]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/bcache.c
a9aab28ab841e152d58aaa7f0e42aa695e3fbe4a
[thirdparty/binutils-gdb.git] / gdb / bcache.c
1 /* Implement a cached obstack.
2 Written by Fred Fish <fnf@cygnus.com>
3 Rewritten by Jim Blandy <jimb@cygnus.com>
4
5 Copyright (C) 1999-2024 Free Software Foundation, Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "gdbsupport/gdb_obstack.h"
23 #include "bcache.h"
24
25 #include <algorithm>
26
27 namespace gdb {
28
29 /* The type used to hold a single bcache string. The user data is
30 stored in d.data. Since it can be any type, it needs to have the
31 same alignment as the most strict alignment of any type on the host
32 machine. I don't know of any really correct way to do this in
33 stock ANSI C, so just do it the same way obstack.h does. */
34
35 struct bstring
36 {
37 /* Hash chain. */
38 struct bstring *next;
39 /* Assume the data length is no more than 64k. */
40 unsigned short length;
41 /* The half hash hack. This contains the upper 16 bits of the hash
42 value and is used as a pre-check when comparing two strings and
43 avoids the need to do length or memcmp calls. It proves to be
44 roughly 100% effective. */
45 unsigned short half_hash;
46
47 union
48 {
49 char data[1];
50 double dummy;
51 }
52 d;
53 };
54
55 \f
56 /* Growing the bcache's hash table. */
57
58 /* If the average chain length grows beyond this, then we want to
59 resize our hash table. */
60 #define CHAIN_LENGTH_THRESHOLD (5)
61
62 void
63 bcache::expand_hash_table ()
64 {
65 /* A table of good hash table sizes. Whenever we grow, we pick the
66 next larger size from this table. sizes[i] is close to 1 << (i+10),
67 so we roughly double the table size each time. After we fall off
68 the end of this table, we just double. Don't laugh --- there have
69 been executables sighted with a gigabyte of debug info. */
70 static const unsigned long sizes[] = {
71 1021, 2053, 4099, 8191, 16381, 32771,
72 65537, 131071, 262144, 524287, 1048573, 2097143,
73 4194301, 8388617, 16777213, 33554467, 67108859, 134217757,
74 268435459, 536870923, 1073741827, 2147483659UL
75 };
76 unsigned int new_num_buckets;
77 struct bstring **new_buckets;
78 unsigned int i;
79
80 /* Count the stats. Every unique item needs to be re-hashed and
81 re-entered. */
82 m_expand_count++;
83 m_expand_hash_count += m_unique_count;
84
85 /* Find the next size. */
86 new_num_buckets = m_num_buckets * 2;
87 for (unsigned long a_size : sizes)
88 if (a_size > m_num_buckets)
89 {
90 new_num_buckets = a_size;
91 break;
92 }
93
94 /* Allocate the new table. */
95 {
96 size_t new_size = new_num_buckets * sizeof (new_buckets[0]);
97
98 new_buckets = (struct bstring **) xmalloc (new_size);
99 memset (new_buckets, 0, new_size);
100
101 m_structure_size -= m_num_buckets * sizeof (m_bucket[0]);
102 m_structure_size += new_size;
103 }
104
105 /* Rehash all existing strings. */
106 for (i = 0; i < m_num_buckets; i++)
107 {
108 struct bstring *s, *next;
109
110 for (s = m_bucket[i]; s; s = next)
111 {
112 struct bstring **new_bucket;
113 next = s->next;
114
115 new_bucket = &new_buckets[(this->hash (&s->d.data, s->length)
116 % new_num_buckets)];
117 s->next = *new_bucket;
118 *new_bucket = s;
119 }
120 }
121
122 /* Plug in the new table. */
123 xfree (m_bucket);
124 m_bucket = new_buckets;
125 m_num_buckets = new_num_buckets;
126 }
127
128 \f
129 /* Looking up things in the bcache. */
130
131 /* The number of bytes needed to allocate a struct bstring whose data
132 is N bytes long. */
133 #define BSTRING_SIZE(n) (offsetof (struct bstring, d.data) + (n))
134
135 /* Find a copy of the LENGTH bytes at ADDR in BCACHE. If BCACHE has
136 never seen those bytes before, add a copy of them to BCACHE. In
137 either case, return a pointer to BCACHE's copy of that string. If
138 optional ADDED is not NULL, return 1 in case of new entry or 0 if
139 returning an old entry. */
140
141 const void *
142 bcache::insert (const void *addr, int length, bool *added)
143 {
144 unsigned long full_hash;
145 unsigned short half_hash;
146 int hash_index;
147 struct bstring *s;
148
149 if (added != nullptr)
150 *added = false;
151
152 /* Lazily initialize the obstack. This can save quite a bit of
153 memory in some cases. */
154 if (m_total_count == 0)
155 {
156 /* We could use obstack_specify_allocation here instead, but
157 gdb_obstack.h specifies the allocation/deallocation
158 functions. */
159 obstack_init (&m_cache);
160 }
161
162 /* If our average chain length is too high, expand the hash table. */
163 if (m_unique_count >= m_num_buckets * CHAIN_LENGTH_THRESHOLD)
164 expand_hash_table ();
165
166 m_total_count++;
167 m_total_size += length;
168
169 full_hash = this->hash (addr, length);
170
171 half_hash = (full_hash >> 16);
172 hash_index = full_hash % m_num_buckets;
173
174 /* Search the hash m_bucket for a string identical to the caller's.
175 As a short-circuit first compare the upper part of each hash
176 values. */
177 for (s = m_bucket[hash_index]; s; s = s->next)
178 {
179 if (s->half_hash == half_hash)
180 {
181 if (s->length == length
182 && this->compare (&s->d.data, addr, length))
183 return &s->d.data;
184 else
185 m_half_hash_miss_count++;
186 }
187 }
188
189 /* The user's string isn't in the list. Insert it after *ps. */
190 {
191 struct bstring *newobj
192 = (struct bstring *) obstack_alloc (&m_cache,
193 BSTRING_SIZE (length));
194
195 memcpy (&newobj->d.data, addr, length);
196 newobj->length = length;
197 newobj->next = m_bucket[hash_index];
198 newobj->half_hash = half_hash;
199 m_bucket[hash_index] = newobj;
200
201 m_unique_count++;
202 m_unique_size += length;
203 m_structure_size += BSTRING_SIZE (length);
204
205 if (added != nullptr)
206 *added = true;
207
208 return &newobj->d.data;
209 }
210 }
211 \f
212
213 /* See bcache.h. */
214
215 unsigned long
216 bcache::hash (const void *addr, int length)
217 {
218 return fast_hash (addr, length, 0);
219 }
220
221 /* See bcache.h. */
222
223 int
224 bcache::compare (const void *left, const void *right, int length)
225 {
226 return memcmp (left, right, length) == 0;
227 }
228
229 /* Free all the storage associated with BCACHE. */
230 bcache::~bcache ()
231 {
232 /* Only free the obstack if we actually initialized it. */
233 if (m_total_count > 0)
234 obstack_free (&m_cache, 0);
235 xfree (m_bucket);
236 }
237
238
239 \f
240 /* Printing statistics. */
241
242 static void
243 print_percentage (int portion, int total)
244 {
245 if (total == 0)
246 /* i18n: Like "Percentage of duplicates, by count: (not applicable)". */
247 gdb_printf (_("(not applicable)\n"));
248 else
249 gdb_printf ("%3d%%\n", (int) (portion * 100.0 / total));
250 }
251
252
253 /* Print statistics on BCACHE's memory usage and efficacity at
254 eliminating duplication. NAME should describe the kind of data
255 BCACHE holds. Statistics are printed using `gdb_printf' and
256 its ilk. */
257 void
258 bcache::print_statistics (const char *type)
259 {
260 int occupied_buckets;
261 int max_chain_length;
262 int median_chain_length;
263 int max_entry_size;
264 int median_entry_size;
265
266 /* Count the number of occupied buckets, tally the various string
267 lengths, and measure chain lengths. */
268 {
269 unsigned int b;
270 int *chain_length = XCNEWVEC (int, m_num_buckets + 1);
271 int *entry_size = XCNEWVEC (int, m_unique_count + 1);
272 int stringi = 0;
273
274 occupied_buckets = 0;
275
276 for (b = 0; b < m_num_buckets; b++)
277 {
278 struct bstring *s = m_bucket[b];
279
280 chain_length[b] = 0;
281
282 if (s)
283 {
284 occupied_buckets++;
285
286 while (s)
287 {
288 gdb_assert (b < m_num_buckets);
289 chain_length[b]++;
290 gdb_assert (stringi < m_unique_count);
291 entry_size[stringi++] = s->length;
292 s = s->next;
293 }
294 }
295 }
296
297 /* To compute the median, we need the set of chain lengths
298 sorted. */
299 std::sort (chain_length, chain_length + m_num_buckets);
300 std::sort (entry_size, entry_size + m_unique_count);
301
302 if (m_num_buckets > 0)
303 {
304 max_chain_length = chain_length[m_num_buckets - 1];
305 median_chain_length = chain_length[m_num_buckets / 2];
306 }
307 else
308 {
309 max_chain_length = 0;
310 median_chain_length = 0;
311 }
312 if (m_unique_count > 0)
313 {
314 max_entry_size = entry_size[m_unique_count - 1];
315 median_entry_size = entry_size[m_unique_count / 2];
316 }
317 else
318 {
319 max_entry_size = 0;
320 median_entry_size = 0;
321 }
322
323 xfree (chain_length);
324 xfree (entry_size);
325 }
326
327 gdb_printf (_(" M_Cached '%s' statistics:\n"), type);
328 gdb_printf (_(" Total object count: %ld\n"), m_total_count);
329 gdb_printf (_(" Unique object count: %lu\n"), m_unique_count);
330 gdb_printf (_(" Percentage of duplicates, by count: "));
331 print_percentage (m_total_count - m_unique_count, m_total_count);
332 gdb_printf ("\n");
333
334 gdb_printf (_(" Total object size: %ld\n"), m_total_size);
335 gdb_printf (_(" Unique object size: %ld\n"), m_unique_size);
336 gdb_printf (_(" Percentage of duplicates, by size: "));
337 print_percentage (m_total_size - m_unique_size, m_total_size);
338 gdb_printf ("\n");
339
340 gdb_printf (_(" Max entry size: %d\n"), max_entry_size);
341 gdb_printf (_(" Average entry size: "));
342 if (m_unique_count > 0)
343 gdb_printf ("%ld\n", m_unique_size / m_unique_count);
344 else
345 /* i18n: "Average entry size: (not applicable)". */
346 gdb_printf (_("(not applicable)\n"));
347 gdb_printf (_(" Median entry size: %d\n"), median_entry_size);
348 gdb_printf ("\n");
349
350 gdb_printf (_(" \
351 Total memory used by bcache, including overhead: %ld\n"),
352 m_structure_size);
353 gdb_printf (_(" Percentage memory overhead: "));
354 print_percentage (m_structure_size - m_unique_size, m_unique_size);
355 gdb_printf (_(" Net memory savings: "));
356 print_percentage (m_total_size - m_structure_size, m_total_size);
357 gdb_printf ("\n");
358
359 gdb_printf (_(" Hash table size: %3d\n"),
360 m_num_buckets);
361 gdb_printf (_(" Hash table expands: %lu\n"),
362 m_expand_count);
363 gdb_printf (_(" Hash table hashes: %lu\n"),
364 m_total_count + m_expand_hash_count);
365 gdb_printf (_(" Half hash misses: %lu\n"),
366 m_half_hash_miss_count);
367 gdb_printf (_(" Hash table population: "));
368 print_percentage (occupied_buckets, m_num_buckets);
369 gdb_printf (_(" Median hash chain length: %3d\n"),
370 median_chain_length);
371 gdb_printf (_(" Average hash chain length: "));
372 if (m_num_buckets > 0)
373 gdb_printf ("%3lu\n", m_unique_count / m_num_buckets);
374 else
375 /* i18n: "Average hash chain length: (not applicable)". */
376 gdb_printf (_("(not applicable)\n"));
377 gdb_printf (_(" Maximum hash chain length: %3d\n"),
378 max_chain_length);
379 gdb_printf ("\n");
380 }
381
382 int
383 bcache::memory_used ()
384 {
385 if (m_total_count == 0)
386 return 0;
387 return obstack_memory_used (&m_cache);
388 }
389
390 } /* namespace gdb */