]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/arm-tdep.c
9fbd0fcb18c3df5c28458d6769b8f4ec1a157198
[thirdparty/binutils-gdb.git] / gdb / arm-tdep.c
1 /* Common target dependent code for GDB on ARM systems.
2
3 Copyright (C) 1988, 1989, 1991, 1992, 1993, 1995, 1996, 1998, 1999, 2000,
4 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
5 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include <ctype.h> /* XXX for isupper () */
23
24 #include "defs.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "dis-asm.h" /* For register styles. */
31 #include "regcache.h"
32 #include "doublest.h"
33 #include "value.h"
34 #include "arch-utils.h"
35 #include "osabi.h"
36 #include "frame-unwind.h"
37 #include "frame-base.h"
38 #include "trad-frame.h"
39 #include "objfiles.h"
40 #include "dwarf2-frame.h"
41 #include "gdbtypes.h"
42 #include "prologue-value.h"
43 #include "target-descriptions.h"
44 #include "user-regs.h"
45
46 #include "arm-tdep.h"
47 #include "gdb/sim-arm.h"
48
49 #include "elf-bfd.h"
50 #include "coff/internal.h"
51 #include "elf/arm.h"
52
53 #include "gdb_assert.h"
54 #include "vec.h"
55
56 static int arm_debug;
57
58 /* Macros for setting and testing a bit in a minimal symbol that marks
59 it as Thumb function. The MSB of the minimal symbol's "info" field
60 is used for this purpose.
61
62 MSYMBOL_SET_SPECIAL Actually sets the "special" bit.
63 MSYMBOL_IS_SPECIAL Tests the "special" bit in a minimal symbol. */
64
65 #define MSYMBOL_SET_SPECIAL(msym) \
66 MSYMBOL_INFO (msym) = (char *) (((long) MSYMBOL_INFO (msym)) \
67 | 0x80000000)
68
69 #define MSYMBOL_IS_SPECIAL(msym) \
70 (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0)
71
72 /* Per-objfile data used for mapping symbols. */
73 static const struct objfile_data *arm_objfile_data_key;
74
75 struct arm_mapping_symbol
76 {
77 bfd_vma value;
78 char type;
79 };
80 typedef struct arm_mapping_symbol arm_mapping_symbol_s;
81 DEF_VEC_O(arm_mapping_symbol_s);
82
83 struct arm_per_objfile
84 {
85 VEC(arm_mapping_symbol_s) **section_maps;
86 };
87
88 /* The list of available "set arm ..." and "show arm ..." commands. */
89 static struct cmd_list_element *setarmcmdlist = NULL;
90 static struct cmd_list_element *showarmcmdlist = NULL;
91
92 /* The type of floating-point to use. Keep this in sync with enum
93 arm_float_model, and the help string in _initialize_arm_tdep. */
94 static const char *fp_model_strings[] =
95 {
96 "auto",
97 "softfpa",
98 "fpa",
99 "softvfp",
100 "vfp",
101 NULL
102 };
103
104 /* A variable that can be configured by the user. */
105 static enum arm_float_model arm_fp_model = ARM_FLOAT_AUTO;
106 static const char *current_fp_model = "auto";
107
108 /* The ABI to use. Keep this in sync with arm_abi_kind. */
109 static const char *arm_abi_strings[] =
110 {
111 "auto",
112 "APCS",
113 "AAPCS",
114 NULL
115 };
116
117 /* A variable that can be configured by the user. */
118 static enum arm_abi_kind arm_abi_global = ARM_ABI_AUTO;
119 static const char *arm_abi_string = "auto";
120
121 /* The execution mode to assume. */
122 static const char *arm_mode_strings[] =
123 {
124 "auto",
125 "arm",
126 "thumb"
127 };
128
129 static const char *arm_fallback_mode_string = "auto";
130 static const char *arm_force_mode_string = "auto";
131
132 /* Number of different reg name sets (options). */
133 static int num_disassembly_options;
134
135 /* The standard register names, and all the valid aliases for them. */
136 static const struct
137 {
138 const char *name;
139 int regnum;
140 } arm_register_aliases[] = {
141 /* Basic register numbers. */
142 { "r0", 0 },
143 { "r1", 1 },
144 { "r2", 2 },
145 { "r3", 3 },
146 { "r4", 4 },
147 { "r5", 5 },
148 { "r6", 6 },
149 { "r7", 7 },
150 { "r8", 8 },
151 { "r9", 9 },
152 { "r10", 10 },
153 { "r11", 11 },
154 { "r12", 12 },
155 { "r13", 13 },
156 { "r14", 14 },
157 { "r15", 15 },
158 /* Synonyms (argument and variable registers). */
159 { "a1", 0 },
160 { "a2", 1 },
161 { "a3", 2 },
162 { "a4", 3 },
163 { "v1", 4 },
164 { "v2", 5 },
165 { "v3", 6 },
166 { "v4", 7 },
167 { "v5", 8 },
168 { "v6", 9 },
169 { "v7", 10 },
170 { "v8", 11 },
171 /* Other platform-specific names for r9. */
172 { "sb", 9 },
173 { "tr", 9 },
174 /* Special names. */
175 { "ip", 12 },
176 { "sp", 13 },
177 { "lr", 14 },
178 { "pc", 15 },
179 /* Names used by GCC (not listed in the ARM EABI). */
180 { "sl", 10 },
181 { "fp", 11 },
182 /* A special name from the older ATPCS. */
183 { "wr", 7 },
184 };
185
186 static const char *const arm_register_names[] =
187 {"r0", "r1", "r2", "r3", /* 0 1 2 3 */
188 "r4", "r5", "r6", "r7", /* 4 5 6 7 */
189 "r8", "r9", "r10", "r11", /* 8 9 10 11 */
190 "r12", "sp", "lr", "pc", /* 12 13 14 15 */
191 "f0", "f1", "f2", "f3", /* 16 17 18 19 */
192 "f4", "f5", "f6", "f7", /* 20 21 22 23 */
193 "fps", "cpsr" }; /* 24 25 */
194
195 /* Valid register name styles. */
196 static const char **valid_disassembly_styles;
197
198 /* Disassembly style to use. Default to "std" register names. */
199 static const char *disassembly_style;
200
201 /* This is used to keep the bfd arch_info in sync with the disassembly
202 style. */
203 static void set_disassembly_style_sfunc(char *, int,
204 struct cmd_list_element *);
205 static void set_disassembly_style (void);
206
207 static void convert_from_extended (const struct floatformat *, const void *,
208 void *, int);
209 static void convert_to_extended (const struct floatformat *, void *,
210 const void *, int);
211
212 struct arm_prologue_cache
213 {
214 /* The stack pointer at the time this frame was created; i.e. the
215 caller's stack pointer when this function was called. It is used
216 to identify this frame. */
217 CORE_ADDR prev_sp;
218
219 /* The frame base for this frame is just prev_sp - frame size.
220 FRAMESIZE is the distance from the frame pointer to the
221 initial stack pointer. */
222
223 int framesize;
224
225 /* The register used to hold the frame pointer for this frame. */
226 int framereg;
227
228 /* Saved register offsets. */
229 struct trad_frame_saved_reg *saved_regs;
230 };
231
232 /* Addresses for calling Thumb functions have the bit 0 set.
233 Here are some macros to test, set, or clear bit 0 of addresses. */
234 #define IS_THUMB_ADDR(addr) ((addr) & 1)
235 #define MAKE_THUMB_ADDR(addr) ((addr) | 1)
236 #define UNMAKE_THUMB_ADDR(addr) ((addr) & ~1)
237
238 /* Set to true if the 32-bit mode is in use. */
239
240 int arm_apcs_32 = 1;
241
242 /* Determine if FRAME is executing in Thumb mode. */
243
244 static int
245 arm_frame_is_thumb (struct frame_info *frame)
246 {
247 CORE_ADDR cpsr;
248
249 /* Every ARM frame unwinder can unwind the T bit of the CPSR, either
250 directly (from a signal frame or dummy frame) or by interpreting
251 the saved LR (from a prologue or DWARF frame). So consult it and
252 trust the unwinders. */
253 cpsr = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
254
255 return (cpsr & CPSR_T) != 0;
256 }
257
258 /* Callback for VEC_lower_bound. */
259
260 static inline int
261 arm_compare_mapping_symbols (const struct arm_mapping_symbol *lhs,
262 const struct arm_mapping_symbol *rhs)
263 {
264 return lhs->value < rhs->value;
265 }
266
267 /* Determine if the program counter specified in MEMADDR is in a Thumb
268 function. This function should be called for addresses unrelated to
269 any executing frame; otherwise, prefer arm_frame_is_thumb. */
270
271 static int
272 arm_pc_is_thumb (CORE_ADDR memaddr)
273 {
274 struct obj_section *sec;
275 struct minimal_symbol *sym;
276
277 /* If bit 0 of the address is set, assume this is a Thumb address. */
278 if (IS_THUMB_ADDR (memaddr))
279 return 1;
280
281 /* If the user wants to override the symbol table, let him. */
282 if (strcmp (arm_force_mode_string, "arm") == 0)
283 return 0;
284 if (strcmp (arm_force_mode_string, "thumb") == 0)
285 return 1;
286
287 /* If there are mapping symbols, consult them. */
288 sec = find_pc_section (memaddr);
289 if (sec != NULL)
290 {
291 struct arm_per_objfile *data;
292 VEC(arm_mapping_symbol_s) *map;
293 struct arm_mapping_symbol map_key = { memaddr - sec->addr, 0 };
294 unsigned int idx;
295
296 data = objfile_data (sec->objfile, arm_objfile_data_key);
297 if (data != NULL)
298 {
299 map = data->section_maps[sec->the_bfd_section->index];
300 if (!VEC_empty (arm_mapping_symbol_s, map))
301 {
302 struct arm_mapping_symbol *map_sym;
303
304 idx = VEC_lower_bound (arm_mapping_symbol_s, map, &map_key,
305 arm_compare_mapping_symbols);
306
307 /* VEC_lower_bound finds the earliest ordered insertion
308 point. If the following symbol starts at this exact
309 address, we use that; otherwise, the preceding
310 mapping symbol covers this address. */
311 if (idx < VEC_length (arm_mapping_symbol_s, map))
312 {
313 map_sym = VEC_index (arm_mapping_symbol_s, map, idx);
314 if (map_sym->value == map_key.value)
315 return map_sym->type == 't';
316 }
317
318 if (idx > 0)
319 {
320 map_sym = VEC_index (arm_mapping_symbol_s, map, idx - 1);
321 return map_sym->type == 't';
322 }
323 }
324 }
325 }
326
327 /* Thumb functions have a "special" bit set in minimal symbols. */
328 sym = lookup_minimal_symbol_by_pc (memaddr);
329 if (sym)
330 return (MSYMBOL_IS_SPECIAL (sym));
331
332 /* If the user wants to override the fallback mode, let them. */
333 if (strcmp (arm_fallback_mode_string, "arm") == 0)
334 return 0;
335 if (strcmp (arm_fallback_mode_string, "thumb") == 0)
336 return 1;
337
338 /* If we couldn't find any symbol, but we're talking to a running
339 target, then trust the current value of $cpsr. This lets
340 "display/i $pc" always show the correct mode (though if there is
341 a symbol table we will not reach here, so it still may not be
342 displayed in the mode it will be executed). */
343 if (target_has_registers)
344 return arm_frame_is_thumb (get_current_frame ());
345
346 /* Otherwise we're out of luck; we assume ARM. */
347 return 0;
348 }
349
350 /* Remove useless bits from addresses in a running program. */
351 static CORE_ADDR
352 arm_addr_bits_remove (CORE_ADDR val)
353 {
354 if (arm_apcs_32)
355 return UNMAKE_THUMB_ADDR (val);
356 else
357 return (val & 0x03fffffc);
358 }
359
360 /* When reading symbols, we need to zap the low bit of the address,
361 which may be set to 1 for Thumb functions. */
362 static CORE_ADDR
363 arm_smash_text_address (CORE_ADDR val)
364 {
365 return val & ~1;
366 }
367
368 /* Analyze a Thumb prologue, looking for a recognizable stack frame
369 and frame pointer. Scan until we encounter a store that could
370 clobber the stack frame unexpectedly, or an unknown instruction. */
371
372 static CORE_ADDR
373 thumb_analyze_prologue (struct gdbarch *gdbarch,
374 CORE_ADDR start, CORE_ADDR limit,
375 struct arm_prologue_cache *cache)
376 {
377 int i;
378 pv_t regs[16];
379 struct pv_area *stack;
380 struct cleanup *back_to;
381 CORE_ADDR offset;
382
383 for (i = 0; i < 16; i++)
384 regs[i] = pv_register (i, 0);
385 stack = make_pv_area (ARM_SP_REGNUM);
386 back_to = make_cleanup_free_pv_area (stack);
387
388 while (start < limit)
389 {
390 unsigned short insn;
391
392 insn = read_memory_unsigned_integer (start, 2);
393
394 if ((insn & 0xfe00) == 0xb400) /* push { rlist } */
395 {
396 int regno;
397 int mask;
398
399 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
400 break;
401
402 /* Bits 0-7 contain a mask for registers R0-R7. Bit 8 says
403 whether to save LR (R14). */
404 mask = (insn & 0xff) | ((insn & 0x100) << 6);
405
406 /* Calculate offsets of saved R0-R7 and LR. */
407 for (regno = ARM_LR_REGNUM; regno >= 0; regno--)
408 if (mask & (1 << regno))
409 {
410 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
411 -4);
412 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
413 }
414 }
415 else if ((insn & 0xff00) == 0xb000) /* add sp, #simm OR
416 sub sp, #simm */
417 {
418 offset = (insn & 0x7f) << 2; /* get scaled offset */
419 if (insn & 0x80) /* Check for SUB. */
420 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
421 -offset);
422 else
423 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
424 offset);
425 }
426 else if ((insn & 0xff00) == 0xaf00) /* add r7, sp, #imm */
427 regs[THUMB_FP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM],
428 (insn & 0xff) << 2);
429 else if ((insn & 0xff00) == 0x4600) /* mov hi, lo or mov lo, hi */
430 {
431 int dst_reg = (insn & 0x7) + ((insn & 0x80) >> 4);
432 int src_reg = (insn & 0x78) >> 3;
433 regs[dst_reg] = regs[src_reg];
434 }
435 else if ((insn & 0xf800) == 0x9000) /* str rd, [sp, #off] */
436 {
437 /* Handle stores to the stack. Normally pushes are used,
438 but with GCC -mtpcs-frame, there may be other stores
439 in the prologue to create the frame. */
440 int regno = (insn >> 8) & 0x7;
441 pv_t addr;
442
443 offset = (insn & 0xff) << 2;
444 addr = pv_add_constant (regs[ARM_SP_REGNUM], offset);
445
446 if (pv_area_store_would_trash (stack, addr))
447 break;
448
449 pv_area_store (stack, addr, 4, regs[regno]);
450 }
451 else
452 {
453 /* We don't know what this instruction is. We're finished
454 scanning. NOTE: Recognizing more safe-to-ignore
455 instructions here will improve support for optimized
456 code. */
457 break;
458 }
459
460 start += 2;
461 }
462
463 if (cache == NULL)
464 {
465 do_cleanups (back_to);
466 return start;
467 }
468
469 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
470 {
471 /* Frame pointer is fp. Frame size is constant. */
472 cache->framereg = ARM_FP_REGNUM;
473 cache->framesize = -regs[ARM_FP_REGNUM].k;
474 }
475 else if (pv_is_register (regs[THUMB_FP_REGNUM], ARM_SP_REGNUM))
476 {
477 /* Frame pointer is r7. Frame size is constant. */
478 cache->framereg = THUMB_FP_REGNUM;
479 cache->framesize = -regs[THUMB_FP_REGNUM].k;
480 }
481 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
482 {
483 /* Try the stack pointer... this is a bit desperate. */
484 cache->framereg = ARM_SP_REGNUM;
485 cache->framesize = -regs[ARM_SP_REGNUM].k;
486 }
487 else
488 {
489 /* We're just out of luck. We don't know where the frame is. */
490 cache->framereg = -1;
491 cache->framesize = 0;
492 }
493
494 for (i = 0; i < 16; i++)
495 if (pv_area_find_reg (stack, gdbarch, i, &offset))
496 cache->saved_regs[i].addr = offset;
497
498 do_cleanups (back_to);
499 return start;
500 }
501
502 /* Advance the PC across any function entry prologue instructions to
503 reach some "real" code.
504
505 The APCS (ARM Procedure Call Standard) defines the following
506 prologue:
507
508 mov ip, sp
509 [stmfd sp!, {a1,a2,a3,a4}]
510 stmfd sp!, {...,fp,ip,lr,pc}
511 [stfe f7, [sp, #-12]!]
512 [stfe f6, [sp, #-12]!]
513 [stfe f5, [sp, #-12]!]
514 [stfe f4, [sp, #-12]!]
515 sub fp, ip, #nn @@ nn == 20 or 4 depending on second insn */
516
517 static CORE_ADDR
518 arm_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
519 {
520 unsigned long inst;
521 CORE_ADDR skip_pc;
522 CORE_ADDR func_addr, func_end = 0;
523 char *func_name;
524 struct symtab_and_line sal;
525
526 /* If we're in a dummy frame, don't even try to skip the prologue. */
527 if (deprecated_pc_in_call_dummy (pc))
528 return pc;
529
530 /* See what the symbol table says. */
531
532 if (find_pc_partial_function (pc, &func_name, &func_addr, &func_end))
533 {
534 struct symbol *sym;
535
536 /* Found a function. */
537 sym = lookup_symbol (func_name, NULL, VAR_DOMAIN, NULL, NULL);
538 if (sym && SYMBOL_LANGUAGE (sym) != language_asm)
539 {
540 /* Don't use this trick for assembly source files. */
541 sal = find_pc_line (func_addr, 0);
542 if ((sal.line != 0) && (sal.end < func_end))
543 return sal.end;
544 }
545 }
546
547 /* Can't find the prologue end in the symbol table, try it the hard way
548 by disassembling the instructions. */
549
550 /* Like arm_scan_prologue, stop no later than pc + 64. */
551 if (func_end == 0 || func_end > pc + 64)
552 func_end = pc + 64;
553
554 /* Check if this is Thumb code. */
555 if (arm_pc_is_thumb (pc))
556 return thumb_analyze_prologue (gdbarch, pc, func_end, NULL);
557
558 for (skip_pc = pc; skip_pc < func_end; skip_pc += 4)
559 {
560 inst = read_memory_unsigned_integer (skip_pc, 4);
561
562 /* "mov ip, sp" is no longer a required part of the prologue. */
563 if (inst == 0xe1a0c00d) /* mov ip, sp */
564 continue;
565
566 if ((inst & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
567 continue;
568
569 if ((inst & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
570 continue;
571
572 /* Some prologues begin with "str lr, [sp, #-4]!". */
573 if (inst == 0xe52de004) /* str lr, [sp, #-4]! */
574 continue;
575
576 if ((inst & 0xfffffff0) == 0xe92d0000) /* stmfd sp!,{a1,a2,a3,a4} */
577 continue;
578
579 if ((inst & 0xfffff800) == 0xe92dd800) /* stmfd sp!,{fp,ip,lr,pc} */
580 continue;
581
582 /* Any insns after this point may float into the code, if it makes
583 for better instruction scheduling, so we skip them only if we
584 find them, but still consider the function to be frame-ful. */
585
586 /* We may have either one sfmfd instruction here, or several stfe
587 insns, depending on the version of floating point code we
588 support. */
589 if ((inst & 0xffbf0fff) == 0xec2d0200) /* sfmfd fn, <cnt>, [sp]! */
590 continue;
591
592 if ((inst & 0xffff8fff) == 0xed6d0103) /* stfe fn, [sp, #-12]! */
593 continue;
594
595 if ((inst & 0xfffff000) == 0xe24cb000) /* sub fp, ip, #nn */
596 continue;
597
598 if ((inst & 0xfffff000) == 0xe24dd000) /* sub sp, sp, #nn */
599 continue;
600
601 if ((inst & 0xffffc000) == 0xe54b0000 || /* strb r(0123),[r11,#-nn] */
602 (inst & 0xffffc0f0) == 0xe14b00b0 || /* strh r(0123),[r11,#-nn] */
603 (inst & 0xffffc000) == 0xe50b0000) /* str r(0123),[r11,#-nn] */
604 continue;
605
606 if ((inst & 0xffffc000) == 0xe5cd0000 || /* strb r(0123),[sp,#nn] */
607 (inst & 0xffffc0f0) == 0xe1cd00b0 || /* strh r(0123),[sp,#nn] */
608 (inst & 0xffffc000) == 0xe58d0000) /* str r(0123),[sp,#nn] */
609 continue;
610
611 /* Un-recognized instruction; stop scanning. */
612 break;
613 }
614
615 return skip_pc; /* End of prologue */
616 }
617
618 /* *INDENT-OFF* */
619 /* Function: thumb_scan_prologue (helper function for arm_scan_prologue)
620 This function decodes a Thumb function prologue to determine:
621 1) the size of the stack frame
622 2) which registers are saved on it
623 3) the offsets of saved regs
624 4) the offset from the stack pointer to the frame pointer
625
626 A typical Thumb function prologue would create this stack frame
627 (offsets relative to FP)
628 old SP -> 24 stack parameters
629 20 LR
630 16 R7
631 R7 -> 0 local variables (16 bytes)
632 SP -> -12 additional stack space (12 bytes)
633 The frame size would thus be 36 bytes, and the frame offset would be
634 12 bytes. The frame register is R7.
635
636 The comments for thumb_skip_prolog() describe the algorithm we use
637 to detect the end of the prolog. */
638 /* *INDENT-ON* */
639
640 static void
641 thumb_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR prev_pc,
642 CORE_ADDR block_addr, struct arm_prologue_cache *cache)
643 {
644 CORE_ADDR prologue_start;
645 CORE_ADDR prologue_end;
646 CORE_ADDR current_pc;
647
648 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
649 &prologue_end))
650 {
651 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
652
653 if (sal.line == 0) /* no line info, use current PC */
654 prologue_end = prev_pc;
655 else if (sal.end < prologue_end) /* next line begins after fn end */
656 prologue_end = sal.end; /* (probably means no prologue) */
657 }
658 else
659 /* We're in the boondocks: we have no idea where the start of the
660 function is. */
661 return;
662
663 prologue_end = min (prologue_end, prev_pc);
664
665 thumb_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
666 }
667
668 /* This function decodes an ARM function prologue to determine:
669 1) the size of the stack frame
670 2) which registers are saved on it
671 3) the offsets of saved regs
672 4) the offset from the stack pointer to the frame pointer
673 This information is stored in the "extra" fields of the frame_info.
674
675 There are two basic forms for the ARM prologue. The fixed argument
676 function call will look like:
677
678 mov ip, sp
679 stmfd sp!, {fp, ip, lr, pc}
680 sub fp, ip, #4
681 [sub sp, sp, #4]
682
683 Which would create this stack frame (offsets relative to FP):
684 IP -> 4 (caller's stack)
685 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
686 -4 LR (return address in caller)
687 -8 IP (copy of caller's SP)
688 -12 FP (caller's FP)
689 SP -> -28 Local variables
690
691 The frame size would thus be 32 bytes, and the frame offset would be
692 28 bytes. The stmfd call can also save any of the vN registers it
693 plans to use, which increases the frame size accordingly.
694
695 Note: The stored PC is 8 off of the STMFD instruction that stored it
696 because the ARM Store instructions always store PC + 8 when you read
697 the PC register.
698
699 A variable argument function call will look like:
700
701 mov ip, sp
702 stmfd sp!, {a1, a2, a3, a4}
703 stmfd sp!, {fp, ip, lr, pc}
704 sub fp, ip, #20
705
706 Which would create this stack frame (offsets relative to FP):
707 IP -> 20 (caller's stack)
708 16 A4
709 12 A3
710 8 A2
711 4 A1
712 FP -> 0 PC (points to address of stmfd instruction + 8 in callee)
713 -4 LR (return address in caller)
714 -8 IP (copy of caller's SP)
715 -12 FP (caller's FP)
716 SP -> -28 Local variables
717
718 The frame size would thus be 48 bytes, and the frame offset would be
719 28 bytes.
720
721 There is another potential complication, which is that the optimizer
722 will try to separate the store of fp in the "stmfd" instruction from
723 the "sub fp, ip, #NN" instruction. Almost anything can be there, so
724 we just key on the stmfd, and then scan for the "sub fp, ip, #NN"...
725
726 Also, note, the original version of the ARM toolchain claimed that there
727 should be an
728
729 instruction at the end of the prologue. I have never seen GCC produce
730 this, and the ARM docs don't mention it. We still test for it below in
731 case it happens...
732
733 */
734
735 static void
736 arm_scan_prologue (struct frame_info *this_frame,
737 struct arm_prologue_cache *cache)
738 {
739 struct gdbarch *gdbarch = get_frame_arch (this_frame);
740 int regno;
741 CORE_ADDR prologue_start, prologue_end, current_pc;
742 CORE_ADDR prev_pc = get_frame_pc (this_frame);
743 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
744 pv_t regs[ARM_FPS_REGNUM];
745 struct pv_area *stack;
746 struct cleanup *back_to;
747 CORE_ADDR offset;
748
749 /* Assume there is no frame until proven otherwise. */
750 cache->framereg = ARM_SP_REGNUM;
751 cache->framesize = 0;
752
753 /* Check for Thumb prologue. */
754 if (arm_frame_is_thumb (this_frame))
755 {
756 thumb_scan_prologue (gdbarch, prev_pc, block_addr, cache);
757 return;
758 }
759
760 /* Find the function prologue. If we can't find the function in
761 the symbol table, peek in the stack frame to find the PC. */
762 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
763 &prologue_end))
764 {
765 /* One way to find the end of the prologue (which works well
766 for unoptimized code) is to do the following:
767
768 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
769
770 if (sal.line == 0)
771 prologue_end = prev_pc;
772 else if (sal.end < prologue_end)
773 prologue_end = sal.end;
774
775 This mechanism is very accurate so long as the optimizer
776 doesn't move any instructions from the function body into the
777 prologue. If this happens, sal.end will be the last
778 instruction in the first hunk of prologue code just before
779 the first instruction that the scheduler has moved from
780 the body to the prologue.
781
782 In order to make sure that we scan all of the prologue
783 instructions, we use a slightly less accurate mechanism which
784 may scan more than necessary. To help compensate for this
785 lack of accuracy, the prologue scanning loop below contains
786 several clauses which'll cause the loop to terminate early if
787 an implausible prologue instruction is encountered.
788
789 The expression
790
791 prologue_start + 64
792
793 is a suitable endpoint since it accounts for the largest
794 possible prologue plus up to five instructions inserted by
795 the scheduler. */
796
797 if (prologue_end > prologue_start + 64)
798 {
799 prologue_end = prologue_start + 64; /* See above. */
800 }
801 }
802 else
803 {
804 /* We have no symbol information. Our only option is to assume this
805 function has a standard stack frame and the normal frame register.
806 Then, we can find the value of our frame pointer on entrance to
807 the callee (or at the present moment if this is the innermost frame).
808 The value stored there should be the address of the stmfd + 8. */
809 CORE_ADDR frame_loc;
810 LONGEST return_value;
811
812 frame_loc = get_frame_register_unsigned (this_frame, ARM_FP_REGNUM);
813 if (!safe_read_memory_integer (frame_loc, 4, &return_value))
814 return;
815 else
816 {
817 prologue_start = gdbarch_addr_bits_remove
818 (gdbarch, return_value) - 8;
819 prologue_end = prologue_start + 64; /* See above. */
820 }
821 }
822
823 if (prev_pc < prologue_end)
824 prologue_end = prev_pc;
825
826 /* Now search the prologue looking for instructions that set up the
827 frame pointer, adjust the stack pointer, and save registers.
828
829 Be careful, however, and if it doesn't look like a prologue,
830 don't try to scan it. If, for instance, a frameless function
831 begins with stmfd sp!, then we will tell ourselves there is
832 a frame, which will confuse stack traceback, as well as "finish"
833 and other operations that rely on a knowledge of the stack
834 traceback.
835
836 In the APCS, the prologue should start with "mov ip, sp" so
837 if we don't see this as the first insn, we will stop.
838
839 [Note: This doesn't seem to be true any longer, so it's now an
840 optional part of the prologue. - Kevin Buettner, 2001-11-20]
841
842 [Note further: The "mov ip,sp" only seems to be missing in
843 frameless functions at optimization level "-O2" or above,
844 in which case it is often (but not always) replaced by
845 "str lr, [sp, #-4]!". - Michael Snyder, 2002-04-23] */
846
847 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
848 regs[regno] = pv_register (regno, 0);
849 stack = make_pv_area (ARM_SP_REGNUM);
850 back_to = make_cleanup_free_pv_area (stack);
851
852 for (current_pc = prologue_start;
853 current_pc < prologue_end;
854 current_pc += 4)
855 {
856 unsigned int insn = read_memory_unsigned_integer (current_pc, 4);
857
858 if (insn == 0xe1a0c00d) /* mov ip, sp */
859 {
860 regs[ARM_IP_REGNUM] = regs[ARM_SP_REGNUM];
861 continue;
862 }
863 else if ((insn & 0xfffff000) == 0xe28dc000) /* add ip, sp #n */
864 {
865 unsigned imm = insn & 0xff; /* immediate value */
866 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
867 imm = (imm >> rot) | (imm << (32 - rot));
868 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], imm);
869 continue;
870 }
871 else if ((insn & 0xfffff000) == 0xe24dc000) /* sub ip, sp #n */
872 {
873 unsigned imm = insn & 0xff; /* immediate value */
874 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
875 imm = (imm >> rot) | (imm << (32 - rot));
876 regs[ARM_IP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
877 continue;
878 }
879 else if (insn == 0xe52de004) /* str lr, [sp, #-4]! */
880 {
881 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
882 break;
883 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
884 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[ARM_LR_REGNUM]);
885 continue;
886 }
887 else if ((insn & 0xffff0000) == 0xe92d0000)
888 /* stmfd sp!, {..., fp, ip, lr, pc}
889 or
890 stmfd sp!, {a1, a2, a3, a4} */
891 {
892 int mask = insn & 0xffff;
893
894 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
895 break;
896
897 /* Calculate offsets of saved registers. */
898 for (regno = ARM_PC_REGNUM; regno >= 0; regno--)
899 if (mask & (1 << regno))
900 {
901 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -4);
902 pv_area_store (stack, regs[ARM_SP_REGNUM], 4, regs[regno]);
903 }
904 }
905 else if ((insn & 0xffffc000) == 0xe54b0000 || /* strb rx,[r11,#-n] */
906 (insn & 0xffffc0f0) == 0xe14b00b0 || /* strh rx,[r11,#-n] */
907 (insn & 0xffffc000) == 0xe50b0000) /* str rx,[r11,#-n] */
908 {
909 /* No need to add this to saved_regs -- it's just an arg reg. */
910 continue;
911 }
912 else if ((insn & 0xffffc000) == 0xe5cd0000 || /* strb rx,[sp,#n] */
913 (insn & 0xffffc0f0) == 0xe1cd00b0 || /* strh rx,[sp,#n] */
914 (insn & 0xffffc000) == 0xe58d0000) /* str rx,[sp,#n] */
915 {
916 /* No need to add this to saved_regs -- it's just an arg reg. */
917 continue;
918 }
919 else if ((insn & 0xfffff000) == 0xe24cb000) /* sub fp, ip #n */
920 {
921 unsigned imm = insn & 0xff; /* immediate value */
922 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
923 imm = (imm >> rot) | (imm << (32 - rot));
924 regs[ARM_FP_REGNUM] = pv_add_constant (regs[ARM_IP_REGNUM], -imm);
925 }
926 else if ((insn & 0xfffff000) == 0xe24dd000) /* sub sp, sp #n */
927 {
928 unsigned imm = insn & 0xff; /* immediate value */
929 unsigned rot = (insn & 0xf00) >> 7; /* rotate amount */
930 imm = (imm >> rot) | (imm << (32 - rot));
931 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -imm);
932 }
933 else if ((insn & 0xffff7fff) == 0xed6d0103 /* stfe f?, [sp, -#c]! */
934 && gdbarch_tdep (gdbarch)->have_fpa_registers)
935 {
936 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
937 break;
938
939 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
940 regno = ARM_F0_REGNUM + ((insn >> 12) & 0x07);
941 pv_area_store (stack, regs[ARM_SP_REGNUM], 12, regs[regno]);
942 }
943 else if ((insn & 0xffbf0fff) == 0xec2d0200 /* sfmfd f0, 4, [sp!] */
944 && gdbarch_tdep (gdbarch)->have_fpa_registers)
945 {
946 int n_saved_fp_regs;
947 unsigned int fp_start_reg, fp_bound_reg;
948
949 if (pv_area_store_would_trash (stack, regs[ARM_SP_REGNUM]))
950 break;
951
952 if ((insn & 0x800) == 0x800) /* N0 is set */
953 {
954 if ((insn & 0x40000) == 0x40000) /* N1 is set */
955 n_saved_fp_regs = 3;
956 else
957 n_saved_fp_regs = 1;
958 }
959 else
960 {
961 if ((insn & 0x40000) == 0x40000) /* N1 is set */
962 n_saved_fp_regs = 2;
963 else
964 n_saved_fp_regs = 4;
965 }
966
967 fp_start_reg = ARM_F0_REGNUM + ((insn >> 12) & 0x7);
968 fp_bound_reg = fp_start_reg + n_saved_fp_regs;
969 for (; fp_start_reg < fp_bound_reg; fp_start_reg++)
970 {
971 regs[ARM_SP_REGNUM] = pv_add_constant (regs[ARM_SP_REGNUM], -12);
972 pv_area_store (stack, regs[ARM_SP_REGNUM], 12,
973 regs[fp_start_reg++]);
974 }
975 }
976 else if ((insn & 0xf0000000) != 0xe0000000)
977 break; /* Condition not true, exit early */
978 else if ((insn & 0xfe200000) == 0xe8200000) /* ldm? */
979 break; /* Don't scan past a block load */
980 else
981 /* The optimizer might shove anything into the prologue,
982 so we just skip what we don't recognize. */
983 continue;
984 }
985
986 /* The frame size is just the distance from the frame register
987 to the original stack pointer. */
988 if (pv_is_register (regs[ARM_FP_REGNUM], ARM_SP_REGNUM))
989 {
990 /* Frame pointer is fp. */
991 cache->framereg = ARM_FP_REGNUM;
992 cache->framesize = -regs[ARM_FP_REGNUM].k;
993 }
994 else if (pv_is_register (regs[ARM_SP_REGNUM], ARM_SP_REGNUM))
995 {
996 /* Try the stack pointer... this is a bit desperate. */
997 cache->framereg = ARM_SP_REGNUM;
998 cache->framesize = -regs[ARM_SP_REGNUM].k;
999 }
1000 else
1001 {
1002 /* We're just out of luck. We don't know where the frame is. */
1003 cache->framereg = -1;
1004 cache->framesize = 0;
1005 }
1006
1007 for (regno = 0; regno < ARM_FPS_REGNUM; regno++)
1008 if (pv_area_find_reg (stack, gdbarch, regno, &offset))
1009 cache->saved_regs[regno].addr = offset;
1010
1011 do_cleanups (back_to);
1012 }
1013
1014 static struct arm_prologue_cache *
1015 arm_make_prologue_cache (struct frame_info *this_frame)
1016 {
1017 int reg;
1018 struct arm_prologue_cache *cache;
1019 CORE_ADDR unwound_fp;
1020
1021 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1022 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1023
1024 arm_scan_prologue (this_frame, cache);
1025
1026 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
1027 if (unwound_fp == 0)
1028 return cache;
1029
1030 cache->prev_sp = unwound_fp + cache->framesize;
1031
1032 /* Calculate actual addresses of saved registers using offsets
1033 determined by arm_scan_prologue. */
1034 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
1035 if (trad_frame_addr_p (cache->saved_regs, reg))
1036 cache->saved_regs[reg].addr += cache->prev_sp;
1037
1038 return cache;
1039 }
1040
1041 /* Our frame ID for a normal frame is the current function's starting PC
1042 and the caller's SP when we were called. */
1043
1044 static void
1045 arm_prologue_this_id (struct frame_info *this_frame,
1046 void **this_cache,
1047 struct frame_id *this_id)
1048 {
1049 struct arm_prologue_cache *cache;
1050 struct frame_id id;
1051 CORE_ADDR pc, func;
1052
1053 if (*this_cache == NULL)
1054 *this_cache = arm_make_prologue_cache (this_frame);
1055 cache = *this_cache;
1056
1057 /* This is meant to halt the backtrace at "_start". */
1058 pc = get_frame_pc (this_frame);
1059 if (pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1060 return;
1061
1062 /* If we've hit a wall, stop. */
1063 if (cache->prev_sp == 0)
1064 return;
1065
1066 func = get_frame_func (this_frame);
1067 id = frame_id_build (cache->prev_sp, func);
1068 *this_id = id;
1069 }
1070
1071 static struct value *
1072 arm_prologue_prev_register (struct frame_info *this_frame,
1073 void **this_cache,
1074 int prev_regnum)
1075 {
1076 struct arm_prologue_cache *cache;
1077
1078 if (*this_cache == NULL)
1079 *this_cache = arm_make_prologue_cache (this_frame);
1080 cache = *this_cache;
1081
1082 /* If we are asked to unwind the PC, then we need to return the LR
1083 instead. The prologue may save PC, but it will point into this
1084 frame's prologue, not the next frame's resume location. Also
1085 strip the saved T bit. A valid LR may have the low bit set, but
1086 a valid PC never does. */
1087 if (prev_regnum == ARM_PC_REGNUM)
1088 {
1089 CORE_ADDR lr;
1090
1091 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1092 return frame_unwind_got_constant (this_frame, prev_regnum,
1093 arm_addr_bits_remove (lr));
1094 }
1095
1096 /* SP is generally not saved to the stack, but this frame is
1097 identified by the next frame's stack pointer at the time of the call.
1098 The value was already reconstructed into PREV_SP. */
1099 if (prev_regnum == ARM_SP_REGNUM)
1100 return frame_unwind_got_constant (this_frame, prev_regnum, cache->prev_sp);
1101
1102 /* The CPSR may have been changed by the call instruction and by the
1103 called function. The only bit we can reconstruct is the T bit,
1104 by checking the low bit of LR as of the call. This is a reliable
1105 indicator of Thumb-ness except for some ARM v4T pre-interworking
1106 Thumb code, which could get away with a clear low bit as long as
1107 the called function did not use bx. Guess that all other
1108 bits are unchanged; the condition flags are presumably lost,
1109 but the processor status is likely valid. */
1110 if (prev_regnum == ARM_PS_REGNUM)
1111 {
1112 CORE_ADDR lr, cpsr;
1113
1114 cpsr = get_frame_register_unsigned (this_frame, prev_regnum);
1115 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1116 if (IS_THUMB_ADDR (lr))
1117 cpsr |= CPSR_T;
1118 else
1119 cpsr &= ~CPSR_T;
1120 return frame_unwind_got_constant (this_frame, prev_regnum, cpsr);
1121 }
1122
1123 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1124 prev_regnum);
1125 }
1126
1127 struct frame_unwind arm_prologue_unwind = {
1128 NORMAL_FRAME,
1129 arm_prologue_this_id,
1130 arm_prologue_prev_register,
1131 NULL,
1132 default_frame_sniffer
1133 };
1134
1135 static struct arm_prologue_cache *
1136 arm_make_stub_cache (struct frame_info *this_frame)
1137 {
1138 int reg;
1139 struct arm_prologue_cache *cache;
1140 CORE_ADDR unwound_fp;
1141
1142 cache = FRAME_OBSTACK_ZALLOC (struct arm_prologue_cache);
1143 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1144
1145 cache->prev_sp = get_frame_register_unsigned (this_frame, ARM_SP_REGNUM);
1146
1147 return cache;
1148 }
1149
1150 /* Our frame ID for a stub frame is the current SP and LR. */
1151
1152 static void
1153 arm_stub_this_id (struct frame_info *this_frame,
1154 void **this_cache,
1155 struct frame_id *this_id)
1156 {
1157 struct arm_prologue_cache *cache;
1158
1159 if (*this_cache == NULL)
1160 *this_cache = arm_make_stub_cache (this_frame);
1161 cache = *this_cache;
1162
1163 *this_id = frame_id_build (cache->prev_sp, get_frame_pc (this_frame));
1164 }
1165
1166 static int
1167 arm_stub_unwind_sniffer (const struct frame_unwind *self,
1168 struct frame_info *this_frame,
1169 void **this_prologue_cache)
1170 {
1171 CORE_ADDR addr_in_block;
1172 char dummy[4];
1173
1174 addr_in_block = get_frame_address_in_block (this_frame);
1175 if (in_plt_section (addr_in_block, NULL)
1176 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1177 return 1;
1178
1179 return 0;
1180 }
1181
1182 struct frame_unwind arm_stub_unwind = {
1183 NORMAL_FRAME,
1184 arm_stub_this_id,
1185 arm_prologue_prev_register,
1186 NULL,
1187 arm_stub_unwind_sniffer
1188 };
1189
1190 static CORE_ADDR
1191 arm_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1192 {
1193 struct arm_prologue_cache *cache;
1194
1195 if (*this_cache == NULL)
1196 *this_cache = arm_make_prologue_cache (this_frame);
1197 cache = *this_cache;
1198
1199 return cache->prev_sp - cache->framesize;
1200 }
1201
1202 struct frame_base arm_normal_base = {
1203 &arm_prologue_unwind,
1204 arm_normal_frame_base,
1205 arm_normal_frame_base,
1206 arm_normal_frame_base
1207 };
1208
1209 /* Assuming THIS_FRAME is a dummy, return the frame ID of that
1210 dummy frame. The frame ID's base needs to match the TOS value
1211 saved by save_dummy_frame_tos() and returned from
1212 arm_push_dummy_call, and the PC needs to match the dummy frame's
1213 breakpoint. */
1214
1215 static struct frame_id
1216 arm_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
1217 {
1218 return frame_id_build (get_frame_register_unsigned (this_frame, ARM_SP_REGNUM),
1219 get_frame_pc (this_frame));
1220 }
1221
1222 /* Given THIS_FRAME, find the previous frame's resume PC (which will
1223 be used to construct the previous frame's ID, after looking up the
1224 containing function). */
1225
1226 static CORE_ADDR
1227 arm_unwind_pc (struct gdbarch *gdbarch, struct frame_info *this_frame)
1228 {
1229 CORE_ADDR pc;
1230 pc = frame_unwind_register_unsigned (this_frame, ARM_PC_REGNUM);
1231 return arm_addr_bits_remove (pc);
1232 }
1233
1234 static CORE_ADDR
1235 arm_unwind_sp (struct gdbarch *gdbarch, struct frame_info *this_frame)
1236 {
1237 return frame_unwind_register_unsigned (this_frame, ARM_SP_REGNUM);
1238 }
1239
1240 static struct value *
1241 arm_dwarf2_prev_register (struct frame_info *this_frame, void **this_cache,
1242 int regnum)
1243 {
1244 CORE_ADDR lr, cpsr;
1245
1246 switch (regnum)
1247 {
1248 case ARM_PC_REGNUM:
1249 /* The PC is normally copied from the return column, which
1250 describes saves of LR. However, that version may have an
1251 extra bit set to indicate Thumb state. The bit is not
1252 part of the PC. */
1253 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1254 return frame_unwind_got_constant (this_frame, regnum,
1255 arm_addr_bits_remove (lr));
1256
1257 case ARM_PS_REGNUM:
1258 /* Reconstruct the T bit; see arm_prologue_prev_register for details. */
1259 cpsr = get_frame_register_unsigned (this_frame, regnum);
1260 lr = frame_unwind_register_unsigned (this_frame, ARM_LR_REGNUM);
1261 if (IS_THUMB_ADDR (lr))
1262 cpsr |= CPSR_T;
1263 else
1264 cpsr &= ~CPSR_T;
1265 return frame_unwind_got_constant (this_frame, regnum, cpsr);
1266
1267 default:
1268 internal_error (__FILE__, __LINE__,
1269 _("Unexpected register %d"), regnum);
1270 }
1271 }
1272
1273 static void
1274 arm_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1275 struct dwarf2_frame_state_reg *reg,
1276 struct frame_info *this_frame)
1277 {
1278 switch (regnum)
1279 {
1280 case ARM_PC_REGNUM:
1281 case ARM_PS_REGNUM:
1282 reg->how = DWARF2_FRAME_REG_FN;
1283 reg->loc.fn = arm_dwarf2_prev_register;
1284 break;
1285 case ARM_SP_REGNUM:
1286 reg->how = DWARF2_FRAME_REG_CFA;
1287 break;
1288 }
1289 }
1290
1291 /* When arguments must be pushed onto the stack, they go on in reverse
1292 order. The code below implements a FILO (stack) to do this. */
1293
1294 struct stack_item
1295 {
1296 int len;
1297 struct stack_item *prev;
1298 void *data;
1299 };
1300
1301 static struct stack_item *
1302 push_stack_item (struct stack_item *prev, void *contents, int len)
1303 {
1304 struct stack_item *si;
1305 si = xmalloc (sizeof (struct stack_item));
1306 si->data = xmalloc (len);
1307 si->len = len;
1308 si->prev = prev;
1309 memcpy (si->data, contents, len);
1310 return si;
1311 }
1312
1313 static struct stack_item *
1314 pop_stack_item (struct stack_item *si)
1315 {
1316 struct stack_item *dead = si;
1317 si = si->prev;
1318 xfree (dead->data);
1319 xfree (dead);
1320 return si;
1321 }
1322
1323
1324 /* Return the alignment (in bytes) of the given type. */
1325
1326 static int
1327 arm_type_align (struct type *t)
1328 {
1329 int n;
1330 int align;
1331 int falign;
1332
1333 t = check_typedef (t);
1334 switch (TYPE_CODE (t))
1335 {
1336 default:
1337 /* Should never happen. */
1338 internal_error (__FILE__, __LINE__, _("unknown type alignment"));
1339 return 4;
1340
1341 case TYPE_CODE_PTR:
1342 case TYPE_CODE_ENUM:
1343 case TYPE_CODE_INT:
1344 case TYPE_CODE_FLT:
1345 case TYPE_CODE_SET:
1346 case TYPE_CODE_RANGE:
1347 case TYPE_CODE_BITSTRING:
1348 case TYPE_CODE_REF:
1349 case TYPE_CODE_CHAR:
1350 case TYPE_CODE_BOOL:
1351 return TYPE_LENGTH (t);
1352
1353 case TYPE_CODE_ARRAY:
1354 case TYPE_CODE_COMPLEX:
1355 /* TODO: What about vector types? */
1356 return arm_type_align (TYPE_TARGET_TYPE (t));
1357
1358 case TYPE_CODE_STRUCT:
1359 case TYPE_CODE_UNION:
1360 align = 1;
1361 for (n = 0; n < TYPE_NFIELDS (t); n++)
1362 {
1363 falign = arm_type_align (TYPE_FIELD_TYPE (t, n));
1364 if (falign > align)
1365 align = falign;
1366 }
1367 return align;
1368 }
1369 }
1370
1371 /* We currently only support passing parameters in integer registers. This
1372 conforms with GCC's default model. Several other variants exist and
1373 we should probably support some of them based on the selected ABI. */
1374
1375 static CORE_ADDR
1376 arm_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1377 struct regcache *regcache, CORE_ADDR bp_addr, int nargs,
1378 struct value **args, CORE_ADDR sp, int struct_return,
1379 CORE_ADDR struct_addr)
1380 {
1381 int argnum;
1382 int argreg;
1383 int nstack;
1384 struct stack_item *si = NULL;
1385
1386 /* Set the return address. For the ARM, the return breakpoint is
1387 always at BP_ADDR. */
1388 /* XXX Fix for Thumb. */
1389 regcache_cooked_write_unsigned (regcache, ARM_LR_REGNUM, bp_addr);
1390
1391 /* Walk through the list of args and determine how large a temporary
1392 stack is required. Need to take care here as structs may be
1393 passed on the stack, and we have to to push them. */
1394 nstack = 0;
1395
1396 argreg = ARM_A1_REGNUM;
1397 nstack = 0;
1398
1399 /* The struct_return pointer occupies the first parameter
1400 passing register. */
1401 if (struct_return)
1402 {
1403 if (arm_debug)
1404 fprintf_unfiltered (gdb_stdlog, "struct return in %s = 0x%s\n",
1405 gdbarch_register_name (gdbarch, argreg),
1406 paddr (struct_addr));
1407 regcache_cooked_write_unsigned (regcache, argreg, struct_addr);
1408 argreg++;
1409 }
1410
1411 for (argnum = 0; argnum < nargs; argnum++)
1412 {
1413 int len;
1414 struct type *arg_type;
1415 struct type *target_type;
1416 enum type_code typecode;
1417 bfd_byte *val;
1418 int align;
1419
1420 arg_type = check_typedef (value_type (args[argnum]));
1421 len = TYPE_LENGTH (arg_type);
1422 target_type = TYPE_TARGET_TYPE (arg_type);
1423 typecode = TYPE_CODE (arg_type);
1424 val = value_contents_writeable (args[argnum]);
1425
1426 align = arm_type_align (arg_type);
1427 /* Round alignment up to a whole number of words. */
1428 align = (align + INT_REGISTER_SIZE - 1) & ~(INT_REGISTER_SIZE - 1);
1429 /* Different ABIs have different maximum alignments. */
1430 if (gdbarch_tdep (gdbarch)->arm_abi == ARM_ABI_APCS)
1431 {
1432 /* The APCS ABI only requires word alignment. */
1433 align = INT_REGISTER_SIZE;
1434 }
1435 else
1436 {
1437 /* The AAPCS requires at most doubleword alignment. */
1438 if (align > INT_REGISTER_SIZE * 2)
1439 align = INT_REGISTER_SIZE * 2;
1440 }
1441
1442 /* Push stack padding for dowubleword alignment. */
1443 if (nstack & (align - 1))
1444 {
1445 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1446 nstack += INT_REGISTER_SIZE;
1447 }
1448
1449 /* Doubleword aligned quantities must go in even register pairs. */
1450 if (argreg <= ARM_LAST_ARG_REGNUM
1451 && align > INT_REGISTER_SIZE
1452 && argreg & 1)
1453 argreg++;
1454
1455 /* If the argument is a pointer to a function, and it is a
1456 Thumb function, create a LOCAL copy of the value and set
1457 the THUMB bit in it. */
1458 if (TYPE_CODE_PTR == typecode
1459 && target_type != NULL
1460 && TYPE_CODE_FUNC == TYPE_CODE (target_type))
1461 {
1462 CORE_ADDR regval = extract_unsigned_integer (val, len);
1463 if (arm_pc_is_thumb (regval))
1464 {
1465 val = alloca (len);
1466 store_unsigned_integer (val, len, MAKE_THUMB_ADDR (regval));
1467 }
1468 }
1469
1470 /* Copy the argument to general registers or the stack in
1471 register-sized pieces. Large arguments are split between
1472 registers and stack. */
1473 while (len > 0)
1474 {
1475 int partial_len = len < INT_REGISTER_SIZE ? len : INT_REGISTER_SIZE;
1476
1477 if (argreg <= ARM_LAST_ARG_REGNUM)
1478 {
1479 /* The argument is being passed in a general purpose
1480 register. */
1481 CORE_ADDR regval = extract_unsigned_integer (val, partial_len);
1482 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1483 regval <<= (INT_REGISTER_SIZE - partial_len) * 8;
1484 if (arm_debug)
1485 fprintf_unfiltered (gdb_stdlog, "arg %d in %s = 0x%s\n",
1486 argnum,
1487 gdbarch_register_name
1488 (gdbarch, argreg),
1489 phex (regval, INT_REGISTER_SIZE));
1490 regcache_cooked_write_unsigned (regcache, argreg, regval);
1491 argreg++;
1492 }
1493 else
1494 {
1495 /* Push the arguments onto the stack. */
1496 if (arm_debug)
1497 fprintf_unfiltered (gdb_stdlog, "arg %d @ sp + %d\n",
1498 argnum, nstack);
1499 si = push_stack_item (si, val, INT_REGISTER_SIZE);
1500 nstack += INT_REGISTER_SIZE;
1501 }
1502
1503 len -= partial_len;
1504 val += partial_len;
1505 }
1506 }
1507 /* If we have an odd number of words to push, then decrement the stack
1508 by one word now, so first stack argument will be dword aligned. */
1509 if (nstack & 4)
1510 sp -= 4;
1511
1512 while (si)
1513 {
1514 sp -= si->len;
1515 write_memory (sp, si->data, si->len);
1516 si = pop_stack_item (si);
1517 }
1518
1519 /* Finally, update teh SP register. */
1520 regcache_cooked_write_unsigned (regcache, ARM_SP_REGNUM, sp);
1521
1522 return sp;
1523 }
1524
1525
1526 /* Always align the frame to an 8-byte boundary. This is required on
1527 some platforms and harmless on the rest. */
1528
1529 static CORE_ADDR
1530 arm_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1531 {
1532 /* Align the stack to eight bytes. */
1533 return sp & ~ (CORE_ADDR) 7;
1534 }
1535
1536 static void
1537 print_fpu_flags (int flags)
1538 {
1539 if (flags & (1 << 0))
1540 fputs ("IVO ", stdout);
1541 if (flags & (1 << 1))
1542 fputs ("DVZ ", stdout);
1543 if (flags & (1 << 2))
1544 fputs ("OFL ", stdout);
1545 if (flags & (1 << 3))
1546 fputs ("UFL ", stdout);
1547 if (flags & (1 << 4))
1548 fputs ("INX ", stdout);
1549 putchar ('\n');
1550 }
1551
1552 /* Print interesting information about the floating point processor
1553 (if present) or emulator. */
1554 static void
1555 arm_print_float_info (struct gdbarch *gdbarch, struct ui_file *file,
1556 struct frame_info *frame, const char *args)
1557 {
1558 unsigned long status = get_frame_register_unsigned (frame, ARM_FPS_REGNUM);
1559 int type;
1560
1561 type = (status >> 24) & 127;
1562 if (status & (1 << 31))
1563 printf (_("Hardware FPU type %d\n"), type);
1564 else
1565 printf (_("Software FPU type %d\n"), type);
1566 /* i18n: [floating point unit] mask */
1567 fputs (_("mask: "), stdout);
1568 print_fpu_flags (status >> 16);
1569 /* i18n: [floating point unit] flags */
1570 fputs (_("flags: "), stdout);
1571 print_fpu_flags (status);
1572 }
1573
1574 /* Return the GDB type object for the "standard" data type of data in
1575 register N. */
1576
1577 static struct type *
1578 arm_register_type (struct gdbarch *gdbarch, int regnum)
1579 {
1580 if (regnum >= ARM_F0_REGNUM && regnum < ARM_F0_REGNUM + NUM_FREGS)
1581 return builtin_type_arm_ext;
1582 else if (regnum == ARM_SP_REGNUM)
1583 return builtin_type_void_data_ptr;
1584 else if (regnum == ARM_PC_REGNUM)
1585 return builtin_type_void_func_ptr;
1586 else if (regnum >= ARRAY_SIZE (arm_register_names))
1587 /* These registers are only supported on targets which supply
1588 an XML description. */
1589 return builtin_type_int0;
1590 else
1591 return builtin_type_uint32;
1592 }
1593
1594 /* Map a DWARF register REGNUM onto the appropriate GDB register
1595 number. */
1596
1597 static int
1598 arm_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
1599 {
1600 /* Core integer regs. */
1601 if (reg >= 0 && reg <= 15)
1602 return reg;
1603
1604 /* Legacy FPA encoding. These were once used in a way which
1605 overlapped with VFP register numbering, so their use is
1606 discouraged, but GDB doesn't support the ARM toolchain
1607 which used them for VFP. */
1608 if (reg >= 16 && reg <= 23)
1609 return ARM_F0_REGNUM + reg - 16;
1610
1611 /* New assignments for the FPA registers. */
1612 if (reg >= 96 && reg <= 103)
1613 return ARM_F0_REGNUM + reg - 96;
1614
1615 /* WMMX register assignments. */
1616 if (reg >= 104 && reg <= 111)
1617 return ARM_WCGR0_REGNUM + reg - 104;
1618
1619 if (reg >= 112 && reg <= 127)
1620 return ARM_WR0_REGNUM + reg - 112;
1621
1622 if (reg >= 192 && reg <= 199)
1623 return ARM_WC0_REGNUM + reg - 192;
1624
1625 return -1;
1626 }
1627
1628 /* Map GDB internal REGNUM onto the Arm simulator register numbers. */
1629 static int
1630 arm_register_sim_regno (struct gdbarch *gdbarch, int regnum)
1631 {
1632 int reg = regnum;
1633 gdb_assert (reg >= 0 && reg < gdbarch_num_regs (gdbarch));
1634
1635 if (regnum >= ARM_WR0_REGNUM && regnum <= ARM_WR15_REGNUM)
1636 return regnum - ARM_WR0_REGNUM + SIM_ARM_IWMMXT_COP0R0_REGNUM;
1637
1638 if (regnum >= ARM_WC0_REGNUM && regnum <= ARM_WC7_REGNUM)
1639 return regnum - ARM_WC0_REGNUM + SIM_ARM_IWMMXT_COP1R0_REGNUM;
1640
1641 if (regnum >= ARM_WCGR0_REGNUM && regnum <= ARM_WCGR7_REGNUM)
1642 return regnum - ARM_WCGR0_REGNUM + SIM_ARM_IWMMXT_COP1R8_REGNUM;
1643
1644 if (reg < NUM_GREGS)
1645 return SIM_ARM_R0_REGNUM + reg;
1646 reg -= NUM_GREGS;
1647
1648 if (reg < NUM_FREGS)
1649 return SIM_ARM_FP0_REGNUM + reg;
1650 reg -= NUM_FREGS;
1651
1652 if (reg < NUM_SREGS)
1653 return SIM_ARM_FPS_REGNUM + reg;
1654 reg -= NUM_SREGS;
1655
1656 internal_error (__FILE__, __LINE__, _("Bad REGNUM %d"), regnum);
1657 }
1658
1659 /* NOTE: cagney/2001-08-20: Both convert_from_extended() and
1660 convert_to_extended() use floatformat_arm_ext_littlebyte_bigword.
1661 It is thought that this is is the floating-point register format on
1662 little-endian systems. */
1663
1664 static void
1665 convert_from_extended (const struct floatformat *fmt, const void *ptr,
1666 void *dbl, int endianess)
1667 {
1668 DOUBLEST d;
1669
1670 if (endianess == BFD_ENDIAN_BIG)
1671 floatformat_to_doublest (&floatformat_arm_ext_big, ptr, &d);
1672 else
1673 floatformat_to_doublest (&floatformat_arm_ext_littlebyte_bigword,
1674 ptr, &d);
1675 floatformat_from_doublest (fmt, &d, dbl);
1676 }
1677
1678 static void
1679 convert_to_extended (const struct floatformat *fmt, void *dbl, const void *ptr,
1680 int endianess)
1681 {
1682 DOUBLEST d;
1683
1684 floatformat_to_doublest (fmt, ptr, &d);
1685 if (endianess == BFD_ENDIAN_BIG)
1686 floatformat_from_doublest (&floatformat_arm_ext_big, &d, dbl);
1687 else
1688 floatformat_from_doublest (&floatformat_arm_ext_littlebyte_bigword,
1689 &d, dbl);
1690 }
1691
1692 static int
1693 condition_true (unsigned long cond, unsigned long status_reg)
1694 {
1695 if (cond == INST_AL || cond == INST_NV)
1696 return 1;
1697
1698 switch (cond)
1699 {
1700 case INST_EQ:
1701 return ((status_reg & FLAG_Z) != 0);
1702 case INST_NE:
1703 return ((status_reg & FLAG_Z) == 0);
1704 case INST_CS:
1705 return ((status_reg & FLAG_C) != 0);
1706 case INST_CC:
1707 return ((status_reg & FLAG_C) == 0);
1708 case INST_MI:
1709 return ((status_reg & FLAG_N) != 0);
1710 case INST_PL:
1711 return ((status_reg & FLAG_N) == 0);
1712 case INST_VS:
1713 return ((status_reg & FLAG_V) != 0);
1714 case INST_VC:
1715 return ((status_reg & FLAG_V) == 0);
1716 case INST_HI:
1717 return ((status_reg & (FLAG_C | FLAG_Z)) == FLAG_C);
1718 case INST_LS:
1719 return ((status_reg & (FLAG_C | FLAG_Z)) != FLAG_C);
1720 case INST_GE:
1721 return (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0));
1722 case INST_LT:
1723 return (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0));
1724 case INST_GT:
1725 return (((status_reg & FLAG_Z) == 0) &&
1726 (((status_reg & FLAG_N) == 0) == ((status_reg & FLAG_V) == 0)));
1727 case INST_LE:
1728 return (((status_reg & FLAG_Z) != 0) ||
1729 (((status_reg & FLAG_N) == 0) != ((status_reg & FLAG_V) == 0)));
1730 }
1731 return 1;
1732 }
1733
1734 /* Support routines for single stepping. Calculate the next PC value. */
1735 #define submask(x) ((1L << ((x) + 1)) - 1)
1736 #define bit(obj,st) (((obj) >> (st)) & 1)
1737 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
1738 #define sbits(obj,st,fn) \
1739 ((long) (bits(obj,st,fn) | ((long) bit(obj,fn) * ~ submask (fn - st))))
1740 #define BranchDest(addr,instr) \
1741 ((CORE_ADDR) (((long) (addr)) + 8 + (sbits (instr, 0, 23) << 2)))
1742 #define ARM_PC_32 1
1743
1744 static unsigned long
1745 shifted_reg_val (struct frame_info *frame, unsigned long inst, int carry,
1746 unsigned long pc_val, unsigned long status_reg)
1747 {
1748 unsigned long res, shift;
1749 int rm = bits (inst, 0, 3);
1750 unsigned long shifttype = bits (inst, 5, 6);
1751
1752 if (bit (inst, 4))
1753 {
1754 int rs = bits (inst, 8, 11);
1755 shift = (rs == 15 ? pc_val + 8
1756 : get_frame_register_unsigned (frame, rs)) & 0xFF;
1757 }
1758 else
1759 shift = bits (inst, 7, 11);
1760
1761 res = (rm == 15
1762 ? ((pc_val | (ARM_PC_32 ? 0 : status_reg))
1763 + (bit (inst, 4) ? 12 : 8))
1764 : get_frame_register_unsigned (frame, rm));
1765
1766 switch (shifttype)
1767 {
1768 case 0: /* LSL */
1769 res = shift >= 32 ? 0 : res << shift;
1770 break;
1771
1772 case 1: /* LSR */
1773 res = shift >= 32 ? 0 : res >> shift;
1774 break;
1775
1776 case 2: /* ASR */
1777 if (shift >= 32)
1778 shift = 31;
1779 res = ((res & 0x80000000L)
1780 ? ~((~res) >> shift) : res >> shift);
1781 break;
1782
1783 case 3: /* ROR/RRX */
1784 shift &= 31;
1785 if (shift == 0)
1786 res = (res >> 1) | (carry ? 0x80000000L : 0);
1787 else
1788 res = (res >> shift) | (res << (32 - shift));
1789 break;
1790 }
1791
1792 return res & 0xffffffff;
1793 }
1794
1795 /* Return number of 1-bits in VAL. */
1796
1797 static int
1798 bitcount (unsigned long val)
1799 {
1800 int nbits;
1801 for (nbits = 0; val != 0; nbits++)
1802 val &= val - 1; /* delete rightmost 1-bit in val */
1803 return nbits;
1804 }
1805
1806 static CORE_ADDR
1807 thumb_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1808 {
1809 struct gdbarch *gdbarch = get_frame_arch (frame);
1810 unsigned long pc_val = ((unsigned long) pc) + 4; /* PC after prefetch */
1811 unsigned short inst1 = read_memory_unsigned_integer (pc, 2);
1812 CORE_ADDR nextpc = pc + 2; /* default is next instruction */
1813 unsigned long offset;
1814
1815 if ((inst1 & 0xff00) == 0xbd00) /* pop {rlist, pc} */
1816 {
1817 CORE_ADDR sp;
1818
1819 /* Fetch the saved PC from the stack. It's stored above
1820 all of the other registers. */
1821 offset = bitcount (bits (inst1, 0, 7)) * INT_REGISTER_SIZE;
1822 sp = get_frame_register_unsigned (frame, ARM_SP_REGNUM);
1823 nextpc = (CORE_ADDR) read_memory_unsigned_integer (sp + offset, 4);
1824 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1825 if (nextpc == pc)
1826 error (_("Infinite loop detected"));
1827 }
1828 else if ((inst1 & 0xf000) == 0xd000) /* conditional branch */
1829 {
1830 unsigned long status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1831 unsigned long cond = bits (inst1, 8, 11);
1832 if (cond != 0x0f && condition_true (cond, status)) /* 0x0f = SWI */
1833 nextpc = pc_val + (sbits (inst1, 0, 7) << 1);
1834 }
1835 else if ((inst1 & 0xf800) == 0xe000) /* unconditional branch */
1836 {
1837 nextpc = pc_val + (sbits (inst1, 0, 10) << 1);
1838 }
1839 else if ((inst1 & 0xf800) == 0xf000) /* long branch with link, and blx */
1840 {
1841 unsigned short inst2 = read_memory_unsigned_integer (pc + 2, 2);
1842 offset = (sbits (inst1, 0, 10) << 12) + (bits (inst2, 0, 10) << 1);
1843 nextpc = pc_val + offset;
1844 /* For BLX make sure to clear the low bits. */
1845 if (bits (inst2, 11, 12) == 1)
1846 nextpc = nextpc & 0xfffffffc;
1847 }
1848 else if ((inst1 & 0xff00) == 0x4700) /* bx REG, blx REG */
1849 {
1850 if (bits (inst1, 3, 6) == 0x0f)
1851 nextpc = pc_val;
1852 else
1853 nextpc = get_frame_register_unsigned (frame, bits (inst1, 3, 6));
1854
1855 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1856 if (nextpc == pc)
1857 error (_("Infinite loop detected"));
1858 }
1859
1860 return nextpc;
1861 }
1862
1863 CORE_ADDR
1864 arm_get_next_pc (struct frame_info *frame, CORE_ADDR pc)
1865 {
1866 struct gdbarch *gdbarch = get_frame_arch (frame);
1867 unsigned long pc_val;
1868 unsigned long this_instr;
1869 unsigned long status;
1870 CORE_ADDR nextpc;
1871
1872 if (arm_frame_is_thumb (frame))
1873 return thumb_get_next_pc (frame, pc);
1874
1875 pc_val = (unsigned long) pc;
1876 this_instr = read_memory_unsigned_integer (pc, 4);
1877 status = get_frame_register_unsigned (frame, ARM_PS_REGNUM);
1878 nextpc = (CORE_ADDR) (pc_val + 4); /* Default case */
1879
1880 if (bits (this_instr, 28, 31) == INST_NV)
1881 switch (bits (this_instr, 24, 27))
1882 {
1883 case 0xa:
1884 case 0xb:
1885 {
1886 /* Branch with Link and change to Thumb. */
1887 nextpc = BranchDest (pc, this_instr);
1888 nextpc |= bit (this_instr, 24) << 1;
1889
1890 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
1891 if (nextpc == pc)
1892 error (_("Infinite loop detected"));
1893 break;
1894 }
1895 case 0xc:
1896 case 0xd:
1897 case 0xe:
1898 /* Coprocessor register transfer. */
1899 if (bits (this_instr, 12, 15) == 15)
1900 error (_("Invalid update to pc in instruction"));
1901 break;
1902 }
1903 else if (condition_true (bits (this_instr, 28, 31), status))
1904 {
1905 switch (bits (this_instr, 24, 27))
1906 {
1907 case 0x0:
1908 case 0x1: /* data processing */
1909 case 0x2:
1910 case 0x3:
1911 {
1912 unsigned long operand1, operand2, result = 0;
1913 unsigned long rn;
1914 int c;
1915
1916 if (bits (this_instr, 12, 15) != 15)
1917 break;
1918
1919 if (bits (this_instr, 22, 25) == 0
1920 && bits (this_instr, 4, 7) == 9) /* multiply */
1921 error (_("Invalid update to pc in instruction"));
1922
1923 /* BX <reg>, BLX <reg> */
1924 if (bits (this_instr, 4, 27) == 0x12fff1
1925 || bits (this_instr, 4, 27) == 0x12fff3)
1926 {
1927 rn = bits (this_instr, 0, 3);
1928 result = (rn == 15) ? pc_val + 8
1929 : get_frame_register_unsigned (frame, rn);
1930 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
1931 (gdbarch, result);
1932
1933 if (nextpc == pc)
1934 error (_("Infinite loop detected"));
1935
1936 return nextpc;
1937 }
1938
1939 /* Multiply into PC */
1940 c = (status & FLAG_C) ? 1 : 0;
1941 rn = bits (this_instr, 16, 19);
1942 operand1 = (rn == 15) ? pc_val + 8
1943 : get_frame_register_unsigned (frame, rn);
1944
1945 if (bit (this_instr, 25))
1946 {
1947 unsigned long immval = bits (this_instr, 0, 7);
1948 unsigned long rotate = 2 * bits (this_instr, 8, 11);
1949 operand2 = ((immval >> rotate) | (immval << (32 - rotate)))
1950 & 0xffffffff;
1951 }
1952 else /* operand 2 is a shifted register */
1953 operand2 = shifted_reg_val (frame, this_instr, c, pc_val, status);
1954
1955 switch (bits (this_instr, 21, 24))
1956 {
1957 case 0x0: /*and */
1958 result = operand1 & operand2;
1959 break;
1960
1961 case 0x1: /*eor */
1962 result = operand1 ^ operand2;
1963 break;
1964
1965 case 0x2: /*sub */
1966 result = operand1 - operand2;
1967 break;
1968
1969 case 0x3: /*rsb */
1970 result = operand2 - operand1;
1971 break;
1972
1973 case 0x4: /*add */
1974 result = operand1 + operand2;
1975 break;
1976
1977 case 0x5: /*adc */
1978 result = operand1 + operand2 + c;
1979 break;
1980
1981 case 0x6: /*sbc */
1982 result = operand1 - operand2 + c;
1983 break;
1984
1985 case 0x7: /*rsc */
1986 result = operand2 - operand1 + c;
1987 break;
1988
1989 case 0x8:
1990 case 0x9:
1991 case 0xa:
1992 case 0xb: /* tst, teq, cmp, cmn */
1993 result = (unsigned long) nextpc;
1994 break;
1995
1996 case 0xc: /*orr */
1997 result = operand1 | operand2;
1998 break;
1999
2000 case 0xd: /*mov */
2001 /* Always step into a function. */
2002 result = operand2;
2003 break;
2004
2005 case 0xe: /*bic */
2006 result = operand1 & ~operand2;
2007 break;
2008
2009 case 0xf: /*mvn */
2010 result = ~operand2;
2011 break;
2012 }
2013 nextpc = (CORE_ADDR) gdbarch_addr_bits_remove
2014 (gdbarch, result);
2015
2016 if (nextpc == pc)
2017 error (_("Infinite loop detected"));
2018 break;
2019 }
2020
2021 case 0x4:
2022 case 0x5: /* data transfer */
2023 case 0x6:
2024 case 0x7:
2025 if (bit (this_instr, 20))
2026 {
2027 /* load */
2028 if (bits (this_instr, 12, 15) == 15)
2029 {
2030 /* rd == pc */
2031 unsigned long rn;
2032 unsigned long base;
2033
2034 if (bit (this_instr, 22))
2035 error (_("Invalid update to pc in instruction"));
2036
2037 /* byte write to PC */
2038 rn = bits (this_instr, 16, 19);
2039 base = (rn == 15) ? pc_val + 8
2040 : get_frame_register_unsigned (frame, rn);
2041 if (bit (this_instr, 24))
2042 {
2043 /* pre-indexed */
2044 int c = (status & FLAG_C) ? 1 : 0;
2045 unsigned long offset =
2046 (bit (this_instr, 25)
2047 ? shifted_reg_val (frame, this_instr, c, pc_val, status)
2048 : bits (this_instr, 0, 11));
2049
2050 if (bit (this_instr, 23))
2051 base += offset;
2052 else
2053 base -= offset;
2054 }
2055 nextpc = (CORE_ADDR) read_memory_integer ((CORE_ADDR) base,
2056 4);
2057
2058 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
2059
2060 if (nextpc == pc)
2061 error (_("Infinite loop detected"));
2062 }
2063 }
2064 break;
2065
2066 case 0x8:
2067 case 0x9: /* block transfer */
2068 if (bit (this_instr, 20))
2069 {
2070 /* LDM */
2071 if (bit (this_instr, 15))
2072 {
2073 /* loading pc */
2074 int offset = 0;
2075
2076 if (bit (this_instr, 23))
2077 {
2078 /* up */
2079 unsigned long reglist = bits (this_instr, 0, 14);
2080 offset = bitcount (reglist) * 4;
2081 if (bit (this_instr, 24)) /* pre */
2082 offset += 4;
2083 }
2084 else if (bit (this_instr, 24))
2085 offset = -4;
2086
2087 {
2088 unsigned long rn_val =
2089 get_frame_register_unsigned (frame,
2090 bits (this_instr, 16, 19));
2091 nextpc =
2092 (CORE_ADDR) read_memory_integer ((CORE_ADDR) (rn_val
2093 + offset),
2094 4);
2095 }
2096 nextpc = gdbarch_addr_bits_remove
2097 (gdbarch, nextpc);
2098 if (nextpc == pc)
2099 error (_("Infinite loop detected"));
2100 }
2101 }
2102 break;
2103
2104 case 0xb: /* branch & link */
2105 case 0xa: /* branch */
2106 {
2107 nextpc = BranchDest (pc, this_instr);
2108
2109 nextpc = gdbarch_addr_bits_remove (gdbarch, nextpc);
2110 if (nextpc == pc)
2111 error (_("Infinite loop detected"));
2112 break;
2113 }
2114
2115 case 0xc:
2116 case 0xd:
2117 case 0xe: /* coproc ops */
2118 case 0xf: /* SWI */
2119 break;
2120
2121 default:
2122 fprintf_filtered (gdb_stderr, _("Bad bit-field extraction\n"));
2123 return (pc);
2124 }
2125 }
2126
2127 return nextpc;
2128 }
2129
2130 /* single_step() is called just before we want to resume the inferior,
2131 if we want to single-step it but there is no hardware or kernel
2132 single-step support. We find the target of the coming instruction
2133 and breakpoint it. */
2134
2135 int
2136 arm_software_single_step (struct frame_info *frame)
2137 {
2138 /* NOTE: This may insert the wrong breakpoint instruction when
2139 single-stepping over a mode-changing instruction, if the
2140 CPSR heuristics are used. */
2141
2142 CORE_ADDR next_pc = arm_get_next_pc (frame, get_frame_pc (frame));
2143 insert_single_step_breakpoint (next_pc);
2144
2145 return 1;
2146 }
2147
2148 #include "bfd-in2.h"
2149 #include "libcoff.h"
2150
2151 static int
2152 gdb_print_insn_arm (bfd_vma memaddr, disassemble_info *info)
2153 {
2154 if (arm_pc_is_thumb (memaddr))
2155 {
2156 static asymbol *asym;
2157 static combined_entry_type ce;
2158 static struct coff_symbol_struct csym;
2159 static struct bfd fake_bfd;
2160 static bfd_target fake_target;
2161
2162 if (csym.native == NULL)
2163 {
2164 /* Create a fake symbol vector containing a Thumb symbol.
2165 This is solely so that the code in print_insn_little_arm()
2166 and print_insn_big_arm() in opcodes/arm-dis.c will detect
2167 the presence of a Thumb symbol and switch to decoding
2168 Thumb instructions. */
2169
2170 fake_target.flavour = bfd_target_coff_flavour;
2171 fake_bfd.xvec = &fake_target;
2172 ce.u.syment.n_sclass = C_THUMBEXTFUNC;
2173 csym.native = &ce;
2174 csym.symbol.the_bfd = &fake_bfd;
2175 csym.symbol.name = "fake";
2176 asym = (asymbol *) & csym;
2177 }
2178
2179 memaddr = UNMAKE_THUMB_ADDR (memaddr);
2180 info->symbols = &asym;
2181 }
2182 else
2183 info->symbols = NULL;
2184
2185 if (info->endian == BFD_ENDIAN_BIG)
2186 return print_insn_big_arm (memaddr, info);
2187 else
2188 return print_insn_little_arm (memaddr, info);
2189 }
2190
2191 /* The following define instruction sequences that will cause ARM
2192 cpu's to take an undefined instruction trap. These are used to
2193 signal a breakpoint to GDB.
2194
2195 The newer ARMv4T cpu's are capable of operating in ARM or Thumb
2196 modes. A different instruction is required for each mode. The ARM
2197 cpu's can also be big or little endian. Thus four different
2198 instructions are needed to support all cases.
2199
2200 Note: ARMv4 defines several new instructions that will take the
2201 undefined instruction trap. ARM7TDMI is nominally ARMv4T, but does
2202 not in fact add the new instructions. The new undefined
2203 instructions in ARMv4 are all instructions that had no defined
2204 behaviour in earlier chips. There is no guarantee that they will
2205 raise an exception, but may be treated as NOP's. In practice, it
2206 may only safe to rely on instructions matching:
2207
2208 3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1
2209 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0
2210 C C C C 0 1 1 x x x x x x x x x x x x x x x x x x x x 1 x x x x
2211
2212 Even this may only true if the condition predicate is true. The
2213 following use a condition predicate of ALWAYS so it is always TRUE.
2214
2215 There are other ways of forcing a breakpoint. GNU/Linux, RISC iX,
2216 and NetBSD all use a software interrupt rather than an undefined
2217 instruction to force a trap. This can be handled by by the
2218 abi-specific code during establishment of the gdbarch vector. */
2219
2220 #define ARM_LE_BREAKPOINT {0xFE,0xDE,0xFF,0xE7}
2221 #define ARM_BE_BREAKPOINT {0xE7,0xFF,0xDE,0xFE}
2222 #define THUMB_LE_BREAKPOINT {0xbe,0xbe}
2223 #define THUMB_BE_BREAKPOINT {0xbe,0xbe}
2224
2225 static const char arm_default_arm_le_breakpoint[] = ARM_LE_BREAKPOINT;
2226 static const char arm_default_arm_be_breakpoint[] = ARM_BE_BREAKPOINT;
2227 static const char arm_default_thumb_le_breakpoint[] = THUMB_LE_BREAKPOINT;
2228 static const char arm_default_thumb_be_breakpoint[] = THUMB_BE_BREAKPOINT;
2229
2230 /* Determine the type and size of breakpoint to insert at PCPTR. Uses
2231 the program counter value to determine whether a 16-bit or 32-bit
2232 breakpoint should be used. It returns a pointer to a string of
2233 bytes that encode a breakpoint instruction, stores the length of
2234 the string to *lenptr, and adjusts the program counter (if
2235 necessary) to point to the actual memory location where the
2236 breakpoint should be inserted. */
2237
2238 static const unsigned char *
2239 arm_breakpoint_from_pc (struct gdbarch *gdbarch, CORE_ADDR *pcptr, int *lenptr)
2240 {
2241 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2242
2243 if (arm_pc_is_thumb (*pcptr))
2244 {
2245 *pcptr = UNMAKE_THUMB_ADDR (*pcptr);
2246 *lenptr = tdep->thumb_breakpoint_size;
2247 return tdep->thumb_breakpoint;
2248 }
2249 else
2250 {
2251 *lenptr = tdep->arm_breakpoint_size;
2252 return tdep->arm_breakpoint;
2253 }
2254 }
2255
2256 /* Extract from an array REGBUF containing the (raw) register state a
2257 function return value of type TYPE, and copy that, in virtual
2258 format, into VALBUF. */
2259
2260 static void
2261 arm_extract_return_value (struct type *type, struct regcache *regs,
2262 gdb_byte *valbuf)
2263 {
2264 struct gdbarch *gdbarch = get_regcache_arch (regs);
2265
2266 if (TYPE_CODE_FLT == TYPE_CODE (type))
2267 {
2268 switch (gdbarch_tdep (gdbarch)->fp_model)
2269 {
2270 case ARM_FLOAT_FPA:
2271 {
2272 /* The value is in register F0 in internal format. We need to
2273 extract the raw value and then convert it to the desired
2274 internal type. */
2275 bfd_byte tmpbuf[FP_REGISTER_SIZE];
2276
2277 regcache_cooked_read (regs, ARM_F0_REGNUM, tmpbuf);
2278 convert_from_extended (floatformat_from_type (type), tmpbuf,
2279 valbuf, gdbarch_byte_order (gdbarch));
2280 }
2281 break;
2282
2283 case ARM_FLOAT_SOFT_FPA:
2284 case ARM_FLOAT_SOFT_VFP:
2285 regcache_cooked_read (regs, ARM_A1_REGNUM, valbuf);
2286 if (TYPE_LENGTH (type) > 4)
2287 regcache_cooked_read (regs, ARM_A1_REGNUM + 1,
2288 valbuf + INT_REGISTER_SIZE);
2289 break;
2290
2291 default:
2292 internal_error
2293 (__FILE__, __LINE__,
2294 _("arm_extract_return_value: Floating point model not supported"));
2295 break;
2296 }
2297 }
2298 else if (TYPE_CODE (type) == TYPE_CODE_INT
2299 || TYPE_CODE (type) == TYPE_CODE_CHAR
2300 || TYPE_CODE (type) == TYPE_CODE_BOOL
2301 || TYPE_CODE (type) == TYPE_CODE_PTR
2302 || TYPE_CODE (type) == TYPE_CODE_REF
2303 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2304 {
2305 /* If the the type is a plain integer, then the access is
2306 straight-forward. Otherwise we have to play around a bit more. */
2307 int len = TYPE_LENGTH (type);
2308 int regno = ARM_A1_REGNUM;
2309 ULONGEST tmp;
2310
2311 while (len > 0)
2312 {
2313 /* By using store_unsigned_integer we avoid having to do
2314 anything special for small big-endian values. */
2315 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2316 store_unsigned_integer (valbuf,
2317 (len > INT_REGISTER_SIZE
2318 ? INT_REGISTER_SIZE : len),
2319 tmp);
2320 len -= INT_REGISTER_SIZE;
2321 valbuf += INT_REGISTER_SIZE;
2322 }
2323 }
2324 else
2325 {
2326 /* For a structure or union the behaviour is as if the value had
2327 been stored to word-aligned memory and then loaded into
2328 registers with 32-bit load instruction(s). */
2329 int len = TYPE_LENGTH (type);
2330 int regno = ARM_A1_REGNUM;
2331 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2332
2333 while (len > 0)
2334 {
2335 regcache_cooked_read (regs, regno++, tmpbuf);
2336 memcpy (valbuf, tmpbuf,
2337 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2338 len -= INT_REGISTER_SIZE;
2339 valbuf += INT_REGISTER_SIZE;
2340 }
2341 }
2342 }
2343
2344
2345 /* Will a function return an aggregate type in memory or in a
2346 register? Return 0 if an aggregate type can be returned in a
2347 register, 1 if it must be returned in memory. */
2348
2349 static int
2350 arm_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2351 {
2352 int nRc;
2353 enum type_code code;
2354
2355 CHECK_TYPEDEF (type);
2356
2357 /* In the ARM ABI, "integer" like aggregate types are returned in
2358 registers. For an aggregate type to be integer like, its size
2359 must be less than or equal to INT_REGISTER_SIZE and the
2360 offset of each addressable subfield must be zero. Note that bit
2361 fields are not addressable, and all addressable subfields of
2362 unions always start at offset zero.
2363
2364 This function is based on the behaviour of GCC 2.95.1.
2365 See: gcc/arm.c: arm_return_in_memory() for details.
2366
2367 Note: All versions of GCC before GCC 2.95.2 do not set up the
2368 parameters correctly for a function returning the following
2369 structure: struct { float f;}; This should be returned in memory,
2370 not a register. Richard Earnshaw sent me a patch, but I do not
2371 know of any way to detect if a function like the above has been
2372 compiled with the correct calling convention. */
2373
2374 /* All aggregate types that won't fit in a register must be returned
2375 in memory. */
2376 if (TYPE_LENGTH (type) > INT_REGISTER_SIZE)
2377 {
2378 return 1;
2379 }
2380
2381 /* The AAPCS says all aggregates not larger than a word are returned
2382 in a register. */
2383 if (gdbarch_tdep (gdbarch)->arm_abi != ARM_ABI_APCS)
2384 return 0;
2385
2386 /* The only aggregate types that can be returned in a register are
2387 structs and unions. Arrays must be returned in memory. */
2388 code = TYPE_CODE (type);
2389 if ((TYPE_CODE_STRUCT != code) && (TYPE_CODE_UNION != code))
2390 {
2391 return 1;
2392 }
2393
2394 /* Assume all other aggregate types can be returned in a register.
2395 Run a check for structures, unions and arrays. */
2396 nRc = 0;
2397
2398 if ((TYPE_CODE_STRUCT == code) || (TYPE_CODE_UNION == code))
2399 {
2400 int i;
2401 /* Need to check if this struct/union is "integer" like. For
2402 this to be true, its size must be less than or equal to
2403 INT_REGISTER_SIZE and the offset of each addressable
2404 subfield must be zero. Note that bit fields are not
2405 addressable, and unions always start at offset zero. If any
2406 of the subfields is a floating point type, the struct/union
2407 cannot be an integer type. */
2408
2409 /* For each field in the object, check:
2410 1) Is it FP? --> yes, nRc = 1;
2411 2) Is it addressable (bitpos != 0) and
2412 not packed (bitsize == 0)?
2413 --> yes, nRc = 1
2414 */
2415
2416 for (i = 0; i < TYPE_NFIELDS (type); i++)
2417 {
2418 enum type_code field_type_code;
2419 field_type_code = TYPE_CODE (check_typedef (TYPE_FIELD_TYPE (type, i)));
2420
2421 /* Is it a floating point type field? */
2422 if (field_type_code == TYPE_CODE_FLT)
2423 {
2424 nRc = 1;
2425 break;
2426 }
2427
2428 /* If bitpos != 0, then we have to care about it. */
2429 if (TYPE_FIELD_BITPOS (type, i) != 0)
2430 {
2431 /* Bitfields are not addressable. If the field bitsize is
2432 zero, then the field is not packed. Hence it cannot be
2433 a bitfield or any other packed type. */
2434 if (TYPE_FIELD_BITSIZE (type, i) == 0)
2435 {
2436 nRc = 1;
2437 break;
2438 }
2439 }
2440 }
2441 }
2442
2443 return nRc;
2444 }
2445
2446 /* Write into appropriate registers a function return value of type
2447 TYPE, given in virtual format. */
2448
2449 static void
2450 arm_store_return_value (struct type *type, struct regcache *regs,
2451 const gdb_byte *valbuf)
2452 {
2453 struct gdbarch *gdbarch = get_regcache_arch (regs);
2454
2455 if (TYPE_CODE (type) == TYPE_CODE_FLT)
2456 {
2457 char buf[MAX_REGISTER_SIZE];
2458
2459 switch (gdbarch_tdep (gdbarch)->fp_model)
2460 {
2461 case ARM_FLOAT_FPA:
2462
2463 convert_to_extended (floatformat_from_type (type), buf, valbuf,
2464 gdbarch_byte_order (gdbarch));
2465 regcache_cooked_write (regs, ARM_F0_REGNUM, buf);
2466 break;
2467
2468 case ARM_FLOAT_SOFT_FPA:
2469 case ARM_FLOAT_SOFT_VFP:
2470 regcache_cooked_write (regs, ARM_A1_REGNUM, valbuf);
2471 if (TYPE_LENGTH (type) > 4)
2472 regcache_cooked_write (regs, ARM_A1_REGNUM + 1,
2473 valbuf + INT_REGISTER_SIZE);
2474 break;
2475
2476 default:
2477 internal_error
2478 (__FILE__, __LINE__,
2479 _("arm_store_return_value: Floating point model not supported"));
2480 break;
2481 }
2482 }
2483 else if (TYPE_CODE (type) == TYPE_CODE_INT
2484 || TYPE_CODE (type) == TYPE_CODE_CHAR
2485 || TYPE_CODE (type) == TYPE_CODE_BOOL
2486 || TYPE_CODE (type) == TYPE_CODE_PTR
2487 || TYPE_CODE (type) == TYPE_CODE_REF
2488 || TYPE_CODE (type) == TYPE_CODE_ENUM)
2489 {
2490 if (TYPE_LENGTH (type) <= 4)
2491 {
2492 /* Values of one word or less are zero/sign-extended and
2493 returned in r0. */
2494 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2495 LONGEST val = unpack_long (type, valbuf);
2496
2497 store_signed_integer (tmpbuf, INT_REGISTER_SIZE, val);
2498 regcache_cooked_write (regs, ARM_A1_REGNUM, tmpbuf);
2499 }
2500 else
2501 {
2502 /* Integral values greater than one word are stored in consecutive
2503 registers starting with r0. This will always be a multiple of
2504 the regiser size. */
2505 int len = TYPE_LENGTH (type);
2506 int regno = ARM_A1_REGNUM;
2507
2508 while (len > 0)
2509 {
2510 regcache_cooked_write (regs, regno++, valbuf);
2511 len -= INT_REGISTER_SIZE;
2512 valbuf += INT_REGISTER_SIZE;
2513 }
2514 }
2515 }
2516 else
2517 {
2518 /* For a structure or union the behaviour is as if the value had
2519 been stored to word-aligned memory and then loaded into
2520 registers with 32-bit load instruction(s). */
2521 int len = TYPE_LENGTH (type);
2522 int regno = ARM_A1_REGNUM;
2523 bfd_byte tmpbuf[INT_REGISTER_SIZE];
2524
2525 while (len > 0)
2526 {
2527 memcpy (tmpbuf, valbuf,
2528 len > INT_REGISTER_SIZE ? INT_REGISTER_SIZE : len);
2529 regcache_cooked_write (regs, regno++, tmpbuf);
2530 len -= INT_REGISTER_SIZE;
2531 valbuf += INT_REGISTER_SIZE;
2532 }
2533 }
2534 }
2535
2536
2537 /* Handle function return values. */
2538
2539 static enum return_value_convention
2540 arm_return_value (struct gdbarch *gdbarch, struct type *func_type,
2541 struct type *valtype, struct regcache *regcache,
2542 gdb_byte *readbuf, const gdb_byte *writebuf)
2543 {
2544 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2545
2546 if (TYPE_CODE (valtype) == TYPE_CODE_STRUCT
2547 || TYPE_CODE (valtype) == TYPE_CODE_UNION
2548 || TYPE_CODE (valtype) == TYPE_CODE_ARRAY)
2549 {
2550 if (tdep->struct_return == pcc_struct_return
2551 || arm_return_in_memory (gdbarch, valtype))
2552 return RETURN_VALUE_STRUCT_CONVENTION;
2553 }
2554
2555 if (writebuf)
2556 arm_store_return_value (valtype, regcache, writebuf);
2557
2558 if (readbuf)
2559 arm_extract_return_value (valtype, regcache, readbuf);
2560
2561 return RETURN_VALUE_REGISTER_CONVENTION;
2562 }
2563
2564
2565 static int
2566 arm_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2567 {
2568 CORE_ADDR jb_addr;
2569 char buf[INT_REGISTER_SIZE];
2570 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (frame));
2571
2572 jb_addr = get_frame_register_unsigned (frame, ARM_A1_REGNUM);
2573
2574 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2575 INT_REGISTER_SIZE))
2576 return 0;
2577
2578 *pc = extract_unsigned_integer (buf, INT_REGISTER_SIZE);
2579 return 1;
2580 }
2581
2582 /* Recognize GCC and GNU ld's trampolines. If we are in a trampoline,
2583 return the target PC. Otherwise return 0. */
2584
2585 CORE_ADDR
2586 arm_skip_stub (struct frame_info *frame, CORE_ADDR pc)
2587 {
2588 char *name;
2589 int namelen;
2590 CORE_ADDR start_addr;
2591
2592 /* Find the starting address and name of the function containing the PC. */
2593 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
2594 return 0;
2595
2596 /* If PC is in a Thumb call or return stub, return the address of the
2597 target PC, which is in a register. The thunk functions are called
2598 _call_via_xx, where x is the register name. The possible names
2599 are r0-r9, sl, fp, ip, sp, and lr. */
2600 if (strncmp (name, "_call_via_", 10) == 0)
2601 {
2602 /* Use the name suffix to determine which register contains the
2603 target PC. */
2604 static char *table[15] =
2605 {"r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
2606 "r8", "r9", "sl", "fp", "ip", "sp", "lr"
2607 };
2608 int regno;
2609 int offset = strlen (name) - 2;
2610
2611 for (regno = 0; regno <= 14; regno++)
2612 if (strcmp (&name[offset], table[regno]) == 0)
2613 return get_frame_register_unsigned (frame, regno);
2614 }
2615
2616 /* GNU ld generates __foo_from_arm or __foo_from_thumb for
2617 non-interworking calls to foo. We could decode the stubs
2618 to find the target but it's easier to use the symbol table. */
2619 namelen = strlen (name);
2620 if (name[0] == '_' && name[1] == '_'
2621 && ((namelen > 2 + strlen ("_from_thumb")
2622 && strncmp (name + namelen - strlen ("_from_thumb"), "_from_thumb",
2623 strlen ("_from_thumb")) == 0)
2624 || (namelen > 2 + strlen ("_from_arm")
2625 && strncmp (name + namelen - strlen ("_from_arm"), "_from_arm",
2626 strlen ("_from_arm")) == 0)))
2627 {
2628 char *target_name;
2629 int target_len = namelen - 2;
2630 struct minimal_symbol *minsym;
2631 struct objfile *objfile;
2632 struct obj_section *sec;
2633
2634 if (name[namelen - 1] == 'b')
2635 target_len -= strlen ("_from_thumb");
2636 else
2637 target_len -= strlen ("_from_arm");
2638
2639 target_name = alloca (target_len + 1);
2640 memcpy (target_name, name + 2, target_len);
2641 target_name[target_len] = '\0';
2642
2643 sec = find_pc_section (pc);
2644 objfile = (sec == NULL) ? NULL : sec->objfile;
2645 minsym = lookup_minimal_symbol (target_name, NULL, objfile);
2646 if (minsym != NULL)
2647 return SYMBOL_VALUE_ADDRESS (minsym);
2648 else
2649 return 0;
2650 }
2651
2652 return 0; /* not a stub */
2653 }
2654
2655 static void
2656 set_arm_command (char *args, int from_tty)
2657 {
2658 printf_unfiltered (_("\
2659 \"set arm\" must be followed by an apporpriate subcommand.\n"));
2660 help_list (setarmcmdlist, "set arm ", all_commands, gdb_stdout);
2661 }
2662
2663 static void
2664 show_arm_command (char *args, int from_tty)
2665 {
2666 cmd_show_list (showarmcmdlist, from_tty, "");
2667 }
2668
2669 static void
2670 arm_update_current_architecture (void)
2671 {
2672 struct gdbarch_info info;
2673
2674 /* If the current architecture is not ARM, we have nothing to do. */
2675 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_arm)
2676 return;
2677
2678 /* Update the architecture. */
2679 gdbarch_info_init (&info);
2680
2681 if (!gdbarch_update_p (info))
2682 internal_error (__FILE__, __LINE__, "could not update architecture");
2683 }
2684
2685 static void
2686 set_fp_model_sfunc (char *args, int from_tty,
2687 struct cmd_list_element *c)
2688 {
2689 enum arm_float_model fp_model;
2690
2691 for (fp_model = ARM_FLOAT_AUTO; fp_model != ARM_FLOAT_LAST; fp_model++)
2692 if (strcmp (current_fp_model, fp_model_strings[fp_model]) == 0)
2693 {
2694 arm_fp_model = fp_model;
2695 break;
2696 }
2697
2698 if (fp_model == ARM_FLOAT_LAST)
2699 internal_error (__FILE__, __LINE__, _("Invalid fp model accepted: %s."),
2700 current_fp_model);
2701
2702 arm_update_current_architecture ();
2703 }
2704
2705 static void
2706 show_fp_model (struct ui_file *file, int from_tty,
2707 struct cmd_list_element *c, const char *value)
2708 {
2709 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2710
2711 if (arm_fp_model == ARM_FLOAT_AUTO
2712 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2713 fprintf_filtered (file, _("\
2714 The current ARM floating point model is \"auto\" (currently \"%s\").\n"),
2715 fp_model_strings[tdep->fp_model]);
2716 else
2717 fprintf_filtered (file, _("\
2718 The current ARM floating point model is \"%s\".\n"),
2719 fp_model_strings[arm_fp_model]);
2720 }
2721
2722 static void
2723 arm_set_abi (char *args, int from_tty,
2724 struct cmd_list_element *c)
2725 {
2726 enum arm_abi_kind arm_abi;
2727
2728 for (arm_abi = ARM_ABI_AUTO; arm_abi != ARM_ABI_LAST; arm_abi++)
2729 if (strcmp (arm_abi_string, arm_abi_strings[arm_abi]) == 0)
2730 {
2731 arm_abi_global = arm_abi;
2732 break;
2733 }
2734
2735 if (arm_abi == ARM_ABI_LAST)
2736 internal_error (__FILE__, __LINE__, _("Invalid ABI accepted: %s."),
2737 arm_abi_string);
2738
2739 arm_update_current_architecture ();
2740 }
2741
2742 static void
2743 arm_show_abi (struct ui_file *file, int from_tty,
2744 struct cmd_list_element *c, const char *value)
2745 {
2746 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2747
2748 if (arm_abi_global == ARM_ABI_AUTO
2749 && gdbarch_bfd_arch_info (current_gdbarch)->arch == bfd_arch_arm)
2750 fprintf_filtered (file, _("\
2751 The current ARM ABI is \"auto\" (currently \"%s\").\n"),
2752 arm_abi_strings[tdep->arm_abi]);
2753 else
2754 fprintf_filtered (file, _("The current ARM ABI is \"%s\".\n"),
2755 arm_abi_string);
2756 }
2757
2758 static void
2759 arm_show_fallback_mode (struct ui_file *file, int from_tty,
2760 struct cmd_list_element *c, const char *value)
2761 {
2762 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2763
2764 fprintf_filtered (file, _("\
2765 The current execution mode assumed (when symbols are unavailable) is \"%s\".\n"),
2766 arm_fallback_mode_string);
2767 }
2768
2769 static void
2770 arm_show_force_mode (struct ui_file *file, int from_tty,
2771 struct cmd_list_element *c, const char *value)
2772 {
2773 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2774
2775 fprintf_filtered (file, _("\
2776 The current execution mode assumed (even when symbols are available) is \"%s\".\n"),
2777 arm_force_mode_string);
2778 }
2779
2780 /* If the user changes the register disassembly style used for info
2781 register and other commands, we have to also switch the style used
2782 in opcodes for disassembly output. This function is run in the "set
2783 arm disassembly" command, and does that. */
2784
2785 static void
2786 set_disassembly_style_sfunc (char *args, int from_tty,
2787 struct cmd_list_element *c)
2788 {
2789 set_disassembly_style ();
2790 }
2791 \f
2792 /* Return the ARM register name corresponding to register I. */
2793 static const char *
2794 arm_register_name (struct gdbarch *gdbarch, int i)
2795 {
2796 if (i >= ARRAY_SIZE (arm_register_names))
2797 /* These registers are only supported on targets which supply
2798 an XML description. */
2799 return "";
2800
2801 return arm_register_names[i];
2802 }
2803
2804 static void
2805 set_disassembly_style (void)
2806 {
2807 int current;
2808
2809 /* Find the style that the user wants. */
2810 for (current = 0; current < num_disassembly_options; current++)
2811 if (disassembly_style == valid_disassembly_styles[current])
2812 break;
2813 gdb_assert (current < num_disassembly_options);
2814
2815 /* Synchronize the disassembler. */
2816 set_arm_regname_option (current);
2817 }
2818
2819 /* Test whether the coff symbol specific value corresponds to a Thumb
2820 function. */
2821
2822 static int
2823 coff_sym_is_thumb (int val)
2824 {
2825 return (val == C_THUMBEXT ||
2826 val == C_THUMBSTAT ||
2827 val == C_THUMBEXTFUNC ||
2828 val == C_THUMBSTATFUNC ||
2829 val == C_THUMBLABEL);
2830 }
2831
2832 /* arm_coff_make_msymbol_special()
2833 arm_elf_make_msymbol_special()
2834
2835 These functions test whether the COFF or ELF symbol corresponds to
2836 an address in thumb code, and set a "special" bit in a minimal
2837 symbol to indicate that it does. */
2838
2839 static void
2840 arm_elf_make_msymbol_special(asymbol *sym, struct minimal_symbol *msym)
2841 {
2842 /* Thumb symbols are of type STT_LOPROC, (synonymous with
2843 STT_ARM_TFUNC). */
2844 if (ELF_ST_TYPE (((elf_symbol_type *)sym)->internal_elf_sym.st_info)
2845 == STT_LOPROC)
2846 MSYMBOL_SET_SPECIAL (msym);
2847 }
2848
2849 static void
2850 arm_coff_make_msymbol_special(int val, struct minimal_symbol *msym)
2851 {
2852 if (coff_sym_is_thumb (val))
2853 MSYMBOL_SET_SPECIAL (msym);
2854 }
2855
2856 static void
2857 arm_objfile_data_cleanup (struct objfile *objfile, void *arg)
2858 {
2859 struct arm_per_objfile *data = arg;
2860 unsigned int i;
2861
2862 for (i = 0; i < objfile->obfd->section_count; i++)
2863 VEC_free (arm_mapping_symbol_s, data->section_maps[i]);
2864 }
2865
2866 static void
2867 arm_record_special_symbol (struct gdbarch *gdbarch, struct objfile *objfile,
2868 asymbol *sym)
2869 {
2870 const char *name = bfd_asymbol_name (sym);
2871 struct arm_per_objfile *data;
2872 VEC(arm_mapping_symbol_s) **map_p;
2873 struct arm_mapping_symbol new_map_sym;
2874
2875 gdb_assert (name[0] == '$');
2876 if (name[1] != 'a' && name[1] != 't' && name[1] != 'd')
2877 return;
2878
2879 data = objfile_data (objfile, arm_objfile_data_key);
2880 if (data == NULL)
2881 {
2882 data = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2883 struct arm_per_objfile);
2884 set_objfile_data (objfile, arm_objfile_data_key, data);
2885 data->section_maps = OBSTACK_CALLOC (&objfile->objfile_obstack,
2886 objfile->obfd->section_count,
2887 VEC(arm_mapping_symbol_s) *);
2888 }
2889 map_p = &data->section_maps[bfd_get_section (sym)->index];
2890
2891 new_map_sym.value = sym->value;
2892 new_map_sym.type = name[1];
2893
2894 /* Assume that most mapping symbols appear in order of increasing
2895 value. If they were randomly distributed, it would be faster to
2896 always push here and then sort at first use. */
2897 if (!VEC_empty (arm_mapping_symbol_s, *map_p))
2898 {
2899 struct arm_mapping_symbol *prev_map_sym;
2900
2901 prev_map_sym = VEC_last (arm_mapping_symbol_s, *map_p);
2902 if (prev_map_sym->value >= sym->value)
2903 {
2904 unsigned int idx;
2905 idx = VEC_lower_bound (arm_mapping_symbol_s, *map_p, &new_map_sym,
2906 arm_compare_mapping_symbols);
2907 VEC_safe_insert (arm_mapping_symbol_s, *map_p, idx, &new_map_sym);
2908 return;
2909 }
2910 }
2911
2912 VEC_safe_push (arm_mapping_symbol_s, *map_p, &new_map_sym);
2913 }
2914
2915 static void
2916 arm_write_pc (struct regcache *regcache, CORE_ADDR pc)
2917 {
2918 regcache_cooked_write_unsigned (regcache, ARM_PC_REGNUM, pc);
2919
2920 /* If necessary, set the T bit. */
2921 if (arm_apcs_32)
2922 {
2923 ULONGEST val;
2924 regcache_cooked_read_unsigned (regcache, ARM_PS_REGNUM, &val);
2925 if (arm_pc_is_thumb (pc))
2926 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM, val | CPSR_T);
2927 else
2928 regcache_cooked_write_unsigned (regcache, ARM_PS_REGNUM,
2929 val & ~(ULONGEST) CPSR_T);
2930 }
2931 }
2932
2933 static struct value *
2934 value_of_arm_user_reg (struct frame_info *frame, const void *baton)
2935 {
2936 const int *reg_p = baton;
2937 return value_of_register (*reg_p, frame);
2938 }
2939 \f
2940 static enum gdb_osabi
2941 arm_elf_osabi_sniffer (bfd *abfd)
2942 {
2943 unsigned int elfosabi;
2944 enum gdb_osabi osabi = GDB_OSABI_UNKNOWN;
2945
2946 elfosabi = elf_elfheader (abfd)->e_ident[EI_OSABI];
2947
2948 if (elfosabi == ELFOSABI_ARM)
2949 /* GNU tools use this value. Check note sections in this case,
2950 as well. */
2951 bfd_map_over_sections (abfd,
2952 generic_elf_osabi_sniff_abi_tag_sections,
2953 &osabi);
2954
2955 /* Anything else will be handled by the generic ELF sniffer. */
2956 return osabi;
2957 }
2958
2959 \f
2960 /* Initialize the current architecture based on INFO. If possible,
2961 re-use an architecture from ARCHES, which is a list of
2962 architectures already created during this debugging session.
2963
2964 Called e.g. at program startup, when reading a core file, and when
2965 reading a binary file. */
2966
2967 static struct gdbarch *
2968 arm_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
2969 {
2970 struct gdbarch_tdep *tdep;
2971 struct gdbarch *gdbarch;
2972 struct gdbarch_list *best_arch;
2973 enum arm_abi_kind arm_abi = arm_abi_global;
2974 enum arm_float_model fp_model = arm_fp_model;
2975 struct tdesc_arch_data *tdesc_data = NULL;
2976 int i;
2977 int have_fpa_registers = 1;
2978
2979 /* Check any target description for validity. */
2980 if (tdesc_has_registers (info.target_desc))
2981 {
2982 /* For most registers we require GDB's default names; but also allow
2983 the numeric names for sp / lr / pc, as a convenience. */
2984 static const char *const arm_sp_names[] = { "r13", "sp", NULL };
2985 static const char *const arm_lr_names[] = { "r14", "lr", NULL };
2986 static const char *const arm_pc_names[] = { "r15", "pc", NULL };
2987
2988 const struct tdesc_feature *feature;
2989 int i, valid_p;
2990
2991 feature = tdesc_find_feature (info.target_desc,
2992 "org.gnu.gdb.arm.core");
2993 if (feature == NULL)
2994 return NULL;
2995
2996 tdesc_data = tdesc_data_alloc ();
2997
2998 valid_p = 1;
2999 for (i = 0; i < ARM_SP_REGNUM; i++)
3000 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
3001 arm_register_names[i]);
3002 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3003 ARM_SP_REGNUM,
3004 arm_sp_names);
3005 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3006 ARM_LR_REGNUM,
3007 arm_lr_names);
3008 valid_p &= tdesc_numbered_register_choices (feature, tdesc_data,
3009 ARM_PC_REGNUM,
3010 arm_pc_names);
3011 valid_p &= tdesc_numbered_register (feature, tdesc_data,
3012 ARM_PS_REGNUM, "cpsr");
3013
3014 if (!valid_p)
3015 {
3016 tdesc_data_cleanup (tdesc_data);
3017 return NULL;
3018 }
3019
3020 feature = tdesc_find_feature (info.target_desc,
3021 "org.gnu.gdb.arm.fpa");
3022 if (feature != NULL)
3023 {
3024 valid_p = 1;
3025 for (i = ARM_F0_REGNUM; i <= ARM_FPS_REGNUM; i++)
3026 valid_p &= tdesc_numbered_register (feature, tdesc_data, i,
3027 arm_register_names[i]);
3028 if (!valid_p)
3029 {
3030 tdesc_data_cleanup (tdesc_data);
3031 return NULL;
3032 }
3033 }
3034 else
3035 have_fpa_registers = 0;
3036
3037 feature = tdesc_find_feature (info.target_desc,
3038 "org.gnu.gdb.xscale.iwmmxt");
3039 if (feature != NULL)
3040 {
3041 static const char *const iwmmxt_names[] = {
3042 "wR0", "wR1", "wR2", "wR3", "wR4", "wR5", "wR6", "wR7",
3043 "wR8", "wR9", "wR10", "wR11", "wR12", "wR13", "wR14", "wR15",
3044 "wCID", "wCon", "wCSSF", "wCASF", "", "", "", "",
3045 "wCGR0", "wCGR1", "wCGR2", "wCGR3", "", "", "", "",
3046 };
3047
3048 valid_p = 1;
3049 for (i = ARM_WR0_REGNUM; i <= ARM_WR15_REGNUM; i++)
3050 valid_p
3051 &= tdesc_numbered_register (feature, tdesc_data, i,
3052 iwmmxt_names[i - ARM_WR0_REGNUM]);
3053
3054 /* Check for the control registers, but do not fail if they
3055 are missing. */
3056 for (i = ARM_WC0_REGNUM; i <= ARM_WCASF_REGNUM; i++)
3057 tdesc_numbered_register (feature, tdesc_data, i,
3058 iwmmxt_names[i - ARM_WR0_REGNUM]);
3059
3060 for (i = ARM_WCGR0_REGNUM; i <= ARM_WCGR3_REGNUM; i++)
3061 valid_p
3062 &= tdesc_numbered_register (feature, tdesc_data, i,
3063 iwmmxt_names[i - ARM_WR0_REGNUM]);
3064
3065 if (!valid_p)
3066 {
3067 tdesc_data_cleanup (tdesc_data);
3068 return NULL;
3069 }
3070 }
3071 }
3072
3073 /* If we have an object to base this architecture on, try to determine
3074 its ABI. */
3075
3076 if (arm_abi == ARM_ABI_AUTO && info.abfd != NULL)
3077 {
3078 int ei_osabi, e_flags;
3079
3080 switch (bfd_get_flavour (info.abfd))
3081 {
3082 case bfd_target_aout_flavour:
3083 /* Assume it's an old APCS-style ABI. */
3084 arm_abi = ARM_ABI_APCS;
3085 break;
3086
3087 case bfd_target_coff_flavour:
3088 /* Assume it's an old APCS-style ABI. */
3089 /* XXX WinCE? */
3090 arm_abi = ARM_ABI_APCS;
3091 break;
3092
3093 case bfd_target_elf_flavour:
3094 ei_osabi = elf_elfheader (info.abfd)->e_ident[EI_OSABI];
3095 e_flags = elf_elfheader (info.abfd)->e_flags;
3096
3097 if (ei_osabi == ELFOSABI_ARM)
3098 {
3099 /* GNU tools used to use this value, but do not for EABI
3100 objects. There's nowhere to tag an EABI version
3101 anyway, so assume APCS. */
3102 arm_abi = ARM_ABI_APCS;
3103 }
3104 else if (ei_osabi == ELFOSABI_NONE)
3105 {
3106 int eabi_ver = EF_ARM_EABI_VERSION (e_flags);
3107
3108 switch (eabi_ver)
3109 {
3110 case EF_ARM_EABI_UNKNOWN:
3111 /* Assume GNU tools. */
3112 arm_abi = ARM_ABI_APCS;
3113 break;
3114
3115 case EF_ARM_EABI_VER4:
3116 case EF_ARM_EABI_VER5:
3117 arm_abi = ARM_ABI_AAPCS;
3118 /* EABI binaries default to VFP float ordering. */
3119 if (fp_model == ARM_FLOAT_AUTO)
3120 fp_model = ARM_FLOAT_SOFT_VFP;
3121 break;
3122
3123 default:
3124 /* Leave it as "auto". */
3125 warning (_("unknown ARM EABI version 0x%x"), eabi_ver);
3126 break;
3127 }
3128 }
3129
3130 if (fp_model == ARM_FLOAT_AUTO)
3131 {
3132 int e_flags = elf_elfheader (info.abfd)->e_flags;
3133
3134 switch (e_flags & (EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT))
3135 {
3136 case 0:
3137 /* Leave it as "auto". Strictly speaking this case
3138 means FPA, but almost nobody uses that now, and
3139 many toolchains fail to set the appropriate bits
3140 for the floating-point model they use. */
3141 break;
3142 case EF_ARM_SOFT_FLOAT:
3143 fp_model = ARM_FLOAT_SOFT_FPA;
3144 break;
3145 case EF_ARM_VFP_FLOAT:
3146 fp_model = ARM_FLOAT_VFP;
3147 break;
3148 case EF_ARM_SOFT_FLOAT | EF_ARM_VFP_FLOAT:
3149 fp_model = ARM_FLOAT_SOFT_VFP;
3150 break;
3151 }
3152 }
3153 break;
3154
3155 default:
3156 /* Leave it as "auto". */
3157 break;
3158 }
3159 }
3160
3161 /* If there is already a candidate, use it. */
3162 for (best_arch = gdbarch_list_lookup_by_info (arches, &info);
3163 best_arch != NULL;
3164 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3165 {
3166 if (arm_abi != ARM_ABI_AUTO
3167 && arm_abi != gdbarch_tdep (best_arch->gdbarch)->arm_abi)
3168 continue;
3169
3170 if (fp_model != ARM_FLOAT_AUTO
3171 && fp_model != gdbarch_tdep (best_arch->gdbarch)->fp_model)
3172 continue;
3173
3174 /* Found a match. */
3175 break;
3176 }
3177
3178 if (best_arch != NULL)
3179 {
3180 if (tdesc_data != NULL)
3181 tdesc_data_cleanup (tdesc_data);
3182 return best_arch->gdbarch;
3183 }
3184
3185 tdep = xcalloc (1, sizeof (struct gdbarch_tdep));
3186 gdbarch = gdbarch_alloc (&info, tdep);
3187
3188 /* Record additional information about the architecture we are defining.
3189 These are gdbarch discriminators, like the OSABI. */
3190 tdep->arm_abi = arm_abi;
3191 tdep->fp_model = fp_model;
3192 tdep->have_fpa_registers = have_fpa_registers;
3193
3194 /* Breakpoints. */
3195 switch (info.byte_order)
3196 {
3197 case BFD_ENDIAN_BIG:
3198 tdep->arm_breakpoint = arm_default_arm_be_breakpoint;
3199 tdep->arm_breakpoint_size = sizeof (arm_default_arm_be_breakpoint);
3200 tdep->thumb_breakpoint = arm_default_thumb_be_breakpoint;
3201 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_be_breakpoint);
3202
3203 break;
3204
3205 case BFD_ENDIAN_LITTLE:
3206 tdep->arm_breakpoint = arm_default_arm_le_breakpoint;
3207 tdep->arm_breakpoint_size = sizeof (arm_default_arm_le_breakpoint);
3208 tdep->thumb_breakpoint = arm_default_thumb_le_breakpoint;
3209 tdep->thumb_breakpoint_size = sizeof (arm_default_thumb_le_breakpoint);
3210
3211 break;
3212
3213 default:
3214 internal_error (__FILE__, __LINE__,
3215 _("arm_gdbarch_init: bad byte order for float format"));
3216 }
3217
3218 /* On ARM targets char defaults to unsigned. */
3219 set_gdbarch_char_signed (gdbarch, 0);
3220
3221 /* This should be low enough for everything. */
3222 tdep->lowest_pc = 0x20;
3223 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3224
3225 /* The default, for both APCS and AAPCS, is to return small
3226 structures in registers. */
3227 tdep->struct_return = reg_struct_return;
3228
3229 set_gdbarch_push_dummy_call (gdbarch, arm_push_dummy_call);
3230 set_gdbarch_frame_align (gdbarch, arm_frame_align);
3231
3232 set_gdbarch_write_pc (gdbarch, arm_write_pc);
3233
3234 /* Frame handling. */
3235 set_gdbarch_dummy_id (gdbarch, arm_dummy_id);
3236 set_gdbarch_unwind_pc (gdbarch, arm_unwind_pc);
3237 set_gdbarch_unwind_sp (gdbarch, arm_unwind_sp);
3238
3239 frame_base_set_default (gdbarch, &arm_normal_base);
3240
3241 /* Address manipulation. */
3242 set_gdbarch_smash_text_address (gdbarch, arm_smash_text_address);
3243 set_gdbarch_addr_bits_remove (gdbarch, arm_addr_bits_remove);
3244
3245 /* Advance PC across function entry code. */
3246 set_gdbarch_skip_prologue (gdbarch, arm_skip_prologue);
3247
3248 /* Skip trampolines. */
3249 set_gdbarch_skip_trampoline_code (gdbarch, arm_skip_stub);
3250
3251 /* The stack grows downward. */
3252 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3253
3254 /* Breakpoint manipulation. */
3255 set_gdbarch_breakpoint_from_pc (gdbarch, arm_breakpoint_from_pc);
3256
3257 /* Information about registers, etc. */
3258 set_gdbarch_deprecated_fp_regnum (gdbarch, ARM_FP_REGNUM); /* ??? */
3259 set_gdbarch_sp_regnum (gdbarch, ARM_SP_REGNUM);
3260 set_gdbarch_pc_regnum (gdbarch, ARM_PC_REGNUM);
3261 set_gdbarch_num_regs (gdbarch, ARM_NUM_REGS);
3262 set_gdbarch_register_type (gdbarch, arm_register_type);
3263
3264 /* This "info float" is FPA-specific. Use the generic version if we
3265 do not have FPA. */
3266 if (gdbarch_tdep (gdbarch)->have_fpa_registers)
3267 set_gdbarch_print_float_info (gdbarch, arm_print_float_info);
3268
3269 /* Internal <-> external register number maps. */
3270 set_gdbarch_dwarf_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3271 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, arm_dwarf_reg_to_regnum);
3272 set_gdbarch_register_sim_regno (gdbarch, arm_register_sim_regno);
3273
3274 set_gdbarch_register_name (gdbarch, arm_register_name);
3275
3276 /* Returning results. */
3277 set_gdbarch_return_value (gdbarch, arm_return_value);
3278
3279 /* Disassembly. */
3280 set_gdbarch_print_insn (gdbarch, gdb_print_insn_arm);
3281
3282 /* Minsymbol frobbing. */
3283 set_gdbarch_elf_make_msymbol_special (gdbarch, arm_elf_make_msymbol_special);
3284 set_gdbarch_coff_make_msymbol_special (gdbarch,
3285 arm_coff_make_msymbol_special);
3286 set_gdbarch_record_special_symbol (gdbarch, arm_record_special_symbol);
3287
3288 /* Virtual tables. */
3289 set_gdbarch_vbit_in_delta (gdbarch, 1);
3290
3291 /* Hook in the ABI-specific overrides, if they have been registered. */
3292 gdbarch_init_osabi (info, gdbarch);
3293
3294 dwarf2_frame_set_init_reg (gdbarch, arm_dwarf2_frame_init_reg);
3295
3296 /* Add some default predicates. */
3297 frame_unwind_append_unwinder (gdbarch, &arm_stub_unwind);
3298 dwarf2_append_unwinders (gdbarch);
3299 frame_unwind_append_unwinder (gdbarch, &arm_prologue_unwind);
3300
3301 /* Now we have tuned the configuration, set a few final things,
3302 based on what the OS ABI has told us. */
3303
3304 /* If the ABI is not otherwise marked, assume the old GNU APCS. EABI
3305 binaries are always marked. */
3306 if (tdep->arm_abi == ARM_ABI_AUTO)
3307 tdep->arm_abi = ARM_ABI_APCS;
3308
3309 /* We used to default to FPA for generic ARM, but almost nobody
3310 uses that now, and we now provide a way for the user to force
3311 the model. So default to the most useful variant. */
3312 if (tdep->fp_model == ARM_FLOAT_AUTO)
3313 tdep->fp_model = ARM_FLOAT_SOFT_FPA;
3314
3315 if (tdep->jb_pc >= 0)
3316 set_gdbarch_get_longjmp_target (gdbarch, arm_get_longjmp_target);
3317
3318 /* Floating point sizes and format. */
3319 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3320 if (tdep->fp_model == ARM_FLOAT_SOFT_FPA || tdep->fp_model == ARM_FLOAT_FPA)
3321 {
3322 set_gdbarch_double_format
3323 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3324 set_gdbarch_long_double_format
3325 (gdbarch, floatformats_ieee_double_littlebyte_bigword);
3326 }
3327 else
3328 {
3329 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3330 set_gdbarch_long_double_format (gdbarch, floatformats_ieee_double);
3331 }
3332
3333 if (tdesc_data)
3334 tdesc_use_registers (gdbarch, info.target_desc, tdesc_data);
3335
3336 /* Add standard register aliases. We add aliases even for those
3337 nanes which are used by the current architecture - it's simpler,
3338 and does no harm, since nothing ever lists user registers. */
3339 for (i = 0; i < ARRAY_SIZE (arm_register_aliases); i++)
3340 user_reg_add (gdbarch, arm_register_aliases[i].name,
3341 value_of_arm_user_reg, &arm_register_aliases[i].regnum);
3342
3343 return gdbarch;
3344 }
3345
3346 static void
3347 arm_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3348 {
3349 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3350
3351 if (tdep == NULL)
3352 return;
3353
3354 fprintf_unfiltered (file, _("arm_dump_tdep: Lowest pc = 0x%lx"),
3355 (unsigned long) tdep->lowest_pc);
3356 }
3357
3358 extern initialize_file_ftype _initialize_arm_tdep; /* -Wmissing-prototypes */
3359
3360 void
3361 _initialize_arm_tdep (void)
3362 {
3363 struct ui_file *stb;
3364 long length;
3365 struct cmd_list_element *new_set, *new_show;
3366 const char *setname;
3367 const char *setdesc;
3368 const char *const *regnames;
3369 int numregs, i, j;
3370 static char *helptext;
3371 char regdesc[1024], *rdptr = regdesc;
3372 size_t rest = sizeof (regdesc);
3373
3374 gdbarch_register (bfd_arch_arm, arm_gdbarch_init, arm_dump_tdep);
3375
3376 arm_objfile_data_key
3377 = register_objfile_data_with_cleanup (arm_objfile_data_cleanup);
3378
3379 /* Register an ELF OS ABI sniffer for ARM binaries. */
3380 gdbarch_register_osabi_sniffer (bfd_arch_arm,
3381 bfd_target_elf_flavour,
3382 arm_elf_osabi_sniffer);
3383
3384 /* Get the number of possible sets of register names defined in opcodes. */
3385 num_disassembly_options = get_arm_regname_num_options ();
3386
3387 /* Add root prefix command for all "set arm"/"show arm" commands. */
3388 add_prefix_cmd ("arm", no_class, set_arm_command,
3389 _("Various ARM-specific commands."),
3390 &setarmcmdlist, "set arm ", 0, &setlist);
3391
3392 add_prefix_cmd ("arm", no_class, show_arm_command,
3393 _("Various ARM-specific commands."),
3394 &showarmcmdlist, "show arm ", 0, &showlist);
3395
3396 /* Sync the opcode insn printer with our register viewer. */
3397 parse_arm_disassembler_option ("reg-names-std");
3398
3399 /* Initialize the array that will be passed to
3400 add_setshow_enum_cmd(). */
3401 valid_disassembly_styles
3402 = xmalloc ((num_disassembly_options + 1) * sizeof (char *));
3403 for (i = 0; i < num_disassembly_options; i++)
3404 {
3405 numregs = get_arm_regnames (i, &setname, &setdesc, &regnames);
3406 valid_disassembly_styles[i] = setname;
3407 length = snprintf (rdptr, rest, "%s - %s\n", setname, setdesc);
3408 rdptr += length;
3409 rest -= length;
3410 /* When we find the default names, tell the disassembler to use
3411 them. */
3412 if (!strcmp (setname, "std"))
3413 {
3414 disassembly_style = setname;
3415 set_arm_regname_option (i);
3416 }
3417 }
3418 /* Mark the end of valid options. */
3419 valid_disassembly_styles[num_disassembly_options] = NULL;
3420
3421 /* Create the help text. */
3422 stb = mem_fileopen ();
3423 fprintf_unfiltered (stb, "%s%s%s",
3424 _("The valid values are:\n"),
3425 regdesc,
3426 _("The default is \"std\"."));
3427 helptext = ui_file_xstrdup (stb, &length);
3428 ui_file_delete (stb);
3429
3430 add_setshow_enum_cmd("disassembler", no_class,
3431 valid_disassembly_styles, &disassembly_style,
3432 _("Set the disassembly style."),
3433 _("Show the disassembly style."),
3434 helptext,
3435 set_disassembly_style_sfunc,
3436 NULL, /* FIXME: i18n: The disassembly style is \"%s\". */
3437 &setarmcmdlist, &showarmcmdlist);
3438
3439 add_setshow_boolean_cmd ("apcs32", no_class, &arm_apcs_32,
3440 _("Set usage of ARM 32-bit mode."),
3441 _("Show usage of ARM 32-bit mode."),
3442 _("When off, a 26-bit PC will be used."),
3443 NULL,
3444 NULL, /* FIXME: i18n: Usage of ARM 32-bit mode is %s. */
3445 &setarmcmdlist, &showarmcmdlist);
3446
3447 /* Add a command to allow the user to force the FPU model. */
3448 add_setshow_enum_cmd ("fpu", no_class, fp_model_strings, &current_fp_model,
3449 _("Set the floating point type."),
3450 _("Show the floating point type."),
3451 _("auto - Determine the FP typefrom the OS-ABI.\n\
3452 softfpa - Software FP, mixed-endian doubles on little-endian ARMs.\n\
3453 fpa - FPA co-processor (GCC compiled).\n\
3454 softvfp - Software FP with pure-endian doubles.\n\
3455 vfp - VFP co-processor."),
3456 set_fp_model_sfunc, show_fp_model,
3457 &setarmcmdlist, &showarmcmdlist);
3458
3459 /* Add a command to allow the user to force the ABI. */
3460 add_setshow_enum_cmd ("abi", class_support, arm_abi_strings, &arm_abi_string,
3461 _("Set the ABI."),
3462 _("Show the ABI."),
3463 NULL, arm_set_abi, arm_show_abi,
3464 &setarmcmdlist, &showarmcmdlist);
3465
3466 /* Add two commands to allow the user to force the assumed
3467 execution mode. */
3468 add_setshow_enum_cmd ("fallback-mode", class_support,
3469 arm_mode_strings, &arm_fallback_mode_string,
3470 _("Set the mode assumed when symbols are unavailable."),
3471 _("Show the mode assumed when symbols are unavailable."),
3472 NULL, NULL, arm_show_fallback_mode,
3473 &setarmcmdlist, &showarmcmdlist);
3474 add_setshow_enum_cmd ("force-mode", class_support,
3475 arm_mode_strings, &arm_force_mode_string,
3476 _("Set the mode assumed even when symbols are available."),
3477 _("Show the mode assumed even when symbols are available."),
3478 NULL, NULL, arm_show_force_mode,
3479 &setarmcmdlist, &showarmcmdlist);
3480
3481 /* Debugging flag. */
3482 add_setshow_boolean_cmd ("arm", class_maintenance, &arm_debug,
3483 _("Set ARM debugging."),
3484 _("Show ARM debugging."),
3485 _("When on, arm-specific debugging is enabled."),
3486 NULL,
3487 NULL, /* FIXME: i18n: "ARM debugging is %s. */
3488 &setdebuglist, &showdebuglist);
3489 }