]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/corelow.c
a4c1f6354c6e427ca449e9e3f6fc7e5c09e45bd0
[thirdparty/binutils-gdb.git] / gdb / corelow.c
1 /* Core dump and executable file functions below target vector, for GDB.
2
3 Copyright (C) 1986-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "arch-utils.h"
22 #include <signal.h>
23 #include <fcntl.h>
24 #include "frame.h" /* required by inferior.h */
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "symtab.h"
28 #include "command.h"
29 #include "bfd.h"
30 #include "target.h"
31 #include "process-stratum-target.h"
32 #include "gdbcore.h"
33 #include "gdbthread.h"
34 #include "regcache.h"
35 #include "regset.h"
36 #include "symfile.h"
37 #include "exec.h"
38 #include "readline/tilde.h"
39 #include "solib.h"
40 #include "solist.h"
41 #include "filenames.h"
42 #include "progspace.h"
43 #include "objfiles.h"
44 #include "gdb_bfd.h"
45 #include "completer.h"
46 #include "gdbsupport/filestuff.h"
47 #include "build-id.h"
48 #include "gdbsupport/pathstuff.h"
49 #include <unordered_map>
50 #include <unordered_set>
51 #include "gdbcmd.h"
52 #include "xml-tdesc.h"
53
54 #ifndef O_LARGEFILE
55 #define O_LARGEFILE 0
56 #endif
57
58 /* The core file target. */
59
60 static const target_info core_target_info = {
61 "core",
62 N_("Local core dump file"),
63 N_("Use a core file as a target.\n\
64 Specify the filename of the core file.")
65 };
66
67 class core_target final : public process_stratum_target
68 {
69 public:
70 core_target ();
71
72 const target_info &info () const override
73 { return core_target_info; }
74
75 void close () override;
76 void detach (inferior *, int) override;
77 void fetch_registers (struct regcache *, int) override;
78
79 enum target_xfer_status xfer_partial (enum target_object object,
80 const char *annex,
81 gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset, ULONGEST len,
84 ULONGEST *xfered_len) override;
85 void files_info () override;
86
87 bool thread_alive (ptid_t ptid) override;
88 const struct target_desc *read_description () override;
89
90 std::string pid_to_str (ptid_t) override;
91
92 const char *thread_name (struct thread_info *) override;
93
94 bool has_all_memory () override { return true; }
95 bool has_memory () override;
96 bool has_stack () override;
97 bool has_registers () override;
98 bool has_execution (inferior *inf) override { return false; }
99
100 bool info_proc (const char *, enum info_proc_what) override;
101
102 /* A few helpers. */
103
104 /* Getter, see variable definition. */
105 struct gdbarch *core_gdbarch ()
106 {
107 return m_core_gdbarch;
108 }
109
110 /* See definition. */
111 void get_core_register_section (struct regcache *regcache,
112 const struct regset *regset,
113 const char *name,
114 int section_min_size,
115 const char *human_name,
116 bool required);
117
118 /* See definition. */
119 void info_proc_mappings (struct gdbarch *gdbarch);
120
121 private: /* per-core data */
122
123 /* The core's section table. Note that these target sections are
124 *not* mapped in the current address spaces' set of target
125 sections --- those should come only from pure executable or
126 shared library bfds. The core bfd sections are an implementation
127 detail of the core target, just like ptrace is for unix child
128 targets. */
129 target_section_table m_core_section_table;
130
131 /* File-backed address space mappings: some core files include
132 information about memory mapped files. */
133 target_section_table m_core_file_mappings;
134
135 /* Unavailable mappings. These correspond to pathnames which either
136 weren't found or could not be opened. Knowing these addresses can
137 still be useful. */
138 std::vector<mem_range> m_core_unavailable_mappings;
139
140 /* Build m_core_file_mappings. Called from the constructor. */
141 void build_file_mappings ();
142
143 /* Helper method for xfer_partial. */
144 enum target_xfer_status xfer_memory_via_mappings (gdb_byte *readbuf,
145 const gdb_byte *writebuf,
146 ULONGEST offset,
147 ULONGEST len,
148 ULONGEST *xfered_len);
149
150 /* FIXME: kettenis/20031023: Eventually this field should
151 disappear. */
152 struct gdbarch *m_core_gdbarch = NULL;
153 };
154
155 core_target::core_target ()
156 {
157 m_core_gdbarch = gdbarch_from_bfd (core_bfd);
158
159 if (!m_core_gdbarch
160 || !gdbarch_iterate_over_regset_sections_p (m_core_gdbarch))
161 error (_("\"%s\": Core file format not supported"),
162 bfd_get_filename (core_bfd));
163
164 /* Find the data section */
165 m_core_section_table = build_section_table (core_bfd);
166
167 build_file_mappings ();
168 }
169
170 /* Construct the target_section_table for file-backed mappings if
171 they exist.
172
173 For each unique path in the note, we'll open a BFD with a bfd
174 target of "binary". This is an unstructured bfd target upon which
175 we'll impose a structure from the mappings in the architecture-specific
176 mappings note. A BFD section is allocated and initialized for each
177 file-backed mapping.
178
179 We take care to not share already open bfds with other parts of
180 GDB; in particular, we don't want to add new sections to existing
181 BFDs. We do, however, ensure that the BFDs that we allocate here
182 will go away (be deallocated) when the core target is detached. */
183
184 void
185 core_target::build_file_mappings ()
186 {
187 std::unordered_map<std::string, struct bfd *> bfd_map;
188 std::unordered_set<std::string> unavailable_paths;
189
190 /* See linux_read_core_file_mappings() in linux-tdep.c for an example
191 read_core_file_mappings method. */
192 gdbarch_read_core_file_mappings (m_core_gdbarch, core_bfd,
193
194 /* After determining the number of mappings, read_core_file_mappings
195 will invoke this lambda. */
196 [&] (ULONGEST)
197 {
198 },
199
200 /* read_core_file_mappings will invoke this lambda for each mapping
201 that it finds. */
202 [&] (int num, ULONGEST start, ULONGEST end, ULONGEST file_ofs,
203 const char *filename)
204 {
205 /* Architecture-specific read_core_mapping methods are expected to
206 weed out non-file-backed mappings. */
207 gdb_assert (filename != nullptr);
208
209 struct bfd *bfd = bfd_map[filename];
210 if (bfd == nullptr)
211 {
212 /* Use exec_file_find() to do sysroot expansion. It'll
213 also strip the potential sysroot "target:" prefix. If
214 there is no sysroot, an equivalent (possibly more
215 canonical) pathname will be provided. */
216 gdb::unique_xmalloc_ptr<char> expanded_fname
217 = exec_file_find (filename, NULL);
218 if (expanded_fname == nullptr)
219 {
220 m_core_unavailable_mappings.emplace_back (start, end - start);
221 /* Print just one warning per path. */
222 if (unavailable_paths.insert (filename).second)
223 warning (_("Can't open file %s during file-backed mapping "
224 "note processing"),
225 filename);
226 return;
227 }
228
229 bfd = bfd_map[filename] = bfd_openr (expanded_fname.get (),
230 "binary");
231
232 if (bfd == nullptr || !bfd_check_format (bfd, bfd_object))
233 {
234 m_core_unavailable_mappings.emplace_back (start, end - start);
235 /* If we get here, there's a good chance that it's due to
236 an internal error. We issue a warning instead of an
237 internal error because of the possibility that the
238 file was removed in between checking for its
239 existence during the expansion in exec_file_find()
240 and the calls to bfd_openr() / bfd_check_format().
241 Output both the path from the core file note along
242 with its expansion to make debugging this problem
243 easier. */
244 warning (_("Can't open file %s which was expanded to %s "
245 "during file-backed mapping note processing"),
246 filename, expanded_fname.get ());
247 if (bfd != nullptr)
248 bfd_close (bfd);
249 return;
250 }
251 /* Ensure that the bfd will be closed when core_bfd is closed.
252 This can be checked before/after a core file detach via
253 "maint info bfds". */
254 gdb_bfd_record_inclusion (core_bfd, bfd);
255 }
256
257 /* Make new BFD section. All sections have the same name,
258 which is permitted by bfd_make_section_anyway(). */
259 asection *sec = bfd_make_section_anyway (bfd, "load");
260 if (sec == nullptr)
261 error (_("Can't make section"));
262 sec->filepos = file_ofs;
263 bfd_set_section_flags (sec, SEC_READONLY | SEC_HAS_CONTENTS);
264 bfd_set_section_size (sec, end - start);
265 bfd_set_section_vma (sec, start);
266 bfd_set_section_lma (sec, start);
267 bfd_set_section_alignment (sec, 2);
268
269 /* Set target_section fields. */
270 m_core_file_mappings.emplace_back (start, end, sec);
271 });
272
273 normalize_mem_ranges (&m_core_unavailable_mappings);
274 }
275
276 /* An arbitrary identifier for the core inferior. */
277 #define CORELOW_PID 1
278
279 /* Close the core target. */
280
281 void
282 core_target::close ()
283 {
284 if (core_bfd)
285 {
286 switch_to_no_thread (); /* Avoid confusion from thread
287 stuff. */
288 exit_inferior_silent (current_inferior ());
289
290 /* Clear out solib state while the bfd is still open. See
291 comments in clear_solib in solib.c. */
292 clear_solib ();
293
294 current_program_space->cbfd.reset (nullptr);
295 }
296
297 /* Core targets are heap-allocated (see core_target_open), so here
298 we delete ourselves. */
299 delete this;
300 }
301
302 /* Look for sections whose names start with `.reg/' so that we can
303 extract the list of threads in a core file. */
304
305 static void
306 add_to_thread_list (asection *asect, asection *reg_sect)
307 {
308 int core_tid;
309 int pid, lwpid;
310 bool fake_pid_p = false;
311 struct inferior *inf;
312
313 if (!startswith (bfd_section_name (asect), ".reg/"))
314 return;
315
316 core_tid = atoi (bfd_section_name (asect) + 5);
317
318 pid = bfd_core_file_pid (core_bfd);
319 if (pid == 0)
320 {
321 fake_pid_p = true;
322 pid = CORELOW_PID;
323 }
324
325 lwpid = core_tid;
326
327 inf = current_inferior ();
328 if (inf->pid == 0)
329 {
330 inferior_appeared (inf, pid);
331 inf->fake_pid_p = fake_pid_p;
332 }
333
334 ptid_t ptid (pid, lwpid);
335
336 thread_info *thr = add_thread (inf->process_target (), ptid);
337
338 /* Warning, Will Robinson, looking at BFD private data! */
339
340 if (reg_sect != NULL
341 && asect->filepos == reg_sect->filepos) /* Did we find .reg? */
342 switch_to_thread (thr); /* Yes, make it current. */
343 }
344
345 /* Issue a message saying we have no core to debug, if FROM_TTY. */
346
347 static void
348 maybe_say_no_core_file_now (int from_tty)
349 {
350 if (from_tty)
351 printf_filtered (_("No core file now.\n"));
352 }
353
354 /* Backward compatibility with old way of specifying core files. */
355
356 void
357 core_file_command (const char *filename, int from_tty)
358 {
359 dont_repeat (); /* Either way, seems bogus. */
360
361 if (filename == NULL)
362 {
363 if (core_bfd != NULL)
364 {
365 target_detach (current_inferior (), from_tty);
366 gdb_assert (core_bfd == NULL);
367 }
368 else
369 maybe_say_no_core_file_now (from_tty);
370 }
371 else
372 core_target_open (filename, from_tty);
373 }
374
375 /* Locate (and load) an executable file (and symbols) given the core file
376 BFD ABFD. */
377
378 static void
379 locate_exec_from_corefile_build_id (bfd *abfd, int from_tty)
380 {
381 const bfd_build_id *build_id = build_id_bfd_get (abfd);
382 if (build_id == nullptr)
383 return;
384
385 gdb_bfd_ref_ptr execbfd
386 = build_id_to_exec_bfd (build_id->size, build_id->data);
387
388 if (execbfd != nullptr)
389 {
390 exec_file_attach (bfd_get_filename (execbfd.get ()), from_tty);
391 symbol_file_add_main (bfd_get_filename (execbfd.get ()),
392 symfile_add_flag (from_tty ? SYMFILE_VERBOSE : 0));
393 }
394 }
395
396 /* See gdbcore.h. */
397
398 void
399 core_target_open (const char *arg, int from_tty)
400 {
401 const char *p;
402 int siggy;
403 int scratch_chan;
404 int flags;
405
406 target_preopen (from_tty);
407 if (!arg)
408 {
409 if (core_bfd)
410 error (_("No core file specified. (Use `detach' "
411 "to stop debugging a core file.)"));
412 else
413 error (_("No core file specified."));
414 }
415
416 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (arg));
417 if (!IS_ABSOLUTE_PATH (filename.get ()))
418 filename = gdb_abspath (filename.get ());
419
420 flags = O_BINARY | O_LARGEFILE;
421 if (write_files)
422 flags |= O_RDWR;
423 else
424 flags |= O_RDONLY;
425 scratch_chan = gdb_open_cloexec (filename.get (), flags, 0);
426 if (scratch_chan < 0)
427 perror_with_name (filename.get ());
428
429 gdb_bfd_ref_ptr temp_bfd (gdb_bfd_fopen (filename.get (), gnutarget,
430 write_files ? FOPEN_RUB : FOPEN_RB,
431 scratch_chan));
432 if (temp_bfd == NULL)
433 perror_with_name (filename.get ());
434
435 if (!bfd_check_format (temp_bfd.get (), bfd_core))
436 {
437 /* Do it after the err msg */
438 /* FIXME: should be checking for errors from bfd_close (for one
439 thing, on error it does not free all the storage associated
440 with the bfd). */
441 error (_("\"%s\" is not a core dump: %s"),
442 filename.get (), bfd_errmsg (bfd_get_error ()));
443 }
444
445 current_program_space->cbfd = std::move (temp_bfd);
446
447 core_target *target = new core_target ();
448
449 /* Own the target until it is successfully pushed. */
450 target_ops_up target_holder (target);
451
452 validate_files ();
453
454 /* If we have no exec file, try to set the architecture from the
455 core file. We don't do this unconditionally since an exec file
456 typically contains more information that helps us determine the
457 architecture than a core file. */
458 if (!current_program_space->exec_bfd ())
459 set_gdbarch_from_file (core_bfd);
460
461 push_target (std::move (target_holder));
462
463 switch_to_no_thread ();
464
465 /* Need to flush the register cache (and the frame cache) from a
466 previous debug session. If inferior_ptid ends up the same as the
467 last debug session --- e.g., b foo; run; gcore core1; step; gcore
468 core2; core core1; core core2 --- then there's potential for
469 get_current_regcache to return the cached regcache of the
470 previous session, and the frame cache being stale. */
471 registers_changed ();
472
473 /* Build up thread list from BFD sections, and possibly set the
474 current thread to the .reg/NN section matching the .reg
475 section. */
476 asection *reg_sect = bfd_get_section_by_name (core_bfd, ".reg");
477 for (asection *sect : gdb_bfd_sections (core_bfd))
478 add_to_thread_list (sect, reg_sect);
479
480 if (inferior_ptid == null_ptid)
481 {
482 /* Either we found no .reg/NN section, and hence we have a
483 non-threaded core (single-threaded, from gdb's perspective),
484 or for some reason add_to_thread_list couldn't determine
485 which was the "main" thread. The latter case shouldn't
486 usually happen, but we're dealing with input here, which can
487 always be broken in different ways. */
488 thread_info *thread = first_thread_of_inferior (current_inferior ());
489
490 if (thread == NULL)
491 {
492 inferior_appeared (current_inferior (), CORELOW_PID);
493 thread = add_thread_silent (target, ptid_t (CORELOW_PID));
494 }
495
496 switch_to_thread (thread);
497 }
498
499 if (current_program_space->exec_bfd () == nullptr)
500 locate_exec_from_corefile_build_id (core_bfd, from_tty);
501
502 post_create_inferior (from_tty);
503
504 /* Now go through the target stack looking for threads since there
505 may be a thread_stratum target loaded on top of target core by
506 now. The layer above should claim threads found in the BFD
507 sections. */
508 try
509 {
510 target_update_thread_list ();
511 }
512
513 catch (const gdb_exception_error &except)
514 {
515 exception_print (gdb_stderr, except);
516 }
517
518 p = bfd_core_file_failing_command (core_bfd);
519 if (p)
520 printf_filtered (_("Core was generated by `%s'.\n"), p);
521
522 /* Clearing any previous state of convenience variables. */
523 clear_exit_convenience_vars ();
524
525 siggy = bfd_core_file_failing_signal (core_bfd);
526 if (siggy > 0)
527 {
528 gdbarch *core_gdbarch = target->core_gdbarch ();
529
530 /* If we don't have a CORE_GDBARCH to work with, assume a native
531 core (map gdb_signal from host signals). If we do have
532 CORE_GDBARCH to work with, but no gdb_signal_from_target
533 implementation for that gdbarch, as a fallback measure,
534 assume the host signal mapping. It'll be correct for native
535 cores, but most likely incorrect for cross-cores. */
536 enum gdb_signal sig = (core_gdbarch != NULL
537 && gdbarch_gdb_signal_from_target_p (core_gdbarch)
538 ? gdbarch_gdb_signal_from_target (core_gdbarch,
539 siggy)
540 : gdb_signal_from_host (siggy));
541
542 printf_filtered (_("Program terminated with signal %s, %s"),
543 gdb_signal_to_name (sig), gdb_signal_to_string (sig));
544 if (gdbarch_report_signal_info_p (core_gdbarch))
545 gdbarch_report_signal_info (core_gdbarch, current_uiout, sig);
546 printf_filtered (_(".\n"));
547
548 /* Set the value of the internal variable $_exitsignal,
549 which holds the signal uncaught by the inferior. */
550 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
551 siggy);
552 }
553
554 /* Fetch all registers from core file. */
555 target_fetch_registers (get_current_regcache (), -1);
556
557 /* Now, set up the frame cache, and print the top of stack. */
558 reinit_frame_cache ();
559 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
560
561 /* Current thread should be NUM 1 but the user does not know that.
562 If a program is single threaded gdb in general does not mention
563 anything about threads. That is why the test is >= 2. */
564 if (thread_count (target) >= 2)
565 {
566 try
567 {
568 thread_command (NULL, from_tty);
569 }
570 catch (const gdb_exception_error &except)
571 {
572 exception_print (gdb_stderr, except);
573 }
574 }
575 }
576
577 void
578 core_target::detach (inferior *inf, int from_tty)
579 {
580 /* Note that 'this' is dangling after this call. unpush_target
581 closes the target, and our close implementation deletes
582 'this'. */
583 inf->unpush_target (this);
584
585 /* Clear the register cache and the frame cache. */
586 registers_changed ();
587 reinit_frame_cache ();
588 maybe_say_no_core_file_now (from_tty);
589 }
590
591 /* Try to retrieve registers from a section in core_bfd, and supply
592 them to REGSET.
593
594 If ptid's lwp member is zero, do the single-threaded
595 thing: look for a section named NAME. If ptid's lwp
596 member is non-zero, do the multi-threaded thing: look for a section
597 named "NAME/LWP", where LWP is the shortest ASCII decimal
598 representation of ptid's lwp member.
599
600 HUMAN_NAME is a human-readable name for the kind of registers the
601 NAME section contains, for use in error messages.
602
603 If REQUIRED is true, print an error if the core file doesn't have a
604 section by the appropriate name. Otherwise, just do nothing. */
605
606 void
607 core_target::get_core_register_section (struct regcache *regcache,
608 const struct regset *regset,
609 const char *name,
610 int section_min_size,
611 const char *human_name,
612 bool required)
613 {
614 gdb_assert (regset != nullptr);
615
616 struct bfd_section *section;
617 bfd_size_type size;
618 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
619
620 thread_section_name section_name (name, regcache->ptid ());
621
622 section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
623 if (! section)
624 {
625 if (required)
626 warning (_("Couldn't find %s registers in core file."),
627 human_name);
628 return;
629 }
630
631 size = bfd_section_size (section);
632 if (size < section_min_size)
633 {
634 warning (_("Section `%s' in core file too small."),
635 section_name.c_str ());
636 return;
637 }
638 if (size != section_min_size && !variable_size_section)
639 {
640 warning (_("Unexpected size of section `%s' in core file."),
641 section_name.c_str ());
642 }
643
644 gdb::byte_vector contents (size);
645 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
646 (file_ptr) 0, size))
647 {
648 warning (_("Couldn't read %s registers from `%s' section in core file."),
649 human_name, section_name.c_str ());
650 return;
651 }
652
653 regset->supply_regset (regset, regcache, -1, contents.data (), size);
654 }
655
656 /* Data passed to gdbarch_iterate_over_regset_sections's callback. */
657 struct get_core_registers_cb_data
658 {
659 core_target *target;
660 struct regcache *regcache;
661 };
662
663 /* Callback for get_core_registers that handles a single core file
664 register note section. */
665
666 static void
667 get_core_registers_cb (const char *sect_name, int supply_size, int collect_size,
668 const struct regset *regset,
669 const char *human_name, void *cb_data)
670 {
671 gdb_assert (regset != nullptr);
672
673 auto *data = (get_core_registers_cb_data *) cb_data;
674 bool required = false;
675 bool variable_size_section = (regset->flags & REGSET_VARIABLE_SIZE);
676
677 if (!variable_size_section)
678 gdb_assert (supply_size == collect_size);
679
680 if (strcmp (sect_name, ".reg") == 0)
681 {
682 required = true;
683 if (human_name == NULL)
684 human_name = "general-purpose";
685 }
686 else if (strcmp (sect_name, ".reg2") == 0)
687 {
688 if (human_name == NULL)
689 human_name = "floating-point";
690 }
691
692 data->target->get_core_register_section (data->regcache, regset, sect_name,
693 supply_size, human_name, required);
694 }
695
696 /* Get the registers out of a core file. This is the machine-
697 independent part. Fetch_core_registers is the machine-dependent
698 part, typically implemented in the xm-file for each
699 architecture. */
700
701 /* We just get all the registers, so we don't use regno. */
702
703 void
704 core_target::fetch_registers (struct regcache *regcache, int regno)
705 {
706 if (!(m_core_gdbarch != nullptr
707 && gdbarch_iterate_over_regset_sections_p (m_core_gdbarch)))
708 {
709 fprintf_filtered (gdb_stderr,
710 "Can't fetch registers from this type of core file\n");
711 return;
712 }
713
714 struct gdbarch *gdbarch = regcache->arch ();
715 get_core_registers_cb_data data = { this, regcache };
716 gdbarch_iterate_over_regset_sections (gdbarch,
717 get_core_registers_cb,
718 (void *) &data, NULL);
719
720 /* Mark all registers not found in the core as unavailable. */
721 for (int i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
722 if (regcache->get_register_status (i) == REG_UNKNOWN)
723 regcache->raw_supply (i, NULL);
724 }
725
726 void
727 core_target::files_info ()
728 {
729 print_section_info (&m_core_section_table, core_bfd);
730 }
731 \f
732 /* Helper method for core_target::xfer_partial. */
733
734 enum target_xfer_status
735 core_target::xfer_memory_via_mappings (gdb_byte *readbuf,
736 const gdb_byte *writebuf,
737 ULONGEST offset, ULONGEST len,
738 ULONGEST *xfered_len)
739 {
740 enum target_xfer_status xfer_status;
741
742 xfer_status = (section_table_xfer_memory_partial
743 (readbuf, writebuf,
744 offset, len, xfered_len,
745 m_core_file_mappings));
746
747 if (xfer_status == TARGET_XFER_OK || m_core_unavailable_mappings.empty ())
748 return xfer_status;
749
750 /* There are instances - e.g. when debugging within a docker
751 container using the AUFS storage driver - where the pathnames
752 obtained from the note section are incorrect. Despite the path
753 being wrong, just knowing the start and end addresses of the
754 mappings is still useful; we can attempt an access of the file
755 stratum constrained to the address ranges corresponding to the
756 unavailable mappings. */
757
758 ULONGEST memaddr = offset;
759 ULONGEST memend = offset + len;
760
761 for (const auto &mr : m_core_unavailable_mappings)
762 {
763 if (address_in_mem_range (memaddr, &mr))
764 {
765 if (!address_in_mem_range (memend, &mr))
766 len = mr.start + mr.length - memaddr;
767
768 xfer_status = this->beneath ()->xfer_partial (TARGET_OBJECT_MEMORY,
769 NULL,
770 readbuf,
771 writebuf,
772 offset,
773 len,
774 xfered_len);
775 break;
776 }
777 }
778
779 return xfer_status;
780 }
781
782 enum target_xfer_status
783 core_target::xfer_partial (enum target_object object, const char *annex,
784 gdb_byte *readbuf, const gdb_byte *writebuf,
785 ULONGEST offset, ULONGEST len, ULONGEST *xfered_len)
786 {
787 switch (object)
788 {
789 case TARGET_OBJECT_MEMORY:
790 {
791 enum target_xfer_status xfer_status;
792
793 /* Try accessing memory contents from core file data,
794 restricting consideration to those sections for which
795 the BFD section flag SEC_HAS_CONTENTS is set. */
796 auto has_contents_cb = [] (const struct target_section *s)
797 {
798 return ((s->the_bfd_section->flags & SEC_HAS_CONTENTS) != 0);
799 };
800 xfer_status = section_table_xfer_memory_partial
801 (readbuf, writebuf,
802 offset, len, xfered_len,
803 m_core_section_table,
804 has_contents_cb);
805 if (xfer_status == TARGET_XFER_OK)
806 return TARGET_XFER_OK;
807
808 /* Check file backed mappings. If they're available, use
809 core file provided mappings (e.g. from .note.linuxcore.file
810 or the like) as this should provide a more accurate
811 result. If not, check the stratum beneath us, which should
812 be the file stratum.
813
814 We also check unavailable mappings due to Docker/AUFS driver
815 issues. */
816 if (!m_core_file_mappings.empty ()
817 || !m_core_unavailable_mappings.empty ())
818 {
819 xfer_status = xfer_memory_via_mappings (readbuf, writebuf, offset,
820 len, xfered_len);
821 }
822 else
823 xfer_status = this->beneath ()->xfer_partial (object, annex, readbuf,
824 writebuf, offset, len,
825 xfered_len);
826 if (xfer_status == TARGET_XFER_OK)
827 return TARGET_XFER_OK;
828
829 /* Finally, attempt to access data in core file sections with
830 no contents. These will typically read as all zero. */
831 auto no_contents_cb = [&] (const struct target_section *s)
832 {
833 return !has_contents_cb (s);
834 };
835 xfer_status = section_table_xfer_memory_partial
836 (readbuf, writebuf,
837 offset, len, xfered_len,
838 m_core_section_table,
839 no_contents_cb);
840
841 return xfer_status;
842 }
843 case TARGET_OBJECT_AUXV:
844 if (readbuf)
845 {
846 /* When the aux vector is stored in core file, BFD
847 represents this with a fake section called ".auxv". */
848
849 struct bfd_section *section;
850 bfd_size_type size;
851
852 section = bfd_get_section_by_name (core_bfd, ".auxv");
853 if (section == NULL)
854 return TARGET_XFER_E_IO;
855
856 size = bfd_section_size (section);
857 if (offset >= size)
858 return TARGET_XFER_EOF;
859 size -= offset;
860 if (size > len)
861 size = len;
862
863 if (size == 0)
864 return TARGET_XFER_EOF;
865 if (!bfd_get_section_contents (core_bfd, section, readbuf,
866 (file_ptr) offset, size))
867 {
868 warning (_("Couldn't read NT_AUXV note in core file."));
869 return TARGET_XFER_E_IO;
870 }
871
872 *xfered_len = (ULONGEST) size;
873 return TARGET_XFER_OK;
874 }
875 return TARGET_XFER_E_IO;
876
877 case TARGET_OBJECT_WCOOKIE:
878 if (readbuf)
879 {
880 /* When the StackGhost cookie is stored in core file, BFD
881 represents this with a fake section called
882 ".wcookie". */
883
884 struct bfd_section *section;
885 bfd_size_type size;
886
887 section = bfd_get_section_by_name (core_bfd, ".wcookie");
888 if (section == NULL)
889 return TARGET_XFER_E_IO;
890
891 size = bfd_section_size (section);
892 if (offset >= size)
893 return TARGET_XFER_EOF;
894 size -= offset;
895 if (size > len)
896 size = len;
897
898 if (size == 0)
899 return TARGET_XFER_EOF;
900 if (!bfd_get_section_contents (core_bfd, section, readbuf,
901 (file_ptr) offset, size))
902 {
903 warning (_("Couldn't read StackGhost cookie in core file."));
904 return TARGET_XFER_E_IO;
905 }
906
907 *xfered_len = (ULONGEST) size;
908 return TARGET_XFER_OK;
909
910 }
911 return TARGET_XFER_E_IO;
912
913 case TARGET_OBJECT_LIBRARIES:
914 if (m_core_gdbarch != nullptr
915 && gdbarch_core_xfer_shared_libraries_p (m_core_gdbarch))
916 {
917 if (writebuf)
918 return TARGET_XFER_E_IO;
919 else
920 {
921 *xfered_len = gdbarch_core_xfer_shared_libraries (m_core_gdbarch,
922 readbuf,
923 offset, len);
924
925 if (*xfered_len == 0)
926 return TARGET_XFER_EOF;
927 else
928 return TARGET_XFER_OK;
929 }
930 }
931 /* FALL THROUGH */
932
933 case TARGET_OBJECT_LIBRARIES_AIX:
934 if (m_core_gdbarch != nullptr
935 && gdbarch_core_xfer_shared_libraries_aix_p (m_core_gdbarch))
936 {
937 if (writebuf)
938 return TARGET_XFER_E_IO;
939 else
940 {
941 *xfered_len
942 = gdbarch_core_xfer_shared_libraries_aix (m_core_gdbarch,
943 readbuf, offset,
944 len);
945
946 if (*xfered_len == 0)
947 return TARGET_XFER_EOF;
948 else
949 return TARGET_XFER_OK;
950 }
951 }
952 /* FALL THROUGH */
953
954 case TARGET_OBJECT_SIGNAL_INFO:
955 if (readbuf)
956 {
957 if (m_core_gdbarch != nullptr
958 && gdbarch_core_xfer_siginfo_p (m_core_gdbarch))
959 {
960 LONGEST l = gdbarch_core_xfer_siginfo (m_core_gdbarch, readbuf,
961 offset, len);
962
963 if (l >= 0)
964 {
965 *xfered_len = l;
966 if (l == 0)
967 return TARGET_XFER_EOF;
968 else
969 return TARGET_XFER_OK;
970 }
971 }
972 }
973 return TARGET_XFER_E_IO;
974
975 default:
976 return this->beneath ()->xfer_partial (object, annex, readbuf,
977 writebuf, offset, len,
978 xfered_len);
979 }
980 }
981
982 \f
983
984 /* Okay, let's be honest: threads gleaned from a core file aren't
985 exactly lively, are they? On the other hand, if we don't claim
986 that each & every one is alive, then we don't get any of them
987 to appear in an "info thread" command, which is quite a useful
988 behaviour.
989 */
990 bool
991 core_target::thread_alive (ptid_t ptid)
992 {
993 return true;
994 }
995
996 /* Ask the current architecture what it knows about this core file.
997 That will be used, in turn, to pick a better architecture. This
998 wrapper could be avoided if targets got a chance to specialize
999 core_target. */
1000
1001 const struct target_desc *
1002 core_target::read_description ()
1003 {
1004 /* If the core file contains a target description note then we will use
1005 that in preference to anything else. */
1006 bfd_size_type tdesc_note_size = 0;
1007 struct bfd_section *tdesc_note_section
1008 = bfd_get_section_by_name (core_bfd, ".gdb-tdesc");
1009 if (tdesc_note_section != nullptr)
1010 tdesc_note_size = bfd_section_size (tdesc_note_section);
1011 if (tdesc_note_size > 0)
1012 {
1013 gdb::char_vector contents (tdesc_note_size + 1);
1014 if (bfd_get_section_contents (core_bfd, tdesc_note_section,
1015 contents.data (), (file_ptr) 0,
1016 tdesc_note_size))
1017 {
1018 /* Ensure we have a null terminator. */
1019 contents[tdesc_note_size] = '\0';
1020 const struct target_desc *result
1021 = string_read_description_xml (contents.data ());
1022 if (result != nullptr)
1023 return result;
1024 }
1025 }
1026
1027 if (m_core_gdbarch && gdbarch_core_read_description_p (m_core_gdbarch))
1028 {
1029 const struct target_desc *result;
1030
1031 result = gdbarch_core_read_description (m_core_gdbarch, this, core_bfd);
1032 if (result != NULL)
1033 return result;
1034 }
1035
1036 return this->beneath ()->read_description ();
1037 }
1038
1039 std::string
1040 core_target::pid_to_str (ptid_t ptid)
1041 {
1042 struct inferior *inf;
1043 int pid;
1044
1045 /* The preferred way is to have a gdbarch/OS specific
1046 implementation. */
1047 if (m_core_gdbarch != nullptr
1048 && gdbarch_core_pid_to_str_p (m_core_gdbarch))
1049 return gdbarch_core_pid_to_str (m_core_gdbarch, ptid);
1050
1051 /* Otherwise, if we don't have one, we'll just fallback to
1052 "process", with normal_pid_to_str. */
1053
1054 /* Try the LWPID field first. */
1055 pid = ptid.lwp ();
1056 if (pid != 0)
1057 return normal_pid_to_str (ptid_t (pid));
1058
1059 /* Otherwise, this isn't a "threaded" core -- use the PID field, but
1060 only if it isn't a fake PID. */
1061 inf = find_inferior_ptid (this, ptid);
1062 if (inf != NULL && !inf->fake_pid_p)
1063 return normal_pid_to_str (ptid);
1064
1065 /* No luck. We simply don't have a valid PID to print. */
1066 return "<main task>";
1067 }
1068
1069 const char *
1070 core_target::thread_name (struct thread_info *thr)
1071 {
1072 if (m_core_gdbarch != nullptr
1073 && gdbarch_core_thread_name_p (m_core_gdbarch))
1074 return gdbarch_core_thread_name (m_core_gdbarch, thr);
1075 return NULL;
1076 }
1077
1078 bool
1079 core_target::has_memory ()
1080 {
1081 return (core_bfd != NULL);
1082 }
1083
1084 bool
1085 core_target::has_stack ()
1086 {
1087 return (core_bfd != NULL);
1088 }
1089
1090 bool
1091 core_target::has_registers ()
1092 {
1093 return (core_bfd != NULL);
1094 }
1095
1096 /* Implement the to_info_proc method. */
1097
1098 bool
1099 core_target::info_proc (const char *args, enum info_proc_what request)
1100 {
1101 struct gdbarch *gdbarch = get_current_arch ();
1102
1103 /* Since this is the core file target, call the 'core_info_proc'
1104 method on gdbarch, not 'info_proc'. */
1105 if (gdbarch_core_info_proc_p (gdbarch))
1106 gdbarch_core_info_proc (gdbarch, args, request);
1107
1108 return true;
1109 }
1110
1111 /* Get a pointer to the current core target. If not connected to a
1112 core target, return NULL. */
1113
1114 static core_target *
1115 get_current_core_target ()
1116 {
1117 target_ops *proc_target = current_inferior ()->process_target ();
1118 return dynamic_cast<core_target *> (proc_target);
1119 }
1120
1121 /* Display file backed mappings from core file. */
1122
1123 void
1124 core_target::info_proc_mappings (struct gdbarch *gdbarch)
1125 {
1126 if (!m_core_file_mappings.empty ())
1127 {
1128 printf_filtered (_("Mapped address spaces:\n\n"));
1129 if (gdbarch_addr_bit (gdbarch) == 32)
1130 {
1131 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1132 "Start Addr",
1133 " End Addr",
1134 " Size", " Offset", "objfile");
1135 }
1136 else
1137 {
1138 printf_filtered (" %18s %18s %10s %10s %s\n",
1139 "Start Addr",
1140 " End Addr",
1141 " Size", " Offset", "objfile");
1142 }
1143 }
1144
1145 for (const target_section &tsp : m_core_file_mappings)
1146 {
1147 ULONGEST start = tsp.addr;
1148 ULONGEST end = tsp.endaddr;
1149 ULONGEST file_ofs = tsp.the_bfd_section->filepos;
1150 const char *filename = bfd_get_filename (tsp.the_bfd_section->owner);
1151
1152 if (gdbarch_addr_bit (gdbarch) == 32)
1153 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1154 paddress (gdbarch, start),
1155 paddress (gdbarch, end),
1156 hex_string (end - start),
1157 hex_string (file_ofs),
1158 filename);
1159 else
1160 printf_filtered (" %18s %18s %10s %10s %s\n",
1161 paddress (gdbarch, start),
1162 paddress (gdbarch, end),
1163 hex_string (end - start),
1164 hex_string (file_ofs),
1165 filename);
1166 }
1167 }
1168
1169 /* Implement "maintenance print core-file-backed-mappings" command.
1170
1171 If mappings are loaded, the results should be similar to the
1172 mappings shown by "info proc mappings". This command is mainly a
1173 debugging tool for GDB developers to make sure that the expected
1174 mappings are present after loading a core file. For Linux, the
1175 output provided by this command will be very similar (if not
1176 identical) to that provided by "info proc mappings". This is not
1177 necessarily the case for other OSes which might provide
1178 more/different information in the "info proc mappings" output. */
1179
1180 static void
1181 maintenance_print_core_file_backed_mappings (const char *args, int from_tty)
1182 {
1183 core_target *targ = get_current_core_target ();
1184 if (targ != nullptr)
1185 targ->info_proc_mappings (targ->core_gdbarch ());
1186 }
1187
1188 void _initialize_corelow ();
1189 void
1190 _initialize_corelow ()
1191 {
1192 add_target (core_target_info, core_target_open, filename_completer);
1193 add_cmd ("core-file-backed-mappings", class_maintenance,
1194 maintenance_print_core_file_backed_mappings,
1195 _("Print core file's file-backed mappings."),
1196 &maintenanceprintlist);
1197 }