]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/alpha-tdep.c
d655c13b829393092ca171e24c448d90560b864a
[thirdparty/binutils-gdb.git] / gdb / alpha-tdep.c
1 /* Target-dependent code for the ALPHA architecture, for GDB, the GNU Debugger.
2
3 Copyright (C) 1993-2025 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "extract-store-integer.h"
21 #include "frame.h"
22 #include "frame-unwind.h"
23 #include "frame-base.h"
24 #include "dwarf2/frame.h"
25 #include "inferior.h"
26 #include "symtab.h"
27 #include "value.h"
28 #include "cli/cli-cmds.h"
29 #include "gdbcore.h"
30 #include "dis-asm.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "linespec.h"
34 #include "regcache.h"
35 #include "reggroups.h"
36 #include "arch-utils.h"
37 #include "osabi.h"
38 #include "infcall.h"
39 #include "trad-frame.h"
40
41 #include "elf-bfd.h"
42
43 #include "alpha-tdep.h"
44 #include <algorithm>
45
46 #include "target-descriptions.h"
47 #include "features/alpha.c"
48
49 /* Instruction decoding. The notations for registers, immediates and
50 opcodes are the same as the one used in Compaq's Alpha architecture
51 handbook. */
52
53 #define INSN_OPCODE(insn) ((insn & 0xfc000000) >> 26)
54
55 /* Memory instruction format */
56 #define MEM_RA(insn) ((insn & 0x03e00000) >> 21)
57 #define MEM_RB(insn) ((insn & 0x001f0000) >> 16)
58 #define MEM_DISP(insn) \
59 (((insn & 0x8000) == 0) ? (insn & 0xffff) : -((-insn) & 0xffff))
60
61 static const int lda_opcode = 0x08;
62 static const int stq_opcode = 0x2d;
63
64 /* Branch instruction format */
65 #define BR_RA(insn) MEM_RA(insn)
66
67 static const int br_opcode = 0x30;
68 static const int bne_opcode = 0x3d;
69
70 /* Operate instruction format */
71 #define OPR_FUNCTION(insn) ((insn & 0xfe0) >> 5)
72 #define OPR_HAS_IMMEDIATE(insn) ((insn & 0x1000) == 0x1000)
73 #define OPR_RA(insn) MEM_RA(insn)
74 #define OPR_RC(insn) ((insn & 0x1f))
75 #define OPR_LIT(insn) ((insn & 0x1fe000) >> 13)
76
77 static const int subq_opcode = 0x10;
78 static const int subq_function = 0x29;
79
80 \f
81 /* Alpha registers using their software names.
82
83 An empty name corresponds to a register number that used to
84 be used for a virtual register. That virtual register has
85 been removed, but the index is still reserved to maintain
86 compatibility with existing remote alpha targets. */
87
88 static const char * const alpha_register_names[] =
89 {
90 "v0", "t0", "t1", "t2", "t3", "t4", "t5", "t6",
91 "t7", "s0", "s1", "s2", "s3", "s4", "s5", "fp",
92 "a0", "a1", "a2", "a3", "a4", "a5", "t8", "t9",
93 "t10", "t11", "ra", "t12", "at", "gp", "sp", "zero",
94 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
95 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
96 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
97 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "fpcr",
98 "pc", "", "unique"
99 };
100 static_assert (ALPHA_NUM_REGS == ARRAY_SIZE (alpha_register_names));
101
102 static int
103 alpha_cannot_fetch_register (struct gdbarch *gdbarch, int regno)
104 {
105 return (strlen (alpha_register_names[regno]) == 0);
106 }
107
108 static int
109 alpha_cannot_store_register (struct gdbarch *gdbarch, int regno)
110 {
111 return (regno == ALPHA_ZERO_REGNUM
112 || strlen (alpha_register_names[regno]) == 0);
113 }
114
115 /* Is REGNUM a member of REGGROUP? */
116
117 static int
118 alpha_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
119 const struct reggroup *group)
120 {
121 /* Filter out any registers eliminated, but whose regnum is
122 reserved for backward compatibility, e.g. the vfp. */
123 if (*gdbarch_register_name (gdbarch, regnum) == '\0')
124 return 0;
125
126 if (group == all_reggroup)
127 return 1;
128
129 /* Zero should not be saved or restored. Technically it is a general
130 register (just as $f31 would be a float if we represented it), but
131 there's no point displaying it during "info regs", so leave it out
132 of all groups except for "all". */
133 if (regnum == ALPHA_ZERO_REGNUM)
134 return 0;
135
136 /* All other registers are saved and restored. */
137 if (group == save_reggroup || group == restore_reggroup)
138 return 1;
139
140 /* All other groups are non-overlapping. */
141
142 /* Since this is really a PALcode memory slot... */
143 if (regnum == ALPHA_UNIQUE_REGNUM)
144 return group == system_reggroup;
145
146 /* Force the FPCR to be considered part of the floating point state. */
147 if (regnum == ALPHA_FPCR_REGNUM)
148 return group == float_reggroup;
149
150 if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 31)
151 return group == float_reggroup;
152 else
153 return group == general_reggroup;
154 }
155
156 /* The following represents exactly the conversion performed by
157 the LDS instruction. This applies to both single-precision
158 floating point and 32-bit integers. */
159
160 static void
161 alpha_lds (struct gdbarch *gdbarch, void *out, const void *in)
162 {
163 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
164 ULONGEST mem
165 = extract_unsigned_integer ((const gdb_byte *) in, 4, byte_order);
166 ULONGEST frac = (mem >> 0) & 0x7fffff;
167 ULONGEST sign = (mem >> 31) & 1;
168 ULONGEST exp_msb = (mem >> 30) & 1;
169 ULONGEST exp_low = (mem >> 23) & 0x7f;
170 ULONGEST exp, reg;
171
172 exp = (exp_msb << 10) | exp_low;
173 if (exp_msb)
174 {
175 if (exp_low == 0x7f)
176 exp = 0x7ff;
177 }
178 else
179 {
180 if (exp_low != 0x00)
181 exp |= 0x380;
182 }
183
184 reg = (sign << 63) | (exp << 52) | (frac << 29);
185 store_unsigned_integer ((gdb_byte *) out, 8, byte_order, reg);
186 }
187
188 /* Similarly, this represents exactly the conversion performed by
189 the STS instruction. */
190
191 static void
192 alpha_sts (struct gdbarch *gdbarch, void *out, const void *in)
193 {
194 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
195 ULONGEST reg, mem;
196
197 reg = extract_unsigned_integer ((const gdb_byte *) in, 8, byte_order);
198 mem = ((reg >> 32) & 0xc0000000) | ((reg >> 29) & 0x3fffffff);
199 store_unsigned_integer ((gdb_byte *) out, 4, byte_order, mem);
200 }
201
202 /* The alpha needs a conversion between register and memory format if the
203 register is a floating point register and memory format is float, as the
204 register format must be double or memory format is an integer with 4
205 bytes, as the representation of integers in floating point
206 registers is different. */
207
208 static int
209 alpha_convert_register_p (struct gdbarch *gdbarch, int regno,
210 struct type *type)
211 {
212 return (regno >= ALPHA_FP0_REGNUM && regno < ALPHA_FP0_REGNUM + 31
213 && type->length () == 4);
214 }
215
216 static int
217 alpha_register_to_value (const frame_info_ptr &frame, int regnum,
218 struct type *valtype, gdb_byte *out,
219 int *optimizedp, int *unavailablep)
220 {
221 struct gdbarch *gdbarch = get_frame_arch (frame);
222 struct value *value = get_frame_register_value (frame, regnum);
223
224 gdb_assert (value != NULL);
225 *optimizedp = value->optimized_out ();
226 *unavailablep = !value->entirely_available ();
227
228 if (*optimizedp || *unavailablep)
229 {
230 release_value (value);
231 return 0;
232 }
233
234 /* Convert to VALTYPE. */
235
236 gdb_assert (valtype->length () == 4);
237 alpha_sts (gdbarch, out, value->contents_all ().data ());
238
239 release_value (value);
240 return 1;
241 }
242
243 static void
244 alpha_value_to_register (const frame_info_ptr &frame, int regnum,
245 struct type *valtype, const gdb_byte *in)
246 {
247 int reg_size = register_size (get_frame_arch (frame), regnum);
248 gdb_assert (valtype->length () == 4);
249 gdb_assert (reg_size <= ALPHA_REGISTER_SIZE);
250
251 gdb_byte out[ALPHA_REGISTER_SIZE];
252 alpha_lds (get_frame_arch (frame), out, in);
253
254 auto out_view = gdb::make_array_view (out, reg_size);
255 put_frame_register (get_next_frame_sentinel_okay (frame), regnum, out_view);
256 }
257
258 \f
259 /* The alpha passes the first six arguments in the registers, the rest on
260 the stack. The register arguments are stored in ARG_REG_BUFFER, and
261 then moved into the register file; this simplifies the passing of a
262 large struct which extends from the registers to the stack, plus avoids
263 three ptrace invocations per word.
264
265 We don't bother tracking which register values should go in integer
266 regs or fp regs; we load the same values into both.
267
268 If the called function is returning a structure, the address of the
269 structure to be returned is passed as a hidden first argument. */
270
271 static CORE_ADDR
272 alpha_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
273 struct regcache *regcache, CORE_ADDR bp_addr,
274 int nargs, struct value **args, CORE_ADDR sp,
275 function_call_return_method return_method,
276 CORE_ADDR struct_addr)
277 {
278 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
279 int i;
280 int accumulate_size = (return_method == return_method_struct) ? 8 : 0;
281 struct alpha_arg
282 {
283 const gdb_byte *contents;
284 int len;
285 int offset;
286 };
287 struct alpha_arg *alpha_args = XALLOCAVEC (struct alpha_arg, nargs);
288 struct alpha_arg *m_arg;
289 gdb_byte arg_reg_buffer[ALPHA_REGISTER_SIZE * ALPHA_NUM_ARG_REGS];
290 int required_arg_regs;
291 CORE_ADDR func_addr = find_function_addr (function, NULL);
292
293 /* The ABI places the address of the called function in T12. */
294 regcache_cooked_write_signed (regcache, ALPHA_T12_REGNUM, func_addr);
295
296 /* Set the return address register to point to the entry point
297 of the program, where a breakpoint lies in wait. */
298 regcache_cooked_write_signed (regcache, ALPHA_RA_REGNUM, bp_addr);
299
300 /* Lay out the arguments in memory. */
301 for (i = 0, m_arg = alpha_args; i < nargs; i++, m_arg++)
302 {
303 struct value *arg = args[i];
304 struct type *arg_type = check_typedef (arg->type ());
305
306 /* Cast argument to long if necessary as the compiler does it too. */
307 switch (arg_type->code ())
308 {
309 case TYPE_CODE_INT:
310 case TYPE_CODE_BOOL:
311 case TYPE_CODE_CHAR:
312 case TYPE_CODE_RANGE:
313 case TYPE_CODE_ENUM:
314 if (arg_type->length () == 4)
315 {
316 /* 32-bit values must be sign-extended to 64 bits
317 even if the base data type is unsigned. */
318 arg_type = builtin_type (gdbarch)->builtin_int32;
319 arg = value_cast (arg_type, arg);
320 }
321 if (arg_type->length () < ALPHA_REGISTER_SIZE)
322 {
323 arg_type = builtin_type (gdbarch)->builtin_int64;
324 arg = value_cast (arg_type, arg);
325 }
326 break;
327
328 case TYPE_CODE_FLT:
329 /* "float" arguments loaded in registers must be passed in
330 register format, aka "double". */
331 if (accumulate_size < sizeof (arg_reg_buffer)
332 && arg_type->length () == 4)
333 {
334 arg_type = builtin_type (gdbarch)->builtin_double;
335 arg = value_cast (arg_type, arg);
336 }
337 /* Tru64 5.1 has a 128-bit long double, and passes this by
338 invisible reference. No one else uses this data type. */
339 else if (arg_type->length () == 16)
340 {
341 /* Allocate aligned storage. */
342 sp = (sp & -16) - 16;
343
344 /* Write the real data into the stack. */
345 write_memory (sp, arg->contents ().data (), 16);
346
347 /* Construct the indirection. */
348 arg_type = lookup_pointer_type (arg_type);
349 arg = value_from_pointer (arg_type, sp);
350 }
351 break;
352
353 case TYPE_CODE_COMPLEX:
354 /* ??? The ABI says that complex values are passed as two
355 separate scalar values. This distinction only matters
356 for complex float. However, GCC does not implement this. */
357
358 /* Tru64 5.1 has a 128-bit long double, and passes this by
359 invisible reference. */
360 if (arg_type->length () == 32)
361 {
362 /* Allocate aligned storage. */
363 sp = (sp & -16) - 16;
364
365 /* Write the real data into the stack. */
366 write_memory (sp, arg->contents ().data (), 32);
367
368 /* Construct the indirection. */
369 arg_type = lookup_pointer_type (arg_type);
370 arg = value_from_pointer (arg_type, sp);
371 }
372 break;
373
374 default:
375 break;
376 }
377 m_arg->len = arg_type->length ();
378 m_arg->offset = accumulate_size;
379 accumulate_size = (accumulate_size + m_arg->len + 7) & ~7;
380 m_arg->contents = arg->contents ().data ();
381 }
382
383 /* Determine required argument register loads, loading an argument register
384 is expensive as it uses three ptrace calls. */
385 required_arg_regs = accumulate_size / 8;
386 if (required_arg_regs > ALPHA_NUM_ARG_REGS)
387 required_arg_regs = ALPHA_NUM_ARG_REGS;
388
389 /* Make room for the arguments on the stack. */
390 if (accumulate_size < sizeof(arg_reg_buffer))
391 accumulate_size = 0;
392 else
393 accumulate_size -= sizeof(arg_reg_buffer);
394 sp -= accumulate_size;
395
396 /* Keep sp aligned to a multiple of 16 as the ABI requires. */
397 sp &= ~15;
398
399 /* `Push' arguments on the stack. */
400 for (i = nargs; m_arg--, --i >= 0;)
401 {
402 const gdb_byte *contents = m_arg->contents;
403 int offset = m_arg->offset;
404 int len = m_arg->len;
405
406 /* Copy the bytes destined for registers into arg_reg_buffer. */
407 if (offset < sizeof(arg_reg_buffer))
408 {
409 if (offset + len <= sizeof(arg_reg_buffer))
410 {
411 memcpy (arg_reg_buffer + offset, contents, len);
412 continue;
413 }
414 else
415 {
416 int tlen = sizeof(arg_reg_buffer) - offset;
417 memcpy (arg_reg_buffer + offset, contents, tlen);
418 offset += tlen;
419 contents += tlen;
420 len -= tlen;
421 }
422 }
423
424 /* Everything else goes to the stack. */
425 write_memory (sp + offset - sizeof(arg_reg_buffer), contents, len);
426 }
427 if (return_method == return_method_struct)
428 store_unsigned_integer (arg_reg_buffer, ALPHA_REGISTER_SIZE,
429 byte_order, struct_addr);
430
431 /* Load the argument registers. */
432 for (i = 0; i < required_arg_regs; i++)
433 {
434 regcache->cooked_write (ALPHA_A0_REGNUM + i,
435 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
436 regcache->cooked_write (ALPHA_FPA0_REGNUM + i,
437 arg_reg_buffer + i * ALPHA_REGISTER_SIZE);
438 }
439
440 /* Finally, update the stack pointer. */
441 regcache_cooked_write_signed (regcache, ALPHA_SP_REGNUM, sp);
442
443 return sp;
444 }
445
446 /* Extract from REGCACHE the value about to be returned from a function
447 and copy it into VALBUF. */
448
449 static void
450 alpha_extract_return_value (struct type *valtype, struct regcache *regcache,
451 gdb_byte *valbuf)
452 {
453 struct gdbarch *gdbarch = regcache->arch ();
454 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
455 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
456 ULONGEST l;
457
458 switch (valtype->code ())
459 {
460 case TYPE_CODE_FLT:
461 switch (valtype->length ())
462 {
463 case 4:
464 regcache->cooked_read (ALPHA_FP0_REGNUM, raw_buffer);
465 alpha_sts (gdbarch, valbuf, raw_buffer);
466 break;
467
468 case 8:
469 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
470 break;
471
472 case 16:
473 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
474 read_memory (l, valbuf, 16);
475 break;
476
477 default:
478 internal_error (_("unknown floating point width"));
479 }
480 break;
481
482 case TYPE_CODE_COMPLEX:
483 switch (valtype->length ())
484 {
485 case 8:
486 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
487 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
488 break;
489
490 case 16:
491 regcache->cooked_read (ALPHA_FP0_REGNUM, valbuf);
492 regcache->cooked_read (ALPHA_FP0_REGNUM + 1, valbuf + 8);
493 break;
494
495 case 32:
496 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
497 read_memory (l, valbuf, 32);
498 break;
499
500 default:
501 internal_error (_("unknown floating point width"));
502 }
503 break;
504
505 default:
506 /* Assume everything else degenerates to an integer. */
507 regcache_cooked_read_unsigned (regcache, ALPHA_V0_REGNUM, &l);
508 store_unsigned_integer (valbuf, valtype->length (), byte_order, l);
509 break;
510 }
511 }
512
513 /* Insert the given value into REGCACHE as if it was being
514 returned by a function. */
515
516 static void
517 alpha_store_return_value (struct type *valtype, struct regcache *regcache,
518 const gdb_byte *valbuf)
519 {
520 struct gdbarch *gdbarch = regcache->arch ();
521 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
522 ULONGEST l;
523
524 switch (valtype->code ())
525 {
526 case TYPE_CODE_FLT:
527 switch (valtype->length ())
528 {
529 case 4:
530 alpha_lds (gdbarch, raw_buffer, valbuf);
531 regcache->cooked_write (ALPHA_FP0_REGNUM, raw_buffer);
532 break;
533
534 case 8:
535 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
536 break;
537
538 case 16:
539 /* FIXME: 128-bit long doubles are returned like structures:
540 by writing into indirect storage provided by the caller
541 as the first argument. */
542 error (_("Cannot set a 128-bit long double return value."));
543
544 default:
545 internal_error (_("unknown floating point width"));
546 }
547 break;
548
549 case TYPE_CODE_COMPLEX:
550 switch (valtype->length ())
551 {
552 case 8:
553 /* ??? This isn't correct wrt the ABI, but it's what GCC does. */
554 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
555 break;
556
557 case 16:
558 regcache->cooked_write (ALPHA_FP0_REGNUM, valbuf);
559 regcache->cooked_write (ALPHA_FP0_REGNUM + 1, valbuf + 8);
560 break;
561
562 case 32:
563 /* FIXME: 128-bit long doubles are returned like structures:
564 by writing into indirect storage provided by the caller
565 as the first argument. */
566 error (_("Cannot set a 128-bit long double return value."));
567
568 default:
569 internal_error (_("unknown floating point width"));
570 }
571 break;
572
573 default:
574 /* Assume everything else degenerates to an integer. */
575 /* 32-bit values must be sign-extended to 64 bits
576 even if the base data type is unsigned. */
577 if (valtype->length () == 4)
578 valtype = builtin_type (gdbarch)->builtin_int32;
579 l = unpack_long (valtype, valbuf);
580 regcache_cooked_write_unsigned (regcache, ALPHA_V0_REGNUM, l);
581 break;
582 }
583 }
584
585 static enum return_value_convention
586 alpha_return_value (struct gdbarch *gdbarch, struct value *function,
587 struct type *type, struct regcache *regcache,
588 gdb_byte *readbuf, const gdb_byte *writebuf)
589 {
590 enum type_code code = type->code ();
591 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
592
593 if ((code == TYPE_CODE_STRUCT
594 || code == TYPE_CODE_UNION
595 || code == TYPE_CODE_ARRAY)
596 && tdep->return_in_memory (type))
597 {
598 if (readbuf)
599 {
600 ULONGEST addr;
601 regcache_raw_read_unsigned (regcache, ALPHA_V0_REGNUM, &addr);
602 read_memory (addr, readbuf, type->length ());
603 }
604
605 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
606 }
607
608 if (readbuf)
609 alpha_extract_return_value (type, regcache, readbuf);
610 if (writebuf)
611 alpha_store_return_value (type, regcache, writebuf);
612
613 return RETURN_VALUE_REGISTER_CONVENTION;
614 }
615
616 static int
617 alpha_return_in_memory_always (struct type *type)
618 {
619 return 1;
620 }
621 \f
622
623 constexpr gdb_byte alpha_break_insn[] = { 0x80, 0, 0, 0 }; /* call_pal bpt */
624
625 typedef BP_MANIPULATION (alpha_break_insn) alpha_breakpoint;
626
627 \f
628 /* This returns the PC of the first insn after the prologue.
629 If we can't find the prologue, then return 0. */
630
631 CORE_ADDR
632 alpha_after_prologue (CORE_ADDR pc)
633 {
634 struct symtab_and_line sal;
635 CORE_ADDR func_addr, func_end;
636
637 if (!find_pc_partial_function (pc, NULL, &func_addr, &func_end))
638 return 0;
639
640 sal = find_pc_line (func_addr, 0);
641 if (sal.end < func_end)
642 return sal.end;
643
644 /* The line after the prologue is after the end of the function. In this
645 case, tell the caller to find the prologue the hard way. */
646 return 0;
647 }
648
649 /* Read an instruction from memory at PC, looking through breakpoints. */
650
651 unsigned int
652 alpha_read_insn (struct gdbarch *gdbarch, CORE_ADDR pc)
653 {
654 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
655 gdb_byte buf[ALPHA_INSN_SIZE];
656 int res;
657
658 res = target_read_memory (pc, buf, sizeof (buf));
659 if (res != 0)
660 memory_error (TARGET_XFER_E_IO, pc);
661 return extract_unsigned_integer (buf, sizeof (buf), byte_order);
662 }
663
664 /* To skip prologues, I use this predicate. Returns either PC itself
665 if the code at PC does not look like a function prologue; otherwise
666 returns an address that (if we're lucky) follows the prologue. If
667 LENIENT, then we must skip everything which is involved in setting
668 up the frame (it's OK to skip more, just so long as we don't skip
669 anything which might clobber the registers which are being saved. */
670
671 static CORE_ADDR
672 alpha_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
673 {
674 unsigned long inst;
675 int offset;
676 CORE_ADDR post_prologue_pc;
677 gdb_byte buf[ALPHA_INSN_SIZE];
678
679 /* Silently return the unaltered pc upon memory errors.
680 This could happen on OSF/1 if decode_line_1 tries to skip the
681 prologue for quickstarted shared library functions when the
682 shared library is not yet mapped in.
683 Reading target memory is slow over serial lines, so we perform
684 this check only if the target has shared libraries (which all
685 Alpha targets do). */
686 if (target_read_memory (pc, buf, sizeof (buf)))
687 return pc;
688
689 /* See if we can determine the end of the prologue via the symbol table.
690 If so, then return either PC, or the PC after the prologue, whichever
691 is greater. */
692
693 post_prologue_pc = alpha_after_prologue (pc);
694 if (post_prologue_pc != 0)
695 return std::max (pc, post_prologue_pc);
696
697 /* Can't determine prologue from the symbol table, need to examine
698 instructions. */
699
700 /* Skip the typical prologue instructions. These are the stack adjustment
701 instruction and the instructions that save registers on the stack
702 or in the gcc frame. */
703 for (offset = 0; offset < 100; offset += ALPHA_INSN_SIZE)
704 {
705 inst = alpha_read_insn (gdbarch, pc + offset);
706
707 if ((inst & 0xffff0000) == 0x27bb0000) /* ldah $gp,n($t12) */
708 continue;
709 if ((inst & 0xffff0000) == 0x23bd0000) /* lda $gp,n($gp) */
710 continue;
711 if ((inst & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
712 continue;
713 if ((inst & 0xffe01fff) == 0x43c0153e) /* subq $sp,n,$sp */
714 continue;
715
716 if (((inst & 0xfc1f0000) == 0xb41e0000 /* stq reg,n($sp) */
717 || (inst & 0xfc1f0000) == 0x9c1e0000) /* stt reg,n($sp) */
718 && (inst & 0x03e00000) != 0x03e00000) /* reg != $zero */
719 continue;
720
721 if (inst == 0x47de040f) /* bis sp,sp,fp */
722 continue;
723 if (inst == 0x47fe040f) /* bis zero,sp,fp */
724 continue;
725
726 break;
727 }
728 return pc + offset;
729 }
730
731 \f
732 static const int ldl_l_opcode = 0x2a;
733 static const int ldq_l_opcode = 0x2b;
734 static const int stl_c_opcode = 0x2e;
735 static const int stq_c_opcode = 0x2f;
736
737 /* Checks for an atomic sequence of instructions beginning with a LDL_L/LDQ_L
738 instruction and ending with a STL_C/STQ_C instruction. If such a sequence
739 is found, attempt to step through it. A breakpoint is placed at the end of
740 the sequence. */
741
742 static std::vector<CORE_ADDR>
743 alpha_deal_with_atomic_sequence (struct gdbarch *gdbarch, CORE_ADDR pc)
744 {
745 CORE_ADDR breaks[2] = {CORE_ADDR_MAX, CORE_ADDR_MAX};
746 CORE_ADDR loc = pc;
747 CORE_ADDR closing_insn; /* Instruction that closes the atomic sequence. */
748 unsigned int insn = alpha_read_insn (gdbarch, loc);
749 int insn_count;
750 int index;
751 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
752 const int atomic_sequence_length = 16; /* Instruction sequence length. */
753 int bc_insn_count = 0; /* Conditional branch instruction count. */
754
755 /* Assume all atomic sequences start with a LDL_L/LDQ_L instruction. */
756 if (INSN_OPCODE (insn) != ldl_l_opcode
757 && INSN_OPCODE (insn) != ldq_l_opcode)
758 return {};
759
760 /* Assume that no atomic sequence is longer than "atomic_sequence_length"
761 instructions. */
762 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
763 {
764 loc += ALPHA_INSN_SIZE;
765 insn = alpha_read_insn (gdbarch, loc);
766
767 /* Assume that there is at most one branch in the atomic
768 sequence. If a branch is found, put a breakpoint in
769 its destination address. */
770 if (INSN_OPCODE (insn) >= br_opcode)
771 {
772 int immediate = (insn & 0x001fffff) << 2;
773
774 immediate = (immediate ^ 0x400000) - 0x400000;
775
776 if (bc_insn_count >= 1)
777 return {}; /* More than one branch found, fallback
778 to the standard single-step code. */
779
780 breaks[1] = loc + ALPHA_INSN_SIZE + immediate;
781
782 bc_insn_count++;
783 last_breakpoint++;
784 }
785
786 if (INSN_OPCODE (insn) == stl_c_opcode
787 || INSN_OPCODE (insn) == stq_c_opcode)
788 break;
789 }
790
791 /* Assume that the atomic sequence ends with a STL_C/STQ_C instruction. */
792 if (INSN_OPCODE (insn) != stl_c_opcode
793 && INSN_OPCODE (insn) != stq_c_opcode)
794 return {};
795
796 closing_insn = loc;
797 loc += ALPHA_INSN_SIZE;
798
799 /* Insert a breakpoint right after the end of the atomic sequence. */
800 breaks[0] = loc;
801
802 /* Check for duplicated breakpoints. Check also for a breakpoint
803 placed (branch instruction's destination) anywhere in sequence. */
804 if (last_breakpoint
805 && (breaks[1] == breaks[0]
806 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
807 last_breakpoint = 0;
808
809 std::vector<CORE_ADDR> next_pcs;
810
811 for (index = 0; index <= last_breakpoint; index++)
812 next_pcs.push_back (breaks[index]);
813
814 return next_pcs;
815 }
816
817 \f
818 /* Figure out where the longjmp will land.
819 We expect the first arg to be a pointer to the jmp_buf structure from
820 which we extract the PC (JB_PC) that we will land at. The PC is copied
821 into the "pc". This routine returns true on success. */
822
823 static int
824 alpha_get_longjmp_target (const frame_info_ptr &frame, CORE_ADDR *pc)
825 {
826 struct gdbarch *gdbarch = get_frame_arch (frame);
827 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
828 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
829 CORE_ADDR jb_addr;
830 gdb_byte raw_buffer[ALPHA_REGISTER_SIZE];
831
832 jb_addr = get_frame_register_unsigned (frame, ALPHA_A0_REGNUM);
833
834 if (target_read_memory (jb_addr + (tdep->jb_pc * tdep->jb_elt_size),
835 raw_buffer, tdep->jb_elt_size))
836 return 0;
837
838 *pc = extract_unsigned_integer (raw_buffer, tdep->jb_elt_size, byte_order);
839 return 1;
840 }
841
842 \f
843 /* Frame unwinder for signal trampolines. We use alpha tdep bits that
844 describe the location and shape of the sigcontext structure. After
845 that, all registers are in memory, so it's easy. */
846 /* ??? Shouldn't we be able to do this generically, rather than with
847 OSABI data specific to Alpha? */
848
849 struct alpha_sigtramp_unwind_cache
850 {
851 CORE_ADDR sigcontext_addr;
852 };
853
854 static struct alpha_sigtramp_unwind_cache *
855 alpha_sigtramp_frame_unwind_cache (const frame_info_ptr &this_frame,
856 void **this_prologue_cache)
857 {
858 struct alpha_sigtramp_unwind_cache *info;
859
860 if (*this_prologue_cache)
861 return (struct alpha_sigtramp_unwind_cache *) *this_prologue_cache;
862
863 info = FRAME_OBSTACK_ZALLOC (struct alpha_sigtramp_unwind_cache);
864 *this_prologue_cache = info;
865
866 gdbarch *arch = get_frame_arch (this_frame);
867 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (arch);
868 info->sigcontext_addr = tdep->sigcontext_addr (this_frame);
869
870 return info;
871 }
872
873 /* Return the address of REGNUM in a sigtramp frame. Since this is
874 all arithmetic, it doesn't seem worthwhile to cache it. */
875
876 static CORE_ADDR
877 alpha_sigtramp_register_address (struct gdbarch *gdbarch,
878 CORE_ADDR sigcontext_addr, int regnum)
879 {
880 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
881
882 if (regnum >= 0 && regnum < 32)
883 return sigcontext_addr + tdep->sc_regs_offset + regnum * 8;
884 else if (regnum >= ALPHA_FP0_REGNUM && regnum < ALPHA_FP0_REGNUM + 32)
885 return sigcontext_addr + tdep->sc_fpregs_offset + regnum * 8;
886 else if (regnum == ALPHA_PC_REGNUM)
887 return sigcontext_addr + tdep->sc_pc_offset;
888
889 return 0;
890 }
891
892 /* Given a GDB frame, determine the address of the calling function's
893 frame. This will be used to create a new GDB frame struct. */
894
895 static void
896 alpha_sigtramp_frame_this_id (const frame_info_ptr &this_frame,
897 void **this_prologue_cache,
898 struct frame_id *this_id)
899 {
900 struct gdbarch *gdbarch = get_frame_arch (this_frame);
901 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
902 struct alpha_sigtramp_unwind_cache *info
903 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
904 CORE_ADDR stack_addr, code_addr;
905
906 /* If the OSABI couldn't locate the sigcontext, give up. */
907 if (info->sigcontext_addr == 0)
908 return;
909
910 /* If we have dynamic signal trampolines, find their start.
911 If we do not, then we must assume there is a symbol record
912 that can provide the start address. */
913 if (tdep->dynamic_sigtramp_offset)
914 {
915 int offset;
916 code_addr = get_frame_pc (this_frame);
917 offset = tdep->dynamic_sigtramp_offset (gdbarch, code_addr);
918 if (offset >= 0)
919 code_addr -= offset;
920 else
921 code_addr = 0;
922 }
923 else
924 code_addr = get_frame_func (this_frame);
925
926 /* The stack address is trivially read from the sigcontext. */
927 stack_addr = alpha_sigtramp_register_address (gdbarch, info->sigcontext_addr,
928 ALPHA_SP_REGNUM);
929 stack_addr = get_frame_memory_unsigned (this_frame, stack_addr,
930 ALPHA_REGISTER_SIZE);
931
932 *this_id = frame_id_build (stack_addr, code_addr);
933 }
934
935 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
936
937 static struct value *
938 alpha_sigtramp_frame_prev_register (const frame_info_ptr &this_frame,
939 void **this_prologue_cache, int regnum)
940 {
941 struct alpha_sigtramp_unwind_cache *info
942 = alpha_sigtramp_frame_unwind_cache (this_frame, this_prologue_cache);
943 CORE_ADDR addr;
944
945 if (info->sigcontext_addr != 0)
946 {
947 /* All integer and fp registers are stored in memory. */
948 addr = alpha_sigtramp_register_address (get_frame_arch (this_frame),
949 info->sigcontext_addr, regnum);
950 if (addr != 0)
951 return frame_unwind_got_memory (this_frame, regnum, addr);
952 }
953
954 /* This extra register may actually be in the sigcontext, but our
955 current description of it in alpha_sigtramp_frame_unwind_cache
956 doesn't include it. Too bad. Fall back on whatever's in the
957 outer frame. */
958 return frame_unwind_got_register (this_frame, regnum, regnum);
959 }
960
961 static int
962 alpha_sigtramp_frame_sniffer (const struct frame_unwind *self,
963 const frame_info_ptr &this_frame,
964 void **this_prologue_cache)
965 {
966 struct gdbarch *gdbarch = get_frame_arch (this_frame);
967 CORE_ADDR pc = get_frame_pc (this_frame);
968 const char *name;
969
970 /* NOTE: cagney/2004-04-30: Do not copy/clone this code. Instead
971 look at tramp-frame.h and other simpler per-architecture
972 sigtramp unwinders. */
973
974 /* We shouldn't even bother to try if the OSABI didn't register a
975 sigcontext_addr handler or pc_in_sigtramp handler. */
976 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
977 if (tdep->sigcontext_addr == NULL)
978 return 0;
979
980 if (tdep->pc_in_sigtramp == NULL)
981 return 0;
982
983 /* Otherwise we should be in a signal frame. */
984 find_pc_partial_function (pc, &name, NULL, NULL);
985 if (tdep->pc_in_sigtramp (gdbarch, pc, name))
986 return 1;
987
988 return 0;
989 }
990
991 static const struct frame_unwind_legacy alpha_sigtramp_frame_unwind (
992 "alpha sigtramp",
993 SIGTRAMP_FRAME,
994 FRAME_UNWIND_ARCH,
995 default_frame_unwind_stop_reason,
996 alpha_sigtramp_frame_this_id,
997 alpha_sigtramp_frame_prev_register,
998 NULL,
999 alpha_sigtramp_frame_sniffer
1000 );
1001
1002 \f
1003
1004 /* Heuristic_proc_start may hunt through the text section for a long
1005 time across a 2400 baud serial line. Allows the user to limit this
1006 search. */
1007 static int heuristic_fence_post = 0;
1008
1009 /* Attempt to locate the start of the function containing PC. We assume that
1010 the previous function ends with an about_to_return insn. Not foolproof by
1011 any means, since gcc is happy to put the epilogue in the middle of a
1012 function. But we're guessing anyway... */
1013
1014 static CORE_ADDR
1015 alpha_heuristic_proc_start (struct gdbarch *gdbarch, CORE_ADDR pc)
1016 {
1017 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
1018 CORE_ADDR last_non_nop = pc;
1019 CORE_ADDR fence = pc - heuristic_fence_post;
1020 CORE_ADDR orig_pc = pc;
1021 CORE_ADDR func;
1022 struct inferior *inf;
1023
1024 if (pc == 0)
1025 return 0;
1026
1027 /* First see if we can find the start of the function from minimal
1028 symbol information. This can succeed with a binary that doesn't
1029 have debug info, but hasn't been stripped. */
1030 func = get_pc_function_start (pc);
1031 if (func)
1032 return func;
1033
1034 if (heuristic_fence_post == -1
1035 || fence < tdep->vm_min_address)
1036 fence = tdep->vm_min_address;
1037
1038 /* Search back for previous return; also stop at a 0, which might be
1039 seen for instance before the start of a code section. Don't include
1040 nops, since this usually indicates padding between functions. */
1041 for (pc -= ALPHA_INSN_SIZE; pc >= fence; pc -= ALPHA_INSN_SIZE)
1042 {
1043 unsigned int insn = alpha_read_insn (gdbarch, pc);
1044 switch (insn)
1045 {
1046 case 0: /* invalid insn */
1047 case 0x6bfa8001: /* ret $31,($26),1 */
1048 return last_non_nop;
1049
1050 case 0x2ffe0000: /* unop: ldq_u $31,0($30) */
1051 case 0x47ff041f: /* nop: bis $31,$31,$31 */
1052 break;
1053
1054 default:
1055 last_non_nop = pc;
1056 break;
1057 }
1058 }
1059
1060 inf = current_inferior ();
1061
1062 /* It's not clear to me why we reach this point when stopping quietly,
1063 but with this test, at least we don't print out warnings for every
1064 child forked (eg, on decstation). 22apr93 rich@cygnus.com. */
1065 if (inf->control.stop_soon == NO_STOP_QUIETLY)
1066 {
1067 static int blurb_printed = 0;
1068
1069 if (fence == tdep->vm_min_address)
1070 warning (_("Hit beginning of text section without finding \
1071 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1072 else
1073 warning (_("Hit heuristic-fence-post without finding \
1074 enclosing function for address %s"), paddress (gdbarch, orig_pc));
1075
1076 if (!blurb_printed)
1077 {
1078 gdb_printf (_("\
1079 This warning occurs if you are debugging a function without any symbols\n\
1080 (for example, in a stripped executable). In that case, you may wish to\n\
1081 increase the size of the search with the `set heuristic-fence-post' command.\n\
1082 \n\
1083 Otherwise, you told GDB there was a function where there isn't one, or\n\
1084 (more likely) you have encountered a bug in GDB.\n"));
1085 blurb_printed = 1;
1086 }
1087 }
1088
1089 return 0;
1090 }
1091
1092 /* Fallback alpha frame unwinder. Uses instruction scanning and knows
1093 something about the traditional layout of alpha stack frames. */
1094
1095 struct alpha_heuristic_unwind_cache
1096 {
1097 CORE_ADDR vfp;
1098 CORE_ADDR start_pc;
1099 trad_frame_saved_reg *saved_regs;
1100 int return_reg;
1101 };
1102
1103 /* If a probing loop sequence starts at PC, simulate it and compute
1104 FRAME_SIZE and PC after its execution. Otherwise, return with PC and
1105 FRAME_SIZE unchanged. */
1106
1107 static void
1108 alpha_heuristic_analyze_probing_loop (struct gdbarch *gdbarch, CORE_ADDR *pc,
1109 int *frame_size)
1110 {
1111 CORE_ADDR cur_pc = *pc;
1112 int cur_frame_size = *frame_size;
1113 int nb_of_iterations, reg_index, reg_probe;
1114 unsigned int insn;
1115
1116 /* The following pattern is recognized as a probing loop:
1117
1118 lda REG_INDEX,NB_OF_ITERATIONS
1119 lda REG_PROBE,<immediate>(sp)
1120
1121 LOOP_START:
1122 stq zero,<immediate>(REG_PROBE)
1123 subq REG_INDEX,0x1,REG_INDEX
1124 lda REG_PROBE,<immediate>(REG_PROBE)
1125 bne REG_INDEX, LOOP_START
1126
1127 lda sp,<immediate>(REG_PROBE)
1128
1129 If anything different is found, the function returns without
1130 changing PC and FRAME_SIZE. Otherwise, PC will point immediately
1131 after this sequence, and FRAME_SIZE will be updated. */
1132
1133 /* lda REG_INDEX,NB_OF_ITERATIONS */
1134
1135 insn = alpha_read_insn (gdbarch, cur_pc);
1136 if (INSN_OPCODE (insn) != lda_opcode)
1137 return;
1138 reg_index = MEM_RA (insn);
1139 nb_of_iterations = MEM_DISP (insn);
1140
1141 /* lda REG_PROBE,<immediate>(sp) */
1142
1143 cur_pc += ALPHA_INSN_SIZE;
1144 insn = alpha_read_insn (gdbarch, cur_pc);
1145 if (INSN_OPCODE (insn) != lda_opcode
1146 || MEM_RB (insn) != ALPHA_SP_REGNUM)
1147 return;
1148 reg_probe = MEM_RA (insn);
1149 cur_frame_size -= MEM_DISP (insn);
1150
1151 /* stq zero,<immediate>(REG_PROBE) */
1152
1153 cur_pc += ALPHA_INSN_SIZE;
1154 insn = alpha_read_insn (gdbarch, cur_pc);
1155 if (INSN_OPCODE (insn) != stq_opcode
1156 || MEM_RA (insn) != 0x1f
1157 || MEM_RB (insn) != reg_probe)
1158 return;
1159
1160 /* subq REG_INDEX,0x1,REG_INDEX */
1161
1162 cur_pc += ALPHA_INSN_SIZE;
1163 insn = alpha_read_insn (gdbarch, cur_pc);
1164 if (INSN_OPCODE (insn) != subq_opcode
1165 || !OPR_HAS_IMMEDIATE (insn)
1166 || OPR_FUNCTION (insn) != subq_function
1167 || OPR_LIT(insn) != 1
1168 || OPR_RA (insn) != reg_index
1169 || OPR_RC (insn) != reg_index)
1170 return;
1171
1172 /* lda REG_PROBE,<immediate>(REG_PROBE) */
1173
1174 cur_pc += ALPHA_INSN_SIZE;
1175 insn = alpha_read_insn (gdbarch, cur_pc);
1176 if (INSN_OPCODE (insn) != lda_opcode
1177 || MEM_RA (insn) != reg_probe
1178 || MEM_RB (insn) != reg_probe)
1179 return;
1180 cur_frame_size -= MEM_DISP (insn) * nb_of_iterations;
1181
1182 /* bne REG_INDEX, LOOP_START */
1183
1184 cur_pc += ALPHA_INSN_SIZE;
1185 insn = alpha_read_insn (gdbarch, cur_pc);
1186 if (INSN_OPCODE (insn) != bne_opcode
1187 || MEM_RA (insn) != reg_index)
1188 return;
1189
1190 /* lda sp,<immediate>(REG_PROBE) */
1191
1192 cur_pc += ALPHA_INSN_SIZE;
1193 insn = alpha_read_insn (gdbarch, cur_pc);
1194 if (INSN_OPCODE (insn) != lda_opcode
1195 || MEM_RA (insn) != ALPHA_SP_REGNUM
1196 || MEM_RB (insn) != reg_probe)
1197 return;
1198 cur_frame_size -= MEM_DISP (insn);
1199
1200 *pc = cur_pc;
1201 *frame_size = cur_frame_size;
1202 }
1203
1204 static struct alpha_heuristic_unwind_cache *
1205 alpha_heuristic_frame_unwind_cache (const frame_info_ptr &this_frame,
1206 void **this_prologue_cache,
1207 CORE_ADDR start_pc)
1208 {
1209 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1210 struct alpha_heuristic_unwind_cache *info;
1211 ULONGEST val;
1212 CORE_ADDR limit_pc, cur_pc;
1213 int frame_reg, frame_size, return_reg, reg;
1214
1215 if (*this_prologue_cache)
1216 return (struct alpha_heuristic_unwind_cache *) *this_prologue_cache;
1217
1218 info = FRAME_OBSTACK_ZALLOC (struct alpha_heuristic_unwind_cache);
1219 *this_prologue_cache = info;
1220 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1221
1222 limit_pc = get_frame_pc (this_frame);
1223 if (start_pc == 0)
1224 start_pc = alpha_heuristic_proc_start (gdbarch, limit_pc);
1225 info->start_pc = start_pc;
1226
1227 frame_reg = ALPHA_SP_REGNUM;
1228 frame_size = 0;
1229 return_reg = -1;
1230
1231 /* If we've identified a likely place to start, do code scanning. */
1232 if (start_pc != 0)
1233 {
1234 /* Limit the forward search to 50 instructions. */
1235 if (start_pc + 200 < limit_pc)
1236 limit_pc = start_pc + 200;
1237
1238 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += ALPHA_INSN_SIZE)
1239 {
1240 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1241
1242 if ((word & 0xffff0000) == 0x23de0000) /* lda $sp,n($sp) */
1243 {
1244 if (word & 0x8000)
1245 {
1246 /* Consider only the first stack allocation instruction
1247 to contain the static size of the frame. */
1248 if (frame_size == 0)
1249 frame_size = (-word) & 0xffff;
1250 }
1251 else
1252 {
1253 /* Exit loop if a positive stack adjustment is found, which
1254 usually means that the stack cleanup code in the function
1255 epilogue is reached. */
1256 break;
1257 }
1258 }
1259 else if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1260 {
1261 reg = (word & 0x03e00000) >> 21;
1262
1263 /* Ignore this instruction if we have already encountered
1264 an instruction saving the same register earlier in the
1265 function code. The current instruction does not tell
1266 us where the original value upon function entry is saved.
1267 All it says is that the function we are scanning reused
1268 that register for some computation of its own, and is now
1269 saving its result. */
1270 if (info->saved_regs[reg].is_addr ())
1271 continue;
1272
1273 if (reg == 31)
1274 continue;
1275
1276 /* Do not compute the address where the register was saved yet,
1277 because we don't know yet if the offset will need to be
1278 relative to $sp or $fp (we can not compute the address
1279 relative to $sp if $sp is updated during the execution of
1280 the current subroutine, for instance when doing some alloca).
1281 So just store the offset for the moment, and compute the
1282 address later when we know whether this frame has a frame
1283 pointer or not. */
1284 /* Hack: temporarily add one, so that the offset is non-zero
1285 and we can tell which registers have save offsets below. */
1286 info->saved_regs[reg].set_addr ((word & 0xffff) + 1);
1287
1288 /* Starting with OSF/1-3.2C, the system libraries are shipped
1289 without local symbols, but they still contain procedure
1290 descriptors without a symbol reference. GDB is currently
1291 unable to find these procedure descriptors and uses
1292 heuristic_proc_desc instead.
1293 As some low level compiler support routines (__div*, __add*)
1294 use a non-standard return address register, we have to
1295 add some heuristics to determine the return address register,
1296 or stepping over these routines will fail.
1297 Usually the return address register is the first register
1298 saved on the stack, but assembler optimization might
1299 rearrange the register saves.
1300 So we recognize only a few registers (t7, t9, ra) within
1301 the procedure prologue as valid return address registers.
1302 If we encounter a return instruction, we extract the
1303 return address register from it.
1304
1305 FIXME: Rewriting GDB to access the procedure descriptors,
1306 e.g. via the minimal symbol table, might obviate this
1307 hack. */
1308 if (return_reg == -1
1309 && cur_pc < (start_pc + 80)
1310 && (reg == ALPHA_T7_REGNUM
1311 || reg == ALPHA_T9_REGNUM
1312 || reg == ALPHA_RA_REGNUM))
1313 return_reg = reg;
1314 }
1315 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1316 return_reg = (word >> 16) & 0x1f;
1317 else if (word == 0x47de040f) /* bis sp,sp,fp */
1318 frame_reg = ALPHA_GCC_FP_REGNUM;
1319 else if (word == 0x47fe040f) /* bis zero,sp,fp */
1320 frame_reg = ALPHA_GCC_FP_REGNUM;
1321
1322 alpha_heuristic_analyze_probing_loop (gdbarch, &cur_pc, &frame_size);
1323 }
1324
1325 /* If we haven't found a valid return address register yet, keep
1326 searching in the procedure prologue. */
1327 if (return_reg == -1)
1328 {
1329 while (cur_pc < (limit_pc + 80) && cur_pc < (start_pc + 80))
1330 {
1331 unsigned int word = alpha_read_insn (gdbarch, cur_pc);
1332
1333 if ((word & 0xfc1f0000) == 0xb41e0000) /* stq reg,n($sp) */
1334 {
1335 reg = (word & 0x03e00000) >> 21;
1336 if (reg == ALPHA_T7_REGNUM
1337 || reg == ALPHA_T9_REGNUM
1338 || reg == ALPHA_RA_REGNUM)
1339 {
1340 return_reg = reg;
1341 break;
1342 }
1343 }
1344 else if ((word & 0xffe0ffff) == 0x6be08001) /* ret zero,reg,1 */
1345 {
1346 return_reg = (word >> 16) & 0x1f;
1347 break;
1348 }
1349
1350 cur_pc += ALPHA_INSN_SIZE;
1351 }
1352 }
1353 }
1354
1355 /* Failing that, do default to the customary RA. */
1356 if (return_reg == -1)
1357 return_reg = ALPHA_RA_REGNUM;
1358 info->return_reg = return_reg;
1359
1360 val = get_frame_register_unsigned (this_frame, frame_reg);
1361 info->vfp = val + frame_size;
1362
1363 /* Convert offsets to absolute addresses. See above about adding
1364 one to the offsets to make all detected offsets non-zero. */
1365 for (reg = 0; reg < ALPHA_NUM_REGS; ++reg)
1366 if (info->saved_regs[reg].is_addr ())
1367 info->saved_regs[reg].set_addr (info->saved_regs[reg].addr ()
1368 + val - 1);
1369
1370 /* The stack pointer of the previous frame is computed by popping
1371 the current stack frame. */
1372 if (!info->saved_regs[ALPHA_SP_REGNUM].is_addr ())
1373 info->saved_regs[ALPHA_SP_REGNUM].set_value (info->vfp);
1374
1375 return info;
1376 }
1377
1378 /* Given a GDB frame, determine the address of the calling function's
1379 frame. This will be used to create a new GDB frame struct. */
1380
1381 static void
1382 alpha_heuristic_frame_this_id (const frame_info_ptr &this_frame,
1383 void **this_prologue_cache,
1384 struct frame_id *this_id)
1385 {
1386 struct alpha_heuristic_unwind_cache *info
1387 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1388
1389 *this_id = frame_id_build (info->vfp, info->start_pc);
1390 }
1391
1392 /* Retrieve the value of REGNUM in FRAME. Don't give up! */
1393
1394 static struct value *
1395 alpha_heuristic_frame_prev_register (const frame_info_ptr &this_frame,
1396 void **this_prologue_cache, int regnum)
1397 {
1398 struct alpha_heuristic_unwind_cache *info
1399 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1400
1401 /* The PC of the previous frame is stored in the link register of
1402 the current frame. Frob regnum so that we pull the value from
1403 the correct place. */
1404 if (regnum == ALPHA_PC_REGNUM)
1405 regnum = info->return_reg;
1406
1407 return trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
1408 }
1409
1410 static const struct frame_unwind_legacy alpha_heuristic_frame_unwind (
1411 "alpha prologue",
1412 NORMAL_FRAME,
1413 FRAME_UNWIND_ARCH,
1414 default_frame_unwind_stop_reason,
1415 alpha_heuristic_frame_this_id,
1416 alpha_heuristic_frame_prev_register,
1417 NULL,
1418 default_frame_sniffer
1419 );
1420
1421 static CORE_ADDR
1422 alpha_heuristic_frame_base_address (const frame_info_ptr &this_frame,
1423 void **this_prologue_cache)
1424 {
1425 struct alpha_heuristic_unwind_cache *info
1426 = alpha_heuristic_frame_unwind_cache (this_frame, this_prologue_cache, 0);
1427
1428 return info->vfp;
1429 }
1430
1431 static const struct frame_base alpha_heuristic_frame_base = {
1432 &alpha_heuristic_frame_unwind,
1433 alpha_heuristic_frame_base_address,
1434 alpha_heuristic_frame_base_address,
1435 alpha_heuristic_frame_base_address
1436 };
1437
1438 /* Just like reinit_frame_cache, but with the right arguments to be
1439 callable as an sfunc. Used by the "set heuristic-fence-post" command. */
1440
1441 static void
1442 reinit_frame_cache_sfunc (const char *args,
1443 int from_tty, struct cmd_list_element *c)
1444 {
1445 reinit_frame_cache ();
1446 }
1447 \f
1448 /* Helper routines for alpha*-nat.c files to move register sets to and
1449 from core files. The UNIQUE pointer is allowed to be NULL, as most
1450 targets don't supply this value in their core files. */
1451
1452 void
1453 alpha_supply_int_regs (struct regcache *regcache, int regno,
1454 const void *r0_r30, const void *pc, const void *unique)
1455 {
1456 const gdb_byte *regs = (const gdb_byte *) r0_r30;
1457 int i;
1458
1459 for (i = 0; i < 31; ++i)
1460 if (regno == i || regno == -1)
1461 regcache->raw_supply (i, regs + i * 8);
1462
1463 if (regno == ALPHA_ZERO_REGNUM || regno == -1)
1464 regcache->raw_supply_zeroed (ALPHA_ZERO_REGNUM);
1465
1466 if (regno == ALPHA_PC_REGNUM || regno == -1)
1467 regcache->raw_supply (ALPHA_PC_REGNUM, pc);
1468
1469 if (regno == ALPHA_UNIQUE_REGNUM || regno == -1)
1470 regcache->raw_supply (ALPHA_UNIQUE_REGNUM, unique);
1471 }
1472
1473 void
1474 alpha_fill_int_regs (const struct regcache *regcache,
1475 int regno, void *r0_r30, void *pc, void *unique)
1476 {
1477 gdb_byte *regs = (gdb_byte *) r0_r30;
1478 int i;
1479
1480 for (i = 0; i < 31; ++i)
1481 if (regno == i || regno == -1)
1482 regcache->raw_collect (i, regs + i * 8);
1483
1484 if (regno == ALPHA_PC_REGNUM || regno == -1)
1485 regcache->raw_collect (ALPHA_PC_REGNUM, pc);
1486
1487 if (unique && (regno == ALPHA_UNIQUE_REGNUM || regno == -1))
1488 regcache->raw_collect (ALPHA_UNIQUE_REGNUM, unique);
1489 }
1490
1491 void
1492 alpha_supply_fp_regs (struct regcache *regcache, int regno,
1493 const void *f0_f30, const void *fpcr)
1494 {
1495 const gdb_byte *regs = (const gdb_byte *) f0_f30;
1496 int i;
1497
1498 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1499 if (regno == i || regno == -1)
1500 regcache->raw_supply (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1501
1502 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1503 regcache->raw_supply (ALPHA_FPCR_REGNUM, fpcr);
1504 }
1505
1506 void
1507 alpha_fill_fp_regs (const struct regcache *regcache,
1508 int regno, void *f0_f30, void *fpcr)
1509 {
1510 gdb_byte *regs = (gdb_byte *) f0_f30;
1511 int i;
1512
1513 for (i = ALPHA_FP0_REGNUM; i < ALPHA_FP0_REGNUM + 31; ++i)
1514 if (regno == i || regno == -1)
1515 regcache->raw_collect (i, regs + (i - ALPHA_FP0_REGNUM) * 8);
1516
1517 if (regno == ALPHA_FPCR_REGNUM || regno == -1)
1518 regcache->raw_collect (ALPHA_FPCR_REGNUM, fpcr);
1519 }
1520
1521 \f
1522
1523 /* Return nonzero if the G_floating register value in REG is equal to
1524 zero for FP control instructions. */
1525
1526 static int
1527 fp_register_zero_p (LONGEST reg)
1528 {
1529 /* Check that all bits except the sign bit are zero. */
1530 const LONGEST zero_mask = ((LONGEST) 1 << 63) ^ -1;
1531
1532 return ((reg & zero_mask) == 0);
1533 }
1534
1535 /* Return the value of the sign bit for the G_floating register
1536 value held in REG. */
1537
1538 static int
1539 fp_register_sign_bit (LONGEST reg)
1540 {
1541 const LONGEST sign_mask = (LONGEST) 1 << 63;
1542
1543 return ((reg & sign_mask) != 0);
1544 }
1545
1546 /* alpha_software_single_step() is called just before we want to resume
1547 the inferior, if we want to single-step it but there is no hardware
1548 or kernel single-step support (NetBSD on Alpha, for example). We find
1549 the target of the coming instruction and breakpoint it. */
1550
1551 static CORE_ADDR
1552 alpha_next_pc (struct regcache *regcache, CORE_ADDR pc)
1553 {
1554 struct gdbarch *gdbarch = regcache->arch ();
1555 unsigned int insn;
1556 unsigned int op;
1557 int regno;
1558 int offset;
1559 LONGEST rav;
1560
1561 insn = alpha_read_insn (gdbarch, pc);
1562
1563 /* Opcode is top 6 bits. */
1564 op = (insn >> 26) & 0x3f;
1565
1566 if (op == 0x1a)
1567 {
1568 /* Jump format: target PC is:
1569 RB & ~3 */
1570 return (regcache_raw_get_unsigned (regcache, (insn >> 16) & 0x1f) & ~3);
1571 }
1572
1573 if ((op & 0x30) == 0x30)
1574 {
1575 /* Branch format: target PC is:
1576 (new PC) + (4 * sext(displacement)) */
1577 if (op == 0x30 /* BR */
1578 || op == 0x34) /* BSR */
1579 {
1580 branch_taken:
1581 offset = (insn & 0x001fffff);
1582 if (offset & 0x00100000)
1583 offset |= 0xffe00000;
1584 offset *= ALPHA_INSN_SIZE;
1585 return (pc + ALPHA_INSN_SIZE + offset);
1586 }
1587
1588 /* Need to determine if branch is taken; read RA. */
1589 regno = (insn >> 21) & 0x1f;
1590 switch (op)
1591 {
1592 case 0x31: /* FBEQ */
1593 case 0x36: /* FBGE */
1594 case 0x37: /* FBGT */
1595 case 0x33: /* FBLE */
1596 case 0x32: /* FBLT */
1597 case 0x35: /* FBNE */
1598 regno += gdbarch_fp0_regnum (gdbarch);
1599 }
1600
1601 rav = regcache_raw_get_signed (regcache, regno);
1602
1603 switch (op)
1604 {
1605 case 0x38: /* BLBC */
1606 if ((rav & 1) == 0)
1607 goto branch_taken;
1608 break;
1609 case 0x3c: /* BLBS */
1610 if (rav & 1)
1611 goto branch_taken;
1612 break;
1613 case 0x39: /* BEQ */
1614 if (rav == 0)
1615 goto branch_taken;
1616 break;
1617 case 0x3d: /* BNE */
1618 if (rav != 0)
1619 goto branch_taken;
1620 break;
1621 case 0x3a: /* BLT */
1622 if (rav < 0)
1623 goto branch_taken;
1624 break;
1625 case 0x3b: /* BLE */
1626 if (rav <= 0)
1627 goto branch_taken;
1628 break;
1629 case 0x3f: /* BGT */
1630 if (rav > 0)
1631 goto branch_taken;
1632 break;
1633 case 0x3e: /* BGE */
1634 if (rav >= 0)
1635 goto branch_taken;
1636 break;
1637
1638 /* Floating point branches. */
1639
1640 case 0x31: /* FBEQ */
1641 if (fp_register_zero_p (rav))
1642 goto branch_taken;
1643 break;
1644 case 0x36: /* FBGE */
1645 if (fp_register_sign_bit (rav) == 0 || fp_register_zero_p (rav))
1646 goto branch_taken;
1647 break;
1648 case 0x37: /* FBGT */
1649 if (fp_register_sign_bit (rav) == 0 && ! fp_register_zero_p (rav))
1650 goto branch_taken;
1651 break;
1652 case 0x33: /* FBLE */
1653 if (fp_register_sign_bit (rav) == 1 || fp_register_zero_p (rav))
1654 goto branch_taken;
1655 break;
1656 case 0x32: /* FBLT */
1657 if (fp_register_sign_bit (rav) == 1 && ! fp_register_zero_p (rav))
1658 goto branch_taken;
1659 break;
1660 case 0x35: /* FBNE */
1661 if (! fp_register_zero_p (rav))
1662 goto branch_taken;
1663 break;
1664 }
1665 }
1666
1667 /* Not a branch or branch not taken; target PC is:
1668 pc + 4 */
1669 return (pc + ALPHA_INSN_SIZE);
1670 }
1671
1672 std::vector<CORE_ADDR>
1673 alpha_software_single_step (struct regcache *regcache)
1674 {
1675 struct gdbarch *gdbarch = regcache->arch ();
1676
1677 CORE_ADDR pc = regcache_read_pc (regcache);
1678
1679 std::vector<CORE_ADDR> next_pcs
1680 = alpha_deal_with_atomic_sequence (gdbarch, pc);
1681 if (!next_pcs.empty ())
1682 return next_pcs;
1683
1684 CORE_ADDR next_pc = alpha_next_pc (regcache, pc);
1685 return {next_pc};
1686 }
1687
1688 \f
1689 /* Initialize the current architecture based on INFO. If possible, reuse an
1690 architecture from ARCHES, which is a list of architectures already created
1691 during this debugging session.
1692
1693 Called e.g. at program startup, when reading a core file, and when reading
1694 a binary file. */
1695
1696 static struct gdbarch *
1697 alpha_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
1698 {
1699 tdesc_arch_data_up tdesc_data;
1700 const struct target_desc *tdesc = info.target_desc;
1701
1702 /* Find a candidate among extant architectures. */
1703 arches = gdbarch_list_lookup_by_info (arches, &info);
1704 if (arches != NULL)
1705 return arches->gdbarch;
1706
1707 if (tdesc == nullptr)
1708 tdesc = tdesc_alpha;
1709
1710 /* Validate target description. */
1711 if (tdesc_has_registers (tdesc))
1712 {
1713 const struct tdesc_feature *feature;
1714 bool valid_p;
1715
1716 feature = tdesc_find_feature (tdesc, "org.gnu.gdb.alpha.core");
1717 if (feature == nullptr)
1718 return nullptr;
1719
1720 tdesc_data = tdesc_data_alloc ();
1721 valid_p = true;
1722 for (int i = 0; i < ALPHA_NUM_REGS; ++i)
1723 valid_p &= tdesc_numbered_register (feature, tdesc_data.get (), i,
1724 alpha_register_names[i]);
1725
1726 if (!valid_p)
1727 return nullptr;
1728 }
1729
1730 gdb_assert (tdesc_data != nullptr);
1731
1732 gdbarch *gdbarch
1733 = gdbarch_alloc (&info, gdbarch_tdep_up (new alpha_gdbarch_tdep));
1734 alpha_gdbarch_tdep *tdep = gdbarch_tdep<alpha_gdbarch_tdep> (gdbarch);
1735
1736 /* Lowest text address. This is used by heuristic_proc_start()
1737 to decide when to stop looking. */
1738 tdep->vm_min_address = (CORE_ADDR) 0x120000000LL;
1739
1740 tdep->dynamic_sigtramp_offset = NULL;
1741 tdep->sigcontext_addr = NULL;
1742 tdep->sc_pc_offset = 2 * 8;
1743 tdep->sc_regs_offset = 4 * 8;
1744 tdep->sc_fpregs_offset = tdep->sc_regs_offset + 32 * 8 + 8;
1745
1746 tdep->jb_pc = -1; /* longjmp support not enabled by default. */
1747
1748 tdep->return_in_memory = alpha_return_in_memory_always;
1749
1750 /* Type sizes */
1751 set_gdbarch_short_bit (gdbarch, 16);
1752 set_gdbarch_int_bit (gdbarch, 32);
1753 set_gdbarch_long_bit (gdbarch, 64);
1754 set_gdbarch_long_long_bit (gdbarch, 64);
1755 set_gdbarch_wchar_bit (gdbarch, 64);
1756 set_gdbarch_wchar_signed (gdbarch, 0);
1757 set_gdbarch_float_bit (gdbarch, 32);
1758 set_gdbarch_double_bit (gdbarch, 64);
1759 set_gdbarch_long_double_bit (gdbarch, 64);
1760 set_gdbarch_ptr_bit (gdbarch, 64);
1761
1762 /* Register info */
1763 set_gdbarch_num_regs (gdbarch, ALPHA_NUM_REGS);
1764 set_gdbarch_sp_regnum (gdbarch, ALPHA_SP_REGNUM);
1765 set_gdbarch_pc_regnum (gdbarch, ALPHA_PC_REGNUM);
1766 set_gdbarch_fp0_regnum (gdbarch, ALPHA_FP0_REGNUM);
1767
1768 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
1769
1770 set_gdbarch_cannot_fetch_register (gdbarch, alpha_cannot_fetch_register);
1771 set_gdbarch_cannot_store_register (gdbarch, alpha_cannot_store_register);
1772
1773 set_gdbarch_convert_register_p (gdbarch, alpha_convert_register_p);
1774 set_gdbarch_register_to_value (gdbarch, alpha_register_to_value);
1775 set_gdbarch_value_to_register (gdbarch, alpha_value_to_register);
1776
1777 set_gdbarch_register_reggroup_p (gdbarch, alpha_register_reggroup_p);
1778
1779 /* Prologue heuristics. */
1780 set_gdbarch_skip_prologue (gdbarch, alpha_skip_prologue);
1781
1782 /* Call info. */
1783
1784 set_gdbarch_return_value (gdbarch, alpha_return_value);
1785
1786 /* Settings for calling functions in the inferior. */
1787 set_gdbarch_push_dummy_call (gdbarch, alpha_push_dummy_call);
1788
1789 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1790 set_gdbarch_skip_trampoline_code (gdbarch, find_solib_trampoline_target);
1791
1792 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1793 alpha_breakpoint::kind_from_pc);
1794 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1795 alpha_breakpoint::bp_from_kind);
1796 set_gdbarch_decr_pc_after_break (gdbarch, ALPHA_INSN_SIZE);
1797 set_gdbarch_cannot_step_breakpoint (gdbarch, 1);
1798
1799 /* Handles single stepping of atomic sequences. */
1800 set_gdbarch_software_single_step (gdbarch, alpha_software_single_step);
1801
1802 /* Hook in ABI-specific overrides, if they have been registered. */
1803 gdbarch_init_osabi (info, gdbarch);
1804
1805 /* Now that we have tuned the configuration, set a few final things
1806 based on what the OS ABI has told us. */
1807
1808 if (tdep->jb_pc >= 0)
1809 set_gdbarch_get_longjmp_target (gdbarch, alpha_get_longjmp_target);
1810
1811 frame_unwind_append_unwinder (gdbarch, &alpha_sigtramp_frame_unwind);
1812 frame_unwind_append_unwinder (gdbarch, &alpha_heuristic_frame_unwind);
1813
1814 frame_base_set_default (gdbarch, &alpha_heuristic_frame_base);
1815
1816 return gdbarch;
1817 }
1818
1819 void
1820 alpha_dwarf2_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
1821 {
1822 dwarf2_append_unwinders (gdbarch);
1823 frame_base_append_sniffer (gdbarch, dwarf2_frame_base_sniffer);
1824 }
1825
1826 INIT_GDB_FILE (alpha_tdep)
1827 {
1828
1829 gdbarch_register (bfd_arch_alpha, alpha_gdbarch_init, NULL);
1830
1831 initialize_tdesc_alpha ();
1832
1833 /* Let the user set the fence post for heuristic_proc_start. */
1834
1835 /* We really would like to have both "0" and "unlimited" work, but
1836 command.c doesn't deal with that. So make it a var_zinteger
1837 because the user can always use "999999" or some such for unlimited. */
1838 /* We need to throw away the frame cache when we set this, since it
1839 might change our ability to get backtraces. */
1840 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
1841 &heuristic_fence_post, _("\
1842 Set the distance searched for the start of a function."), _("\
1843 Show the distance searched for the start of a function."), _("\
1844 If you are debugging a stripped executable, GDB needs to search through the\n\
1845 program for the start of a function. This command sets the distance of the\n\
1846 search. The only need to set it is when debugging a stripped executable."),
1847 reinit_frame_cache_sfunc,
1848 NULL, /* FIXME: i18n: The distance searched for
1849 the start of a function is \"%d\". */
1850 &setlist, &showlist);
1851 }