3653 else
3654 return (TYPE_CODE (atype) == TYPE_CODE_STRUCT
3655 && !ada_is_array_descriptor_type (atype));
3656
3657 case TYPE_CODE_UNION:
3658 case TYPE_CODE_FLT:
3659 return (TYPE_CODE (atype) == TYPE_CODE (ftype));
3660 }
3661 }
3662
3663 /* Return non-zero if the formals of FUNC "sufficiently match" the
3664 vector of actual argument types ACTUALS of size N_ACTUALS. FUNC
3665 may also be an enumeral, in which case it is treated as a 0-
3666 argument function. */
3667
3668 static int
3669 ada_args_match (struct symbol *func, struct value **actuals, int n_actuals)
3670 {
3671 int i;
3672 struct type *func_type = SYMBOL_TYPE (func);
3673
3674 if (SYMBOL_CLASS (func) == LOC_CONST
3675 && TYPE_CODE (func_type) == TYPE_CODE_ENUM)
3676 return (n_actuals == 0);
3677 else if (func_type == NULL || TYPE_CODE (func_type) != TYPE_CODE_FUNC)
3678 return 0;
3679
3680 if (TYPE_NFIELDS (func_type) != n_actuals)
3681 return 0;
3682
3683 for (i = 0; i < n_actuals; i += 1)
3684 {
3685 if (actuals[i] == NULL)
3686 return 0;
3687 else
3688 {
3689 struct type *ftype = ada_check_typedef (TYPE_FIELD_TYPE (func_type,
3690 i));
3691 struct type *atype = ada_check_typedef (value_type (actuals[i]));
3692
3693 if (!ada_type_match (ftype, atype, 1))
3694 return 0;
3695 }
3696 }
3697 return 1;
3698 }
3699
3700 /* False iff function type FUNC_TYPE definitely does not produce a value
3701 compatible with type CONTEXT_TYPE. Conservatively returns 1 if
3702 FUNC_TYPE is not a valid function type with a non-null return type
3703 or an enumerated type. A null CONTEXT_TYPE indicates any non-void type. */
3704
3705 static int
3706 return_match (struct type *func_type, struct type *context_type)
3707 {
3708 struct type *return_type;
3709
3710 if (func_type == NULL)
3711 return 1;
3712
3713 if (TYPE_CODE (func_type) == TYPE_CODE_FUNC)
3714 return_type = get_base_type (TYPE_TARGET_TYPE (func_type));
3715 else
3716 return_type = get_base_type (func_type);
3717 if (return_type == NULL)
3718 return 1;
3719
3720 context_type = get_base_type (context_type);
3721
3722 if (TYPE_CODE (return_type) == TYPE_CODE_ENUM)
3723 return context_type == NULL || return_type == context_type;
3724 else if (context_type == NULL)
3725 return TYPE_CODE (return_type) != TYPE_CODE_VOID;
3726 else
3727 return TYPE_CODE (return_type) == TYPE_CODE (context_type);
3728 }
3729
3730
3731 /* Returns the index in SYMS[0..NSYMS-1] that contains the symbol for the
3732 function (if any) that matches the types of the NARGS arguments in
3733 ARGS. If CONTEXT_TYPE is non-null and there is at least one match
3734 that returns that type, then eliminate matches that don't. If
3735 CONTEXT_TYPE is void and there is at least one match that does not
3736 return void, eliminate all matches that do.
3737
3738 Asks the user if there is more than one match remaining. Returns -1
3739 if there is no such symbol or none is selected. NAME is used
3740 solely for messages. May re-arrange and modify SYMS in
3741 the process; the index returned is for the modified vector. */
3742
3743 static int
3744 ada_resolve_function (struct block_symbol syms[],
3745 int nsyms, struct value **args, int nargs,
3746 const char *name, struct type *context_type)
3747 {
3748 int fallback;
3749 int k;
3750 int m; /* Number of hits */
3751
3752 m = 0;
3753 /* In the first pass of the loop, we only accept functions matching
3754 context_type. If none are found, we add a second pass of the loop
3755 where every function is accepted. */
3756 for (fallback = 0; m == 0 && fallback < 2; fallback++)
3757 {
3758 for (k = 0; k < nsyms; k += 1)
3759 {
3760 struct type *type = ada_check_typedef (SYMBOL_TYPE (syms[k].symbol));
3761
3762 if (ada_args_match (syms[k].symbol, args, nargs)
3763 && (fallback || return_match (type, context_type)))
3764 {
3765 syms[m] = syms[k];
3766 m += 1;
3767 }
3768 }
3769 }
3770
3771 /* If we got multiple matches, ask the user which one to use. Don't do this
3772 interactive thing during completion, though, as the purpose of the
3773 completion is providing a list of all possible matches. Prompting the
3774 user to filter it down would be completely unexpected in this case. */
3775 if (m == 0)
3776 return -1;
3777 else if (m > 1 && !parse_completion)
3778 {
3779 printf_filtered (_("Multiple matches for %s\n"), name);
3780 user_select_syms (syms, m, 1);
3781 return 0;
3782 }
3783 return 0;
3784 }
3785
3786 /* Returns true (non-zero) iff decoded name N0 should appear before N1
3787 in a listing of choices during disambiguation (see sort_choices, below).
3788 The idea is that overloadings of a subprogram name from the
3789 same package should sort in their source order. We settle for ordering
3790 such symbols by their trailing number (__N or $N). */
3791
3792 static int
3793 encoded_ordered_before (const char *N0, const char *N1)
3794 {
3795 if (N1 == NULL)
3796 return 0;
3797 else if (N0 == NULL)
3798 return 1;
3799 else
3800 {
3801 int k0, k1;
3802
3803 for (k0 = strlen (N0) - 1; k0 > 0 && isdigit (N0[k0]); k0 -= 1)
3804 ;
3805 for (k1 = strlen (N1) - 1; k1 > 0 && isdigit (N1[k1]); k1 -= 1)
3806 ;
3807 if ((N0[k0] == '_' || N0[k0] == '$') && N0[k0 + 1] != '\000'
3808 && (N1[k1] == '_' || N1[k1] == '$') && N1[k1 + 1] != '\000')
3809 {
3810 int n0, n1;
3811
3812 n0 = k0;
3813 while (N0[n0] == '_' && n0 > 0 && N0[n0 - 1] == '_')
3814 n0 -= 1;
3815 n1 = k1;
3816 while (N1[n1] == '_' && n1 > 0 && N1[n1 - 1] == '_')
3817 n1 -= 1;
3818 if (n0 == n1 && strncmp (N0, N1, n0) == 0)
3819 return (atoi (N0 + k0 + 1) < atoi (N1 + k1 + 1));
3820 }
3821 return (strcmp (N0, N1) < 0);
3822 }
3823 }
3824
3825 /* Sort SYMS[0..NSYMS-1] to put the choices in a canonical order by the
3826 encoded names. */
3827
3828 static void
3829 sort_choices (struct block_symbol syms[], int nsyms)
3830 {
3831 int i;
3832
3833 for (i = 1; i < nsyms; i += 1)
3834 {
3835 struct block_symbol sym = syms[i];
3836 int j;
3837
3838 for (j = i - 1; j >= 0; j -= 1)
3839 {
3840 if (encoded_ordered_before (SYMBOL_LINKAGE_NAME (syms[j].symbol),
3841 SYMBOL_LINKAGE_NAME (sym.symbol)))
3842 break;
3843 syms[j + 1] = syms[j];
3844 }
3845 syms[j + 1] = sym;
3846 }
3847 }
3848
3849 /* Whether GDB should display formals and return types for functions in the
3850 overloads selection menu. */
3851 static int print_signatures = 1;
3852
3853 /* Print the signature for SYM on STREAM according to the FLAGS options. For
3854 all but functions, the signature is just the name of the symbol. For
3855 functions, this is the name of the function, the list of types for formals
3856 and the return type (if any). */
3857
3858 static void
3859 ada_print_symbol_signature (struct ui_file *stream, struct symbol *sym,
3860 const struct type_print_options *flags)
3861 {
3862 struct type *type = SYMBOL_TYPE (sym);
3863
3864 fprintf_filtered (stream, "%s", SYMBOL_PRINT_NAME (sym));
3865 if (!print_signatures
3866 || type == NULL
3867 || TYPE_CODE (type) != TYPE_CODE_FUNC)
3868 return;
3869
3870 if (TYPE_NFIELDS (type) > 0)
3871 {
3872 int i;
3873
3874 fprintf_filtered (stream, " (");
3875 for (i = 0; i < TYPE_NFIELDS (type); ++i)
3876 {
3877 if (i > 0)
3878 fprintf_filtered (stream, "; ");
3879 ada_print_type (TYPE_FIELD_TYPE (type, i), NULL, stream, -1, 0,
3880 flags);
3881 }
3882 fprintf_filtered (stream, ")");
3883 }
3884 if (TYPE_TARGET_TYPE (type) != NULL
3885 && TYPE_CODE (TYPE_TARGET_TYPE (type)) != TYPE_CODE_VOID)
3886 {
3887 fprintf_filtered (stream, " return ");
3888 ada_print_type (TYPE_TARGET_TYPE (type), NULL, stream, -1, 0, flags);
3889 }
3890 }
3891
3892 /* Given a list of NSYMS symbols in SYMS, select up to MAX_RESULTS>0
3893 by asking the user (if necessary), returning the number selected,
3894 and setting the first elements of SYMS items. Error if no symbols
3895 selected. */
3896
3897 /* NOTE: Adapted from decode_line_2 in symtab.c, with which it ought
3898 to be re-integrated one of these days. */
3899
3900 int
3901 user_select_syms (struct block_symbol *syms, int nsyms, int max_results)
3902 {
3903 int i;
3904 int *chosen = XALLOCAVEC (int , nsyms);
3905 int n_chosen;
3906 int first_choice = (max_results == 1) ? 1 : 2;
3907 const char *select_mode = multiple_symbols_select_mode ();
3908
3909 if (max_results < 1)
3910 error (_("Request to select 0 symbols!"));
3911 if (nsyms <= 1)
3912 return nsyms;
3913
3914 if (select_mode == multiple_symbols_cancel)
3915 error (_("\
3916 canceled because the command is ambiguous\n\
3917 See set/show multiple-symbol."));
3918
3919 /* If select_mode is "all", then return all possible symbols.
3920 Only do that if more than one symbol can be selected, of course.
3921 Otherwise, display the menu as usual. */
3922 if (select_mode == multiple_symbols_all && max_results > 1)
3923 return nsyms;
3924
3925 printf_unfiltered (_("[0] cancel\n"));
3926 if (max_results > 1)
3927 printf_unfiltered (_("[1] all\n"));
3928
3929 sort_choices (syms, nsyms);
3930
3931 for (i = 0; i < nsyms; i += 1)
3932 {
3933 if (syms[i].symbol == NULL)
3934 continue;
3935
3936 if (SYMBOL_CLASS (syms[i].symbol) == LOC_BLOCK)
3937 {
3938 struct symtab_and_line sal =
3939 find_function_start_sal (syms[i].symbol, 1);
3940
3941 printf_unfiltered ("[%d] ", i + first_choice);
3942 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3943 &type_print_raw_options);
3944 if (sal.symtab == NULL)
3945 printf_unfiltered (_(" at <no source file available>:%d\n"),
3946 sal.line);
3947 else
3948 printf_unfiltered (_(" at %s:%d\n"),
3949 symtab_to_filename_for_display (sal.symtab),
3950 sal.line);
3951 continue;
3952 }
3953 else
3954 {
3955 int is_enumeral =
3956 (SYMBOL_CLASS (syms[i].symbol) == LOC_CONST
3957 && SYMBOL_TYPE (syms[i].symbol) != NULL
3958 && TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) == TYPE_CODE_ENUM);
3959 struct symtab *symtab = NULL;
3960
3961 if (SYMBOL_OBJFILE_OWNED (syms[i].symbol))
3962 symtab = symbol_symtab (syms[i].symbol);
3963
3964 if (SYMBOL_LINE (syms[i].symbol) != 0 && symtab != NULL)
3965 {
3966 printf_unfiltered ("[%d] ", i + first_choice);
3967 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3968 &type_print_raw_options);
3969 printf_unfiltered (_(" at %s:%d\n"),
3970 symtab_to_filename_for_display (symtab),
3971 SYMBOL_LINE (syms[i].symbol));
3972 }
3973 else if (is_enumeral
3974 && TYPE_NAME (SYMBOL_TYPE (syms[i].symbol)) != NULL)
3975 {
3976 printf_unfiltered (("[%d] "), i + first_choice);
3977 ada_print_type (SYMBOL_TYPE (syms[i].symbol), NULL,
3978 gdb_stdout, -1, 0, &type_print_raw_options);
3979 printf_unfiltered (_("'(%s) (enumeral)\n"),
3980 SYMBOL_PRINT_NAME (syms[i].symbol));
3981 }
3982 else
3983 {
3984 printf_unfiltered ("[%d] ", i + first_choice);
3985 ada_print_symbol_signature (gdb_stdout, syms[i].symbol,
3986 &type_print_raw_options);
3987
3988 if (symtab != NULL)
3989 printf_unfiltered (is_enumeral
3990 ? _(" in %s (enumeral)\n")
3991 : _(" at %s:?\n"),
3992 symtab_to_filename_for_display (symtab));
3993 else
3994 printf_unfiltered (is_enumeral
3995 ? _(" (enumeral)\n")
3996 : _(" at ?\n"));
3997 }
3998 }
3999 }
4000
4001 n_chosen = get_selections (chosen, nsyms, max_results, max_results > 1,
4002 "overload-choice");
4003
4004 for (i = 0; i < n_chosen; i += 1)
4005 syms[i] = syms[chosen[i]];
4006
4007 return n_chosen;
4008 }
4009
4010 /* Read and validate a set of numeric choices from the user in the
4011 range 0 .. N_CHOICES-1. Place the results in increasing
4012 order in CHOICES[0 .. N-1], and return N.
4013
4014 The user types choices as a sequence of numbers on one line
4015 separated by blanks, encoding them as follows:
4016
4017 + A choice of 0 means to cancel the selection, throwing an error.
4018 + If IS_ALL_CHOICE, a choice of 1 selects the entire set 0 .. N_CHOICES-1.
4019 + The user chooses k by typing k+IS_ALL_CHOICE+1.
4020
4021 The user is not allowed to choose more than MAX_RESULTS values.
4022
4023 ANNOTATION_SUFFIX, if present, is used to annotate the input
4024 prompts (for use with the -f switch). */
4025
4026 int
4027 get_selections (int *choices, int n_choices, int max_results,
4028 int is_all_choice, const char *annotation_suffix)
4029 {
4030 char *args;
4031 const char *prompt;
4032 int n_chosen;
4033 int first_choice = is_all_choice ? 2 : 1;
4034
4035 prompt = getenv ("PS2");
4036 if (prompt == NULL)
4037 prompt = "> ";
4038
4039 args = command_line_input (prompt, annotation_suffix);
4040
4041 if (args == NULL)
4042 error_no_arg (_("one or more choice numbers"));
4043
4044 n_chosen = 0;
4045
4046 /* Set choices[0 .. n_chosen-1] to the users' choices in ascending
4047 order, as given in args. Choices are validated. */
4048 while (1)
4049 {
4050 char *args2;
4051 int choice, j;
4052
4053 args = skip_spaces (args);
4054 if (*args == '\0' && n_chosen == 0)
4055 error_no_arg (_("one or more choice numbers"));
4056 else if (*args == '\0')
4057 break;
4058
4059 choice = strtol (args, &args2, 10);
4060 if (args == args2 || choice < 0
4061 || choice > n_choices + first_choice - 1)
4062 error (_("Argument must be choice number"));
4063 args = args2;
4064
4065 if (choice == 0)
4066 error (_("cancelled"));
4067
4068 if (choice < first_choice)
4069 {
4070 n_chosen = n_choices;
4071 for (j = 0; j < n_choices; j += 1)
4072 choices[j] = j;
4073 break;
4074 }
4075 choice -= first_choice;
4076
4077 for (j = n_chosen - 1; j >= 0 && choice < choices[j]; j -= 1)
4078 {
4079 }
4080
4081 if (j < 0 || choice != choices[j])
4082 {
4083 int k;
4084
4085 for (k = n_chosen - 1; k > j; k -= 1)
4086 choices[k + 1] = choices[k];
4087 choices[j + 1] = choice;
4088 n_chosen += 1;
4089 }
4090 }
4091
4092 if (n_chosen > max_results)
4093 error (_("Select no more than %d of the above"), max_results);
4094
4095 return n_chosen;
4096 }
4097
4098 /* Replace the operator of length OPLEN at position PC in *EXPP with a call
4099 on the function identified by SYM and BLOCK, and taking NARGS
4100 arguments. Update *EXPP as needed to hold more space. */
4101
4102 static void
4103 replace_operator_with_call (expression_up *expp, int pc, int nargs,
4104 int oplen, struct symbol *sym,
4105 const struct block *block)
4106 {
4107 /* A new expression, with 6 more elements (3 for funcall, 4 for function
4108 symbol, -oplen for operator being replaced). */
4109 struct expression *newexp = (struct expression *)
4110 xzalloc (sizeof (struct expression)
4111 + EXP_ELEM_TO_BYTES ((*expp)->nelts + 7 - oplen));
4112 struct expression *exp = expp->get ();
4113
4114 newexp->nelts = exp->nelts + 7 - oplen;
4115 newexp->language_defn = exp->language_defn;
4116 newexp->gdbarch = exp->gdbarch;
4117 memcpy (newexp->elts, exp->elts, EXP_ELEM_TO_BYTES (pc));
4118 memcpy (newexp->elts + pc + 7, exp->elts + pc + oplen,
4119 EXP_ELEM_TO_BYTES (exp->nelts - pc - oplen));
4120
4121 newexp->elts[pc].opcode = newexp->elts[pc + 2].opcode = OP_FUNCALL;
4122 newexp->elts[pc + 1].longconst = (LONGEST) nargs;
4123
4124 newexp->elts[pc + 3].opcode = newexp->elts[pc + 6].opcode = OP_VAR_VALUE;
4125 newexp->elts[pc + 4].block = block;
4126 newexp->elts[pc + 5].symbol = sym;
4127
4128 expp->reset (newexp);
4129 }
4130
4131 /* Type-class predicates */
4132
4133 /* True iff TYPE is numeric (i.e., an INT, RANGE (of numeric type),
4134 or FLOAT). */
4135
4136 static int
4137 numeric_type_p (struct type *type)
4138 {
4139 if (type == NULL)
4140 return 0;
4141 else
4142 {
4143 switch (TYPE_CODE (type))
4144 {
4145 case TYPE_CODE_INT:
4146 case TYPE_CODE_FLT:
4147 return 1;
4148 case TYPE_CODE_RANGE:
4149 return (type == TYPE_TARGET_TYPE (type)
4150 || numeric_type_p (TYPE_TARGET_TYPE (type)));
4151 default:
4152 return 0;
4153 }
4154 }
4155 }
4156
4157 /* True iff TYPE is integral (an INT or RANGE of INTs). */
4158
4159 static int
4160 integer_type_p (struct type *type)
4161 {
4162 if (type == NULL)
4163 return 0;
4164 else
4165 {
4166 switch (TYPE_CODE (type))
4167 {
4168 case TYPE_CODE_INT:
4169 return 1;
4170 case TYPE_CODE_RANGE:
4171 return (type == TYPE_TARGET_TYPE (type)
4172 || integer_type_p (TYPE_TARGET_TYPE (type)));
4173 default:
4174 return 0;
4175 }
4176 }
4177 }
4178
4179 /* True iff TYPE is scalar (INT, RANGE, FLOAT, ENUM). */
4180
4181 static int
4182 scalar_type_p (struct type *type)
4183 {
4184 if (type == NULL)
4185 return 0;
4186 else
4187 {
4188 switch (TYPE_CODE (type))
4189 {
4190 case TYPE_CODE_INT:
4191 case TYPE_CODE_RANGE:
4192 case TYPE_CODE_ENUM:
4193 case TYPE_CODE_FLT:
4194 return 1;
4195 default:
4196 return 0;
4197 }
4198 }
4199 }
4200
4201 /* True iff TYPE is discrete (INT, RANGE, ENUM). */
4202
4203 static int
4204 discrete_type_p (struct type *type)
4205 {
4206 if (type == NULL)
4207 return 0;
4208 else
4209 {
4210 switch (TYPE_CODE (type))
4211 {
4212 case TYPE_CODE_INT:
4213 case TYPE_CODE_RANGE:
4214 case TYPE_CODE_ENUM:
4215 case TYPE_CODE_BOOL:
4216 return 1;
4217 default:
4218 return 0;
4219 }
4220 }
4221 }
4222
4223 /* Returns non-zero if OP with operands in the vector ARGS could be
4224 a user-defined function. Errs on the side of pre-defined operators
4225 (i.e., result 0). */
4226
4227 static int
4228 possible_user_operator_p (enum exp_opcode op, struct value *args[])
4229 {
4230 struct type *type0 =
4231 (args[0] == NULL) ? NULL : ada_check_typedef (value_type (args[0]));
4232 struct type *type1 =
4233 (args[1] == NULL) ? NULL : ada_check_typedef (value_type (args[1]));
4234
4235 if (type0 == NULL)
4236 return 0;
4237
4238 switch (op)
4239 {
4240 default:
4241 return 0;
4242
4243 case BINOP_ADD:
4244 case BINOP_SUB:
4245 case BINOP_MUL:
4246 case BINOP_DIV:
4247 return (!(numeric_type_p (type0) && numeric_type_p (type1)));
4248
4249 case BINOP_REM:
4250 case BINOP_MOD:
4251 case BINOP_BITWISE_AND:
4252 case BINOP_BITWISE_IOR:
4253 case BINOP_BITWISE_XOR:
4254 return (!(integer_type_p (type0) && integer_type_p (type1)));
4255
4256 case BINOP_EQUAL:
4257 case BINOP_NOTEQUAL:
4258 case BINOP_LESS:
4259 case BINOP_GTR:
4260 case BINOP_LEQ:
4261 case BINOP_GEQ:
4262 return (!(scalar_type_p (type0) && scalar_type_p (type1)));
4263
4264 case BINOP_CONCAT:
4265 return !ada_is_array_type (type0) || !ada_is_array_type (type1);
4266
4267 case BINOP_EXP:
4268 return (!(numeric_type_p (type0) && integer_type_p (type1)));
4269
4270 case UNOP_NEG:
4271 case UNOP_PLUS:
4272 case UNOP_LOGICAL_NOT:
4273 case UNOP_ABS:
4274 return (!numeric_type_p (type0));
4275
4276 }
4277 }
4278 \f
4279 /* Renaming */
4280
4281 /* NOTES:
4282
4283 1. In the following, we assume that a renaming type's name may
4284 have an ___XD suffix. It would be nice if this went away at some
4285 point.
4286 2. We handle both the (old) purely type-based representation of
4287 renamings and the (new) variable-based encoding. At some point,
4288 it is devoutly to be hoped that the former goes away
4289 (FIXME: hilfinger-2007-07-09).
4290 3. Subprogram renamings are not implemented, although the XRS
4291 suffix is recognized (FIXME: hilfinger-2007-07-09). */
4292
4293 /* If SYM encodes a renaming,
4294
4295 <renaming> renames <renamed entity>,
4296
4297 sets *LEN to the length of the renamed entity's name,
4298 *RENAMED_ENTITY to that name (not null-terminated), and *RENAMING_EXPR to
4299 the string describing the subcomponent selected from the renamed
4300 entity. Returns ADA_NOT_RENAMING if SYM does not encode a renaming
4301 (in which case, the values of *RENAMED_ENTITY, *LEN, and *RENAMING_EXPR
4302 are undefined). Otherwise, returns a value indicating the category
4303 of entity renamed: an object (ADA_OBJECT_RENAMING), exception
4304 (ADA_EXCEPTION_RENAMING), package (ADA_PACKAGE_RENAMING), or
4305 subprogram (ADA_SUBPROGRAM_RENAMING). Does no allocation; the
4306 strings returned in *RENAMED_ENTITY and *RENAMING_EXPR should not be
4307 deallocated. The values of RENAMED_ENTITY, LEN, or RENAMING_EXPR
4308 may be NULL, in which case they are not assigned.
4309
4310 [Currently, however, GCC does not generate subprogram renamings.] */
4311
4312 enum ada_renaming_category
4313 ada_parse_renaming (struct symbol *sym,
4314 const char **renamed_entity, int *len,
4315 const char **renaming_expr)
4316 {
4317 enum ada_renaming_category kind;
4318 const char *info;
4319 const char *suffix;
4320
4321 if (sym == NULL)
4322 return ADA_NOT_RENAMING;
4323 switch (SYMBOL_CLASS (sym))
4324 {
4325 default:
4326 return ADA_NOT_RENAMING;
4327 case LOC_TYPEDEF:
4328 return parse_old_style_renaming (SYMBOL_TYPE (sym),
4329 renamed_entity, len, renaming_expr);
4330 case LOC_LOCAL:
4331 case LOC_STATIC:
4332 case LOC_COMPUTED:
4333 case LOC_OPTIMIZED_OUT:
4334 info = strstr (SYMBOL_LINKAGE_NAME (sym), "___XR");
4335 if (info == NULL)
4336 return ADA_NOT_RENAMING;
4337 switch (info[5])
4338 {
4339 case '_':
4340 kind = ADA_OBJECT_RENAMING;
4341 info += 6;
4342 break;
4343 case 'E':
4344 kind = ADA_EXCEPTION_RENAMING;
4345 info += 7;
4346 break;
4347 case 'P':
4348 kind = ADA_PACKAGE_RENAMING;
4349 info += 7;
4350 break;
4351 case 'S':
4352 kind = ADA_SUBPROGRAM_RENAMING;
4353 info += 7;
4354 break;
4355 default:
4356 return ADA_NOT_RENAMING;
4357 }
4358 }
4359
4360 if (renamed_entity != NULL)
4361 *renamed_entity = info;
4362 suffix = strstr (info, "___XE");
4363 if (suffix == NULL || suffix == info)
4364 return ADA_NOT_RENAMING;
4365 if (len != NULL)
4366 *len = strlen (info) - strlen (suffix);
4367 suffix += 5;
4368 if (renaming_expr != NULL)
4369 *renaming_expr = suffix;
4370 return kind;
4371 }
4372
4373 /* Assuming TYPE encodes a renaming according to the old encoding in
4374 exp_dbug.ads, returns details of that renaming in *RENAMED_ENTITY,
4375 *LEN, and *RENAMING_EXPR, as for ada_parse_renaming, above. Returns
4376 ADA_NOT_RENAMING otherwise. */
4377 static enum ada_renaming_category
4378 parse_old_style_renaming (struct type *type,
4379 const char **renamed_entity, int *len,
4380 const char **renaming_expr)
4381 {
4382 enum ada_renaming_category kind;
4383 const char *name;
4384 const char *info;
4385 const char *suffix;
4386
4387 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
4388 || TYPE_NFIELDS (type) != 1)
4389 return ADA_NOT_RENAMING;
4390
4391 name = TYPE_NAME (type);
4392 if (name == NULL)
4393 return ADA_NOT_RENAMING;
4394
4395 name = strstr (name, "___XR");
4396 if (name == NULL)
4397 return ADA_NOT_RENAMING;
4398 switch (name[5])
4399 {
4400 case '\0':
4401 case '_':
4402 kind = ADA_OBJECT_RENAMING;
4403 break;
4404 case 'E':
4405 kind = ADA_EXCEPTION_RENAMING;
4406 break;
4407 case 'P':
4408 kind = ADA_PACKAGE_RENAMING;
4409 break;
4410 case 'S':
4411 kind = ADA_SUBPROGRAM_RENAMING;
4412 break;
4413 default:
4414 return ADA_NOT_RENAMING;
4415 }
4416
4417 info = TYPE_FIELD_NAME (type, 0);
4418 if (info == NULL)
4419 return ADA_NOT_RENAMING;
4420 if (renamed_entity != NULL)
4421 *renamed_entity = info;
4422 suffix = strstr (info, "___XE");
4423 if (renaming_expr != NULL)
4424 *renaming_expr = suffix + 5;
4425 if (suffix == NULL || suffix == info)
4426 return ADA_NOT_RENAMING;
4427 if (len != NULL)
4428 *len = suffix - info;
4429 return kind;
4430 }
4431
4432 /* Compute the value of the given RENAMING_SYM, which is expected to
4433 be a symbol encoding a renaming expression. BLOCK is the block
4434 used to evaluate the renaming. */
4435
4436 static struct value *
4437 ada_read_renaming_var_value (struct symbol *renaming_sym,
4438 const struct block *block)
4439 {
4440 const char *sym_name;
4441
4442 sym_name = SYMBOL_LINKAGE_NAME (renaming_sym);
4443 expression_up expr = parse_exp_1 (&sym_name, 0, block, 0);
4444 return evaluate_expression (expr.get ());
4445 }
4446 \f
4447
4448 /* Evaluation: Function Calls */
4449
4450 /* Return an lvalue containing the value VAL. This is the identity on
4451 lvalues, and otherwise has the side-effect of allocating memory
4452 in the inferior where a copy of the value contents is copied. */
4453
4454 static struct value *
4455 ensure_lval (struct value *val)
4456 {
4457 if (VALUE_LVAL (val) == not_lval
4458 || VALUE_LVAL (val) == lval_internalvar)
4459 {
4460 int len = TYPE_LENGTH (ada_check_typedef (value_type (val)));
4461 const CORE_ADDR addr =
4462 value_as_long (value_allocate_space_in_inferior (len));
4463
4464 VALUE_LVAL (val) = lval_memory;
4465 set_value_address (val, addr);
4466 write_memory (addr, value_contents (val), len);
4467 }
4468
4469 return val;
4470 }
4471
4472 /* Return the value ACTUAL, converted to be an appropriate value for a
4473 formal of type FORMAL_TYPE. Use *SP as a stack pointer for
4474 allocating any necessary descriptors (fat pointers), or copies of
4475 values not residing in memory, updating it as needed. */
4476
4477 struct value *
4478 ada_convert_actual (struct value *actual, struct type *formal_type0)
4479 {
4480 struct type *actual_type = ada_check_typedef (value_type (actual));
4481 struct type *formal_type = ada_check_typedef (formal_type0);
4482 struct type *formal_target =
4483 TYPE_CODE (formal_type) == TYPE_CODE_PTR
4484 ? ada_check_typedef (TYPE_TARGET_TYPE (formal_type)) : formal_type;
4485 struct type *actual_target =
4486 TYPE_CODE (actual_type) == TYPE_CODE_PTR
4487 ? ada_check_typedef (TYPE_TARGET_TYPE (actual_type)) : actual_type;
4488
4489 if (ada_is_array_descriptor_type (formal_target)
4490 && TYPE_CODE (actual_target) == TYPE_CODE_ARRAY)
4491 return make_array_descriptor (formal_type, actual);
4492 else if (TYPE_CODE (formal_type) == TYPE_CODE_PTR
4493 || TYPE_CODE (formal_type) == TYPE_CODE_REF)
4494 {
4495 struct value *result;
4496
4497 if (TYPE_CODE (formal_target) == TYPE_CODE_ARRAY
4498 && ada_is_array_descriptor_type (actual_target))
4499 result = desc_data (actual);
4500 else if (TYPE_CODE (formal_type) != TYPE_CODE_PTR)
4501 {
4502 if (VALUE_LVAL (actual) != lval_memory)
4503 {
4504 struct value *val;
4505
4506 actual_type = ada_check_typedef (value_type (actual));
4507 val = allocate_value (actual_type);
4508 memcpy ((char *) value_contents_raw (val),
4509 (char *) value_contents (actual),
4510 TYPE_LENGTH (actual_type));
4511 actual = ensure_lval (val);
4512 }
4513 result = value_addr (actual);
4514 }
4515 else
4516 return actual;
4517 return value_cast_pointers (formal_type, result, 0);
4518 }
4519 else if (TYPE_CODE (actual_type) == TYPE_CODE_PTR)
4520 return ada_value_ind (actual);
4521 else if (ada_is_aligner_type (formal_type))
4522 {
4523 /* We need to turn this parameter into an aligner type
4524 as well. */
4525 struct value *aligner = allocate_value (formal_type);
4526 struct value *component = ada_value_struct_elt (aligner, "F", 0);
4527
4528 value_assign_to_component (aligner, component, actual);
4529 return aligner;
4530 }
4531
4532 return actual;
4533 }
4534
4535 /* Convert VALUE (which must be an address) to a CORE_ADDR that is a pointer of
4536 type TYPE. This is usually an inefficient no-op except on some targets
4537 (such as AVR) where the representation of a pointer and an address
4538 differs. */
4539
4540 static CORE_ADDR
4541 value_pointer (struct value *value, struct type *type)
4542 {
4543 struct gdbarch *gdbarch = get_type_arch (type);
4544 unsigned len = TYPE_LENGTH (type);
4545 gdb_byte *buf = (gdb_byte *) alloca (len);
4546 CORE_ADDR addr;
4547
4548 addr = value_address (value);
4549 gdbarch_address_to_pointer (gdbarch, type, buf, addr);
4550 addr = extract_unsigned_integer (buf, len, gdbarch_byte_order (gdbarch));
4551 return addr;
4552 }
4553
4554
4555 /* Push a descriptor of type TYPE for array value ARR on the stack at
4556 *SP, updating *SP to reflect the new descriptor. Return either
4557 an lvalue representing the new descriptor, or (if TYPE is a pointer-
4558 to-descriptor type rather than a descriptor type), a struct value *
4559 representing a pointer to this descriptor. */
4560
4561 static struct value *
4562 make_array_descriptor (struct type *type, struct value *arr)
4563 {
4564 struct type *bounds_type = desc_bounds_type (type);
4565 struct type *desc_type = desc_base_type (type);
4566 struct value *descriptor = allocate_value (desc_type);
4567 struct value *bounds = allocate_value (bounds_type);
4568 int i;
4569
4570 for (i = ada_array_arity (ada_check_typedef (value_type (arr)));
4571 i > 0; i -= 1)
4572 {
4573 modify_field (value_type (bounds), value_contents_writeable (bounds),
4574 ada_array_bound (arr, i, 0),
4575 desc_bound_bitpos (bounds_type, i, 0),
4576 desc_bound_bitsize (bounds_type, i, 0));
4577 modify_field (value_type (bounds), value_contents_writeable (bounds),
4578 ada_array_bound (arr, i, 1),
4579 desc_bound_bitpos (bounds_type, i, 1),
4580 desc_bound_bitsize (bounds_type, i, 1));
4581 }
4582
4583 bounds = ensure_lval (bounds);
4584
4585 modify_field (value_type (descriptor),
4586 value_contents_writeable (descriptor),
4587 value_pointer (ensure_lval (arr),
4588 TYPE_FIELD_TYPE (desc_type, 0)),
4589 fat_pntr_data_bitpos (desc_type),
4590 fat_pntr_data_bitsize (desc_type));
4591
4592 modify_field (value_type (descriptor),
4593 value_contents_writeable (descriptor),
4594 value_pointer (bounds,
4595 TYPE_FIELD_TYPE (desc_type, 1)),
4596 fat_pntr_bounds_bitpos (desc_type),
4597 fat_pntr_bounds_bitsize (desc_type));
4598
4599 descriptor = ensure_lval (descriptor);
4600
4601 if (TYPE_CODE (type) == TYPE_CODE_PTR)
4602 return value_addr (descriptor);
4603 else
4604 return descriptor;
4605 }
4606 \f
4607 /* Symbol Cache Module */
4608
4609 /* Performance measurements made as of 2010-01-15 indicate that
4610 this cache does bring some noticeable improvements. Depending
4611 on the type of entity being printed, the cache can make it as much
4612 as an order of magnitude faster than without it.
4613
4614 The descriptive type DWARF extension has significantly reduced
4615 the need for this cache, at least when DWARF is being used. However,
4616 even in this case, some expensive name-based symbol searches are still
4617 sometimes necessary - to find an XVZ variable, mostly. */
4618
4619 /* Initialize the contents of SYM_CACHE. */
4620
4621 static void
4622 ada_init_symbol_cache (struct ada_symbol_cache *sym_cache)
4623 {
4624 obstack_init (&sym_cache->cache_space);
4625 memset (sym_cache->root, '\000', sizeof (sym_cache->root));
4626 }
4627
4628 /* Free the memory used by SYM_CACHE. */
4629
4630 static void
4631 ada_free_symbol_cache (struct ada_symbol_cache *sym_cache)
4632 {
4633 obstack_free (&sym_cache->cache_space, NULL);
4634 xfree (sym_cache);
4635 }
4636
4637 /* Return the symbol cache associated to the given program space PSPACE.
4638 If not allocated for this PSPACE yet, allocate and initialize one. */
4639
4640 static struct ada_symbol_cache *
4641 ada_get_symbol_cache (struct program_space *pspace)
4642 {
4643 struct ada_pspace_data *pspace_data = get_ada_pspace_data (pspace);
4644
4645 if (pspace_data->sym_cache == NULL)
4646 {
4647 pspace_data->sym_cache = XCNEW (struct ada_symbol_cache);
4648 ada_init_symbol_cache (pspace_data->sym_cache);
4649 }
4650
4651 return pspace_data->sym_cache;
4652 }
4653
4654 /* Clear all entries from the symbol cache. */
4655
4656 static void
4657 ada_clear_symbol_cache (void)
4658 {
4659 struct ada_symbol_cache *sym_cache
4660 = ada_get_symbol_cache (current_program_space);
4661
4662 obstack_free (&sym_cache->cache_space, NULL);
4663 ada_init_symbol_cache (sym_cache);
4664 }
4665
4666 /* Search our cache for an entry matching NAME and DOMAIN.
4667 Return it if found, or NULL otherwise. */
4668
4669 static struct cache_entry **
4670 find_entry (const char *name, domain_enum domain)
4671 {
4672 struct ada_symbol_cache *sym_cache
4673 = ada_get_symbol_cache (current_program_space);
4674 int h = msymbol_hash (name) % HASH_SIZE;
4675 struct cache_entry **e;
4676
4677 for (e = &sym_cache->root[h]; *e != NULL; e = &(*e)->next)
4678 {
4679 if (domain == (*e)->domain && strcmp (name, (*e)->name) == 0)
4680 return e;
4681 }
4682 return NULL;
4683 }
4684
4685 /* Search the symbol cache for an entry matching NAME and DOMAIN.
4686 Return 1 if found, 0 otherwise.
4687
4688 If an entry was found and SYM is not NULL, set *SYM to the entry's
4689 SYM. Same principle for BLOCK if not NULL. */
4690
4691 static int
4692 lookup_cached_symbol (const char *name, domain_enum domain,
4693 struct symbol **sym, const struct block **block)
4694 {
4695 struct cache_entry **e = find_entry (name, domain);
4696
4697 if (e == NULL)
4698 return 0;
4699 if (sym != NULL)
4700 *sym = (*e)->sym;
4701 if (block != NULL)
4702 *block = (*e)->block;
4703 return 1;
4704 }
4705
4706 /* Assuming that (SYM, BLOCK) is the result of the lookup of NAME
4707 in domain DOMAIN, save this result in our symbol cache. */
4708
4709 static void
4710 cache_symbol (const char *name, domain_enum domain, struct symbol *sym,
4711 const struct block *block)
4712 {
4713 struct ada_symbol_cache *sym_cache
4714 = ada_get_symbol_cache (current_program_space);
4715 int h;
4716 char *copy;
4717 struct cache_entry *e;
4718
4719 /* Symbols for builtin types don't have a block.
4720 For now don't cache such symbols. */
4721 if (sym != NULL && !SYMBOL_OBJFILE_OWNED (sym))
4722 return;
4723
4724 /* If the symbol is a local symbol, then do not cache it, as a search
4725 for that symbol depends on the context. To determine whether
4726 the symbol is local or not, we check the block where we found it
4727 against the global and static blocks of its associated symtab. */
4728 if (sym
4729 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4730 GLOBAL_BLOCK) != block
4731 && BLOCKVECTOR_BLOCK (SYMTAB_BLOCKVECTOR (symbol_symtab (sym)),
4732 STATIC_BLOCK) != block)
4733 return;
4734
4735 h = msymbol_hash (name) % HASH_SIZE;
4736 e = XOBNEW (&sym_cache->cache_space, cache_entry);
4737 e->next = sym_cache->root[h];
4738 sym_cache->root[h] = e;
4739 e->name = copy
4740 = (char *) obstack_alloc (&sym_cache->cache_space, strlen (name) + 1);
4741 strcpy (copy, name);
4742 e->sym = sym;
4743 e->domain = domain;
4744 e->block = block;
4745 }
4746 \f
4747 /* Symbol Lookup */
4748
4749 /* Return the symbol name match type that should be used used when
4750 searching for all symbols matching LOOKUP_NAME.
4751
4752 LOOKUP_NAME is expected to be a symbol name after transformation
4753 for Ada lookups. */
4754
4755 static symbol_name_match_type
4756 name_match_type_from_name (const char *lookup_name)
4757 {
4758 return (strstr (lookup_name, "__") == NULL
4759 ? symbol_name_match_type::WILD
4760 : symbol_name_match_type::FULL);
4761 }
4762
4763 /* Return the result of a standard (literal, C-like) lookup of NAME in
4764 given DOMAIN, visible from lexical block BLOCK. */
4765
4766 static struct symbol *
4767 standard_lookup (const char *name, const struct block *block,
4768 domain_enum domain)
4769 {
4770 /* Initialize it just to avoid a GCC false warning. */
4771 struct block_symbol sym = {NULL, NULL};
4772
4773 if (lookup_cached_symbol (name, domain, &sym.symbol, NULL))
4774 return sym.symbol;
4775 sym = lookup_symbol_in_language (name, block, domain, language_c, 0);
4776 cache_symbol (name, domain, sym.symbol, sym.block);
4777 return sym.symbol;
4778 }
4779
4780
4781 /* Non-zero iff there is at least one non-function/non-enumeral symbol
4782 in the symbol fields of SYMS[0..N-1]. We treat enumerals as functions,
4783 since they contend in overloading in the same way. */
4784 static int
4785 is_nonfunction (struct block_symbol syms[], int n)
4786 {
4787 int i;
4788
4789 for (i = 0; i < n; i += 1)
4790 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_FUNC
4791 && (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM
4792 || SYMBOL_CLASS (syms[i].symbol) != LOC_CONST))
4793 return 1;
4794
4795 return 0;
4796 }
4797
4798 /* If true (non-zero), then TYPE0 and TYPE1 represent equivalent
4799 struct types. Otherwise, they may not. */
4800
4801 static int
4802 equiv_types (struct type *type0, struct type *type1)
4803 {
4804 if (type0 == type1)
4805 return 1;
4806 if (type0 == NULL || type1 == NULL
4807 || TYPE_CODE (type0) != TYPE_CODE (type1))
4808 return 0;
4809 if ((TYPE_CODE (type0) == TYPE_CODE_STRUCT
4810 || TYPE_CODE (type0) == TYPE_CODE_ENUM)
4811 && ada_type_name (type0) != NULL && ada_type_name (type1) != NULL
4812 && strcmp (ada_type_name (type0), ada_type_name (type1)) == 0)
4813 return 1;
4814
4815 return 0;
4816 }
4817
4818 /* True iff SYM0 represents the same entity as SYM1, or one that is
4819 no more defined than that of SYM1. */
4820
4821 static int
4822 lesseq_defined_than (struct symbol *sym0, struct symbol *sym1)
4823 {
4824 if (sym0 == sym1)
4825 return 1;
4826 if (SYMBOL_DOMAIN (sym0) != SYMBOL_DOMAIN (sym1)
4827 || SYMBOL_CLASS (sym0) != SYMBOL_CLASS (sym1))
4828 return 0;
4829
4830 switch (SYMBOL_CLASS (sym0))
4831 {
4832 case LOC_UNDEF:
4833 return 1;
4834 case LOC_TYPEDEF:
4835 {
4836 struct type *type0 = SYMBOL_TYPE (sym0);
4837 struct type *type1 = SYMBOL_TYPE (sym1);
4838 const char *name0 = SYMBOL_LINKAGE_NAME (sym0);
4839 const char *name1 = SYMBOL_LINKAGE_NAME (sym1);
4840 int len0 = strlen (name0);
4841
4842 return
4843 TYPE_CODE (type0) == TYPE_CODE (type1)
4844 && (equiv_types (type0, type1)
4845 || (len0 < strlen (name1) && strncmp (name0, name1, len0) == 0
4846 && startswith (name1 + len0, "___XV")));
4847 }
4848 case LOC_CONST:
4849 return SYMBOL_VALUE (sym0) == SYMBOL_VALUE (sym1)
4850 && equiv_types (SYMBOL_TYPE (sym0), SYMBOL_TYPE (sym1));
4851 default:
4852 return 0;
4853 }
4854 }
4855
4856 /* Append (SYM,BLOCK,SYMTAB) to the end of the array of struct block_symbol
4857 records in OBSTACKP. Do nothing if SYM is a duplicate. */
4858
4859 static void
4860 add_defn_to_vec (struct obstack *obstackp,
4861 struct symbol *sym,
4862 const struct block *block)
4863 {
4864 int i;
4865 struct block_symbol *prevDefns = defns_collected (obstackp, 0);
4866
4867 /* Do not try to complete stub types, as the debugger is probably
4868 already scanning all symbols matching a certain name at the
4869 time when this function is called. Trying to replace the stub
4870 type by its associated full type will cause us to restart a scan
4871 which may lead to an infinite recursion. Instead, the client
4872 collecting the matching symbols will end up collecting several
4873 matches, with at least one of them complete. It can then filter
4874 out the stub ones if needed. */
4875
4876 for (i = num_defns_collected (obstackp) - 1; i >= 0; i -= 1)
4877 {
4878 if (lesseq_defined_than (sym, prevDefns[i].symbol))
4879 return;
4880 else if (lesseq_defined_than (prevDefns[i].symbol, sym))
4881 {
4882 prevDefns[i].symbol = sym;
4883 prevDefns[i].block = block;
4884 return;
4885 }
4886 }
4887
4888 {
4889 struct block_symbol info;
4890
4891 info.symbol = sym;
4892 info.block = block;
4893 obstack_grow (obstackp, &info, sizeof (struct block_symbol));
4894 }
4895 }
4896
4897 /* Number of block_symbol structures currently collected in current vector in
4898 OBSTACKP. */
4899
4900 static int
4901 num_defns_collected (struct obstack *obstackp)
4902 {
4903 return obstack_object_size (obstackp) / sizeof (struct block_symbol);
4904 }
4905
4906 /* Vector of block_symbol structures currently collected in current vector in
4907 OBSTACKP. If FINISH, close off the vector and return its final address. */
4908
4909 static struct block_symbol *
4910 defns_collected (struct obstack *obstackp, int finish)
4911 {
4912 if (finish)
4913 return (struct block_symbol *) obstack_finish (obstackp);
4914 else
4915 return (struct block_symbol *) obstack_base (obstackp);
4916 }
4917
4918 /* Return a bound minimal symbol matching NAME according to Ada
4919 decoding rules. Returns an invalid symbol if there is no such
4920 minimal symbol. Names prefixed with "standard__" are handled
4921 specially: "standard__" is first stripped off, and only static and
4922 global symbols are searched. */
4923
4924 struct bound_minimal_symbol
4925 ada_lookup_simple_minsym (const char *name)
4926 {
4927 struct bound_minimal_symbol result;
4928 struct objfile *objfile;
4929 struct minimal_symbol *msymbol;
4930
4931 memset (&result, 0, sizeof (result));
4932
4933 symbol_name_match_type match_type = name_match_type_from_name (name);
4934 lookup_name_info lookup_name (name, match_type);
4935
4936 symbol_name_matcher_ftype *match_name
4937 = ada_get_symbol_name_matcher (lookup_name);
4938
4939 ALL_MSYMBOLS (objfile, msymbol)
4940 {
4941 if (match_name (MSYMBOL_LINKAGE_NAME (msymbol), lookup_name, NULL)
4942 && MSYMBOL_TYPE (msymbol) != mst_solib_trampoline)
4943 {
4944 result.minsym = msymbol;
4945 result.objfile = objfile;
4946 break;
4947 }
4948 }
4949
4950 return result;
4951 }
4952
4953 /* For all subprograms that statically enclose the subprogram of the
4954 selected frame, add symbols matching identifier NAME in DOMAIN
4955 and their blocks to the list of data in OBSTACKP, as for
4956 ada_add_block_symbols (q.v.). If WILD_MATCH_P, treat as NAME
4957 with a wildcard prefix. */
4958
4959 static void
4960 add_symbols_from_enclosing_procs (struct obstack *obstackp,
4961 const lookup_name_info &lookup_name,
4962 domain_enum domain)
4963 {
4964 }
4965
4966 /* True if TYPE is definitely an artificial type supplied to a symbol
4967 for which no debugging information was given in the symbol file. */
4968
4969 static int
4970 is_nondebugging_type (struct type *type)
4971 {
4972 const char *name = ada_type_name (type);
4973
4974 return (name != NULL && strcmp (name, "<variable, no debug info>") == 0);
4975 }
4976
4977 /* Return nonzero if TYPE1 and TYPE2 are two enumeration types
4978 that are deemed "identical" for practical purposes.
4979
4980 This function assumes that TYPE1 and TYPE2 are both TYPE_CODE_ENUM
4981 types and that their number of enumerals is identical (in other
4982 words, TYPE_NFIELDS (type1) == TYPE_NFIELDS (type2)). */
4983
4984 static int
4985 ada_identical_enum_types_p (struct type *type1, struct type *type2)
4986 {
4987 int i;
4988
4989 /* The heuristic we use here is fairly conservative. We consider
4990 that 2 enumerate types are identical if they have the same
4991 number of enumerals and that all enumerals have the same
4992 underlying value and name. */
4993
4994 /* All enums in the type should have an identical underlying value. */
4995 for (i = 0; i < TYPE_NFIELDS (type1); i++)
4996 if (TYPE_FIELD_ENUMVAL (type1, i) != TYPE_FIELD_ENUMVAL (type2, i))
4997 return 0;
4998
4999 /* All enumerals should also have the same name (modulo any numerical
5000 suffix). */
5001 for (i = 0; i < TYPE_NFIELDS (type1); i++)
5002 {
5003 const char *name_1 = TYPE_FIELD_NAME (type1, i);
5004 const char *name_2 = TYPE_FIELD_NAME (type2, i);
5005 int len_1 = strlen (name_1);
5006 int len_2 = strlen (name_2);
5007
5008 ada_remove_trailing_digits (TYPE_FIELD_NAME (type1, i), &len_1);
5009 ada_remove_trailing_digits (TYPE_FIELD_NAME (type2, i), &len_2);
5010 if (len_1 != len_2
5011 || strncmp (TYPE_FIELD_NAME (type1, i),
5012 TYPE_FIELD_NAME (type2, i),
5013 len_1) != 0)
5014 return 0;
5015 }
5016
5017 return 1;
5018 }
5019
5020 /* Return nonzero if all the symbols in SYMS are all enumeral symbols
5021 that are deemed "identical" for practical purposes. Sometimes,
5022 enumerals are not strictly identical, but their types are so similar
5023 that they can be considered identical.
5024
5025 For instance, consider the following code:
5026
5027 type Color is (Black, Red, Green, Blue, White);
5028 type RGB_Color is new Color range Red .. Blue;
5029
5030 Type RGB_Color is a subrange of an implicit type which is a copy
5031 of type Color. If we call that implicit type RGB_ColorB ("B" is
5032 for "Base Type"), then type RGB_ColorB is a copy of type Color.
5033 As a result, when an expression references any of the enumeral
5034 by name (Eg. "print green"), the expression is technically
5035 ambiguous and the user should be asked to disambiguate. But
5036 doing so would only hinder the user, since it wouldn't matter
5037 what choice he makes, the outcome would always be the same.
5038 So, for practical purposes, we consider them as the same. */
5039
5040 static int
5041 symbols_are_identical_enums (const std::vector<struct block_symbol> &syms)
5042 {
5043 int i;
5044
5045 /* Before performing a thorough comparison check of each type,
5046 we perform a series of inexpensive checks. We expect that these
5047 checks will quickly fail in the vast majority of cases, and thus
5048 help prevent the unnecessary use of a more expensive comparison.
5049 Said comparison also expects us to make some of these checks
5050 (see ada_identical_enum_types_p). */
5051
5052 /* Quick check: All symbols should have an enum type. */
5053 for (i = 0; i < syms.size (); i++)
5054 if (TYPE_CODE (SYMBOL_TYPE (syms[i].symbol)) != TYPE_CODE_ENUM)
5055 return 0;
5056
5057 /* Quick check: They should all have the same value. */
5058 for (i = 1; i < syms.size (); i++)
5059 if (SYMBOL_VALUE (syms[i].symbol) != SYMBOL_VALUE (syms[0].symbol))
5060 return 0;
5061
5062 /* Quick check: They should all have the same number of enumerals. */
5063 for (i = 1; i < syms.size (); i++)
5064 if (TYPE_NFIELDS (SYMBOL_TYPE (syms[i].symbol))
5065 != TYPE_NFIELDS (SYMBOL_TYPE (syms[0].symbol)))
5066 return 0;
5067
5068 /* All the sanity checks passed, so we might have a set of
5069 identical enumeration types. Perform a more complete
5070 comparison of the type of each symbol. */
5071 for (i = 1; i < syms.size (); i++)
5072 if (!ada_identical_enum_types_p (SYMBOL_TYPE (syms[i].symbol),
5073 SYMBOL_TYPE (syms[0].symbol)))
5074 return 0;
5075
5076 return 1;
5077 }
5078
5079 /* Remove any non-debugging symbols in SYMS that definitely
5080 duplicate other symbols in the list (The only case I know of where
5081 this happens is when object files containing stabs-in-ecoff are
5082 linked with files containing ordinary ecoff debugging symbols (or no
5083 debugging symbols)). Modifies SYMS to squeeze out deleted entries.
5084 Returns the number of items in the modified list. */
5085
5086 static int
5087 remove_extra_symbols (std::vector<struct block_symbol> *syms)
5088 {
5089 int i, j;
5090
5091 /* We should never be called with less than 2 symbols, as there
5092 cannot be any extra symbol in that case. But it's easy to
5093 handle, since we have nothing to do in that case. */
5094 if (syms->size () < 2)
5095 return syms->size ();
5096
5097 i = 0;
5098 while (i < syms->size ())
5099 {
5100 int remove_p = 0;
5101
5102 /* If two symbols have the same name and one of them is a stub type,
5103 the get rid of the stub. */
5104
5105 if (TYPE_STUB (SYMBOL_TYPE ((*syms)[i].symbol))
5106 && SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL)
5107 {
5108 for (j = 0; j < syms->size (); j++)
5109 {
5110 if (j != i
5111 && !TYPE_STUB (SYMBOL_TYPE ((*syms)[j].symbol))
5112 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5113 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5114 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0)
5115 remove_p = 1;
5116 }
5117 }
5118
5119 /* Two symbols with the same name, same class and same address
5120 should be identical. */
5121
5122 else if (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol) != NULL
5123 && SYMBOL_CLASS ((*syms)[i].symbol) == LOC_STATIC
5124 && is_nondebugging_type (SYMBOL_TYPE ((*syms)[i].symbol)))
5125 {
5126 for (j = 0; j < syms->size (); j += 1)
5127 {
5128 if (i != j
5129 && SYMBOL_LINKAGE_NAME ((*syms)[j].symbol) != NULL
5130 && strcmp (SYMBOL_LINKAGE_NAME ((*syms)[i].symbol),
5131 SYMBOL_LINKAGE_NAME ((*syms)[j].symbol)) == 0
5132 && SYMBOL_CLASS ((*syms)[i].symbol)
5133 == SYMBOL_CLASS ((*syms)[j].symbol)
5134 && SYMBOL_VALUE_ADDRESS ((*syms)[i].symbol)
5135 == SYMBOL_VALUE_ADDRESS ((*syms)[j].symbol))
5136 remove_p = 1;
5137 }
5138 }
5139
5140 if (remove_p)
5141 syms->erase (syms->begin () + i);
5142
5143 i += 1;
5144 }
5145
5146 /* If all the remaining symbols are identical enumerals, then
5147 just keep the first one and discard the rest.
5148
5149 Unlike what we did previously, we do not discard any entry
5150 unless they are ALL identical. This is because the symbol
5151 comparison is not a strict comparison, but rather a practical
5152 comparison. If all symbols are considered identical, then
5153 we can just go ahead and use the first one and discard the rest.
5154 But if we cannot reduce the list to a single element, we have
5155 to ask the user to disambiguate anyways. And if we have to
5156 present a multiple-choice menu, it's less confusing if the list
5157 isn't missing some choices that were identical and yet distinct. */
5158 if (symbols_are_identical_enums (*syms))
5159 syms->resize (1);
5160
5161 return syms->size ();
5162 }
5163
5164 /* Given a type that corresponds to a renaming entity, use the type name
5165 to extract the scope (package name or function name, fully qualified,
5166 and following the GNAT encoding convention) where this renaming has been
5167 defined. */
5168
5169 static std::string
5170 xget_renaming_scope (struct type *renaming_type)
5171 {
5172 /* The renaming types adhere to the following convention:
5173 <scope>__<rename>___<XR extension>.
5174 So, to extract the scope, we search for the "___XR" extension,
5175 and then backtrack until we find the first "__". */
5176
5177 const char *name = TYPE_NAME (renaming_type);
5178 const char *suffix = strstr (name, "___XR");
5179 const char *last;
5180
5181 /* Now, backtrack a bit until we find the first "__". Start looking
5182 at suffix - 3, as the <rename> part is at least one character long. */
5183
5184 for (last = suffix - 3; last > name; last--)
5185 if (last[0] == '_' && last[1] == '_')
5186 break;
5187
5188 /* Make a copy of scope and return it. */
5189 return std::string (name, last);
5190 }
5191
5192 /* Return nonzero if NAME corresponds to a package name. */
5193
5194 static int
5195 is_package_name (const char *name)
5196 {
5197 /* Here, We take advantage of the fact that no symbols are generated
5198 for packages, while symbols are generated for each function.
5199 So the condition for NAME represent a package becomes equivalent
5200 to NAME not existing in our list of symbols. There is only one
5201 small complication with library-level functions (see below). */
5202
5203 /* If it is a function that has not been defined at library level,
5204 then we should be able to look it up in the symbols. */
5205 if (standard_lookup (name, NULL, VAR_DOMAIN) != NULL)
5206 return 0;
5207
5208 /* Library-level function names start with "_ada_". See if function
5209 "_ada_" followed by NAME can be found. */
5210
5211 /* Do a quick check that NAME does not contain "__", since library-level
5212 functions names cannot contain "__" in them. */
5213 if (strstr (name, "__") != NULL)
5214 return 0;
5215
5216 std::string fun_name = string_printf ("_ada_%s", name);
5217
5218 return (standard_lookup (fun_name.c_str (), NULL, VAR_DOMAIN) == NULL);
5219 }
5220
5221 /* Return nonzero if SYM corresponds to a renaming entity that is
5222 not visible from FUNCTION_NAME. */
5223
5224 static int
5225 old_renaming_is_invisible (const struct symbol *sym, const char *function_name)
5226 {
5227 if (SYMBOL_CLASS (sym) != LOC_TYPEDEF)
5228 return 0;
5229
5230 std::string scope = xget_renaming_scope (SYMBOL_TYPE (sym));
5231
5232 /* If the rename has been defined in a package, then it is visible. */
5233 if (is_package_name (scope.c_str ()))
5234 return 0;
5235
5236 /* Check that the rename is in the current function scope by checking
5237 that its name starts with SCOPE. */
5238
5239 /* If the function name starts with "_ada_", it means that it is
5240 a library-level function. Strip this prefix before doing the
5241 comparison, as the encoding for the renaming does not contain
5242 this prefix. */
5243 if (startswith (function_name, "_ada_"))
5244 function_name += 5;
5245
5246 return !startswith (function_name, scope.c_str ());
5247 }
5248
5249 /* Remove entries from SYMS that corresponds to a renaming entity that
5250 is not visible from the function associated with CURRENT_BLOCK or
5251 that is superfluous due to the presence of more specific renaming
5252 information. Places surviving symbols in the initial entries of
5253 SYMS and returns the number of surviving symbols.
5254
5255 Rationale:
5256 First, in cases where an object renaming is implemented as a
5257 reference variable, GNAT may produce both the actual reference
5258 variable and the renaming encoding. In this case, we discard the
5259 latter.
5260
5261 Second, GNAT emits a type following a specified encoding for each renaming
5262 entity. Unfortunately, STABS currently does not support the definition
5263 of types that are local to a given lexical block, so all renamings types
5264 are emitted at library level. As a consequence, if an application
5265 contains two renaming entities using the same name, and a user tries to
5266 print the value of one of these entities, the result of the ada symbol
5267 lookup will also contain the wrong renaming type.
5268
5269 This function partially covers for this limitation by attempting to
5270 remove from the SYMS list renaming symbols that should be visible
5271 from CURRENT_BLOCK. However, there does not seem be a 100% reliable
5272 method with the current information available. The implementation
5273 below has a couple of limitations (FIXME: brobecker-2003-05-12):
5274
5275 - When the user tries to print a rename in a function while there
5276 is another rename entity defined in a package: Normally, the
5277 rename in the function has precedence over the rename in the
5278 package, so the latter should be removed from the list. This is
5279 currently not the case.
5280
5281 - This function will incorrectly remove valid renames if
5282 the CURRENT_BLOCK corresponds to a function which symbol name
5283 has been changed by an "Export" pragma. As a consequence,
5284 the user will be unable to print such rename entities. */
5285
5286 static int
5287 remove_irrelevant_renamings (std::vector<struct block_symbol> *syms,
5288 const struct block *current_block)
5289 {
5290 struct symbol *current_function;
5291 const char *current_function_name;
5292 int i;
5293 int is_new_style_renaming;
5294
5295 /* If there is both a renaming foo___XR... encoded as a variable and
5296 a simple variable foo in the same block, discard the latter.
5297 First, zero out such symbols, then compress. */
5298 is_new_style_renaming = 0;
5299 for (i = 0; i < syms->size (); i += 1)
5300 {
5301 struct symbol *sym = (*syms)[i].symbol;
5302 const struct block *block = (*syms)[i].block;
5303 const char *name;
5304 const char *suffix;
5305
5306 if (sym == NULL || SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5307 continue;
5308 name = SYMBOL_LINKAGE_NAME (sym);
5309 suffix = strstr (name, "___XR");
5310
5311 if (suffix != NULL)
5312 {
5313 int name_len = suffix - name;
5314 int j;
5315
5316 is_new_style_renaming = 1;
5317 for (j = 0; j < syms->size (); j += 1)
5318 if (i != j && (*syms)[j].symbol != NULL
5319 && strncmp (name, SYMBOL_LINKAGE_NAME ((*syms)[j].symbol),
5320 name_len) == 0
5321 && block == (*syms)[j].block)
5322 (*syms)[j].symbol = NULL;
5323 }
5324 }
5325 if (is_new_style_renaming)
5326 {
5327 int j, k;
5328
5329 for (j = k = 0; j < syms->size (); j += 1)
5330 if ((*syms)[j].symbol != NULL)
5331 {
5332 (*syms)[k] = (*syms)[j];
5333 k += 1;
5334 }
5335 return k;
5336 }
5337
5338 /* Extract the function name associated to CURRENT_BLOCK.
5339 Abort if unable to do so. */
5340
5341 if (current_block == NULL)
5342 return syms->size ();
5343
5344 current_function = block_linkage_function (current_block);
5345 if (current_function == NULL)
5346 return syms->size ();
5347
5348 current_function_name = SYMBOL_LINKAGE_NAME (current_function);
5349 if (current_function_name == NULL)
5350 return syms->size ();
5351
5352 /* Check each of the symbols, and remove it from the list if it is
5353 a type corresponding to a renaming that is out of the scope of
5354 the current block. */
5355
5356 i = 0;
5357 while (i < syms->size ())
5358 {
5359 if (ada_parse_renaming ((*syms)[i].symbol, NULL, NULL, NULL)
5360 == ADA_OBJECT_RENAMING
5361 && old_renaming_is_invisible ((*syms)[i].symbol,
5362 current_function_name))
5363 syms->erase (syms->begin () + i);
5364 else
5365 i += 1;
5366 }
5367
5368 return syms->size ();
5369 }
5370
5371 /* Add to OBSTACKP all symbols from BLOCK (and its super-blocks)
5372 whose name and domain match NAME and DOMAIN respectively.
5373 If no match was found, then extend the search to "enclosing"
5374 routines (in other words, if we're inside a nested function,
5375 search the symbols defined inside the enclosing functions).
5376 If WILD_MATCH_P is nonzero, perform the naming matching in
5377 "wild" mode (see function "wild_match" for more info).
5378
5379 Note: This function assumes that OBSTACKP has 0 (zero) element in it. */
5380
5381 static void
5382 ada_add_local_symbols (struct obstack *obstackp,
5383 const lookup_name_info &lookup_name,
5384 const struct block *block, domain_enum domain)
5385 {
5386 int block_depth = 0;
5387
5388 while (block != NULL)
5389 {
5390 block_depth += 1;
5391 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5392
5393 /* If we found a non-function match, assume that's the one. */
5394 if (is_nonfunction (defns_collected (obstackp, 0),
5395 num_defns_collected (obstackp)))
5396 return;
5397
5398 block = BLOCK_SUPERBLOCK (block);
5399 }
5400
5401 /* If no luck so far, try to find NAME as a local symbol in some lexically
5402 enclosing subprogram. */
5403 if (num_defns_collected (obstackp) == 0 && block_depth > 2)
5404 add_symbols_from_enclosing_procs (obstackp, lookup_name, domain);
5405 }
5406
5407 /* An object of this type is used as the user_data argument when
5408 calling the map_matching_symbols method. */
5409
5410 struct match_data
5411 {
5412 struct objfile *objfile;
5413 struct obstack *obstackp;
5414 struct symbol *arg_sym;
5415 int found_sym;
5416 };
5417
5418 /* A callback for add_nonlocal_symbols that adds SYM, found in BLOCK,
5419 to a list of symbols. DATA0 is a pointer to a struct match_data *
5420 containing the obstack that collects the symbol list, the file that SYM
5421 must come from, a flag indicating whether a non-argument symbol has
5422 been found in the current block, and the last argument symbol
5423 passed in SYM within the current block (if any). When SYM is null,
5424 marking the end of a block, the argument symbol is added if no
5425 other has been found. */
5426
5427 static int
5428 aux_add_nonlocal_symbols (struct block *block, struct symbol *sym, void *data0)
5429 {
5430 struct match_data *data = (struct match_data *) data0;
5431
5432 if (sym == NULL)
5433 {
5434 if (!data->found_sym && data->arg_sym != NULL)
5435 add_defn_to_vec (data->obstackp,
5436 fixup_symbol_section (data->arg_sym, data->objfile),
5437 block);
5438 data->found_sym = 0;
5439 data->arg_sym = NULL;
5440 }
5441 else
5442 {
5443 if (SYMBOL_CLASS (sym) == LOC_UNRESOLVED)
5444 return 0;
5445 else if (SYMBOL_IS_ARGUMENT (sym))
5446 data->arg_sym = sym;
5447 else
5448 {
5449 data->found_sym = 1;
5450 add_defn_to_vec (data->obstackp,
5451 fixup_symbol_section (sym, data->objfile),
5452 block);
5453 }
5454 }
5455 return 0;
5456 }
5457
5458 /* Helper for add_nonlocal_symbols. Find symbols in DOMAIN which are
5459 targeted by renamings matching LOOKUP_NAME in BLOCK. Add these
5460 symbols to OBSTACKP. Return whether we found such symbols. */
5461
5462 static int
5463 ada_add_block_renamings (struct obstack *obstackp,
5464 const struct block *block,
5465 const lookup_name_info &lookup_name,
5466 domain_enum domain)
5467 {
5468 struct using_direct *renaming;
5469 int defns_mark = num_defns_collected (obstackp);
5470
5471 symbol_name_matcher_ftype *name_match
5472 = ada_get_symbol_name_matcher (lookup_name);
5473
5474 for (renaming = block_using (block);
5475 renaming != NULL;
5476 renaming = renaming->next)
5477 {
5478 const char *r_name;
5479
5480 /* Avoid infinite recursions: skip this renaming if we are actually
5481 already traversing it.
5482
5483 Currently, symbol lookup in Ada don't use the namespace machinery from
5484 C++/Fortran support: skip namespace imports that use them. */
5485 if (renaming->searched
5486 || (renaming->import_src != NULL
5487 && renaming->import_src[0] != '\0')
5488 || (renaming->import_dest != NULL
5489 && renaming->import_dest[0] != '\0'))
5490 continue;
5491 renaming->searched = 1;
5492
5493 /* TODO: here, we perform another name-based symbol lookup, which can
5494 pull its own multiple overloads. In theory, we should be able to do
5495 better in this case since, in DWARF, DW_AT_import is a DIE reference,
5496 not a simple name. But in order to do this, we would need to enhance
5497 the DWARF reader to associate a symbol to this renaming, instead of a
5498 name. So, for now, we do something simpler: re-use the C++/Fortran
5499 namespace machinery. */
5500 r_name = (renaming->alias != NULL
5501 ? renaming->alias
5502 : renaming->declaration);
5503 if (name_match (r_name, lookup_name, NULL))
5504 {
5505 lookup_name_info decl_lookup_name (renaming->declaration,
5506 lookup_name.match_type ());
5507 ada_add_all_symbols (obstackp, block, decl_lookup_name, domain,
5508 1, NULL);
5509 }
5510 renaming->searched = 0;
5511 }
5512 return num_defns_collected (obstackp) != defns_mark;
5513 }
5514
5515 /* Implements compare_names, but only applying the comparision using
5516 the given CASING. */
5517
5518 static int
5519 compare_names_with_case (const char *string1, const char *string2,
5520 enum case_sensitivity casing)
5521 {
5522 while (*string1 != '\0' && *string2 != '\0')
5523 {
5524 char c1, c2;
5525
5526 if (isspace (*string1) || isspace (*string2))
5527 return strcmp_iw_ordered (string1, string2);
5528
5529 if (casing == case_sensitive_off)
5530 {
5531 c1 = tolower (*string1);
5532 c2 = tolower (*string2);
5533 }
5534 else
5535 {
5536 c1 = *string1;
5537 c2 = *string2;
5538 }
5539 if (c1 != c2)
5540 break;
5541
5542 string1 += 1;
5543 string2 += 1;
5544 }
5545
5546 switch (*string1)
5547 {
5548 case '(':
5549 return strcmp_iw_ordered (string1, string2);
5550 case '_':
5551 if (*string2 == '\0')
5552 {
5553 if (is_name_suffix (string1))
5554 return 0;
5555 else
5556 return 1;
5557 }
5558 /* FALLTHROUGH */
5559 default:
5560 if (*string2 == '(')
5561 return strcmp_iw_ordered (string1, string2);
5562 else
5563 {
5564 if (casing == case_sensitive_off)
5565 return tolower (*string1) - tolower (*string2);
5566 else
5567 return *string1 - *string2;
5568 }
5569 }
5570 }
5571
5572 /* Compare STRING1 to STRING2, with results as for strcmp.
5573 Compatible with strcmp_iw_ordered in that...
5574
5575 strcmp_iw_ordered (STRING1, STRING2) <= 0
5576
5577 ... implies...
5578
5579 compare_names (STRING1, STRING2) <= 0
5580
5581 (they may differ as to what symbols compare equal). */
5582
5583 static int
5584 compare_names (const char *string1, const char *string2)
5585 {
5586 int result;
5587
5588 /* Similar to what strcmp_iw_ordered does, we need to perform
5589 a case-insensitive comparison first, and only resort to
5590 a second, case-sensitive, comparison if the first one was
5591 not sufficient to differentiate the two strings. */
5592
5593 result = compare_names_with_case (string1, string2, case_sensitive_off);
5594 if (result == 0)
5595 result = compare_names_with_case (string1, string2, case_sensitive_on);
5596
5597 return result;
5598 }
5599
5600 /* Convenience function to get at the Ada encoded lookup name for
5601 LOOKUP_NAME, as a C string. */
5602
5603 static const char *
5604 ada_lookup_name (const lookup_name_info &lookup_name)
5605 {
5606 return lookup_name.ada ().lookup_name ().c_str ();
5607 }
5608
5609 /* Add to OBSTACKP all non-local symbols whose name and domain match
5610 LOOKUP_NAME and DOMAIN respectively. The search is performed on
5611 GLOBAL_BLOCK symbols if GLOBAL is non-zero, or on STATIC_BLOCK
5612 symbols otherwise. */
5613
5614 static void
5615 add_nonlocal_symbols (struct obstack *obstackp,
5616 const lookup_name_info &lookup_name,
5617 domain_enum domain, int global)
5618 {
5619 struct objfile *objfile;
5620 struct compunit_symtab *cu;
5621 struct match_data data;
5622
5623 memset (&data, 0, sizeof data);
5624 data.obstackp = obstackp;
5625
5626 bool is_wild_match = lookup_name.ada ().wild_match_p ();
5627
5628 ALL_OBJFILES (objfile)
5629 {
5630 data.objfile = objfile;
5631
5632 if (is_wild_match)
5633 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5634 domain, global,
5635 aux_add_nonlocal_symbols, &data,
5636 symbol_name_match_type::WILD,
5637 NULL);
5638 else
5639 objfile->sf->qf->map_matching_symbols (objfile, lookup_name.name ().c_str (),
5640 domain, global,
5641 aux_add_nonlocal_symbols, &data,
5642 symbol_name_match_type::FULL,
5643 compare_names);
5644
5645 ALL_OBJFILE_COMPUNITS (objfile, cu)
5646 {
5647 const struct block *global_block
5648 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cu), GLOBAL_BLOCK);
5649
5650 if (ada_add_block_renamings (obstackp, global_block, lookup_name,
5651 domain))
5652 data.found_sym = 1;
5653 }
5654 }
5655
5656 if (num_defns_collected (obstackp) == 0 && global && !is_wild_match)
5657 {
5658 const char *name = ada_lookup_name (lookup_name);
5659 std::string name1 = std::string ("<_ada_") + name + '>';
5660
5661 ALL_OBJFILES (objfile)
5662 {
5663 data.objfile = objfile;
5664 objfile->sf->qf->map_matching_symbols (objfile, name1.c_str (),
5665 domain, global,
5666 aux_add_nonlocal_symbols,
5667 &data,
5668 symbol_name_match_type::FULL,
5669 compare_names);
5670 }
5671 }
5672 }
5673
5674 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if
5675 FULL_SEARCH is non-zero, enclosing scope and in global scopes,
5676 returning the number of matches. Add these to OBSTACKP.
5677
5678 When FULL_SEARCH is non-zero, any non-function/non-enumeral
5679 symbol match within the nest of blocks whose innermost member is BLOCK,
5680 is the one match returned (no other matches in that or
5681 enclosing blocks is returned). If there are any matches in or
5682 surrounding BLOCK, then these alone are returned.
5683
5684 Names prefixed with "standard__" are handled specially:
5685 "standard__" is first stripped off (by the lookup_name
5686 constructor), and only static and global symbols are searched.
5687
5688 If MADE_GLOBAL_LOOKUP_P is non-null, set it before return to whether we had
5689 to lookup global symbols. */
5690
5691 static void
5692 ada_add_all_symbols (struct obstack *obstackp,
5693 const struct block *block,
5694 const lookup_name_info &lookup_name,
5695 domain_enum domain,
5696 int full_search,
5697 int *made_global_lookup_p)
5698 {
5699 struct symbol *sym;
5700
5701 if (made_global_lookup_p)
5702 *made_global_lookup_p = 0;
5703
5704 /* Special case: If the user specifies a symbol name inside package
5705 Standard, do a non-wild matching of the symbol name without
5706 the "standard__" prefix. This was primarily introduced in order
5707 to allow the user to specifically access the standard exceptions
5708 using, for instance, Standard.Constraint_Error when Constraint_Error
5709 is ambiguous (due to the user defining its own Constraint_Error
5710 entity inside its program). */
5711 if (lookup_name.ada ().standard_p ())
5712 block = NULL;
5713
5714 /* Check the non-global symbols. If we have ANY match, then we're done. */
5715
5716 if (block != NULL)
5717 {
5718 if (full_search)
5719 ada_add_local_symbols (obstackp, lookup_name, block, domain);
5720 else
5721 {
5722 /* In the !full_search case we're are being called by
5723 ada_iterate_over_symbols, and we don't want to search
5724 superblocks. */
5725 ada_add_block_symbols (obstackp, block, lookup_name, domain, NULL);
5726 }
5727 if (num_defns_collected (obstackp) > 0 || !full_search)
5728 return;
5729 }
5730
5731 /* No non-global symbols found. Check our cache to see if we have
5732 already performed this search before. If we have, then return
5733 the same result. */
5734
5735 if (lookup_cached_symbol (ada_lookup_name (lookup_name),
5736 domain, &sym, &block))
5737 {
5738 if (sym != NULL)
5739 add_defn_to_vec (obstackp, sym, block);
5740 return;
5741 }
5742
5743 if (made_global_lookup_p)
5744 *made_global_lookup_p = 1;
5745
5746 /* Search symbols from all global blocks. */
5747
5748 add_nonlocal_symbols (obstackp, lookup_name, domain, 1);
5749
5750 /* Now add symbols from all per-file blocks if we've gotten no hits
5751 (not strictly correct, but perhaps better than an error). */
5752
5753 if (num_defns_collected (obstackp) == 0)
5754 add_nonlocal_symbols (obstackp, lookup_name, domain, 0);
5755 }
5756
5757 /* Find symbols in DOMAIN matching LOOKUP_NAME, in BLOCK and, if FULL_SEARCH
5758 is non-zero, enclosing scope and in global scopes, returning the number of
5759 matches.
5760 Fills *RESULTS with (SYM,BLOCK) tuples, indicating the symbols
5761 found and the blocks and symbol tables (if any) in which they were
5762 found.
5763
5764 When full_search is non-zero, any non-function/non-enumeral
5765 symbol match within the nest of blocks whose innermost member is BLOCK,
5766 is the one match returned (no other matches in that or
5767 enclosing blocks is returned). If there are any matches in or
5768 surrounding BLOCK, then these alone are returned.
5769
5770 Names prefixed with "standard__" are handled specially: "standard__"
5771 is first stripped off, and only static and global symbols are searched. */
5772
5773 static int
5774 ada_lookup_symbol_list_worker (const lookup_name_info &lookup_name,
5775 const struct block *block,
5776 domain_enum domain,
5777 std::vector<struct block_symbol> *results,
5778 int full_search)
5779 {
5780 int syms_from_global_search;
5781 int ndefns;
5782 auto_obstack obstack;
5783
5784 ada_add_all_symbols (&obstack, block, lookup_name,
5785 domain, full_search, &syms_from_global_search);
5786
5787 ndefns = num_defns_collected (&obstack);
5788
5789 struct block_symbol *base = defns_collected (&obstack, 1);
5790 for (int i = 0; i < ndefns; ++i)
5791 results->push_back (base[i]);
5792
5793 ndefns = remove_extra_symbols (results);
5794
5795 if (ndefns == 0 && full_search && syms_from_global_search)
5796 cache_symbol (ada_lookup_name (lookup_name), domain, NULL, NULL);
5797
5798 if (ndefns == 1 && full_search && syms_from_global_search)
5799 cache_symbol (ada_lookup_name (lookup_name), domain,
5800 (*results)[0].symbol, (*results)[0].block);
5801
5802 ndefns = remove_irrelevant_renamings (results, block);
5803
5804 return ndefns;
5805 }
5806
5807 /* Find symbols in DOMAIN matching NAME, in BLOCK and enclosing scope and
5808 in global scopes, returning the number of matches, and filling *RESULTS
5809 with (SYM,BLOCK) tuples.
5810
5811 See ada_lookup_symbol_list_worker for further details. */
5812
5813 int
5814 ada_lookup_symbol_list (const char *name, const struct block *block,
5815 domain_enum domain,
5816 std::vector<struct block_symbol> *results)
5817 {
5818 symbol_name_match_type name_match_type = name_match_type_from_name (name);
5819 lookup_name_info lookup_name (name, name_match_type);
5820
5821 return ada_lookup_symbol_list_worker (lookup_name, block, domain, results, 1);
5822 }
5823
5824 /* Implementation of the la_iterate_over_symbols method. */
5825
5826 static void
5827 ada_iterate_over_symbols
5828 (const struct block *block, const lookup_name_info &name,
5829 domain_enum domain,
5830 gdb::function_view<symbol_found_callback_ftype> callback)
5831 {
5832 int ndefs, i;
5833 std::vector<struct block_symbol> results;
5834
5835 ndefs = ada_lookup_symbol_list_worker (name, block, domain, &results, 0);
5836
5837 for (i = 0; i < ndefs; ++i)
5838 {
5839 if (!callback (&results[i]))
5840 break;
5841 }
5842 }
5843
5844 /* The result is as for ada_lookup_symbol_list with FULL_SEARCH set
5845 to 1, but choosing the first symbol found if there are multiple
5846 choices.
5847
5848 The result is stored in *INFO, which must be non-NULL.
5849 If no match is found, INFO->SYM is set to NULL. */
5850
5851 void
5852 ada_lookup_encoded_symbol (const char *name, const struct block *block,
5853 domain_enum domain,
5854 struct block_symbol *info)
5855 {
5856 /* Since we already have an encoded name, wrap it in '<>' to force a
5857 verbatim match. Otherwise, if the name happens to not look like
5858 an encoded name (because it doesn't include a "__"),
5859 ada_lookup_name_info would re-encode/fold it again, and that
5860 would e.g., incorrectly lowercase object renaming names like
5861 "R28b" -> "r28b". */
5862 std::string verbatim = std::string ("<") + name + '>';
5863
5864 gdb_assert (info != NULL);
5865 *info = ada_lookup_symbol (verbatim.c_str (), block, domain, NULL);
5866 }
5867
5868 /* Return a symbol in DOMAIN matching NAME, in BLOCK0 and enclosing
5869 scope and in global scopes, or NULL if none. NAME is folded and
5870 encoded first. Otherwise, the result is as for ada_lookup_symbol_list,
5871 choosing the first symbol if there are multiple choices.
5872 If IS_A_FIELD_OF_THIS is not NULL, it is set to zero. */
5873
5874 struct block_symbol
5875 ada_lookup_symbol (const char *name, const struct block *block0,
5876 domain_enum domain, int *is_a_field_of_this)
5877 {
5878 if (is_a_field_of_this != NULL)
5879 *is_a_field_of_this = 0;
5880
5881 std::vector<struct block_symbol> candidates;
5882 int n_candidates;
5883
5884 n_candidates = ada_lookup_symbol_list (name, block0, domain, &candidates);
5885
5886 if (n_candidates == 0)
5887 return {};
5888
5889 block_symbol info = candidates[0];
5890 info.symbol = fixup_symbol_section (info.symbol, NULL);
5891 return info;
5892 }
5893
5894 static struct block_symbol
5895 ada_lookup_symbol_nonlocal (const struct language_defn *langdef,
5896 const char *name,
5897 const struct block *block,
5898 const domain_enum domain)
5899 {
5900 struct block_symbol sym;
5901
5902 sym = ada_lookup_symbol (name, block_static_block (block), domain, NULL);
5903 if (sym.symbol != NULL)
5904 return sym;
5905
5906 /* If we haven't found a match at this point, try the primitive
5907 types. In other languages, this search is performed before
5908 searching for global symbols in order to short-circuit that
5909 global-symbol search if it happens that the name corresponds
5910 to a primitive type. But we cannot do the same in Ada, because
5911 it is perfectly legitimate for a program to declare a type which
5912 has the same name as a standard type. If looking up a type in
5913 that situation, we have traditionally ignored the primitive type
5914 in favor of user-defined types. This is why, unlike most other
5915 languages, we search the primitive types this late and only after
5916 having searched the global symbols without success. */
5917
5918 if (domain == VAR_DOMAIN)
5919 {
5920 struct gdbarch *gdbarch;
5921
5922 if (block == NULL)
5923 gdbarch = target_gdbarch ();
5924 else
5925 gdbarch = block_gdbarch (block);
5926 sym.symbol = language_lookup_primitive_type_as_symbol (langdef, gdbarch, name);
5927 if (sym.symbol != NULL)
5928 return sym;
5929 }
5930
5931 return (struct block_symbol) {NULL, NULL};
5932 }
5933
5934
5935 /* True iff STR is a possible encoded suffix of a normal Ada name
5936 that is to be ignored for matching purposes. Suffixes of parallel
5937 names (e.g., XVE) are not included here. Currently, the possible suffixes
5938 are given by any of the regular expressions:
5939
5940 [.$][0-9]+ [nested subprogram suffix, on platforms such as GNU/Linux]
5941 ___[0-9]+ [nested subprogram suffix, on platforms such as HP/UX]
5942 TKB [subprogram suffix for task bodies]
5943 _E[0-9]+[bs]$ [protected object entry suffixes]
5944 (X[nb]*)?((\$|__)[0-9](_?[0-9]+)|___(JM|LJM|X([FDBUP].*|R[^T]?)))?$
5945
5946 Also, any leading "__[0-9]+" sequence is skipped before the suffix
5947 match is performed. This sequence is used to differentiate homonyms,
5948 is an optional part of a valid name suffix. */
5949
5950 static int
5951 is_name_suffix (const char *str)
5952 {
5953 int k;
5954 const char *matching;
5955 const int len = strlen (str);
5956
5957 /* Skip optional leading __[0-9]+. */
5958
5959 if (len > 3 && str[0] == '_' && str[1] == '_' && isdigit (str[2]))
5960 {
5961 str += 3;
5962 while (isdigit (str[0]))
5963 str += 1;
5964 }
5965
5966 /* [.$][0-9]+ */
5967
5968 if (str[0] == '.' || str[0] == '$')
5969 {
5970 matching = str + 1;
5971 while (isdigit (matching[0]))
5972 matching += 1;
5973 if (matching[0] == '\0')
5974 return 1;
5975 }
5976
5977 /* ___[0-9]+ */
5978
5979 if (len > 3 && str[0] == '_' && str[1] == '_' && str[2] == '_')
5980 {
5981 matching = str + 3;
5982 while (isdigit (matching[0]))
5983 matching += 1;
5984 if (matching[0] == '\0')
5985 return 1;
5986 }
5987
5988 /* "TKB" suffixes are used for subprograms implementing task bodies. */
5989
5990 if (strcmp (str, "TKB") == 0)
5991 return 1;
5992
5993 #if 0
5994 /* FIXME: brobecker/2005-09-23: Protected Object subprograms end
5995 with a N at the end. Unfortunately, the compiler uses the same
5996 convention for other internal types it creates. So treating
5997 all entity names that end with an "N" as a name suffix causes
5998 some regressions. For instance, consider the case of an enumerated
5999 type. To support the 'Image attribute, it creates an array whose
6000 name ends with N.
6001 Having a single character like this as a suffix carrying some
6002 information is a bit risky. Perhaps we should change the encoding
6003 to be something like "_N" instead. In the meantime, do not do
6004 the following check. */
6005 /* Protected Object Subprograms */
6006 if (len == 1 && str [0] == 'N')
6007 return 1;
6008 #endif
6009
6010 /* _E[0-9]+[bs]$ */
6011 if (len > 3 && str[0] == '_' && str [1] == 'E' && isdigit (str[2]))
6012 {
6013 matching = str + 3;
6014 while (isdigit (matching[0]))
6015 matching += 1;
6016 if ((matching[0] == 'b' || matching[0] == 's')
6017 && matching [1] == '\0')
6018 return 1;
6019 }
6020
6021 /* ??? We should not modify STR directly, as we are doing below. This
6022 is fine in this case, but may become problematic later if we find
6023 that this alternative did not work, and want to try matching
6024 another one from the begining of STR. Since we modified it, we
6025 won't be able to find the begining of the string anymore! */
6026 if (str[0] == 'X')
6027 {
6028 str += 1;
6029 while (str[0] != '_' && str[0] != '\0')
6030 {
6031 if (str[0] != 'n' && str[0] != 'b')
6032 return 0;
6033 str += 1;
6034 }
6035 }
6036
6037 if (str[0] == '\000')
6038 return 1;
6039
6040 if (str[0] == '_')
6041 {
6042 if (str[1] != '_' || str[2] == '\000')
6043 return 0;
6044 if (str[2] == '_')
6045 {
6046 if (strcmp (str + 3, "JM") == 0)
6047 return 1;
6048 /* FIXME: brobecker/2004-09-30: GNAT will soon stop using
6049 the LJM suffix in favor of the JM one. But we will
6050 still accept LJM as a valid suffix for a reasonable
6051 amount of time, just to allow ourselves to debug programs
6052 compiled using an older version of GNAT. */
6053 if (strcmp (str + 3, "LJM") == 0)
6054 return 1;
6055 if (str[3] != 'X')
6056 return 0;
6057 if (str[4] == 'F' || str[4] == 'D' || str[4] == 'B'
6058 || str[4] == 'U' || str[4] == 'P')
6059 return 1;
6060 if (str[4] == 'R' && str[5] != 'T')
6061 return 1;
6062 return 0;
6063 }
6064 if (!isdigit (str[2]))
6065 return 0;
6066 for (k = 3; str[k] != '\0'; k += 1)
6067 if (!isdigit (str[k]) && str[k] != '_')
6068 return 0;
6069 return 1;
6070 }
6071 if (str[0] == '$' && isdigit (str[1]))
6072 {
6073 for (k = 2; str[k] != '\0'; k += 1)
6074 if (!isdigit (str[k]) && str[k] != '_')
6075 return 0;
6076 return 1;
6077 }
6078 return 0;
6079 }
6080
6081 /* Return non-zero if the string starting at NAME and ending before
6082 NAME_END contains no capital letters. */
6083
6084 static int
6085 is_valid_name_for_wild_match (const char *name0)
6086 {
6087 const char *decoded_name = ada_decode (name0);
6088 int i;
6089
6090 /* If the decoded name starts with an angle bracket, it means that
6091 NAME0 does not follow the GNAT encoding format. It should then
6092 not be allowed as a possible wild match. */
6093 if (decoded_name[0] == '<')
6094 return 0;
6095
6096 for (i=0; decoded_name[i] != '\0'; i++)
6097 if (isalpha (decoded_name[i]) && !islower (decoded_name[i]))
6098 return 0;
6099
6100 return 1;
6101 }
6102
6103 /* Advance *NAMEP to next occurrence of TARGET0 in the string NAME0
6104 that could start a simple name. Assumes that *NAMEP points into
6105 the string beginning at NAME0. */
6106
6107 static int
6108 advance_wild_match (const char **namep, const char *name0, int target0)
6109 {
6110 const char *name = *namep;
6111
6112 while (1)
6113 {
6114 int t0, t1;
6115
6116 t0 = *name;
6117 if (t0 == '_')
6118 {
6119 t1 = name[1];
6120 if ((t1 >= 'a' && t1 <= 'z') || (t1 >= '0' && t1 <= '9'))
6121 {
6122 name += 1;
6123 if (name == name0 + 5 && startswith (name0, "_ada"))
6124 break;
6125 else
6126 name += 1;
6127 }
6128 else if (t1 == '_' && ((name[2] >= 'a' && name[2] <= 'z')
6129 || name[2] == target0))
6130 {
6131 name += 2;
6132 break;
6133 }
6134 else
6135 return 0;
6136 }
6137 else if ((t0 >= 'a' && t0 <= 'z') || (t0 >= '0' && t0 <= '9'))
6138 name += 1;
6139 else
6140 return 0;
6141 }
6142
6143 *namep = name;
6144 return 1;
6145 }
6146
6147 /* Return true iff NAME encodes a name of the form prefix.PATN.
6148 Ignores any informational suffixes of NAME (i.e., for which
6149 is_name_suffix is true). Assumes that PATN is a lower-cased Ada
6150 simple name. */
6151
6152 static bool
6153 wild_match (const char *name, const char *patn)
6154 {
6155 const char *p;
6156 const char *name0 = name;
6157
6158 while (1)
6159 {
6160 const char *match = name;
6161
6162 if (*name == *patn)
6163 {
6164 for (name += 1, p = patn + 1; *p != '\0'; name += 1, p += 1)
6165 if (*p != *name)
6166 break;
6167 if (*p == '\0' && is_name_suffix (name))
6168 return match == name0 || is_valid_name_for_wild_match (name0);
6169
6170 if (name[-1] == '_')
6171 name -= 1;
6172 }
6173 if (!advance_wild_match (&name, name0, *patn))
6174 return false;
6175 }
6176 }
6177
6178 /* Returns true iff symbol name SYM_NAME matches SEARCH_NAME, ignoring
6179 any trailing suffixes that encode debugging information or leading
6180 _ada_ on SYM_NAME (see is_name_suffix commentary for the debugging
6181 information that is ignored). */
6182
6183 static bool
6184 full_match (const char *sym_name, const char *search_name)
6185 {
6186 size_t search_name_len = strlen (search_name);
6187
6188 if (strncmp (sym_name, search_name, search_name_len) == 0
6189 && is_name_suffix (sym_name + search_name_len))
6190 return true;
6191
6192 if (startswith (sym_name, "_ada_")
6193 && strncmp (sym_name + 5, search_name, search_name_len) == 0
6194 && is_name_suffix (sym_name + search_name_len + 5))
6195 return true;
6196
6197 return false;
6198 }
6199
6200 /* Add symbols from BLOCK matching LOOKUP_NAME in DOMAIN to vector
6201 *defn_symbols, updating the list of symbols in OBSTACKP (if
6202 necessary). OBJFILE is the section containing BLOCK. */
6203
6204 static void
6205 ada_add_block_symbols (struct obstack *obstackp,
6206 const struct block *block,
6207 const lookup_name_info &lookup_name,
6208 domain_enum domain, struct objfile *objfile)
6209 {
6210 struct block_iterator iter;
6211 /* A matching argument symbol, if any. */
6212 struct symbol *arg_sym;
6213 /* Set true when we find a matching non-argument symbol. */
6214 int found_sym;
6215 struct symbol *sym;
6216
6217 arg_sym = NULL;
6218 found_sym = 0;
6219 for (sym = block_iter_match_first (block, lookup_name, &iter);
6220 sym != NULL;
6221 sym = block_iter_match_next (lookup_name, &iter))
6222 {
6223 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6224 SYMBOL_DOMAIN (sym), domain))
6225 {
6226 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6227 {
6228 if (SYMBOL_IS_ARGUMENT (sym))
6229 arg_sym = sym;
6230 else
6231 {
6232 found_sym = 1;
6233 add_defn_to_vec (obstackp,
6234 fixup_symbol_section (sym, objfile),
6235 block);
6236 }
6237 }
6238 }
6239 }
6240
6241 /* Handle renamings. */
6242
6243 if (ada_add_block_renamings (obstackp, block, lookup_name, domain))
6244 found_sym = 1;
6245
6246 if (!found_sym && arg_sym != NULL)
6247 {
6248 add_defn_to_vec (obstackp,
6249 fixup_symbol_section (arg_sym, objfile),
6250 block);
6251 }
6252
6253 if (!lookup_name.ada ().wild_match_p ())
6254 {
6255 arg_sym = NULL;
6256 found_sym = 0;
6257 const std::string &ada_lookup_name = lookup_name.ada ().lookup_name ();
6258 const char *name = ada_lookup_name.c_str ();
6259 size_t name_len = ada_lookup_name.size ();
6260
6261 ALL_BLOCK_SYMBOLS (block, iter, sym)
6262 {
6263 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
6264 SYMBOL_DOMAIN (sym), domain))
6265 {
6266 int cmp;
6267
6268 cmp = (int) '_' - (int) SYMBOL_LINKAGE_NAME (sym)[0];
6269 if (cmp == 0)
6270 {
6271 cmp = !startswith (SYMBOL_LINKAGE_NAME (sym), "_ada_");
6272 if (cmp == 0)
6273 cmp = strncmp (name, SYMBOL_LINKAGE_NAME (sym) + 5,
6274 name_len);
6275 }
6276
6277 if (cmp == 0
6278 && is_name_suffix (SYMBOL_LINKAGE_NAME (sym) + name_len + 5))
6279 {
6280 if (SYMBOL_CLASS (sym) != LOC_UNRESOLVED)
6281 {
6282 if (SYMBOL_IS_ARGUMENT (sym))
6283 arg_sym = sym;
6284 else
6285 {
6286 found_sym = 1;
6287 add_defn_to_vec (obstackp,
6288 fixup_symbol_section (sym, objfile),
6289 block);
6290 }
6291 }
6292 }
6293 }
6294 }
6295
6296 /* NOTE: This really shouldn't be needed for _ada_ symbols.
6297 They aren't parameters, right? */
6298 if (!found_sym && arg_sym != NULL)
6299 {
6300 add_defn_to_vec (obstackp,
6301 fixup_symbol_section (arg_sym, objfile),
6302 block);
6303 }
6304 }
6305 }
6306 \f
6307
6308 /* Symbol Completion */
6309
6310 /* See symtab.h. */
6311
6312 bool
6313 ada_lookup_name_info::matches
6314 (const char *sym_name,
6315 symbol_name_match_type match_type,
6316 completion_match_result *comp_match_res) const
6317 {
6318 bool match = false;
6319 const char *text = m_encoded_name.c_str ();
6320 size_t text_len = m_encoded_name.size ();
6321
6322 /* First, test against the fully qualified name of the symbol. */
6323
6324 if (strncmp (sym_name, text, text_len) == 0)
6325 match = true;
6326
6327 if (match && !m_encoded_p)
6328 {
6329 /* One needed check before declaring a positive match is to verify
6330 that iff we are doing a verbatim match, the decoded version
6331 of the symbol name starts with '<'. Otherwise, this symbol name
6332 is not a suitable completion. */
6333 const char *sym_name_copy = sym_name;
6334 bool has_angle_bracket;
6335
6336 sym_name = ada_decode (sym_name);
6337 has_angle_bracket = (sym_name[0] == '<');
6338 match = (has_angle_bracket == m_verbatim_p);
6339 sym_name = sym_name_copy;
6340 }
6341
6342 if (match && !m_verbatim_p)
6343 {
6344 /* When doing non-verbatim match, another check that needs to
6345 be done is to verify that the potentially matching symbol name
6346 does not include capital letters, because the ada-mode would
6347 not be able to understand these symbol names without the
6348 angle bracket notation. */
6349 const char *tmp;
6350
6351 for (tmp = sym_name; *tmp != '\0' && !isupper (*tmp); tmp++);
6352 if (*tmp != '\0')
6353 match = false;
6354 }
6355
6356 /* Second: Try wild matching... */
6357
6358 if (!match && m_wild_match_p)
6359 {
6360 /* Since we are doing wild matching, this means that TEXT
6361 may represent an unqualified symbol name. We therefore must
6362 also compare TEXT against the unqualified name of the symbol. */
6363 sym_name = ada_unqualified_name (ada_decode (sym_name));
6364
6365 if (strncmp (sym_name, text, text_len) == 0)
6366 match = true;
6367 }
6368
6369 /* Finally: If we found a match, prepare the result to return. */
6370
6371 if (!match)
6372 return false;
6373
6374 if (comp_match_res != NULL)
6375 {
6376 std::string &match_str = comp_match_res->match.storage ();
6377
6378 if (!m_encoded_p)
6379 match_str = ada_decode (sym_name);
6380 else
6381 {
6382 if (m_verbatim_p)
6383 match_str = add_angle_brackets (sym_name);
6384 else
6385 match_str = sym_name;
6386
6387 }
6388
6389 comp_match_res->set_match (match_str.c_str ());
6390 }
6391
6392 return true;
6393 }
6394
6395 /* Add the list of possible symbol names completing TEXT to TRACKER.
6396 WORD is the entire command on which completion is made. */
6397
6398 static void
6399 ada_collect_symbol_completion_matches (completion_tracker &tracker,
6400 complete_symbol_mode mode,
6401 symbol_name_match_type name_match_type,
6402 const char *text, const char *word,
6403 enum type_code code)
6404 {
6405 struct symbol *sym;
6406 struct compunit_symtab *s;
6407 struct minimal_symbol *msymbol;
6408 struct objfile *objfile;
6409 const struct block *b, *surrounding_static_block = 0;
6410 struct block_iterator iter;
6411
6412 gdb_assert (code == TYPE_CODE_UNDEF);
6413
6414 lookup_name_info lookup_name (text, name_match_type, true);
6415
6416 /* First, look at the partial symtab symbols. */
6417 expand_symtabs_matching (NULL,
6418 lookup_name,
6419 NULL,
6420 NULL,
6421 ALL_DOMAIN);
6422
6423 /* At this point scan through the misc symbol vectors and add each
6424 symbol you find to the list. Eventually we want to ignore
6425 anything that isn't a text symbol (everything else will be
6426 handled by the psymtab code above). */
6427
6428 ALL_MSYMBOLS (objfile, msymbol)
6429 {
6430 QUIT;
6431
6432 if (completion_skip_symbol (mode, msymbol))
6433 continue;
6434
6435 language symbol_language = MSYMBOL_LANGUAGE (msymbol);
6436
6437 /* Ada minimal symbols won't have their language set to Ada. If
6438 we let completion_list_add_name compare using the
6439 default/C-like matcher, then when completing e.g., symbols in a
6440 package named "pck", we'd match internal Ada symbols like
6441 "pckS", which are invalid in an Ada expression, unless you wrap
6442 them in '<' '>' to request a verbatim match.
6443
6444 Unfortunately, some Ada encoded names successfully demangle as
6445 C++ symbols (using an old mangling scheme), such as "name__2Xn"
6446 -> "Xn::name(void)" and thus some Ada minimal symbols end up
6447 with the wrong language set. Paper over that issue here. */
6448 if (symbol_language == language_auto
6449 || symbol_language == language_cplus)
6450 symbol_language = language_ada;
6451
6452 completion_list_add_name (tracker,
6453 symbol_language,
6454 MSYMBOL_LINKAGE_NAME (msymbol),
6455 lookup_name, text, word);
6456 }
6457
6458 /* Search upwards from currently selected frame (so that we can
6459 complete on local vars. */
6460
6461 for (b = get_selected_block (0); b != NULL; b = BLOCK_SUPERBLOCK (b))
6462 {
6463 if (!BLOCK_SUPERBLOCK (b))
6464 surrounding_static_block = b; /* For elmin of dups */
6465
6466 ALL_BLOCK_SYMBOLS (b, iter, sym)
6467 {
6468 if (completion_skip_symbol (mode, sym))
6469 continue;
6470
6471 completion_list_add_name (tracker,
6472 SYMBOL_LANGUAGE (sym),
6473 SYMBOL_LINKAGE_NAME (sym),
6474 lookup_name, text, word);
6475 }
6476 }
6477
6478 /* Go through the symtabs and check the externs and statics for
6479 symbols which match. */
6480
6481 ALL_COMPUNITS (objfile, s)
6482 {
6483 QUIT;
6484 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), GLOBAL_BLOCK);
6485 ALL_BLOCK_SYMBOLS (b, iter, sym)
6486 {
6487 if (completion_skip_symbol (mode, sym))
6488 continue;
6489
6490 completion_list_add_name (tracker,
6491 SYMBOL_LANGUAGE (sym),
6492 SYMBOL_LINKAGE_NAME (sym),
6493 lookup_name, text, word);
6494 }
6495 }
6496
6497 ALL_COMPUNITS (objfile, s)
6498 {
6499 QUIT;
6500 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (s), STATIC_BLOCK);
6501 /* Don't do this block twice. */
6502 if (b == surrounding_static_block)
6503 continue;
6504 ALL_BLOCK_SYMBOLS (b, iter, sym)
6505 {
6506 if (completion_skip_symbol (mode, sym))
6507 continue;
6508
6509 completion_list_add_name (tracker,
6510 SYMBOL_LANGUAGE (sym),
6511 SYMBOL_LINKAGE_NAME (sym),
6512 lookup_name, text, word);
6513 }
6514 }
6515 }
6516
6517 /* Field Access */
6518
6519 /* Return non-zero if TYPE is a pointer to the GNAT dispatch table used
6520 for tagged types. */
6521
6522 static int
6523 ada_is_dispatch_table_ptr_type (struct type *type)
6524 {
6525 const char *name;
6526
6527 if (TYPE_CODE (type) != TYPE_CODE_PTR)
6528 return 0;
6529
6530 name = TYPE_NAME (TYPE_TARGET_TYPE (type));
6531 if (name == NULL)
6532 return 0;
6533
6534 return (strcmp (name, "ada__tags__dispatch_table") == 0);
6535 }
6536
6537 /* Return non-zero if TYPE is an interface tag. */
6538
6539 static int
6540 ada_is_interface_tag (struct type *type)
6541 {
6542 const char *name = TYPE_NAME (type);
6543
6544 if (name == NULL)
6545 return 0;
6546
6547 return (strcmp (name, "ada__tags__interface_tag") == 0);
6548 }
6549
6550 /* True if field number FIELD_NUM in struct or union type TYPE is supposed
6551 to be invisible to users. */
6552
6553 int
6554 ada_is_ignored_field (struct type *type, int field_num)
6555 {
6556 if (field_num < 0 || field_num > TYPE_NFIELDS (type))
6557 return 1;
6558
6559 /* Check the name of that field. */
6560 {
6561 const char *name = TYPE_FIELD_NAME (type, field_num);
6562
6563 /* Anonymous field names should not be printed.
6564 brobecker/2007-02-20: I don't think this can actually happen
6565 but we don't want to print the value of annonymous fields anyway. */
6566 if (name == NULL)
6567 return 1;
6568
6569 /* Normally, fields whose name start with an underscore ("_")
6570 are fields that have been internally generated by the compiler,
6571 and thus should not be printed. The "_parent" field is special,
6572 however: This is a field internally generated by the compiler
6573 for tagged types, and it contains the components inherited from
6574 the parent type. This field should not be printed as is, but
6575 should not be ignored either. */
6576 if (name[0] == '_' && !startswith (name, "_parent"))
6577 return 1;
6578 }
6579
6580 /* If this is the dispatch table of a tagged type or an interface tag,
6581 then ignore. */
6582 if (ada_is_tagged_type (type, 1)
6583 && (ada_is_dispatch_table_ptr_type (TYPE_FIELD_TYPE (type, field_num))
6584 || ada_is_interface_tag (TYPE_FIELD_TYPE (type, field_num))))
6585 return 1;
6586
6587 /* Not a special field, so it should not be ignored. */
6588 return 0;
6589 }
6590
6591 /* True iff TYPE has a tag field. If REFOK, then TYPE may also be a
6592 pointer or reference type whose ultimate target has a tag field. */
6593
6594 int
6595 ada_is_tagged_type (struct type *type, int refok)
6596 {
6597 return (ada_lookup_struct_elt_type (type, "_tag", refok, 1) != NULL);
6598 }
6599
6600 /* True iff TYPE represents the type of X'Tag */
6601
6602 int
6603 ada_is_tag_type (struct type *type)
6604 {
6605 type = ada_check_typedef (type);
6606
6607 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_PTR)
6608 return 0;
6609 else
6610 {
6611 const char *name = ada_type_name (TYPE_TARGET_TYPE (type));
6612
6613 return (name != NULL
6614 && strcmp (name, "ada__tags__dispatch_table") == 0);
6615 }
6616 }
6617
6618 /* The type of the tag on VAL. */
6619
6620 struct type *
6621 ada_tag_type (struct value *val)
6622 {
6623 return ada_lookup_struct_elt_type (value_type (val), "_tag", 1, 0);
6624 }
6625
6626 /* Return 1 if TAG follows the old scheme for Ada tags (used for Ada 95,
6627 retired at Ada 05). */
6628
6629 static int
6630 is_ada95_tag (struct value *tag)
6631 {
6632 return ada_value_struct_elt (tag, "tsd", 1) != NULL;
6633 }
6634
6635 /* The value of the tag on VAL. */
6636
6637 struct value *
6638 ada_value_tag (struct value *val)
6639 {
6640 return ada_value_struct_elt (val, "_tag", 0);
6641 }
6642
6643 /* The value of the tag on the object of type TYPE whose contents are
6644 saved at VALADDR, if it is non-null, or is at memory address
6645 ADDRESS. */
6646
6647 static struct value *
6648 value_tag_from_contents_and_address (struct type *type,
6649 const gdb_byte *valaddr,
6650 CORE_ADDR address)
6651 {
6652 int tag_byte_offset;
6653 struct type *tag_type;
6654
6655 if (find_struct_field ("_tag", type, 0, &tag_type, &tag_byte_offset,
6656 NULL, NULL, NULL))
6657 {
6658 const gdb_byte *valaddr1 = ((valaddr == NULL)
6659 ? NULL
6660 : valaddr + tag_byte_offset);
6661 CORE_ADDR address1 = (address == 0) ? 0 : address + tag_byte_offset;
6662
6663 return value_from_contents_and_address (tag_type, valaddr1, address1);
6664 }
6665 return NULL;
6666 }
6667
6668 static struct type *
6669 type_from_tag (struct value *tag)
6670 {
6671 const char *type_name = ada_tag_name (tag);
6672
6673 if (type_name != NULL)
6674 return ada_find_any_type (ada_encode (type_name));
6675 return NULL;
6676 }
6677
6678 /* Given a value OBJ of a tagged type, return a value of this
6679 type at the base address of the object. The base address, as
6680 defined in Ada.Tags, it is the address of the primary tag of
6681 the object, and therefore where the field values of its full
6682 view can be fetched. */
6683
6684 struct value *
6685 ada_tag_value_at_base_address (struct value *obj)
6686 {
6687 struct value *val;
6688 LONGEST offset_to_top = 0;
6689 struct type *ptr_type, *obj_type;
6690 struct value *tag;
6691 CORE_ADDR base_address;
6692
6693 obj_type = value_type (obj);
6694
6695 /* It is the responsability of the caller to deref pointers. */
6696
6697 if (TYPE_CODE (obj_type) == TYPE_CODE_PTR
6698 || TYPE_CODE (obj_type) == TYPE_CODE_REF)
6699 return obj;
6700
6701 tag = ada_value_tag (obj);
6702 if (!tag)
6703 return obj;
6704
6705 /* Base addresses only appeared with Ada 05 and multiple inheritance. */
6706
6707 if (is_ada95_tag (tag))
6708 return obj;
6709
6710 ptr_type = language_lookup_primitive_type
6711 (language_def (language_ada), target_gdbarch(), "storage_offset");
6712 ptr_type = lookup_pointer_type (ptr_type);
6713 val = value_cast (ptr_type, tag);
6714 if (!val)
6715 return obj;
6716
6717 /* It is perfectly possible that an exception be raised while
6718 trying to determine the base address, just like for the tag;
6719 see ada_tag_name for more details. We do not print the error
6720 message for the same reason. */
6721
6722 TRY
6723 {
6724 offset_to_top = value_as_long (value_ind (value_ptradd (val, -2)));
6725 }
6726
6727 CATCH (e, RETURN_MASK_ERROR)
6728 {
6729 return obj;
6730 }
6731 END_CATCH
6732
6733 /* If offset is null, nothing to do. */
6734
6735 if (offset_to_top == 0)
6736 return obj;
6737
6738 /* -1 is a special case in Ada.Tags; however, what should be done
6739 is not quite clear from the documentation. So do nothing for
6740 now. */
6741
6742 if (offset_to_top == -1)
6743 return obj;
6744
6745 /* OFFSET_TO_TOP used to be a positive value to be subtracted
6746 from the base address. This was however incompatible with
6747 C++ dispatch table: C++ uses a *negative* value to *add*
6748 to the base address. Ada's convention has therefore been
6749 changed in GNAT 19.0w 20171023: since then, C++ and Ada
6750 use the same convention. Here, we support both cases by
6751 checking the sign of OFFSET_TO_TOP. */
6752
6753 if (offset_to_top > 0)
6754 offset_to_top = -offset_to_top;
6755
6756 base_address = value_address (obj) + offset_to_top;
6757 tag = value_tag_from_contents_and_address (obj_type, NULL, base_address);
6758
6759 /* Make sure that we have a proper tag at the new address.
6760 Otherwise, offset_to_top is bogus (which can happen when
6761 the object is not initialized yet). */
6762
6763 if (!tag)
6764 return obj;
6765
6766 obj_type = type_from_tag (tag);
6767
6768 if (!obj_type)
6769 return obj;
6770
6771 return value_from_contents_and_address (obj_type, NULL, base_address);
6772 }
6773
6774 /* Return the "ada__tags__type_specific_data" type. */
6775
6776 static struct type *
6777 ada_get_tsd_type (struct inferior *inf)
6778 {
6779 struct ada_inferior_data *data = get_ada_inferior_data (inf);
6780
6781 if (data->tsd_type == 0)
6782 data->tsd_type = ada_find_any_type ("ada__tags__type_specific_data");
6783 return data->tsd_type;
6784 }
6785
6786 /* Return the TSD (type-specific data) associated to the given TAG.
6787 TAG is assumed to be the tag of a tagged-type entity.
6788
6789 May return NULL if we are unable to get the TSD. */
6790
6791 static struct value *
6792 ada_get_tsd_from_tag (struct value *tag)
6793 {
6794 struct value *val;
6795 struct type *type;
6796
6797 /* First option: The TSD is simply stored as a field of our TAG.
6798 Only older versions of GNAT would use this format, but we have
6799 to test it first, because there are no visible markers for
6800 the current approach except the absence of that field. */
6801
6802 val = ada_value_struct_elt (tag, "tsd", 1);
6803 if (val)
6804 return val;
6805
6806 /* Try the second representation for the dispatch table (in which
6807 there is no explicit 'tsd' field in the referent of the tag pointer,
6808 and instead the tsd pointer is stored just before the dispatch
6809 table. */
6810
6811 type = ada_get_tsd_type (current_inferior());
6812 if (type == NULL)
6813 return NULL;
6814 type = lookup_pointer_type (lookup_pointer_type (type));
6815 val = value_cast (type, tag);
6816 if (val == NULL)
6817 return NULL;
6818 return value_ind (value_ptradd (val, -1));
6819 }
6820
6821 /* Given the TSD of a tag (type-specific data), return a string
6822 containing the name of the associated type.
6823
6824 The returned value is good until the next call. May return NULL
6825 if we are unable to determine the tag name. */
6826
6827 static char *
6828 ada_tag_name_from_tsd (struct value *tsd)
6829 {
6830 static char name[1024];
6831 char *p;
6832 struct value *val;
6833
6834 val = ada_value_struct_elt (tsd, "expanded_name", 1);
6835 if (val == NULL)
6836 return NULL;
6837 read_memory_string (value_as_address (val), name, sizeof (name) - 1);
6838 for (p = name; *p != '\0'; p += 1)
6839 if (isalpha (*p))
6840 *p = tolower (*p);
6841 return name;
6842 }
6843
6844 /* The type name of the dynamic type denoted by the 'tag value TAG, as
6845 a C string.
6846
6847 Return NULL if the TAG is not an Ada tag, or if we were unable to
6848 determine the name of that tag. The result is good until the next
6849 call. */
6850
6851 const char *
6852 ada_tag_name (struct value *tag)
6853 {
6854 char *name = NULL;
6855
6856 if (!ada_is_tag_type (value_type (tag)))
6857 return NULL;
6858
6859 /* It is perfectly possible that an exception be raised while trying
6860 to determine the TAG's name, even under normal circumstances:
6861 The associated variable may be uninitialized or corrupted, for
6862 instance. We do not let any exception propagate past this point.
6863 instead we return NULL.
6864
6865 We also do not print the error message either (which often is very
6866 low-level (Eg: "Cannot read memory at 0x[...]"), but instead let
6867 the caller print a more meaningful message if necessary. */
6868 TRY
6869 {
6870 struct value *tsd = ada_get_tsd_from_tag (tag);
6871
6872 if (tsd != NULL)
6873 name = ada_tag_name_from_tsd (tsd);
6874 }
6875 CATCH (e, RETURN_MASK_ERROR)
6876 {
6877 }
6878 END_CATCH
6879
6880 return name;
6881 }
6882
6883 /* The parent type of TYPE, or NULL if none. */
6884
6885 struct type *
6886 ada_parent_type (struct type *type)
6887 {
6888 int i;
6889
6890 type = ada_check_typedef (type);
6891
6892 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
6893 return NULL;
6894
6895 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
6896 if (ada_is_parent_field (type, i))
6897 {
6898 struct type *parent_type = TYPE_FIELD_TYPE (type, i);
6899
6900 /* If the _parent field is a pointer, then dereference it. */
6901 if (TYPE_CODE (parent_type) == TYPE_CODE_PTR)
6902 parent_type = TYPE_TARGET_TYPE (parent_type);
6903 /* If there is a parallel XVS type, get the actual base type. */
6904 parent_type = ada_get_base_type (parent_type);
6905
6906 return ada_check_typedef (parent_type);
6907 }
6908
6909 return NULL;
6910 }
6911
6912 /* True iff field number FIELD_NUM of structure type TYPE contains the
6913 parent-type (inherited) fields of a derived type. Assumes TYPE is
6914 a structure type with at least FIELD_NUM+1 fields. */
6915
6916 int
6917 ada_is_parent_field (struct type *type, int field_num)
6918 {
6919 const char *name = TYPE_FIELD_NAME (ada_check_typedef (type), field_num);
6920
6921 return (name != NULL
6922 && (startswith (name, "PARENT")
6923 || startswith (name, "_parent")));
6924 }
6925
6926 /* True iff field number FIELD_NUM of structure type TYPE is a
6927 transparent wrapper field (which should be silently traversed when doing
6928 field selection and flattened when printing). Assumes TYPE is a
6929 structure type with at least FIELD_NUM+1 fields. Such fields are always
6930 structures. */
6931
6932 int
6933 ada_is_wrapper_field (struct type *type, int field_num)
6934 {
6935 const char *name = TYPE_FIELD_NAME (type, field_num);
6936
6937 if (name != NULL && strcmp (name, "RETVAL") == 0)
6938 {
6939 /* This happens in functions with "out" or "in out" parameters
6940 which are passed by copy. For such functions, GNAT describes
6941 the function's return type as being a struct where the return
6942 value is in a field called RETVAL, and where the other "out"
6943 or "in out" parameters are fields of that struct. This is not
6944 a wrapper. */
6945 return 0;
6946 }
6947
6948 return (name != NULL
6949 && (startswith (name, "PARENT")
6950 || strcmp (name, "REP") == 0
6951 || startswith (name, "_parent")
6952 || name[0] == 'S' || name[0] == 'R' || name[0] == 'O'));
6953 }
6954
6955 /* True iff field number FIELD_NUM of structure or union type TYPE
6956 is a variant wrapper. Assumes TYPE is a structure type with at least
6957 FIELD_NUM+1 fields. */
6958
6959 int
6960 ada_is_variant_part (struct type *type, int field_num)
6961 {
6962 struct type *field_type = TYPE_FIELD_TYPE (type, field_num);
6963
6964 return (TYPE_CODE (field_type) == TYPE_CODE_UNION
6965 || (is_dynamic_field (type, field_num)
6966 && (TYPE_CODE (TYPE_TARGET_TYPE (field_type))
6967 == TYPE_CODE_UNION)));
6968 }
6969
6970 /* Assuming that VAR_TYPE is a variant wrapper (type of the variant part)
6971 whose discriminants are contained in the record type OUTER_TYPE,
6972 returns the type of the controlling discriminant for the variant.
6973 May return NULL if the type could not be found. */
6974
6975 struct type *
6976 ada_variant_discrim_type (struct type *var_type, struct type *outer_type)
6977 {
6978 const char *name = ada_variant_discrim_name (var_type);
6979
6980 return ada_lookup_struct_elt_type (outer_type, name, 1, 1);
6981 }
6982
6983 /* Assuming that TYPE is the type of a variant wrapper, and FIELD_NUM is a
6984 valid field number within it, returns 1 iff field FIELD_NUM of TYPE
6985 represents a 'when others' clause; otherwise 0. */
6986
6987 int
6988 ada_is_others_clause (struct type *type, int field_num)
6989 {
6990 const char *name = TYPE_FIELD_NAME (type, field_num);
6991
6992 return (name != NULL && name[0] == 'O');
6993 }
6994
6995 /* Assuming that TYPE0 is the type of the variant part of a record,
6996 returns the name of the discriminant controlling the variant.
6997 The value is valid until the next call to ada_variant_discrim_name. */
6998
6999 const char *
7000 ada_variant_discrim_name (struct type *type0)
7001 {
7002 static char *result = NULL;
7003 static size_t result_len = 0;
7004 struct type *type;
7005 const char *name;
7006 const char *discrim_end;
7007 const char *discrim_start;
7008
7009 if (TYPE_CODE (type0) == TYPE_CODE_PTR)
7010 type = TYPE_TARGET_TYPE (type0);
7011 else
7012 type = type0;
7013
7014 name = ada_type_name (type);
7015
7016 if (name == NULL || name[0] == '\000')
7017 return "";
7018
7019 for (discrim_end = name + strlen (name) - 6; discrim_end != name;
7020 discrim_end -= 1)
7021 {
7022 if (startswith (discrim_end, "___XVN"))
7023 break;
7024 }
7025 if (discrim_end == name)
7026 return "";
7027
7028 for (discrim_start = discrim_end; discrim_start != name + 3;
7029 discrim_start -= 1)
7030 {
7031 if (discrim_start == name + 1)
7032 return "";
7033 if ((discrim_start > name + 3
7034 && startswith (discrim_start - 3, "___"))
7035 || discrim_start[-1] == '.')
7036 break;
7037 }
7038
7039 GROW_VECT (result, result_len, discrim_end - discrim_start + 1);
7040 strncpy (result, discrim_start, discrim_end - discrim_start);
7041 result[discrim_end - discrim_start] = '\0';
7042 return result;
7043 }
7044
7045 /* Scan STR for a subtype-encoded number, beginning at position K.
7046 Put the position of the character just past the number scanned in
7047 *NEW_K, if NEW_K!=NULL. Put the scanned number in *R, if R!=NULL.
7048 Return 1 if there was a valid number at the given position, and 0
7049 otherwise. A "subtype-encoded" number consists of the absolute value
7050 in decimal, followed by the letter 'm' to indicate a negative number.
7051 Assumes 0m does not occur. */
7052
7053 int
7054 ada_scan_number (const char str[], int k, LONGEST * R, int *new_k)
7055 {
7056 ULONGEST RU;
7057
7058 if (!isdigit (str[k]))
7059 return 0;
7060
7061 /* Do it the hard way so as not to make any assumption about
7062 the relationship of unsigned long (%lu scan format code) and
7063 LONGEST. */
7064 RU = 0;
7065 while (isdigit (str[k]))
7066 {
7067 RU = RU * 10 + (str[k] - '0');
7068 k += 1;
7069 }
7070
7071 if (str[k] == 'm')
7072 {
7073 if (R != NULL)
7074 *R = (-(LONGEST) (RU - 1)) - 1;
7075 k += 1;
7076 }
7077 else if (R != NULL)
7078 *R = (LONGEST) RU;
7079
7080 /* NOTE on the above: Technically, C does not say what the results of
7081 - (LONGEST) RU or (LONGEST) -RU are for RU == largest positive
7082 number representable as a LONGEST (although either would probably work
7083 in most implementations). When RU>0, the locution in the then branch
7084 above is always equivalent to the negative of RU. */
7085
7086 if (new_k != NULL)
7087 *new_k = k;
7088 return 1;
7089 }
7090
7091 /* Assuming that TYPE is a variant part wrapper type (a VARIANTS field),
7092 and FIELD_NUM is a valid field number within it, returns 1 iff VAL is
7093 in the range encoded by field FIELD_NUM of TYPE; otherwise 0. */
7094
7095 int
7096 ada_in_variant (LONGEST val, struct type *type, int field_num)
7097 {
7098 const char *name = TYPE_FIELD_NAME (type, field_num);
7099 int p;
7100
7101 p = 0;
7102 while (1)
7103 {
7104 switch (name[p])
7105 {
7106 case '\0':
7107 return 0;
7108 case 'S':
7109 {
7110 LONGEST W;
7111
7112 if (!ada_scan_number (name, p + 1, &W, &p))
7113 return 0;
7114 if (val == W)
7115 return 1;
7116 break;
7117 }
7118 case 'R':
7119 {
7120 LONGEST L, U;
7121
7122 if (!ada_scan_number (name, p + 1, &L, &p)
7123 || name[p] != 'T' || !ada_scan_number (name, p + 1, &U, &p))
7124 return 0;
7125 if (val >= L && val <= U)
7126 return 1;
7127 break;
7128 }
7129 case 'O':
7130 return 1;
7131 default:
7132 return 0;
7133 }
7134 }
7135 }
7136
7137 /* FIXME: Lots of redundancy below. Try to consolidate. */
7138
7139 /* Given a value ARG1 (offset by OFFSET bytes) of a struct or union type
7140 ARG_TYPE, extract and return the value of one of its (non-static)
7141 fields. FIELDNO says which field. Differs from value_primitive_field
7142 only in that it can handle packed values of arbitrary type. */
7143
7144 static struct value *
7145 ada_value_primitive_field (struct value *arg1, int offset, int fieldno,
7146 struct type *arg_type)
7147 {
7148 struct type *type;
7149
7150 arg_type = ada_check_typedef (arg_type);
7151 type = TYPE_FIELD_TYPE (arg_type, fieldno);
7152
7153 /* Handle packed fields. */
7154
7155 if (TYPE_FIELD_BITSIZE (arg_type, fieldno) != 0)
7156 {
7157 int bit_pos = TYPE_FIELD_BITPOS (arg_type, fieldno);
7158 int bit_size = TYPE_FIELD_BITSIZE (arg_type, fieldno);
7159
7160 return ada_value_primitive_packed_val (arg1, value_contents (arg1),
7161 offset + bit_pos / 8,
7162 bit_pos % 8, bit_size, type);
7163 }
7164 else
7165 return value_primitive_field (arg1, offset, fieldno, arg_type);
7166 }
7167
7168 /* Find field with name NAME in object of type TYPE. If found,
7169 set the following for each argument that is non-null:
7170 - *FIELD_TYPE_P to the field's type;
7171 - *BYTE_OFFSET_P to OFFSET + the byte offset of the field within
7172 an object of that type;
7173 - *BIT_OFFSET_P to the bit offset modulo byte size of the field;
7174 - *BIT_SIZE_P to its size in bits if the field is packed, and
7175 0 otherwise;
7176 If INDEX_P is non-null, increment *INDEX_P by the number of source-visible
7177 fields up to but not including the desired field, or by the total
7178 number of fields if not found. A NULL value of NAME never
7179 matches; the function just counts visible fields in this case.
7180
7181 Notice that we need to handle when a tagged record hierarchy
7182 has some components with the same name, like in this scenario:
7183
7184 type Top_T is tagged record
7185 N : Integer := 1;
7186 U : Integer := 974;
7187 A : Integer := 48;
7188 end record;
7189
7190 type Middle_T is new Top.Top_T with record
7191 N : Character := 'a';
7192 C : Integer := 3;
7193 end record;
7194
7195 type Bottom_T is new Middle.Middle_T with record
7196 N : Float := 4.0;
7197 C : Character := '5';
7198 X : Integer := 6;
7199 A : Character := 'J';
7200 end record;
7201
7202 Let's say we now have a variable declared and initialized as follow:
7203
7204 TC : Top_A := new Bottom_T;
7205
7206 And then we use this variable to call this function
7207
7208 procedure Assign (Obj: in out Top_T; TV : Integer);
7209
7210 as follow:
7211
7212 Assign (Top_T (B), 12);
7213
7214 Now, we're in the debugger, and we're inside that procedure
7215 then and we want to print the value of obj.c:
7216
7217 Usually, the tagged record or one of the parent type owns the
7218 component to print and there's no issue but in this particular
7219 case, what does it mean to ask for Obj.C? Since the actual
7220 type for object is type Bottom_T, it could mean two things: type
7221 component C from the Middle_T view, but also component C from
7222 Bottom_T. So in that "undefined" case, when the component is
7223 not found in the non-resolved type (which includes all the
7224 components of the parent type), then resolve it and see if we
7225 get better luck once expanded.
7226
7227 In the case of homonyms in the derived tagged type, we don't
7228 guaranty anything, and pick the one that's easiest for us
7229 to program.
7230
7231 Returns 1 if found, 0 otherwise. */
7232
7233 static int
7234 find_struct_field (const char *name, struct type *type, int offset,
7235 struct type **field_type_p,
7236 int *byte_offset_p, int *bit_offset_p, int *bit_size_p,
7237 int *index_p)
7238 {
7239 int i;
7240 int parent_offset = -1;
7241
7242 type = ada_check_typedef (type);
7243
7244 if (field_type_p != NULL)
7245 *field_type_p = NULL;
7246 if (byte_offset_p != NULL)
7247 *byte_offset_p = 0;
7248 if (bit_offset_p != NULL)
7249 *bit_offset_p = 0;
7250 if (bit_size_p != NULL)
7251 *bit_size_p = 0;
7252
7253 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7254 {
7255 int bit_pos = TYPE_FIELD_BITPOS (type, i);
7256 int fld_offset = offset + bit_pos / 8;
7257 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7258
7259 if (t_field_name == NULL)
7260 continue;
7261
7262 else if (ada_is_parent_field (type, i))
7263 {
7264 /* This is a field pointing us to the parent type of a tagged
7265 type. As hinted in this function's documentation, we give
7266 preference to fields in the current record first, so what
7267 we do here is just record the index of this field before
7268 we skip it. If it turns out we couldn't find our field
7269 in the current record, then we'll get back to it and search
7270 inside it whether the field might exist in the parent. */
7271
7272 parent_offset = i;
7273 continue;
7274 }
7275
7276 else if (name != NULL && field_name_match (t_field_name, name))
7277 {
7278 int bit_size = TYPE_FIELD_BITSIZE (type, i);
7279
7280 if (field_type_p != NULL)
7281 *field_type_p = TYPE_FIELD_TYPE (type, i);
7282 if (byte_offset_p != NULL)
7283 *byte_offset_p = fld_offset;
7284 if (bit_offset_p != NULL)
7285 *bit_offset_p = bit_pos % 8;
7286 if (bit_size_p != NULL)
7287 *bit_size_p = bit_size;
7288 return 1;
7289 }
7290 else if (ada_is_wrapper_field (type, i))
7291 {
7292 if (find_struct_field (name, TYPE_FIELD_TYPE (type, i), fld_offset,
7293 field_type_p, byte_offset_p, bit_offset_p,
7294 bit_size_p, index_p))
7295 return 1;
7296 }
7297 else if (ada_is_variant_part (type, i))
7298 {
7299 /* PNH: Wait. Do we ever execute this section, or is ARG always of
7300 fixed type?? */
7301 int j;
7302 struct type *field_type
7303 = ada_check_typedef (TYPE_FIELD_TYPE (type, i));
7304
7305 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7306 {
7307 if (find_struct_field (name, TYPE_FIELD_TYPE (field_type, j),
7308 fld_offset
7309 + TYPE_FIELD_BITPOS (field_type, j) / 8,
7310 field_type_p, byte_offset_p,
7311 bit_offset_p, bit_size_p, index_p))
7312 return 1;
7313 }
7314 }
7315 else if (index_p != NULL)
7316 *index_p += 1;
7317 }
7318
7319 /* Field not found so far. If this is a tagged type which
7320 has a parent, try finding that field in the parent now. */
7321
7322 if (parent_offset != -1)
7323 {
7324 int bit_pos = TYPE_FIELD_BITPOS (type, parent_offset);
7325 int fld_offset = offset + bit_pos / 8;
7326
7327 if (find_struct_field (name, TYPE_FIELD_TYPE (type, parent_offset),
7328 fld_offset, field_type_p, byte_offset_p,
7329 bit_offset_p, bit_size_p, index_p))
7330 return 1;
7331 }
7332
7333 return 0;
7334 }
7335
7336 /* Number of user-visible fields in record type TYPE. */
7337
7338 static int
7339 num_visible_fields (struct type *type)
7340 {
7341 int n;
7342
7343 n = 0;
7344 find_struct_field (NULL, type, 0, NULL, NULL, NULL, NULL, &n);
7345 return n;
7346 }
7347
7348 /* Look for a field NAME in ARG. Adjust the address of ARG by OFFSET bytes,
7349 and search in it assuming it has (class) type TYPE.
7350 If found, return value, else return NULL.
7351
7352 Searches recursively through wrapper fields (e.g., '_parent').
7353
7354 In the case of homonyms in the tagged types, please refer to the
7355 long explanation in find_struct_field's function documentation. */
7356
7357 static struct value *
7358 ada_search_struct_field (const char *name, struct value *arg, int offset,
7359 struct type *type)
7360 {
7361 int i;
7362 int parent_offset = -1;
7363
7364 type = ada_check_typedef (type);
7365 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7366 {
7367 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7368
7369 if (t_field_name == NULL)
7370 continue;
7371
7372 else if (ada_is_parent_field (type, i))
7373 {
7374 /* This is a field pointing us to the parent type of a tagged
7375 type. As hinted in this function's documentation, we give
7376 preference to fields in the current record first, so what
7377 we do here is just record the index of this field before
7378 we skip it. If it turns out we couldn't find our field
7379 in the current record, then we'll get back to it and search
7380 inside it whether the field might exist in the parent. */
7381
7382 parent_offset = i;
7383 continue;
7384 }
7385
7386 else if (field_name_match (t_field_name, name))
7387 return ada_value_primitive_field (arg, offset, i, type);
7388
7389 else if (ada_is_wrapper_field (type, i))
7390 {
7391 struct value *v = /* Do not let indent join lines here. */
7392 ada_search_struct_field (name, arg,
7393 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7394 TYPE_FIELD_TYPE (type, i));
7395
7396 if (v != NULL)
7397 return v;
7398 }
7399
7400 else if (ada_is_variant_part (type, i))
7401 {
7402 /* PNH: Do we ever get here? See find_struct_field. */
7403 int j;
7404 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7405 i));
7406 int var_offset = offset + TYPE_FIELD_BITPOS (type, i) / 8;
7407
7408 for (j = 0; j < TYPE_NFIELDS (field_type); j += 1)
7409 {
7410 struct value *v = ada_search_struct_field /* Force line
7411 break. */
7412 (name, arg,
7413 var_offset + TYPE_FIELD_BITPOS (field_type, j) / 8,
7414 TYPE_FIELD_TYPE (field_type, j));
7415
7416 if (v != NULL)
7417 return v;
7418 }
7419 }
7420 }
7421
7422 /* Field not found so far. If this is a tagged type which
7423 has a parent, try finding that field in the parent now. */
7424
7425 if (parent_offset != -1)
7426 {
7427 struct value *v = ada_search_struct_field (
7428 name, arg, offset + TYPE_FIELD_BITPOS (type, parent_offset) / 8,
7429 TYPE_FIELD_TYPE (type, parent_offset));
7430
7431 if (v != NULL)
7432 return v;
7433 }
7434
7435 return NULL;
7436 }
7437
7438 static struct value *ada_index_struct_field_1 (int *, struct value *,
7439 int, struct type *);
7440
7441
7442 /* Return field #INDEX in ARG, where the index is that returned by
7443 * find_struct_field through its INDEX_P argument. Adjust the address
7444 * of ARG by OFFSET bytes, and search in it assuming it has (class) type TYPE.
7445 * If found, return value, else return NULL. */
7446
7447 static struct value *
7448 ada_index_struct_field (int index, struct value *arg, int offset,
7449 struct type *type)
7450 {
7451 return ada_index_struct_field_1 (&index, arg, offset, type);
7452 }
7453
7454
7455 /* Auxiliary function for ada_index_struct_field. Like
7456 * ada_index_struct_field, but takes index from *INDEX_P and modifies
7457 * *INDEX_P. */
7458
7459 static struct value *
7460 ada_index_struct_field_1 (int *index_p, struct value *arg, int offset,
7461 struct type *type)
7462 {
7463 int i;
7464 type = ada_check_typedef (type);
7465
7466 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7467 {
7468 if (TYPE_FIELD_NAME (type, i) == NULL)
7469 continue;
7470 else if (ada_is_wrapper_field (type, i))
7471 {
7472 struct value *v = /* Do not let indent join lines here. */
7473 ada_index_struct_field_1 (index_p, arg,
7474 offset + TYPE_FIELD_BITPOS (type, i) / 8,
7475 TYPE_FIELD_TYPE (type, i));
7476
7477 if (v != NULL)
7478 return v;
7479 }
7480
7481 else if (ada_is_variant_part (type, i))
7482 {
7483 /* PNH: Do we ever get here? See ada_search_struct_field,
7484 find_struct_field. */
7485 error (_("Cannot assign this kind of variant record"));
7486 }
7487 else if (*index_p == 0)
7488 return ada_value_primitive_field (arg, offset, i, type);
7489 else
7490 *index_p -= 1;
7491 }
7492 return NULL;
7493 }
7494
7495 /* Given ARG, a value of type (pointer or reference to a)*
7496 structure/union, extract the component named NAME from the ultimate
7497 target structure/union and return it as a value with its
7498 appropriate type.
7499
7500 The routine searches for NAME among all members of the structure itself
7501 and (recursively) among all members of any wrapper members
7502 (e.g., '_parent').
7503
7504 If NO_ERR, then simply return NULL in case of error, rather than
7505 calling error. */
7506
7507 struct value *
7508 ada_value_struct_elt (struct value *arg, const char *name, int no_err)
7509 {
7510 struct type *t, *t1;
7511 struct value *v;
7512
7513 v = NULL;
7514 t1 = t = ada_check_typedef (value_type (arg));
7515 if (TYPE_CODE (t) == TYPE_CODE_REF)
7516 {
7517 t1 = TYPE_TARGET_TYPE (t);
7518 if (t1 == NULL)
7519 goto BadValue;
7520 t1 = ada_check_typedef (t1);
7521 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7522 {
7523 arg = coerce_ref (arg);
7524 t = t1;
7525 }
7526 }
7527
7528 while (TYPE_CODE (t) == TYPE_CODE_PTR)
7529 {
7530 t1 = TYPE_TARGET_TYPE (t);
7531 if (t1 == NULL)
7532 goto BadValue;
7533 t1 = ada_check_typedef (t1);
7534 if (TYPE_CODE (t1) == TYPE_CODE_PTR)
7535 {
7536 arg = value_ind (arg);
7537 t = t1;
7538 }
7539 else
7540 break;
7541 }
7542
7543 if (TYPE_CODE (t1) != TYPE_CODE_STRUCT && TYPE_CODE (t1) != TYPE_CODE_UNION)
7544 goto BadValue;
7545
7546 if (t1 == t)
7547 v = ada_search_struct_field (name, arg, 0, t);
7548 else
7549 {
7550 int bit_offset, bit_size, byte_offset;
7551 struct type *field_type;
7552 CORE_ADDR address;
7553
7554 if (TYPE_CODE (t) == TYPE_CODE_PTR)
7555 address = value_address (ada_value_ind (arg));
7556 else
7557 address = value_address (ada_coerce_ref (arg));
7558
7559 /* Check to see if this is a tagged type. We also need to handle
7560 the case where the type is a reference to a tagged type, but
7561 we have to be careful to exclude pointers to tagged types.
7562 The latter should be shown as usual (as a pointer), whereas
7563 a reference should mostly be transparent to the user. */
7564
7565 if (ada_is_tagged_type (t1, 0)
7566 || (TYPE_CODE (t1) == TYPE_CODE_REF
7567 && ada_is_tagged_type (TYPE_TARGET_TYPE (t1), 0)))
7568 {
7569 /* We first try to find the searched field in the current type.
7570 If not found then let's look in the fixed type. */
7571
7572 if (!find_struct_field (name, t1, 0,
7573 &field_type, &byte_offset, &bit_offset,
7574 &bit_size, NULL))
7575 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7576 address, NULL, 1);
7577 }
7578 else
7579 t1 = ada_to_fixed_type (ada_get_base_type (t1), NULL,
7580 address, NULL, 1);
7581
7582 if (find_struct_field (name, t1, 0,
7583 &field_type, &byte_offset, &bit_offset,
7584 &bit_size, NULL))
7585 {
7586 if (bit_size != 0)
7587 {
7588 if (TYPE_CODE (t) == TYPE_CODE_REF)
7589 arg = ada_coerce_ref (arg);
7590 else
7591 arg = ada_value_ind (arg);
7592 v = ada_value_primitive_packed_val (arg, NULL, byte_offset,
7593 bit_offset, bit_size,
7594 field_type);
7595 }
7596 else
7597 v = value_at_lazy (field_type, address + byte_offset);
7598 }
7599 }
7600
7601 if (v != NULL || no_err)
7602 return v;
7603 else
7604 error (_("There is no member named %s."), name);
7605
7606 BadValue:
7607 if (no_err)
7608 return NULL;
7609 else
7610 error (_("Attempt to extract a component of "
7611 "a value that is not a record."));
7612 }
7613
7614 /* Return a string representation of type TYPE. */
7615
7616 static std::string
7617 type_as_string (struct type *type)
7618 {
7619 string_file tmp_stream;
7620
7621 type_print (type, "", &tmp_stream, -1);
7622
7623 return std::move (tmp_stream.string ());
7624 }
7625
7626 /* Given a type TYPE, look up the type of the component of type named NAME.
7627 If DISPP is non-null, add its byte displacement from the beginning of a
7628 structure (pointed to by a value) of type TYPE to *DISPP (does not
7629 work for packed fields).
7630
7631 Matches any field whose name has NAME as a prefix, possibly
7632 followed by "___".
7633
7634 TYPE can be either a struct or union. If REFOK, TYPE may also
7635 be a (pointer or reference)+ to a struct or union, and the
7636 ultimate target type will be searched.
7637
7638 Looks recursively into variant clauses and parent types.
7639
7640 In the case of homonyms in the tagged types, please refer to the
7641 long explanation in find_struct_field's function documentation.
7642
7643 If NOERR is nonzero, return NULL if NAME is not suitably defined or
7644 TYPE is not a type of the right kind. */
7645
7646 static struct type *
7647 ada_lookup_struct_elt_type (struct type *type, const char *name, int refok,
7648 int noerr)
7649 {
7650 int i;
7651 int parent_offset = -1;
7652
7653 if (name == NULL)
7654 goto BadName;
7655
7656 if (refok && type != NULL)
7657 while (1)
7658 {
7659 type = ada_check_typedef (type);
7660 if (TYPE_CODE (type) != TYPE_CODE_PTR
7661 && TYPE_CODE (type) != TYPE_CODE_REF)
7662 break;
7663 type = TYPE_TARGET_TYPE (type);
7664 }
7665
7666 if (type == NULL
7667 || (TYPE_CODE (type) != TYPE_CODE_STRUCT
7668 && TYPE_CODE (type) != TYPE_CODE_UNION))
7669 {
7670 if (noerr)
7671 return NULL;
7672
7673 error (_("Type %s is not a structure or union type"),
7674 type != NULL ? type_as_string (type).c_str () : _("(null)"));
7675 }
7676
7677 type = to_static_fixed_type (type);
7678
7679 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
7680 {
7681 const char *t_field_name = TYPE_FIELD_NAME (type, i);
7682 struct type *t;
7683
7684 if (t_field_name == NULL)
7685 continue;
7686
7687 else if (ada_is_parent_field (type, i))
7688 {
7689 /* This is a field pointing us to the parent type of a tagged
7690 type. As hinted in this function's documentation, we give
7691 preference to fields in the current record first, so what
7692 we do here is just record the index of this field before
7693 we skip it. If it turns out we couldn't find our field
7694 in the current record, then we'll get back to it and search
7695 inside it whether the field might exist in the parent. */
7696
7697 parent_offset = i;
7698 continue;
7699 }
7700
7701 else if (field_name_match (t_field_name, name))
7702 return TYPE_FIELD_TYPE (type, i);
7703
7704 else if (ada_is_wrapper_field (type, i))
7705 {
7706 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name,
7707 0, 1);
7708 if (t != NULL)
7709 return t;
7710 }
7711
7712 else if (ada_is_variant_part (type, i))
7713 {
7714 int j;
7715 struct type *field_type = ada_check_typedef (TYPE_FIELD_TYPE (type,
7716 i));
7717
7718 for (j = TYPE_NFIELDS (field_type) - 1; j >= 0; j -= 1)
7719 {
7720 /* FIXME pnh 2008/01/26: We check for a field that is
7721 NOT wrapped in a struct, since the compiler sometimes
7722 generates these for unchecked variant types. Revisit
7723 if the compiler changes this practice. */
7724 const char *v_field_name = TYPE_FIELD_NAME (field_type, j);
7725
7726 if (v_field_name != NULL
7727 && field_name_match (v_field_name, name))
7728 t = TYPE_FIELD_TYPE (field_type, j);
7729 else
7730 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (field_type,
7731 j),
7732 name, 0, 1);
7733
7734 if (t != NULL)
7735 return t;
7736 }
7737 }
7738
7739 }
7740
7741 /* Field not found so far. If this is a tagged type which
7742 has a parent, try finding that field in the parent now. */
7743
7744 if (parent_offset != -1)
7745 {
7746 struct type *t;
7747
7748 t = ada_lookup_struct_elt_type (TYPE_FIELD_TYPE (type, parent_offset),
7749 name, 0, 1);
7750 if (t != NULL)
7751 return t;
7752 }
7753
7754 BadName:
7755 if (!noerr)
7756 {
7757 const char *name_str = name != NULL ? name : _("<null>");
7758
7759 error (_("Type %s has no component named %s"),
7760 type_as_string (type).c_str (), name_str);
7761 }
7762
7763 return NULL;
7764 }
7765
7766 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7767 within a value of type OUTER_TYPE, return true iff VAR_TYPE
7768 represents an unchecked union (that is, the variant part of a
7769 record that is named in an Unchecked_Union pragma). */
7770
7771 static int
7772 is_unchecked_variant (struct type *var_type, struct type *outer_type)
7773 {
7774 const char *discrim_name = ada_variant_discrim_name (var_type);
7775
7776 return (ada_lookup_struct_elt_type (outer_type, discrim_name, 0, 1) == NULL);
7777 }
7778
7779
7780 /* Assuming that VAR_TYPE is the type of a variant part of a record (a union),
7781 within a value of type OUTER_TYPE that is stored in GDB at
7782 OUTER_VALADDR, determine which variant clause (field number in VAR_TYPE,
7783 numbering from 0) is applicable. Returns -1 if none are. */
7784
7785 int
7786 ada_which_variant_applies (struct type *var_type, struct type *outer_type,
7787 const gdb_byte *outer_valaddr)
7788 {
7789 int others_clause;
7790 int i;
7791 const char *discrim_name = ada_variant_discrim_name (var_type);
7792 struct value *outer;
7793 struct value *discrim;
7794 LONGEST discrim_val;
7795
7796 /* Using plain value_from_contents_and_address here causes problems
7797 because we will end up trying to resolve a type that is currently
7798 being constructed. */
7799 outer = value_from_contents_and_address_unresolved (outer_type,
7800 outer_valaddr, 0);
7801 discrim = ada_value_struct_elt (outer, discrim_name, 1);
7802 if (discrim == NULL)
7803 return -1;
7804 discrim_val = value_as_long (discrim);
7805
7806 others_clause = -1;
7807 for (i = 0; i < TYPE_NFIELDS (var_type); i += 1)
7808 {
7809 if (ada_is_others_clause (var_type, i))
7810 others_clause = i;
7811 else if (ada_in_variant (discrim_val, var_type, i))
7812 return i;
7813 }
7814
7815 return others_clause;
7816 }
7817 \f
7818
7819
7820 /* Dynamic-Sized Records */
7821
7822 /* Strategy: The type ostensibly attached to a value with dynamic size
7823 (i.e., a size that is not statically recorded in the debugging
7824 data) does not accurately reflect the size or layout of the value.
7825 Our strategy is to convert these values to values with accurate,
7826 conventional types that are constructed on the fly. */
7827
7828 /* There is a subtle and tricky problem here. In general, we cannot
7829 determine the size of dynamic records without its data. However,
7830 the 'struct value' data structure, which GDB uses to represent
7831 quantities in the inferior process (the target), requires the size
7832 of the type at the time of its allocation in order to reserve space
7833 for GDB's internal copy of the data. That's why the
7834 'to_fixed_xxx_type' routines take (target) addresses as parameters,
7835 rather than struct value*s.
7836
7837 However, GDB's internal history variables ($1, $2, etc.) are
7838 struct value*s containing internal copies of the data that are not, in
7839 general, the same as the data at their corresponding addresses in
7840 the target. Fortunately, the types we give to these values are all
7841 conventional, fixed-size types (as per the strategy described
7842 above), so that we don't usually have to perform the
7843 'to_fixed_xxx_type' conversions to look at their values.
7844 Unfortunately, there is one exception: if one of the internal
7845 history variables is an array whose elements are unconstrained
7846 records, then we will need to create distinct fixed types for each
7847 element selected. */
7848
7849 /* The upshot of all of this is that many routines take a (type, host
7850 address, target address) triple as arguments to represent a value.
7851 The host address, if non-null, is supposed to contain an internal
7852 copy of the relevant data; otherwise, the program is to consult the
7853 target at the target address. */
7854
7855 /* Assuming that VAL0 represents a pointer value, the result of
7856 dereferencing it. Differs from value_ind in its treatment of
7857 dynamic-sized types. */
7858
7859 struct value *
7860 ada_value_ind (struct value *val0)
7861 {
7862 struct value *val = value_ind (val0);
7863
7864 if (ada_is_tagged_type (value_type (val), 0))
7865 val = ada_tag_value_at_base_address (val);
7866
7867 return ada_to_fixed_value (val);
7868 }
7869
7870 /* The value resulting from dereferencing any "reference to"
7871 qualifiers on VAL0. */
7872
7873 static struct value *
7874 ada_coerce_ref (struct value *val0)
7875 {
7876 if (TYPE_CODE (value_type (val0)) == TYPE_CODE_REF)
7877 {
7878 struct value *val = val0;
7879
7880 val = coerce_ref (val);
7881
7882 if (ada_is_tagged_type (value_type (val), 0))
7883 val = ada_tag_value_at_base_address (val);
7884
7885 return ada_to_fixed_value (val);
7886 }
7887 else
7888 return val0;
7889 }
7890
7891 /* Return OFF rounded upward if necessary to a multiple of
7892 ALIGNMENT (a power of 2). */
7893
7894 static unsigned int
7895 align_value (unsigned int off, unsigned int alignment)
7896 {
7897 return (off + alignment - 1) & ~(alignment - 1);
7898 }
7899
7900 /* Return the bit alignment required for field #F of template type TYPE. */
7901
7902 static unsigned int
7903 field_alignment (struct type *type, int f)
7904 {
7905 const char *name = TYPE_FIELD_NAME (type, f);
7906 int len;
7907 int align_offset;
7908
7909 /* The field name should never be null, unless the debugging information
7910 is somehow malformed. In this case, we assume the field does not
7911 require any alignment. */
7912 if (name == NULL)
7913 return 1;
7914
7915 len = strlen (name);
7916
7917 if (!isdigit (name[len - 1]))
7918 return 1;
7919
7920 if (isdigit (name[len - 2]))
7921 align_offset = len - 2;
7922 else
7923 align_offset = len - 1;
7924
7925 if (align_offset < 7 || !startswith (name + align_offset - 6, "___XV"))
7926 return TARGET_CHAR_BIT;
7927
7928 return atoi (name + align_offset) * TARGET_CHAR_BIT;
7929 }
7930
7931 /* Find a typedef or tag symbol named NAME. Ignores ambiguity. */
7932
7933 static struct symbol *
7934 ada_find_any_type_symbol (const char *name)
7935 {
7936 struct symbol *sym;
7937
7938 sym = standard_lookup (name, get_selected_block (NULL), VAR_DOMAIN);
7939 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
7940 return sym;
7941
7942 sym = standard_lookup (name, NULL, STRUCT_DOMAIN);
7943 return sym;
7944 }
7945
7946 /* Find a type named NAME. Ignores ambiguity. This routine will look
7947 solely for types defined by debug info, it will not search the GDB
7948 primitive types. */
7949
7950 static struct type *
7951 ada_find_any_type (const char *name)
7952 {
7953 struct symbol *sym = ada_find_any_type_symbol (name);
7954
7955 if (sym != NULL)
7956 return SYMBOL_TYPE (sym);
7957
7958 return NULL;
7959 }
7960
7961 /* Given NAME_SYM and an associated BLOCK, find a "renaming" symbol
7962 associated with NAME_SYM's name. NAME_SYM may itself be a renaming
7963 symbol, in which case it is returned. Otherwise, this looks for
7964 symbols whose name is that of NAME_SYM suffixed with "___XR".
7965 Return symbol if found, and NULL otherwise. */
7966
7967 struct symbol *
7968 ada_find_renaming_symbol (struct symbol *name_sym, const struct block *block)
7969 {
7970 const char *name = SYMBOL_LINKAGE_NAME (name_sym);
7971 struct symbol *sym;
7972
7973 if (strstr (name, "___XR") != NULL)
7974 return name_sym;
7975
7976 sym = find_old_style_renaming_symbol (name, block);
7977
7978 if (sym != NULL)
7979 return sym;
7980
7981 /* Not right yet. FIXME pnh 7/20/2007. */
7982 sym = ada_find_any_type_symbol (name);
7983 if (sym != NULL && strstr (SYMBOL_LINKAGE_NAME (sym), "___XR") != NULL)
7984 return sym;
7985 else
7986 return NULL;
7987 }
7988
7989 static struct symbol *
7990 find_old_style_renaming_symbol (const char *name, const struct block *block)
7991 {
7992 const struct symbol *function_sym = block_linkage_function (block);
7993 char *rename;
7994
7995 if (function_sym != NULL)
7996 {
7997 /* If the symbol is defined inside a function, NAME is not fully
7998 qualified. This means we need to prepend the function name
7999 as well as adding the ``___XR'' suffix to build the name of
8000 the associated renaming symbol. */
8001 const char *function_name = SYMBOL_LINKAGE_NAME (function_sym);
8002 /* Function names sometimes contain suffixes used
8003 for instance to qualify nested subprograms. When building
8004 the XR type name, we need to make sure that this suffix is
8005 not included. So do not include any suffix in the function
8006 name length below. */
8007 int function_name_len = ada_name_prefix_len (function_name);
8008 const int rename_len = function_name_len + 2 /* "__" */
8009 + strlen (name) + 6 /* "___XR\0" */ ;
8010
8011 /* Strip the suffix if necessary. */
8012 ada_remove_trailing_digits (function_name, &function_name_len);
8013 ada_remove_po_subprogram_suffix (function_name, &function_name_len);
8014 ada_remove_Xbn_suffix (function_name, &function_name_len);
8015
8016 /* Library-level functions are a special case, as GNAT adds
8017 a ``_ada_'' prefix to the function name to avoid namespace
8018 pollution. However, the renaming symbols themselves do not
8019 have this prefix, so we need to skip this prefix if present. */
8020 if (function_name_len > 5 /* "_ada_" */
8021 && strstr (function_name, "_ada_") == function_name)
8022 {
8023 function_name += 5;
8024 function_name_len -= 5;
8025 }
8026
8027 rename = (char *) alloca (rename_len * sizeof (char));
8028 strncpy (rename, function_name, function_name_len);
8029 xsnprintf (rename + function_name_len, rename_len - function_name_len,
8030 "__%s___XR", name);
8031 }
8032 else
8033 {
8034 const int rename_len = strlen (name) + 6;
8035
8036 rename = (char *) alloca (rename_len * sizeof (char));
8037 xsnprintf (rename, rename_len * sizeof (char), "%s___XR", name);
8038 }
8039
8040 return ada_find_any_type_symbol (rename);
8041 }
8042
8043 /* Because of GNAT encoding conventions, several GDB symbols may match a
8044 given type name. If the type denoted by TYPE0 is to be preferred to
8045 that of TYPE1 for purposes of type printing, return non-zero;
8046 otherwise return 0. */
8047
8048 int
8049 ada_prefer_type (struct type *type0, struct type *type1)
8050 {
8051 if (type1 == NULL)
8052 return 1;
8053 else if (type0 == NULL)
8054 return 0;
8055 else if (TYPE_CODE (type1) == TYPE_CODE_VOID)
8056 return 1;
8057 else if (TYPE_CODE (type0) == TYPE_CODE_VOID)
8058 return 0;
8059 else if (TYPE_NAME (type1) == NULL && TYPE_NAME (type0) != NULL)
8060 return 1;
8061 else if (ada_is_constrained_packed_array_type (type0))
8062 return 1;
8063 else if (ada_is_array_descriptor_type (type0)
8064 && !ada_is_array_descriptor_type (type1))
8065 return 1;
8066 else
8067 {
8068 const char *type0_name = TYPE_NAME (type0);
8069 const char *type1_name = TYPE_NAME (type1);
8070
8071 if (type0_name != NULL && strstr (type0_name, "___XR") != NULL
8072 && (type1_name == NULL || strstr (type1_name, "___XR") == NULL))
8073 return 1;
8074 }
8075 return 0;
8076 }
8077
8078 /* The name of TYPE, which is its TYPE_NAME. Null if TYPE is
8079 null. */
8080
8081 const char *
8082 ada_type_name (struct type *type)
8083 {
8084 if (type == NULL)
8085 return NULL;
8086 return TYPE_NAME (type);
8087 }
8088
8089 /* Search the list of "descriptive" types associated to TYPE for a type
8090 whose name is NAME. */
8091
8092 static struct type *
8093 find_parallel_type_by_descriptive_type (struct type *type, const char *name)
8094 {
8095 struct type *result, *tmp;
8096
8097 if (ada_ignore_descriptive_types_p)
8098 return NULL;
8099
8100 /* If there no descriptive-type info, then there is no parallel type
8101 to be found. */
8102 if (!HAVE_GNAT_AUX_INFO (type))
8103 return NULL;
8104
8105 result = TYPE_DESCRIPTIVE_TYPE (type);
8106 while (result != NULL)
8107 {
8108 const char *result_name = ada_type_name (result);
8109
8110 if (result_name == NULL)
8111 {
8112 warning (_("unexpected null name on descriptive type"));
8113 return NULL;
8114 }
8115
8116 /* If the names match, stop. */
8117 if (strcmp (result_name, name) == 0)
8118 break;
8119
8120 /* Otherwise, look at the next item on the list, if any. */
8121 if (HAVE_GNAT_AUX_INFO (result))
8122 tmp = TYPE_DESCRIPTIVE_TYPE (result);
8123 else
8124 tmp = NULL;
8125
8126 /* If not found either, try after having resolved the typedef. */
8127 if (tmp != NULL)
8128 result = tmp;
8129 else
8130 {
8131 result = check_typedef (result);
8132 if (HAVE_GNAT_AUX_INFO (result))
8133 result = TYPE_DESCRIPTIVE_TYPE (result);
8134 else
8135 result = NULL;
8136 }
8137 }
8138
8139 /* If we didn't find a match, see whether this is a packed array. With
8140 older compilers, the descriptive type information is either absent or
8141 irrelevant when it comes to packed arrays so the above lookup fails.
8142 Fall back to using a parallel lookup by name in this case. */
8143 if (result == NULL && ada_is_constrained_packed_array_type (type))
8144 return ada_find_any_type (name);
8145
8146 return result;
8147 }
8148
8149 /* Find a parallel type to TYPE with the specified NAME, using the
8150 descriptive type taken from the debugging information, if available,
8151 and otherwise using the (slower) name-based method. */
8152
8153 static struct type *
8154 ada_find_parallel_type_with_name (struct type *type, const char *name)
8155 {
8156 struct type *result = NULL;
8157
8158 if (HAVE_GNAT_AUX_INFO (type))
8159 result = find_parallel_type_by_descriptive_type (type, name);
8160 else
8161 result = ada_find_any_type (name);
8162
8163 return result;
8164 }
8165
8166 /* Same as above, but specify the name of the parallel type by appending
8167 SUFFIX to the name of TYPE. */
8168
8169 struct type *
8170 ada_find_parallel_type (struct type *type, const char *suffix)
8171 {
8172 char *name;
8173 const char *type_name = ada_type_name (type);
8174 int len;
8175
8176 if (type_name == NULL)
8177 return NULL;
8178
8179 len = strlen (type_name);
8180
8181 name = (char *) alloca (len + strlen (suffix) + 1);
8182
8183 strcpy (name, type_name);
8184 strcpy (name + len, suffix);
8185
8186 return ada_find_parallel_type_with_name (type, name);
8187 }
8188
8189 /* If TYPE is a variable-size record type, return the corresponding template
8190 type describing its fields. Otherwise, return NULL. */
8191
8192 static struct type *
8193 dynamic_template_type (struct type *type)
8194 {
8195 type = ada_check_typedef (type);
8196
8197 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT
8198 || ada_type_name (type) == NULL)
8199 return NULL;
8200 else
8201 {
8202 int len = strlen (ada_type_name (type));
8203
8204 if (len > 6 && strcmp (ada_type_name (type) + len - 6, "___XVE") == 0)
8205 return type;
8206 else
8207 return ada_find_parallel_type (type, "___XVE");
8208 }
8209 }
8210
8211 /* Assuming that TEMPL_TYPE is a union or struct type, returns
8212 non-zero iff field FIELD_NUM of TEMPL_TYPE has dynamic size. */
8213
8214 static int
8215 is_dynamic_field (struct type *templ_type, int field_num)
8216 {
8217 const char *name = TYPE_FIELD_NAME (templ_type, field_num);
8218
8219 return name != NULL
8220 && TYPE_CODE (TYPE_FIELD_TYPE (templ_type, field_num)) == TYPE_CODE_PTR
8221 && strstr (name, "___XVL") != NULL;
8222 }
8223
8224 /* The index of the variant field of TYPE, or -1 if TYPE does not
8225 represent a variant record type. */
8226
8227 static int
8228 variant_field_index (struct type *type)
8229 {
8230 int f;
8231
8232 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_STRUCT)
8233 return -1;
8234
8235 for (f = 0; f < TYPE_NFIELDS (type); f += 1)
8236 {
8237 if (ada_is_variant_part (type, f))
8238 return f;
8239 }
8240 return -1;
8241 }
8242
8243 /* A record type with no fields. */
8244
8245 static struct type *
8246 empty_record (struct type *templ)
8247 {
8248 struct type *type = alloc_type_copy (templ);
8249
8250 TYPE_CODE (type) = TYPE_CODE_STRUCT;
8251 TYPE_NFIELDS (type) = 0;
8252 TYPE_FIELDS (type) = NULL;
8253 INIT_CPLUS_SPECIFIC (type);
8254 TYPE_NAME (type) = "<empty>";
8255 TYPE_LENGTH (type) = 0;
8256 return type;
8257 }
8258
8259 /* An ordinary record type (with fixed-length fields) that describes
8260 the value of type TYPE at VALADDR or ADDRESS (see comments at
8261 the beginning of this section) VAL according to GNAT conventions.
8262 DVAL0 should describe the (portion of a) record that contains any
8263 necessary discriminants. It should be NULL if value_type (VAL) is
8264 an outer-level type (i.e., as opposed to a branch of a variant.) A
8265 variant field (unless unchecked) is replaced by a particular branch
8266 of the variant.
8267
8268 If not KEEP_DYNAMIC_FIELDS, then all fields whose position or
8269 length are not statically known are discarded. As a consequence,
8270 VALADDR, ADDRESS and DVAL0 are ignored.
8271
8272 NOTE: Limitations: For now, we assume that dynamic fields and
8273 variants occupy whole numbers of bytes. However, they need not be
8274 byte-aligned. */
8275
8276 struct type *
8277 ada_template_to_fixed_record_type_1 (struct type *type,
8278 const gdb_byte *valaddr,
8279 CORE_ADDR address, struct value *dval0,
8280 int keep_dynamic_fields)
8281 {
8282 struct value *mark = value_mark ();
8283 struct value *dval;
8284 struct type *rtype;
8285 int nfields, bit_len;
8286 int variant_field;
8287 long off;
8288 int fld_bit_len;
8289 int f;
8290
8291 /* Compute the number of fields in this record type that are going
8292 to be processed: unless keep_dynamic_fields, this includes only
8293 fields whose position and length are static will be processed. */
8294 if (keep_dynamic_fields)
8295 nfields = TYPE_NFIELDS (type);
8296 else
8297 {
8298 nfields = 0;
8299 while (nfields < TYPE_NFIELDS (type)
8300 && !ada_is_variant_part (type, nfields)
8301 && !is_dynamic_field (type, nfields))
8302 nfields++;
8303 }
8304
8305 rtype = alloc_type_copy (type);
8306 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8307 INIT_CPLUS_SPECIFIC (rtype);
8308 TYPE_NFIELDS (rtype) = nfields;
8309 TYPE_FIELDS (rtype) = (struct field *)
8310 TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8311 memset (TYPE_FIELDS (rtype), 0, sizeof (struct field) * nfields);
8312 TYPE_NAME (rtype) = ada_type_name (type);
8313 TYPE_FIXED_INSTANCE (rtype) = 1;
8314
8315 off = 0;
8316 bit_len = 0;
8317 variant_field = -1;
8318
8319 for (f = 0; f < nfields; f += 1)
8320 {
8321 off = align_value (off, field_alignment (type, f))
8322 + TYPE_FIELD_BITPOS (type, f);
8323 SET_FIELD_BITPOS (TYPE_FIELD (rtype, f), off);
8324 TYPE_FIELD_BITSIZE (rtype, f) = 0;
8325
8326 if (ada_is_variant_part (type, f))
8327 {
8328 variant_field = f;
8329 fld_bit_len = 0;
8330 }
8331 else if (is_dynamic_field (type, f))
8332 {
8333 const gdb_byte *field_valaddr = valaddr;
8334 CORE_ADDR field_address = address;
8335 struct type *field_type =
8336 TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type, f));
8337
8338 if (dval0 == NULL)
8339 {
8340 /* rtype's length is computed based on the run-time
8341 value of discriminants. If the discriminants are not
8342 initialized, the type size may be completely bogus and
8343 GDB may fail to allocate a value for it. So check the
8344 size first before creating the value. */
8345 ada_ensure_varsize_limit (rtype);
8346 /* Using plain value_from_contents_and_address here
8347 causes problems because we will end up trying to
8348 resolve a type that is currently being
8349 constructed. */
8350 dval = value_from_contents_and_address_unresolved (rtype,
8351 valaddr,
8352 address);
8353 rtype = value_type (dval);
8354 }
8355 else
8356 dval = dval0;
8357
8358 /* If the type referenced by this field is an aligner type, we need
8359 to unwrap that aligner type, because its size might not be set.
8360 Keeping the aligner type would cause us to compute the wrong
8361 size for this field, impacting the offset of the all the fields
8362 that follow this one. */
8363 if (ada_is_aligner_type (field_type))
8364 {
8365 long field_offset = TYPE_FIELD_BITPOS (field_type, f);
8366
8367 field_valaddr = cond_offset_host (field_valaddr, field_offset);
8368 field_address = cond_offset_target (field_address, field_offset);
8369 field_type = ada_aligned_type (field_type);
8370 }
8371
8372 field_valaddr = cond_offset_host (field_valaddr,
8373 off / TARGET_CHAR_BIT);
8374 field_address = cond_offset_target (field_address,
8375 off / TARGET_CHAR_BIT);
8376
8377 /* Get the fixed type of the field. Note that, in this case,
8378 we do not want to get the real type out of the tag: if
8379 the current field is the parent part of a tagged record,
8380 we will get the tag of the object. Clearly wrong: the real
8381 type of the parent is not the real type of the child. We
8382 would end up in an infinite loop. */
8383 field_type = ada_get_base_type (field_type);
8384 field_type = ada_to_fixed_type (field_type, field_valaddr,
8385 field_address, dval, 0);
8386 /* If the field size is already larger than the maximum
8387 object size, then the record itself will necessarily
8388 be larger than the maximum object size. We need to make
8389 this check now, because the size might be so ridiculously
8390 large (due to an uninitialized variable in the inferior)
8391 that it would cause an overflow when adding it to the
8392 record size. */
8393 ada_ensure_varsize_limit (field_type);
8394
8395 TYPE_FIELD_TYPE (rtype, f) = field_type;
8396 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8397 /* The multiplication can potentially overflow. But because
8398 the field length has been size-checked just above, and
8399 assuming that the maximum size is a reasonable value,
8400 an overflow should not happen in practice. So rather than
8401 adding overflow recovery code to this already complex code,
8402 we just assume that it's not going to happen. */
8403 fld_bit_len =
8404 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, f)) * TARGET_CHAR_BIT;
8405 }
8406 else
8407 {
8408 /* Note: If this field's type is a typedef, it is important
8409 to preserve the typedef layer.
8410
8411 Otherwise, we might be transforming a typedef to a fat
8412 pointer (encoding a pointer to an unconstrained array),
8413 into a basic fat pointer (encoding an unconstrained
8414 array). As both types are implemented using the same
8415 structure, the typedef is the only clue which allows us
8416 to distinguish between the two options. Stripping it
8417 would prevent us from printing this field appropriately. */
8418 TYPE_FIELD_TYPE (rtype, f) = TYPE_FIELD_TYPE (type, f);
8419 TYPE_FIELD_NAME (rtype, f) = TYPE_FIELD_NAME (type, f);
8420 if (TYPE_FIELD_BITSIZE (type, f) > 0)
8421 fld_bit_len =
8422 TYPE_FIELD_BITSIZE (rtype, f) = TYPE_FIELD_BITSIZE (type, f);
8423 else
8424 {
8425 struct type *field_type = TYPE_FIELD_TYPE (type, f);
8426
8427 /* We need to be careful of typedefs when computing
8428 the length of our field. If this is a typedef,
8429 get the length of the target type, not the length
8430 of the typedef. */
8431 if (TYPE_CODE (field_type) == TYPE_CODE_TYPEDEF)
8432 field_type = ada_typedef_target_type (field_type);
8433
8434 fld_bit_len =
8435 TYPE_LENGTH (ada_check_typedef (field_type)) * TARGET_CHAR_BIT;
8436 }
8437 }
8438 if (off + fld_bit_len > bit_len)
8439 bit_len = off + fld_bit_len;
8440 off += fld_bit_len;
8441 TYPE_LENGTH (rtype) =
8442 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8443 }
8444
8445 /* We handle the variant part, if any, at the end because of certain
8446 odd cases in which it is re-ordered so as NOT to be the last field of
8447 the record. This can happen in the presence of representation
8448 clauses. */
8449 if (variant_field >= 0)
8450 {
8451 struct type *branch_type;
8452
8453 off = TYPE_FIELD_BITPOS (rtype, variant_field);
8454
8455 if (dval0 == NULL)
8456 {
8457 /* Using plain value_from_contents_and_address here causes
8458 problems because we will end up trying to resolve a type
8459 that is currently being constructed. */
8460 dval = value_from_contents_and_address_unresolved (rtype, valaddr,
8461 address);
8462 rtype = value_type (dval);
8463 }
8464 else
8465 dval = dval0;
8466
8467 branch_type =
8468 to_fixed_variant_branch_type
8469 (TYPE_FIELD_TYPE (type, variant_field),
8470 cond_offset_host (valaddr, off / TARGET_CHAR_BIT),
8471 cond_offset_target (address, off / TARGET_CHAR_BIT), dval);
8472 if (branch_type == NULL)
8473 {
8474 for (f = variant_field + 1; f < TYPE_NFIELDS (rtype); f += 1)
8475 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8476 TYPE_NFIELDS (rtype) -= 1;
8477 }
8478 else
8479 {
8480 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8481 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8482 fld_bit_len =
8483 TYPE_LENGTH (TYPE_FIELD_TYPE (rtype, variant_field)) *
8484 TARGET_CHAR_BIT;
8485 if (off + fld_bit_len > bit_len)
8486 bit_len = off + fld_bit_len;
8487 TYPE_LENGTH (rtype) =
8488 align_value (bit_len, TARGET_CHAR_BIT) / TARGET_CHAR_BIT;
8489 }
8490 }
8491
8492 /* According to exp_dbug.ads, the size of TYPE for variable-size records
8493 should contain the alignment of that record, which should be a strictly
8494 positive value. If null or negative, then something is wrong, most
8495 probably in the debug info. In that case, we don't round up the size
8496 of the resulting type. If this record is not part of another structure,
8497 the current RTYPE length might be good enough for our purposes. */
8498 if (TYPE_LENGTH (type) <= 0)
8499 {
8500 if (TYPE_NAME (rtype))
8501 warning (_("Invalid type size for `%s' detected: %d."),
8502 TYPE_NAME (rtype), TYPE_LENGTH (type));
8503 else
8504 warning (_("Invalid type size for <unnamed> detected: %d."),
8505 TYPE_LENGTH (type));
8506 }
8507 else
8508 {
8509 TYPE_LENGTH (rtype) = align_value (TYPE_LENGTH (rtype),
8510 TYPE_LENGTH (type));
8511 }
8512
8513 value_free_to_mark (mark);
8514 if (TYPE_LENGTH (rtype) > varsize_limit)
8515 error (_("record type with dynamic size is larger than varsize-limit"));
8516 return rtype;
8517 }
8518
8519 /* As for ada_template_to_fixed_record_type_1 with KEEP_DYNAMIC_FIELDS
8520 of 1. */
8521
8522 static struct type *
8523 template_to_fixed_record_type (struct type *type, const gdb_byte *valaddr,
8524 CORE_ADDR address, struct value *dval0)
8525 {
8526 return ada_template_to_fixed_record_type_1 (type, valaddr,
8527 address, dval0, 1);
8528 }
8529
8530 /* An ordinary record type in which ___XVL-convention fields and
8531 ___XVU- and ___XVN-convention field types in TYPE0 are replaced with
8532 static approximations, containing all possible fields. Uses
8533 no runtime values. Useless for use in values, but that's OK,
8534 since the results are used only for type determinations. Works on both
8535 structs and unions. Representation note: to save space, we memorize
8536 the result of this function in the TYPE_TARGET_TYPE of the
8537 template type. */
8538
8539 static struct type *
8540 template_to_static_fixed_type (struct type *type0)
8541 {
8542 struct type *type;
8543 int nfields;
8544 int f;
8545
8546 /* No need no do anything if the input type is already fixed. */
8547 if (TYPE_FIXED_INSTANCE (type0))
8548 return type0;
8549
8550 /* Likewise if we already have computed the static approximation. */
8551 if (TYPE_TARGET_TYPE (type0) != NULL)
8552 return TYPE_TARGET_TYPE (type0);
8553
8554 /* Don't clone TYPE0 until we are sure we are going to need a copy. */
8555 type = type0;
8556 nfields = TYPE_NFIELDS (type0);
8557
8558 /* Whether or not we cloned TYPE0, cache the result so that we don't do
8559 recompute all over next time. */
8560 TYPE_TARGET_TYPE (type0) = type;
8561
8562 for (f = 0; f < nfields; f += 1)
8563 {
8564 struct type *field_type = TYPE_FIELD_TYPE (type0, f);
8565 struct type *new_type;
8566
8567 if (is_dynamic_field (type0, f))
8568 {
8569 field_type = ada_check_typedef (field_type);
8570 new_type = to_static_fixed_type (TYPE_TARGET_TYPE (field_type));
8571 }
8572 else
8573 new_type = static_unwrap_type (field_type);
8574
8575 if (new_type != field_type)
8576 {
8577 /* Clone TYPE0 only the first time we get a new field type. */
8578 if (type == type0)
8579 {
8580 TYPE_TARGET_TYPE (type0) = type = alloc_type_copy (type0);
8581 TYPE_CODE (type) = TYPE_CODE (type0);
8582 INIT_CPLUS_SPECIFIC (type);
8583 TYPE_NFIELDS (type) = nfields;
8584 TYPE_FIELDS (type) = (struct field *)
8585 TYPE_ALLOC (type, nfields * sizeof (struct field));
8586 memcpy (TYPE_FIELDS (type), TYPE_FIELDS (type0),
8587 sizeof (struct field) * nfields);
8588 TYPE_NAME (type) = ada_type_name (type0);
8589 TYPE_FIXED_INSTANCE (type) = 1;
8590 TYPE_LENGTH (type) = 0;
8591 }
8592 TYPE_FIELD_TYPE (type, f) = new_type;
8593 TYPE_FIELD_NAME (type, f) = TYPE_FIELD_NAME (type0, f);
8594 }
8595 }
8596
8597 return type;
8598 }
8599
8600 /* Given an object of type TYPE whose contents are at VALADDR and
8601 whose address in memory is ADDRESS, returns a revision of TYPE,
8602 which should be a non-dynamic-sized record, in which the variant
8603 part, if any, is replaced with the appropriate branch. Looks
8604 for discriminant values in DVAL0, which can be NULL if the record
8605 contains the necessary discriminant values. */
8606
8607 static struct type *
8608 to_record_with_fixed_variant_part (struct type *type, const gdb_byte *valaddr,
8609 CORE_ADDR address, struct value *dval0)
8610 {
8611 struct value *mark = value_mark ();
8612 struct value *dval;
8613 struct type *rtype;
8614 struct type *branch_type;
8615 int nfields = TYPE_NFIELDS (type);
8616 int variant_field = variant_field_index (type);
8617
8618 if (variant_field == -1)
8619 return type;
8620
8621 if (dval0 == NULL)
8622 {
8623 dval = value_from_contents_and_address (type, valaddr, address);
8624 type = value_type (dval);
8625 }
8626 else
8627 dval = dval0;
8628
8629 rtype = alloc_type_copy (type);
8630 TYPE_CODE (rtype) = TYPE_CODE_STRUCT;
8631 INIT_CPLUS_SPECIFIC (rtype);
8632 TYPE_NFIELDS (rtype) = nfields;
8633 TYPE_FIELDS (rtype) =
8634 (struct field *) TYPE_ALLOC (rtype, nfields * sizeof (struct field));
8635 memcpy (TYPE_FIELDS (rtype), TYPE_FIELDS (type),
8636 sizeof (struct field) * nfields);
8637 TYPE_NAME (rtype) = ada_type_name (type);
8638 TYPE_FIXED_INSTANCE (rtype) = 1;
8639 TYPE_LENGTH (rtype) = TYPE_LENGTH (type);
8640
8641 branch_type = to_fixed_variant_branch_type
8642 (TYPE_FIELD_TYPE (type, variant_field),
8643 cond_offset_host (valaddr,
8644 TYPE_FIELD_BITPOS (type, variant_field)
8645 / TARGET_CHAR_BIT),
8646 cond_offset_target (address,
8647 TYPE_FIELD_BITPOS (type, variant_field)
8648 / TARGET_CHAR_BIT), dval);
8649 if (branch_type == NULL)
8650 {
8651 int f;
8652
8653 for (f = variant_field + 1; f < nfields; f += 1)
8654 TYPE_FIELDS (rtype)[f - 1] = TYPE_FIELDS (rtype)[f];
8655 TYPE_NFIELDS (rtype) -= 1;
8656 }
8657 else
8658 {
8659 TYPE_FIELD_TYPE (rtype, variant_field) = branch_type;
8660 TYPE_FIELD_NAME (rtype, variant_field) = "S";
8661 TYPE_FIELD_BITSIZE (rtype, variant_field) = 0;
8662 TYPE_LENGTH (rtype) += TYPE_LENGTH (branch_type);
8663 }
8664 TYPE_LENGTH (rtype) -= TYPE_LENGTH (TYPE_FIELD_TYPE (type, variant_field));
8665
8666 value_free_to_mark (mark);
8667 return rtype;
8668 }
8669
8670 /* An ordinary record type (with fixed-length fields) that describes
8671 the value at (TYPE0, VALADDR, ADDRESS) [see explanation at
8672 beginning of this section]. Any necessary discriminants' values
8673 should be in DVAL, a record value; it may be NULL if the object
8674 at ADDR itself contains any necessary discriminant values.
8675 Additionally, VALADDR and ADDRESS may also be NULL if no discriminant
8676 values from the record are needed. Except in the case that DVAL,
8677 VALADDR, and ADDRESS are all 0 or NULL, a variant field (unless
8678 unchecked) is replaced by a particular branch of the variant.
8679
8680 NOTE: the case in which DVAL and VALADDR are NULL and ADDRESS is 0
8681 is questionable and may be removed. It can arise during the
8682 processing of an unconstrained-array-of-record type where all the
8683 variant branches have exactly the same size. This is because in
8684 such cases, the compiler does not bother to use the XVS convention
8685 when encoding the record. I am currently dubious of this
8686 shortcut and suspect the compiler should be altered. FIXME. */
8687
8688 static struct type *
8689 to_fixed_record_type (struct type *type0, const gdb_byte *valaddr,
8690 CORE_ADDR address, struct value *dval)
8691 {
8692 struct type *templ_type;
8693
8694 if (TYPE_FIXED_INSTANCE (type0))
8695 return type0;
8696
8697 templ_type = dynamic_template_type (type0);
8698
8699 if (templ_type != NULL)
8700 return template_to_fixed_record_type (templ_type, valaddr, address, dval);
8701 else if (variant_field_index (type0) >= 0)
8702 {
8703 if (dval == NULL && valaddr == NULL && address == 0)
8704 return type0;
8705 return to_record_with_fixed_variant_part (type0, valaddr, address,
8706 dval);
8707 }
8708 else
8709 {
8710 TYPE_FIXED_INSTANCE (type0) = 1;
8711 return type0;
8712 }
8713
8714 }
8715
8716 /* An ordinary record type (with fixed-length fields) that describes
8717 the value at (VAR_TYPE0, VALADDR, ADDRESS), where VAR_TYPE0 is a
8718 union type. Any necessary discriminants' values should be in DVAL,
8719 a record value. That is, this routine selects the appropriate
8720 branch of the union at ADDR according to the discriminant value
8721 indicated in the union's type name. Returns VAR_TYPE0 itself if
8722 it represents a variant subject to a pragma Unchecked_Union. */
8723
8724 static struct type *
8725 to_fixed_variant_branch_type (struct type *var_type0, const gdb_byte *valaddr,
8726 CORE_ADDR address, struct value *dval)
8727 {
8728 int which;
8729 struct type *templ_type;
8730 struct type *var_type;
8731
8732 if (TYPE_CODE (var_type0) == TYPE_CODE_PTR)
8733 var_type = TYPE_TARGET_TYPE (var_type0);
8734 else
8735 var_type = var_type0;
8736
8737 templ_type = ada_find_parallel_type (var_type, "___XVU");
8738
8739 if (templ_type != NULL)
8740 var_type = templ_type;
8741
8742 if (is_unchecked_variant (var_type, value_type (dval)))
8743 return var_type0;
8744 which =
8745 ada_which_variant_applies (var_type,
8746 value_type (dval), value_contents (dval));
8747
8748 if (which < 0)
8749 return empty_record (var_type);
8750 else if (is_dynamic_field (var_type, which))
8751 return to_fixed_record_type
8752 (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (var_type, which)),
8753 valaddr, address, dval);
8754 else if (variant_field_index (TYPE_FIELD_TYPE (var_type, which)) >= 0)
8755 return
8756 to_fixed_record_type
8757 (TYPE_FIELD_TYPE (var_type, which), valaddr, address, dval);
8758 else
8759 return TYPE_FIELD_TYPE (var_type, which);
8760 }
8761
8762 /* Assuming RANGE_TYPE is a TYPE_CODE_RANGE, return nonzero if
8763 ENCODING_TYPE, a type following the GNAT conventions for discrete
8764 type encodings, only carries redundant information. */
8765
8766 static int
8767 ada_is_redundant_range_encoding (struct type *range_type,
8768 struct type *encoding_type)
8769 {
8770 const char *bounds_str;
8771 int n;
8772 LONGEST lo, hi;
8773
8774 gdb_assert (TYPE_CODE (range_type) == TYPE_CODE_RANGE);
8775
8776 if (TYPE_CODE (get_base_type (range_type))
8777 != TYPE_CODE (get_base_type (encoding_type)))
8778 {
8779 /* The compiler probably used a simple base type to describe
8780 the range type instead of the range's actual base type,
8781 expecting us to get the real base type from the encoding
8782 anyway. In this situation, the encoding cannot be ignored
8783 as redundant. */
8784 return 0;
8785 }
8786
8787 if (is_dynamic_type (range_type))
8788 return 0;
8789
8790 if (TYPE_NAME (encoding_type) == NULL)
8791 return 0;
8792
8793 bounds_str = strstr (TYPE_NAME (encoding_type), "___XDLU_");
8794 if (bounds_str == NULL)
8795 return 0;
8796
8797 n = 8; /* Skip "___XDLU_". */
8798 if (!ada_scan_number (bounds_str, n, &lo, &n))
8799 return 0;
8800 if (TYPE_LOW_BOUND (range_type) != lo)
8801 return 0;
8802
8803 n += 2; /* Skip the "__" separator between the two bounds. */
8804 if (!ada_scan_number (bounds_str, n, &hi, &n))
8805 return 0;
8806 if (TYPE_HIGH_BOUND (range_type) != hi)
8807 return 0;
8808
8809 return 1;
8810 }
8811
8812 /* Given the array type ARRAY_TYPE, return nonzero if DESC_TYPE,
8813 a type following the GNAT encoding for describing array type
8814 indices, only carries redundant information. */
8815
8816 static int
8817 ada_is_redundant_index_type_desc (struct type *array_type,
8818 struct type *desc_type)
8819 {
8820 struct type *this_layer = check_typedef (array_type);
8821 int i;
8822
8823 for (i = 0; i < TYPE_NFIELDS (desc_type); i++)
8824 {
8825 if (!ada_is_redundant_range_encoding (TYPE_INDEX_TYPE (this_layer),
8826 TYPE_FIELD_TYPE (desc_type, i)))
8827 return 0;
8828 this_layer = check_typedef (TYPE_TARGET_TYPE (this_layer));
8829 }
8830
8831 return 1;
8832 }
8833
8834 /* Assuming that TYPE0 is an array type describing the type of a value
8835 at ADDR, and that DVAL describes a record containing any
8836 discriminants used in TYPE0, returns a type for the value that
8837 contains no dynamic components (that is, no components whose sizes
8838 are determined by run-time quantities). Unless IGNORE_TOO_BIG is
8839 true, gives an error message if the resulting type's size is over
8840 varsize_limit. */
8841
8842 static struct type *
8843 to_fixed_array_type (struct type *type0, struct value *dval,
8844 int ignore_too_big)
8845 {
8846 struct type *index_type_desc;
8847 struct type *result;
8848 int constrained_packed_array_p;
8849 static const char *xa_suffix = "___XA";
8850
8851 type0 = ada_check_typedef (type0);
8852 if (TYPE_FIXED_INSTANCE (type0))
8853 return type0;
8854
8855 constrained_packed_array_p = ada_is_constrained_packed_array_type (type0);
8856 if (constrained_packed_array_p)
8857 type0 = decode_constrained_packed_array_type (type0);
8858
8859 index_type_desc = ada_find_parallel_type (type0, xa_suffix);
8860
8861 /* As mentioned in exp_dbug.ads, for non bit-packed arrays an
8862 encoding suffixed with 'P' may still be generated. If so,
8863 it should be used to find the XA type. */
8864
8865 if (index_type_desc == NULL)
8866 {
8867 const char *type_name = ada_type_name (type0);
8868
8869 if (type_name != NULL)
8870 {
8871 const int len = strlen (type_name);
8872 char *name = (char *) alloca (len + strlen (xa_suffix));
8873
8874 if (type_name[len - 1] == 'P')
8875 {
8876 strcpy (name, type_name);
8877 strcpy (name + len - 1, xa_suffix);
8878 index_type_desc = ada_find_parallel_type_with_name (type0, name);
8879 }
8880 }
8881 }
8882
8883 ada_fixup_array_indexes_type (index_type_desc);
8884 if (index_type_desc != NULL
8885 && ada_is_redundant_index_type_desc (type0, index_type_desc))
8886 {
8887 /* Ignore this ___XA parallel type, as it does not bring any
8888 useful information. This allows us to avoid creating fixed
8889 versions of the array's index types, which would be identical
8890 to the original ones. This, in turn, can also help avoid
8891 the creation of fixed versions of the array itself. */
8892 index_type_desc = NULL;
8893 }
8894
8895 if (index_type_desc == NULL)
8896 {
8897 struct type *elt_type0 = ada_check_typedef (TYPE_TARGET_TYPE (type0));
8898
8899 /* NOTE: elt_type---the fixed version of elt_type0---should never
8900 depend on the contents of the array in properly constructed
8901 debugging data. */
8902 /* Create a fixed version of the array element type.
8903 We're not providing the address of an element here,
8904 and thus the actual object value cannot be inspected to do
8905 the conversion. This should not be a problem, since arrays of
8906 unconstrained objects are not allowed. In particular, all
8907 the elements of an array of a tagged type should all be of
8908 the same type specified in the debugging info. No need to
8909 consult the object tag. */
8910 struct type *elt_type = ada_to_fixed_type (elt_type0, 0, 0, dval, 1);
8911
8912 /* Make sure we always create a new array type when dealing with
8913 packed array types, since we're going to fix-up the array
8914 type length and element bitsize a little further down. */
8915 if (elt_type0 == elt_type && !constrained_packed_array_p)
8916 result = type0;
8917 else
8918 result = create_array_type (alloc_type_copy (type0),
8919 elt_type, TYPE_INDEX_TYPE (type0));
8920 }
8921 else
8922 {
8923 int i;
8924 struct type *elt_type0;
8925
8926 elt_type0 = type0;
8927 for (i = TYPE_NFIELDS (index_type_desc); i > 0; i -= 1)
8928 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8929
8930 /* NOTE: result---the fixed version of elt_type0---should never
8931 depend on the contents of the array in properly constructed
8932 debugging data. */
8933 /* Create a fixed version of the array element type.
8934 We're not providing the address of an element here,
8935 and thus the actual object value cannot be inspected to do
8936 the conversion. This should not be a problem, since arrays of
8937 unconstrained objects are not allowed. In particular, all
8938 the elements of an array of a tagged type should all be of
8939 the same type specified in the debugging info. No need to
8940 consult the object tag. */
8941 result =
8942 ada_to_fixed_type (ada_check_typedef (elt_type0), 0, 0, dval, 1);
8943
8944 elt_type0 = type0;
8945 for (i = TYPE_NFIELDS (index_type_desc) - 1; i >= 0; i -= 1)
8946 {
8947 struct type *range_type =
8948 to_fixed_range_type (TYPE_FIELD_TYPE (index_type_desc, i), dval);
8949
8950 result = create_array_type (alloc_type_copy (elt_type0),
8951 result, range_type);
8952 elt_type0 = TYPE_TARGET_TYPE (elt_type0);
8953 }
8954 if (!ignore_too_big && TYPE_LENGTH (result) > varsize_limit)
8955 error (_("array type with dynamic size is larger than varsize-limit"));
8956 }
8957
8958 /* We want to preserve the type name. This can be useful when
8959 trying to get the type name of a value that has already been
8960 printed (for instance, if the user did "print VAR; whatis $". */
8961 TYPE_NAME (result) = TYPE_NAME (type0);
8962
8963 if (constrained_packed_array_p)
8964 {
8965 /* So far, the resulting type has been created as if the original
8966 type was a regular (non-packed) array type. As a result, the
8967 bitsize of the array elements needs to be set again, and the array
8968 length needs to be recomputed based on that bitsize. */
8969 int len = TYPE_LENGTH (result) / TYPE_LENGTH (TYPE_TARGET_TYPE (result));
8970 int elt_bitsize = TYPE_FIELD_BITSIZE (type0, 0);
8971
8972 TYPE_FIELD_BITSIZE (result, 0) = TYPE_FIELD_BITSIZE (type0, 0);
8973 TYPE_LENGTH (result) = len * elt_bitsize / HOST_CHAR_BIT;
8974 if (TYPE_LENGTH (result) * HOST_CHAR_BIT < len * elt_bitsize)
8975 TYPE_LENGTH (result)++;
8976 }
8977
8978 TYPE_FIXED_INSTANCE (result) = 1;
8979 return result;
8980 }
8981
8982
8983 /* A standard type (containing no dynamically sized components)
8984 corresponding to TYPE for the value (TYPE, VALADDR, ADDRESS)
8985 DVAL describes a record containing any discriminants used in TYPE0,
8986 and may be NULL if there are none, or if the object of type TYPE at
8987 ADDRESS or in VALADDR contains these discriminants.
8988
8989 If CHECK_TAG is not null, in the case of tagged types, this function
8990 attempts to locate the object's tag and use it to compute the actual
8991 type. However, when ADDRESS is null, we cannot use it to determine the
8992 location of the tag, and therefore compute the tagged type's actual type.
8993 So we return the tagged type without consulting the tag. */
8994
8995 static struct type *
8996 ada_to_fixed_type_1 (struct type *type, const gdb_byte *valaddr,
8997 CORE_ADDR address, struct value *dval, int check_tag)
8998 {
8999 type = ada_check_typedef (type);
9000 switch (TYPE_CODE (type))
9001 {
9002 default:
9003 return type;
9004 case TYPE_CODE_STRUCT:
9005 {
9006 struct type *static_type = to_static_fixed_type (type);
9007 struct type *fixed_record_type =
9008 to_fixed_record_type (type, valaddr, address, NULL);
9009
9010 /* If STATIC_TYPE is a tagged type and we know the object's address,
9011 then we can determine its tag, and compute the object's actual
9012 type from there. Note that we have to use the fixed record
9013 type (the parent part of the record may have dynamic fields
9014 and the way the location of _tag is expressed may depend on
9015 them). */
9016
9017 if (check_tag && address != 0 && ada_is_tagged_type (static_type, 0))
9018 {
9019 struct value *tag =
9020 value_tag_from_contents_and_address
9021 (fixed_record_type,
9022 valaddr,
9023 address);
9024 struct type *real_type = type_from_tag (tag);
9025 struct value *obj =
9026 value_from_contents_and_address (fixed_record_type,
9027 valaddr,
9028 address);
9029 fixed_record_type = value_type (obj);
9030 if (real_type != NULL)
9031 return to_fixed_record_type
9032 (real_type, NULL,
9033 value_address (ada_tag_value_at_base_address (obj)), NULL);
9034 }
9035
9036 /* Check to see if there is a parallel ___XVZ variable.
9037 If there is, then it provides the actual size of our type. */
9038 else if (ada_type_name (fixed_record_type) != NULL)
9039 {
9040 const char *name = ada_type_name (fixed_record_type);
9041 char *xvz_name
9042 = (char *) alloca (strlen (name) + 7 /* "___XVZ\0" */);
9043 bool xvz_found = false;
9044 LONGEST size;
9045
9046 xsnprintf (xvz_name, strlen (name) + 7, "%s___XVZ", name);
9047 TRY
9048 {
9049 xvz_found = get_int_var_value (xvz_name, size);
9050 }
9051 CATCH (except, RETURN_MASK_ERROR)
9052 {
9053 /* We found the variable, but somehow failed to read
9054 its value. Rethrow the same error, but with a little
9055 bit more information, to help the user understand
9056 what went wrong (Eg: the variable might have been
9057 optimized out). */
9058 throw_error (except.error,
9059 _("unable to read value of %s (%s)"),
9060 xvz_name, except.message);
9061 }
9062 END_CATCH
9063
9064 if (xvz_found && TYPE_LENGTH (fixed_record_type) != size)
9065 {
9066 fixed_record_type = copy_type (fixed_record_type);
9067 TYPE_LENGTH (fixed_record_type) = size;
9068
9069 /* The FIXED_RECORD_TYPE may have be a stub. We have
9070 observed this when the debugging info is STABS, and
9071 apparently it is something that is hard to fix.
9072
9073 In practice, we don't need the actual type definition
9074 at all, because the presence of the XVZ variable allows us
9075 to assume that there must be a XVS type as well, which we
9076 should be able to use later, when we need the actual type
9077 definition.
9078
9079 In the meantime, pretend that the "fixed" type we are
9080 returning is NOT a stub, because this can cause trouble
9081 when using this type to create new types targeting it.
9082 Indeed, the associated creation routines often check
9083 whether the target type is a stub and will try to replace
9084 it, thus using a type with the wrong size. This, in turn,
9085 might cause the new type to have the wrong size too.
9086 Consider the case of an array, for instance, where the size
9087 of the array is computed from the number of elements in
9088 our array multiplied by the size of its element. */
9089 TYPE_STUB (fixed_record_type) = 0;
9090 }
9091 }
9092 return fixed_record_type;
9093 }
9094 case TYPE_CODE_ARRAY:
9095 return to_fixed_array_type (type, dval, 1);
9096 case TYPE_CODE_UNION:
9097 if (dval == NULL)
9098 return type;
9099 else
9100 return to_fixed_variant_branch_type (type, valaddr, address, dval);
9101 }
9102 }
9103
9104 /* The same as ada_to_fixed_type_1, except that it preserves the type
9105 if it is a TYPE_CODE_TYPEDEF of a type that is already fixed.
9106
9107 The typedef layer needs be preserved in order to differentiate between
9108 arrays and array pointers when both types are implemented using the same
9109 fat pointer. In the array pointer case, the pointer is encoded as
9110 a typedef of the pointer type. For instance, considering:
9111
9112 type String_Access is access String;
9113 S1 : String_Access := null;
9114
9115 To the debugger, S1 is defined as a typedef of type String. But
9116 to the user, it is a pointer. So if the user tries to print S1,
9117 we should not dereference the array, but print the array address
9118 instead.
9119
9120 If we didn't preserve the typedef layer, we would lose the fact that
9121 the type is to be presented as a pointer (needs de-reference before
9122 being printed). And we would also use the source-level type name. */
9123
9124 struct type *
9125 ada_to_fixed_type (struct type *type, const gdb_byte *valaddr,
9126 CORE_ADDR address, struct value *dval, int check_tag)
9127
9128 {
9129 struct type *fixed_type =
9130 ada_to_fixed_type_1 (type, valaddr, address, dval, check_tag);
9131
9132 /* If TYPE is a typedef and its target type is the same as the FIXED_TYPE,
9133 then preserve the typedef layer.
9134
9135 Implementation note: We can only check the main-type portion of
9136 the TYPE and FIXED_TYPE, because eliminating the typedef layer
9137 from TYPE now returns a type that has the same instance flags
9138 as TYPE. For instance, if TYPE is a "typedef const", and its
9139 target type is a "struct", then the typedef elimination will return
9140 a "const" version of the target type. See check_typedef for more
9141 details about how the typedef layer elimination is done.
9142
9143 brobecker/2010-11-19: It seems to me that the only case where it is
9144 useful to preserve the typedef layer is when dealing with fat pointers.
9145 Perhaps, we could add a check for that and preserve the typedef layer
9146 only in that situation. But this seems unecessary so far, probably
9147 because we call check_typedef/ada_check_typedef pretty much everywhere.
9148 */
9149 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9150 && (TYPE_MAIN_TYPE (ada_typedef_target_type (type))
9151 == TYPE_MAIN_TYPE (fixed_type)))
9152 return type;
9153
9154 return fixed_type;
9155 }
9156
9157 /* A standard (static-sized) type corresponding as well as possible to
9158 TYPE0, but based on no runtime data. */
9159
9160 static struct type *
9161 to_static_fixed_type (struct type *type0)
9162 {
9163 struct type *type;
9164
9165 if (type0 == NULL)
9166 return NULL;
9167
9168 if (TYPE_FIXED_INSTANCE (type0))
9169 return type0;
9170
9171 type0 = ada_check_typedef (type0);
9172
9173 switch (TYPE_CODE (type0))
9174 {
9175 default:
9176 return type0;
9177 case TYPE_CODE_STRUCT:
9178 type = dynamic_template_type (type0);
9179 if (type != NULL)
9180 return template_to_static_fixed_type (type);
9181 else
9182 return template_to_static_fixed_type (type0);
9183 case TYPE_CODE_UNION:
9184 type = ada_find_parallel_type (type0, "___XVU");
9185 if (type != NULL)
9186 return template_to_static_fixed_type (type);
9187 else
9188 return template_to_static_fixed_type (type0);
9189 }
9190 }
9191
9192 /* A static approximation of TYPE with all type wrappers removed. */
9193
9194 static struct type *
9195 static_unwrap_type (struct type *type)
9196 {
9197 if (ada_is_aligner_type (type))
9198 {
9199 struct type *type1 = TYPE_FIELD_TYPE (ada_check_typedef (type), 0);
9200 if (ada_type_name (type1) == NULL)
9201 TYPE_NAME (type1) = ada_type_name (type);
9202
9203 return static_unwrap_type (type1);
9204 }
9205 else
9206 {
9207 struct type *raw_real_type = ada_get_base_type (type);
9208
9209 if (raw_real_type == type)
9210 return type;
9211 else
9212 return to_static_fixed_type (raw_real_type);
9213 }
9214 }
9215
9216 /* In some cases, incomplete and private types require
9217 cross-references that are not resolved as records (for example,
9218 type Foo;
9219 type FooP is access Foo;
9220 V: FooP;
9221 type Foo is array ...;
9222 ). In these cases, since there is no mechanism for producing
9223 cross-references to such types, we instead substitute for FooP a
9224 stub enumeration type that is nowhere resolved, and whose tag is
9225 the name of the actual type. Call these types "non-record stubs". */
9226
9227 /* A type equivalent to TYPE that is not a non-record stub, if one
9228 exists, otherwise TYPE. */
9229
9230 struct type *
9231 ada_check_typedef (struct type *type)
9232 {
9233 if (type == NULL)
9234 return NULL;
9235
9236 /* If our type is a typedef type of a fat pointer, then we're done.
9237 We don't want to strip the TYPE_CODE_TYPDEF layer, because this is
9238 what allows us to distinguish between fat pointers that represent
9239 array types, and fat pointers that represent array access types
9240 (in both cases, the compiler implements them as fat pointers). */
9241 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF
9242 && is_thick_pntr (ada_typedef_target_type (type)))
9243 return type;
9244
9245 type = check_typedef (type);
9246 if (type == NULL || TYPE_CODE (type) != TYPE_CODE_ENUM
9247 || !TYPE_STUB (type)
9248 || TYPE_NAME (type) == NULL)
9249 return type;
9250 else
9251 {
9252 const char *name = TYPE_NAME (type);
9253 struct type *type1 = ada_find_any_type (name);
9254
9255 if (type1 == NULL)
9256 return type;
9257
9258 /* TYPE1 might itself be a TYPE_CODE_TYPEDEF (this can happen with
9259 stubs pointing to arrays, as we don't create symbols for array
9260 types, only for the typedef-to-array types). If that's the case,
9261 strip the typedef layer. */
9262 if (TYPE_CODE (type1) == TYPE_CODE_TYPEDEF)
9263 type1 = ada_check_typedef (type1);
9264
9265 return type1;
9266 }
9267 }
9268
9269 /* A value representing the data at VALADDR/ADDRESS as described by
9270 type TYPE0, but with a standard (static-sized) type that correctly
9271 describes it. If VAL0 is not NULL and TYPE0 already is a standard
9272 type, then return VAL0 [this feature is simply to avoid redundant
9273 creation of struct values]. */
9274
9275 static struct value *
9276 ada_to_fixed_value_create (struct type *type0, CORE_ADDR address,
9277 struct value *val0)
9278 {
9279 struct type *type = ada_to_fixed_type (type0, 0, address, NULL, 1);
9280
9281 if (type == type0 && val0 != NULL)
9282 return val0;
9283
9284 if (VALUE_LVAL (val0) != lval_memory)
9285 {
9286 /* Our value does not live in memory; it could be a convenience
9287 variable, for instance. Create a not_lval value using val0's
9288 contents. */
9289 return value_from_contents (type, value_contents (val0));
9290 }
9291
9292 return value_from_contents_and_address (type, 0, address);
9293 }
9294
9295 /* A value representing VAL, but with a standard (static-sized) type
9296 that correctly describes it. Does not necessarily create a new
9297 value. */
9298
9299 struct value *
9300 ada_to_fixed_value (struct value *val)
9301 {
9302 val = unwrap_value (val);
9303 val = ada_to_fixed_value_create (value_type (val),
9304 value_address (val),
9305 val);
9306 return val;
9307 }
9308 \f
9309
9310 /* Attributes */
9311
9312 /* Table mapping attribute numbers to names.
9313 NOTE: Keep up to date with enum ada_attribute definition in ada-lang.h. */
9314
9315 static const char *attribute_names[] = {
9316 "<?>",
9317
9318 "first",
9319 "last",
9320 "length",
9321 "image",
9322 "max",
9323 "min",
9324 "modulus",
9325 "pos",
9326 "size",
9327 "tag",
9328 "val",
9329 0
9330 };
9331
9332 const char *
9333 ada_attribute_name (enum exp_opcode n)
9334 {
9335 if (n >= OP_ATR_FIRST && n <= (int) OP_ATR_VAL)
9336 return attribute_names[n - OP_ATR_FIRST + 1];
9337 else
9338 return attribute_names[0];
9339 }
9340
9341 /* Evaluate the 'POS attribute applied to ARG. */
9342
9343 static LONGEST
9344 pos_atr (struct value *arg)
9345 {
9346 struct value *val = coerce_ref (arg);
9347 struct type *type = value_type (val);
9348 LONGEST result;
9349
9350 if (!discrete_type_p (type))
9351 error (_("'POS only defined on discrete types"));
9352
9353 if (!discrete_position (type, value_as_long (val), &result))
9354 error (_("enumeration value is invalid: can't find 'POS"));
9355
9356 return result;
9357 }
9358
9359 static struct value *
9360 value_pos_atr (struct type *type, struct value *arg)
9361 {
9362 return value_from_longest (type, pos_atr (arg));
9363 }
9364
9365 /* Evaluate the TYPE'VAL attribute applied to ARG. */
9366
9367 static struct value *
9368 value_val_atr (struct type *type, struct value *arg)
9369 {
9370 if (!discrete_type_p (type))
9371 error (_("'VAL only defined on discrete types"));
9372 if (!integer_type_p (value_type (arg)))
9373 error (_("'VAL requires integral argument"));
9374
9375 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
9376 {
9377 long pos = value_as_long (arg);
9378
9379 if (pos < 0 || pos >= TYPE_NFIELDS (type))
9380 error (_("argument to 'VAL out of range"));
9381 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, pos));
9382 }
9383 else
9384 return value_from_longest (type, value_as_long (arg));
9385 }
9386 \f
9387
9388 /* Evaluation */
9389
9390 /* True if TYPE appears to be an Ada character type.
9391 [At the moment, this is true only for Character and Wide_Character;
9392 It is a heuristic test that could stand improvement]. */
9393
9394 int
9395 ada_is_character_type (struct type *type)
9396 {
9397 const char *name;
9398
9399 /* If the type code says it's a character, then assume it really is,
9400 and don't check any further. */
9401 if (TYPE_CODE (type) == TYPE_CODE_CHAR)
9402 return 1;
9403
9404 /* Otherwise, assume it's a character type iff it is a discrete type
9405 with a known character type name. */
9406 name = ada_type_name (type);
9407 return (name != NULL
9408 && (TYPE_CODE (type) == TYPE_CODE_INT
9409 || TYPE_CODE (type) == TYPE_CODE_RANGE)
9410 && (strcmp (name, "character") == 0
9411 || strcmp (name, "wide_character") == 0
9412 || strcmp (name, "wide_wide_character") == 0
9413 || strcmp (name, "unsigned char") == 0));
9414 }
9415
9416 /* True if TYPE appears to be an Ada string type. */
9417
9418 int
9419 ada_is_string_type (struct type *type)
9420 {
9421 type = ada_check_typedef (type);
9422 if (type != NULL
9423 && TYPE_CODE (type) != TYPE_CODE_PTR
9424 && (ada_is_simple_array_type (type)
9425 || ada_is_array_descriptor_type (type))
9426 && ada_array_arity (type) == 1)
9427 {
9428 struct type *elttype = ada_array_element_type (type, 1);
9429
9430 return ada_is_character_type (elttype);
9431 }
9432 else
9433 return 0;
9434 }
9435
9436 /* The compiler sometimes provides a parallel XVS type for a given
9437 PAD type. Normally, it is safe to follow the PAD type directly,
9438 but older versions of the compiler have a bug that causes the offset
9439 of its "F" field to be wrong. Following that field in that case
9440 would lead to incorrect results, but this can be worked around
9441 by ignoring the PAD type and using the associated XVS type instead.
9442
9443 Set to True if the debugger should trust the contents of PAD types.
9444 Otherwise, ignore the PAD type if there is a parallel XVS type. */
9445 static int trust_pad_over_xvs = 1;
9446
9447 /* True if TYPE is a struct type introduced by the compiler to force the
9448 alignment of a value. Such types have a single field with a
9449 distinctive name. */
9450
9451 int
9452 ada_is_aligner_type (struct type *type)
9453 {
9454 type = ada_check_typedef (type);
9455
9456 if (!trust_pad_over_xvs && ada_find_parallel_type (type, "___XVS") != NULL)
9457 return 0;
9458
9459 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
9460 && TYPE_NFIELDS (type) == 1
9461 && strcmp (TYPE_FIELD_NAME (type, 0), "F") == 0);
9462 }
9463
9464 /* If there is an ___XVS-convention type parallel to SUBTYPE, return
9465 the parallel type. */
9466
9467 struct type *
9468 ada_get_base_type (struct type *raw_type)
9469 {
9470 struct type *real_type_namer;
9471 struct type *raw_real_type;
9472
9473 if (raw_type == NULL || TYPE_CODE (raw_type) != TYPE_CODE_STRUCT)
9474 return raw_type;
9475
9476 if (ada_is_aligner_type (raw_type))
9477 /* The encoding specifies that we should always use the aligner type.
9478 So, even if this aligner type has an associated XVS type, we should
9479 simply ignore it.
9480
9481 According to the compiler gurus, an XVS type parallel to an aligner
9482 type may exist because of a stabs limitation. In stabs, aligner
9483 types are empty because the field has a variable-sized type, and
9484 thus cannot actually be used as an aligner type. As a result,
9485 we need the associated parallel XVS type to decode the type.
9486 Since the policy in the compiler is to not change the internal
9487 representation based on the debugging info format, we sometimes
9488 end up having a redundant XVS type parallel to the aligner type. */
9489 return raw_type;
9490
9491 real_type_namer = ada_find_parallel_type (raw_type, "___XVS");
9492 if (real_type_namer == NULL
9493 || TYPE_CODE (real_type_namer) != TYPE_CODE_STRUCT
9494 || TYPE_NFIELDS (real_type_namer) != 1)
9495 return raw_type;
9496
9497 if (TYPE_CODE (TYPE_FIELD_TYPE (real_type_namer, 0)) != TYPE_CODE_REF)
9498 {
9499 /* This is an older encoding form where the base type needs to be
9500 looked up by name. We prefer the newer enconding because it is
9501 more efficient. */
9502 raw_real_type = ada_find_any_type (TYPE_FIELD_NAME (real_type_namer, 0));
9503 if (raw_real_type == NULL)
9504 return raw_type;
9505 else
9506 return raw_real_type;
9507 }
9508
9509 /* The field in our XVS type is a reference to the base type. */
9510 return TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (real_type_namer, 0));
9511 }
9512
9513 /* The type of value designated by TYPE, with all aligners removed. */
9514
9515 struct type *
9516 ada_aligned_type (struct type *type)
9517 {
9518 if (ada_is_aligner_type (type))
9519 return ada_aligned_type (TYPE_FIELD_TYPE (type, 0));
9520 else
9521 return ada_get_base_type (type);
9522 }
9523
9524
9525 /* The address of the aligned value in an object at address VALADDR
9526 having type TYPE. Assumes ada_is_aligner_type (TYPE). */
9527
9528 const gdb_byte *
9529 ada_aligned_value_addr (struct type *type, const gdb_byte *valaddr)
9530 {
9531 if (ada_is_aligner_type (type))
9532 return ada_aligned_value_addr (TYPE_FIELD_TYPE (type, 0),
9533 valaddr +
9534 TYPE_FIELD_BITPOS (type,
9535 0) / TARGET_CHAR_BIT);
9536 else
9537 return valaddr;
9538 }
9539
9540
9541
9542 /* The printed representation of an enumeration literal with encoded
9543 name NAME. The value is good to the next call of ada_enum_name. */
9544 const char *
9545 ada_enum_name (const char *name)
9546 {
9547 static char *result;
9548 static size_t result_len = 0;
9549 const char *tmp;
9550
9551 /* First, unqualify the enumeration name:
9552 1. Search for the last '.' character. If we find one, then skip
9553 all the preceding characters, the unqualified name starts
9554 right after that dot.
9555 2. Otherwise, we may be debugging on a target where the compiler
9556 translates dots into "__". Search forward for double underscores,
9557 but stop searching when we hit an overloading suffix, which is
9558 of the form "__" followed by digits. */
9559
9560 tmp = strrchr (name, '.');
9561 if (tmp != NULL)
9562 name = tmp + 1;
9563 else
9564 {
9565 while ((tmp = strstr (name, "__")) != NULL)
9566 {
9567 if (isdigit (tmp[2]))
9568 break;
9569 else
9570 name = tmp + 2;
9571 }
9572 }
9573
9574 if (name[0] == 'Q')
9575 {
9576 int v;
9577
9578 if (name[1] == 'U' || name[1] == 'W')
9579 {
9580 if (sscanf (name + 2, "%x", &v) != 1)
9581 return name;
9582 }
9583 else
9584 return name;
9585
9586 GROW_VECT (result, result_len, 16);
9587 if (isascii (v) && isprint (v))
9588 xsnprintf (result, result_len, "'%c'", v);
9589 else if (name[1] == 'U')
9590 xsnprintf (result, result_len, "[\"%02x\"]", v);
9591 else
9592 xsnprintf (result, result_len, "[\"%04x\"]", v);
9593
9594 return result;
9595 }
9596 else
9597 {
9598 tmp = strstr (name, "__");
9599 if (tmp == NULL)
9600 tmp = strstr (name, "$");
9601 if (tmp != NULL)
9602 {
9603 GROW_VECT (result, result_len, tmp - name + 1);
9604 strncpy (result, name, tmp - name);
9605 result[tmp - name] = '\0';
9606 return result;
9607 }
9608
9609 return name;
9610 }
9611 }
9612
9613 /* Evaluate the subexpression of EXP starting at *POS as for
9614 evaluate_type, updating *POS to point just past the evaluated
9615 expression. */
9616
9617 static struct value *
9618 evaluate_subexp_type (struct expression *exp, int *pos)
9619 {
9620 return evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
9621 }
9622
9623 /* If VAL is wrapped in an aligner or subtype wrapper, return the
9624 value it wraps. */
9625
9626 static struct value *
9627 unwrap_value (struct value *val)
9628 {
9629 struct type *type = ada_check_typedef (value_type (val));
9630
9631 if (ada_is_aligner_type (type))
9632 {
9633 struct value *v = ada_value_struct_elt (val, "F", 0);
9634 struct type *val_type = ada_check_typedef (value_type (v));
9635
9636 if (ada_type_name (val_type) == NULL)
9637 TYPE_NAME (val_type) = ada_type_name (type);
9638
9639 return unwrap_value (v);
9640 }
9641 else
9642 {
9643 struct type *raw_real_type =
9644 ada_check_typedef (ada_get_base_type (type));
9645
9646 /* If there is no parallel XVS or XVE type, then the value is
9647 already unwrapped. Return it without further modification. */
9648 if ((type == raw_real_type)
9649 && ada_find_parallel_type (type, "___XVE") == NULL)
9650 return val;
9651
9652 return
9653 coerce_unspec_val_to_type
9654 (val, ada_to_fixed_type (raw_real_type, 0,
9655 value_address (val),
9656 NULL, 1));
9657 }
9658 }
9659
9660 static struct value *
9661 cast_from_fixed (struct type *type, struct value *arg)
9662 {
9663 struct value *scale = ada_scaling_factor (value_type (arg));
9664 arg = value_cast (value_type (scale), arg);
9665
9666 arg = value_binop (arg, scale, BINOP_MUL);
9667 return value_cast (type, arg);
9668 }
9669
9670 static struct value *
9671 cast_to_fixed (struct type *type, struct value *arg)
9672 {
9673 if (type == value_type (arg))
9674 return arg;
9675
9676 struct value *scale = ada_scaling_factor (type);
9677 if (ada_is_fixed_point_type (value_type (arg)))
9678 arg = cast_from_fixed (value_type (scale), arg);
9679 else
9680 arg = value_cast (value_type (scale), arg);
9681
9682 arg = value_binop (arg, scale, BINOP_DIV);
9683 return value_cast (type, arg);
9684 }
9685
9686 /* Given two array types T1 and T2, return nonzero iff both arrays
9687 contain the same number of elements. */
9688
9689 static int
9690 ada_same_array_size_p (struct type *t1, struct type *t2)
9691 {
9692 LONGEST lo1, hi1, lo2, hi2;
9693
9694 /* Get the array bounds in order to verify that the size of
9695 the two arrays match. */
9696 if (!get_array_bounds (t1, &lo1, &hi1)
9697 || !get_array_bounds (t2, &lo2, &hi2))
9698 error (_("unable to determine array bounds"));
9699
9700 /* To make things easier for size comparison, normalize a bit
9701 the case of empty arrays by making sure that the difference
9702 between upper bound and lower bound is always -1. */
9703 if (lo1 > hi1)
9704 hi1 = lo1 - 1;
9705 if (lo2 > hi2)
9706 hi2 = lo2 - 1;
9707
9708 return (hi1 - lo1 == hi2 - lo2);
9709 }
9710
9711 /* Assuming that VAL is an array of integrals, and TYPE represents
9712 an array with the same number of elements, but with wider integral
9713 elements, return an array "casted" to TYPE. In practice, this
9714 means that the returned array is built by casting each element
9715 of the original array into TYPE's (wider) element type. */
9716
9717 static struct value *
9718 ada_promote_array_of_integrals (struct type *type, struct value *val)
9719 {
9720 struct type *elt_type = TYPE_TARGET_TYPE (type);
9721 LONGEST lo, hi;
9722 struct value *res;
9723 LONGEST i;
9724
9725 /* Verify that both val and type are arrays of scalars, and
9726 that the size of val's elements is smaller than the size
9727 of type's element. */
9728 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
9729 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (type)));
9730 gdb_assert (TYPE_CODE (value_type (val)) == TYPE_CODE_ARRAY);
9731 gdb_assert (is_integral_type (TYPE_TARGET_TYPE (value_type (val))));
9732 gdb_assert (TYPE_LENGTH (TYPE_TARGET_TYPE (type))
9733 > TYPE_LENGTH (TYPE_TARGET_TYPE (value_type (val))));
9734
9735 if (!get_array_bounds (type, &lo, &hi))
9736 error (_("unable to determine array bounds"));
9737
9738 res = allocate_value (type);
9739
9740 /* Promote each array element. */
9741 for (i = 0; i < hi - lo + 1; i++)
9742 {
9743 struct value *elt = value_cast (elt_type, value_subscript (val, lo + i));
9744
9745 memcpy (value_contents_writeable (res) + (i * TYPE_LENGTH (elt_type)),
9746 value_contents_all (elt), TYPE_LENGTH (elt_type));
9747 }
9748
9749 return res;
9750 }
9751
9752 /* Coerce VAL as necessary for assignment to an lval of type TYPE, and
9753 return the converted value. */
9754
9755 static struct value *
9756 coerce_for_assign (struct type *type, struct value *val)
9757 {
9758 struct type *type2 = value_type (val);
9759
9760 if (type == type2)
9761 return val;
9762
9763 type2 = ada_check_typedef (type2);
9764 type = ada_check_typedef (type);
9765
9766 if (TYPE_CODE (type2) == TYPE_CODE_PTR
9767 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9768 {
9769 val = ada_value_ind (val);
9770 type2 = value_type (val);
9771 }
9772
9773 if (TYPE_CODE (type2) == TYPE_CODE_ARRAY
9774 && TYPE_CODE (type) == TYPE_CODE_ARRAY)
9775 {
9776 if (!ada_same_array_size_p (type, type2))
9777 error (_("cannot assign arrays of different length"));
9778
9779 if (is_integral_type (TYPE_TARGET_TYPE (type))
9780 && is_integral_type (TYPE_TARGET_TYPE (type2))
9781 && TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9782 < TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9783 {
9784 /* Allow implicit promotion of the array elements to
9785 a wider type. */
9786 return ada_promote_array_of_integrals (type, val);
9787 }
9788
9789 if (TYPE_LENGTH (TYPE_TARGET_TYPE (type2))
9790 != TYPE_LENGTH (TYPE_TARGET_TYPE (type)))
9791 error (_("Incompatible types in assignment"));
9792 deprecated_set_value_type (val, type);
9793 }
9794 return val;
9795 }
9796
9797 static struct value *
9798 ada_value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
9799 {
9800 struct value *val;
9801 struct type *type1, *type2;
9802 LONGEST v, v1, v2;
9803
9804 arg1 = coerce_ref (arg1);
9805 arg2 = coerce_ref (arg2);
9806 type1 = get_base_type (ada_check_typedef (value_type (arg1)));
9807 type2 = get_base_type (ada_check_typedef (value_type (arg2)));
9808
9809 if (TYPE_CODE (type1) != TYPE_CODE_INT
9810 || TYPE_CODE (type2) != TYPE_CODE_INT)
9811 return value_binop (arg1, arg2, op);
9812
9813 switch (op)
9814 {
9815 case BINOP_MOD:
9816 case BINOP_DIV:
9817 case BINOP_REM:
9818 break;
9819 default:
9820 return value_binop (arg1, arg2, op);
9821 }
9822
9823 v2 = value_as_long (arg2);
9824 if (v2 == 0)
9825 error (_("second operand of %s must not be zero."), op_string (op));
9826
9827 if (TYPE_UNSIGNED (type1) || op == BINOP_MOD)
9828 return value_binop (arg1, arg2, op);
9829
9830 v1 = value_as_long (arg1);
9831 switch (op)
9832 {
9833 case BINOP_DIV:
9834 v = v1 / v2;
9835 if (!TRUNCATION_TOWARDS_ZERO && v1 * (v1 % v2) < 0)
9836 v += v > 0 ? -1 : 1;
9837 break;
9838 case BINOP_REM:
9839 v = v1 % v2;
9840 if (v * v1 < 0)
9841 v -= v2;
9842 break;
9843 default:
9844 /* Should not reach this point. */
9845 v = 0;
9846 }
9847
9848 val = allocate_value (type1);
9849 store_unsigned_integer (value_contents_raw (val),
9850 TYPE_LENGTH (value_type (val)),
9851 gdbarch_byte_order (get_type_arch (type1)), v);
9852 return val;
9853 }
9854
9855 static int
9856 ada_value_equal (struct value *arg1, struct value *arg2)
9857 {
9858 if (ada_is_direct_array_type (value_type (arg1))
9859 || ada_is_direct_array_type (value_type (arg2)))
9860 {
9861 struct type *arg1_type, *arg2_type;
9862
9863 /* Automatically dereference any array reference before
9864 we attempt to perform the comparison. */
9865 arg1 = ada_coerce_ref (arg1);
9866 arg2 = ada_coerce_ref (arg2);
9867
9868 arg1 = ada_coerce_to_simple_array (arg1);
9869 arg2 = ada_coerce_to_simple_array (arg2);
9870
9871 arg1_type = ada_check_typedef (value_type (arg1));
9872 arg2_type = ada_check_typedef (value_type (arg2));
9873
9874 if (TYPE_CODE (arg1_type) != TYPE_CODE_ARRAY
9875 || TYPE_CODE (arg2_type) != TYPE_CODE_ARRAY)
9876 error (_("Attempt to compare array with non-array"));
9877 /* FIXME: The following works only for types whose
9878 representations use all bits (no padding or undefined bits)
9879 and do not have user-defined equality. */
9880 return (TYPE_LENGTH (arg1_type) == TYPE_LENGTH (arg2_type)
9881 && memcmp (value_contents (arg1), value_contents (arg2),
9882 TYPE_LENGTH (arg1_type)) == 0);
9883 }
9884 return value_equal (arg1, arg2);
9885 }
9886
9887 /* Total number of component associations in the aggregate starting at
9888 index PC in EXP. Assumes that index PC is the start of an
9889 OP_AGGREGATE. */
9890
9891 static int
9892 num_component_specs (struct expression *exp, int pc)
9893 {
9894 int n, m, i;
9895
9896 m = exp->elts[pc + 1].longconst;
9897 pc += 3;
9898 n = 0;
9899 for (i = 0; i < m; i += 1)
9900 {
9901 switch (exp->elts[pc].opcode)
9902 {
9903 default:
9904 n += 1;
9905 break;
9906 case OP_CHOICES:
9907 n += exp->elts[pc + 1].longconst;
9908 break;
9909 }
9910 ada_evaluate_subexp (NULL, exp, &pc, EVAL_SKIP);
9911 }
9912 return n;
9913 }
9914
9915 /* Assign the result of evaluating EXP starting at *POS to the INDEXth
9916 component of LHS (a simple array or a record), updating *POS past
9917 the expression, assuming that LHS is contained in CONTAINER. Does
9918 not modify the inferior's memory, nor does it modify LHS (unless
9919 LHS == CONTAINER). */
9920
9921 static void
9922 assign_component (struct value *container, struct value *lhs, LONGEST index,
9923 struct expression *exp, int *pos)
9924 {
9925 struct value *mark = value_mark ();
9926 struct value *elt;
9927 struct type *lhs_type = check_typedef (value_type (lhs));
9928
9929 if (TYPE_CODE (lhs_type) == TYPE_CODE_ARRAY)
9930 {
9931 struct type *index_type = builtin_type (exp->gdbarch)->builtin_int;
9932 struct value *index_val = value_from_longest (index_type, index);
9933
9934 elt = unwrap_value (ada_value_subscript (lhs, 1, &index_val));
9935 }
9936 else
9937 {
9938 elt = ada_index_struct_field (index, lhs, 0, value_type (lhs));
9939 elt = ada_to_fixed_value (elt);
9940 }
9941
9942 if (exp->elts[*pos].opcode == OP_AGGREGATE)
9943 assign_aggregate (container, elt, exp, pos, EVAL_NORMAL);
9944 else
9945 value_assign_to_component (container, elt,
9946 ada_evaluate_subexp (NULL, exp, pos,
9947 EVAL_NORMAL));
9948
9949 value_free_to_mark (mark);
9950 }
9951
9952 /* Assuming that LHS represents an lvalue having a record or array
9953 type, and EXP->ELTS[*POS] is an OP_AGGREGATE, evaluate an assignment
9954 of that aggregate's value to LHS, advancing *POS past the
9955 aggregate. NOSIDE is as for evaluate_subexp. CONTAINER is an
9956 lvalue containing LHS (possibly LHS itself). Does not modify
9957 the inferior's memory, nor does it modify the contents of
9958 LHS (unless == CONTAINER). Returns the modified CONTAINER. */
9959
9960 static struct value *
9961 assign_aggregate (struct value *container,
9962 struct value *lhs, struct expression *exp,
9963 int *pos, enum noside noside)
9964 {
9965 struct type *lhs_type;
9966 int n = exp->elts[*pos+1].longconst;
9967 LONGEST low_index, high_index;
9968 int num_specs;
9969 LONGEST *indices;
9970 int max_indices, num_indices;
9971 int i;
9972
9973 *pos += 3;
9974 if (noside != EVAL_NORMAL)
9975 {
9976 for (i = 0; i < n; i += 1)
9977 ada_evaluate_subexp (NULL, exp, pos, noside);
9978 return container;
9979 }
9980
9981 container = ada_coerce_ref (container);
9982 if (ada_is_direct_array_type (value_type (container)))
9983 container = ada_coerce_to_simple_array (container);
9984 lhs = ada_coerce_ref (lhs);
9985 if (!deprecated_value_modifiable (lhs))
9986 error (_("Left operand of assignment is not a modifiable lvalue."));
9987
9988 lhs_type = check_typedef (value_type (lhs));
9989 if (ada_is_direct_array_type (lhs_type))
9990 {
9991 lhs = ada_coerce_to_simple_array (lhs);
9992 lhs_type = check_typedef (value_type (lhs));
9993 low_index = TYPE_ARRAY_LOWER_BOUND_VALUE (lhs_type);
9994 high_index = TYPE_ARRAY_UPPER_BOUND_VALUE (lhs_type);
9995 }
9996 else if (TYPE_CODE (lhs_type) == TYPE_CODE_STRUCT)
9997 {
9998 low_index = 0;
9999 high_index = num_visible_fields (lhs_type) - 1;
10000 }
10001 else
10002 error (_("Left-hand side must be array or record."));
10003
10004 num_specs = num_component_specs (exp, *pos - 3);
10005 max_indices = 4 * num_specs + 4;
10006 indices = XALLOCAVEC (LONGEST, max_indices);
10007 indices[0] = indices[1] = low_index - 1;
10008 indices[2] = indices[3] = high_index + 1;
10009 num_indices = 4;
10010
10011 for (i = 0; i < n; i += 1)
10012 {
10013 switch (exp->elts[*pos].opcode)
10014 {
10015 case OP_CHOICES:
10016 aggregate_assign_from_choices (container, lhs, exp, pos, indices,
10017 &num_indices, max_indices,
10018 low_index, high_index);
10019 break;
10020 case OP_POSITIONAL:
10021 aggregate_assign_positional (container, lhs, exp, pos, indices,
10022 &num_indices, max_indices,
10023 low_index, high_index);
10024 break;
10025 case OP_OTHERS:
10026 if (i != n-1)
10027 error (_("Misplaced 'others' clause"));
10028 aggregate_assign_others (container, lhs, exp, pos, indices,
10029 num_indices, low_index, high_index);
10030 break;
10031 default:
10032 error (_("Internal error: bad aggregate clause"));
10033 }
10034 }
10035
10036 return container;
10037 }
10038
10039 /* Assign into the component of LHS indexed by the OP_POSITIONAL
10040 construct at *POS, updating *POS past the construct, given that
10041 the positions are relative to lower bound LOW, where HIGH is the
10042 upper bound. Record the position in INDICES[0 .. MAX_INDICES-1]
10043 updating *NUM_INDICES as needed. CONTAINER is as for
10044 assign_aggregate. */
10045 static void
10046 aggregate_assign_positional (struct value *container,
10047 struct value *lhs, struct expression *exp,
10048 int *pos, LONGEST *indices, int *num_indices,
10049 int max_indices, LONGEST low, LONGEST high)
10050 {
10051 LONGEST ind = longest_to_int (exp->elts[*pos + 1].longconst) + low;
10052
10053 if (ind - 1 == high)
10054 warning (_("Extra components in aggregate ignored."));
10055 if (ind <= high)
10056 {
10057 add_component_interval (ind, ind, indices, num_indices, max_indices);
10058 *pos += 3;
10059 assign_component (container, lhs, ind, exp, pos);
10060 }
10061 else
10062 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10063 }
10064
10065 /* Assign into the components of LHS indexed by the OP_CHOICES
10066 construct at *POS, updating *POS past the construct, given that
10067 the allowable indices are LOW..HIGH. Record the indices assigned
10068 to in INDICES[0 .. MAX_INDICES-1], updating *NUM_INDICES as
10069 needed. CONTAINER is as for assign_aggregate. */
10070 static void
10071 aggregate_assign_from_choices (struct value *container,
10072 struct value *lhs, struct expression *exp,
10073 int *pos, LONGEST *indices, int *num_indices,
10074 int max_indices, LONGEST low, LONGEST high)
10075 {
10076 int j;
10077 int n_choices = longest_to_int (exp->elts[*pos+1].longconst);
10078 int choice_pos, expr_pc;
10079 int is_array = ada_is_direct_array_type (value_type (lhs));
10080
10081 choice_pos = *pos += 3;
10082
10083 for (j = 0; j < n_choices; j += 1)
10084 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10085 expr_pc = *pos;
10086 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10087
10088 for (j = 0; j < n_choices; j += 1)
10089 {
10090 LONGEST lower, upper;
10091 enum exp_opcode op = exp->elts[choice_pos].opcode;
10092
10093 if (op == OP_DISCRETE_RANGE)
10094 {
10095 choice_pos += 1;
10096 lower = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10097 EVAL_NORMAL));
10098 upper = value_as_long (ada_evaluate_subexp (NULL, exp, pos,
10099 EVAL_NORMAL));
10100 }
10101 else if (is_array)
10102 {
10103 lower = value_as_long (ada_evaluate_subexp (NULL, exp, &choice_pos,
10104 EVAL_NORMAL));
10105 upper = lower;
10106 }
10107 else
10108 {
10109 int ind;
10110 const char *name;
10111
10112 switch (op)
10113 {
10114 case OP_NAME:
10115 name = &exp->elts[choice_pos + 2].string;
10116 break;
10117 case OP_VAR_VALUE:
10118 name = SYMBOL_NATURAL_NAME (exp->elts[choice_pos + 2].symbol);
10119 break;
10120 default:
10121 error (_("Invalid record component association."));
10122 }
10123 ada_evaluate_subexp (NULL, exp, &choice_pos, EVAL_SKIP);
10124 ind = 0;
10125 if (! find_struct_field (name, value_type (lhs), 0,
10126 NULL, NULL, NULL, NULL, &ind))
10127 error (_("Unknown component name: %s."), name);
10128 lower = upper = ind;
10129 }
10130
10131 if (lower <= upper && (lower < low || upper > high))
10132 error (_("Index in component association out of bounds."));
10133
10134 add_component_interval (lower, upper, indices, num_indices,
10135 max_indices);
10136 while (lower <= upper)
10137 {
10138 int pos1;
10139
10140 pos1 = expr_pc;
10141 assign_component (container, lhs, lower, exp, &pos1);
10142 lower += 1;
10143 }
10144 }
10145 }
10146
10147 /* Assign the value of the expression in the OP_OTHERS construct in
10148 EXP at *POS into the components of LHS indexed from LOW .. HIGH that
10149 have not been previously assigned. The index intervals already assigned
10150 are in INDICES[0 .. NUM_INDICES-1]. Updates *POS to after the
10151 OP_OTHERS clause. CONTAINER is as for assign_aggregate. */
10152 static void
10153 aggregate_assign_others (struct value *container,
10154 struct value *lhs, struct expression *exp,
10155 int *pos, LONGEST *indices, int num_indices,
10156 LONGEST low, LONGEST high)
10157 {
10158 int i;
10159 int expr_pc = *pos + 1;
10160
10161 for (i = 0; i < num_indices - 2; i += 2)
10162 {
10163 LONGEST ind;
10164
10165 for (ind = indices[i + 1] + 1; ind < indices[i + 2]; ind += 1)
10166 {
10167 int localpos;
10168
10169 localpos = expr_pc;
10170 assign_component (container, lhs, ind, exp, &localpos);
10171 }
10172 }
10173 ada_evaluate_subexp (NULL, exp, pos, EVAL_SKIP);
10174 }
10175
10176 /* Add the interval [LOW .. HIGH] to the sorted set of intervals
10177 [ INDICES[0] .. INDICES[1] ],..., [ INDICES[*SIZE-2] .. INDICES[*SIZE-1] ],
10178 modifying *SIZE as needed. It is an error if *SIZE exceeds
10179 MAX_SIZE. The resulting intervals do not overlap. */
10180 static void
10181 add_component_interval (LONGEST low, LONGEST high,
10182 LONGEST* indices, int *size, int max_size)
10183 {
10184 int i, j;
10185
10186 for (i = 0; i < *size; i += 2) {
10187 if (high >= indices[i] && low <= indices[i + 1])
10188 {
10189 int kh;
10190
10191 for (kh = i + 2; kh < *size; kh += 2)
10192 if (high < indices[kh])
10193 break;
10194 if (low < indices[i])
10195 indices[i] = low;
10196 indices[i + 1] = indices[kh - 1];
10197 if (high > indices[i + 1])
10198 indices[i + 1] = high;
10199 memcpy (indices + i + 2, indices + kh, *size - kh);
10200 *size -= kh - i - 2;
10201 return;
10202 }
10203 else if (high < indices[i])
10204 break;
10205 }
10206
10207 if (*size == max_size)
10208 error (_("Internal error: miscounted aggregate components."));
10209 *size += 2;
10210 for (j = *size-1; j >= i+2; j -= 1)
10211 indices[j] = indices[j - 2];
10212 indices[i] = low;
10213 indices[i + 1] = high;
10214 }
10215
10216 /* Perform and Ada cast of ARG2 to type TYPE if the type of ARG2
10217 is different. */
10218
10219 static struct value *
10220 ada_value_cast (struct type *type, struct value *arg2)
10221 {
10222 if (type == ada_check_typedef (value_type (arg2)))
10223 return arg2;
10224
10225 if (ada_is_fixed_point_type (type))
10226 return (cast_to_fixed (type, arg2));
10227
10228 if (ada_is_fixed_point_type (value_type (arg2)))
10229 return cast_from_fixed (type, arg2);
10230
10231 return value_cast (type, arg2);
10232 }
10233
10234 /* Evaluating Ada expressions, and printing their result.
10235 ------------------------------------------------------
10236
10237 1. Introduction:
10238 ----------------
10239
10240 We usually evaluate an Ada expression in order to print its value.
10241 We also evaluate an expression in order to print its type, which
10242 happens during the EVAL_AVOID_SIDE_EFFECTS phase of the evaluation,
10243 but we'll focus mostly on the EVAL_NORMAL phase. In practice, the
10244 EVAL_AVOID_SIDE_EFFECTS phase allows us to simplify certain aspects of
10245 the evaluation compared to the EVAL_NORMAL, but is otherwise very
10246 similar.
10247
10248 Evaluating expressions is a little more complicated for Ada entities
10249 than it is for entities in languages such as C. The main reason for
10250 this is that Ada provides types whose definition might be dynamic.
10251 One example of such types is variant records. Or another example
10252 would be an array whose bounds can only be known at run time.
10253
10254 The following description is a general guide as to what should be
10255 done (and what should NOT be done) in order to evaluate an expression
10256 involving such types, and when. This does not cover how the semantic
10257 information is encoded by GNAT as this is covered separatly. For the
10258 document used as the reference for the GNAT encoding, see exp_dbug.ads
10259 in the GNAT sources.
10260
10261 Ideally, we should embed each part of this description next to its
10262 associated code. Unfortunately, the amount of code is so vast right
10263 now that it's hard to see whether the code handling a particular
10264 situation might be duplicated or not. One day, when the code is
10265 cleaned up, this guide might become redundant with the comments
10266 inserted in the code, and we might want to remove it.
10267
10268 2. ``Fixing'' an Entity, the Simple Case:
10269 -----------------------------------------
10270
10271 When evaluating Ada expressions, the tricky issue is that they may
10272 reference entities whose type contents and size are not statically
10273 known. Consider for instance a variant record:
10274
10275 type Rec (Empty : Boolean := True) is record
10276 case Empty is
10277 when True => null;
10278 when False => Value : Integer;
10279 end case;
10280 end record;
10281 Yes : Rec := (Empty => False, Value => 1);
10282 No : Rec := (empty => True);
10283
10284 The size and contents of that record depends on the value of the
10285 descriminant (Rec.Empty). At this point, neither the debugging
10286 information nor the associated type structure in GDB are able to
10287 express such dynamic types. So what the debugger does is to create
10288 "fixed" versions of the type that applies to the specific object.
10289 We also informally refer to this opperation as "fixing" an object,
10290 which means creating its associated fixed type.
10291
10292 Example: when printing the value of variable "Yes" above, its fixed
10293 type would look like this:
10294
10295 type Rec is record
10296 Empty : Boolean;
10297 Value : Integer;
10298 end record;
10299
10300 On the other hand, if we printed the value of "No", its fixed type
10301 would become:
10302
10303 type Rec is record
10304 Empty : Boolean;
10305 end record;
10306
10307 Things become a little more complicated when trying to fix an entity
10308 with a dynamic type that directly contains another dynamic type,
10309 such as an array of variant records, for instance. There are
10310 two possible cases: Arrays, and records.
10311
10312 3. ``Fixing'' Arrays:
10313 ---------------------
10314
10315 The type structure in GDB describes an array in terms of its bounds,
10316 and the type of its elements. By design, all elements in the array
10317 have the same type and we cannot represent an array of variant elements
10318 using the current type structure in GDB. When fixing an array,
10319 we cannot fix the array element, as we would potentially need one
10320 fixed type per element of the array. As a result, the best we can do
10321 when fixing an array is to produce an array whose bounds and size
10322 are correct (allowing us to read it from memory), but without having
10323 touched its element type. Fixing each element will be done later,
10324 when (if) necessary.
10325
10326 Arrays are a little simpler to handle than records, because the same
10327 amount of memory is allocated for each element of the array, even if
10328 the amount of space actually used by each element differs from element
10329 to element. Consider for instance the following array of type Rec:
10330
10331 type Rec_Array is array (1 .. 2) of Rec;
10332
10333 The actual amount of memory occupied by each element might be different
10334 from element to element, depending on the value of their discriminant.
10335 But the amount of space reserved for each element in the array remains
10336 fixed regardless. So we simply need to compute that size using
10337 the debugging information available, from which we can then determine
10338 the array size (we multiply the number of elements of the array by
10339 the size of each element).
10340
10341 The simplest case is when we have an array of a constrained element
10342 type. For instance, consider the following type declarations:
10343
10344 type Bounded_String (Max_Size : Integer) is
10345 Length : Integer;
10346 Buffer : String (1 .. Max_Size);
10347 end record;
10348 type Bounded_String_Array is array (1 ..2) of Bounded_String (80);
10349
10350 In this case, the compiler describes the array as an array of
10351 variable-size elements (identified by its XVS suffix) for which
10352 the size can be read in the parallel XVZ variable.
10353
10354 In the case of an array of an unconstrained element type, the compiler
10355 wraps the array element inside a private PAD type. This type should not
10356 be shown to the user, and must be "unwrap"'ed before printing. Note
10357 that we also use the adjective "aligner" in our code to designate
10358 these wrapper types.
10359
10360 In some cases, the size allocated for each element is statically
10361 known. In that case, the PAD type already has the correct size,
10362 and the array element should remain unfixed.
10363
10364 But there are cases when this size is not statically known.
10365 For instance, assuming that "Five" is an integer variable:
10366
10367 type Dynamic is array (1 .. Five) of Integer;
10368 type Wrapper (Has_Length : Boolean := False) is record
10369 Data : Dynamic;
10370 case Has_Length is
10371 when True => Length : Integer;
10372 when False => null;
10373 end case;
10374 end record;
10375 type Wrapper_Array is array (1 .. 2) of Wrapper;
10376
10377 Hello : Wrapper_Array := (others => (Has_Length => True,
10378 Data => (others => 17),
10379 Length => 1));
10380
10381
10382 The debugging info would describe variable Hello as being an
10383 array of a PAD type. The size of that PAD type is not statically
10384 known, but can be determined using a parallel XVZ variable.
10385 In that case, a copy of the PAD type with the correct size should
10386 be used for the fixed array.
10387
10388 3. ``Fixing'' record type objects:
10389 ----------------------------------
10390
10391 Things are slightly different from arrays in the case of dynamic
10392 record types. In this case, in order to compute the associated
10393 fixed type, we need to determine the size and offset of each of
10394 its components. This, in turn, requires us to compute the fixed
10395 type of each of these components.
10396
10397 Consider for instance the example:
10398
10399 type Bounded_String (Max_Size : Natural) is record
10400 Str : String (1 .. Max_Size);
10401 Length : Natural;
10402 end record;
10403 My_String : Bounded_String (Max_Size => 10);
10404
10405 In that case, the position of field "Length" depends on the size
10406 of field Str, which itself depends on the value of the Max_Size
10407 discriminant. In order to fix the type of variable My_String,
10408 we need to fix the type of field Str. Therefore, fixing a variant
10409 record requires us to fix each of its components.
10410
10411 However, if a component does not have a dynamic size, the component
10412 should not be fixed. In particular, fields that use a PAD type
10413 should not fixed. Here is an example where this might happen
10414 (assuming type Rec above):
10415
10416 type Container (Big : Boolean) is record
10417 First : Rec;
10418 After : Integer;
10419 case Big is
10420 when True => Another : Integer;
10421 when False => null;
10422 end case;
10423 end record;
10424 My_Container : Container := (Big => False,
10425 First => (Empty => True),
10426 After => 42);
10427
10428 In that example, the compiler creates a PAD type for component First,
10429 whose size is constant, and then positions the component After just
10430 right after it. The offset of component After is therefore constant
10431 in this case.
10432
10433 The debugger computes the position of each field based on an algorithm
10434 that uses, among other things, the actual position and size of the field
10435 preceding it. Let's now imagine that the user is trying to print
10436 the value of My_Container. If the type fixing was recursive, we would
10437 end up computing the offset of field After based on the size of the
10438 fixed version of field First. And since in our example First has
10439 only one actual field, the size of the fixed type is actually smaller
10440 than the amount of space allocated to that field, and thus we would
10441 compute the wrong offset of field After.
10442
10443 To make things more complicated, we need to watch out for dynamic
10444 components of variant records (identified by the ___XVL suffix in
10445 the component name). Even if the target type is a PAD type, the size
10446 of that type might not be statically known. So the PAD type needs
10447 to be unwrapped and the resulting type needs to be fixed. Otherwise,
10448 we might end up with the wrong size for our component. This can be
10449 observed with the following type declarations:
10450
10451 type Octal is new Integer range 0 .. 7;
10452 type Octal_Array is array (Positive range <>) of Octal;
10453 pragma Pack (Octal_Array);
10454
10455 type Octal_Buffer (Size : Positive) is record
10456 Buffer : Octal_Array (1 .. Size);
10457 Length : Integer;
10458 end record;
10459
10460 In that case, Buffer is a PAD type whose size is unset and needs
10461 to be computed by fixing the unwrapped type.
10462
10463 4. When to ``Fix'' un-``Fixed'' sub-elements of an entity:
10464 ----------------------------------------------------------
10465
10466 Lastly, when should the sub-elements of an entity that remained unfixed
10467 thus far, be actually fixed?
10468
10469 The answer is: Only when referencing that element. For instance
10470 when selecting one component of a record, this specific component
10471 should be fixed at that point in time. Or when printing the value
10472 of a record, each component should be fixed before its value gets
10473 printed. Similarly for arrays, the element of the array should be
10474 fixed when printing each element of the array, or when extracting
10475 one element out of that array. On the other hand, fixing should
10476 not be performed on the elements when taking a slice of an array!
10477
10478 Note that one of the side effects of miscomputing the offset and
10479 size of each field is that we end up also miscomputing the size
10480 of the containing type. This can have adverse results when computing
10481 the value of an entity. GDB fetches the value of an entity based
10482 on the size of its type, and thus a wrong size causes GDB to fetch
10483 the wrong amount of memory. In the case where the computed size is
10484 too small, GDB fetches too little data to print the value of our
10485 entity. Results in this case are unpredictable, as we usually read
10486 past the buffer containing the data =:-o. */
10487
10488 /* Evaluate a subexpression of EXP, at index *POS, and return a value
10489 for that subexpression cast to TO_TYPE. Advance *POS over the
10490 subexpression. */
10491
10492 static value *
10493 ada_evaluate_subexp_for_cast (expression *exp, int *pos,
10494 enum noside noside, struct type *to_type)
10495 {
10496 int pc = *pos;
10497
10498 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
10499 || exp->elts[pc].opcode == OP_VAR_VALUE)
10500 {
10501 (*pos) += 4;
10502
10503 value *val;
10504 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
10505 {
10506 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10507 return value_zero (to_type, not_lval);
10508
10509 val = evaluate_var_msym_value (noside,
10510 exp->elts[pc + 1].objfile,
10511 exp->elts[pc + 2].msymbol);
10512 }
10513 else
10514 val = evaluate_var_value (noside,
10515 exp->elts[pc + 1].block,
10516 exp->elts[pc + 2].symbol);
10517
10518 if (noside == EVAL_SKIP)
10519 return eval_skip_value (exp);
10520
10521 val = ada_value_cast (to_type, val);
10522
10523 /* Follow the Ada language semantics that do not allow taking
10524 an address of the result of a cast (view conversion in Ada). */
10525 if (VALUE_LVAL (val) == lval_memory)
10526 {
10527 if (value_lazy (val))
10528 value_fetch_lazy (val);
10529 VALUE_LVAL (val) = not_lval;
10530 }
10531 return val;
10532 }
10533
10534 value *val = evaluate_subexp (to_type, exp, pos, noside);
10535 if (noside == EVAL_SKIP)
10536 return eval_skip_value (exp);
10537 return ada_value_cast (to_type, val);
10538 }
10539
10540 /* Implement the evaluate_exp routine in the exp_descriptor structure
10541 for the Ada language. */
10542
10543 static struct value *
10544 ada_evaluate_subexp (struct type *expect_type, struct expression *exp,
10545 int *pos, enum noside noside)
10546 {
10547 enum exp_opcode op;
10548 int tem;
10549 int pc;
10550 int preeval_pos;
10551 struct value *arg1 = NULL, *arg2 = NULL, *arg3;
10552 struct type *type;
10553 int nargs, oplen;
10554 struct value **argvec;
10555
10556 pc = *pos;
10557 *pos += 1;
10558 op = exp->elts[pc].opcode;
10559
10560 switch (op)
10561 {
10562 default:
10563 *pos -= 1;
10564 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10565
10566 if (noside == EVAL_NORMAL)
10567 arg1 = unwrap_value (arg1);
10568
10569 /* If evaluating an OP_FLOAT and an EXPECT_TYPE was provided,
10570 then we need to perform the conversion manually, because
10571 evaluate_subexp_standard doesn't do it. This conversion is
10572 necessary in Ada because the different kinds of float/fixed
10573 types in Ada have different representations.
10574
10575 Similarly, we need to perform the conversion from OP_LONG
10576 ourselves. */
10577 if ((op == OP_FLOAT || op == OP_LONG) && expect_type != NULL)
10578 arg1 = ada_value_cast (expect_type, arg1);
10579
10580 return arg1;
10581
10582 case OP_STRING:
10583 {
10584 struct value *result;
10585
10586 *pos -= 1;
10587 result = evaluate_subexp_standard (expect_type, exp, pos, noside);
10588 /* The result type will have code OP_STRING, bashed there from
10589 OP_ARRAY. Bash it back. */
10590 if (TYPE_CODE (value_type (result)) == TYPE_CODE_STRING)
10591 TYPE_CODE (value_type (result)) = TYPE_CODE_ARRAY;
10592 return result;
10593 }
10594
10595 case UNOP_CAST:
10596 (*pos) += 2;
10597 type = exp->elts[pc + 1].type;
10598 return ada_evaluate_subexp_for_cast (exp, pos, noside, type);
10599
10600 case UNOP_QUAL:
10601 (*pos) += 2;
10602 type = exp->elts[pc + 1].type;
10603 return ada_evaluate_subexp (type, exp, pos, noside);
10604
10605 case BINOP_ASSIGN:
10606 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10607 if (exp->elts[*pos].opcode == OP_AGGREGATE)
10608 {
10609 arg1 = assign_aggregate (arg1, arg1, exp, pos, noside);
10610 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10611 return arg1;
10612 return ada_value_assign (arg1, arg1);
10613 }
10614 /* Force the evaluation of the rhs ARG2 to the type of the lhs ARG1,
10615 except if the lhs of our assignment is a convenience variable.
10616 In the case of assigning to a convenience variable, the lhs
10617 should be exactly the result of the evaluation of the rhs. */
10618 type = value_type (arg1);
10619 if (VALUE_LVAL (arg1) == lval_internalvar)
10620 type = NULL;
10621 arg2 = evaluate_subexp (type, exp, pos, noside);
10622 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
10623 return arg1;
10624 if (ada_is_fixed_point_type (value_type (arg1)))
10625 arg2 = cast_to_fixed (value_type (arg1), arg2);
10626 else if (ada_is_fixed_point_type (value_type (arg2)))
10627 error
10628 (_("Fixed-point values must be assigned to fixed-point variables"));
10629 else
10630 arg2 = coerce_for_assign (value_type (arg1), arg2);
10631 return ada_value_assign (arg1, arg2);
10632
10633 case BINOP_ADD:
10634 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10635 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10636 if (noside == EVAL_SKIP)
10637 goto nosideret;
10638 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10639 return (value_from_longest
10640 (value_type (arg1),
10641 value_as_long (arg1) + value_as_long (arg2)));
10642 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10643 return (value_from_longest
10644 (value_type (arg2),
10645 value_as_long (arg1) + value_as_long (arg2)));
10646 if ((ada_is_fixed_point_type (value_type (arg1))
10647 || ada_is_fixed_point_type (value_type (arg2)))
10648 && value_type (arg1) != value_type (arg2))
10649 error (_("Operands of fixed-point addition must have the same type"));
10650 /* Do the addition, and cast the result to the type of the first
10651 argument. We cannot cast the result to a reference type, so if
10652 ARG1 is a reference type, find its underlying type. */
10653 type = value_type (arg1);
10654 while (TYPE_CODE (type) == TYPE_CODE_REF)
10655 type = TYPE_TARGET_TYPE (type);
10656 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10657 return value_cast (type, value_binop (arg1, arg2, BINOP_ADD));
10658
10659 case BINOP_SUB:
10660 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
10661 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
10662 if (noside == EVAL_SKIP)
10663 goto nosideret;
10664 if (TYPE_CODE (value_type (arg1)) == TYPE_CODE_PTR)
10665 return (value_from_longest
10666 (value_type (arg1),
10667 value_as_long (arg1) - value_as_long (arg2)));
10668 if (TYPE_CODE (value_type (arg2)) == TYPE_CODE_PTR)
10669 return (value_from_longest
10670 (value_type (arg2),
10671 value_as_long (arg1) - value_as_long (arg2)));
10672 if ((ada_is_fixed_point_type (value_type (arg1))
10673 || ada_is_fixed_point_type (value_type (arg2)))
10674 && value_type (arg1) != value_type (arg2))
10675 error (_("Operands of fixed-point subtraction "
10676 "must have the same type"));
10677 /* Do the substraction, and cast the result to the type of the first
10678 argument. We cannot cast the result to a reference type, so if
10679 ARG1 is a reference type, find its underlying type. */
10680 type = value_type (arg1);
10681 while (TYPE_CODE (type) == TYPE_CODE_REF)
10682 type = TYPE_TARGET_TYPE (type);
10683 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10684 return value_cast (type, value_binop (arg1, arg2, BINOP_SUB));
10685
10686 case BINOP_MUL:
10687 case BINOP_DIV:
10688 case BINOP_REM:
10689 case BINOP_MOD:
10690 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10691 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10692 if (noside == EVAL_SKIP)
10693 goto nosideret;
10694 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
10695 {
10696 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10697 return value_zero (value_type (arg1), not_lval);
10698 }
10699 else
10700 {
10701 type = builtin_type (exp->gdbarch)->builtin_double;
10702 if (ada_is_fixed_point_type (value_type (arg1)))
10703 arg1 = cast_from_fixed (type, arg1);
10704 if (ada_is_fixed_point_type (value_type (arg2)))
10705 arg2 = cast_from_fixed (type, arg2);
10706 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10707 return ada_value_binop (arg1, arg2, op);
10708 }
10709
10710 case BINOP_EQUAL:
10711 case BINOP_NOTEQUAL:
10712 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10713 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
10714 if (noside == EVAL_SKIP)
10715 goto nosideret;
10716 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10717 tem = 0;
10718 else
10719 {
10720 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
10721 tem = ada_value_equal (arg1, arg2);
10722 }
10723 if (op == BINOP_NOTEQUAL)
10724 tem = !tem;
10725 type = language_bool_type (exp->language_defn, exp->gdbarch);
10726 return value_from_longest (type, (LONGEST) tem);
10727
10728 case UNOP_NEG:
10729 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10730 if (noside == EVAL_SKIP)
10731 goto nosideret;
10732 else if (ada_is_fixed_point_type (value_type (arg1)))
10733 return value_cast (value_type (arg1), value_neg (arg1));
10734 else
10735 {
10736 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
10737 return value_neg (arg1);
10738 }
10739
10740 case BINOP_LOGICAL_AND:
10741 case BINOP_LOGICAL_OR:
10742 case UNOP_LOGICAL_NOT:
10743 {
10744 struct value *val;
10745
10746 *pos -= 1;
10747 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10748 type = language_bool_type (exp->language_defn, exp->gdbarch);
10749 return value_cast (type, val);
10750 }
10751
10752 case BINOP_BITWISE_AND:
10753 case BINOP_BITWISE_IOR:
10754 case BINOP_BITWISE_XOR:
10755 {
10756 struct value *val;
10757
10758 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
10759 *pos = pc;
10760 val = evaluate_subexp_standard (expect_type, exp, pos, noside);
10761
10762 return value_cast (value_type (arg1), val);
10763 }
10764
10765 case OP_VAR_VALUE:
10766 *pos -= 1;
10767
10768 if (noside == EVAL_SKIP)
10769 {
10770 *pos += 4;
10771 goto nosideret;
10772 }
10773
10774 if (SYMBOL_DOMAIN (exp->elts[pc + 2].symbol) == UNDEF_DOMAIN)
10775 /* Only encountered when an unresolved symbol occurs in a
10776 context other than a function call, in which case, it is
10777 invalid. */
10778 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10779 SYMBOL_PRINT_NAME (exp->elts[pc + 2].symbol));
10780
10781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10782 {
10783 type = static_unwrap_type (SYMBOL_TYPE (exp->elts[pc + 2].symbol));
10784 /* Check to see if this is a tagged type. We also need to handle
10785 the case where the type is a reference to a tagged type, but
10786 we have to be careful to exclude pointers to tagged types.
10787 The latter should be shown as usual (as a pointer), whereas
10788 a reference should mostly be transparent to the user. */
10789 if (ada_is_tagged_type (type, 0)
10790 || (TYPE_CODE (type) == TYPE_CODE_REF
10791 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0)))
10792 {
10793 /* Tagged types are a little special in the fact that the real
10794 type is dynamic and can only be determined by inspecting the
10795 object's tag. This means that we need to get the object's
10796 value first (EVAL_NORMAL) and then extract the actual object
10797 type from its tag.
10798
10799 Note that we cannot skip the final step where we extract
10800 the object type from its tag, because the EVAL_NORMAL phase
10801 results in dynamic components being resolved into fixed ones.
10802 This can cause problems when trying to print the type
10803 description of tagged types whose parent has a dynamic size:
10804 We use the type name of the "_parent" component in order
10805 to print the name of the ancestor type in the type description.
10806 If that component had a dynamic size, the resolution into
10807 a fixed type would result in the loss of that type name,
10808 thus preventing us from printing the name of the ancestor
10809 type in the type description. */
10810 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
10811
10812 if (TYPE_CODE (type) != TYPE_CODE_REF)
10813 {
10814 struct type *actual_type;
10815
10816 actual_type = type_from_tag (ada_value_tag (arg1));
10817 if (actual_type == NULL)
10818 /* If, for some reason, we were unable to determine
10819 the actual type from the tag, then use the static
10820 approximation that we just computed as a fallback.
10821 This can happen if the debugging information is
10822 incomplete, for instance. */
10823 actual_type = type;
10824 return value_zero (actual_type, not_lval);
10825 }
10826 else
10827 {
10828 /* In the case of a ref, ada_coerce_ref takes care
10829 of determining the actual type. But the evaluation
10830 should return a ref as it should be valid to ask
10831 for its address; so rebuild a ref after coerce. */
10832 arg1 = ada_coerce_ref (arg1);
10833 return value_ref (arg1, TYPE_CODE_REF);
10834 }
10835 }
10836
10837 /* Records and unions for which GNAT encodings have been
10838 generated need to be statically fixed as well.
10839 Otherwise, non-static fixing produces a type where
10840 all dynamic properties are removed, which prevents "ptype"
10841 from being able to completely describe the type.
10842 For instance, a case statement in a variant record would be
10843 replaced by the relevant components based on the actual
10844 value of the discriminants. */
10845 if ((TYPE_CODE (type) == TYPE_CODE_STRUCT
10846 && dynamic_template_type (type) != NULL)
10847 || (TYPE_CODE (type) == TYPE_CODE_UNION
10848 && ada_find_parallel_type (type, "___XVU") != NULL))
10849 {
10850 *pos += 4;
10851 return value_zero (to_static_fixed_type (type), not_lval);
10852 }
10853 }
10854
10855 arg1 = evaluate_subexp_standard (expect_type, exp, pos, noside);
10856 return ada_to_fixed_value (arg1);
10857
10858 case OP_FUNCALL:
10859 (*pos) += 2;
10860
10861 /* Allocate arg vector, including space for the function to be
10862 called in argvec[0] and a terminating NULL. */
10863 nargs = longest_to_int (exp->elts[pc + 1].longconst);
10864 argvec = XALLOCAVEC (struct value *, nargs + 2);
10865
10866 if (exp->elts[*pos].opcode == OP_VAR_VALUE
10867 && SYMBOL_DOMAIN (exp->elts[pc + 5].symbol) == UNDEF_DOMAIN)
10868 error (_("Unexpected unresolved symbol, %s, during evaluation"),
10869 SYMBOL_PRINT_NAME (exp->elts[pc + 5].symbol));
10870 else
10871 {
10872 for (tem = 0; tem <= nargs; tem += 1)
10873 argvec[tem] = evaluate_subexp (NULL_TYPE, exp, pos, noside);
10874 argvec[tem] = 0;
10875
10876 if (noside == EVAL_SKIP)
10877 goto nosideret;
10878 }
10879
10880 if (ada_is_constrained_packed_array_type
10881 (desc_base_type (value_type (argvec[0]))))
10882 argvec[0] = ada_coerce_to_simple_array (argvec[0]);
10883 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10884 && TYPE_FIELD_BITSIZE (value_type (argvec[0]), 0) != 0)
10885 /* This is a packed array that has already been fixed, and
10886 therefore already coerced to a simple array. Nothing further
10887 to do. */
10888 ;
10889 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_REF)
10890 {
10891 /* Make sure we dereference references so that all the code below
10892 feels like it's really handling the referenced value. Wrapping
10893 types (for alignment) may be there, so make sure we strip them as
10894 well. */
10895 argvec[0] = ada_to_fixed_value (coerce_ref (argvec[0]));
10896 }
10897 else if (TYPE_CODE (value_type (argvec[0])) == TYPE_CODE_ARRAY
10898 && VALUE_LVAL (argvec[0]) == lval_memory)
10899 argvec[0] = value_addr (argvec[0]);
10900
10901 type = ada_check_typedef (value_type (argvec[0]));
10902
10903 /* Ada allows us to implicitly dereference arrays when subscripting
10904 them. So, if this is an array typedef (encoding use for array
10905 access types encoded as fat pointers), strip it now. */
10906 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
10907 type = ada_typedef_target_type (type);
10908
10909 if (TYPE_CODE (type) == TYPE_CODE_PTR)
10910 {
10911 switch (TYPE_CODE (ada_check_typedef (TYPE_TARGET_TYPE (type))))
10912 {
10913 case TYPE_CODE_FUNC:
10914 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10915 break;
10916 case TYPE_CODE_ARRAY:
10917 break;
10918 case TYPE_CODE_STRUCT:
10919 if (noside != EVAL_AVOID_SIDE_EFFECTS)
10920 argvec[0] = ada_value_ind (argvec[0]);
10921 type = ada_check_typedef (TYPE_TARGET_TYPE (type));
10922 break;
10923 default:
10924 error (_("cannot subscript or call something of type `%s'"),
10925 ada_type_name (value_type (argvec[0])));
10926 break;
10927 }
10928 }
10929
10930 switch (TYPE_CODE (type))
10931 {
10932 case TYPE_CODE_FUNC:
10933 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10934 {
10935 if (TYPE_TARGET_TYPE (type) == NULL)
10936 error_call_unknown_return_type (NULL);
10937 return allocate_value (TYPE_TARGET_TYPE (type));
10938 }
10939 return call_function_by_hand (argvec[0], NULL, nargs, argvec + 1);
10940 case TYPE_CODE_INTERNAL_FUNCTION:
10941 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10942 /* We don't know anything about what the internal
10943 function might return, but we have to return
10944 something. */
10945 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
10946 not_lval);
10947 else
10948 return call_internal_function (exp->gdbarch, exp->language_defn,
10949 argvec[0], nargs, argvec + 1);
10950
10951 case TYPE_CODE_STRUCT:
10952 {
10953 int arity;
10954
10955 arity = ada_array_arity (type);
10956 type = ada_array_element_type (type, nargs);
10957 if (type == NULL)
10958 error (_("cannot subscript or call a record"));
10959 if (arity != nargs)
10960 error (_("wrong number of subscripts; expecting %d"), arity);
10961 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10962 return value_zero (ada_aligned_type (type), lval_memory);
10963 return
10964 unwrap_value (ada_value_subscript
10965 (argvec[0], nargs, argvec + 1));
10966 }
10967 case TYPE_CODE_ARRAY:
10968 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10969 {
10970 type = ada_array_element_type (type, nargs);
10971 if (type == NULL)
10972 error (_("element type of array unknown"));
10973 else
10974 return value_zero (ada_aligned_type (type), lval_memory);
10975 }
10976 return
10977 unwrap_value (ada_value_subscript
10978 (ada_coerce_to_simple_array (argvec[0]),
10979 nargs, argvec + 1));
10980 case TYPE_CODE_PTR: /* Pointer to array */
10981 if (noside == EVAL_AVOID_SIDE_EFFECTS)
10982 {
10983 type = to_fixed_array_type (TYPE_TARGET_TYPE (type), NULL, 1);
10984 type = ada_array_element_type (type, nargs);
10985 if (type == NULL)
10986 error (_("element type of array unknown"));
10987 else
10988 return value_zero (ada_aligned_type (type), lval_memory);
10989 }
10990 return
10991 unwrap_value (ada_value_ptr_subscript (argvec[0],
10992 nargs, argvec + 1));
10993
10994 default:
10995 error (_("Attempt to index or call something other than an "
10996 "array or function"));
10997 }
10998
10999 case TERNOP_SLICE:
11000 {
11001 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11002 struct value *low_bound_val =
11003 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11004 struct value *high_bound_val =
11005 evaluate_subexp (NULL_TYPE, exp, pos, noside);
11006 LONGEST low_bound;
11007 LONGEST high_bound;
11008
11009 low_bound_val = coerce_ref (low_bound_val);
11010 high_bound_val = coerce_ref (high_bound_val);
11011 low_bound = value_as_long (low_bound_val);
11012 high_bound = value_as_long (high_bound_val);
11013
11014 if (noside == EVAL_SKIP)
11015 goto nosideret;
11016
11017 /* If this is a reference to an aligner type, then remove all
11018 the aligners. */
11019 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11020 && ada_is_aligner_type (TYPE_TARGET_TYPE (value_type (array))))
11021 TYPE_TARGET_TYPE (value_type (array)) =
11022 ada_aligned_type (TYPE_TARGET_TYPE (value_type (array)));
11023
11024 if (ada_is_constrained_packed_array_type (value_type (array)))
11025 error (_("cannot slice a packed array"));
11026
11027 /* If this is a reference to an array or an array lvalue,
11028 convert to a pointer. */
11029 if (TYPE_CODE (value_type (array)) == TYPE_CODE_REF
11030 || (TYPE_CODE (value_type (array)) == TYPE_CODE_ARRAY
11031 && VALUE_LVAL (array) == lval_memory))
11032 array = value_addr (array);
11033
11034 if (noside == EVAL_AVOID_SIDE_EFFECTS
11035 && ada_is_array_descriptor_type (ada_check_typedef
11036 (value_type (array))))
11037 return empty_array (ada_type_of_array (array, 0), low_bound);
11038
11039 array = ada_coerce_to_simple_array_ptr (array);
11040
11041 /* If we have more than one level of pointer indirection,
11042 dereference the value until we get only one level. */
11043 while (TYPE_CODE (value_type (array)) == TYPE_CODE_PTR
11044 && (TYPE_CODE (TYPE_TARGET_TYPE (value_type (array)))
11045 == TYPE_CODE_PTR))
11046 array = value_ind (array);
11047
11048 /* Make sure we really do have an array type before going further,
11049 to avoid a SEGV when trying to get the index type or the target
11050 type later down the road if the debug info generated by
11051 the compiler is incorrect or incomplete. */
11052 if (!ada_is_simple_array_type (value_type (array)))
11053 error (_("cannot take slice of non-array"));
11054
11055 if (TYPE_CODE (ada_check_typedef (value_type (array)))
11056 == TYPE_CODE_PTR)
11057 {
11058 struct type *type0 = ada_check_typedef (value_type (array));
11059
11060 if (high_bound < low_bound || noside == EVAL_AVOID_SIDE_EFFECTS)
11061 return empty_array (TYPE_TARGET_TYPE (type0), low_bound);
11062 else
11063 {
11064 struct type *arr_type0 =
11065 to_fixed_array_type (TYPE_TARGET_TYPE (type0), NULL, 1);
11066
11067 return ada_value_slice_from_ptr (array, arr_type0,
11068 longest_to_int (low_bound),
11069 longest_to_int (high_bound));
11070 }
11071 }
11072 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11073 return array;
11074 else if (high_bound < low_bound)
11075 return empty_array (value_type (array), low_bound);
11076 else
11077 return ada_value_slice (array, longest_to_int (low_bound),
11078 longest_to_int (high_bound));
11079 }
11080
11081 case UNOP_IN_RANGE:
11082 (*pos) += 2;
11083 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11084 type = check_typedef (exp->elts[pc + 1].type);
11085
11086 if (noside == EVAL_SKIP)
11087 goto nosideret;
11088
11089 switch (TYPE_CODE (type))
11090 {
11091 default:
11092 lim_warning (_("Membership test incompletely implemented; "
11093 "always returns true"));
11094 type = language_bool_type (exp->language_defn, exp->gdbarch);
11095 return value_from_longest (type, (LONGEST) 1);
11096
11097 case TYPE_CODE_RANGE:
11098 arg2 = value_from_longest (type, TYPE_LOW_BOUND (type));
11099 arg3 = value_from_longest (type, TYPE_HIGH_BOUND (type));
11100 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11101 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11102 type = language_bool_type (exp->language_defn, exp->gdbarch);
11103 return
11104 value_from_longest (type,
11105 (value_less (arg1, arg3)
11106 || value_equal (arg1, arg3))
11107 && (value_less (arg2, arg1)
11108 || value_equal (arg2, arg1)));
11109 }
11110
11111 case BINOP_IN_BOUNDS:
11112 (*pos) += 2;
11113 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11114 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11115
11116 if (noside == EVAL_SKIP)
11117 goto nosideret;
11118
11119 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11120 {
11121 type = language_bool_type (exp->language_defn, exp->gdbarch);
11122 return value_zero (type, not_lval);
11123 }
11124
11125 tem = longest_to_int (exp->elts[pc + 1].longconst);
11126
11127 type = ada_index_type (value_type (arg2), tem, "range");
11128 if (!type)
11129 type = value_type (arg1);
11130
11131 arg3 = value_from_longest (type, ada_array_bound (arg2, tem, 1));
11132 arg2 = value_from_longest (type, ada_array_bound (arg2, tem, 0));
11133
11134 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11135 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11136 type = language_bool_type (exp->language_defn, exp->gdbarch);
11137 return
11138 value_from_longest (type,
11139 (value_less (arg1, arg3)
11140 || value_equal (arg1, arg3))
11141 && (value_less (arg2, arg1)
11142 || value_equal (arg2, arg1)));
11143
11144 case TERNOP_IN_RANGE:
11145 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11146 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11147 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11148
11149 if (noside == EVAL_SKIP)
11150 goto nosideret;
11151
11152 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11153 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg3);
11154 type = language_bool_type (exp->language_defn, exp->gdbarch);
11155 return
11156 value_from_longest (type,
11157 (value_less (arg1, arg3)
11158 || value_equal (arg1, arg3))
11159 && (value_less (arg2, arg1)
11160 || value_equal (arg2, arg1)));
11161
11162 case OP_ATR_FIRST:
11163 case OP_ATR_LAST:
11164 case OP_ATR_LENGTH:
11165 {
11166 struct type *type_arg;
11167
11168 if (exp->elts[*pos].opcode == OP_TYPE)
11169 {
11170 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11171 arg1 = NULL;
11172 type_arg = check_typedef (exp->elts[pc + 2].type);
11173 }
11174 else
11175 {
11176 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11177 type_arg = NULL;
11178 }
11179
11180 if (exp->elts[*pos].opcode != OP_LONG)
11181 error (_("Invalid operand to '%s"), ada_attribute_name (op));
11182 tem = longest_to_int (exp->elts[*pos + 2].longconst);
11183 *pos += 4;
11184
11185 if (noside == EVAL_SKIP)
11186 goto nosideret;
11187
11188 if (type_arg == NULL)
11189 {
11190 arg1 = ada_coerce_ref (arg1);
11191
11192 if (ada_is_constrained_packed_array_type (value_type (arg1)))
11193 arg1 = ada_coerce_to_simple_array (arg1);
11194
11195 if (op == OP_ATR_LENGTH)
11196 type = builtin_type (exp->gdbarch)->builtin_int;
11197 else
11198 {
11199 type = ada_index_type (value_type (arg1), tem,
11200 ada_attribute_name (op));
11201 if (type == NULL)
11202 type = builtin_type (exp->gdbarch)->builtin_int;
11203 }
11204
11205 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11206 return allocate_value (type);
11207
11208 switch (op)
11209 {
11210 default: /* Should never happen. */
11211 error (_("unexpected attribute encountered"));
11212 case OP_ATR_FIRST:
11213 return value_from_longest
11214 (type, ada_array_bound (arg1, tem, 0));
11215 case OP_ATR_LAST:
11216 return value_from_longest
11217 (type, ada_array_bound (arg1, tem, 1));
11218 case OP_ATR_LENGTH:
11219 return value_from_longest
11220 (type, ada_array_length (arg1, tem));
11221 }
11222 }
11223 else if (discrete_type_p (type_arg))
11224 {
11225 struct type *range_type;
11226 const char *name = ada_type_name (type_arg);
11227
11228 range_type = NULL;
11229 if (name != NULL && TYPE_CODE (type_arg) != TYPE_CODE_ENUM)
11230 range_type = to_fixed_range_type (type_arg, NULL);
11231 if (range_type == NULL)
11232 range_type = type_arg;
11233 switch (op)
11234 {
11235 default:
11236 error (_("unexpected attribute encountered"));
11237 case OP_ATR_FIRST:
11238 return value_from_longest
11239 (range_type, ada_discrete_type_low_bound (range_type));
11240 case OP_ATR_LAST:
11241 return value_from_longest
11242 (range_type, ada_discrete_type_high_bound (range_type));
11243 case OP_ATR_LENGTH:
11244 error (_("the 'length attribute applies only to array types"));
11245 }
11246 }
11247 else if (TYPE_CODE (type_arg) == TYPE_CODE_FLT)
11248 error (_("unimplemented type attribute"));
11249 else
11250 {
11251 LONGEST low, high;
11252
11253 if (ada_is_constrained_packed_array_type (type_arg))
11254 type_arg = decode_constrained_packed_array_type (type_arg);
11255
11256 if (op == OP_ATR_LENGTH)
11257 type = builtin_type (exp->gdbarch)->builtin_int;
11258 else
11259 {
11260 type = ada_index_type (type_arg, tem, ada_attribute_name (op));
11261 if (type == NULL)
11262 type = builtin_type (exp->gdbarch)->builtin_int;
11263 }
11264
11265 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11266 return allocate_value (type);
11267
11268 switch (op)
11269 {
11270 default:
11271 error (_("unexpected attribute encountered"));
11272 case OP_ATR_FIRST:
11273 low = ada_array_bound_from_type (type_arg, tem, 0);
11274 return value_from_longest (type, low);
11275 case OP_ATR_LAST:
11276 high = ada_array_bound_from_type (type_arg, tem, 1);
11277 return value_from_longest (type, high);
11278 case OP_ATR_LENGTH:
11279 low = ada_array_bound_from_type (type_arg, tem, 0);
11280 high = ada_array_bound_from_type (type_arg, tem, 1);
11281 return value_from_longest (type, high - low + 1);
11282 }
11283 }
11284 }
11285
11286 case OP_ATR_TAG:
11287 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11288 if (noside == EVAL_SKIP)
11289 goto nosideret;
11290
11291 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11292 return value_zero (ada_tag_type (arg1), not_lval);
11293
11294 return ada_value_tag (arg1);
11295
11296 case OP_ATR_MIN:
11297 case OP_ATR_MAX:
11298 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11299 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11300 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11301 if (noside == EVAL_SKIP)
11302 goto nosideret;
11303 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11304 return value_zero (value_type (arg1), not_lval);
11305 else
11306 {
11307 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11308 return value_binop (arg1, arg2,
11309 op == OP_ATR_MIN ? BINOP_MIN : BINOP_MAX);
11310 }
11311
11312 case OP_ATR_MODULUS:
11313 {
11314 struct type *type_arg = check_typedef (exp->elts[pc + 2].type);
11315
11316 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11317 if (noside == EVAL_SKIP)
11318 goto nosideret;
11319
11320 if (!ada_is_modular_type (type_arg))
11321 error (_("'modulus must be applied to modular type"));
11322
11323 return value_from_longest (TYPE_TARGET_TYPE (type_arg),
11324 ada_modulus (type_arg));
11325 }
11326
11327
11328 case OP_ATR_POS:
11329 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11330 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11331 if (noside == EVAL_SKIP)
11332 goto nosideret;
11333 type = builtin_type (exp->gdbarch)->builtin_int;
11334 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11335 return value_zero (type, not_lval);
11336 else
11337 return value_pos_atr (type, arg1);
11338
11339 case OP_ATR_SIZE:
11340 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11341 type = value_type (arg1);
11342
11343 /* If the argument is a reference, then dereference its type, since
11344 the user is really asking for the size of the actual object,
11345 not the size of the pointer. */
11346 if (TYPE_CODE (type) == TYPE_CODE_REF)
11347 type = TYPE_TARGET_TYPE (type);
11348
11349 if (noside == EVAL_SKIP)
11350 goto nosideret;
11351 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11352 return value_zero (builtin_type (exp->gdbarch)->builtin_int, not_lval);
11353 else
11354 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int,
11355 TARGET_CHAR_BIT * TYPE_LENGTH (type));
11356
11357 case OP_ATR_VAL:
11358 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
11359 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11360 type = exp->elts[pc + 2].type;
11361 if (noside == EVAL_SKIP)
11362 goto nosideret;
11363 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11364 return value_zero (type, not_lval);
11365 else
11366 return value_val_atr (type, arg1);
11367
11368 case BINOP_EXP:
11369 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11370 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11371 if (noside == EVAL_SKIP)
11372 goto nosideret;
11373 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11374 return value_zero (value_type (arg1), not_lval);
11375 else
11376 {
11377 /* For integer exponentiation operations,
11378 only promote the first argument. */
11379 if (is_integral_type (value_type (arg2)))
11380 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11381 else
11382 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
11383
11384 return value_binop (arg1, arg2, op);
11385 }
11386
11387 case UNOP_PLUS:
11388 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11389 if (noside == EVAL_SKIP)
11390 goto nosideret;
11391 else
11392 return arg1;
11393
11394 case UNOP_ABS:
11395 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11396 if (noside == EVAL_SKIP)
11397 goto nosideret;
11398 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
11399 if (value_less (arg1, value_zero (value_type (arg1), not_lval)))
11400 return value_neg (arg1);
11401 else
11402 return arg1;
11403
11404 case UNOP_IND:
11405 preeval_pos = *pos;
11406 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11407 if (noside == EVAL_SKIP)
11408 goto nosideret;
11409 type = ada_check_typedef (value_type (arg1));
11410 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11411 {
11412 if (ada_is_array_descriptor_type (type))
11413 /* GDB allows dereferencing GNAT array descriptors. */
11414 {
11415 struct type *arrType = ada_type_of_array (arg1, 0);
11416
11417 if (arrType == NULL)
11418 error (_("Attempt to dereference null array pointer."));
11419 return value_at_lazy (arrType, 0);
11420 }
11421 else if (TYPE_CODE (type) == TYPE_CODE_PTR
11422 || TYPE_CODE (type) == TYPE_CODE_REF
11423 /* In C you can dereference an array to get the 1st elt. */
11424 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
11425 {
11426 /* As mentioned in the OP_VAR_VALUE case, tagged types can
11427 only be determined by inspecting the object's tag.
11428 This means that we need to evaluate completely the
11429 expression in order to get its type. */
11430
11431 if ((TYPE_CODE (type) == TYPE_CODE_REF
11432 || TYPE_CODE (type) == TYPE_CODE_PTR)
11433 && ada_is_tagged_type (TYPE_TARGET_TYPE (type), 0))
11434 {
11435 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11436 EVAL_NORMAL);
11437 type = value_type (ada_value_ind (arg1));
11438 }
11439 else
11440 {
11441 type = to_static_fixed_type
11442 (ada_aligned_type
11443 (ada_check_typedef (TYPE_TARGET_TYPE (type))));
11444 }
11445 ada_ensure_varsize_limit (type);
11446 return value_zero (type, lval_memory);
11447 }
11448 else if (TYPE_CODE (type) == TYPE_CODE_INT)
11449 {
11450 /* GDB allows dereferencing an int. */
11451 if (expect_type == NULL)
11452 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
11453 lval_memory);
11454 else
11455 {
11456 expect_type =
11457 to_static_fixed_type (ada_aligned_type (expect_type));
11458 return value_zero (expect_type, lval_memory);
11459 }
11460 }
11461 else
11462 error (_("Attempt to take contents of a non-pointer value."));
11463 }
11464 arg1 = ada_coerce_ref (arg1); /* FIXME: What is this for?? */
11465 type = ada_check_typedef (value_type (arg1));
11466
11467 if (TYPE_CODE (type) == TYPE_CODE_INT)
11468 /* GDB allows dereferencing an int. If we were given
11469 the expect_type, then use that as the target type.
11470 Otherwise, assume that the target type is an int. */
11471 {
11472 if (expect_type != NULL)
11473 return ada_value_ind (value_cast (lookup_pointer_type (expect_type),
11474 arg1));
11475 else
11476 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
11477 (CORE_ADDR) value_as_address (arg1));
11478 }
11479
11480 if (ada_is_array_descriptor_type (type))
11481 /* GDB allows dereferencing GNAT array descriptors. */
11482 return ada_coerce_to_simple_array (arg1);
11483 else
11484 return ada_value_ind (arg1);
11485
11486 case STRUCTOP_STRUCT:
11487 tem = longest_to_int (exp->elts[pc + 1].longconst);
11488 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
11489 preeval_pos = *pos;
11490 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
11491 if (noside == EVAL_SKIP)
11492 goto nosideret;
11493 if (noside == EVAL_AVOID_SIDE_EFFECTS)
11494 {
11495 struct type *type1 = value_type (arg1);
11496
11497 if (ada_is_tagged_type (type1, 1))
11498 {
11499 type = ada_lookup_struct_elt_type (type1,
11500 &exp->elts[pc + 2].string,
11501 1, 1);
11502
11503 /* If the field is not found, check if it exists in the
11504 extension of this object's type. This means that we
11505 need to evaluate completely the expression. */
11506
11507 if (type == NULL)
11508 {
11509 arg1 = evaluate_subexp (NULL_TYPE, exp, &preeval_pos,
11510 EVAL_NORMAL);
11511 arg1 = ada_value_struct_elt (arg1,
11512 &exp->elts[pc + 2].string,
11513 0);
11514 arg1 = unwrap_value (arg1);
11515 type = value_type (ada_to_fixed_value (arg1));
11516 }
11517 }
11518 else
11519 type =
11520 ada_lookup_struct_elt_type (type1, &exp->elts[pc + 2].string, 1,
11521 0);
11522
11523 return value_zero (ada_aligned_type (type), lval_memory);
11524 }
11525 else
11526 {
11527 arg1 = ada_value_struct_elt (arg1, &exp->elts[pc + 2].string, 0);
11528 arg1 = unwrap_value (arg1);
11529 return ada_to_fixed_value (arg1);
11530 }
11531
11532 case OP_TYPE:
11533 /* The value is not supposed to be used. This is here to make it
11534 easier to accommodate expressions that contain types. */
11535 (*pos) += 2;
11536 if (noside == EVAL_SKIP)
11537 goto nosideret;
11538 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
11539 return allocate_value (exp->elts[pc + 1].type);
11540 else
11541 error (_("Attempt to use a type name as an expression"));
11542
11543 case OP_AGGREGATE:
11544 case OP_CHOICES:
11545 case OP_OTHERS:
11546 case OP_DISCRETE_RANGE:
11547 case OP_POSITIONAL:
11548 case OP_NAME:
11549 if (noside == EVAL_NORMAL)
11550 switch (op)
11551 {
11552 case OP_NAME:
11553 error (_("Undefined name, ambiguous name, or renaming used in "
11554 "component association: %s."), &exp->elts[pc+2].string);
11555 case OP_AGGREGATE:
11556 error (_("Aggregates only allowed on the right of an assignment"));
11557 default:
11558 internal_error (__FILE__, __LINE__,
11559 _("aggregate apparently mangled"));
11560 }
11561
11562 ada_forward_operator_length (exp, pc, &oplen, &nargs);
11563 *pos += oplen - 1;
11564 for (tem = 0; tem < nargs; tem += 1)
11565 ada_evaluate_subexp (NULL, exp, pos, noside);
11566 goto nosideret;
11567 }
11568
11569 nosideret:
11570 return eval_skip_value (exp);
11571 }
11572 \f
11573
11574 /* Fixed point */
11575
11576 /* If TYPE encodes an Ada fixed-point type, return the suffix of the
11577 type name that encodes the 'small and 'delta information.
11578 Otherwise, return NULL. */
11579
11580 static const char *
11581 fixed_type_info (struct type *type)
11582 {
11583 const char *name = ada_type_name (type);
11584 enum type_code code = (type == NULL) ? TYPE_CODE_UNDEF : TYPE_CODE (type);
11585
11586 if ((code == TYPE_CODE_INT || code == TYPE_CODE_RANGE) && name != NULL)
11587 {
11588 const char *tail = strstr (name, "___XF_");
11589
11590 if (tail == NULL)
11591 return NULL;
11592 else
11593 return tail + 5;
11594 }
11595 else if (code == TYPE_CODE_RANGE && TYPE_TARGET_TYPE (type) != type)
11596 return fixed_type_info (TYPE_TARGET_TYPE (type));
11597 else
11598 return NULL;
11599 }
11600
11601 /* Returns non-zero iff TYPE represents an Ada fixed-point type. */
11602
11603 int
11604 ada_is_fixed_point_type (struct type *type)
11605 {
11606 return fixed_type_info (type) != NULL;
11607 }
11608
11609 /* Return non-zero iff TYPE represents a System.Address type. */
11610
11611 int
11612 ada_is_system_address_type (struct type *type)
11613 {
11614 return (TYPE_NAME (type)
11615 && strcmp (TYPE_NAME (type), "system__address") == 0);
11616 }
11617
11618 /* Assuming that TYPE is the representation of an Ada fixed-point
11619 type, return the target floating-point type to be used to represent
11620 of this type during internal computation. */
11621
11622 static struct type *
11623 ada_scaling_type (struct type *type)
11624 {
11625 return builtin_type (get_type_arch (type))->builtin_long_double;
11626 }
11627
11628 /* Assuming that TYPE is the representation of an Ada fixed-point
11629 type, return its delta, or NULL if the type is malformed and the
11630 delta cannot be determined. */
11631
11632 struct value *
11633 ada_delta (struct type *type)
11634 {
11635 const char *encoding = fixed_type_info (type);
11636 struct type *scale_type = ada_scaling_type (type);
11637
11638 long long num, den;
11639
11640 if (sscanf (encoding, "_%lld_%lld", &num, &den) < 2)
11641 return nullptr;
11642 else
11643 return value_binop (value_from_longest (scale_type, num),
11644 value_from_longest (scale_type, den), BINOP_DIV);
11645 }
11646
11647 /* Assuming that ada_is_fixed_point_type (TYPE), return the scaling
11648 factor ('SMALL value) associated with the type. */
11649
11650 struct value *
11651 ada_scaling_factor (struct type *type)
11652 {
11653 const char *encoding = fixed_type_info (type);
11654 struct type *scale_type = ada_scaling_type (type);
11655
11656 long long num0, den0, num1, den1;
11657 int n;
11658
11659 n = sscanf (encoding, "_%lld_%lld_%lld_%lld",
11660 &num0, &den0, &num1, &den1);
11661
11662 if (n < 2)
11663 return value_from_longest (scale_type, 1);
11664 else if (n == 4)
11665 return value_binop (value_from_longest (scale_type, num1),
11666 value_from_longest (scale_type, den1), BINOP_DIV);
11667 else
11668 return value_binop (value_from_longest (scale_type, num0),
11669 value_from_longest (scale_type, den0), BINOP_DIV);
11670 }
11671
11672 \f
11673
11674 /* Range types */
11675
11676 /* Scan STR beginning at position K for a discriminant name, and
11677 return the value of that discriminant field of DVAL in *PX. If
11678 PNEW_K is not null, put the position of the character beyond the
11679 name scanned in *PNEW_K. Return 1 if successful; return 0 and do
11680 not alter *PX and *PNEW_K if unsuccessful. */
11681
11682 static int
11683 scan_discrim_bound (const char *str, int k, struct value *dval, LONGEST * px,
11684 int *pnew_k)
11685 {
11686 static char *bound_buffer = NULL;
11687 static size_t bound_buffer_len = 0;
11688 const char *pstart, *pend, *bound;
11689 struct value *bound_val;
11690
11691 if (dval == NULL || str == NULL || str[k] == '\0')
11692 return 0;
11693
11694 pstart = str + k;
11695 pend = strstr (pstart, "__");
11696 if (pend == NULL)
11697 {
11698 bound = pstart;
11699 k += strlen (bound);
11700 }
11701 else
11702 {
11703 int len = pend - pstart;
11704
11705 /* Strip __ and beyond. */
11706 GROW_VECT (bound_buffer, bound_buffer_len, len + 1);
11707 strncpy (bound_buffer, pstart, len);
11708 bound_buffer[len] = '\0';
11709
11710 bound = bound_buffer;
11711 k = pend - str;
11712 }
11713
11714 bound_val = ada_search_struct_field (bound, dval, 0, value_type (dval));
11715 if (bound_val == NULL)
11716 return 0;
11717
11718 *px = value_as_long (bound_val);
11719 if (pnew_k != NULL)
11720 *pnew_k = k;
11721 return 1;
11722 }
11723
11724 /* Value of variable named NAME in the current environment. If
11725 no such variable found, then if ERR_MSG is null, returns 0, and
11726 otherwise causes an error with message ERR_MSG. */
11727
11728 static struct value *
11729 get_var_value (const char *name, const char *err_msg)
11730 {
11731 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
11732
11733 std::vector<struct block_symbol> syms;
11734 int nsyms = ada_lookup_symbol_list_worker (lookup_name,
11735 get_selected_block (0),
11736 VAR_DOMAIN, &syms, 1);
11737
11738 if (nsyms != 1)
11739 {
11740 if (err_msg == NULL)
11741 return 0;
11742 else
11743 error (("%s"), err_msg);
11744 }
11745
11746 return value_of_variable (syms[0].symbol, syms[0].block);
11747 }
11748
11749 /* Value of integer variable named NAME in the current environment.
11750 If no such variable is found, returns false. Otherwise, sets VALUE
11751 to the variable's value and returns true. */
11752
11753 bool
11754 get_int_var_value (const char *name, LONGEST &value)
11755 {
11756 struct value *var_val = get_var_value (name, 0);
11757
11758 if (var_val == 0)
11759 return false;
11760
11761 value = value_as_long (var_val);
11762 return true;
11763 }
11764
11765
11766 /* Return a range type whose base type is that of the range type named
11767 NAME in the current environment, and whose bounds are calculated
11768 from NAME according to the GNAT range encoding conventions.
11769 Extract discriminant values, if needed, from DVAL. ORIG_TYPE is the
11770 corresponding range type from debug information; fall back to using it
11771 if symbol lookup fails. If a new type must be created, allocate it
11772 like ORIG_TYPE was. The bounds information, in general, is encoded
11773 in NAME, the base type given in the named range type. */
11774
11775 static struct type *
11776 to_fixed_range_type (struct type *raw_type, struct value *dval)
11777 {
11778 const char *name;
11779 struct type *base_type;
11780 const char *subtype_info;
11781
11782 gdb_assert (raw_type != NULL);
11783 gdb_assert (TYPE_NAME (raw_type) != NULL);
11784
11785 if (TYPE_CODE (raw_type) == TYPE_CODE_RANGE)
11786 base_type = TYPE_TARGET_TYPE (raw_type);
11787 else
11788 base_type = raw_type;
11789
11790 name = TYPE_NAME (raw_type);
11791 subtype_info = strstr (name, "___XD");
11792 if (subtype_info == NULL)
11793 {
11794 LONGEST L = ada_discrete_type_low_bound (raw_type);
11795 LONGEST U = ada_discrete_type_high_bound (raw_type);
11796
11797 if (L < INT_MIN || U > INT_MAX)
11798 return raw_type;
11799 else
11800 return create_static_range_type (alloc_type_copy (raw_type), raw_type,
11801 L, U);
11802 }
11803 else
11804 {
11805 static char *name_buf = NULL;
11806 static size_t name_len = 0;
11807 int prefix_len = subtype_info - name;
11808 LONGEST L, U;
11809 struct type *type;
11810 const char *bounds_str;
11811 int n;
11812
11813 GROW_VECT (name_buf, name_len, prefix_len + 5);
11814 strncpy (name_buf, name, prefix_len);
11815 name_buf[prefix_len] = '\0';
11816
11817 subtype_info += 5;
11818 bounds_str = strchr (subtype_info, '_');
11819 n = 1;
11820
11821 if (*subtype_info == 'L')
11822 {
11823 if (!ada_scan_number (bounds_str, n, &L, &n)
11824 && !scan_discrim_bound (bounds_str, n, dval, &L, &n))
11825 return raw_type;
11826 if (bounds_str[n] == '_')
11827 n += 2;
11828 else if (bounds_str[n] == '.') /* FIXME? SGI Workshop kludge. */
11829 n += 1;
11830 subtype_info += 1;
11831 }
11832 else
11833 {
11834 strcpy (name_buf + prefix_len, "___L");
11835 if (!get_int_var_value (name_buf, L))
11836 {
11837 lim_warning (_("Unknown lower bound, using 1."));
11838 L = 1;
11839 }
11840 }
11841
11842 if (*subtype_info == 'U')
11843 {
11844 if (!ada_scan_number (bounds_str, n, &U, &n)
11845 && !scan_discrim_bound (bounds_str, n, dval, &U, &n))
11846 return raw_type;
11847 }
11848 else
11849 {
11850 strcpy (name_buf + prefix_len, "___U");
11851 if (!get_int_var_value (name_buf, U))
11852 {
11853 lim_warning (_("Unknown upper bound, using %ld."), (long) L);
11854 U = L;
11855 }
11856 }
11857
11858 type = create_static_range_type (alloc_type_copy (raw_type),
11859 base_type, L, U);
11860 /* create_static_range_type alters the resulting type's length
11861 to match the size of the base_type, which is not what we want.
11862 Set it back to the original range type's length. */
11863 TYPE_LENGTH (type) = TYPE_LENGTH (raw_type);
11864 TYPE_NAME (type) = name;
11865 return type;
11866 }
11867 }
11868
11869 /* True iff NAME is the name of a range type. */
11870
11871 int
11872 ada_is_range_type_name (const char *name)
11873 {
11874 return (name != NULL && strstr (name, "___XD"));
11875 }
11876 \f
11877
11878 /* Modular types */
11879
11880 /* True iff TYPE is an Ada modular type. */
11881
11882 int
11883 ada_is_modular_type (struct type *type)
11884 {
11885 struct type *subranged_type = get_base_type (type);
11886
11887 return (subranged_type != NULL && TYPE_CODE (type) == TYPE_CODE_RANGE
11888 && TYPE_CODE (subranged_type) == TYPE_CODE_INT
11889 && TYPE_UNSIGNED (subranged_type));
11890 }
11891
11892 /* Assuming ada_is_modular_type (TYPE), the modulus of TYPE. */
11893
11894 ULONGEST
11895 ada_modulus (struct type *type)
11896 {
11897 return (ULONGEST) TYPE_HIGH_BOUND (type) + 1;
11898 }
11899 \f
11900
11901 /* Ada exception catchpoint support:
11902 ---------------------------------
11903
11904 We support 3 kinds of exception catchpoints:
11905 . catchpoints on Ada exceptions
11906 . catchpoints on unhandled Ada exceptions
11907 . catchpoints on failed assertions
11908
11909 Exceptions raised during failed assertions, or unhandled exceptions
11910 could perfectly be caught with the general catchpoint on Ada exceptions.
11911 However, we can easily differentiate these two special cases, and having
11912 the option to distinguish these two cases from the rest can be useful
11913 to zero-in on certain situations.
11914
11915 Exception catchpoints are a specialized form of breakpoint,
11916 since they rely on inserting breakpoints inside known routines
11917 of the GNAT runtime. The implementation therefore uses a standard
11918 breakpoint structure of the BP_BREAKPOINT type, but with its own set
11919 of breakpoint_ops.
11920
11921 Support in the runtime for exception catchpoints have been changed
11922 a few times already, and these changes affect the implementation
11923 of these catchpoints. In order to be able to support several
11924 variants of the runtime, we use a sniffer that will determine
11925 the runtime variant used by the program being debugged. */
11926
11927 /* Ada's standard exceptions.
11928
11929 The Ada 83 standard also defined Numeric_Error. But there so many
11930 situations where it was unclear from the Ada 83 Reference Manual
11931 (RM) whether Constraint_Error or Numeric_Error should be raised,
11932 that the ARG (Ada Rapporteur Group) eventually issued a Binding
11933 Interpretation saying that anytime the RM says that Numeric_Error
11934 should be raised, the implementation may raise Constraint_Error.
11935 Ada 95 went one step further and pretty much removed Numeric_Error
11936 from the list of standard exceptions (it made it a renaming of
11937 Constraint_Error, to help preserve compatibility when compiling
11938 an Ada83 compiler). As such, we do not include Numeric_Error from
11939 this list of standard exceptions. */
11940
11941 static const char *standard_exc[] = {
11942 "constraint_error",
11943 "program_error",
11944 "storage_error",
11945 "tasking_error"
11946 };
11947
11948 typedef CORE_ADDR (ada_unhandled_exception_name_addr_ftype) (void);
11949
11950 /* A structure that describes how to support exception catchpoints
11951 for a given executable. */
11952
11953 struct exception_support_info
11954 {
11955 /* The name of the symbol to break on in order to insert
11956 a catchpoint on exceptions. */
11957 const char *catch_exception_sym;
11958
11959 /* The name of the symbol to break on in order to insert
11960 a catchpoint on unhandled exceptions. */
11961 const char *catch_exception_unhandled_sym;
11962
11963 /* The name of the symbol to break on in order to insert
11964 a catchpoint on failed assertions. */
11965 const char *catch_assert_sym;
11966
11967 /* The name of the symbol to break on in order to insert
11968 a catchpoint on exception handling. */
11969 const char *catch_handlers_sym;
11970
11971 /* Assuming that the inferior just triggered an unhandled exception
11972 catchpoint, this function is responsible for returning the address
11973 in inferior memory where the name of that exception is stored.
11974 Return zero if the address could not be computed. */
11975 ada_unhandled_exception_name_addr_ftype *unhandled_exception_name_addr;
11976 };
11977
11978 static CORE_ADDR ada_unhandled_exception_name_addr (void);
11979 static CORE_ADDR ada_unhandled_exception_name_addr_from_raise (void);
11980
11981 /* The following exception support info structure describes how to
11982 implement exception catchpoints with the latest version of the
11983 Ada runtime (as of 2007-03-06). */
11984
11985 static const struct exception_support_info default_exception_support_info =
11986 {
11987 "__gnat_debug_raise_exception", /* catch_exception_sym */
11988 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
11989 "__gnat_debug_raise_assert_failure", /* catch_assert_sym */
11990 "__gnat_begin_handler", /* catch_handlers_sym */
11991 ada_unhandled_exception_name_addr
11992 };
11993
11994 /* The following exception support info structure describes how to
11995 implement exception catchpoints with a slightly older version
11996 of the Ada runtime. */
11997
11998 static const struct exception_support_info exception_support_info_fallback =
11999 {
12000 "__gnat_raise_nodefer_with_msg", /* catch_exception_sym */
12001 "__gnat_unhandled_exception", /* catch_exception_unhandled_sym */
12002 "system__assertions__raise_assert_failure", /* catch_assert_sym */
12003 "__gnat_begin_handler", /* catch_handlers_sym */
12004 ada_unhandled_exception_name_addr_from_raise
12005 };
12006
12007 /* Return nonzero if we can detect the exception support routines
12008 described in EINFO.
12009
12010 This function errors out if an abnormal situation is detected
12011 (for instance, if we find the exception support routines, but
12012 that support is found to be incomplete). */
12013
12014 static int
12015 ada_has_this_exception_support (const struct exception_support_info *einfo)
12016 {
12017 struct symbol *sym;
12018
12019 /* The symbol we're looking up is provided by a unit in the GNAT runtime
12020 that should be compiled with debugging information. As a result, we
12021 expect to find that symbol in the symtabs. */
12022
12023 sym = standard_lookup (einfo->catch_exception_sym, NULL, VAR_DOMAIN);
12024 if (sym == NULL)
12025 {
12026 /* Perhaps we did not find our symbol because the Ada runtime was
12027 compiled without debugging info, or simply stripped of it.
12028 It happens on some GNU/Linux distributions for instance, where
12029 users have to install a separate debug package in order to get
12030 the runtime's debugging info. In that situation, let the user
12031 know why we cannot insert an Ada exception catchpoint.
12032
12033 Note: Just for the purpose of inserting our Ada exception
12034 catchpoint, we could rely purely on the associated minimal symbol.
12035 But we would be operating in degraded mode anyway, since we are
12036 still lacking the debugging info needed later on to extract
12037 the name of the exception being raised (this name is printed in
12038 the catchpoint message, and is also used when trying to catch
12039 a specific exception). We do not handle this case for now. */
12040 struct bound_minimal_symbol msym
12041 = lookup_minimal_symbol (einfo->catch_exception_sym, NULL, NULL);
12042
12043 if (msym.minsym && MSYMBOL_TYPE (msym.minsym) != mst_solib_trampoline)
12044 error (_("Your Ada runtime appears to be missing some debugging "
12045 "information.\nCannot insert Ada exception catchpoint "
12046 "in this configuration."));
12047
12048 return 0;
12049 }
12050
12051 /* Make sure that the symbol we found corresponds to a function. */
12052
12053 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
12054 error (_("Symbol \"%s\" is not a function (class = %d)"),
12055 SYMBOL_LINKAGE_NAME (sym), SYMBOL_CLASS (sym));
12056
12057 return 1;
12058 }
12059
12060 /* Inspect the Ada runtime and determine which exception info structure
12061 should be used to provide support for exception catchpoints.
12062
12063 This function will always set the per-inferior exception_info,
12064 or raise an error. */
12065
12066 static void
12067 ada_exception_support_info_sniffer (void)
12068 {
12069 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12070
12071 /* If the exception info is already known, then no need to recompute it. */
12072 if (data->exception_info != NULL)
12073 return;
12074
12075 /* Check the latest (default) exception support info. */
12076 if (ada_has_this_exception_support (&default_exception_support_info))
12077 {
12078 data->exception_info = &default_exception_support_info;
12079 return;
12080 }
12081
12082 /* Try our fallback exception suport info. */
12083 if (ada_has_this_exception_support (&exception_support_info_fallback))
12084 {
12085 data->exception_info = &exception_support_info_fallback;
12086 return;
12087 }
12088
12089 /* Sometimes, it is normal for us to not be able to find the routine
12090 we are looking for. This happens when the program is linked with
12091 the shared version of the GNAT runtime, and the program has not been
12092 started yet. Inform the user of these two possible causes if
12093 applicable. */
12094
12095 if (ada_update_initial_language (language_unknown) != language_ada)
12096 error (_("Unable to insert catchpoint. Is this an Ada main program?"));
12097
12098 /* If the symbol does not exist, then check that the program is
12099 already started, to make sure that shared libraries have been
12100 loaded. If it is not started, this may mean that the symbol is
12101 in a shared library. */
12102
12103 if (inferior_ptid.pid () == 0)
12104 error (_("Unable to insert catchpoint. Try to start the program first."));
12105
12106 /* At this point, we know that we are debugging an Ada program and
12107 that the inferior has been started, but we still are not able to
12108 find the run-time symbols. That can mean that we are in
12109 configurable run time mode, or that a-except as been optimized
12110 out by the linker... In any case, at this point it is not worth
12111 supporting this feature. */
12112
12113 error (_("Cannot insert Ada exception catchpoints in this configuration."));
12114 }
12115
12116 /* True iff FRAME is very likely to be that of a function that is
12117 part of the runtime system. This is all very heuristic, but is
12118 intended to be used as advice as to what frames are uninteresting
12119 to most users. */
12120
12121 static int
12122 is_known_support_routine (struct frame_info *frame)
12123 {
12124 enum language func_lang;
12125 int i;
12126 const char *fullname;
12127
12128 /* If this code does not have any debugging information (no symtab),
12129 This cannot be any user code. */
12130
12131 symtab_and_line sal = find_frame_sal (frame);
12132 if (sal.symtab == NULL)
12133 return 1;
12134
12135 /* If there is a symtab, but the associated source file cannot be
12136 located, then assume this is not user code: Selecting a frame
12137 for which we cannot display the code would not be very helpful
12138 for the user. This should also take care of case such as VxWorks
12139 where the kernel has some debugging info provided for a few units. */
12140
12141 fullname = symtab_to_fullname (sal.symtab);
12142 if (access (fullname, R_OK) != 0)
12143 return 1;
12144
12145 /* Check the unit filename againt the Ada runtime file naming.
12146 We also check the name of the objfile against the name of some
12147 known system libraries that sometimes come with debugging info
12148 too. */
12149
12150 for (i = 0; known_runtime_file_name_patterns[i] != NULL; i += 1)
12151 {
12152 re_comp (known_runtime_file_name_patterns[i]);
12153 if (re_exec (lbasename (sal.symtab->filename)))
12154 return 1;
12155 if (SYMTAB_OBJFILE (sal.symtab) != NULL
12156 && re_exec (objfile_name (SYMTAB_OBJFILE (sal.symtab))))
12157 return 1;
12158 }
12159
12160 /* Check whether the function is a GNAT-generated entity. */
12161
12162 gdb::unique_xmalloc_ptr<char> func_name
12163 = find_frame_funname (frame, &func_lang, NULL);
12164 if (func_name == NULL)
12165 return 1;
12166
12167 for (i = 0; known_auxiliary_function_name_patterns[i] != NULL; i += 1)
12168 {
12169 re_comp (known_auxiliary_function_name_patterns[i]);
12170 if (re_exec (func_name.get ()))
12171 return 1;
12172 }
12173
12174 return 0;
12175 }
12176
12177 /* Find the first frame that contains debugging information and that is not
12178 part of the Ada run-time, starting from FI and moving upward. */
12179
12180 void
12181 ada_find_printable_frame (struct frame_info *fi)
12182 {
12183 for (; fi != NULL; fi = get_prev_frame (fi))
12184 {
12185 if (!is_known_support_routine (fi))
12186 {
12187 select_frame (fi);
12188 break;
12189 }
12190 }
12191
12192 }
12193
12194 /* Assuming that the inferior just triggered an unhandled exception
12195 catchpoint, return the address in inferior memory where the name
12196 of the exception is stored.
12197
12198 Return zero if the address could not be computed. */
12199
12200 static CORE_ADDR
12201 ada_unhandled_exception_name_addr (void)
12202 {
12203 return parse_and_eval_address ("e.full_name");
12204 }
12205
12206 /* Same as ada_unhandled_exception_name_addr, except that this function
12207 should be used when the inferior uses an older version of the runtime,
12208 where the exception name needs to be extracted from a specific frame
12209 several frames up in the callstack. */
12210
12211 static CORE_ADDR
12212 ada_unhandled_exception_name_addr_from_raise (void)
12213 {
12214 int frame_level;
12215 struct frame_info *fi;
12216 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12217
12218 /* To determine the name of this exception, we need to select
12219 the frame corresponding to RAISE_SYM_NAME. This frame is
12220 at least 3 levels up, so we simply skip the first 3 frames
12221 without checking the name of their associated function. */
12222 fi = get_current_frame ();
12223 for (frame_level = 0; frame_level < 3; frame_level += 1)
12224 if (fi != NULL)
12225 fi = get_prev_frame (fi);
12226
12227 while (fi != NULL)
12228 {
12229 enum language func_lang;
12230
12231 gdb::unique_xmalloc_ptr<char> func_name
12232 = find_frame_funname (fi, &func_lang, NULL);
12233 if (func_name != NULL)
12234 {
12235 if (strcmp (func_name.get (),
12236 data->exception_info->catch_exception_sym) == 0)
12237 break; /* We found the frame we were looking for... */
12238 fi = get_prev_frame (fi);
12239 }
12240 }
12241
12242 if (fi == NULL)
12243 return 0;
12244
12245 select_frame (fi);
12246 return parse_and_eval_address ("id.full_name");
12247 }
12248
12249 /* Assuming the inferior just triggered an Ada exception catchpoint
12250 (of any type), return the address in inferior memory where the name
12251 of the exception is stored, if applicable.
12252
12253 Assumes the selected frame is the current frame.
12254
12255 Return zero if the address could not be computed, or if not relevant. */
12256
12257 static CORE_ADDR
12258 ada_exception_name_addr_1 (enum ada_exception_catchpoint_kind ex,
12259 struct breakpoint *b)
12260 {
12261 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
12262
12263 switch (ex)
12264 {
12265 case ada_catch_exception:
12266 return (parse_and_eval_address ("e.full_name"));
12267 break;
12268
12269 case ada_catch_exception_unhandled:
12270 return data->exception_info->unhandled_exception_name_addr ();
12271 break;
12272
12273 case ada_catch_handlers:
12274 return 0; /* The runtimes does not provide access to the exception
12275 name. */
12276 break;
12277
12278 case ada_catch_assert:
12279 return 0; /* Exception name is not relevant in this case. */
12280 break;
12281
12282 default:
12283 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12284 break;
12285 }
12286
12287 return 0; /* Should never be reached. */
12288 }
12289
12290 /* Assuming the inferior is stopped at an exception catchpoint,
12291 return the message which was associated to the exception, if
12292 available. Return NULL if the message could not be retrieved.
12293
12294 Note: The exception message can be associated to an exception
12295 either through the use of the Raise_Exception function, or
12296 more simply (Ada 2005 and later), via:
12297
12298 raise Exception_Name with "exception message";
12299
12300 */
12301
12302 static gdb::unique_xmalloc_ptr<char>
12303 ada_exception_message_1 (void)
12304 {
12305 struct value *e_msg_val;
12306 int e_msg_len;
12307
12308 /* For runtimes that support this feature, the exception message
12309 is passed as an unbounded string argument called "message". */
12310 e_msg_val = parse_and_eval ("message");
12311 if (e_msg_val == NULL)
12312 return NULL; /* Exception message not supported. */
12313
12314 e_msg_val = ada_coerce_to_simple_array (e_msg_val);
12315 gdb_assert (e_msg_val != NULL);
12316 e_msg_len = TYPE_LENGTH (value_type (e_msg_val));
12317
12318 /* If the message string is empty, then treat it as if there was
12319 no exception message. */
12320 if (e_msg_len <= 0)
12321 return NULL;
12322
12323 gdb::unique_xmalloc_ptr<char> e_msg ((char *) xmalloc (e_msg_len + 1));
12324 read_memory_string (value_address (e_msg_val), e_msg.get (), e_msg_len + 1);
12325 e_msg.get ()[e_msg_len] = '\0';
12326
12327 return e_msg;
12328 }
12329
12330 /* Same as ada_exception_message_1, except that all exceptions are
12331 contained here (returning NULL instead). */
12332
12333 static gdb::unique_xmalloc_ptr<char>
12334 ada_exception_message (void)
12335 {
12336 gdb::unique_xmalloc_ptr<char> e_msg;
12337
12338 TRY
12339 {
12340 e_msg = ada_exception_message_1 ();
12341 }
12342 CATCH (e, RETURN_MASK_ERROR)
12343 {
12344 e_msg.reset (nullptr);
12345 }
12346 END_CATCH
12347
12348 return e_msg;
12349 }
12350
12351 /* Same as ada_exception_name_addr_1, except that it intercepts and contains
12352 any error that ada_exception_name_addr_1 might cause to be thrown.
12353 When an error is intercepted, a warning with the error message is printed,
12354 and zero is returned. */
12355
12356 static CORE_ADDR
12357 ada_exception_name_addr (enum ada_exception_catchpoint_kind ex,
12358 struct breakpoint *b)
12359 {
12360 CORE_ADDR result = 0;
12361
12362 TRY
12363 {
12364 result = ada_exception_name_addr_1 (ex, b);
12365 }
12366
12367 CATCH (e, RETURN_MASK_ERROR)
12368 {
12369 warning (_("failed to get exception name: %s"), e.message);
12370 return 0;
12371 }
12372 END_CATCH
12373
12374 return result;
12375 }
12376
12377 static std::string ada_exception_catchpoint_cond_string
12378 (const char *excep_string,
12379 enum ada_exception_catchpoint_kind ex);
12380
12381 /* Ada catchpoints.
12382
12383 In the case of catchpoints on Ada exceptions, the catchpoint will
12384 stop the target on every exception the program throws. When a user
12385 specifies the name of a specific exception, we translate this
12386 request into a condition expression (in text form), and then parse
12387 it into an expression stored in each of the catchpoint's locations.
12388 We then use this condition to check whether the exception that was
12389 raised is the one the user is interested in. If not, then the
12390 target is resumed again. We store the name of the requested
12391 exception, in order to be able to re-set the condition expression
12392 when symbols change. */
12393
12394 /* An instance of this type is used to represent an Ada catchpoint
12395 breakpoint location. */
12396
12397 class ada_catchpoint_location : public bp_location
12398 {
12399 public:
12400 ada_catchpoint_location (const bp_location_ops *ops, breakpoint *owner)
12401 : bp_location (ops, owner)
12402 {}
12403
12404 /* The condition that checks whether the exception that was raised
12405 is the specific exception the user specified on catchpoint
12406 creation. */
12407 expression_up excep_cond_expr;
12408 };
12409
12410 /* Implement the DTOR method in the bp_location_ops structure for all
12411 Ada exception catchpoint kinds. */
12412
12413 static void
12414 ada_catchpoint_location_dtor (struct bp_location *bl)
12415 {
12416 struct ada_catchpoint_location *al = (struct ada_catchpoint_location *) bl;
12417
12418 al->excep_cond_expr.reset ();
12419 }
12420
12421 /* The vtable to be used in Ada catchpoint locations. */
12422
12423 static const struct bp_location_ops ada_catchpoint_location_ops =
12424 {
12425 ada_catchpoint_location_dtor
12426 };
12427
12428 /* An instance of this type is used to represent an Ada catchpoint. */
12429
12430 struct ada_catchpoint : public breakpoint
12431 {
12432 /* The name of the specific exception the user specified. */
12433 std::string excep_string;
12434 };
12435
12436 /* Parse the exception condition string in the context of each of the
12437 catchpoint's locations, and store them for later evaluation. */
12438
12439 static void
12440 create_excep_cond_exprs (struct ada_catchpoint *c,
12441 enum ada_exception_catchpoint_kind ex)
12442 {
12443 struct bp_location *bl;
12444
12445 /* Nothing to do if there's no specific exception to catch. */
12446 if (c->excep_string.empty ())
12447 return;
12448
12449 /* Same if there are no locations... */
12450 if (c->loc == NULL)
12451 return;
12452
12453 /* Compute the condition expression in text form, from the specific
12454 expection we want to catch. */
12455 std::string cond_string
12456 = ada_exception_catchpoint_cond_string (c->excep_string.c_str (), ex);
12457
12458 /* Iterate over all the catchpoint's locations, and parse an
12459 expression for each. */
12460 for (bl = c->loc; bl != NULL; bl = bl->next)
12461 {
12462 struct ada_catchpoint_location *ada_loc
12463 = (struct ada_catchpoint_location *) bl;
12464 expression_up exp;
12465
12466 if (!bl->shlib_disabled)
12467 {
12468 const char *s;
12469
12470 s = cond_string.c_str ();
12471 TRY
12472 {
12473 exp = parse_exp_1 (&s, bl->address,
12474 block_for_pc (bl->address),
12475 0);
12476 }
12477 CATCH (e, RETURN_MASK_ERROR)
12478 {
12479 warning (_("failed to reevaluate internal exception condition "
12480 "for catchpoint %d: %s"),
12481 c->number, e.message);
12482 }
12483 END_CATCH
12484 }
12485
12486 ada_loc->excep_cond_expr = std::move (exp);
12487 }
12488 }
12489
12490 /* Implement the ALLOCATE_LOCATION method in the breakpoint_ops
12491 structure for all exception catchpoint kinds. */
12492
12493 static struct bp_location *
12494 allocate_location_exception (enum ada_exception_catchpoint_kind ex,
12495 struct breakpoint *self)
12496 {
12497 return new ada_catchpoint_location (&ada_catchpoint_location_ops, self);
12498 }
12499
12500 /* Implement the RE_SET method in the breakpoint_ops structure for all
12501 exception catchpoint kinds. */
12502
12503 static void
12504 re_set_exception (enum ada_exception_catchpoint_kind ex, struct breakpoint *b)
12505 {
12506 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12507
12508 /* Call the base class's method. This updates the catchpoint's
12509 locations. */
12510 bkpt_breakpoint_ops.re_set (b);
12511
12512 /* Reparse the exception conditional expressions. One for each
12513 location. */
12514 create_excep_cond_exprs (c, ex);
12515 }
12516
12517 /* Returns true if we should stop for this breakpoint hit. If the
12518 user specified a specific exception, we only want to cause a stop
12519 if the program thrown that exception. */
12520
12521 static int
12522 should_stop_exception (const struct bp_location *bl)
12523 {
12524 struct ada_catchpoint *c = (struct ada_catchpoint *) bl->owner;
12525 const struct ada_catchpoint_location *ada_loc
12526 = (const struct ada_catchpoint_location *) bl;
12527 int stop;
12528
12529 /* With no specific exception, should always stop. */
12530 if (c->excep_string.empty ())
12531 return 1;
12532
12533 if (ada_loc->excep_cond_expr == NULL)
12534 {
12535 /* We will have a NULL expression if back when we were creating
12536 the expressions, this location's had failed to parse. */
12537 return 1;
12538 }
12539
12540 stop = 1;
12541 TRY
12542 {
12543 struct value *mark;
12544
12545 mark = value_mark ();
12546 stop = value_true (evaluate_expression (ada_loc->excep_cond_expr.get ()));
12547 value_free_to_mark (mark);
12548 }
12549 CATCH (ex, RETURN_MASK_ALL)
12550 {
12551 exception_fprintf (gdb_stderr, ex,
12552 _("Error in testing exception condition:\n"));
12553 }
12554 END_CATCH
12555
12556 return stop;
12557 }
12558
12559 /* Implement the CHECK_STATUS method in the breakpoint_ops structure
12560 for all exception catchpoint kinds. */
12561
12562 static void
12563 check_status_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12564 {
12565 bs->stop = should_stop_exception (bs->bp_location_at);
12566 }
12567
12568 /* Implement the PRINT_IT method in the breakpoint_ops structure
12569 for all exception catchpoint kinds. */
12570
12571 static enum print_stop_action
12572 print_it_exception (enum ada_exception_catchpoint_kind ex, bpstat bs)
12573 {
12574 struct ui_out *uiout = current_uiout;
12575 struct breakpoint *b = bs->breakpoint_at;
12576
12577 annotate_catchpoint (b->number);
12578
12579 if (uiout->is_mi_like_p ())
12580 {
12581 uiout->field_string ("reason",
12582 async_reason_lookup (EXEC_ASYNC_BREAKPOINT_HIT));
12583 uiout->field_string ("disp", bpdisp_text (b->disposition));
12584 }
12585
12586 uiout->text (b->disposition == disp_del
12587 ? "\nTemporary catchpoint " : "\nCatchpoint ");
12588 uiout->field_int ("bkptno", b->number);
12589 uiout->text (", ");
12590
12591 /* ada_exception_name_addr relies on the selected frame being the
12592 current frame. Need to do this here because this function may be
12593 called more than once when printing a stop, and below, we'll
12594 select the first frame past the Ada run-time (see
12595 ada_find_printable_frame). */
12596 select_frame (get_current_frame ());
12597
12598 switch (ex)
12599 {
12600 case ada_catch_exception:
12601 case ada_catch_exception_unhandled:
12602 case ada_catch_handlers:
12603 {
12604 const CORE_ADDR addr = ada_exception_name_addr (ex, b);
12605 char exception_name[256];
12606
12607 if (addr != 0)
12608 {
12609 read_memory (addr, (gdb_byte *) exception_name,
12610 sizeof (exception_name) - 1);
12611 exception_name [sizeof (exception_name) - 1] = '\0';
12612 }
12613 else
12614 {
12615 /* For some reason, we were unable to read the exception
12616 name. This could happen if the Runtime was compiled
12617 without debugging info, for instance. In that case,
12618 just replace the exception name by the generic string
12619 "exception" - it will read as "an exception" in the
12620 notification we are about to print. */
12621 memcpy (exception_name, "exception", sizeof ("exception"));
12622 }
12623 /* In the case of unhandled exception breakpoints, we print
12624 the exception name as "unhandled EXCEPTION_NAME", to make
12625 it clearer to the user which kind of catchpoint just got
12626 hit. We used ui_out_text to make sure that this extra
12627 info does not pollute the exception name in the MI case. */
12628 if (ex == ada_catch_exception_unhandled)
12629 uiout->text ("unhandled ");
12630 uiout->field_string ("exception-name", exception_name);
12631 }
12632 break;
12633 case ada_catch_assert:
12634 /* In this case, the name of the exception is not really
12635 important. Just print "failed assertion" to make it clearer
12636 that his program just hit an assertion-failure catchpoint.
12637 We used ui_out_text because this info does not belong in
12638 the MI output. */
12639 uiout->text ("failed assertion");
12640 break;
12641 }
12642
12643 gdb::unique_xmalloc_ptr<char> exception_message = ada_exception_message ();
12644 if (exception_message != NULL)
12645 {
12646 uiout->text (" (");
12647 uiout->field_string ("exception-message", exception_message.get ());
12648 uiout->text (")");
12649 }
12650
12651 uiout->text (" at ");
12652 ada_find_printable_frame (get_current_frame ());
12653
12654 return PRINT_SRC_AND_LOC;
12655 }
12656
12657 /* Implement the PRINT_ONE method in the breakpoint_ops structure
12658 for all exception catchpoint kinds. */
12659
12660 static void
12661 print_one_exception (enum ada_exception_catchpoint_kind ex,
12662 struct breakpoint *b, struct bp_location **last_loc)
12663 {
12664 struct ui_out *uiout = current_uiout;
12665 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12666 struct value_print_options opts;
12667
12668 get_user_print_options (&opts);
12669 if (opts.addressprint)
12670 {
12671 annotate_field (4);
12672 uiout->field_core_addr ("addr", b->loc->gdbarch, b->loc->address);
12673 }
12674
12675 annotate_field (5);
12676 *last_loc = b->loc;
12677 switch (ex)
12678 {
12679 case ada_catch_exception:
12680 if (!c->excep_string.empty ())
12681 {
12682 std::string msg = string_printf (_("`%s' Ada exception"),
12683 c->excep_string.c_str ());
12684
12685 uiout->field_string ("what", msg);
12686 }
12687 else
12688 uiout->field_string ("what", "all Ada exceptions");
12689
12690 break;
12691
12692 case ada_catch_exception_unhandled:
12693 uiout->field_string ("what", "unhandled Ada exceptions");
12694 break;
12695
12696 case ada_catch_handlers:
12697 if (!c->excep_string.empty ())
12698 {
12699 uiout->field_fmt ("what",
12700 _("`%s' Ada exception handlers"),
12701 c->excep_string.c_str ());
12702 }
12703 else
12704 uiout->field_string ("what", "all Ada exceptions handlers");
12705 break;
12706
12707 case ada_catch_assert:
12708 uiout->field_string ("what", "failed Ada assertions");
12709 break;
12710
12711 default:
12712 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12713 break;
12714 }
12715 }
12716
12717 /* Implement the PRINT_MENTION method in the breakpoint_ops structure
12718 for all exception catchpoint kinds. */
12719
12720 static void
12721 print_mention_exception (enum ada_exception_catchpoint_kind ex,
12722 struct breakpoint *b)
12723 {
12724 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12725 struct ui_out *uiout = current_uiout;
12726
12727 uiout->text (b->disposition == disp_del ? _("Temporary catchpoint ")
12728 : _("Catchpoint "));
12729 uiout->field_int ("bkptno", b->number);
12730 uiout->text (": ");
12731
12732 switch (ex)
12733 {
12734 case ada_catch_exception:
12735 if (!c->excep_string.empty ())
12736 {
12737 std::string info = string_printf (_("`%s' Ada exception"),
12738 c->excep_string.c_str ());
12739 uiout->text (info.c_str ());
12740 }
12741 else
12742 uiout->text (_("all Ada exceptions"));
12743 break;
12744
12745 case ada_catch_exception_unhandled:
12746 uiout->text (_("unhandled Ada exceptions"));
12747 break;
12748
12749 case ada_catch_handlers:
12750 if (!c->excep_string.empty ())
12751 {
12752 std::string info
12753 = string_printf (_("`%s' Ada exception handlers"),
12754 c->excep_string.c_str ());
12755 uiout->text (info.c_str ());
12756 }
12757 else
12758 uiout->text (_("all Ada exceptions handlers"));
12759 break;
12760
12761 case ada_catch_assert:
12762 uiout->text (_("failed Ada assertions"));
12763 break;
12764
12765 default:
12766 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12767 break;
12768 }
12769 }
12770
12771 /* Implement the PRINT_RECREATE method in the breakpoint_ops structure
12772 for all exception catchpoint kinds. */
12773
12774 static void
12775 print_recreate_exception (enum ada_exception_catchpoint_kind ex,
12776 struct breakpoint *b, struct ui_file *fp)
12777 {
12778 struct ada_catchpoint *c = (struct ada_catchpoint *) b;
12779
12780 switch (ex)
12781 {
12782 case ada_catch_exception:
12783 fprintf_filtered (fp, "catch exception");
12784 if (!c->excep_string.empty ())
12785 fprintf_filtered (fp, " %s", c->excep_string.c_str ());
12786 break;
12787
12788 case ada_catch_exception_unhandled:
12789 fprintf_filtered (fp, "catch exception unhandled");
12790 break;
12791
12792 case ada_catch_handlers:
12793 fprintf_filtered (fp, "catch handlers");
12794 break;
12795
12796 case ada_catch_assert:
12797 fprintf_filtered (fp, "catch assert");
12798 break;
12799
12800 default:
12801 internal_error (__FILE__, __LINE__, _("unexpected catchpoint type"));
12802 }
12803 print_recreate_thread (b, fp);
12804 }
12805
12806 /* Virtual table for "catch exception" breakpoints. */
12807
12808 static struct bp_location *
12809 allocate_location_catch_exception (struct breakpoint *self)
12810 {
12811 return allocate_location_exception (ada_catch_exception, self);
12812 }
12813
12814 static void
12815 re_set_catch_exception (struct breakpoint *b)
12816 {
12817 re_set_exception (ada_catch_exception, b);
12818 }
12819
12820 static void
12821 check_status_catch_exception (bpstat bs)
12822 {
12823 check_status_exception (ada_catch_exception, bs);
12824 }
12825
12826 static enum print_stop_action
12827 print_it_catch_exception (bpstat bs)
12828 {
12829 return print_it_exception (ada_catch_exception, bs);
12830 }
12831
12832 static void
12833 print_one_catch_exception (struct breakpoint *b, struct bp_location **last_loc)
12834 {
12835 print_one_exception (ada_catch_exception, b, last_loc);
12836 }
12837
12838 static void
12839 print_mention_catch_exception (struct breakpoint *b)
12840 {
12841 print_mention_exception (ada_catch_exception, b);
12842 }
12843
12844 static void
12845 print_recreate_catch_exception (struct breakpoint *b, struct ui_file *fp)
12846 {
12847 print_recreate_exception (ada_catch_exception, b, fp);
12848 }
12849
12850 static struct breakpoint_ops catch_exception_breakpoint_ops;
12851
12852 /* Virtual table for "catch exception unhandled" breakpoints. */
12853
12854 static struct bp_location *
12855 allocate_location_catch_exception_unhandled (struct breakpoint *self)
12856 {
12857 return allocate_location_exception (ada_catch_exception_unhandled, self);
12858 }
12859
12860 static void
12861 re_set_catch_exception_unhandled (struct breakpoint *b)
12862 {
12863 re_set_exception (ada_catch_exception_unhandled, b);
12864 }
12865
12866 static void
12867 check_status_catch_exception_unhandled (bpstat bs)
12868 {
12869 check_status_exception (ada_catch_exception_unhandled, bs);
12870 }
12871
12872 static enum print_stop_action
12873 print_it_catch_exception_unhandled (bpstat bs)
12874 {
12875 return print_it_exception (ada_catch_exception_unhandled, bs);
12876 }
12877
12878 static void
12879 print_one_catch_exception_unhandled (struct breakpoint *b,
12880 struct bp_location **last_loc)
12881 {
12882 print_one_exception (ada_catch_exception_unhandled, b, last_loc);
12883 }
12884
12885 static void
12886 print_mention_catch_exception_unhandled (struct breakpoint *b)
12887 {
12888 print_mention_exception (ada_catch_exception_unhandled, b);
12889 }
12890
12891 static void
12892 print_recreate_catch_exception_unhandled (struct breakpoint *b,
12893 struct ui_file *fp)
12894 {
12895 print_recreate_exception (ada_catch_exception_unhandled, b, fp);
12896 }
12897
12898 static struct breakpoint_ops catch_exception_unhandled_breakpoint_ops;
12899
12900 /* Virtual table for "catch assert" breakpoints. */
12901
12902 static struct bp_location *
12903 allocate_location_catch_assert (struct breakpoint *self)
12904 {
12905 return allocate_location_exception (ada_catch_assert, self);
12906 }
12907
12908 static void
12909 re_set_catch_assert (struct breakpoint *b)
12910 {
12911 re_set_exception (ada_catch_assert, b);
12912 }
12913
12914 static void
12915 check_status_catch_assert (bpstat bs)
12916 {
12917 check_status_exception (ada_catch_assert, bs);
12918 }
12919
12920 static enum print_stop_action
12921 print_it_catch_assert (bpstat bs)
12922 {
12923 return print_it_exception (ada_catch_assert, bs);
12924 }
12925
12926 static void
12927 print_one_catch_assert (struct breakpoint *b, struct bp_location **last_loc)
12928 {
12929 print_one_exception (ada_catch_assert, b, last_loc);
12930 }
12931
12932 static void
12933 print_mention_catch_assert (struct breakpoint *b)
12934 {
12935 print_mention_exception (ada_catch_assert, b);
12936 }
12937
12938 static void
12939 print_recreate_catch_assert (struct breakpoint *b, struct ui_file *fp)
12940 {
12941 print_recreate_exception (ada_catch_assert, b, fp);
12942 }
12943
12944 static struct breakpoint_ops catch_assert_breakpoint_ops;
12945
12946 /* Virtual table for "catch handlers" breakpoints. */
12947
12948 static struct bp_location *
12949 allocate_location_catch_handlers (struct breakpoint *self)
12950 {
12951 return allocate_location_exception (ada_catch_handlers, self);
12952 }
12953
12954 static void
12955 re_set_catch_handlers (struct breakpoint *b)
12956 {
12957 re_set_exception (ada_catch_handlers, b);
12958 }
12959
12960 static void
12961 check_status_catch_handlers (bpstat bs)
12962 {
12963 check_status_exception (ada_catch_handlers, bs);
12964 }
12965
12966 static enum print_stop_action
12967 print_it_catch_handlers (bpstat bs)
12968 {
12969 return print_it_exception (ada_catch_handlers, bs);
12970 }
12971
12972 static void
12973 print_one_catch_handlers (struct breakpoint *b,
12974 struct bp_location **last_loc)
12975 {
12976 print_one_exception (ada_catch_handlers, b, last_loc);
12977 }
12978
12979 static void
12980 print_mention_catch_handlers (struct breakpoint *b)
12981 {
12982 print_mention_exception (ada_catch_handlers, b);
12983 }
12984
12985 static void
12986 print_recreate_catch_handlers (struct breakpoint *b,
12987 struct ui_file *fp)
12988 {
12989 print_recreate_exception (ada_catch_handlers, b, fp);
12990 }
12991
12992 static struct breakpoint_ops catch_handlers_breakpoint_ops;
12993
12994 /* Split the arguments specified in a "catch exception" command.
12995 Set EX to the appropriate catchpoint type.
12996 Set EXCEP_STRING to the name of the specific exception if
12997 specified by the user.
12998 IS_CATCH_HANDLERS_CMD: True if the arguments are for a
12999 "catch handlers" command. False otherwise.
13000 If a condition is found at the end of the arguments, the condition
13001 expression is stored in COND_STRING (memory must be deallocated
13002 after use). Otherwise COND_STRING is set to NULL. */
13003
13004 static void
13005 catch_ada_exception_command_split (const char *args,
13006 bool is_catch_handlers_cmd,
13007 enum ada_exception_catchpoint_kind *ex,
13008 std::string *excep_string,
13009 std::string *cond_string)
13010 {
13011 std::string exception_name;
13012
13013 exception_name = extract_arg (&args);
13014 if (exception_name == "if")
13015 {
13016 /* This is not an exception name; this is the start of a condition
13017 expression for a catchpoint on all exceptions. So, "un-get"
13018 this token, and set exception_name to NULL. */
13019 exception_name.clear ();
13020 args -= 2;
13021 }
13022
13023 /* Check to see if we have a condition. */
13024
13025 args = skip_spaces (args);
13026 if (startswith (args, "if")
13027 && (isspace (args[2]) || args[2] == '\0'))
13028 {
13029 args += 2;
13030 args = skip_spaces (args);
13031
13032 if (args[0] == '\0')
13033 error (_("Condition missing after `if' keyword"));
13034 *cond_string = args;
13035
13036 args += strlen (args);
13037 }
13038
13039 /* Check that we do not have any more arguments. Anything else
13040 is unexpected. */
13041
13042 if (args[0] != '\0')
13043 error (_("Junk at end of expression"));
13044
13045 if (is_catch_handlers_cmd)
13046 {
13047 /* Catch handling of exceptions. */
13048 *ex = ada_catch_handlers;
13049 *excep_string = exception_name;
13050 }
13051 else if (exception_name.empty ())
13052 {
13053 /* Catch all exceptions. */
13054 *ex = ada_catch_exception;
13055 excep_string->clear ();
13056 }
13057 else if (exception_name == "unhandled")
13058 {
13059 /* Catch unhandled exceptions. */
13060 *ex = ada_catch_exception_unhandled;
13061 excep_string->clear ();
13062 }
13063 else
13064 {
13065 /* Catch a specific exception. */
13066 *ex = ada_catch_exception;
13067 *excep_string = exception_name;
13068 }
13069 }
13070
13071 /* Return the name of the symbol on which we should break in order to
13072 implement a catchpoint of the EX kind. */
13073
13074 static const char *
13075 ada_exception_sym_name (enum ada_exception_catchpoint_kind ex)
13076 {
13077 struct ada_inferior_data *data = get_ada_inferior_data (current_inferior ());
13078
13079 gdb_assert (data->exception_info != NULL);
13080
13081 switch (ex)
13082 {
13083 case ada_catch_exception:
13084 return (data->exception_info->catch_exception_sym);
13085 break;
13086 case ada_catch_exception_unhandled:
13087 return (data->exception_info->catch_exception_unhandled_sym);
13088 break;
13089 case ada_catch_assert:
13090 return (data->exception_info->catch_assert_sym);
13091 break;
13092 case ada_catch_handlers:
13093 return (data->exception_info->catch_handlers_sym);
13094 break;
13095 default:
13096 internal_error (__FILE__, __LINE__,
13097 _("unexpected catchpoint kind (%d)"), ex);
13098 }
13099 }
13100
13101 /* Return the breakpoint ops "virtual table" used for catchpoints
13102 of the EX kind. */
13103
13104 static const struct breakpoint_ops *
13105 ada_exception_breakpoint_ops (enum ada_exception_catchpoint_kind ex)
13106 {
13107 switch (ex)
13108 {
13109 case ada_catch_exception:
13110 return (&catch_exception_breakpoint_ops);
13111 break;
13112 case ada_catch_exception_unhandled:
13113 return (&catch_exception_unhandled_breakpoint_ops);
13114 break;
13115 case ada_catch_assert:
13116 return (&catch_assert_breakpoint_ops);
13117 break;
13118 case ada_catch_handlers:
13119 return (&catch_handlers_breakpoint_ops);
13120 break;
13121 default:
13122 internal_error (__FILE__, __LINE__,
13123 _("unexpected catchpoint kind (%d)"), ex);
13124 }
13125 }
13126
13127 /* Return the condition that will be used to match the current exception
13128 being raised with the exception that the user wants to catch. This
13129 assumes that this condition is used when the inferior just triggered
13130 an exception catchpoint.
13131 EX: the type of catchpoints used for catching Ada exceptions. */
13132
13133 static std::string
13134 ada_exception_catchpoint_cond_string (const char *excep_string,
13135 enum ada_exception_catchpoint_kind ex)
13136 {
13137 int i;
13138 bool is_standard_exc = false;
13139 std::string result;
13140
13141 if (ex == ada_catch_handlers)
13142 {
13143 /* For exception handlers catchpoints, the condition string does
13144 not use the same parameter as for the other exceptions. */
13145 result = ("long_integer (GNAT_GCC_exception_Access"
13146 "(gcc_exception).all.occurrence.id)");
13147 }
13148 else
13149 result = "long_integer (e)";
13150
13151 /* The standard exceptions are a special case. They are defined in
13152 runtime units that have been compiled without debugging info; if
13153 EXCEP_STRING is the not-fully-qualified name of a standard
13154 exception (e.g. "constraint_error") then, during the evaluation
13155 of the condition expression, the symbol lookup on this name would
13156 *not* return this standard exception. The catchpoint condition
13157 may then be set only on user-defined exceptions which have the
13158 same not-fully-qualified name (e.g. my_package.constraint_error).
13159
13160 To avoid this unexcepted behavior, these standard exceptions are
13161 systematically prefixed by "standard". This means that "catch
13162 exception constraint_error" is rewritten into "catch exception
13163 standard.constraint_error".
13164
13165 If an exception named contraint_error is defined in another package of
13166 the inferior program, then the only way to specify this exception as a
13167 breakpoint condition is to use its fully-qualified named:
13168 e.g. my_package.constraint_error. */
13169
13170 for (i = 0; i < sizeof (standard_exc) / sizeof (char *); i++)
13171 {
13172 if (strcmp (standard_exc [i], excep_string) == 0)
13173 {
13174 is_standard_exc = true;
13175 break;
13176 }
13177 }
13178
13179 result += " = ";
13180
13181 if (is_standard_exc)
13182 string_appendf (result, "long_integer (&standard.%s)", excep_string);
13183 else
13184 string_appendf (result, "long_integer (&%s)", excep_string);
13185
13186 return result;
13187 }
13188
13189 /* Return the symtab_and_line that should be used to insert an exception
13190 catchpoint of the TYPE kind.
13191
13192 ADDR_STRING returns the name of the function where the real
13193 breakpoint that implements the catchpoints is set, depending on the
13194 type of catchpoint we need to create. */
13195
13196 static struct symtab_and_line
13197 ada_exception_sal (enum ada_exception_catchpoint_kind ex,
13198 const char **addr_string, const struct breakpoint_ops **ops)
13199 {
13200 const char *sym_name;
13201 struct symbol *sym;
13202
13203 /* First, find out which exception support info to use. */
13204 ada_exception_support_info_sniffer ();
13205
13206 /* Then lookup the function on which we will break in order to catch
13207 the Ada exceptions requested by the user. */
13208 sym_name = ada_exception_sym_name (ex);
13209 sym = standard_lookup (sym_name, NULL, VAR_DOMAIN);
13210
13211 /* We can assume that SYM is not NULL at this stage. If the symbol
13212 did not exist, ada_exception_support_info_sniffer would have
13213 raised an exception.
13214
13215 Also, ada_exception_support_info_sniffer should have already
13216 verified that SYM is a function symbol. */
13217 gdb_assert (sym != NULL);
13218 gdb_assert (SYMBOL_CLASS (sym) == LOC_BLOCK);
13219
13220 /* Set ADDR_STRING. */
13221 *addr_string = xstrdup (sym_name);
13222
13223 /* Set OPS. */
13224 *ops = ada_exception_breakpoint_ops (ex);
13225
13226 return find_function_start_sal (sym, 1);
13227 }
13228
13229 /* Create an Ada exception catchpoint.
13230
13231 EX_KIND is the kind of exception catchpoint to be created.
13232
13233 If EXCEPT_STRING is empty, this catchpoint is expected to trigger
13234 for all exceptions. Otherwise, EXCEPT_STRING indicates the name
13235 of the exception to which this catchpoint applies.
13236
13237 COND_STRING, if not empty, is the catchpoint condition.
13238
13239 TEMPFLAG, if nonzero, means that the underlying breakpoint
13240 should be temporary.
13241
13242 FROM_TTY is the usual argument passed to all commands implementations. */
13243
13244 void
13245 create_ada_exception_catchpoint (struct gdbarch *gdbarch,
13246 enum ada_exception_catchpoint_kind ex_kind,
13247 const std::string &excep_string,
13248 const std::string &cond_string,
13249 int tempflag,
13250 int disabled,
13251 int from_tty)
13252 {
13253 const char *addr_string = NULL;
13254 const struct breakpoint_ops *ops = NULL;
13255 struct symtab_and_line sal = ada_exception_sal (ex_kind, &addr_string, &ops);
13256
13257 std::unique_ptr<ada_catchpoint> c (new ada_catchpoint ());
13258 init_ada_exception_breakpoint (c.get (), gdbarch, sal, addr_string,
13259 ops, tempflag, disabled, from_tty);
13260 c->excep_string = excep_string;
13261 create_excep_cond_exprs (c.get (), ex_kind);
13262 if (!cond_string.empty ())
13263 set_breakpoint_condition (c.get (), cond_string.c_str (), from_tty);
13264 install_breakpoint (0, std::move (c), 1);
13265 }
13266
13267 /* Implement the "catch exception" command. */
13268
13269 static void
13270 catch_ada_exception_command (const char *arg_entry, int from_tty,
13271 struct cmd_list_element *command)
13272 {
13273 const char *arg = arg_entry;
13274 struct gdbarch *gdbarch = get_current_arch ();
13275 int tempflag;
13276 enum ada_exception_catchpoint_kind ex_kind;
13277 std::string excep_string;
13278 std::string cond_string;
13279
13280 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13281
13282 if (!arg)
13283 arg = "";
13284 catch_ada_exception_command_split (arg, false, &ex_kind, &excep_string,
13285 &cond_string);
13286 create_ada_exception_catchpoint (gdbarch, ex_kind,
13287 excep_string, cond_string,
13288 tempflag, 1 /* enabled */,
13289 from_tty);
13290 }
13291
13292 /* Implement the "catch handlers" command. */
13293
13294 static void
13295 catch_ada_handlers_command (const char *arg_entry, int from_tty,
13296 struct cmd_list_element *command)
13297 {
13298 const char *arg = arg_entry;
13299 struct gdbarch *gdbarch = get_current_arch ();
13300 int tempflag;
13301 enum ada_exception_catchpoint_kind ex_kind;
13302 std::string excep_string;
13303 std::string cond_string;
13304
13305 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13306
13307 if (!arg)
13308 arg = "";
13309 catch_ada_exception_command_split (arg, true, &ex_kind, &excep_string,
13310 &cond_string);
13311 create_ada_exception_catchpoint (gdbarch, ex_kind,
13312 excep_string, cond_string,
13313 tempflag, 1 /* enabled */,
13314 from_tty);
13315 }
13316
13317 /* Split the arguments specified in a "catch assert" command.
13318
13319 ARGS contains the command's arguments (or the empty string if
13320 no arguments were passed).
13321
13322 If ARGS contains a condition, set COND_STRING to that condition
13323 (the memory needs to be deallocated after use). */
13324
13325 static void
13326 catch_ada_assert_command_split (const char *args, std::string &cond_string)
13327 {
13328 args = skip_spaces (args);
13329
13330 /* Check whether a condition was provided. */
13331 if (startswith (args, "if")
13332 && (isspace (args[2]) || args[2] == '\0'))
13333 {
13334 args += 2;
13335 args = skip_spaces (args);
13336 if (args[0] == '\0')
13337 error (_("condition missing after `if' keyword"));
13338 cond_string.assign (args);
13339 }
13340
13341 /* Otherwise, there should be no other argument at the end of
13342 the command. */
13343 else if (args[0] != '\0')
13344 error (_("Junk at end of arguments."));
13345 }
13346
13347 /* Implement the "catch assert" command. */
13348
13349 static void
13350 catch_assert_command (const char *arg_entry, int from_tty,
13351 struct cmd_list_element *command)
13352 {
13353 const char *arg = arg_entry;
13354 struct gdbarch *gdbarch = get_current_arch ();
13355 int tempflag;
13356 std::string cond_string;
13357
13358 tempflag = get_cmd_context (command) == CATCH_TEMPORARY;
13359
13360 if (!arg)
13361 arg = "";
13362 catch_ada_assert_command_split (arg, cond_string);
13363 create_ada_exception_catchpoint (gdbarch, ada_catch_assert,
13364 "", cond_string,
13365 tempflag, 1 /* enabled */,
13366 from_tty);
13367 }
13368
13369 /* Return non-zero if the symbol SYM is an Ada exception object. */
13370
13371 static int
13372 ada_is_exception_sym (struct symbol *sym)
13373 {
13374 const char *type_name = TYPE_NAME (SYMBOL_TYPE (sym));
13375
13376 return (SYMBOL_CLASS (sym) != LOC_TYPEDEF
13377 && SYMBOL_CLASS (sym) != LOC_BLOCK
13378 && SYMBOL_CLASS (sym) != LOC_CONST
13379 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
13380 && type_name != NULL && strcmp (type_name, "exception") == 0);
13381 }
13382
13383 /* Given a global symbol SYM, return non-zero iff SYM is a non-standard
13384 Ada exception object. This matches all exceptions except the ones
13385 defined by the Ada language. */
13386
13387 static int
13388 ada_is_non_standard_exception_sym (struct symbol *sym)
13389 {
13390 int i;
13391
13392 if (!ada_is_exception_sym (sym))
13393 return 0;
13394
13395 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13396 if (strcmp (SYMBOL_LINKAGE_NAME (sym), standard_exc[i]) == 0)
13397 return 0; /* A standard exception. */
13398
13399 /* Numeric_Error is also a standard exception, so exclude it.
13400 See the STANDARD_EXC description for more details as to why
13401 this exception is not listed in that array. */
13402 if (strcmp (SYMBOL_LINKAGE_NAME (sym), "numeric_error") == 0)
13403 return 0;
13404
13405 return 1;
13406 }
13407
13408 /* A helper function for std::sort, comparing two struct ada_exc_info
13409 objects.
13410
13411 The comparison is determined first by exception name, and then
13412 by exception address. */
13413
13414 bool
13415 ada_exc_info::operator< (const ada_exc_info &other) const
13416 {
13417 int result;
13418
13419 result = strcmp (name, other.name);
13420 if (result < 0)
13421 return true;
13422 if (result == 0 && addr < other.addr)
13423 return true;
13424 return false;
13425 }
13426
13427 bool
13428 ada_exc_info::operator== (const ada_exc_info &other) const
13429 {
13430 return addr == other.addr && strcmp (name, other.name) == 0;
13431 }
13432
13433 /* Sort EXCEPTIONS using compare_ada_exception_info as the comparison
13434 routine, but keeping the first SKIP elements untouched.
13435
13436 All duplicates are also removed. */
13437
13438 static void
13439 sort_remove_dups_ada_exceptions_list (std::vector<ada_exc_info> *exceptions,
13440 int skip)
13441 {
13442 std::sort (exceptions->begin () + skip, exceptions->end ());
13443 exceptions->erase (std::unique (exceptions->begin () + skip, exceptions->end ()),
13444 exceptions->end ());
13445 }
13446
13447 /* Add all exceptions defined by the Ada standard whose name match
13448 a regular expression.
13449
13450 If PREG is not NULL, then this regexp_t object is used to
13451 perform the symbol name matching. Otherwise, no name-based
13452 filtering is performed.
13453
13454 EXCEPTIONS is a vector of exceptions to which matching exceptions
13455 gets pushed. */
13456
13457 static void
13458 ada_add_standard_exceptions (compiled_regex *preg,
13459 std::vector<ada_exc_info> *exceptions)
13460 {
13461 int i;
13462
13463 for (i = 0; i < ARRAY_SIZE (standard_exc); i++)
13464 {
13465 if (preg == NULL
13466 || preg->exec (standard_exc[i], 0, NULL, 0) == 0)
13467 {
13468 struct bound_minimal_symbol msymbol
13469 = ada_lookup_simple_minsym (standard_exc[i]);
13470
13471 if (msymbol.minsym != NULL)
13472 {
13473 struct ada_exc_info info
13474 = {standard_exc[i], BMSYMBOL_VALUE_ADDRESS (msymbol)};
13475
13476 exceptions->push_back (info);
13477 }
13478 }
13479 }
13480 }
13481
13482 /* Add all Ada exceptions defined locally and accessible from the given
13483 FRAME.
13484
13485 If PREG is not NULL, then this regexp_t object is used to
13486 perform the symbol name matching. Otherwise, no name-based
13487 filtering is performed.
13488
13489 EXCEPTIONS is a vector of exceptions to which matching exceptions
13490 gets pushed. */
13491
13492 static void
13493 ada_add_exceptions_from_frame (compiled_regex *preg,
13494 struct frame_info *frame,
13495 std::vector<ada_exc_info> *exceptions)
13496 {
13497 const struct block *block = get_frame_block (frame, 0);
13498
13499 while (block != 0)
13500 {
13501 struct block_iterator iter;
13502 struct symbol *sym;
13503
13504 ALL_BLOCK_SYMBOLS (block, iter, sym)
13505 {
13506 switch (SYMBOL_CLASS (sym))
13507 {
13508 case LOC_TYPEDEF:
13509 case LOC_BLOCK:
13510 case LOC_CONST:
13511 break;
13512 default:
13513 if (ada_is_exception_sym (sym))
13514 {
13515 struct ada_exc_info info = {SYMBOL_PRINT_NAME (sym),
13516 SYMBOL_VALUE_ADDRESS (sym)};
13517
13518 exceptions->push_back (info);
13519 }
13520 }
13521 }
13522 if (BLOCK_FUNCTION (block) != NULL)
13523 break;
13524 block = BLOCK_SUPERBLOCK (block);
13525 }
13526 }
13527
13528 /* Return true if NAME matches PREG or if PREG is NULL. */
13529
13530 static bool
13531 name_matches_regex (const char *name, compiled_regex *preg)
13532 {
13533 return (preg == NULL
13534 || preg->exec (ada_decode (name), 0, NULL, 0) == 0);
13535 }
13536
13537 /* Add all exceptions defined globally whose name name match
13538 a regular expression, excluding standard exceptions.
13539
13540 The reason we exclude standard exceptions is that they need
13541 to be handled separately: Standard exceptions are defined inside
13542 a runtime unit which is normally not compiled with debugging info,
13543 and thus usually do not show up in our symbol search. However,
13544 if the unit was in fact built with debugging info, we need to
13545 exclude them because they would duplicate the entry we found
13546 during the special loop that specifically searches for those
13547 standard exceptions.
13548
13549 If PREG is not NULL, then this regexp_t object is used to
13550 perform the symbol name matching. Otherwise, no name-based
13551 filtering is performed.
13552
13553 EXCEPTIONS is a vector of exceptions to which matching exceptions
13554 gets pushed. */
13555
13556 static void
13557 ada_add_global_exceptions (compiled_regex *preg,
13558 std::vector<ada_exc_info> *exceptions)
13559 {
13560 struct objfile *objfile;
13561 struct compunit_symtab *s;
13562
13563 /* In Ada, the symbol "search name" is a linkage name, whereas the
13564 regular expression used to do the matching refers to the natural
13565 name. So match against the decoded name. */
13566 expand_symtabs_matching (NULL,
13567 lookup_name_info::match_any (),
13568 [&] (const char *search_name)
13569 {
13570 const char *decoded = ada_decode (search_name);
13571 return name_matches_regex (decoded, preg);
13572 },
13573 NULL,
13574 VARIABLES_DOMAIN);
13575
13576 ALL_COMPUNITS (objfile, s)
13577 {
13578 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (s);
13579 int i;
13580
13581 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
13582 {
13583 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
13584 struct block_iterator iter;
13585 struct symbol *sym;
13586
13587 ALL_BLOCK_SYMBOLS (b, iter, sym)
13588 if (ada_is_non_standard_exception_sym (sym)
13589 && name_matches_regex (SYMBOL_NATURAL_NAME (sym), preg))
13590 {
13591 struct ada_exc_info info
13592 = {SYMBOL_PRINT_NAME (sym), SYMBOL_VALUE_ADDRESS (sym)};
13593
13594 exceptions->push_back (info);
13595 }
13596 }
13597 }
13598 }
13599
13600 /* Implements ada_exceptions_list with the regular expression passed
13601 as a regex_t, rather than a string.
13602
13603 If not NULL, PREG is used to filter out exceptions whose names
13604 do not match. Otherwise, all exceptions are listed. */
13605
13606 static std::vector<ada_exc_info>
13607 ada_exceptions_list_1 (compiled_regex *preg)
13608 {
13609 std::vector<ada_exc_info> result;
13610 int prev_len;
13611
13612 /* First, list the known standard exceptions. These exceptions
13613 need to be handled separately, as they are usually defined in
13614 runtime units that have been compiled without debugging info. */
13615
13616 ada_add_standard_exceptions (preg, &result);
13617
13618 /* Next, find all exceptions whose scope is local and accessible
13619 from the currently selected frame. */
13620
13621 if (has_stack_frames ())
13622 {
13623 prev_len = result.size ();
13624 ada_add_exceptions_from_frame (preg, get_selected_frame (NULL),
13625 &result);
13626 if (result.size () > prev_len)
13627 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13628 }
13629
13630 /* Add all exceptions whose scope is global. */
13631
13632 prev_len = result.size ();
13633 ada_add_global_exceptions (preg, &result);
13634 if (result.size () > prev_len)
13635 sort_remove_dups_ada_exceptions_list (&result, prev_len);
13636
13637 return result;
13638 }
13639
13640 /* Return a vector of ada_exc_info.
13641
13642 If REGEXP is NULL, all exceptions are included in the result.
13643 Otherwise, it should contain a valid regular expression,
13644 and only the exceptions whose names match that regular expression
13645 are included in the result.
13646
13647 The exceptions are sorted in the following order:
13648 - Standard exceptions (defined by the Ada language), in
13649 alphabetical order;
13650 - Exceptions only visible from the current frame, in
13651 alphabetical order;
13652 - Exceptions whose scope is global, in alphabetical order. */
13653
13654 std::vector<ada_exc_info>
13655 ada_exceptions_list (const char *regexp)
13656 {
13657 if (regexp == NULL)
13658 return ada_exceptions_list_1 (NULL);
13659
13660 compiled_regex reg (regexp, REG_NOSUB, _("invalid regular expression"));
13661 return ada_exceptions_list_1 (&reg);
13662 }
13663
13664 /* Implement the "info exceptions" command. */
13665
13666 static void
13667 info_exceptions_command (const char *regexp, int from_tty)
13668 {
13669 struct gdbarch *gdbarch = get_current_arch ();
13670
13671 std::vector<ada_exc_info> exceptions = ada_exceptions_list (regexp);
13672
13673 if (regexp != NULL)
13674 printf_filtered
13675 (_("All Ada exceptions matching regular expression \"%s\":\n"), regexp);
13676 else
13677 printf_filtered (_("All defined Ada exceptions:\n"));
13678
13679 for (const ada_exc_info &info : exceptions)
13680 printf_filtered ("%s: %s\n", info.name, paddress (gdbarch, info.addr));
13681 }
13682
13683 /* Operators */
13684 /* Information about operators given special treatment in functions
13685 below. */
13686 /* Format: OP_DEFN (<operator>, <operator length>, <# args>, <binop>). */
13687
13688 #define ADA_OPERATORS \
13689 OP_DEFN (OP_VAR_VALUE, 4, 0, 0) \
13690 OP_DEFN (BINOP_IN_BOUNDS, 3, 2, 0) \
13691 OP_DEFN (TERNOP_IN_RANGE, 1, 3, 0) \
13692 OP_DEFN (OP_ATR_FIRST, 1, 2, 0) \
13693 OP_DEFN (OP_ATR_LAST, 1, 2, 0) \
13694 OP_DEFN (OP_ATR_LENGTH, 1, 2, 0) \
13695 OP_DEFN (OP_ATR_IMAGE, 1, 2, 0) \
13696 OP_DEFN (OP_ATR_MAX, 1, 3, 0) \
13697 OP_DEFN (OP_ATR_MIN, 1, 3, 0) \
13698 OP_DEFN (OP_ATR_MODULUS, 1, 1, 0) \
13699 OP_DEFN (OP_ATR_POS, 1, 2, 0) \
13700 OP_DEFN (OP_ATR_SIZE, 1, 1, 0) \
13701 OP_DEFN (OP_ATR_TAG, 1, 1, 0) \
13702 OP_DEFN (OP_ATR_VAL, 1, 2, 0) \
13703 OP_DEFN (UNOP_QUAL, 3, 1, 0) \
13704 OP_DEFN (UNOP_IN_RANGE, 3, 1, 0) \
13705 OP_DEFN (OP_OTHERS, 1, 1, 0) \
13706 OP_DEFN (OP_POSITIONAL, 3, 1, 0) \
13707 OP_DEFN (OP_DISCRETE_RANGE, 1, 2, 0)
13708
13709 static void
13710 ada_operator_length (const struct expression *exp, int pc, int *oplenp,
13711 int *argsp)
13712 {
13713 switch (exp->elts[pc - 1].opcode)
13714 {
13715 default:
13716 operator_length_standard (exp, pc, oplenp, argsp);
13717 break;
13718
13719 #define OP_DEFN(op, len, args, binop) \
13720 case op: *oplenp = len; *argsp = args; break;
13721 ADA_OPERATORS;
13722 #undef OP_DEFN
13723
13724 case OP_AGGREGATE:
13725 *oplenp = 3;
13726 *argsp = longest_to_int (exp->elts[pc - 2].longconst);
13727 break;
13728
13729 case OP_CHOICES:
13730 *oplenp = 3;
13731 *argsp = longest_to_int (exp->elts[pc - 2].longconst) + 1;
13732 break;
13733 }
13734 }
13735
13736 /* Implementation of the exp_descriptor method operator_check. */
13737
13738 static int
13739 ada_operator_check (struct expression *exp, int pos,
13740 int (*objfile_func) (struct objfile *objfile, void *data),
13741 void *data)
13742 {
13743 const union exp_element *const elts = exp->elts;
13744 struct type *type = NULL;
13745
13746 switch (elts[pos].opcode)
13747 {
13748 case UNOP_IN_RANGE:
13749 case UNOP_QUAL:
13750 type = elts[pos + 1].type;
13751 break;
13752
13753 default:
13754 return operator_check_standard (exp, pos, objfile_func, data);
13755 }
13756
13757 /* Invoke callbacks for TYPE and OBJFILE if they were set as non-NULL. */
13758
13759 if (type && TYPE_OBJFILE (type)
13760 && (*objfile_func) (TYPE_OBJFILE (type), data))
13761 return 1;
13762
13763 return 0;
13764 }
13765
13766 static const char *
13767 ada_op_name (enum exp_opcode opcode)
13768 {
13769 switch (opcode)
13770 {
13771 default:
13772 return op_name_standard (opcode);
13773
13774 #define OP_DEFN(op, len, args, binop) case op: return #op;
13775 ADA_OPERATORS;
13776 #undef OP_DEFN
13777
13778 case OP_AGGREGATE:
13779 return "OP_AGGREGATE";
13780 case OP_CHOICES:
13781 return "OP_CHOICES";
13782 case OP_NAME:
13783 return "OP_NAME";
13784 }
13785 }
13786
13787 /* As for operator_length, but assumes PC is pointing at the first
13788 element of the operator, and gives meaningful results only for the
13789 Ada-specific operators, returning 0 for *OPLENP and *ARGSP otherwise. */
13790
13791 static void
13792 ada_forward_operator_length (struct expression *exp, int pc,
13793 int *oplenp, int *argsp)
13794 {
13795 switch (exp->elts[pc].opcode)
13796 {
13797 default:
13798 *oplenp = *argsp = 0;
13799 break;
13800
13801 #define OP_DEFN(op, len, args, binop) \
13802 case op: *oplenp = len; *argsp = args; break;
13803 ADA_OPERATORS;
13804 #undef OP_DEFN
13805
13806 case OP_AGGREGATE:
13807 *oplenp = 3;
13808 *argsp = longest_to_int (exp->elts[pc + 1].longconst);
13809 break;
13810
13811 case OP_CHOICES:
13812 *oplenp = 3;
13813 *argsp = longest_to_int (exp->elts[pc + 1].longconst) + 1;
13814 break;
13815
13816 case OP_STRING:
13817 case OP_NAME:
13818 {
13819 int len = longest_to_int (exp->elts[pc + 1].longconst);
13820
13821 *oplenp = 4 + BYTES_TO_EXP_ELEM (len + 1);
13822 *argsp = 0;
13823 break;
13824 }
13825 }
13826 }
13827
13828 static int
13829 ada_dump_subexp_body (struct expression *exp, struct ui_file *stream, int elt)
13830 {
13831 enum exp_opcode op = exp->elts[elt].opcode;
13832 int oplen, nargs;
13833 int pc = elt;
13834 int i;
13835
13836 ada_forward_operator_length (exp, elt, &oplen, &nargs);
13837
13838 switch (op)
13839 {
13840 /* Ada attributes ('Foo). */
13841 case OP_ATR_FIRST:
13842 case OP_ATR_LAST:
13843 case OP_ATR_LENGTH:
13844 case OP_ATR_IMAGE:
13845 case OP_ATR_MAX:
13846 case OP_ATR_MIN:
13847 case OP_ATR_MODULUS:
13848 case OP_ATR_POS:
13849 case OP_ATR_SIZE:
13850 case OP_ATR_TAG:
13851 case OP_ATR_VAL:
13852 break;
13853
13854 case UNOP_IN_RANGE:
13855 case UNOP_QUAL:
13856 /* XXX: gdb_sprint_host_address, type_sprint */
13857 fprintf_filtered (stream, _("Type @"));
13858 gdb_print_host_address (exp->elts[pc + 1].type, stream);
13859 fprintf_filtered (stream, " (");
13860 type_print (exp->elts[pc + 1].type, NULL, stream, 0);
13861 fprintf_filtered (stream, ")");
13862 break;
13863 case BINOP_IN_BOUNDS:
13864 fprintf_filtered (stream, " (%d)",
13865 longest_to_int (exp->elts[pc + 2].longconst));
13866 break;
13867 case TERNOP_IN_RANGE:
13868 break;
13869
13870 case OP_AGGREGATE:
13871 case OP_OTHERS:
13872 case OP_DISCRETE_RANGE:
13873 case OP_POSITIONAL:
13874 case OP_CHOICES:
13875 break;
13876
13877 case OP_NAME:
13878 case OP_STRING:
13879 {
13880 char *name = &exp->elts[elt + 2].string;
13881 int len = longest_to_int (exp->elts[elt + 1].longconst);
13882
13883 fprintf_filtered (stream, "Text: `%.*s'", len, name);
13884 break;
13885 }
13886
13887 default:
13888 return dump_subexp_body_standard (exp, stream, elt);
13889 }
13890
13891 elt += oplen;
13892 for (i = 0; i < nargs; i += 1)
13893 elt = dump_subexp (exp, stream, elt);
13894
13895 return elt;
13896 }
13897
13898 /* The Ada extension of print_subexp (q.v.). */
13899
13900 static void
13901 ada_print_subexp (struct expression *exp, int *pos,
13902 struct ui_file *stream, enum precedence prec)
13903 {
13904 int oplen, nargs, i;
13905 int pc = *pos;
13906 enum exp_opcode op = exp->elts[pc].opcode;
13907
13908 ada_forward_operator_length (exp, pc, &oplen, &nargs);
13909
13910 *pos += oplen;
13911 switch (op)
13912 {
13913 default:
13914 *pos -= oplen;
13915 print_subexp_standard (exp, pos, stream, prec);
13916 return;
13917
13918 case OP_VAR_VALUE:
13919 fputs_filtered (SYMBOL_NATURAL_NAME (exp->elts[pc + 2].symbol), stream);
13920 return;
13921
13922 case BINOP_IN_BOUNDS:
13923 /* XXX: sprint_subexp */
13924 print_subexp (exp, pos, stream, PREC_SUFFIX);
13925 fputs_filtered (" in ", stream);
13926 print_subexp (exp, pos, stream, PREC_SUFFIX);
13927 fputs_filtered ("'range", stream);
13928 if (exp->elts[pc + 1].longconst > 1)
13929 fprintf_filtered (stream, "(%ld)",
13930 (long) exp->elts[pc + 1].longconst);
13931 return;
13932
13933 case TERNOP_IN_RANGE:
13934 if (prec >= PREC_EQUAL)
13935 fputs_filtered ("(", stream);
13936 /* XXX: sprint_subexp */
13937 print_subexp (exp, pos, stream, PREC_SUFFIX);
13938 fputs_filtered (" in ", stream);
13939 print_subexp (exp, pos, stream, PREC_EQUAL);
13940 fputs_filtered (" .. ", stream);
13941 print_subexp (exp, pos, stream, PREC_EQUAL);
13942 if (prec >= PREC_EQUAL)
13943 fputs_filtered (")", stream);
13944 return;
13945
13946 case OP_ATR_FIRST:
13947 case OP_ATR_LAST:
13948 case OP_ATR_LENGTH:
13949 case OP_ATR_IMAGE:
13950 case OP_ATR_MAX:
13951 case OP_ATR_MIN:
13952 case OP_ATR_MODULUS:
13953 case OP_ATR_POS:
13954 case OP_ATR_SIZE:
13955 case OP_ATR_TAG:
13956 case OP_ATR_VAL:
13957 if (exp->elts[*pos].opcode == OP_TYPE)
13958 {
13959 if (TYPE_CODE (exp->elts[*pos + 1].type) != TYPE_CODE_VOID)
13960 LA_PRINT_TYPE (exp->elts[*pos + 1].type, "", stream, 0, 0,
13961 &type_print_raw_options);
13962 *pos += 3;
13963 }
13964 else
13965 print_subexp (exp, pos, stream, PREC_SUFFIX);
13966 fprintf_filtered (stream, "'%s", ada_attribute_name (op));
13967 if (nargs > 1)
13968 {
13969 int tem;
13970
13971 for (tem = 1; tem < nargs; tem += 1)
13972 {
13973 fputs_filtered ((tem == 1) ? " (" : ", ", stream);
13974 print_subexp (exp, pos, stream, PREC_ABOVE_COMMA);
13975 }
13976 fputs_filtered (")", stream);
13977 }
13978 return;
13979
13980 case UNOP_QUAL:
13981 type_print (exp->elts[pc + 1].type, "", stream, 0);
13982 fputs_filtered ("'(", stream);
13983 print_subexp (exp, pos, stream, PREC_PREFIX);
13984 fputs_filtered (")", stream);
13985 return;
13986
13987 case UNOP_IN_RANGE:
13988 /* XXX: sprint_subexp */
13989 print_subexp (exp, pos, stream, PREC_SUFFIX);
13990 fputs_filtered (" in ", stream);
13991 LA_PRINT_TYPE (exp->elts[pc + 1].type, "", stream, 1, 0,
13992 &type_print_raw_options);
13993 return;
13994
13995 case OP_DISCRETE_RANGE:
13996 print_subexp (exp, pos, stream, PREC_SUFFIX);
13997 fputs_filtered ("..", stream);
13998 print_subexp (exp, pos, stream, PREC_SUFFIX);
13999 return;
14000
14001 case OP_OTHERS:
14002 fputs_filtered ("others => ", stream);
14003 print_subexp (exp, pos, stream, PREC_SUFFIX);
14004 return;
14005
14006 case OP_CHOICES:
14007 for (i = 0; i < nargs-1; i += 1)
14008 {
14009 if (i > 0)
14010 fputs_filtered ("|", stream);
14011 print_subexp (exp, pos, stream, PREC_SUFFIX);
14012 }
14013 fputs_filtered (" => ", stream);
14014 print_subexp (exp, pos, stream, PREC_SUFFIX);
14015 return;
14016
14017 case OP_POSITIONAL:
14018 print_subexp (exp, pos, stream, PREC_SUFFIX);
14019 return;
14020
14021 case OP_AGGREGATE:
14022 fputs_filtered ("(", stream);
14023 for (i = 0; i < nargs; i += 1)
14024 {
14025 if (i > 0)
14026 fputs_filtered (", ", stream);
14027 print_subexp (exp, pos, stream, PREC_SUFFIX);
14028 }
14029 fputs_filtered (")", stream);
14030 return;
14031 }
14032 }
14033
14034 /* Table mapping opcodes into strings for printing operators
14035 and precedences of the operators. */
14036
14037 static const struct op_print ada_op_print_tab[] = {
14038 {":=", BINOP_ASSIGN, PREC_ASSIGN, 1},
14039 {"or else", BINOP_LOGICAL_OR, PREC_LOGICAL_OR, 0},
14040 {"and then", BINOP_LOGICAL_AND, PREC_LOGICAL_AND, 0},
14041 {"or", BINOP_BITWISE_IOR, PREC_BITWISE_IOR, 0},
14042 {"xor", BINOP_BITWISE_XOR, PREC_BITWISE_XOR, 0},
14043 {"and", BINOP_BITWISE_AND, PREC_BITWISE_AND, 0},
14044 {"=", BINOP_EQUAL, PREC_EQUAL, 0},
14045 {"/=", BINOP_NOTEQUAL, PREC_EQUAL, 0},
14046 {"<=", BINOP_LEQ, PREC_ORDER, 0},
14047 {">=", BINOP_GEQ, PREC_ORDER, 0},
14048 {">", BINOP_GTR, PREC_ORDER, 0},
14049 {"<", BINOP_LESS, PREC_ORDER, 0},
14050 {">>", BINOP_RSH, PREC_SHIFT, 0},
14051 {"<<", BINOP_LSH, PREC_SHIFT, 0},
14052 {"+", BINOP_ADD, PREC_ADD, 0},
14053 {"-", BINOP_SUB, PREC_ADD, 0},
14054 {"&", BINOP_CONCAT, PREC_ADD, 0},
14055 {"*", BINOP_MUL, PREC_MUL, 0},
14056 {"/", BINOP_DIV, PREC_MUL, 0},
14057 {"rem", BINOP_REM, PREC_MUL, 0},
14058 {"mod", BINOP_MOD, PREC_MUL, 0},
14059 {"**", BINOP_EXP, PREC_REPEAT, 0},
14060 {"@", BINOP_REPEAT, PREC_REPEAT, 0},
14061 {"-", UNOP_NEG, PREC_PREFIX, 0},
14062 {"+", UNOP_PLUS, PREC_PREFIX, 0},
14063 {"not ", UNOP_LOGICAL_NOT, PREC_PREFIX, 0},
14064 {"not ", UNOP_COMPLEMENT, PREC_PREFIX, 0},
14065 {"abs ", UNOP_ABS, PREC_PREFIX, 0},
14066 {".all", UNOP_IND, PREC_SUFFIX, 1},
14067 {"'access", UNOP_ADDR, PREC_SUFFIX, 1},
14068 {"'size", OP_ATR_SIZE, PREC_SUFFIX, 1},
14069 {NULL, OP_NULL, PREC_SUFFIX, 0}
14070 };
14071 \f
14072 enum ada_primitive_types {
14073 ada_primitive_type_int,
14074 ada_primitive_type_long,
14075 ada_primitive_type_short,
14076 ada_primitive_type_char,
14077 ada_primitive_type_float,
14078 ada_primitive_type_double,
14079 ada_primitive_type_void,
14080 ada_primitive_type_long_long,
14081 ada_primitive_type_long_double,
14082 ada_primitive_type_natural,
14083 ada_primitive_type_positive,
14084 ada_primitive_type_system_address,
14085 ada_primitive_type_storage_offset,
14086 nr_ada_primitive_types
14087 };
14088
14089 static void
14090 ada_language_arch_info (struct gdbarch *gdbarch,
14091 struct language_arch_info *lai)
14092 {
14093 const struct builtin_type *builtin = builtin_type (gdbarch);
14094
14095 lai->primitive_type_vector
14096 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_ada_primitive_types + 1,
14097 struct type *);
14098
14099 lai->primitive_type_vector [ada_primitive_type_int]
14100 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14101 0, "integer");
14102 lai->primitive_type_vector [ada_primitive_type_long]
14103 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
14104 0, "long_integer");
14105 lai->primitive_type_vector [ada_primitive_type_short]
14106 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
14107 0, "short_integer");
14108 lai->string_char_type
14109 = lai->primitive_type_vector [ada_primitive_type_char]
14110 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "character");
14111 lai->primitive_type_vector [ada_primitive_type_float]
14112 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
14113 "float", gdbarch_float_format (gdbarch));
14114 lai->primitive_type_vector [ada_primitive_type_double]
14115 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
14116 "long_float", gdbarch_double_format (gdbarch));
14117 lai->primitive_type_vector [ada_primitive_type_long_long]
14118 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
14119 0, "long_long_integer");
14120 lai->primitive_type_vector [ada_primitive_type_long_double]
14121 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
14122 "long_long_float", gdbarch_long_double_format (gdbarch));
14123 lai->primitive_type_vector [ada_primitive_type_natural]
14124 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14125 0, "natural");
14126 lai->primitive_type_vector [ada_primitive_type_positive]
14127 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
14128 0, "positive");
14129 lai->primitive_type_vector [ada_primitive_type_void]
14130 = builtin->builtin_void;
14131
14132 lai->primitive_type_vector [ada_primitive_type_system_address]
14133 = lookup_pointer_type (arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT,
14134 "void"));
14135 TYPE_NAME (lai->primitive_type_vector [ada_primitive_type_system_address])
14136 = "system__address";
14137
14138 /* Create the equivalent of the System.Storage_Elements.Storage_Offset
14139 type. This is a signed integral type whose size is the same as
14140 the size of addresses. */
14141 {
14142 unsigned int addr_length = TYPE_LENGTH
14143 (lai->primitive_type_vector [ada_primitive_type_system_address]);
14144
14145 lai->primitive_type_vector [ada_primitive_type_storage_offset]
14146 = arch_integer_type (gdbarch, addr_length * HOST_CHAR_BIT, 0,
14147 "storage_offset");
14148 }
14149
14150 lai->bool_type_symbol = NULL;
14151 lai->bool_type_default = builtin->builtin_bool;
14152 }
14153 \f
14154 /* Language vector */
14155
14156 /* Not really used, but needed in the ada_language_defn. */
14157
14158 static void
14159 emit_char (int c, struct type *type, struct ui_file *stream, int quoter)
14160 {
14161 ada_emit_char (c, type, stream, quoter, 1);
14162 }
14163
14164 static int
14165 parse (struct parser_state *ps)
14166 {
14167 warnings_issued = 0;
14168 return ada_parse (ps);
14169 }
14170
14171 static const struct exp_descriptor ada_exp_descriptor = {
14172 ada_print_subexp,
14173 ada_operator_length,
14174 ada_operator_check,
14175 ada_op_name,
14176 ada_dump_subexp_body,
14177 ada_evaluate_subexp
14178 };
14179
14180 /* symbol_name_matcher_ftype adapter for wild_match. */
14181
14182 static bool
14183 do_wild_match (const char *symbol_search_name,
14184 const lookup_name_info &lookup_name,
14185 completion_match_result *comp_match_res)
14186 {
14187 return wild_match (symbol_search_name, ada_lookup_name (lookup_name));
14188 }
14189
14190 /* symbol_name_matcher_ftype adapter for full_match. */
14191
14192 static bool
14193 do_full_match (const char *symbol_search_name,
14194 const lookup_name_info &lookup_name,
14195 completion_match_result *comp_match_res)
14196 {
14197 return full_match (symbol_search_name, ada_lookup_name (lookup_name));
14198 }
14199
14200 /* Build the Ada lookup name for LOOKUP_NAME. */
14201
14202 ada_lookup_name_info::ada_lookup_name_info (const lookup_name_info &lookup_name)
14203 {
14204 const std::string &user_name = lookup_name.name ();
14205
14206 if (user_name[0] == '<')
14207 {
14208 if (user_name.back () == '>')
14209 m_encoded_name = user_name.substr (1, user_name.size () - 2);
14210 else
14211 m_encoded_name = user_name.substr (1, user_name.size () - 1);
14212 m_encoded_p = true;
14213 m_verbatim_p = true;
14214 m_wild_match_p = false;
14215 m_standard_p = false;
14216 }
14217 else
14218 {
14219 m_verbatim_p = false;
14220
14221 m_encoded_p = user_name.find ("__") != std::string::npos;
14222
14223 if (!m_encoded_p)
14224 {
14225 const char *folded = ada_fold_name (user_name.c_str ());
14226 const char *encoded = ada_encode_1 (folded, false);
14227 if (encoded != NULL)
14228 m_encoded_name = encoded;
14229 else
14230 m_encoded_name = user_name;
14231 }
14232 else
14233 m_encoded_name = user_name;
14234
14235 /* Handle the 'package Standard' special case. See description
14236 of m_standard_p. */
14237 if (startswith (m_encoded_name.c_str (), "standard__"))
14238 {
14239 m_encoded_name = m_encoded_name.substr (sizeof ("standard__") - 1);
14240 m_standard_p = true;
14241 }
14242 else
14243 m_standard_p = false;
14244
14245 /* If the name contains a ".", then the user is entering a fully
14246 qualified entity name, and the match must not be done in wild
14247 mode. Similarly, if the user wants to complete what looks
14248 like an encoded name, the match must not be done in wild
14249 mode. Also, in the standard__ special case always do
14250 non-wild matching. */
14251 m_wild_match_p
14252 = (lookup_name.match_type () != symbol_name_match_type::FULL
14253 && !m_encoded_p
14254 && !m_standard_p
14255 && user_name.find ('.') == std::string::npos);
14256 }
14257 }
14258
14259 /* symbol_name_matcher_ftype method for Ada. This only handles
14260 completion mode. */
14261
14262 static bool
14263 ada_symbol_name_matches (const char *symbol_search_name,
14264 const lookup_name_info &lookup_name,
14265 completion_match_result *comp_match_res)
14266 {
14267 return lookup_name.ada ().matches (symbol_search_name,
14268 lookup_name.match_type (),
14269 comp_match_res);
14270 }
14271
14272 /* A name matcher that matches the symbol name exactly, with
14273 strcmp. */
14274
14275 static bool
14276 literal_symbol_name_matcher (const char *symbol_search_name,
14277 const lookup_name_info &lookup_name,
14278 completion_match_result *comp_match_res)
14279 {
14280 const std::string &name = lookup_name.name ();
14281
14282 int cmp = (lookup_name.completion_mode ()
14283 ? strncmp (symbol_search_name, name.c_str (), name.size ())
14284 : strcmp (symbol_search_name, name.c_str ()));
14285 if (cmp == 0)
14286 {
14287 if (comp_match_res != NULL)
14288 comp_match_res->set_match (symbol_search_name);
14289 return true;
14290 }
14291 else
14292 return false;
14293 }
14294
14295 /* Implement the "la_get_symbol_name_matcher" language_defn method for
14296 Ada. */
14297
14298 static symbol_name_matcher_ftype *
14299 ada_get_symbol_name_matcher (const lookup_name_info &lookup_name)
14300 {
14301 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
14302 return literal_symbol_name_matcher;
14303
14304 if (lookup_name.completion_mode ())
14305 return ada_symbol_name_matches;
14306 else
14307 {
14308 if (lookup_name.ada ().wild_match_p ())
14309 return do_wild_match;
14310 else
14311 return do_full_match;
14312 }
14313 }
14314
14315 /* Implement the "la_read_var_value" language_defn method for Ada. */
14316
14317 static struct value *
14318 ada_read_var_value (struct symbol *var, const struct block *var_block,
14319 struct frame_info *frame)
14320 {
14321 const struct block *frame_block = NULL;
14322 struct symbol *renaming_sym = NULL;
14323
14324 /* The only case where default_read_var_value is not sufficient
14325 is when VAR is a renaming... */
14326 if (frame)
14327 frame_block = get_frame_block (frame, NULL);
14328 if (frame_block)
14329 renaming_sym = ada_find_renaming_symbol (var, frame_block);
14330 if (renaming_sym != NULL)
14331 return ada_read_renaming_var_value (renaming_sym, frame_block);
14332
14333 /* This is a typical case where we expect the default_read_var_value
14334 function to work. */
14335 return default_read_var_value (var, var_block, frame);
14336 }
14337
14338 static const char *ada_extensions[] =
14339 {
14340 ".adb", ".ads", ".a", ".ada", ".dg", NULL
14341 };
14342
14343 extern const struct language_defn ada_language_defn = {
14344 "ada", /* Language name */
14345 "Ada",
14346 language_ada,
14347 range_check_off,
14348 case_sensitive_on, /* Yes, Ada is case-insensitive, but
14349 that's not quite what this means. */
14350 array_row_major,
14351 macro_expansion_no,
14352 ada_extensions,
14353 &ada_exp_descriptor,
14354 parse,
14355 resolve,
14356 ada_printchar, /* Print a character constant */
14357 ada_printstr, /* Function to print string constant */
14358 emit_char, /* Function to print single char (not used) */
14359 ada_print_type, /* Print a type using appropriate syntax */
14360 ada_print_typedef, /* Print a typedef using appropriate syntax */
14361 ada_val_print, /* Print a value using appropriate syntax */
14362 ada_value_print, /* Print a top-level value */
14363 ada_read_var_value, /* la_read_var_value */
14364 NULL, /* Language specific skip_trampoline */
14365 NULL, /* name_of_this */
14366 true, /* la_store_sym_names_in_linkage_form_p */
14367 ada_lookup_symbol_nonlocal, /* Looking up non-local symbols. */
14368 basic_lookup_transparent_type, /* lookup_transparent_type */
14369 ada_la_decode, /* Language specific symbol demangler */
14370 ada_sniff_from_mangled_name,
14371 NULL, /* Language specific
14372 class_name_from_physname */
14373 ada_op_print_tab, /* expression operators for printing */
14374 0, /* c-style arrays */
14375 1, /* String lower bound */
14376 ada_get_gdb_completer_word_break_characters,
14377 ada_collect_symbol_completion_matches,
14378 ada_language_arch_info,
14379 ada_print_array_index,
14380 default_pass_by_reference,
14381 c_get_string,
14382 c_watch_location_expression,
14383 ada_get_symbol_name_matcher, /* la_get_symbol_name_matcher */
14384 ada_iterate_over_symbols,
14385 default_search_name_hash,
14386 &ada_varobj_ops,
14387 NULL,
14388 NULL,
14389 LANG_MAGIC
14390 };
14391
14392 /* Command-list for the "set/show ada" prefix command. */
14393 static struct cmd_list_element *set_ada_list;
14394 static struct cmd_list_element *show_ada_list;
14395
14396 /* Implement the "set ada" prefix command. */
14397
14398 static void
14399 set_ada_command (const char *arg, int from_tty)
14400 {
14401 printf_unfiltered (_(\
14402 "\"set ada\" must be followed by the name of a setting.\n"));
14403 help_list (set_ada_list, "set ada ", all_commands, gdb_stdout);
14404 }
14405
14406 /* Implement the "show ada" prefix command. */
14407
14408 static void
14409 show_ada_command (const char *args, int from_tty)
14410 {
14411 cmd_show_list (show_ada_list, from_tty, "");
14412 }
14413
14414 static void
14415 initialize_ada_catchpoint_ops (void)
14416 {
14417 struct breakpoint_ops *ops;
14418
14419 initialize_breakpoint_ops ();
14420
14421 ops = &catch_exception_breakpoint_ops;
14422 *ops = bkpt_breakpoint_ops;
14423 ops->allocate_location = allocate_location_catch_exception;
14424 ops->re_set = re_set_catch_exception;
14425 ops->check_status = check_status_catch_exception;
14426 ops->print_it = print_it_catch_exception;
14427 ops->print_one = print_one_catch_exception;
14428 ops->print_mention = print_mention_catch_exception;
14429 ops->print_recreate = print_recreate_catch_exception;
14430
14431 ops = &catch_exception_unhandled_breakpoint_ops;
14432 *ops = bkpt_breakpoint_ops;
14433 ops->allocate_location = allocate_location_catch_exception_unhandled;
14434 ops->re_set = re_set_catch_exception_unhandled;
14435 ops->check_status = check_status_catch_exception_unhandled;
14436 ops->print_it = print_it_catch_exception_unhandled;
14437 ops->print_one = print_one_catch_exception_unhandled;
14438 ops->print_mention = print_mention_catch_exception_unhandled;
14439 ops->print_recreate = print_recreate_catch_exception_unhandled;
14440
14441 ops = &catch_assert_breakpoint_ops;
14442 *ops = bkpt_breakpoint_ops;
14443 ops->allocate_location = allocate_location_catch_assert;
14444 ops->re_set = re_set_catch_assert;
14445 ops->check_status = check_status_catch_assert;
14446 ops->print_it = print_it_catch_assert;
14447 ops->print_one = print_one_catch_assert;
14448 ops->print_mention = print_mention_catch_assert;
14449 ops->print_recreate = print_recreate_catch_assert;
14450
14451 ops = &catch_handlers_breakpoint_ops;
14452 *ops = bkpt_breakpoint_ops;
14453 ops->allocate_location = allocate_location_catch_handlers;
14454 ops->re_set = re_set_catch_handlers;
14455 ops->check_status = check_status_catch_handlers;
14456 ops->print_it = print_it_catch_handlers;
14457 ops->print_one = print_one_catch_handlers;
14458 ops->print_mention = print_mention_catch_handlers;
14459 ops->print_recreate = print_recreate_catch_handlers;
14460 }
14461
14462 /* This module's 'new_objfile' observer. */
14463
14464 static void
14465 ada_new_objfile_observer (struct objfile *objfile)
14466 {
14467 ada_clear_symbol_cache ();
14468 }
14469
14470 /* This module's 'free_objfile' observer. */
14471
14472 static void
14473 ada_free_objfile_observer (struct objfile *objfile)
14474 {
14475 ada_clear_symbol_cache ();
14476 }
14477
14478 void
14479 _initialize_ada_language (void)
14480 {
14481 initialize_ada_catchpoint_ops ();
14482
14483 add_prefix_cmd ("ada", no_class, set_ada_command,
14484 _("Prefix command for changing Ada-specfic settings"),
14485 &set_ada_list, "set ada ", 0, &setlist);
14486
14487 add_prefix_cmd ("ada", no_class, show_ada_command,
14488 _("Generic command for showing Ada-specific settings."),
14489 &show_ada_list, "show ada ", 0, &showlist);
14490
14491 add_setshow_boolean_cmd ("trust-PAD-over-XVS", class_obscure,
14492 &trust_pad_over_xvs, _("\
14493 Enable or disable an optimization trusting PAD types over XVS types"), _("\
14494 Show whether an optimization trusting PAD types over XVS types is activated"),
14495 _("\
14496 This is related to the encoding used by the GNAT compiler. The debugger\n\
14497 should normally trust the contents of PAD types, but certain older versions\n\
14498 of GNAT have a bug that sometimes causes the information in the PAD type\n\
14499 to be incorrect. Turning this setting \"off\" allows the debugger to\n\
14500 work around this bug. It is always safe to turn this option \"off\", but\n\
14501 this incurs a slight performance penalty, so it is recommended to NOT change\n\
14502 this option to \"off\" unless necessary."),
14503 NULL, NULL, &set_ada_list, &show_ada_list);
14504
14505 add_setshow_boolean_cmd ("print-signatures", class_vars,
14506 &print_signatures, _("\
14507 Enable or disable the output of formal and return types for functions in the \
14508 overloads selection menu"), _("\
14509 Show whether the output of formal and return types for functions in the \
14510 overloads selection menu is activated"),
14511 NULL, NULL, NULL, &set_ada_list, &show_ada_list);
14512
14513 add_catch_command ("exception", _("\
14514 Catch Ada exceptions, when raised.\n\
14515 With an argument, catch only exceptions with the given name."),
14516 catch_ada_exception_command,
14517 NULL,
14518 CATCH_PERMANENT,
14519 CATCH_TEMPORARY);
14520
14521 add_catch_command ("handlers", _("\
14522 Catch Ada exceptions, when handled.\n\
14523 With an argument, catch only exceptions with the given name."),
14524 catch_ada_handlers_command,
14525 NULL,
14526 CATCH_PERMANENT,
14527 CATCH_TEMPORARY);
14528 add_catch_command ("assert", _("\
14529 Catch failed Ada assertions, when raised.\n\
14530 With an argument, catch only exceptions with the given name."),
14531 catch_assert_command,
14532 NULL,
14533 CATCH_PERMANENT,
14534 CATCH_TEMPORARY);
14535
14536 varsize_limit = 65536;
14537 add_setshow_uinteger_cmd ("varsize-limit", class_support,
14538 &varsize_limit, _("\
14539 Set the maximum number of bytes allowed in a variable-size object."), _("\
14540 Show the maximum number of bytes allowed in a variable-size object."), _("\
14541 Attempts to access an object whose size is not a compile-time constant\n\
14542 and exceeds this limit will cause an error."),
14543 NULL, NULL, &setlist, &showlist);
14544
14545 add_info ("exceptions", info_exceptions_command,
14546 _("\
14547 List all Ada exception names.\n\
14548 If a regular expression is passed as an argument, only those matching\n\
14549 the regular expression are listed."));
14550
14551 add_prefix_cmd ("ada", class_maintenance, maint_set_ada_cmd,
14552 _("Set Ada maintenance-related variables."),
14553 &maint_set_ada_cmdlist, "maintenance set ada ",
14554 0/*allow-unknown*/, &maintenance_set_cmdlist);
14555
14556 add_prefix_cmd ("ada", class_maintenance, maint_show_ada_cmd,
14557 _("Show Ada maintenance-related variables"),
14558 &maint_show_ada_cmdlist, "maintenance show ada ",
14559 0/*allow-unknown*/, &maintenance_show_cmdlist);
14560
14561 add_setshow_boolean_cmd
14562 ("ignore-descriptive-types", class_maintenance,
14563 &ada_ignore_descriptive_types_p,
14564 _("Set whether descriptive types generated by GNAT should be ignored."),
14565 _("Show whether descriptive types generated by GNAT should be ignored."),
14566 _("\
14567 When enabled, the debugger will stop using the DW_AT_GNAT_descriptive_type\n\
14568 DWARF attribute."),
14569 NULL, NULL, &maint_set_ada_cmdlist, &maint_show_ada_cmdlist);
14570
14571 decoded_names_store = htab_create_alloc (256, htab_hash_string, streq_hash,
14572 NULL, xcalloc, xfree);
14573
14574 /* The ada-lang observers. */
14575 gdb::observers::new_objfile.attach (ada_new_objfile_observer);
14576 gdb::observers::free_objfile.attach (ada_free_objfile_observer);
14577 gdb::observers::inferior_exit.attach (ada_inferior_exit);
14578
14579 /* Setup various context-specific data. */
14580 ada_inferior_data
14581 = register_inferior_data_with_cleanup (NULL, ada_inferior_data_cleanup);
14582 ada_pspace_data_handle
14583 = register_program_space_data_with_cleanup (NULL, ada_pspace_data_cleanup);
14584 }