]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
340b149c2e81b873b2e02a9b3196cdca55e81c58
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-1987, 1989, 1991-2001, 2003-2012 Free Software
4 Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "arch-utils.h"
23 #include "gdb_string.h"
24 #include <errno.h>
25 #include <signal.h>
26 #include <fcntl.h>
27 #ifdef HAVE_SYS_FILE_H
28 #include <sys/file.h> /* needed for F_OK and friends */
29 #endif
30 #include "frame.h" /* required by inferior.h */
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "command.h"
34 #include "bfd.h"
35 #include "target.h"
36 #include "gdbcore.h"
37 #include "gdbthread.h"
38 #include "regcache.h"
39 #include "regset.h"
40 #include "symfile.h"
41 #include "exec.h"
42 #include "readline/readline.h"
43 #include "gdb_assert.h"
44 #include "exceptions.h"
45 #include "solib.h"
46 #include "filenames.h"
47 #include "progspace.h"
48 #include "objfiles.h"
49 #include "gdb_bfd.h"
50
51 #ifndef O_LARGEFILE
52 #define O_LARGEFILE 0
53 #endif
54
55 /* List of all available core_fns. On gdb startup, each core file
56 register reader calls deprecated_add_core_fns() to register
57 information on each core format it is prepared to read. */
58
59 static struct core_fns *core_file_fns = NULL;
60
61 /* The core_fns for a core file handler that is prepared to read the
62 core file currently open on core_bfd. */
63
64 static struct core_fns *core_vec = NULL;
65
66 /* FIXME: kettenis/20031023: Eventually this variable should
67 disappear. */
68
69 struct gdbarch *core_gdbarch = NULL;
70
71 /* Per-core data. Currently, only the section table. Note that these
72 target sections are *not* mapped in the current address spaces' set
73 of target sections --- those should come only from pure executable
74 or shared library bfds. The core bfd sections are an
75 implementation detail of the core target, just like ptrace is for
76 unix child targets. */
77 static struct target_section_table *core_data;
78
79 static void core_files_info (struct target_ops *);
80
81 static struct core_fns *sniff_core_bfd (bfd *);
82
83 static int gdb_check_format (bfd *);
84
85 static void core_open (char *, int);
86
87 static void core_detach (struct target_ops *ops, char *, int);
88
89 static void core_close (int);
90
91 static void core_close_cleanup (void *ignore);
92
93 static void add_to_thread_list (bfd *, asection *, void *);
94
95 static void init_core_ops (void);
96
97 void _initialize_corelow (void);
98
99 static struct target_ops core_ops;
100
101 /* An arbitrary identifier for the core inferior. */
102 #define CORELOW_PID 1
103
104 /* Link a new core_fns into the global core_file_fns list. Called on
105 gdb startup by the _initialize routine in each core file register
106 reader, to register information about each format the reader is
107 prepared to handle. */
108
109 void
110 deprecated_add_core_fns (struct core_fns *cf)
111 {
112 cf->next = core_file_fns;
113 core_file_fns = cf;
114 }
115
116 /* The default function that core file handlers can use to examine a
117 core file BFD and decide whether or not to accept the job of
118 reading the core file. */
119
120 int
121 default_core_sniffer (struct core_fns *our_fns, bfd *abfd)
122 {
123 int result;
124
125 result = (bfd_get_flavour (abfd) == our_fns -> core_flavour);
126 return (result);
127 }
128
129 /* Walk through the list of core functions to find a set that can
130 handle the core file open on ABFD. Returns pointer to set that is
131 selected. */
132
133 static struct core_fns *
134 sniff_core_bfd (bfd *abfd)
135 {
136 struct core_fns *cf;
137 struct core_fns *yummy = NULL;
138 int matches = 0;;
139
140 /* Don't sniff if we have support for register sets in
141 CORE_GDBARCH. */
142 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
143 return NULL;
144
145 for (cf = core_file_fns; cf != NULL; cf = cf->next)
146 {
147 if (cf->core_sniffer (cf, abfd))
148 {
149 yummy = cf;
150 matches++;
151 }
152 }
153 if (matches > 1)
154 {
155 warning (_("\"%s\": ambiguous core format, %d handlers match"),
156 bfd_get_filename (abfd), matches);
157 }
158 else if (matches == 0)
159 error (_("\"%s\": no core file handler recognizes format"),
160 bfd_get_filename (abfd));
161
162 return (yummy);
163 }
164
165 /* The default is to reject every core file format we see. Either
166 BFD has to recognize it, or we have to provide a function in the
167 core file handler that recognizes it. */
168
169 int
170 default_check_format (bfd *abfd)
171 {
172 return (0);
173 }
174
175 /* Attempt to recognize core file formats that BFD rejects. */
176
177 static int
178 gdb_check_format (bfd *abfd)
179 {
180 struct core_fns *cf;
181
182 for (cf = core_file_fns; cf != NULL; cf = cf->next)
183 {
184 if (cf->check_format (abfd))
185 {
186 return (1);
187 }
188 }
189 return (0);
190 }
191
192 /* Discard all vestiges of any previous core file and mark data and
193 stack spaces as empty. */
194
195 static void
196 core_close (int quitting)
197 {
198 char *name;
199
200 if (core_bfd)
201 {
202 int pid = ptid_get_pid (inferior_ptid);
203 inferior_ptid = null_ptid; /* Avoid confusion from thread
204 stuff. */
205 if (pid != 0)
206 exit_inferior_silent (pid);
207
208 /* Clear out solib state while the bfd is still open. See
209 comments in clear_solib in solib.c. */
210 clear_solib ();
211
212 if (core_data)
213 {
214 xfree (core_data->sections);
215 xfree (core_data);
216 core_data = NULL;
217 }
218
219 gdb_bfd_unref (core_bfd);
220 core_bfd = NULL;
221 }
222 core_vec = NULL;
223 core_gdbarch = NULL;
224 }
225
226 static void
227 core_close_cleanup (void *ignore)
228 {
229 core_close (0/*ignored*/);
230 }
231
232 /* Look for sections whose names start with `.reg/' so that we can
233 extract the list of threads in a core file. */
234
235 static void
236 add_to_thread_list (bfd *abfd, asection *asect, void *reg_sect_arg)
237 {
238 ptid_t ptid;
239 int core_tid;
240 int pid, lwpid;
241 asection *reg_sect = (asection *) reg_sect_arg;
242 int fake_pid_p = 0;
243 struct inferior *inf;
244
245 if (strncmp (bfd_section_name (abfd, asect), ".reg/", 5) != 0)
246 return;
247
248 core_tid = atoi (bfd_section_name (abfd, asect) + 5);
249
250 pid = bfd_core_file_pid (core_bfd);
251 if (pid == 0)
252 {
253 fake_pid_p = 1;
254 pid = CORELOW_PID;
255 }
256
257 lwpid = core_tid;
258
259 inf = current_inferior ();
260 if (inf->pid == 0)
261 {
262 inferior_appeared (inf, pid);
263 inf->fake_pid_p = fake_pid_p;
264 }
265
266 ptid = ptid_build (pid, lwpid, 0);
267
268 add_thread (ptid);
269
270 /* Warning, Will Robinson, looking at BFD private data! */
271
272 if (reg_sect != NULL
273 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
274 inferior_ptid = ptid; /* Yes, make it current. */
275 }
276
277 /* This routine opens and sets up the core file bfd. */
278
279 static void
280 core_open (char *filename, int from_tty)
281 {
282 const char *p;
283 int siggy;
284 struct cleanup *old_chain;
285 char *temp;
286 bfd *temp_bfd;
287 int scratch_chan;
288 int flags;
289 volatile struct gdb_exception except;
290
291 target_preopen (from_tty);
292 if (!filename)
293 {
294 if (core_bfd)
295 error (_("No core file specified. (Use `detach' "
296 "to stop debugging a core file.)"));
297 else
298 error (_("No core file specified."));
299 }
300
301 filename = tilde_expand (filename);
302 if (!IS_ABSOLUTE_PATH (filename))
303 {
304 temp = concat (current_directory, "/",
305 filename, (char *) NULL);
306 xfree (filename);
307 filename = temp;
308 }
309
310 old_chain = make_cleanup (xfree, filename);
311
312 flags = O_BINARY | O_LARGEFILE;
313 if (write_files)
314 flags |= O_RDWR;
315 else
316 flags |= O_RDONLY;
317 scratch_chan = open (filename, flags, 0);
318 if (scratch_chan < 0)
319 perror_with_name (filename);
320
321 temp_bfd = gdb_bfd_fopen (filename, gnutarget,
322 write_files ? FOPEN_RUB : FOPEN_RB,
323 scratch_chan);
324 if (temp_bfd == NULL)
325 perror_with_name (filename);
326
327 if (!bfd_check_format (temp_bfd, bfd_core)
328 && !gdb_check_format (temp_bfd))
329 {
330 /* Do it after the err msg */
331 /* FIXME: should be checking for errors from bfd_close (for one
332 thing, on error it does not free all the storage associated
333 with the bfd). */
334 make_cleanup_bfd_unref (temp_bfd);
335 error (_("\"%s\" is not a core dump: %s"),
336 filename, bfd_errmsg (bfd_get_error ()));
337 }
338
339 /* Looks semi-reasonable. Toss the old core file and work on the
340 new. */
341
342 do_cleanups (old_chain);
343 unpush_target (&core_ops);
344 core_bfd = temp_bfd;
345 old_chain = make_cleanup (core_close_cleanup, 0 /*ignore*/);
346
347 /* FIXME: kettenis/20031023: This is very dangerous. The
348 CORE_GDBARCH that results from this call may very well be
349 different from CURRENT_GDBARCH. However, its methods may only
350 work if it is selected as the current architecture, because they
351 rely on swapped data (see gdbarch.c). We should get rid of that
352 swapped data. */
353 core_gdbarch = gdbarch_from_bfd (core_bfd);
354
355 /* Find a suitable core file handler to munch on core_bfd */
356 core_vec = sniff_core_bfd (core_bfd);
357
358 validate_files ();
359
360 core_data = XZALLOC (struct target_section_table);
361
362 /* Find the data section */
363 if (build_section_table (core_bfd,
364 &core_data->sections,
365 &core_data->sections_end))
366 error (_("\"%s\": Can't find sections: %s"),
367 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
368
369 /* If we have no exec file, try to set the architecture from the
370 core file. We don't do this unconditionally since an exec file
371 typically contains more information that helps us determine the
372 architecture than a core file. */
373 if (!exec_bfd)
374 set_gdbarch_from_file (core_bfd);
375
376 push_target (&core_ops);
377 discard_cleanups (old_chain);
378
379 /* Do this before acknowledging the inferior, so if
380 post_create_inferior throws (can happen easilly if you're loading
381 a core file with the wrong exec), we aren't left with threads
382 from the previous inferior. */
383 init_thread_list ();
384
385 inferior_ptid = null_ptid;
386
387 /* Need to flush the register cache (and the frame cache) from a
388 previous debug session. If inferior_ptid ends up the same as the
389 last debug session --- e.g., b foo; run; gcore core1; step; gcore
390 core2; core core1; core core2 --- then there's potential for
391 get_current_regcache to return the cached regcache of the
392 previous session, and the frame cache being stale. */
393 registers_changed ();
394
395 /* Build up thread list from BFD sections, and possibly set the
396 current thread to the .reg/NN section matching the .reg
397 section. */
398 bfd_map_over_sections (core_bfd, add_to_thread_list,
399 bfd_get_section_by_name (core_bfd, ".reg"));
400
401 if (ptid_equal (inferior_ptid, null_ptid))
402 {
403 /* Either we found no .reg/NN section, and hence we have a
404 non-threaded core (single-threaded, from gdb's perspective),
405 or for some reason add_to_thread_list couldn't determine
406 which was the "main" thread. The latter case shouldn't
407 usually happen, but we're dealing with input here, which can
408 always be broken in different ways. */
409 struct thread_info *thread = first_thread_of_process (-1);
410
411 if (thread == NULL)
412 {
413 inferior_appeared (current_inferior (), CORELOW_PID);
414 inferior_ptid = pid_to_ptid (CORELOW_PID);
415 add_thread_silent (inferior_ptid);
416 }
417 else
418 switch_to_thread (thread->ptid);
419 }
420
421 post_create_inferior (&core_ops, from_tty);
422
423 /* Now go through the target stack looking for threads since there
424 may be a thread_stratum target loaded on top of target core by
425 now. The layer above should claim threads found in the BFD
426 sections. */
427 TRY_CATCH (except, RETURN_MASK_ERROR)
428 {
429 target_find_new_threads ();
430 }
431
432 if (except.reason < 0)
433 exception_print (gdb_stderr, except);
434
435 p = bfd_core_file_failing_command (core_bfd);
436 if (p)
437 printf_filtered (_("Core was generated by `%s'.\n"), p);
438
439 siggy = bfd_core_file_failing_signal (core_bfd);
440 if (siggy > 0)
441 {
442 /* If we don't have a CORE_GDBARCH to work with, assume a native
443 core (map gdb_signal from host signals). If we do have
444 CORE_GDBARCH to work with, but no gdb_signal_from_target
445 implementation for that gdbarch, as a fallback measure,
446 assume the host signal mapping. It'll be correct for native
447 cores, but most likely incorrect for cross-cores. */
448 enum gdb_signal sig = (core_gdbarch != NULL
449 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
450 ? gdbarch_gdb_signal_from_target (core_gdbarch,
451 siggy)
452 : gdb_signal_from_host (siggy));
453
454 printf_filtered (_("Program terminated with signal %d, %s.\n"),
455 siggy, gdb_signal_to_string (sig));
456 }
457
458 /* Fetch all registers from core file. */
459 target_fetch_registers (get_current_regcache (), -1);
460
461 /* Now, set up the frame cache, and print the top of stack. */
462 reinit_frame_cache ();
463 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC);
464 }
465
466 static void
467 core_detach (struct target_ops *ops, char *args, int from_tty)
468 {
469 if (args)
470 error (_("Too many arguments"));
471 unpush_target (ops);
472 reinit_frame_cache ();
473 if (from_tty)
474 printf_filtered (_("No core file now.\n"));
475 }
476
477 #ifdef DEPRECATED_IBM6000_TARGET
478
479 /* Resize the core memory's section table, by NUM_ADDED. Returns a
480 pointer into the first new slot. This will not be necessary when
481 the rs6000 target is converted to use the standard solib
482 framework. */
483
484 struct target_section *
485 deprecated_core_resize_section_table (int num_added)
486 {
487 int old_count;
488
489 old_count = resize_section_table (core_data, num_added);
490 return core_data->sections + old_count;
491 }
492
493 #endif
494
495 /* Try to retrieve registers from a section in core_bfd, and supply
496 them to core_vec->core_read_registers, as the register set numbered
497 WHICH.
498
499 If inferior_ptid's lwp member is zero, do the single-threaded
500 thing: look for a section named NAME. If inferior_ptid's lwp
501 member is non-zero, do the multi-threaded thing: look for a section
502 named "NAME/LWP", where LWP is the shortest ASCII decimal
503 representation of inferior_ptid's lwp member.
504
505 HUMAN_NAME is a human-readable name for the kind of registers the
506 NAME section contains, for use in error messages.
507
508 If REQUIRED is non-zero, print an error if the core file doesn't
509 have a section by the appropriate name. Otherwise, just do
510 nothing. */
511
512 static void
513 get_core_register_section (struct regcache *regcache,
514 const char *name,
515 int which,
516 const char *human_name,
517 int required)
518 {
519 static char *section_name = NULL;
520 struct bfd_section *section;
521 bfd_size_type size;
522 char *contents;
523
524 xfree (section_name);
525
526 if (ptid_get_lwp (inferior_ptid))
527 section_name = xstrprintf ("%s/%ld", name,
528 ptid_get_lwp (inferior_ptid));
529 else
530 section_name = xstrdup (name);
531
532 section = bfd_get_section_by_name (core_bfd, section_name);
533 if (! section)
534 {
535 if (required)
536 warning (_("Couldn't find %s registers in core file."),
537 human_name);
538 return;
539 }
540
541 size = bfd_section_size (core_bfd, section);
542 contents = alloca (size);
543 if (! bfd_get_section_contents (core_bfd, section, contents,
544 (file_ptr) 0, size))
545 {
546 warning (_("Couldn't read %s registers from `%s' section in core file."),
547 human_name, name);
548 return;
549 }
550
551 if (core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
552 {
553 const struct regset *regset;
554
555 regset = gdbarch_regset_from_core_section (core_gdbarch,
556 name, size);
557 if (regset == NULL)
558 {
559 if (required)
560 warning (_("Couldn't recognize %s registers in core file."),
561 human_name);
562 return;
563 }
564
565 regset->supply_regset (regset, regcache, -1, contents, size);
566 return;
567 }
568
569 gdb_assert (core_vec);
570 core_vec->core_read_registers (regcache, contents, size, which,
571 ((CORE_ADDR)
572 bfd_section_vma (core_bfd, section)));
573 }
574
575
576 /* Get the registers out of a core file. This is the machine-
577 independent part. Fetch_core_registers is the machine-dependent
578 part, typically implemented in the xm-file for each
579 architecture. */
580
581 /* We just get all the registers, so we don't use regno. */
582
583 static void
584 get_core_registers (struct target_ops *ops,
585 struct regcache *regcache, int regno)
586 {
587 struct core_regset_section *sect_list;
588 int i;
589
590 if (!(core_gdbarch && gdbarch_regset_from_core_section_p (core_gdbarch))
591 && (core_vec == NULL || core_vec->core_read_registers == NULL))
592 {
593 fprintf_filtered (gdb_stderr,
594 "Can't fetch registers from this type of core file\n");
595 return;
596 }
597
598 sect_list = gdbarch_core_regset_sections (get_regcache_arch (regcache));
599 if (sect_list)
600 while (sect_list->sect_name != NULL)
601 {
602 if (strcmp (sect_list->sect_name, ".reg") == 0)
603 get_core_register_section (regcache, sect_list->sect_name,
604 0, sect_list->human_name, 1);
605 else if (strcmp (sect_list->sect_name, ".reg2") == 0)
606 get_core_register_section (regcache, sect_list->sect_name,
607 2, sect_list->human_name, 0);
608 else
609 get_core_register_section (regcache, sect_list->sect_name,
610 3, sect_list->human_name, 0);
611
612 sect_list++;
613 }
614
615 else
616 {
617 get_core_register_section (regcache,
618 ".reg", 0, "general-purpose", 1);
619 get_core_register_section (regcache,
620 ".reg2", 2, "floating-point", 0);
621 }
622
623 /* Mark all registers not found in the core as unavailable. */
624 for (i = 0; i < gdbarch_num_regs (get_regcache_arch (regcache)); i++)
625 if (regcache_register_status (regcache, i) == REG_UNKNOWN)
626 regcache_raw_supply (regcache, i, NULL);
627 }
628
629 static void
630 core_files_info (struct target_ops *t)
631 {
632 print_section_info (core_data, core_bfd);
633 }
634 \f
635 struct spuid_list
636 {
637 gdb_byte *buf;
638 ULONGEST offset;
639 LONGEST len;
640 ULONGEST pos;
641 ULONGEST written;
642 };
643
644 static void
645 add_to_spuid_list (bfd *abfd, asection *asect, void *list_p)
646 {
647 struct spuid_list *list = list_p;
648 enum bfd_endian byte_order
649 = bfd_big_endian (abfd) ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
650 int fd, pos = 0;
651
652 sscanf (bfd_section_name (abfd, asect), "SPU/%d/regs%n", &fd, &pos);
653 if (pos == 0)
654 return;
655
656 if (list->pos >= list->offset && list->pos + 4 <= list->offset + list->len)
657 {
658 store_unsigned_integer (list->buf + list->pos - list->offset,
659 4, byte_order, fd);
660 list->written += 4;
661 }
662 list->pos += 4;
663 }
664
665 static LONGEST
666 core_xfer_partial (struct target_ops *ops, enum target_object object,
667 const char *annex, gdb_byte *readbuf,
668 const gdb_byte *writebuf, ULONGEST offset,
669 LONGEST len)
670 {
671 switch (object)
672 {
673 case TARGET_OBJECT_MEMORY:
674 return section_table_xfer_memory_partial (readbuf, writebuf,
675 offset, len,
676 core_data->sections,
677 core_data->sections_end,
678 NULL);
679
680 case TARGET_OBJECT_AUXV:
681 if (readbuf)
682 {
683 /* When the aux vector is stored in core file, BFD
684 represents this with a fake section called ".auxv". */
685
686 struct bfd_section *section;
687 bfd_size_type size;
688
689 section = bfd_get_section_by_name (core_bfd, ".auxv");
690 if (section == NULL)
691 return -1;
692
693 size = bfd_section_size (core_bfd, section);
694 if (offset >= size)
695 return 0;
696 size -= offset;
697 if (size > len)
698 size = len;
699 if (size > 0
700 && !bfd_get_section_contents (core_bfd, section, readbuf,
701 (file_ptr) offset, size))
702 {
703 warning (_("Couldn't read NT_AUXV note in core file."));
704 return -1;
705 }
706
707 return size;
708 }
709 return -1;
710
711 case TARGET_OBJECT_WCOOKIE:
712 if (readbuf)
713 {
714 /* When the StackGhost cookie is stored in core file, BFD
715 represents this with a fake section called
716 ".wcookie". */
717
718 struct bfd_section *section;
719 bfd_size_type size;
720
721 section = bfd_get_section_by_name (core_bfd, ".wcookie");
722 if (section == NULL)
723 return -1;
724
725 size = bfd_section_size (core_bfd, section);
726 if (offset >= size)
727 return 0;
728 size -= offset;
729 if (size > len)
730 size = len;
731 if (size > 0
732 && !bfd_get_section_contents (core_bfd, section, readbuf,
733 (file_ptr) offset, size))
734 {
735 warning (_("Couldn't read StackGhost cookie in core file."));
736 return -1;
737 }
738
739 return size;
740 }
741 return -1;
742
743 case TARGET_OBJECT_LIBRARIES:
744 if (core_gdbarch
745 && gdbarch_core_xfer_shared_libraries_p (core_gdbarch))
746 {
747 if (writebuf)
748 return -1;
749 return
750 gdbarch_core_xfer_shared_libraries (core_gdbarch,
751 readbuf, offset, len);
752 }
753 /* FALL THROUGH */
754
755 case TARGET_OBJECT_SPU:
756 if (readbuf && annex)
757 {
758 /* When the SPU contexts are stored in a core file, BFD
759 represents this with a fake section called
760 "SPU/<annex>". */
761
762 struct bfd_section *section;
763 bfd_size_type size;
764 char sectionstr[100];
765
766 xsnprintf (sectionstr, sizeof sectionstr, "SPU/%s", annex);
767
768 section = bfd_get_section_by_name (core_bfd, sectionstr);
769 if (section == NULL)
770 return -1;
771
772 size = bfd_section_size (core_bfd, section);
773 if (offset >= size)
774 return 0;
775 size -= offset;
776 if (size > len)
777 size = len;
778 if (size > 0
779 && !bfd_get_section_contents (core_bfd, section, readbuf,
780 (file_ptr) offset, size))
781 {
782 warning (_("Couldn't read SPU section in core file."));
783 return -1;
784 }
785
786 return size;
787 }
788 else if (readbuf)
789 {
790 /* NULL annex requests list of all present spuids. */
791 struct spuid_list list;
792
793 list.buf = readbuf;
794 list.offset = offset;
795 list.len = len;
796 list.pos = 0;
797 list.written = 0;
798 bfd_map_over_sections (core_bfd, add_to_spuid_list, &list);
799 return list.written;
800 }
801 return -1;
802
803 default:
804 if (ops->beneath != NULL)
805 return ops->beneath->to_xfer_partial (ops->beneath, object,
806 annex, readbuf,
807 writebuf, offset, len);
808 return -1;
809 }
810 }
811
812 \f
813 /* If mourn is being called in all the right places, this could be say
814 `gdb internal error' (since generic_mourn calls
815 breakpoint_init_inferior). */
816
817 static int
818 ignore (struct gdbarch *gdbarch, struct bp_target_info *bp_tgt)
819 {
820 return 0;
821 }
822
823
824 /* Okay, let's be honest: threads gleaned from a core file aren't
825 exactly lively, are they? On the other hand, if we don't claim
826 that each & every one is alive, then we don't get any of them
827 to appear in an "info thread" command, which is quite a useful
828 behaviour.
829 */
830 static int
831 core_thread_alive (struct target_ops *ops, ptid_t ptid)
832 {
833 return 1;
834 }
835
836 /* Ask the current architecture what it knows about this core file.
837 That will be used, in turn, to pick a better architecture. This
838 wrapper could be avoided if targets got a chance to specialize
839 core_ops. */
840
841 static const struct target_desc *
842 core_read_description (struct target_ops *target)
843 {
844 if (core_gdbarch && gdbarch_core_read_description_p (core_gdbarch))
845 return gdbarch_core_read_description (core_gdbarch,
846 target, core_bfd);
847
848 return NULL;
849 }
850
851 static char *
852 core_pid_to_str (struct target_ops *ops, ptid_t ptid)
853 {
854 static char buf[64];
855 struct inferior *inf;
856 int pid;
857
858 /* The preferred way is to have a gdbarch/OS specific
859 implementation. */
860 if (core_gdbarch
861 && gdbarch_core_pid_to_str_p (core_gdbarch))
862 return gdbarch_core_pid_to_str (core_gdbarch, ptid);
863
864 /* Otherwise, if we don't have one, we'll just fallback to
865 "process", with normal_pid_to_str. */
866
867 /* Try the LWPID field first. */
868 pid = ptid_get_lwp (ptid);
869 if (pid != 0)
870 return normal_pid_to_str (pid_to_ptid (pid));
871
872 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
873 only if it isn't a fake PID. */
874 inf = find_inferior_pid (ptid_get_pid (ptid));
875 if (inf != NULL && !inf->fake_pid_p)
876 return normal_pid_to_str (ptid);
877
878 /* No luck. We simply don't have a valid PID to print. */
879 xsnprintf (buf, sizeof buf, "<main task>");
880 return buf;
881 }
882
883 static int
884 core_has_memory (struct target_ops *ops)
885 {
886 return (core_bfd != NULL);
887 }
888
889 static int
890 core_has_stack (struct target_ops *ops)
891 {
892 return (core_bfd != NULL);
893 }
894
895 static int
896 core_has_registers (struct target_ops *ops)
897 {
898 return (core_bfd != NULL);
899 }
900
901 /* Fill in core_ops with its defined operations and properties. */
902
903 static void
904 init_core_ops (void)
905 {
906 core_ops.to_shortname = "core";
907 core_ops.to_longname = "Local core dump file";
908 core_ops.to_doc =
909 "Use a core file as a target. Specify the filename of the core file.";
910 core_ops.to_open = core_open;
911 core_ops.to_close = core_close;
912 core_ops.to_attach = find_default_attach;
913 core_ops.to_detach = core_detach;
914 core_ops.to_fetch_registers = get_core_registers;
915 core_ops.to_xfer_partial = core_xfer_partial;
916 core_ops.to_files_info = core_files_info;
917 core_ops.to_insert_breakpoint = ignore;
918 core_ops.to_remove_breakpoint = ignore;
919 core_ops.to_create_inferior = find_default_create_inferior;
920 core_ops.to_thread_alive = core_thread_alive;
921 core_ops.to_read_description = core_read_description;
922 core_ops.to_pid_to_str = core_pid_to_str;
923 core_ops.to_stratum = process_stratum;
924 core_ops.to_has_memory = core_has_memory;
925 core_ops.to_has_stack = core_has_stack;
926 core_ops.to_has_registers = core_has_registers;
927 core_ops.to_magic = OPS_MAGIC;
928
929 if (core_target)
930 internal_error (__FILE__, __LINE__,
931 _("init_core_ops: core target already exists (\"%s\")."),
932 core_target->to_longname);
933 core_target = &core_ops;
934 }
935
936 void
937 _initialize_corelow (void)
938 {
939 init_core_ops ();
940
941 add_target (&core_ops);
942 }