]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/amd64-tdep.c
35d849bfd3a97f52571121bb20c506206b4968e7
[thirdparty/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2012 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "gdbcmd.h"
33 #include "gdbcore.h"
34 #include "objfiles.h"
35 #include "regcache.h"
36 #include "regset.h"
37 #include "symfile.h"
38 #include "disasm.h"
39 #include "gdb_assert.h"
40 #include "exceptions.h"
41 #include "amd64-tdep.h"
42 #include "i387-tdep.h"
43
44 #include "features/i386/amd64.c"
45 #include "features/i386/amd64-avx.c"
46 #include "features/i386/x32.c"
47 #include "features/i386/x32-avx.c"
48
49 #include "ax.h"
50 #include "ax-gdb.h"
51
52 /* Note that the AMD64 architecture was previously known as x86-64.
53 The latter is (forever) engraved into the canonical system name as
54 returned by config.guess, and used as the name for the AMD64 port
55 of GNU/Linux. The BSD's have renamed their ports to amd64; they
56 don't like to shout. For GDB we prefer the amd64_-prefix over the
57 x86_64_-prefix since it's so much easier to type. */
58
59 /* Register information. */
60
61 static const char *amd64_register_names[] =
62 {
63 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
64
65 /* %r8 is indeed register number 8. */
66 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
67 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
68
69 /* %st0 is register number 24. */
70 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
71 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
72
73 /* %xmm0 is register number 40. */
74 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
75 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
76 "mxcsr",
77 };
78
79 static const char *amd64_ymm_names[] =
80 {
81 "ymm0", "ymm1", "ymm2", "ymm3",
82 "ymm4", "ymm5", "ymm6", "ymm7",
83 "ymm8", "ymm9", "ymm10", "ymm11",
84 "ymm12", "ymm13", "ymm14", "ymm15"
85 };
86
87 static const char *amd64_ymmh_names[] =
88 {
89 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
90 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
91 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
92 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
93 };
94
95 /* The registers used to pass integer arguments during a function call. */
96 static int amd64_dummy_call_integer_regs[] =
97 {
98 AMD64_RDI_REGNUM, /* %rdi */
99 AMD64_RSI_REGNUM, /* %rsi */
100 AMD64_RDX_REGNUM, /* %rdx */
101 AMD64_RCX_REGNUM, /* %rcx */
102 8, /* %r8 */
103 9 /* %r9 */
104 };
105
106 /* DWARF Register Number Mapping as defined in the System V psABI,
107 section 3.6. */
108
109 static int amd64_dwarf_regmap[] =
110 {
111 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
112 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
113 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
114 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
115
116 /* Frame Pointer Register RBP. */
117 AMD64_RBP_REGNUM,
118
119 /* Stack Pointer Register RSP. */
120 AMD64_RSP_REGNUM,
121
122 /* Extended Integer Registers 8 - 15. */
123 8, 9, 10, 11, 12, 13, 14, 15,
124
125 /* Return Address RA. Mapped to RIP. */
126 AMD64_RIP_REGNUM,
127
128 /* SSE Registers 0 - 7. */
129 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
130 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
131 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
132 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
133
134 /* Extended SSE Registers 8 - 15. */
135 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
136 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
137 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
138 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
139
140 /* Floating Point Registers 0-7. */
141 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
142 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
143 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
144 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
145
146 /* Control and Status Flags Register. */
147 AMD64_EFLAGS_REGNUM,
148
149 /* Selector Registers. */
150 AMD64_ES_REGNUM,
151 AMD64_CS_REGNUM,
152 AMD64_SS_REGNUM,
153 AMD64_DS_REGNUM,
154 AMD64_FS_REGNUM,
155 AMD64_GS_REGNUM,
156 -1,
157 -1,
158
159 /* Segment Base Address Registers. */
160 -1,
161 -1,
162 -1,
163 -1,
164
165 /* Special Selector Registers. */
166 -1,
167 -1,
168
169 /* Floating Point Control Registers. */
170 AMD64_MXCSR_REGNUM,
171 AMD64_FCTRL_REGNUM,
172 AMD64_FSTAT_REGNUM
173 };
174
175 static const int amd64_dwarf_regmap_len =
176 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
177
178 /* Convert DWARF register number REG to the appropriate register
179 number used by GDB. */
180
181 static int
182 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
183 {
184 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
185 int ymm0_regnum = tdep->ymm0_regnum;
186 int regnum = -1;
187
188 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
189 regnum = amd64_dwarf_regmap[reg];
190
191 if (regnum == -1)
192 warning (_("Unmapped DWARF Register #%d encountered."), reg);
193 else if (ymm0_regnum >= 0
194 && i386_xmm_regnum_p (gdbarch, regnum))
195 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
196
197 return regnum;
198 }
199
200 /* Map architectural register numbers to gdb register numbers. */
201
202 static const int amd64_arch_regmap[16] =
203 {
204 AMD64_RAX_REGNUM, /* %rax */
205 AMD64_RCX_REGNUM, /* %rcx */
206 AMD64_RDX_REGNUM, /* %rdx */
207 AMD64_RBX_REGNUM, /* %rbx */
208 AMD64_RSP_REGNUM, /* %rsp */
209 AMD64_RBP_REGNUM, /* %rbp */
210 AMD64_RSI_REGNUM, /* %rsi */
211 AMD64_RDI_REGNUM, /* %rdi */
212 AMD64_R8_REGNUM, /* %r8 */
213 AMD64_R9_REGNUM, /* %r9 */
214 AMD64_R10_REGNUM, /* %r10 */
215 AMD64_R11_REGNUM, /* %r11 */
216 AMD64_R12_REGNUM, /* %r12 */
217 AMD64_R13_REGNUM, /* %r13 */
218 AMD64_R14_REGNUM, /* %r14 */
219 AMD64_R15_REGNUM /* %r15 */
220 };
221
222 static const int amd64_arch_regmap_len =
223 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
224
225 /* Convert architectural register number REG to the appropriate register
226 number used by GDB. */
227
228 static int
229 amd64_arch_reg_to_regnum (int reg)
230 {
231 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
232
233 return amd64_arch_regmap[reg];
234 }
235
236 /* Register names for byte pseudo-registers. */
237
238 static const char *amd64_byte_names[] =
239 {
240 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
241 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
242 "ah", "bh", "ch", "dh"
243 };
244
245 /* Number of lower byte registers. */
246 #define AMD64_NUM_LOWER_BYTE_REGS 16
247
248 /* Register names for word pseudo-registers. */
249
250 static const char *amd64_word_names[] =
251 {
252 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
253 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
254 };
255
256 /* Register names for dword pseudo-registers. */
257
258 static const char *amd64_dword_names[] =
259 {
260 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
261 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d"
262 };
263
264 /* Return the name of register REGNUM. */
265
266 static const char *
267 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
268 {
269 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
270 if (i386_byte_regnum_p (gdbarch, regnum))
271 return amd64_byte_names[regnum - tdep->al_regnum];
272 else if (i386_ymm_regnum_p (gdbarch, regnum))
273 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
274 else if (i386_word_regnum_p (gdbarch, regnum))
275 return amd64_word_names[regnum - tdep->ax_regnum];
276 else if (i386_dword_regnum_p (gdbarch, regnum))
277 return amd64_dword_names[regnum - tdep->eax_regnum];
278 else
279 return i386_pseudo_register_name (gdbarch, regnum);
280 }
281
282 static struct value *
283 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
284 struct regcache *regcache,
285 int regnum)
286 {
287 gdb_byte raw_buf[MAX_REGISTER_SIZE];
288 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
289 enum register_status status;
290 struct value *result_value;
291 gdb_byte *buf;
292
293 result_value = allocate_value (register_type (gdbarch, regnum));
294 VALUE_LVAL (result_value) = lval_register;
295 VALUE_REGNUM (result_value) = regnum;
296 buf = value_contents_raw (result_value);
297
298 if (i386_byte_regnum_p (gdbarch, regnum))
299 {
300 int gpnum = regnum - tdep->al_regnum;
301
302 /* Extract (always little endian). */
303 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
304 {
305 /* Special handling for AH, BH, CH, DH. */
306 status = regcache_raw_read (regcache,
307 gpnum - AMD64_NUM_LOWER_BYTE_REGS,
308 raw_buf);
309 if (status == REG_VALID)
310 memcpy (buf, raw_buf + 1, 1);
311 else
312 mark_value_bytes_unavailable (result_value, 0,
313 TYPE_LENGTH (value_type (result_value)));
314 }
315 else
316 {
317 status = regcache_raw_read (regcache, gpnum, raw_buf);
318 if (status == REG_VALID)
319 memcpy (buf, raw_buf, 1);
320 else
321 mark_value_bytes_unavailable (result_value, 0,
322 TYPE_LENGTH (value_type (result_value)));
323 }
324 }
325 else if (i386_dword_regnum_p (gdbarch, regnum))
326 {
327 int gpnum = regnum - tdep->eax_regnum;
328 /* Extract (always little endian). */
329 status = regcache_raw_read (regcache, gpnum, raw_buf);
330 if (status == REG_VALID)
331 memcpy (buf, raw_buf, 4);
332 else
333 mark_value_bytes_unavailable (result_value, 0,
334 TYPE_LENGTH (value_type (result_value)));
335 }
336 else
337 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
338 result_value);
339
340 return result_value;
341 }
342
343 static void
344 amd64_pseudo_register_write (struct gdbarch *gdbarch,
345 struct regcache *regcache,
346 int regnum, const gdb_byte *buf)
347 {
348 gdb_byte raw_buf[MAX_REGISTER_SIZE];
349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
350
351 if (i386_byte_regnum_p (gdbarch, regnum))
352 {
353 int gpnum = regnum - tdep->al_regnum;
354
355 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
356 {
357 /* Read ... AH, BH, CH, DH. */
358 regcache_raw_read (regcache,
359 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
360 /* ... Modify ... (always little endian). */
361 memcpy (raw_buf + 1, buf, 1);
362 /* ... Write. */
363 regcache_raw_write (regcache,
364 gpnum - AMD64_NUM_LOWER_BYTE_REGS, raw_buf);
365 }
366 else
367 {
368 /* Read ... */
369 regcache_raw_read (regcache, gpnum, raw_buf);
370 /* ... Modify ... (always little endian). */
371 memcpy (raw_buf, buf, 1);
372 /* ... Write. */
373 regcache_raw_write (regcache, gpnum, raw_buf);
374 }
375 }
376 else if (i386_dword_regnum_p (gdbarch, regnum))
377 {
378 int gpnum = regnum - tdep->eax_regnum;
379
380 /* Read ... */
381 regcache_raw_read (regcache, gpnum, raw_buf);
382 /* ... Modify ... (always little endian). */
383 memcpy (raw_buf, buf, 4);
384 /* ... Write. */
385 regcache_raw_write (regcache, gpnum, raw_buf);
386 }
387 else
388 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
389 }
390
391 \f
392
393 /* Return the union class of CLASS1 and CLASS2. See the psABI for
394 details. */
395
396 static enum amd64_reg_class
397 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
398 {
399 /* Rule (a): If both classes are equal, this is the resulting class. */
400 if (class1 == class2)
401 return class1;
402
403 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
404 is the other class. */
405 if (class1 == AMD64_NO_CLASS)
406 return class2;
407 if (class2 == AMD64_NO_CLASS)
408 return class1;
409
410 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
411 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
412 return AMD64_MEMORY;
413
414 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
415 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
416 return AMD64_INTEGER;
417
418 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
419 MEMORY is used as class. */
420 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
421 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
422 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
423 return AMD64_MEMORY;
424
425 /* Rule (f): Otherwise class SSE is used. */
426 return AMD64_SSE;
427 }
428
429 /* Return non-zero if TYPE is a non-POD structure or union type. */
430
431 static int
432 amd64_non_pod_p (struct type *type)
433 {
434 /* ??? A class with a base class certainly isn't POD, but does this
435 catch all non-POD structure types? */
436 if (TYPE_CODE (type) == TYPE_CODE_STRUCT && TYPE_N_BASECLASSES (type) > 0)
437 return 1;
438
439 return 0;
440 }
441
442 /* Classify TYPE according to the rules for aggregate (structures and
443 arrays) and union types, and store the result in CLASS. */
444
445 static void
446 amd64_classify_aggregate (struct type *type, enum amd64_reg_class class[2])
447 {
448 int len = TYPE_LENGTH (type);
449
450 /* 1. If the size of an object is larger than two eightbytes, or in
451 C++, is a non-POD structure or union type, or contains
452 unaligned fields, it has class memory. */
453 if (len > 16 || amd64_non_pod_p (type))
454 {
455 class[0] = class[1] = AMD64_MEMORY;
456 return;
457 }
458
459 /* 2. Both eightbytes get initialized to class NO_CLASS. */
460 class[0] = class[1] = AMD64_NO_CLASS;
461
462 /* 3. Each field of an object is classified recursively so that
463 always two fields are considered. The resulting class is
464 calculated according to the classes of the fields in the
465 eightbyte: */
466
467 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
468 {
469 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
470
471 /* All fields in an array have the same type. */
472 amd64_classify (subtype, class);
473 if (len > 8 && class[1] == AMD64_NO_CLASS)
474 class[1] = class[0];
475 }
476 else
477 {
478 int i;
479
480 /* Structure or union. */
481 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
482 || TYPE_CODE (type) == TYPE_CODE_UNION);
483
484 for (i = 0; i < TYPE_NFIELDS (type); i++)
485 {
486 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
487 int pos = TYPE_FIELD_BITPOS (type, i) / 64;
488 enum amd64_reg_class subclass[2];
489 int bitsize = TYPE_FIELD_BITSIZE (type, i);
490 int endpos;
491
492 if (bitsize == 0)
493 bitsize = TYPE_LENGTH (subtype) * 8;
494 endpos = (TYPE_FIELD_BITPOS (type, i) + bitsize - 1) / 64;
495
496 /* Ignore static fields. */
497 if (field_is_static (&TYPE_FIELD (type, i)))
498 continue;
499
500 gdb_assert (pos == 0 || pos == 1);
501
502 amd64_classify (subtype, subclass);
503 class[pos] = amd64_merge_classes (class[pos], subclass[0]);
504 if (bitsize <= 64 && pos == 0 && endpos == 1)
505 /* This is a bit of an odd case: We have a field that would
506 normally fit in one of the two eightbytes, except that
507 it is placed in a way that this field straddles them.
508 This has been seen with a structure containing an array.
509
510 The ABI is a bit unclear in this case, but we assume that
511 this field's class (stored in subclass[0]) must also be merged
512 into class[1]. In other words, our field has a piece stored
513 in the second eight-byte, and thus its class applies to
514 the second eight-byte as well.
515
516 In the case where the field length exceeds 8 bytes,
517 it should not be necessary to merge the field class
518 into class[1]. As LEN > 8, subclass[1] is necessarily
519 different from AMD64_NO_CLASS. If subclass[1] is equal
520 to subclass[0], then the normal class[1]/subclass[1]
521 merging will take care of everything. For subclass[1]
522 to be different from subclass[0], I can only see the case
523 where we have a SSE/SSEUP or X87/X87UP pair, which both
524 use up all 16 bytes of the aggregate, and are already
525 handled just fine (because each portion sits on its own
526 8-byte). */
527 class[1] = amd64_merge_classes (class[1], subclass[0]);
528 if (pos == 0)
529 class[1] = amd64_merge_classes (class[1], subclass[1]);
530 }
531 }
532
533 /* 4. Then a post merger cleanup is done: */
534
535 /* Rule (a): If one of the classes is MEMORY, the whole argument is
536 passed in memory. */
537 if (class[0] == AMD64_MEMORY || class[1] == AMD64_MEMORY)
538 class[0] = class[1] = AMD64_MEMORY;
539
540 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
541 SSE. */
542 if (class[0] == AMD64_SSEUP)
543 class[0] = AMD64_SSE;
544 if (class[1] == AMD64_SSEUP && class[0] != AMD64_SSE)
545 class[1] = AMD64_SSE;
546 }
547
548 /* Classify TYPE, and store the result in CLASS. */
549
550 void
551 amd64_classify (struct type *type, enum amd64_reg_class class[2])
552 {
553 enum type_code code = TYPE_CODE (type);
554 int len = TYPE_LENGTH (type);
555
556 class[0] = class[1] = AMD64_NO_CLASS;
557
558 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
559 long, long long, and pointers are in the INTEGER class. Similarly,
560 range types, used by languages such as Ada, are also in the INTEGER
561 class. */
562 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
563 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
564 || code == TYPE_CODE_CHAR
565 || code == TYPE_CODE_PTR || code == TYPE_CODE_REF)
566 && (len == 1 || len == 2 || len == 4 || len == 8))
567 class[0] = AMD64_INTEGER;
568
569 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
570 are in class SSE. */
571 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
572 && (len == 4 || len == 8))
573 /* FIXME: __m64 . */
574 class[0] = AMD64_SSE;
575
576 /* Arguments of types __float128, _Decimal128 and __m128 are split into
577 two halves. The least significant ones belong to class SSE, the most
578 significant one to class SSEUP. */
579 else if (code == TYPE_CODE_DECFLOAT && len == 16)
580 /* FIXME: __float128, __m128. */
581 class[0] = AMD64_SSE, class[1] = AMD64_SSEUP;
582
583 /* The 64-bit mantissa of arguments of type long double belongs to
584 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
585 class X87UP. */
586 else if (code == TYPE_CODE_FLT && len == 16)
587 /* Class X87 and X87UP. */
588 class[0] = AMD64_X87, class[1] = AMD64_X87UP;
589
590 /* Aggregates. */
591 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
592 || code == TYPE_CODE_UNION)
593 amd64_classify_aggregate (type, class);
594 }
595
596 static enum return_value_convention
597 amd64_return_value (struct gdbarch *gdbarch, struct type *func_type,
598 struct type *type, struct regcache *regcache,
599 gdb_byte *readbuf, const gdb_byte *writebuf)
600 {
601 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
602 enum amd64_reg_class class[2];
603 int len = TYPE_LENGTH (type);
604 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
605 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
606 int integer_reg = 0;
607 int sse_reg = 0;
608 int i;
609
610 gdb_assert (!(readbuf && writebuf));
611 gdb_assert (tdep->classify);
612
613 /* 1. Classify the return type with the classification algorithm. */
614 tdep->classify (type, class);
615
616 /* 2. If the type has class MEMORY, then the caller provides space
617 for the return value and passes the address of this storage in
618 %rdi as if it were the first argument to the function. In effect,
619 this address becomes a hidden first argument.
620
621 On return %rax will contain the address that has been passed in
622 by the caller in %rdi. */
623 if (class[0] == AMD64_MEMORY)
624 {
625 /* As indicated by the comment above, the ABI guarantees that we
626 can always find the return value just after the function has
627 returned. */
628
629 if (readbuf)
630 {
631 ULONGEST addr;
632
633 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
634 read_memory (addr, readbuf, TYPE_LENGTH (type));
635 }
636
637 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
638 }
639
640 gdb_assert (class[1] != AMD64_MEMORY);
641 gdb_assert (len <= 16);
642
643 for (i = 0; len > 0; i++, len -= 8)
644 {
645 int regnum = -1;
646 int offset = 0;
647
648 switch (class[i])
649 {
650 case AMD64_INTEGER:
651 /* 3. If the class is INTEGER, the next available register
652 of the sequence %rax, %rdx is used. */
653 regnum = integer_regnum[integer_reg++];
654 break;
655
656 case AMD64_SSE:
657 /* 4. If the class is SSE, the next available SSE register
658 of the sequence %xmm0, %xmm1 is used. */
659 regnum = sse_regnum[sse_reg++];
660 break;
661
662 case AMD64_SSEUP:
663 /* 5. If the class is SSEUP, the eightbyte is passed in the
664 upper half of the last used SSE register. */
665 gdb_assert (sse_reg > 0);
666 regnum = sse_regnum[sse_reg - 1];
667 offset = 8;
668 break;
669
670 case AMD64_X87:
671 /* 6. If the class is X87, the value is returned on the X87
672 stack in %st0 as 80-bit x87 number. */
673 regnum = AMD64_ST0_REGNUM;
674 if (writebuf)
675 i387_return_value (gdbarch, regcache);
676 break;
677
678 case AMD64_X87UP:
679 /* 7. If the class is X87UP, the value is returned together
680 with the previous X87 value in %st0. */
681 gdb_assert (i > 0 && class[0] == AMD64_X87);
682 regnum = AMD64_ST0_REGNUM;
683 offset = 8;
684 len = 2;
685 break;
686
687 case AMD64_NO_CLASS:
688 continue;
689
690 default:
691 gdb_assert (!"Unexpected register class.");
692 }
693
694 gdb_assert (regnum != -1);
695
696 if (readbuf)
697 regcache_raw_read_part (regcache, regnum, offset, min (len, 8),
698 readbuf + i * 8);
699 if (writebuf)
700 regcache_raw_write_part (regcache, regnum, offset, min (len, 8),
701 writebuf + i * 8);
702 }
703
704 return RETURN_VALUE_REGISTER_CONVENTION;
705 }
706 \f
707
708 static CORE_ADDR
709 amd64_push_arguments (struct regcache *regcache, int nargs,
710 struct value **args, CORE_ADDR sp, int struct_return)
711 {
712 struct gdbarch *gdbarch = get_regcache_arch (regcache);
713 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
714 int *integer_regs = tdep->call_dummy_integer_regs;
715 int num_integer_regs = tdep->call_dummy_num_integer_regs;
716
717 static int sse_regnum[] =
718 {
719 /* %xmm0 ... %xmm7 */
720 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
721 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
722 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
723 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
724 };
725 struct value **stack_args = alloca (nargs * sizeof (struct value *));
726 /* An array that mirrors the stack_args array. For all arguments
727 that are passed by MEMORY, if that argument's address also needs
728 to be stored in a register, the ARG_ADDR_REGNO array will contain
729 that register number (or a negative value otherwise). */
730 int *arg_addr_regno = alloca (nargs * sizeof (int));
731 int num_stack_args = 0;
732 int num_elements = 0;
733 int element = 0;
734 int integer_reg = 0;
735 int sse_reg = 0;
736 int i;
737
738 gdb_assert (tdep->classify);
739
740 /* Reserve a register for the "hidden" argument. */
741 if (struct_return)
742 integer_reg++;
743
744 for (i = 0; i < nargs; i++)
745 {
746 struct type *type = value_type (args[i]);
747 int len = TYPE_LENGTH (type);
748 enum amd64_reg_class class[2];
749 int needed_integer_regs = 0;
750 int needed_sse_regs = 0;
751 int j;
752
753 /* Classify argument. */
754 tdep->classify (type, class);
755
756 /* Calculate the number of integer and SSE registers needed for
757 this argument. */
758 for (j = 0; j < 2; j++)
759 {
760 if (class[j] == AMD64_INTEGER)
761 needed_integer_regs++;
762 else if (class[j] == AMD64_SSE)
763 needed_sse_regs++;
764 }
765
766 /* Check whether enough registers are available, and if the
767 argument should be passed in registers at all. */
768 if (integer_reg + needed_integer_regs > num_integer_regs
769 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
770 || (needed_integer_regs == 0 && needed_sse_regs == 0))
771 {
772 /* The argument will be passed on the stack. */
773 num_elements += ((len + 7) / 8);
774 stack_args[num_stack_args] = args[i];
775 /* If this is an AMD64_MEMORY argument whose address must also
776 be passed in one of the integer registers, reserve that
777 register and associate this value to that register so that
778 we can store the argument address as soon as we know it. */
779 if (class[0] == AMD64_MEMORY
780 && tdep->memory_args_by_pointer
781 && integer_reg < tdep->call_dummy_num_integer_regs)
782 arg_addr_regno[num_stack_args] =
783 tdep->call_dummy_integer_regs[integer_reg++];
784 else
785 arg_addr_regno[num_stack_args] = -1;
786 num_stack_args++;
787 }
788 else
789 {
790 /* The argument will be passed in registers. */
791 const gdb_byte *valbuf = value_contents (args[i]);
792 gdb_byte buf[8];
793
794 gdb_assert (len <= 16);
795
796 for (j = 0; len > 0; j++, len -= 8)
797 {
798 int regnum = -1;
799 int offset = 0;
800
801 switch (class[j])
802 {
803 case AMD64_INTEGER:
804 regnum = integer_regs[integer_reg++];
805 break;
806
807 case AMD64_SSE:
808 regnum = sse_regnum[sse_reg++];
809 break;
810
811 case AMD64_SSEUP:
812 gdb_assert (sse_reg > 0);
813 regnum = sse_regnum[sse_reg - 1];
814 offset = 8;
815 break;
816
817 default:
818 gdb_assert (!"Unexpected register class.");
819 }
820
821 gdb_assert (regnum != -1);
822 memset (buf, 0, sizeof buf);
823 memcpy (buf, valbuf + j * 8, min (len, 8));
824 regcache_raw_write_part (regcache, regnum, offset, 8, buf);
825 }
826 }
827 }
828
829 /* Allocate space for the arguments on the stack. */
830 sp -= num_elements * 8;
831
832 /* The psABI says that "The end of the input argument area shall be
833 aligned on a 16 byte boundary." */
834 sp &= ~0xf;
835
836 /* Write out the arguments to the stack. */
837 for (i = 0; i < num_stack_args; i++)
838 {
839 struct type *type = value_type (stack_args[i]);
840 const gdb_byte *valbuf = value_contents (stack_args[i]);
841 int len = TYPE_LENGTH (type);
842 CORE_ADDR arg_addr = sp + element * 8;
843
844 write_memory (arg_addr, valbuf, len);
845 if (arg_addr_regno[i] >= 0)
846 {
847 /* We also need to store the address of that argument in
848 the given register. */
849 gdb_byte buf[8];
850 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
851
852 store_unsigned_integer (buf, 8, byte_order, arg_addr);
853 regcache_cooked_write (regcache, arg_addr_regno[i], buf);
854 }
855 element += ((len + 7) / 8);
856 }
857
858 /* The psABI says that "For calls that may call functions that use
859 varargs or stdargs (prototype-less calls or calls to functions
860 containing ellipsis (...) in the declaration) %al is used as
861 hidden argument to specify the number of SSE registers used. */
862 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
863 return sp;
864 }
865
866 static CORE_ADDR
867 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
868 struct regcache *regcache, CORE_ADDR bp_addr,
869 int nargs, struct value **args, CORE_ADDR sp,
870 int struct_return, CORE_ADDR struct_addr)
871 {
872 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
873 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
874 gdb_byte buf[8];
875
876 /* Pass arguments. */
877 sp = amd64_push_arguments (regcache, nargs, args, sp, struct_return);
878
879 /* Pass "hidden" argument". */
880 if (struct_return)
881 {
882 /* The "hidden" argument is passed throught the first argument
883 register. */
884 const int arg_regnum = tdep->call_dummy_integer_regs[0];
885
886 store_unsigned_integer (buf, 8, byte_order, struct_addr);
887 regcache_cooked_write (regcache, arg_regnum, buf);
888 }
889
890 /* Reserve some memory on the stack for the integer-parameter registers,
891 if required by the ABI. */
892 if (tdep->integer_param_regs_saved_in_caller_frame)
893 sp -= tdep->call_dummy_num_integer_regs * 8;
894
895 /* Store return address. */
896 sp -= 8;
897 store_unsigned_integer (buf, 8, byte_order, bp_addr);
898 write_memory (sp, buf, 8);
899
900 /* Finally, update the stack pointer... */
901 store_unsigned_integer (buf, 8, byte_order, sp);
902 regcache_cooked_write (regcache, AMD64_RSP_REGNUM, buf);
903
904 /* ...and fake a frame pointer. */
905 regcache_cooked_write (regcache, AMD64_RBP_REGNUM, buf);
906
907 return sp + 16;
908 }
909 \f
910 /* Displaced instruction handling. */
911
912 /* A partially decoded instruction.
913 This contains enough details for displaced stepping purposes. */
914
915 struct amd64_insn
916 {
917 /* The number of opcode bytes. */
918 int opcode_len;
919 /* The offset of the rex prefix or -1 if not present. */
920 int rex_offset;
921 /* The offset to the first opcode byte. */
922 int opcode_offset;
923 /* The offset to the modrm byte or -1 if not present. */
924 int modrm_offset;
925
926 /* The raw instruction. */
927 gdb_byte *raw_insn;
928 };
929
930 struct displaced_step_closure
931 {
932 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
933 int tmp_used;
934 int tmp_regno;
935 ULONGEST tmp_save;
936
937 /* Details of the instruction. */
938 struct amd64_insn insn_details;
939
940 /* Amount of space allocated to insn_buf. */
941 int max_len;
942
943 /* The possibly modified insn.
944 This is a variable-length field. */
945 gdb_byte insn_buf[1];
946 };
947
948 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
949 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
950 at which point delete these in favor of libopcodes' versions). */
951
952 static const unsigned char onebyte_has_modrm[256] = {
953 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
954 /* ------------------------------- */
955 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
956 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
957 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
958 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
959 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
960 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
961 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
962 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
963 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
964 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
965 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
966 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
967 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
968 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
969 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
970 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
971 /* ------------------------------- */
972 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
973 };
974
975 static const unsigned char twobyte_has_modrm[256] = {
976 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
977 /* ------------------------------- */
978 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
979 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
980 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
981 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
982 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
983 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
984 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
985 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
986 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
987 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
988 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
989 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
990 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
991 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
992 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
993 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
994 /* ------------------------------- */
995 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
996 };
997
998 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
999
1000 static int
1001 rex_prefix_p (gdb_byte pfx)
1002 {
1003 return REX_PREFIX_P (pfx);
1004 }
1005
1006 /* Skip the legacy instruction prefixes in INSN.
1007 We assume INSN is properly sentineled so we don't have to worry
1008 about falling off the end of the buffer. */
1009
1010 static gdb_byte *
1011 amd64_skip_prefixes (gdb_byte *insn)
1012 {
1013 while (1)
1014 {
1015 switch (*insn)
1016 {
1017 case DATA_PREFIX_OPCODE:
1018 case ADDR_PREFIX_OPCODE:
1019 case CS_PREFIX_OPCODE:
1020 case DS_PREFIX_OPCODE:
1021 case ES_PREFIX_OPCODE:
1022 case FS_PREFIX_OPCODE:
1023 case GS_PREFIX_OPCODE:
1024 case SS_PREFIX_OPCODE:
1025 case LOCK_PREFIX_OPCODE:
1026 case REPE_PREFIX_OPCODE:
1027 case REPNE_PREFIX_OPCODE:
1028 ++insn;
1029 continue;
1030 default:
1031 break;
1032 }
1033 break;
1034 }
1035
1036 return insn;
1037 }
1038
1039 /* Return an integer register (other than RSP) that is unused as an input
1040 operand in INSN.
1041 In order to not require adding a rex prefix if the insn doesn't already
1042 have one, the result is restricted to RAX ... RDI, sans RSP.
1043 The register numbering of the result follows architecture ordering,
1044 e.g. RDI = 7. */
1045
1046 static int
1047 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1048 {
1049 /* 1 bit for each reg */
1050 int used_regs_mask = 0;
1051
1052 /* There can be at most 3 int regs used as inputs in an insn, and we have
1053 7 to choose from (RAX ... RDI, sans RSP).
1054 This allows us to take a conservative approach and keep things simple.
1055 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1056 that implicitly specify RAX. */
1057
1058 /* Avoid RAX. */
1059 used_regs_mask |= 1 << EAX_REG_NUM;
1060 /* Similarily avoid RDX, implicit operand in divides. */
1061 used_regs_mask |= 1 << EDX_REG_NUM;
1062 /* Avoid RSP. */
1063 used_regs_mask |= 1 << ESP_REG_NUM;
1064
1065 /* If the opcode is one byte long and there's no ModRM byte,
1066 assume the opcode specifies a register. */
1067 if (details->opcode_len == 1 && details->modrm_offset == -1)
1068 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1069
1070 /* Mark used regs in the modrm/sib bytes. */
1071 if (details->modrm_offset != -1)
1072 {
1073 int modrm = details->raw_insn[details->modrm_offset];
1074 int mod = MODRM_MOD_FIELD (modrm);
1075 int reg = MODRM_REG_FIELD (modrm);
1076 int rm = MODRM_RM_FIELD (modrm);
1077 int have_sib = mod != 3 && rm == 4;
1078
1079 /* Assume the reg field of the modrm byte specifies a register. */
1080 used_regs_mask |= 1 << reg;
1081
1082 if (have_sib)
1083 {
1084 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1085 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1086 used_regs_mask |= 1 << base;
1087 used_regs_mask |= 1 << idx;
1088 }
1089 else
1090 {
1091 used_regs_mask |= 1 << rm;
1092 }
1093 }
1094
1095 gdb_assert (used_regs_mask < 256);
1096 gdb_assert (used_regs_mask != 255);
1097
1098 /* Finally, find a free reg. */
1099 {
1100 int i;
1101
1102 for (i = 0; i < 8; ++i)
1103 {
1104 if (! (used_regs_mask & (1 << i)))
1105 return i;
1106 }
1107
1108 /* We shouldn't get here. */
1109 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1110 }
1111 }
1112
1113 /* Extract the details of INSN that we need. */
1114
1115 static void
1116 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1117 {
1118 gdb_byte *start = insn;
1119 int need_modrm;
1120
1121 details->raw_insn = insn;
1122
1123 details->opcode_len = -1;
1124 details->rex_offset = -1;
1125 details->opcode_offset = -1;
1126 details->modrm_offset = -1;
1127
1128 /* Skip legacy instruction prefixes. */
1129 insn = amd64_skip_prefixes (insn);
1130
1131 /* Skip REX instruction prefix. */
1132 if (rex_prefix_p (*insn))
1133 {
1134 details->rex_offset = insn - start;
1135 ++insn;
1136 }
1137
1138 details->opcode_offset = insn - start;
1139
1140 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1141 {
1142 /* Two or three-byte opcode. */
1143 ++insn;
1144 need_modrm = twobyte_has_modrm[*insn];
1145
1146 /* Check for three-byte opcode. */
1147 switch (*insn)
1148 {
1149 case 0x24:
1150 case 0x25:
1151 case 0x38:
1152 case 0x3a:
1153 case 0x7a:
1154 case 0x7b:
1155 ++insn;
1156 details->opcode_len = 3;
1157 break;
1158 default:
1159 details->opcode_len = 2;
1160 break;
1161 }
1162 }
1163 else
1164 {
1165 /* One-byte opcode. */
1166 need_modrm = onebyte_has_modrm[*insn];
1167 details->opcode_len = 1;
1168 }
1169
1170 if (need_modrm)
1171 {
1172 ++insn;
1173 details->modrm_offset = insn - start;
1174 }
1175 }
1176
1177 /* Update %rip-relative addressing in INSN.
1178
1179 %rip-relative addressing only uses a 32-bit displacement.
1180 32 bits is not enough to be guaranteed to cover the distance between where
1181 the real instruction is and where its copy is.
1182 Convert the insn to use base+disp addressing.
1183 We set base = pc + insn_length so we can leave disp unchanged. */
1184
1185 static void
1186 fixup_riprel (struct gdbarch *gdbarch, struct displaced_step_closure *dsc,
1187 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1188 {
1189 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1190 const struct amd64_insn *insn_details = &dsc->insn_details;
1191 int modrm_offset = insn_details->modrm_offset;
1192 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1193 CORE_ADDR rip_base;
1194 int32_t disp;
1195 int insn_length;
1196 int arch_tmp_regno, tmp_regno;
1197 ULONGEST orig_value;
1198
1199 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1200 ++insn;
1201
1202 /* Compute the rip-relative address. */
1203 disp = extract_signed_integer (insn, sizeof (int32_t), byte_order);
1204 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf,
1205 dsc->max_len, from);
1206 rip_base = from + insn_length;
1207
1208 /* We need a register to hold the address.
1209 Pick one not used in the insn.
1210 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1211 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1212 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1213
1214 /* REX.B should be unset as we were using rip-relative addressing,
1215 but ensure it's unset anyway, tmp_regno is not r8-r15. */
1216 if (insn_details->rex_offset != -1)
1217 dsc->insn_buf[insn_details->rex_offset] &= ~REX_B;
1218
1219 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1220 dsc->tmp_regno = tmp_regno;
1221 dsc->tmp_save = orig_value;
1222 dsc->tmp_used = 1;
1223
1224 /* Convert the ModRM field to be base+disp. */
1225 dsc->insn_buf[modrm_offset] &= ~0xc7;
1226 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1227
1228 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1229
1230 if (debug_displaced)
1231 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1232 "displaced: using temp reg %d, old value %s, new value %s\n",
1233 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1234 paddress (gdbarch, rip_base));
1235 }
1236
1237 static void
1238 fixup_displaced_copy (struct gdbarch *gdbarch,
1239 struct displaced_step_closure *dsc,
1240 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1241 {
1242 const struct amd64_insn *details = &dsc->insn_details;
1243
1244 if (details->modrm_offset != -1)
1245 {
1246 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1247
1248 if ((modrm & 0xc7) == 0x05)
1249 {
1250 /* The insn uses rip-relative addressing.
1251 Deal with it. */
1252 fixup_riprel (gdbarch, dsc, from, to, regs);
1253 }
1254 }
1255 }
1256
1257 struct displaced_step_closure *
1258 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1259 CORE_ADDR from, CORE_ADDR to,
1260 struct regcache *regs)
1261 {
1262 int len = gdbarch_max_insn_length (gdbarch);
1263 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1264 continually watch for running off the end of the buffer. */
1265 int fixup_sentinel_space = len;
1266 struct displaced_step_closure *dsc =
1267 xmalloc (sizeof (*dsc) + len + fixup_sentinel_space);
1268 gdb_byte *buf = &dsc->insn_buf[0];
1269 struct amd64_insn *details = &dsc->insn_details;
1270
1271 dsc->tmp_used = 0;
1272 dsc->max_len = len + fixup_sentinel_space;
1273
1274 read_memory (from, buf, len);
1275
1276 /* Set up the sentinel space so we don't have to worry about running
1277 off the end of the buffer. An excessive number of leading prefixes
1278 could otherwise cause this. */
1279 memset (buf + len, 0, fixup_sentinel_space);
1280
1281 amd64_get_insn_details (buf, details);
1282
1283 /* GDB may get control back after the insn after the syscall.
1284 Presumably this is a kernel bug.
1285 If this is a syscall, make sure there's a nop afterwards. */
1286 {
1287 int syscall_length;
1288
1289 if (amd64_syscall_p (details, &syscall_length))
1290 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1291 }
1292
1293 /* Modify the insn to cope with the address where it will be executed from.
1294 In particular, handle any rip-relative addressing. */
1295 fixup_displaced_copy (gdbarch, dsc, from, to, regs);
1296
1297 write_memory (to, buf, len);
1298
1299 if (debug_displaced)
1300 {
1301 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1302 paddress (gdbarch, from), paddress (gdbarch, to));
1303 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1304 }
1305
1306 return dsc;
1307 }
1308
1309 static int
1310 amd64_absolute_jmp_p (const struct amd64_insn *details)
1311 {
1312 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1313
1314 if (insn[0] == 0xff)
1315 {
1316 /* jump near, absolute indirect (/4) */
1317 if ((insn[1] & 0x38) == 0x20)
1318 return 1;
1319
1320 /* jump far, absolute indirect (/5) */
1321 if ((insn[1] & 0x38) == 0x28)
1322 return 1;
1323 }
1324
1325 return 0;
1326 }
1327
1328 static int
1329 amd64_absolute_call_p (const struct amd64_insn *details)
1330 {
1331 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1332
1333 if (insn[0] == 0xff)
1334 {
1335 /* Call near, absolute indirect (/2) */
1336 if ((insn[1] & 0x38) == 0x10)
1337 return 1;
1338
1339 /* Call far, absolute indirect (/3) */
1340 if ((insn[1] & 0x38) == 0x18)
1341 return 1;
1342 }
1343
1344 return 0;
1345 }
1346
1347 static int
1348 amd64_ret_p (const struct amd64_insn *details)
1349 {
1350 /* NOTE: gcc can emit "repz ; ret". */
1351 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1352
1353 switch (insn[0])
1354 {
1355 case 0xc2: /* ret near, pop N bytes */
1356 case 0xc3: /* ret near */
1357 case 0xca: /* ret far, pop N bytes */
1358 case 0xcb: /* ret far */
1359 case 0xcf: /* iret */
1360 return 1;
1361
1362 default:
1363 return 0;
1364 }
1365 }
1366
1367 static int
1368 amd64_call_p (const struct amd64_insn *details)
1369 {
1370 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1371
1372 if (amd64_absolute_call_p (details))
1373 return 1;
1374
1375 /* call near, relative */
1376 if (insn[0] == 0xe8)
1377 return 1;
1378
1379 return 0;
1380 }
1381
1382 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1383 length in bytes. Otherwise, return zero. */
1384
1385 static int
1386 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1387 {
1388 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1389
1390 if (insn[0] == 0x0f && insn[1] == 0x05)
1391 {
1392 *lengthp = 2;
1393 return 1;
1394 }
1395
1396 return 0;
1397 }
1398
1399 /* Fix up the state of registers and memory after having single-stepped
1400 a displaced instruction. */
1401
1402 void
1403 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1404 struct displaced_step_closure *dsc,
1405 CORE_ADDR from, CORE_ADDR to,
1406 struct regcache *regs)
1407 {
1408 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1409 /* The offset we applied to the instruction's address. */
1410 ULONGEST insn_offset = to - from;
1411 gdb_byte *insn = dsc->insn_buf;
1412 const struct amd64_insn *insn_details = &dsc->insn_details;
1413
1414 if (debug_displaced)
1415 fprintf_unfiltered (gdb_stdlog,
1416 "displaced: fixup (%s, %s), "
1417 "insn = 0x%02x 0x%02x ...\n",
1418 paddress (gdbarch, from), paddress (gdbarch, to),
1419 insn[0], insn[1]);
1420
1421 /* If we used a tmp reg, restore it. */
1422
1423 if (dsc->tmp_used)
1424 {
1425 if (debug_displaced)
1426 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1427 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1428 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1429 }
1430
1431 /* The list of issues to contend with here is taken from
1432 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1433 Yay for Free Software! */
1434
1435 /* Relocate the %rip back to the program's instruction stream,
1436 if necessary. */
1437
1438 /* Except in the case of absolute or indirect jump or call
1439 instructions, or a return instruction, the new rip is relative to
1440 the displaced instruction; make it relative to the original insn.
1441 Well, signal handler returns don't need relocation either, but we use the
1442 value of %rip to recognize those; see below. */
1443 if (! amd64_absolute_jmp_p (insn_details)
1444 && ! amd64_absolute_call_p (insn_details)
1445 && ! amd64_ret_p (insn_details))
1446 {
1447 ULONGEST orig_rip;
1448 int insn_len;
1449
1450 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1451
1452 /* A signal trampoline system call changes the %rip, resuming
1453 execution of the main program after the signal handler has
1454 returned. That makes them like 'return' instructions; we
1455 shouldn't relocate %rip.
1456
1457 But most system calls don't, and we do need to relocate %rip.
1458
1459 Our heuristic for distinguishing these cases: if stepping
1460 over the system call instruction left control directly after
1461 the instruction, the we relocate --- control almost certainly
1462 doesn't belong in the displaced copy. Otherwise, we assume
1463 the instruction has put control where it belongs, and leave
1464 it unrelocated. Goodness help us if there are PC-relative
1465 system calls. */
1466 if (amd64_syscall_p (insn_details, &insn_len)
1467 && orig_rip != to + insn_len
1468 /* GDB can get control back after the insn after the syscall.
1469 Presumably this is a kernel bug.
1470 Fixup ensures its a nop, we add one to the length for it. */
1471 && orig_rip != to + insn_len + 1)
1472 {
1473 if (debug_displaced)
1474 fprintf_unfiltered (gdb_stdlog,
1475 "displaced: syscall changed %%rip; "
1476 "not relocating\n");
1477 }
1478 else
1479 {
1480 ULONGEST rip = orig_rip - insn_offset;
1481
1482 /* If we just stepped over a breakpoint insn, we don't backup
1483 the pc on purpose; this is to match behaviour without
1484 stepping. */
1485
1486 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1487
1488 if (debug_displaced)
1489 fprintf_unfiltered (gdb_stdlog,
1490 "displaced: "
1491 "relocated %%rip from %s to %s\n",
1492 paddress (gdbarch, orig_rip),
1493 paddress (gdbarch, rip));
1494 }
1495 }
1496
1497 /* If the instruction was PUSHFL, then the TF bit will be set in the
1498 pushed value, and should be cleared. We'll leave this for later,
1499 since GDB already messes up the TF flag when stepping over a
1500 pushfl. */
1501
1502 /* If the instruction was a call, the return address now atop the
1503 stack is the address following the copied instruction. We need
1504 to make it the address following the original instruction. */
1505 if (amd64_call_p (insn_details))
1506 {
1507 ULONGEST rsp;
1508 ULONGEST retaddr;
1509 const ULONGEST retaddr_len = 8;
1510
1511 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1512 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1513 retaddr = (retaddr - insn_offset) & 0xffffffffUL;
1514 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1515
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: relocated return addr at %s "
1519 "to %s\n",
1520 paddress (gdbarch, rsp),
1521 paddress (gdbarch, retaddr));
1522 }
1523 }
1524
1525 /* If the instruction INSN uses RIP-relative addressing, return the
1526 offset into the raw INSN where the displacement to be adjusted is
1527 found. Returns 0 if the instruction doesn't use RIP-relative
1528 addressing. */
1529
1530 static int
1531 rip_relative_offset (struct amd64_insn *insn)
1532 {
1533 if (insn->modrm_offset != -1)
1534 {
1535 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1536
1537 if ((modrm & 0xc7) == 0x05)
1538 {
1539 /* The displacement is found right after the ModRM byte. */
1540 return insn->modrm_offset + 1;
1541 }
1542 }
1543
1544 return 0;
1545 }
1546
1547 static void
1548 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1549 {
1550 target_write_memory (*to, buf, len);
1551 *to += len;
1552 }
1553
1554 static void
1555 amd64_relocate_instruction (struct gdbarch *gdbarch,
1556 CORE_ADDR *to, CORE_ADDR oldloc)
1557 {
1558 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1559 int len = gdbarch_max_insn_length (gdbarch);
1560 /* Extra space for sentinels. */
1561 int fixup_sentinel_space = len;
1562 gdb_byte *buf = xmalloc (len + fixup_sentinel_space);
1563 struct amd64_insn insn_details;
1564 int offset = 0;
1565 LONGEST rel32, newrel;
1566 gdb_byte *insn;
1567 int insn_length;
1568
1569 read_memory (oldloc, buf, len);
1570
1571 /* Set up the sentinel space so we don't have to worry about running
1572 off the end of the buffer. An excessive number of leading prefixes
1573 could otherwise cause this. */
1574 memset (buf + len, 0, fixup_sentinel_space);
1575
1576 insn = buf;
1577 amd64_get_insn_details (insn, &insn_details);
1578
1579 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1580
1581 /* Skip legacy instruction prefixes. */
1582 insn = amd64_skip_prefixes (insn);
1583
1584 /* Adjust calls with 32-bit relative addresses as push/jump, with
1585 the address pushed being the location where the original call in
1586 the user program would return to. */
1587 if (insn[0] == 0xe8)
1588 {
1589 gdb_byte push_buf[16];
1590 unsigned int ret_addr;
1591
1592 /* Where "ret" in the original code will return to. */
1593 ret_addr = oldloc + insn_length;
1594 push_buf[0] = 0x68; /* pushq $... */
1595 memcpy (&push_buf[1], &ret_addr, 4);
1596 /* Push the push. */
1597 append_insns (to, 5, push_buf);
1598
1599 /* Convert the relative call to a relative jump. */
1600 insn[0] = 0xe9;
1601
1602 /* Adjust the destination offset. */
1603 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1604 newrel = (oldloc - *to) + rel32;
1605 store_signed_integer (insn + 1, 4, byte_order, newrel);
1606
1607 if (debug_displaced)
1608 fprintf_unfiltered (gdb_stdlog,
1609 "Adjusted insn rel32=%s at %s to"
1610 " rel32=%s at %s\n",
1611 hex_string (rel32), paddress (gdbarch, oldloc),
1612 hex_string (newrel), paddress (gdbarch, *to));
1613
1614 /* Write the adjusted jump into its displaced location. */
1615 append_insns (to, 5, insn);
1616 return;
1617 }
1618
1619 offset = rip_relative_offset (&insn_details);
1620 if (!offset)
1621 {
1622 /* Adjust jumps with 32-bit relative addresses. Calls are
1623 already handled above. */
1624 if (insn[0] == 0xe9)
1625 offset = 1;
1626 /* Adjust conditional jumps. */
1627 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1628 offset = 2;
1629 }
1630
1631 if (offset)
1632 {
1633 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1634 newrel = (oldloc - *to) + rel32;
1635 store_signed_integer (insn + offset, 4, byte_order, newrel);
1636 if (debug_displaced)
1637 fprintf_unfiltered (gdb_stdlog,
1638 "Adjusted insn rel32=%s at %s to"
1639 " rel32=%s at %s\n",
1640 hex_string (rel32), paddress (gdbarch, oldloc),
1641 hex_string (newrel), paddress (gdbarch, *to));
1642 }
1643
1644 /* Write the adjusted instruction into its displaced location. */
1645 append_insns (to, insn_length, buf);
1646 }
1647
1648 \f
1649 /* The maximum number of saved registers. This should include %rip. */
1650 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1651
1652 struct amd64_frame_cache
1653 {
1654 /* Base address. */
1655 CORE_ADDR base;
1656 int base_p;
1657 CORE_ADDR sp_offset;
1658 CORE_ADDR pc;
1659
1660 /* Saved registers. */
1661 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1662 CORE_ADDR saved_sp;
1663 int saved_sp_reg;
1664
1665 /* Do we have a frame? */
1666 int frameless_p;
1667 };
1668
1669 /* Initialize a frame cache. */
1670
1671 static void
1672 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1673 {
1674 int i;
1675
1676 /* Base address. */
1677 cache->base = 0;
1678 cache->base_p = 0;
1679 cache->sp_offset = -8;
1680 cache->pc = 0;
1681
1682 /* Saved registers. We initialize these to -1 since zero is a valid
1683 offset (that's where %rbp is supposed to be stored).
1684 The values start out as being offsets, and are later converted to
1685 addresses (at which point -1 is interpreted as an address, still meaning
1686 "invalid"). */
1687 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1688 cache->saved_regs[i] = -1;
1689 cache->saved_sp = 0;
1690 cache->saved_sp_reg = -1;
1691
1692 /* Frameless until proven otherwise. */
1693 cache->frameless_p = 1;
1694 }
1695
1696 /* Allocate and initialize a frame cache. */
1697
1698 static struct amd64_frame_cache *
1699 amd64_alloc_frame_cache (void)
1700 {
1701 struct amd64_frame_cache *cache;
1702
1703 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
1704 amd64_init_frame_cache (cache);
1705 return cache;
1706 }
1707
1708 /* GCC 4.4 and later, can put code in the prologue to realign the
1709 stack pointer. Check whether PC points to such code, and update
1710 CACHE accordingly. Return the first instruction after the code
1711 sequence or CURRENT_PC, whichever is smaller. If we don't
1712 recognize the code, return PC. */
1713
1714 static CORE_ADDR
1715 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
1716 struct amd64_frame_cache *cache)
1717 {
1718 /* There are 2 code sequences to re-align stack before the frame
1719 gets set up:
1720
1721 1. Use a caller-saved saved register:
1722
1723 leaq 8(%rsp), %reg
1724 andq $-XXX, %rsp
1725 pushq -8(%reg)
1726
1727 2. Use a callee-saved saved register:
1728
1729 pushq %reg
1730 leaq 16(%rsp), %reg
1731 andq $-XXX, %rsp
1732 pushq -8(%reg)
1733
1734 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
1735
1736 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
1737 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
1738 */
1739
1740 gdb_byte buf[18];
1741 int reg, r;
1742 int offset, offset_and;
1743
1744 if (target_read_memory (pc, buf, sizeof buf))
1745 return pc;
1746
1747 /* Check caller-saved saved register. The first instruction has
1748 to be "leaq 8(%rsp), %reg". */
1749 if ((buf[0] & 0xfb) == 0x48
1750 && buf[1] == 0x8d
1751 && buf[3] == 0x24
1752 && buf[4] == 0x8)
1753 {
1754 /* MOD must be binary 10 and R/M must be binary 100. */
1755 if ((buf[2] & 0xc7) != 0x44)
1756 return pc;
1757
1758 /* REG has register number. */
1759 reg = (buf[2] >> 3) & 7;
1760
1761 /* Check the REX.R bit. */
1762 if (buf[0] == 0x4c)
1763 reg += 8;
1764
1765 offset = 5;
1766 }
1767 else
1768 {
1769 /* Check callee-saved saved register. The first instruction
1770 has to be "pushq %reg". */
1771 reg = 0;
1772 if ((buf[0] & 0xf8) == 0x50)
1773 offset = 0;
1774 else if ((buf[0] & 0xf6) == 0x40
1775 && (buf[1] & 0xf8) == 0x50)
1776 {
1777 /* Check the REX.B bit. */
1778 if ((buf[0] & 1) != 0)
1779 reg = 8;
1780
1781 offset = 1;
1782 }
1783 else
1784 return pc;
1785
1786 /* Get register. */
1787 reg += buf[offset] & 0x7;
1788
1789 offset++;
1790
1791 /* The next instruction has to be "leaq 16(%rsp), %reg". */
1792 if ((buf[offset] & 0xfb) != 0x48
1793 || buf[offset + 1] != 0x8d
1794 || buf[offset + 3] != 0x24
1795 || buf[offset + 4] != 0x10)
1796 return pc;
1797
1798 /* MOD must be binary 10 and R/M must be binary 100. */
1799 if ((buf[offset + 2] & 0xc7) != 0x44)
1800 return pc;
1801
1802 /* REG has register number. */
1803 r = (buf[offset + 2] >> 3) & 7;
1804
1805 /* Check the REX.R bit. */
1806 if (buf[offset] == 0x4c)
1807 r += 8;
1808
1809 /* Registers in pushq and leaq have to be the same. */
1810 if (reg != r)
1811 return pc;
1812
1813 offset += 5;
1814 }
1815
1816 /* Rigister can't be %rsp nor %rbp. */
1817 if (reg == 4 || reg == 5)
1818 return pc;
1819
1820 /* The next instruction has to be "andq $-XXX, %rsp". */
1821 if (buf[offset] != 0x48
1822 || buf[offset + 2] != 0xe4
1823 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
1824 return pc;
1825
1826 offset_and = offset;
1827 offset += buf[offset + 1] == 0x81 ? 7 : 4;
1828
1829 /* The next instruction has to be "pushq -8(%reg)". */
1830 r = 0;
1831 if (buf[offset] == 0xff)
1832 offset++;
1833 else if ((buf[offset] & 0xf6) == 0x40
1834 && buf[offset + 1] == 0xff)
1835 {
1836 /* Check the REX.B bit. */
1837 if ((buf[offset] & 0x1) != 0)
1838 r = 8;
1839 offset += 2;
1840 }
1841 else
1842 return pc;
1843
1844 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
1845 01. */
1846 if (buf[offset + 1] != 0xf8
1847 || (buf[offset] & 0xf8) != 0x70)
1848 return pc;
1849
1850 /* R/M has register. */
1851 r += buf[offset] & 7;
1852
1853 /* Registers in leaq and pushq have to be the same. */
1854 if (reg != r)
1855 return pc;
1856
1857 if (current_pc > pc + offset_and)
1858 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
1859
1860 return min (pc + offset + 2, current_pc);
1861 }
1862
1863 /* Do a limited analysis of the prologue at PC and update CACHE
1864 accordingly. Bail out early if CURRENT_PC is reached. Return the
1865 address where the analysis stopped.
1866
1867 We will handle only functions beginning with:
1868
1869 pushq %rbp 0x55
1870 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
1871
1872 or (for the X32 ABI):
1873
1874 pushq %rbp 0x55
1875 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
1876
1877 Any function that doesn't start with one of these sequences will be
1878 assumed to have no prologue and thus no valid frame pointer in
1879 %rbp. */
1880
1881 static CORE_ADDR
1882 amd64_analyze_prologue (struct gdbarch *gdbarch,
1883 CORE_ADDR pc, CORE_ADDR current_pc,
1884 struct amd64_frame_cache *cache)
1885 {
1886 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1887 /* There are two variations of movq %rsp, %rbp. */
1888 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
1889 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
1890 /* Ditto for movl %esp, %ebp. */
1891 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
1892 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
1893
1894 gdb_byte buf[3];
1895 gdb_byte op;
1896
1897 if (current_pc <= pc)
1898 return current_pc;
1899
1900 pc = amd64_analyze_stack_align (pc, current_pc, cache);
1901
1902 op = read_memory_unsigned_integer (pc, 1, byte_order);
1903
1904 if (op == 0x55) /* pushq %rbp */
1905 {
1906 /* Take into account that we've executed the `pushq %rbp' that
1907 starts this instruction sequence. */
1908 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
1909 cache->sp_offset += 8;
1910
1911 /* If that's all, return now. */
1912 if (current_pc <= pc + 1)
1913 return current_pc;
1914
1915 read_memory (pc + 1, buf, 3);
1916
1917 /* Check for `movq %rsp, %rbp'. */
1918 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
1919 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
1920 {
1921 /* OK, we actually have a frame. */
1922 cache->frameless_p = 0;
1923 return pc + 4;
1924 }
1925
1926 /* For X32, also check for `movq %esp, %ebp'. */
1927 if (gdbarch_ptr_bit (gdbarch) == 32)
1928 {
1929 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
1930 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
1931 {
1932 /* OK, we actually have a frame. */
1933 cache->frameless_p = 0;
1934 return pc + 3;
1935 }
1936 }
1937
1938 return pc + 1;
1939 }
1940
1941 return pc;
1942 }
1943
1944 /* Work around false termination of prologue - GCC PR debug/48827.
1945
1946 START_PC is the first instruction of a function, PC is its minimal already
1947 determined advanced address. Function returns PC if it has nothing to do.
1948
1949 84 c0 test %al,%al
1950 74 23 je after
1951 <-- here is 0 lines advance - the false prologue end marker.
1952 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
1953 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
1954 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
1955 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
1956 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
1957 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
1958 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
1959 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
1960 after: */
1961
1962 static CORE_ADDR
1963 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
1964 {
1965 struct symtab_and_line start_pc_sal, next_sal;
1966 gdb_byte buf[4 + 8 * 7];
1967 int offset, xmmreg;
1968
1969 if (pc == start_pc)
1970 return pc;
1971
1972 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
1973 if (start_pc_sal.symtab == NULL
1974 || producer_is_gcc_ge_4 (start_pc_sal.symtab->producer) < 6
1975 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
1976 return pc;
1977
1978 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
1979 if (next_sal.line != start_pc_sal.line)
1980 return pc;
1981
1982 /* START_PC can be from overlayed memory, ignored here. */
1983 if (target_read_memory (next_sal.pc - 4, buf, sizeof (buf)) != 0)
1984 return pc;
1985
1986 /* test %al,%al */
1987 if (buf[0] != 0x84 || buf[1] != 0xc0)
1988 return pc;
1989 /* je AFTER */
1990 if (buf[2] != 0x74)
1991 return pc;
1992
1993 offset = 4;
1994 for (xmmreg = 0; xmmreg < 8; xmmreg++)
1995 {
1996 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
1997 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
1998 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
1999 return pc;
2000
2001 /* 0b01?????? */
2002 if ((buf[offset + 2] & 0xc0) == 0x40)
2003 {
2004 /* 8-bit displacement. */
2005 offset += 4;
2006 }
2007 /* 0b10?????? */
2008 else if ((buf[offset + 2] & 0xc0) == 0x80)
2009 {
2010 /* 32-bit displacement. */
2011 offset += 7;
2012 }
2013 else
2014 return pc;
2015 }
2016
2017 /* je AFTER */
2018 if (offset - 4 != buf[3])
2019 return pc;
2020
2021 return next_sal.end;
2022 }
2023
2024 /* Return PC of first real instruction. */
2025
2026 static CORE_ADDR
2027 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2028 {
2029 struct amd64_frame_cache cache;
2030 CORE_ADDR pc;
2031
2032 amd64_init_frame_cache (&cache);
2033 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2034 &cache);
2035 if (cache.frameless_p)
2036 return start_pc;
2037
2038 return amd64_skip_xmm_prologue (pc, start_pc);
2039 }
2040 \f
2041
2042 /* Normal frames. */
2043
2044 static void
2045 amd64_frame_cache_1 (struct frame_info *this_frame,
2046 struct amd64_frame_cache *cache)
2047 {
2048 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2050 gdb_byte buf[8];
2051 int i;
2052
2053 cache->pc = get_frame_func (this_frame);
2054 if (cache->pc != 0)
2055 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2056 cache);
2057
2058 if (cache->frameless_p)
2059 {
2060 /* We didn't find a valid frame. If we're at the start of a
2061 function, or somewhere half-way its prologue, the function's
2062 frame probably hasn't been fully setup yet. Try to
2063 reconstruct the base address for the stack frame by looking
2064 at the stack pointer. For truly "frameless" functions this
2065 might work too. */
2066
2067 if (cache->saved_sp_reg != -1)
2068 {
2069 /* Stack pointer has been saved. */
2070 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2071 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2072
2073 /* We're halfway aligning the stack. */
2074 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2075 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2076
2077 /* This will be added back below. */
2078 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2079 }
2080 else
2081 {
2082 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2083 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2084 + cache->sp_offset;
2085 }
2086 }
2087 else
2088 {
2089 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2090 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2091 }
2092
2093 /* Now that we have the base address for the stack frame we can
2094 calculate the value of %rsp in the calling frame. */
2095 cache->saved_sp = cache->base + 16;
2096
2097 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2098 frame we find it at the same offset from the reconstructed base
2099 address. If we're halfway aligning the stack, %rip is handled
2100 differently (see above). */
2101 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2102 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2103
2104 /* Adjust all the saved registers such that they contain addresses
2105 instead of offsets. */
2106 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2107 if (cache->saved_regs[i] != -1)
2108 cache->saved_regs[i] += cache->base;
2109
2110 cache->base_p = 1;
2111 }
2112
2113 static struct amd64_frame_cache *
2114 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2115 {
2116 volatile struct gdb_exception ex;
2117 struct amd64_frame_cache *cache;
2118
2119 if (*this_cache)
2120 return *this_cache;
2121
2122 cache = amd64_alloc_frame_cache ();
2123 *this_cache = cache;
2124
2125 TRY_CATCH (ex, RETURN_MASK_ERROR)
2126 {
2127 amd64_frame_cache_1 (this_frame, cache);
2128 }
2129 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2130 throw_exception (ex);
2131
2132 return cache;
2133 }
2134
2135 static enum unwind_stop_reason
2136 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2137 void **this_cache)
2138 {
2139 struct amd64_frame_cache *cache =
2140 amd64_frame_cache (this_frame, this_cache);
2141
2142 if (!cache->base_p)
2143 return UNWIND_UNAVAILABLE;
2144
2145 /* This marks the outermost frame. */
2146 if (cache->base == 0)
2147 return UNWIND_OUTERMOST;
2148
2149 return UNWIND_NO_REASON;
2150 }
2151
2152 static void
2153 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2154 struct frame_id *this_id)
2155 {
2156 struct amd64_frame_cache *cache =
2157 amd64_frame_cache (this_frame, this_cache);
2158
2159 if (!cache->base_p)
2160 return;
2161
2162 /* This marks the outermost frame. */
2163 if (cache->base == 0)
2164 return;
2165
2166 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2167 }
2168
2169 static struct value *
2170 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2171 int regnum)
2172 {
2173 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2174 struct amd64_frame_cache *cache =
2175 amd64_frame_cache (this_frame, this_cache);
2176
2177 gdb_assert (regnum >= 0);
2178
2179 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2180 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2181
2182 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2183 return frame_unwind_got_memory (this_frame, regnum,
2184 cache->saved_regs[regnum]);
2185
2186 return frame_unwind_got_register (this_frame, regnum, regnum);
2187 }
2188
2189 static const struct frame_unwind amd64_frame_unwind =
2190 {
2191 NORMAL_FRAME,
2192 amd64_frame_unwind_stop_reason,
2193 amd64_frame_this_id,
2194 amd64_frame_prev_register,
2195 NULL,
2196 default_frame_sniffer
2197 };
2198 \f
2199 /* Generate a bytecode expression to get the value of the saved PC. */
2200
2201 static void
2202 amd64_gen_return_address (struct gdbarch *gdbarch,
2203 struct agent_expr *ax, struct axs_value *value,
2204 CORE_ADDR scope)
2205 {
2206 /* The following sequence assumes the traditional use of the base
2207 register. */
2208 ax_reg (ax, AMD64_RBP_REGNUM);
2209 ax_const_l (ax, 8);
2210 ax_simple (ax, aop_add);
2211 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2212 value->kind = axs_lvalue_memory;
2213 }
2214 \f
2215
2216 /* Signal trampolines. */
2217
2218 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2219 64-bit variants. This would require using identical frame caches
2220 on both platforms. */
2221
2222 static struct amd64_frame_cache *
2223 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2224 {
2225 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2226 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2227 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2228 volatile struct gdb_exception ex;
2229 struct amd64_frame_cache *cache;
2230 CORE_ADDR addr;
2231 gdb_byte buf[8];
2232 int i;
2233
2234 if (*this_cache)
2235 return *this_cache;
2236
2237 cache = amd64_alloc_frame_cache ();
2238
2239 TRY_CATCH (ex, RETURN_MASK_ERROR)
2240 {
2241 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2242 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2243
2244 addr = tdep->sigcontext_addr (this_frame);
2245 gdb_assert (tdep->sc_reg_offset);
2246 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2247 for (i = 0; i < tdep->sc_num_regs; i++)
2248 if (tdep->sc_reg_offset[i] != -1)
2249 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2250
2251 cache->base_p = 1;
2252 }
2253 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2254 throw_exception (ex);
2255
2256 *this_cache = cache;
2257 return cache;
2258 }
2259
2260 static enum unwind_stop_reason
2261 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2262 void **this_cache)
2263 {
2264 struct amd64_frame_cache *cache =
2265 amd64_sigtramp_frame_cache (this_frame, this_cache);
2266
2267 if (!cache->base_p)
2268 return UNWIND_UNAVAILABLE;
2269
2270 return UNWIND_NO_REASON;
2271 }
2272
2273 static void
2274 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2275 void **this_cache, struct frame_id *this_id)
2276 {
2277 struct amd64_frame_cache *cache =
2278 amd64_sigtramp_frame_cache (this_frame, this_cache);
2279
2280 if (!cache->base_p)
2281 return;
2282
2283 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2284 }
2285
2286 static struct value *
2287 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2288 void **this_cache, int regnum)
2289 {
2290 /* Make sure we've initialized the cache. */
2291 amd64_sigtramp_frame_cache (this_frame, this_cache);
2292
2293 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2294 }
2295
2296 static int
2297 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2298 struct frame_info *this_frame,
2299 void **this_cache)
2300 {
2301 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2302
2303 /* We shouldn't even bother if we don't have a sigcontext_addr
2304 handler. */
2305 if (tdep->sigcontext_addr == NULL)
2306 return 0;
2307
2308 if (tdep->sigtramp_p != NULL)
2309 {
2310 if (tdep->sigtramp_p (this_frame))
2311 return 1;
2312 }
2313
2314 if (tdep->sigtramp_start != 0)
2315 {
2316 CORE_ADDR pc = get_frame_pc (this_frame);
2317
2318 gdb_assert (tdep->sigtramp_end != 0);
2319 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2320 return 1;
2321 }
2322
2323 return 0;
2324 }
2325
2326 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2327 {
2328 SIGTRAMP_FRAME,
2329 amd64_sigtramp_frame_unwind_stop_reason,
2330 amd64_sigtramp_frame_this_id,
2331 amd64_sigtramp_frame_prev_register,
2332 NULL,
2333 amd64_sigtramp_frame_sniffer
2334 };
2335 \f
2336
2337 static CORE_ADDR
2338 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2339 {
2340 struct amd64_frame_cache *cache =
2341 amd64_frame_cache (this_frame, this_cache);
2342
2343 return cache->base;
2344 }
2345
2346 static const struct frame_base amd64_frame_base =
2347 {
2348 &amd64_frame_unwind,
2349 amd64_frame_base_address,
2350 amd64_frame_base_address,
2351 amd64_frame_base_address
2352 };
2353
2354 /* Normal frames, but in a function epilogue. */
2355
2356 /* The epilogue is defined here as the 'ret' instruction, which will
2357 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2358 the function's stack frame. */
2359
2360 static int
2361 amd64_in_function_epilogue_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2362 {
2363 gdb_byte insn;
2364 struct symtab *symtab;
2365
2366 symtab = find_pc_symtab (pc);
2367 if (symtab && symtab->epilogue_unwind_valid)
2368 return 0;
2369
2370 if (target_read_memory (pc, &insn, 1))
2371 return 0; /* Can't read memory at pc. */
2372
2373 if (insn != 0xc3) /* 'ret' instruction. */
2374 return 0;
2375
2376 return 1;
2377 }
2378
2379 static int
2380 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2381 struct frame_info *this_frame,
2382 void **this_prologue_cache)
2383 {
2384 if (frame_relative_level (this_frame) == 0)
2385 return amd64_in_function_epilogue_p (get_frame_arch (this_frame),
2386 get_frame_pc (this_frame));
2387 else
2388 return 0;
2389 }
2390
2391 static struct amd64_frame_cache *
2392 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2393 {
2394 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2395 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2396 volatile struct gdb_exception ex;
2397 struct amd64_frame_cache *cache;
2398 gdb_byte buf[8];
2399
2400 if (*this_cache)
2401 return *this_cache;
2402
2403 cache = amd64_alloc_frame_cache ();
2404 *this_cache = cache;
2405
2406 TRY_CATCH (ex, RETURN_MASK_ERROR)
2407 {
2408 /* Cache base will be %esp plus cache->sp_offset (-8). */
2409 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2410 cache->base = extract_unsigned_integer (buf, 8,
2411 byte_order) + cache->sp_offset;
2412
2413 /* Cache pc will be the frame func. */
2414 cache->pc = get_frame_pc (this_frame);
2415
2416 /* The saved %esp will be at cache->base plus 16. */
2417 cache->saved_sp = cache->base + 16;
2418
2419 /* The saved %eip will be at cache->base plus 8. */
2420 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2421
2422 cache->base_p = 1;
2423 }
2424 if (ex.reason < 0 && ex.error != NOT_AVAILABLE_ERROR)
2425 throw_exception (ex);
2426
2427 return cache;
2428 }
2429
2430 static enum unwind_stop_reason
2431 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2432 void **this_cache)
2433 {
2434 struct amd64_frame_cache *cache
2435 = amd64_epilogue_frame_cache (this_frame, this_cache);
2436
2437 if (!cache->base_p)
2438 return UNWIND_UNAVAILABLE;
2439
2440 return UNWIND_NO_REASON;
2441 }
2442
2443 static void
2444 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2445 void **this_cache,
2446 struct frame_id *this_id)
2447 {
2448 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2449 this_cache);
2450
2451 if (!cache->base_p)
2452 return;
2453
2454 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2455 }
2456
2457 static const struct frame_unwind amd64_epilogue_frame_unwind =
2458 {
2459 NORMAL_FRAME,
2460 amd64_epilogue_frame_unwind_stop_reason,
2461 amd64_epilogue_frame_this_id,
2462 amd64_frame_prev_register,
2463 NULL,
2464 amd64_epilogue_frame_sniffer
2465 };
2466
2467 static struct frame_id
2468 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2469 {
2470 CORE_ADDR fp;
2471
2472 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2473
2474 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2475 }
2476
2477 /* 16 byte align the SP per frame requirements. */
2478
2479 static CORE_ADDR
2480 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
2481 {
2482 return sp & -(CORE_ADDR)16;
2483 }
2484 \f
2485
2486 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
2487 in the floating-point register set REGSET to register cache
2488 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
2489
2490 static void
2491 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
2492 int regnum, const void *fpregs, size_t len)
2493 {
2494 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2495
2496 gdb_assert (len == tdep->sizeof_fpregset);
2497 amd64_supply_fxsave (regcache, regnum, fpregs);
2498 }
2499
2500 /* Collect register REGNUM from the register cache REGCACHE and store
2501 it in the buffer specified by FPREGS and LEN as described by the
2502 floating-point register set REGSET. If REGNUM is -1, do this for
2503 all registers in REGSET. */
2504
2505 static void
2506 amd64_collect_fpregset (const struct regset *regset,
2507 const struct regcache *regcache,
2508 int regnum, void *fpregs, size_t len)
2509 {
2510 const struct gdbarch_tdep *tdep = gdbarch_tdep (regset->arch);
2511
2512 gdb_assert (len == tdep->sizeof_fpregset);
2513 amd64_collect_fxsave (regcache, regnum, fpregs);
2514 }
2515
2516 /* Similar to amd64_supply_fpregset, but use XSAVE extended state. */
2517
2518 static void
2519 amd64_supply_xstateregset (const struct regset *regset,
2520 struct regcache *regcache, int regnum,
2521 const void *xstateregs, size_t len)
2522 {
2523 amd64_supply_xsave (regcache, regnum, xstateregs);
2524 }
2525
2526 /* Similar to amd64_collect_fpregset, but use XSAVE extended state. */
2527
2528 static void
2529 amd64_collect_xstateregset (const struct regset *regset,
2530 const struct regcache *regcache,
2531 int regnum, void *xstateregs, size_t len)
2532 {
2533 amd64_collect_xsave (regcache, regnum, xstateregs, 1);
2534 }
2535
2536 /* Return the appropriate register set for the core section identified
2537 by SECT_NAME and SECT_SIZE. */
2538
2539 static const struct regset *
2540 amd64_regset_from_core_section (struct gdbarch *gdbarch,
2541 const char *sect_name, size_t sect_size)
2542 {
2543 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2544
2545 if (strcmp (sect_name, ".reg2") == 0 && sect_size == tdep->sizeof_fpregset)
2546 {
2547 if (tdep->fpregset == NULL)
2548 tdep->fpregset = regset_alloc (gdbarch, amd64_supply_fpregset,
2549 amd64_collect_fpregset);
2550
2551 return tdep->fpregset;
2552 }
2553
2554 if (strcmp (sect_name, ".reg-xstate") == 0)
2555 {
2556 if (tdep->xstateregset == NULL)
2557 tdep->xstateregset = regset_alloc (gdbarch,
2558 amd64_supply_xstateregset,
2559 amd64_collect_xstateregset);
2560
2561 return tdep->xstateregset;
2562 }
2563
2564 return i386_regset_from_core_section (gdbarch, sect_name, sect_size);
2565 }
2566 \f
2567
2568 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
2569 %rdi. We expect its value to be a pointer to the jmp_buf structure
2570 from which we extract the address that we will land at. This
2571 address is copied into PC. This routine returns non-zero on
2572 success. */
2573
2574 static int
2575 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2576 {
2577 gdb_byte buf[8];
2578 CORE_ADDR jb_addr;
2579 struct gdbarch *gdbarch = get_frame_arch (frame);
2580 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
2581 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
2582
2583 /* If JB_PC_OFFSET is -1, we have no way to find out where the
2584 longjmp will land. */
2585 if (jb_pc_offset == -1)
2586 return 0;
2587
2588 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
2589 jb_addr= extract_typed_address
2590 (buf, builtin_type (gdbarch)->builtin_data_ptr);
2591 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
2592 return 0;
2593
2594 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
2595
2596 return 1;
2597 }
2598
2599 static const int amd64_record_regmap[] =
2600 {
2601 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
2602 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
2603 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
2604 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
2605 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
2606 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
2607 };
2608
2609 void
2610 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2611 {
2612 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2613 const struct target_desc *tdesc = info.target_desc;
2614
2615 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
2616 floating-point registers. */
2617 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
2618
2619 if (! tdesc_has_registers (tdesc))
2620 tdesc = tdesc_amd64;
2621 tdep->tdesc = tdesc;
2622
2623 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
2624 tdep->register_names = amd64_register_names;
2625
2626 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
2627 {
2628 tdep->ymmh_register_names = amd64_ymmh_names;
2629 tdep->num_ymm_regs = 16;
2630 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
2631 }
2632
2633 tdep->num_byte_regs = 20;
2634 tdep->num_word_regs = 16;
2635 tdep->num_dword_regs = 16;
2636 /* Avoid wiring in the MMX registers for now. */
2637 tdep->num_mmx_regs = 0;
2638
2639 set_gdbarch_pseudo_register_read_value (gdbarch,
2640 amd64_pseudo_register_read_value);
2641 set_gdbarch_pseudo_register_write (gdbarch,
2642 amd64_pseudo_register_write);
2643
2644 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
2645
2646 /* AMD64 has an FPU and 16 SSE registers. */
2647 tdep->st0_regnum = AMD64_ST0_REGNUM;
2648 tdep->num_xmm_regs = 16;
2649
2650 /* This is what all the fuss is about. */
2651 set_gdbarch_long_bit (gdbarch, 64);
2652 set_gdbarch_long_long_bit (gdbarch, 64);
2653 set_gdbarch_ptr_bit (gdbarch, 64);
2654
2655 /* In contrast to the i386, on AMD64 a `long double' actually takes
2656 up 128 bits, even though it's still based on the i387 extended
2657 floating-point format which has only 80 significant bits. */
2658 set_gdbarch_long_double_bit (gdbarch, 128);
2659
2660 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
2661
2662 /* Register numbers of various important registers. */
2663 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
2664 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
2665 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
2666 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
2667
2668 /* The "default" register numbering scheme for AMD64 is referred to
2669 as the "DWARF Register Number Mapping" in the System V psABI.
2670 The preferred debugging format for all known AMD64 targets is
2671 actually DWARF2, and GCC doesn't seem to support DWARF (that is
2672 DWARF-1), but we provide the same mapping just in case. This
2673 mapping is also used for stabs, which GCC does support. */
2674 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2675 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
2676
2677 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
2678 be in use on any of the supported AMD64 targets. */
2679
2680 /* Call dummy code. */
2681 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
2682 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
2683 set_gdbarch_frame_red_zone_size (gdbarch, 128);
2684 tdep->call_dummy_num_integer_regs =
2685 ARRAY_SIZE (amd64_dummy_call_integer_regs);
2686 tdep->call_dummy_integer_regs = amd64_dummy_call_integer_regs;
2687 tdep->classify = amd64_classify;
2688
2689 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
2690 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
2691 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
2692
2693 set_gdbarch_return_value (gdbarch, amd64_return_value);
2694
2695 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
2696
2697 tdep->record_regmap = amd64_record_regmap;
2698
2699 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
2700
2701 /* Hook the function epilogue frame unwinder. This unwinder is
2702 appended to the list first, so that it supercedes the other
2703 unwinders in function epilogues. */
2704 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
2705
2706 /* Hook the prologue-based frame unwinders. */
2707 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
2708 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
2709 frame_base_set_default (gdbarch, &amd64_frame_base);
2710
2711 /* If we have a register mapping, enable the generic core file support. */
2712 if (tdep->gregset_reg_offset)
2713 set_gdbarch_regset_from_core_section (gdbarch,
2714 amd64_regset_from_core_section);
2715
2716 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
2717
2718 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
2719
2720 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
2721
2722 /* SystemTap variables and functions. */
2723 set_gdbarch_stap_integer_prefix (gdbarch, "$");
2724 set_gdbarch_stap_register_prefix (gdbarch, "%");
2725 set_gdbarch_stap_register_indirection_prefix (gdbarch, "(");
2726 set_gdbarch_stap_register_indirection_suffix (gdbarch, ")");
2727 set_gdbarch_stap_is_single_operand (gdbarch,
2728 i386_stap_is_single_operand);
2729 set_gdbarch_stap_parse_special_token (gdbarch,
2730 i386_stap_parse_special_token);
2731 }
2732
2733 /* Provide a prototype to silence -Wmissing-prototypes. */
2734 void _initialize_amd64_tdep (void);
2735
2736 void
2737 _initialize_amd64_tdep (void)
2738 {
2739 initialize_tdesc_amd64 ();
2740 initialize_tdesc_amd64_avx ();
2741 initialize_tdesc_x32 ();
2742 initialize_tdesc_x32_avx ();
2743 }
2744 \f
2745
2746 /* The 64-bit FXSAVE format differs from the 32-bit format in the
2747 sense that the instruction pointer and data pointer are simply
2748 64-bit offsets into the code segment and the data segment instead
2749 of a selector offset pair. The functions below store the upper 32
2750 bits of these pointers (instead of just the 16-bits of the segment
2751 selector). */
2752
2753 /* Fill register REGNUM in REGCACHE with the appropriate
2754 floating-point or SSE register value from *FXSAVE. If REGNUM is
2755 -1, do this for all registers. This function masks off any of the
2756 reserved bits in *FXSAVE. */
2757
2758 void
2759 amd64_supply_fxsave (struct regcache *regcache, int regnum,
2760 const void *fxsave)
2761 {
2762 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2763 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2764
2765 i387_supply_fxsave (regcache, regnum, fxsave);
2766
2767 if (fxsave && gdbarch_ptr_bit (gdbarch) == 64)
2768 {
2769 const gdb_byte *regs = fxsave;
2770
2771 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2772 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2773 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2774 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2775 }
2776 }
2777
2778 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
2779
2780 void
2781 amd64_supply_xsave (struct regcache *regcache, int regnum,
2782 const void *xsave)
2783 {
2784 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2785 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2786
2787 i387_supply_xsave (regcache, regnum, xsave);
2788
2789 if (xsave && gdbarch_ptr_bit (gdbarch) == 64)
2790 {
2791 const gdb_byte *regs = xsave;
2792
2793 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2794 regcache_raw_supply (regcache, I387_FISEG_REGNUM (tdep),
2795 regs + 12);
2796 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2797 regcache_raw_supply (regcache, I387_FOSEG_REGNUM (tdep),
2798 regs + 20);
2799 }
2800 }
2801
2802 /* Fill register REGNUM (if it is a floating-point or SSE register) in
2803 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
2804 all registers. This function doesn't touch any of the reserved
2805 bits in *FXSAVE. */
2806
2807 void
2808 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
2809 void *fxsave)
2810 {
2811 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2812 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2813 gdb_byte *regs = fxsave;
2814
2815 i387_collect_fxsave (regcache, regnum, fxsave);
2816
2817 if (gdbarch_ptr_bit (gdbarch) == 64)
2818 {
2819 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2820 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep), regs + 12);
2821 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2822 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep), regs + 20);
2823 }
2824 }
2825
2826 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
2827
2828 void
2829 amd64_collect_xsave (const struct regcache *regcache, int regnum,
2830 void *xsave, int gcore)
2831 {
2832 struct gdbarch *gdbarch = get_regcache_arch (regcache);
2833 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2834 gdb_byte *regs = xsave;
2835
2836 i387_collect_xsave (regcache, regnum, xsave, gcore);
2837
2838 if (gdbarch_ptr_bit (gdbarch) == 64)
2839 {
2840 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
2841 regcache_raw_collect (regcache, I387_FISEG_REGNUM (tdep),
2842 regs + 12);
2843 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
2844 regcache_raw_collect (regcache, I387_FOSEG_REGNUM (tdep),
2845 regs + 20);
2846 }
2847 }