]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarf2/read.c
245ce07de748b55754f4502f7e250e46ea311ea7
[thirdparty/binutils-gdb.git] / gdb / dwarf2 / read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2020 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2/read.h"
33 #include "dwarf2/abbrev.h"
34 #include "dwarf2/attribute.h"
35 #include "dwarf2/comp-unit.h"
36 #include "dwarf2/index-cache.h"
37 #include "dwarf2/index-common.h"
38 #include "dwarf2/leb.h"
39 #include "dwarf2/line-header.h"
40 #include "dwarf2/dwz.h"
41 #include "dwarf2/macro.h"
42 #include "dwarf2/die.h"
43 #include "dwarf2/stringify.h"
44 #include "bfd.h"
45 #include "elf-bfd.h"
46 #include "symtab.h"
47 #include "gdbtypes.h"
48 #include "objfiles.h"
49 #include "dwarf2.h"
50 #include "buildsym.h"
51 #include "demangle.h"
52 #include "gdb-demangle.h"
53 #include "filenames.h" /* for DOSish file names */
54 #include "language.h"
55 #include "complaints.h"
56 #include "dwarf2/expr.h"
57 #include "dwarf2/loc.h"
58 #include "cp-support.h"
59 #include "hashtab.h"
60 #include "command.h"
61 #include "gdbcmd.h"
62 #include "block.h"
63 #include "addrmap.h"
64 #include "typeprint.h"
65 #include "psympriv.h"
66 #include "c-lang.h"
67 #include "go-lang.h"
68 #include "valprint.h"
69 #include "gdbcore.h" /* for gnutarget */
70 #include "gdb/gdb-index.h"
71 #include "gdb_bfd.h"
72 #include "f-lang.h"
73 #include "source.h"
74 #include "build-id.h"
75 #include "namespace.h"
76 #include "gdbsupport/function-view.h"
77 #include "gdbsupport/gdb_optional.h"
78 #include "gdbsupport/underlying.h"
79 #include "gdbsupport/hash_enum.h"
80 #include "filename-seen-cache.h"
81 #include "producer.h"
82 #include <fcntl.h>
83 #include <algorithm>
84 #include <unordered_map>
85 #include "gdbsupport/selftest.h"
86 #include "rust-lang.h"
87 #include "gdbsupport/pathstuff.h"
88 #include "count-one-bits.h"
89 #include "debuginfod-support.h"
90
91 /* When == 1, print basic high level tracing messages.
92 When > 1, be more verbose.
93 This is in contrast to the low level DIE reading of dwarf_die_debug. */
94 static unsigned int dwarf_read_debug = 0;
95
96 /* When non-zero, dump DIEs after they are read in. */
97 static unsigned int dwarf_die_debug = 0;
98
99 /* When non-zero, dump line number entries as they are read in. */
100 unsigned int dwarf_line_debug = 0;
101
102 /* When true, cross-check physname against demangler. */
103 static bool check_physname = false;
104
105 /* When true, do not reject deprecated .gdb_index sections. */
106 static bool use_deprecated_index_sections = false;
107
108 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
109
110 /* The "aclass" indices for various kinds of computed DWARF symbols. */
111
112 static int dwarf2_locexpr_index;
113 static int dwarf2_loclist_index;
114 static int dwarf2_locexpr_block_index;
115 static int dwarf2_loclist_block_index;
116
117 /* Size of .debug_loclists section header for 32-bit DWARF format. */
118 #define LOCLIST_HEADER_SIZE32 12
119
120 /* Size of .debug_loclists section header for 64-bit DWARF format. */
121 #define LOCLIST_HEADER_SIZE64 20
122
123 /* An index into a (C++) symbol name component in a symbol name as
124 recorded in the mapped_index's symbol table. For each C++ symbol
125 in the symbol table, we record one entry for the start of each
126 component in the symbol in a table of name components, and then
127 sort the table, in order to be able to binary search symbol names,
128 ignoring leading namespaces, both completion and regular look up.
129 For example, for symbol "A::B::C", we'll have an entry that points
130 to "A::B::C", another that points to "B::C", and another for "C".
131 Note that function symbols in GDB index have no parameter
132 information, just the function/method names. You can convert a
133 name_component to a "const char *" using the
134 'mapped_index::symbol_name_at(offset_type)' method. */
135
136 struct name_component
137 {
138 /* Offset in the symbol name where the component starts. Stored as
139 a (32-bit) offset instead of a pointer to save memory and improve
140 locality on 64-bit architectures. */
141 offset_type name_offset;
142
143 /* The symbol's index in the symbol and constant pool tables of a
144 mapped_index. */
145 offset_type idx;
146 };
147
148 /* Base class containing bits shared by both .gdb_index and
149 .debug_name indexes. */
150
151 struct mapped_index_base
152 {
153 mapped_index_base () = default;
154 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
155
156 /* The name_component table (a sorted vector). See name_component's
157 description above. */
158 std::vector<name_component> name_components;
159
160 /* How NAME_COMPONENTS is sorted. */
161 enum case_sensitivity name_components_casing;
162
163 /* Return the number of names in the symbol table. */
164 virtual size_t symbol_name_count () const = 0;
165
166 /* Get the name of the symbol at IDX in the symbol table. */
167 virtual const char *symbol_name_at (offset_type idx) const = 0;
168
169 /* Return whether the name at IDX in the symbol table should be
170 ignored. */
171 virtual bool symbol_name_slot_invalid (offset_type idx) const
172 {
173 return false;
174 }
175
176 /* Build the symbol name component sorted vector, if we haven't
177 yet. */
178 void build_name_components ();
179
180 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
181 possible matches for LN_NO_PARAMS in the name component
182 vector. */
183 std::pair<std::vector<name_component>::const_iterator,
184 std::vector<name_component>::const_iterator>
185 find_name_components_bounds (const lookup_name_info &ln_no_params,
186 enum language lang) const;
187
188 /* Prevent deleting/destroying via a base class pointer. */
189 protected:
190 ~mapped_index_base() = default;
191 };
192
193 /* A description of the mapped index. The file format is described in
194 a comment by the code that writes the index. */
195 struct mapped_index final : public mapped_index_base
196 {
197 /* A slot/bucket in the symbol table hash. */
198 struct symbol_table_slot
199 {
200 const offset_type name;
201 const offset_type vec;
202 };
203
204 /* Index data format version. */
205 int version = 0;
206
207 /* The address table data. */
208 gdb::array_view<const gdb_byte> address_table;
209
210 /* The symbol table, implemented as a hash table. */
211 gdb::array_view<symbol_table_slot> symbol_table;
212
213 /* A pointer to the constant pool. */
214 const char *constant_pool = nullptr;
215
216 bool symbol_name_slot_invalid (offset_type idx) const override
217 {
218 const auto &bucket = this->symbol_table[idx];
219 return bucket.name == 0 && bucket.vec == 0;
220 }
221
222 /* Convenience method to get at the name of the symbol at IDX in the
223 symbol table. */
224 const char *symbol_name_at (offset_type idx) const override
225 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
226
227 size_t symbol_name_count () const override
228 { return this->symbol_table.size (); }
229 };
230
231 /* A description of the mapped .debug_names.
232 Uninitialized map has CU_COUNT 0. */
233 struct mapped_debug_names final : public mapped_index_base
234 {
235 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
236 : dwarf2_per_objfile (dwarf2_per_objfile_)
237 {}
238
239 struct dwarf2_per_objfile *dwarf2_per_objfile;
240 bfd_endian dwarf5_byte_order;
241 bool dwarf5_is_dwarf64;
242 bool augmentation_is_gdb;
243 uint8_t offset_size;
244 uint32_t cu_count = 0;
245 uint32_t tu_count, bucket_count, name_count;
246 const gdb_byte *cu_table_reordered, *tu_table_reordered;
247 const uint32_t *bucket_table_reordered, *hash_table_reordered;
248 const gdb_byte *name_table_string_offs_reordered;
249 const gdb_byte *name_table_entry_offs_reordered;
250 const gdb_byte *entry_pool;
251
252 struct index_val
253 {
254 ULONGEST dwarf_tag;
255 struct attr
256 {
257 /* Attribute name DW_IDX_*. */
258 ULONGEST dw_idx;
259
260 /* Attribute form DW_FORM_*. */
261 ULONGEST form;
262
263 /* Value if FORM is DW_FORM_implicit_const. */
264 LONGEST implicit_const;
265 };
266 std::vector<attr> attr_vec;
267 };
268
269 std::unordered_map<ULONGEST, index_val> abbrev_map;
270
271 const char *namei_to_name (uint32_t namei) const;
272
273 /* Implementation of the mapped_index_base virtual interface, for
274 the name_components cache. */
275
276 const char *symbol_name_at (offset_type idx) const override
277 { return namei_to_name (idx); }
278
279 size_t symbol_name_count () const override
280 { return this->name_count; }
281 };
282
283 /* See dwarf2read.h. */
284
285 dwarf2_per_objfile *
286 get_dwarf2_per_objfile (struct objfile *objfile)
287 {
288 return dwarf2_objfile_data_key.get (objfile);
289 }
290
291 /* Default names of the debugging sections. */
292
293 /* Note that if the debugging section has been compressed, it might
294 have a name like .zdebug_info. */
295
296 static const struct dwarf2_debug_sections dwarf2_elf_names =
297 {
298 { ".debug_info", ".zdebug_info" },
299 { ".debug_abbrev", ".zdebug_abbrev" },
300 { ".debug_line", ".zdebug_line" },
301 { ".debug_loc", ".zdebug_loc" },
302 { ".debug_loclists", ".zdebug_loclists" },
303 { ".debug_macinfo", ".zdebug_macinfo" },
304 { ".debug_macro", ".zdebug_macro" },
305 { ".debug_str", ".zdebug_str" },
306 { ".debug_str_offsets", ".zdebug_str_offsets" },
307 { ".debug_line_str", ".zdebug_line_str" },
308 { ".debug_ranges", ".zdebug_ranges" },
309 { ".debug_rnglists", ".zdebug_rnglists" },
310 { ".debug_types", ".zdebug_types" },
311 { ".debug_addr", ".zdebug_addr" },
312 { ".debug_frame", ".zdebug_frame" },
313 { ".eh_frame", NULL },
314 { ".gdb_index", ".zgdb_index" },
315 { ".debug_names", ".zdebug_names" },
316 { ".debug_aranges", ".zdebug_aranges" },
317 23
318 };
319
320 /* List of DWO/DWP sections. */
321
322 static const struct dwop_section_names
323 {
324 struct dwarf2_section_names abbrev_dwo;
325 struct dwarf2_section_names info_dwo;
326 struct dwarf2_section_names line_dwo;
327 struct dwarf2_section_names loc_dwo;
328 struct dwarf2_section_names loclists_dwo;
329 struct dwarf2_section_names macinfo_dwo;
330 struct dwarf2_section_names macro_dwo;
331 struct dwarf2_section_names str_dwo;
332 struct dwarf2_section_names str_offsets_dwo;
333 struct dwarf2_section_names types_dwo;
334 struct dwarf2_section_names cu_index;
335 struct dwarf2_section_names tu_index;
336 }
337 dwop_section_names =
338 {
339 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
340 { ".debug_info.dwo", ".zdebug_info.dwo" },
341 { ".debug_line.dwo", ".zdebug_line.dwo" },
342 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
343 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
344 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
345 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
346 { ".debug_str.dwo", ".zdebug_str.dwo" },
347 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
348 { ".debug_types.dwo", ".zdebug_types.dwo" },
349 { ".debug_cu_index", ".zdebug_cu_index" },
350 { ".debug_tu_index", ".zdebug_tu_index" },
351 };
352
353 /* local data types */
354
355 /* The location list section (.debug_loclists) begins with a header,
356 which contains the following information. */
357 struct loclist_header
358 {
359 /* A 4-byte or 12-byte length containing the length of the
360 set of entries for this compilation unit, not including the
361 length field itself. */
362 unsigned int length;
363
364 /* A 2-byte version identifier. */
365 short version;
366
367 /* A 1-byte unsigned integer containing the size in bytes of an address on
368 the target system. */
369 unsigned char addr_size;
370
371 /* A 1-byte unsigned integer containing the size in bytes of a segment selector
372 on the target system. */
373 unsigned char segment_collector_size;
374
375 /* A 4-byte count of the number of offsets that follow the header. */
376 unsigned int offset_entry_count;
377 };
378
379 /* Type used for delaying computation of method physnames.
380 See comments for compute_delayed_physnames. */
381 struct delayed_method_info
382 {
383 /* The type to which the method is attached, i.e., its parent class. */
384 struct type *type;
385
386 /* The index of the method in the type's function fieldlists. */
387 int fnfield_index;
388
389 /* The index of the method in the fieldlist. */
390 int index;
391
392 /* The name of the DIE. */
393 const char *name;
394
395 /* The DIE associated with this method. */
396 struct die_info *die;
397 };
398
399 /* Internal state when decoding a particular compilation unit. */
400 struct dwarf2_cu
401 {
402 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
403 ~dwarf2_cu ();
404
405 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
406
407 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
408 Create the set of symtabs used by this TU, or if this TU is sharing
409 symtabs with another TU and the symtabs have already been created
410 then restore those symtabs in the line header.
411 We don't need the pc/line-number mapping for type units. */
412 void setup_type_unit_groups (struct die_info *die);
413
414 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
415 buildsym_compunit constructor. */
416 struct compunit_symtab *start_symtab (const char *name,
417 const char *comp_dir,
418 CORE_ADDR low_pc);
419
420 /* Reset the builder. */
421 void reset_builder () { m_builder.reset (); }
422
423 /* The header of the compilation unit. */
424 struct comp_unit_head header {};
425
426 /* Base address of this compilation unit. */
427 gdb::optional<CORE_ADDR> base_address;
428
429 /* The language we are debugging. */
430 enum language language = language_unknown;
431 const struct language_defn *language_defn = nullptr;
432
433 const char *producer = nullptr;
434
435 private:
436 /* The symtab builder for this CU. This is only non-NULL when full
437 symbols are being read. */
438 std::unique_ptr<buildsym_compunit> m_builder;
439
440 public:
441 /* The generic symbol table building routines have separate lists for
442 file scope symbols and all all other scopes (local scopes). So
443 we need to select the right one to pass to add_symbol_to_list().
444 We do it by keeping a pointer to the correct list in list_in_scope.
445
446 FIXME: The original dwarf code just treated the file scope as the
447 first local scope, and all other local scopes as nested local
448 scopes, and worked fine. Check to see if we really need to
449 distinguish these in buildsym.c. */
450 struct pending **list_in_scope = nullptr;
451
452 /* Hash table holding all the loaded partial DIEs
453 with partial_die->offset.SECT_OFF as hash. */
454 htab_t partial_dies = nullptr;
455
456 /* Storage for things with the same lifetime as this read-in compilation
457 unit, including partial DIEs. */
458 auto_obstack comp_unit_obstack;
459
460 /* When multiple dwarf2_cu structures are living in memory, this field
461 chains them all together, so that they can be released efficiently.
462 We will probably also want a generation counter so that most-recently-used
463 compilation units are cached... */
464 struct dwarf2_per_cu_data *read_in_chain = nullptr;
465
466 /* Backlink to our per_cu entry. */
467 struct dwarf2_per_cu_data *per_cu;
468
469 /* How many compilation units ago was this CU last referenced? */
470 int last_used = 0;
471
472 /* A hash table of DIE cu_offset for following references with
473 die_info->offset.sect_off as hash. */
474 htab_t die_hash = nullptr;
475
476 /* Full DIEs if read in. */
477 struct die_info *dies = nullptr;
478
479 /* A set of pointers to dwarf2_per_cu_data objects for compilation
480 units referenced by this one. Only set during full symbol processing;
481 partial symbol tables do not have dependencies. */
482 htab_t dependencies = nullptr;
483
484 /* Header data from the line table, during full symbol processing. */
485 struct line_header *line_header = nullptr;
486 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
487 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
488 this is the DW_TAG_compile_unit die for this CU. We'll hold on
489 to the line header as long as this DIE is being processed. See
490 process_die_scope. */
491 die_info *line_header_die_owner = nullptr;
492
493 /* A list of methods which need to have physnames computed
494 after all type information has been read. */
495 std::vector<delayed_method_info> method_list;
496
497 /* To be copied to symtab->call_site_htab. */
498 htab_t call_site_htab = nullptr;
499
500 /* Non-NULL if this CU came from a DWO file.
501 There is an invariant here that is important to remember:
502 Except for attributes copied from the top level DIE in the "main"
503 (or "stub") file in preparation for reading the DWO file
504 (e.g., DW_AT_addr_base), we KISS: there is only *one* CU.
505 Either there isn't a DWO file (in which case this is NULL and the point
506 is moot), or there is and either we're not going to read it (in which
507 case this is NULL) or there is and we are reading it (in which case this
508 is non-NULL). */
509 struct dwo_unit *dwo_unit = nullptr;
510
511 /* The DW_AT_addr_base (DW_AT_GNU_addr_base) attribute if present.
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 gdb::optional<ULONGEST> addr_base;
514
515 /* The DW_AT_rnglists_base attribute if present.
516 Note this value comes from the Fission stub CU/TU's DIE.
517 Also note that the value is zero in the non-DWO case so this value can
518 be used without needing to know whether DWO files are in use or not.
519 N.B. This does not apply to DW_AT_ranges appearing in
520 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
521 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
522 DW_AT_rnglists_base *would* have to be applied, and we'd have to care
523 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
524 ULONGEST ranges_base = 0;
525
526 /* The DW_AT_loclists_base attribute if present. */
527 ULONGEST loclist_base = 0;
528
529 /* When reading debug info generated by older versions of rustc, we
530 have to rewrite some union types to be struct types with a
531 variant part. This rewriting must be done after the CU is fully
532 read in, because otherwise at the point of rewriting some struct
533 type might not have been fully processed. So, we keep a list of
534 all such types here and process them after expansion. */
535 std::vector<struct type *> rust_unions;
536
537 /* The DW_AT_str_offsets_base attribute if present. For DWARF 4 version DWO
538 files, the value is implicitly zero. For DWARF 5 version DWO files, the
539 value is often implicit and is the size of the header of
540 .debug_str_offsets section (8 or 4, depending on the address size). */
541 gdb::optional<ULONGEST> str_offsets_base;
542
543 /* Mark used when releasing cached dies. */
544 bool mark : 1;
545
546 /* This CU references .debug_loc. See the symtab->locations_valid field.
547 This test is imperfect as there may exist optimized debug code not using
548 any location list and still facing inlining issues if handled as
549 unoptimized code. For a future better test see GCC PR other/32998. */
550 bool has_loclist : 1;
551
552 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
553 if all the producer_is_* fields are valid. This information is cached
554 because profiling CU expansion showed excessive time spent in
555 producer_is_gxx_lt_4_6. */
556 bool checked_producer : 1;
557 bool producer_is_gxx_lt_4_6 : 1;
558 bool producer_is_gcc_lt_4_3 : 1;
559 bool producer_is_icc : 1;
560 bool producer_is_icc_lt_14 : 1;
561 bool producer_is_codewarrior : 1;
562
563 /* When true, the file that we're processing is known to have
564 debugging info for C++ namespaces. GCC 3.3.x did not produce
565 this information, but later versions do. */
566
567 bool processing_has_namespace_info : 1;
568
569 struct partial_die_info *find_partial_die (sect_offset sect_off);
570
571 /* If this CU was inherited by another CU (via specification,
572 abstract_origin, etc), this is the ancestor CU. */
573 dwarf2_cu *ancestor;
574
575 /* Get the buildsym_compunit for this CU. */
576 buildsym_compunit *get_builder ()
577 {
578 /* If this CU has a builder associated with it, use that. */
579 if (m_builder != nullptr)
580 return m_builder.get ();
581
582 /* Otherwise, search ancestors for a valid builder. */
583 if (ancestor != nullptr)
584 return ancestor->get_builder ();
585
586 return nullptr;
587 }
588 };
589
590 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
591 This includes type_unit_group and quick_file_names. */
592
593 struct stmt_list_hash
594 {
595 /* The DWO unit this table is from or NULL if there is none. */
596 struct dwo_unit *dwo_unit;
597
598 /* Offset in .debug_line or .debug_line.dwo. */
599 sect_offset line_sect_off;
600 };
601
602 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
603 an object of this type. */
604
605 struct type_unit_group
606 {
607 /* dwarf2read.c's main "handle" on a TU symtab.
608 To simplify things we create an artificial CU that "includes" all the
609 type units using this stmt_list so that the rest of the code still has
610 a "per_cu" handle on the symtab. */
611 struct dwarf2_per_cu_data per_cu;
612
613 /* The TUs that share this DW_AT_stmt_list entry.
614 This is added to while parsing type units to build partial symtabs,
615 and is deleted afterwards and not used again. */
616 std::vector<signatured_type *> *tus;
617
618 /* The compunit symtab.
619 Type units in a group needn't all be defined in the same source file,
620 so we create an essentially anonymous symtab as the compunit symtab. */
621 struct compunit_symtab *compunit_symtab;
622
623 /* The data used to construct the hash key. */
624 struct stmt_list_hash hash;
625
626 /* The symbol tables for this TU (obtained from the files listed in
627 DW_AT_stmt_list).
628 WARNING: The order of entries here must match the order of entries
629 in the line header. After the first TU using this type_unit_group, the
630 line header for the subsequent TUs is recreated from this. This is done
631 because we need to use the same symtabs for each TU using the same
632 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
633 there's no guarantee the line header doesn't have duplicate entries. */
634 struct symtab **symtabs;
635 };
636
637 /* These sections are what may appear in a (real or virtual) DWO file. */
638
639 struct dwo_sections
640 {
641 struct dwarf2_section_info abbrev;
642 struct dwarf2_section_info line;
643 struct dwarf2_section_info loc;
644 struct dwarf2_section_info loclists;
645 struct dwarf2_section_info macinfo;
646 struct dwarf2_section_info macro;
647 struct dwarf2_section_info str;
648 struct dwarf2_section_info str_offsets;
649 /* In the case of a virtual DWO file, these two are unused. */
650 struct dwarf2_section_info info;
651 std::vector<dwarf2_section_info> types;
652 };
653
654 /* CUs/TUs in DWP/DWO files. */
655
656 struct dwo_unit
657 {
658 /* Backlink to the containing struct dwo_file. */
659 struct dwo_file *dwo_file;
660
661 /* The "id" that distinguishes this CU/TU.
662 .debug_info calls this "dwo_id", .debug_types calls this "signature".
663 Since signatures came first, we stick with it for consistency. */
664 ULONGEST signature;
665
666 /* The section this CU/TU lives in, in the DWO file. */
667 struct dwarf2_section_info *section;
668
669 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
670 sect_offset sect_off;
671 unsigned int length;
672
673 /* For types, offset in the type's DIE of the type defined by this TU. */
674 cu_offset type_offset_in_tu;
675 };
676
677 /* include/dwarf2.h defines the DWP section codes.
678 It defines a max value but it doesn't define a min value, which we
679 use for error checking, so provide one. */
680
681 enum dwp_v2_section_ids
682 {
683 DW_SECT_MIN = 1
684 };
685
686 /* Data for one DWO file.
687
688 This includes virtual DWO files (a virtual DWO file is a DWO file as it
689 appears in a DWP file). DWP files don't really have DWO files per se -
690 comdat folding of types "loses" the DWO file they came from, and from
691 a high level view DWP files appear to contain a mass of random types.
692 However, to maintain consistency with the non-DWP case we pretend DWP
693 files contain virtual DWO files, and we assign each TU with one virtual
694 DWO file (generally based on the line and abbrev section offsets -
695 a heuristic that seems to work in practice). */
696
697 struct dwo_file
698 {
699 dwo_file () = default;
700 DISABLE_COPY_AND_ASSIGN (dwo_file);
701
702 /* The DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute.
703 For virtual DWO files the name is constructed from the section offsets
704 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
705 from related CU+TUs. */
706 const char *dwo_name = nullptr;
707
708 /* The DW_AT_comp_dir attribute. */
709 const char *comp_dir = nullptr;
710
711 /* The bfd, when the file is open. Otherwise this is NULL.
712 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
713 gdb_bfd_ref_ptr dbfd;
714
715 /* The sections that make up this DWO file.
716 Remember that for virtual DWO files in DWP V2, these are virtual
717 sections (for lack of a better name). */
718 struct dwo_sections sections {};
719
720 /* The CUs in the file.
721 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
722 an extension to handle LLVM's Link Time Optimization output (where
723 multiple source files may be compiled into a single object/dwo pair). */
724 htab_up cus;
725
726 /* Table of TUs in the file.
727 Each element is a struct dwo_unit. */
728 htab_up tus;
729 };
730
731 /* These sections are what may appear in a DWP file. */
732
733 struct dwp_sections
734 {
735 /* These are used by both DWP version 1 and 2. */
736 struct dwarf2_section_info str;
737 struct dwarf2_section_info cu_index;
738 struct dwarf2_section_info tu_index;
739
740 /* These are only used by DWP version 2 files.
741 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
742 sections are referenced by section number, and are not recorded here.
743 In DWP version 2 there is at most one copy of all these sections, each
744 section being (effectively) comprised of the concatenation of all of the
745 individual sections that exist in the version 1 format.
746 To keep the code simple we treat each of these concatenated pieces as a
747 section itself (a virtual section?). */
748 struct dwarf2_section_info abbrev;
749 struct dwarf2_section_info info;
750 struct dwarf2_section_info line;
751 struct dwarf2_section_info loc;
752 struct dwarf2_section_info macinfo;
753 struct dwarf2_section_info macro;
754 struct dwarf2_section_info str_offsets;
755 struct dwarf2_section_info types;
756 };
757
758 /* These sections are what may appear in a virtual DWO file in DWP version 1.
759 A virtual DWO file is a DWO file as it appears in a DWP file. */
760
761 struct virtual_v1_dwo_sections
762 {
763 struct dwarf2_section_info abbrev;
764 struct dwarf2_section_info line;
765 struct dwarf2_section_info loc;
766 struct dwarf2_section_info macinfo;
767 struct dwarf2_section_info macro;
768 struct dwarf2_section_info str_offsets;
769 /* Each DWP hash table entry records one CU or one TU.
770 That is recorded here, and copied to dwo_unit.section. */
771 struct dwarf2_section_info info_or_types;
772 };
773
774 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
775 In version 2, the sections of the DWO files are concatenated together
776 and stored in one section of that name. Thus each ELF section contains
777 several "virtual" sections. */
778
779 struct virtual_v2_dwo_sections
780 {
781 bfd_size_type abbrev_offset;
782 bfd_size_type abbrev_size;
783
784 bfd_size_type line_offset;
785 bfd_size_type line_size;
786
787 bfd_size_type loc_offset;
788 bfd_size_type loc_size;
789
790 bfd_size_type macinfo_offset;
791 bfd_size_type macinfo_size;
792
793 bfd_size_type macro_offset;
794 bfd_size_type macro_size;
795
796 bfd_size_type str_offsets_offset;
797 bfd_size_type str_offsets_size;
798
799 /* Each DWP hash table entry records one CU or one TU.
800 That is recorded here, and copied to dwo_unit.section. */
801 bfd_size_type info_or_types_offset;
802 bfd_size_type info_or_types_size;
803 };
804
805 /* Contents of DWP hash tables. */
806
807 struct dwp_hash_table
808 {
809 uint32_t version, nr_columns;
810 uint32_t nr_units, nr_slots;
811 const gdb_byte *hash_table, *unit_table;
812 union
813 {
814 struct
815 {
816 const gdb_byte *indices;
817 } v1;
818 struct
819 {
820 /* This is indexed by column number and gives the id of the section
821 in that column. */
822 #define MAX_NR_V2_DWO_SECTIONS \
823 (1 /* .debug_info or .debug_types */ \
824 + 1 /* .debug_abbrev */ \
825 + 1 /* .debug_line */ \
826 + 1 /* .debug_loc */ \
827 + 1 /* .debug_str_offsets */ \
828 + 1 /* .debug_macro or .debug_macinfo */)
829 int section_ids[MAX_NR_V2_DWO_SECTIONS];
830 const gdb_byte *offsets;
831 const gdb_byte *sizes;
832 } v2;
833 } section_pool;
834 };
835
836 /* Data for one DWP file. */
837
838 struct dwp_file
839 {
840 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
841 : name (name_),
842 dbfd (std::move (abfd))
843 {
844 }
845
846 /* Name of the file. */
847 const char *name;
848
849 /* File format version. */
850 int version = 0;
851
852 /* The bfd. */
853 gdb_bfd_ref_ptr dbfd;
854
855 /* Section info for this file. */
856 struct dwp_sections sections {};
857
858 /* Table of CUs in the file. */
859 const struct dwp_hash_table *cus = nullptr;
860
861 /* Table of TUs in the file. */
862 const struct dwp_hash_table *tus = nullptr;
863
864 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
865 htab_up loaded_cus;
866 htab_up loaded_tus;
867
868 /* Table to map ELF section numbers to their sections.
869 This is only needed for the DWP V1 file format. */
870 unsigned int num_sections = 0;
871 asection **elf_sections = nullptr;
872 };
873
874 /* Struct used to pass misc. parameters to read_die_and_children, et
875 al. which are used for both .debug_info and .debug_types dies.
876 All parameters here are unchanging for the life of the call. This
877 struct exists to abstract away the constant parameters of die reading. */
878
879 struct die_reader_specs
880 {
881 /* The bfd of die_section. */
882 bfd* abfd;
883
884 /* The CU of the DIE we are parsing. */
885 struct dwarf2_cu *cu;
886
887 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
888 struct dwo_file *dwo_file;
889
890 /* The section the die comes from.
891 This is either .debug_info or .debug_types, or the .dwo variants. */
892 struct dwarf2_section_info *die_section;
893
894 /* die_section->buffer. */
895 const gdb_byte *buffer;
896
897 /* The end of the buffer. */
898 const gdb_byte *buffer_end;
899
900 /* The abbreviation table to use when reading the DIEs. */
901 struct abbrev_table *abbrev_table;
902 };
903
904 /* A subclass of die_reader_specs that holds storage and has complex
905 constructor and destructor behavior. */
906
907 class cutu_reader : public die_reader_specs
908 {
909 public:
910
911 cutu_reader (struct dwarf2_per_cu_data *this_cu,
912 struct abbrev_table *abbrev_table,
913 int use_existing_cu,
914 bool skip_partial);
915
916 explicit cutu_reader (struct dwarf2_per_cu_data *this_cu,
917 struct dwarf2_cu *parent_cu = nullptr,
918 struct dwo_file *dwo_file = nullptr);
919
920 DISABLE_COPY_AND_ASSIGN (cutu_reader);
921
922 const gdb_byte *info_ptr = nullptr;
923 struct die_info *comp_unit_die = nullptr;
924 bool dummy_p = false;
925
926 /* Release the new CU, putting it on the chain. This cannot be done
927 for dummy CUs. */
928 void keep ();
929
930 private:
931 void init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
932 int use_existing_cu);
933
934 struct dwarf2_per_cu_data *m_this_cu;
935 std::unique_ptr<dwarf2_cu> m_new_cu;
936
937 /* The ordinary abbreviation table. */
938 abbrev_table_up m_abbrev_table_holder;
939
940 /* The DWO abbreviation table. */
941 abbrev_table_up m_dwo_abbrev_table;
942 };
943
944 /* When we construct a partial symbol table entry we only
945 need this much information. */
946 struct partial_die_info : public allocate_on_obstack
947 {
948 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
949
950 /* Disable assign but still keep copy ctor, which is needed
951 load_partial_dies. */
952 partial_die_info& operator=(const partial_die_info& rhs) = delete;
953
954 /* Adjust the partial die before generating a symbol for it. This
955 function may set the is_external flag or change the DIE's
956 name. */
957 void fixup (struct dwarf2_cu *cu);
958
959 /* Read a minimal amount of information into the minimal die
960 structure. */
961 const gdb_byte *read (const struct die_reader_specs *reader,
962 const struct abbrev_info &abbrev,
963 const gdb_byte *info_ptr);
964
965 /* Offset of this DIE. */
966 const sect_offset sect_off;
967
968 /* DWARF-2 tag for this DIE. */
969 const ENUM_BITFIELD(dwarf_tag) tag : 16;
970
971 /* Assorted flags describing the data found in this DIE. */
972 const unsigned int has_children : 1;
973
974 unsigned int is_external : 1;
975 unsigned int is_declaration : 1;
976 unsigned int has_type : 1;
977 unsigned int has_specification : 1;
978 unsigned int has_pc_info : 1;
979 unsigned int may_be_inlined : 1;
980
981 /* This DIE has been marked DW_AT_main_subprogram. */
982 unsigned int main_subprogram : 1;
983
984 /* Flag set if the SCOPE field of this structure has been
985 computed. */
986 unsigned int scope_set : 1;
987
988 /* Flag set if the DIE has a byte_size attribute. */
989 unsigned int has_byte_size : 1;
990
991 /* Flag set if the DIE has a DW_AT_const_value attribute. */
992 unsigned int has_const_value : 1;
993
994 /* Flag set if any of the DIE's children are template arguments. */
995 unsigned int has_template_arguments : 1;
996
997 /* Flag set if fixup has been called on this die. */
998 unsigned int fixup_called : 1;
999
1000 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1001 unsigned int is_dwz : 1;
1002
1003 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1004 unsigned int spec_is_dwz : 1;
1005
1006 /* The name of this DIE. Normally the value of DW_AT_name, but
1007 sometimes a default name for unnamed DIEs. */
1008 const char *name = nullptr;
1009
1010 /* The linkage name, if present. */
1011 const char *linkage_name = nullptr;
1012
1013 /* The scope to prepend to our children. This is generally
1014 allocated on the comp_unit_obstack, so will disappear
1015 when this compilation unit leaves the cache. */
1016 const char *scope = nullptr;
1017
1018 /* Some data associated with the partial DIE. The tag determines
1019 which field is live. */
1020 union
1021 {
1022 /* The location description associated with this DIE, if any. */
1023 struct dwarf_block *locdesc;
1024 /* The offset of an import, for DW_TAG_imported_unit. */
1025 sect_offset sect_off;
1026 } d {};
1027
1028 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1029 CORE_ADDR lowpc = 0;
1030 CORE_ADDR highpc = 0;
1031
1032 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1033 DW_AT_sibling, if any. */
1034 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1035 could return DW_AT_sibling values to its caller load_partial_dies. */
1036 const gdb_byte *sibling = nullptr;
1037
1038 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1039 DW_AT_specification (or DW_AT_abstract_origin or
1040 DW_AT_extension). */
1041 sect_offset spec_offset {};
1042
1043 /* Pointers to this DIE's parent, first child, and next sibling,
1044 if any. */
1045 struct partial_die_info *die_parent = nullptr;
1046 struct partial_die_info *die_child = nullptr;
1047 struct partial_die_info *die_sibling = nullptr;
1048
1049 friend struct partial_die_info *
1050 dwarf2_cu::find_partial_die (sect_offset sect_off);
1051
1052 private:
1053 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1054 partial_die_info (sect_offset sect_off)
1055 : partial_die_info (sect_off, DW_TAG_padding, 0)
1056 {
1057 }
1058
1059 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1060 int has_children_)
1061 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1062 {
1063 is_external = 0;
1064 is_declaration = 0;
1065 has_type = 0;
1066 has_specification = 0;
1067 has_pc_info = 0;
1068 may_be_inlined = 0;
1069 main_subprogram = 0;
1070 scope_set = 0;
1071 has_byte_size = 0;
1072 has_const_value = 0;
1073 has_template_arguments = 0;
1074 fixup_called = 0;
1075 is_dwz = 0;
1076 spec_is_dwz = 0;
1077 }
1078 };
1079
1080 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1081 but this would require a corresponding change in unpack_field_as_long
1082 and friends. */
1083 static int bits_per_byte = 8;
1084
1085 struct variant_part_builder;
1086
1087 /* When reading a variant, we track a bit more information about the
1088 field, and store it in an object of this type. */
1089
1090 struct variant_field
1091 {
1092 int first_field = -1;
1093 int last_field = -1;
1094
1095 /* A variant can contain other variant parts. */
1096 std::vector<variant_part_builder> variant_parts;
1097
1098 /* If we see a DW_TAG_variant, then this will be set if this is the
1099 default branch. */
1100 bool default_branch = false;
1101 /* If we see a DW_AT_discr_value, then this will be the discriminant
1102 value. */
1103 ULONGEST discriminant_value = 0;
1104 /* If we see a DW_AT_discr_list, then this is a pointer to the list
1105 data. */
1106 struct dwarf_block *discr_list_data = nullptr;
1107 };
1108
1109 /* This represents a DW_TAG_variant_part. */
1110
1111 struct variant_part_builder
1112 {
1113 /* The offset of the discriminant field. */
1114 sect_offset discriminant_offset {};
1115
1116 /* Variants that are direct children of this variant part. */
1117 std::vector<variant_field> variants;
1118
1119 /* True if we're currently reading a variant. */
1120 bool processing_variant = false;
1121 };
1122
1123 struct nextfield
1124 {
1125 int accessibility = 0;
1126 int virtuality = 0;
1127 /* Variant parts need to find the discriminant, which is a DIE
1128 reference. We track the section offset of each field to make
1129 this link. */
1130 sect_offset offset;
1131 struct field field {};
1132 };
1133
1134 struct fnfieldlist
1135 {
1136 const char *name = nullptr;
1137 std::vector<struct fn_field> fnfields;
1138 };
1139
1140 /* The routines that read and process dies for a C struct or C++ class
1141 pass lists of data member fields and lists of member function fields
1142 in an instance of a field_info structure, as defined below. */
1143 struct field_info
1144 {
1145 /* List of data member and baseclasses fields. */
1146 std::vector<struct nextfield> fields;
1147 std::vector<struct nextfield> baseclasses;
1148
1149 /* Set if the accessibility of one of the fields is not public. */
1150 int non_public_fields = 0;
1151
1152 /* Member function fieldlist array, contains name of possibly overloaded
1153 member function, number of overloaded member functions and a pointer
1154 to the head of the member function field chain. */
1155 std::vector<struct fnfieldlist> fnfieldlists;
1156
1157 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1158 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1159 std::vector<struct decl_field> typedef_field_list;
1160
1161 /* Nested types defined by this class and the number of elements in this
1162 list. */
1163 std::vector<struct decl_field> nested_types_list;
1164
1165 /* If non-null, this is the variant part we are currently
1166 reading. */
1167 variant_part_builder *current_variant_part = nullptr;
1168 /* This holds all the top-level variant parts attached to the type
1169 we're reading. */
1170 std::vector<variant_part_builder> variant_parts;
1171
1172 /* Return the total number of fields (including baseclasses). */
1173 int nfields () const
1174 {
1175 return fields.size () + baseclasses.size ();
1176 }
1177 };
1178
1179 /* Loaded secondary compilation units are kept in memory until they
1180 have not been referenced for the processing of this many
1181 compilation units. Set this to zero to disable caching. Cache
1182 sizes of up to at least twenty will improve startup time for
1183 typical inter-CU-reference binaries, at an obvious memory cost. */
1184 static int dwarf_max_cache_age = 5;
1185 static void
1186 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1187 struct cmd_list_element *c, const char *value)
1188 {
1189 fprintf_filtered (file, _("The upper bound on the age of cached "
1190 "DWARF compilation units is %s.\n"),
1191 value);
1192 }
1193 \f
1194 /* local function prototypes */
1195
1196 static void dwarf2_find_base_address (struct die_info *die,
1197 struct dwarf2_cu *cu);
1198
1199 static dwarf2_psymtab *create_partial_symtab
1200 (struct dwarf2_per_cu_data *per_cu, const char *name);
1201
1202 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1203 const gdb_byte *info_ptr,
1204 struct die_info *type_unit_die);
1205
1206 static void dwarf2_build_psymtabs_hard
1207 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1208
1209 static void scan_partial_symbols (struct partial_die_info *,
1210 CORE_ADDR *, CORE_ADDR *,
1211 int, struct dwarf2_cu *);
1212
1213 static void add_partial_symbol (struct partial_die_info *,
1214 struct dwarf2_cu *);
1215
1216 static void add_partial_namespace (struct partial_die_info *pdi,
1217 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1218 int set_addrmap, struct dwarf2_cu *cu);
1219
1220 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1221 CORE_ADDR *highpc, int set_addrmap,
1222 struct dwarf2_cu *cu);
1223
1224 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1225 struct dwarf2_cu *cu);
1226
1227 static void add_partial_subprogram (struct partial_die_info *pdi,
1228 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1229 int need_pc, struct dwarf2_cu *cu);
1230
1231 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1232
1233 static struct partial_die_info *load_partial_dies
1234 (const struct die_reader_specs *, const gdb_byte *, int);
1235
1236 /* A pair of partial_die_info and compilation unit. */
1237 struct cu_partial_die_info
1238 {
1239 /* The compilation unit of the partial_die_info. */
1240 struct dwarf2_cu *cu;
1241 /* A partial_die_info. */
1242 struct partial_die_info *pdi;
1243
1244 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1245 : cu (cu),
1246 pdi (pdi)
1247 { /* Nothing. */ }
1248
1249 private:
1250 cu_partial_die_info () = delete;
1251 };
1252
1253 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1254 struct dwarf2_cu *);
1255
1256 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1257 struct attribute *, struct attr_abbrev *,
1258 const gdb_byte *, bool *need_reprocess);
1259
1260 static void read_attribute_reprocess (const struct die_reader_specs *reader,
1261 struct attribute *attr);
1262
1263 static CORE_ADDR read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index);
1264
1265 static sect_offset read_abbrev_offset
1266 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1267 struct dwarf2_section_info *, sect_offset);
1268
1269 static const char *read_indirect_string
1270 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1271 const struct comp_unit_head *, unsigned int *);
1272
1273 static const char *read_indirect_string_at_offset
1274 (struct dwarf2_per_objfile *dwarf2_per_objfile, LONGEST str_offset);
1275
1276 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1277 const gdb_byte *,
1278 unsigned int *);
1279
1280 static const char *read_dwo_str_index (const struct die_reader_specs *reader,
1281 ULONGEST str_index);
1282
1283 static const char *read_stub_str_index (struct dwarf2_cu *cu,
1284 ULONGEST str_index);
1285
1286 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1287
1288 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1289 struct dwarf2_cu *);
1290
1291 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1292 struct dwarf2_cu *cu);
1293
1294 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1295
1296 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1297 struct dwarf2_cu *cu);
1298
1299 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1300
1301 static struct die_info *die_specification (struct die_info *die,
1302 struct dwarf2_cu **);
1303
1304 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1305 struct dwarf2_cu *cu);
1306
1307 static void dwarf_decode_lines (struct line_header *, const char *,
1308 struct dwarf2_cu *, dwarf2_psymtab *,
1309 CORE_ADDR, int decode_mapping);
1310
1311 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1312 const char *);
1313
1314 static struct symbol *new_symbol (struct die_info *, struct type *,
1315 struct dwarf2_cu *, struct symbol * = NULL);
1316
1317 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1318 struct dwarf2_cu *);
1319
1320 static void dwarf2_const_value_attr (const struct attribute *attr,
1321 struct type *type,
1322 const char *name,
1323 struct obstack *obstack,
1324 struct dwarf2_cu *cu, LONGEST *value,
1325 const gdb_byte **bytes,
1326 struct dwarf2_locexpr_baton **baton);
1327
1328 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1329
1330 static int need_gnat_info (struct dwarf2_cu *);
1331
1332 static struct type *die_descriptive_type (struct die_info *,
1333 struct dwarf2_cu *);
1334
1335 static void set_descriptive_type (struct type *, struct die_info *,
1336 struct dwarf2_cu *);
1337
1338 static struct type *die_containing_type (struct die_info *,
1339 struct dwarf2_cu *);
1340
1341 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1342 struct dwarf2_cu *);
1343
1344 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1345
1346 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1347
1348 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1349
1350 static char *typename_concat (struct obstack *obs, const char *prefix,
1351 const char *suffix, int physname,
1352 struct dwarf2_cu *cu);
1353
1354 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1355
1356 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1357
1358 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1359
1360 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1361
1362 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1363
1364 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1365
1366 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1367 struct dwarf2_cu *, dwarf2_psymtab *);
1368
1369 /* Return the .debug_loclists section to use for cu. */
1370 static struct dwarf2_section_info *cu_debug_loc_section (struct dwarf2_cu *cu);
1371
1372 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1373 values. Keep the items ordered with increasing constraints compliance. */
1374 enum pc_bounds_kind
1375 {
1376 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1377 PC_BOUNDS_NOT_PRESENT,
1378
1379 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1380 were present but they do not form a valid range of PC addresses. */
1381 PC_BOUNDS_INVALID,
1382
1383 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1384 PC_BOUNDS_RANGES,
1385
1386 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1387 PC_BOUNDS_HIGH_LOW,
1388 };
1389
1390 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1391 CORE_ADDR *, CORE_ADDR *,
1392 struct dwarf2_cu *,
1393 dwarf2_psymtab *);
1394
1395 static void get_scope_pc_bounds (struct die_info *,
1396 CORE_ADDR *, CORE_ADDR *,
1397 struct dwarf2_cu *);
1398
1399 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1400 CORE_ADDR, struct dwarf2_cu *);
1401
1402 static void dwarf2_add_field (struct field_info *, struct die_info *,
1403 struct dwarf2_cu *);
1404
1405 static void dwarf2_attach_fields_to_type (struct field_info *,
1406 struct type *, struct dwarf2_cu *);
1407
1408 static void dwarf2_add_member_fn (struct field_info *,
1409 struct die_info *, struct type *,
1410 struct dwarf2_cu *);
1411
1412 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1413 struct type *,
1414 struct dwarf2_cu *);
1415
1416 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1417
1418 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1419
1420 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1421
1422 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1423
1424 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1425
1426 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1427
1428 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1429
1430 static struct type *read_module_type (struct die_info *die,
1431 struct dwarf2_cu *cu);
1432
1433 static const char *namespace_name (struct die_info *die,
1434 int *is_anonymous, struct dwarf2_cu *);
1435
1436 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1437
1438 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *,
1439 bool * = nullptr);
1440
1441 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1442 struct dwarf2_cu *);
1443
1444 static struct die_info *read_die_and_siblings_1
1445 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1446 struct die_info *);
1447
1448 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1449 const gdb_byte *info_ptr,
1450 const gdb_byte **new_info_ptr,
1451 struct die_info *parent);
1452
1453 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1454 struct die_info **, const gdb_byte *,
1455 int);
1456
1457 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1458 struct die_info **, const gdb_byte *);
1459
1460 static void process_die (struct die_info *, struct dwarf2_cu *);
1461
1462 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1463 struct objfile *);
1464
1465 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1466
1467 static const char *dwarf2_full_name (const char *name,
1468 struct die_info *die,
1469 struct dwarf2_cu *cu);
1470
1471 static const char *dwarf2_physname (const char *name, struct die_info *die,
1472 struct dwarf2_cu *cu);
1473
1474 static struct die_info *dwarf2_extension (struct die_info *die,
1475 struct dwarf2_cu **);
1476
1477 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1478
1479 static void dump_die_for_error (struct die_info *);
1480
1481 static void dump_die_1 (struct ui_file *, int level, int max_level,
1482 struct die_info *);
1483
1484 /*static*/ void dump_die (struct die_info *, int max_level);
1485
1486 static void store_in_ref_table (struct die_info *,
1487 struct dwarf2_cu *);
1488
1489 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1490 const struct attribute *,
1491 struct dwarf2_cu **);
1492
1493 static struct die_info *follow_die_ref (struct die_info *,
1494 const struct attribute *,
1495 struct dwarf2_cu **);
1496
1497 static struct die_info *follow_die_sig (struct die_info *,
1498 const struct attribute *,
1499 struct dwarf2_cu **);
1500
1501 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1502 struct dwarf2_cu *);
1503
1504 static struct type *get_DW_AT_signature_type (struct die_info *,
1505 const struct attribute *,
1506 struct dwarf2_cu *);
1507
1508 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1509
1510 static void read_signatured_type (struct signatured_type *);
1511
1512 static int attr_to_dynamic_prop (const struct attribute *attr,
1513 struct die_info *die, struct dwarf2_cu *cu,
1514 struct dynamic_prop *prop, struct type *type);
1515
1516 /* memory allocation interface */
1517
1518 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1519
1520 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1521
1522 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1523
1524 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1525 struct dwarf2_loclist_baton *baton,
1526 const struct attribute *attr);
1527
1528 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1529 struct symbol *sym,
1530 struct dwarf2_cu *cu,
1531 int is_block);
1532
1533 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1534 const gdb_byte *info_ptr,
1535 struct abbrev_info *abbrev);
1536
1537 static hashval_t partial_die_hash (const void *item);
1538
1539 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1540
1541 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1542 (sect_offset sect_off, unsigned int offset_in_dwz,
1543 struct dwarf2_per_objfile *dwarf2_per_objfile);
1544
1545 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1546 struct die_info *comp_unit_die,
1547 enum language pretend_language);
1548
1549 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1550
1551 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1552
1553 static struct type *set_die_type (struct die_info *, struct type *,
1554 struct dwarf2_cu *);
1555
1556 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1557
1558 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1559
1560 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1561 enum language);
1562
1563 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1564 enum language);
1565
1566 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1567 enum language);
1568
1569 static void dwarf2_add_dependence (struct dwarf2_cu *,
1570 struct dwarf2_per_cu_data *);
1571
1572 static void dwarf2_mark (struct dwarf2_cu *);
1573
1574 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1575
1576 static struct type *get_die_type_at_offset (sect_offset,
1577 struct dwarf2_per_cu_data *);
1578
1579 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1580
1581 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1582 enum language pretend_language);
1583
1584 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1585
1586 /* Class, the destructor of which frees all allocated queue entries. This
1587 will only have work to do if an error was thrown while processing the
1588 dwarf. If no error was thrown then the queue entries should have all
1589 been processed, and freed, as we went along. */
1590
1591 class dwarf2_queue_guard
1592 {
1593 public:
1594 explicit dwarf2_queue_guard (dwarf2_per_objfile *per_objfile)
1595 : m_per_objfile (per_objfile)
1596 {
1597 }
1598
1599 /* Free any entries remaining on the queue. There should only be
1600 entries left if we hit an error while processing the dwarf. */
1601 ~dwarf2_queue_guard ()
1602 {
1603 /* Ensure that no memory is allocated by the queue. */
1604 std::queue<dwarf2_queue_item> empty;
1605 std::swap (m_per_objfile->queue, empty);
1606 }
1607
1608 DISABLE_COPY_AND_ASSIGN (dwarf2_queue_guard);
1609
1610 private:
1611 dwarf2_per_objfile *m_per_objfile;
1612 };
1613
1614 dwarf2_queue_item::~dwarf2_queue_item ()
1615 {
1616 /* Anything still marked queued is likely to be in an
1617 inconsistent state, so discard it. */
1618 if (per_cu->queued)
1619 {
1620 if (per_cu->cu != NULL)
1621 free_one_cached_comp_unit (per_cu);
1622 per_cu->queued = 0;
1623 }
1624 }
1625
1626 /* The return type of find_file_and_directory. Note, the enclosed
1627 string pointers are only valid while this object is valid. */
1628
1629 struct file_and_directory
1630 {
1631 /* The filename. This is never NULL. */
1632 const char *name;
1633
1634 /* The compilation directory. NULL if not known. If we needed to
1635 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1636 points directly to the DW_AT_comp_dir string attribute owned by
1637 the obstack that owns the DIE. */
1638 const char *comp_dir;
1639
1640 /* If we needed to build a new string for comp_dir, this is what
1641 owns the storage. */
1642 std::string comp_dir_storage;
1643 };
1644
1645 static file_and_directory find_file_and_directory (struct die_info *die,
1646 struct dwarf2_cu *cu);
1647
1648 static htab_up allocate_signatured_type_table ();
1649
1650 static htab_up allocate_dwo_unit_table ();
1651
1652 static struct dwo_unit *lookup_dwo_unit_in_dwp
1653 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1654 struct dwp_file *dwp_file, const char *comp_dir,
1655 ULONGEST signature, int is_debug_types);
1656
1657 static struct dwp_file *get_dwp_file
1658 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1659
1660 static struct dwo_unit *lookup_dwo_comp_unit
1661 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
1662
1663 static struct dwo_unit *lookup_dwo_type_unit
1664 (struct signatured_type *, const char *, const char *);
1665
1666 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
1667
1668 /* A unique pointer to a dwo_file. */
1669
1670 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
1671
1672 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
1673
1674 static void check_producer (struct dwarf2_cu *cu);
1675
1676 static void free_line_header_voidp (void *arg);
1677 \f
1678 /* Various complaints about symbol reading that don't abort the process. */
1679
1680 static void
1681 dwarf2_debug_line_missing_file_complaint (void)
1682 {
1683 complaint (_(".debug_line section has line data without a file"));
1684 }
1685
1686 static void
1687 dwarf2_debug_line_missing_end_sequence_complaint (void)
1688 {
1689 complaint (_(".debug_line section has line "
1690 "program sequence without an end"));
1691 }
1692
1693 static void
1694 dwarf2_complex_location_expr_complaint (void)
1695 {
1696 complaint (_("location expression too complex"));
1697 }
1698
1699 static void
1700 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
1701 int arg3)
1702 {
1703 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
1704 arg1, arg2, arg3);
1705 }
1706
1707 static void
1708 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
1709 {
1710 complaint (_("invalid attribute class or form for '%s' in '%s'"),
1711 arg1, arg2);
1712 }
1713
1714 /* Hash function for line_header_hash. */
1715
1716 static hashval_t
1717 line_header_hash (const struct line_header *ofs)
1718 {
1719 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
1720 }
1721
1722 /* Hash function for htab_create_alloc_ex for line_header_hash. */
1723
1724 static hashval_t
1725 line_header_hash_voidp (const void *item)
1726 {
1727 const struct line_header *ofs = (const struct line_header *) item;
1728
1729 return line_header_hash (ofs);
1730 }
1731
1732 /* Equality function for line_header_hash. */
1733
1734 static int
1735 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
1736 {
1737 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
1738 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
1739
1740 return (ofs_lhs->sect_off == ofs_rhs->sect_off
1741 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
1742 }
1743
1744 \f
1745
1746 /* See declaration. */
1747
1748 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
1749 const dwarf2_debug_sections *names,
1750 bool can_copy_)
1751 : objfile (objfile_),
1752 can_copy (can_copy_)
1753 {
1754 if (names == NULL)
1755 names = &dwarf2_elf_names;
1756
1757 bfd *obfd = objfile->obfd;
1758
1759 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
1760 locate_sections (obfd, sec, *names);
1761 }
1762
1763 dwarf2_per_objfile::~dwarf2_per_objfile ()
1764 {
1765 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
1766 free_cached_comp_units ();
1767
1768 for (dwarf2_per_cu_data *per_cu : all_comp_units)
1769 per_cu->imported_symtabs_free ();
1770
1771 for (signatured_type *sig_type : all_type_units)
1772 sig_type->per_cu.imported_symtabs_free ();
1773
1774 /* Everything else should be on the objfile obstack. */
1775 }
1776
1777 /* See declaration. */
1778
1779 void
1780 dwarf2_per_objfile::free_cached_comp_units ()
1781 {
1782 dwarf2_per_cu_data *per_cu = read_in_chain;
1783 dwarf2_per_cu_data **last_chain = &read_in_chain;
1784 while (per_cu != NULL)
1785 {
1786 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
1787
1788 delete per_cu->cu;
1789 *last_chain = next_cu;
1790 per_cu = next_cu;
1791 }
1792 }
1793
1794 /* A helper class that calls free_cached_comp_units on
1795 destruction. */
1796
1797 class free_cached_comp_units
1798 {
1799 public:
1800
1801 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
1802 : m_per_objfile (per_objfile)
1803 {
1804 }
1805
1806 ~free_cached_comp_units ()
1807 {
1808 m_per_objfile->free_cached_comp_units ();
1809 }
1810
1811 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
1812
1813 private:
1814
1815 dwarf2_per_objfile *m_per_objfile;
1816 };
1817
1818 /* Try to locate the sections we need for DWARF 2 debugging
1819 information and return true if we have enough to do something.
1820 NAMES points to the dwarf2 section names, or is NULL if the standard
1821 ELF names are used. CAN_COPY is true for formats where symbol
1822 interposition is possible and so symbol values must follow copy
1823 relocation rules. */
1824
1825 int
1826 dwarf2_has_info (struct objfile *objfile,
1827 const struct dwarf2_debug_sections *names,
1828 bool can_copy)
1829 {
1830 if (objfile->flags & OBJF_READNEVER)
1831 return 0;
1832
1833 struct dwarf2_per_objfile *dwarf2_per_objfile
1834 = get_dwarf2_per_objfile (objfile);
1835
1836 if (dwarf2_per_objfile == NULL)
1837 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
1838 names,
1839 can_copy);
1840
1841 return (!dwarf2_per_objfile->info.is_virtual
1842 && dwarf2_per_objfile->info.s.section != NULL
1843 && !dwarf2_per_objfile->abbrev.is_virtual
1844 && dwarf2_per_objfile->abbrev.s.section != NULL);
1845 }
1846
1847 /* When loading sections, we look either for uncompressed section or for
1848 compressed section names. */
1849
1850 static int
1851 section_is_p (const char *section_name,
1852 const struct dwarf2_section_names *names)
1853 {
1854 if (names->normal != NULL
1855 && strcmp (section_name, names->normal) == 0)
1856 return 1;
1857 if (names->compressed != NULL
1858 && strcmp (section_name, names->compressed) == 0)
1859 return 1;
1860 return 0;
1861 }
1862
1863 /* See declaration. */
1864
1865 void
1866 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
1867 const dwarf2_debug_sections &names)
1868 {
1869 flagword aflag = bfd_section_flags (sectp);
1870
1871 if ((aflag & SEC_HAS_CONTENTS) == 0)
1872 {
1873 }
1874 else if (elf_section_data (sectp)->this_hdr.sh_size
1875 > bfd_get_file_size (abfd))
1876 {
1877 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
1878 warning (_("Discarding section %s which has a section size (%s"
1879 ") larger than the file size [in module %s]"),
1880 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
1881 bfd_get_filename (abfd));
1882 }
1883 else if (section_is_p (sectp->name, &names.info))
1884 {
1885 this->info.s.section = sectp;
1886 this->info.size = bfd_section_size (sectp);
1887 }
1888 else if (section_is_p (sectp->name, &names.abbrev))
1889 {
1890 this->abbrev.s.section = sectp;
1891 this->abbrev.size = bfd_section_size (sectp);
1892 }
1893 else if (section_is_p (sectp->name, &names.line))
1894 {
1895 this->line.s.section = sectp;
1896 this->line.size = bfd_section_size (sectp);
1897 }
1898 else if (section_is_p (sectp->name, &names.loc))
1899 {
1900 this->loc.s.section = sectp;
1901 this->loc.size = bfd_section_size (sectp);
1902 }
1903 else if (section_is_p (sectp->name, &names.loclists))
1904 {
1905 this->loclists.s.section = sectp;
1906 this->loclists.size = bfd_section_size (sectp);
1907 }
1908 else if (section_is_p (sectp->name, &names.macinfo))
1909 {
1910 this->macinfo.s.section = sectp;
1911 this->macinfo.size = bfd_section_size (sectp);
1912 }
1913 else if (section_is_p (sectp->name, &names.macro))
1914 {
1915 this->macro.s.section = sectp;
1916 this->macro.size = bfd_section_size (sectp);
1917 }
1918 else if (section_is_p (sectp->name, &names.str))
1919 {
1920 this->str.s.section = sectp;
1921 this->str.size = bfd_section_size (sectp);
1922 }
1923 else if (section_is_p (sectp->name, &names.str_offsets))
1924 {
1925 this->str_offsets.s.section = sectp;
1926 this->str_offsets.size = bfd_section_size (sectp);
1927 }
1928 else if (section_is_p (sectp->name, &names.line_str))
1929 {
1930 this->line_str.s.section = sectp;
1931 this->line_str.size = bfd_section_size (sectp);
1932 }
1933 else if (section_is_p (sectp->name, &names.addr))
1934 {
1935 this->addr.s.section = sectp;
1936 this->addr.size = bfd_section_size (sectp);
1937 }
1938 else if (section_is_p (sectp->name, &names.frame))
1939 {
1940 this->frame.s.section = sectp;
1941 this->frame.size = bfd_section_size (sectp);
1942 }
1943 else if (section_is_p (sectp->name, &names.eh_frame))
1944 {
1945 this->eh_frame.s.section = sectp;
1946 this->eh_frame.size = bfd_section_size (sectp);
1947 }
1948 else if (section_is_p (sectp->name, &names.ranges))
1949 {
1950 this->ranges.s.section = sectp;
1951 this->ranges.size = bfd_section_size (sectp);
1952 }
1953 else if (section_is_p (sectp->name, &names.rnglists))
1954 {
1955 this->rnglists.s.section = sectp;
1956 this->rnglists.size = bfd_section_size (sectp);
1957 }
1958 else if (section_is_p (sectp->name, &names.types))
1959 {
1960 struct dwarf2_section_info type_section;
1961
1962 memset (&type_section, 0, sizeof (type_section));
1963 type_section.s.section = sectp;
1964 type_section.size = bfd_section_size (sectp);
1965
1966 this->types.push_back (type_section);
1967 }
1968 else if (section_is_p (sectp->name, &names.gdb_index))
1969 {
1970 this->gdb_index.s.section = sectp;
1971 this->gdb_index.size = bfd_section_size (sectp);
1972 }
1973 else if (section_is_p (sectp->name, &names.debug_names))
1974 {
1975 this->debug_names.s.section = sectp;
1976 this->debug_names.size = bfd_section_size (sectp);
1977 }
1978 else if (section_is_p (sectp->name, &names.debug_aranges))
1979 {
1980 this->debug_aranges.s.section = sectp;
1981 this->debug_aranges.size = bfd_section_size (sectp);
1982 }
1983
1984 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
1985 && bfd_section_vma (sectp) == 0)
1986 this->has_section_at_zero = true;
1987 }
1988
1989 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
1990 SECTION_NAME. */
1991
1992 void
1993 dwarf2_get_section_info (struct objfile *objfile,
1994 enum dwarf2_section_enum sect,
1995 asection **sectp, const gdb_byte **bufp,
1996 bfd_size_type *sizep)
1997 {
1998 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
1999 struct dwarf2_section_info *info;
2000
2001 /* We may see an objfile without any DWARF, in which case we just
2002 return nothing. */
2003 if (data == NULL)
2004 {
2005 *sectp = NULL;
2006 *bufp = NULL;
2007 *sizep = 0;
2008 return;
2009 }
2010 switch (sect)
2011 {
2012 case DWARF2_DEBUG_FRAME:
2013 info = &data->frame;
2014 break;
2015 case DWARF2_EH_FRAME:
2016 info = &data->eh_frame;
2017 break;
2018 default:
2019 gdb_assert_not_reached ("unexpected section");
2020 }
2021
2022 info->read (objfile);
2023
2024 *sectp = info->get_bfd_section ();
2025 *bufp = info->buffer;
2026 *sizep = info->size;
2027 }
2028
2029 /* A helper function to find the sections for a .dwz file. */
2030
2031 static void
2032 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2033 {
2034 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2035
2036 /* Note that we only support the standard ELF names, because .dwz
2037 is ELF-only (at the time of writing). */
2038 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2039 {
2040 dwz_file->abbrev.s.section = sectp;
2041 dwz_file->abbrev.size = bfd_section_size (sectp);
2042 }
2043 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2044 {
2045 dwz_file->info.s.section = sectp;
2046 dwz_file->info.size = bfd_section_size (sectp);
2047 }
2048 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2049 {
2050 dwz_file->str.s.section = sectp;
2051 dwz_file->str.size = bfd_section_size (sectp);
2052 }
2053 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2054 {
2055 dwz_file->line.s.section = sectp;
2056 dwz_file->line.size = bfd_section_size (sectp);
2057 }
2058 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2059 {
2060 dwz_file->macro.s.section = sectp;
2061 dwz_file->macro.size = bfd_section_size (sectp);
2062 }
2063 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2064 {
2065 dwz_file->gdb_index.s.section = sectp;
2066 dwz_file->gdb_index.size = bfd_section_size (sectp);
2067 }
2068 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2069 {
2070 dwz_file->debug_names.s.section = sectp;
2071 dwz_file->debug_names.size = bfd_section_size (sectp);
2072 }
2073 }
2074
2075 /* See dwarf2read.h. */
2076
2077 struct dwz_file *
2078 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2079 {
2080 const char *filename;
2081 bfd_size_type buildid_len_arg;
2082 size_t buildid_len;
2083 bfd_byte *buildid;
2084
2085 if (dwarf2_per_objfile->dwz_file != NULL)
2086 return dwarf2_per_objfile->dwz_file.get ();
2087
2088 bfd_set_error (bfd_error_no_error);
2089 gdb::unique_xmalloc_ptr<char> data
2090 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2091 &buildid_len_arg, &buildid));
2092 if (data == NULL)
2093 {
2094 if (bfd_get_error () == bfd_error_no_error)
2095 return NULL;
2096 error (_("could not read '.gnu_debugaltlink' section: %s"),
2097 bfd_errmsg (bfd_get_error ()));
2098 }
2099
2100 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2101
2102 buildid_len = (size_t) buildid_len_arg;
2103
2104 filename = data.get ();
2105
2106 std::string abs_storage;
2107 if (!IS_ABSOLUTE_PATH (filename))
2108 {
2109 gdb::unique_xmalloc_ptr<char> abs
2110 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2111
2112 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2113 filename = abs_storage.c_str ();
2114 }
2115
2116 /* First try the file name given in the section. If that doesn't
2117 work, try to use the build-id instead. */
2118 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2119 if (dwz_bfd != NULL)
2120 {
2121 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2122 dwz_bfd.reset (nullptr);
2123 }
2124
2125 if (dwz_bfd == NULL)
2126 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2127
2128 if (dwz_bfd == nullptr)
2129 {
2130 gdb::unique_xmalloc_ptr<char> alt_filename;
2131 const char *origname = dwarf2_per_objfile->objfile->original_name;
2132
2133 scoped_fd fd (debuginfod_debuginfo_query (buildid,
2134 buildid_len,
2135 origname,
2136 &alt_filename));
2137
2138 if (fd.get () >= 0)
2139 {
2140 /* File successfully retrieved from server. */
2141 dwz_bfd = gdb_bfd_open (alt_filename.get (), gnutarget, -1);
2142
2143 if (dwz_bfd == nullptr)
2144 warning (_("File \"%s\" from debuginfod cannot be opened as bfd"),
2145 alt_filename.get ());
2146 else if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2147 dwz_bfd.reset (nullptr);
2148 }
2149 }
2150
2151 if (dwz_bfd == NULL)
2152 error (_("could not find '.gnu_debugaltlink' file for %s"),
2153 objfile_name (dwarf2_per_objfile->objfile));
2154
2155 std::unique_ptr<struct dwz_file> result
2156 (new struct dwz_file (std::move (dwz_bfd)));
2157
2158 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2159 result.get ());
2160
2161 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2162 result->dwz_bfd.get ());
2163 dwarf2_per_objfile->dwz_file = std::move (result);
2164 return dwarf2_per_objfile->dwz_file.get ();
2165 }
2166 \f
2167 /* DWARF quick_symbols_functions support. */
2168
2169 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2170 unique line tables, so we maintain a separate table of all .debug_line
2171 derived entries to support the sharing.
2172 All the quick functions need is the list of file names. We discard the
2173 line_header when we're done and don't need to record it here. */
2174 struct quick_file_names
2175 {
2176 /* The data used to construct the hash key. */
2177 struct stmt_list_hash hash;
2178
2179 /* The number of entries in file_names, real_names. */
2180 unsigned int num_file_names;
2181
2182 /* The file names from the line table, after being run through
2183 file_full_name. */
2184 const char **file_names;
2185
2186 /* The file names from the line table after being run through
2187 gdb_realpath. These are computed lazily. */
2188 const char **real_names;
2189 };
2190
2191 /* When using the index (and thus not using psymtabs), each CU has an
2192 object of this type. This is used to hold information needed by
2193 the various "quick" methods. */
2194 struct dwarf2_per_cu_quick_data
2195 {
2196 /* The file table. This can be NULL if there was no file table
2197 or it's currently not read in.
2198 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2199 struct quick_file_names *file_names;
2200
2201 /* The corresponding symbol table. This is NULL if symbols for this
2202 CU have not yet been read. */
2203 struct compunit_symtab *compunit_symtab;
2204
2205 /* A temporary mark bit used when iterating over all CUs in
2206 expand_symtabs_matching. */
2207 unsigned int mark : 1;
2208
2209 /* True if we've tried to read the file table and found there isn't one.
2210 There will be no point in trying to read it again next time. */
2211 unsigned int no_file_data : 1;
2212 };
2213
2214 /* Utility hash function for a stmt_list_hash. */
2215
2216 static hashval_t
2217 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2218 {
2219 hashval_t v = 0;
2220
2221 if (stmt_list_hash->dwo_unit != NULL)
2222 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2223 v += to_underlying (stmt_list_hash->line_sect_off);
2224 return v;
2225 }
2226
2227 /* Utility equality function for a stmt_list_hash. */
2228
2229 static int
2230 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2231 const struct stmt_list_hash *rhs)
2232 {
2233 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2234 return 0;
2235 if (lhs->dwo_unit != NULL
2236 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2237 return 0;
2238
2239 return lhs->line_sect_off == rhs->line_sect_off;
2240 }
2241
2242 /* Hash function for a quick_file_names. */
2243
2244 static hashval_t
2245 hash_file_name_entry (const void *e)
2246 {
2247 const struct quick_file_names *file_data
2248 = (const struct quick_file_names *) e;
2249
2250 return hash_stmt_list_entry (&file_data->hash);
2251 }
2252
2253 /* Equality function for a quick_file_names. */
2254
2255 static int
2256 eq_file_name_entry (const void *a, const void *b)
2257 {
2258 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2259 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2260
2261 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2262 }
2263
2264 /* Delete function for a quick_file_names. */
2265
2266 static void
2267 delete_file_name_entry (void *e)
2268 {
2269 struct quick_file_names *file_data = (struct quick_file_names *) e;
2270 int i;
2271
2272 for (i = 0; i < file_data->num_file_names; ++i)
2273 {
2274 xfree ((void*) file_data->file_names[i]);
2275 if (file_data->real_names)
2276 xfree ((void*) file_data->real_names[i]);
2277 }
2278
2279 /* The space for the struct itself lives on objfile_obstack,
2280 so we don't free it here. */
2281 }
2282
2283 /* Create a quick_file_names hash table. */
2284
2285 static htab_up
2286 create_quick_file_names_table (unsigned int nr_initial_entries)
2287 {
2288 return htab_up (htab_create_alloc (nr_initial_entries,
2289 hash_file_name_entry, eq_file_name_entry,
2290 delete_file_name_entry, xcalloc, xfree));
2291 }
2292
2293 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2294 have to be created afterwards. You should call age_cached_comp_units after
2295 processing PER_CU->CU. dw2_setup must have been already called. */
2296
2297 static void
2298 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2299 {
2300 if (per_cu->is_debug_types)
2301 load_full_type_unit (per_cu);
2302 else
2303 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2304
2305 if (per_cu->cu == NULL)
2306 return; /* Dummy CU. */
2307
2308 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2309 }
2310
2311 /* Read in the symbols for PER_CU. */
2312
2313 static void
2314 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2315 {
2316 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2317
2318 /* Skip type_unit_groups, reading the type units they contain
2319 is handled elsewhere. */
2320 if (per_cu->type_unit_group_p ())
2321 return;
2322
2323 /* The destructor of dwarf2_queue_guard frees any entries left on
2324 the queue. After this point we're guaranteed to leave this function
2325 with the dwarf queue empty. */
2326 dwarf2_queue_guard q_guard (dwarf2_per_objfile);
2327
2328 if (dwarf2_per_objfile->using_index
2329 ? per_cu->v.quick->compunit_symtab == NULL
2330 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2331 {
2332 queue_comp_unit (per_cu, language_minimal);
2333 load_cu (per_cu, skip_partial);
2334
2335 /* If we just loaded a CU from a DWO, and we're working with an index
2336 that may badly handle TUs, load all the TUs in that DWO as well.
2337 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2338 if (!per_cu->is_debug_types
2339 && per_cu->cu != NULL
2340 && per_cu->cu->dwo_unit != NULL
2341 && dwarf2_per_objfile->index_table != NULL
2342 && dwarf2_per_objfile->index_table->version <= 7
2343 /* DWP files aren't supported yet. */
2344 && get_dwp_file (dwarf2_per_objfile) == NULL)
2345 queue_and_load_all_dwo_tus (per_cu);
2346 }
2347
2348 process_queue (dwarf2_per_objfile);
2349
2350 /* Age the cache, releasing compilation units that have not
2351 been used recently. */
2352 age_cached_comp_units (dwarf2_per_objfile);
2353 }
2354
2355 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2356 the objfile from which this CU came. Returns the resulting symbol
2357 table. */
2358
2359 static struct compunit_symtab *
2360 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2361 {
2362 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2363
2364 gdb_assert (dwarf2_per_objfile->using_index);
2365 if (!per_cu->v.quick->compunit_symtab)
2366 {
2367 free_cached_comp_units freer (dwarf2_per_objfile);
2368 scoped_restore decrementer = increment_reading_symtab ();
2369 dw2_do_instantiate_symtab (per_cu, skip_partial);
2370 process_cu_includes (dwarf2_per_objfile);
2371 }
2372
2373 return per_cu->v.quick->compunit_symtab;
2374 }
2375
2376 /* See declaration. */
2377
2378 dwarf2_per_cu_data *
2379 dwarf2_per_objfile::get_cutu (int index)
2380 {
2381 if (index >= this->all_comp_units.size ())
2382 {
2383 index -= this->all_comp_units.size ();
2384 gdb_assert (index < this->all_type_units.size ());
2385 return &this->all_type_units[index]->per_cu;
2386 }
2387
2388 return this->all_comp_units[index];
2389 }
2390
2391 /* See declaration. */
2392
2393 dwarf2_per_cu_data *
2394 dwarf2_per_objfile::get_cu (int index)
2395 {
2396 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2397
2398 return this->all_comp_units[index];
2399 }
2400
2401 /* See declaration. */
2402
2403 signatured_type *
2404 dwarf2_per_objfile::get_tu (int index)
2405 {
2406 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2407
2408 return this->all_type_units[index];
2409 }
2410
2411 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2412 objfile_obstack, and constructed with the specified field
2413 values. */
2414
2415 static dwarf2_per_cu_data *
2416 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2417 struct dwarf2_section_info *section,
2418 int is_dwz,
2419 sect_offset sect_off, ULONGEST length)
2420 {
2421 struct objfile *objfile = dwarf2_per_objfile->objfile;
2422 dwarf2_per_cu_data *the_cu
2423 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2424 struct dwarf2_per_cu_data);
2425 the_cu->sect_off = sect_off;
2426 the_cu->length = length;
2427 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2428 the_cu->section = section;
2429 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2430 struct dwarf2_per_cu_quick_data);
2431 the_cu->is_dwz = is_dwz;
2432 return the_cu;
2433 }
2434
2435 /* A helper for create_cus_from_index that handles a given list of
2436 CUs. */
2437
2438 static void
2439 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2440 const gdb_byte *cu_list, offset_type n_elements,
2441 struct dwarf2_section_info *section,
2442 int is_dwz)
2443 {
2444 for (offset_type i = 0; i < n_elements; i += 2)
2445 {
2446 gdb_static_assert (sizeof (ULONGEST) >= 8);
2447
2448 sect_offset sect_off
2449 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
2450 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
2451 cu_list += 2 * 8;
2452
2453 dwarf2_per_cu_data *per_cu
2454 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
2455 sect_off, length);
2456 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
2457 }
2458 }
2459
2460 /* Read the CU list from the mapped index, and use it to create all
2461 the CU objects for this objfile. */
2462
2463 static void
2464 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2465 const gdb_byte *cu_list, offset_type cu_list_elements,
2466 const gdb_byte *dwz_list, offset_type dwz_elements)
2467 {
2468 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
2469 dwarf2_per_objfile->all_comp_units.reserve
2470 ((cu_list_elements + dwz_elements) / 2);
2471
2472 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
2473 &dwarf2_per_objfile->info, 0);
2474
2475 if (dwz_elements == 0)
2476 return;
2477
2478 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
2479 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
2480 &dwz->info, 1);
2481 }
2482
2483 /* Create the signatured type hash table from the index. */
2484
2485 static void
2486 create_signatured_type_table_from_index
2487 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2488 struct dwarf2_section_info *section,
2489 const gdb_byte *bytes,
2490 offset_type elements)
2491 {
2492 struct objfile *objfile = dwarf2_per_objfile->objfile;
2493
2494 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2495 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
2496
2497 htab_up sig_types_hash = allocate_signatured_type_table ();
2498
2499 for (offset_type i = 0; i < elements; i += 3)
2500 {
2501 struct signatured_type *sig_type;
2502 ULONGEST signature;
2503 void **slot;
2504 cu_offset type_offset_in_tu;
2505
2506 gdb_static_assert (sizeof (ULONGEST) >= 8);
2507 sect_offset sect_off
2508 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
2509 type_offset_in_tu
2510 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
2511 BFD_ENDIAN_LITTLE);
2512 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
2513 bytes += 3 * 8;
2514
2515 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2516 struct signatured_type);
2517 sig_type->signature = signature;
2518 sig_type->type_offset_in_tu = type_offset_in_tu;
2519 sig_type->per_cu.is_debug_types = 1;
2520 sig_type->per_cu.section = section;
2521 sig_type->per_cu.sect_off = sect_off;
2522 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2523 sig_type->per_cu.v.quick
2524 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2525 struct dwarf2_per_cu_quick_data);
2526
2527 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2528 *slot = sig_type;
2529
2530 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2531 }
2532
2533 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2534 }
2535
2536 /* Create the signatured type hash table from .debug_names. */
2537
2538 static void
2539 create_signatured_type_table_from_debug_names
2540 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2541 const mapped_debug_names &map,
2542 struct dwarf2_section_info *section,
2543 struct dwarf2_section_info *abbrev_section)
2544 {
2545 struct objfile *objfile = dwarf2_per_objfile->objfile;
2546
2547 section->read (objfile);
2548 abbrev_section->read (objfile);
2549
2550 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
2551 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
2552
2553 htab_up sig_types_hash = allocate_signatured_type_table ();
2554
2555 for (uint32_t i = 0; i < map.tu_count; ++i)
2556 {
2557 struct signatured_type *sig_type;
2558 void **slot;
2559
2560 sect_offset sect_off
2561 = (sect_offset) (extract_unsigned_integer
2562 (map.tu_table_reordered + i * map.offset_size,
2563 map.offset_size,
2564 map.dwarf5_byte_order));
2565
2566 comp_unit_head cu_header;
2567 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
2568 abbrev_section,
2569 section->buffer + to_underlying (sect_off),
2570 rcuh_kind::TYPE);
2571
2572 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2573 struct signatured_type);
2574 sig_type->signature = cu_header.signature;
2575 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
2576 sig_type->per_cu.is_debug_types = 1;
2577 sig_type->per_cu.section = section;
2578 sig_type->per_cu.sect_off = sect_off;
2579 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
2580 sig_type->per_cu.v.quick
2581 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2582 struct dwarf2_per_cu_quick_data);
2583
2584 slot = htab_find_slot (sig_types_hash.get (), sig_type, INSERT);
2585 *slot = sig_type;
2586
2587 dwarf2_per_objfile->all_type_units.push_back (sig_type);
2588 }
2589
2590 dwarf2_per_objfile->signatured_types = std::move (sig_types_hash);
2591 }
2592
2593 /* Read the address map data from the mapped index, and use it to
2594 populate the objfile's psymtabs_addrmap. */
2595
2596 static void
2597 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
2598 struct mapped_index *index)
2599 {
2600 struct objfile *objfile = dwarf2_per_objfile->objfile;
2601 struct gdbarch *gdbarch = objfile->arch ();
2602 const gdb_byte *iter, *end;
2603 struct addrmap *mutable_map;
2604 CORE_ADDR baseaddr;
2605
2606 auto_obstack temp_obstack;
2607
2608 mutable_map = addrmap_create_mutable (&temp_obstack);
2609
2610 iter = index->address_table.data ();
2611 end = iter + index->address_table.size ();
2612
2613 baseaddr = objfile->text_section_offset ();
2614
2615 while (iter < end)
2616 {
2617 ULONGEST hi, lo, cu_index;
2618 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2619 iter += 8;
2620 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
2621 iter += 8;
2622 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
2623 iter += 4;
2624
2625 if (lo > hi)
2626 {
2627 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
2628 hex_string (lo), hex_string (hi));
2629 continue;
2630 }
2631
2632 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
2633 {
2634 complaint (_(".gdb_index address table has invalid CU number %u"),
2635 (unsigned) cu_index);
2636 continue;
2637 }
2638
2639 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
2640 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
2641 addrmap_set_empty (mutable_map, lo, hi - 1,
2642 dwarf2_per_objfile->get_cu (cu_index));
2643 }
2644
2645 objfile->partial_symtabs->psymtabs_addrmap
2646 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2647 }
2648
2649 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
2650 populate the objfile's psymtabs_addrmap. */
2651
2652 static void
2653 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
2654 struct dwarf2_section_info *section)
2655 {
2656 struct objfile *objfile = dwarf2_per_objfile->objfile;
2657 bfd *abfd = objfile->obfd;
2658 struct gdbarch *gdbarch = objfile->arch ();
2659 const CORE_ADDR baseaddr = objfile->text_section_offset ();
2660
2661 auto_obstack temp_obstack;
2662 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
2663
2664 std::unordered_map<sect_offset,
2665 dwarf2_per_cu_data *,
2666 gdb::hash_enum<sect_offset>>
2667 debug_info_offset_to_per_cu;
2668 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
2669 {
2670 const auto insertpair
2671 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
2672 if (!insertpair.second)
2673 {
2674 warning (_("Section .debug_aranges in %s has duplicate "
2675 "debug_info_offset %s, ignoring .debug_aranges."),
2676 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
2677 return;
2678 }
2679 }
2680
2681 section->read (objfile);
2682
2683 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
2684
2685 const gdb_byte *addr = section->buffer;
2686
2687 while (addr < section->buffer + section->size)
2688 {
2689 const gdb_byte *const entry_addr = addr;
2690 unsigned int bytes_read;
2691
2692 const LONGEST entry_length = read_initial_length (abfd, addr,
2693 &bytes_read);
2694 addr += bytes_read;
2695
2696 const gdb_byte *const entry_end = addr + entry_length;
2697 const bool dwarf5_is_dwarf64 = bytes_read != 4;
2698 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
2699 if (addr + entry_length > section->buffer + section->size)
2700 {
2701 warning (_("Section .debug_aranges in %s entry at offset %s "
2702 "length %s exceeds section length %s, "
2703 "ignoring .debug_aranges."),
2704 objfile_name (objfile),
2705 plongest (entry_addr - section->buffer),
2706 plongest (bytes_read + entry_length),
2707 pulongest (section->size));
2708 return;
2709 }
2710
2711 /* The version number. */
2712 const uint16_t version = read_2_bytes (abfd, addr);
2713 addr += 2;
2714 if (version != 2)
2715 {
2716 warning (_("Section .debug_aranges in %s entry at offset %s "
2717 "has unsupported version %d, ignoring .debug_aranges."),
2718 objfile_name (objfile),
2719 plongest (entry_addr - section->buffer), version);
2720 return;
2721 }
2722
2723 const uint64_t debug_info_offset
2724 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
2725 addr += offset_size;
2726 const auto per_cu_it
2727 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
2728 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
2729 {
2730 warning (_("Section .debug_aranges in %s entry at offset %s "
2731 "debug_info_offset %s does not exists, "
2732 "ignoring .debug_aranges."),
2733 objfile_name (objfile),
2734 plongest (entry_addr - section->buffer),
2735 pulongest (debug_info_offset));
2736 return;
2737 }
2738 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
2739
2740 const uint8_t address_size = *addr++;
2741 if (address_size < 1 || address_size > 8)
2742 {
2743 warning (_("Section .debug_aranges in %s entry at offset %s "
2744 "address_size %u is invalid, ignoring .debug_aranges."),
2745 objfile_name (objfile),
2746 plongest (entry_addr - section->buffer), address_size);
2747 return;
2748 }
2749
2750 const uint8_t segment_selector_size = *addr++;
2751 if (segment_selector_size != 0)
2752 {
2753 warning (_("Section .debug_aranges in %s entry at offset %s "
2754 "segment_selector_size %u is not supported, "
2755 "ignoring .debug_aranges."),
2756 objfile_name (objfile),
2757 plongest (entry_addr - section->buffer),
2758 segment_selector_size);
2759 return;
2760 }
2761
2762 /* Must pad to an alignment boundary that is twice the address
2763 size. It is undocumented by the DWARF standard but GCC does
2764 use it. */
2765 for (size_t padding = ((-(addr - section->buffer))
2766 & (2 * address_size - 1));
2767 padding > 0; padding--)
2768 if (*addr++ != 0)
2769 {
2770 warning (_("Section .debug_aranges in %s entry at offset %s "
2771 "padding is not zero, ignoring .debug_aranges."),
2772 objfile_name (objfile),
2773 plongest (entry_addr - section->buffer));
2774 return;
2775 }
2776
2777 for (;;)
2778 {
2779 if (addr + 2 * address_size > entry_end)
2780 {
2781 warning (_("Section .debug_aranges in %s entry at offset %s "
2782 "address list is not properly terminated, "
2783 "ignoring .debug_aranges."),
2784 objfile_name (objfile),
2785 plongest (entry_addr - section->buffer));
2786 return;
2787 }
2788 ULONGEST start = extract_unsigned_integer (addr, address_size,
2789 dwarf5_byte_order);
2790 addr += address_size;
2791 ULONGEST length = extract_unsigned_integer (addr, address_size,
2792 dwarf5_byte_order);
2793 addr += address_size;
2794 if (start == 0 && length == 0)
2795 break;
2796 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
2797 {
2798 /* Symbol was eliminated due to a COMDAT group. */
2799 continue;
2800 }
2801 ULONGEST end = start + length;
2802 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
2803 - baseaddr);
2804 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
2805 - baseaddr);
2806 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
2807 }
2808 }
2809
2810 objfile->partial_symtabs->psymtabs_addrmap
2811 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
2812 }
2813
2814 /* Find a slot in the mapped index INDEX for the object named NAME.
2815 If NAME is found, set *VEC_OUT to point to the CU vector in the
2816 constant pool and return true. If NAME cannot be found, return
2817 false. */
2818
2819 static bool
2820 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
2821 offset_type **vec_out)
2822 {
2823 offset_type hash;
2824 offset_type slot, step;
2825 int (*cmp) (const char *, const char *);
2826
2827 gdb::unique_xmalloc_ptr<char> without_params;
2828 if (current_language->la_language == language_cplus
2829 || current_language->la_language == language_fortran
2830 || current_language->la_language == language_d)
2831 {
2832 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
2833 not contain any. */
2834
2835 if (strchr (name, '(') != NULL)
2836 {
2837 without_params = cp_remove_params (name);
2838
2839 if (without_params != NULL)
2840 name = without_params.get ();
2841 }
2842 }
2843
2844 /* Index version 4 did not support case insensitive searches. But the
2845 indices for case insensitive languages are built in lowercase, therefore
2846 simulate our NAME being searched is also lowercased. */
2847 hash = mapped_index_string_hash ((index->version == 4
2848 && case_sensitivity == case_sensitive_off
2849 ? 5 : index->version),
2850 name);
2851
2852 slot = hash & (index->symbol_table.size () - 1);
2853 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
2854 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
2855
2856 for (;;)
2857 {
2858 const char *str;
2859
2860 const auto &bucket = index->symbol_table[slot];
2861 if (bucket.name == 0 && bucket.vec == 0)
2862 return false;
2863
2864 str = index->constant_pool + MAYBE_SWAP (bucket.name);
2865 if (!cmp (name, str))
2866 {
2867 *vec_out = (offset_type *) (index->constant_pool
2868 + MAYBE_SWAP (bucket.vec));
2869 return true;
2870 }
2871
2872 slot = (slot + step) & (index->symbol_table.size () - 1);
2873 }
2874 }
2875
2876 /* A helper function that reads the .gdb_index from BUFFER and fills
2877 in MAP. FILENAME is the name of the file containing the data;
2878 it is used for error reporting. DEPRECATED_OK is true if it is
2879 ok to use deprecated sections.
2880
2881 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
2882 out parameters that are filled in with information about the CU and
2883 TU lists in the section.
2884
2885 Returns true if all went well, false otherwise. */
2886
2887 static bool
2888 read_gdb_index_from_buffer (const char *filename,
2889 bool deprecated_ok,
2890 gdb::array_view<const gdb_byte> buffer,
2891 struct mapped_index *map,
2892 const gdb_byte **cu_list,
2893 offset_type *cu_list_elements,
2894 const gdb_byte **types_list,
2895 offset_type *types_list_elements)
2896 {
2897 const gdb_byte *addr = &buffer[0];
2898
2899 /* Version check. */
2900 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
2901 /* Versions earlier than 3 emitted every copy of a psymbol. This
2902 causes the index to behave very poorly for certain requests. Version 3
2903 contained incomplete addrmap. So, it seems better to just ignore such
2904 indices. */
2905 if (version < 4)
2906 {
2907 static int warning_printed = 0;
2908 if (!warning_printed)
2909 {
2910 warning (_("Skipping obsolete .gdb_index section in %s."),
2911 filename);
2912 warning_printed = 1;
2913 }
2914 return 0;
2915 }
2916 /* Index version 4 uses a different hash function than index version
2917 5 and later.
2918
2919 Versions earlier than 6 did not emit psymbols for inlined
2920 functions. Using these files will cause GDB not to be able to
2921 set breakpoints on inlined functions by name, so we ignore these
2922 indices unless the user has done
2923 "set use-deprecated-index-sections on". */
2924 if (version < 6 && !deprecated_ok)
2925 {
2926 static int warning_printed = 0;
2927 if (!warning_printed)
2928 {
2929 warning (_("\
2930 Skipping deprecated .gdb_index section in %s.\n\
2931 Do \"set use-deprecated-index-sections on\" before the file is read\n\
2932 to use the section anyway."),
2933 filename);
2934 warning_printed = 1;
2935 }
2936 return 0;
2937 }
2938 /* Version 7 indices generated by gold refer to the CU for a symbol instead
2939 of the TU (for symbols coming from TUs),
2940 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
2941 Plus gold-generated indices can have duplicate entries for global symbols,
2942 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
2943 These are just performance bugs, and we can't distinguish gdb-generated
2944 indices from gold-generated ones, so issue no warning here. */
2945
2946 /* Indexes with higher version than the one supported by GDB may be no
2947 longer backward compatible. */
2948 if (version > 8)
2949 return 0;
2950
2951 map->version = version;
2952
2953 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
2954
2955 int i = 0;
2956 *cu_list = addr + MAYBE_SWAP (metadata[i]);
2957 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
2958 / 8);
2959 ++i;
2960
2961 *types_list = addr + MAYBE_SWAP (metadata[i]);
2962 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
2963 - MAYBE_SWAP (metadata[i]))
2964 / 8);
2965 ++i;
2966
2967 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
2968 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2969 map->address_table
2970 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
2971 ++i;
2972
2973 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
2974 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
2975 map->symbol_table
2976 = gdb::array_view<mapped_index::symbol_table_slot>
2977 ((mapped_index::symbol_table_slot *) symbol_table,
2978 (mapped_index::symbol_table_slot *) symbol_table_end);
2979
2980 ++i;
2981 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
2982
2983 return 1;
2984 }
2985
2986 /* Callback types for dwarf2_read_gdb_index. */
2987
2988 typedef gdb::function_view
2989 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
2990 get_gdb_index_contents_ftype;
2991 typedef gdb::function_view
2992 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
2993 get_gdb_index_contents_dwz_ftype;
2994
2995 /* Read .gdb_index. If everything went ok, initialize the "quick"
2996 elements of all the CUs and return 1. Otherwise, return 0. */
2997
2998 static int
2999 dwarf2_read_gdb_index
3000 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3001 get_gdb_index_contents_ftype get_gdb_index_contents,
3002 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3003 {
3004 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3005 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3006 struct dwz_file *dwz;
3007 struct objfile *objfile = dwarf2_per_objfile->objfile;
3008
3009 gdb::array_view<const gdb_byte> main_index_contents
3010 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3011
3012 if (main_index_contents.empty ())
3013 return 0;
3014
3015 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3016 if (!read_gdb_index_from_buffer (objfile_name (objfile),
3017 use_deprecated_index_sections,
3018 main_index_contents, map.get (), &cu_list,
3019 &cu_list_elements, &types_list,
3020 &types_list_elements))
3021 return 0;
3022
3023 /* Don't use the index if it's empty. */
3024 if (map->symbol_table.empty ())
3025 return 0;
3026
3027 /* If there is a .dwz file, read it so we can get its CU list as
3028 well. */
3029 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3030 if (dwz != NULL)
3031 {
3032 struct mapped_index dwz_map;
3033 const gdb_byte *dwz_types_ignore;
3034 offset_type dwz_types_elements_ignore;
3035
3036 gdb::array_view<const gdb_byte> dwz_index_content
3037 = get_gdb_index_contents_dwz (objfile, dwz);
3038
3039 if (dwz_index_content.empty ())
3040 return 0;
3041
3042 if (!read_gdb_index_from_buffer (bfd_get_filename (dwz->dwz_bfd.get ()),
3043 1, dwz_index_content, &dwz_map,
3044 &dwz_list, &dwz_list_elements,
3045 &dwz_types_ignore,
3046 &dwz_types_elements_ignore))
3047 {
3048 warning (_("could not read '.gdb_index' section from %s; skipping"),
3049 bfd_get_filename (dwz->dwz_bfd.get ()));
3050 return 0;
3051 }
3052 }
3053
3054 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3055 dwz_list, dwz_list_elements);
3056
3057 if (types_list_elements)
3058 {
3059 /* We can only handle a single .debug_types when we have an
3060 index. */
3061 if (dwarf2_per_objfile->types.size () != 1)
3062 return 0;
3063
3064 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3065
3066 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3067 types_list, types_list_elements);
3068 }
3069
3070 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3071
3072 dwarf2_per_objfile->index_table = std::move (map);
3073 dwarf2_per_objfile->using_index = 1;
3074 dwarf2_per_objfile->quick_file_names_table =
3075 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3076
3077 return 1;
3078 }
3079
3080 /* die_reader_func for dw2_get_file_names. */
3081
3082 static void
3083 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3084 const gdb_byte *info_ptr,
3085 struct die_info *comp_unit_die)
3086 {
3087 struct dwarf2_cu *cu = reader->cu;
3088 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3089 struct dwarf2_per_objfile *dwarf2_per_objfile
3090 = cu->per_cu->dwarf2_per_objfile;
3091 struct objfile *objfile = dwarf2_per_objfile->objfile;
3092 struct dwarf2_per_cu_data *lh_cu;
3093 struct attribute *attr;
3094 void **slot;
3095 struct quick_file_names *qfn;
3096
3097 gdb_assert (! this_cu->is_debug_types);
3098
3099 /* Our callers never want to match partial units -- instead they
3100 will match the enclosing full CU. */
3101 if (comp_unit_die->tag == DW_TAG_partial_unit)
3102 {
3103 this_cu->v.quick->no_file_data = 1;
3104 return;
3105 }
3106
3107 lh_cu = this_cu;
3108 slot = NULL;
3109
3110 line_header_up lh;
3111 sect_offset line_offset {};
3112
3113 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3114 if (attr != nullptr)
3115 {
3116 struct quick_file_names find_entry;
3117
3118 line_offset = (sect_offset) DW_UNSND (attr);
3119
3120 /* We may have already read in this line header (TU line header sharing).
3121 If we have we're done. */
3122 find_entry.hash.dwo_unit = cu->dwo_unit;
3123 find_entry.hash.line_sect_off = line_offset;
3124 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table.get (),
3125 &find_entry, INSERT);
3126 if (*slot != NULL)
3127 {
3128 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3129 return;
3130 }
3131
3132 lh = dwarf_decode_line_header (line_offset, cu);
3133 }
3134 if (lh == NULL)
3135 {
3136 lh_cu->v.quick->no_file_data = 1;
3137 return;
3138 }
3139
3140 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3141 qfn->hash.dwo_unit = cu->dwo_unit;
3142 qfn->hash.line_sect_off = line_offset;
3143 gdb_assert (slot != NULL);
3144 *slot = qfn;
3145
3146 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3147
3148 int offset = 0;
3149 if (strcmp (fnd.name, "<unknown>") != 0)
3150 ++offset;
3151
3152 qfn->num_file_names = offset + lh->file_names_size ();
3153 qfn->file_names =
3154 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3155 if (offset != 0)
3156 qfn->file_names[0] = xstrdup (fnd.name);
3157 for (int i = 0; i < lh->file_names_size (); ++i)
3158 qfn->file_names[i + offset] = lh->file_full_name (i + 1,
3159 fnd.comp_dir).release ();
3160 qfn->real_names = NULL;
3161
3162 lh_cu->v.quick->file_names = qfn;
3163 }
3164
3165 /* A helper for the "quick" functions which attempts to read the line
3166 table for THIS_CU. */
3167
3168 static struct quick_file_names *
3169 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3170 {
3171 /* This should never be called for TUs. */
3172 gdb_assert (! this_cu->is_debug_types);
3173 /* Nor type unit groups. */
3174 gdb_assert (! this_cu->type_unit_group_p ());
3175
3176 if (this_cu->v.quick->file_names != NULL)
3177 return this_cu->v.quick->file_names;
3178 /* If we know there is no line data, no point in looking again. */
3179 if (this_cu->v.quick->no_file_data)
3180 return NULL;
3181
3182 cutu_reader reader (this_cu);
3183 if (!reader.dummy_p)
3184 dw2_get_file_names_reader (&reader, reader.info_ptr, reader.comp_unit_die);
3185
3186 if (this_cu->v.quick->no_file_data)
3187 return NULL;
3188 return this_cu->v.quick->file_names;
3189 }
3190
3191 /* A helper for the "quick" functions which computes and caches the
3192 real path for a given file name from the line table. */
3193
3194 static const char *
3195 dw2_get_real_path (struct objfile *objfile,
3196 struct quick_file_names *qfn, int index)
3197 {
3198 if (qfn->real_names == NULL)
3199 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3200 qfn->num_file_names, const char *);
3201
3202 if (qfn->real_names[index] == NULL)
3203 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3204
3205 return qfn->real_names[index];
3206 }
3207
3208 static struct symtab *
3209 dw2_find_last_source_symtab (struct objfile *objfile)
3210 {
3211 struct dwarf2_per_objfile *dwarf2_per_objfile
3212 = get_dwarf2_per_objfile (objfile);
3213 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3214 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3215
3216 if (cust == NULL)
3217 return NULL;
3218
3219 return compunit_primary_filetab (cust);
3220 }
3221
3222 /* Traversal function for dw2_forget_cached_source_info. */
3223
3224 static int
3225 dw2_free_cached_file_names (void **slot, void *info)
3226 {
3227 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3228
3229 if (file_data->real_names)
3230 {
3231 int i;
3232
3233 for (i = 0; i < file_data->num_file_names; ++i)
3234 {
3235 xfree ((void*) file_data->real_names[i]);
3236 file_data->real_names[i] = NULL;
3237 }
3238 }
3239
3240 return 1;
3241 }
3242
3243 static void
3244 dw2_forget_cached_source_info (struct objfile *objfile)
3245 {
3246 struct dwarf2_per_objfile *dwarf2_per_objfile
3247 = get_dwarf2_per_objfile (objfile);
3248
3249 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table.get (),
3250 dw2_free_cached_file_names, NULL);
3251 }
3252
3253 /* Helper function for dw2_map_symtabs_matching_filename that expands
3254 the symtabs and calls the iterator. */
3255
3256 static int
3257 dw2_map_expand_apply (struct objfile *objfile,
3258 struct dwarf2_per_cu_data *per_cu,
3259 const char *name, const char *real_path,
3260 gdb::function_view<bool (symtab *)> callback)
3261 {
3262 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3263
3264 /* Don't visit already-expanded CUs. */
3265 if (per_cu->v.quick->compunit_symtab)
3266 return 0;
3267
3268 /* This may expand more than one symtab, and we want to iterate over
3269 all of them. */
3270 dw2_instantiate_symtab (per_cu, false);
3271
3272 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3273 last_made, callback);
3274 }
3275
3276 /* Implementation of the map_symtabs_matching_filename method. */
3277
3278 static bool
3279 dw2_map_symtabs_matching_filename
3280 (struct objfile *objfile, const char *name, const char *real_path,
3281 gdb::function_view<bool (symtab *)> callback)
3282 {
3283 const char *name_basename = lbasename (name);
3284 struct dwarf2_per_objfile *dwarf2_per_objfile
3285 = get_dwarf2_per_objfile (objfile);
3286
3287 /* The rule is CUs specify all the files, including those used by
3288 any TU, so there's no need to scan TUs here. */
3289
3290 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3291 {
3292 /* We only need to look at symtabs not already expanded. */
3293 if (per_cu->v.quick->compunit_symtab)
3294 continue;
3295
3296 quick_file_names *file_data = dw2_get_file_names (per_cu);
3297 if (file_data == NULL)
3298 continue;
3299
3300 for (int j = 0; j < file_data->num_file_names; ++j)
3301 {
3302 const char *this_name = file_data->file_names[j];
3303 const char *this_real_name;
3304
3305 if (compare_filenames_for_search (this_name, name))
3306 {
3307 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3308 callback))
3309 return true;
3310 continue;
3311 }
3312
3313 /* Before we invoke realpath, which can get expensive when many
3314 files are involved, do a quick comparison of the basenames. */
3315 if (! basenames_may_differ
3316 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3317 continue;
3318
3319 this_real_name = dw2_get_real_path (objfile, file_data, j);
3320 if (compare_filenames_for_search (this_real_name, name))
3321 {
3322 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3323 callback))
3324 return true;
3325 continue;
3326 }
3327
3328 if (real_path != NULL)
3329 {
3330 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3331 gdb_assert (IS_ABSOLUTE_PATH (name));
3332 if (this_real_name != NULL
3333 && FILENAME_CMP (real_path, this_real_name) == 0)
3334 {
3335 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3336 callback))
3337 return true;
3338 continue;
3339 }
3340 }
3341 }
3342 }
3343
3344 return false;
3345 }
3346
3347 /* Struct used to manage iterating over all CUs looking for a symbol. */
3348
3349 struct dw2_symtab_iterator
3350 {
3351 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3352 struct dwarf2_per_objfile *dwarf2_per_objfile;
3353 /* If set, only look for symbols that match that block. Valid values are
3354 GLOBAL_BLOCK and STATIC_BLOCK. */
3355 gdb::optional<block_enum> block_index;
3356 /* The kind of symbol we're looking for. */
3357 domain_enum domain;
3358 /* The list of CUs from the index entry of the symbol,
3359 or NULL if not found. */
3360 offset_type *vec;
3361 /* The next element in VEC to look at. */
3362 int next;
3363 /* The number of elements in VEC, or zero if there is no match. */
3364 int length;
3365 /* Have we seen a global version of the symbol?
3366 If so we can ignore all further global instances.
3367 This is to work around gold/15646, inefficient gold-generated
3368 indices. */
3369 int global_seen;
3370 };
3371
3372 /* Initialize the index symtab iterator ITER. */
3373
3374 static void
3375 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3376 struct dwarf2_per_objfile *dwarf2_per_objfile,
3377 gdb::optional<block_enum> block_index,
3378 domain_enum domain,
3379 const char *name)
3380 {
3381 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3382 iter->block_index = block_index;
3383 iter->domain = domain;
3384 iter->next = 0;
3385 iter->global_seen = 0;
3386
3387 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3388
3389 /* index is NULL if OBJF_READNOW. */
3390 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3391 iter->length = MAYBE_SWAP (*iter->vec);
3392 else
3393 {
3394 iter->vec = NULL;
3395 iter->length = 0;
3396 }
3397 }
3398
3399 /* Return the next matching CU or NULL if there are no more. */
3400
3401 static struct dwarf2_per_cu_data *
3402 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3403 {
3404 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3405
3406 for ( ; iter->next < iter->length; ++iter->next)
3407 {
3408 offset_type cu_index_and_attrs =
3409 MAYBE_SWAP (iter->vec[iter->next + 1]);
3410 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3411 gdb_index_symbol_kind symbol_kind =
3412 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3413 /* Only check the symbol attributes if they're present.
3414 Indices prior to version 7 don't record them,
3415 and indices >= 7 may elide them for certain symbols
3416 (gold does this). */
3417 int attrs_valid =
3418 (dwarf2_per_objfile->index_table->version >= 7
3419 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3420
3421 /* Don't crash on bad data. */
3422 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3423 + dwarf2_per_objfile->all_type_units.size ()))
3424 {
3425 complaint (_(".gdb_index entry has bad CU index"
3426 " [in module %s]"),
3427 objfile_name (dwarf2_per_objfile->objfile));
3428 continue;
3429 }
3430
3431 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
3432
3433 /* Skip if already read in. */
3434 if (per_cu->v.quick->compunit_symtab)
3435 continue;
3436
3437 /* Check static vs global. */
3438 if (attrs_valid)
3439 {
3440 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
3441
3442 if (iter->block_index.has_value ())
3443 {
3444 bool want_static = *iter->block_index == STATIC_BLOCK;
3445
3446 if (is_static != want_static)
3447 continue;
3448 }
3449
3450 /* Work around gold/15646. */
3451 if (!is_static && iter->global_seen)
3452 continue;
3453 if (!is_static)
3454 iter->global_seen = 1;
3455 }
3456
3457 /* Only check the symbol's kind if it has one. */
3458 if (attrs_valid)
3459 {
3460 switch (iter->domain)
3461 {
3462 case VAR_DOMAIN:
3463 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
3464 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
3465 /* Some types are also in VAR_DOMAIN. */
3466 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3467 continue;
3468 break;
3469 case STRUCT_DOMAIN:
3470 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
3471 continue;
3472 break;
3473 case LABEL_DOMAIN:
3474 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3475 continue;
3476 break;
3477 case MODULE_DOMAIN:
3478 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
3479 continue;
3480 break;
3481 default:
3482 break;
3483 }
3484 }
3485
3486 ++iter->next;
3487 return per_cu;
3488 }
3489
3490 return NULL;
3491 }
3492
3493 static struct compunit_symtab *
3494 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
3495 const char *name, domain_enum domain)
3496 {
3497 struct compunit_symtab *stab_best = NULL;
3498 struct dwarf2_per_objfile *dwarf2_per_objfile
3499 = get_dwarf2_per_objfile (objfile);
3500
3501 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
3502
3503 struct dw2_symtab_iterator iter;
3504 struct dwarf2_per_cu_data *per_cu;
3505
3506 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
3507
3508 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3509 {
3510 struct symbol *sym, *with_opaque = NULL;
3511 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
3512 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
3513 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
3514
3515 sym = block_find_symbol (block, name, domain,
3516 block_find_non_opaque_type_preferred,
3517 &with_opaque);
3518
3519 /* Some caution must be observed with overloaded functions
3520 and methods, since the index will not contain any overload
3521 information (but NAME might contain it). */
3522
3523 if (sym != NULL
3524 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
3525 return stab;
3526 if (with_opaque != NULL
3527 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
3528 stab_best = stab;
3529
3530 /* Keep looking through other CUs. */
3531 }
3532
3533 return stab_best;
3534 }
3535
3536 static void
3537 dw2_print_stats (struct objfile *objfile)
3538 {
3539 struct dwarf2_per_objfile *dwarf2_per_objfile
3540 = get_dwarf2_per_objfile (objfile);
3541 int total = (dwarf2_per_objfile->all_comp_units.size ()
3542 + dwarf2_per_objfile->all_type_units.size ());
3543 int count = 0;
3544
3545 for (int i = 0; i < total; ++i)
3546 {
3547 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3548
3549 if (!per_cu->v.quick->compunit_symtab)
3550 ++count;
3551 }
3552 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
3553 printf_filtered (_(" Number of unread CUs: %d\n"), count);
3554 }
3555
3556 /* This dumps minimal information about the index.
3557 It is called via "mt print objfiles".
3558 One use is to verify .gdb_index has been loaded by the
3559 gdb.dwarf2/gdb-index.exp testcase. */
3560
3561 static void
3562 dw2_dump (struct objfile *objfile)
3563 {
3564 struct dwarf2_per_objfile *dwarf2_per_objfile
3565 = get_dwarf2_per_objfile (objfile);
3566
3567 gdb_assert (dwarf2_per_objfile->using_index);
3568 printf_filtered (".gdb_index:");
3569 if (dwarf2_per_objfile->index_table != NULL)
3570 {
3571 printf_filtered (" version %d\n",
3572 dwarf2_per_objfile->index_table->version);
3573 }
3574 else
3575 printf_filtered (" faked for \"readnow\"\n");
3576 printf_filtered ("\n");
3577 }
3578
3579 static void
3580 dw2_expand_symtabs_for_function (struct objfile *objfile,
3581 const char *func_name)
3582 {
3583 struct dwarf2_per_objfile *dwarf2_per_objfile
3584 = get_dwarf2_per_objfile (objfile);
3585
3586 struct dw2_symtab_iterator iter;
3587 struct dwarf2_per_cu_data *per_cu;
3588
3589 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
3590
3591 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
3592 dw2_instantiate_symtab (per_cu, false);
3593
3594 }
3595
3596 static void
3597 dw2_expand_all_symtabs (struct objfile *objfile)
3598 {
3599 struct dwarf2_per_objfile *dwarf2_per_objfile
3600 = get_dwarf2_per_objfile (objfile);
3601 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
3602 + dwarf2_per_objfile->all_type_units.size ());
3603
3604 for (int i = 0; i < total_units; ++i)
3605 {
3606 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
3607
3608 /* We don't want to directly expand a partial CU, because if we
3609 read it with the wrong language, then assertion failures can
3610 be triggered later on. See PR symtab/23010. So, tell
3611 dw2_instantiate_symtab to skip partial CUs -- any important
3612 partial CU will be read via DW_TAG_imported_unit anyway. */
3613 dw2_instantiate_symtab (per_cu, true);
3614 }
3615 }
3616
3617 static void
3618 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
3619 const char *fullname)
3620 {
3621 struct dwarf2_per_objfile *dwarf2_per_objfile
3622 = get_dwarf2_per_objfile (objfile);
3623
3624 /* We don't need to consider type units here.
3625 This is only called for examining code, e.g. expand_line_sal.
3626 There can be an order of magnitude (or more) more type units
3627 than comp units, and we avoid them if we can. */
3628
3629 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3630 {
3631 /* We only need to look at symtabs not already expanded. */
3632 if (per_cu->v.quick->compunit_symtab)
3633 continue;
3634
3635 quick_file_names *file_data = dw2_get_file_names (per_cu);
3636 if (file_data == NULL)
3637 continue;
3638
3639 for (int j = 0; j < file_data->num_file_names; ++j)
3640 {
3641 const char *this_fullname = file_data->file_names[j];
3642
3643 if (filename_cmp (this_fullname, fullname) == 0)
3644 {
3645 dw2_instantiate_symtab (per_cu, false);
3646 break;
3647 }
3648 }
3649 }
3650 }
3651
3652 static void
3653 dw2_map_matching_symbols
3654 (struct objfile *objfile,
3655 const lookup_name_info &name, domain_enum domain,
3656 int global,
3657 gdb::function_view<symbol_found_callback_ftype> callback,
3658 symbol_compare_ftype *ordered_compare)
3659 {
3660 /* Used for Ada. */
3661 struct dwarf2_per_objfile *dwarf2_per_objfile
3662 = get_dwarf2_per_objfile (objfile);
3663
3664 if (dwarf2_per_objfile->index_table != nullptr)
3665 {
3666 /* Ada currently doesn't support .gdb_index (see PR24713). We can get
3667 here though if the current language is Ada for a non-Ada objfile
3668 using GNU index. As Ada does not look for non-Ada symbols this
3669 function should just return. */
3670 return;
3671 }
3672
3673 /* We have -readnow: no .gdb_index, but no partial symtabs either. So,
3674 inline psym_map_matching_symbols here, assuming all partial symtabs have
3675 been read in. */
3676 const int block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
3677
3678 for (compunit_symtab *cust : objfile->compunits ())
3679 {
3680 const struct block *block;
3681
3682 if (cust == NULL)
3683 continue;
3684 block = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
3685 if (!iterate_over_symbols_terminated (block, name,
3686 domain, callback))
3687 return;
3688 }
3689 }
3690
3691 /* Starting from a search name, return the string that finds the upper
3692 bound of all strings that start with SEARCH_NAME in a sorted name
3693 list. Returns the empty string to indicate that the upper bound is
3694 the end of the list. */
3695
3696 static std::string
3697 make_sort_after_prefix_name (const char *search_name)
3698 {
3699 /* When looking to complete "func", we find the upper bound of all
3700 symbols that start with "func" by looking for where we'd insert
3701 the closest string that would follow "func" in lexicographical
3702 order. Usually, that's "func"-with-last-character-incremented,
3703 i.e. "fund". Mind non-ASCII characters, though. Usually those
3704 will be UTF-8 multi-byte sequences, but we can't be certain.
3705 Especially mind the 0xff character, which is a valid character in
3706 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
3707 rule out compilers allowing it in identifiers. Note that
3708 conveniently, strcmp/strcasecmp are specified to compare
3709 characters interpreted as unsigned char. So what we do is treat
3710 the whole string as a base 256 number composed of a sequence of
3711 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
3712 to 0, and carries 1 to the following more-significant position.
3713 If the very first character in SEARCH_NAME ends up incremented
3714 and carries/overflows, then the upper bound is the end of the
3715 list. The string after the empty string is also the empty
3716 string.
3717
3718 Some examples of this operation:
3719
3720 SEARCH_NAME => "+1" RESULT
3721
3722 "abc" => "abd"
3723 "ab\xff" => "ac"
3724 "\xff" "a" "\xff" => "\xff" "b"
3725 "\xff" => ""
3726 "\xff\xff" => ""
3727 "" => ""
3728
3729 Then, with these symbols for example:
3730
3731 func
3732 func1
3733 fund
3734
3735 completing "func" looks for symbols between "func" and
3736 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
3737 which finds "func" and "func1", but not "fund".
3738
3739 And with:
3740
3741 funcÿ (Latin1 'ÿ' [0xff])
3742 funcÿ1
3743 fund
3744
3745 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
3746 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
3747
3748 And with:
3749
3750 ÿÿ (Latin1 'ÿ' [0xff])
3751 ÿÿ1
3752
3753 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
3754 the end of the list.
3755 */
3756 std::string after = search_name;
3757 while (!after.empty () && (unsigned char) after.back () == 0xff)
3758 after.pop_back ();
3759 if (!after.empty ())
3760 after.back () = (unsigned char) after.back () + 1;
3761 return after;
3762 }
3763
3764 /* See declaration. */
3765
3766 std::pair<std::vector<name_component>::const_iterator,
3767 std::vector<name_component>::const_iterator>
3768 mapped_index_base::find_name_components_bounds
3769 (const lookup_name_info &lookup_name_without_params, language lang) const
3770 {
3771 auto *name_cmp
3772 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3773
3774 const char *lang_name
3775 = lookup_name_without_params.language_lookup_name (lang);
3776
3777 /* Comparison function object for lower_bound that matches against a
3778 given symbol name. */
3779 auto lookup_compare_lower = [&] (const name_component &elem,
3780 const char *name)
3781 {
3782 const char *elem_qualified = this->symbol_name_at (elem.idx);
3783 const char *elem_name = elem_qualified + elem.name_offset;
3784 return name_cmp (elem_name, name) < 0;
3785 };
3786
3787 /* Comparison function object for upper_bound that matches against a
3788 given symbol name. */
3789 auto lookup_compare_upper = [&] (const char *name,
3790 const name_component &elem)
3791 {
3792 const char *elem_qualified = this->symbol_name_at (elem.idx);
3793 const char *elem_name = elem_qualified + elem.name_offset;
3794 return name_cmp (name, elem_name) < 0;
3795 };
3796
3797 auto begin = this->name_components.begin ();
3798 auto end = this->name_components.end ();
3799
3800 /* Find the lower bound. */
3801 auto lower = [&] ()
3802 {
3803 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
3804 return begin;
3805 else
3806 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
3807 } ();
3808
3809 /* Find the upper bound. */
3810 auto upper = [&] ()
3811 {
3812 if (lookup_name_without_params.completion_mode ())
3813 {
3814 /* In completion mode, we want UPPER to point past all
3815 symbols names that have the same prefix. I.e., with
3816 these symbols, and completing "func":
3817
3818 function << lower bound
3819 function1
3820 other_function << upper bound
3821
3822 We find the upper bound by looking for the insertion
3823 point of "func"-with-last-character-incremented,
3824 i.e. "fund". */
3825 std::string after = make_sort_after_prefix_name (lang_name);
3826 if (after.empty ())
3827 return end;
3828 return std::lower_bound (lower, end, after.c_str (),
3829 lookup_compare_lower);
3830 }
3831 else
3832 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
3833 } ();
3834
3835 return {lower, upper};
3836 }
3837
3838 /* See declaration. */
3839
3840 void
3841 mapped_index_base::build_name_components ()
3842 {
3843 if (!this->name_components.empty ())
3844 return;
3845
3846 this->name_components_casing = case_sensitivity;
3847 auto *name_cmp
3848 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
3849
3850 /* The code below only knows how to break apart components of C++
3851 symbol names (and other languages that use '::' as
3852 namespace/module separator) and Ada symbol names. */
3853 auto count = this->symbol_name_count ();
3854 for (offset_type idx = 0; idx < count; idx++)
3855 {
3856 if (this->symbol_name_slot_invalid (idx))
3857 continue;
3858
3859 const char *name = this->symbol_name_at (idx);
3860
3861 /* Add each name component to the name component table. */
3862 unsigned int previous_len = 0;
3863
3864 if (strstr (name, "::") != nullptr)
3865 {
3866 for (unsigned int current_len = cp_find_first_component (name);
3867 name[current_len] != '\0';
3868 current_len += cp_find_first_component (name + current_len))
3869 {
3870 gdb_assert (name[current_len] == ':');
3871 this->name_components.push_back ({previous_len, idx});
3872 /* Skip the '::'. */
3873 current_len += 2;
3874 previous_len = current_len;
3875 }
3876 }
3877 else
3878 {
3879 /* Handle the Ada encoded (aka mangled) form here. */
3880 for (const char *iter = strstr (name, "__");
3881 iter != nullptr;
3882 iter = strstr (iter, "__"))
3883 {
3884 this->name_components.push_back ({previous_len, idx});
3885 iter += 2;
3886 previous_len = iter - name;
3887 }
3888 }
3889
3890 this->name_components.push_back ({previous_len, idx});
3891 }
3892
3893 /* Sort name_components elements by name. */
3894 auto name_comp_compare = [&] (const name_component &left,
3895 const name_component &right)
3896 {
3897 const char *left_qualified = this->symbol_name_at (left.idx);
3898 const char *right_qualified = this->symbol_name_at (right.idx);
3899
3900 const char *left_name = left_qualified + left.name_offset;
3901 const char *right_name = right_qualified + right.name_offset;
3902
3903 return name_cmp (left_name, right_name) < 0;
3904 };
3905
3906 std::sort (this->name_components.begin (),
3907 this->name_components.end (),
3908 name_comp_compare);
3909 }
3910
3911 /* Helper for dw2_expand_symtabs_matching that works with a
3912 mapped_index_base instead of the containing objfile. This is split
3913 to a separate function in order to be able to unit test the
3914 name_components matching using a mock mapped_index_base. For each
3915 symbol name that matches, calls MATCH_CALLBACK, passing it the
3916 symbol's index in the mapped_index_base symbol table. */
3917
3918 static void
3919 dw2_expand_symtabs_matching_symbol
3920 (mapped_index_base &index,
3921 const lookup_name_info &lookup_name_in,
3922 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3923 enum search_domain kind,
3924 gdb::function_view<bool (offset_type)> match_callback)
3925 {
3926 lookup_name_info lookup_name_without_params
3927 = lookup_name_in.make_ignore_params ();
3928
3929 /* Build the symbol name component sorted vector, if we haven't
3930 yet. */
3931 index.build_name_components ();
3932
3933 /* The same symbol may appear more than once in the range though.
3934 E.g., if we're looking for symbols that complete "w", and we have
3935 a symbol named "w1::w2", we'll find the two name components for
3936 that same symbol in the range. To be sure we only call the
3937 callback once per symbol, we first collect the symbol name
3938 indexes that matched in a temporary vector and ignore
3939 duplicates. */
3940 std::vector<offset_type> matches;
3941
3942 struct name_and_matcher
3943 {
3944 symbol_name_matcher_ftype *matcher;
3945 const char *name;
3946
3947 bool operator== (const name_and_matcher &other) const
3948 {
3949 return matcher == other.matcher && strcmp (name, other.name) == 0;
3950 }
3951 };
3952
3953 /* A vector holding all the different symbol name matchers, for all
3954 languages. */
3955 std::vector<name_and_matcher> matchers;
3956
3957 for (int i = 0; i < nr_languages; i++)
3958 {
3959 enum language lang_e = (enum language) i;
3960
3961 const language_defn *lang = language_def (lang_e);
3962 symbol_name_matcher_ftype *name_matcher
3963 = get_symbol_name_matcher (lang, lookup_name_without_params);
3964
3965 name_and_matcher key {
3966 name_matcher,
3967 lookup_name_without_params.language_lookup_name (lang_e)
3968 };
3969
3970 /* Don't insert the same comparison routine more than once.
3971 Note that we do this linear walk. This is not a problem in
3972 practice because the number of supported languages is
3973 low. */
3974 if (std::find (matchers.begin (), matchers.end (), key)
3975 != matchers.end ())
3976 continue;
3977 matchers.push_back (std::move (key));
3978
3979 auto bounds
3980 = index.find_name_components_bounds (lookup_name_without_params,
3981 lang_e);
3982
3983 /* Now for each symbol name in range, check to see if we have a name
3984 match, and if so, call the MATCH_CALLBACK callback. */
3985
3986 for (; bounds.first != bounds.second; ++bounds.first)
3987 {
3988 const char *qualified = index.symbol_name_at (bounds.first->idx);
3989
3990 if (!name_matcher (qualified, lookup_name_without_params, NULL)
3991 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
3992 continue;
3993
3994 matches.push_back (bounds.first->idx);
3995 }
3996 }
3997
3998 std::sort (matches.begin (), matches.end ());
3999
4000 /* Finally call the callback, once per match. */
4001 ULONGEST prev = -1;
4002 for (offset_type idx : matches)
4003 {
4004 if (prev != idx)
4005 {
4006 if (!match_callback (idx))
4007 break;
4008 prev = idx;
4009 }
4010 }
4011
4012 /* Above we use a type wider than idx's for 'prev', since 0 and
4013 (offset_type)-1 are both possible values. */
4014 static_assert (sizeof (prev) > sizeof (offset_type), "");
4015 }
4016
4017 #if GDB_SELF_TEST
4018
4019 namespace selftests { namespace dw2_expand_symtabs_matching {
4020
4021 /* A mock .gdb_index/.debug_names-like name index table, enough to
4022 exercise dw2_expand_symtabs_matching_symbol, which works with the
4023 mapped_index_base interface. Builds an index from the symbol list
4024 passed as parameter to the constructor. */
4025 class mock_mapped_index : public mapped_index_base
4026 {
4027 public:
4028 mock_mapped_index (gdb::array_view<const char *> symbols)
4029 : m_symbol_table (symbols)
4030 {}
4031
4032 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4033
4034 /* Return the number of names in the symbol table. */
4035 size_t symbol_name_count () const override
4036 {
4037 return m_symbol_table.size ();
4038 }
4039
4040 /* Get the name of the symbol at IDX in the symbol table. */
4041 const char *symbol_name_at (offset_type idx) const override
4042 {
4043 return m_symbol_table[idx];
4044 }
4045
4046 private:
4047 gdb::array_view<const char *> m_symbol_table;
4048 };
4049
4050 /* Convenience function that converts a NULL pointer to a "<null>"
4051 string, to pass to print routines. */
4052
4053 static const char *
4054 string_or_null (const char *str)
4055 {
4056 return str != NULL ? str : "<null>";
4057 }
4058
4059 /* Check if a lookup_name_info built from
4060 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4061 index. EXPECTED_LIST is the list of expected matches, in expected
4062 matching order. If no match expected, then an empty list is
4063 specified. Returns true on success. On failure prints a warning
4064 indicating the file:line that failed, and returns false. */
4065
4066 static bool
4067 check_match (const char *file, int line,
4068 mock_mapped_index &mock_index,
4069 const char *name, symbol_name_match_type match_type,
4070 bool completion_mode,
4071 std::initializer_list<const char *> expected_list)
4072 {
4073 lookup_name_info lookup_name (name, match_type, completion_mode);
4074
4075 bool matched = true;
4076
4077 auto mismatch = [&] (const char *expected_str,
4078 const char *got)
4079 {
4080 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4081 "expected=\"%s\", got=\"%s\"\n"),
4082 file, line,
4083 (match_type == symbol_name_match_type::FULL
4084 ? "FULL" : "WILD"),
4085 name, string_or_null (expected_str), string_or_null (got));
4086 matched = false;
4087 };
4088
4089 auto expected_it = expected_list.begin ();
4090 auto expected_end = expected_list.end ();
4091
4092 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4093 NULL, ALL_DOMAIN,
4094 [&] (offset_type idx)
4095 {
4096 const char *matched_name = mock_index.symbol_name_at (idx);
4097 const char *expected_str
4098 = expected_it == expected_end ? NULL : *expected_it++;
4099
4100 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4101 mismatch (expected_str, matched_name);
4102 return true;
4103 });
4104
4105 const char *expected_str
4106 = expected_it == expected_end ? NULL : *expected_it++;
4107 if (expected_str != NULL)
4108 mismatch (expected_str, NULL);
4109
4110 return matched;
4111 }
4112
4113 /* The symbols added to the mock mapped_index for testing (in
4114 canonical form). */
4115 static const char *test_symbols[] = {
4116 "function",
4117 "std::bar",
4118 "std::zfunction",
4119 "std::zfunction2",
4120 "w1::w2",
4121 "ns::foo<char*>",
4122 "ns::foo<int>",
4123 "ns::foo<long>",
4124 "ns2::tmpl<int>::foo2",
4125 "(anonymous namespace)::A::B::C",
4126
4127 /* These are used to check that the increment-last-char in the
4128 matching algorithm for completion doesn't match "t1_fund" when
4129 completing "t1_func". */
4130 "t1_func",
4131 "t1_func1",
4132 "t1_fund",
4133 "t1_fund1",
4134
4135 /* A UTF-8 name with multi-byte sequences to make sure that
4136 cp-name-parser understands this as a single identifier ("função"
4137 is "function" in PT). */
4138 u8"u8função",
4139
4140 /* \377 (0xff) is Latin1 'ÿ'. */
4141 "yfunc\377",
4142
4143 /* \377 (0xff) is Latin1 'ÿ'. */
4144 "\377",
4145 "\377\377123",
4146
4147 /* A name with all sorts of complications. Starts with "z" to make
4148 it easier for the completion tests below. */
4149 #define Z_SYM_NAME \
4150 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4151 "::tuple<(anonymous namespace)::ui*, " \
4152 "std::default_delete<(anonymous namespace)::ui>, void>"
4153
4154 Z_SYM_NAME
4155 };
4156
4157 /* Returns true if the mapped_index_base::find_name_component_bounds
4158 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4159 in completion mode. */
4160
4161 static bool
4162 check_find_bounds_finds (mapped_index_base &index,
4163 const char *search_name,
4164 gdb::array_view<const char *> expected_syms)
4165 {
4166 lookup_name_info lookup_name (search_name,
4167 symbol_name_match_type::FULL, true);
4168
4169 auto bounds = index.find_name_components_bounds (lookup_name,
4170 language_cplus);
4171
4172 size_t distance = std::distance (bounds.first, bounds.second);
4173 if (distance != expected_syms.size ())
4174 return false;
4175
4176 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4177 {
4178 auto nc_elem = bounds.first + exp_elem;
4179 const char *qualified = index.symbol_name_at (nc_elem->idx);
4180 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4181 return false;
4182 }
4183
4184 return true;
4185 }
4186
4187 /* Test the lower-level mapped_index::find_name_component_bounds
4188 method. */
4189
4190 static void
4191 test_mapped_index_find_name_component_bounds ()
4192 {
4193 mock_mapped_index mock_index (test_symbols);
4194
4195 mock_index.build_name_components ();
4196
4197 /* Test the lower-level mapped_index::find_name_component_bounds
4198 method in completion mode. */
4199 {
4200 static const char *expected_syms[] = {
4201 "t1_func",
4202 "t1_func1",
4203 };
4204
4205 SELF_CHECK (check_find_bounds_finds (mock_index,
4206 "t1_func", expected_syms));
4207 }
4208
4209 /* Check that the increment-last-char in the name matching algorithm
4210 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4211 {
4212 static const char *expected_syms1[] = {
4213 "\377",
4214 "\377\377123",
4215 };
4216 SELF_CHECK (check_find_bounds_finds (mock_index,
4217 "\377", expected_syms1));
4218
4219 static const char *expected_syms2[] = {
4220 "\377\377123",
4221 };
4222 SELF_CHECK (check_find_bounds_finds (mock_index,
4223 "\377\377", expected_syms2));
4224 }
4225 }
4226
4227 /* Test dw2_expand_symtabs_matching_symbol. */
4228
4229 static void
4230 test_dw2_expand_symtabs_matching_symbol ()
4231 {
4232 mock_mapped_index mock_index (test_symbols);
4233
4234 /* We let all tests run until the end even if some fails, for debug
4235 convenience. */
4236 bool any_mismatch = false;
4237
4238 /* Create the expected symbols list (an initializer_list). Needed
4239 because lists have commas, and we need to pass them to CHECK,
4240 which is a macro. */
4241 #define EXPECT(...) { __VA_ARGS__ }
4242
4243 /* Wrapper for check_match that passes down the current
4244 __FILE__/__LINE__. */
4245 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4246 any_mismatch |= !check_match (__FILE__, __LINE__, \
4247 mock_index, \
4248 NAME, MATCH_TYPE, COMPLETION_MODE, \
4249 EXPECTED_LIST)
4250
4251 /* Identity checks. */
4252 for (const char *sym : test_symbols)
4253 {
4254 /* Should be able to match all existing symbols. */
4255 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4256 EXPECT (sym));
4257
4258 /* Should be able to match all existing symbols with
4259 parameters. */
4260 std::string with_params = std::string (sym) + "(int)";
4261 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4262 EXPECT (sym));
4263
4264 /* Should be able to match all existing symbols with
4265 parameters and qualifiers. */
4266 with_params = std::string (sym) + " ( int ) const";
4267 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4268 EXPECT (sym));
4269
4270 /* This should really find sym, but cp-name-parser.y doesn't
4271 know about lvalue/rvalue qualifiers yet. */
4272 with_params = std::string (sym) + " ( int ) &&";
4273 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4274 {});
4275 }
4276
4277 /* Check that the name matching algorithm for completion doesn't get
4278 confused with Latin1 'ÿ' / 0xff. */
4279 {
4280 static const char str[] = "\377";
4281 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4282 EXPECT ("\377", "\377\377123"));
4283 }
4284
4285 /* Check that the increment-last-char in the matching algorithm for
4286 completion doesn't match "t1_fund" when completing "t1_func". */
4287 {
4288 static const char str[] = "t1_func";
4289 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4290 EXPECT ("t1_func", "t1_func1"));
4291 }
4292
4293 /* Check that completion mode works at each prefix of the expected
4294 symbol name. */
4295 {
4296 static const char str[] = "function(int)";
4297 size_t len = strlen (str);
4298 std::string lookup;
4299
4300 for (size_t i = 1; i < len; i++)
4301 {
4302 lookup.assign (str, i);
4303 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4304 EXPECT ("function"));
4305 }
4306 }
4307
4308 /* While "w" is a prefix of both components, the match function
4309 should still only be called once. */
4310 {
4311 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4312 EXPECT ("w1::w2"));
4313 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4314 EXPECT ("w1::w2"));
4315 }
4316
4317 /* Same, with a "complicated" symbol. */
4318 {
4319 static const char str[] = Z_SYM_NAME;
4320 size_t len = strlen (str);
4321 std::string lookup;
4322
4323 for (size_t i = 1; i < len; i++)
4324 {
4325 lookup.assign (str, i);
4326 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4327 EXPECT (Z_SYM_NAME));
4328 }
4329 }
4330
4331 /* In FULL mode, an incomplete symbol doesn't match. */
4332 {
4333 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4334 {});
4335 }
4336
4337 /* A complete symbol with parameters matches any overload, since the
4338 index has no overload info. */
4339 {
4340 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4341 EXPECT ("std::zfunction", "std::zfunction2"));
4342 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4343 EXPECT ("std::zfunction", "std::zfunction2"));
4344 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4345 EXPECT ("std::zfunction", "std::zfunction2"));
4346 }
4347
4348 /* Check that whitespace is ignored appropriately. A symbol with a
4349 template argument list. */
4350 {
4351 static const char expected[] = "ns::foo<int>";
4352 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4353 EXPECT (expected));
4354 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4355 EXPECT (expected));
4356 }
4357
4358 /* Check that whitespace is ignored appropriately. A symbol with a
4359 template argument list that includes a pointer. */
4360 {
4361 static const char expected[] = "ns::foo<char*>";
4362 /* Try both completion and non-completion modes. */
4363 static const bool completion_mode[2] = {false, true};
4364 for (size_t i = 0; i < 2; i++)
4365 {
4366 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4367 completion_mode[i], EXPECT (expected));
4368 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4369 completion_mode[i], EXPECT (expected));
4370
4371 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4372 completion_mode[i], EXPECT (expected));
4373 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4374 completion_mode[i], EXPECT (expected));
4375 }
4376 }
4377
4378 {
4379 /* Check method qualifiers are ignored. */
4380 static const char expected[] = "ns::foo<char*>";
4381 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4382 symbol_name_match_type::FULL, true, EXPECT (expected));
4383 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4384 symbol_name_match_type::FULL, true, EXPECT (expected));
4385 CHECK_MATCH ("foo < char * > ( int ) const",
4386 symbol_name_match_type::WILD, true, EXPECT (expected));
4387 CHECK_MATCH ("foo < char * > ( int ) &&",
4388 symbol_name_match_type::WILD, true, EXPECT (expected));
4389 }
4390
4391 /* Test lookup names that don't match anything. */
4392 {
4393 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4394 {});
4395
4396 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4397 {});
4398 }
4399
4400 /* Some wild matching tests, exercising "(anonymous namespace)",
4401 which should not be confused with a parameter list. */
4402 {
4403 static const char *syms[] = {
4404 "A::B::C",
4405 "B::C",
4406 "C",
4407 "A :: B :: C ( int )",
4408 "B :: C ( int )",
4409 "C ( int )",
4410 };
4411
4412 for (const char *s : syms)
4413 {
4414 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4415 EXPECT ("(anonymous namespace)::A::B::C"));
4416 }
4417 }
4418
4419 {
4420 static const char expected[] = "ns2::tmpl<int>::foo2";
4421 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4422 EXPECT (expected));
4423 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4424 EXPECT (expected));
4425 }
4426
4427 SELF_CHECK (!any_mismatch);
4428
4429 #undef EXPECT
4430 #undef CHECK_MATCH
4431 }
4432
4433 static void
4434 run_test ()
4435 {
4436 test_mapped_index_find_name_component_bounds ();
4437 test_dw2_expand_symtabs_matching_symbol ();
4438 }
4439
4440 }} // namespace selftests::dw2_expand_symtabs_matching
4441
4442 #endif /* GDB_SELF_TEST */
4443
4444 /* If FILE_MATCHER is NULL or if PER_CU has
4445 dwarf2_per_cu_quick_data::MARK set (see
4446 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4447 EXPANSION_NOTIFY on it. */
4448
4449 static void
4450 dw2_expand_symtabs_matching_one
4451 (struct dwarf2_per_cu_data *per_cu,
4452 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4453 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4454 {
4455 if (file_matcher == NULL || per_cu->v.quick->mark)
4456 {
4457 bool symtab_was_null
4458 = (per_cu->v.quick->compunit_symtab == NULL);
4459
4460 dw2_instantiate_symtab (per_cu, false);
4461
4462 if (expansion_notify != NULL
4463 && symtab_was_null
4464 && per_cu->v.quick->compunit_symtab != NULL)
4465 expansion_notify (per_cu->v.quick->compunit_symtab);
4466 }
4467 }
4468
4469 /* Helper for dw2_expand_matching symtabs. Called on each symbol
4470 matched, to expand corresponding CUs that were marked. IDX is the
4471 index of the symbol name that matched. */
4472
4473 static void
4474 dw2_expand_marked_cus
4475 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
4476 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4477 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4478 search_domain kind)
4479 {
4480 offset_type *vec, vec_len, vec_idx;
4481 bool global_seen = false;
4482 mapped_index &index = *dwarf2_per_objfile->index_table;
4483
4484 vec = (offset_type *) (index.constant_pool
4485 + MAYBE_SWAP (index.symbol_table[idx].vec));
4486 vec_len = MAYBE_SWAP (vec[0]);
4487 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
4488 {
4489 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
4490 /* This value is only valid for index versions >= 7. */
4491 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4492 gdb_index_symbol_kind symbol_kind =
4493 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
4494 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
4495 /* Only check the symbol attributes if they're present.
4496 Indices prior to version 7 don't record them,
4497 and indices >= 7 may elide them for certain symbols
4498 (gold does this). */
4499 int attrs_valid =
4500 (index.version >= 7
4501 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
4502
4503 /* Work around gold/15646. */
4504 if (attrs_valid)
4505 {
4506 if (!is_static && global_seen)
4507 continue;
4508 if (!is_static)
4509 global_seen = true;
4510 }
4511
4512 /* Only check the symbol's kind if it has one. */
4513 if (attrs_valid)
4514 {
4515 switch (kind)
4516 {
4517 case VARIABLES_DOMAIN:
4518 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
4519 continue;
4520 break;
4521 case FUNCTIONS_DOMAIN:
4522 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
4523 continue;
4524 break;
4525 case TYPES_DOMAIN:
4526 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4527 continue;
4528 break;
4529 case MODULES_DOMAIN:
4530 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4531 continue;
4532 break;
4533 default:
4534 break;
4535 }
4536 }
4537
4538 /* Don't crash on bad data. */
4539 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
4540 + dwarf2_per_objfile->all_type_units.size ()))
4541 {
4542 complaint (_(".gdb_index entry has bad CU index"
4543 " [in module %s]"),
4544 objfile_name (dwarf2_per_objfile->objfile));
4545 continue;
4546 }
4547
4548 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4549 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4550 expansion_notify);
4551 }
4552 }
4553
4554 /* If FILE_MATCHER is non-NULL, set all the
4555 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
4556 that match FILE_MATCHER. */
4557
4558 static void
4559 dw_expand_symtabs_matching_file_matcher
4560 (struct dwarf2_per_objfile *dwarf2_per_objfile,
4561 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
4562 {
4563 if (file_matcher == NULL)
4564 return;
4565
4566 objfile *const objfile = dwarf2_per_objfile->objfile;
4567
4568 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
4569 htab_eq_pointer,
4570 NULL, xcalloc, xfree));
4571 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
4572 htab_eq_pointer,
4573 NULL, xcalloc, xfree));
4574
4575 /* The rule is CUs specify all the files, including those used by
4576 any TU, so there's no need to scan TUs here. */
4577
4578 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4579 {
4580 QUIT;
4581
4582 per_cu->v.quick->mark = 0;
4583
4584 /* We only need to look at symtabs not already expanded. */
4585 if (per_cu->v.quick->compunit_symtab)
4586 continue;
4587
4588 quick_file_names *file_data = dw2_get_file_names (per_cu);
4589 if (file_data == NULL)
4590 continue;
4591
4592 if (htab_find (visited_not_found.get (), file_data) != NULL)
4593 continue;
4594 else if (htab_find (visited_found.get (), file_data) != NULL)
4595 {
4596 per_cu->v.quick->mark = 1;
4597 continue;
4598 }
4599
4600 for (int j = 0; j < file_data->num_file_names; ++j)
4601 {
4602 const char *this_real_name;
4603
4604 if (file_matcher (file_data->file_names[j], false))
4605 {
4606 per_cu->v.quick->mark = 1;
4607 break;
4608 }
4609
4610 /* Before we invoke realpath, which can get expensive when many
4611 files are involved, do a quick comparison of the basenames. */
4612 if (!basenames_may_differ
4613 && !file_matcher (lbasename (file_data->file_names[j]),
4614 true))
4615 continue;
4616
4617 this_real_name = dw2_get_real_path (objfile, file_data, j);
4618 if (file_matcher (this_real_name, false))
4619 {
4620 per_cu->v.quick->mark = 1;
4621 break;
4622 }
4623 }
4624
4625 void **slot = htab_find_slot (per_cu->v.quick->mark
4626 ? visited_found.get ()
4627 : visited_not_found.get (),
4628 file_data, INSERT);
4629 *slot = file_data;
4630 }
4631 }
4632
4633 static void
4634 dw2_expand_symtabs_matching
4635 (struct objfile *objfile,
4636 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4637 const lookup_name_info *lookup_name,
4638 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4639 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
4640 enum search_domain kind)
4641 {
4642 struct dwarf2_per_objfile *dwarf2_per_objfile
4643 = get_dwarf2_per_objfile (objfile);
4644
4645 /* index_table is NULL if OBJF_READNOW. */
4646 if (!dwarf2_per_objfile->index_table)
4647 return;
4648
4649 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
4650
4651 if (symbol_matcher == NULL && lookup_name == NULL)
4652 {
4653 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4654 {
4655 QUIT;
4656
4657 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
4658 expansion_notify);
4659 }
4660 return;
4661 }
4662
4663 mapped_index &index = *dwarf2_per_objfile->index_table;
4664
4665 dw2_expand_symtabs_matching_symbol (index, *lookup_name,
4666 symbol_matcher,
4667 kind, [&] (offset_type idx)
4668 {
4669 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
4670 expansion_notify, kind);
4671 return true;
4672 });
4673 }
4674
4675 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
4676 symtab. */
4677
4678 static struct compunit_symtab *
4679 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
4680 CORE_ADDR pc)
4681 {
4682 int i;
4683
4684 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
4685 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
4686 return cust;
4687
4688 if (cust->includes == NULL)
4689 return NULL;
4690
4691 for (i = 0; cust->includes[i]; ++i)
4692 {
4693 struct compunit_symtab *s = cust->includes[i];
4694
4695 s = recursively_find_pc_sect_compunit_symtab (s, pc);
4696 if (s != NULL)
4697 return s;
4698 }
4699
4700 return NULL;
4701 }
4702
4703 static struct compunit_symtab *
4704 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
4705 struct bound_minimal_symbol msymbol,
4706 CORE_ADDR pc,
4707 struct obj_section *section,
4708 int warn_if_readin)
4709 {
4710 struct dwarf2_per_cu_data *data;
4711 struct compunit_symtab *result;
4712
4713 if (!objfile->partial_symtabs->psymtabs_addrmap)
4714 return NULL;
4715
4716 CORE_ADDR baseaddr = objfile->text_section_offset ();
4717 data = (struct dwarf2_per_cu_data *) addrmap_find
4718 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
4719 if (!data)
4720 return NULL;
4721
4722 if (warn_if_readin && data->v.quick->compunit_symtab)
4723 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
4724 paddress (objfile->arch (), pc));
4725
4726 result
4727 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
4728 false),
4729 pc);
4730 gdb_assert (result != NULL);
4731 return result;
4732 }
4733
4734 static void
4735 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
4736 void *data, int need_fullname)
4737 {
4738 struct dwarf2_per_objfile *dwarf2_per_objfile
4739 = get_dwarf2_per_objfile (objfile);
4740
4741 if (!dwarf2_per_objfile->filenames_cache)
4742 {
4743 dwarf2_per_objfile->filenames_cache.emplace ();
4744
4745 htab_up visited (htab_create_alloc (10,
4746 htab_hash_pointer, htab_eq_pointer,
4747 NULL, xcalloc, xfree));
4748
4749 /* The rule is CUs specify all the files, including those used
4750 by any TU, so there's no need to scan TUs here. We can
4751 ignore file names coming from already-expanded CUs. */
4752
4753 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4754 {
4755 if (per_cu->v.quick->compunit_symtab)
4756 {
4757 void **slot = htab_find_slot (visited.get (),
4758 per_cu->v.quick->file_names,
4759 INSERT);
4760
4761 *slot = per_cu->v.quick->file_names;
4762 }
4763 }
4764
4765 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4766 {
4767 /* We only need to look at symtabs not already expanded. */
4768 if (per_cu->v.quick->compunit_symtab)
4769 continue;
4770
4771 quick_file_names *file_data = dw2_get_file_names (per_cu);
4772 if (file_data == NULL)
4773 continue;
4774
4775 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
4776 if (*slot)
4777 {
4778 /* Already visited. */
4779 continue;
4780 }
4781 *slot = file_data;
4782
4783 for (int j = 0; j < file_data->num_file_names; ++j)
4784 {
4785 const char *filename = file_data->file_names[j];
4786 dwarf2_per_objfile->filenames_cache->seen (filename);
4787 }
4788 }
4789 }
4790
4791 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
4792 {
4793 gdb::unique_xmalloc_ptr<char> this_real_name;
4794
4795 if (need_fullname)
4796 this_real_name = gdb_realpath (filename);
4797 (*fun) (filename, this_real_name.get (), data);
4798 });
4799 }
4800
4801 static int
4802 dw2_has_symbols (struct objfile *objfile)
4803 {
4804 return 1;
4805 }
4806
4807 const struct quick_symbol_functions dwarf2_gdb_index_functions =
4808 {
4809 dw2_has_symbols,
4810 dw2_find_last_source_symtab,
4811 dw2_forget_cached_source_info,
4812 dw2_map_symtabs_matching_filename,
4813 dw2_lookup_symbol,
4814 NULL,
4815 dw2_print_stats,
4816 dw2_dump,
4817 dw2_expand_symtabs_for_function,
4818 dw2_expand_all_symtabs,
4819 dw2_expand_symtabs_with_fullname,
4820 dw2_map_matching_symbols,
4821 dw2_expand_symtabs_matching,
4822 dw2_find_pc_sect_compunit_symtab,
4823 NULL,
4824 dw2_map_symbol_filenames
4825 };
4826
4827 /* DWARF-5 debug_names reader. */
4828
4829 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
4830 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
4831
4832 /* A helper function that reads the .debug_names section in SECTION
4833 and fills in MAP. FILENAME is the name of the file containing the
4834 section; it is used for error reporting.
4835
4836 Returns true if all went well, false otherwise. */
4837
4838 static bool
4839 read_debug_names_from_section (struct objfile *objfile,
4840 const char *filename,
4841 struct dwarf2_section_info *section,
4842 mapped_debug_names &map)
4843 {
4844 if (section->empty ())
4845 return false;
4846
4847 /* Older elfutils strip versions could keep the section in the main
4848 executable while splitting it for the separate debug info file. */
4849 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
4850 return false;
4851
4852 section->read (objfile);
4853
4854 map.dwarf5_byte_order = gdbarch_byte_order (objfile->arch ());
4855
4856 const gdb_byte *addr = section->buffer;
4857
4858 bfd *const abfd = section->get_bfd_owner ();
4859
4860 unsigned int bytes_read;
4861 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
4862 addr += bytes_read;
4863
4864 map.dwarf5_is_dwarf64 = bytes_read != 4;
4865 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
4866 if (bytes_read + length != section->size)
4867 {
4868 /* There may be multiple per-CU indices. */
4869 warning (_("Section .debug_names in %s length %s does not match "
4870 "section length %s, ignoring .debug_names."),
4871 filename, plongest (bytes_read + length),
4872 pulongest (section->size));
4873 return false;
4874 }
4875
4876 /* The version number. */
4877 uint16_t version = read_2_bytes (abfd, addr);
4878 addr += 2;
4879 if (version != 5)
4880 {
4881 warning (_("Section .debug_names in %s has unsupported version %d, "
4882 "ignoring .debug_names."),
4883 filename, version);
4884 return false;
4885 }
4886
4887 /* Padding. */
4888 uint16_t padding = read_2_bytes (abfd, addr);
4889 addr += 2;
4890 if (padding != 0)
4891 {
4892 warning (_("Section .debug_names in %s has unsupported padding %d, "
4893 "ignoring .debug_names."),
4894 filename, padding);
4895 return false;
4896 }
4897
4898 /* comp_unit_count - The number of CUs in the CU list. */
4899 map.cu_count = read_4_bytes (abfd, addr);
4900 addr += 4;
4901
4902 /* local_type_unit_count - The number of TUs in the local TU
4903 list. */
4904 map.tu_count = read_4_bytes (abfd, addr);
4905 addr += 4;
4906
4907 /* foreign_type_unit_count - The number of TUs in the foreign TU
4908 list. */
4909 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
4910 addr += 4;
4911 if (foreign_tu_count != 0)
4912 {
4913 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
4914 "ignoring .debug_names."),
4915 filename, static_cast<unsigned long> (foreign_tu_count));
4916 return false;
4917 }
4918
4919 /* bucket_count - The number of hash buckets in the hash lookup
4920 table. */
4921 map.bucket_count = read_4_bytes (abfd, addr);
4922 addr += 4;
4923
4924 /* name_count - The number of unique names in the index. */
4925 map.name_count = read_4_bytes (abfd, addr);
4926 addr += 4;
4927
4928 /* abbrev_table_size - The size in bytes of the abbreviations
4929 table. */
4930 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
4931 addr += 4;
4932
4933 /* augmentation_string_size - The size in bytes of the augmentation
4934 string. This value is rounded up to a multiple of 4. */
4935 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
4936 addr += 4;
4937 map.augmentation_is_gdb = ((augmentation_string_size
4938 == sizeof (dwarf5_augmentation))
4939 && memcmp (addr, dwarf5_augmentation,
4940 sizeof (dwarf5_augmentation)) == 0);
4941 augmentation_string_size += (-augmentation_string_size) & 3;
4942 addr += augmentation_string_size;
4943
4944 /* List of CUs */
4945 map.cu_table_reordered = addr;
4946 addr += map.cu_count * map.offset_size;
4947
4948 /* List of Local TUs */
4949 map.tu_table_reordered = addr;
4950 addr += map.tu_count * map.offset_size;
4951
4952 /* Hash Lookup Table */
4953 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4954 addr += map.bucket_count * 4;
4955 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
4956 addr += map.name_count * 4;
4957
4958 /* Name Table */
4959 map.name_table_string_offs_reordered = addr;
4960 addr += map.name_count * map.offset_size;
4961 map.name_table_entry_offs_reordered = addr;
4962 addr += map.name_count * map.offset_size;
4963
4964 const gdb_byte *abbrev_table_start = addr;
4965 for (;;)
4966 {
4967 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
4968 addr += bytes_read;
4969 if (index_num == 0)
4970 break;
4971
4972 const auto insertpair
4973 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
4974 if (!insertpair.second)
4975 {
4976 warning (_("Section .debug_names in %s has duplicate index %s, "
4977 "ignoring .debug_names."),
4978 filename, pulongest (index_num));
4979 return false;
4980 }
4981 mapped_debug_names::index_val &indexval = insertpair.first->second;
4982 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
4983 addr += bytes_read;
4984
4985 for (;;)
4986 {
4987 mapped_debug_names::index_val::attr attr;
4988 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
4989 addr += bytes_read;
4990 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
4991 addr += bytes_read;
4992 if (attr.form == DW_FORM_implicit_const)
4993 {
4994 attr.implicit_const = read_signed_leb128 (abfd, addr,
4995 &bytes_read);
4996 addr += bytes_read;
4997 }
4998 if (attr.dw_idx == 0 && attr.form == 0)
4999 break;
5000 indexval.attr_vec.push_back (std::move (attr));
5001 }
5002 }
5003 if (addr != abbrev_table_start + abbrev_table_size)
5004 {
5005 warning (_("Section .debug_names in %s has abbreviation_table "
5006 "of size %s vs. written as %u, ignoring .debug_names."),
5007 filename, plongest (addr - abbrev_table_start),
5008 abbrev_table_size);
5009 return false;
5010 }
5011 map.entry_pool = addr;
5012
5013 return true;
5014 }
5015
5016 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5017 list. */
5018
5019 static void
5020 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5021 const mapped_debug_names &map,
5022 dwarf2_section_info &section,
5023 bool is_dwz)
5024 {
5025 if (!map.augmentation_is_gdb)
5026 {
5027 for (uint32_t i = 0; i < map.cu_count; ++i)
5028 {
5029 sect_offset sect_off
5030 = (sect_offset) (extract_unsigned_integer
5031 (map.cu_table_reordered + i * map.offset_size,
5032 map.offset_size,
5033 map.dwarf5_byte_order));
5034 /* We don't know the length of the CU, because the CU list in a
5035 .debug_names index can be incomplete, so we can't use the start of
5036 the next CU as end of this CU. We create the CUs here with length 0,
5037 and in cutu_reader::cutu_reader we'll fill in the actual length. */
5038 dwarf2_per_cu_data *per_cu
5039 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5040 sect_off, 0);
5041 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5042 }
5043 }
5044
5045 sect_offset sect_off_prev;
5046 for (uint32_t i = 0; i <= map.cu_count; ++i)
5047 {
5048 sect_offset sect_off_next;
5049 if (i < map.cu_count)
5050 {
5051 sect_off_next
5052 = (sect_offset) (extract_unsigned_integer
5053 (map.cu_table_reordered + i * map.offset_size,
5054 map.offset_size,
5055 map.dwarf5_byte_order));
5056 }
5057 else
5058 sect_off_next = (sect_offset) section.size;
5059 if (i >= 1)
5060 {
5061 const ULONGEST length = sect_off_next - sect_off_prev;
5062 dwarf2_per_cu_data *per_cu
5063 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5064 sect_off_prev, length);
5065 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5066 }
5067 sect_off_prev = sect_off_next;
5068 }
5069 }
5070
5071 /* Read the CU list from the mapped index, and use it to create all
5072 the CU objects for this dwarf2_per_objfile. */
5073
5074 static void
5075 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5076 const mapped_debug_names &map,
5077 const mapped_debug_names &dwz_map)
5078 {
5079 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5080 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5081
5082 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5083 dwarf2_per_objfile->info,
5084 false /* is_dwz */);
5085
5086 if (dwz_map.cu_count == 0)
5087 return;
5088
5089 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5090 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5091 true /* is_dwz */);
5092 }
5093
5094 /* Read .debug_names. If everything went ok, initialize the "quick"
5095 elements of all the CUs and return true. Otherwise, return false. */
5096
5097 static bool
5098 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5099 {
5100 std::unique_ptr<mapped_debug_names> map
5101 (new mapped_debug_names (dwarf2_per_objfile));
5102 mapped_debug_names dwz_map (dwarf2_per_objfile);
5103 struct objfile *objfile = dwarf2_per_objfile->objfile;
5104
5105 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5106 &dwarf2_per_objfile->debug_names,
5107 *map))
5108 return false;
5109
5110 /* Don't use the index if it's empty. */
5111 if (map->name_count == 0)
5112 return false;
5113
5114 /* If there is a .dwz file, read it so we can get its CU list as
5115 well. */
5116 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5117 if (dwz != NULL)
5118 {
5119 if (!read_debug_names_from_section (objfile,
5120 bfd_get_filename (dwz->dwz_bfd.get ()),
5121 &dwz->debug_names, dwz_map))
5122 {
5123 warning (_("could not read '.debug_names' section from %s; skipping"),
5124 bfd_get_filename (dwz->dwz_bfd.get ()));
5125 return false;
5126 }
5127 }
5128
5129 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5130
5131 if (map->tu_count != 0)
5132 {
5133 /* We can only handle a single .debug_types when we have an
5134 index. */
5135 if (dwarf2_per_objfile->types.size () != 1)
5136 return false;
5137
5138 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5139
5140 create_signatured_type_table_from_debug_names
5141 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5142 }
5143
5144 create_addrmap_from_aranges (dwarf2_per_objfile,
5145 &dwarf2_per_objfile->debug_aranges);
5146
5147 dwarf2_per_objfile->debug_names_table = std::move (map);
5148 dwarf2_per_objfile->using_index = 1;
5149 dwarf2_per_objfile->quick_file_names_table =
5150 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5151
5152 return true;
5153 }
5154
5155 /* Type used to manage iterating over all CUs looking for a symbol for
5156 .debug_names. */
5157
5158 class dw2_debug_names_iterator
5159 {
5160 public:
5161 dw2_debug_names_iterator (const mapped_debug_names &map,
5162 gdb::optional<block_enum> block_index,
5163 domain_enum domain,
5164 const char *name)
5165 : m_map (map), m_block_index (block_index), m_domain (domain),
5166 m_addr (find_vec_in_debug_names (map, name))
5167 {}
5168
5169 dw2_debug_names_iterator (const mapped_debug_names &map,
5170 search_domain search, uint32_t namei)
5171 : m_map (map),
5172 m_search (search),
5173 m_addr (find_vec_in_debug_names (map, namei))
5174 {}
5175
5176 dw2_debug_names_iterator (const mapped_debug_names &map,
5177 block_enum block_index, domain_enum domain,
5178 uint32_t namei)
5179 : m_map (map), m_block_index (block_index), m_domain (domain),
5180 m_addr (find_vec_in_debug_names (map, namei))
5181 {}
5182
5183 /* Return the next matching CU or NULL if there are no more. */
5184 dwarf2_per_cu_data *next ();
5185
5186 private:
5187 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5188 const char *name);
5189 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5190 uint32_t namei);
5191
5192 /* The internalized form of .debug_names. */
5193 const mapped_debug_names &m_map;
5194
5195 /* If set, only look for symbols that match that block. Valid values are
5196 GLOBAL_BLOCK and STATIC_BLOCK. */
5197 const gdb::optional<block_enum> m_block_index;
5198
5199 /* The kind of symbol we're looking for. */
5200 const domain_enum m_domain = UNDEF_DOMAIN;
5201 const search_domain m_search = ALL_DOMAIN;
5202
5203 /* The list of CUs from the index entry of the symbol, or NULL if
5204 not found. */
5205 const gdb_byte *m_addr;
5206 };
5207
5208 const char *
5209 mapped_debug_names::namei_to_name (uint32_t namei) const
5210 {
5211 const ULONGEST namei_string_offs
5212 = extract_unsigned_integer ((name_table_string_offs_reordered
5213 + namei * offset_size),
5214 offset_size,
5215 dwarf5_byte_order);
5216 return read_indirect_string_at_offset (dwarf2_per_objfile,
5217 namei_string_offs);
5218 }
5219
5220 /* Find a slot in .debug_names for the object named NAME. If NAME is
5221 found, return pointer to its pool data. If NAME cannot be found,
5222 return NULL. */
5223
5224 const gdb_byte *
5225 dw2_debug_names_iterator::find_vec_in_debug_names
5226 (const mapped_debug_names &map, const char *name)
5227 {
5228 int (*cmp) (const char *, const char *);
5229
5230 gdb::unique_xmalloc_ptr<char> without_params;
5231 if (current_language->la_language == language_cplus
5232 || current_language->la_language == language_fortran
5233 || current_language->la_language == language_d)
5234 {
5235 /* NAME is already canonical. Drop any qualifiers as
5236 .debug_names does not contain any. */
5237
5238 if (strchr (name, '(') != NULL)
5239 {
5240 without_params = cp_remove_params (name);
5241 if (without_params != NULL)
5242 name = without_params.get ();
5243 }
5244 }
5245
5246 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5247
5248 const uint32_t full_hash = dwarf5_djb_hash (name);
5249 uint32_t namei
5250 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5251 (map.bucket_table_reordered
5252 + (full_hash % map.bucket_count)), 4,
5253 map.dwarf5_byte_order);
5254 if (namei == 0)
5255 return NULL;
5256 --namei;
5257 if (namei >= map.name_count)
5258 {
5259 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5260 "[in module %s]"),
5261 namei, map.name_count,
5262 objfile_name (map.dwarf2_per_objfile->objfile));
5263 return NULL;
5264 }
5265
5266 for (;;)
5267 {
5268 const uint32_t namei_full_hash
5269 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5270 (map.hash_table_reordered + namei), 4,
5271 map.dwarf5_byte_order);
5272 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5273 return NULL;
5274
5275 if (full_hash == namei_full_hash)
5276 {
5277 const char *const namei_string = map.namei_to_name (namei);
5278
5279 #if 0 /* An expensive sanity check. */
5280 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5281 {
5282 complaint (_("Wrong .debug_names hash for string at index %u "
5283 "[in module %s]"),
5284 namei, objfile_name (dwarf2_per_objfile->objfile));
5285 return NULL;
5286 }
5287 #endif
5288
5289 if (cmp (namei_string, name) == 0)
5290 {
5291 const ULONGEST namei_entry_offs
5292 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5293 + namei * map.offset_size),
5294 map.offset_size, map.dwarf5_byte_order);
5295 return map.entry_pool + namei_entry_offs;
5296 }
5297 }
5298
5299 ++namei;
5300 if (namei >= map.name_count)
5301 return NULL;
5302 }
5303 }
5304
5305 const gdb_byte *
5306 dw2_debug_names_iterator::find_vec_in_debug_names
5307 (const mapped_debug_names &map, uint32_t namei)
5308 {
5309 if (namei >= map.name_count)
5310 {
5311 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5312 "[in module %s]"),
5313 namei, map.name_count,
5314 objfile_name (map.dwarf2_per_objfile->objfile));
5315 return NULL;
5316 }
5317
5318 const ULONGEST namei_entry_offs
5319 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5320 + namei * map.offset_size),
5321 map.offset_size, map.dwarf5_byte_order);
5322 return map.entry_pool + namei_entry_offs;
5323 }
5324
5325 /* See dw2_debug_names_iterator. */
5326
5327 dwarf2_per_cu_data *
5328 dw2_debug_names_iterator::next ()
5329 {
5330 if (m_addr == NULL)
5331 return NULL;
5332
5333 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5334 struct objfile *objfile = dwarf2_per_objfile->objfile;
5335 bfd *const abfd = objfile->obfd;
5336
5337 again:
5338
5339 unsigned int bytes_read;
5340 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5341 m_addr += bytes_read;
5342 if (abbrev == 0)
5343 return NULL;
5344
5345 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5346 if (indexval_it == m_map.abbrev_map.cend ())
5347 {
5348 complaint (_("Wrong .debug_names undefined abbrev code %s "
5349 "[in module %s]"),
5350 pulongest (abbrev), objfile_name (objfile));
5351 return NULL;
5352 }
5353 const mapped_debug_names::index_val &indexval = indexval_it->second;
5354 enum class symbol_linkage {
5355 unknown,
5356 static_,
5357 extern_,
5358 } symbol_linkage_ = symbol_linkage::unknown;
5359 dwarf2_per_cu_data *per_cu = NULL;
5360 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5361 {
5362 ULONGEST ull;
5363 switch (attr.form)
5364 {
5365 case DW_FORM_implicit_const:
5366 ull = attr.implicit_const;
5367 break;
5368 case DW_FORM_flag_present:
5369 ull = 1;
5370 break;
5371 case DW_FORM_udata:
5372 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5373 m_addr += bytes_read;
5374 break;
5375 case DW_FORM_ref4:
5376 ull = read_4_bytes (abfd, m_addr);
5377 m_addr += 4;
5378 break;
5379 case DW_FORM_ref8:
5380 ull = read_8_bytes (abfd, m_addr);
5381 m_addr += 8;
5382 break;
5383 case DW_FORM_ref_sig8:
5384 ull = read_8_bytes (abfd, m_addr);
5385 m_addr += 8;
5386 break;
5387 default:
5388 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5389 dwarf_form_name (attr.form),
5390 objfile_name (objfile));
5391 return NULL;
5392 }
5393 switch (attr.dw_idx)
5394 {
5395 case DW_IDX_compile_unit:
5396 /* Don't crash on bad data. */
5397 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5398 {
5399 complaint (_(".debug_names entry has bad CU index %s"
5400 " [in module %s]"),
5401 pulongest (ull),
5402 objfile_name (dwarf2_per_objfile->objfile));
5403 continue;
5404 }
5405 per_cu = dwarf2_per_objfile->get_cutu (ull);
5406 break;
5407 case DW_IDX_type_unit:
5408 /* Don't crash on bad data. */
5409 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5410 {
5411 complaint (_(".debug_names entry has bad TU index %s"
5412 " [in module %s]"),
5413 pulongest (ull),
5414 objfile_name (dwarf2_per_objfile->objfile));
5415 continue;
5416 }
5417 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5418 break;
5419 case DW_IDX_die_offset:
5420 /* In a per-CU index (as opposed to a per-module index), index
5421 entries without CU attribute implicitly refer to the single CU. */
5422 if (per_cu == NULL)
5423 per_cu = dwarf2_per_objfile->get_cu (0);
5424 break;
5425 case DW_IDX_GNU_internal:
5426 if (!m_map.augmentation_is_gdb)
5427 break;
5428 symbol_linkage_ = symbol_linkage::static_;
5429 break;
5430 case DW_IDX_GNU_external:
5431 if (!m_map.augmentation_is_gdb)
5432 break;
5433 symbol_linkage_ = symbol_linkage::extern_;
5434 break;
5435 }
5436 }
5437
5438 /* Skip if already read in. */
5439 if (per_cu->v.quick->compunit_symtab)
5440 goto again;
5441
5442 /* Check static vs global. */
5443 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5444 {
5445 const bool want_static = *m_block_index == STATIC_BLOCK;
5446 const bool symbol_is_static =
5447 symbol_linkage_ == symbol_linkage::static_;
5448 if (want_static != symbol_is_static)
5449 goto again;
5450 }
5451
5452 /* Match dw2_symtab_iter_next, symbol_kind
5453 and debug_names::psymbol_tag. */
5454 switch (m_domain)
5455 {
5456 case VAR_DOMAIN:
5457 switch (indexval.dwarf_tag)
5458 {
5459 case DW_TAG_variable:
5460 case DW_TAG_subprogram:
5461 /* Some types are also in VAR_DOMAIN. */
5462 case DW_TAG_typedef:
5463 case DW_TAG_structure_type:
5464 break;
5465 default:
5466 goto again;
5467 }
5468 break;
5469 case STRUCT_DOMAIN:
5470 switch (indexval.dwarf_tag)
5471 {
5472 case DW_TAG_typedef:
5473 case DW_TAG_structure_type:
5474 break;
5475 default:
5476 goto again;
5477 }
5478 break;
5479 case LABEL_DOMAIN:
5480 switch (indexval.dwarf_tag)
5481 {
5482 case 0:
5483 case DW_TAG_variable:
5484 break;
5485 default:
5486 goto again;
5487 }
5488 break;
5489 case MODULE_DOMAIN:
5490 switch (indexval.dwarf_tag)
5491 {
5492 case DW_TAG_module:
5493 break;
5494 default:
5495 goto again;
5496 }
5497 break;
5498 default:
5499 break;
5500 }
5501
5502 /* Match dw2_expand_symtabs_matching, symbol_kind and
5503 debug_names::psymbol_tag. */
5504 switch (m_search)
5505 {
5506 case VARIABLES_DOMAIN:
5507 switch (indexval.dwarf_tag)
5508 {
5509 case DW_TAG_variable:
5510 break;
5511 default:
5512 goto again;
5513 }
5514 break;
5515 case FUNCTIONS_DOMAIN:
5516 switch (indexval.dwarf_tag)
5517 {
5518 case DW_TAG_subprogram:
5519 break;
5520 default:
5521 goto again;
5522 }
5523 break;
5524 case TYPES_DOMAIN:
5525 switch (indexval.dwarf_tag)
5526 {
5527 case DW_TAG_typedef:
5528 case DW_TAG_structure_type:
5529 break;
5530 default:
5531 goto again;
5532 }
5533 break;
5534 case MODULES_DOMAIN:
5535 switch (indexval.dwarf_tag)
5536 {
5537 case DW_TAG_module:
5538 break;
5539 default:
5540 goto again;
5541 }
5542 default:
5543 break;
5544 }
5545
5546 return per_cu;
5547 }
5548
5549 static struct compunit_symtab *
5550 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
5551 const char *name, domain_enum domain)
5552 {
5553 struct dwarf2_per_objfile *dwarf2_per_objfile
5554 = get_dwarf2_per_objfile (objfile);
5555
5556 const auto &mapp = dwarf2_per_objfile->debug_names_table;
5557 if (!mapp)
5558 {
5559 /* index is NULL if OBJF_READNOW. */
5560 return NULL;
5561 }
5562 const auto &map = *mapp;
5563
5564 dw2_debug_names_iterator iter (map, block_index, domain, name);
5565
5566 struct compunit_symtab *stab_best = NULL;
5567 struct dwarf2_per_cu_data *per_cu;
5568 while ((per_cu = iter.next ()) != NULL)
5569 {
5570 struct symbol *sym, *with_opaque = NULL;
5571 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
5572 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
5573 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
5574
5575 sym = block_find_symbol (block, name, domain,
5576 block_find_non_opaque_type_preferred,
5577 &with_opaque);
5578
5579 /* Some caution must be observed with overloaded functions and
5580 methods, since the index will not contain any overload
5581 information (but NAME might contain it). */
5582
5583 if (sym != NULL
5584 && strcmp_iw (sym->search_name (), name) == 0)
5585 return stab;
5586 if (with_opaque != NULL
5587 && strcmp_iw (with_opaque->search_name (), name) == 0)
5588 stab_best = stab;
5589
5590 /* Keep looking through other CUs. */
5591 }
5592
5593 return stab_best;
5594 }
5595
5596 /* This dumps minimal information about .debug_names. It is called
5597 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
5598 uses this to verify that .debug_names has been loaded. */
5599
5600 static void
5601 dw2_debug_names_dump (struct objfile *objfile)
5602 {
5603 struct dwarf2_per_objfile *dwarf2_per_objfile
5604 = get_dwarf2_per_objfile (objfile);
5605
5606 gdb_assert (dwarf2_per_objfile->using_index);
5607 printf_filtered (".debug_names:");
5608 if (dwarf2_per_objfile->debug_names_table)
5609 printf_filtered (" exists\n");
5610 else
5611 printf_filtered (" faked for \"readnow\"\n");
5612 printf_filtered ("\n");
5613 }
5614
5615 static void
5616 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
5617 const char *func_name)
5618 {
5619 struct dwarf2_per_objfile *dwarf2_per_objfile
5620 = get_dwarf2_per_objfile (objfile);
5621
5622 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
5623 if (dwarf2_per_objfile->debug_names_table)
5624 {
5625 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5626
5627 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
5628
5629 struct dwarf2_per_cu_data *per_cu;
5630 while ((per_cu = iter.next ()) != NULL)
5631 dw2_instantiate_symtab (per_cu, false);
5632 }
5633 }
5634
5635 static void
5636 dw2_debug_names_map_matching_symbols
5637 (struct objfile *objfile,
5638 const lookup_name_info &name, domain_enum domain,
5639 int global,
5640 gdb::function_view<symbol_found_callback_ftype> callback,
5641 symbol_compare_ftype *ordered_compare)
5642 {
5643 struct dwarf2_per_objfile *dwarf2_per_objfile
5644 = get_dwarf2_per_objfile (objfile);
5645
5646 /* debug_names_table is NULL if OBJF_READNOW. */
5647 if (!dwarf2_per_objfile->debug_names_table)
5648 return;
5649
5650 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5651 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
5652
5653 const char *match_name = name.ada ().lookup_name ().c_str ();
5654 auto matcher = [&] (const char *symname)
5655 {
5656 if (ordered_compare == nullptr)
5657 return true;
5658 return ordered_compare (symname, match_name) == 0;
5659 };
5660
5661 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
5662 [&] (offset_type namei)
5663 {
5664 /* The name was matched, now expand corresponding CUs that were
5665 marked. */
5666 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
5667
5668 struct dwarf2_per_cu_data *per_cu;
5669 while ((per_cu = iter.next ()) != NULL)
5670 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
5671 return true;
5672 });
5673
5674 /* It's a shame we couldn't do this inside the
5675 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
5676 that have already been expanded. Instead, this loop matches what
5677 the psymtab code does. */
5678 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5679 {
5680 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
5681 if (cust != nullptr)
5682 {
5683 const struct block *block
5684 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
5685 if (!iterate_over_symbols_terminated (block, name,
5686 domain, callback))
5687 break;
5688 }
5689 }
5690 }
5691
5692 static void
5693 dw2_debug_names_expand_symtabs_matching
5694 (struct objfile *objfile,
5695 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5696 const lookup_name_info *lookup_name,
5697 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5698 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5699 enum search_domain kind)
5700 {
5701 struct dwarf2_per_objfile *dwarf2_per_objfile
5702 = get_dwarf2_per_objfile (objfile);
5703
5704 /* debug_names_table is NULL if OBJF_READNOW. */
5705 if (!dwarf2_per_objfile->debug_names_table)
5706 return;
5707
5708 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5709
5710 if (symbol_matcher == NULL && lookup_name == NULL)
5711 {
5712 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5713 {
5714 QUIT;
5715
5716 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5717 expansion_notify);
5718 }
5719 return;
5720 }
5721
5722 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
5723
5724 dw2_expand_symtabs_matching_symbol (map, *lookup_name,
5725 symbol_matcher,
5726 kind, [&] (offset_type namei)
5727 {
5728 /* The name was matched, now expand corresponding CUs that were
5729 marked. */
5730 dw2_debug_names_iterator iter (map, kind, namei);
5731
5732 struct dwarf2_per_cu_data *per_cu;
5733 while ((per_cu = iter.next ()) != NULL)
5734 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5735 expansion_notify);
5736 return true;
5737 });
5738 }
5739
5740 const struct quick_symbol_functions dwarf2_debug_names_functions =
5741 {
5742 dw2_has_symbols,
5743 dw2_find_last_source_symtab,
5744 dw2_forget_cached_source_info,
5745 dw2_map_symtabs_matching_filename,
5746 dw2_debug_names_lookup_symbol,
5747 NULL,
5748 dw2_print_stats,
5749 dw2_debug_names_dump,
5750 dw2_debug_names_expand_symtabs_for_function,
5751 dw2_expand_all_symtabs,
5752 dw2_expand_symtabs_with_fullname,
5753 dw2_debug_names_map_matching_symbols,
5754 dw2_debug_names_expand_symtabs_matching,
5755 dw2_find_pc_sect_compunit_symtab,
5756 NULL,
5757 dw2_map_symbol_filenames
5758 };
5759
5760 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
5761 to either a dwarf2_per_objfile or dwz_file object. */
5762
5763 template <typename T>
5764 static gdb::array_view<const gdb_byte>
5765 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
5766 {
5767 dwarf2_section_info *section = &section_owner->gdb_index;
5768
5769 if (section->empty ())
5770 return {};
5771
5772 /* Older elfutils strip versions could keep the section in the main
5773 executable while splitting it for the separate debug info file. */
5774 if ((section->get_flags () & SEC_HAS_CONTENTS) == 0)
5775 return {};
5776
5777 section->read (obj);
5778
5779 /* dwarf2_section_info::size is a bfd_size_type, while
5780 gdb::array_view works with size_t. On 32-bit hosts, with
5781 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
5782 is 32-bit. So we need an explicit narrowing conversion here.
5783 This is fine, because it's impossible to allocate or mmap an
5784 array/buffer larger than what size_t can represent. */
5785 return gdb::make_array_view (section->buffer, section->size);
5786 }
5787
5788 /* Lookup the index cache for the contents of the index associated to
5789 DWARF2_OBJ. */
5790
5791 static gdb::array_view<const gdb_byte>
5792 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
5793 {
5794 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
5795 if (build_id == nullptr)
5796 return {};
5797
5798 return global_index_cache.lookup_gdb_index (build_id,
5799 &dwarf2_obj->index_cache_res);
5800 }
5801
5802 /* Same as the above, but for DWZ. */
5803
5804 static gdb::array_view<const gdb_byte>
5805 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
5806 {
5807 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
5808 if (build_id == nullptr)
5809 return {};
5810
5811 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
5812 }
5813
5814 /* See symfile.h. */
5815
5816 bool
5817 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
5818 {
5819 struct dwarf2_per_objfile *dwarf2_per_objfile
5820 = get_dwarf2_per_objfile (objfile);
5821
5822 /* If we're about to read full symbols, don't bother with the
5823 indices. In this case we also don't care if some other debug
5824 format is making psymtabs, because they are all about to be
5825 expanded anyway. */
5826 if ((objfile->flags & OBJF_READNOW))
5827 {
5828 dwarf2_per_objfile->using_index = 1;
5829 create_all_comp_units (dwarf2_per_objfile);
5830 create_all_type_units (dwarf2_per_objfile);
5831 dwarf2_per_objfile->quick_file_names_table
5832 = create_quick_file_names_table
5833 (dwarf2_per_objfile->all_comp_units.size ());
5834
5835 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
5836 + dwarf2_per_objfile->all_type_units.size ()); ++i)
5837 {
5838 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
5839
5840 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
5841 struct dwarf2_per_cu_quick_data);
5842 }
5843
5844 /* Return 1 so that gdb sees the "quick" functions. However,
5845 these functions will be no-ops because we will have expanded
5846 all symtabs. */
5847 *index_kind = dw_index_kind::GDB_INDEX;
5848 return true;
5849 }
5850
5851 if (dwarf2_read_debug_names (dwarf2_per_objfile))
5852 {
5853 *index_kind = dw_index_kind::DEBUG_NAMES;
5854 return true;
5855 }
5856
5857 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5858 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
5859 get_gdb_index_contents_from_section<dwz_file>))
5860 {
5861 *index_kind = dw_index_kind::GDB_INDEX;
5862 return true;
5863 }
5864
5865 /* ... otherwise, try to find the index in the index cache. */
5866 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
5867 get_gdb_index_contents_from_cache,
5868 get_gdb_index_contents_from_cache_dwz))
5869 {
5870 global_index_cache.hit ();
5871 *index_kind = dw_index_kind::GDB_INDEX;
5872 return true;
5873 }
5874
5875 global_index_cache.miss ();
5876 return false;
5877 }
5878
5879 \f
5880
5881 /* Build a partial symbol table. */
5882
5883 void
5884 dwarf2_build_psymtabs (struct objfile *objfile)
5885 {
5886 struct dwarf2_per_objfile *dwarf2_per_objfile
5887 = get_dwarf2_per_objfile (objfile);
5888
5889 init_psymbol_list (objfile, 1024);
5890
5891 try
5892 {
5893 /* This isn't really ideal: all the data we allocate on the
5894 objfile's obstack is still uselessly kept around. However,
5895 freeing it seems unsafe. */
5896 psymtab_discarder psymtabs (objfile);
5897 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
5898 psymtabs.keep ();
5899
5900 /* (maybe) store an index in the cache. */
5901 global_index_cache.store (dwarf2_per_objfile);
5902 }
5903 catch (const gdb_exception_error &except)
5904 {
5905 exception_print (gdb_stderr, except);
5906 }
5907 }
5908
5909 /* Find the base address of the compilation unit for range lists and
5910 location lists. It will normally be specified by DW_AT_low_pc.
5911 In DWARF-3 draft 4, the base address could be overridden by
5912 DW_AT_entry_pc. It's been removed, but GCC still uses this for
5913 compilation units with discontinuous ranges. */
5914
5915 static void
5916 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
5917 {
5918 struct attribute *attr;
5919
5920 cu->base_address.reset ();
5921
5922 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
5923 if (attr != nullptr)
5924 cu->base_address = attr->value_as_address ();
5925 else
5926 {
5927 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
5928 if (attr != nullptr)
5929 cu->base_address = attr->value_as_address ();
5930 }
5931 }
5932
5933 /* Helper function that returns the proper abbrev section for
5934 THIS_CU. */
5935
5936 static struct dwarf2_section_info *
5937 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
5938 {
5939 struct dwarf2_section_info *abbrev;
5940 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
5941
5942 if (this_cu->is_dwz)
5943 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
5944 else
5945 abbrev = &dwarf2_per_objfile->abbrev;
5946
5947 return abbrev;
5948 }
5949
5950 /* Fetch the abbreviation table offset from a comp or type unit header. */
5951
5952 static sect_offset
5953 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
5954 struct dwarf2_section_info *section,
5955 sect_offset sect_off)
5956 {
5957 bfd *abfd = section->get_bfd_owner ();
5958 const gdb_byte *info_ptr;
5959 unsigned int initial_length_size, offset_size;
5960 uint16_t version;
5961
5962 section->read (dwarf2_per_objfile->objfile);
5963 info_ptr = section->buffer + to_underlying (sect_off);
5964 read_initial_length (abfd, info_ptr, &initial_length_size);
5965 offset_size = initial_length_size == 4 ? 4 : 8;
5966 info_ptr += initial_length_size;
5967
5968 version = read_2_bytes (abfd, info_ptr);
5969 info_ptr += 2;
5970 if (version >= 5)
5971 {
5972 /* Skip unit type and address size. */
5973 info_ptr += 2;
5974 }
5975
5976 return (sect_offset) read_offset (abfd, info_ptr, offset_size);
5977 }
5978
5979 /* A partial symtab that is used only for include files. */
5980 struct dwarf2_include_psymtab : public partial_symtab
5981 {
5982 dwarf2_include_psymtab (const char *filename, struct objfile *objfile)
5983 : partial_symtab (filename, objfile)
5984 {
5985 }
5986
5987 void read_symtab (struct objfile *objfile) override
5988 {
5989 /* It's an include file, no symbols to read for it.
5990 Everything is in the includer symtab. */
5991
5992 /* The expansion of a dwarf2_include_psymtab is just a trigger for
5993 expansion of the includer psymtab. We use the dependencies[0] field to
5994 model the includer. But if we go the regular route of calling
5995 expand_psymtab here, and having expand_psymtab call expand_dependencies
5996 to expand the includer, we'll only use expand_psymtab on the includer
5997 (making it a non-toplevel psymtab), while if we expand the includer via
5998 another path, we'll use read_symtab (making it a toplevel psymtab).
5999 So, don't pretend a dwarf2_include_psymtab is an actual toplevel
6000 psymtab, and trigger read_symtab on the includer here directly. */
6001 includer ()->read_symtab (objfile);
6002 }
6003
6004 void expand_psymtab (struct objfile *objfile) override
6005 {
6006 /* This is not called by read_symtab, and should not be called by any
6007 expand_dependencies. */
6008 gdb_assert (false);
6009 }
6010
6011 bool readin_p () const override
6012 {
6013 return includer ()->readin_p ();
6014 }
6015
6016 struct compunit_symtab *get_compunit_symtab () const override
6017 {
6018 return nullptr;
6019 }
6020
6021 private:
6022 partial_symtab *includer () const
6023 {
6024 /* An include psymtab has exactly one dependency: the psymtab that
6025 includes it. */
6026 gdb_assert (this->number_of_dependencies == 1);
6027 return this->dependencies[0];
6028 }
6029 };
6030
6031 /* Allocate a new partial symtab for file named NAME and mark this new
6032 partial symtab as being an include of PST. */
6033
6034 static void
6035 dwarf2_create_include_psymtab (const char *name, dwarf2_psymtab *pst,
6036 struct objfile *objfile)
6037 {
6038 dwarf2_include_psymtab *subpst = new dwarf2_include_psymtab (name, objfile);
6039
6040 if (!IS_ABSOLUTE_PATH (subpst->filename))
6041 {
6042 /* It shares objfile->objfile_obstack. */
6043 subpst->dirname = pst->dirname;
6044 }
6045
6046 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6047 subpst->dependencies[0] = pst;
6048 subpst->number_of_dependencies = 1;
6049 }
6050
6051 /* Read the Line Number Program data and extract the list of files
6052 included by the source file represented by PST. Build an include
6053 partial symtab for each of these included files. */
6054
6055 static void
6056 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6057 struct die_info *die,
6058 dwarf2_psymtab *pst)
6059 {
6060 line_header_up lh;
6061 struct attribute *attr;
6062
6063 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6064 if (attr != nullptr)
6065 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6066 if (lh == NULL)
6067 return; /* No linetable, so no includes. */
6068
6069 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6070 that we pass in the raw text_low here; that is ok because we're
6071 only decoding the line table to make include partial symtabs, and
6072 so the addresses aren't really used. */
6073 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6074 pst->raw_text_low (), 1);
6075 }
6076
6077 static hashval_t
6078 hash_signatured_type (const void *item)
6079 {
6080 const struct signatured_type *sig_type
6081 = (const struct signatured_type *) item;
6082
6083 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6084 return sig_type->signature;
6085 }
6086
6087 static int
6088 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6089 {
6090 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6091 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6092
6093 return lhs->signature == rhs->signature;
6094 }
6095
6096 /* Allocate a hash table for signatured types. */
6097
6098 static htab_up
6099 allocate_signatured_type_table ()
6100 {
6101 return htab_up (htab_create_alloc (41,
6102 hash_signatured_type,
6103 eq_signatured_type,
6104 NULL, xcalloc, xfree));
6105 }
6106
6107 /* A helper function to add a signatured type CU to a table. */
6108
6109 static int
6110 add_signatured_type_cu_to_table (void **slot, void *datum)
6111 {
6112 struct signatured_type *sigt = (struct signatured_type *) *slot;
6113 std::vector<signatured_type *> *all_type_units
6114 = (std::vector<signatured_type *> *) datum;
6115
6116 all_type_units->push_back (sigt);
6117
6118 return 1;
6119 }
6120
6121 /* A helper for create_debug_types_hash_table. Read types from SECTION
6122 and fill them into TYPES_HTAB. It will process only type units,
6123 therefore DW_UT_type. */
6124
6125 static void
6126 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6127 struct dwo_file *dwo_file,
6128 dwarf2_section_info *section, htab_up &types_htab,
6129 rcuh_kind section_kind)
6130 {
6131 struct objfile *objfile = dwarf2_per_objfile->objfile;
6132 struct dwarf2_section_info *abbrev_section;
6133 bfd *abfd;
6134 const gdb_byte *info_ptr, *end_ptr;
6135
6136 abbrev_section = (dwo_file != NULL
6137 ? &dwo_file->sections.abbrev
6138 : &dwarf2_per_objfile->abbrev);
6139
6140 if (dwarf_read_debug)
6141 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6142 section->get_name (),
6143 abbrev_section->get_file_name ());
6144
6145 section->read (objfile);
6146 info_ptr = section->buffer;
6147
6148 if (info_ptr == NULL)
6149 return;
6150
6151 /* We can't set abfd until now because the section may be empty or
6152 not present, in which case the bfd is unknown. */
6153 abfd = section->get_bfd_owner ();
6154
6155 /* We don't use cutu_reader here because we don't need to read
6156 any dies: the signature is in the header. */
6157
6158 end_ptr = info_ptr + section->size;
6159 while (info_ptr < end_ptr)
6160 {
6161 struct signatured_type *sig_type;
6162 struct dwo_unit *dwo_tu;
6163 void **slot;
6164 const gdb_byte *ptr = info_ptr;
6165 struct comp_unit_head header;
6166 unsigned int length;
6167
6168 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6169
6170 /* Initialize it due to a false compiler warning. */
6171 header.signature = -1;
6172 header.type_cu_offset_in_tu = (cu_offset) -1;
6173
6174 /* We need to read the type's signature in order to build the hash
6175 table, but we don't need anything else just yet. */
6176
6177 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6178 abbrev_section, ptr, section_kind);
6179
6180 length = header.get_length ();
6181
6182 /* Skip dummy type units. */
6183 if (ptr >= info_ptr + length
6184 || peek_abbrev_code (abfd, ptr) == 0
6185 || header.unit_type != DW_UT_type)
6186 {
6187 info_ptr += length;
6188 continue;
6189 }
6190
6191 if (types_htab == NULL)
6192 {
6193 if (dwo_file)
6194 types_htab = allocate_dwo_unit_table ();
6195 else
6196 types_htab = allocate_signatured_type_table ();
6197 }
6198
6199 if (dwo_file)
6200 {
6201 sig_type = NULL;
6202 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6203 struct dwo_unit);
6204 dwo_tu->dwo_file = dwo_file;
6205 dwo_tu->signature = header.signature;
6206 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6207 dwo_tu->section = section;
6208 dwo_tu->sect_off = sect_off;
6209 dwo_tu->length = length;
6210 }
6211 else
6212 {
6213 /* N.B.: type_offset is not usable if this type uses a DWO file.
6214 The real type_offset is in the DWO file. */
6215 dwo_tu = NULL;
6216 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6217 struct signatured_type);
6218 sig_type->signature = header.signature;
6219 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6220 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6221 sig_type->per_cu.is_debug_types = 1;
6222 sig_type->per_cu.section = section;
6223 sig_type->per_cu.sect_off = sect_off;
6224 sig_type->per_cu.length = length;
6225 }
6226
6227 slot = htab_find_slot (types_htab.get (),
6228 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6229 INSERT);
6230 gdb_assert (slot != NULL);
6231 if (*slot != NULL)
6232 {
6233 sect_offset dup_sect_off;
6234
6235 if (dwo_file)
6236 {
6237 const struct dwo_unit *dup_tu
6238 = (const struct dwo_unit *) *slot;
6239
6240 dup_sect_off = dup_tu->sect_off;
6241 }
6242 else
6243 {
6244 const struct signatured_type *dup_tu
6245 = (const struct signatured_type *) *slot;
6246
6247 dup_sect_off = dup_tu->per_cu.sect_off;
6248 }
6249
6250 complaint (_("debug type entry at offset %s is duplicate to"
6251 " the entry at offset %s, signature %s"),
6252 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6253 hex_string (header.signature));
6254 }
6255 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6256
6257 if (dwarf_read_debug > 1)
6258 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6259 sect_offset_str (sect_off),
6260 hex_string (header.signature));
6261
6262 info_ptr += length;
6263 }
6264 }
6265
6266 /* Create the hash table of all entries in the .debug_types
6267 (or .debug_types.dwo) section(s).
6268 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6269 otherwise it is NULL.
6270
6271 The result is a pointer to the hash table or NULL if there are no types.
6272
6273 Note: This function processes DWO files only, not DWP files. */
6274
6275 static void
6276 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6277 struct dwo_file *dwo_file,
6278 gdb::array_view<dwarf2_section_info> type_sections,
6279 htab_up &types_htab)
6280 {
6281 for (dwarf2_section_info &section : type_sections)
6282 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6283 types_htab, rcuh_kind::TYPE);
6284 }
6285
6286 /* Create the hash table of all entries in the .debug_types section,
6287 and initialize all_type_units.
6288 The result is zero if there is an error (e.g. missing .debug_types section),
6289 otherwise non-zero. */
6290
6291 static int
6292 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6293 {
6294 htab_up types_htab;
6295
6296 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6297 &dwarf2_per_objfile->info, types_htab,
6298 rcuh_kind::COMPILE);
6299 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6300 dwarf2_per_objfile->types, types_htab);
6301 if (types_htab == NULL)
6302 {
6303 dwarf2_per_objfile->signatured_types = NULL;
6304 return 0;
6305 }
6306
6307 dwarf2_per_objfile->signatured_types = std::move (types_htab);
6308
6309 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6310 dwarf2_per_objfile->all_type_units.reserve
6311 (htab_elements (dwarf2_per_objfile->signatured_types.get ()));
6312
6313 htab_traverse_noresize (dwarf2_per_objfile->signatured_types.get (),
6314 add_signatured_type_cu_to_table,
6315 &dwarf2_per_objfile->all_type_units);
6316
6317 return 1;
6318 }
6319
6320 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6321 If SLOT is non-NULL, it is the entry to use in the hash table.
6322 Otherwise we find one. */
6323
6324 static struct signatured_type *
6325 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6326 void **slot)
6327 {
6328 struct objfile *objfile = dwarf2_per_objfile->objfile;
6329
6330 if (dwarf2_per_objfile->all_type_units.size ()
6331 == dwarf2_per_objfile->all_type_units.capacity ())
6332 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6333
6334 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6335 struct signatured_type);
6336
6337 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6338 sig_type->signature = sig;
6339 sig_type->per_cu.is_debug_types = 1;
6340 if (dwarf2_per_objfile->using_index)
6341 {
6342 sig_type->per_cu.v.quick =
6343 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6344 struct dwarf2_per_cu_quick_data);
6345 }
6346
6347 if (slot == NULL)
6348 {
6349 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6350 sig_type, INSERT);
6351 }
6352 gdb_assert (*slot == NULL);
6353 *slot = sig_type;
6354 /* The rest of sig_type must be filled in by the caller. */
6355 return sig_type;
6356 }
6357
6358 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6359 Fill in SIG_ENTRY with DWO_ENTRY. */
6360
6361 static void
6362 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6363 struct signatured_type *sig_entry,
6364 struct dwo_unit *dwo_entry)
6365 {
6366 /* Make sure we're not clobbering something we don't expect to. */
6367 gdb_assert (! sig_entry->per_cu.queued);
6368 gdb_assert (sig_entry->per_cu.cu == NULL);
6369 if (dwarf2_per_objfile->using_index)
6370 {
6371 gdb_assert (sig_entry->per_cu.v.quick != NULL);
6372 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
6373 }
6374 else
6375 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
6376 gdb_assert (sig_entry->signature == dwo_entry->signature);
6377 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
6378 gdb_assert (sig_entry->type_unit_group == NULL);
6379 gdb_assert (sig_entry->dwo_unit == NULL);
6380
6381 sig_entry->per_cu.section = dwo_entry->section;
6382 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
6383 sig_entry->per_cu.length = dwo_entry->length;
6384 sig_entry->per_cu.reading_dwo_directly = 1;
6385 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6386 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
6387 sig_entry->dwo_unit = dwo_entry;
6388 }
6389
6390 /* Subroutine of lookup_signatured_type.
6391 If we haven't read the TU yet, create the signatured_type data structure
6392 for a TU to be read in directly from a DWO file, bypassing the stub.
6393 This is the "Stay in DWO Optimization": When there is no DWP file and we're
6394 using .gdb_index, then when reading a CU we want to stay in the DWO file
6395 containing that CU. Otherwise we could end up reading several other DWO
6396 files (due to comdat folding) to process the transitive closure of all the
6397 mentioned TUs, and that can be slow. The current DWO file will have every
6398 type signature that it needs.
6399 We only do this for .gdb_index because in the psymtab case we already have
6400 to read all the DWOs to build the type unit groups. */
6401
6402 static struct signatured_type *
6403 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6404 {
6405 struct dwarf2_per_objfile *dwarf2_per_objfile
6406 = cu->per_cu->dwarf2_per_objfile;
6407 struct dwo_file *dwo_file;
6408 struct dwo_unit find_dwo_entry, *dwo_entry;
6409 struct signatured_type find_sig_entry, *sig_entry;
6410 void **slot;
6411
6412 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6413
6414 /* If TU skeletons have been removed then we may not have read in any
6415 TUs yet. */
6416 if (dwarf2_per_objfile->signatured_types == NULL)
6417 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6418
6419 /* We only ever need to read in one copy of a signatured type.
6420 Use the global signatured_types array to do our own comdat-folding
6421 of types. If this is the first time we're reading this TU, and
6422 the TU has an entry in .gdb_index, replace the recorded data from
6423 .gdb_index with this TU. */
6424
6425 find_sig_entry.signature = sig;
6426 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6427 &find_sig_entry, INSERT);
6428 sig_entry = (struct signatured_type *) *slot;
6429
6430 /* We can get here with the TU already read, *or* in the process of being
6431 read. Don't reassign the global entry to point to this DWO if that's
6432 the case. Also note that if the TU is already being read, it may not
6433 have come from a DWO, the program may be a mix of Fission-compiled
6434 code and non-Fission-compiled code. */
6435
6436 /* Have we already tried to read this TU?
6437 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6438 needn't exist in the global table yet). */
6439 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
6440 return sig_entry;
6441
6442 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
6443 dwo_unit of the TU itself. */
6444 dwo_file = cu->dwo_unit->dwo_file;
6445
6446 /* Ok, this is the first time we're reading this TU. */
6447 if (dwo_file->tus == NULL)
6448 return NULL;
6449 find_dwo_entry.signature = sig;
6450 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
6451 &find_dwo_entry);
6452 if (dwo_entry == NULL)
6453 return NULL;
6454
6455 /* If the global table doesn't have an entry for this TU, add one. */
6456 if (sig_entry == NULL)
6457 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6458
6459 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6460 sig_entry->per_cu.tu_read = 1;
6461 return sig_entry;
6462 }
6463
6464 /* Subroutine of lookup_signatured_type.
6465 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
6466 then try the DWP file. If the TU stub (skeleton) has been removed then
6467 it won't be in .gdb_index. */
6468
6469 static struct signatured_type *
6470 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6471 {
6472 struct dwarf2_per_objfile *dwarf2_per_objfile
6473 = cu->per_cu->dwarf2_per_objfile;
6474 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
6475 struct dwo_unit *dwo_entry;
6476 struct signatured_type find_sig_entry, *sig_entry;
6477 void **slot;
6478
6479 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
6480 gdb_assert (dwp_file != NULL);
6481
6482 /* If TU skeletons have been removed then we may not have read in any
6483 TUs yet. */
6484 if (dwarf2_per_objfile->signatured_types == NULL)
6485 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
6486
6487 find_sig_entry.signature = sig;
6488 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
6489 &find_sig_entry, INSERT);
6490 sig_entry = (struct signatured_type *) *slot;
6491
6492 /* Have we already tried to read this TU?
6493 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
6494 needn't exist in the global table yet). */
6495 if (sig_entry != NULL)
6496 return sig_entry;
6497
6498 if (dwp_file->tus == NULL)
6499 return NULL;
6500 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
6501 sig, 1 /* is_debug_types */);
6502 if (dwo_entry == NULL)
6503 return NULL;
6504
6505 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
6506 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
6507
6508 return sig_entry;
6509 }
6510
6511 /* Lookup a signature based type for DW_FORM_ref_sig8.
6512 Returns NULL if signature SIG is not present in the table.
6513 It is up to the caller to complain about this. */
6514
6515 static struct signatured_type *
6516 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
6517 {
6518 struct dwarf2_per_objfile *dwarf2_per_objfile
6519 = cu->per_cu->dwarf2_per_objfile;
6520
6521 if (cu->dwo_unit
6522 && dwarf2_per_objfile->using_index)
6523 {
6524 /* We're in a DWO/DWP file, and we're using .gdb_index.
6525 These cases require special processing. */
6526 if (get_dwp_file (dwarf2_per_objfile) == NULL)
6527 return lookup_dwo_signatured_type (cu, sig);
6528 else
6529 return lookup_dwp_signatured_type (cu, sig);
6530 }
6531 else
6532 {
6533 struct signatured_type find_entry, *entry;
6534
6535 if (dwarf2_per_objfile->signatured_types == NULL)
6536 return NULL;
6537 find_entry.signature = sig;
6538 entry = ((struct signatured_type *)
6539 htab_find (dwarf2_per_objfile->signatured_types.get (),
6540 &find_entry));
6541 return entry;
6542 }
6543 }
6544
6545 /* Low level DIE reading support. */
6546
6547 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
6548
6549 static void
6550 init_cu_die_reader (struct die_reader_specs *reader,
6551 struct dwarf2_cu *cu,
6552 struct dwarf2_section_info *section,
6553 struct dwo_file *dwo_file,
6554 struct abbrev_table *abbrev_table)
6555 {
6556 gdb_assert (section->readin && section->buffer != NULL);
6557 reader->abfd = section->get_bfd_owner ();
6558 reader->cu = cu;
6559 reader->dwo_file = dwo_file;
6560 reader->die_section = section;
6561 reader->buffer = section->buffer;
6562 reader->buffer_end = section->buffer + section->size;
6563 reader->abbrev_table = abbrev_table;
6564 }
6565
6566 /* Subroutine of cutu_reader to simplify it.
6567 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
6568 There's just a lot of work to do, and cutu_reader is big enough
6569 already.
6570
6571 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
6572 from it to the DIE in the DWO. If NULL we are skipping the stub.
6573 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
6574 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
6575 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
6576 STUB_COMP_DIR may be non-NULL.
6577 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE
6578 are filled in with the info of the DIE from the DWO file.
6579 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
6580 from the dwo. Since *RESULT_READER references this abbrev table, it must be
6581 kept around for at least as long as *RESULT_READER.
6582
6583 The result is non-zero if a valid (non-dummy) DIE was found. */
6584
6585 static int
6586 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
6587 struct dwo_unit *dwo_unit,
6588 struct die_info *stub_comp_unit_die,
6589 const char *stub_comp_dir,
6590 struct die_reader_specs *result_reader,
6591 const gdb_byte **result_info_ptr,
6592 struct die_info **result_comp_unit_die,
6593 abbrev_table_up *result_dwo_abbrev_table)
6594 {
6595 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6596 struct objfile *objfile = dwarf2_per_objfile->objfile;
6597 struct dwarf2_cu *cu = this_cu->cu;
6598 bfd *abfd;
6599 const gdb_byte *begin_info_ptr, *info_ptr;
6600 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
6601 int i,num_extra_attrs;
6602 struct dwarf2_section_info *dwo_abbrev_section;
6603 struct die_info *comp_unit_die;
6604
6605 /* At most one of these may be provided. */
6606 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
6607
6608 /* These attributes aren't processed until later:
6609 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
6610 DW_AT_comp_dir is used now, to find the DWO file, but it is also
6611 referenced later. However, these attributes are found in the stub
6612 which we won't have later. In order to not impose this complication
6613 on the rest of the code, we read them here and copy them to the
6614 DWO CU/TU die. */
6615
6616 stmt_list = NULL;
6617 low_pc = NULL;
6618 high_pc = NULL;
6619 ranges = NULL;
6620 comp_dir = NULL;
6621
6622 if (stub_comp_unit_die != NULL)
6623 {
6624 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
6625 DWO file. */
6626 if (! this_cu->is_debug_types)
6627 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
6628 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
6629 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
6630 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
6631 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
6632
6633 cu->addr_base = stub_comp_unit_die->addr_base ();
6634
6635 /* There should be a DW_AT_rnglists_base (DW_AT_GNU_ranges_base) attribute
6636 here (if needed). We need the value before we can process
6637 DW_AT_ranges. */
6638 cu->ranges_base = stub_comp_unit_die->ranges_base ();
6639 }
6640 else if (stub_comp_dir != NULL)
6641 {
6642 /* Reconstruct the comp_dir attribute to simplify the code below. */
6643 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
6644 comp_dir->name = DW_AT_comp_dir;
6645 comp_dir->form = DW_FORM_string;
6646 DW_STRING_IS_CANONICAL (comp_dir) = 0;
6647 DW_STRING (comp_dir) = stub_comp_dir;
6648 }
6649
6650 /* Set up for reading the DWO CU/TU. */
6651 cu->dwo_unit = dwo_unit;
6652 dwarf2_section_info *section = dwo_unit->section;
6653 section->read (objfile);
6654 abfd = section->get_bfd_owner ();
6655 begin_info_ptr = info_ptr = (section->buffer
6656 + to_underlying (dwo_unit->sect_off));
6657 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
6658
6659 if (this_cu->is_debug_types)
6660 {
6661 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
6662
6663 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6664 &cu->header, section,
6665 dwo_abbrev_section,
6666 info_ptr, rcuh_kind::TYPE);
6667 /* This is not an assert because it can be caused by bad debug info. */
6668 if (sig_type->signature != cu->header.signature)
6669 {
6670 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
6671 " TU at offset %s [in module %s]"),
6672 hex_string (sig_type->signature),
6673 hex_string (cu->header.signature),
6674 sect_offset_str (dwo_unit->sect_off),
6675 bfd_get_filename (abfd));
6676 }
6677 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6678 /* For DWOs coming from DWP files, we don't know the CU length
6679 nor the type's offset in the TU until now. */
6680 dwo_unit->length = cu->header.get_length ();
6681 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
6682
6683 /* Establish the type offset that can be used to lookup the type.
6684 For DWO files, we don't know it until now. */
6685 sig_type->type_offset_in_section
6686 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
6687 }
6688 else
6689 {
6690 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6691 &cu->header, section,
6692 dwo_abbrev_section,
6693 info_ptr, rcuh_kind::COMPILE);
6694 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
6695 /* For DWOs coming from DWP files, we don't know the CU length
6696 until now. */
6697 dwo_unit->length = cu->header.get_length ();
6698 }
6699
6700 *result_dwo_abbrev_table
6701 = abbrev_table::read (objfile, dwo_abbrev_section,
6702 cu->header.abbrev_sect_off);
6703 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
6704 result_dwo_abbrev_table->get ());
6705
6706 /* Read in the die, but leave space to copy over the attributes
6707 from the stub. This has the benefit of simplifying the rest of
6708 the code - all the work to maintain the illusion of a single
6709 DW_TAG_{compile,type}_unit DIE is done here. */
6710 num_extra_attrs = ((stmt_list != NULL)
6711 + (low_pc != NULL)
6712 + (high_pc != NULL)
6713 + (ranges != NULL)
6714 + (comp_dir != NULL));
6715 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
6716 num_extra_attrs);
6717
6718 /* Copy over the attributes from the stub to the DIE we just read in. */
6719 comp_unit_die = *result_comp_unit_die;
6720 i = comp_unit_die->num_attrs;
6721 if (stmt_list != NULL)
6722 comp_unit_die->attrs[i++] = *stmt_list;
6723 if (low_pc != NULL)
6724 comp_unit_die->attrs[i++] = *low_pc;
6725 if (high_pc != NULL)
6726 comp_unit_die->attrs[i++] = *high_pc;
6727 if (ranges != NULL)
6728 comp_unit_die->attrs[i++] = *ranges;
6729 if (comp_dir != NULL)
6730 comp_unit_die->attrs[i++] = *comp_dir;
6731 comp_unit_die->num_attrs += num_extra_attrs;
6732
6733 if (dwarf_die_debug)
6734 {
6735 fprintf_unfiltered (gdb_stdlog,
6736 "Read die from %s@0x%x of %s:\n",
6737 section->get_name (),
6738 (unsigned) (begin_info_ptr - section->buffer),
6739 bfd_get_filename (abfd));
6740 dump_die (comp_unit_die, dwarf_die_debug);
6741 }
6742
6743 /* Skip dummy compilation units. */
6744 if (info_ptr >= begin_info_ptr + dwo_unit->length
6745 || peek_abbrev_code (abfd, info_ptr) == 0)
6746 return 0;
6747
6748 *result_info_ptr = info_ptr;
6749 return 1;
6750 }
6751
6752 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
6753 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
6754 signature is part of the header. */
6755 static gdb::optional<ULONGEST>
6756 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
6757 {
6758 if (cu->header.version >= 5)
6759 return cu->header.signature;
6760 struct attribute *attr;
6761 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
6762 if (attr == nullptr)
6763 return gdb::optional<ULONGEST> ();
6764 return DW_UNSND (attr);
6765 }
6766
6767 /* Subroutine of cutu_reader to simplify it.
6768 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
6769 Returns NULL if the specified DWO unit cannot be found. */
6770
6771 static struct dwo_unit *
6772 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
6773 struct die_info *comp_unit_die,
6774 const char *dwo_name)
6775 {
6776 struct dwarf2_cu *cu = this_cu->cu;
6777 struct dwo_unit *dwo_unit;
6778 const char *comp_dir;
6779
6780 gdb_assert (cu != NULL);
6781
6782 /* Yeah, we look dwo_name up again, but it simplifies the code. */
6783 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
6784 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
6785
6786 if (this_cu->is_debug_types)
6787 {
6788 struct signatured_type *sig_type;
6789
6790 /* Since this_cu is the first member of struct signatured_type,
6791 we can go from a pointer to one to a pointer to the other. */
6792 sig_type = (struct signatured_type *) this_cu;
6793 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
6794 }
6795 else
6796 {
6797 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
6798 if (!signature.has_value ())
6799 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
6800 " [in module %s]"),
6801 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
6802 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
6803 *signature);
6804 }
6805
6806 return dwo_unit;
6807 }
6808
6809 /* Subroutine of cutu_reader to simplify it.
6810 See it for a description of the parameters.
6811 Read a TU directly from a DWO file, bypassing the stub. */
6812
6813 void
6814 cutu_reader::init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
6815 int use_existing_cu)
6816 {
6817 struct signatured_type *sig_type;
6818
6819 /* Verify we can do the following downcast, and that we have the
6820 data we need. */
6821 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
6822 sig_type = (struct signatured_type *) this_cu;
6823 gdb_assert (sig_type->dwo_unit != NULL);
6824
6825 if (use_existing_cu && this_cu->cu != NULL)
6826 {
6827 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
6828 /* There's no need to do the rereading_dwo_cu handling that
6829 cutu_reader does since we don't read the stub. */
6830 }
6831 else
6832 {
6833 /* If !use_existing_cu, this_cu->cu must be NULL. */
6834 gdb_assert (this_cu->cu == NULL);
6835 m_new_cu.reset (new dwarf2_cu (this_cu));
6836 }
6837
6838 /* A future optimization, if needed, would be to use an existing
6839 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
6840 could share abbrev tables. */
6841
6842 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
6843 NULL /* stub_comp_unit_die */,
6844 sig_type->dwo_unit->dwo_file->comp_dir,
6845 this, &info_ptr,
6846 &comp_unit_die,
6847 &m_dwo_abbrev_table) == 0)
6848 {
6849 /* Dummy die. */
6850 dummy_p = true;
6851 }
6852 }
6853
6854 /* Initialize a CU (or TU) and read its DIEs.
6855 If the CU defers to a DWO file, read the DWO file as well.
6856
6857 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
6858 Otherwise the table specified in the comp unit header is read in and used.
6859 This is an optimization for when we already have the abbrev table.
6860
6861 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
6862 Otherwise, a new CU is allocated with xmalloc. */
6863
6864 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
6865 struct abbrev_table *abbrev_table,
6866 int use_existing_cu,
6867 bool skip_partial)
6868 : die_reader_specs {},
6869 m_this_cu (this_cu)
6870 {
6871 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6872 struct objfile *objfile = dwarf2_per_objfile->objfile;
6873 struct dwarf2_section_info *section = this_cu->section;
6874 bfd *abfd = section->get_bfd_owner ();
6875 struct dwarf2_cu *cu;
6876 const gdb_byte *begin_info_ptr;
6877 struct signatured_type *sig_type = NULL;
6878 struct dwarf2_section_info *abbrev_section;
6879 /* Non-zero if CU currently points to a DWO file and we need to
6880 reread it. When this happens we need to reread the skeleton die
6881 before we can reread the DWO file (this only applies to CUs, not TUs). */
6882 int rereading_dwo_cu = 0;
6883
6884 if (dwarf_die_debug)
6885 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
6886 this_cu->is_debug_types ? "type" : "comp",
6887 sect_offset_str (this_cu->sect_off));
6888
6889 /* If we're reading a TU directly from a DWO file, including a virtual DWO
6890 file (instead of going through the stub), short-circuit all of this. */
6891 if (this_cu->reading_dwo_directly)
6892 {
6893 /* Narrow down the scope of possibilities to have to understand. */
6894 gdb_assert (this_cu->is_debug_types);
6895 gdb_assert (abbrev_table == NULL);
6896 init_tu_and_read_dwo_dies (this_cu, use_existing_cu);
6897 return;
6898 }
6899
6900 /* This is cheap if the section is already read in. */
6901 section->read (objfile);
6902
6903 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
6904
6905 abbrev_section = get_abbrev_section_for_cu (this_cu);
6906
6907 if (use_existing_cu && this_cu->cu != NULL)
6908 {
6909 cu = this_cu->cu;
6910 /* If this CU is from a DWO file we need to start over, we need to
6911 refetch the attributes from the skeleton CU.
6912 This could be optimized by retrieving those attributes from when we
6913 were here the first time: the previous comp_unit_die was stored in
6914 comp_unit_obstack. But there's no data yet that we need this
6915 optimization. */
6916 if (cu->dwo_unit != NULL)
6917 rereading_dwo_cu = 1;
6918 }
6919 else
6920 {
6921 /* If !use_existing_cu, this_cu->cu must be NULL. */
6922 gdb_assert (this_cu->cu == NULL);
6923 m_new_cu.reset (new dwarf2_cu (this_cu));
6924 cu = m_new_cu.get ();
6925 }
6926
6927 /* Get the header. */
6928 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
6929 {
6930 /* We already have the header, there's no need to read it in again. */
6931 info_ptr += to_underlying (cu->header.first_die_cu_offset);
6932 }
6933 else
6934 {
6935 if (this_cu->is_debug_types)
6936 {
6937 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6938 &cu->header, section,
6939 abbrev_section, info_ptr,
6940 rcuh_kind::TYPE);
6941
6942 /* Since per_cu is the first member of struct signatured_type,
6943 we can go from a pointer to one to a pointer to the other. */
6944 sig_type = (struct signatured_type *) this_cu;
6945 gdb_assert (sig_type->signature == cu->header.signature);
6946 gdb_assert (sig_type->type_offset_in_tu
6947 == cu->header.type_cu_offset_in_tu);
6948 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6949
6950 /* LENGTH has not been set yet for type units if we're
6951 using .gdb_index. */
6952 this_cu->length = cu->header.get_length ();
6953
6954 /* Establish the type offset that can be used to lookup the type. */
6955 sig_type->type_offset_in_section =
6956 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
6957
6958 this_cu->dwarf_version = cu->header.version;
6959 }
6960 else
6961 {
6962 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
6963 &cu->header, section,
6964 abbrev_section,
6965 info_ptr,
6966 rcuh_kind::COMPILE);
6967
6968 gdb_assert (this_cu->sect_off == cu->header.sect_off);
6969 if (this_cu->length == 0)
6970 this_cu->length = cu->header.get_length ();
6971 else
6972 gdb_assert (this_cu->length == cu->header.get_length ());
6973 this_cu->dwarf_version = cu->header.version;
6974 }
6975 }
6976
6977 /* Skip dummy compilation units. */
6978 if (info_ptr >= begin_info_ptr + this_cu->length
6979 || peek_abbrev_code (abfd, info_ptr) == 0)
6980 {
6981 dummy_p = true;
6982 return;
6983 }
6984
6985 /* If we don't have them yet, read the abbrevs for this compilation unit.
6986 And if we need to read them now, make sure they're freed when we're
6987 done. */
6988 if (abbrev_table != NULL)
6989 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
6990 else
6991 {
6992 m_abbrev_table_holder
6993 = abbrev_table::read (objfile, abbrev_section,
6994 cu->header.abbrev_sect_off);
6995 abbrev_table = m_abbrev_table_holder.get ();
6996 }
6997
6998 /* Read the top level CU/TU die. */
6999 init_cu_die_reader (this, cu, section, NULL, abbrev_table);
7000 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7001
7002 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7003 {
7004 dummy_p = true;
7005 return;
7006 }
7007
7008 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7009 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7010 table from the DWO file and pass the ownership over to us. It will be
7011 referenced from READER, so we must make sure to free it after we're done
7012 with READER.
7013
7014 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7015 DWO CU, that this test will fail (the attribute will not be present). */
7016 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7017 if (dwo_name != nullptr)
7018 {
7019 struct dwo_unit *dwo_unit;
7020 struct die_info *dwo_comp_unit_die;
7021
7022 if (comp_unit_die->has_children)
7023 {
7024 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7025 " has children (offset %s) [in module %s]"),
7026 sect_offset_str (this_cu->sect_off),
7027 bfd_get_filename (abfd));
7028 }
7029 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die, dwo_name);
7030 if (dwo_unit != NULL)
7031 {
7032 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7033 comp_unit_die, NULL,
7034 this, &info_ptr,
7035 &dwo_comp_unit_die,
7036 &m_dwo_abbrev_table) == 0)
7037 {
7038 /* Dummy die. */
7039 dummy_p = true;
7040 return;
7041 }
7042 comp_unit_die = dwo_comp_unit_die;
7043 }
7044 else
7045 {
7046 /* Yikes, we couldn't find the rest of the DIE, we only have
7047 the stub. A complaint has already been logged. There's
7048 not much more we can do except pass on the stub DIE to
7049 die_reader_func. We don't want to throw an error on bad
7050 debug info. */
7051 }
7052 }
7053 }
7054
7055 void
7056 cutu_reader::keep ()
7057 {
7058 /* Done, clean up. */
7059 gdb_assert (!dummy_p);
7060 if (m_new_cu != NULL)
7061 {
7062 struct dwarf2_per_objfile *dwarf2_per_objfile
7063 = m_this_cu->dwarf2_per_objfile;
7064 /* Link this CU into read_in_chain. */
7065 m_this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7066 dwarf2_per_objfile->read_in_chain = m_this_cu;
7067 /* The chain owns it now. */
7068 m_new_cu.release ();
7069 }
7070 }
7071
7072 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name (DW_AT_dwo_name)
7073 if present. DWO_FILE, if non-NULL, is the DWO file to read (the caller is
7074 assumed to have already done the lookup to find the DWO file).
7075
7076 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7077 THIS_CU->is_debug_types, but nothing else.
7078
7079 We fill in THIS_CU->length.
7080
7081 THIS_CU->cu is always freed when done.
7082 This is done in order to not leave THIS_CU->cu in a state where we have
7083 to care whether it refers to the "main" CU or the DWO CU.
7084
7085 When parent_cu is passed, it is used to provide a default value for
7086 str_offsets_base and addr_base from the parent. */
7087
7088 cutu_reader::cutu_reader (struct dwarf2_per_cu_data *this_cu,
7089 struct dwarf2_cu *parent_cu,
7090 struct dwo_file *dwo_file)
7091 : die_reader_specs {},
7092 m_this_cu (this_cu)
7093 {
7094 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7095 struct objfile *objfile = dwarf2_per_objfile->objfile;
7096 struct dwarf2_section_info *section = this_cu->section;
7097 bfd *abfd = section->get_bfd_owner ();
7098 struct dwarf2_section_info *abbrev_section;
7099 const gdb_byte *begin_info_ptr, *info_ptr;
7100
7101 if (dwarf_die_debug)
7102 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7103 this_cu->is_debug_types ? "type" : "comp",
7104 sect_offset_str (this_cu->sect_off));
7105
7106 gdb_assert (this_cu->cu == NULL);
7107
7108 abbrev_section = (dwo_file != NULL
7109 ? &dwo_file->sections.abbrev
7110 : get_abbrev_section_for_cu (this_cu));
7111
7112 /* This is cheap if the section is already read in. */
7113 section->read (objfile);
7114
7115 m_new_cu.reset (new dwarf2_cu (this_cu));
7116
7117 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7118 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7119 &m_new_cu->header, section,
7120 abbrev_section, info_ptr,
7121 (this_cu->is_debug_types
7122 ? rcuh_kind::TYPE
7123 : rcuh_kind::COMPILE));
7124
7125 if (parent_cu != nullptr)
7126 {
7127 m_new_cu->str_offsets_base = parent_cu->str_offsets_base;
7128 m_new_cu->addr_base = parent_cu->addr_base;
7129 }
7130 this_cu->length = m_new_cu->header.get_length ();
7131
7132 /* Skip dummy compilation units. */
7133 if (info_ptr >= begin_info_ptr + this_cu->length
7134 || peek_abbrev_code (abfd, info_ptr) == 0)
7135 {
7136 dummy_p = true;
7137 return;
7138 }
7139
7140 m_abbrev_table_holder
7141 = abbrev_table::read (objfile, abbrev_section,
7142 m_new_cu->header.abbrev_sect_off);
7143
7144 init_cu_die_reader (this, m_new_cu.get (), section, dwo_file,
7145 m_abbrev_table_holder.get ());
7146 info_ptr = read_full_die (this, &comp_unit_die, info_ptr);
7147 }
7148
7149 \f
7150 /* Type Unit Groups.
7151
7152 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7153 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7154 so that all types coming from the same compilation (.o file) are grouped
7155 together. A future step could be to put the types in the same symtab as
7156 the CU the types ultimately came from. */
7157
7158 static hashval_t
7159 hash_type_unit_group (const void *item)
7160 {
7161 const struct type_unit_group *tu_group
7162 = (const struct type_unit_group *) item;
7163
7164 return hash_stmt_list_entry (&tu_group->hash);
7165 }
7166
7167 static int
7168 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7169 {
7170 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7171 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7172
7173 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7174 }
7175
7176 /* Allocate a hash table for type unit groups. */
7177
7178 static htab_up
7179 allocate_type_unit_groups_table ()
7180 {
7181 return htab_up (htab_create_alloc (3,
7182 hash_type_unit_group,
7183 eq_type_unit_group,
7184 NULL, xcalloc, xfree));
7185 }
7186
7187 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7188 partial symtabs. We combine several TUs per psymtab to not let the size
7189 of any one psymtab grow too big. */
7190 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7191 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7192
7193 /* Helper routine for get_type_unit_group.
7194 Create the type_unit_group object used to hold one or more TUs. */
7195
7196 static struct type_unit_group *
7197 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7198 {
7199 struct dwarf2_per_objfile *dwarf2_per_objfile
7200 = cu->per_cu->dwarf2_per_objfile;
7201 struct objfile *objfile = dwarf2_per_objfile->objfile;
7202 struct dwarf2_per_cu_data *per_cu;
7203 struct type_unit_group *tu_group;
7204
7205 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7206 struct type_unit_group);
7207 per_cu = &tu_group->per_cu;
7208 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7209
7210 if (dwarf2_per_objfile->using_index)
7211 {
7212 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7213 struct dwarf2_per_cu_quick_data);
7214 }
7215 else
7216 {
7217 unsigned int line_offset = to_underlying (line_offset_struct);
7218 dwarf2_psymtab *pst;
7219 std::string name;
7220
7221 /* Give the symtab a useful name for debug purposes. */
7222 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7223 name = string_printf ("<type_units_%d>",
7224 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7225 else
7226 name = string_printf ("<type_units_at_0x%x>", line_offset);
7227
7228 pst = create_partial_symtab (per_cu, name.c_str ());
7229 pst->anonymous = true;
7230 }
7231
7232 tu_group->hash.dwo_unit = cu->dwo_unit;
7233 tu_group->hash.line_sect_off = line_offset_struct;
7234
7235 return tu_group;
7236 }
7237
7238 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7239 STMT_LIST is a DW_AT_stmt_list attribute. */
7240
7241 static struct type_unit_group *
7242 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7243 {
7244 struct dwarf2_per_objfile *dwarf2_per_objfile
7245 = cu->per_cu->dwarf2_per_objfile;
7246 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7247 struct type_unit_group *tu_group;
7248 void **slot;
7249 unsigned int line_offset;
7250 struct type_unit_group type_unit_group_for_lookup;
7251
7252 if (dwarf2_per_objfile->type_unit_groups == NULL)
7253 dwarf2_per_objfile->type_unit_groups = allocate_type_unit_groups_table ();
7254
7255 /* Do we need to create a new group, or can we use an existing one? */
7256
7257 if (stmt_list)
7258 {
7259 line_offset = DW_UNSND (stmt_list);
7260 ++tu_stats->nr_symtab_sharers;
7261 }
7262 else
7263 {
7264 /* Ugh, no stmt_list. Rare, but we have to handle it.
7265 We can do various things here like create one group per TU or
7266 spread them over multiple groups to split up the expansion work.
7267 To avoid worst case scenarios (too many groups or too large groups)
7268 we, umm, group them in bunches. */
7269 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7270 | (tu_stats->nr_stmt_less_type_units
7271 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7272 ++tu_stats->nr_stmt_less_type_units;
7273 }
7274
7275 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7276 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7277 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups.get (),
7278 &type_unit_group_for_lookup, INSERT);
7279 if (*slot != NULL)
7280 {
7281 tu_group = (struct type_unit_group *) *slot;
7282 gdb_assert (tu_group != NULL);
7283 }
7284 else
7285 {
7286 sect_offset line_offset_struct = (sect_offset) line_offset;
7287 tu_group = create_type_unit_group (cu, line_offset_struct);
7288 *slot = tu_group;
7289 ++tu_stats->nr_symtabs;
7290 }
7291
7292 return tu_group;
7293 }
7294 \f
7295 /* Partial symbol tables. */
7296
7297 /* Create a psymtab named NAME and assign it to PER_CU.
7298
7299 The caller must fill in the following details:
7300 dirname, textlow, texthigh. */
7301
7302 static dwarf2_psymtab *
7303 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
7304 {
7305 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
7306 dwarf2_psymtab *pst;
7307
7308 pst = new dwarf2_psymtab (name, objfile, per_cu);
7309
7310 pst->psymtabs_addrmap_supported = true;
7311
7312 /* This is the glue that links PST into GDB's symbol API. */
7313 per_cu->v.psymtab = pst;
7314
7315 return pst;
7316 }
7317
7318 /* DIE reader function for process_psymtab_comp_unit. */
7319
7320 static void
7321 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
7322 const gdb_byte *info_ptr,
7323 struct die_info *comp_unit_die,
7324 enum language pretend_language)
7325 {
7326 struct dwarf2_cu *cu = reader->cu;
7327 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
7328 struct gdbarch *gdbarch = objfile->arch ();
7329 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7330 CORE_ADDR baseaddr;
7331 CORE_ADDR best_lowpc = 0, best_highpc = 0;
7332 dwarf2_psymtab *pst;
7333 enum pc_bounds_kind cu_bounds_kind;
7334 const char *filename;
7335
7336 gdb_assert (! per_cu->is_debug_types);
7337
7338 prepare_one_comp_unit (cu, comp_unit_die, pretend_language);
7339
7340 /* Allocate a new partial symbol table structure. */
7341 gdb::unique_xmalloc_ptr<char> debug_filename;
7342 static const char artificial[] = "<artificial>";
7343 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
7344 if (filename == NULL)
7345 filename = "";
7346 else if (strcmp (filename, artificial) == 0)
7347 {
7348 debug_filename.reset (concat (artificial, "@",
7349 sect_offset_str (per_cu->sect_off),
7350 (char *) NULL));
7351 filename = debug_filename.get ();
7352 }
7353
7354 pst = create_partial_symtab (per_cu, filename);
7355
7356 /* This must be done before calling dwarf2_build_include_psymtabs. */
7357 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7358
7359 baseaddr = objfile->text_section_offset ();
7360
7361 dwarf2_find_base_address (comp_unit_die, cu);
7362
7363 /* Possibly set the default values of LOWPC and HIGHPC from
7364 `DW_AT_ranges'. */
7365 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
7366 &best_highpc, cu, pst);
7367 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
7368 {
7369 CORE_ADDR low
7370 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
7371 - baseaddr);
7372 CORE_ADDR high
7373 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
7374 - baseaddr - 1);
7375 /* Store the contiguous range if it is not empty; it can be
7376 empty for CUs with no code. */
7377 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
7378 low, high, pst);
7379 }
7380
7381 /* Check if comp unit has_children.
7382 If so, read the rest of the partial symbols from this comp unit.
7383 If not, there's no more debug_info for this comp unit. */
7384 if (comp_unit_die->has_children)
7385 {
7386 struct partial_die_info *first_die;
7387 CORE_ADDR lowpc, highpc;
7388
7389 lowpc = ((CORE_ADDR) -1);
7390 highpc = ((CORE_ADDR) 0);
7391
7392 first_die = load_partial_dies (reader, info_ptr, 1);
7393
7394 scan_partial_symbols (first_die, &lowpc, &highpc,
7395 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
7396
7397 /* If we didn't find a lowpc, set it to highpc to avoid
7398 complaints from `maint check'. */
7399 if (lowpc == ((CORE_ADDR) -1))
7400 lowpc = highpc;
7401
7402 /* If the compilation unit didn't have an explicit address range,
7403 then use the information extracted from its child dies. */
7404 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
7405 {
7406 best_lowpc = lowpc;
7407 best_highpc = highpc;
7408 }
7409 }
7410 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
7411 best_lowpc + baseaddr)
7412 - baseaddr);
7413 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
7414 best_highpc + baseaddr)
7415 - baseaddr);
7416
7417 end_psymtab_common (objfile, pst);
7418
7419 if (!cu->per_cu->imported_symtabs_empty ())
7420 {
7421 int i;
7422 int len = cu->per_cu->imported_symtabs_size ();
7423
7424 /* Fill in 'dependencies' here; we fill in 'users' in a
7425 post-pass. */
7426 pst->number_of_dependencies = len;
7427 pst->dependencies
7428 = objfile->partial_symtabs->allocate_dependencies (len);
7429 for (i = 0; i < len; ++i)
7430 {
7431 pst->dependencies[i]
7432 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
7433 }
7434
7435 cu->per_cu->imported_symtabs_free ();
7436 }
7437
7438 /* Get the list of files included in the current compilation unit,
7439 and build a psymtab for each of them. */
7440 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
7441
7442 if (dwarf_read_debug)
7443 fprintf_unfiltered (gdb_stdlog,
7444 "Psymtab for %s unit @%s: %s - %s"
7445 ", %d global, %d static syms\n",
7446 per_cu->is_debug_types ? "type" : "comp",
7447 sect_offset_str (per_cu->sect_off),
7448 paddress (gdbarch, pst->text_low (objfile)),
7449 paddress (gdbarch, pst->text_high (objfile)),
7450 pst->n_global_syms, pst->n_static_syms);
7451 }
7452
7453 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7454 Process compilation unit THIS_CU for a psymtab. */
7455
7456 static void
7457 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
7458 bool want_partial_unit,
7459 enum language pretend_language)
7460 {
7461 /* If this compilation unit was already read in, free the
7462 cached copy in order to read it in again. This is
7463 necessary because we skipped some symbols when we first
7464 read in the compilation unit (see load_partial_dies).
7465 This problem could be avoided, but the benefit is unclear. */
7466 if (this_cu->cu != NULL)
7467 free_one_cached_comp_unit (this_cu);
7468
7469 cutu_reader reader (this_cu, NULL, 0, false);
7470
7471 switch (reader.comp_unit_die->tag)
7472 {
7473 case DW_TAG_compile_unit:
7474 this_cu->unit_type = DW_UT_compile;
7475 break;
7476 case DW_TAG_partial_unit:
7477 this_cu->unit_type = DW_UT_partial;
7478 break;
7479 default:
7480 abort ();
7481 }
7482
7483 if (reader.dummy_p)
7484 {
7485 /* Nothing. */
7486 }
7487 else if (this_cu->is_debug_types)
7488 build_type_psymtabs_reader (&reader, reader.info_ptr,
7489 reader.comp_unit_die);
7490 else if (want_partial_unit
7491 || reader.comp_unit_die->tag != DW_TAG_partial_unit)
7492 process_psymtab_comp_unit_reader (&reader, reader.info_ptr,
7493 reader.comp_unit_die,
7494 pretend_language);
7495
7496 this_cu->lang = this_cu->cu->language;
7497
7498 /* Age out any secondary CUs. */
7499 age_cached_comp_units (this_cu->dwarf2_per_objfile);
7500 }
7501
7502 /* Reader function for build_type_psymtabs. */
7503
7504 static void
7505 build_type_psymtabs_reader (const struct die_reader_specs *reader,
7506 const gdb_byte *info_ptr,
7507 struct die_info *type_unit_die)
7508 {
7509 struct dwarf2_per_objfile *dwarf2_per_objfile
7510 = reader->cu->per_cu->dwarf2_per_objfile;
7511 struct objfile *objfile = dwarf2_per_objfile->objfile;
7512 struct dwarf2_cu *cu = reader->cu;
7513 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
7514 struct signatured_type *sig_type;
7515 struct type_unit_group *tu_group;
7516 struct attribute *attr;
7517 struct partial_die_info *first_die;
7518 CORE_ADDR lowpc, highpc;
7519 dwarf2_psymtab *pst;
7520
7521 gdb_assert (per_cu->is_debug_types);
7522 sig_type = (struct signatured_type *) per_cu;
7523
7524 if (! type_unit_die->has_children)
7525 return;
7526
7527 attr = type_unit_die->attr (DW_AT_stmt_list);
7528 tu_group = get_type_unit_group (cu, attr);
7529
7530 if (tu_group->tus == nullptr)
7531 tu_group->tus = new std::vector<signatured_type *>;
7532 tu_group->tus->push_back (sig_type);
7533
7534 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
7535 pst = create_partial_symtab (per_cu, "");
7536 pst->anonymous = true;
7537
7538 first_die = load_partial_dies (reader, info_ptr, 1);
7539
7540 lowpc = (CORE_ADDR) -1;
7541 highpc = (CORE_ADDR) 0;
7542 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
7543
7544 end_psymtab_common (objfile, pst);
7545 }
7546
7547 /* Struct used to sort TUs by their abbreviation table offset. */
7548
7549 struct tu_abbrev_offset
7550 {
7551 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
7552 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
7553 {}
7554
7555 signatured_type *sig_type;
7556 sect_offset abbrev_offset;
7557 };
7558
7559 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
7560
7561 static bool
7562 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
7563 const struct tu_abbrev_offset &b)
7564 {
7565 return a.abbrev_offset < b.abbrev_offset;
7566 }
7567
7568 /* Efficiently read all the type units.
7569 This does the bulk of the work for build_type_psymtabs.
7570
7571 The efficiency is because we sort TUs by the abbrev table they use and
7572 only read each abbrev table once. In one program there are 200K TUs
7573 sharing 8K abbrev tables.
7574
7575 The main purpose of this function is to support building the
7576 dwarf2_per_objfile->type_unit_groups table.
7577 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
7578 can collapse the search space by grouping them by stmt_list.
7579 The savings can be significant, in the same program from above the 200K TUs
7580 share 8K stmt_list tables.
7581
7582 FUNC is expected to call get_type_unit_group, which will create the
7583 struct type_unit_group if necessary and add it to
7584 dwarf2_per_objfile->type_unit_groups. */
7585
7586 static void
7587 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
7588 {
7589 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7590 abbrev_table_up abbrev_table;
7591 sect_offset abbrev_offset;
7592
7593 /* It's up to the caller to not call us multiple times. */
7594 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
7595
7596 if (dwarf2_per_objfile->all_type_units.empty ())
7597 return;
7598
7599 /* TUs typically share abbrev tables, and there can be way more TUs than
7600 abbrev tables. Sort by abbrev table to reduce the number of times we
7601 read each abbrev table in.
7602 Alternatives are to punt or to maintain a cache of abbrev tables.
7603 This is simpler and efficient enough for now.
7604
7605 Later we group TUs by their DW_AT_stmt_list value (as this defines the
7606 symtab to use). Typically TUs with the same abbrev offset have the same
7607 stmt_list value too so in practice this should work well.
7608
7609 The basic algorithm here is:
7610
7611 sort TUs by abbrev table
7612 for each TU with same abbrev table:
7613 read abbrev table if first user
7614 read TU top level DIE
7615 [IWBN if DWO skeletons had DW_AT_stmt_list]
7616 call FUNC */
7617
7618 if (dwarf_read_debug)
7619 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
7620
7621 /* Sort in a separate table to maintain the order of all_type_units
7622 for .gdb_index: TU indices directly index all_type_units. */
7623 std::vector<tu_abbrev_offset> sorted_by_abbrev;
7624 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
7625
7626 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
7627 sorted_by_abbrev.emplace_back
7628 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
7629 sig_type->per_cu.section,
7630 sig_type->per_cu.sect_off));
7631
7632 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
7633 sort_tu_by_abbrev_offset);
7634
7635 abbrev_offset = (sect_offset) ~(unsigned) 0;
7636
7637 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
7638 {
7639 /* Switch to the next abbrev table if necessary. */
7640 if (abbrev_table == NULL
7641 || tu.abbrev_offset != abbrev_offset)
7642 {
7643 abbrev_offset = tu.abbrev_offset;
7644 abbrev_table =
7645 abbrev_table::read (dwarf2_per_objfile->objfile,
7646 &dwarf2_per_objfile->abbrev,
7647 abbrev_offset);
7648 ++tu_stats->nr_uniq_abbrev_tables;
7649 }
7650
7651 cutu_reader reader (&tu.sig_type->per_cu, abbrev_table.get (),
7652 0, false);
7653 if (!reader.dummy_p)
7654 build_type_psymtabs_reader (&reader, reader.info_ptr,
7655 reader.comp_unit_die);
7656 }
7657 }
7658
7659 /* Print collected type unit statistics. */
7660
7661 static void
7662 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
7663 {
7664 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7665
7666 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
7667 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
7668 dwarf2_per_objfile->all_type_units.size ());
7669 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
7670 tu_stats->nr_uniq_abbrev_tables);
7671 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
7672 tu_stats->nr_symtabs);
7673 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
7674 tu_stats->nr_symtab_sharers);
7675 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
7676 tu_stats->nr_stmt_less_type_units);
7677 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
7678 tu_stats->nr_all_type_units_reallocs);
7679 }
7680
7681 /* Traversal function for build_type_psymtabs. */
7682
7683 static int
7684 build_type_psymtab_dependencies (void **slot, void *info)
7685 {
7686 struct dwarf2_per_objfile *dwarf2_per_objfile
7687 = (struct dwarf2_per_objfile *) info;
7688 struct objfile *objfile = dwarf2_per_objfile->objfile;
7689 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
7690 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
7691 dwarf2_psymtab *pst = per_cu->v.psymtab;
7692 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
7693 int i;
7694
7695 gdb_assert (len > 0);
7696 gdb_assert (per_cu->type_unit_group_p ());
7697
7698 pst->number_of_dependencies = len;
7699 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
7700 for (i = 0; i < len; ++i)
7701 {
7702 struct signatured_type *iter = tu_group->tus->at (i);
7703 gdb_assert (iter->per_cu.is_debug_types);
7704 pst->dependencies[i] = iter->per_cu.v.psymtab;
7705 iter->type_unit_group = tu_group;
7706 }
7707
7708 delete tu_group->tus;
7709 tu_group->tus = nullptr;
7710
7711 return 1;
7712 }
7713
7714 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
7715 Build partial symbol tables for the .debug_types comp-units. */
7716
7717 static void
7718 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
7719 {
7720 if (! create_all_type_units (dwarf2_per_objfile))
7721 return;
7722
7723 build_type_psymtabs_1 (dwarf2_per_objfile);
7724 }
7725
7726 /* Traversal function for process_skeletonless_type_unit.
7727 Read a TU in a DWO file and build partial symbols for it. */
7728
7729 static int
7730 process_skeletonless_type_unit (void **slot, void *info)
7731 {
7732 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
7733 struct dwarf2_per_objfile *dwarf2_per_objfile
7734 = (struct dwarf2_per_objfile *) info;
7735 struct signatured_type find_entry, *entry;
7736
7737 /* If this TU doesn't exist in the global table, add it and read it in. */
7738
7739 if (dwarf2_per_objfile->signatured_types == NULL)
7740 dwarf2_per_objfile->signatured_types = allocate_signatured_type_table ();
7741
7742 find_entry.signature = dwo_unit->signature;
7743 slot = htab_find_slot (dwarf2_per_objfile->signatured_types.get (),
7744 &find_entry, INSERT);
7745 /* If we've already seen this type there's nothing to do. What's happening
7746 is we're doing our own version of comdat-folding here. */
7747 if (*slot != NULL)
7748 return 1;
7749
7750 /* This does the job that create_all_type_units would have done for
7751 this TU. */
7752 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
7753 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
7754 *slot = entry;
7755
7756 /* This does the job that build_type_psymtabs_1 would have done. */
7757 cutu_reader reader (&entry->per_cu, NULL, 0, false);
7758 if (!reader.dummy_p)
7759 build_type_psymtabs_reader (&reader, reader.info_ptr,
7760 reader.comp_unit_die);
7761
7762 return 1;
7763 }
7764
7765 /* Traversal function for process_skeletonless_type_units. */
7766
7767 static int
7768 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
7769 {
7770 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
7771
7772 if (dwo_file->tus != NULL)
7773 htab_traverse_noresize (dwo_file->tus.get (),
7774 process_skeletonless_type_unit, info);
7775
7776 return 1;
7777 }
7778
7779 /* Scan all TUs of DWO files, verifying we've processed them.
7780 This is needed in case a TU was emitted without its skeleton.
7781 Note: This can't be done until we know what all the DWO files are. */
7782
7783 static void
7784 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7785 {
7786 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
7787 if (get_dwp_file (dwarf2_per_objfile) == NULL
7788 && dwarf2_per_objfile->dwo_files != NULL)
7789 {
7790 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
7791 process_dwo_file_for_skeletonless_type_units,
7792 dwarf2_per_objfile);
7793 }
7794 }
7795
7796 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
7797
7798 static void
7799 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
7800 {
7801 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7802 {
7803 dwarf2_psymtab *pst = per_cu->v.psymtab;
7804
7805 if (pst == NULL)
7806 continue;
7807
7808 for (int j = 0; j < pst->number_of_dependencies; ++j)
7809 {
7810 /* Set the 'user' field only if it is not already set. */
7811 if (pst->dependencies[j]->user == NULL)
7812 pst->dependencies[j]->user = pst;
7813 }
7814 }
7815 }
7816
7817 /* Build the partial symbol table by doing a quick pass through the
7818 .debug_info and .debug_abbrev sections. */
7819
7820 static void
7821 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
7822 {
7823 struct objfile *objfile = dwarf2_per_objfile->objfile;
7824
7825 if (dwarf_read_debug)
7826 {
7827 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
7828 objfile_name (objfile));
7829 }
7830
7831 scoped_restore restore_reading_psyms
7832 = make_scoped_restore (&dwarf2_per_objfile->reading_partial_symbols,
7833 true);
7834
7835 dwarf2_per_objfile->info.read (objfile);
7836
7837 /* Any cached compilation units will be linked by the per-objfile
7838 read_in_chain. Make sure to free them when we're done. */
7839 free_cached_comp_units freer (dwarf2_per_objfile);
7840
7841 build_type_psymtabs (dwarf2_per_objfile);
7842
7843 create_all_comp_units (dwarf2_per_objfile);
7844
7845 /* Create a temporary address map on a temporary obstack. We later
7846 copy this to the final obstack. */
7847 auto_obstack temp_obstack;
7848
7849 scoped_restore save_psymtabs_addrmap
7850 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
7851 addrmap_create_mutable (&temp_obstack));
7852
7853 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
7854 {
7855 if (per_cu->v.psymtab != NULL)
7856 /* In case a forward DW_TAG_imported_unit has read the CU already. */
7857 continue;
7858 process_psymtab_comp_unit (per_cu, false, language_minimal);
7859 }
7860
7861 /* This has to wait until we read the CUs, we need the list of DWOs. */
7862 process_skeletonless_type_units (dwarf2_per_objfile);
7863
7864 /* Now that all TUs have been processed we can fill in the dependencies. */
7865 if (dwarf2_per_objfile->type_unit_groups != NULL)
7866 {
7867 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups.get (),
7868 build_type_psymtab_dependencies, dwarf2_per_objfile);
7869 }
7870
7871 if (dwarf_read_debug)
7872 print_tu_stats (dwarf2_per_objfile);
7873
7874 set_partial_user (dwarf2_per_objfile);
7875
7876 objfile->partial_symtabs->psymtabs_addrmap
7877 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
7878 objfile->partial_symtabs->obstack ());
7879 /* At this point we want to keep the address map. */
7880 save_psymtabs_addrmap.release ();
7881
7882 if (dwarf_read_debug)
7883 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
7884 objfile_name (objfile));
7885 }
7886
7887 /* Load the partial DIEs for a secondary CU into memory.
7888 This is also used when rereading a primary CU with load_all_dies. */
7889
7890 static void
7891 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
7892 {
7893 cutu_reader reader (this_cu, NULL, 1, false);
7894
7895 if (!reader.dummy_p)
7896 {
7897 prepare_one_comp_unit (reader.cu, reader.comp_unit_die,
7898 language_minimal);
7899
7900 /* Check if comp unit has_children.
7901 If so, read the rest of the partial symbols from this comp unit.
7902 If not, there's no more debug_info for this comp unit. */
7903 if (reader.comp_unit_die->has_children)
7904 load_partial_dies (&reader, reader.info_ptr, 0);
7905
7906 reader.keep ();
7907 }
7908 }
7909
7910 static void
7911 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
7912 struct dwarf2_section_info *section,
7913 struct dwarf2_section_info *abbrev_section,
7914 unsigned int is_dwz)
7915 {
7916 const gdb_byte *info_ptr;
7917 struct objfile *objfile = dwarf2_per_objfile->objfile;
7918
7919 if (dwarf_read_debug)
7920 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
7921 section->get_name (),
7922 section->get_file_name ());
7923
7924 section->read (objfile);
7925
7926 info_ptr = section->buffer;
7927
7928 while (info_ptr < section->buffer + section->size)
7929 {
7930 struct dwarf2_per_cu_data *this_cu;
7931
7932 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
7933
7934 comp_unit_head cu_header;
7935 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
7936 abbrev_section, info_ptr,
7937 rcuh_kind::COMPILE);
7938
7939 /* Save the compilation unit for later lookup. */
7940 if (cu_header.unit_type != DW_UT_type)
7941 {
7942 this_cu = XOBNEW (&objfile->objfile_obstack,
7943 struct dwarf2_per_cu_data);
7944 memset (this_cu, 0, sizeof (*this_cu));
7945 }
7946 else
7947 {
7948 auto sig_type = XOBNEW (&objfile->objfile_obstack,
7949 struct signatured_type);
7950 memset (sig_type, 0, sizeof (*sig_type));
7951 sig_type->signature = cu_header.signature;
7952 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
7953 this_cu = &sig_type->per_cu;
7954 }
7955 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
7956 this_cu->sect_off = sect_off;
7957 this_cu->length = cu_header.length + cu_header.initial_length_size;
7958 this_cu->is_dwz = is_dwz;
7959 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7960 this_cu->section = section;
7961
7962 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
7963
7964 info_ptr = info_ptr + this_cu->length;
7965 }
7966 }
7967
7968 /* Create a list of all compilation units in OBJFILE.
7969 This is only done for -readnow and building partial symtabs. */
7970
7971 static void
7972 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
7973 {
7974 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
7975 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
7976 &dwarf2_per_objfile->abbrev, 0);
7977
7978 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
7979 if (dwz != NULL)
7980 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
7981 1);
7982 }
7983
7984 /* Process all loaded DIEs for compilation unit CU, starting at
7985 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
7986 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
7987 DW_AT_ranges). See the comments of add_partial_subprogram on how
7988 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
7989
7990 static void
7991 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
7992 CORE_ADDR *highpc, int set_addrmap,
7993 struct dwarf2_cu *cu)
7994 {
7995 struct partial_die_info *pdi;
7996
7997 /* Now, march along the PDI's, descending into ones which have
7998 interesting children but skipping the children of the other ones,
7999 until we reach the end of the compilation unit. */
8000
8001 pdi = first_die;
8002
8003 while (pdi != NULL)
8004 {
8005 pdi->fixup (cu);
8006
8007 /* Anonymous namespaces or modules have no name but have interesting
8008 children, so we need to look at them. Ditto for anonymous
8009 enums. */
8010
8011 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8012 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8013 || pdi->tag == DW_TAG_imported_unit
8014 || pdi->tag == DW_TAG_inlined_subroutine)
8015 {
8016 switch (pdi->tag)
8017 {
8018 case DW_TAG_subprogram:
8019 case DW_TAG_inlined_subroutine:
8020 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8021 break;
8022 case DW_TAG_constant:
8023 case DW_TAG_variable:
8024 case DW_TAG_typedef:
8025 case DW_TAG_union_type:
8026 if (!pdi->is_declaration
8027 || (pdi->tag == DW_TAG_variable && pdi->is_external))
8028 {
8029 add_partial_symbol (pdi, cu);
8030 }
8031 break;
8032 case DW_TAG_class_type:
8033 case DW_TAG_interface_type:
8034 case DW_TAG_structure_type:
8035 if (!pdi->is_declaration)
8036 {
8037 add_partial_symbol (pdi, cu);
8038 }
8039 if ((cu->language == language_rust
8040 || cu->language == language_cplus) && pdi->has_children)
8041 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8042 set_addrmap, cu);
8043 break;
8044 case DW_TAG_enumeration_type:
8045 if (!pdi->is_declaration)
8046 add_partial_enumeration (pdi, cu);
8047 break;
8048 case DW_TAG_base_type:
8049 case DW_TAG_subrange_type:
8050 /* File scope base type definitions are added to the partial
8051 symbol table. */
8052 add_partial_symbol (pdi, cu);
8053 break;
8054 case DW_TAG_namespace:
8055 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8056 break;
8057 case DW_TAG_module:
8058 if (!pdi->is_declaration)
8059 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8060 break;
8061 case DW_TAG_imported_unit:
8062 {
8063 struct dwarf2_per_cu_data *per_cu;
8064
8065 /* For now we don't handle imported units in type units. */
8066 if (cu->per_cu->is_debug_types)
8067 {
8068 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8069 " supported in type units [in module %s]"),
8070 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8071 }
8072
8073 per_cu = dwarf2_find_containing_comp_unit
8074 (pdi->d.sect_off, pdi->is_dwz,
8075 cu->per_cu->dwarf2_per_objfile);
8076
8077 /* Go read the partial unit, if needed. */
8078 if (per_cu->v.psymtab == NULL)
8079 process_psymtab_comp_unit (per_cu, true, cu->language);
8080
8081 cu->per_cu->imported_symtabs_push (per_cu);
8082 }
8083 break;
8084 case DW_TAG_imported_declaration:
8085 add_partial_symbol (pdi, cu);
8086 break;
8087 default:
8088 break;
8089 }
8090 }
8091
8092 /* If the die has a sibling, skip to the sibling. */
8093
8094 pdi = pdi->die_sibling;
8095 }
8096 }
8097
8098 /* Functions used to compute the fully scoped name of a partial DIE.
8099
8100 Normally, this is simple. For C++, the parent DIE's fully scoped
8101 name is concatenated with "::" and the partial DIE's name.
8102 Enumerators are an exception; they use the scope of their parent
8103 enumeration type, i.e. the name of the enumeration type is not
8104 prepended to the enumerator.
8105
8106 There are two complexities. One is DW_AT_specification; in this
8107 case "parent" means the parent of the target of the specification,
8108 instead of the direct parent of the DIE. The other is compilers
8109 which do not emit DW_TAG_namespace; in this case we try to guess
8110 the fully qualified name of structure types from their members'
8111 linkage names. This must be done using the DIE's children rather
8112 than the children of any DW_AT_specification target. We only need
8113 to do this for structures at the top level, i.e. if the target of
8114 any DW_AT_specification (if any; otherwise the DIE itself) does not
8115 have a parent. */
8116
8117 /* Compute the scope prefix associated with PDI's parent, in
8118 compilation unit CU. The result will be allocated on CU's
8119 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8120 field. NULL is returned if no prefix is necessary. */
8121 static const char *
8122 partial_die_parent_scope (struct partial_die_info *pdi,
8123 struct dwarf2_cu *cu)
8124 {
8125 const char *grandparent_scope;
8126 struct partial_die_info *parent, *real_pdi;
8127
8128 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8129 then this means the parent of the specification DIE. */
8130
8131 real_pdi = pdi;
8132 while (real_pdi->has_specification)
8133 {
8134 auto res = find_partial_die (real_pdi->spec_offset,
8135 real_pdi->spec_is_dwz, cu);
8136 real_pdi = res.pdi;
8137 cu = res.cu;
8138 }
8139
8140 parent = real_pdi->die_parent;
8141 if (parent == NULL)
8142 return NULL;
8143
8144 if (parent->scope_set)
8145 return parent->scope;
8146
8147 parent->fixup (cu);
8148
8149 grandparent_scope = partial_die_parent_scope (parent, cu);
8150
8151 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8152 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8153 Work around this problem here. */
8154 if (cu->language == language_cplus
8155 && parent->tag == DW_TAG_namespace
8156 && strcmp (parent->name, "::") == 0
8157 && grandparent_scope == NULL)
8158 {
8159 parent->scope = NULL;
8160 parent->scope_set = 1;
8161 return NULL;
8162 }
8163
8164 /* Nested subroutines in Fortran get a prefix. */
8165 if (pdi->tag == DW_TAG_enumerator)
8166 /* Enumerators should not get the name of the enumeration as a prefix. */
8167 parent->scope = grandparent_scope;
8168 else if (parent->tag == DW_TAG_namespace
8169 || parent->tag == DW_TAG_module
8170 || parent->tag == DW_TAG_structure_type
8171 || parent->tag == DW_TAG_class_type
8172 || parent->tag == DW_TAG_interface_type
8173 || parent->tag == DW_TAG_union_type
8174 || parent->tag == DW_TAG_enumeration_type
8175 || (cu->language == language_fortran
8176 && parent->tag == DW_TAG_subprogram
8177 && pdi->tag == DW_TAG_subprogram))
8178 {
8179 if (grandparent_scope == NULL)
8180 parent->scope = parent->name;
8181 else
8182 parent->scope = typename_concat (&cu->comp_unit_obstack,
8183 grandparent_scope,
8184 parent->name, 0, cu);
8185 }
8186 else
8187 {
8188 /* FIXME drow/2004-04-01: What should we be doing with
8189 function-local names? For partial symbols, we should probably be
8190 ignoring them. */
8191 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8192 dwarf_tag_name (parent->tag),
8193 sect_offset_str (pdi->sect_off));
8194 parent->scope = grandparent_scope;
8195 }
8196
8197 parent->scope_set = 1;
8198 return parent->scope;
8199 }
8200
8201 /* Return the fully scoped name associated with PDI, from compilation unit
8202 CU. The result will be allocated with malloc. */
8203
8204 static gdb::unique_xmalloc_ptr<char>
8205 partial_die_full_name (struct partial_die_info *pdi,
8206 struct dwarf2_cu *cu)
8207 {
8208 const char *parent_scope;
8209
8210 /* If this is a template instantiation, we can not work out the
8211 template arguments from partial DIEs. So, unfortunately, we have
8212 to go through the full DIEs. At least any work we do building
8213 types here will be reused if full symbols are loaded later. */
8214 if (pdi->has_template_arguments)
8215 {
8216 pdi->fixup (cu);
8217
8218 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8219 {
8220 struct die_info *die;
8221 struct attribute attr;
8222 struct dwarf2_cu *ref_cu = cu;
8223
8224 /* DW_FORM_ref_addr is using section offset. */
8225 attr.name = (enum dwarf_attribute) 0;
8226 attr.form = DW_FORM_ref_addr;
8227 attr.u.unsnd = to_underlying (pdi->sect_off);
8228 die = follow_die_ref (NULL, &attr, &ref_cu);
8229
8230 return make_unique_xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8231 }
8232 }
8233
8234 parent_scope = partial_die_parent_scope (pdi, cu);
8235 if (parent_scope == NULL)
8236 return NULL;
8237 else
8238 return gdb::unique_xmalloc_ptr<char> (typename_concat (NULL, parent_scope,
8239 pdi->name, 0, cu));
8240 }
8241
8242 static void
8243 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8244 {
8245 struct dwarf2_per_objfile *dwarf2_per_objfile
8246 = cu->per_cu->dwarf2_per_objfile;
8247 struct objfile *objfile = dwarf2_per_objfile->objfile;
8248 struct gdbarch *gdbarch = objfile->arch ();
8249 CORE_ADDR addr = 0;
8250 const char *actual_name = NULL;
8251 CORE_ADDR baseaddr;
8252
8253 baseaddr = objfile->text_section_offset ();
8254
8255 gdb::unique_xmalloc_ptr<char> built_actual_name
8256 = partial_die_full_name (pdi, cu);
8257 if (built_actual_name != NULL)
8258 actual_name = built_actual_name.get ();
8259
8260 if (actual_name == NULL)
8261 actual_name = pdi->name;
8262
8263 partial_symbol psymbol;
8264 memset (&psymbol, 0, sizeof (psymbol));
8265 psymbol.ginfo.set_language (cu->language, &objfile->objfile_obstack);
8266 psymbol.ginfo.section = -1;
8267
8268 /* The code below indicates that the psymbol should be installed by
8269 setting this. */
8270 gdb::optional<psymbol_placement> where;
8271
8272 switch (pdi->tag)
8273 {
8274 case DW_TAG_inlined_subroutine:
8275 case DW_TAG_subprogram:
8276 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8277 - baseaddr);
8278 if (pdi->is_external
8279 || cu->language == language_ada
8280 || (cu->language == language_fortran
8281 && pdi->die_parent != NULL
8282 && pdi->die_parent->tag == DW_TAG_subprogram))
8283 {
8284 /* Normally, only "external" DIEs are part of the global scope.
8285 But in Ada and Fortran, we want to be able to access nested
8286 procedures globally. So all Ada and Fortran subprograms are
8287 stored in the global scope. */
8288 where = psymbol_placement::GLOBAL;
8289 }
8290 else
8291 where = psymbol_placement::STATIC;
8292
8293 psymbol.domain = VAR_DOMAIN;
8294 psymbol.aclass = LOC_BLOCK;
8295 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8296 psymbol.ginfo.value.address = addr;
8297
8298 if (pdi->main_subprogram && actual_name != NULL)
8299 set_objfile_main_name (objfile, actual_name, cu->language);
8300 break;
8301 case DW_TAG_constant:
8302 psymbol.domain = VAR_DOMAIN;
8303 psymbol.aclass = LOC_STATIC;
8304 where = (pdi->is_external
8305 ? psymbol_placement::GLOBAL
8306 : psymbol_placement::STATIC);
8307 break;
8308 case DW_TAG_variable:
8309 if (pdi->d.locdesc)
8310 addr = decode_locdesc (pdi->d.locdesc, cu);
8311
8312 if (pdi->d.locdesc
8313 && addr == 0
8314 && !dwarf2_per_objfile->has_section_at_zero)
8315 {
8316 /* A global or static variable may also have been stripped
8317 out by the linker if unused, in which case its address
8318 will be nullified; do not add such variables into partial
8319 symbol table then. */
8320 }
8321 else if (pdi->is_external)
8322 {
8323 /* Global Variable.
8324 Don't enter into the minimal symbol tables as there is
8325 a minimal symbol table entry from the ELF symbols already.
8326 Enter into partial symbol table if it has a location
8327 descriptor or a type.
8328 If the location descriptor is missing, new_symbol will create
8329 a LOC_UNRESOLVED symbol, the address of the variable will then
8330 be determined from the minimal symbol table whenever the variable
8331 is referenced.
8332 The address for the partial symbol table entry is not
8333 used by GDB, but it comes in handy for debugging partial symbol
8334 table building. */
8335
8336 if (pdi->d.locdesc || pdi->has_type)
8337 {
8338 psymbol.domain = VAR_DOMAIN;
8339 psymbol.aclass = LOC_STATIC;
8340 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8341 psymbol.ginfo.value.address = addr;
8342 where = psymbol_placement::GLOBAL;
8343 }
8344 }
8345 else
8346 {
8347 int has_loc = pdi->d.locdesc != NULL;
8348
8349 /* Static Variable. Skip symbols whose value we cannot know (those
8350 without location descriptors or constant values). */
8351 if (!has_loc && !pdi->has_const_value)
8352 return;
8353
8354 psymbol.domain = VAR_DOMAIN;
8355 psymbol.aclass = LOC_STATIC;
8356 psymbol.ginfo.section = SECT_OFF_TEXT (objfile);
8357 if (has_loc)
8358 psymbol.ginfo.value.address = addr;
8359 where = psymbol_placement::STATIC;
8360 }
8361 break;
8362 case DW_TAG_typedef:
8363 case DW_TAG_base_type:
8364 case DW_TAG_subrange_type:
8365 psymbol.domain = VAR_DOMAIN;
8366 psymbol.aclass = LOC_TYPEDEF;
8367 where = psymbol_placement::STATIC;
8368 break;
8369 case DW_TAG_imported_declaration:
8370 case DW_TAG_namespace:
8371 psymbol.domain = VAR_DOMAIN;
8372 psymbol.aclass = LOC_TYPEDEF;
8373 where = psymbol_placement::GLOBAL;
8374 break;
8375 case DW_TAG_module:
8376 /* With Fortran 77 there might be a "BLOCK DATA" module
8377 available without any name. If so, we skip the module as it
8378 doesn't bring any value. */
8379 if (actual_name != nullptr)
8380 {
8381 psymbol.domain = MODULE_DOMAIN;
8382 psymbol.aclass = LOC_TYPEDEF;
8383 where = psymbol_placement::GLOBAL;
8384 }
8385 break;
8386 case DW_TAG_class_type:
8387 case DW_TAG_interface_type:
8388 case DW_TAG_structure_type:
8389 case DW_TAG_union_type:
8390 case DW_TAG_enumeration_type:
8391 /* Skip external references. The DWARF standard says in the section
8392 about "Structure, Union, and Class Type Entries": "An incomplete
8393 structure, union or class type is represented by a structure,
8394 union or class entry that does not have a byte size attribute
8395 and that has a DW_AT_declaration attribute." */
8396 if (!pdi->has_byte_size && pdi->is_declaration)
8397 return;
8398
8399 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
8400 static vs. global. */
8401 psymbol.domain = STRUCT_DOMAIN;
8402 psymbol.aclass = LOC_TYPEDEF;
8403 where = (cu->language == language_cplus
8404 ? psymbol_placement::GLOBAL
8405 : psymbol_placement::STATIC);
8406 break;
8407 case DW_TAG_enumerator:
8408 psymbol.domain = VAR_DOMAIN;
8409 psymbol.aclass = LOC_CONST;
8410 where = (cu->language == language_cplus
8411 ? psymbol_placement::GLOBAL
8412 : psymbol_placement::STATIC);
8413 break;
8414 default:
8415 break;
8416 }
8417
8418 if (where.has_value ())
8419 {
8420 if (built_actual_name != nullptr)
8421 actual_name = objfile->intern (actual_name);
8422 if (pdi->linkage_name == nullptr || cu->language == language_ada)
8423 psymbol.ginfo.set_linkage_name (actual_name);
8424 else
8425 {
8426 psymbol.ginfo.set_demangled_name (actual_name,
8427 &objfile->objfile_obstack);
8428 psymbol.ginfo.set_linkage_name (pdi->linkage_name);
8429 }
8430 add_psymbol_to_list (psymbol, *where, objfile);
8431 }
8432 }
8433
8434 /* Read a partial die corresponding to a namespace; also, add a symbol
8435 corresponding to that namespace to the symbol table. NAMESPACE is
8436 the name of the enclosing namespace. */
8437
8438 static void
8439 add_partial_namespace (struct partial_die_info *pdi,
8440 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8441 int set_addrmap, struct dwarf2_cu *cu)
8442 {
8443 /* Add a symbol for the namespace. */
8444
8445 add_partial_symbol (pdi, cu);
8446
8447 /* Now scan partial symbols in that namespace. */
8448
8449 if (pdi->has_children)
8450 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8451 }
8452
8453 /* Read a partial die corresponding to a Fortran module. */
8454
8455 static void
8456 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
8457 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
8458 {
8459 /* Add a symbol for the namespace. */
8460
8461 add_partial_symbol (pdi, cu);
8462
8463 /* Now scan partial symbols in that module. */
8464
8465 if (pdi->has_children)
8466 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
8467 }
8468
8469 /* Read a partial die corresponding to a subprogram or an inlined
8470 subprogram and create a partial symbol for that subprogram.
8471 When the CU language allows it, this routine also defines a partial
8472 symbol for each nested subprogram that this subprogram contains.
8473 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
8474 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
8475
8476 PDI may also be a lexical block, in which case we simply search
8477 recursively for subprograms defined inside that lexical block.
8478 Again, this is only performed when the CU language allows this
8479 type of definitions. */
8480
8481 static void
8482 add_partial_subprogram (struct partial_die_info *pdi,
8483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
8484 int set_addrmap, struct dwarf2_cu *cu)
8485 {
8486 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
8487 {
8488 if (pdi->has_pc_info)
8489 {
8490 if (pdi->lowpc < *lowpc)
8491 *lowpc = pdi->lowpc;
8492 if (pdi->highpc > *highpc)
8493 *highpc = pdi->highpc;
8494 if (set_addrmap)
8495 {
8496 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8497 struct gdbarch *gdbarch = objfile->arch ();
8498 CORE_ADDR baseaddr;
8499 CORE_ADDR this_highpc;
8500 CORE_ADDR this_lowpc;
8501
8502 baseaddr = objfile->text_section_offset ();
8503 this_lowpc
8504 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8505 pdi->lowpc + baseaddr)
8506 - baseaddr);
8507 this_highpc
8508 = (gdbarch_adjust_dwarf2_addr (gdbarch,
8509 pdi->highpc + baseaddr)
8510 - baseaddr);
8511 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8512 this_lowpc, this_highpc - 1,
8513 cu->per_cu->v.psymtab);
8514 }
8515 }
8516
8517 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
8518 {
8519 if (!pdi->is_declaration)
8520 /* Ignore subprogram DIEs that do not have a name, they are
8521 illegal. Do not emit a complaint at this point, we will
8522 do so when we convert this psymtab into a symtab. */
8523 if (pdi->name)
8524 add_partial_symbol (pdi, cu);
8525 }
8526 }
8527
8528 if (! pdi->has_children)
8529 return;
8530
8531 if (cu->language == language_ada || cu->language == language_fortran)
8532 {
8533 pdi = pdi->die_child;
8534 while (pdi != NULL)
8535 {
8536 pdi->fixup (cu);
8537 if (pdi->tag == DW_TAG_subprogram
8538 || pdi->tag == DW_TAG_inlined_subroutine
8539 || pdi->tag == DW_TAG_lexical_block)
8540 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8541 pdi = pdi->die_sibling;
8542 }
8543 }
8544 }
8545
8546 /* Read a partial die corresponding to an enumeration type. */
8547
8548 static void
8549 add_partial_enumeration (struct partial_die_info *enum_pdi,
8550 struct dwarf2_cu *cu)
8551 {
8552 struct partial_die_info *pdi;
8553
8554 if (enum_pdi->name != NULL)
8555 add_partial_symbol (enum_pdi, cu);
8556
8557 pdi = enum_pdi->die_child;
8558 while (pdi)
8559 {
8560 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
8561 complaint (_("malformed enumerator DIE ignored"));
8562 else
8563 add_partial_symbol (pdi, cu);
8564 pdi = pdi->die_sibling;
8565 }
8566 }
8567
8568 /* Return the initial uleb128 in the die at INFO_PTR. */
8569
8570 static unsigned int
8571 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
8572 {
8573 unsigned int bytes_read;
8574
8575 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8576 }
8577
8578 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
8579 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
8580
8581 Return the corresponding abbrev, or NULL if the number is zero (indicating
8582 an empty DIE). In either case *BYTES_READ will be set to the length of
8583 the initial number. */
8584
8585 static struct abbrev_info *
8586 peek_die_abbrev (const die_reader_specs &reader,
8587 const gdb_byte *info_ptr, unsigned int *bytes_read)
8588 {
8589 dwarf2_cu *cu = reader.cu;
8590 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
8591 unsigned int abbrev_number
8592 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
8593
8594 if (abbrev_number == 0)
8595 return NULL;
8596
8597 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
8598 if (!abbrev)
8599 {
8600 error (_("Dwarf Error: Could not find abbrev number %d in %s"
8601 " at offset %s [in module %s]"),
8602 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
8603 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
8604 }
8605
8606 return abbrev;
8607 }
8608
8609 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8610 Returns a pointer to the end of a series of DIEs, terminated by an empty
8611 DIE. Any children of the skipped DIEs will also be skipped. */
8612
8613 static const gdb_byte *
8614 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
8615 {
8616 while (1)
8617 {
8618 unsigned int bytes_read;
8619 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
8620
8621 if (abbrev == NULL)
8622 return info_ptr + bytes_read;
8623 else
8624 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
8625 }
8626 }
8627
8628 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
8629 INFO_PTR should point just after the initial uleb128 of a DIE, and the
8630 abbrev corresponding to that skipped uleb128 should be passed in
8631 ABBREV. Returns a pointer to this DIE's sibling, skipping any
8632 children. */
8633
8634 static const gdb_byte *
8635 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
8636 struct abbrev_info *abbrev)
8637 {
8638 unsigned int bytes_read;
8639 struct attribute attr;
8640 bfd *abfd = reader->abfd;
8641 struct dwarf2_cu *cu = reader->cu;
8642 const gdb_byte *buffer = reader->buffer;
8643 const gdb_byte *buffer_end = reader->buffer_end;
8644 unsigned int form, i;
8645
8646 for (i = 0; i < abbrev->num_attrs; i++)
8647 {
8648 /* The only abbrev we care about is DW_AT_sibling. */
8649 if (abbrev->attrs[i].name == DW_AT_sibling)
8650 {
8651 bool ignored;
8652 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr,
8653 &ignored);
8654 if (attr.form == DW_FORM_ref_addr)
8655 complaint (_("ignoring absolute DW_AT_sibling"));
8656 else
8657 {
8658 sect_offset off = attr.get_ref_die_offset ();
8659 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
8660
8661 if (sibling_ptr < info_ptr)
8662 complaint (_("DW_AT_sibling points backwards"));
8663 else if (sibling_ptr > reader->buffer_end)
8664 reader->die_section->overflow_complaint ();
8665 else
8666 return sibling_ptr;
8667 }
8668 }
8669
8670 /* If it isn't DW_AT_sibling, skip this attribute. */
8671 form = abbrev->attrs[i].form;
8672 skip_attribute:
8673 switch (form)
8674 {
8675 case DW_FORM_ref_addr:
8676 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
8677 and later it is offset sized. */
8678 if (cu->header.version == 2)
8679 info_ptr += cu->header.addr_size;
8680 else
8681 info_ptr += cu->header.offset_size;
8682 break;
8683 case DW_FORM_GNU_ref_alt:
8684 info_ptr += cu->header.offset_size;
8685 break;
8686 case DW_FORM_addr:
8687 info_ptr += cu->header.addr_size;
8688 break;
8689 case DW_FORM_data1:
8690 case DW_FORM_ref1:
8691 case DW_FORM_flag:
8692 case DW_FORM_strx1:
8693 info_ptr += 1;
8694 break;
8695 case DW_FORM_flag_present:
8696 case DW_FORM_implicit_const:
8697 break;
8698 case DW_FORM_data2:
8699 case DW_FORM_ref2:
8700 case DW_FORM_strx2:
8701 info_ptr += 2;
8702 break;
8703 case DW_FORM_strx3:
8704 info_ptr += 3;
8705 break;
8706 case DW_FORM_data4:
8707 case DW_FORM_ref4:
8708 case DW_FORM_strx4:
8709 info_ptr += 4;
8710 break;
8711 case DW_FORM_data8:
8712 case DW_FORM_ref8:
8713 case DW_FORM_ref_sig8:
8714 info_ptr += 8;
8715 break;
8716 case DW_FORM_data16:
8717 info_ptr += 16;
8718 break;
8719 case DW_FORM_string:
8720 read_direct_string (abfd, info_ptr, &bytes_read);
8721 info_ptr += bytes_read;
8722 break;
8723 case DW_FORM_sec_offset:
8724 case DW_FORM_strp:
8725 case DW_FORM_GNU_strp_alt:
8726 info_ptr += cu->header.offset_size;
8727 break;
8728 case DW_FORM_exprloc:
8729 case DW_FORM_block:
8730 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8731 info_ptr += bytes_read;
8732 break;
8733 case DW_FORM_block1:
8734 info_ptr += 1 + read_1_byte (abfd, info_ptr);
8735 break;
8736 case DW_FORM_block2:
8737 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
8738 break;
8739 case DW_FORM_block4:
8740 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
8741 break;
8742 case DW_FORM_addrx:
8743 case DW_FORM_strx:
8744 case DW_FORM_sdata:
8745 case DW_FORM_udata:
8746 case DW_FORM_ref_udata:
8747 case DW_FORM_GNU_addr_index:
8748 case DW_FORM_GNU_str_index:
8749 case DW_FORM_rnglistx:
8750 case DW_FORM_loclistx:
8751 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
8752 break;
8753 case DW_FORM_indirect:
8754 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
8755 info_ptr += bytes_read;
8756 /* We need to continue parsing from here, so just go back to
8757 the top. */
8758 goto skip_attribute;
8759
8760 default:
8761 error (_("Dwarf Error: Cannot handle %s "
8762 "in DWARF reader [in module %s]"),
8763 dwarf_form_name (form),
8764 bfd_get_filename (abfd));
8765 }
8766 }
8767
8768 if (abbrev->has_children)
8769 return skip_children (reader, info_ptr);
8770 else
8771 return info_ptr;
8772 }
8773
8774 /* Locate ORIG_PDI's sibling.
8775 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
8776
8777 static const gdb_byte *
8778 locate_pdi_sibling (const struct die_reader_specs *reader,
8779 struct partial_die_info *orig_pdi,
8780 const gdb_byte *info_ptr)
8781 {
8782 /* Do we know the sibling already? */
8783
8784 if (orig_pdi->sibling)
8785 return orig_pdi->sibling;
8786
8787 /* Are there any children to deal with? */
8788
8789 if (!orig_pdi->has_children)
8790 return info_ptr;
8791
8792 /* Skip the children the long way. */
8793
8794 return skip_children (reader, info_ptr);
8795 }
8796
8797 /* Expand this partial symbol table into a full symbol table. SELF is
8798 not NULL. */
8799
8800 void
8801 dwarf2_psymtab::read_symtab (struct objfile *objfile)
8802 {
8803 struct dwarf2_per_objfile *dwarf2_per_objfile
8804 = get_dwarf2_per_objfile (objfile);
8805
8806 gdb_assert (!readin);
8807 /* If this psymtab is constructed from a debug-only objfile, the
8808 has_section_at_zero flag will not necessarily be correct. We
8809 can get the correct value for this flag by looking at the data
8810 associated with the (presumably stripped) associated objfile. */
8811 if (objfile->separate_debug_objfile_backlink)
8812 {
8813 struct dwarf2_per_objfile *dpo_backlink
8814 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
8815
8816 dwarf2_per_objfile->has_section_at_zero
8817 = dpo_backlink->has_section_at_zero;
8818 }
8819
8820 expand_psymtab (objfile);
8821
8822 process_cu_includes (dwarf2_per_objfile);
8823 }
8824 \f
8825 /* Reading in full CUs. */
8826
8827 /* Add PER_CU to the queue. */
8828
8829 static void
8830 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
8831 enum language pretend_language)
8832 {
8833 per_cu->queued = 1;
8834 per_cu->dwarf2_per_objfile->queue.emplace (per_cu, pretend_language);
8835 }
8836
8837 /* If PER_CU is not yet queued, add it to the queue.
8838 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
8839 dependency.
8840 The result is non-zero if PER_CU was queued, otherwise the result is zero
8841 meaning either PER_CU is already queued or it is already loaded.
8842
8843 N.B. There is an invariant here that if a CU is queued then it is loaded.
8844 The caller is required to load PER_CU if we return non-zero. */
8845
8846 static int
8847 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
8848 struct dwarf2_per_cu_data *per_cu,
8849 enum language pretend_language)
8850 {
8851 /* We may arrive here during partial symbol reading, if we need full
8852 DIEs to process an unusual case (e.g. template arguments). Do
8853 not queue PER_CU, just tell our caller to load its DIEs. */
8854 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
8855 {
8856 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
8857 return 1;
8858 return 0;
8859 }
8860
8861 /* Mark the dependence relation so that we don't flush PER_CU
8862 too early. */
8863 if (dependent_cu != NULL)
8864 dwarf2_add_dependence (dependent_cu, per_cu);
8865
8866 /* If it's already on the queue, we have nothing to do. */
8867 if (per_cu->queued)
8868 return 0;
8869
8870 /* If the compilation unit is already loaded, just mark it as
8871 used. */
8872 if (per_cu->cu != NULL)
8873 {
8874 per_cu->cu->last_used = 0;
8875 return 0;
8876 }
8877
8878 /* Add it to the queue. */
8879 queue_comp_unit (per_cu, pretend_language);
8880
8881 return 1;
8882 }
8883
8884 /* Process the queue. */
8885
8886 static void
8887 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
8888 {
8889 if (dwarf_read_debug)
8890 {
8891 fprintf_unfiltered (gdb_stdlog,
8892 "Expanding one or more symtabs of objfile %s ...\n",
8893 objfile_name (dwarf2_per_objfile->objfile));
8894 }
8895
8896 /* The queue starts out with one item, but following a DIE reference
8897 may load a new CU, adding it to the end of the queue. */
8898 while (!dwarf2_per_objfile->queue.empty ())
8899 {
8900 dwarf2_queue_item &item = dwarf2_per_objfile->queue.front ();
8901
8902 if ((dwarf2_per_objfile->using_index
8903 ? !item.per_cu->v.quick->compunit_symtab
8904 : (item.per_cu->v.psymtab && !item.per_cu->v.psymtab->readin))
8905 /* Skip dummy CUs. */
8906 && item.per_cu->cu != NULL)
8907 {
8908 struct dwarf2_per_cu_data *per_cu = item.per_cu;
8909 unsigned int debug_print_threshold;
8910 char buf[100];
8911
8912 if (per_cu->is_debug_types)
8913 {
8914 struct signatured_type *sig_type =
8915 (struct signatured_type *) per_cu;
8916
8917 sprintf (buf, "TU %s at offset %s",
8918 hex_string (sig_type->signature),
8919 sect_offset_str (per_cu->sect_off));
8920 /* There can be 100s of TUs.
8921 Only print them in verbose mode. */
8922 debug_print_threshold = 2;
8923 }
8924 else
8925 {
8926 sprintf (buf, "CU at offset %s",
8927 sect_offset_str (per_cu->sect_off));
8928 debug_print_threshold = 1;
8929 }
8930
8931 if (dwarf_read_debug >= debug_print_threshold)
8932 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
8933
8934 if (per_cu->is_debug_types)
8935 process_full_type_unit (per_cu, item.pretend_language);
8936 else
8937 process_full_comp_unit (per_cu, item.pretend_language);
8938
8939 if (dwarf_read_debug >= debug_print_threshold)
8940 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
8941 }
8942
8943 item.per_cu->queued = 0;
8944 dwarf2_per_objfile->queue.pop ();
8945 }
8946
8947 if (dwarf_read_debug)
8948 {
8949 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
8950 objfile_name (dwarf2_per_objfile->objfile));
8951 }
8952 }
8953
8954 /* Read in full symbols for PST, and anything it depends on. */
8955
8956 void
8957 dwarf2_psymtab::expand_psymtab (struct objfile *objfile)
8958 {
8959 gdb_assert (!readin);
8960
8961 expand_dependencies (objfile);
8962
8963 dw2_do_instantiate_symtab (per_cu_data, false);
8964 gdb_assert (get_compunit_symtab () != nullptr);
8965 }
8966
8967 /* Trivial hash function for die_info: the hash value of a DIE
8968 is its offset in .debug_info for this objfile. */
8969
8970 static hashval_t
8971 die_hash (const void *item)
8972 {
8973 const struct die_info *die = (const struct die_info *) item;
8974
8975 return to_underlying (die->sect_off);
8976 }
8977
8978 /* Trivial comparison function for die_info structures: two DIEs
8979 are equal if they have the same offset. */
8980
8981 static int
8982 die_eq (const void *item_lhs, const void *item_rhs)
8983 {
8984 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
8985 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
8986
8987 return die_lhs->sect_off == die_rhs->sect_off;
8988 }
8989
8990 /* Load the DIEs associated with PER_CU into memory. */
8991
8992 static void
8993 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
8994 bool skip_partial,
8995 enum language pretend_language)
8996 {
8997 gdb_assert (! this_cu->is_debug_types);
8998
8999 cutu_reader reader (this_cu, NULL, 1, skip_partial);
9000 if (reader.dummy_p)
9001 return;
9002
9003 struct dwarf2_cu *cu = reader.cu;
9004 const gdb_byte *info_ptr = reader.info_ptr;
9005
9006 gdb_assert (cu->die_hash == NULL);
9007 cu->die_hash =
9008 htab_create_alloc_ex (cu->header.length / 12,
9009 die_hash,
9010 die_eq,
9011 NULL,
9012 &cu->comp_unit_obstack,
9013 hashtab_obstack_allocate,
9014 dummy_obstack_deallocate);
9015
9016 if (reader.comp_unit_die->has_children)
9017 reader.comp_unit_die->child
9018 = read_die_and_siblings (&reader, reader.info_ptr,
9019 &info_ptr, reader.comp_unit_die);
9020 cu->dies = reader.comp_unit_die;
9021 /* comp_unit_die is not stored in die_hash, no need. */
9022
9023 /* We try not to read any attributes in this function, because not
9024 all CUs needed for references have been loaded yet, and symbol
9025 table processing isn't initialized. But we have to set the CU language,
9026 or we won't be able to build types correctly.
9027 Similarly, if we do not read the producer, we can not apply
9028 producer-specific interpretation. */
9029 prepare_one_comp_unit (cu, cu->dies, pretend_language);
9030
9031 reader.keep ();
9032 }
9033
9034 /* Add a DIE to the delayed physname list. */
9035
9036 static void
9037 add_to_method_list (struct type *type, int fnfield_index, int index,
9038 const char *name, struct die_info *die,
9039 struct dwarf2_cu *cu)
9040 {
9041 struct delayed_method_info mi;
9042 mi.type = type;
9043 mi.fnfield_index = fnfield_index;
9044 mi.index = index;
9045 mi.name = name;
9046 mi.die = die;
9047 cu->method_list.push_back (mi);
9048 }
9049
9050 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9051 "const" / "volatile". If so, decrements LEN by the length of the
9052 modifier and return true. Otherwise return false. */
9053
9054 template<size_t N>
9055 static bool
9056 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9057 {
9058 size_t mod_len = sizeof (mod) - 1;
9059 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9060 {
9061 len -= mod_len;
9062 return true;
9063 }
9064 return false;
9065 }
9066
9067 /* Compute the physnames of any methods on the CU's method list.
9068
9069 The computation of method physnames is delayed in order to avoid the
9070 (bad) condition that one of the method's formal parameters is of an as yet
9071 incomplete type. */
9072
9073 static void
9074 compute_delayed_physnames (struct dwarf2_cu *cu)
9075 {
9076 /* Only C++ delays computing physnames. */
9077 if (cu->method_list.empty ())
9078 return;
9079 gdb_assert (cu->language == language_cplus);
9080
9081 for (const delayed_method_info &mi : cu->method_list)
9082 {
9083 const char *physname;
9084 struct fn_fieldlist *fn_flp
9085 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9086 physname = dwarf2_physname (mi.name, mi.die, cu);
9087 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9088 = physname ? physname : "";
9089
9090 /* Since there's no tag to indicate whether a method is a
9091 const/volatile overload, extract that information out of the
9092 demangled name. */
9093 if (physname != NULL)
9094 {
9095 size_t len = strlen (physname);
9096
9097 while (1)
9098 {
9099 if (physname[len] == ')') /* shortcut */
9100 break;
9101 else if (check_modifier (physname, len, " const"))
9102 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9103 else if (check_modifier (physname, len, " volatile"))
9104 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9105 else
9106 break;
9107 }
9108 }
9109 }
9110
9111 /* The list is no longer needed. */
9112 cu->method_list.clear ();
9113 }
9114
9115 /* Go objects should be embedded in a DW_TAG_module DIE,
9116 and it's not clear if/how imported objects will appear.
9117 To keep Go support simple until that's worked out,
9118 go back through what we've read and create something usable.
9119 We could do this while processing each DIE, and feels kinda cleaner,
9120 but that way is more invasive.
9121 This is to, for example, allow the user to type "p var" or "b main"
9122 without having to specify the package name, and allow lookups
9123 of module.object to work in contexts that use the expression
9124 parser. */
9125
9126 static void
9127 fixup_go_packaging (struct dwarf2_cu *cu)
9128 {
9129 gdb::unique_xmalloc_ptr<char> package_name;
9130 struct pending *list;
9131 int i;
9132
9133 for (list = *cu->get_builder ()->get_global_symbols ();
9134 list != NULL;
9135 list = list->next)
9136 {
9137 for (i = 0; i < list->nsyms; ++i)
9138 {
9139 struct symbol *sym = list->symbol[i];
9140
9141 if (sym->language () == language_go
9142 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9143 {
9144 gdb::unique_xmalloc_ptr<char> this_package_name
9145 (go_symbol_package_name (sym));
9146
9147 if (this_package_name == NULL)
9148 continue;
9149 if (package_name == NULL)
9150 package_name = std::move (this_package_name);
9151 else
9152 {
9153 struct objfile *objfile
9154 = cu->per_cu->dwarf2_per_objfile->objfile;
9155 if (strcmp (package_name.get (), this_package_name.get ()) != 0)
9156 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9157 (symbol_symtab (sym) != NULL
9158 ? symtab_to_filename_for_display
9159 (symbol_symtab (sym))
9160 : objfile_name (objfile)),
9161 this_package_name.get (), package_name.get ());
9162 }
9163 }
9164 }
9165 }
9166
9167 if (package_name != NULL)
9168 {
9169 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9170 const char *saved_package_name = objfile->intern (package_name.get ());
9171 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9172 saved_package_name);
9173 struct symbol *sym;
9174
9175 sym = new (&objfile->objfile_obstack) symbol;
9176 sym->set_language (language_go, &objfile->objfile_obstack);
9177 sym->compute_and_set_names (saved_package_name, false, objfile->per_bfd);
9178 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9179 e.g., "main" finds the "main" module and not C's main(). */
9180 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9181 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9182 SYMBOL_TYPE (sym) = type;
9183
9184 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9185 }
9186 }
9187
9188 /* Allocate a fully-qualified name consisting of the two parts on the
9189 obstack. */
9190
9191 static const char *
9192 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9193 {
9194 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9195 }
9196
9197 /* A helper that allocates a variant part to attach to a Rust enum
9198 type. OBSTACK is where the results should be allocated. TYPE is
9199 the type we're processing. DISCRIMINANT_INDEX is the index of the
9200 discriminant. It must be the index of one of the fields of TYPE.
9201 DEFAULT_INDEX is the index of the default field; or -1 if there is
9202 no default. RANGES is indexed by "effective" field number (the
9203 field index, but omitting the discriminant and default fields) and
9204 must hold the discriminant values used by the variants. Note that
9205 RANGES must have a lifetime at least as long as OBSTACK -- either
9206 already allocated on it, or static. */
9207
9208 static void
9209 alloc_rust_variant (struct obstack *obstack, struct type *type,
9210 int discriminant_index, int default_index,
9211 gdb::array_view<discriminant_range> ranges)
9212 {
9213 /* When DISCRIMINANT_INDEX == -1, we have a univariant enum. Those
9214 must be handled by the caller. */
9215 gdb_assert (discriminant_index >= 0
9216 && discriminant_index < TYPE_NFIELDS (type));
9217 gdb_assert (default_index == -1
9218 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9219
9220 /* We have one variant for each non-discriminant field. */
9221 int n_variants = TYPE_NFIELDS (type) - 1;
9222
9223 variant *variants = new (obstack) variant[n_variants];
9224 int var_idx = 0;
9225 int range_idx = 0;
9226 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9227 {
9228 if (i == discriminant_index)
9229 continue;
9230
9231 variants[var_idx].first_field = i;
9232 variants[var_idx].last_field = i + 1;
9233
9234 /* The default field does not need a range, but other fields do.
9235 We skipped the discriminant above. */
9236 if (i != default_index)
9237 {
9238 variants[var_idx].discriminants = ranges.slice (range_idx, 1);
9239 ++range_idx;
9240 }
9241
9242 ++var_idx;
9243 }
9244
9245 gdb_assert (range_idx == ranges.size ());
9246 gdb_assert (var_idx == n_variants);
9247
9248 variant_part *part = new (obstack) variant_part;
9249 part->discriminant_index = discriminant_index;
9250 part->is_unsigned = TYPE_UNSIGNED (TYPE_FIELD_TYPE (type,
9251 discriminant_index));
9252 part->variants = gdb::array_view<variant> (variants, n_variants);
9253
9254 void *storage = obstack_alloc (obstack, sizeof (gdb::array_view<variant_part>));
9255 gdb::array_view<variant_part> *prop_value
9256 = new (storage) gdb::array_view<variant_part> (part, 1);
9257
9258 struct dynamic_prop prop;
9259 prop.kind = PROP_VARIANT_PARTS;
9260 prop.data.variant_parts = prop_value;
9261
9262 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
9263 }
9264
9265 /* Some versions of rustc emitted enums in an unusual way.
9266
9267 Ordinary enums were emitted as unions. The first element of each
9268 structure in the union was named "RUST$ENUM$DISR". This element
9269 held the discriminant.
9270
9271 These versions of Rust also implemented the "non-zero"
9272 optimization. When the enum had two values, and one is empty and
9273 the other holds a pointer that cannot be zero, the pointer is used
9274 as the discriminant, with a zero value meaning the empty variant.
9275 Here, the union's first member is of the form
9276 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
9277 where the fieldnos are the indices of the fields that should be
9278 traversed in order to find the field (which may be several fields deep)
9279 and the variantname is the name of the variant of the case when the
9280 field is zero.
9281
9282 This function recognizes whether TYPE is of one of these forms,
9283 and, if so, smashes it to be a variant type. */
9284
9285 static void
9286 quirk_rust_enum (struct type *type, struct objfile *objfile)
9287 {
9288 gdb_assert (type->code () == TYPE_CODE_UNION);
9289
9290 /* We don't need to deal with empty enums. */
9291 if (TYPE_NFIELDS (type) == 0)
9292 return;
9293
9294 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
9295 if (TYPE_NFIELDS (type) == 1
9296 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
9297 {
9298 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
9299
9300 /* Decode the field name to find the offset of the
9301 discriminant. */
9302 ULONGEST bit_offset = 0;
9303 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9304 while (name[0] >= '0' && name[0] <= '9')
9305 {
9306 char *tail;
9307 unsigned long index = strtoul (name, &tail, 10);
9308 name = tail;
9309 if (*name != '$'
9310 || index >= TYPE_NFIELDS (field_type)
9311 || (TYPE_FIELD_LOC_KIND (field_type, index)
9312 != FIELD_LOC_KIND_BITPOS))
9313 {
9314 complaint (_("Could not parse Rust enum encoding string \"%s\""
9315 "[in module %s]"),
9316 TYPE_FIELD_NAME (type, 0),
9317 objfile_name (objfile));
9318 return;
9319 }
9320 ++name;
9321
9322 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
9323 field_type = TYPE_FIELD_TYPE (field_type, index);
9324 }
9325
9326 /* Smash this type to be a structure type. We have to do this
9327 because the type has already been recorded. */
9328 type->set_code (TYPE_CODE_STRUCT);
9329 TYPE_NFIELDS (type) = 3;
9330 /* Save the field we care about. */
9331 struct field saved_field = TYPE_FIELD (type, 0);
9332 TYPE_FIELDS (type)
9333 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
9334
9335 /* Put the discriminant at index 0. */
9336 TYPE_FIELD_TYPE (type, 0) = field_type;
9337 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9338 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9339 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), bit_offset);
9340
9341 /* The order of fields doesn't really matter, so put the real
9342 field at index 1 and the data-less field at index 2. */
9343 TYPE_FIELD (type, 1) = saved_field;
9344 TYPE_FIELD_NAME (type, 1)
9345 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, 1)));
9346 TYPE_NAME (TYPE_FIELD_TYPE (type, 1))
9347 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9348 TYPE_FIELD_NAME (type, 1));
9349
9350 const char *dataless_name
9351 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
9352 name);
9353 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
9354 dataless_name);
9355 TYPE_FIELD_TYPE (type, 2) = dataless_type;
9356 /* NAME points into the original discriminant name, which
9357 already has the correct lifetime. */
9358 TYPE_FIELD_NAME (type, 2) = name;
9359 SET_FIELD_BITPOS (TYPE_FIELD (type, 2), 0);
9360
9361 /* Indicate that this is a variant type. */
9362 static discriminant_range ranges[1] = { { 0, 0 } };
9363 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1, ranges);
9364 }
9365 /* A union with a single anonymous field is probably an old-style
9366 univariant enum. */
9367 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
9368 {
9369 /* Smash this type to be a structure type. We have to do this
9370 because the type has already been recorded. */
9371 type->set_code (TYPE_CODE_STRUCT);
9372
9373 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
9374 const char *variant_name
9375 = rust_last_path_segment (TYPE_NAME (field_type));
9376 TYPE_FIELD_NAME (type, 0) = variant_name;
9377 TYPE_NAME (field_type)
9378 = rust_fully_qualify (&objfile->objfile_obstack,
9379 TYPE_NAME (type), variant_name);
9380 }
9381 else
9382 {
9383 struct type *disr_type = nullptr;
9384 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
9385 {
9386 disr_type = TYPE_FIELD_TYPE (type, i);
9387
9388 if (disr_type->code () != TYPE_CODE_STRUCT)
9389 {
9390 /* All fields of a true enum will be structs. */
9391 return;
9392 }
9393 else if (TYPE_NFIELDS (disr_type) == 0)
9394 {
9395 /* Could be data-less variant, so keep going. */
9396 disr_type = nullptr;
9397 }
9398 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
9399 "RUST$ENUM$DISR") != 0)
9400 {
9401 /* Not a Rust enum. */
9402 return;
9403 }
9404 else
9405 {
9406 /* Found one. */
9407 break;
9408 }
9409 }
9410
9411 /* If we got here without a discriminant, then it's probably
9412 just a union. */
9413 if (disr_type == nullptr)
9414 return;
9415
9416 /* Smash this type to be a structure type. We have to do this
9417 because the type has already been recorded. */
9418 type->set_code (TYPE_CODE_STRUCT);
9419
9420 /* Make space for the discriminant field. */
9421 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
9422 field *new_fields
9423 = (struct field *) TYPE_ZALLOC (type, (TYPE_NFIELDS (type)
9424 * sizeof (struct field)));
9425 memcpy (new_fields + 1, TYPE_FIELDS (type),
9426 TYPE_NFIELDS (type) * sizeof (struct field));
9427 TYPE_FIELDS (type) = new_fields;
9428 TYPE_NFIELDS (type) = TYPE_NFIELDS (type) + 1;
9429
9430 /* Install the discriminant at index 0 in the union. */
9431 TYPE_FIELD (type, 0) = *disr_field;
9432 TYPE_FIELD_ARTIFICIAL (type, 0) = 1;
9433 TYPE_FIELD_NAME (type, 0) = "<<discriminant>>";
9434
9435 /* We need a way to find the correct discriminant given a
9436 variant name. For convenience we build a map here. */
9437 struct type *enum_type = FIELD_TYPE (*disr_field);
9438 std::unordered_map<std::string, ULONGEST> discriminant_map;
9439 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
9440 {
9441 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
9442 {
9443 const char *name
9444 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
9445 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
9446 }
9447 }
9448
9449 int n_fields = TYPE_NFIELDS (type);
9450 /* We don't need a range entry for the discriminant, but we do
9451 need one for every other field, as there is no default
9452 variant. */
9453 discriminant_range *ranges = XOBNEWVEC (&objfile->objfile_obstack,
9454 discriminant_range,
9455 n_fields - 1);
9456 /* Skip the discriminant here. */
9457 for (int i = 1; i < n_fields; ++i)
9458 {
9459 /* Find the final word in the name of this variant's type.
9460 That name can be used to look up the correct
9461 discriminant. */
9462 const char *variant_name
9463 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (type, i)));
9464
9465 auto iter = discriminant_map.find (variant_name);
9466 if (iter != discriminant_map.end ())
9467 {
9468 ranges[i].low = iter->second;
9469 ranges[i].high = iter->second;
9470 }
9471
9472 /* Remove the discriminant field, if it exists. */
9473 struct type *sub_type = TYPE_FIELD_TYPE (type, i);
9474 if (TYPE_NFIELDS (sub_type) > 0)
9475 {
9476 --TYPE_NFIELDS (sub_type);
9477 ++TYPE_FIELDS (sub_type);
9478 }
9479 TYPE_FIELD_NAME (type, i) = variant_name;
9480 TYPE_NAME (sub_type)
9481 = rust_fully_qualify (&objfile->objfile_obstack,
9482 TYPE_NAME (type), variant_name);
9483 }
9484
9485 /* Indicate that this is a variant type. */
9486 alloc_rust_variant (&objfile->objfile_obstack, type, 0, 1,
9487 gdb::array_view<discriminant_range> (ranges,
9488 n_fields - 1));
9489 }
9490 }
9491
9492 /* Rewrite some Rust unions to be structures with variants parts. */
9493
9494 static void
9495 rust_union_quirks (struct dwarf2_cu *cu)
9496 {
9497 gdb_assert (cu->language == language_rust);
9498 for (type *type_ : cu->rust_unions)
9499 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
9500 /* We don't need this any more. */
9501 cu->rust_unions.clear ();
9502 }
9503
9504 /* Return the symtab for PER_CU. This works properly regardless of
9505 whether we're using the index or psymtabs. */
9506
9507 static struct compunit_symtab *
9508 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
9509 {
9510 return (per_cu->dwarf2_per_objfile->using_index
9511 ? per_cu->v.quick->compunit_symtab
9512 : per_cu->v.psymtab->compunit_symtab);
9513 }
9514
9515 /* A helper function for computing the list of all symbol tables
9516 included by PER_CU. */
9517
9518 static void
9519 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
9520 htab_t all_children, htab_t all_type_symtabs,
9521 struct dwarf2_per_cu_data *per_cu,
9522 struct compunit_symtab *immediate_parent)
9523 {
9524 void **slot;
9525 struct compunit_symtab *cust;
9526
9527 slot = htab_find_slot (all_children, per_cu, INSERT);
9528 if (*slot != NULL)
9529 {
9530 /* This inclusion and its children have been processed. */
9531 return;
9532 }
9533
9534 *slot = per_cu;
9535 /* Only add a CU if it has a symbol table. */
9536 cust = get_compunit_symtab (per_cu);
9537 if (cust != NULL)
9538 {
9539 /* If this is a type unit only add its symbol table if we haven't
9540 seen it yet (type unit per_cu's can share symtabs). */
9541 if (per_cu->is_debug_types)
9542 {
9543 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
9544 if (*slot == NULL)
9545 {
9546 *slot = cust;
9547 result->push_back (cust);
9548 if (cust->user == NULL)
9549 cust->user = immediate_parent;
9550 }
9551 }
9552 else
9553 {
9554 result->push_back (cust);
9555 if (cust->user == NULL)
9556 cust->user = immediate_parent;
9557 }
9558 }
9559
9560 if (!per_cu->imported_symtabs_empty ())
9561 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9562 {
9563 recursively_compute_inclusions (result, all_children,
9564 all_type_symtabs, ptr, cust);
9565 }
9566 }
9567
9568 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
9569 PER_CU. */
9570
9571 static void
9572 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
9573 {
9574 gdb_assert (! per_cu->is_debug_types);
9575
9576 if (!per_cu->imported_symtabs_empty ())
9577 {
9578 int len;
9579 std::vector<compunit_symtab *> result_symtabs;
9580 htab_t all_children, all_type_symtabs;
9581 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
9582
9583 /* If we don't have a symtab, we can just skip this case. */
9584 if (cust == NULL)
9585 return;
9586
9587 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9588 NULL, xcalloc, xfree);
9589 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
9590 NULL, xcalloc, xfree);
9591
9592 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
9593 {
9594 recursively_compute_inclusions (&result_symtabs, all_children,
9595 all_type_symtabs, ptr, cust);
9596 }
9597
9598 /* Now we have a transitive closure of all the included symtabs. */
9599 len = result_symtabs.size ();
9600 cust->includes
9601 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
9602 struct compunit_symtab *, len + 1);
9603 memcpy (cust->includes, result_symtabs.data (),
9604 len * sizeof (compunit_symtab *));
9605 cust->includes[len] = NULL;
9606
9607 htab_delete (all_children);
9608 htab_delete (all_type_symtabs);
9609 }
9610 }
9611
9612 /* Compute the 'includes' field for the symtabs of all the CUs we just
9613 read. */
9614
9615 static void
9616 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
9617 {
9618 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
9619 {
9620 if (! iter->is_debug_types)
9621 compute_compunit_symtab_includes (iter);
9622 }
9623
9624 dwarf2_per_objfile->just_read_cus.clear ();
9625 }
9626
9627 /* Generate full symbol information for PER_CU, whose DIEs have
9628 already been loaded into memory. */
9629
9630 static void
9631 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
9632 enum language pretend_language)
9633 {
9634 struct dwarf2_cu *cu = per_cu->cu;
9635 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9636 struct objfile *objfile = dwarf2_per_objfile->objfile;
9637 struct gdbarch *gdbarch = objfile->arch ();
9638 CORE_ADDR lowpc, highpc;
9639 struct compunit_symtab *cust;
9640 CORE_ADDR baseaddr;
9641 struct block *static_block;
9642 CORE_ADDR addr;
9643
9644 baseaddr = objfile->text_section_offset ();
9645
9646 /* Clear the list here in case something was left over. */
9647 cu->method_list.clear ();
9648
9649 cu->language = pretend_language;
9650 cu->language_defn = language_def (cu->language);
9651
9652 /* Do line number decoding in read_file_scope () */
9653 process_die (cu->dies, cu);
9654
9655 /* For now fudge the Go package. */
9656 if (cu->language == language_go)
9657 fixup_go_packaging (cu);
9658
9659 /* Now that we have processed all the DIEs in the CU, all the types
9660 should be complete, and it should now be safe to compute all of the
9661 physnames. */
9662 compute_delayed_physnames (cu);
9663
9664 if (cu->language == language_rust)
9665 rust_union_quirks (cu);
9666
9667 /* Some compilers don't define a DW_AT_high_pc attribute for the
9668 compilation unit. If the DW_AT_high_pc is missing, synthesize
9669 it, by scanning the DIE's below the compilation unit. */
9670 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
9671
9672 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
9673 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
9674
9675 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
9676 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
9677 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
9678 addrmap to help ensure it has an accurate map of pc values belonging to
9679 this comp unit. */
9680 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
9681
9682 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
9683 SECT_OFF_TEXT (objfile),
9684 0);
9685
9686 if (cust != NULL)
9687 {
9688 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
9689
9690 /* Set symtab language to language from DW_AT_language. If the
9691 compilation is from a C file generated by language preprocessors, do
9692 not set the language if it was already deduced by start_subfile. */
9693 if (!(cu->language == language_c
9694 && COMPUNIT_FILETABS (cust)->language != language_unknown))
9695 COMPUNIT_FILETABS (cust)->language = cu->language;
9696
9697 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
9698 produce DW_AT_location with location lists but it can be possibly
9699 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
9700 there were bugs in prologue debug info, fixed later in GCC-4.5
9701 by "unwind info for epilogues" patch (which is not directly related).
9702
9703 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
9704 needed, it would be wrong due to missing DW_AT_producer there.
9705
9706 Still one can confuse GDB by using non-standard GCC compilation
9707 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
9708 */
9709 if (cu->has_loclist && gcc_4_minor >= 5)
9710 cust->locations_valid = 1;
9711
9712 if (gcc_4_minor >= 5)
9713 cust->epilogue_unwind_valid = 1;
9714
9715 cust->call_site_htab = cu->call_site_htab;
9716 }
9717
9718 if (dwarf2_per_objfile->using_index)
9719 per_cu->v.quick->compunit_symtab = cust;
9720 else
9721 {
9722 dwarf2_psymtab *pst = per_cu->v.psymtab;
9723 pst->compunit_symtab = cust;
9724 pst->readin = true;
9725 }
9726
9727 /* Push it for inclusion processing later. */
9728 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
9729
9730 /* Not needed any more. */
9731 cu->reset_builder ();
9732 }
9733
9734 /* Generate full symbol information for type unit PER_CU, whose DIEs have
9735 already been loaded into memory. */
9736
9737 static void
9738 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
9739 enum language pretend_language)
9740 {
9741 struct dwarf2_cu *cu = per_cu->cu;
9742 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
9743 struct objfile *objfile = dwarf2_per_objfile->objfile;
9744 struct compunit_symtab *cust;
9745 struct signatured_type *sig_type;
9746
9747 gdb_assert (per_cu->is_debug_types);
9748 sig_type = (struct signatured_type *) per_cu;
9749
9750 /* Clear the list here in case something was left over. */
9751 cu->method_list.clear ();
9752
9753 cu->language = pretend_language;
9754 cu->language_defn = language_def (cu->language);
9755
9756 /* The symbol tables are set up in read_type_unit_scope. */
9757 process_die (cu->dies, cu);
9758
9759 /* For now fudge the Go package. */
9760 if (cu->language == language_go)
9761 fixup_go_packaging (cu);
9762
9763 /* Now that we have processed all the DIEs in the CU, all the types
9764 should be complete, and it should now be safe to compute all of the
9765 physnames. */
9766 compute_delayed_physnames (cu);
9767
9768 if (cu->language == language_rust)
9769 rust_union_quirks (cu);
9770
9771 /* TUs share symbol tables.
9772 If this is the first TU to use this symtab, complete the construction
9773 of it with end_expandable_symtab. Otherwise, complete the addition of
9774 this TU's symbols to the existing symtab. */
9775 if (sig_type->type_unit_group->compunit_symtab == NULL)
9776 {
9777 buildsym_compunit *builder = cu->get_builder ();
9778 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
9779 sig_type->type_unit_group->compunit_symtab = cust;
9780
9781 if (cust != NULL)
9782 {
9783 /* Set symtab language to language from DW_AT_language. If the
9784 compilation is from a C file generated by language preprocessors,
9785 do not set the language if it was already deduced by
9786 start_subfile. */
9787 if (!(cu->language == language_c
9788 && COMPUNIT_FILETABS (cust)->language != language_c))
9789 COMPUNIT_FILETABS (cust)->language = cu->language;
9790 }
9791 }
9792 else
9793 {
9794 cu->get_builder ()->augment_type_symtab ();
9795 cust = sig_type->type_unit_group->compunit_symtab;
9796 }
9797
9798 if (dwarf2_per_objfile->using_index)
9799 per_cu->v.quick->compunit_symtab = cust;
9800 else
9801 {
9802 dwarf2_psymtab *pst = per_cu->v.psymtab;
9803 pst->compunit_symtab = cust;
9804 pst->readin = true;
9805 }
9806
9807 /* Not needed any more. */
9808 cu->reset_builder ();
9809 }
9810
9811 /* Process an imported unit DIE. */
9812
9813 static void
9814 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
9815 {
9816 struct attribute *attr;
9817
9818 /* For now we don't handle imported units in type units. */
9819 if (cu->per_cu->is_debug_types)
9820 {
9821 error (_("Dwarf Error: DW_TAG_imported_unit is not"
9822 " supported in type units [in module %s]"),
9823 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
9824 }
9825
9826 attr = dwarf2_attr (die, DW_AT_import, cu);
9827 if (attr != NULL)
9828 {
9829 sect_offset sect_off = attr->get_ref_die_offset ();
9830 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
9831 dwarf2_per_cu_data *per_cu
9832 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
9833 cu->per_cu->dwarf2_per_objfile);
9834
9835 /* We're importing a C++ compilation unit with tag DW_TAG_compile_unit
9836 into another compilation unit, at root level. Regard this as a hint,
9837 and ignore it. */
9838 if (die->parent && die->parent->parent == NULL
9839 && per_cu->unit_type == DW_UT_compile
9840 && per_cu->lang == language_cplus)
9841 return;
9842
9843 /* If necessary, add it to the queue and load its DIEs. */
9844 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
9845 load_full_comp_unit (per_cu, false, cu->language);
9846
9847 cu->per_cu->imported_symtabs_push (per_cu);
9848 }
9849 }
9850
9851 /* RAII object that represents a process_die scope: i.e.,
9852 starts/finishes processing a DIE. */
9853 class process_die_scope
9854 {
9855 public:
9856 process_die_scope (die_info *die, dwarf2_cu *cu)
9857 : m_die (die), m_cu (cu)
9858 {
9859 /* We should only be processing DIEs not already in process. */
9860 gdb_assert (!m_die->in_process);
9861 m_die->in_process = true;
9862 }
9863
9864 ~process_die_scope ()
9865 {
9866 m_die->in_process = false;
9867
9868 /* If we're done processing the DIE for the CU that owns the line
9869 header, we don't need the line header anymore. */
9870 if (m_cu->line_header_die_owner == m_die)
9871 {
9872 delete m_cu->line_header;
9873 m_cu->line_header = NULL;
9874 m_cu->line_header_die_owner = NULL;
9875 }
9876 }
9877
9878 private:
9879 die_info *m_die;
9880 dwarf2_cu *m_cu;
9881 };
9882
9883 /* Process a die and its children. */
9884
9885 static void
9886 process_die (struct die_info *die, struct dwarf2_cu *cu)
9887 {
9888 process_die_scope scope (die, cu);
9889
9890 switch (die->tag)
9891 {
9892 case DW_TAG_padding:
9893 break;
9894 case DW_TAG_compile_unit:
9895 case DW_TAG_partial_unit:
9896 read_file_scope (die, cu);
9897 break;
9898 case DW_TAG_type_unit:
9899 read_type_unit_scope (die, cu);
9900 break;
9901 case DW_TAG_subprogram:
9902 /* Nested subprograms in Fortran get a prefix. */
9903 if (cu->language == language_fortran
9904 && die->parent != NULL
9905 && die->parent->tag == DW_TAG_subprogram)
9906 cu->processing_has_namespace_info = true;
9907 /* Fall through. */
9908 case DW_TAG_inlined_subroutine:
9909 read_func_scope (die, cu);
9910 break;
9911 case DW_TAG_lexical_block:
9912 case DW_TAG_try_block:
9913 case DW_TAG_catch_block:
9914 read_lexical_block_scope (die, cu);
9915 break;
9916 case DW_TAG_call_site:
9917 case DW_TAG_GNU_call_site:
9918 read_call_site_scope (die, cu);
9919 break;
9920 case DW_TAG_class_type:
9921 case DW_TAG_interface_type:
9922 case DW_TAG_structure_type:
9923 case DW_TAG_union_type:
9924 process_structure_scope (die, cu);
9925 break;
9926 case DW_TAG_enumeration_type:
9927 process_enumeration_scope (die, cu);
9928 break;
9929
9930 /* These dies have a type, but processing them does not create
9931 a symbol or recurse to process the children. Therefore we can
9932 read them on-demand through read_type_die. */
9933 case DW_TAG_subroutine_type:
9934 case DW_TAG_set_type:
9935 case DW_TAG_array_type:
9936 case DW_TAG_pointer_type:
9937 case DW_TAG_ptr_to_member_type:
9938 case DW_TAG_reference_type:
9939 case DW_TAG_rvalue_reference_type:
9940 case DW_TAG_string_type:
9941 break;
9942
9943 case DW_TAG_base_type:
9944 case DW_TAG_subrange_type:
9945 case DW_TAG_typedef:
9946 /* Add a typedef symbol for the type definition, if it has a
9947 DW_AT_name. */
9948 new_symbol (die, read_type_die (die, cu), cu);
9949 break;
9950 case DW_TAG_common_block:
9951 read_common_block (die, cu);
9952 break;
9953 case DW_TAG_common_inclusion:
9954 break;
9955 case DW_TAG_namespace:
9956 cu->processing_has_namespace_info = true;
9957 read_namespace (die, cu);
9958 break;
9959 case DW_TAG_module:
9960 cu->processing_has_namespace_info = true;
9961 read_module (die, cu);
9962 break;
9963 case DW_TAG_imported_declaration:
9964 cu->processing_has_namespace_info = true;
9965 if (read_namespace_alias (die, cu))
9966 break;
9967 /* The declaration is not a global namespace alias. */
9968 /* Fall through. */
9969 case DW_TAG_imported_module:
9970 cu->processing_has_namespace_info = true;
9971 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
9972 || cu->language != language_fortran))
9973 complaint (_("Tag '%s' has unexpected children"),
9974 dwarf_tag_name (die->tag));
9975 read_import_statement (die, cu);
9976 break;
9977
9978 case DW_TAG_imported_unit:
9979 process_imported_unit_die (die, cu);
9980 break;
9981
9982 case DW_TAG_variable:
9983 read_variable (die, cu);
9984 break;
9985
9986 default:
9987 new_symbol (die, NULL, cu);
9988 break;
9989 }
9990 }
9991 \f
9992 /* DWARF name computation. */
9993
9994 /* A helper function for dwarf2_compute_name which determines whether DIE
9995 needs to have the name of the scope prepended to the name listed in the
9996 die. */
9997
9998 static int
9999 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10000 {
10001 struct attribute *attr;
10002
10003 switch (die->tag)
10004 {
10005 case DW_TAG_namespace:
10006 case DW_TAG_typedef:
10007 case DW_TAG_class_type:
10008 case DW_TAG_interface_type:
10009 case DW_TAG_structure_type:
10010 case DW_TAG_union_type:
10011 case DW_TAG_enumeration_type:
10012 case DW_TAG_enumerator:
10013 case DW_TAG_subprogram:
10014 case DW_TAG_inlined_subroutine:
10015 case DW_TAG_member:
10016 case DW_TAG_imported_declaration:
10017 return 1;
10018
10019 case DW_TAG_variable:
10020 case DW_TAG_constant:
10021 /* We only need to prefix "globally" visible variables. These include
10022 any variable marked with DW_AT_external or any variable that
10023 lives in a namespace. [Variables in anonymous namespaces
10024 require prefixing, but they are not DW_AT_external.] */
10025
10026 if (dwarf2_attr (die, DW_AT_specification, cu))
10027 {
10028 struct dwarf2_cu *spec_cu = cu;
10029
10030 return die_needs_namespace (die_specification (die, &spec_cu),
10031 spec_cu);
10032 }
10033
10034 attr = dwarf2_attr (die, DW_AT_external, cu);
10035 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10036 && die->parent->tag != DW_TAG_module)
10037 return 0;
10038 /* A variable in a lexical block of some kind does not need a
10039 namespace, even though in C++ such variables may be external
10040 and have a mangled name. */
10041 if (die->parent->tag == DW_TAG_lexical_block
10042 || die->parent->tag == DW_TAG_try_block
10043 || die->parent->tag == DW_TAG_catch_block
10044 || die->parent->tag == DW_TAG_subprogram)
10045 return 0;
10046 return 1;
10047
10048 default:
10049 return 0;
10050 }
10051 }
10052
10053 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10054 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10055 defined for the given DIE. */
10056
10057 static struct attribute *
10058 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10059 {
10060 struct attribute *attr;
10061
10062 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10063 if (attr == NULL)
10064 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10065
10066 return attr;
10067 }
10068
10069 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10070 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10071 defined for the given DIE. */
10072
10073 static const char *
10074 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10075 {
10076 const char *linkage_name;
10077
10078 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10079 if (linkage_name == NULL)
10080 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10081
10082 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
10083 See https://github.com/rust-lang/rust/issues/32925. */
10084 if (cu->language == language_rust && linkage_name != NULL
10085 && strchr (linkage_name, '{') != NULL)
10086 linkage_name = NULL;
10087
10088 return linkage_name;
10089 }
10090
10091 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10092 compute the physname for the object, which include a method's:
10093 - formal parameters (C++),
10094 - receiver type (Go),
10095
10096 The term "physname" is a bit confusing.
10097 For C++, for example, it is the demangled name.
10098 For Go, for example, it's the mangled name.
10099
10100 For Ada, return the DIE's linkage name rather than the fully qualified
10101 name. PHYSNAME is ignored..
10102
10103 The result is allocated on the objfile_obstack and canonicalized. */
10104
10105 static const char *
10106 dwarf2_compute_name (const char *name,
10107 struct die_info *die, struct dwarf2_cu *cu,
10108 int physname)
10109 {
10110 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10111
10112 if (name == NULL)
10113 name = dwarf2_name (die, cu);
10114
10115 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10116 but otherwise compute it by typename_concat inside GDB.
10117 FIXME: Actually this is not really true, or at least not always true.
10118 It's all very confusing. compute_and_set_names doesn't try to demangle
10119 Fortran names because there is no mangling standard. So new_symbol
10120 will set the demangled name to the result of dwarf2_full_name, and it is
10121 the demangled name that GDB uses if it exists. */
10122 if (cu->language == language_ada
10123 || (cu->language == language_fortran && physname))
10124 {
10125 /* For Ada unit, we prefer the linkage name over the name, as
10126 the former contains the exported name, which the user expects
10127 to be able to reference. Ideally, we want the user to be able
10128 to reference this entity using either natural or linkage name,
10129 but we haven't started looking at this enhancement yet. */
10130 const char *linkage_name = dw2_linkage_name (die, cu);
10131
10132 if (linkage_name != NULL)
10133 return linkage_name;
10134 }
10135
10136 /* These are the only languages we know how to qualify names in. */
10137 if (name != NULL
10138 && (cu->language == language_cplus
10139 || cu->language == language_fortran || cu->language == language_d
10140 || cu->language == language_rust))
10141 {
10142 if (die_needs_namespace (die, cu))
10143 {
10144 const char *prefix;
10145 const char *canonical_name = NULL;
10146
10147 string_file buf;
10148
10149 prefix = determine_prefix (die, cu);
10150 if (*prefix != '\0')
10151 {
10152 gdb::unique_xmalloc_ptr<char> prefixed_name
10153 (typename_concat (NULL, prefix, name, physname, cu));
10154
10155 buf.puts (prefixed_name.get ());
10156 }
10157 else
10158 buf.puts (name);
10159
10160 /* Template parameters may be specified in the DIE's DW_AT_name, or
10161 as children with DW_TAG_template_type_param or
10162 DW_TAG_value_type_param. If the latter, add them to the name
10163 here. If the name already has template parameters, then
10164 skip this step; some versions of GCC emit both, and
10165 it is more efficient to use the pre-computed name.
10166
10167 Something to keep in mind about this process: it is very
10168 unlikely, or in some cases downright impossible, to produce
10169 something that will match the mangled name of a function.
10170 If the definition of the function has the same debug info,
10171 we should be able to match up with it anyway. But fallbacks
10172 using the minimal symbol, for instance to find a method
10173 implemented in a stripped copy of libstdc++, will not work.
10174 If we do not have debug info for the definition, we will have to
10175 match them up some other way.
10176
10177 When we do name matching there is a related problem with function
10178 templates; two instantiated function templates are allowed to
10179 differ only by their return types, which we do not add here. */
10180
10181 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10182 {
10183 struct attribute *attr;
10184 struct die_info *child;
10185 int first = 1;
10186
10187 die->building_fullname = 1;
10188
10189 for (child = die->child; child != NULL; child = child->sibling)
10190 {
10191 struct type *type;
10192 LONGEST value;
10193 const gdb_byte *bytes;
10194 struct dwarf2_locexpr_baton *baton;
10195 struct value *v;
10196
10197 if (child->tag != DW_TAG_template_type_param
10198 && child->tag != DW_TAG_template_value_param)
10199 continue;
10200
10201 if (first)
10202 {
10203 buf.puts ("<");
10204 first = 0;
10205 }
10206 else
10207 buf.puts (", ");
10208
10209 attr = dwarf2_attr (child, DW_AT_type, cu);
10210 if (attr == NULL)
10211 {
10212 complaint (_("template parameter missing DW_AT_type"));
10213 buf.puts ("UNKNOWN_TYPE");
10214 continue;
10215 }
10216 type = die_type (child, cu);
10217
10218 if (child->tag == DW_TAG_template_type_param)
10219 {
10220 c_print_type (type, "", &buf, -1, 0, cu->language,
10221 &type_print_raw_options);
10222 continue;
10223 }
10224
10225 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10226 if (attr == NULL)
10227 {
10228 complaint (_("template parameter missing "
10229 "DW_AT_const_value"));
10230 buf.puts ("UNKNOWN_VALUE");
10231 continue;
10232 }
10233
10234 dwarf2_const_value_attr (attr, type, name,
10235 &cu->comp_unit_obstack, cu,
10236 &value, &bytes, &baton);
10237
10238 if (TYPE_NOSIGN (type))
10239 /* GDB prints characters as NUMBER 'CHAR'. If that's
10240 changed, this can use value_print instead. */
10241 c_printchar (value, type, &buf);
10242 else
10243 {
10244 struct value_print_options opts;
10245
10246 if (baton != NULL)
10247 v = dwarf2_evaluate_loc_desc (type, NULL,
10248 baton->data,
10249 baton->size,
10250 baton->per_cu);
10251 else if (bytes != NULL)
10252 {
10253 v = allocate_value (type);
10254 memcpy (value_contents_writeable (v), bytes,
10255 TYPE_LENGTH (type));
10256 }
10257 else
10258 v = value_from_longest (type, value);
10259
10260 /* Specify decimal so that we do not depend on
10261 the radix. */
10262 get_formatted_print_options (&opts, 'd');
10263 opts.raw = 1;
10264 value_print (v, &buf, &opts);
10265 release_value (v);
10266 }
10267 }
10268
10269 die->building_fullname = 0;
10270
10271 if (!first)
10272 {
10273 /* Close the argument list, with a space if necessary
10274 (nested templates). */
10275 if (!buf.empty () && buf.string ().back () == '>')
10276 buf.puts (" >");
10277 else
10278 buf.puts (">");
10279 }
10280 }
10281
10282 /* For C++ methods, append formal parameter type
10283 information, if PHYSNAME. */
10284
10285 if (physname && die->tag == DW_TAG_subprogram
10286 && cu->language == language_cplus)
10287 {
10288 struct type *type = read_type_die (die, cu);
10289
10290 c_type_print_args (type, &buf, 1, cu->language,
10291 &type_print_raw_options);
10292
10293 if (cu->language == language_cplus)
10294 {
10295 /* Assume that an artificial first parameter is
10296 "this", but do not crash if it is not. RealView
10297 marks unnamed (and thus unused) parameters as
10298 artificial; there is no way to differentiate
10299 the two cases. */
10300 if (TYPE_NFIELDS (type) > 0
10301 && TYPE_FIELD_ARTIFICIAL (type, 0)
10302 && TYPE_FIELD_TYPE (type, 0)->code () == TYPE_CODE_PTR
10303 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
10304 0))))
10305 buf.puts (" const");
10306 }
10307 }
10308
10309 const std::string &intermediate_name = buf.string ();
10310
10311 if (cu->language == language_cplus)
10312 canonical_name
10313 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
10314 objfile);
10315
10316 /* If we only computed INTERMEDIATE_NAME, or if
10317 INTERMEDIATE_NAME is already canonical, then we need to
10318 intern it. */
10319 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
10320 name = objfile->intern (intermediate_name);
10321 else
10322 name = canonical_name;
10323 }
10324 }
10325
10326 return name;
10327 }
10328
10329 /* Return the fully qualified name of DIE, based on its DW_AT_name.
10330 If scope qualifiers are appropriate they will be added. The result
10331 will be allocated on the storage_obstack, or NULL if the DIE does
10332 not have a name. NAME may either be from a previous call to
10333 dwarf2_name or NULL.
10334
10335 The output string will be canonicalized (if C++). */
10336
10337 static const char *
10338 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10339 {
10340 return dwarf2_compute_name (name, die, cu, 0);
10341 }
10342
10343 /* Construct a physname for the given DIE in CU. NAME may either be
10344 from a previous call to dwarf2_name or NULL. The result will be
10345 allocated on the objfile_objstack or NULL if the DIE does not have a
10346 name.
10347
10348 The output string will be canonicalized (if C++). */
10349
10350 static const char *
10351 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
10352 {
10353 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10354 const char *retval, *mangled = NULL, *canon = NULL;
10355 int need_copy = 1;
10356
10357 /* In this case dwarf2_compute_name is just a shortcut not building anything
10358 on its own. */
10359 if (!die_needs_namespace (die, cu))
10360 return dwarf2_compute_name (name, die, cu, 1);
10361
10362 if (cu->language != language_rust)
10363 mangled = dw2_linkage_name (die, cu);
10364
10365 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
10366 has computed. */
10367 gdb::unique_xmalloc_ptr<char> demangled;
10368 if (mangled != NULL)
10369 {
10370
10371 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
10372 {
10373 /* Do nothing (do not demangle the symbol name). */
10374 }
10375 else if (cu->language == language_go)
10376 {
10377 /* This is a lie, but we already lie to the caller new_symbol.
10378 new_symbol assumes we return the mangled name.
10379 This just undoes that lie until things are cleaned up. */
10380 }
10381 else
10382 {
10383 /* Use DMGL_RET_DROP for C++ template functions to suppress
10384 their return type. It is easier for GDB users to search
10385 for such functions as `name(params)' than `long name(params)'.
10386 In such case the minimal symbol names do not match the full
10387 symbol names but for template functions there is never a need
10388 to look up their definition from their declaration so
10389 the only disadvantage remains the minimal symbol variant
10390 `long name(params)' does not have the proper inferior type. */
10391 demangled.reset (gdb_demangle (mangled,
10392 (DMGL_PARAMS | DMGL_ANSI
10393 | DMGL_RET_DROP)));
10394 }
10395 if (demangled)
10396 canon = demangled.get ();
10397 else
10398 {
10399 canon = mangled;
10400 need_copy = 0;
10401 }
10402 }
10403
10404 if (canon == NULL || check_physname)
10405 {
10406 const char *physname = dwarf2_compute_name (name, die, cu, 1);
10407
10408 if (canon != NULL && strcmp (physname, canon) != 0)
10409 {
10410 /* It may not mean a bug in GDB. The compiler could also
10411 compute DW_AT_linkage_name incorrectly. But in such case
10412 GDB would need to be bug-to-bug compatible. */
10413
10414 complaint (_("Computed physname <%s> does not match demangled <%s> "
10415 "(from linkage <%s>) - DIE at %s [in module %s]"),
10416 physname, canon, mangled, sect_offset_str (die->sect_off),
10417 objfile_name (objfile));
10418
10419 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
10420 is available here - over computed PHYSNAME. It is safer
10421 against both buggy GDB and buggy compilers. */
10422
10423 retval = canon;
10424 }
10425 else
10426 {
10427 retval = physname;
10428 need_copy = 0;
10429 }
10430 }
10431 else
10432 retval = canon;
10433
10434 if (need_copy)
10435 retval = objfile->intern (retval);
10436
10437 return retval;
10438 }
10439
10440 /* Inspect DIE in CU for a namespace alias. If one exists, record
10441 a new symbol for it.
10442
10443 Returns 1 if a namespace alias was recorded, 0 otherwise. */
10444
10445 static int
10446 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
10447 {
10448 struct attribute *attr;
10449
10450 /* If the die does not have a name, this is not a namespace
10451 alias. */
10452 attr = dwarf2_attr (die, DW_AT_name, cu);
10453 if (attr != NULL)
10454 {
10455 int num;
10456 struct die_info *d = die;
10457 struct dwarf2_cu *imported_cu = cu;
10458
10459 /* If the compiler has nested DW_AT_imported_declaration DIEs,
10460 keep inspecting DIEs until we hit the underlying import. */
10461 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
10462 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
10463 {
10464 attr = dwarf2_attr (d, DW_AT_import, cu);
10465 if (attr == NULL)
10466 break;
10467
10468 d = follow_die_ref (d, attr, &imported_cu);
10469 if (d->tag != DW_TAG_imported_declaration)
10470 break;
10471 }
10472
10473 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
10474 {
10475 complaint (_("DIE at %s has too many recursively imported "
10476 "declarations"), sect_offset_str (d->sect_off));
10477 return 0;
10478 }
10479
10480 if (attr != NULL)
10481 {
10482 struct type *type;
10483 sect_offset sect_off = attr->get_ref_die_offset ();
10484
10485 type = get_die_type_at_offset (sect_off, cu->per_cu);
10486 if (type != NULL && type->code () == TYPE_CODE_NAMESPACE)
10487 {
10488 /* This declaration is a global namespace alias. Add
10489 a symbol for it whose type is the aliased namespace. */
10490 new_symbol (die, type, cu);
10491 return 1;
10492 }
10493 }
10494 }
10495
10496 return 0;
10497 }
10498
10499 /* Return the using directives repository (global or local?) to use in the
10500 current context for CU.
10501
10502 For Ada, imported declarations can materialize renamings, which *may* be
10503 global. However it is impossible (for now?) in DWARF to distinguish
10504 "external" imported declarations and "static" ones. As all imported
10505 declarations seem to be static in all other languages, make them all CU-wide
10506 global only in Ada. */
10507
10508 static struct using_direct **
10509 using_directives (struct dwarf2_cu *cu)
10510 {
10511 if (cu->language == language_ada
10512 && cu->get_builder ()->outermost_context_p ())
10513 return cu->get_builder ()->get_global_using_directives ();
10514 else
10515 return cu->get_builder ()->get_local_using_directives ();
10516 }
10517
10518 /* Read the import statement specified by the given die and record it. */
10519
10520 static void
10521 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
10522 {
10523 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10524 struct attribute *import_attr;
10525 struct die_info *imported_die, *child_die;
10526 struct dwarf2_cu *imported_cu;
10527 const char *imported_name;
10528 const char *imported_name_prefix;
10529 const char *canonical_name;
10530 const char *import_alias;
10531 const char *imported_declaration = NULL;
10532 const char *import_prefix;
10533 std::vector<const char *> excludes;
10534
10535 import_attr = dwarf2_attr (die, DW_AT_import, cu);
10536 if (import_attr == NULL)
10537 {
10538 complaint (_("Tag '%s' has no DW_AT_import"),
10539 dwarf_tag_name (die->tag));
10540 return;
10541 }
10542
10543 imported_cu = cu;
10544 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
10545 imported_name = dwarf2_name (imported_die, imported_cu);
10546 if (imported_name == NULL)
10547 {
10548 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
10549
10550 The import in the following code:
10551 namespace A
10552 {
10553 typedef int B;
10554 }
10555
10556 int main ()
10557 {
10558 using A::B;
10559 B b;
10560 return b;
10561 }
10562
10563 ...
10564 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
10565 <52> DW_AT_decl_file : 1
10566 <53> DW_AT_decl_line : 6
10567 <54> DW_AT_import : <0x75>
10568 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
10569 <59> DW_AT_name : B
10570 <5b> DW_AT_decl_file : 1
10571 <5c> DW_AT_decl_line : 2
10572 <5d> DW_AT_type : <0x6e>
10573 ...
10574 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
10575 <76> DW_AT_byte_size : 4
10576 <77> DW_AT_encoding : 5 (signed)
10577
10578 imports the wrong die ( 0x75 instead of 0x58 ).
10579 This case will be ignored until the gcc bug is fixed. */
10580 return;
10581 }
10582
10583 /* Figure out the local name after import. */
10584 import_alias = dwarf2_name (die, cu);
10585
10586 /* Figure out where the statement is being imported to. */
10587 import_prefix = determine_prefix (die, cu);
10588
10589 /* Figure out what the scope of the imported die is and prepend it
10590 to the name of the imported die. */
10591 imported_name_prefix = determine_prefix (imported_die, imported_cu);
10592
10593 if (imported_die->tag != DW_TAG_namespace
10594 && imported_die->tag != DW_TAG_module)
10595 {
10596 imported_declaration = imported_name;
10597 canonical_name = imported_name_prefix;
10598 }
10599 else if (strlen (imported_name_prefix) > 0)
10600 canonical_name = obconcat (&objfile->objfile_obstack,
10601 imported_name_prefix,
10602 (cu->language == language_d ? "." : "::"),
10603 imported_name, (char *) NULL);
10604 else
10605 canonical_name = imported_name;
10606
10607 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
10608 for (child_die = die->child; child_die && child_die->tag;
10609 child_die = child_die->sibling)
10610 {
10611 /* DWARF-4: A Fortran use statement with a “rename list” may be
10612 represented by an imported module entry with an import attribute
10613 referring to the module and owned entries corresponding to those
10614 entities that are renamed as part of being imported. */
10615
10616 if (child_die->tag != DW_TAG_imported_declaration)
10617 {
10618 complaint (_("child DW_TAG_imported_declaration expected "
10619 "- DIE at %s [in module %s]"),
10620 sect_offset_str (child_die->sect_off),
10621 objfile_name (objfile));
10622 continue;
10623 }
10624
10625 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
10626 if (import_attr == NULL)
10627 {
10628 complaint (_("Tag '%s' has no DW_AT_import"),
10629 dwarf_tag_name (child_die->tag));
10630 continue;
10631 }
10632
10633 imported_cu = cu;
10634 imported_die = follow_die_ref_or_sig (child_die, import_attr,
10635 &imported_cu);
10636 imported_name = dwarf2_name (imported_die, imported_cu);
10637 if (imported_name == NULL)
10638 {
10639 complaint (_("child DW_TAG_imported_declaration has unknown "
10640 "imported name - DIE at %s [in module %s]"),
10641 sect_offset_str (child_die->sect_off),
10642 objfile_name (objfile));
10643 continue;
10644 }
10645
10646 excludes.push_back (imported_name);
10647
10648 process_die (child_die, cu);
10649 }
10650
10651 add_using_directive (using_directives (cu),
10652 import_prefix,
10653 canonical_name,
10654 import_alias,
10655 imported_declaration,
10656 excludes,
10657 0,
10658 &objfile->objfile_obstack);
10659 }
10660
10661 /* ICC<14 does not output the required DW_AT_declaration on incomplete
10662 types, but gives them a size of zero. Starting with version 14,
10663 ICC is compatible with GCC. */
10664
10665 static bool
10666 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
10667 {
10668 if (!cu->checked_producer)
10669 check_producer (cu);
10670
10671 return cu->producer_is_icc_lt_14;
10672 }
10673
10674 /* ICC generates a DW_AT_type for C void functions. This was observed on
10675 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
10676 which says that void functions should not have a DW_AT_type. */
10677
10678 static bool
10679 producer_is_icc (struct dwarf2_cu *cu)
10680 {
10681 if (!cu->checked_producer)
10682 check_producer (cu);
10683
10684 return cu->producer_is_icc;
10685 }
10686
10687 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
10688 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
10689 this, it was first present in GCC release 4.3.0. */
10690
10691 static bool
10692 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
10693 {
10694 if (!cu->checked_producer)
10695 check_producer (cu);
10696
10697 return cu->producer_is_gcc_lt_4_3;
10698 }
10699
10700 static file_and_directory
10701 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
10702 {
10703 file_and_directory res;
10704
10705 /* Find the filename. Do not use dwarf2_name here, since the filename
10706 is not a source language identifier. */
10707 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
10708 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
10709
10710 if (res.comp_dir == NULL
10711 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
10712 && IS_ABSOLUTE_PATH (res.name))
10713 {
10714 res.comp_dir_storage = ldirname (res.name);
10715 if (!res.comp_dir_storage.empty ())
10716 res.comp_dir = res.comp_dir_storage.c_str ();
10717 }
10718 if (res.comp_dir != NULL)
10719 {
10720 /* Irix 6.2 native cc prepends <machine>.: to the compilation
10721 directory, get rid of it. */
10722 const char *cp = strchr (res.comp_dir, ':');
10723
10724 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
10725 res.comp_dir = cp + 1;
10726 }
10727
10728 if (res.name == NULL)
10729 res.name = "<unknown>";
10730
10731 return res;
10732 }
10733
10734 /* Handle DW_AT_stmt_list for a compilation unit.
10735 DIE is the DW_TAG_compile_unit die for CU.
10736 COMP_DIR is the compilation directory. LOWPC is passed to
10737 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
10738
10739 static void
10740 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
10741 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
10742 {
10743 struct dwarf2_per_objfile *dwarf2_per_objfile
10744 = cu->per_cu->dwarf2_per_objfile;
10745 struct attribute *attr;
10746 struct line_header line_header_local;
10747 hashval_t line_header_local_hash;
10748 void **slot;
10749 int decode_mapping;
10750
10751 gdb_assert (! cu->per_cu->is_debug_types);
10752
10753 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
10754 if (attr == NULL)
10755 return;
10756
10757 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10758
10759 /* The line header hash table is only created if needed (it exists to
10760 prevent redundant reading of the line table for partial_units).
10761 If we're given a partial_unit, we'll need it. If we're given a
10762 compile_unit, then use the line header hash table if it's already
10763 created, but don't create one just yet. */
10764
10765 if (dwarf2_per_objfile->line_header_hash == NULL
10766 && die->tag == DW_TAG_partial_unit)
10767 {
10768 dwarf2_per_objfile->line_header_hash
10769 .reset (htab_create_alloc (127, line_header_hash_voidp,
10770 line_header_eq_voidp,
10771 free_line_header_voidp,
10772 xcalloc, xfree));
10773 }
10774
10775 line_header_local.sect_off = line_offset;
10776 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
10777 line_header_local_hash = line_header_hash (&line_header_local);
10778 if (dwarf2_per_objfile->line_header_hash != NULL)
10779 {
10780 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10781 &line_header_local,
10782 line_header_local_hash, NO_INSERT);
10783
10784 /* For DW_TAG_compile_unit we need info like symtab::linetable which
10785 is not present in *SLOT (since if there is something in *SLOT then
10786 it will be for a partial_unit). */
10787 if (die->tag == DW_TAG_partial_unit && slot != NULL)
10788 {
10789 gdb_assert (*slot != NULL);
10790 cu->line_header = (struct line_header *) *slot;
10791 return;
10792 }
10793 }
10794
10795 /* dwarf_decode_line_header does not yet provide sufficient information.
10796 We always have to call also dwarf_decode_lines for it. */
10797 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
10798 if (lh == NULL)
10799 return;
10800
10801 cu->line_header = lh.release ();
10802 cu->line_header_die_owner = die;
10803
10804 if (dwarf2_per_objfile->line_header_hash == NULL)
10805 slot = NULL;
10806 else
10807 {
10808 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash.get (),
10809 &line_header_local,
10810 line_header_local_hash, INSERT);
10811 gdb_assert (slot != NULL);
10812 }
10813 if (slot != NULL && *slot == NULL)
10814 {
10815 /* This newly decoded line number information unit will be owned
10816 by line_header_hash hash table. */
10817 *slot = cu->line_header;
10818 cu->line_header_die_owner = NULL;
10819 }
10820 else
10821 {
10822 /* We cannot free any current entry in (*slot) as that struct line_header
10823 may be already used by multiple CUs. Create only temporary decoded
10824 line_header for this CU - it may happen at most once for each line
10825 number information unit. And if we're not using line_header_hash
10826 then this is what we want as well. */
10827 gdb_assert (die->tag != DW_TAG_partial_unit);
10828 }
10829 decode_mapping = (die->tag != DW_TAG_partial_unit);
10830 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
10831 decode_mapping);
10832
10833 }
10834
10835 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
10836
10837 static void
10838 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
10839 {
10840 struct dwarf2_per_objfile *dwarf2_per_objfile
10841 = cu->per_cu->dwarf2_per_objfile;
10842 struct objfile *objfile = dwarf2_per_objfile->objfile;
10843 struct gdbarch *gdbarch = objfile->arch ();
10844 CORE_ADDR lowpc = ((CORE_ADDR) -1);
10845 CORE_ADDR highpc = ((CORE_ADDR) 0);
10846 struct attribute *attr;
10847 struct die_info *child_die;
10848 CORE_ADDR baseaddr;
10849
10850 prepare_one_comp_unit (cu, die, cu->language);
10851 baseaddr = objfile->text_section_offset ();
10852
10853 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
10854
10855 /* If we didn't find a lowpc, set it to highpc to avoid complaints
10856 from finish_block. */
10857 if (lowpc == ((CORE_ADDR) -1))
10858 lowpc = highpc;
10859 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
10860
10861 file_and_directory fnd = find_file_and_directory (die, cu);
10862
10863 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
10864 standardised yet. As a workaround for the language detection we fall
10865 back to the DW_AT_producer string. */
10866 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
10867 cu->language = language_opencl;
10868
10869 /* Similar hack for Go. */
10870 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
10871 set_cu_language (DW_LANG_Go, cu);
10872
10873 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
10874
10875 /* Decode line number information if present. We do this before
10876 processing child DIEs, so that the line header table is available
10877 for DW_AT_decl_file. */
10878 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
10879
10880 /* Process all dies in compilation unit. */
10881 if (die->child != NULL)
10882 {
10883 child_die = die->child;
10884 while (child_die && child_die->tag)
10885 {
10886 process_die (child_die, cu);
10887 child_die = child_die->sibling;
10888 }
10889 }
10890
10891 /* Decode macro information, if present. Dwarf 2 macro information
10892 refers to information in the line number info statement program
10893 header, so we can only read it if we've read the header
10894 successfully. */
10895 attr = dwarf2_attr (die, DW_AT_macros, cu);
10896 if (attr == NULL)
10897 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
10898 if (attr && cu->line_header)
10899 {
10900 if (dwarf2_attr (die, DW_AT_macro_info, cu))
10901 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
10902
10903 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
10904 }
10905 else
10906 {
10907 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
10908 if (attr && cu->line_header)
10909 {
10910 unsigned int macro_offset = DW_UNSND (attr);
10911
10912 dwarf_decode_macros (cu, macro_offset, 0);
10913 }
10914 }
10915 }
10916
10917 void
10918 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
10919 {
10920 struct type_unit_group *tu_group;
10921 int first_time;
10922 struct attribute *attr;
10923 unsigned int i;
10924 struct signatured_type *sig_type;
10925
10926 gdb_assert (per_cu->is_debug_types);
10927 sig_type = (struct signatured_type *) per_cu;
10928
10929 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
10930
10931 /* If we're using .gdb_index (includes -readnow) then
10932 per_cu->type_unit_group may not have been set up yet. */
10933 if (sig_type->type_unit_group == NULL)
10934 sig_type->type_unit_group = get_type_unit_group (this, attr);
10935 tu_group = sig_type->type_unit_group;
10936
10937 /* If we've already processed this stmt_list there's no real need to
10938 do it again, we could fake it and just recreate the part we need
10939 (file name,index -> symtab mapping). If data shows this optimization
10940 is useful we can do it then. */
10941 first_time = tu_group->compunit_symtab == NULL;
10942
10943 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
10944 debug info. */
10945 line_header_up lh;
10946 if (attr != NULL)
10947 {
10948 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
10949 lh = dwarf_decode_line_header (line_offset, this);
10950 }
10951 if (lh == NULL)
10952 {
10953 if (first_time)
10954 start_symtab ("", NULL, 0);
10955 else
10956 {
10957 gdb_assert (tu_group->symtabs == NULL);
10958 gdb_assert (m_builder == nullptr);
10959 struct compunit_symtab *cust = tu_group->compunit_symtab;
10960 m_builder.reset (new struct buildsym_compunit
10961 (COMPUNIT_OBJFILE (cust), "",
10962 COMPUNIT_DIRNAME (cust),
10963 compunit_language (cust),
10964 0, cust));
10965 list_in_scope = get_builder ()->get_file_symbols ();
10966 }
10967 return;
10968 }
10969
10970 line_header = lh.release ();
10971 line_header_die_owner = die;
10972
10973 if (first_time)
10974 {
10975 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
10976
10977 /* Note: We don't assign tu_group->compunit_symtab yet because we're
10978 still initializing it, and our caller (a few levels up)
10979 process_full_type_unit still needs to know if this is the first
10980 time. */
10981
10982 tu_group->symtabs
10983 = XOBNEWVEC (&COMPUNIT_OBJFILE (cust)->objfile_obstack,
10984 struct symtab *, line_header->file_names_size ());
10985
10986 auto &file_names = line_header->file_names ();
10987 for (i = 0; i < file_names.size (); ++i)
10988 {
10989 file_entry &fe = file_names[i];
10990 dwarf2_start_subfile (this, fe.name,
10991 fe.include_dir (line_header));
10992 buildsym_compunit *b = get_builder ();
10993 if (b->get_current_subfile ()->symtab == NULL)
10994 {
10995 /* NOTE: start_subfile will recognize when it's been
10996 passed a file it has already seen. So we can't
10997 assume there's a simple mapping from
10998 cu->line_header->file_names to subfiles, plus
10999 cu->line_header->file_names may contain dups. */
11000 b->get_current_subfile ()->symtab
11001 = allocate_symtab (cust, b->get_current_subfile ()->name);
11002 }
11003
11004 fe.symtab = b->get_current_subfile ()->symtab;
11005 tu_group->symtabs[i] = fe.symtab;
11006 }
11007 }
11008 else
11009 {
11010 gdb_assert (m_builder == nullptr);
11011 struct compunit_symtab *cust = tu_group->compunit_symtab;
11012 m_builder.reset (new struct buildsym_compunit
11013 (COMPUNIT_OBJFILE (cust), "",
11014 COMPUNIT_DIRNAME (cust),
11015 compunit_language (cust),
11016 0, cust));
11017 list_in_scope = get_builder ()->get_file_symbols ();
11018
11019 auto &file_names = line_header->file_names ();
11020 for (i = 0; i < file_names.size (); ++i)
11021 {
11022 file_entry &fe = file_names[i];
11023 fe.symtab = tu_group->symtabs[i];
11024 }
11025 }
11026
11027 /* The main symtab is allocated last. Type units don't have DW_AT_name
11028 so they don't have a "real" (so to speak) symtab anyway.
11029 There is later code that will assign the main symtab to all symbols
11030 that don't have one. We need to handle the case of a symbol with a
11031 missing symtab (DW_AT_decl_file) anyway. */
11032 }
11033
11034 /* Process DW_TAG_type_unit.
11035 For TUs we want to skip the first top level sibling if it's not the
11036 actual type being defined by this TU. In this case the first top
11037 level sibling is there to provide context only. */
11038
11039 static void
11040 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11041 {
11042 struct die_info *child_die;
11043
11044 prepare_one_comp_unit (cu, die, language_minimal);
11045
11046 /* Initialize (or reinitialize) the machinery for building symtabs.
11047 We do this before processing child DIEs, so that the line header table
11048 is available for DW_AT_decl_file. */
11049 cu->setup_type_unit_groups (die);
11050
11051 if (die->child != NULL)
11052 {
11053 child_die = die->child;
11054 while (child_die && child_die->tag)
11055 {
11056 process_die (child_die, cu);
11057 child_die = child_die->sibling;
11058 }
11059 }
11060 }
11061 \f
11062 /* DWO/DWP files.
11063
11064 http://gcc.gnu.org/wiki/DebugFission
11065 http://gcc.gnu.org/wiki/DebugFissionDWP
11066
11067 To simplify handling of both DWO files ("object" files with the DWARF info)
11068 and DWP files (a file with the DWOs packaged up into one file), we treat
11069 DWP files as having a collection of virtual DWO files. */
11070
11071 static hashval_t
11072 hash_dwo_file (const void *item)
11073 {
11074 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11075 hashval_t hash;
11076
11077 hash = htab_hash_string (dwo_file->dwo_name);
11078 if (dwo_file->comp_dir != NULL)
11079 hash += htab_hash_string (dwo_file->comp_dir);
11080 return hash;
11081 }
11082
11083 static int
11084 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11085 {
11086 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11087 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11088
11089 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11090 return 0;
11091 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11092 return lhs->comp_dir == rhs->comp_dir;
11093 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11094 }
11095
11096 /* Allocate a hash table for DWO files. */
11097
11098 static htab_up
11099 allocate_dwo_file_hash_table ()
11100 {
11101 auto delete_dwo_file = [] (void *item)
11102 {
11103 struct dwo_file *dwo_file = (struct dwo_file *) item;
11104
11105 delete dwo_file;
11106 };
11107
11108 return htab_up (htab_create_alloc (41,
11109 hash_dwo_file,
11110 eq_dwo_file,
11111 delete_dwo_file,
11112 xcalloc, xfree));
11113 }
11114
11115 /* Lookup DWO file DWO_NAME. */
11116
11117 static void **
11118 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11119 const char *dwo_name,
11120 const char *comp_dir)
11121 {
11122 struct dwo_file find_entry;
11123 void **slot;
11124
11125 if (dwarf2_per_objfile->dwo_files == NULL)
11126 dwarf2_per_objfile->dwo_files = allocate_dwo_file_hash_table ();
11127
11128 find_entry.dwo_name = dwo_name;
11129 find_entry.comp_dir = comp_dir;
11130 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11131 INSERT);
11132
11133 return slot;
11134 }
11135
11136 static hashval_t
11137 hash_dwo_unit (const void *item)
11138 {
11139 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11140
11141 /* This drops the top 32 bits of the id, but is ok for a hash. */
11142 return dwo_unit->signature;
11143 }
11144
11145 static int
11146 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11147 {
11148 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11149 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11150
11151 /* The signature is assumed to be unique within the DWO file.
11152 So while object file CU dwo_id's always have the value zero,
11153 that's OK, assuming each object file DWO file has only one CU,
11154 and that's the rule for now. */
11155 return lhs->signature == rhs->signature;
11156 }
11157
11158 /* Allocate a hash table for DWO CUs,TUs.
11159 There is one of these tables for each of CUs,TUs for each DWO file. */
11160
11161 static htab_up
11162 allocate_dwo_unit_table ()
11163 {
11164 /* Start out with a pretty small number.
11165 Generally DWO files contain only one CU and maybe some TUs. */
11166 return htab_up (htab_create_alloc (3,
11167 hash_dwo_unit,
11168 eq_dwo_unit,
11169 NULL, xcalloc, xfree));
11170 }
11171
11172 /* die_reader_func for create_dwo_cu. */
11173
11174 static void
11175 create_dwo_cu_reader (const struct die_reader_specs *reader,
11176 const gdb_byte *info_ptr,
11177 struct die_info *comp_unit_die,
11178 struct dwo_file *dwo_file,
11179 struct dwo_unit *dwo_unit)
11180 {
11181 struct dwarf2_cu *cu = reader->cu;
11182 sect_offset sect_off = cu->per_cu->sect_off;
11183 struct dwarf2_section_info *section = cu->per_cu->section;
11184
11185 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11186 if (!signature.has_value ())
11187 {
11188 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11189 " its dwo_id [in module %s]"),
11190 sect_offset_str (sect_off), dwo_file->dwo_name);
11191 return;
11192 }
11193
11194 dwo_unit->dwo_file = dwo_file;
11195 dwo_unit->signature = *signature;
11196 dwo_unit->section = section;
11197 dwo_unit->sect_off = sect_off;
11198 dwo_unit->length = cu->per_cu->length;
11199
11200 if (dwarf_read_debug)
11201 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11202 sect_offset_str (sect_off),
11203 hex_string (dwo_unit->signature));
11204 }
11205
11206 /* Create the dwo_units for the CUs in a DWO_FILE.
11207 Note: This function processes DWO files only, not DWP files. */
11208
11209 static void
11210 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11211 dwarf2_cu *cu, struct dwo_file &dwo_file,
11212 dwarf2_section_info &section, htab_up &cus_htab)
11213 {
11214 struct objfile *objfile = dwarf2_per_objfile->objfile;
11215 const gdb_byte *info_ptr, *end_ptr;
11216
11217 section.read (objfile);
11218 info_ptr = section.buffer;
11219
11220 if (info_ptr == NULL)
11221 return;
11222
11223 if (dwarf_read_debug)
11224 {
11225 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
11226 section.get_name (),
11227 section.get_file_name ());
11228 }
11229
11230 end_ptr = info_ptr + section.size;
11231 while (info_ptr < end_ptr)
11232 {
11233 struct dwarf2_per_cu_data per_cu;
11234 struct dwo_unit read_unit {};
11235 struct dwo_unit *dwo_unit;
11236 void **slot;
11237 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
11238
11239 memset (&per_cu, 0, sizeof (per_cu));
11240 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
11241 per_cu.is_debug_types = 0;
11242 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
11243 per_cu.section = &section;
11244
11245 cutu_reader reader (&per_cu, cu, &dwo_file);
11246 if (!reader.dummy_p)
11247 create_dwo_cu_reader (&reader, reader.info_ptr, reader.comp_unit_die,
11248 &dwo_file, &read_unit);
11249 info_ptr += per_cu.length;
11250
11251 // If the unit could not be parsed, skip it.
11252 if (read_unit.dwo_file == NULL)
11253 continue;
11254
11255 if (cus_htab == NULL)
11256 cus_htab = allocate_dwo_unit_table ();
11257
11258 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11259 *dwo_unit = read_unit;
11260 slot = htab_find_slot (cus_htab.get (), dwo_unit, INSERT);
11261 gdb_assert (slot != NULL);
11262 if (*slot != NULL)
11263 {
11264 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
11265 sect_offset dup_sect_off = dup_cu->sect_off;
11266
11267 complaint (_("debug cu entry at offset %s is duplicate to"
11268 " the entry at offset %s, signature %s"),
11269 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
11270 hex_string (dwo_unit->signature));
11271 }
11272 *slot = (void *)dwo_unit;
11273 }
11274 }
11275
11276 /* DWP file .debug_{cu,tu}_index section format:
11277 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
11278
11279 DWP Version 1:
11280
11281 Both index sections have the same format, and serve to map a 64-bit
11282 signature to a set of section numbers. Each section begins with a header,
11283 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
11284 indexes, and a pool of 32-bit section numbers. The index sections will be
11285 aligned at 8-byte boundaries in the file.
11286
11287 The index section header consists of:
11288
11289 V, 32 bit version number
11290 -, 32 bits unused
11291 N, 32 bit number of compilation units or type units in the index
11292 M, 32 bit number of slots in the hash table
11293
11294 Numbers are recorded using the byte order of the application binary.
11295
11296 The hash table begins at offset 16 in the section, and consists of an array
11297 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
11298 order of the application binary). Unused slots in the hash table are 0.
11299 (We rely on the extreme unlikeliness of a signature being exactly 0.)
11300
11301 The parallel table begins immediately after the hash table
11302 (at offset 16 + 8 * M from the beginning of the section), and consists of an
11303 array of 32-bit indexes (using the byte order of the application binary),
11304 corresponding 1-1 with slots in the hash table. Each entry in the parallel
11305 table contains a 32-bit index into the pool of section numbers. For unused
11306 hash table slots, the corresponding entry in the parallel table will be 0.
11307
11308 The pool of section numbers begins immediately following the hash table
11309 (at offset 16 + 12 * M from the beginning of the section). The pool of
11310 section numbers consists of an array of 32-bit words (using the byte order
11311 of the application binary). Each item in the array is indexed starting
11312 from 0. The hash table entry provides the index of the first section
11313 number in the set. Additional section numbers in the set follow, and the
11314 set is terminated by a 0 entry (section number 0 is not used in ELF).
11315
11316 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
11317 section must be the first entry in the set, and the .debug_abbrev.dwo must
11318 be the second entry. Other members of the set may follow in any order.
11319
11320 ---
11321
11322 DWP Version 2:
11323
11324 DWP Version 2 combines all the .debug_info, etc. sections into one,
11325 and the entries in the index tables are now offsets into these sections.
11326 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
11327 section.
11328
11329 Index Section Contents:
11330 Header
11331 Hash Table of Signatures dwp_hash_table.hash_table
11332 Parallel Table of Indices dwp_hash_table.unit_table
11333 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
11334 Table of Section Sizes dwp_hash_table.v2.sizes
11335
11336 The index section header consists of:
11337
11338 V, 32 bit version number
11339 L, 32 bit number of columns in the table of section offsets
11340 N, 32 bit number of compilation units or type units in the index
11341 M, 32 bit number of slots in the hash table
11342
11343 Numbers are recorded using the byte order of the application binary.
11344
11345 The hash table has the same format as version 1.
11346 The parallel table of indices has the same format as version 1,
11347 except that the entries are origin-1 indices into the table of sections
11348 offsets and the table of section sizes.
11349
11350 The table of offsets begins immediately following the parallel table
11351 (at offset 16 + 12 * M from the beginning of the section). The table is
11352 a two-dimensional array of 32-bit words (using the byte order of the
11353 application binary), with L columns and N+1 rows, in row-major order.
11354 Each row in the array is indexed starting from 0. The first row provides
11355 a key to the remaining rows: each column in this row provides an identifier
11356 for a debug section, and the offsets in the same column of subsequent rows
11357 refer to that section. The section identifiers are:
11358
11359 DW_SECT_INFO 1 .debug_info.dwo
11360 DW_SECT_TYPES 2 .debug_types.dwo
11361 DW_SECT_ABBREV 3 .debug_abbrev.dwo
11362 DW_SECT_LINE 4 .debug_line.dwo
11363 DW_SECT_LOC 5 .debug_loc.dwo
11364 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
11365 DW_SECT_MACINFO 7 .debug_macinfo.dwo
11366 DW_SECT_MACRO 8 .debug_macro.dwo
11367
11368 The offsets provided by the CU and TU index sections are the base offsets
11369 for the contributions made by each CU or TU to the corresponding section
11370 in the package file. Each CU and TU header contains an abbrev_offset
11371 field, used to find the abbreviations table for that CU or TU within the
11372 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
11373 be interpreted as relative to the base offset given in the index section.
11374 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
11375 should be interpreted as relative to the base offset for .debug_line.dwo,
11376 and offsets into other debug sections obtained from DWARF attributes should
11377 also be interpreted as relative to the corresponding base offset.
11378
11379 The table of sizes begins immediately following the table of offsets.
11380 Like the table of offsets, it is a two-dimensional array of 32-bit words,
11381 with L columns and N rows, in row-major order. Each row in the array is
11382 indexed starting from 1 (row 0 is shared by the two tables).
11383
11384 ---
11385
11386 Hash table lookup is handled the same in version 1 and 2:
11387
11388 We assume that N and M will not exceed 2^32 - 1.
11389 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
11390
11391 Given a 64-bit compilation unit signature or a type signature S, an entry
11392 in the hash table is located as follows:
11393
11394 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
11395 the low-order k bits all set to 1.
11396
11397 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
11398
11399 3) If the hash table entry at index H matches the signature, use that
11400 entry. If the hash table entry at index H is unused (all zeroes),
11401 terminate the search: the signature is not present in the table.
11402
11403 4) Let H = (H + H') modulo M. Repeat at Step 3.
11404
11405 Because M > N and H' and M are relatively prime, the search is guaranteed
11406 to stop at an unused slot or find the match. */
11407
11408 /* Create a hash table to map DWO IDs to their CU/TU entry in
11409 .debug_{info,types}.dwo in DWP_FILE.
11410 Returns NULL if there isn't one.
11411 Note: This function processes DWP files only, not DWO files. */
11412
11413 static struct dwp_hash_table *
11414 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11415 struct dwp_file *dwp_file, int is_debug_types)
11416 {
11417 struct objfile *objfile = dwarf2_per_objfile->objfile;
11418 bfd *dbfd = dwp_file->dbfd.get ();
11419 const gdb_byte *index_ptr, *index_end;
11420 struct dwarf2_section_info *index;
11421 uint32_t version, nr_columns, nr_units, nr_slots;
11422 struct dwp_hash_table *htab;
11423
11424 if (is_debug_types)
11425 index = &dwp_file->sections.tu_index;
11426 else
11427 index = &dwp_file->sections.cu_index;
11428
11429 if (index->empty ())
11430 return NULL;
11431 index->read (objfile);
11432
11433 index_ptr = index->buffer;
11434 index_end = index_ptr + index->size;
11435
11436 version = read_4_bytes (dbfd, index_ptr);
11437 index_ptr += 4;
11438 if (version == 2)
11439 nr_columns = read_4_bytes (dbfd, index_ptr);
11440 else
11441 nr_columns = 0;
11442 index_ptr += 4;
11443 nr_units = read_4_bytes (dbfd, index_ptr);
11444 index_ptr += 4;
11445 nr_slots = read_4_bytes (dbfd, index_ptr);
11446 index_ptr += 4;
11447
11448 if (version != 1 && version != 2)
11449 {
11450 error (_("Dwarf Error: unsupported DWP file version (%s)"
11451 " [in module %s]"),
11452 pulongest (version), dwp_file->name);
11453 }
11454 if (nr_slots != (nr_slots & -nr_slots))
11455 {
11456 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
11457 " is not power of 2 [in module %s]"),
11458 pulongest (nr_slots), dwp_file->name);
11459 }
11460
11461 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
11462 htab->version = version;
11463 htab->nr_columns = nr_columns;
11464 htab->nr_units = nr_units;
11465 htab->nr_slots = nr_slots;
11466 htab->hash_table = index_ptr;
11467 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
11468
11469 /* Exit early if the table is empty. */
11470 if (nr_slots == 0 || nr_units == 0
11471 || (version == 2 && nr_columns == 0))
11472 {
11473 /* All must be zero. */
11474 if (nr_slots != 0 || nr_units != 0
11475 || (version == 2 && nr_columns != 0))
11476 {
11477 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
11478 " all zero [in modules %s]"),
11479 dwp_file->name);
11480 }
11481 return htab;
11482 }
11483
11484 if (version == 1)
11485 {
11486 htab->section_pool.v1.indices =
11487 htab->unit_table + sizeof (uint32_t) * nr_slots;
11488 /* It's harder to decide whether the section is too small in v1.
11489 V1 is deprecated anyway so we punt. */
11490 }
11491 else
11492 {
11493 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
11494 int *ids = htab->section_pool.v2.section_ids;
11495 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
11496 /* Reverse map for error checking. */
11497 int ids_seen[DW_SECT_MAX + 1];
11498 int i;
11499
11500 if (nr_columns < 2)
11501 {
11502 error (_("Dwarf Error: bad DWP hash table, too few columns"
11503 " in section table [in module %s]"),
11504 dwp_file->name);
11505 }
11506 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
11507 {
11508 error (_("Dwarf Error: bad DWP hash table, too many columns"
11509 " in section table [in module %s]"),
11510 dwp_file->name);
11511 }
11512 memset (ids, 255, sizeof_ids);
11513 memset (ids_seen, 255, sizeof (ids_seen));
11514 for (i = 0; i < nr_columns; ++i)
11515 {
11516 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
11517
11518 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
11519 {
11520 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
11521 " in section table [in module %s]"),
11522 id, dwp_file->name);
11523 }
11524 if (ids_seen[id] != -1)
11525 {
11526 error (_("Dwarf Error: bad DWP hash table, duplicate section"
11527 " id %d in section table [in module %s]"),
11528 id, dwp_file->name);
11529 }
11530 ids_seen[id] = i;
11531 ids[i] = id;
11532 }
11533 /* Must have exactly one info or types section. */
11534 if (((ids_seen[DW_SECT_INFO] != -1)
11535 + (ids_seen[DW_SECT_TYPES] != -1))
11536 != 1)
11537 {
11538 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
11539 " DWO info/types section [in module %s]"),
11540 dwp_file->name);
11541 }
11542 /* Must have an abbrev section. */
11543 if (ids_seen[DW_SECT_ABBREV] == -1)
11544 {
11545 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
11546 " section [in module %s]"),
11547 dwp_file->name);
11548 }
11549 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
11550 htab->section_pool.v2.sizes =
11551 htab->section_pool.v2.offsets + (sizeof (uint32_t)
11552 * nr_units * nr_columns);
11553 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
11554 * nr_units * nr_columns))
11555 > index_end)
11556 {
11557 error (_("Dwarf Error: DWP index section is corrupt (too small)"
11558 " [in module %s]"),
11559 dwp_file->name);
11560 }
11561 }
11562
11563 return htab;
11564 }
11565
11566 /* Update SECTIONS with the data from SECTP.
11567
11568 This function is like the other "locate" section routines that are
11569 passed to bfd_map_over_sections, but in this context the sections to
11570 read comes from the DWP V1 hash table, not the full ELF section table.
11571
11572 The result is non-zero for success, or zero if an error was found. */
11573
11574 static int
11575 locate_v1_virtual_dwo_sections (asection *sectp,
11576 struct virtual_v1_dwo_sections *sections)
11577 {
11578 const struct dwop_section_names *names = &dwop_section_names;
11579
11580 if (section_is_p (sectp->name, &names->abbrev_dwo))
11581 {
11582 /* There can be only one. */
11583 if (sections->abbrev.s.section != NULL)
11584 return 0;
11585 sections->abbrev.s.section = sectp;
11586 sections->abbrev.size = bfd_section_size (sectp);
11587 }
11588 else if (section_is_p (sectp->name, &names->info_dwo)
11589 || section_is_p (sectp->name, &names->types_dwo))
11590 {
11591 /* There can be only one. */
11592 if (sections->info_or_types.s.section != NULL)
11593 return 0;
11594 sections->info_or_types.s.section = sectp;
11595 sections->info_or_types.size = bfd_section_size (sectp);
11596 }
11597 else if (section_is_p (sectp->name, &names->line_dwo))
11598 {
11599 /* There can be only one. */
11600 if (sections->line.s.section != NULL)
11601 return 0;
11602 sections->line.s.section = sectp;
11603 sections->line.size = bfd_section_size (sectp);
11604 }
11605 else if (section_is_p (sectp->name, &names->loc_dwo))
11606 {
11607 /* There can be only one. */
11608 if (sections->loc.s.section != NULL)
11609 return 0;
11610 sections->loc.s.section = sectp;
11611 sections->loc.size = bfd_section_size (sectp);
11612 }
11613 else if (section_is_p (sectp->name, &names->macinfo_dwo))
11614 {
11615 /* There can be only one. */
11616 if (sections->macinfo.s.section != NULL)
11617 return 0;
11618 sections->macinfo.s.section = sectp;
11619 sections->macinfo.size = bfd_section_size (sectp);
11620 }
11621 else if (section_is_p (sectp->name, &names->macro_dwo))
11622 {
11623 /* There can be only one. */
11624 if (sections->macro.s.section != NULL)
11625 return 0;
11626 sections->macro.s.section = sectp;
11627 sections->macro.size = bfd_section_size (sectp);
11628 }
11629 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
11630 {
11631 /* There can be only one. */
11632 if (sections->str_offsets.s.section != NULL)
11633 return 0;
11634 sections->str_offsets.s.section = sectp;
11635 sections->str_offsets.size = bfd_section_size (sectp);
11636 }
11637 else
11638 {
11639 /* No other kind of section is valid. */
11640 return 0;
11641 }
11642
11643 return 1;
11644 }
11645
11646 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11647 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11648 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11649 This is for DWP version 1 files. */
11650
11651 static struct dwo_unit *
11652 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11653 struct dwp_file *dwp_file,
11654 uint32_t unit_index,
11655 const char *comp_dir,
11656 ULONGEST signature, int is_debug_types)
11657 {
11658 struct objfile *objfile = dwarf2_per_objfile->objfile;
11659 const struct dwp_hash_table *dwp_htab =
11660 is_debug_types ? dwp_file->tus : dwp_file->cus;
11661 bfd *dbfd = dwp_file->dbfd.get ();
11662 const char *kind = is_debug_types ? "TU" : "CU";
11663 struct dwo_file *dwo_file;
11664 struct dwo_unit *dwo_unit;
11665 struct virtual_v1_dwo_sections sections;
11666 void **dwo_file_slot;
11667 int i;
11668
11669 gdb_assert (dwp_file->version == 1);
11670
11671 if (dwarf_read_debug)
11672 {
11673 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
11674 kind,
11675 pulongest (unit_index), hex_string (signature),
11676 dwp_file->name);
11677 }
11678
11679 /* Fetch the sections of this DWO unit.
11680 Put a limit on the number of sections we look for so that bad data
11681 doesn't cause us to loop forever. */
11682
11683 #define MAX_NR_V1_DWO_SECTIONS \
11684 (1 /* .debug_info or .debug_types */ \
11685 + 1 /* .debug_abbrev */ \
11686 + 1 /* .debug_line */ \
11687 + 1 /* .debug_loc */ \
11688 + 1 /* .debug_str_offsets */ \
11689 + 1 /* .debug_macro or .debug_macinfo */ \
11690 + 1 /* trailing zero */)
11691
11692 memset (&sections, 0, sizeof (sections));
11693
11694 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
11695 {
11696 asection *sectp;
11697 uint32_t section_nr =
11698 read_4_bytes (dbfd,
11699 dwp_htab->section_pool.v1.indices
11700 + (unit_index + i) * sizeof (uint32_t));
11701
11702 if (section_nr == 0)
11703 break;
11704 if (section_nr >= dwp_file->num_sections)
11705 {
11706 error (_("Dwarf Error: bad DWP hash table, section number too large"
11707 " [in module %s]"),
11708 dwp_file->name);
11709 }
11710
11711 sectp = dwp_file->elf_sections[section_nr];
11712 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
11713 {
11714 error (_("Dwarf Error: bad DWP hash table, invalid section found"
11715 " [in module %s]"),
11716 dwp_file->name);
11717 }
11718 }
11719
11720 if (i < 2
11721 || sections.info_or_types.empty ()
11722 || sections.abbrev.empty ())
11723 {
11724 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
11725 " [in module %s]"),
11726 dwp_file->name);
11727 }
11728 if (i == MAX_NR_V1_DWO_SECTIONS)
11729 {
11730 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
11731 " [in module %s]"),
11732 dwp_file->name);
11733 }
11734
11735 /* It's easier for the rest of the code if we fake a struct dwo_file and
11736 have dwo_unit "live" in that. At least for now.
11737
11738 The DWP file can be made up of a random collection of CUs and TUs.
11739 However, for each CU + set of TUs that came from the same original DWO
11740 file, we can combine them back into a virtual DWO file to save space
11741 (fewer struct dwo_file objects to allocate). Remember that for really
11742 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11743
11744 std::string virtual_dwo_name =
11745 string_printf ("virtual-dwo/%d-%d-%d-%d",
11746 sections.abbrev.get_id (),
11747 sections.line.get_id (),
11748 sections.loc.get_id (),
11749 sections.str_offsets.get_id ());
11750 /* Can we use an existing virtual DWO file? */
11751 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11752 virtual_dwo_name.c_str (),
11753 comp_dir);
11754 /* Create one if necessary. */
11755 if (*dwo_file_slot == NULL)
11756 {
11757 if (dwarf_read_debug)
11758 {
11759 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11760 virtual_dwo_name.c_str ());
11761 }
11762 dwo_file = new struct dwo_file;
11763 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11764 dwo_file->comp_dir = comp_dir;
11765 dwo_file->sections.abbrev = sections.abbrev;
11766 dwo_file->sections.line = sections.line;
11767 dwo_file->sections.loc = sections.loc;
11768 dwo_file->sections.macinfo = sections.macinfo;
11769 dwo_file->sections.macro = sections.macro;
11770 dwo_file->sections.str_offsets = sections.str_offsets;
11771 /* The "str" section is global to the entire DWP file. */
11772 dwo_file->sections.str = dwp_file->sections.str;
11773 /* The info or types section is assigned below to dwo_unit,
11774 there's no need to record it in dwo_file.
11775 Also, we can't simply record type sections in dwo_file because
11776 we record a pointer into the vector in dwo_unit. As we collect more
11777 types we'll grow the vector and eventually have to reallocate space
11778 for it, invalidating all copies of pointers into the previous
11779 contents. */
11780 *dwo_file_slot = dwo_file;
11781 }
11782 else
11783 {
11784 if (dwarf_read_debug)
11785 {
11786 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11787 virtual_dwo_name.c_str ());
11788 }
11789 dwo_file = (struct dwo_file *) *dwo_file_slot;
11790 }
11791
11792 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
11793 dwo_unit->dwo_file = dwo_file;
11794 dwo_unit->signature = signature;
11795 dwo_unit->section =
11796 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
11797 *dwo_unit->section = sections.info_or_types;
11798 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
11799
11800 return dwo_unit;
11801 }
11802
11803 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
11804 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
11805 piece within that section used by a TU/CU, return a virtual section
11806 of just that piece. */
11807
11808 static struct dwarf2_section_info
11809 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
11810 struct dwarf2_section_info *section,
11811 bfd_size_type offset, bfd_size_type size)
11812 {
11813 struct dwarf2_section_info result;
11814 asection *sectp;
11815
11816 gdb_assert (section != NULL);
11817 gdb_assert (!section->is_virtual);
11818
11819 memset (&result, 0, sizeof (result));
11820 result.s.containing_section = section;
11821 result.is_virtual = true;
11822
11823 if (size == 0)
11824 return result;
11825
11826 sectp = section->get_bfd_section ();
11827
11828 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
11829 bounds of the real section. This is a pretty-rare event, so just
11830 flag an error (easier) instead of a warning and trying to cope. */
11831 if (sectp == NULL
11832 || offset + size > bfd_section_size (sectp))
11833 {
11834 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
11835 " in section %s [in module %s]"),
11836 sectp ? bfd_section_name (sectp) : "<unknown>",
11837 objfile_name (dwarf2_per_objfile->objfile));
11838 }
11839
11840 result.virtual_offset = offset;
11841 result.size = size;
11842 return result;
11843 }
11844
11845 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
11846 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
11847 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
11848 This is for DWP version 2 files. */
11849
11850 static struct dwo_unit *
11851 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
11852 struct dwp_file *dwp_file,
11853 uint32_t unit_index,
11854 const char *comp_dir,
11855 ULONGEST signature, int is_debug_types)
11856 {
11857 struct objfile *objfile = dwarf2_per_objfile->objfile;
11858 const struct dwp_hash_table *dwp_htab =
11859 is_debug_types ? dwp_file->tus : dwp_file->cus;
11860 bfd *dbfd = dwp_file->dbfd.get ();
11861 const char *kind = is_debug_types ? "TU" : "CU";
11862 struct dwo_file *dwo_file;
11863 struct dwo_unit *dwo_unit;
11864 struct virtual_v2_dwo_sections sections;
11865 void **dwo_file_slot;
11866 int i;
11867
11868 gdb_assert (dwp_file->version == 2);
11869
11870 if (dwarf_read_debug)
11871 {
11872 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
11873 kind,
11874 pulongest (unit_index), hex_string (signature),
11875 dwp_file->name);
11876 }
11877
11878 /* Fetch the section offsets of this DWO unit. */
11879
11880 memset (&sections, 0, sizeof (sections));
11881
11882 for (i = 0; i < dwp_htab->nr_columns; ++i)
11883 {
11884 uint32_t offset = read_4_bytes (dbfd,
11885 dwp_htab->section_pool.v2.offsets
11886 + (((unit_index - 1) * dwp_htab->nr_columns
11887 + i)
11888 * sizeof (uint32_t)));
11889 uint32_t size = read_4_bytes (dbfd,
11890 dwp_htab->section_pool.v2.sizes
11891 + (((unit_index - 1) * dwp_htab->nr_columns
11892 + i)
11893 * sizeof (uint32_t)));
11894
11895 switch (dwp_htab->section_pool.v2.section_ids[i])
11896 {
11897 case DW_SECT_INFO:
11898 case DW_SECT_TYPES:
11899 sections.info_or_types_offset = offset;
11900 sections.info_or_types_size = size;
11901 break;
11902 case DW_SECT_ABBREV:
11903 sections.abbrev_offset = offset;
11904 sections.abbrev_size = size;
11905 break;
11906 case DW_SECT_LINE:
11907 sections.line_offset = offset;
11908 sections.line_size = size;
11909 break;
11910 case DW_SECT_LOC:
11911 sections.loc_offset = offset;
11912 sections.loc_size = size;
11913 break;
11914 case DW_SECT_STR_OFFSETS:
11915 sections.str_offsets_offset = offset;
11916 sections.str_offsets_size = size;
11917 break;
11918 case DW_SECT_MACINFO:
11919 sections.macinfo_offset = offset;
11920 sections.macinfo_size = size;
11921 break;
11922 case DW_SECT_MACRO:
11923 sections.macro_offset = offset;
11924 sections.macro_size = size;
11925 break;
11926 }
11927 }
11928
11929 /* It's easier for the rest of the code if we fake a struct dwo_file and
11930 have dwo_unit "live" in that. At least for now.
11931
11932 The DWP file can be made up of a random collection of CUs and TUs.
11933 However, for each CU + set of TUs that came from the same original DWO
11934 file, we can combine them back into a virtual DWO file to save space
11935 (fewer struct dwo_file objects to allocate). Remember that for really
11936 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
11937
11938 std::string virtual_dwo_name =
11939 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
11940 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
11941 (long) (sections.line_size ? sections.line_offset : 0),
11942 (long) (sections.loc_size ? sections.loc_offset : 0),
11943 (long) (sections.str_offsets_size
11944 ? sections.str_offsets_offset : 0));
11945 /* Can we use an existing virtual DWO file? */
11946 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
11947 virtual_dwo_name.c_str (),
11948 comp_dir);
11949 /* Create one if necessary. */
11950 if (*dwo_file_slot == NULL)
11951 {
11952 if (dwarf_read_debug)
11953 {
11954 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
11955 virtual_dwo_name.c_str ());
11956 }
11957 dwo_file = new struct dwo_file;
11958 dwo_file->dwo_name = objfile->intern (virtual_dwo_name);
11959 dwo_file->comp_dir = comp_dir;
11960 dwo_file->sections.abbrev =
11961 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
11962 sections.abbrev_offset, sections.abbrev_size);
11963 dwo_file->sections.line =
11964 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
11965 sections.line_offset, sections.line_size);
11966 dwo_file->sections.loc =
11967 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
11968 sections.loc_offset, sections.loc_size);
11969 dwo_file->sections.macinfo =
11970 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
11971 sections.macinfo_offset, sections.macinfo_size);
11972 dwo_file->sections.macro =
11973 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
11974 sections.macro_offset, sections.macro_size);
11975 dwo_file->sections.str_offsets =
11976 create_dwp_v2_section (dwarf2_per_objfile,
11977 &dwp_file->sections.str_offsets,
11978 sections.str_offsets_offset,
11979 sections.str_offsets_size);
11980 /* The "str" section is global to the entire DWP file. */
11981 dwo_file->sections.str = dwp_file->sections.str;
11982 /* The info or types section is assigned below to dwo_unit,
11983 there's no need to record it in dwo_file.
11984 Also, we can't simply record type sections in dwo_file because
11985 we record a pointer into the vector in dwo_unit. As we collect more
11986 types we'll grow the vector and eventually have to reallocate space
11987 for it, invalidating all copies of pointers into the previous
11988 contents. */
11989 *dwo_file_slot = dwo_file;
11990 }
11991 else
11992 {
11993 if (dwarf_read_debug)
11994 {
11995 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
11996 virtual_dwo_name.c_str ());
11997 }
11998 dwo_file = (struct dwo_file *) *dwo_file_slot;
11999 }
12000
12001 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12002 dwo_unit->dwo_file = dwo_file;
12003 dwo_unit->signature = signature;
12004 dwo_unit->section =
12005 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12006 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12007 is_debug_types
12008 ? &dwp_file->sections.types
12009 : &dwp_file->sections.info,
12010 sections.info_or_types_offset,
12011 sections.info_or_types_size);
12012 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12013
12014 return dwo_unit;
12015 }
12016
12017 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12018 Returns NULL if the signature isn't found. */
12019
12020 static struct dwo_unit *
12021 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12022 struct dwp_file *dwp_file, const char *comp_dir,
12023 ULONGEST signature, int is_debug_types)
12024 {
12025 const struct dwp_hash_table *dwp_htab =
12026 is_debug_types ? dwp_file->tus : dwp_file->cus;
12027 bfd *dbfd = dwp_file->dbfd.get ();
12028 uint32_t mask = dwp_htab->nr_slots - 1;
12029 uint32_t hash = signature & mask;
12030 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12031 unsigned int i;
12032 void **slot;
12033 struct dwo_unit find_dwo_cu;
12034
12035 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12036 find_dwo_cu.signature = signature;
12037 slot = htab_find_slot (is_debug_types
12038 ? dwp_file->loaded_tus.get ()
12039 : dwp_file->loaded_cus.get (),
12040 &find_dwo_cu, INSERT);
12041
12042 if (*slot != NULL)
12043 return (struct dwo_unit *) *slot;
12044
12045 /* Use a for loop so that we don't loop forever on bad debug info. */
12046 for (i = 0; i < dwp_htab->nr_slots; ++i)
12047 {
12048 ULONGEST signature_in_table;
12049
12050 signature_in_table =
12051 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12052 if (signature_in_table == signature)
12053 {
12054 uint32_t unit_index =
12055 read_4_bytes (dbfd,
12056 dwp_htab->unit_table + hash * sizeof (uint32_t));
12057
12058 if (dwp_file->version == 1)
12059 {
12060 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12061 dwp_file, unit_index,
12062 comp_dir, signature,
12063 is_debug_types);
12064 }
12065 else
12066 {
12067 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12068 dwp_file, unit_index,
12069 comp_dir, signature,
12070 is_debug_types);
12071 }
12072 return (struct dwo_unit *) *slot;
12073 }
12074 if (signature_in_table == 0)
12075 return NULL;
12076 hash = (hash + hash2) & mask;
12077 }
12078
12079 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12080 " [in module %s]"),
12081 dwp_file->name);
12082 }
12083
12084 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12085 Open the file specified by FILE_NAME and hand it off to BFD for
12086 preliminary analysis. Return a newly initialized bfd *, which
12087 includes a canonicalized copy of FILE_NAME.
12088 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12089 SEARCH_CWD is true if the current directory is to be searched.
12090 It will be searched before debug-file-directory.
12091 If successful, the file is added to the bfd include table of the
12092 objfile's bfd (see gdb_bfd_record_inclusion).
12093 If unable to find/open the file, return NULL.
12094 NOTE: This function is derived from symfile_bfd_open. */
12095
12096 static gdb_bfd_ref_ptr
12097 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12098 const char *file_name, int is_dwp, int search_cwd)
12099 {
12100 int desc;
12101 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12102 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12103 to debug_file_directory. */
12104 const char *search_path;
12105 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12106
12107 gdb::unique_xmalloc_ptr<char> search_path_holder;
12108 if (search_cwd)
12109 {
12110 if (*debug_file_directory != '\0')
12111 {
12112 search_path_holder.reset (concat (".", dirname_separator_string,
12113 debug_file_directory,
12114 (char *) NULL));
12115 search_path = search_path_holder.get ();
12116 }
12117 else
12118 search_path = ".";
12119 }
12120 else
12121 search_path = debug_file_directory;
12122
12123 openp_flags flags = OPF_RETURN_REALPATH;
12124 if (is_dwp)
12125 flags |= OPF_SEARCH_IN_PATH;
12126
12127 gdb::unique_xmalloc_ptr<char> absolute_name;
12128 desc = openp (search_path, flags, file_name,
12129 O_RDONLY | O_BINARY, &absolute_name);
12130 if (desc < 0)
12131 return NULL;
12132
12133 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12134 gnutarget, desc));
12135 if (sym_bfd == NULL)
12136 return NULL;
12137 bfd_set_cacheable (sym_bfd.get (), 1);
12138
12139 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12140 return NULL;
12141
12142 /* Success. Record the bfd as having been included by the objfile's bfd.
12143 This is important because things like demangled_names_hash lives in the
12144 objfile's per_bfd space and may have references to things like symbol
12145 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12146 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12147
12148 return sym_bfd;
12149 }
12150
12151 /* Try to open DWO file FILE_NAME.
12152 COMP_DIR is the DW_AT_comp_dir attribute.
12153 The result is the bfd handle of the file.
12154 If there is a problem finding or opening the file, return NULL.
12155 Upon success, the canonicalized path of the file is stored in the bfd,
12156 same as symfile_bfd_open. */
12157
12158 static gdb_bfd_ref_ptr
12159 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12160 const char *file_name, const char *comp_dir)
12161 {
12162 if (IS_ABSOLUTE_PATH (file_name))
12163 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12164 0 /*is_dwp*/, 0 /*search_cwd*/);
12165
12166 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12167
12168 if (comp_dir != NULL)
12169 {
12170 gdb::unique_xmalloc_ptr<char> path_to_try
12171 (concat (comp_dir, SLASH_STRING, file_name, (char *) NULL));
12172
12173 /* NOTE: If comp_dir is a relative path, this will also try the
12174 search path, which seems useful. */
12175 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12176 path_to_try.get (),
12177 0 /*is_dwp*/,
12178 1 /*search_cwd*/));
12179 if (abfd != NULL)
12180 return abfd;
12181 }
12182
12183 /* That didn't work, try debug-file-directory, which, despite its name,
12184 is a list of paths. */
12185
12186 if (*debug_file_directory == '\0')
12187 return NULL;
12188
12189 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12190 0 /*is_dwp*/, 1 /*search_cwd*/);
12191 }
12192
12193 /* This function is mapped across the sections and remembers the offset and
12194 size of each of the DWO debugging sections we are interested in. */
12195
12196 static void
12197 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12198 {
12199 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12200 const struct dwop_section_names *names = &dwop_section_names;
12201
12202 if (section_is_p (sectp->name, &names->abbrev_dwo))
12203 {
12204 dwo_sections->abbrev.s.section = sectp;
12205 dwo_sections->abbrev.size = bfd_section_size (sectp);
12206 }
12207 else if (section_is_p (sectp->name, &names->info_dwo))
12208 {
12209 dwo_sections->info.s.section = sectp;
12210 dwo_sections->info.size = bfd_section_size (sectp);
12211 }
12212 else if (section_is_p (sectp->name, &names->line_dwo))
12213 {
12214 dwo_sections->line.s.section = sectp;
12215 dwo_sections->line.size = bfd_section_size (sectp);
12216 }
12217 else if (section_is_p (sectp->name, &names->loc_dwo))
12218 {
12219 dwo_sections->loc.s.section = sectp;
12220 dwo_sections->loc.size = bfd_section_size (sectp);
12221 }
12222 else if (section_is_p (sectp->name, &names->loclists_dwo))
12223 {
12224 dwo_sections->loclists.s.section = sectp;
12225 dwo_sections->loclists.size = bfd_section_size (sectp);
12226 }
12227 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12228 {
12229 dwo_sections->macinfo.s.section = sectp;
12230 dwo_sections->macinfo.size = bfd_section_size (sectp);
12231 }
12232 else if (section_is_p (sectp->name, &names->macro_dwo))
12233 {
12234 dwo_sections->macro.s.section = sectp;
12235 dwo_sections->macro.size = bfd_section_size (sectp);
12236 }
12237 else if (section_is_p (sectp->name, &names->str_dwo))
12238 {
12239 dwo_sections->str.s.section = sectp;
12240 dwo_sections->str.size = bfd_section_size (sectp);
12241 }
12242 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12243 {
12244 dwo_sections->str_offsets.s.section = sectp;
12245 dwo_sections->str_offsets.size = bfd_section_size (sectp);
12246 }
12247 else if (section_is_p (sectp->name, &names->types_dwo))
12248 {
12249 struct dwarf2_section_info type_section;
12250
12251 memset (&type_section, 0, sizeof (type_section));
12252 type_section.s.section = sectp;
12253 type_section.size = bfd_section_size (sectp);
12254 dwo_sections->types.push_back (type_section);
12255 }
12256 }
12257
12258 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
12259 by PER_CU. This is for the non-DWP case.
12260 The result is NULL if DWO_NAME can't be found. */
12261
12262 static struct dwo_file *
12263 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
12264 const char *dwo_name, const char *comp_dir)
12265 {
12266 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
12267
12268 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
12269 if (dbfd == NULL)
12270 {
12271 if (dwarf_read_debug)
12272 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
12273 return NULL;
12274 }
12275
12276 dwo_file_up dwo_file (new struct dwo_file);
12277 dwo_file->dwo_name = dwo_name;
12278 dwo_file->comp_dir = comp_dir;
12279 dwo_file->dbfd = std::move (dbfd);
12280
12281 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
12282 &dwo_file->sections);
12283
12284 create_cus_hash_table (dwarf2_per_objfile, per_cu->cu, *dwo_file,
12285 dwo_file->sections.info, dwo_file->cus);
12286
12287 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
12288 dwo_file->sections.types, dwo_file->tus);
12289
12290 if (dwarf_read_debug)
12291 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
12292
12293 return dwo_file.release ();
12294 }
12295
12296 /* This function is mapped across the sections and remembers the offset and
12297 size of each of the DWP debugging sections common to version 1 and 2 that
12298 we are interested in. */
12299
12300 static void
12301 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
12302 void *dwp_file_ptr)
12303 {
12304 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12305 const struct dwop_section_names *names = &dwop_section_names;
12306 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12307
12308 /* Record the ELF section number for later lookup: this is what the
12309 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12310 gdb_assert (elf_section_nr < dwp_file->num_sections);
12311 dwp_file->elf_sections[elf_section_nr] = sectp;
12312
12313 /* Look for specific sections that we need. */
12314 if (section_is_p (sectp->name, &names->str_dwo))
12315 {
12316 dwp_file->sections.str.s.section = sectp;
12317 dwp_file->sections.str.size = bfd_section_size (sectp);
12318 }
12319 else if (section_is_p (sectp->name, &names->cu_index))
12320 {
12321 dwp_file->sections.cu_index.s.section = sectp;
12322 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
12323 }
12324 else if (section_is_p (sectp->name, &names->tu_index))
12325 {
12326 dwp_file->sections.tu_index.s.section = sectp;
12327 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
12328 }
12329 }
12330
12331 /* This function is mapped across the sections and remembers the offset and
12332 size of each of the DWP version 2 debugging sections that we are interested
12333 in. This is split into a separate function because we don't know if we
12334 have version 1 or 2 until we parse the cu_index/tu_index sections. */
12335
12336 static void
12337 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
12338 {
12339 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
12340 const struct dwop_section_names *names = &dwop_section_names;
12341 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
12342
12343 /* Record the ELF section number for later lookup: this is what the
12344 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
12345 gdb_assert (elf_section_nr < dwp_file->num_sections);
12346 dwp_file->elf_sections[elf_section_nr] = sectp;
12347
12348 /* Look for specific sections that we need. */
12349 if (section_is_p (sectp->name, &names->abbrev_dwo))
12350 {
12351 dwp_file->sections.abbrev.s.section = sectp;
12352 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
12353 }
12354 else if (section_is_p (sectp->name, &names->info_dwo))
12355 {
12356 dwp_file->sections.info.s.section = sectp;
12357 dwp_file->sections.info.size = bfd_section_size (sectp);
12358 }
12359 else if (section_is_p (sectp->name, &names->line_dwo))
12360 {
12361 dwp_file->sections.line.s.section = sectp;
12362 dwp_file->sections.line.size = bfd_section_size (sectp);
12363 }
12364 else if (section_is_p (sectp->name, &names->loc_dwo))
12365 {
12366 dwp_file->sections.loc.s.section = sectp;
12367 dwp_file->sections.loc.size = bfd_section_size (sectp);
12368 }
12369 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12370 {
12371 dwp_file->sections.macinfo.s.section = sectp;
12372 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
12373 }
12374 else if (section_is_p (sectp->name, &names->macro_dwo))
12375 {
12376 dwp_file->sections.macro.s.section = sectp;
12377 dwp_file->sections.macro.size = bfd_section_size (sectp);
12378 }
12379 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12380 {
12381 dwp_file->sections.str_offsets.s.section = sectp;
12382 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
12383 }
12384 else if (section_is_p (sectp->name, &names->types_dwo))
12385 {
12386 dwp_file->sections.types.s.section = sectp;
12387 dwp_file->sections.types.size = bfd_section_size (sectp);
12388 }
12389 }
12390
12391 /* Hash function for dwp_file loaded CUs/TUs. */
12392
12393 static hashval_t
12394 hash_dwp_loaded_cutus (const void *item)
12395 {
12396 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
12397
12398 /* This drops the top 32 bits of the signature, but is ok for a hash. */
12399 return dwo_unit->signature;
12400 }
12401
12402 /* Equality function for dwp_file loaded CUs/TUs. */
12403
12404 static int
12405 eq_dwp_loaded_cutus (const void *a, const void *b)
12406 {
12407 const struct dwo_unit *dua = (const struct dwo_unit *) a;
12408 const struct dwo_unit *dub = (const struct dwo_unit *) b;
12409
12410 return dua->signature == dub->signature;
12411 }
12412
12413 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
12414
12415 static htab_up
12416 allocate_dwp_loaded_cutus_table ()
12417 {
12418 return htab_up (htab_create_alloc (3,
12419 hash_dwp_loaded_cutus,
12420 eq_dwp_loaded_cutus,
12421 NULL, xcalloc, xfree));
12422 }
12423
12424 /* Try to open DWP file FILE_NAME.
12425 The result is the bfd handle of the file.
12426 If there is a problem finding or opening the file, return NULL.
12427 Upon success, the canonicalized path of the file is stored in the bfd,
12428 same as symfile_bfd_open. */
12429
12430 static gdb_bfd_ref_ptr
12431 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12432 const char *file_name)
12433 {
12434 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
12435 1 /*is_dwp*/,
12436 1 /*search_cwd*/));
12437 if (abfd != NULL)
12438 return abfd;
12439
12440 /* Work around upstream bug 15652.
12441 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
12442 [Whether that's a "bug" is debatable, but it is getting in our way.]
12443 We have no real idea where the dwp file is, because gdb's realpath-ing
12444 of the executable's path may have discarded the needed info.
12445 [IWBN if the dwp file name was recorded in the executable, akin to
12446 .gnu_debuglink, but that doesn't exist yet.]
12447 Strip the directory from FILE_NAME and search again. */
12448 if (*debug_file_directory != '\0')
12449 {
12450 /* Don't implicitly search the current directory here.
12451 If the user wants to search "." to handle this case,
12452 it must be added to debug-file-directory. */
12453 return try_open_dwop_file (dwarf2_per_objfile,
12454 lbasename (file_name), 1 /*is_dwp*/,
12455 0 /*search_cwd*/);
12456 }
12457
12458 return NULL;
12459 }
12460
12461 /* Initialize the use of the DWP file for the current objfile.
12462 By convention the name of the DWP file is ${objfile}.dwp.
12463 The result is NULL if it can't be found. */
12464
12465 static std::unique_ptr<struct dwp_file>
12466 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12467 {
12468 struct objfile *objfile = dwarf2_per_objfile->objfile;
12469
12470 /* Try to find first .dwp for the binary file before any symbolic links
12471 resolving. */
12472
12473 /* If the objfile is a debug file, find the name of the real binary
12474 file and get the name of dwp file from there. */
12475 std::string dwp_name;
12476 if (objfile->separate_debug_objfile_backlink != NULL)
12477 {
12478 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
12479 const char *backlink_basename = lbasename (backlink->original_name);
12480
12481 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
12482 }
12483 else
12484 dwp_name = objfile->original_name;
12485
12486 dwp_name += ".dwp";
12487
12488 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
12489 if (dbfd == NULL
12490 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
12491 {
12492 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
12493 dwp_name = objfile_name (objfile);
12494 dwp_name += ".dwp";
12495 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
12496 }
12497
12498 if (dbfd == NULL)
12499 {
12500 if (dwarf_read_debug)
12501 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
12502 return std::unique_ptr<dwp_file> ();
12503 }
12504
12505 const char *name = bfd_get_filename (dbfd.get ());
12506 std::unique_ptr<struct dwp_file> dwp_file
12507 (new struct dwp_file (name, std::move (dbfd)));
12508
12509 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
12510 dwp_file->elf_sections =
12511 OBSTACK_CALLOC (&objfile->objfile_obstack,
12512 dwp_file->num_sections, asection *);
12513
12514 bfd_map_over_sections (dwp_file->dbfd.get (),
12515 dwarf2_locate_common_dwp_sections,
12516 dwp_file.get ());
12517
12518 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12519 0);
12520
12521 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
12522 1);
12523
12524 /* The DWP file version is stored in the hash table. Oh well. */
12525 if (dwp_file->cus && dwp_file->tus
12526 && dwp_file->cus->version != dwp_file->tus->version)
12527 {
12528 /* Technically speaking, we should try to limp along, but this is
12529 pretty bizarre. We use pulongest here because that's the established
12530 portability solution (e.g, we cannot use %u for uint32_t). */
12531 error (_("Dwarf Error: DWP file CU version %s doesn't match"
12532 " TU version %s [in DWP file %s]"),
12533 pulongest (dwp_file->cus->version),
12534 pulongest (dwp_file->tus->version), dwp_name.c_str ());
12535 }
12536
12537 if (dwp_file->cus)
12538 dwp_file->version = dwp_file->cus->version;
12539 else if (dwp_file->tus)
12540 dwp_file->version = dwp_file->tus->version;
12541 else
12542 dwp_file->version = 2;
12543
12544 if (dwp_file->version == 2)
12545 bfd_map_over_sections (dwp_file->dbfd.get (),
12546 dwarf2_locate_v2_dwp_sections,
12547 dwp_file.get ());
12548
12549 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table ();
12550 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table ();
12551
12552 if (dwarf_read_debug)
12553 {
12554 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
12555 fprintf_unfiltered (gdb_stdlog,
12556 " %s CUs, %s TUs\n",
12557 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
12558 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
12559 }
12560
12561 return dwp_file;
12562 }
12563
12564 /* Wrapper around open_and_init_dwp_file, only open it once. */
12565
12566 static struct dwp_file *
12567 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
12568 {
12569 if (! dwarf2_per_objfile->dwp_checked)
12570 {
12571 dwarf2_per_objfile->dwp_file
12572 = open_and_init_dwp_file (dwarf2_per_objfile);
12573 dwarf2_per_objfile->dwp_checked = 1;
12574 }
12575 return dwarf2_per_objfile->dwp_file.get ();
12576 }
12577
12578 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
12579 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
12580 or in the DWP file for the objfile, referenced by THIS_UNIT.
12581 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
12582 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
12583
12584 This is called, for example, when wanting to read a variable with a
12585 complex location. Therefore we don't want to do file i/o for every call.
12586 Therefore we don't want to look for a DWO file on every call.
12587 Therefore we first see if we've already seen SIGNATURE in a DWP file,
12588 then we check if we've already seen DWO_NAME, and only THEN do we check
12589 for a DWO file.
12590
12591 The result is a pointer to the dwo_unit object or NULL if we didn't find it
12592 (dwo_id mismatch or couldn't find the DWO/DWP file). */
12593
12594 static struct dwo_unit *
12595 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
12596 const char *dwo_name, const char *comp_dir,
12597 ULONGEST signature, int is_debug_types)
12598 {
12599 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
12600 struct objfile *objfile = dwarf2_per_objfile->objfile;
12601 const char *kind = is_debug_types ? "TU" : "CU";
12602 void **dwo_file_slot;
12603 struct dwo_file *dwo_file;
12604 struct dwp_file *dwp_file;
12605
12606 /* First see if there's a DWP file.
12607 If we have a DWP file but didn't find the DWO inside it, don't
12608 look for the original DWO file. It makes gdb behave differently
12609 depending on whether one is debugging in the build tree. */
12610
12611 dwp_file = get_dwp_file (dwarf2_per_objfile);
12612 if (dwp_file != NULL)
12613 {
12614 const struct dwp_hash_table *dwp_htab =
12615 is_debug_types ? dwp_file->tus : dwp_file->cus;
12616
12617 if (dwp_htab != NULL)
12618 {
12619 struct dwo_unit *dwo_cutu =
12620 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
12621 signature, is_debug_types);
12622
12623 if (dwo_cutu != NULL)
12624 {
12625 if (dwarf_read_debug)
12626 {
12627 fprintf_unfiltered (gdb_stdlog,
12628 "Virtual DWO %s %s found: @%s\n",
12629 kind, hex_string (signature),
12630 host_address_to_string (dwo_cutu));
12631 }
12632 return dwo_cutu;
12633 }
12634 }
12635 }
12636 else
12637 {
12638 /* No DWP file, look for the DWO file. */
12639
12640 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12641 dwo_name, comp_dir);
12642 if (*dwo_file_slot == NULL)
12643 {
12644 /* Read in the file and build a table of the CUs/TUs it contains. */
12645 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
12646 }
12647 /* NOTE: This will be NULL if unable to open the file. */
12648 dwo_file = (struct dwo_file *) *dwo_file_slot;
12649
12650 if (dwo_file != NULL)
12651 {
12652 struct dwo_unit *dwo_cutu = NULL;
12653
12654 if (is_debug_types && dwo_file->tus)
12655 {
12656 struct dwo_unit find_dwo_cutu;
12657
12658 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12659 find_dwo_cutu.signature = signature;
12660 dwo_cutu
12661 = (struct dwo_unit *) htab_find (dwo_file->tus.get (),
12662 &find_dwo_cutu);
12663 }
12664 else if (!is_debug_types && dwo_file->cus)
12665 {
12666 struct dwo_unit find_dwo_cutu;
12667
12668 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
12669 find_dwo_cutu.signature = signature;
12670 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus.get (),
12671 &find_dwo_cutu);
12672 }
12673
12674 if (dwo_cutu != NULL)
12675 {
12676 if (dwarf_read_debug)
12677 {
12678 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
12679 kind, dwo_name, hex_string (signature),
12680 host_address_to_string (dwo_cutu));
12681 }
12682 return dwo_cutu;
12683 }
12684 }
12685 }
12686
12687 /* We didn't find it. This could mean a dwo_id mismatch, or
12688 someone deleted the DWO/DWP file, or the search path isn't set up
12689 correctly to find the file. */
12690
12691 if (dwarf_read_debug)
12692 {
12693 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
12694 kind, dwo_name, hex_string (signature));
12695 }
12696
12697 /* This is a warning and not a complaint because it can be caused by
12698 pilot error (e.g., user accidentally deleting the DWO). */
12699 {
12700 /* Print the name of the DWP file if we looked there, helps the user
12701 better diagnose the problem. */
12702 std::string dwp_text;
12703
12704 if (dwp_file != NULL)
12705 dwp_text = string_printf (" [in DWP file %s]",
12706 lbasename (dwp_file->name));
12707
12708 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
12709 " [in module %s]"),
12710 kind, dwo_name, hex_string (signature),
12711 dwp_text.c_str (),
12712 this_unit->is_debug_types ? "TU" : "CU",
12713 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
12714 }
12715 return NULL;
12716 }
12717
12718 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
12719 See lookup_dwo_cutu_unit for details. */
12720
12721 static struct dwo_unit *
12722 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
12723 const char *dwo_name, const char *comp_dir,
12724 ULONGEST signature)
12725 {
12726 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
12727 }
12728
12729 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
12730 See lookup_dwo_cutu_unit for details. */
12731
12732 static struct dwo_unit *
12733 lookup_dwo_type_unit (struct signatured_type *this_tu,
12734 const char *dwo_name, const char *comp_dir)
12735 {
12736 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
12737 }
12738
12739 /* Traversal function for queue_and_load_all_dwo_tus. */
12740
12741 static int
12742 queue_and_load_dwo_tu (void **slot, void *info)
12743 {
12744 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
12745 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
12746 ULONGEST signature = dwo_unit->signature;
12747 struct signatured_type *sig_type =
12748 lookup_dwo_signatured_type (per_cu->cu, signature);
12749
12750 if (sig_type != NULL)
12751 {
12752 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
12753
12754 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
12755 a real dependency of PER_CU on SIG_TYPE. That is detected later
12756 while processing PER_CU. */
12757 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
12758 load_full_type_unit (sig_cu);
12759 per_cu->imported_symtabs_push (sig_cu);
12760 }
12761
12762 return 1;
12763 }
12764
12765 /* Queue all TUs contained in the DWO of PER_CU to be read in.
12766 The DWO may have the only definition of the type, though it may not be
12767 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
12768 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
12769
12770 static void
12771 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
12772 {
12773 struct dwo_unit *dwo_unit;
12774 struct dwo_file *dwo_file;
12775
12776 gdb_assert (!per_cu->is_debug_types);
12777 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
12778 gdb_assert (per_cu->cu != NULL);
12779
12780 dwo_unit = per_cu->cu->dwo_unit;
12781 gdb_assert (dwo_unit != NULL);
12782
12783 dwo_file = dwo_unit->dwo_file;
12784 if (dwo_file->tus != NULL)
12785 htab_traverse_noresize (dwo_file->tus.get (), queue_and_load_dwo_tu,
12786 per_cu);
12787 }
12788
12789 /* Read in various DIEs. */
12790
12791 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
12792 Inherit only the children of the DW_AT_abstract_origin DIE not being
12793 already referenced by DW_AT_abstract_origin from the children of the
12794 current DIE. */
12795
12796 static void
12797 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
12798 {
12799 struct die_info *child_die;
12800 sect_offset *offsetp;
12801 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
12802 struct die_info *origin_die;
12803 /* Iterator of the ORIGIN_DIE children. */
12804 struct die_info *origin_child_die;
12805 struct attribute *attr;
12806 struct dwarf2_cu *origin_cu;
12807 struct pending **origin_previous_list_in_scope;
12808
12809 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
12810 if (!attr)
12811 return;
12812
12813 /* Note that following die references may follow to a die in a
12814 different cu. */
12815
12816 origin_cu = cu;
12817 origin_die = follow_die_ref (die, attr, &origin_cu);
12818
12819 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
12820 symbols in. */
12821 origin_previous_list_in_scope = origin_cu->list_in_scope;
12822 origin_cu->list_in_scope = cu->list_in_scope;
12823
12824 if (die->tag != origin_die->tag
12825 && !(die->tag == DW_TAG_inlined_subroutine
12826 && origin_die->tag == DW_TAG_subprogram))
12827 complaint (_("DIE %s and its abstract origin %s have different tags"),
12828 sect_offset_str (die->sect_off),
12829 sect_offset_str (origin_die->sect_off));
12830
12831 std::vector<sect_offset> offsets;
12832
12833 for (child_die = die->child;
12834 child_die && child_die->tag;
12835 child_die = child_die->sibling)
12836 {
12837 struct die_info *child_origin_die;
12838 struct dwarf2_cu *child_origin_cu;
12839
12840 /* We are trying to process concrete instance entries:
12841 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
12842 it's not relevant to our analysis here. i.e. detecting DIEs that are
12843 present in the abstract instance but not referenced in the concrete
12844 one. */
12845 if (child_die->tag == DW_TAG_call_site
12846 || child_die->tag == DW_TAG_GNU_call_site)
12847 continue;
12848
12849 /* For each CHILD_DIE, find the corresponding child of
12850 ORIGIN_DIE. If there is more than one layer of
12851 DW_AT_abstract_origin, follow them all; there shouldn't be,
12852 but GCC versions at least through 4.4 generate this (GCC PR
12853 40573). */
12854 child_origin_die = child_die;
12855 child_origin_cu = cu;
12856 while (1)
12857 {
12858 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
12859 child_origin_cu);
12860 if (attr == NULL)
12861 break;
12862 child_origin_die = follow_die_ref (child_origin_die, attr,
12863 &child_origin_cu);
12864 }
12865
12866 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
12867 counterpart may exist. */
12868 if (child_origin_die != child_die)
12869 {
12870 if (child_die->tag != child_origin_die->tag
12871 && !(child_die->tag == DW_TAG_inlined_subroutine
12872 && child_origin_die->tag == DW_TAG_subprogram))
12873 complaint (_("Child DIE %s and its abstract origin %s have "
12874 "different tags"),
12875 sect_offset_str (child_die->sect_off),
12876 sect_offset_str (child_origin_die->sect_off));
12877 if (child_origin_die->parent != origin_die)
12878 complaint (_("Child DIE %s and its abstract origin %s have "
12879 "different parents"),
12880 sect_offset_str (child_die->sect_off),
12881 sect_offset_str (child_origin_die->sect_off));
12882 else
12883 offsets.push_back (child_origin_die->sect_off);
12884 }
12885 }
12886 std::sort (offsets.begin (), offsets.end ());
12887 sect_offset *offsets_end = offsets.data () + offsets.size ();
12888 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
12889 if (offsetp[-1] == *offsetp)
12890 complaint (_("Multiple children of DIE %s refer "
12891 "to DIE %s as their abstract origin"),
12892 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
12893
12894 offsetp = offsets.data ();
12895 origin_child_die = origin_die->child;
12896 while (origin_child_die && origin_child_die->tag)
12897 {
12898 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
12899 while (offsetp < offsets_end
12900 && *offsetp < origin_child_die->sect_off)
12901 offsetp++;
12902 if (offsetp >= offsets_end
12903 || *offsetp > origin_child_die->sect_off)
12904 {
12905 /* Found that ORIGIN_CHILD_DIE is really not referenced.
12906 Check whether we're already processing ORIGIN_CHILD_DIE.
12907 This can happen with mutually referenced abstract_origins.
12908 PR 16581. */
12909 if (!origin_child_die->in_process)
12910 process_die (origin_child_die, origin_cu);
12911 }
12912 origin_child_die = origin_child_die->sibling;
12913 }
12914 origin_cu->list_in_scope = origin_previous_list_in_scope;
12915
12916 if (cu != origin_cu)
12917 compute_delayed_physnames (origin_cu);
12918 }
12919
12920 static void
12921 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
12922 {
12923 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
12924 struct gdbarch *gdbarch = objfile->arch ();
12925 struct context_stack *newobj;
12926 CORE_ADDR lowpc;
12927 CORE_ADDR highpc;
12928 struct die_info *child_die;
12929 struct attribute *attr, *call_line, *call_file;
12930 const char *name;
12931 CORE_ADDR baseaddr;
12932 struct block *block;
12933 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
12934 std::vector<struct symbol *> template_args;
12935 struct template_symbol *templ_func = NULL;
12936
12937 if (inlined_func)
12938 {
12939 /* If we do not have call site information, we can't show the
12940 caller of this inlined function. That's too confusing, so
12941 only use the scope for local variables. */
12942 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
12943 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
12944 if (call_line == NULL || call_file == NULL)
12945 {
12946 read_lexical_block_scope (die, cu);
12947 return;
12948 }
12949 }
12950
12951 baseaddr = objfile->text_section_offset ();
12952
12953 name = dwarf2_name (die, cu);
12954
12955 /* Ignore functions with missing or empty names. These are actually
12956 illegal according to the DWARF standard. */
12957 if (name == NULL)
12958 {
12959 complaint (_("missing name for subprogram DIE at %s"),
12960 sect_offset_str (die->sect_off));
12961 return;
12962 }
12963
12964 /* Ignore functions with missing or invalid low and high pc attributes. */
12965 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
12966 <= PC_BOUNDS_INVALID)
12967 {
12968 attr = dwarf2_attr (die, DW_AT_external, cu);
12969 if (!attr || !DW_UNSND (attr))
12970 complaint (_("cannot get low and high bounds "
12971 "for subprogram DIE at %s"),
12972 sect_offset_str (die->sect_off));
12973 return;
12974 }
12975
12976 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
12977 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
12978
12979 /* If we have any template arguments, then we must allocate a
12980 different sort of symbol. */
12981 for (child_die = die->child; child_die; child_die = child_die->sibling)
12982 {
12983 if (child_die->tag == DW_TAG_template_type_param
12984 || child_die->tag == DW_TAG_template_value_param)
12985 {
12986 templ_func = new (&objfile->objfile_obstack) template_symbol;
12987 templ_func->subclass = SYMBOL_TEMPLATE;
12988 break;
12989 }
12990 }
12991
12992 newobj = cu->get_builder ()->push_context (0, lowpc);
12993 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
12994 (struct symbol *) templ_func);
12995
12996 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
12997 set_objfile_main_name (objfile, newobj->name->linkage_name (),
12998 cu->language);
12999
13000 /* If there is a location expression for DW_AT_frame_base, record
13001 it. */
13002 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13003 if (attr != nullptr)
13004 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13005
13006 /* If there is a location for the static link, record it. */
13007 newobj->static_link = NULL;
13008 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13009 if (attr != nullptr)
13010 {
13011 newobj->static_link
13012 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13013 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13014 cu->per_cu->addr_type ());
13015 }
13016
13017 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13018
13019 if (die->child != NULL)
13020 {
13021 child_die = die->child;
13022 while (child_die && child_die->tag)
13023 {
13024 if (child_die->tag == DW_TAG_template_type_param
13025 || child_die->tag == DW_TAG_template_value_param)
13026 {
13027 struct symbol *arg = new_symbol (child_die, NULL, cu);
13028
13029 if (arg != NULL)
13030 template_args.push_back (arg);
13031 }
13032 else
13033 process_die (child_die, cu);
13034 child_die = child_die->sibling;
13035 }
13036 }
13037
13038 inherit_abstract_dies (die, cu);
13039
13040 /* If we have a DW_AT_specification, we might need to import using
13041 directives from the context of the specification DIE. See the
13042 comment in determine_prefix. */
13043 if (cu->language == language_cplus
13044 && dwarf2_attr (die, DW_AT_specification, cu))
13045 {
13046 struct dwarf2_cu *spec_cu = cu;
13047 struct die_info *spec_die = die_specification (die, &spec_cu);
13048
13049 while (spec_die)
13050 {
13051 child_die = spec_die->child;
13052 while (child_die && child_die->tag)
13053 {
13054 if (child_die->tag == DW_TAG_imported_module)
13055 process_die (child_die, spec_cu);
13056 child_die = child_die->sibling;
13057 }
13058
13059 /* In some cases, GCC generates specification DIEs that
13060 themselves contain DW_AT_specification attributes. */
13061 spec_die = die_specification (spec_die, &spec_cu);
13062 }
13063 }
13064
13065 struct context_stack cstk = cu->get_builder ()->pop_context ();
13066 /* Make a block for the local symbols within. */
13067 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13068 cstk.static_link, lowpc, highpc);
13069
13070 /* For C++, set the block's scope. */
13071 if ((cu->language == language_cplus
13072 || cu->language == language_fortran
13073 || cu->language == language_d
13074 || cu->language == language_rust)
13075 && cu->processing_has_namespace_info)
13076 block_set_scope (block, determine_prefix (die, cu),
13077 &objfile->objfile_obstack);
13078
13079 /* If we have address ranges, record them. */
13080 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13081
13082 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13083
13084 /* Attach template arguments to function. */
13085 if (!template_args.empty ())
13086 {
13087 gdb_assert (templ_func != NULL);
13088
13089 templ_func->n_template_arguments = template_args.size ();
13090 templ_func->template_arguments
13091 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13092 templ_func->n_template_arguments);
13093 memcpy (templ_func->template_arguments,
13094 template_args.data (),
13095 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13096
13097 /* Make sure that the symtab is set on the new symbols. Even
13098 though they don't appear in this symtab directly, other parts
13099 of gdb assume that symbols do, and this is reasonably
13100 true. */
13101 for (symbol *sym : template_args)
13102 symbol_set_symtab (sym, symbol_symtab (templ_func));
13103 }
13104
13105 /* In C++, we can have functions nested inside functions (e.g., when
13106 a function declares a class that has methods). This means that
13107 when we finish processing a function scope, we may need to go
13108 back to building a containing block's symbol lists. */
13109 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13110 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13111
13112 /* If we've finished processing a top-level function, subsequent
13113 symbols go in the file symbol list. */
13114 if (cu->get_builder ()->outermost_context_p ())
13115 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13116 }
13117
13118 /* Process all the DIES contained within a lexical block scope. Start
13119 a new scope, process the dies, and then close the scope. */
13120
13121 static void
13122 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13123 {
13124 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13125 struct gdbarch *gdbarch = objfile->arch ();
13126 CORE_ADDR lowpc, highpc;
13127 struct die_info *child_die;
13128 CORE_ADDR baseaddr;
13129
13130 baseaddr = objfile->text_section_offset ();
13131
13132 /* Ignore blocks with missing or invalid low and high pc attributes. */
13133 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13134 as multiple lexical blocks? Handling children in a sane way would
13135 be nasty. Might be easier to properly extend generic blocks to
13136 describe ranges. */
13137 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13138 {
13139 case PC_BOUNDS_NOT_PRESENT:
13140 /* DW_TAG_lexical_block has no attributes, process its children as if
13141 there was no wrapping by that DW_TAG_lexical_block.
13142 GCC does no longer produces such DWARF since GCC r224161. */
13143 for (child_die = die->child;
13144 child_die != NULL && child_die->tag;
13145 child_die = child_die->sibling)
13146 {
13147 /* We might already be processing this DIE. This can happen
13148 in an unusual circumstance -- where a subroutine A
13149 appears lexically in another subroutine B, but A actually
13150 inlines B. The recursion is broken here, rather than in
13151 inherit_abstract_dies, because it seems better to simply
13152 drop concrete children here. */
13153 if (!child_die->in_process)
13154 process_die (child_die, cu);
13155 }
13156 return;
13157 case PC_BOUNDS_INVALID:
13158 return;
13159 }
13160 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13161 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13162
13163 cu->get_builder ()->push_context (0, lowpc);
13164 if (die->child != NULL)
13165 {
13166 child_die = die->child;
13167 while (child_die && child_die->tag)
13168 {
13169 process_die (child_die, cu);
13170 child_die = child_die->sibling;
13171 }
13172 }
13173 inherit_abstract_dies (die, cu);
13174 struct context_stack cstk = cu->get_builder ()->pop_context ();
13175
13176 if (*cu->get_builder ()->get_local_symbols () != NULL
13177 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13178 {
13179 struct block *block
13180 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13181 cstk.start_addr, highpc);
13182
13183 /* Note that recording ranges after traversing children, as we
13184 do here, means that recording a parent's ranges entails
13185 walking across all its children's ranges as they appear in
13186 the address map, which is quadratic behavior.
13187
13188 It would be nicer to record the parent's ranges before
13189 traversing its children, simply overriding whatever you find
13190 there. But since we don't even decide whether to create a
13191 block until after we've traversed its children, that's hard
13192 to do. */
13193 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13194 }
13195 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13196 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13197 }
13198
13199 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13200
13201 static void
13202 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13203 {
13204 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13205 struct gdbarch *gdbarch = objfile->arch ();
13206 CORE_ADDR pc, baseaddr;
13207 struct attribute *attr;
13208 struct call_site *call_site, call_site_local;
13209 void **slot;
13210 int nparams;
13211 struct die_info *child_die;
13212
13213 baseaddr = objfile->text_section_offset ();
13214
13215 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13216 if (attr == NULL)
13217 {
13218 /* This was a pre-DWARF-5 GNU extension alias
13219 for DW_AT_call_return_pc. */
13220 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13221 }
13222 if (!attr)
13223 {
13224 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
13225 "DIE %s [in module %s]"),
13226 sect_offset_str (die->sect_off), objfile_name (objfile));
13227 return;
13228 }
13229 pc = attr->value_as_address () + baseaddr;
13230 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
13231
13232 if (cu->call_site_htab == NULL)
13233 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
13234 NULL, &objfile->objfile_obstack,
13235 hashtab_obstack_allocate, NULL);
13236 call_site_local.pc = pc;
13237 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
13238 if (*slot != NULL)
13239 {
13240 complaint (_("Duplicate PC %s for DW_TAG_call_site "
13241 "DIE %s [in module %s]"),
13242 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
13243 objfile_name (objfile));
13244 return;
13245 }
13246
13247 /* Count parameters at the caller. */
13248
13249 nparams = 0;
13250 for (child_die = die->child; child_die && child_die->tag;
13251 child_die = child_die->sibling)
13252 {
13253 if (child_die->tag != DW_TAG_call_site_parameter
13254 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13255 {
13256 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
13257 "DW_TAG_call_site child DIE %s [in module %s]"),
13258 child_die->tag, sect_offset_str (child_die->sect_off),
13259 objfile_name (objfile));
13260 continue;
13261 }
13262
13263 nparams++;
13264 }
13265
13266 call_site
13267 = ((struct call_site *)
13268 obstack_alloc (&objfile->objfile_obstack,
13269 sizeof (*call_site)
13270 + (sizeof (*call_site->parameter) * (nparams - 1))));
13271 *slot = call_site;
13272 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
13273 call_site->pc = pc;
13274
13275 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
13276 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
13277 {
13278 struct die_info *func_die;
13279
13280 /* Skip also over DW_TAG_inlined_subroutine. */
13281 for (func_die = die->parent;
13282 func_die && func_die->tag != DW_TAG_subprogram
13283 && func_die->tag != DW_TAG_subroutine_type;
13284 func_die = func_die->parent);
13285
13286 /* DW_AT_call_all_calls is a superset
13287 of DW_AT_call_all_tail_calls. */
13288 if (func_die
13289 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
13290 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
13291 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
13292 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
13293 {
13294 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
13295 not complete. But keep CALL_SITE for look ups via call_site_htab,
13296 both the initial caller containing the real return address PC and
13297 the final callee containing the current PC of a chain of tail
13298 calls do not need to have the tail call list complete. But any
13299 function candidate for a virtual tail call frame searched via
13300 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
13301 determined unambiguously. */
13302 }
13303 else
13304 {
13305 struct type *func_type = NULL;
13306
13307 if (func_die)
13308 func_type = get_die_type (func_die, cu);
13309 if (func_type != NULL)
13310 {
13311 gdb_assert (func_type->code () == TYPE_CODE_FUNC);
13312
13313 /* Enlist this call site to the function. */
13314 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
13315 TYPE_TAIL_CALL_LIST (func_type) = call_site;
13316 }
13317 else
13318 complaint (_("Cannot find function owning DW_TAG_call_site "
13319 "DIE %s [in module %s]"),
13320 sect_offset_str (die->sect_off), objfile_name (objfile));
13321 }
13322 }
13323
13324 attr = dwarf2_attr (die, DW_AT_call_target, cu);
13325 if (attr == NULL)
13326 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
13327 if (attr == NULL)
13328 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
13329 if (attr == NULL)
13330 {
13331 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
13332 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13333 }
13334 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
13335 if (!attr || (attr->form_is_block () && DW_BLOCK (attr)->size == 0))
13336 /* Keep NULL DWARF_BLOCK. */;
13337 else if (attr->form_is_block ())
13338 {
13339 struct dwarf2_locexpr_baton *dlbaton;
13340
13341 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
13342 dlbaton->data = DW_BLOCK (attr)->data;
13343 dlbaton->size = DW_BLOCK (attr)->size;
13344 dlbaton->per_cu = cu->per_cu;
13345
13346 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
13347 }
13348 else if (attr->form_is_ref ())
13349 {
13350 struct dwarf2_cu *target_cu = cu;
13351 struct die_info *target_die;
13352
13353 target_die = follow_die_ref (die, attr, &target_cu);
13354 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
13355 if (die_is_declaration (target_die, target_cu))
13356 {
13357 const char *target_physname;
13358
13359 /* Prefer the mangled name; otherwise compute the demangled one. */
13360 target_physname = dw2_linkage_name (target_die, target_cu);
13361 if (target_physname == NULL)
13362 target_physname = dwarf2_physname (NULL, target_die, target_cu);
13363 if (target_physname == NULL)
13364 complaint (_("DW_AT_call_target target DIE has invalid "
13365 "physname, for referencing DIE %s [in module %s]"),
13366 sect_offset_str (die->sect_off), objfile_name (objfile));
13367 else
13368 SET_FIELD_PHYSNAME (call_site->target, target_physname);
13369 }
13370 else
13371 {
13372 CORE_ADDR lowpc;
13373
13374 /* DW_AT_entry_pc should be preferred. */
13375 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
13376 <= PC_BOUNDS_INVALID)
13377 complaint (_("DW_AT_call_target target DIE has invalid "
13378 "low pc, for referencing DIE %s [in module %s]"),
13379 sect_offset_str (die->sect_off), objfile_name (objfile));
13380 else
13381 {
13382 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13383 SET_FIELD_PHYSADDR (call_site->target, lowpc);
13384 }
13385 }
13386 }
13387 else
13388 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
13389 "block nor reference, for DIE %s [in module %s]"),
13390 sect_offset_str (die->sect_off), objfile_name (objfile));
13391
13392 call_site->per_cu = cu->per_cu;
13393
13394 for (child_die = die->child;
13395 child_die && child_die->tag;
13396 child_die = child_die->sibling)
13397 {
13398 struct call_site_parameter *parameter;
13399 struct attribute *loc, *origin;
13400
13401 if (child_die->tag != DW_TAG_call_site_parameter
13402 && child_die->tag != DW_TAG_GNU_call_site_parameter)
13403 {
13404 /* Already printed the complaint above. */
13405 continue;
13406 }
13407
13408 gdb_assert (call_site->parameter_count < nparams);
13409 parameter = &call_site->parameter[call_site->parameter_count];
13410
13411 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
13412 specifies DW_TAG_formal_parameter. Value of the data assumed for the
13413 register is contained in DW_AT_call_value. */
13414
13415 loc = dwarf2_attr (child_die, DW_AT_location, cu);
13416 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
13417 if (origin == NULL)
13418 {
13419 /* This was a pre-DWARF-5 GNU extension alias
13420 for DW_AT_call_parameter. */
13421 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
13422 }
13423 if (loc == NULL && origin != NULL && origin->form_is_ref ())
13424 {
13425 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
13426
13427 sect_offset sect_off = origin->get_ref_die_offset ();
13428 if (!cu->header.offset_in_cu_p (sect_off))
13429 {
13430 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
13431 binding can be done only inside one CU. Such referenced DIE
13432 therefore cannot be even moved to DW_TAG_partial_unit. */
13433 complaint (_("DW_AT_call_parameter offset is not in CU for "
13434 "DW_TAG_call_site child DIE %s [in module %s]"),
13435 sect_offset_str (child_die->sect_off),
13436 objfile_name (objfile));
13437 continue;
13438 }
13439 parameter->u.param_cu_off
13440 = (cu_offset) (sect_off - cu->header.sect_off);
13441 }
13442 else if (loc == NULL || origin != NULL || !loc->form_is_block ())
13443 {
13444 complaint (_("No DW_FORM_block* DW_AT_location for "
13445 "DW_TAG_call_site child DIE %s [in module %s]"),
13446 sect_offset_str (child_die->sect_off), objfile_name (objfile));
13447 continue;
13448 }
13449 else
13450 {
13451 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
13452 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
13453 if (parameter->u.dwarf_reg != -1)
13454 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
13455 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
13456 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
13457 &parameter->u.fb_offset))
13458 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
13459 else
13460 {
13461 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
13462 "for DW_FORM_block* DW_AT_location is supported for "
13463 "DW_TAG_call_site child DIE %s "
13464 "[in module %s]"),
13465 sect_offset_str (child_die->sect_off),
13466 objfile_name (objfile));
13467 continue;
13468 }
13469 }
13470
13471 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
13472 if (attr == NULL)
13473 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
13474 if (attr == NULL || !attr->form_is_block ())
13475 {
13476 complaint (_("No DW_FORM_block* DW_AT_call_value for "
13477 "DW_TAG_call_site child DIE %s [in module %s]"),
13478 sect_offset_str (child_die->sect_off),
13479 objfile_name (objfile));
13480 continue;
13481 }
13482 parameter->value = DW_BLOCK (attr)->data;
13483 parameter->value_size = DW_BLOCK (attr)->size;
13484
13485 /* Parameters are not pre-cleared by memset above. */
13486 parameter->data_value = NULL;
13487 parameter->data_value_size = 0;
13488 call_site->parameter_count++;
13489
13490 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
13491 if (attr == NULL)
13492 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
13493 if (attr != nullptr)
13494 {
13495 if (!attr->form_is_block ())
13496 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
13497 "DW_TAG_call_site child DIE %s [in module %s]"),
13498 sect_offset_str (child_die->sect_off),
13499 objfile_name (objfile));
13500 else
13501 {
13502 parameter->data_value = DW_BLOCK (attr)->data;
13503 parameter->data_value_size = DW_BLOCK (attr)->size;
13504 }
13505 }
13506 }
13507 }
13508
13509 /* Helper function for read_variable. If DIE represents a virtual
13510 table, then return the type of the concrete object that is
13511 associated with the virtual table. Otherwise, return NULL. */
13512
13513 static struct type *
13514 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
13515 {
13516 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
13517 if (attr == NULL)
13518 return NULL;
13519
13520 /* Find the type DIE. */
13521 struct die_info *type_die = NULL;
13522 struct dwarf2_cu *type_cu = cu;
13523
13524 if (attr->form_is_ref ())
13525 type_die = follow_die_ref (die, attr, &type_cu);
13526 if (type_die == NULL)
13527 return NULL;
13528
13529 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
13530 return NULL;
13531 return die_containing_type (type_die, type_cu);
13532 }
13533
13534 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
13535
13536 static void
13537 read_variable (struct die_info *die, struct dwarf2_cu *cu)
13538 {
13539 struct rust_vtable_symbol *storage = NULL;
13540
13541 if (cu->language == language_rust)
13542 {
13543 struct type *containing_type = rust_containing_type (die, cu);
13544
13545 if (containing_type != NULL)
13546 {
13547 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13548
13549 storage = new (&objfile->objfile_obstack) rust_vtable_symbol;
13550 storage->concrete_type = containing_type;
13551 storage->subclass = SYMBOL_RUST_VTABLE;
13552 }
13553 }
13554
13555 struct symbol *res = new_symbol (die, NULL, cu, storage);
13556 struct attribute *abstract_origin
13557 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13558 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
13559 if (res == NULL && loc && abstract_origin)
13560 {
13561 /* We have a variable without a name, but with a location and an abstract
13562 origin. This may be a concrete instance of an abstract variable
13563 referenced from an DW_OP_GNU_variable_value, so save it to find it back
13564 later. */
13565 struct dwarf2_cu *origin_cu = cu;
13566 struct die_info *origin_die
13567 = follow_die_ref (die, abstract_origin, &origin_cu);
13568 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
13569 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
13570 }
13571 }
13572
13573 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
13574 reading .debug_rnglists.
13575 Callback's type should be:
13576 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13577 Return true if the attributes are present and valid, otherwise,
13578 return false. */
13579
13580 template <typename Callback>
13581 static bool
13582 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
13583 Callback &&callback)
13584 {
13585 struct dwarf2_per_objfile *dwarf2_per_objfile
13586 = cu->per_cu->dwarf2_per_objfile;
13587 struct objfile *objfile = dwarf2_per_objfile->objfile;
13588 bfd *obfd = objfile->obfd;
13589 /* Base address selection entry. */
13590 gdb::optional<CORE_ADDR> base;
13591 const gdb_byte *buffer;
13592 CORE_ADDR baseaddr;
13593 bool overflow = false;
13594
13595 base = cu->base_address;
13596
13597 dwarf2_per_objfile->rnglists.read (objfile);
13598 if (offset >= dwarf2_per_objfile->rnglists.size)
13599 {
13600 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13601 offset);
13602 return false;
13603 }
13604 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
13605
13606 baseaddr = objfile->text_section_offset ();
13607
13608 while (1)
13609 {
13610 /* Initialize it due to a false compiler warning. */
13611 CORE_ADDR range_beginning = 0, range_end = 0;
13612 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
13613 + dwarf2_per_objfile->rnglists.size);
13614 unsigned int bytes_read;
13615
13616 if (buffer == buf_end)
13617 {
13618 overflow = true;
13619 break;
13620 }
13621 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
13622 switch (rlet)
13623 {
13624 case DW_RLE_end_of_list:
13625 break;
13626 case DW_RLE_base_address:
13627 if (buffer + cu->header.addr_size > buf_end)
13628 {
13629 overflow = true;
13630 break;
13631 }
13632 base = cu->header.read_address (obfd, buffer, &bytes_read);
13633 buffer += bytes_read;
13634 break;
13635 case DW_RLE_start_length:
13636 if (buffer + cu->header.addr_size > buf_end)
13637 {
13638 overflow = true;
13639 break;
13640 }
13641 range_beginning = cu->header.read_address (obfd, buffer,
13642 &bytes_read);
13643 buffer += bytes_read;
13644 range_end = (range_beginning
13645 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
13646 buffer += bytes_read;
13647 if (buffer > buf_end)
13648 {
13649 overflow = true;
13650 break;
13651 }
13652 break;
13653 case DW_RLE_offset_pair:
13654 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13655 buffer += bytes_read;
13656 if (buffer > buf_end)
13657 {
13658 overflow = true;
13659 break;
13660 }
13661 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
13662 buffer += bytes_read;
13663 if (buffer > buf_end)
13664 {
13665 overflow = true;
13666 break;
13667 }
13668 break;
13669 case DW_RLE_start_end:
13670 if (buffer + 2 * cu->header.addr_size > buf_end)
13671 {
13672 overflow = true;
13673 break;
13674 }
13675 range_beginning = cu->header.read_address (obfd, buffer,
13676 &bytes_read);
13677 buffer += bytes_read;
13678 range_end = cu->header.read_address (obfd, buffer, &bytes_read);
13679 buffer += bytes_read;
13680 break;
13681 default:
13682 complaint (_("Invalid .debug_rnglists data (no base address)"));
13683 return false;
13684 }
13685 if (rlet == DW_RLE_end_of_list || overflow)
13686 break;
13687 if (rlet == DW_RLE_base_address)
13688 continue;
13689
13690 if (!base.has_value ())
13691 {
13692 /* We have no valid base address for the ranges
13693 data. */
13694 complaint (_("Invalid .debug_rnglists data (no base address)"));
13695 return false;
13696 }
13697
13698 if (range_beginning > range_end)
13699 {
13700 /* Inverted range entries are invalid. */
13701 complaint (_("Invalid .debug_rnglists data (inverted range)"));
13702 return false;
13703 }
13704
13705 /* Empty range entries have no effect. */
13706 if (range_beginning == range_end)
13707 continue;
13708
13709 range_beginning += *base;
13710 range_end += *base;
13711
13712 /* A not-uncommon case of bad debug info.
13713 Don't pollute the addrmap with bad data. */
13714 if (range_beginning + baseaddr == 0
13715 && !dwarf2_per_objfile->has_section_at_zero)
13716 {
13717 complaint (_(".debug_rnglists entry has start address of zero"
13718 " [in module %s]"), objfile_name (objfile));
13719 continue;
13720 }
13721
13722 callback (range_beginning, range_end);
13723 }
13724
13725 if (overflow)
13726 {
13727 complaint (_("Offset %d is not terminated "
13728 "for DW_AT_ranges attribute"),
13729 offset);
13730 return false;
13731 }
13732
13733 return true;
13734 }
13735
13736 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
13737 Callback's type should be:
13738 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
13739 Return 1 if the attributes are present and valid, otherwise, return 0. */
13740
13741 template <typename Callback>
13742 static int
13743 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
13744 Callback &&callback)
13745 {
13746 struct dwarf2_per_objfile *dwarf2_per_objfile
13747 = cu->per_cu->dwarf2_per_objfile;
13748 struct objfile *objfile = dwarf2_per_objfile->objfile;
13749 struct comp_unit_head *cu_header = &cu->header;
13750 bfd *obfd = objfile->obfd;
13751 unsigned int addr_size = cu_header->addr_size;
13752 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
13753 /* Base address selection entry. */
13754 gdb::optional<CORE_ADDR> base;
13755 unsigned int dummy;
13756 const gdb_byte *buffer;
13757 CORE_ADDR baseaddr;
13758
13759 if (cu_header->version >= 5)
13760 return dwarf2_rnglists_process (offset, cu, callback);
13761
13762 base = cu->base_address;
13763
13764 dwarf2_per_objfile->ranges.read (objfile);
13765 if (offset >= dwarf2_per_objfile->ranges.size)
13766 {
13767 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
13768 offset);
13769 return 0;
13770 }
13771 buffer = dwarf2_per_objfile->ranges.buffer + offset;
13772
13773 baseaddr = objfile->text_section_offset ();
13774
13775 while (1)
13776 {
13777 CORE_ADDR range_beginning, range_end;
13778
13779 range_beginning = cu->header.read_address (obfd, buffer, &dummy);
13780 buffer += addr_size;
13781 range_end = cu->header.read_address (obfd, buffer, &dummy);
13782 buffer += addr_size;
13783 offset += 2 * addr_size;
13784
13785 /* An end of list marker is a pair of zero addresses. */
13786 if (range_beginning == 0 && range_end == 0)
13787 /* Found the end of list entry. */
13788 break;
13789
13790 /* Each base address selection entry is a pair of 2 values.
13791 The first is the largest possible address, the second is
13792 the base address. Check for a base address here. */
13793 if ((range_beginning & mask) == mask)
13794 {
13795 /* If we found the largest possible address, then we already
13796 have the base address in range_end. */
13797 base = range_end;
13798 continue;
13799 }
13800
13801 if (!base.has_value ())
13802 {
13803 /* We have no valid base address for the ranges
13804 data. */
13805 complaint (_("Invalid .debug_ranges data (no base address)"));
13806 return 0;
13807 }
13808
13809 if (range_beginning > range_end)
13810 {
13811 /* Inverted range entries are invalid. */
13812 complaint (_("Invalid .debug_ranges data (inverted range)"));
13813 return 0;
13814 }
13815
13816 /* Empty range entries have no effect. */
13817 if (range_beginning == range_end)
13818 continue;
13819
13820 range_beginning += *base;
13821 range_end += *base;
13822
13823 /* A not-uncommon case of bad debug info.
13824 Don't pollute the addrmap with bad data. */
13825 if (range_beginning + baseaddr == 0
13826 && !dwarf2_per_objfile->has_section_at_zero)
13827 {
13828 complaint (_(".debug_ranges entry has start address of zero"
13829 " [in module %s]"), objfile_name (objfile));
13830 continue;
13831 }
13832
13833 callback (range_beginning, range_end);
13834 }
13835
13836 return 1;
13837 }
13838
13839 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
13840 Return 1 if the attributes are present and valid, otherwise, return 0.
13841 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
13842
13843 static int
13844 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
13845 CORE_ADDR *high_return, struct dwarf2_cu *cu,
13846 dwarf2_psymtab *ranges_pst)
13847 {
13848 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13849 struct gdbarch *gdbarch = objfile->arch ();
13850 const CORE_ADDR baseaddr = objfile->text_section_offset ();
13851 int low_set = 0;
13852 CORE_ADDR low = 0;
13853 CORE_ADDR high = 0;
13854 int retval;
13855
13856 retval = dwarf2_ranges_process (offset, cu,
13857 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
13858 {
13859 if (ranges_pst != NULL)
13860 {
13861 CORE_ADDR lowpc;
13862 CORE_ADDR highpc;
13863
13864 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13865 range_beginning + baseaddr)
13866 - baseaddr);
13867 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
13868 range_end + baseaddr)
13869 - baseaddr);
13870 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
13871 lowpc, highpc - 1, ranges_pst);
13872 }
13873
13874 /* FIXME: This is recording everything as a low-high
13875 segment of consecutive addresses. We should have a
13876 data structure for discontiguous block ranges
13877 instead. */
13878 if (! low_set)
13879 {
13880 low = range_beginning;
13881 high = range_end;
13882 low_set = 1;
13883 }
13884 else
13885 {
13886 if (range_beginning < low)
13887 low = range_beginning;
13888 if (range_end > high)
13889 high = range_end;
13890 }
13891 });
13892 if (!retval)
13893 return 0;
13894
13895 if (! low_set)
13896 /* If the first entry is an end-of-list marker, the range
13897 describes an empty scope, i.e. no instructions. */
13898 return 0;
13899
13900 if (low_return)
13901 *low_return = low;
13902 if (high_return)
13903 *high_return = high;
13904 return 1;
13905 }
13906
13907 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
13908 definition for the return value. *LOWPC and *HIGHPC are set iff
13909 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
13910
13911 static enum pc_bounds_kind
13912 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
13913 CORE_ADDR *highpc, struct dwarf2_cu *cu,
13914 dwarf2_psymtab *pst)
13915 {
13916 struct dwarf2_per_objfile *dwarf2_per_objfile
13917 = cu->per_cu->dwarf2_per_objfile;
13918 struct attribute *attr;
13919 struct attribute *attr_high;
13920 CORE_ADDR low = 0;
13921 CORE_ADDR high = 0;
13922 enum pc_bounds_kind ret;
13923
13924 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
13925 if (attr_high)
13926 {
13927 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
13928 if (attr != nullptr)
13929 {
13930 low = attr->value_as_address ();
13931 high = attr_high->value_as_address ();
13932 if (cu->header.version >= 4 && attr_high->form_is_constant ())
13933 high += low;
13934 }
13935 else
13936 /* Found high w/o low attribute. */
13937 return PC_BOUNDS_INVALID;
13938
13939 /* Found consecutive range of addresses. */
13940 ret = PC_BOUNDS_HIGH_LOW;
13941 }
13942 else
13943 {
13944 attr = dwarf2_attr (die, DW_AT_ranges, cu);
13945 if (attr != NULL)
13946 {
13947 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
13948 We take advantage of the fact that DW_AT_ranges does not appear
13949 in DW_TAG_compile_unit of DWO files. */
13950 int need_ranges_base = die->tag != DW_TAG_compile_unit;
13951 unsigned int ranges_offset = (DW_UNSND (attr)
13952 + (need_ranges_base
13953 ? cu->ranges_base
13954 : 0));
13955
13956 /* Value of the DW_AT_ranges attribute is the offset in the
13957 .debug_ranges section. */
13958 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
13959 return PC_BOUNDS_INVALID;
13960 /* Found discontinuous range of addresses. */
13961 ret = PC_BOUNDS_RANGES;
13962 }
13963 else
13964 return PC_BOUNDS_NOT_PRESENT;
13965 }
13966
13967 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
13968 if (high <= low)
13969 return PC_BOUNDS_INVALID;
13970
13971 /* When using the GNU linker, .gnu.linkonce. sections are used to
13972 eliminate duplicate copies of functions and vtables and such.
13973 The linker will arbitrarily choose one and discard the others.
13974 The AT_*_pc values for such functions refer to local labels in
13975 these sections. If the section from that file was discarded, the
13976 labels are not in the output, so the relocs get a value of 0.
13977 If this is a discarded function, mark the pc bounds as invalid,
13978 so that GDB will ignore it. */
13979 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
13980 return PC_BOUNDS_INVALID;
13981
13982 *lowpc = low;
13983 if (highpc)
13984 *highpc = high;
13985 return ret;
13986 }
13987
13988 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
13989 its low and high PC addresses. Do nothing if these addresses could not
13990 be determined. Otherwise, set LOWPC to the low address if it is smaller,
13991 and HIGHPC to the high address if greater than HIGHPC. */
13992
13993 static void
13994 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
13995 CORE_ADDR *lowpc, CORE_ADDR *highpc,
13996 struct dwarf2_cu *cu)
13997 {
13998 CORE_ADDR low, high;
13999 struct die_info *child = die->child;
14000
14001 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14002 {
14003 *lowpc = std::min (*lowpc, low);
14004 *highpc = std::max (*highpc, high);
14005 }
14006
14007 /* If the language does not allow nested subprograms (either inside
14008 subprograms or lexical blocks), we're done. */
14009 if (cu->language != language_ada)
14010 return;
14011
14012 /* Check all the children of the given DIE. If it contains nested
14013 subprograms, then check their pc bounds. Likewise, we need to
14014 check lexical blocks as well, as they may also contain subprogram
14015 definitions. */
14016 while (child && child->tag)
14017 {
14018 if (child->tag == DW_TAG_subprogram
14019 || child->tag == DW_TAG_lexical_block)
14020 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14021 child = child->sibling;
14022 }
14023 }
14024
14025 /* Get the low and high pc's represented by the scope DIE, and store
14026 them in *LOWPC and *HIGHPC. If the correct values can't be
14027 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14028
14029 static void
14030 get_scope_pc_bounds (struct die_info *die,
14031 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14032 struct dwarf2_cu *cu)
14033 {
14034 CORE_ADDR best_low = (CORE_ADDR) -1;
14035 CORE_ADDR best_high = (CORE_ADDR) 0;
14036 CORE_ADDR current_low, current_high;
14037
14038 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14039 >= PC_BOUNDS_RANGES)
14040 {
14041 best_low = current_low;
14042 best_high = current_high;
14043 }
14044 else
14045 {
14046 struct die_info *child = die->child;
14047
14048 while (child && child->tag)
14049 {
14050 switch (child->tag) {
14051 case DW_TAG_subprogram:
14052 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14053 break;
14054 case DW_TAG_namespace:
14055 case DW_TAG_module:
14056 /* FIXME: carlton/2004-01-16: Should we do this for
14057 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14058 that current GCC's always emit the DIEs corresponding
14059 to definitions of methods of classes as children of a
14060 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14061 the DIEs giving the declarations, which could be
14062 anywhere). But I don't see any reason why the
14063 standards says that they have to be there. */
14064 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14065
14066 if (current_low != ((CORE_ADDR) -1))
14067 {
14068 best_low = std::min (best_low, current_low);
14069 best_high = std::max (best_high, current_high);
14070 }
14071 break;
14072 default:
14073 /* Ignore. */
14074 break;
14075 }
14076
14077 child = child->sibling;
14078 }
14079 }
14080
14081 *lowpc = best_low;
14082 *highpc = best_high;
14083 }
14084
14085 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14086 in DIE. */
14087
14088 static void
14089 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14090 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14091 {
14092 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14093 struct gdbarch *gdbarch = objfile->arch ();
14094 struct attribute *attr;
14095 struct attribute *attr_high;
14096
14097 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14098 if (attr_high)
14099 {
14100 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14101 if (attr != nullptr)
14102 {
14103 CORE_ADDR low = attr->value_as_address ();
14104 CORE_ADDR high = attr_high->value_as_address ();
14105
14106 if (cu->header.version >= 4 && attr_high->form_is_constant ())
14107 high += low;
14108
14109 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14110 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14111 cu->get_builder ()->record_block_range (block, low, high - 1);
14112 }
14113 }
14114
14115 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14116 if (attr != nullptr)
14117 {
14118 /* DW_AT_rnglists_base does not apply to DIEs from the DWO skeleton.
14119 We take advantage of the fact that DW_AT_ranges does not appear
14120 in DW_TAG_compile_unit of DWO files. */
14121 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14122
14123 /* The value of the DW_AT_ranges attribute is the offset of the
14124 address range list in the .debug_ranges section. */
14125 unsigned long offset = (DW_UNSND (attr)
14126 + (need_ranges_base ? cu->ranges_base : 0));
14127
14128 std::vector<blockrange> blockvec;
14129 dwarf2_ranges_process (offset, cu,
14130 [&] (CORE_ADDR start, CORE_ADDR end)
14131 {
14132 start += baseaddr;
14133 end += baseaddr;
14134 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14135 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14136 cu->get_builder ()->record_block_range (block, start, end - 1);
14137 blockvec.emplace_back (start, end);
14138 });
14139
14140 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14141 }
14142 }
14143
14144 /* Check whether the producer field indicates either of GCC < 4.6, or the
14145 Intel C/C++ compiler, and cache the result in CU. */
14146
14147 static void
14148 check_producer (struct dwarf2_cu *cu)
14149 {
14150 int major, minor;
14151
14152 if (cu->producer == NULL)
14153 {
14154 /* For unknown compilers expect their behavior is DWARF version
14155 compliant.
14156
14157 GCC started to support .debug_types sections by -gdwarf-4 since
14158 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14159 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14160 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14161 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14162 }
14163 else if (producer_is_gcc (cu->producer, &major, &minor))
14164 {
14165 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14166 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14167 }
14168 else if (producer_is_icc (cu->producer, &major, &minor))
14169 {
14170 cu->producer_is_icc = true;
14171 cu->producer_is_icc_lt_14 = major < 14;
14172 }
14173 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14174 cu->producer_is_codewarrior = true;
14175 else
14176 {
14177 /* For other non-GCC compilers, expect their behavior is DWARF version
14178 compliant. */
14179 }
14180
14181 cu->checked_producer = true;
14182 }
14183
14184 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14185 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14186 during 4.6.0 experimental. */
14187
14188 static bool
14189 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14190 {
14191 if (!cu->checked_producer)
14192 check_producer (cu);
14193
14194 return cu->producer_is_gxx_lt_4_6;
14195 }
14196
14197
14198 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14199 with incorrect is_stmt attributes. */
14200
14201 static bool
14202 producer_is_codewarrior (struct dwarf2_cu *cu)
14203 {
14204 if (!cu->checked_producer)
14205 check_producer (cu);
14206
14207 return cu->producer_is_codewarrior;
14208 }
14209
14210 /* Return the default accessibility type if it is not overridden by
14211 DW_AT_accessibility. */
14212
14213 static enum dwarf_access_attribute
14214 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
14215 {
14216 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
14217 {
14218 /* The default DWARF 2 accessibility for members is public, the default
14219 accessibility for inheritance is private. */
14220
14221 if (die->tag != DW_TAG_inheritance)
14222 return DW_ACCESS_public;
14223 else
14224 return DW_ACCESS_private;
14225 }
14226 else
14227 {
14228 /* DWARF 3+ defines the default accessibility a different way. The same
14229 rules apply now for DW_TAG_inheritance as for the members and it only
14230 depends on the container kind. */
14231
14232 if (die->parent->tag == DW_TAG_class_type)
14233 return DW_ACCESS_private;
14234 else
14235 return DW_ACCESS_public;
14236 }
14237 }
14238
14239 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
14240 offset. If the attribute was not found return 0, otherwise return
14241 1. If it was found but could not properly be handled, set *OFFSET
14242 to 0. */
14243
14244 static int
14245 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14246 LONGEST *offset)
14247 {
14248 struct attribute *attr;
14249
14250 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14251 if (attr != NULL)
14252 {
14253 *offset = 0;
14254
14255 /* Note that we do not check for a section offset first here.
14256 This is because DW_AT_data_member_location is new in DWARF 4,
14257 so if we see it, we can assume that a constant form is really
14258 a constant and not a section offset. */
14259 if (attr->form_is_constant ())
14260 *offset = attr->constant_value (0);
14261 else if (attr->form_is_section_offset ())
14262 dwarf2_complex_location_expr_complaint ();
14263 else if (attr->form_is_block ())
14264 *offset = decode_locdesc (DW_BLOCK (attr), cu);
14265 else
14266 dwarf2_complex_location_expr_complaint ();
14267
14268 return 1;
14269 }
14270
14271 return 0;
14272 }
14273
14274 /* Look for DW_AT_data_member_location and store the results in FIELD. */
14275
14276 static void
14277 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
14278 struct field *field)
14279 {
14280 struct attribute *attr;
14281
14282 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
14283 if (attr != NULL)
14284 {
14285 if (attr->form_is_constant ())
14286 {
14287 LONGEST offset = attr->constant_value (0);
14288 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14289 }
14290 else if (attr->form_is_section_offset ())
14291 dwarf2_complex_location_expr_complaint ();
14292 else if (attr->form_is_block ())
14293 {
14294 bool handled;
14295 CORE_ADDR offset = decode_locdesc (DW_BLOCK (attr), cu, &handled);
14296 if (handled)
14297 SET_FIELD_BITPOS (*field, offset * bits_per_byte);
14298 else
14299 {
14300 struct objfile *objfile
14301 = cu->per_cu->dwarf2_per_objfile->objfile;
14302 struct dwarf2_locexpr_baton *dlbaton
14303 = XOBNEW (&objfile->objfile_obstack,
14304 struct dwarf2_locexpr_baton);
14305 dlbaton->data = DW_BLOCK (attr)->data;
14306 dlbaton->size = DW_BLOCK (attr)->size;
14307 /* When using this baton, we want to compute the address
14308 of the field, not the value. This is why
14309 is_reference is set to false here. */
14310 dlbaton->is_reference = false;
14311 dlbaton->per_cu = cu->per_cu;
14312
14313 SET_FIELD_DWARF_BLOCK (*field, dlbaton);
14314 }
14315 }
14316 else
14317 dwarf2_complex_location_expr_complaint ();
14318 }
14319 }
14320
14321 /* Add an aggregate field to the field list. */
14322
14323 static void
14324 dwarf2_add_field (struct field_info *fip, struct die_info *die,
14325 struct dwarf2_cu *cu)
14326 {
14327 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14328 struct gdbarch *gdbarch = objfile->arch ();
14329 struct nextfield *new_field;
14330 struct attribute *attr;
14331 struct field *fp;
14332 const char *fieldname = "";
14333
14334 if (die->tag == DW_TAG_inheritance)
14335 {
14336 fip->baseclasses.emplace_back ();
14337 new_field = &fip->baseclasses.back ();
14338 }
14339 else
14340 {
14341 fip->fields.emplace_back ();
14342 new_field = &fip->fields.back ();
14343 }
14344
14345 new_field->offset = die->sect_off;
14346
14347 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14348 if (attr != nullptr)
14349 new_field->accessibility = DW_UNSND (attr);
14350 else
14351 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
14352 if (new_field->accessibility != DW_ACCESS_public)
14353 fip->non_public_fields = 1;
14354
14355 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
14356 if (attr != nullptr)
14357 new_field->virtuality = DW_UNSND (attr);
14358 else
14359 new_field->virtuality = DW_VIRTUALITY_none;
14360
14361 fp = &new_field->field;
14362
14363 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
14364 {
14365 /* Data member other than a C++ static data member. */
14366
14367 /* Get type of field. */
14368 fp->type = die_type (die, cu);
14369
14370 SET_FIELD_BITPOS (*fp, 0);
14371
14372 /* Get bit size of field (zero if none). */
14373 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
14374 if (attr != nullptr)
14375 {
14376 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
14377 }
14378 else
14379 {
14380 FIELD_BITSIZE (*fp) = 0;
14381 }
14382
14383 /* Get bit offset of field. */
14384 handle_data_member_location (die, cu, fp);
14385 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
14386 if (attr != nullptr)
14387 {
14388 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
14389 {
14390 /* For big endian bits, the DW_AT_bit_offset gives the
14391 additional bit offset from the MSB of the containing
14392 anonymous object to the MSB of the field. We don't
14393 have to do anything special since we don't need to
14394 know the size of the anonymous object. */
14395 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
14396 }
14397 else
14398 {
14399 /* For little endian bits, compute the bit offset to the
14400 MSB of the anonymous object, subtract off the number of
14401 bits from the MSB of the field to the MSB of the
14402 object, and then subtract off the number of bits of
14403 the field itself. The result is the bit offset of
14404 the LSB of the field. */
14405 int anonymous_size;
14406 int bit_offset = DW_UNSND (attr);
14407
14408 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
14409 if (attr != nullptr)
14410 {
14411 /* The size of the anonymous object containing
14412 the bit field is explicit, so use the
14413 indicated size (in bytes). */
14414 anonymous_size = DW_UNSND (attr);
14415 }
14416 else
14417 {
14418 /* The size of the anonymous object containing
14419 the bit field must be inferred from the type
14420 attribute of the data member containing the
14421 bit field. */
14422 anonymous_size = TYPE_LENGTH (fp->type);
14423 }
14424 SET_FIELD_BITPOS (*fp,
14425 (FIELD_BITPOS (*fp)
14426 + anonymous_size * bits_per_byte
14427 - bit_offset - FIELD_BITSIZE (*fp)));
14428 }
14429 }
14430 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
14431 if (attr != NULL)
14432 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
14433 + attr->constant_value (0)));
14434
14435 /* Get name of field. */
14436 fieldname = dwarf2_name (die, cu);
14437 if (fieldname == NULL)
14438 fieldname = "";
14439
14440 /* The name is already allocated along with this objfile, so we don't
14441 need to duplicate it for the type. */
14442 fp->name = fieldname;
14443
14444 /* Change accessibility for artificial fields (e.g. virtual table
14445 pointer or virtual base class pointer) to private. */
14446 if (dwarf2_attr (die, DW_AT_artificial, cu))
14447 {
14448 FIELD_ARTIFICIAL (*fp) = 1;
14449 new_field->accessibility = DW_ACCESS_private;
14450 fip->non_public_fields = 1;
14451 }
14452 }
14453 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
14454 {
14455 /* C++ static member. */
14456
14457 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
14458 is a declaration, but all versions of G++ as of this writing
14459 (so through at least 3.2.1) incorrectly generate
14460 DW_TAG_variable tags. */
14461
14462 const char *physname;
14463
14464 /* Get name of field. */
14465 fieldname = dwarf2_name (die, cu);
14466 if (fieldname == NULL)
14467 return;
14468
14469 attr = dwarf2_attr (die, DW_AT_const_value, cu);
14470 if (attr
14471 /* Only create a symbol if this is an external value.
14472 new_symbol checks this and puts the value in the global symbol
14473 table, which we want. If it is not external, new_symbol
14474 will try to put the value in cu->list_in_scope which is wrong. */
14475 && dwarf2_flag_true_p (die, DW_AT_external, cu))
14476 {
14477 /* A static const member, not much different than an enum as far as
14478 we're concerned, except that we can support more types. */
14479 new_symbol (die, NULL, cu);
14480 }
14481
14482 /* Get physical name. */
14483 physname = dwarf2_physname (fieldname, die, cu);
14484
14485 /* The name is already allocated along with this objfile, so we don't
14486 need to duplicate it for the type. */
14487 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
14488 FIELD_TYPE (*fp) = die_type (die, cu);
14489 FIELD_NAME (*fp) = fieldname;
14490 }
14491 else if (die->tag == DW_TAG_inheritance)
14492 {
14493 /* C++ base class field. */
14494 handle_data_member_location (die, cu, fp);
14495 FIELD_BITSIZE (*fp) = 0;
14496 FIELD_TYPE (*fp) = die_type (die, cu);
14497 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
14498 }
14499 else
14500 gdb_assert_not_reached ("missing case in dwarf2_add_field");
14501 }
14502
14503 /* Can the type given by DIE define another type? */
14504
14505 static bool
14506 type_can_define_types (const struct die_info *die)
14507 {
14508 switch (die->tag)
14509 {
14510 case DW_TAG_typedef:
14511 case DW_TAG_class_type:
14512 case DW_TAG_structure_type:
14513 case DW_TAG_union_type:
14514 case DW_TAG_enumeration_type:
14515 return true;
14516
14517 default:
14518 return false;
14519 }
14520 }
14521
14522 /* Add a type definition defined in the scope of the FIP's class. */
14523
14524 static void
14525 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
14526 struct dwarf2_cu *cu)
14527 {
14528 struct decl_field fp;
14529 memset (&fp, 0, sizeof (fp));
14530
14531 gdb_assert (type_can_define_types (die));
14532
14533 /* Get name of field. NULL is okay here, meaning an anonymous type. */
14534 fp.name = dwarf2_name (die, cu);
14535 fp.type = read_type_die (die, cu);
14536
14537 /* Save accessibility. */
14538 enum dwarf_access_attribute accessibility;
14539 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14540 if (attr != NULL)
14541 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14542 else
14543 accessibility = dwarf2_default_access_attribute (die, cu);
14544 switch (accessibility)
14545 {
14546 case DW_ACCESS_public:
14547 /* The assumed value if neither private nor protected. */
14548 break;
14549 case DW_ACCESS_private:
14550 fp.is_private = 1;
14551 break;
14552 case DW_ACCESS_protected:
14553 fp.is_protected = 1;
14554 break;
14555 default:
14556 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
14557 }
14558
14559 if (die->tag == DW_TAG_typedef)
14560 fip->typedef_field_list.push_back (fp);
14561 else
14562 fip->nested_types_list.push_back (fp);
14563 }
14564
14565 /* A convenience typedef that's used when finding the discriminant
14566 field for a variant part. */
14567 typedef std::unordered_map<sect_offset, int, gdb::hash_enum<sect_offset>>
14568 offset_map_type;
14569
14570 /* Compute the discriminant range for a given variant. OBSTACK is
14571 where the results will be stored. VARIANT is the variant to
14572 process. IS_UNSIGNED indicates whether the discriminant is signed
14573 or unsigned. */
14574
14575 static const gdb::array_view<discriminant_range>
14576 convert_variant_range (struct obstack *obstack, const variant_field &variant,
14577 bool is_unsigned)
14578 {
14579 std::vector<discriminant_range> ranges;
14580
14581 if (variant.default_branch)
14582 return {};
14583
14584 if (variant.discr_list_data == nullptr)
14585 {
14586 discriminant_range r
14587 = {variant.discriminant_value, variant.discriminant_value};
14588 ranges.push_back (r);
14589 }
14590 else
14591 {
14592 gdb::array_view<const gdb_byte> data (variant.discr_list_data->data,
14593 variant.discr_list_data->size);
14594 while (!data.empty ())
14595 {
14596 if (data[0] != DW_DSC_range && data[0] != DW_DSC_label)
14597 {
14598 complaint (_("invalid discriminant marker: %d"), data[0]);
14599 break;
14600 }
14601 bool is_range = data[0] == DW_DSC_range;
14602 data = data.slice (1);
14603
14604 ULONGEST low, high;
14605 unsigned int bytes_read;
14606
14607 if (data.empty ())
14608 {
14609 complaint (_("DW_AT_discr_list missing low value"));
14610 break;
14611 }
14612 if (is_unsigned)
14613 low = read_unsigned_leb128 (nullptr, data.data (), &bytes_read);
14614 else
14615 low = (ULONGEST) read_signed_leb128 (nullptr, data.data (),
14616 &bytes_read);
14617 data = data.slice (bytes_read);
14618
14619 if (is_range)
14620 {
14621 if (data.empty ())
14622 {
14623 complaint (_("DW_AT_discr_list missing high value"));
14624 break;
14625 }
14626 if (is_unsigned)
14627 high = read_unsigned_leb128 (nullptr, data.data (),
14628 &bytes_read);
14629 else
14630 high = (LONGEST) read_signed_leb128 (nullptr, data.data (),
14631 &bytes_read);
14632 data = data.slice (bytes_read);
14633 }
14634 else
14635 high = low;
14636
14637 ranges.push_back ({ low, high });
14638 }
14639 }
14640
14641 discriminant_range *result = XOBNEWVEC (obstack, discriminant_range,
14642 ranges.size ());
14643 std::copy (ranges.begin (), ranges.end (), result);
14644 return gdb::array_view<discriminant_range> (result, ranges.size ());
14645 }
14646
14647 static const gdb::array_view<variant_part> create_variant_parts
14648 (struct obstack *obstack,
14649 const offset_map_type &offset_map,
14650 struct field_info *fi,
14651 const std::vector<variant_part_builder> &variant_parts);
14652
14653 /* Fill in a "struct variant" for a given variant field. RESULT is
14654 the variant to fill in. OBSTACK is where any needed allocations
14655 will be done. OFFSET_MAP holds the mapping from section offsets to
14656 fields for the type. FI describes the fields of the type we're
14657 processing. FIELD is the variant field we're converting. */
14658
14659 static void
14660 create_one_variant (variant &result, struct obstack *obstack,
14661 const offset_map_type &offset_map,
14662 struct field_info *fi, const variant_field &field)
14663 {
14664 result.discriminants = convert_variant_range (obstack, field, false);
14665 result.first_field = field.first_field + fi->baseclasses.size ();
14666 result.last_field = field.last_field + fi->baseclasses.size ();
14667 result.parts = create_variant_parts (obstack, offset_map, fi,
14668 field.variant_parts);
14669 }
14670
14671 /* Fill in a "struct variant_part" for a given variant part. RESULT
14672 is the variant part to fill in. OBSTACK is where any needed
14673 allocations will be done. OFFSET_MAP holds the mapping from
14674 section offsets to fields for the type. FI describes the fields of
14675 the type we're processing. BUILDER is the variant part to be
14676 converted. */
14677
14678 static void
14679 create_one_variant_part (variant_part &result,
14680 struct obstack *obstack,
14681 const offset_map_type &offset_map,
14682 struct field_info *fi,
14683 const variant_part_builder &builder)
14684 {
14685 auto iter = offset_map.find (builder.discriminant_offset);
14686 if (iter == offset_map.end ())
14687 {
14688 result.discriminant_index = -1;
14689 /* Doesn't matter. */
14690 result.is_unsigned = false;
14691 }
14692 else
14693 {
14694 result.discriminant_index = iter->second;
14695 result.is_unsigned
14696 = TYPE_UNSIGNED (FIELD_TYPE
14697 (fi->fields[result.discriminant_index].field));
14698 }
14699
14700 size_t n = builder.variants.size ();
14701 variant *output = new (obstack) variant[n];
14702 for (size_t i = 0; i < n; ++i)
14703 create_one_variant (output[i], obstack, offset_map, fi,
14704 builder.variants[i]);
14705
14706 result.variants = gdb::array_view<variant> (output, n);
14707 }
14708
14709 /* Create a vector of variant parts that can be attached to a type.
14710 OBSTACK is where any needed allocations will be done. OFFSET_MAP
14711 holds the mapping from section offsets to fields for the type. FI
14712 describes the fields of the type we're processing. VARIANT_PARTS
14713 is the vector to convert. */
14714
14715 static const gdb::array_view<variant_part>
14716 create_variant_parts (struct obstack *obstack,
14717 const offset_map_type &offset_map,
14718 struct field_info *fi,
14719 const std::vector<variant_part_builder> &variant_parts)
14720 {
14721 if (variant_parts.empty ())
14722 return {};
14723
14724 size_t n = variant_parts.size ();
14725 variant_part *result = new (obstack) variant_part[n];
14726 for (size_t i = 0; i < n; ++i)
14727 create_one_variant_part (result[i], obstack, offset_map, fi,
14728 variant_parts[i]);
14729
14730 return gdb::array_view<variant_part> (result, n);
14731 }
14732
14733 /* Compute the variant part vector for FIP, attaching it to TYPE when
14734 done. */
14735
14736 static void
14737 add_variant_property (struct field_info *fip, struct type *type,
14738 struct dwarf2_cu *cu)
14739 {
14740 /* Map section offsets of fields to their field index. Note the
14741 field index here does not take the number of baseclasses into
14742 account. */
14743 offset_map_type offset_map;
14744 for (int i = 0; i < fip->fields.size (); ++i)
14745 offset_map[fip->fields[i].offset] = i;
14746
14747 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14748 gdb::array_view<variant_part> parts
14749 = create_variant_parts (&objfile->objfile_obstack, offset_map, fip,
14750 fip->variant_parts);
14751
14752 struct dynamic_prop prop;
14753 prop.kind = PROP_VARIANT_PARTS;
14754 prop.data.variant_parts
14755 = ((gdb::array_view<variant_part> *)
14756 obstack_copy (&objfile->objfile_obstack, &parts, sizeof (parts)));
14757
14758 type->add_dyn_prop (DYN_PROP_VARIANT_PARTS, prop);
14759 }
14760
14761 /* Create the vector of fields, and attach it to the type. */
14762
14763 static void
14764 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
14765 struct dwarf2_cu *cu)
14766 {
14767 int nfields = fip->nfields ();
14768
14769 /* Record the field count, allocate space for the array of fields,
14770 and create blank accessibility bitfields if necessary. */
14771 TYPE_NFIELDS (type) = nfields;
14772 TYPE_FIELDS (type) = (struct field *)
14773 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
14774
14775 if (fip->non_public_fields && cu->language != language_ada)
14776 {
14777 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14778
14779 TYPE_FIELD_PRIVATE_BITS (type) =
14780 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14781 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
14782
14783 TYPE_FIELD_PROTECTED_BITS (type) =
14784 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14785 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
14786
14787 TYPE_FIELD_IGNORE_BITS (type) =
14788 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
14789 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
14790 }
14791
14792 /* If the type has baseclasses, allocate and clear a bit vector for
14793 TYPE_FIELD_VIRTUAL_BITS. */
14794 if (!fip->baseclasses.empty () && cu->language != language_ada)
14795 {
14796 int num_bytes = B_BYTES (fip->baseclasses.size ());
14797 unsigned char *pointer;
14798
14799 ALLOCATE_CPLUS_STRUCT_TYPE (type);
14800 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
14801 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
14802 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
14803 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
14804 }
14805
14806 if (!fip->variant_parts.empty ())
14807 add_variant_property (fip, type, cu);
14808
14809 /* Copy the saved-up fields into the field vector. */
14810 for (int i = 0; i < nfields; ++i)
14811 {
14812 struct nextfield &field
14813 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
14814 : fip->fields[i - fip->baseclasses.size ()]);
14815
14816 TYPE_FIELD (type, i) = field.field;
14817 switch (field.accessibility)
14818 {
14819 case DW_ACCESS_private:
14820 if (cu->language != language_ada)
14821 SET_TYPE_FIELD_PRIVATE (type, i);
14822 break;
14823
14824 case DW_ACCESS_protected:
14825 if (cu->language != language_ada)
14826 SET_TYPE_FIELD_PROTECTED (type, i);
14827 break;
14828
14829 case DW_ACCESS_public:
14830 break;
14831
14832 default:
14833 /* Unknown accessibility. Complain and treat it as public. */
14834 {
14835 complaint (_("unsupported accessibility %d"),
14836 field.accessibility);
14837 }
14838 break;
14839 }
14840 if (i < fip->baseclasses.size ())
14841 {
14842 switch (field.virtuality)
14843 {
14844 case DW_VIRTUALITY_virtual:
14845 case DW_VIRTUALITY_pure_virtual:
14846 if (cu->language == language_ada)
14847 error (_("unexpected virtuality in component of Ada type"));
14848 SET_TYPE_FIELD_VIRTUAL (type, i);
14849 break;
14850 }
14851 }
14852 }
14853 }
14854
14855 /* Return true if this member function is a constructor, false
14856 otherwise. */
14857
14858 static int
14859 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
14860 {
14861 const char *fieldname;
14862 const char *type_name;
14863 int len;
14864
14865 if (die->parent == NULL)
14866 return 0;
14867
14868 if (die->parent->tag != DW_TAG_structure_type
14869 && die->parent->tag != DW_TAG_union_type
14870 && die->parent->tag != DW_TAG_class_type)
14871 return 0;
14872
14873 fieldname = dwarf2_name (die, cu);
14874 type_name = dwarf2_name (die->parent, cu);
14875 if (fieldname == NULL || type_name == NULL)
14876 return 0;
14877
14878 len = strlen (fieldname);
14879 return (strncmp (fieldname, type_name, len) == 0
14880 && (type_name[len] == '\0' || type_name[len] == '<'));
14881 }
14882
14883 /* Check if the given VALUE is a recognized enum
14884 dwarf_defaulted_attribute constant according to DWARF5 spec,
14885 Table 7.24. */
14886
14887 static bool
14888 is_valid_DW_AT_defaulted (ULONGEST value)
14889 {
14890 switch (value)
14891 {
14892 case DW_DEFAULTED_no:
14893 case DW_DEFAULTED_in_class:
14894 case DW_DEFAULTED_out_of_class:
14895 return true;
14896 }
14897
14898 complaint (_("unrecognized DW_AT_defaulted value (%s)"), pulongest (value));
14899 return false;
14900 }
14901
14902 /* Add a member function to the proper fieldlist. */
14903
14904 static void
14905 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
14906 struct type *type, struct dwarf2_cu *cu)
14907 {
14908 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14909 struct attribute *attr;
14910 int i;
14911 struct fnfieldlist *flp = nullptr;
14912 struct fn_field *fnp;
14913 const char *fieldname;
14914 struct type *this_type;
14915 enum dwarf_access_attribute accessibility;
14916
14917 if (cu->language == language_ada)
14918 error (_("unexpected member function in Ada type"));
14919
14920 /* Get name of member function. */
14921 fieldname = dwarf2_name (die, cu);
14922 if (fieldname == NULL)
14923 return;
14924
14925 /* Look up member function name in fieldlist. */
14926 for (i = 0; i < fip->fnfieldlists.size (); i++)
14927 {
14928 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
14929 {
14930 flp = &fip->fnfieldlists[i];
14931 break;
14932 }
14933 }
14934
14935 /* Create a new fnfieldlist if necessary. */
14936 if (flp == nullptr)
14937 {
14938 fip->fnfieldlists.emplace_back ();
14939 flp = &fip->fnfieldlists.back ();
14940 flp->name = fieldname;
14941 i = fip->fnfieldlists.size () - 1;
14942 }
14943
14944 /* Create a new member function field and add it to the vector of
14945 fnfieldlists. */
14946 flp->fnfields.emplace_back ();
14947 fnp = &flp->fnfields.back ();
14948
14949 /* Delay processing of the physname until later. */
14950 if (cu->language == language_cplus)
14951 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
14952 die, cu);
14953 else
14954 {
14955 const char *physname = dwarf2_physname (fieldname, die, cu);
14956 fnp->physname = physname ? physname : "";
14957 }
14958
14959 fnp->type = alloc_type (objfile);
14960 this_type = read_type_die (die, cu);
14961 if (this_type && this_type->code () == TYPE_CODE_FUNC)
14962 {
14963 int nparams = TYPE_NFIELDS (this_type);
14964
14965 /* TYPE is the domain of this method, and THIS_TYPE is the type
14966 of the method itself (TYPE_CODE_METHOD). */
14967 smash_to_method_type (fnp->type, type,
14968 TYPE_TARGET_TYPE (this_type),
14969 TYPE_FIELDS (this_type),
14970 TYPE_NFIELDS (this_type),
14971 TYPE_VARARGS (this_type));
14972
14973 /* Handle static member functions.
14974 Dwarf2 has no clean way to discern C++ static and non-static
14975 member functions. G++ helps GDB by marking the first
14976 parameter for non-static member functions (which is the this
14977 pointer) as artificial. We obtain this information from
14978 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
14979 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
14980 fnp->voffset = VOFFSET_STATIC;
14981 }
14982 else
14983 complaint (_("member function type missing for '%s'"),
14984 dwarf2_full_name (fieldname, die, cu));
14985
14986 /* Get fcontext from DW_AT_containing_type if present. */
14987 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
14988 fnp->fcontext = die_containing_type (die, cu);
14989
14990 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
14991 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
14992
14993 /* Get accessibility. */
14994 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
14995 if (attr != nullptr)
14996 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
14997 else
14998 accessibility = dwarf2_default_access_attribute (die, cu);
14999 switch (accessibility)
15000 {
15001 case DW_ACCESS_private:
15002 fnp->is_private = 1;
15003 break;
15004 case DW_ACCESS_protected:
15005 fnp->is_protected = 1;
15006 break;
15007 }
15008
15009 /* Check for artificial methods. */
15010 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15011 if (attr && DW_UNSND (attr) != 0)
15012 fnp->is_artificial = 1;
15013
15014 /* Check for defaulted methods. */
15015 attr = dwarf2_attr (die, DW_AT_defaulted, cu);
15016 if (attr != nullptr && is_valid_DW_AT_defaulted (DW_UNSND (attr)))
15017 fnp->defaulted = (enum dwarf_defaulted_attribute) DW_UNSND (attr);
15018
15019 /* Check for deleted methods. */
15020 attr = dwarf2_attr (die, DW_AT_deleted, cu);
15021 if (attr != nullptr && DW_UNSND (attr) != 0)
15022 fnp->is_deleted = 1;
15023
15024 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15025
15026 /* Get index in virtual function table if it is a virtual member
15027 function. For older versions of GCC, this is an offset in the
15028 appropriate virtual table, as specified by DW_AT_containing_type.
15029 For everyone else, it is an expression to be evaluated relative
15030 to the object address. */
15031
15032 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15033 if (attr != nullptr)
15034 {
15035 if (attr->form_is_block () && DW_BLOCK (attr)->size > 0)
15036 {
15037 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15038 {
15039 /* Old-style GCC. */
15040 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15041 }
15042 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15043 || (DW_BLOCK (attr)->size > 1
15044 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15045 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15046 {
15047 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15048 if ((fnp->voffset % cu->header.addr_size) != 0)
15049 dwarf2_complex_location_expr_complaint ();
15050 else
15051 fnp->voffset /= cu->header.addr_size;
15052 fnp->voffset += 2;
15053 }
15054 else
15055 dwarf2_complex_location_expr_complaint ();
15056
15057 if (!fnp->fcontext)
15058 {
15059 /* If there is no `this' field and no DW_AT_containing_type,
15060 we cannot actually find a base class context for the
15061 vtable! */
15062 if (TYPE_NFIELDS (this_type) == 0
15063 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15064 {
15065 complaint (_("cannot determine context for virtual member "
15066 "function \"%s\" (offset %s)"),
15067 fieldname, sect_offset_str (die->sect_off));
15068 }
15069 else
15070 {
15071 fnp->fcontext
15072 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15073 }
15074 }
15075 }
15076 else if (attr->form_is_section_offset ())
15077 {
15078 dwarf2_complex_location_expr_complaint ();
15079 }
15080 else
15081 {
15082 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15083 fieldname);
15084 }
15085 }
15086 else
15087 {
15088 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15089 if (attr && DW_UNSND (attr))
15090 {
15091 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15092 complaint (_("Member function \"%s\" (offset %s) is virtual "
15093 "but the vtable offset is not specified"),
15094 fieldname, sect_offset_str (die->sect_off));
15095 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15096 TYPE_CPLUS_DYNAMIC (type) = 1;
15097 }
15098 }
15099 }
15100
15101 /* Create the vector of member function fields, and attach it to the type. */
15102
15103 static void
15104 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15105 struct dwarf2_cu *cu)
15106 {
15107 if (cu->language == language_ada)
15108 error (_("unexpected member functions in Ada type"));
15109
15110 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15111 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15112 TYPE_ALLOC (type,
15113 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15114
15115 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15116 {
15117 struct fnfieldlist &nf = fip->fnfieldlists[i];
15118 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15119
15120 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15121 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15122 fn_flp->fn_fields = (struct fn_field *)
15123 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15124
15125 for (int k = 0; k < nf.fnfields.size (); ++k)
15126 fn_flp->fn_fields[k] = nf.fnfields[k];
15127 }
15128
15129 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15130 }
15131
15132 /* Returns non-zero if NAME is the name of a vtable member in CU's
15133 language, zero otherwise. */
15134 static int
15135 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15136 {
15137 static const char vptr[] = "_vptr";
15138
15139 /* Look for the C++ form of the vtable. */
15140 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15141 return 1;
15142
15143 return 0;
15144 }
15145
15146 /* GCC outputs unnamed structures that are really pointers to member
15147 functions, with the ABI-specified layout. If TYPE describes
15148 such a structure, smash it into a member function type.
15149
15150 GCC shouldn't do this; it should just output pointer to member DIEs.
15151 This is GCC PR debug/28767. */
15152
15153 static void
15154 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15155 {
15156 struct type *pfn_type, *self_type, *new_type;
15157
15158 /* Check for a structure with no name and two children. */
15159 if (type->code () != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15160 return;
15161
15162 /* Check for __pfn and __delta members. */
15163 if (TYPE_FIELD_NAME (type, 0) == NULL
15164 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15165 || TYPE_FIELD_NAME (type, 1) == NULL
15166 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15167 return;
15168
15169 /* Find the type of the method. */
15170 pfn_type = TYPE_FIELD_TYPE (type, 0);
15171 if (pfn_type == NULL
15172 || pfn_type->code () != TYPE_CODE_PTR
15173 || TYPE_TARGET_TYPE (pfn_type)->code () != TYPE_CODE_FUNC)
15174 return;
15175
15176 /* Look for the "this" argument. */
15177 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15178 if (TYPE_NFIELDS (pfn_type) == 0
15179 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15180 || TYPE_FIELD_TYPE (pfn_type, 0)->code () != TYPE_CODE_PTR)
15181 return;
15182
15183 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15184 new_type = alloc_type (objfile);
15185 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15186 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15187 TYPE_VARARGS (pfn_type));
15188 smash_to_methodptr_type (type, new_type);
15189 }
15190
15191 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15192 appropriate error checking and issuing complaints if there is a
15193 problem. */
15194
15195 static ULONGEST
15196 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15197 {
15198 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15199
15200 if (attr == nullptr)
15201 return 0;
15202
15203 if (!attr->form_is_constant ())
15204 {
15205 complaint (_("DW_AT_alignment must have constant form"
15206 " - DIE at %s [in module %s]"),
15207 sect_offset_str (die->sect_off),
15208 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15209 return 0;
15210 }
15211
15212 ULONGEST align;
15213 if (attr->form == DW_FORM_sdata)
15214 {
15215 LONGEST val = DW_SND (attr);
15216 if (val < 0)
15217 {
15218 complaint (_("DW_AT_alignment value must not be negative"
15219 " - DIE at %s [in module %s]"),
15220 sect_offset_str (die->sect_off),
15221 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15222 return 0;
15223 }
15224 align = val;
15225 }
15226 else
15227 align = DW_UNSND (attr);
15228
15229 if (align == 0)
15230 {
15231 complaint (_("DW_AT_alignment value must not be zero"
15232 " - DIE at %s [in module %s]"),
15233 sect_offset_str (die->sect_off),
15234 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15235 return 0;
15236 }
15237 if ((align & (align - 1)) != 0)
15238 {
15239 complaint (_("DW_AT_alignment value must be a power of 2"
15240 " - DIE at %s [in module %s]"),
15241 sect_offset_str (die->sect_off),
15242 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15243 return 0;
15244 }
15245
15246 return align;
15247 }
15248
15249 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15250 the alignment for TYPE. */
15251
15252 static void
15253 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15254 struct type *type)
15255 {
15256 if (!set_type_align (type, get_alignment (cu, die)))
15257 complaint (_("DW_AT_alignment value too large"
15258 " - DIE at %s [in module %s]"),
15259 sect_offset_str (die->sect_off),
15260 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15261 }
15262
15263 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15264 constant for a type, according to DWARF5 spec, Table 5.5. */
15265
15266 static bool
15267 is_valid_DW_AT_calling_convention_for_type (ULONGEST value)
15268 {
15269 switch (value)
15270 {
15271 case DW_CC_normal:
15272 case DW_CC_pass_by_reference:
15273 case DW_CC_pass_by_value:
15274 return true;
15275
15276 default:
15277 complaint (_("unrecognized DW_AT_calling_convention value "
15278 "(%s) for a type"), pulongest (value));
15279 return false;
15280 }
15281 }
15282
15283 /* Check if the given VALUE is a valid enum dwarf_calling_convention
15284 constant for a subroutine, according to DWARF5 spec, Table 3.3, and
15285 also according to GNU-specific values (see include/dwarf2.h). */
15286
15287 static bool
15288 is_valid_DW_AT_calling_convention_for_subroutine (ULONGEST value)
15289 {
15290 switch (value)
15291 {
15292 case DW_CC_normal:
15293 case DW_CC_program:
15294 case DW_CC_nocall:
15295 return true;
15296
15297 case DW_CC_GNU_renesas_sh:
15298 case DW_CC_GNU_borland_fastcall_i386:
15299 case DW_CC_GDB_IBM_OpenCL:
15300 return true;
15301
15302 default:
15303 complaint (_("unrecognized DW_AT_calling_convention value "
15304 "(%s) for a subroutine"), pulongest (value));
15305 return false;
15306 }
15307 }
15308
15309 /* Called when we find the DIE that starts a structure or union scope
15310 (definition) to create a type for the structure or union. Fill in
15311 the type's name and general properties; the members will not be
15312 processed until process_structure_scope. A symbol table entry for
15313 the type will also not be done until process_structure_scope (assuming
15314 the type has a name).
15315
15316 NOTE: we need to call these functions regardless of whether or not the
15317 DIE has a DW_AT_name attribute, since it might be an anonymous
15318 structure or union. This gets the type entered into our set of
15319 user defined types. */
15320
15321 static struct type *
15322 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15323 {
15324 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15325 struct type *type;
15326 struct attribute *attr;
15327 const char *name;
15328
15329 /* If the definition of this type lives in .debug_types, read that type.
15330 Don't follow DW_AT_specification though, that will take us back up
15331 the chain and we want to go down. */
15332 attr = die->attr (DW_AT_signature);
15333 if (attr != nullptr)
15334 {
15335 type = get_DW_AT_signature_type (die, attr, cu);
15336
15337 /* The type's CU may not be the same as CU.
15338 Ensure TYPE is recorded with CU in die_type_hash. */
15339 return set_die_type (die, type, cu);
15340 }
15341
15342 type = alloc_type (objfile);
15343 INIT_CPLUS_SPECIFIC (type);
15344
15345 name = dwarf2_name (die, cu);
15346 if (name != NULL)
15347 {
15348 if (cu->language == language_cplus
15349 || cu->language == language_d
15350 || cu->language == language_rust)
15351 {
15352 const char *full_name = dwarf2_full_name (name, die, cu);
15353
15354 /* dwarf2_full_name might have already finished building the DIE's
15355 type. If so, there is no need to continue. */
15356 if (get_die_type (die, cu) != NULL)
15357 return get_die_type (die, cu);
15358
15359 TYPE_NAME (type) = full_name;
15360 }
15361 else
15362 {
15363 /* The name is already allocated along with this objfile, so
15364 we don't need to duplicate it for the type. */
15365 TYPE_NAME (type) = name;
15366 }
15367 }
15368
15369 if (die->tag == DW_TAG_structure_type)
15370 {
15371 type->set_code (TYPE_CODE_STRUCT);
15372 }
15373 else if (die->tag == DW_TAG_union_type)
15374 {
15375 type->set_code (TYPE_CODE_UNION);
15376 }
15377 else
15378 {
15379 type->set_code (TYPE_CODE_STRUCT);
15380 }
15381
15382 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15383 TYPE_DECLARED_CLASS (type) = 1;
15384
15385 /* Store the calling convention in the type if it's available in
15386 the die. Otherwise the calling convention remains set to
15387 the default value DW_CC_normal. */
15388 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
15389 if (attr != nullptr
15390 && is_valid_DW_AT_calling_convention_for_type (DW_UNSND (attr)))
15391 {
15392 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15393 TYPE_CPLUS_CALLING_CONVENTION (type)
15394 = (enum dwarf_calling_convention) (DW_UNSND (attr));
15395 }
15396
15397 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15398 if (attr != nullptr)
15399 {
15400 if (attr->form_is_constant ())
15401 TYPE_LENGTH (type) = DW_UNSND (attr);
15402 else
15403 {
15404 struct dynamic_prop prop;
15405 if (attr_to_dynamic_prop (attr, die, cu, &prop,
15406 cu->per_cu->addr_type ()))
15407 type->add_dyn_prop (DYN_PROP_BYTE_SIZE, prop);
15408 TYPE_LENGTH (type) = 0;
15409 }
15410 }
15411 else
15412 {
15413 TYPE_LENGTH (type) = 0;
15414 }
15415
15416 maybe_set_alignment (cu, die, type);
15417
15418 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15419 {
15420 /* ICC<14 does not output the required DW_AT_declaration on
15421 incomplete types, but gives them a size of zero. */
15422 TYPE_STUB (type) = 1;
15423 }
15424 else
15425 TYPE_STUB_SUPPORTED (type) = 1;
15426
15427 if (die_is_declaration (die, cu))
15428 TYPE_STUB (type) = 1;
15429 else if (attr == NULL && die->child == NULL
15430 && producer_is_realview (cu->producer))
15431 /* RealView does not output the required DW_AT_declaration
15432 on incomplete types. */
15433 TYPE_STUB (type) = 1;
15434
15435 /* We need to add the type field to the die immediately so we don't
15436 infinitely recurse when dealing with pointers to the structure
15437 type within the structure itself. */
15438 set_die_type (die, type, cu);
15439
15440 /* set_die_type should be already done. */
15441 set_descriptive_type (type, die, cu);
15442
15443 return type;
15444 }
15445
15446 static void handle_struct_member_die
15447 (struct die_info *child_die,
15448 struct type *type,
15449 struct field_info *fi,
15450 std::vector<struct symbol *> *template_args,
15451 struct dwarf2_cu *cu);
15452
15453 /* A helper for handle_struct_member_die that handles
15454 DW_TAG_variant_part. */
15455
15456 static void
15457 handle_variant_part (struct die_info *die, struct type *type,
15458 struct field_info *fi,
15459 std::vector<struct symbol *> *template_args,
15460 struct dwarf2_cu *cu)
15461 {
15462 variant_part_builder *new_part;
15463 if (fi->current_variant_part == nullptr)
15464 {
15465 fi->variant_parts.emplace_back ();
15466 new_part = &fi->variant_parts.back ();
15467 }
15468 else if (!fi->current_variant_part->processing_variant)
15469 {
15470 complaint (_("nested DW_TAG_variant_part seen "
15471 "- DIE at %s [in module %s]"),
15472 sect_offset_str (die->sect_off),
15473 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15474 return;
15475 }
15476 else
15477 {
15478 variant_field &current = fi->current_variant_part->variants.back ();
15479 current.variant_parts.emplace_back ();
15480 new_part = &current.variant_parts.back ();
15481 }
15482
15483 /* When we recurse, we want callees to add to this new variant
15484 part. */
15485 scoped_restore save_current_variant_part
15486 = make_scoped_restore (&fi->current_variant_part, new_part);
15487
15488 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
15489 if (discr == NULL)
15490 {
15491 /* It's a univariant form, an extension we support. */
15492 }
15493 else if (discr->form_is_ref ())
15494 {
15495 struct dwarf2_cu *target_cu = cu;
15496 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
15497
15498 new_part->discriminant_offset = target_die->sect_off;
15499 }
15500 else
15501 {
15502 complaint (_("DW_AT_discr does not have DIE reference form"
15503 " - DIE at %s [in module %s]"),
15504 sect_offset_str (die->sect_off),
15505 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15506 }
15507
15508 for (die_info *child_die = die->child;
15509 child_die != NULL;
15510 child_die = child_die->sibling)
15511 handle_struct_member_die (child_die, type, fi, template_args, cu);
15512 }
15513
15514 /* A helper for handle_struct_member_die that handles
15515 DW_TAG_variant. */
15516
15517 static void
15518 handle_variant (struct die_info *die, struct type *type,
15519 struct field_info *fi,
15520 std::vector<struct symbol *> *template_args,
15521 struct dwarf2_cu *cu)
15522 {
15523 if (fi->current_variant_part == nullptr)
15524 {
15525 complaint (_("saw DW_TAG_variant outside DW_TAG_variant_part "
15526 "- DIE at %s [in module %s]"),
15527 sect_offset_str (die->sect_off),
15528 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15529 return;
15530 }
15531 if (fi->current_variant_part->processing_variant)
15532 {
15533 complaint (_("nested DW_TAG_variant seen "
15534 "- DIE at %s [in module %s]"),
15535 sect_offset_str (die->sect_off),
15536 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15537 return;
15538 }
15539
15540 scoped_restore save_processing_variant
15541 = make_scoped_restore (&fi->current_variant_part->processing_variant,
15542 true);
15543
15544 fi->current_variant_part->variants.emplace_back ();
15545 variant_field &variant = fi->current_variant_part->variants.back ();
15546 variant.first_field = fi->fields.size ();
15547
15548 /* In a variant we want to get the discriminant and also add a
15549 field for our sole member child. */
15550 struct attribute *discr = dwarf2_attr (die, DW_AT_discr_value, cu);
15551 if (discr == nullptr)
15552 {
15553 discr = dwarf2_attr (die, DW_AT_discr_list, cu);
15554 if (discr == nullptr || DW_BLOCK (discr)->size == 0)
15555 variant.default_branch = true;
15556 else
15557 variant.discr_list_data = DW_BLOCK (discr);
15558 }
15559 else
15560 variant.discriminant_value = DW_UNSND (discr);
15561
15562 for (die_info *variant_child = die->child;
15563 variant_child != NULL;
15564 variant_child = variant_child->sibling)
15565 handle_struct_member_die (variant_child, type, fi, template_args, cu);
15566
15567 variant.last_field = fi->fields.size ();
15568 }
15569
15570 /* A helper for process_structure_scope that handles a single member
15571 DIE. */
15572
15573 static void
15574 handle_struct_member_die (struct die_info *child_die, struct type *type,
15575 struct field_info *fi,
15576 std::vector<struct symbol *> *template_args,
15577 struct dwarf2_cu *cu)
15578 {
15579 if (child_die->tag == DW_TAG_member
15580 || child_die->tag == DW_TAG_variable)
15581 {
15582 /* NOTE: carlton/2002-11-05: A C++ static data member
15583 should be a DW_TAG_member that is a declaration, but
15584 all versions of G++ as of this writing (so through at
15585 least 3.2.1) incorrectly generate DW_TAG_variable
15586 tags for them instead. */
15587 dwarf2_add_field (fi, child_die, cu);
15588 }
15589 else if (child_die->tag == DW_TAG_subprogram)
15590 {
15591 /* Rust doesn't have member functions in the C++ sense.
15592 However, it does emit ordinary functions as children
15593 of a struct DIE. */
15594 if (cu->language == language_rust)
15595 read_func_scope (child_die, cu);
15596 else
15597 {
15598 /* C++ member function. */
15599 dwarf2_add_member_fn (fi, child_die, type, cu);
15600 }
15601 }
15602 else if (child_die->tag == DW_TAG_inheritance)
15603 {
15604 /* C++ base class field. */
15605 dwarf2_add_field (fi, child_die, cu);
15606 }
15607 else if (type_can_define_types (child_die))
15608 dwarf2_add_type_defn (fi, child_die, cu);
15609 else if (child_die->tag == DW_TAG_template_type_param
15610 || child_die->tag == DW_TAG_template_value_param)
15611 {
15612 struct symbol *arg = new_symbol (child_die, NULL, cu);
15613
15614 if (arg != NULL)
15615 template_args->push_back (arg);
15616 }
15617 else if (child_die->tag == DW_TAG_variant_part)
15618 handle_variant_part (child_die, type, fi, template_args, cu);
15619 else if (child_die->tag == DW_TAG_variant)
15620 handle_variant (child_die, type, fi, template_args, cu);
15621 }
15622
15623 /* Finish creating a structure or union type, including filling in
15624 its members and creating a symbol for it. */
15625
15626 static void
15627 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
15628 {
15629 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15630 struct die_info *child_die;
15631 struct type *type;
15632
15633 type = get_die_type (die, cu);
15634 if (type == NULL)
15635 type = read_structure_type (die, cu);
15636
15637 bool has_template_parameters = false;
15638 if (die->child != NULL && ! die_is_declaration (die, cu))
15639 {
15640 struct field_info fi;
15641 std::vector<struct symbol *> template_args;
15642
15643 child_die = die->child;
15644
15645 while (child_die && child_die->tag)
15646 {
15647 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
15648 child_die = child_die->sibling;
15649 }
15650
15651 /* Attach template arguments to type. */
15652 if (!template_args.empty ())
15653 {
15654 has_template_parameters = true;
15655 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15656 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
15657 TYPE_TEMPLATE_ARGUMENTS (type)
15658 = XOBNEWVEC (&objfile->objfile_obstack,
15659 struct symbol *,
15660 TYPE_N_TEMPLATE_ARGUMENTS (type));
15661 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
15662 template_args.data (),
15663 (TYPE_N_TEMPLATE_ARGUMENTS (type)
15664 * sizeof (struct symbol *)));
15665 }
15666
15667 /* Attach fields and member functions to the type. */
15668 if (fi.nfields () > 0)
15669 dwarf2_attach_fields_to_type (&fi, type, cu);
15670 if (!fi.fnfieldlists.empty ())
15671 {
15672 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
15673
15674 /* Get the type which refers to the base class (possibly this
15675 class itself) which contains the vtable pointer for the current
15676 class from the DW_AT_containing_type attribute. This use of
15677 DW_AT_containing_type is a GNU extension. */
15678
15679 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15680 {
15681 struct type *t = die_containing_type (die, cu);
15682
15683 set_type_vptr_basetype (type, t);
15684 if (type == t)
15685 {
15686 int i;
15687
15688 /* Our own class provides vtbl ptr. */
15689 for (i = TYPE_NFIELDS (t) - 1;
15690 i >= TYPE_N_BASECLASSES (t);
15691 --i)
15692 {
15693 const char *fieldname = TYPE_FIELD_NAME (t, i);
15694
15695 if (is_vtable_name (fieldname, cu))
15696 {
15697 set_type_vptr_fieldno (type, i);
15698 break;
15699 }
15700 }
15701
15702 /* Complain if virtual function table field not found. */
15703 if (i < TYPE_N_BASECLASSES (t))
15704 complaint (_("virtual function table pointer "
15705 "not found when defining class '%s'"),
15706 TYPE_NAME (type) ? TYPE_NAME (type) : "");
15707 }
15708 else
15709 {
15710 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
15711 }
15712 }
15713 else if (cu->producer
15714 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
15715 {
15716 /* The IBM XLC compiler does not provide direct indication
15717 of the containing type, but the vtable pointer is
15718 always named __vfp. */
15719
15720 int i;
15721
15722 for (i = TYPE_NFIELDS (type) - 1;
15723 i >= TYPE_N_BASECLASSES (type);
15724 --i)
15725 {
15726 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
15727 {
15728 set_type_vptr_fieldno (type, i);
15729 set_type_vptr_basetype (type, type);
15730 break;
15731 }
15732 }
15733 }
15734 }
15735
15736 /* Copy fi.typedef_field_list linked list elements content into the
15737 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
15738 if (!fi.typedef_field_list.empty ())
15739 {
15740 int count = fi.typedef_field_list.size ();
15741
15742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15743 TYPE_TYPEDEF_FIELD_ARRAY (type)
15744 = ((struct decl_field *)
15745 TYPE_ALLOC (type,
15746 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
15747 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
15748
15749 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
15750 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
15751 }
15752
15753 /* Copy fi.nested_types_list linked list elements content into the
15754 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
15755 if (!fi.nested_types_list.empty () && cu->language != language_ada)
15756 {
15757 int count = fi.nested_types_list.size ();
15758
15759 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15760 TYPE_NESTED_TYPES_ARRAY (type)
15761 = ((struct decl_field *)
15762 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
15763 TYPE_NESTED_TYPES_COUNT (type) = count;
15764
15765 for (int i = 0; i < fi.nested_types_list.size (); ++i)
15766 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
15767 }
15768 }
15769
15770 quirk_gcc_member_function_pointer (type, objfile);
15771 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
15772 cu->rust_unions.push_back (type);
15773
15774 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
15775 snapshots) has been known to create a die giving a declaration
15776 for a class that has, as a child, a die giving a definition for a
15777 nested class. So we have to process our children even if the
15778 current die is a declaration. Normally, of course, a declaration
15779 won't have any children at all. */
15780
15781 child_die = die->child;
15782
15783 while (child_die != NULL && child_die->tag)
15784 {
15785 if (child_die->tag == DW_TAG_member
15786 || child_die->tag == DW_TAG_variable
15787 || child_die->tag == DW_TAG_inheritance
15788 || child_die->tag == DW_TAG_template_value_param
15789 || child_die->tag == DW_TAG_template_type_param)
15790 {
15791 /* Do nothing. */
15792 }
15793 else
15794 process_die (child_die, cu);
15795
15796 child_die = child_die->sibling;
15797 }
15798
15799 /* Do not consider external references. According to the DWARF standard,
15800 these DIEs are identified by the fact that they have no byte_size
15801 attribute, and a declaration attribute. */
15802 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
15803 || !die_is_declaration (die, cu)
15804 || dwarf2_attr (die, DW_AT_signature, cu) != NULL)
15805 {
15806 struct symbol *sym = new_symbol (die, type, cu);
15807
15808 if (has_template_parameters)
15809 {
15810 struct symtab *symtab;
15811 if (sym != nullptr)
15812 symtab = symbol_symtab (sym);
15813 else if (cu->line_header != nullptr)
15814 {
15815 /* Any related symtab will do. */
15816 symtab
15817 = cu->line_header->file_names ()[0].symtab;
15818 }
15819 else
15820 {
15821 symtab = nullptr;
15822 complaint (_("could not find suitable "
15823 "symtab for template parameter"
15824 " - DIE at %s [in module %s]"),
15825 sect_offset_str (die->sect_off),
15826 objfile_name (objfile));
15827 }
15828
15829 if (symtab != nullptr)
15830 {
15831 /* Make sure that the symtab is set on the new symbols.
15832 Even though they don't appear in this symtab directly,
15833 other parts of gdb assume that symbols do, and this is
15834 reasonably true. */
15835 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
15836 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
15837 }
15838 }
15839 }
15840 }
15841
15842 /* Assuming DIE is an enumeration type, and TYPE is its associated
15843 type, update TYPE using some information only available in DIE's
15844 children. In particular, the fields are computed. */
15845
15846 static void
15847 update_enumeration_type_from_children (struct die_info *die,
15848 struct type *type,
15849 struct dwarf2_cu *cu)
15850 {
15851 struct die_info *child_die;
15852 int unsigned_enum = 1;
15853 int flag_enum = 1;
15854
15855 auto_obstack obstack;
15856 std::vector<struct field> fields;
15857
15858 for (child_die = die->child;
15859 child_die != NULL && child_die->tag;
15860 child_die = child_die->sibling)
15861 {
15862 struct attribute *attr;
15863 LONGEST value;
15864 const gdb_byte *bytes;
15865 struct dwarf2_locexpr_baton *baton;
15866 const char *name;
15867
15868 if (child_die->tag != DW_TAG_enumerator)
15869 continue;
15870
15871 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
15872 if (attr == NULL)
15873 continue;
15874
15875 name = dwarf2_name (child_die, cu);
15876 if (name == NULL)
15877 name = "<anonymous enumerator>";
15878
15879 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
15880 &value, &bytes, &baton);
15881 if (value < 0)
15882 {
15883 unsigned_enum = 0;
15884 flag_enum = 0;
15885 }
15886 else
15887 {
15888 if (count_one_bits_ll (value) >= 2)
15889 flag_enum = 0;
15890 }
15891
15892 fields.emplace_back ();
15893 struct field &field = fields.back ();
15894 FIELD_NAME (field) = dwarf2_physname (name, child_die, cu);
15895 SET_FIELD_ENUMVAL (field, value);
15896 }
15897
15898 if (!fields.empty ())
15899 {
15900 TYPE_NFIELDS (type) = fields.size ();
15901 TYPE_FIELDS (type) = (struct field *)
15902 TYPE_ALLOC (type, sizeof (struct field) * fields.size ());
15903 memcpy (TYPE_FIELDS (type), fields.data (),
15904 sizeof (struct field) * fields.size ());
15905 }
15906
15907 if (unsigned_enum)
15908 TYPE_UNSIGNED (type) = 1;
15909 if (flag_enum)
15910 TYPE_FLAG_ENUM (type) = 1;
15911 }
15912
15913 /* Given a DW_AT_enumeration_type die, set its type. We do not
15914 complete the type's fields yet, or create any symbols. */
15915
15916 static struct type *
15917 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
15918 {
15919 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15920 struct type *type;
15921 struct attribute *attr;
15922 const char *name;
15923
15924 /* If the definition of this type lives in .debug_types, read that type.
15925 Don't follow DW_AT_specification though, that will take us back up
15926 the chain and we want to go down. */
15927 attr = die->attr (DW_AT_signature);
15928 if (attr != nullptr)
15929 {
15930 type = get_DW_AT_signature_type (die, attr, cu);
15931
15932 /* The type's CU may not be the same as CU.
15933 Ensure TYPE is recorded with CU in die_type_hash. */
15934 return set_die_type (die, type, cu);
15935 }
15936
15937 type = alloc_type (objfile);
15938
15939 type->set_code (TYPE_CODE_ENUM);
15940 name = dwarf2_full_name (NULL, die, cu);
15941 if (name != NULL)
15942 TYPE_NAME (type) = name;
15943
15944 attr = dwarf2_attr (die, DW_AT_type, cu);
15945 if (attr != NULL)
15946 {
15947 struct type *underlying_type = die_type (die, cu);
15948
15949 TYPE_TARGET_TYPE (type) = underlying_type;
15950 }
15951
15952 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15953 if (attr != nullptr)
15954 {
15955 TYPE_LENGTH (type) = DW_UNSND (attr);
15956 }
15957 else
15958 {
15959 TYPE_LENGTH (type) = 0;
15960 }
15961
15962 maybe_set_alignment (cu, die, type);
15963
15964 /* The enumeration DIE can be incomplete. In Ada, any type can be
15965 declared as private in the package spec, and then defined only
15966 inside the package body. Such types are known as Taft Amendment
15967 Types. When another package uses such a type, an incomplete DIE
15968 may be generated by the compiler. */
15969 if (die_is_declaration (die, cu))
15970 TYPE_STUB (type) = 1;
15971
15972 /* If this type has an underlying type that is not a stub, then we
15973 may use its attributes. We always use the "unsigned" attribute
15974 in this situation, because ordinarily we guess whether the type
15975 is unsigned -- but the guess can be wrong and the underlying type
15976 can tell us the reality. However, we defer to a local size
15977 attribute if one exists, because this lets the compiler override
15978 the underlying type if needed. */
15979 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
15980 {
15981 struct type *underlying_type = TYPE_TARGET_TYPE (type);
15982 underlying_type = check_typedef (underlying_type);
15983 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (underlying_type);
15984 if (TYPE_LENGTH (type) == 0)
15985 TYPE_LENGTH (type) = TYPE_LENGTH (underlying_type);
15986 if (TYPE_RAW_ALIGN (type) == 0
15987 && TYPE_RAW_ALIGN (underlying_type) != 0)
15988 set_type_align (type, TYPE_RAW_ALIGN (underlying_type));
15989 }
15990
15991 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
15992
15993 set_die_type (die, type, cu);
15994
15995 /* Finish the creation of this type by using the enum's children.
15996 Note that, as usual, this must come after set_die_type to avoid
15997 infinite recursion when trying to compute the names of the
15998 enumerators. */
15999 update_enumeration_type_from_children (die, type, cu);
16000
16001 return type;
16002 }
16003
16004 /* Given a pointer to a die which begins an enumeration, process all
16005 the dies that define the members of the enumeration, and create the
16006 symbol for the enumeration type.
16007
16008 NOTE: We reverse the order of the element list. */
16009
16010 static void
16011 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16012 {
16013 struct type *this_type;
16014
16015 this_type = get_die_type (die, cu);
16016 if (this_type == NULL)
16017 this_type = read_enumeration_type (die, cu);
16018
16019 if (die->child != NULL)
16020 {
16021 struct die_info *child_die;
16022 const char *name;
16023
16024 child_die = die->child;
16025 while (child_die && child_die->tag)
16026 {
16027 if (child_die->tag != DW_TAG_enumerator)
16028 {
16029 process_die (child_die, cu);
16030 }
16031 else
16032 {
16033 name = dwarf2_name (child_die, cu);
16034 if (name)
16035 new_symbol (child_die, this_type, cu);
16036 }
16037
16038 child_die = child_die->sibling;
16039 }
16040 }
16041
16042 /* If we are reading an enum from a .debug_types unit, and the enum
16043 is a declaration, and the enum is not the signatured type in the
16044 unit, then we do not want to add a symbol for it. Adding a
16045 symbol would in some cases obscure the true definition of the
16046 enum, giving users an incomplete type when the definition is
16047 actually available. Note that we do not want to do this for all
16048 enums which are just declarations, because C++0x allows forward
16049 enum declarations. */
16050 if (cu->per_cu->is_debug_types
16051 && die_is_declaration (die, cu))
16052 {
16053 struct signatured_type *sig_type;
16054
16055 sig_type = (struct signatured_type *) cu->per_cu;
16056 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16057 if (sig_type->type_offset_in_section != die->sect_off)
16058 return;
16059 }
16060
16061 new_symbol (die, this_type, cu);
16062 }
16063
16064 /* Extract all information from a DW_TAG_array_type DIE and put it in
16065 the DIE's type field. For now, this only handles one dimensional
16066 arrays. */
16067
16068 static struct type *
16069 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16070 {
16071 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16072 struct die_info *child_die;
16073 struct type *type;
16074 struct type *element_type, *range_type, *index_type;
16075 struct attribute *attr;
16076 const char *name;
16077 struct dynamic_prop *byte_stride_prop = NULL;
16078 unsigned int bit_stride = 0;
16079
16080 element_type = die_type (die, cu);
16081
16082 /* The die_type call above may have already set the type for this DIE. */
16083 type = get_die_type (die, cu);
16084 if (type)
16085 return type;
16086
16087 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16088 if (attr != NULL)
16089 {
16090 int stride_ok;
16091 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
16092
16093 byte_stride_prop
16094 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16095 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16096 prop_type);
16097 if (!stride_ok)
16098 {
16099 complaint (_("unable to read array DW_AT_byte_stride "
16100 " - DIE at %s [in module %s]"),
16101 sect_offset_str (die->sect_off),
16102 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16103 /* Ignore this attribute. We will likely not be able to print
16104 arrays of this type correctly, but there is little we can do
16105 to help if we cannot read the attribute's value. */
16106 byte_stride_prop = NULL;
16107 }
16108 }
16109
16110 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16111 if (attr != NULL)
16112 bit_stride = DW_UNSND (attr);
16113
16114 /* Irix 6.2 native cc creates array types without children for
16115 arrays with unspecified length. */
16116 if (die->child == NULL)
16117 {
16118 index_type = objfile_type (objfile)->builtin_int;
16119 range_type = create_static_range_type (NULL, index_type, 0, -1);
16120 type = create_array_type_with_stride (NULL, element_type, range_type,
16121 byte_stride_prop, bit_stride);
16122 return set_die_type (die, type, cu);
16123 }
16124
16125 std::vector<struct type *> range_types;
16126 child_die = die->child;
16127 while (child_die && child_die->tag)
16128 {
16129 if (child_die->tag == DW_TAG_subrange_type)
16130 {
16131 struct type *child_type = read_type_die (child_die, cu);
16132
16133 if (child_type != NULL)
16134 {
16135 /* The range type was succesfully read. Save it for the
16136 array type creation. */
16137 range_types.push_back (child_type);
16138 }
16139 }
16140 child_die = child_die->sibling;
16141 }
16142
16143 /* Dwarf2 dimensions are output from left to right, create the
16144 necessary array types in backwards order. */
16145
16146 type = element_type;
16147
16148 if (read_array_order (die, cu) == DW_ORD_col_major)
16149 {
16150 int i = 0;
16151
16152 while (i < range_types.size ())
16153 type = create_array_type_with_stride (NULL, type, range_types[i++],
16154 byte_stride_prop, bit_stride);
16155 }
16156 else
16157 {
16158 size_t ndim = range_types.size ();
16159 while (ndim-- > 0)
16160 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16161 byte_stride_prop, bit_stride);
16162 }
16163
16164 /* Understand Dwarf2 support for vector types (like they occur on
16165 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16166 array type. This is not part of the Dwarf2/3 standard yet, but a
16167 custom vendor extension. The main difference between a regular
16168 array and the vector variant is that vectors are passed by value
16169 to functions. */
16170 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16171 if (attr != nullptr)
16172 make_vector_type (type);
16173
16174 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16175 implementation may choose to implement triple vectors using this
16176 attribute. */
16177 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16178 if (attr != nullptr)
16179 {
16180 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16181 TYPE_LENGTH (type) = DW_UNSND (attr);
16182 else
16183 complaint (_("DW_AT_byte_size for array type smaller "
16184 "than the total size of elements"));
16185 }
16186
16187 name = dwarf2_name (die, cu);
16188 if (name)
16189 TYPE_NAME (type) = name;
16190
16191 maybe_set_alignment (cu, die, type);
16192
16193 /* Install the type in the die. */
16194 set_die_type (die, type, cu);
16195
16196 /* set_die_type should be already done. */
16197 set_descriptive_type (type, die, cu);
16198
16199 return type;
16200 }
16201
16202 static enum dwarf_array_dim_ordering
16203 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16204 {
16205 struct attribute *attr;
16206
16207 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16208
16209 if (attr != nullptr)
16210 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16211
16212 /* GNU F77 is a special case, as at 08/2004 array type info is the
16213 opposite order to the dwarf2 specification, but data is still
16214 laid out as per normal fortran.
16215
16216 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16217 version checking. */
16218
16219 if (cu->language == language_fortran
16220 && cu->producer && strstr (cu->producer, "GNU F77"))
16221 {
16222 return DW_ORD_row_major;
16223 }
16224
16225 switch (cu->language_defn->la_array_ordering)
16226 {
16227 case array_column_major:
16228 return DW_ORD_col_major;
16229 case array_row_major:
16230 default:
16231 return DW_ORD_row_major;
16232 };
16233 }
16234
16235 /* Extract all information from a DW_TAG_set_type DIE and put it in
16236 the DIE's type field. */
16237
16238 static struct type *
16239 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16240 {
16241 struct type *domain_type, *set_type;
16242 struct attribute *attr;
16243
16244 domain_type = die_type (die, cu);
16245
16246 /* The die_type call above may have already set the type for this DIE. */
16247 set_type = get_die_type (die, cu);
16248 if (set_type)
16249 return set_type;
16250
16251 set_type = create_set_type (NULL, domain_type);
16252
16253 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16254 if (attr != nullptr)
16255 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16256
16257 maybe_set_alignment (cu, die, set_type);
16258
16259 return set_die_type (die, set_type, cu);
16260 }
16261
16262 /* A helper for read_common_block that creates a locexpr baton.
16263 SYM is the symbol which we are marking as computed.
16264 COMMON_DIE is the DIE for the common block.
16265 COMMON_LOC is the location expression attribute for the common
16266 block itself.
16267 MEMBER_LOC is the location expression attribute for the particular
16268 member of the common block that we are processing.
16269 CU is the CU from which the above come. */
16270
16271 static void
16272 mark_common_block_symbol_computed (struct symbol *sym,
16273 struct die_info *common_die,
16274 struct attribute *common_loc,
16275 struct attribute *member_loc,
16276 struct dwarf2_cu *cu)
16277 {
16278 struct dwarf2_per_objfile *dwarf2_per_objfile
16279 = cu->per_cu->dwarf2_per_objfile;
16280 struct objfile *objfile = dwarf2_per_objfile->objfile;
16281 struct dwarf2_locexpr_baton *baton;
16282 gdb_byte *ptr;
16283 unsigned int cu_off;
16284 enum bfd_endian byte_order = gdbarch_byte_order (objfile->arch ());
16285 LONGEST offset = 0;
16286
16287 gdb_assert (common_loc && member_loc);
16288 gdb_assert (common_loc->form_is_block ());
16289 gdb_assert (member_loc->form_is_block ()
16290 || member_loc->form_is_constant ());
16291
16292 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16293 baton->per_cu = cu->per_cu;
16294 gdb_assert (baton->per_cu);
16295
16296 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16297
16298 if (member_loc->form_is_constant ())
16299 {
16300 offset = member_loc->constant_value (0);
16301 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16302 }
16303 else
16304 baton->size += DW_BLOCK (member_loc)->size;
16305
16306 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16307 baton->data = ptr;
16308
16309 *ptr++ = DW_OP_call4;
16310 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16311 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16312 ptr += 4;
16313
16314 if (member_loc->form_is_constant ())
16315 {
16316 *ptr++ = DW_OP_addr;
16317 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16318 ptr += cu->header.addr_size;
16319 }
16320 else
16321 {
16322 /* We have to copy the data here, because DW_OP_call4 will only
16323 use a DW_AT_location attribute. */
16324 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16325 ptr += DW_BLOCK (member_loc)->size;
16326 }
16327
16328 *ptr++ = DW_OP_plus;
16329 gdb_assert (ptr - baton->data == baton->size);
16330
16331 SYMBOL_LOCATION_BATON (sym) = baton;
16332 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16333 }
16334
16335 /* Create appropriate locally-scoped variables for all the
16336 DW_TAG_common_block entries. Also create a struct common_block
16337 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16338 is used to separate the common blocks name namespace from regular
16339 variable names. */
16340
16341 static void
16342 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16343 {
16344 struct attribute *attr;
16345
16346 attr = dwarf2_attr (die, DW_AT_location, cu);
16347 if (attr != nullptr)
16348 {
16349 /* Support the .debug_loc offsets. */
16350 if (attr->form_is_block ())
16351 {
16352 /* Ok. */
16353 }
16354 else if (attr->form_is_section_offset ())
16355 {
16356 dwarf2_complex_location_expr_complaint ();
16357 attr = NULL;
16358 }
16359 else
16360 {
16361 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16362 "common block member");
16363 attr = NULL;
16364 }
16365 }
16366
16367 if (die->child != NULL)
16368 {
16369 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16370 struct die_info *child_die;
16371 size_t n_entries = 0, size;
16372 struct common_block *common_block;
16373 struct symbol *sym;
16374
16375 for (child_die = die->child;
16376 child_die && child_die->tag;
16377 child_die = child_die->sibling)
16378 ++n_entries;
16379
16380 size = (sizeof (struct common_block)
16381 + (n_entries - 1) * sizeof (struct symbol *));
16382 common_block
16383 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16384 size);
16385 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16386 common_block->n_entries = 0;
16387
16388 for (child_die = die->child;
16389 child_die && child_die->tag;
16390 child_die = child_die->sibling)
16391 {
16392 /* Create the symbol in the DW_TAG_common_block block in the current
16393 symbol scope. */
16394 sym = new_symbol (child_die, NULL, cu);
16395 if (sym != NULL)
16396 {
16397 struct attribute *member_loc;
16398
16399 common_block->contents[common_block->n_entries++] = sym;
16400
16401 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16402 cu);
16403 if (member_loc)
16404 {
16405 /* GDB has handled this for a long time, but it is
16406 not specified by DWARF. It seems to have been
16407 emitted by gfortran at least as recently as:
16408 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16409 complaint (_("Variable in common block has "
16410 "DW_AT_data_member_location "
16411 "- DIE at %s [in module %s]"),
16412 sect_offset_str (child_die->sect_off),
16413 objfile_name (objfile));
16414
16415 if (member_loc->form_is_section_offset ())
16416 dwarf2_complex_location_expr_complaint ();
16417 else if (member_loc->form_is_constant ()
16418 || member_loc->form_is_block ())
16419 {
16420 if (attr != nullptr)
16421 mark_common_block_symbol_computed (sym, die, attr,
16422 member_loc, cu);
16423 }
16424 else
16425 dwarf2_complex_location_expr_complaint ();
16426 }
16427 }
16428 }
16429
16430 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16431 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16432 }
16433 }
16434
16435 /* Create a type for a C++ namespace. */
16436
16437 static struct type *
16438 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16439 {
16440 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16441 const char *previous_prefix, *name;
16442 int is_anonymous;
16443 struct type *type;
16444
16445 /* For extensions, reuse the type of the original namespace. */
16446 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16447 {
16448 struct die_info *ext_die;
16449 struct dwarf2_cu *ext_cu = cu;
16450
16451 ext_die = dwarf2_extension (die, &ext_cu);
16452 type = read_type_die (ext_die, ext_cu);
16453
16454 /* EXT_CU may not be the same as CU.
16455 Ensure TYPE is recorded with CU in die_type_hash. */
16456 return set_die_type (die, type, cu);
16457 }
16458
16459 name = namespace_name (die, &is_anonymous, cu);
16460
16461 /* Now build the name of the current namespace. */
16462
16463 previous_prefix = determine_prefix (die, cu);
16464 if (previous_prefix[0] != '\0')
16465 name = typename_concat (&objfile->objfile_obstack,
16466 previous_prefix, name, 0, cu);
16467
16468 /* Create the type. */
16469 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16470
16471 return set_die_type (die, type, cu);
16472 }
16473
16474 /* Read a namespace scope. */
16475
16476 static void
16477 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16478 {
16479 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16480 int is_anonymous;
16481
16482 /* Add a symbol associated to this if we haven't seen the namespace
16483 before. Also, add a using directive if it's an anonymous
16484 namespace. */
16485
16486 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16487 {
16488 struct type *type;
16489
16490 type = read_type_die (die, cu);
16491 new_symbol (die, type, cu);
16492
16493 namespace_name (die, &is_anonymous, cu);
16494 if (is_anonymous)
16495 {
16496 const char *previous_prefix = determine_prefix (die, cu);
16497
16498 std::vector<const char *> excludes;
16499 add_using_directive (using_directives (cu),
16500 previous_prefix, TYPE_NAME (type), NULL,
16501 NULL, excludes, 0, &objfile->objfile_obstack);
16502 }
16503 }
16504
16505 if (die->child != NULL)
16506 {
16507 struct die_info *child_die = die->child;
16508
16509 while (child_die && child_die->tag)
16510 {
16511 process_die (child_die, cu);
16512 child_die = child_die->sibling;
16513 }
16514 }
16515 }
16516
16517 /* Read a Fortran module as type. This DIE can be only a declaration used for
16518 imported module. Still we need that type as local Fortran "use ... only"
16519 declaration imports depend on the created type in determine_prefix. */
16520
16521 static struct type *
16522 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16523 {
16524 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16525 const char *module_name;
16526 struct type *type;
16527
16528 module_name = dwarf2_name (die, cu);
16529 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
16530
16531 return set_die_type (die, type, cu);
16532 }
16533
16534 /* Read a Fortran module. */
16535
16536 static void
16537 read_module (struct die_info *die, struct dwarf2_cu *cu)
16538 {
16539 struct die_info *child_die = die->child;
16540 struct type *type;
16541
16542 type = read_type_die (die, cu);
16543 new_symbol (die, type, cu);
16544
16545 while (child_die && child_die->tag)
16546 {
16547 process_die (child_die, cu);
16548 child_die = child_die->sibling;
16549 }
16550 }
16551
16552 /* Return the name of the namespace represented by DIE. Set
16553 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
16554 namespace. */
16555
16556 static const char *
16557 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
16558 {
16559 struct die_info *current_die;
16560 const char *name = NULL;
16561
16562 /* Loop through the extensions until we find a name. */
16563
16564 for (current_die = die;
16565 current_die != NULL;
16566 current_die = dwarf2_extension (die, &cu))
16567 {
16568 /* We don't use dwarf2_name here so that we can detect the absence
16569 of a name -> anonymous namespace. */
16570 name = dwarf2_string_attr (die, DW_AT_name, cu);
16571
16572 if (name != NULL)
16573 break;
16574 }
16575
16576 /* Is it an anonymous namespace? */
16577
16578 *is_anonymous = (name == NULL);
16579 if (*is_anonymous)
16580 name = CP_ANONYMOUS_NAMESPACE_STR;
16581
16582 return name;
16583 }
16584
16585 /* Extract all information from a DW_TAG_pointer_type DIE and add to
16586 the user defined type vector. */
16587
16588 static struct type *
16589 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
16590 {
16591 struct gdbarch *gdbarch
16592 = cu->per_cu->dwarf2_per_objfile->objfile->arch ();
16593 struct comp_unit_head *cu_header = &cu->header;
16594 struct type *type;
16595 struct attribute *attr_byte_size;
16596 struct attribute *attr_address_class;
16597 int byte_size, addr_class;
16598 struct type *target_type;
16599
16600 target_type = die_type (die, cu);
16601
16602 /* The die_type call above may have already set the type for this DIE. */
16603 type = get_die_type (die, cu);
16604 if (type)
16605 return type;
16606
16607 type = lookup_pointer_type (target_type);
16608
16609 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
16610 if (attr_byte_size)
16611 byte_size = DW_UNSND (attr_byte_size);
16612 else
16613 byte_size = cu_header->addr_size;
16614
16615 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
16616 if (attr_address_class)
16617 addr_class = DW_UNSND (attr_address_class);
16618 else
16619 addr_class = DW_ADDR_none;
16620
16621 ULONGEST alignment = get_alignment (cu, die);
16622
16623 /* If the pointer size, alignment, or address class is different
16624 than the default, create a type variant marked as such and set
16625 the length accordingly. */
16626 if (TYPE_LENGTH (type) != byte_size
16627 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
16628 && alignment != TYPE_RAW_ALIGN (type))
16629 || addr_class != DW_ADDR_none)
16630 {
16631 if (gdbarch_address_class_type_flags_p (gdbarch))
16632 {
16633 int type_flags;
16634
16635 type_flags = gdbarch_address_class_type_flags
16636 (gdbarch, byte_size, addr_class);
16637 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
16638 == 0);
16639 type = make_type_with_address_space (type, type_flags);
16640 }
16641 else if (TYPE_LENGTH (type) != byte_size)
16642 {
16643 complaint (_("invalid pointer size %d"), byte_size);
16644 }
16645 else if (TYPE_RAW_ALIGN (type) != alignment)
16646 {
16647 complaint (_("Invalid DW_AT_alignment"
16648 " - DIE at %s [in module %s]"),
16649 sect_offset_str (die->sect_off),
16650 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16651 }
16652 else
16653 {
16654 /* Should we also complain about unhandled address classes? */
16655 }
16656 }
16657
16658 TYPE_LENGTH (type) = byte_size;
16659 set_type_align (type, alignment);
16660 return set_die_type (die, type, cu);
16661 }
16662
16663 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
16664 the user defined type vector. */
16665
16666 static struct type *
16667 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
16668 {
16669 struct type *type;
16670 struct type *to_type;
16671 struct type *domain;
16672
16673 to_type = die_type (die, cu);
16674 domain = die_containing_type (die, cu);
16675
16676 /* The calls above may have already set the type for this DIE. */
16677 type = get_die_type (die, cu);
16678 if (type)
16679 return type;
16680
16681 if (check_typedef (to_type)->code () == TYPE_CODE_METHOD)
16682 type = lookup_methodptr_type (to_type);
16683 else if (check_typedef (to_type)->code () == TYPE_CODE_FUNC)
16684 {
16685 struct type *new_type
16686 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
16687
16688 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
16689 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
16690 TYPE_VARARGS (to_type));
16691 type = lookup_methodptr_type (new_type);
16692 }
16693 else
16694 type = lookup_memberptr_type (to_type, domain);
16695
16696 return set_die_type (die, type, cu);
16697 }
16698
16699 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
16700 the user defined type vector. */
16701
16702 static struct type *
16703 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
16704 enum type_code refcode)
16705 {
16706 struct comp_unit_head *cu_header = &cu->header;
16707 struct type *type, *target_type;
16708 struct attribute *attr;
16709
16710 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
16711
16712 target_type = die_type (die, cu);
16713
16714 /* The die_type call above may have already set the type for this DIE. */
16715 type = get_die_type (die, cu);
16716 if (type)
16717 return type;
16718
16719 type = lookup_reference_type (target_type, refcode);
16720 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16721 if (attr != nullptr)
16722 {
16723 TYPE_LENGTH (type) = DW_UNSND (attr);
16724 }
16725 else
16726 {
16727 TYPE_LENGTH (type) = cu_header->addr_size;
16728 }
16729 maybe_set_alignment (cu, die, type);
16730 return set_die_type (die, type, cu);
16731 }
16732
16733 /* Add the given cv-qualifiers to the element type of the array. GCC
16734 outputs DWARF type qualifiers that apply to an array, not the
16735 element type. But GDB relies on the array element type to carry
16736 the cv-qualifiers. This mimics section 6.7.3 of the C99
16737 specification. */
16738
16739 static struct type *
16740 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
16741 struct type *base_type, int cnst, int voltl)
16742 {
16743 struct type *el_type, *inner_array;
16744
16745 base_type = copy_type (base_type);
16746 inner_array = base_type;
16747
16748 while (TYPE_TARGET_TYPE (inner_array)->code () == TYPE_CODE_ARRAY)
16749 {
16750 TYPE_TARGET_TYPE (inner_array) =
16751 copy_type (TYPE_TARGET_TYPE (inner_array));
16752 inner_array = TYPE_TARGET_TYPE (inner_array);
16753 }
16754
16755 el_type = TYPE_TARGET_TYPE (inner_array);
16756 cnst |= TYPE_CONST (el_type);
16757 voltl |= TYPE_VOLATILE (el_type);
16758 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
16759
16760 return set_die_type (die, base_type, cu);
16761 }
16762
16763 static struct type *
16764 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
16765 {
16766 struct type *base_type, *cv_type;
16767
16768 base_type = die_type (die, cu);
16769
16770 /* The die_type call above may have already set the type for this DIE. */
16771 cv_type = get_die_type (die, cu);
16772 if (cv_type)
16773 return cv_type;
16774
16775 /* In case the const qualifier is applied to an array type, the element type
16776 is so qualified, not the array type (section 6.7.3 of C99). */
16777 if (base_type->code () == TYPE_CODE_ARRAY)
16778 return add_array_cv_type (die, cu, base_type, 1, 0);
16779
16780 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
16781 return set_die_type (die, cv_type, cu);
16782 }
16783
16784 static struct type *
16785 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
16786 {
16787 struct type *base_type, *cv_type;
16788
16789 base_type = die_type (die, cu);
16790
16791 /* The die_type call above may have already set the type for this DIE. */
16792 cv_type = get_die_type (die, cu);
16793 if (cv_type)
16794 return cv_type;
16795
16796 /* In case the volatile qualifier is applied to an array type, the
16797 element type is so qualified, not the array type (section 6.7.3
16798 of C99). */
16799 if (base_type->code () == TYPE_CODE_ARRAY)
16800 return add_array_cv_type (die, cu, base_type, 0, 1);
16801
16802 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
16803 return set_die_type (die, cv_type, cu);
16804 }
16805
16806 /* Handle DW_TAG_restrict_type. */
16807
16808 static struct type *
16809 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
16810 {
16811 struct type *base_type, *cv_type;
16812
16813 base_type = die_type (die, cu);
16814
16815 /* The die_type call above may have already set the type for this DIE. */
16816 cv_type = get_die_type (die, cu);
16817 if (cv_type)
16818 return cv_type;
16819
16820 cv_type = make_restrict_type (base_type);
16821 return set_die_type (die, cv_type, cu);
16822 }
16823
16824 /* Handle DW_TAG_atomic_type. */
16825
16826 static struct type *
16827 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
16828 {
16829 struct type *base_type, *cv_type;
16830
16831 base_type = die_type (die, cu);
16832
16833 /* The die_type call above may have already set the type for this DIE. */
16834 cv_type = get_die_type (die, cu);
16835 if (cv_type)
16836 return cv_type;
16837
16838 cv_type = make_atomic_type (base_type);
16839 return set_die_type (die, cv_type, cu);
16840 }
16841
16842 /* Extract all information from a DW_TAG_string_type DIE and add to
16843 the user defined type vector. It isn't really a user defined type,
16844 but it behaves like one, with other DIE's using an AT_user_def_type
16845 attribute to reference it. */
16846
16847 static struct type *
16848 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
16849 {
16850 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16851 struct gdbarch *gdbarch = objfile->arch ();
16852 struct type *type, *range_type, *index_type, *char_type;
16853 struct attribute *attr;
16854 struct dynamic_prop prop;
16855 bool length_is_constant = true;
16856 LONGEST length;
16857
16858 /* There are a couple of places where bit sizes might be made use of
16859 when parsing a DW_TAG_string_type, however, no producer that we know
16860 of make use of these. Handling bit sizes that are a multiple of the
16861 byte size is easy enough, but what about other bit sizes? Lets deal
16862 with that problem when we have to. Warn about these attributes being
16863 unsupported, then parse the type and ignore them like we always
16864 have. */
16865 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
16866 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
16867 {
16868 static bool warning_printed = false;
16869 if (!warning_printed)
16870 {
16871 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
16872 "currently supported on DW_TAG_string_type."));
16873 warning_printed = true;
16874 }
16875 }
16876
16877 attr = dwarf2_attr (die, DW_AT_string_length, cu);
16878 if (attr != nullptr && !attr->form_is_constant ())
16879 {
16880 /* The string length describes the location at which the length of
16881 the string can be found. The size of the length field can be
16882 specified with one of the attributes below. */
16883 struct type *prop_type;
16884 struct attribute *len
16885 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
16886 if (len == nullptr)
16887 len = dwarf2_attr (die, DW_AT_byte_size, cu);
16888 if (len != nullptr && len->form_is_constant ())
16889 {
16890 /* Pass 0 as the default as we know this attribute is constant
16891 and the default value will not be returned. */
16892 LONGEST sz = len->constant_value (0);
16893 prop_type = cu->per_cu->int_type (sz, true);
16894 }
16895 else
16896 {
16897 /* If the size is not specified then we assume it is the size of
16898 an address on this target. */
16899 prop_type = cu->per_cu->addr_sized_int_type (true);
16900 }
16901
16902 /* Convert the attribute into a dynamic property. */
16903 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
16904 length = 1;
16905 else
16906 length_is_constant = false;
16907 }
16908 else if (attr != nullptr)
16909 {
16910 /* This DW_AT_string_length just contains the length with no
16911 indirection. There's no need to create a dynamic property in this
16912 case. Pass 0 for the default value as we know it will not be
16913 returned in this case. */
16914 length = attr->constant_value (0);
16915 }
16916 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
16917 {
16918 /* We don't currently support non-constant byte sizes for strings. */
16919 length = attr->constant_value (1);
16920 }
16921 else
16922 {
16923 /* Use 1 as a fallback length if we have nothing else. */
16924 length = 1;
16925 }
16926
16927 index_type = objfile_type (objfile)->builtin_int;
16928 if (length_is_constant)
16929 range_type = create_static_range_type (NULL, index_type, 1, length);
16930 else
16931 {
16932 struct dynamic_prop low_bound;
16933
16934 low_bound.kind = PROP_CONST;
16935 low_bound.data.const_val = 1;
16936 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
16937 }
16938 char_type = language_string_char_type (cu->language_defn, gdbarch);
16939 type = create_string_type (NULL, char_type, range_type);
16940
16941 return set_die_type (die, type, cu);
16942 }
16943
16944 /* Assuming that DIE corresponds to a function, returns nonzero
16945 if the function is prototyped. */
16946
16947 static int
16948 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
16949 {
16950 struct attribute *attr;
16951
16952 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
16953 if (attr && (DW_UNSND (attr) != 0))
16954 return 1;
16955
16956 /* The DWARF standard implies that the DW_AT_prototyped attribute
16957 is only meaningful for C, but the concept also extends to other
16958 languages that allow unprototyped functions (Eg: Objective C).
16959 For all other languages, assume that functions are always
16960 prototyped. */
16961 if (cu->language != language_c
16962 && cu->language != language_objc
16963 && cu->language != language_opencl)
16964 return 1;
16965
16966 /* RealView does not emit DW_AT_prototyped. We can not distinguish
16967 prototyped and unprototyped functions; default to prototyped,
16968 since that is more common in modern code (and RealView warns
16969 about unprototyped functions). */
16970 if (producer_is_realview (cu->producer))
16971 return 1;
16972
16973 return 0;
16974 }
16975
16976 /* Handle DIES due to C code like:
16977
16978 struct foo
16979 {
16980 int (*funcp)(int a, long l);
16981 int b;
16982 };
16983
16984 ('funcp' generates a DW_TAG_subroutine_type DIE). */
16985
16986 static struct type *
16987 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
16988 {
16989 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16990 struct type *type; /* Type that this function returns. */
16991 struct type *ftype; /* Function that returns above type. */
16992 struct attribute *attr;
16993
16994 type = die_type (die, cu);
16995
16996 /* The die_type call above may have already set the type for this DIE. */
16997 ftype = get_die_type (die, cu);
16998 if (ftype)
16999 return ftype;
17000
17001 ftype = lookup_function_type (type);
17002
17003 if (prototyped_function_p (die, cu))
17004 TYPE_PROTOTYPED (ftype) = 1;
17005
17006 /* Store the calling convention in the type if it's available in
17007 the subroutine die. Otherwise set the calling convention to
17008 the default value DW_CC_normal. */
17009 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17010 if (attr != nullptr
17011 && is_valid_DW_AT_calling_convention_for_subroutine (DW_UNSND (attr)))
17012 TYPE_CALLING_CONVENTION (ftype)
17013 = (enum dwarf_calling_convention) (DW_UNSND (attr));
17014 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17015 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17016 else
17017 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17018
17019 /* Record whether the function returns normally to its caller or not
17020 if the DWARF producer set that information. */
17021 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17022 if (attr && (DW_UNSND (attr) != 0))
17023 TYPE_NO_RETURN (ftype) = 1;
17024
17025 /* We need to add the subroutine type to the die immediately so
17026 we don't infinitely recurse when dealing with parameters
17027 declared as the same subroutine type. */
17028 set_die_type (die, ftype, cu);
17029
17030 if (die->child != NULL)
17031 {
17032 struct type *void_type = objfile_type (objfile)->builtin_void;
17033 struct die_info *child_die;
17034 int nparams, iparams;
17035
17036 /* Count the number of parameters.
17037 FIXME: GDB currently ignores vararg functions, but knows about
17038 vararg member functions. */
17039 nparams = 0;
17040 child_die = die->child;
17041 while (child_die && child_die->tag)
17042 {
17043 if (child_die->tag == DW_TAG_formal_parameter)
17044 nparams++;
17045 else if (child_die->tag == DW_TAG_unspecified_parameters)
17046 TYPE_VARARGS (ftype) = 1;
17047 child_die = child_die->sibling;
17048 }
17049
17050 /* Allocate storage for parameters and fill them in. */
17051 TYPE_NFIELDS (ftype) = nparams;
17052 TYPE_FIELDS (ftype) = (struct field *)
17053 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17054
17055 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17056 even if we error out during the parameters reading below. */
17057 for (iparams = 0; iparams < nparams; iparams++)
17058 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17059
17060 iparams = 0;
17061 child_die = die->child;
17062 while (child_die && child_die->tag)
17063 {
17064 if (child_die->tag == DW_TAG_formal_parameter)
17065 {
17066 struct type *arg_type;
17067
17068 /* DWARF version 2 has no clean way to discern C++
17069 static and non-static member functions. G++ helps
17070 GDB by marking the first parameter for non-static
17071 member functions (which is the this pointer) as
17072 artificial. We pass this information to
17073 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17074
17075 DWARF version 3 added DW_AT_object_pointer, which GCC
17076 4.5 does not yet generate. */
17077 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17078 if (attr != nullptr)
17079 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17080 else
17081 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17082 arg_type = die_type (child_die, cu);
17083
17084 /* RealView does not mark THIS as const, which the testsuite
17085 expects. GCC marks THIS as const in method definitions,
17086 but not in the class specifications (GCC PR 43053). */
17087 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17088 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17089 {
17090 int is_this = 0;
17091 struct dwarf2_cu *arg_cu = cu;
17092 const char *name = dwarf2_name (child_die, cu);
17093
17094 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17095 if (attr != nullptr)
17096 {
17097 /* If the compiler emits this, use it. */
17098 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17099 is_this = 1;
17100 }
17101 else if (name && strcmp (name, "this") == 0)
17102 /* Function definitions will have the argument names. */
17103 is_this = 1;
17104 else if (name == NULL && iparams == 0)
17105 /* Declarations may not have the names, so like
17106 elsewhere in GDB, assume an artificial first
17107 argument is "this". */
17108 is_this = 1;
17109
17110 if (is_this)
17111 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17112 arg_type, 0);
17113 }
17114
17115 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17116 iparams++;
17117 }
17118 child_die = child_die->sibling;
17119 }
17120 }
17121
17122 return ftype;
17123 }
17124
17125 static struct type *
17126 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17127 {
17128 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17129 const char *name = NULL;
17130 struct type *this_type, *target_type;
17131
17132 name = dwarf2_full_name (NULL, die, cu);
17133 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17134 TYPE_TARGET_STUB (this_type) = 1;
17135 set_die_type (die, this_type, cu);
17136 target_type = die_type (die, cu);
17137 if (target_type != this_type)
17138 TYPE_TARGET_TYPE (this_type) = target_type;
17139 else
17140 {
17141 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17142 spec and cause infinite loops in GDB. */
17143 complaint (_("Self-referential DW_TAG_typedef "
17144 "- DIE at %s [in module %s]"),
17145 sect_offset_str (die->sect_off), objfile_name (objfile));
17146 TYPE_TARGET_TYPE (this_type) = NULL;
17147 }
17148 if (name == NULL)
17149 {
17150 /* Gcc-7 and before supports -feliminate-dwarf2-dups, which generates
17151 anonymous typedefs, which is, strictly speaking, invalid DWARF.
17152 Handle these by just returning the target type, rather than
17153 constructing an anonymous typedef type and trying to handle this
17154 elsewhere. */
17155 set_die_type (die, target_type, cu);
17156 return target_type;
17157 }
17158 return this_type;
17159 }
17160
17161 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17162 (which may be different from NAME) to the architecture back-end to allow
17163 it to guess the correct format if necessary. */
17164
17165 static struct type *
17166 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17167 const char *name_hint, enum bfd_endian byte_order)
17168 {
17169 struct gdbarch *gdbarch = objfile->arch ();
17170 const struct floatformat **format;
17171 struct type *type;
17172
17173 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17174 if (format)
17175 type = init_float_type (objfile, bits, name, format, byte_order);
17176 else
17177 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17178
17179 return type;
17180 }
17181
17182 /* Allocate an integer type of size BITS and name NAME. */
17183
17184 static struct type *
17185 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17186 int bits, int unsigned_p, const char *name)
17187 {
17188 struct type *type;
17189
17190 /* Versions of Intel's C Compiler generate an integer type called "void"
17191 instead of using DW_TAG_unspecified_type. This has been seen on
17192 at least versions 14, 17, and 18. */
17193 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17194 && strcmp (name, "void") == 0)
17195 type = objfile_type (objfile)->builtin_void;
17196 else
17197 type = init_integer_type (objfile, bits, unsigned_p, name);
17198
17199 return type;
17200 }
17201
17202 /* Initialise and return a floating point type of size BITS suitable for
17203 use as a component of a complex number. The NAME_HINT is passed through
17204 when initialising the floating point type and is the name of the complex
17205 type.
17206
17207 As DWARF doesn't currently provide an explicit name for the components
17208 of a complex number, but it can be helpful to have these components
17209 named, we try to select a suitable name based on the size of the
17210 component. */
17211 static struct type *
17212 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17213 struct objfile *objfile,
17214 int bits, const char *name_hint,
17215 enum bfd_endian byte_order)
17216 {
17217 gdbarch *gdbarch = objfile->arch ();
17218 struct type *tt = nullptr;
17219
17220 /* Try to find a suitable floating point builtin type of size BITS.
17221 We're going to use the name of this type as the name for the complex
17222 target type that we are about to create. */
17223 switch (cu->language)
17224 {
17225 case language_fortran:
17226 switch (bits)
17227 {
17228 case 32:
17229 tt = builtin_f_type (gdbarch)->builtin_real;
17230 break;
17231 case 64:
17232 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17233 break;
17234 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17235 case 128:
17236 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17237 break;
17238 }
17239 break;
17240 default:
17241 switch (bits)
17242 {
17243 case 32:
17244 tt = builtin_type (gdbarch)->builtin_float;
17245 break;
17246 case 64:
17247 tt = builtin_type (gdbarch)->builtin_double;
17248 break;
17249 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17250 case 128:
17251 tt = builtin_type (gdbarch)->builtin_long_double;
17252 break;
17253 }
17254 break;
17255 }
17256
17257 /* If the type we found doesn't match the size we were looking for, then
17258 pretend we didn't find a type at all, the complex target type we
17259 create will then be nameless. */
17260 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17261 tt = nullptr;
17262
17263 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17264 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17265 }
17266
17267 /* Find a representation of a given base type and install
17268 it in the TYPE field of the die. */
17269
17270 static struct type *
17271 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17272 {
17273 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17274 struct type *type;
17275 struct attribute *attr;
17276 int encoding = 0, bits = 0;
17277 const char *name;
17278 gdbarch *arch;
17279
17280 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17281 if (attr != nullptr)
17282 encoding = DW_UNSND (attr);
17283 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17284 if (attr != nullptr)
17285 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17286 name = dwarf2_name (die, cu);
17287 if (!name)
17288 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17289
17290 arch = objfile->arch ();
17291 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17292
17293 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17294 if (attr)
17295 {
17296 int endianity = DW_UNSND (attr);
17297
17298 switch (endianity)
17299 {
17300 case DW_END_big:
17301 byte_order = BFD_ENDIAN_BIG;
17302 break;
17303 case DW_END_little:
17304 byte_order = BFD_ENDIAN_LITTLE;
17305 break;
17306 default:
17307 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17308 break;
17309 }
17310 }
17311
17312 switch (encoding)
17313 {
17314 case DW_ATE_address:
17315 /* Turn DW_ATE_address into a void * pointer. */
17316 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17317 type = init_pointer_type (objfile, bits, name, type);
17318 break;
17319 case DW_ATE_boolean:
17320 type = init_boolean_type (objfile, bits, 1, name);
17321 break;
17322 case DW_ATE_complex_float:
17323 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17324 byte_order);
17325 if (type->code () == TYPE_CODE_ERROR)
17326 {
17327 if (name == nullptr)
17328 {
17329 struct obstack *obstack
17330 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17331 name = obconcat (obstack, "_Complex ", TYPE_NAME (type),
17332 nullptr);
17333 }
17334 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17335 }
17336 else
17337 type = init_complex_type (name, type);
17338 break;
17339 case DW_ATE_decimal_float:
17340 type = init_decfloat_type (objfile, bits, name);
17341 break;
17342 case DW_ATE_float:
17343 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17344 break;
17345 case DW_ATE_signed:
17346 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17347 break;
17348 case DW_ATE_unsigned:
17349 if (cu->language == language_fortran
17350 && name
17351 && startswith (name, "character("))
17352 type = init_character_type (objfile, bits, 1, name);
17353 else
17354 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17355 break;
17356 case DW_ATE_signed_char:
17357 if (cu->language == language_ada || cu->language == language_m2
17358 || cu->language == language_pascal
17359 || cu->language == language_fortran)
17360 type = init_character_type (objfile, bits, 0, name);
17361 else
17362 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17363 break;
17364 case DW_ATE_unsigned_char:
17365 if (cu->language == language_ada || cu->language == language_m2
17366 || cu->language == language_pascal
17367 || cu->language == language_fortran
17368 || cu->language == language_rust)
17369 type = init_character_type (objfile, bits, 1, name);
17370 else
17371 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17372 break;
17373 case DW_ATE_UTF:
17374 {
17375 if (bits == 16)
17376 type = builtin_type (arch)->builtin_char16;
17377 else if (bits == 32)
17378 type = builtin_type (arch)->builtin_char32;
17379 else
17380 {
17381 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17382 bits);
17383 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17384 }
17385 return set_die_type (die, type, cu);
17386 }
17387 break;
17388
17389 default:
17390 complaint (_("unsupported DW_AT_encoding: '%s'"),
17391 dwarf_type_encoding_name (encoding));
17392 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17393 break;
17394 }
17395
17396 if (name && strcmp (name, "char") == 0)
17397 TYPE_NOSIGN (type) = 1;
17398
17399 maybe_set_alignment (cu, die, type);
17400
17401 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17402
17403 return set_die_type (die, type, cu);
17404 }
17405
17406 /* Parse dwarf attribute if it's a block, reference or constant and put the
17407 resulting value of the attribute into struct bound_prop.
17408 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17409
17410 static int
17411 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17412 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17413 struct type *default_type)
17414 {
17415 struct dwarf2_property_baton *baton;
17416 struct obstack *obstack
17417 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17418
17419 gdb_assert (default_type != NULL);
17420
17421 if (attr == NULL || prop == NULL)
17422 return 0;
17423
17424 if (attr->form_is_block ())
17425 {
17426 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17427 baton->property_type = default_type;
17428 baton->locexpr.per_cu = cu->per_cu;
17429 baton->locexpr.size = DW_BLOCK (attr)->size;
17430 baton->locexpr.data = DW_BLOCK (attr)->data;
17431 switch (attr->name)
17432 {
17433 case DW_AT_string_length:
17434 baton->locexpr.is_reference = true;
17435 break;
17436 default:
17437 baton->locexpr.is_reference = false;
17438 break;
17439 }
17440 prop->data.baton = baton;
17441 prop->kind = PROP_LOCEXPR;
17442 gdb_assert (prop->data.baton != NULL);
17443 }
17444 else if (attr->form_is_ref ())
17445 {
17446 struct dwarf2_cu *target_cu = cu;
17447 struct die_info *target_die;
17448 struct attribute *target_attr;
17449
17450 target_die = follow_die_ref (die, attr, &target_cu);
17451 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17452 if (target_attr == NULL)
17453 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17454 target_cu);
17455 if (target_attr == NULL)
17456 return 0;
17457
17458 switch (target_attr->name)
17459 {
17460 case DW_AT_location:
17461 if (target_attr->form_is_section_offset ())
17462 {
17463 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17464 baton->property_type = die_type (target_die, target_cu);
17465 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17466 prop->data.baton = baton;
17467 prop->kind = PROP_LOCLIST;
17468 gdb_assert (prop->data.baton != NULL);
17469 }
17470 else if (target_attr->form_is_block ())
17471 {
17472 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17473 baton->property_type = die_type (target_die, target_cu);
17474 baton->locexpr.per_cu = cu->per_cu;
17475 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17476 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17477 baton->locexpr.is_reference = true;
17478 prop->data.baton = baton;
17479 prop->kind = PROP_LOCEXPR;
17480 gdb_assert (prop->data.baton != NULL);
17481 }
17482 else
17483 {
17484 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17485 "dynamic property");
17486 return 0;
17487 }
17488 break;
17489 case DW_AT_data_member_location:
17490 {
17491 LONGEST offset;
17492
17493 if (!handle_data_member_location (target_die, target_cu,
17494 &offset))
17495 return 0;
17496
17497 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17498 baton->property_type = read_type_die (target_die->parent,
17499 target_cu);
17500 baton->offset_info.offset = offset;
17501 baton->offset_info.type = die_type (target_die, target_cu);
17502 prop->data.baton = baton;
17503 prop->kind = PROP_ADDR_OFFSET;
17504 break;
17505 }
17506 }
17507 }
17508 else if (attr->form_is_constant ())
17509 {
17510 prop->data.const_val = attr->constant_value (0);
17511 prop->kind = PROP_CONST;
17512 }
17513 else
17514 {
17515 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17516 dwarf2_name (die, cu));
17517 return 0;
17518 }
17519
17520 return 1;
17521 }
17522
17523 /* See read.h. */
17524
17525 struct type *
17526 dwarf2_per_cu_data::int_type (int size_in_bytes, bool unsigned_p) const
17527 {
17528 struct objfile *objfile = dwarf2_per_objfile->objfile;
17529 struct type *int_type;
17530
17531 /* Helper macro to examine the various builtin types. */
17532 #define TRY_TYPE(F) \
17533 int_type = (unsigned_p \
17534 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17535 : objfile_type (objfile)->builtin_ ## F); \
17536 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17537 return int_type
17538
17539 TRY_TYPE (char);
17540 TRY_TYPE (short);
17541 TRY_TYPE (int);
17542 TRY_TYPE (long);
17543 TRY_TYPE (long_long);
17544
17545 #undef TRY_TYPE
17546
17547 gdb_assert_not_reached ("unable to find suitable integer type");
17548 }
17549
17550 /* See read.h. */
17551
17552 struct type *
17553 dwarf2_per_cu_data::addr_sized_int_type (bool unsigned_p) const
17554 {
17555 int addr_size = this->addr_size ();
17556 return int_type (addr_size, unsigned_p);
17557 }
17558
17559 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
17560 present (which is valid) then compute the default type based on the
17561 compilation units address size. */
17562
17563 static struct type *
17564 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
17565 {
17566 struct type *index_type = die_type (die, cu);
17567
17568 /* Dwarf-2 specifications explicitly allows to create subrange types
17569 without specifying a base type.
17570 In that case, the base type must be set to the type of
17571 the lower bound, upper bound or count, in that order, if any of these
17572 three attributes references an object that has a type.
17573 If no base type is found, the Dwarf-2 specifications say that
17574 a signed integer type of size equal to the size of an address should
17575 be used.
17576 For the following C code: `extern char gdb_int [];'
17577 GCC produces an empty range DIE.
17578 FIXME: muller/2010-05-28: Possible references to object for low bound,
17579 high bound or count are not yet handled by this code. */
17580 if (index_type->code () == TYPE_CODE_VOID)
17581 index_type = cu->per_cu->addr_sized_int_type (false);
17582
17583 return index_type;
17584 }
17585
17586 /* Read the given DW_AT_subrange DIE. */
17587
17588 static struct type *
17589 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
17590 {
17591 struct type *base_type, *orig_base_type;
17592 struct type *range_type;
17593 struct attribute *attr;
17594 struct dynamic_prop low, high;
17595 int low_default_is_valid;
17596 int high_bound_is_count = 0;
17597 const char *name;
17598 ULONGEST negative_mask;
17599
17600 orig_base_type = read_subrange_index_type (die, cu);
17601
17602 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
17603 whereas the real type might be. So, we use ORIG_BASE_TYPE when
17604 creating the range type, but we use the result of check_typedef
17605 when examining properties of the type. */
17606 base_type = check_typedef (orig_base_type);
17607
17608 /* The die_type call above may have already set the type for this DIE. */
17609 range_type = get_die_type (die, cu);
17610 if (range_type)
17611 return range_type;
17612
17613 low.kind = PROP_CONST;
17614 high.kind = PROP_CONST;
17615 high.data.const_val = 0;
17616
17617 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
17618 omitting DW_AT_lower_bound. */
17619 switch (cu->language)
17620 {
17621 case language_c:
17622 case language_cplus:
17623 low.data.const_val = 0;
17624 low_default_is_valid = 1;
17625 break;
17626 case language_fortran:
17627 low.data.const_val = 1;
17628 low_default_is_valid = 1;
17629 break;
17630 case language_d:
17631 case language_objc:
17632 case language_rust:
17633 low.data.const_val = 0;
17634 low_default_is_valid = (cu->header.version >= 4);
17635 break;
17636 case language_ada:
17637 case language_m2:
17638 case language_pascal:
17639 low.data.const_val = 1;
17640 low_default_is_valid = (cu->header.version >= 4);
17641 break;
17642 default:
17643 low.data.const_val = 0;
17644 low_default_is_valid = 0;
17645 break;
17646 }
17647
17648 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
17649 if (attr != nullptr)
17650 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
17651 else if (!low_default_is_valid)
17652 complaint (_("Missing DW_AT_lower_bound "
17653 "- DIE at %s [in module %s]"),
17654 sect_offset_str (die->sect_off),
17655 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17656
17657 struct attribute *attr_ub, *attr_count;
17658 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
17659 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17660 {
17661 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
17662 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
17663 {
17664 /* If bounds are constant do the final calculation here. */
17665 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
17666 high.data.const_val = low.data.const_val + high.data.const_val - 1;
17667 else
17668 high_bound_is_count = 1;
17669 }
17670 else
17671 {
17672 if (attr_ub != NULL)
17673 complaint (_("Unresolved DW_AT_upper_bound "
17674 "- DIE at %s [in module %s]"),
17675 sect_offset_str (die->sect_off),
17676 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17677 if (attr_count != NULL)
17678 complaint (_("Unresolved DW_AT_count "
17679 "- DIE at %s [in module %s]"),
17680 sect_offset_str (die->sect_off),
17681 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17682 }
17683 }
17684
17685 LONGEST bias = 0;
17686 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
17687 if (bias_attr != nullptr && bias_attr->form_is_constant ())
17688 bias = bias_attr->constant_value (0);
17689
17690 /* Normally, the DWARF producers are expected to use a signed
17691 constant form (Eg. DW_FORM_sdata) to express negative bounds.
17692 But this is unfortunately not always the case, as witnessed
17693 with GCC, for instance, where the ambiguous DW_FORM_dataN form
17694 is used instead. To work around that ambiguity, we treat
17695 the bounds as signed, and thus sign-extend their values, when
17696 the base type is signed. */
17697 negative_mask =
17698 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
17699 if (low.kind == PROP_CONST
17700 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
17701 low.data.const_val |= negative_mask;
17702 if (high.kind == PROP_CONST
17703 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
17704 high.data.const_val |= negative_mask;
17705
17706 /* Check for bit and byte strides. */
17707 struct dynamic_prop byte_stride_prop;
17708 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
17709 if (attr_byte_stride != nullptr)
17710 {
17711 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17712 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
17713 prop_type);
17714 }
17715
17716 struct dynamic_prop bit_stride_prop;
17717 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
17718 if (attr_bit_stride != nullptr)
17719 {
17720 /* It only makes sense to have either a bit or byte stride. */
17721 if (attr_byte_stride != nullptr)
17722 {
17723 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
17724 "- DIE at %s [in module %s]"),
17725 sect_offset_str (die->sect_off),
17726 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17727 attr_bit_stride = nullptr;
17728 }
17729 else
17730 {
17731 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
17732 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
17733 prop_type);
17734 }
17735 }
17736
17737 if (attr_byte_stride != nullptr
17738 || attr_bit_stride != nullptr)
17739 {
17740 bool byte_stride_p = (attr_byte_stride != nullptr);
17741 struct dynamic_prop *stride
17742 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
17743
17744 range_type
17745 = create_range_type_with_stride (NULL, orig_base_type, &low,
17746 &high, bias, stride, byte_stride_p);
17747 }
17748 else
17749 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
17750
17751 if (high_bound_is_count)
17752 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
17753
17754 /* Ada expects an empty array on no boundary attributes. */
17755 if (attr == NULL && cu->language != language_ada)
17756 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
17757
17758 name = dwarf2_name (die, cu);
17759 if (name)
17760 TYPE_NAME (range_type) = name;
17761
17762 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17763 if (attr != nullptr)
17764 TYPE_LENGTH (range_type) = DW_UNSND (attr);
17765
17766 maybe_set_alignment (cu, die, range_type);
17767
17768 set_die_type (die, range_type, cu);
17769
17770 /* set_die_type should be already done. */
17771 set_descriptive_type (range_type, die, cu);
17772
17773 return range_type;
17774 }
17775
17776 static struct type *
17777 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
17778 {
17779 struct type *type;
17780
17781 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
17782 NULL);
17783 TYPE_NAME (type) = dwarf2_name (die, cu);
17784
17785 /* In Ada, an unspecified type is typically used when the description
17786 of the type is deferred to a different unit. When encountering
17787 such a type, we treat it as a stub, and try to resolve it later on,
17788 when needed. */
17789 if (cu->language == language_ada)
17790 TYPE_STUB (type) = 1;
17791
17792 return set_die_type (die, type, cu);
17793 }
17794
17795 /* Read a single die and all its descendents. Set the die's sibling
17796 field to NULL; set other fields in the die correctly, and set all
17797 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
17798 location of the info_ptr after reading all of those dies. PARENT
17799 is the parent of the die in question. */
17800
17801 static struct die_info *
17802 read_die_and_children (const struct die_reader_specs *reader,
17803 const gdb_byte *info_ptr,
17804 const gdb_byte **new_info_ptr,
17805 struct die_info *parent)
17806 {
17807 struct die_info *die;
17808 const gdb_byte *cur_ptr;
17809
17810 cur_ptr = read_full_die_1 (reader, &die, info_ptr, 0);
17811 if (die == NULL)
17812 {
17813 *new_info_ptr = cur_ptr;
17814 return NULL;
17815 }
17816 store_in_ref_table (die, reader->cu);
17817
17818 if (die->has_children)
17819 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
17820 else
17821 {
17822 die->child = NULL;
17823 *new_info_ptr = cur_ptr;
17824 }
17825
17826 die->sibling = NULL;
17827 die->parent = parent;
17828 return die;
17829 }
17830
17831 /* Read a die, all of its descendents, and all of its siblings; set
17832 all of the fields of all of the dies correctly. Arguments are as
17833 in read_die_and_children. */
17834
17835 static struct die_info *
17836 read_die_and_siblings_1 (const struct die_reader_specs *reader,
17837 const gdb_byte *info_ptr,
17838 const gdb_byte **new_info_ptr,
17839 struct die_info *parent)
17840 {
17841 struct die_info *first_die, *last_sibling;
17842 const gdb_byte *cur_ptr;
17843
17844 cur_ptr = info_ptr;
17845 first_die = last_sibling = NULL;
17846
17847 while (1)
17848 {
17849 struct die_info *die
17850 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
17851
17852 if (die == NULL)
17853 {
17854 *new_info_ptr = cur_ptr;
17855 return first_die;
17856 }
17857
17858 if (!first_die)
17859 first_die = die;
17860 else
17861 last_sibling->sibling = die;
17862
17863 last_sibling = die;
17864 }
17865 }
17866
17867 /* Read a die, all of its descendents, and all of its siblings; set
17868 all of the fields of all of the dies correctly. Arguments are as
17869 in read_die_and_children.
17870 This the main entry point for reading a DIE and all its children. */
17871
17872 static struct die_info *
17873 read_die_and_siblings (const struct die_reader_specs *reader,
17874 const gdb_byte *info_ptr,
17875 const gdb_byte **new_info_ptr,
17876 struct die_info *parent)
17877 {
17878 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
17879 new_info_ptr, parent);
17880
17881 if (dwarf_die_debug)
17882 {
17883 fprintf_unfiltered (gdb_stdlog,
17884 "Read die from %s@0x%x of %s:\n",
17885 reader->die_section->get_name (),
17886 (unsigned) (info_ptr - reader->die_section->buffer),
17887 bfd_get_filename (reader->abfd));
17888 dump_die (die, dwarf_die_debug);
17889 }
17890
17891 return die;
17892 }
17893
17894 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
17895 attributes.
17896 The caller is responsible for filling in the extra attributes
17897 and updating (*DIEP)->num_attrs.
17898 Set DIEP to point to a newly allocated die with its information,
17899 except for its child, sibling, and parent fields. */
17900
17901 static const gdb_byte *
17902 read_full_die_1 (const struct die_reader_specs *reader,
17903 struct die_info **diep, const gdb_byte *info_ptr,
17904 int num_extra_attrs)
17905 {
17906 unsigned int abbrev_number, bytes_read, i;
17907 struct abbrev_info *abbrev;
17908 struct die_info *die;
17909 struct dwarf2_cu *cu = reader->cu;
17910 bfd *abfd = reader->abfd;
17911
17912 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
17913 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
17914 info_ptr += bytes_read;
17915 if (!abbrev_number)
17916 {
17917 *diep = NULL;
17918 return info_ptr;
17919 }
17920
17921 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
17922 if (!abbrev)
17923 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
17924 abbrev_number,
17925 bfd_get_filename (abfd));
17926
17927 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
17928 die->sect_off = sect_off;
17929 die->tag = abbrev->tag;
17930 die->abbrev = abbrev_number;
17931 die->has_children = abbrev->has_children;
17932
17933 /* Make the result usable.
17934 The caller needs to update num_attrs after adding the extra
17935 attributes. */
17936 die->num_attrs = abbrev->num_attrs;
17937
17938 std::vector<int> indexes_that_need_reprocess;
17939 for (i = 0; i < abbrev->num_attrs; ++i)
17940 {
17941 bool need_reprocess;
17942 info_ptr =
17943 read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
17944 info_ptr, &need_reprocess);
17945 if (need_reprocess)
17946 indexes_that_need_reprocess.push_back (i);
17947 }
17948
17949 struct attribute *attr = die->attr (DW_AT_str_offsets_base);
17950 if (attr != nullptr)
17951 cu->str_offsets_base = DW_UNSND (attr);
17952
17953 attr = die->attr (DW_AT_loclists_base);
17954 if (attr != nullptr)
17955 cu->loclist_base = DW_UNSND (attr);
17956
17957 auto maybe_addr_base = die->addr_base ();
17958 if (maybe_addr_base.has_value ())
17959 cu->addr_base = *maybe_addr_base;
17960 for (int index : indexes_that_need_reprocess)
17961 read_attribute_reprocess (reader, &die->attrs[index]);
17962 *diep = die;
17963 return info_ptr;
17964 }
17965
17966 /* Read a die and all its attributes.
17967 Set DIEP to point to a newly allocated die with its information,
17968 except for its child, sibling, and parent fields. */
17969
17970 static const gdb_byte *
17971 read_full_die (const struct die_reader_specs *reader,
17972 struct die_info **diep, const gdb_byte *info_ptr)
17973 {
17974 const gdb_byte *result;
17975
17976 result = read_full_die_1 (reader, diep, info_ptr, 0);
17977
17978 if (dwarf_die_debug)
17979 {
17980 fprintf_unfiltered (gdb_stdlog,
17981 "Read die from %s@0x%x of %s:\n",
17982 reader->die_section->get_name (),
17983 (unsigned) (info_ptr - reader->die_section->buffer),
17984 bfd_get_filename (reader->abfd));
17985 dump_die (*diep, dwarf_die_debug);
17986 }
17987
17988 return result;
17989 }
17990 \f
17991
17992 /* Returns nonzero if TAG represents a type that we might generate a partial
17993 symbol for. */
17994
17995 static int
17996 is_type_tag_for_partial (int tag)
17997 {
17998 switch (tag)
17999 {
18000 #if 0
18001 /* Some types that would be reasonable to generate partial symbols for,
18002 that we don't at present. */
18003 case DW_TAG_array_type:
18004 case DW_TAG_file_type:
18005 case DW_TAG_ptr_to_member_type:
18006 case DW_TAG_set_type:
18007 case DW_TAG_string_type:
18008 case DW_TAG_subroutine_type:
18009 #endif
18010 case DW_TAG_base_type:
18011 case DW_TAG_class_type:
18012 case DW_TAG_interface_type:
18013 case DW_TAG_enumeration_type:
18014 case DW_TAG_structure_type:
18015 case DW_TAG_subrange_type:
18016 case DW_TAG_typedef:
18017 case DW_TAG_union_type:
18018 return 1;
18019 default:
18020 return 0;
18021 }
18022 }
18023
18024 /* Load all DIEs that are interesting for partial symbols into memory. */
18025
18026 static struct partial_die_info *
18027 load_partial_dies (const struct die_reader_specs *reader,
18028 const gdb_byte *info_ptr, int building_psymtab)
18029 {
18030 struct dwarf2_cu *cu = reader->cu;
18031 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18032 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18033 unsigned int bytes_read;
18034 unsigned int load_all = 0;
18035 int nesting_level = 1;
18036
18037 parent_die = NULL;
18038 last_die = NULL;
18039
18040 gdb_assert (cu->per_cu != NULL);
18041 if (cu->per_cu->load_all_dies)
18042 load_all = 1;
18043
18044 cu->partial_dies
18045 = htab_create_alloc_ex (cu->header.length / 12,
18046 partial_die_hash,
18047 partial_die_eq,
18048 NULL,
18049 &cu->comp_unit_obstack,
18050 hashtab_obstack_allocate,
18051 dummy_obstack_deallocate);
18052
18053 while (1)
18054 {
18055 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18056
18057 /* A NULL abbrev means the end of a series of children. */
18058 if (abbrev == NULL)
18059 {
18060 if (--nesting_level == 0)
18061 return first_die;
18062
18063 info_ptr += bytes_read;
18064 last_die = parent_die;
18065 parent_die = parent_die->die_parent;
18066 continue;
18067 }
18068
18069 /* Check for template arguments. We never save these; if
18070 they're seen, we just mark the parent, and go on our way. */
18071 if (parent_die != NULL
18072 && cu->language == language_cplus
18073 && (abbrev->tag == DW_TAG_template_type_param
18074 || abbrev->tag == DW_TAG_template_value_param))
18075 {
18076 parent_die->has_template_arguments = 1;
18077
18078 if (!load_all)
18079 {
18080 /* We don't need a partial DIE for the template argument. */
18081 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18082 continue;
18083 }
18084 }
18085
18086 /* We only recurse into c++ subprograms looking for template arguments.
18087 Skip their other children. */
18088 if (!load_all
18089 && cu->language == language_cplus
18090 && parent_die != NULL
18091 && parent_die->tag == DW_TAG_subprogram)
18092 {
18093 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18094 continue;
18095 }
18096
18097 /* Check whether this DIE is interesting enough to save. Normally
18098 we would not be interested in members here, but there may be
18099 later variables referencing them via DW_AT_specification (for
18100 static members). */
18101 if (!load_all
18102 && !is_type_tag_for_partial (abbrev->tag)
18103 && abbrev->tag != DW_TAG_constant
18104 && abbrev->tag != DW_TAG_enumerator
18105 && abbrev->tag != DW_TAG_subprogram
18106 && abbrev->tag != DW_TAG_inlined_subroutine
18107 && abbrev->tag != DW_TAG_lexical_block
18108 && abbrev->tag != DW_TAG_variable
18109 && abbrev->tag != DW_TAG_namespace
18110 && abbrev->tag != DW_TAG_module
18111 && abbrev->tag != DW_TAG_member
18112 && abbrev->tag != DW_TAG_imported_unit
18113 && abbrev->tag != DW_TAG_imported_declaration)
18114 {
18115 /* Otherwise we skip to the next sibling, if any. */
18116 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18117 continue;
18118 }
18119
18120 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18121 abbrev);
18122
18123 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18124
18125 /* This two-pass algorithm for processing partial symbols has a
18126 high cost in cache pressure. Thus, handle some simple cases
18127 here which cover the majority of C partial symbols. DIEs
18128 which neither have specification tags in them, nor could have
18129 specification tags elsewhere pointing at them, can simply be
18130 processed and discarded.
18131
18132 This segment is also optional; scan_partial_symbols and
18133 add_partial_symbol will handle these DIEs if we chain
18134 them in normally. When compilers which do not emit large
18135 quantities of duplicate debug information are more common,
18136 this code can probably be removed. */
18137
18138 /* Any complete simple types at the top level (pretty much all
18139 of them, for a language without namespaces), can be processed
18140 directly. */
18141 if (parent_die == NULL
18142 && pdi.has_specification == 0
18143 && pdi.is_declaration == 0
18144 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18145 || pdi.tag == DW_TAG_base_type
18146 || pdi.tag == DW_TAG_subrange_type))
18147 {
18148 if (building_psymtab && pdi.name != NULL)
18149 add_psymbol_to_list (pdi.name, false,
18150 VAR_DOMAIN, LOC_TYPEDEF, -1,
18151 psymbol_placement::STATIC,
18152 0, cu->language, objfile);
18153 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18154 continue;
18155 }
18156
18157 /* The exception for DW_TAG_typedef with has_children above is
18158 a workaround of GCC PR debug/47510. In the case of this complaint
18159 type_name_or_error will error on such types later.
18160
18161 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18162 it could not find the child DIEs referenced later, this is checked
18163 above. In correct DWARF DW_TAG_typedef should have no children. */
18164
18165 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18166 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18167 "- DIE at %s [in module %s]"),
18168 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18169
18170 /* If we're at the second level, and we're an enumerator, and
18171 our parent has no specification (meaning possibly lives in a
18172 namespace elsewhere), then we can add the partial symbol now
18173 instead of queueing it. */
18174 if (pdi.tag == DW_TAG_enumerator
18175 && parent_die != NULL
18176 && parent_die->die_parent == NULL
18177 && parent_die->tag == DW_TAG_enumeration_type
18178 && parent_die->has_specification == 0)
18179 {
18180 if (pdi.name == NULL)
18181 complaint (_("malformed enumerator DIE ignored"));
18182 else if (building_psymtab)
18183 add_psymbol_to_list (pdi.name, false,
18184 VAR_DOMAIN, LOC_CONST, -1,
18185 cu->language == language_cplus
18186 ? psymbol_placement::GLOBAL
18187 : psymbol_placement::STATIC,
18188 0, cu->language, objfile);
18189
18190 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18191 continue;
18192 }
18193
18194 struct partial_die_info *part_die
18195 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18196
18197 /* We'll save this DIE so link it in. */
18198 part_die->die_parent = parent_die;
18199 part_die->die_sibling = NULL;
18200 part_die->die_child = NULL;
18201
18202 if (last_die && last_die == parent_die)
18203 last_die->die_child = part_die;
18204 else if (last_die)
18205 last_die->die_sibling = part_die;
18206
18207 last_die = part_die;
18208
18209 if (first_die == NULL)
18210 first_die = part_die;
18211
18212 /* Maybe add the DIE to the hash table. Not all DIEs that we
18213 find interesting need to be in the hash table, because we
18214 also have the parent/sibling/child chains; only those that we
18215 might refer to by offset later during partial symbol reading.
18216
18217 For now this means things that might have be the target of a
18218 DW_AT_specification, DW_AT_abstract_origin, or
18219 DW_AT_extension. DW_AT_extension will refer only to
18220 namespaces; DW_AT_abstract_origin refers to functions (and
18221 many things under the function DIE, but we do not recurse
18222 into function DIEs during partial symbol reading) and
18223 possibly variables as well; DW_AT_specification refers to
18224 declarations. Declarations ought to have the DW_AT_declaration
18225 flag. It happens that GCC forgets to put it in sometimes, but
18226 only for functions, not for types.
18227
18228 Adding more things than necessary to the hash table is harmless
18229 except for the performance cost. Adding too few will result in
18230 wasted time in find_partial_die, when we reread the compilation
18231 unit with load_all_dies set. */
18232
18233 if (load_all
18234 || abbrev->tag == DW_TAG_constant
18235 || abbrev->tag == DW_TAG_subprogram
18236 || abbrev->tag == DW_TAG_variable
18237 || abbrev->tag == DW_TAG_namespace
18238 || part_die->is_declaration)
18239 {
18240 void **slot;
18241
18242 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18243 to_underlying (part_die->sect_off),
18244 INSERT);
18245 *slot = part_die;
18246 }
18247
18248 /* For some DIEs we want to follow their children (if any). For C
18249 we have no reason to follow the children of structures; for other
18250 languages we have to, so that we can get at method physnames
18251 to infer fully qualified class names, for DW_AT_specification,
18252 and for C++ template arguments. For C++, we also look one level
18253 inside functions to find template arguments (if the name of the
18254 function does not already contain the template arguments).
18255
18256 For Ada and Fortran, we need to scan the children of subprograms
18257 and lexical blocks as well because these languages allow the
18258 definition of nested entities that could be interesting for the
18259 debugger, such as nested subprograms for instance. */
18260 if (last_die->has_children
18261 && (load_all
18262 || last_die->tag == DW_TAG_namespace
18263 || last_die->tag == DW_TAG_module
18264 || last_die->tag == DW_TAG_enumeration_type
18265 || (cu->language == language_cplus
18266 && last_die->tag == DW_TAG_subprogram
18267 && (last_die->name == NULL
18268 || strchr (last_die->name, '<') == NULL))
18269 || (cu->language != language_c
18270 && (last_die->tag == DW_TAG_class_type
18271 || last_die->tag == DW_TAG_interface_type
18272 || last_die->tag == DW_TAG_structure_type
18273 || last_die->tag == DW_TAG_union_type))
18274 || ((cu->language == language_ada
18275 || cu->language == language_fortran)
18276 && (last_die->tag == DW_TAG_subprogram
18277 || last_die->tag == DW_TAG_lexical_block))))
18278 {
18279 nesting_level++;
18280 parent_die = last_die;
18281 continue;
18282 }
18283
18284 /* Otherwise we skip to the next sibling, if any. */
18285 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18286
18287 /* Back to the top, do it again. */
18288 }
18289 }
18290
18291 partial_die_info::partial_die_info (sect_offset sect_off_,
18292 struct abbrev_info *abbrev)
18293 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18294 {
18295 }
18296
18297 /* Read a minimal amount of information into the minimal die structure.
18298 INFO_PTR should point just after the initial uleb128 of a DIE. */
18299
18300 const gdb_byte *
18301 partial_die_info::read (const struct die_reader_specs *reader,
18302 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18303 {
18304 struct dwarf2_cu *cu = reader->cu;
18305 struct dwarf2_per_objfile *dwarf2_per_objfile
18306 = cu->per_cu->dwarf2_per_objfile;
18307 unsigned int i;
18308 int has_low_pc_attr = 0;
18309 int has_high_pc_attr = 0;
18310 int high_pc_relative = 0;
18311
18312 for (i = 0; i < abbrev.num_attrs; ++i)
18313 {
18314 attribute attr;
18315 bool need_reprocess;
18316 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i],
18317 info_ptr, &need_reprocess);
18318 /* String and address offsets that need to do the reprocessing have
18319 already been read at this point, so there is no need to wait until
18320 the loop terminates to do the reprocessing. */
18321 if (need_reprocess)
18322 read_attribute_reprocess (reader, &attr);
18323 /* Store the data if it is of an attribute we want to keep in a
18324 partial symbol table. */
18325 switch (attr.name)
18326 {
18327 case DW_AT_name:
18328 switch (tag)
18329 {
18330 case DW_TAG_compile_unit:
18331 case DW_TAG_partial_unit:
18332 case DW_TAG_type_unit:
18333 /* Compilation units have a DW_AT_name that is a filename, not
18334 a source language identifier. */
18335 case DW_TAG_enumeration_type:
18336 case DW_TAG_enumerator:
18337 /* These tags always have simple identifiers already; no need
18338 to canonicalize them. */
18339 name = DW_STRING (&attr);
18340 break;
18341 default:
18342 {
18343 struct objfile *objfile = dwarf2_per_objfile->objfile;
18344
18345 name
18346 = dwarf2_canonicalize_name (DW_STRING (&attr), cu, objfile);
18347 }
18348 break;
18349 }
18350 break;
18351 case DW_AT_linkage_name:
18352 case DW_AT_MIPS_linkage_name:
18353 /* Note that both forms of linkage name might appear. We
18354 assume they will be the same, and we only store the last
18355 one we see. */
18356 linkage_name = attr.value_as_string ();
18357 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
18358 See https://github.com/rust-lang/rust/issues/32925. */
18359 if (cu->language == language_rust && linkage_name != NULL
18360 && strchr (linkage_name, '{') != NULL)
18361 linkage_name = NULL;
18362 break;
18363 case DW_AT_low_pc:
18364 has_low_pc_attr = 1;
18365 lowpc = attr.value_as_address ();
18366 break;
18367 case DW_AT_high_pc:
18368 has_high_pc_attr = 1;
18369 highpc = attr.value_as_address ();
18370 if (cu->header.version >= 4 && attr.form_is_constant ())
18371 high_pc_relative = 1;
18372 break;
18373 case DW_AT_location:
18374 /* Support the .debug_loc offsets. */
18375 if (attr.form_is_block ())
18376 {
18377 d.locdesc = DW_BLOCK (&attr);
18378 }
18379 else if (attr.form_is_section_offset ())
18380 {
18381 dwarf2_complex_location_expr_complaint ();
18382 }
18383 else
18384 {
18385 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18386 "partial symbol information");
18387 }
18388 break;
18389 case DW_AT_external:
18390 is_external = DW_UNSND (&attr);
18391 break;
18392 case DW_AT_declaration:
18393 is_declaration = DW_UNSND (&attr);
18394 break;
18395 case DW_AT_type:
18396 has_type = 1;
18397 break;
18398 case DW_AT_abstract_origin:
18399 case DW_AT_specification:
18400 case DW_AT_extension:
18401 has_specification = 1;
18402 spec_offset = attr.get_ref_die_offset ();
18403 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18404 || cu->per_cu->is_dwz);
18405 break;
18406 case DW_AT_sibling:
18407 /* Ignore absolute siblings, they might point outside of
18408 the current compile unit. */
18409 if (attr.form == DW_FORM_ref_addr)
18410 complaint (_("ignoring absolute DW_AT_sibling"));
18411 else
18412 {
18413 const gdb_byte *buffer = reader->buffer;
18414 sect_offset off = attr.get_ref_die_offset ();
18415 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
18416
18417 if (sibling_ptr < info_ptr)
18418 complaint (_("DW_AT_sibling points backwards"));
18419 else if (sibling_ptr > reader->buffer_end)
18420 reader->die_section->overflow_complaint ();
18421 else
18422 sibling = sibling_ptr;
18423 }
18424 break;
18425 case DW_AT_byte_size:
18426 has_byte_size = 1;
18427 break;
18428 case DW_AT_const_value:
18429 has_const_value = 1;
18430 break;
18431 case DW_AT_calling_convention:
18432 /* DWARF doesn't provide a way to identify a program's source-level
18433 entry point. DW_AT_calling_convention attributes are only meant
18434 to describe functions' calling conventions.
18435
18436 However, because it's a necessary piece of information in
18437 Fortran, and before DWARF 4 DW_CC_program was the only
18438 piece of debugging information whose definition refers to
18439 a 'main program' at all, several compilers marked Fortran
18440 main programs with DW_CC_program --- even when those
18441 functions use the standard calling conventions.
18442
18443 Although DWARF now specifies a way to provide this
18444 information, we support this practice for backward
18445 compatibility. */
18446 if (DW_UNSND (&attr) == DW_CC_program
18447 && cu->language == language_fortran)
18448 main_subprogram = 1;
18449 break;
18450 case DW_AT_inline:
18451 if (DW_UNSND (&attr) == DW_INL_inlined
18452 || DW_UNSND (&attr) == DW_INL_declared_inlined)
18453 may_be_inlined = 1;
18454 break;
18455
18456 case DW_AT_import:
18457 if (tag == DW_TAG_imported_unit)
18458 {
18459 d.sect_off = attr.get_ref_die_offset ();
18460 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18461 || cu->per_cu->is_dwz);
18462 }
18463 break;
18464
18465 case DW_AT_main_subprogram:
18466 main_subprogram = DW_UNSND (&attr);
18467 break;
18468
18469 case DW_AT_ranges:
18470 {
18471 /* It would be nice to reuse dwarf2_get_pc_bounds here,
18472 but that requires a full DIE, so instead we just
18473 reimplement it. */
18474 int need_ranges_base = tag != DW_TAG_compile_unit;
18475 unsigned int ranges_offset = (DW_UNSND (&attr)
18476 + (need_ranges_base
18477 ? cu->ranges_base
18478 : 0));
18479
18480 /* Value of the DW_AT_ranges attribute is the offset in the
18481 .debug_ranges section. */
18482 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
18483 nullptr))
18484 has_pc_info = 1;
18485 }
18486 break;
18487
18488 default:
18489 break;
18490 }
18491 }
18492
18493 /* For Ada, if both the name and the linkage name appear, we prefer
18494 the latter. This lets "catch exception" work better, regardless
18495 of the order in which the name and linkage name were emitted.
18496 Really, though, this is just a workaround for the fact that gdb
18497 doesn't store both the name and the linkage name. */
18498 if (cu->language == language_ada && linkage_name != nullptr)
18499 name = linkage_name;
18500
18501 if (high_pc_relative)
18502 highpc += lowpc;
18503
18504 if (has_low_pc_attr && has_high_pc_attr)
18505 {
18506 /* When using the GNU linker, .gnu.linkonce. sections are used to
18507 eliminate duplicate copies of functions and vtables and such.
18508 The linker will arbitrarily choose one and discard the others.
18509 The AT_*_pc values for such functions refer to local labels in
18510 these sections. If the section from that file was discarded, the
18511 labels are not in the output, so the relocs get a value of 0.
18512 If this is a discarded function, mark the pc bounds as invalid,
18513 so that GDB will ignore it. */
18514 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
18515 {
18516 struct objfile *objfile = dwarf2_per_objfile->objfile;
18517 struct gdbarch *gdbarch = objfile->arch ();
18518
18519 complaint (_("DW_AT_low_pc %s is zero "
18520 "for DIE at %s [in module %s]"),
18521 paddress (gdbarch, lowpc),
18522 sect_offset_str (sect_off),
18523 objfile_name (objfile));
18524 }
18525 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
18526 else if (lowpc >= highpc)
18527 {
18528 struct objfile *objfile = dwarf2_per_objfile->objfile;
18529 struct gdbarch *gdbarch = objfile->arch ();
18530
18531 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
18532 "for DIE at %s [in module %s]"),
18533 paddress (gdbarch, lowpc),
18534 paddress (gdbarch, highpc),
18535 sect_offset_str (sect_off),
18536 objfile_name (objfile));
18537 }
18538 else
18539 has_pc_info = 1;
18540 }
18541
18542 return info_ptr;
18543 }
18544
18545 /* Find a cached partial DIE at OFFSET in CU. */
18546
18547 struct partial_die_info *
18548 dwarf2_cu::find_partial_die (sect_offset sect_off)
18549 {
18550 struct partial_die_info *lookup_die = NULL;
18551 struct partial_die_info part_die (sect_off);
18552
18553 lookup_die = ((struct partial_die_info *)
18554 htab_find_with_hash (partial_dies, &part_die,
18555 to_underlying (sect_off)));
18556
18557 return lookup_die;
18558 }
18559
18560 /* Find a partial DIE at OFFSET, which may or may not be in CU,
18561 except in the case of .debug_types DIEs which do not reference
18562 outside their CU (they do however referencing other types via
18563 DW_FORM_ref_sig8). */
18564
18565 static const struct cu_partial_die_info
18566 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
18567 {
18568 struct dwarf2_per_objfile *dwarf2_per_objfile
18569 = cu->per_cu->dwarf2_per_objfile;
18570 struct objfile *objfile = dwarf2_per_objfile->objfile;
18571 struct dwarf2_per_cu_data *per_cu = NULL;
18572 struct partial_die_info *pd = NULL;
18573
18574 if (offset_in_dwz == cu->per_cu->is_dwz
18575 && cu->header.offset_in_cu_p (sect_off))
18576 {
18577 pd = cu->find_partial_die (sect_off);
18578 if (pd != NULL)
18579 return { cu, pd };
18580 /* We missed recording what we needed.
18581 Load all dies and try again. */
18582 per_cu = cu->per_cu;
18583 }
18584 else
18585 {
18586 /* TUs don't reference other CUs/TUs (except via type signatures). */
18587 if (cu->per_cu->is_debug_types)
18588 {
18589 error (_("Dwarf Error: Type Unit at offset %s contains"
18590 " external reference to offset %s [in module %s].\n"),
18591 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
18592 bfd_get_filename (objfile->obfd));
18593 }
18594 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
18595 dwarf2_per_objfile);
18596
18597 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
18598 load_partial_comp_unit (per_cu);
18599
18600 per_cu->cu->last_used = 0;
18601 pd = per_cu->cu->find_partial_die (sect_off);
18602 }
18603
18604 /* If we didn't find it, and not all dies have been loaded,
18605 load them all and try again. */
18606
18607 if (pd == NULL && per_cu->load_all_dies == 0)
18608 {
18609 per_cu->load_all_dies = 1;
18610
18611 /* This is nasty. When we reread the DIEs, somewhere up the call chain
18612 THIS_CU->cu may already be in use. So we can't just free it and
18613 replace its DIEs with the ones we read in. Instead, we leave those
18614 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
18615 and clobber THIS_CU->cu->partial_dies with the hash table for the new
18616 set. */
18617 load_partial_comp_unit (per_cu);
18618
18619 pd = per_cu->cu->find_partial_die (sect_off);
18620 }
18621
18622 if (pd == NULL)
18623 internal_error (__FILE__, __LINE__,
18624 _("could not find partial DIE %s "
18625 "in cache [from module %s]\n"),
18626 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
18627 return { per_cu->cu, pd };
18628 }
18629
18630 /* See if we can figure out if the class lives in a namespace. We do
18631 this by looking for a member function; its demangled name will
18632 contain namespace info, if there is any. */
18633
18634 static void
18635 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
18636 struct dwarf2_cu *cu)
18637 {
18638 /* NOTE: carlton/2003-10-07: Getting the info this way changes
18639 what template types look like, because the demangler
18640 frequently doesn't give the same name as the debug info. We
18641 could fix this by only using the demangled name to get the
18642 prefix (but see comment in read_structure_type). */
18643
18644 struct partial_die_info *real_pdi;
18645 struct partial_die_info *child_pdi;
18646
18647 /* If this DIE (this DIE's specification, if any) has a parent, then
18648 we should not do this. We'll prepend the parent's fully qualified
18649 name when we create the partial symbol. */
18650
18651 real_pdi = struct_pdi;
18652 while (real_pdi->has_specification)
18653 {
18654 auto res = find_partial_die (real_pdi->spec_offset,
18655 real_pdi->spec_is_dwz, cu);
18656 real_pdi = res.pdi;
18657 cu = res.cu;
18658 }
18659
18660 if (real_pdi->die_parent != NULL)
18661 return;
18662
18663 for (child_pdi = struct_pdi->die_child;
18664 child_pdi != NULL;
18665 child_pdi = child_pdi->die_sibling)
18666 {
18667 if (child_pdi->tag == DW_TAG_subprogram
18668 && child_pdi->linkage_name != NULL)
18669 {
18670 gdb::unique_xmalloc_ptr<char> actual_class_name
18671 (language_class_name_from_physname (cu->language_defn,
18672 child_pdi->linkage_name));
18673 if (actual_class_name != NULL)
18674 {
18675 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18676 struct_pdi->name = objfile->intern (actual_class_name.get ());
18677 }
18678 break;
18679 }
18680 }
18681 }
18682
18683 /* Return true if a DIE with TAG may have the DW_AT_const_value
18684 attribute. */
18685
18686 static bool
18687 can_have_DW_AT_const_value_p (enum dwarf_tag tag)
18688 {
18689 switch (tag)
18690 {
18691 case DW_TAG_constant:
18692 case DW_TAG_enumerator:
18693 case DW_TAG_formal_parameter:
18694 case DW_TAG_template_value_param:
18695 case DW_TAG_variable:
18696 return true;
18697 }
18698
18699 return false;
18700 }
18701
18702 void
18703 partial_die_info::fixup (struct dwarf2_cu *cu)
18704 {
18705 /* Once we've fixed up a die, there's no point in doing so again.
18706 This also avoids a memory leak if we were to call
18707 guess_partial_die_structure_name multiple times. */
18708 if (fixup_called)
18709 return;
18710
18711 /* If we found a reference attribute and the DIE has no name, try
18712 to find a name in the referred to DIE. */
18713
18714 if (name == NULL && has_specification)
18715 {
18716 struct partial_die_info *spec_die;
18717
18718 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18719 spec_die = res.pdi;
18720 cu = res.cu;
18721
18722 spec_die->fixup (cu);
18723
18724 if (spec_die->name)
18725 {
18726 name = spec_die->name;
18727
18728 /* Copy DW_AT_external attribute if it is set. */
18729 if (spec_die->is_external)
18730 is_external = spec_die->is_external;
18731 }
18732 }
18733
18734 if (!has_const_value && has_specification
18735 && can_have_DW_AT_const_value_p (tag))
18736 {
18737 struct partial_die_info *spec_die;
18738
18739 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
18740 spec_die = res.pdi;
18741 cu = res.cu;
18742
18743 spec_die->fixup (cu);
18744
18745 if (spec_die->has_const_value)
18746 {
18747 /* Copy DW_AT_const_value attribute if it is set. */
18748 has_const_value = spec_die->has_const_value;
18749 }
18750 }
18751
18752 /* Set default names for some unnamed DIEs. */
18753
18754 if (name == NULL && tag == DW_TAG_namespace)
18755 name = CP_ANONYMOUS_NAMESPACE_STR;
18756
18757 /* If there is no parent die to provide a namespace, and there are
18758 children, see if we can determine the namespace from their linkage
18759 name. */
18760 if (cu->language == language_cplus
18761 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
18762 && die_parent == NULL
18763 && has_children
18764 && (tag == DW_TAG_class_type
18765 || tag == DW_TAG_structure_type
18766 || tag == DW_TAG_union_type))
18767 guess_partial_die_structure_name (this, cu);
18768
18769 /* GCC might emit a nameless struct or union that has a linkage
18770 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
18771 if (name == NULL
18772 && (tag == DW_TAG_class_type
18773 || tag == DW_TAG_interface_type
18774 || tag == DW_TAG_structure_type
18775 || tag == DW_TAG_union_type)
18776 && linkage_name != NULL)
18777 {
18778 gdb::unique_xmalloc_ptr<char> demangled
18779 (gdb_demangle (linkage_name, DMGL_TYPES));
18780 if (demangled != nullptr)
18781 {
18782 const char *base;
18783
18784 /* Strip any leading namespaces/classes, keep only the base name.
18785 DW_AT_name for named DIEs does not contain the prefixes. */
18786 base = strrchr (demangled.get (), ':');
18787 if (base && base > demangled.get () && base[-1] == ':')
18788 base++;
18789 else
18790 base = demangled.get ();
18791
18792 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18793 name = objfile->intern (base);
18794 }
18795 }
18796
18797 fixup_called = 1;
18798 }
18799
18800 /* Read the .debug_loclists header contents from the given SECTION in the
18801 HEADER. */
18802 static void
18803 read_loclist_header (struct loclist_header *header,
18804 struct dwarf2_section_info *section)
18805 {
18806 unsigned int bytes_read;
18807 bfd *abfd = section->get_bfd_owner ();
18808 const gdb_byte *info_ptr = section->buffer;
18809 header->length = read_initial_length (abfd, info_ptr, &bytes_read);
18810 info_ptr += bytes_read;
18811 header->version = read_2_bytes (abfd, info_ptr);
18812 info_ptr += 2;
18813 header->addr_size = read_1_byte (abfd, info_ptr);
18814 info_ptr += 1;
18815 header->segment_collector_size = read_1_byte (abfd, info_ptr);
18816 info_ptr += 1;
18817 header->offset_entry_count = read_4_bytes (abfd, info_ptr);
18818 }
18819
18820 /* Return the DW_AT_loclists_base value for the CU. */
18821 static ULONGEST
18822 lookup_loclist_base (struct dwarf2_cu *cu)
18823 {
18824 /* For the .dwo unit, the loclist_base points to the first offset following
18825 the header. The header consists of the following entities-
18826 1. Unit Length (4 bytes for 32 bit DWARF format, and 12 bytes for the 64
18827 bit format)
18828 2. version (2 bytes)
18829 3. address size (1 byte)
18830 4. segment selector size (1 byte)
18831 5. offset entry count (4 bytes)
18832 These sizes are derived as per the DWARFv5 standard. */
18833 if (cu->dwo_unit != nullptr)
18834 {
18835 if (cu->header.initial_length_size == 4)
18836 return LOCLIST_HEADER_SIZE32;
18837 return LOCLIST_HEADER_SIZE64;
18838 }
18839 return cu->loclist_base;
18840 }
18841
18842 /* Given a DW_FORM_loclistx value LOCLIST_INDEX, fetch the offset from the
18843 array of offsets in the .debug_loclists section. */
18844 static CORE_ADDR
18845 read_loclist_index (struct dwarf2_cu *cu, ULONGEST loclist_index)
18846 {
18847 struct dwarf2_per_objfile *dwarf2_per_objfile
18848 = cu->per_cu->dwarf2_per_objfile;
18849 struct objfile *objfile = dwarf2_per_objfile->objfile;
18850 bfd *abfd = objfile->obfd;
18851 ULONGEST loclist_base = lookup_loclist_base (cu);
18852 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
18853
18854 section->read (objfile);
18855 if (section->buffer == NULL)
18856 complaint (_("DW_FORM_loclistx used without .debug_loclists "
18857 "section [in module %s]"), objfile_name (objfile));
18858 struct loclist_header header;
18859 read_loclist_header (&header, section);
18860 if (loclist_index >= header.offset_entry_count)
18861 complaint (_("DW_FORM_loclistx pointing outside of "
18862 ".debug_loclists offset array [in module %s]"),
18863 objfile_name (objfile));
18864 if (loclist_base + loclist_index * cu->header.offset_size
18865 >= section->size)
18866 complaint (_("DW_FORM_loclistx pointing outside of "
18867 ".debug_loclists section [in module %s]"),
18868 objfile_name (objfile));
18869 const gdb_byte *info_ptr
18870 = section->buffer + loclist_base + loclist_index * cu->header.offset_size;
18871
18872 if (cu->header.offset_size == 4)
18873 return bfd_get_32 (abfd, info_ptr) + loclist_base;
18874 else
18875 return bfd_get_64 (abfd, info_ptr) + loclist_base;
18876 }
18877
18878 /* Process the attributes that had to be skipped in the first round. These
18879 attributes are the ones that need str_offsets_base or addr_base attributes.
18880 They could not have been processed in the first round, because at the time
18881 the values of str_offsets_base or addr_base may not have been known. */
18882 static void
18883 read_attribute_reprocess (const struct die_reader_specs *reader,
18884 struct attribute *attr)
18885 {
18886 struct dwarf2_cu *cu = reader->cu;
18887 switch (attr->form)
18888 {
18889 case DW_FORM_addrx:
18890 case DW_FORM_GNU_addr_index:
18891 DW_ADDR (attr) = read_addr_index (cu, DW_UNSND (attr));
18892 break;
18893 case DW_FORM_loclistx:
18894 DW_UNSND (attr) = read_loclist_index (cu, DW_UNSND (attr));
18895 break;
18896 case DW_FORM_strx:
18897 case DW_FORM_strx1:
18898 case DW_FORM_strx2:
18899 case DW_FORM_strx3:
18900 case DW_FORM_strx4:
18901 case DW_FORM_GNU_str_index:
18902 {
18903 unsigned int str_index = DW_UNSND (attr);
18904 if (reader->dwo_file != NULL)
18905 {
18906 DW_STRING (attr) = read_dwo_str_index (reader, str_index);
18907 DW_STRING_IS_CANONICAL (attr) = 0;
18908 }
18909 else
18910 {
18911 DW_STRING (attr) = read_stub_str_index (cu, str_index);
18912 DW_STRING_IS_CANONICAL (attr) = 0;
18913 }
18914 break;
18915 }
18916 default:
18917 gdb_assert_not_reached (_("Unexpected DWARF form."));
18918 }
18919 }
18920
18921 /* Read an attribute value described by an attribute form. */
18922
18923 static const gdb_byte *
18924 read_attribute_value (const struct die_reader_specs *reader,
18925 struct attribute *attr, unsigned form,
18926 LONGEST implicit_const, const gdb_byte *info_ptr,
18927 bool *need_reprocess)
18928 {
18929 struct dwarf2_cu *cu = reader->cu;
18930 struct dwarf2_per_objfile *dwarf2_per_objfile
18931 = cu->per_cu->dwarf2_per_objfile;
18932 struct objfile *objfile = dwarf2_per_objfile->objfile;
18933 bfd *abfd = reader->abfd;
18934 struct comp_unit_head *cu_header = &cu->header;
18935 unsigned int bytes_read;
18936 struct dwarf_block *blk;
18937 *need_reprocess = false;
18938
18939 attr->form = (enum dwarf_form) form;
18940 switch (form)
18941 {
18942 case DW_FORM_ref_addr:
18943 if (cu->header.version == 2)
18944 DW_UNSND (attr) = cu->header.read_address (abfd, info_ptr,
18945 &bytes_read);
18946 else
18947 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr,
18948 &bytes_read);
18949 info_ptr += bytes_read;
18950 break;
18951 case DW_FORM_GNU_ref_alt:
18952 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
18953 info_ptr += bytes_read;
18954 break;
18955 case DW_FORM_addr:
18956 {
18957 struct gdbarch *gdbarch = objfile->arch ();
18958 DW_ADDR (attr) = cu->header.read_address (abfd, info_ptr, &bytes_read);
18959 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
18960 info_ptr += bytes_read;
18961 }
18962 break;
18963 case DW_FORM_block2:
18964 blk = dwarf_alloc_block (cu);
18965 blk->size = read_2_bytes (abfd, info_ptr);
18966 info_ptr += 2;
18967 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18968 info_ptr += blk->size;
18969 DW_BLOCK (attr) = blk;
18970 break;
18971 case DW_FORM_block4:
18972 blk = dwarf_alloc_block (cu);
18973 blk->size = read_4_bytes (abfd, info_ptr);
18974 info_ptr += 4;
18975 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
18976 info_ptr += blk->size;
18977 DW_BLOCK (attr) = blk;
18978 break;
18979 case DW_FORM_data2:
18980 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
18981 info_ptr += 2;
18982 break;
18983 case DW_FORM_data4:
18984 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
18985 info_ptr += 4;
18986 break;
18987 case DW_FORM_data8:
18988 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
18989 info_ptr += 8;
18990 break;
18991 case DW_FORM_data16:
18992 blk = dwarf_alloc_block (cu);
18993 blk->size = 16;
18994 blk->data = read_n_bytes (abfd, info_ptr, 16);
18995 info_ptr += 16;
18996 DW_BLOCK (attr) = blk;
18997 break;
18998 case DW_FORM_sec_offset:
18999 DW_UNSND (attr) = cu->header.read_offset (abfd, info_ptr, &bytes_read);
19000 info_ptr += bytes_read;
19001 break;
19002 case DW_FORM_loclistx:
19003 {
19004 *need_reprocess = true;
19005 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19006 info_ptr += bytes_read;
19007 }
19008 break;
19009 case DW_FORM_string:
19010 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19011 DW_STRING_IS_CANONICAL (attr) = 0;
19012 info_ptr += bytes_read;
19013 break;
19014 case DW_FORM_strp:
19015 if (!cu->per_cu->is_dwz)
19016 {
19017 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19018 abfd, info_ptr, cu_header,
19019 &bytes_read);
19020 DW_STRING_IS_CANONICAL (attr) = 0;
19021 info_ptr += bytes_read;
19022 break;
19023 }
19024 /* FALLTHROUGH */
19025 case DW_FORM_line_strp:
19026 if (!cu->per_cu->is_dwz)
19027 {
19028 DW_STRING (attr)
19029 = dwarf2_per_objfile->read_line_string (info_ptr, cu_header,
19030 &bytes_read);
19031 DW_STRING_IS_CANONICAL (attr) = 0;
19032 info_ptr += bytes_read;
19033 break;
19034 }
19035 /* FALLTHROUGH */
19036 case DW_FORM_GNU_strp_alt:
19037 {
19038 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19039 LONGEST str_offset = cu_header->read_offset (abfd, info_ptr,
19040 &bytes_read);
19041
19042 DW_STRING (attr) = dwz->read_string (objfile, str_offset);
19043 DW_STRING_IS_CANONICAL (attr) = 0;
19044 info_ptr += bytes_read;
19045 }
19046 break;
19047 case DW_FORM_exprloc:
19048 case DW_FORM_block:
19049 blk = dwarf_alloc_block (cu);
19050 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19051 info_ptr += bytes_read;
19052 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19053 info_ptr += blk->size;
19054 DW_BLOCK (attr) = blk;
19055 break;
19056 case DW_FORM_block1:
19057 blk = dwarf_alloc_block (cu);
19058 blk->size = read_1_byte (abfd, info_ptr);
19059 info_ptr += 1;
19060 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19061 info_ptr += blk->size;
19062 DW_BLOCK (attr) = blk;
19063 break;
19064 case DW_FORM_data1:
19065 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19066 info_ptr += 1;
19067 break;
19068 case DW_FORM_flag:
19069 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19070 info_ptr += 1;
19071 break;
19072 case DW_FORM_flag_present:
19073 DW_UNSND (attr) = 1;
19074 break;
19075 case DW_FORM_sdata:
19076 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19077 info_ptr += bytes_read;
19078 break;
19079 case DW_FORM_udata:
19080 case DW_FORM_rnglistx:
19081 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19082 info_ptr += bytes_read;
19083 break;
19084 case DW_FORM_ref1:
19085 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19086 + read_1_byte (abfd, info_ptr));
19087 info_ptr += 1;
19088 break;
19089 case DW_FORM_ref2:
19090 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19091 + read_2_bytes (abfd, info_ptr));
19092 info_ptr += 2;
19093 break;
19094 case DW_FORM_ref4:
19095 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19096 + read_4_bytes (abfd, info_ptr));
19097 info_ptr += 4;
19098 break;
19099 case DW_FORM_ref8:
19100 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19101 + read_8_bytes (abfd, info_ptr));
19102 info_ptr += 8;
19103 break;
19104 case DW_FORM_ref_sig8:
19105 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19106 info_ptr += 8;
19107 break;
19108 case DW_FORM_ref_udata:
19109 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19110 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19111 info_ptr += bytes_read;
19112 break;
19113 case DW_FORM_indirect:
19114 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19115 info_ptr += bytes_read;
19116 if (form == DW_FORM_implicit_const)
19117 {
19118 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19119 info_ptr += bytes_read;
19120 }
19121 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19122 info_ptr, need_reprocess);
19123 break;
19124 case DW_FORM_implicit_const:
19125 DW_SND (attr) = implicit_const;
19126 break;
19127 case DW_FORM_addrx:
19128 case DW_FORM_GNU_addr_index:
19129 *need_reprocess = true;
19130 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19131 info_ptr += bytes_read;
19132 break;
19133 case DW_FORM_strx:
19134 case DW_FORM_strx1:
19135 case DW_FORM_strx2:
19136 case DW_FORM_strx3:
19137 case DW_FORM_strx4:
19138 case DW_FORM_GNU_str_index:
19139 {
19140 ULONGEST str_index;
19141 if (form == DW_FORM_strx1)
19142 {
19143 str_index = read_1_byte (abfd, info_ptr);
19144 info_ptr += 1;
19145 }
19146 else if (form == DW_FORM_strx2)
19147 {
19148 str_index = read_2_bytes (abfd, info_ptr);
19149 info_ptr += 2;
19150 }
19151 else if (form == DW_FORM_strx3)
19152 {
19153 str_index = read_3_bytes (abfd, info_ptr);
19154 info_ptr += 3;
19155 }
19156 else if (form == DW_FORM_strx4)
19157 {
19158 str_index = read_4_bytes (abfd, info_ptr);
19159 info_ptr += 4;
19160 }
19161 else
19162 {
19163 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19164 info_ptr += bytes_read;
19165 }
19166 *need_reprocess = true;
19167 DW_UNSND (attr) = str_index;
19168 }
19169 break;
19170 default:
19171 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19172 dwarf_form_name (form),
19173 bfd_get_filename (abfd));
19174 }
19175
19176 /* Super hack. */
19177 if (cu->per_cu->is_dwz && attr->form_is_ref ())
19178 attr->form = DW_FORM_GNU_ref_alt;
19179
19180 /* We have seen instances where the compiler tried to emit a byte
19181 size attribute of -1 which ended up being encoded as an unsigned
19182 0xffffffff. Although 0xffffffff is technically a valid size value,
19183 an object of this size seems pretty unlikely so we can relatively
19184 safely treat these cases as if the size attribute was invalid and
19185 treat them as zero by default. */
19186 if (attr->name == DW_AT_byte_size
19187 && form == DW_FORM_data4
19188 && DW_UNSND (attr) >= 0xffffffff)
19189 {
19190 complaint
19191 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19192 hex_string (DW_UNSND (attr)));
19193 DW_UNSND (attr) = 0;
19194 }
19195
19196 return info_ptr;
19197 }
19198
19199 /* Read an attribute described by an abbreviated attribute. */
19200
19201 static const gdb_byte *
19202 read_attribute (const struct die_reader_specs *reader,
19203 struct attribute *attr, struct attr_abbrev *abbrev,
19204 const gdb_byte *info_ptr, bool *need_reprocess)
19205 {
19206 attr->name = abbrev->name;
19207 return read_attribute_value (reader, attr, abbrev->form,
19208 abbrev->implicit_const, info_ptr,
19209 need_reprocess);
19210 }
19211
19212 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19213
19214 static const char *
19215 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19216 LONGEST str_offset)
19217 {
19218 return dwarf2_per_objfile->str.read_string (dwarf2_per_objfile->objfile,
19219 str_offset, "DW_FORM_strp");
19220 }
19221
19222 /* Return pointer to string at .debug_str offset as read from BUF.
19223 BUF is assumed to be in a compilation unit described by CU_HEADER.
19224 Return *BYTES_READ_PTR count of bytes read from BUF. */
19225
19226 static const char *
19227 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19228 const gdb_byte *buf,
19229 const struct comp_unit_head *cu_header,
19230 unsigned int *bytes_read_ptr)
19231 {
19232 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19233
19234 return read_indirect_string_at_offset (dwarf2_per_objfile, str_offset);
19235 }
19236
19237 /* See read.h. */
19238
19239 const char *
19240 dwarf2_per_objfile::read_line_string (const gdb_byte *buf,
19241 const struct comp_unit_head *cu_header,
19242 unsigned int *bytes_read_ptr)
19243 {
19244 bfd *abfd = objfile->obfd;
19245 LONGEST str_offset = cu_header->read_offset (abfd, buf, bytes_read_ptr);
19246
19247 return line_str.read_string (objfile, str_offset, "DW_FORM_line_strp");
19248 }
19249
19250 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
19251 ADDR_BASE is the DW_AT_addr_base (DW_AT_GNU_addr_base) attribute or zero.
19252 ADDR_SIZE is the size of addresses from the CU header. */
19253
19254 static CORE_ADDR
19255 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
19256 unsigned int addr_index, gdb::optional<ULONGEST> addr_base,
19257 int addr_size)
19258 {
19259 struct objfile *objfile = dwarf2_per_objfile->objfile;
19260 bfd *abfd = objfile->obfd;
19261 const gdb_byte *info_ptr;
19262 ULONGEST addr_base_or_zero = addr_base.has_value () ? *addr_base : 0;
19263
19264 dwarf2_per_objfile->addr.read (objfile);
19265 if (dwarf2_per_objfile->addr.buffer == NULL)
19266 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
19267 objfile_name (objfile));
19268 if (addr_base_or_zero + addr_index * addr_size
19269 >= dwarf2_per_objfile->addr.size)
19270 error (_("DW_FORM_addr_index pointing outside of "
19271 ".debug_addr section [in module %s]"),
19272 objfile_name (objfile));
19273 info_ptr = (dwarf2_per_objfile->addr.buffer
19274 + addr_base_or_zero + addr_index * addr_size);
19275 if (addr_size == 4)
19276 return bfd_get_32 (abfd, info_ptr);
19277 else
19278 return bfd_get_64 (abfd, info_ptr);
19279 }
19280
19281 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
19282
19283 static CORE_ADDR
19284 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
19285 {
19286 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
19287 cu->addr_base, cu->header.addr_size);
19288 }
19289
19290 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
19291
19292 static CORE_ADDR
19293 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
19294 unsigned int *bytes_read)
19295 {
19296 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
19297 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
19298
19299 return read_addr_index (cu, addr_index);
19300 }
19301
19302 /* See read.h. */
19303
19304 CORE_ADDR
19305 dwarf2_read_addr_index (dwarf2_per_cu_data *per_cu, unsigned int addr_index)
19306 {
19307 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
19308 struct dwarf2_cu *cu = per_cu->cu;
19309 gdb::optional<ULONGEST> addr_base;
19310 int addr_size;
19311
19312 /* We need addr_base and addr_size.
19313 If we don't have PER_CU->cu, we have to get it.
19314 Nasty, but the alternative is storing the needed info in PER_CU,
19315 which at this point doesn't seem justified: it's not clear how frequently
19316 it would get used and it would increase the size of every PER_CU.
19317 Entry points like dwarf2_per_cu_addr_size do a similar thing
19318 so we're not in uncharted territory here.
19319 Alas we need to be a bit more complicated as addr_base is contained
19320 in the DIE.
19321
19322 We don't need to read the entire CU(/TU).
19323 We just need the header and top level die.
19324
19325 IWBN to use the aging mechanism to let us lazily later discard the CU.
19326 For now we skip this optimization. */
19327
19328 if (cu != NULL)
19329 {
19330 addr_base = cu->addr_base;
19331 addr_size = cu->header.addr_size;
19332 }
19333 else
19334 {
19335 cutu_reader reader (per_cu, NULL, 0, false);
19336 addr_base = reader.cu->addr_base;
19337 addr_size = reader.cu->header.addr_size;
19338 }
19339
19340 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
19341 addr_size);
19342 }
19343
19344 /* Given a DW_FORM_GNU_str_index value STR_INDEX, fetch the string.
19345 STR_SECTION, STR_OFFSETS_SECTION can be from a Fission stub or a
19346 DWO file. */
19347
19348 static const char *
19349 read_str_index (struct dwarf2_cu *cu,
19350 struct dwarf2_section_info *str_section,
19351 struct dwarf2_section_info *str_offsets_section,
19352 ULONGEST str_offsets_base, ULONGEST str_index)
19353 {
19354 struct dwarf2_per_objfile *dwarf2_per_objfile
19355 = cu->per_cu->dwarf2_per_objfile;
19356 struct objfile *objfile = dwarf2_per_objfile->objfile;
19357 const char *objf_name = objfile_name (objfile);
19358 bfd *abfd = objfile->obfd;
19359 const gdb_byte *info_ptr;
19360 ULONGEST str_offset;
19361 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
19362
19363 str_section->read (objfile);
19364 str_offsets_section->read (objfile);
19365 if (str_section->buffer == NULL)
19366 error (_("%s used without %s section"
19367 " in CU at offset %s [in module %s]"),
19368 form_name, str_section->get_name (),
19369 sect_offset_str (cu->header.sect_off), objf_name);
19370 if (str_offsets_section->buffer == NULL)
19371 error (_("%s used without %s section"
19372 " in CU at offset %s [in module %s]"),
19373 form_name, str_section->get_name (),
19374 sect_offset_str (cu->header.sect_off), objf_name);
19375 info_ptr = (str_offsets_section->buffer
19376 + str_offsets_base
19377 + str_index * cu->header.offset_size);
19378 if (cu->header.offset_size == 4)
19379 str_offset = bfd_get_32 (abfd, info_ptr);
19380 else
19381 str_offset = bfd_get_64 (abfd, info_ptr);
19382 if (str_offset >= str_section->size)
19383 error (_("Offset from %s pointing outside of"
19384 " .debug_str.dwo section in CU at offset %s [in module %s]"),
19385 form_name, sect_offset_str (cu->header.sect_off), objf_name);
19386 return (const char *) (str_section->buffer + str_offset);
19387 }
19388
19389 /* Given a DW_FORM_GNU_str_index from a DWO file, fetch the string. */
19390
19391 static const char *
19392 read_dwo_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
19393 {
19394 ULONGEST str_offsets_base = reader->cu->header.version >= 5
19395 ? reader->cu->header.addr_size : 0;
19396 return read_str_index (reader->cu,
19397 &reader->dwo_file->sections.str,
19398 &reader->dwo_file->sections.str_offsets,
19399 str_offsets_base, str_index);
19400 }
19401
19402 /* Given a DW_FORM_GNU_str_index from a Fission stub, fetch the string. */
19403
19404 static const char *
19405 read_stub_str_index (struct dwarf2_cu *cu, ULONGEST str_index)
19406 {
19407 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19408 const char *objf_name = objfile_name (objfile);
19409 static const char form_name[] = "DW_FORM_GNU_str_index";
19410 static const char str_offsets_attr_name[] = "DW_AT_str_offsets";
19411
19412 if (!cu->str_offsets_base.has_value ())
19413 error (_("%s used in Fission stub without %s"
19414 " in CU at offset 0x%lx [in module %s]"),
19415 form_name, str_offsets_attr_name,
19416 (long) cu->header.offset_size, objf_name);
19417
19418 return read_str_index (cu,
19419 &cu->per_cu->dwarf2_per_objfile->str,
19420 &cu->per_cu->dwarf2_per_objfile->str_offsets,
19421 *cu->str_offsets_base, str_index);
19422 }
19423
19424 /* Return the length of an LEB128 number in BUF. */
19425
19426 static int
19427 leb128_size (const gdb_byte *buf)
19428 {
19429 const gdb_byte *begin = buf;
19430 gdb_byte byte;
19431
19432 while (1)
19433 {
19434 byte = *buf++;
19435 if ((byte & 128) == 0)
19436 return buf - begin;
19437 }
19438 }
19439
19440 static void
19441 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
19442 {
19443 switch (lang)
19444 {
19445 case DW_LANG_C89:
19446 case DW_LANG_C99:
19447 case DW_LANG_C11:
19448 case DW_LANG_C:
19449 case DW_LANG_UPC:
19450 cu->language = language_c;
19451 break;
19452 case DW_LANG_Java:
19453 case DW_LANG_C_plus_plus:
19454 case DW_LANG_C_plus_plus_11:
19455 case DW_LANG_C_plus_plus_14:
19456 cu->language = language_cplus;
19457 break;
19458 case DW_LANG_D:
19459 cu->language = language_d;
19460 break;
19461 case DW_LANG_Fortran77:
19462 case DW_LANG_Fortran90:
19463 case DW_LANG_Fortran95:
19464 case DW_LANG_Fortran03:
19465 case DW_LANG_Fortran08:
19466 cu->language = language_fortran;
19467 break;
19468 case DW_LANG_Go:
19469 cu->language = language_go;
19470 break;
19471 case DW_LANG_Mips_Assembler:
19472 cu->language = language_asm;
19473 break;
19474 case DW_LANG_Ada83:
19475 case DW_LANG_Ada95:
19476 cu->language = language_ada;
19477 break;
19478 case DW_LANG_Modula2:
19479 cu->language = language_m2;
19480 break;
19481 case DW_LANG_Pascal83:
19482 cu->language = language_pascal;
19483 break;
19484 case DW_LANG_ObjC:
19485 cu->language = language_objc;
19486 break;
19487 case DW_LANG_Rust:
19488 case DW_LANG_Rust_old:
19489 cu->language = language_rust;
19490 break;
19491 case DW_LANG_Cobol74:
19492 case DW_LANG_Cobol85:
19493 default:
19494 cu->language = language_minimal;
19495 break;
19496 }
19497 cu->language_defn = language_def (cu->language);
19498 }
19499
19500 /* Return the named attribute or NULL if not there. */
19501
19502 static struct attribute *
19503 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19504 {
19505 for (;;)
19506 {
19507 unsigned int i;
19508 struct attribute *spec = NULL;
19509
19510 for (i = 0; i < die->num_attrs; ++i)
19511 {
19512 if (die->attrs[i].name == name)
19513 return &die->attrs[i];
19514 if (die->attrs[i].name == DW_AT_specification
19515 || die->attrs[i].name == DW_AT_abstract_origin)
19516 spec = &die->attrs[i];
19517 }
19518
19519 if (!spec)
19520 break;
19521
19522 die = follow_die_ref (die, spec, &cu);
19523 }
19524
19525 return NULL;
19526 }
19527
19528 /* Return the string associated with a string-typed attribute, or NULL if it
19529 is either not found or is of an incorrect type. */
19530
19531 static const char *
19532 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
19533 {
19534 struct attribute *attr;
19535 const char *str = NULL;
19536
19537 attr = dwarf2_attr (die, name, cu);
19538
19539 if (attr != NULL)
19540 {
19541 str = attr->value_as_string ();
19542 if (str == nullptr)
19543 complaint (_("string type expected for attribute %s for "
19544 "DIE at %s in module %s"),
19545 dwarf_attr_name (name), sect_offset_str (die->sect_off),
19546 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
19547 }
19548
19549 return str;
19550 }
19551
19552 /* Return the dwo name or NULL if not present. If present, it is in either
19553 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
19554 static const char *
19555 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
19556 {
19557 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
19558 if (dwo_name == nullptr)
19559 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
19560 return dwo_name;
19561 }
19562
19563 /* Return non-zero iff the attribute NAME is defined for the given DIE,
19564 and holds a non-zero value. This function should only be used for
19565 DW_FORM_flag or DW_FORM_flag_present attributes. */
19566
19567 static int
19568 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
19569 {
19570 struct attribute *attr = dwarf2_attr (die, name, cu);
19571
19572 return (attr && DW_UNSND (attr));
19573 }
19574
19575 static int
19576 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
19577 {
19578 /* A DIE is a declaration if it has a DW_AT_declaration attribute
19579 which value is non-zero. However, we have to be careful with
19580 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
19581 (via dwarf2_flag_true_p) follows this attribute. So we may
19582 end up accidently finding a declaration attribute that belongs
19583 to a different DIE referenced by the specification attribute,
19584 even though the given DIE does not have a declaration attribute. */
19585 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
19586 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
19587 }
19588
19589 /* Return the die giving the specification for DIE, if there is
19590 one. *SPEC_CU is the CU containing DIE on input, and the CU
19591 containing the return value on output. If there is no
19592 specification, but there is an abstract origin, that is
19593 returned. */
19594
19595 static struct die_info *
19596 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
19597 {
19598 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
19599 *spec_cu);
19600
19601 if (spec_attr == NULL)
19602 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
19603
19604 if (spec_attr == NULL)
19605 return NULL;
19606 else
19607 return follow_die_ref (die, spec_attr, spec_cu);
19608 }
19609
19610 /* Stub for free_line_header to match void * callback types. */
19611
19612 static void
19613 free_line_header_voidp (void *arg)
19614 {
19615 struct line_header *lh = (struct line_header *) arg;
19616
19617 delete lh;
19618 }
19619
19620 /* A convenience function to find the proper .debug_line section for a CU. */
19621
19622 static struct dwarf2_section_info *
19623 get_debug_line_section (struct dwarf2_cu *cu)
19624 {
19625 struct dwarf2_section_info *section;
19626 struct dwarf2_per_objfile *dwarf2_per_objfile
19627 = cu->per_cu->dwarf2_per_objfile;
19628
19629 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
19630 DWO file. */
19631 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19632 section = &cu->dwo_unit->dwo_file->sections.line;
19633 else if (cu->per_cu->is_dwz)
19634 {
19635 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19636
19637 section = &dwz->line;
19638 }
19639 else
19640 section = &dwarf2_per_objfile->line;
19641
19642 return section;
19643 }
19644
19645 /* Read the statement program header starting at OFFSET in
19646 .debug_line, or .debug_line.dwo. Return a pointer
19647 to a struct line_header, allocated using xmalloc.
19648 Returns NULL if there is a problem reading the header, e.g., if it
19649 has a version we don't understand.
19650
19651 NOTE: the strings in the include directory and file name tables of
19652 the returned object point into the dwarf line section buffer,
19653 and must not be freed. */
19654
19655 static line_header_up
19656 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
19657 {
19658 struct dwarf2_section_info *section;
19659 struct dwarf2_per_objfile *dwarf2_per_objfile
19660 = cu->per_cu->dwarf2_per_objfile;
19661
19662 section = get_debug_line_section (cu);
19663 section->read (dwarf2_per_objfile->objfile);
19664 if (section->buffer == NULL)
19665 {
19666 if (cu->dwo_unit && cu->per_cu->is_debug_types)
19667 complaint (_("missing .debug_line.dwo section"));
19668 else
19669 complaint (_("missing .debug_line section"));
19670 return 0;
19671 }
19672
19673 return dwarf_decode_line_header (sect_off, cu->per_cu->is_dwz,
19674 dwarf2_per_objfile, section,
19675 &cu->header);
19676 }
19677
19678 /* Subroutine of dwarf_decode_lines to simplify it.
19679 Return the file name of the psymtab for the given file_entry.
19680 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
19681 If space for the result is malloc'd, *NAME_HOLDER will be set.
19682 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
19683
19684 static const char *
19685 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
19686 const dwarf2_psymtab *pst,
19687 const char *comp_dir,
19688 gdb::unique_xmalloc_ptr<char> *name_holder)
19689 {
19690 const char *include_name = fe.name;
19691 const char *include_name_to_compare = include_name;
19692 const char *pst_filename;
19693 int file_is_pst;
19694
19695 const char *dir_name = fe.include_dir (lh);
19696
19697 gdb::unique_xmalloc_ptr<char> hold_compare;
19698 if (!IS_ABSOLUTE_PATH (include_name)
19699 && (dir_name != NULL || comp_dir != NULL))
19700 {
19701 /* Avoid creating a duplicate psymtab for PST.
19702 We do this by comparing INCLUDE_NAME and PST_FILENAME.
19703 Before we do the comparison, however, we need to account
19704 for DIR_NAME and COMP_DIR.
19705 First prepend dir_name (if non-NULL). If we still don't
19706 have an absolute path prepend comp_dir (if non-NULL).
19707 However, the directory we record in the include-file's
19708 psymtab does not contain COMP_DIR (to match the
19709 corresponding symtab(s)).
19710
19711 Example:
19712
19713 bash$ cd /tmp
19714 bash$ gcc -g ./hello.c
19715 include_name = "hello.c"
19716 dir_name = "."
19717 DW_AT_comp_dir = comp_dir = "/tmp"
19718 DW_AT_name = "./hello.c"
19719
19720 */
19721
19722 if (dir_name != NULL)
19723 {
19724 name_holder->reset (concat (dir_name, SLASH_STRING,
19725 include_name, (char *) NULL));
19726 include_name = name_holder->get ();
19727 include_name_to_compare = include_name;
19728 }
19729 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
19730 {
19731 hold_compare.reset (concat (comp_dir, SLASH_STRING,
19732 include_name, (char *) NULL));
19733 include_name_to_compare = hold_compare.get ();
19734 }
19735 }
19736
19737 pst_filename = pst->filename;
19738 gdb::unique_xmalloc_ptr<char> copied_name;
19739 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
19740 {
19741 copied_name.reset (concat (pst->dirname, SLASH_STRING,
19742 pst_filename, (char *) NULL));
19743 pst_filename = copied_name.get ();
19744 }
19745
19746 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
19747
19748 if (file_is_pst)
19749 return NULL;
19750 return include_name;
19751 }
19752
19753 /* State machine to track the state of the line number program. */
19754
19755 class lnp_state_machine
19756 {
19757 public:
19758 /* Initialize a machine state for the start of a line number
19759 program. */
19760 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
19761 bool record_lines_p);
19762
19763 file_entry *current_file ()
19764 {
19765 /* lh->file_names is 0-based, but the file name numbers in the
19766 statement program are 1-based. */
19767 return m_line_header->file_name_at (m_file);
19768 }
19769
19770 /* Record the line in the state machine. END_SEQUENCE is true if
19771 we're processing the end of a sequence. */
19772 void record_line (bool end_sequence);
19773
19774 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
19775 nop-out rest of the lines in this sequence. */
19776 void check_line_address (struct dwarf2_cu *cu,
19777 const gdb_byte *line_ptr,
19778 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
19779
19780 void handle_set_discriminator (unsigned int discriminator)
19781 {
19782 m_discriminator = discriminator;
19783 m_line_has_non_zero_discriminator |= discriminator != 0;
19784 }
19785
19786 /* Handle DW_LNE_set_address. */
19787 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
19788 {
19789 m_op_index = 0;
19790 address += baseaddr;
19791 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
19792 }
19793
19794 /* Handle DW_LNS_advance_pc. */
19795 void handle_advance_pc (CORE_ADDR adjust);
19796
19797 /* Handle a special opcode. */
19798 void handle_special_opcode (unsigned char op_code);
19799
19800 /* Handle DW_LNS_advance_line. */
19801 void handle_advance_line (int line_delta)
19802 {
19803 advance_line (line_delta);
19804 }
19805
19806 /* Handle DW_LNS_set_file. */
19807 void handle_set_file (file_name_index file);
19808
19809 /* Handle DW_LNS_negate_stmt. */
19810 void handle_negate_stmt ()
19811 {
19812 m_is_stmt = !m_is_stmt;
19813 }
19814
19815 /* Handle DW_LNS_const_add_pc. */
19816 void handle_const_add_pc ();
19817
19818 /* Handle DW_LNS_fixed_advance_pc. */
19819 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
19820 {
19821 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19822 m_op_index = 0;
19823 }
19824
19825 /* Handle DW_LNS_copy. */
19826 void handle_copy ()
19827 {
19828 record_line (false);
19829 m_discriminator = 0;
19830 }
19831
19832 /* Handle DW_LNE_end_sequence. */
19833 void handle_end_sequence ()
19834 {
19835 m_currently_recording_lines = true;
19836 }
19837
19838 private:
19839 /* Advance the line by LINE_DELTA. */
19840 void advance_line (int line_delta)
19841 {
19842 m_line += line_delta;
19843
19844 if (line_delta != 0)
19845 m_line_has_non_zero_discriminator = m_discriminator != 0;
19846 }
19847
19848 struct dwarf2_cu *m_cu;
19849
19850 gdbarch *m_gdbarch;
19851
19852 /* True if we're recording lines.
19853 Otherwise we're building partial symtabs and are just interested in
19854 finding include files mentioned by the line number program. */
19855 bool m_record_lines_p;
19856
19857 /* The line number header. */
19858 line_header *m_line_header;
19859
19860 /* These are part of the standard DWARF line number state machine,
19861 and initialized according to the DWARF spec. */
19862
19863 unsigned char m_op_index = 0;
19864 /* The line table index of the current file. */
19865 file_name_index m_file = 1;
19866 unsigned int m_line = 1;
19867
19868 /* These are initialized in the constructor. */
19869
19870 CORE_ADDR m_address;
19871 bool m_is_stmt;
19872 unsigned int m_discriminator;
19873
19874 /* Additional bits of state we need to track. */
19875
19876 /* The last file that we called dwarf2_start_subfile for.
19877 This is only used for TLLs. */
19878 unsigned int m_last_file = 0;
19879 /* The last file a line number was recorded for. */
19880 struct subfile *m_last_subfile = NULL;
19881
19882 /* When true, record the lines we decode. */
19883 bool m_currently_recording_lines = false;
19884
19885 /* The last line number that was recorded, used to coalesce
19886 consecutive entries for the same line. This can happen, for
19887 example, when discriminators are present. PR 17276. */
19888 unsigned int m_last_line = 0;
19889 bool m_line_has_non_zero_discriminator = false;
19890 };
19891
19892 void
19893 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
19894 {
19895 CORE_ADDR addr_adj = (((m_op_index + adjust)
19896 / m_line_header->maximum_ops_per_instruction)
19897 * m_line_header->minimum_instruction_length);
19898 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19899 m_op_index = ((m_op_index + adjust)
19900 % m_line_header->maximum_ops_per_instruction);
19901 }
19902
19903 void
19904 lnp_state_machine::handle_special_opcode (unsigned char op_code)
19905 {
19906 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
19907 unsigned char adj_opcode_d = adj_opcode / m_line_header->line_range;
19908 unsigned char adj_opcode_r = adj_opcode % m_line_header->line_range;
19909 CORE_ADDR addr_adj = (((m_op_index + adj_opcode_d)
19910 / m_line_header->maximum_ops_per_instruction)
19911 * m_line_header->minimum_instruction_length);
19912 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19913 m_op_index = ((m_op_index + adj_opcode_d)
19914 % m_line_header->maximum_ops_per_instruction);
19915
19916 int line_delta = m_line_header->line_base + adj_opcode_r;
19917 advance_line (line_delta);
19918 record_line (false);
19919 m_discriminator = 0;
19920 }
19921
19922 void
19923 lnp_state_machine::handle_set_file (file_name_index file)
19924 {
19925 m_file = file;
19926
19927 const file_entry *fe = current_file ();
19928 if (fe == NULL)
19929 dwarf2_debug_line_missing_file_complaint ();
19930 else if (m_record_lines_p)
19931 {
19932 const char *dir = fe->include_dir (m_line_header);
19933
19934 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
19935 m_line_has_non_zero_discriminator = m_discriminator != 0;
19936 dwarf2_start_subfile (m_cu, fe->name, dir);
19937 }
19938 }
19939
19940 void
19941 lnp_state_machine::handle_const_add_pc ()
19942 {
19943 CORE_ADDR adjust
19944 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
19945
19946 CORE_ADDR addr_adj
19947 = (((m_op_index + adjust)
19948 / m_line_header->maximum_ops_per_instruction)
19949 * m_line_header->minimum_instruction_length);
19950
19951 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
19952 m_op_index = ((m_op_index + adjust)
19953 % m_line_header->maximum_ops_per_instruction);
19954 }
19955
19956 /* Return non-zero if we should add LINE to the line number table.
19957 LINE is the line to add, LAST_LINE is the last line that was added,
19958 LAST_SUBFILE is the subfile for LAST_LINE.
19959 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
19960 had a non-zero discriminator.
19961
19962 We have to be careful in the presence of discriminators.
19963 E.g., for this line:
19964
19965 for (i = 0; i < 100000; i++);
19966
19967 clang can emit four line number entries for that one line,
19968 each with a different discriminator.
19969 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
19970
19971 However, we want gdb to coalesce all four entries into one.
19972 Otherwise the user could stepi into the middle of the line and
19973 gdb would get confused about whether the pc really was in the
19974 middle of the line.
19975
19976 Things are further complicated by the fact that two consecutive
19977 line number entries for the same line is a heuristic used by gcc
19978 to denote the end of the prologue. So we can't just discard duplicate
19979 entries, we have to be selective about it. The heuristic we use is
19980 that we only collapse consecutive entries for the same line if at least
19981 one of those entries has a non-zero discriminator. PR 17276.
19982
19983 Note: Addresses in the line number state machine can never go backwards
19984 within one sequence, thus this coalescing is ok. */
19985
19986 static int
19987 dwarf_record_line_p (struct dwarf2_cu *cu,
19988 unsigned int line, unsigned int last_line,
19989 int line_has_non_zero_discriminator,
19990 struct subfile *last_subfile)
19991 {
19992 if (cu->get_builder ()->get_current_subfile () != last_subfile)
19993 return 1;
19994 if (line != last_line)
19995 return 1;
19996 /* Same line for the same file that we've seen already.
19997 As a last check, for pr 17276, only record the line if the line
19998 has never had a non-zero discriminator. */
19999 if (!line_has_non_zero_discriminator)
20000 return 1;
20001 return 0;
20002 }
20003
20004 /* Use the CU's builder to record line number LINE beginning at
20005 address ADDRESS in the line table of subfile SUBFILE. */
20006
20007 static void
20008 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
20009 unsigned int line, CORE_ADDR address, bool is_stmt,
20010 struct dwarf2_cu *cu)
20011 {
20012 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
20013
20014 if (dwarf_line_debug)
20015 {
20016 fprintf_unfiltered (gdb_stdlog,
20017 "Recording line %u, file %s, address %s\n",
20018 line, lbasename (subfile->name),
20019 paddress (gdbarch, address));
20020 }
20021
20022 if (cu != nullptr)
20023 cu->get_builder ()->record_line (subfile, line, addr, is_stmt);
20024 }
20025
20026 /* Subroutine of dwarf_decode_lines_1 to simplify it.
20027 Mark the end of a set of line number records.
20028 The arguments are the same as for dwarf_record_line_1.
20029 If SUBFILE is NULL the request is ignored. */
20030
20031 static void
20032 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
20033 CORE_ADDR address, struct dwarf2_cu *cu)
20034 {
20035 if (subfile == NULL)
20036 return;
20037
20038 if (dwarf_line_debug)
20039 {
20040 fprintf_unfiltered (gdb_stdlog,
20041 "Finishing current line, file %s, address %s\n",
20042 lbasename (subfile->name),
20043 paddress (gdbarch, address));
20044 }
20045
20046 dwarf_record_line_1 (gdbarch, subfile, 0, address, true, cu);
20047 }
20048
20049 void
20050 lnp_state_machine::record_line (bool end_sequence)
20051 {
20052 if (dwarf_line_debug)
20053 {
20054 fprintf_unfiltered (gdb_stdlog,
20055 "Processing actual line %u: file %u,"
20056 " address %s, is_stmt %u, discrim %u%s\n",
20057 m_line, m_file,
20058 paddress (m_gdbarch, m_address),
20059 m_is_stmt, m_discriminator,
20060 (end_sequence ? "\t(end sequence)" : ""));
20061 }
20062
20063 file_entry *fe = current_file ();
20064
20065 if (fe == NULL)
20066 dwarf2_debug_line_missing_file_complaint ();
20067 /* For now we ignore lines not starting on an instruction boundary.
20068 But not when processing end_sequence for compatibility with the
20069 previous version of the code. */
20070 else if (m_op_index == 0 || end_sequence)
20071 {
20072 fe->included_p = 1;
20073 if (m_record_lines_p)
20074 {
20075 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
20076 || end_sequence)
20077 {
20078 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
20079 m_currently_recording_lines ? m_cu : nullptr);
20080 }
20081
20082 if (!end_sequence)
20083 {
20084 bool is_stmt = producer_is_codewarrior (m_cu) || m_is_stmt;
20085
20086 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
20087 m_line_has_non_zero_discriminator,
20088 m_last_subfile))
20089 {
20090 buildsym_compunit *builder = m_cu->get_builder ();
20091 dwarf_record_line_1 (m_gdbarch,
20092 builder->get_current_subfile (),
20093 m_line, m_address, is_stmt,
20094 m_currently_recording_lines ? m_cu : nullptr);
20095 }
20096 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
20097 m_last_line = m_line;
20098 }
20099 }
20100 }
20101 }
20102
20103 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
20104 line_header *lh, bool record_lines_p)
20105 {
20106 m_cu = cu;
20107 m_gdbarch = arch;
20108 m_record_lines_p = record_lines_p;
20109 m_line_header = lh;
20110
20111 m_currently_recording_lines = true;
20112
20113 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
20114 was a line entry for it so that the backend has a chance to adjust it
20115 and also record it in case it needs it. This is currently used by MIPS
20116 code, cf. `mips_adjust_dwarf2_line'. */
20117 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
20118 m_is_stmt = lh->default_is_stmt;
20119 m_discriminator = 0;
20120 }
20121
20122 void
20123 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
20124 const gdb_byte *line_ptr,
20125 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
20126 {
20127 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
20128 the pc range of the CU. However, we restrict the test to only ADDRESS
20129 values of zero to preserve GDB's previous behaviour which is to handle
20130 the specific case of a function being GC'd by the linker. */
20131
20132 if (address == 0 && address < unrelocated_lowpc)
20133 {
20134 /* This line table is for a function which has been
20135 GCd by the linker. Ignore it. PR gdb/12528 */
20136
20137 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20138 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
20139
20140 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
20141 line_offset, objfile_name (objfile));
20142 m_currently_recording_lines = false;
20143 /* Note: m_currently_recording_lines is left as false until we see
20144 DW_LNE_end_sequence. */
20145 }
20146 }
20147
20148 /* Subroutine of dwarf_decode_lines to simplify it.
20149 Process the line number information in LH.
20150 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
20151 program in order to set included_p for every referenced header. */
20152
20153 static void
20154 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
20155 const int decode_for_pst_p, CORE_ADDR lowpc)
20156 {
20157 const gdb_byte *line_ptr, *extended_end;
20158 const gdb_byte *line_end;
20159 unsigned int bytes_read, extended_len;
20160 unsigned char op_code, extended_op;
20161 CORE_ADDR baseaddr;
20162 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20163 bfd *abfd = objfile->obfd;
20164 struct gdbarch *gdbarch = objfile->arch ();
20165 /* True if we're recording line info (as opposed to building partial
20166 symtabs and just interested in finding include files mentioned by
20167 the line number program). */
20168 bool record_lines_p = !decode_for_pst_p;
20169
20170 baseaddr = objfile->text_section_offset ();
20171
20172 line_ptr = lh->statement_program_start;
20173 line_end = lh->statement_program_end;
20174
20175 /* Read the statement sequences until there's nothing left. */
20176 while (line_ptr < line_end)
20177 {
20178 /* The DWARF line number program state machine. Reset the state
20179 machine at the start of each sequence. */
20180 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
20181 bool end_sequence = false;
20182
20183 if (record_lines_p)
20184 {
20185 /* Start a subfile for the current file of the state
20186 machine. */
20187 const file_entry *fe = state_machine.current_file ();
20188
20189 if (fe != NULL)
20190 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
20191 }
20192
20193 /* Decode the table. */
20194 while (line_ptr < line_end && !end_sequence)
20195 {
20196 op_code = read_1_byte (abfd, line_ptr);
20197 line_ptr += 1;
20198
20199 if (op_code >= lh->opcode_base)
20200 {
20201 /* Special opcode. */
20202 state_machine.handle_special_opcode (op_code);
20203 }
20204 else switch (op_code)
20205 {
20206 case DW_LNS_extended_op:
20207 extended_len = read_unsigned_leb128 (abfd, line_ptr,
20208 &bytes_read);
20209 line_ptr += bytes_read;
20210 extended_end = line_ptr + extended_len;
20211 extended_op = read_1_byte (abfd, line_ptr);
20212 line_ptr += 1;
20213 switch (extended_op)
20214 {
20215 case DW_LNE_end_sequence:
20216 state_machine.handle_end_sequence ();
20217 end_sequence = true;
20218 break;
20219 case DW_LNE_set_address:
20220 {
20221 CORE_ADDR address
20222 = cu->header.read_address (abfd, line_ptr, &bytes_read);
20223 line_ptr += bytes_read;
20224
20225 state_machine.check_line_address (cu, line_ptr,
20226 lowpc - baseaddr, address);
20227 state_machine.handle_set_address (baseaddr, address);
20228 }
20229 break;
20230 case DW_LNE_define_file:
20231 {
20232 const char *cur_file;
20233 unsigned int mod_time, length;
20234 dir_index dindex;
20235
20236 cur_file = read_direct_string (abfd, line_ptr,
20237 &bytes_read);
20238 line_ptr += bytes_read;
20239 dindex = (dir_index)
20240 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20241 line_ptr += bytes_read;
20242 mod_time =
20243 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20244 line_ptr += bytes_read;
20245 length =
20246 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20247 line_ptr += bytes_read;
20248 lh->add_file_name (cur_file, dindex, mod_time, length);
20249 }
20250 break;
20251 case DW_LNE_set_discriminator:
20252 {
20253 /* The discriminator is not interesting to the
20254 debugger; just ignore it. We still need to
20255 check its value though:
20256 if there are consecutive entries for the same
20257 (non-prologue) line we want to coalesce them.
20258 PR 17276. */
20259 unsigned int discr
20260 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20261 line_ptr += bytes_read;
20262
20263 state_machine.handle_set_discriminator (discr);
20264 }
20265 break;
20266 default:
20267 complaint (_("mangled .debug_line section"));
20268 return;
20269 }
20270 /* Make sure that we parsed the extended op correctly. If e.g.
20271 we expected a different address size than the producer used,
20272 we may have read the wrong number of bytes. */
20273 if (line_ptr != extended_end)
20274 {
20275 complaint (_("mangled .debug_line section"));
20276 return;
20277 }
20278 break;
20279 case DW_LNS_copy:
20280 state_machine.handle_copy ();
20281 break;
20282 case DW_LNS_advance_pc:
20283 {
20284 CORE_ADDR adjust
20285 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20286 line_ptr += bytes_read;
20287
20288 state_machine.handle_advance_pc (adjust);
20289 }
20290 break;
20291 case DW_LNS_advance_line:
20292 {
20293 int line_delta
20294 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
20295 line_ptr += bytes_read;
20296
20297 state_machine.handle_advance_line (line_delta);
20298 }
20299 break;
20300 case DW_LNS_set_file:
20301 {
20302 file_name_index file
20303 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
20304 &bytes_read);
20305 line_ptr += bytes_read;
20306
20307 state_machine.handle_set_file (file);
20308 }
20309 break;
20310 case DW_LNS_set_column:
20311 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20312 line_ptr += bytes_read;
20313 break;
20314 case DW_LNS_negate_stmt:
20315 state_machine.handle_negate_stmt ();
20316 break;
20317 case DW_LNS_set_basic_block:
20318 break;
20319 /* Add to the address register of the state machine the
20320 address increment value corresponding to special opcode
20321 255. I.e., this value is scaled by the minimum
20322 instruction length since special opcode 255 would have
20323 scaled the increment. */
20324 case DW_LNS_const_add_pc:
20325 state_machine.handle_const_add_pc ();
20326 break;
20327 case DW_LNS_fixed_advance_pc:
20328 {
20329 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
20330 line_ptr += 2;
20331
20332 state_machine.handle_fixed_advance_pc (addr_adj);
20333 }
20334 break;
20335 default:
20336 {
20337 /* Unknown standard opcode, ignore it. */
20338 int i;
20339
20340 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
20341 {
20342 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20343 line_ptr += bytes_read;
20344 }
20345 }
20346 }
20347 }
20348
20349 if (!end_sequence)
20350 dwarf2_debug_line_missing_end_sequence_complaint ();
20351
20352 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
20353 in which case we still finish recording the last line). */
20354 state_machine.record_line (true);
20355 }
20356 }
20357
20358 /* Decode the Line Number Program (LNP) for the given line_header
20359 structure and CU. The actual information extracted and the type
20360 of structures created from the LNP depends on the value of PST.
20361
20362 1. If PST is NULL, then this procedure uses the data from the program
20363 to create all necessary symbol tables, and their linetables.
20364
20365 2. If PST is not NULL, this procedure reads the program to determine
20366 the list of files included by the unit represented by PST, and
20367 builds all the associated partial symbol tables.
20368
20369 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20370 It is used for relative paths in the line table.
20371 NOTE: When processing partial symtabs (pst != NULL),
20372 comp_dir == pst->dirname.
20373
20374 NOTE: It is important that psymtabs have the same file name (via strcmp)
20375 as the corresponding symtab. Since COMP_DIR is not used in the name of the
20376 symtab we don't use it in the name of the psymtabs we create.
20377 E.g. expand_line_sal requires this when finding psymtabs to expand.
20378 A good testcase for this is mb-inline.exp.
20379
20380 LOWPC is the lowest address in CU (or 0 if not known).
20381
20382 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
20383 for its PC<->lines mapping information. Otherwise only the filename
20384 table is read in. */
20385
20386 static void
20387 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
20388 struct dwarf2_cu *cu, dwarf2_psymtab *pst,
20389 CORE_ADDR lowpc, int decode_mapping)
20390 {
20391 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20392 const int decode_for_pst_p = (pst != NULL);
20393
20394 if (decode_mapping)
20395 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
20396
20397 if (decode_for_pst_p)
20398 {
20399 /* Now that we're done scanning the Line Header Program, we can
20400 create the psymtab of each included file. */
20401 for (auto &file_entry : lh->file_names ())
20402 if (file_entry.included_p == 1)
20403 {
20404 gdb::unique_xmalloc_ptr<char> name_holder;
20405 const char *include_name =
20406 psymtab_include_file_name (lh, file_entry, pst,
20407 comp_dir, &name_holder);
20408 if (include_name != NULL)
20409 dwarf2_create_include_psymtab (include_name, pst, objfile);
20410 }
20411 }
20412 else
20413 {
20414 /* Make sure a symtab is created for every file, even files
20415 which contain only variables (i.e. no code with associated
20416 line numbers). */
20417 buildsym_compunit *builder = cu->get_builder ();
20418 struct compunit_symtab *cust = builder->get_compunit_symtab ();
20419
20420 for (auto &fe : lh->file_names ())
20421 {
20422 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
20423 if (builder->get_current_subfile ()->symtab == NULL)
20424 {
20425 builder->get_current_subfile ()->symtab
20426 = allocate_symtab (cust,
20427 builder->get_current_subfile ()->name);
20428 }
20429 fe.symtab = builder->get_current_subfile ()->symtab;
20430 }
20431 }
20432 }
20433
20434 /* Start a subfile for DWARF. FILENAME is the name of the file and
20435 DIRNAME the name of the source directory which contains FILENAME
20436 or NULL if not known.
20437 This routine tries to keep line numbers from identical absolute and
20438 relative file names in a common subfile.
20439
20440 Using the `list' example from the GDB testsuite, which resides in
20441 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
20442 of /srcdir/list0.c yields the following debugging information for list0.c:
20443
20444 DW_AT_name: /srcdir/list0.c
20445 DW_AT_comp_dir: /compdir
20446 files.files[0].name: list0.h
20447 files.files[0].dir: /srcdir
20448 files.files[1].name: list0.c
20449 files.files[1].dir: /srcdir
20450
20451 The line number information for list0.c has to end up in a single
20452 subfile, so that `break /srcdir/list0.c:1' works as expected.
20453 start_subfile will ensure that this happens provided that we pass the
20454 concatenation of files.files[1].dir and files.files[1].name as the
20455 subfile's name. */
20456
20457 static void
20458 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
20459 const char *dirname)
20460 {
20461 gdb::unique_xmalloc_ptr<char> copy;
20462
20463 /* In order not to lose the line information directory,
20464 we concatenate it to the filename when it makes sense.
20465 Note that the Dwarf3 standard says (speaking of filenames in line
20466 information): ``The directory index is ignored for file names
20467 that represent full path names''. Thus ignoring dirname in the
20468 `else' branch below isn't an issue. */
20469
20470 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
20471 {
20472 copy.reset (concat (dirname, SLASH_STRING, filename, (char *) NULL));
20473 filename = copy.get ();
20474 }
20475
20476 cu->get_builder ()->start_subfile (filename);
20477 }
20478
20479 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
20480 buildsym_compunit constructor. */
20481
20482 struct compunit_symtab *
20483 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
20484 CORE_ADDR low_pc)
20485 {
20486 gdb_assert (m_builder == nullptr);
20487
20488 m_builder.reset (new struct buildsym_compunit
20489 (per_cu->dwarf2_per_objfile->objfile,
20490 name, comp_dir, language, low_pc));
20491
20492 list_in_scope = get_builder ()->get_file_symbols ();
20493
20494 get_builder ()->record_debugformat ("DWARF 2");
20495 get_builder ()->record_producer (producer);
20496
20497 processing_has_namespace_info = false;
20498
20499 return get_builder ()->get_compunit_symtab ();
20500 }
20501
20502 static void
20503 var_decode_location (struct attribute *attr, struct symbol *sym,
20504 struct dwarf2_cu *cu)
20505 {
20506 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20507 struct comp_unit_head *cu_header = &cu->header;
20508
20509 /* NOTE drow/2003-01-30: There used to be a comment and some special
20510 code here to turn a symbol with DW_AT_external and a
20511 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
20512 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
20513 with some versions of binutils) where shared libraries could have
20514 relocations against symbols in their debug information - the
20515 minimal symbol would have the right address, but the debug info
20516 would not. It's no longer necessary, because we will explicitly
20517 apply relocations when we read in the debug information now. */
20518
20519 /* A DW_AT_location attribute with no contents indicates that a
20520 variable has been optimized away. */
20521 if (attr->form_is_block () && DW_BLOCK (attr)->size == 0)
20522 {
20523 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20524 return;
20525 }
20526
20527 /* Handle one degenerate form of location expression specially, to
20528 preserve GDB's previous behavior when section offsets are
20529 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
20530 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
20531
20532 if (attr->form_is_block ()
20533 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
20534 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
20535 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
20536 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
20537 && (DW_BLOCK (attr)->size
20538 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
20539 {
20540 unsigned int dummy;
20541
20542 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
20543 SET_SYMBOL_VALUE_ADDRESS
20544 (sym, cu->header.read_address (objfile->obfd,
20545 DW_BLOCK (attr)->data + 1,
20546 &dummy));
20547 else
20548 SET_SYMBOL_VALUE_ADDRESS
20549 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
20550 &dummy));
20551 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
20552 fixup_symbol_section (sym, objfile);
20553 SET_SYMBOL_VALUE_ADDRESS
20554 (sym,
20555 SYMBOL_VALUE_ADDRESS (sym)
20556 + objfile->section_offsets[SYMBOL_SECTION (sym)]);
20557 return;
20558 }
20559
20560 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
20561 expression evaluator, and use LOC_COMPUTED only when necessary
20562 (i.e. when the value of a register or memory location is
20563 referenced, or a thread-local block, etc.). Then again, it might
20564 not be worthwhile. I'm assuming that it isn't unless performance
20565 or memory numbers show me otherwise. */
20566
20567 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
20568
20569 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
20570 cu->has_loclist = true;
20571 }
20572
20573 /* Given a pointer to a DWARF information entry, figure out if we need
20574 to make a symbol table entry for it, and if so, create a new entry
20575 and return a pointer to it.
20576 If TYPE is NULL, determine symbol type from the die, otherwise
20577 used the passed type.
20578 If SPACE is not NULL, use it to hold the new symbol. If it is
20579 NULL, allocate a new symbol on the objfile's obstack. */
20580
20581 static struct symbol *
20582 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
20583 struct symbol *space)
20584 {
20585 struct dwarf2_per_objfile *dwarf2_per_objfile
20586 = cu->per_cu->dwarf2_per_objfile;
20587 struct objfile *objfile = dwarf2_per_objfile->objfile;
20588 struct gdbarch *gdbarch = objfile->arch ();
20589 struct symbol *sym = NULL;
20590 const char *name;
20591 struct attribute *attr = NULL;
20592 struct attribute *attr2 = NULL;
20593 CORE_ADDR baseaddr;
20594 struct pending **list_to_add = NULL;
20595
20596 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
20597
20598 baseaddr = objfile->text_section_offset ();
20599
20600 name = dwarf2_name (die, cu);
20601 if (name)
20602 {
20603 int suppress_add = 0;
20604
20605 if (space)
20606 sym = space;
20607 else
20608 sym = new (&objfile->objfile_obstack) symbol;
20609 OBJSTAT (objfile, n_syms++);
20610
20611 /* Cache this symbol's name and the name's demangled form (if any). */
20612 sym->set_language (cu->language, &objfile->objfile_obstack);
20613 /* Fortran does not have mangling standard and the mangling does differ
20614 between gfortran, iFort etc. */
20615 const char *physname
20616 = (cu->language == language_fortran
20617 ? dwarf2_full_name (name, die, cu)
20618 : dwarf2_physname (name, die, cu));
20619 const char *linkagename = dw2_linkage_name (die, cu);
20620
20621 if (linkagename == nullptr || cu->language == language_ada)
20622 sym->set_linkage_name (physname);
20623 else
20624 {
20625 sym->set_demangled_name (physname, &objfile->objfile_obstack);
20626 sym->set_linkage_name (linkagename);
20627 }
20628
20629 /* Default assumptions.
20630 Use the passed type or decode it from the die. */
20631 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20632 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
20633 if (type != NULL)
20634 SYMBOL_TYPE (sym) = type;
20635 else
20636 SYMBOL_TYPE (sym) = die_type (die, cu);
20637 attr = dwarf2_attr (die,
20638 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
20639 cu);
20640 if (attr != nullptr)
20641 {
20642 SYMBOL_LINE (sym) = DW_UNSND (attr);
20643 }
20644
20645 attr = dwarf2_attr (die,
20646 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
20647 cu);
20648 if (attr != nullptr)
20649 {
20650 file_name_index file_index = (file_name_index) DW_UNSND (attr);
20651 struct file_entry *fe;
20652
20653 if (cu->line_header != NULL)
20654 fe = cu->line_header->file_name_at (file_index);
20655 else
20656 fe = NULL;
20657
20658 if (fe == NULL)
20659 complaint (_("file index out of range"));
20660 else
20661 symbol_set_symtab (sym, fe->symtab);
20662 }
20663
20664 switch (die->tag)
20665 {
20666 case DW_TAG_label:
20667 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
20668 if (attr != nullptr)
20669 {
20670 CORE_ADDR addr;
20671
20672 addr = attr->value_as_address ();
20673 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
20674 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
20675 }
20676 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
20677 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
20678 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
20679 add_symbol_to_list (sym, cu->list_in_scope);
20680 break;
20681 case DW_TAG_subprogram:
20682 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20683 finish_block. */
20684 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20685 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20686 if ((attr2 && (DW_UNSND (attr2) != 0))
20687 || cu->language == language_ada
20688 || cu->language == language_fortran)
20689 {
20690 /* Subprograms marked external are stored as a global symbol.
20691 Ada and Fortran subprograms, whether marked external or
20692 not, are always stored as a global symbol, because we want
20693 to be able to access them globally. For instance, we want
20694 to be able to break on a nested subprogram without having
20695 to specify the context. */
20696 list_to_add = cu->get_builder ()->get_global_symbols ();
20697 }
20698 else
20699 {
20700 list_to_add = cu->list_in_scope;
20701 }
20702 break;
20703 case DW_TAG_inlined_subroutine:
20704 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
20705 finish_block. */
20706 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
20707 SYMBOL_INLINED (sym) = 1;
20708 list_to_add = cu->list_in_scope;
20709 break;
20710 case DW_TAG_template_value_param:
20711 suppress_add = 1;
20712 /* Fall through. */
20713 case DW_TAG_constant:
20714 case DW_TAG_variable:
20715 case DW_TAG_member:
20716 /* Compilation with minimal debug info may result in
20717 variables with missing type entries. Change the
20718 misleading `void' type to something sensible. */
20719 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_VOID)
20720 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
20721
20722 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20723 /* In the case of DW_TAG_member, we should only be called for
20724 static const members. */
20725 if (die->tag == DW_TAG_member)
20726 {
20727 /* dwarf2_add_field uses die_is_declaration,
20728 so we do the same. */
20729 gdb_assert (die_is_declaration (die, cu));
20730 gdb_assert (attr);
20731 }
20732 if (attr != nullptr)
20733 {
20734 dwarf2_const_value (attr, sym, cu);
20735 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20736 if (!suppress_add)
20737 {
20738 if (attr2 && (DW_UNSND (attr2) != 0))
20739 list_to_add = cu->get_builder ()->get_global_symbols ();
20740 else
20741 list_to_add = cu->list_in_scope;
20742 }
20743 break;
20744 }
20745 attr = dwarf2_attr (die, DW_AT_location, cu);
20746 if (attr != nullptr)
20747 {
20748 var_decode_location (attr, sym, cu);
20749 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20750
20751 /* Fortran explicitly imports any global symbols to the local
20752 scope by DW_TAG_common_block. */
20753 if (cu->language == language_fortran && die->parent
20754 && die->parent->tag == DW_TAG_common_block)
20755 attr2 = NULL;
20756
20757 if (SYMBOL_CLASS (sym) == LOC_STATIC
20758 && SYMBOL_VALUE_ADDRESS (sym) == 0
20759 && !dwarf2_per_objfile->has_section_at_zero)
20760 {
20761 /* When a static variable is eliminated by the linker,
20762 the corresponding debug information is not stripped
20763 out, but the variable address is set to null;
20764 do not add such variables into symbol table. */
20765 }
20766 else if (attr2 && (DW_UNSND (attr2) != 0))
20767 {
20768 if (SYMBOL_CLASS (sym) == LOC_STATIC
20769 && (objfile->flags & OBJF_MAINLINE) == 0
20770 && dwarf2_per_objfile->can_copy)
20771 {
20772 /* A global static variable might be subject to
20773 copy relocation. We first check for a local
20774 minsym, though, because maybe the symbol was
20775 marked hidden, in which case this would not
20776 apply. */
20777 bound_minimal_symbol found
20778 = (lookup_minimal_symbol_linkage
20779 (sym->linkage_name (), objfile));
20780 if (found.minsym != nullptr)
20781 sym->maybe_copied = 1;
20782 }
20783
20784 /* A variable with DW_AT_external is never static,
20785 but it may be block-scoped. */
20786 list_to_add
20787 = ((cu->list_in_scope
20788 == cu->get_builder ()->get_file_symbols ())
20789 ? cu->get_builder ()->get_global_symbols ()
20790 : cu->list_in_scope);
20791 }
20792 else
20793 list_to_add = cu->list_in_scope;
20794 }
20795 else
20796 {
20797 /* We do not know the address of this symbol.
20798 If it is an external symbol and we have type information
20799 for it, enter the symbol as a LOC_UNRESOLVED symbol.
20800 The address of the variable will then be determined from
20801 the minimal symbol table whenever the variable is
20802 referenced. */
20803 attr2 = dwarf2_attr (die, DW_AT_external, cu);
20804
20805 /* Fortran explicitly imports any global symbols to the local
20806 scope by DW_TAG_common_block. */
20807 if (cu->language == language_fortran && die->parent
20808 && die->parent->tag == DW_TAG_common_block)
20809 {
20810 /* SYMBOL_CLASS doesn't matter here because
20811 read_common_block is going to reset it. */
20812 if (!suppress_add)
20813 list_to_add = cu->list_in_scope;
20814 }
20815 else if (attr2 && (DW_UNSND (attr2) != 0)
20816 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
20817 {
20818 /* A variable with DW_AT_external is never static, but it
20819 may be block-scoped. */
20820 list_to_add
20821 = ((cu->list_in_scope
20822 == cu->get_builder ()->get_file_symbols ())
20823 ? cu->get_builder ()->get_global_symbols ()
20824 : cu->list_in_scope);
20825
20826 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
20827 }
20828 else if (!die_is_declaration (die, cu))
20829 {
20830 /* Use the default LOC_OPTIMIZED_OUT class. */
20831 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
20832 if (!suppress_add)
20833 list_to_add = cu->list_in_scope;
20834 }
20835 }
20836 break;
20837 case DW_TAG_formal_parameter:
20838 {
20839 /* If we are inside a function, mark this as an argument. If
20840 not, we might be looking at an argument to an inlined function
20841 when we do not have enough information to show inlined frames;
20842 pretend it's a local variable in that case so that the user can
20843 still see it. */
20844 struct context_stack *curr
20845 = cu->get_builder ()->get_current_context_stack ();
20846 if (curr != nullptr && curr->name != nullptr)
20847 SYMBOL_IS_ARGUMENT (sym) = 1;
20848 attr = dwarf2_attr (die, DW_AT_location, cu);
20849 if (attr != nullptr)
20850 {
20851 var_decode_location (attr, sym, cu);
20852 }
20853 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20854 if (attr != nullptr)
20855 {
20856 dwarf2_const_value (attr, sym, cu);
20857 }
20858
20859 list_to_add = cu->list_in_scope;
20860 }
20861 break;
20862 case DW_TAG_unspecified_parameters:
20863 /* From varargs functions; gdb doesn't seem to have any
20864 interest in this information, so just ignore it for now.
20865 (FIXME?) */
20866 break;
20867 case DW_TAG_template_type_param:
20868 suppress_add = 1;
20869 /* Fall through. */
20870 case DW_TAG_class_type:
20871 case DW_TAG_interface_type:
20872 case DW_TAG_structure_type:
20873 case DW_TAG_union_type:
20874 case DW_TAG_set_type:
20875 case DW_TAG_enumeration_type:
20876 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20877 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
20878
20879 {
20880 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
20881 really ever be static objects: otherwise, if you try
20882 to, say, break of a class's method and you're in a file
20883 which doesn't mention that class, it won't work unless
20884 the check for all static symbols in lookup_symbol_aux
20885 saves you. See the OtherFileClass tests in
20886 gdb.c++/namespace.exp. */
20887
20888 if (!suppress_add)
20889 {
20890 buildsym_compunit *builder = cu->get_builder ();
20891 list_to_add
20892 = (cu->list_in_scope == builder->get_file_symbols ()
20893 && cu->language == language_cplus
20894 ? builder->get_global_symbols ()
20895 : cu->list_in_scope);
20896
20897 /* The semantics of C++ state that "struct foo {
20898 ... }" also defines a typedef for "foo". */
20899 if (cu->language == language_cplus
20900 || cu->language == language_ada
20901 || cu->language == language_d
20902 || cu->language == language_rust)
20903 {
20904 /* The symbol's name is already allocated along
20905 with this objfile, so we don't need to
20906 duplicate it for the type. */
20907 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
20908 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
20909 }
20910 }
20911 }
20912 break;
20913 case DW_TAG_typedef:
20914 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20915 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20916 list_to_add = cu->list_in_scope;
20917 break;
20918 case DW_TAG_base_type:
20919 case DW_TAG_subrange_type:
20920 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20921 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
20922 list_to_add = cu->list_in_scope;
20923 break;
20924 case DW_TAG_enumerator:
20925 attr = dwarf2_attr (die, DW_AT_const_value, cu);
20926 if (attr != nullptr)
20927 {
20928 dwarf2_const_value (attr, sym, cu);
20929 }
20930 {
20931 /* NOTE: carlton/2003-11-10: See comment above in the
20932 DW_TAG_class_type, etc. block. */
20933
20934 list_to_add
20935 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
20936 && cu->language == language_cplus
20937 ? cu->get_builder ()->get_global_symbols ()
20938 : cu->list_in_scope);
20939 }
20940 break;
20941 case DW_TAG_imported_declaration:
20942 case DW_TAG_namespace:
20943 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20944 list_to_add = cu->get_builder ()->get_global_symbols ();
20945 break;
20946 case DW_TAG_module:
20947 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
20948 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
20949 list_to_add = cu->get_builder ()->get_global_symbols ();
20950 break;
20951 case DW_TAG_common_block:
20952 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
20953 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
20954 add_symbol_to_list (sym, cu->list_in_scope);
20955 break;
20956 default:
20957 /* Not a tag we recognize. Hopefully we aren't processing
20958 trash data, but since we must specifically ignore things
20959 we don't recognize, there is nothing else we should do at
20960 this point. */
20961 complaint (_("unsupported tag: '%s'"),
20962 dwarf_tag_name (die->tag));
20963 break;
20964 }
20965
20966 if (suppress_add)
20967 {
20968 sym->hash_next = objfile->template_symbols;
20969 objfile->template_symbols = sym;
20970 list_to_add = NULL;
20971 }
20972
20973 if (list_to_add != NULL)
20974 add_symbol_to_list (sym, list_to_add);
20975
20976 /* For the benefit of old versions of GCC, check for anonymous
20977 namespaces based on the demangled name. */
20978 if (!cu->processing_has_namespace_info
20979 && cu->language == language_cplus)
20980 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
20981 }
20982 return (sym);
20983 }
20984
20985 /* Given an attr with a DW_FORM_dataN value in host byte order,
20986 zero-extend it as appropriate for the symbol's type. The DWARF
20987 standard (v4) is not entirely clear about the meaning of using
20988 DW_FORM_dataN for a constant with a signed type, where the type is
20989 wider than the data. The conclusion of a discussion on the DWARF
20990 list was that this is unspecified. We choose to always zero-extend
20991 because that is the interpretation long in use by GCC. */
20992
20993 static gdb_byte *
20994 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
20995 struct dwarf2_cu *cu, LONGEST *value, int bits)
20996 {
20997 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
20998 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
20999 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
21000 LONGEST l = DW_UNSND (attr);
21001
21002 if (bits < sizeof (*value) * 8)
21003 {
21004 l &= ((LONGEST) 1 << bits) - 1;
21005 *value = l;
21006 }
21007 else if (bits == sizeof (*value) * 8)
21008 *value = l;
21009 else
21010 {
21011 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
21012 store_unsigned_integer (bytes, bits / 8, byte_order, l);
21013 return bytes;
21014 }
21015
21016 return NULL;
21017 }
21018
21019 /* Read a constant value from an attribute. Either set *VALUE, or if
21020 the value does not fit in *VALUE, set *BYTES - either already
21021 allocated on the objfile obstack, or newly allocated on OBSTACK,
21022 or, set *BATON, if we translated the constant to a location
21023 expression. */
21024
21025 static void
21026 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
21027 const char *name, struct obstack *obstack,
21028 struct dwarf2_cu *cu,
21029 LONGEST *value, const gdb_byte **bytes,
21030 struct dwarf2_locexpr_baton **baton)
21031 {
21032 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21033 struct comp_unit_head *cu_header = &cu->header;
21034 struct dwarf_block *blk;
21035 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
21036 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
21037
21038 *value = 0;
21039 *bytes = NULL;
21040 *baton = NULL;
21041
21042 switch (attr->form)
21043 {
21044 case DW_FORM_addr:
21045 case DW_FORM_addrx:
21046 case DW_FORM_GNU_addr_index:
21047 {
21048 gdb_byte *data;
21049
21050 if (TYPE_LENGTH (type) != cu_header->addr_size)
21051 dwarf2_const_value_length_mismatch_complaint (name,
21052 cu_header->addr_size,
21053 TYPE_LENGTH (type));
21054 /* Symbols of this form are reasonably rare, so we just
21055 piggyback on the existing location code rather than writing
21056 a new implementation of symbol_computed_ops. */
21057 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
21058 (*baton)->per_cu = cu->per_cu;
21059 gdb_assert ((*baton)->per_cu);
21060
21061 (*baton)->size = 2 + cu_header->addr_size;
21062 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
21063 (*baton)->data = data;
21064
21065 data[0] = DW_OP_addr;
21066 store_unsigned_integer (&data[1], cu_header->addr_size,
21067 byte_order, DW_ADDR (attr));
21068 data[cu_header->addr_size + 1] = DW_OP_stack_value;
21069 }
21070 break;
21071 case DW_FORM_string:
21072 case DW_FORM_strp:
21073 case DW_FORM_strx:
21074 case DW_FORM_GNU_str_index:
21075 case DW_FORM_GNU_strp_alt:
21076 /* DW_STRING is already allocated on the objfile obstack, point
21077 directly to it. */
21078 *bytes = (const gdb_byte *) DW_STRING (attr);
21079 break;
21080 case DW_FORM_block1:
21081 case DW_FORM_block2:
21082 case DW_FORM_block4:
21083 case DW_FORM_block:
21084 case DW_FORM_exprloc:
21085 case DW_FORM_data16:
21086 blk = DW_BLOCK (attr);
21087 if (TYPE_LENGTH (type) != blk->size)
21088 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
21089 TYPE_LENGTH (type));
21090 *bytes = blk->data;
21091 break;
21092
21093 /* The DW_AT_const_value attributes are supposed to carry the
21094 symbol's value "represented as it would be on the target
21095 architecture." By the time we get here, it's already been
21096 converted to host endianness, so we just need to sign- or
21097 zero-extend it as appropriate. */
21098 case DW_FORM_data1:
21099 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
21100 break;
21101 case DW_FORM_data2:
21102 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
21103 break;
21104 case DW_FORM_data4:
21105 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
21106 break;
21107 case DW_FORM_data8:
21108 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
21109 break;
21110
21111 case DW_FORM_sdata:
21112 case DW_FORM_implicit_const:
21113 *value = DW_SND (attr);
21114 break;
21115
21116 case DW_FORM_udata:
21117 *value = DW_UNSND (attr);
21118 break;
21119
21120 default:
21121 complaint (_("unsupported const value attribute form: '%s'"),
21122 dwarf_form_name (attr->form));
21123 *value = 0;
21124 break;
21125 }
21126 }
21127
21128
21129 /* Copy constant value from an attribute to a symbol. */
21130
21131 static void
21132 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
21133 struct dwarf2_cu *cu)
21134 {
21135 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21136 LONGEST value;
21137 const gdb_byte *bytes;
21138 struct dwarf2_locexpr_baton *baton;
21139
21140 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
21141 sym->print_name (),
21142 &objfile->objfile_obstack, cu,
21143 &value, &bytes, &baton);
21144
21145 if (baton != NULL)
21146 {
21147 SYMBOL_LOCATION_BATON (sym) = baton;
21148 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
21149 }
21150 else if (bytes != NULL)
21151 {
21152 SYMBOL_VALUE_BYTES (sym) = bytes;
21153 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
21154 }
21155 else
21156 {
21157 SYMBOL_VALUE (sym) = value;
21158 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
21159 }
21160 }
21161
21162 /* Return the type of the die in question using its DW_AT_type attribute. */
21163
21164 static struct type *
21165 die_type (struct die_info *die, struct dwarf2_cu *cu)
21166 {
21167 struct attribute *type_attr;
21168
21169 type_attr = dwarf2_attr (die, DW_AT_type, cu);
21170 if (!type_attr)
21171 {
21172 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21173 /* A missing DW_AT_type represents a void type. */
21174 return objfile_type (objfile)->builtin_void;
21175 }
21176
21177 return lookup_die_type (die, type_attr, cu);
21178 }
21179
21180 /* True iff CU's producer generates GNAT Ada auxiliary information
21181 that allows to find parallel types through that information instead
21182 of having to do expensive parallel lookups by type name. */
21183
21184 static int
21185 need_gnat_info (struct dwarf2_cu *cu)
21186 {
21187 /* Assume that the Ada compiler was GNAT, which always produces
21188 the auxiliary information. */
21189 return (cu->language == language_ada);
21190 }
21191
21192 /* Return the auxiliary type of the die in question using its
21193 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
21194 attribute is not present. */
21195
21196 static struct type *
21197 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
21198 {
21199 struct attribute *type_attr;
21200
21201 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
21202 if (!type_attr)
21203 return NULL;
21204
21205 return lookup_die_type (die, type_attr, cu);
21206 }
21207
21208 /* If DIE has a descriptive_type attribute, then set the TYPE's
21209 descriptive type accordingly. */
21210
21211 static void
21212 set_descriptive_type (struct type *type, struct die_info *die,
21213 struct dwarf2_cu *cu)
21214 {
21215 struct type *descriptive_type = die_descriptive_type (die, cu);
21216
21217 if (descriptive_type)
21218 {
21219 ALLOCATE_GNAT_AUX_TYPE (type);
21220 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
21221 }
21222 }
21223
21224 /* Return the containing type of the die in question using its
21225 DW_AT_containing_type attribute. */
21226
21227 static struct type *
21228 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
21229 {
21230 struct attribute *type_attr;
21231 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21232
21233 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
21234 if (!type_attr)
21235 error (_("Dwarf Error: Problem turning containing type into gdb type "
21236 "[in module %s]"), objfile_name (objfile));
21237
21238 return lookup_die_type (die, type_attr, cu);
21239 }
21240
21241 /* Return an error marker type to use for the ill formed type in DIE/CU. */
21242
21243 static struct type *
21244 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
21245 {
21246 struct dwarf2_per_objfile *dwarf2_per_objfile
21247 = cu->per_cu->dwarf2_per_objfile;
21248 struct objfile *objfile = dwarf2_per_objfile->objfile;
21249 char *saved;
21250
21251 std::string message
21252 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
21253 objfile_name (objfile),
21254 sect_offset_str (cu->header.sect_off),
21255 sect_offset_str (die->sect_off));
21256 saved = obstack_strdup (&objfile->objfile_obstack, message);
21257
21258 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
21259 }
21260
21261 /* Look up the type of DIE in CU using its type attribute ATTR.
21262 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
21263 DW_AT_containing_type.
21264 If there is no type substitute an error marker. */
21265
21266 static struct type *
21267 lookup_die_type (struct die_info *die, const struct attribute *attr,
21268 struct dwarf2_cu *cu)
21269 {
21270 struct dwarf2_per_objfile *dwarf2_per_objfile
21271 = cu->per_cu->dwarf2_per_objfile;
21272 struct objfile *objfile = dwarf2_per_objfile->objfile;
21273 struct type *this_type;
21274
21275 gdb_assert (attr->name == DW_AT_type
21276 || attr->name == DW_AT_GNAT_descriptive_type
21277 || attr->name == DW_AT_containing_type);
21278
21279 /* First see if we have it cached. */
21280
21281 if (attr->form == DW_FORM_GNU_ref_alt)
21282 {
21283 struct dwarf2_per_cu_data *per_cu;
21284 sect_offset sect_off = attr->get_ref_die_offset ();
21285
21286 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
21287 dwarf2_per_objfile);
21288 this_type = get_die_type_at_offset (sect_off, per_cu);
21289 }
21290 else if (attr->form_is_ref ())
21291 {
21292 sect_offset sect_off = attr->get_ref_die_offset ();
21293
21294 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
21295 }
21296 else if (attr->form == DW_FORM_ref_sig8)
21297 {
21298 ULONGEST signature = DW_SIGNATURE (attr);
21299
21300 return get_signatured_type (die, signature, cu);
21301 }
21302 else
21303 {
21304 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
21305 " at %s [in module %s]"),
21306 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
21307 objfile_name (objfile));
21308 return build_error_marker_type (cu, die);
21309 }
21310
21311 /* If not cached we need to read it in. */
21312
21313 if (this_type == NULL)
21314 {
21315 struct die_info *type_die = NULL;
21316 struct dwarf2_cu *type_cu = cu;
21317
21318 if (attr->form_is_ref ())
21319 type_die = follow_die_ref (die, attr, &type_cu);
21320 if (type_die == NULL)
21321 return build_error_marker_type (cu, die);
21322 /* If we find the type now, it's probably because the type came
21323 from an inter-CU reference and the type's CU got expanded before
21324 ours. */
21325 this_type = read_type_die (type_die, type_cu);
21326 }
21327
21328 /* If we still don't have a type use an error marker. */
21329
21330 if (this_type == NULL)
21331 return build_error_marker_type (cu, die);
21332
21333 return this_type;
21334 }
21335
21336 /* Return the type in DIE, CU.
21337 Returns NULL for invalid types.
21338
21339 This first does a lookup in die_type_hash,
21340 and only reads the die in if necessary.
21341
21342 NOTE: This can be called when reading in partial or full symbols. */
21343
21344 static struct type *
21345 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
21346 {
21347 struct type *this_type;
21348
21349 this_type = get_die_type (die, cu);
21350 if (this_type)
21351 return this_type;
21352
21353 return read_type_die_1 (die, cu);
21354 }
21355
21356 /* Read the type in DIE, CU.
21357 Returns NULL for invalid types. */
21358
21359 static struct type *
21360 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
21361 {
21362 struct type *this_type = NULL;
21363
21364 switch (die->tag)
21365 {
21366 case DW_TAG_class_type:
21367 case DW_TAG_interface_type:
21368 case DW_TAG_structure_type:
21369 case DW_TAG_union_type:
21370 this_type = read_structure_type (die, cu);
21371 break;
21372 case DW_TAG_enumeration_type:
21373 this_type = read_enumeration_type (die, cu);
21374 break;
21375 case DW_TAG_subprogram:
21376 case DW_TAG_subroutine_type:
21377 case DW_TAG_inlined_subroutine:
21378 this_type = read_subroutine_type (die, cu);
21379 break;
21380 case DW_TAG_array_type:
21381 this_type = read_array_type (die, cu);
21382 break;
21383 case DW_TAG_set_type:
21384 this_type = read_set_type (die, cu);
21385 break;
21386 case DW_TAG_pointer_type:
21387 this_type = read_tag_pointer_type (die, cu);
21388 break;
21389 case DW_TAG_ptr_to_member_type:
21390 this_type = read_tag_ptr_to_member_type (die, cu);
21391 break;
21392 case DW_TAG_reference_type:
21393 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
21394 break;
21395 case DW_TAG_rvalue_reference_type:
21396 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
21397 break;
21398 case DW_TAG_const_type:
21399 this_type = read_tag_const_type (die, cu);
21400 break;
21401 case DW_TAG_volatile_type:
21402 this_type = read_tag_volatile_type (die, cu);
21403 break;
21404 case DW_TAG_restrict_type:
21405 this_type = read_tag_restrict_type (die, cu);
21406 break;
21407 case DW_TAG_string_type:
21408 this_type = read_tag_string_type (die, cu);
21409 break;
21410 case DW_TAG_typedef:
21411 this_type = read_typedef (die, cu);
21412 break;
21413 case DW_TAG_subrange_type:
21414 this_type = read_subrange_type (die, cu);
21415 break;
21416 case DW_TAG_base_type:
21417 this_type = read_base_type (die, cu);
21418 break;
21419 case DW_TAG_unspecified_type:
21420 this_type = read_unspecified_type (die, cu);
21421 break;
21422 case DW_TAG_namespace:
21423 this_type = read_namespace_type (die, cu);
21424 break;
21425 case DW_TAG_module:
21426 this_type = read_module_type (die, cu);
21427 break;
21428 case DW_TAG_atomic_type:
21429 this_type = read_tag_atomic_type (die, cu);
21430 break;
21431 default:
21432 complaint (_("unexpected tag in read_type_die: '%s'"),
21433 dwarf_tag_name (die->tag));
21434 break;
21435 }
21436
21437 return this_type;
21438 }
21439
21440 /* See if we can figure out if the class lives in a namespace. We do
21441 this by looking for a member function; its demangled name will
21442 contain namespace info, if there is any.
21443 Return the computed name or NULL.
21444 Space for the result is allocated on the objfile's obstack.
21445 This is the full-die version of guess_partial_die_structure_name.
21446 In this case we know DIE has no useful parent. */
21447
21448 static const char *
21449 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
21450 {
21451 struct die_info *spec_die;
21452 struct dwarf2_cu *spec_cu;
21453 struct die_info *child;
21454 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21455
21456 spec_cu = cu;
21457 spec_die = die_specification (die, &spec_cu);
21458 if (spec_die != NULL)
21459 {
21460 die = spec_die;
21461 cu = spec_cu;
21462 }
21463
21464 for (child = die->child;
21465 child != NULL;
21466 child = child->sibling)
21467 {
21468 if (child->tag == DW_TAG_subprogram)
21469 {
21470 const char *linkage_name = dw2_linkage_name (child, cu);
21471
21472 if (linkage_name != NULL)
21473 {
21474 gdb::unique_xmalloc_ptr<char> actual_name
21475 (language_class_name_from_physname (cu->language_defn,
21476 linkage_name));
21477 const char *name = NULL;
21478
21479 if (actual_name != NULL)
21480 {
21481 const char *die_name = dwarf2_name (die, cu);
21482
21483 if (die_name != NULL
21484 && strcmp (die_name, actual_name.get ()) != 0)
21485 {
21486 /* Strip off the class name from the full name.
21487 We want the prefix. */
21488 int die_name_len = strlen (die_name);
21489 int actual_name_len = strlen (actual_name.get ());
21490 const char *ptr = actual_name.get ();
21491
21492 /* Test for '::' as a sanity check. */
21493 if (actual_name_len > die_name_len + 2
21494 && ptr[actual_name_len - die_name_len - 1] == ':')
21495 name = obstack_strndup (
21496 &objfile->per_bfd->storage_obstack,
21497 ptr, actual_name_len - die_name_len - 2);
21498 }
21499 }
21500 return name;
21501 }
21502 }
21503 }
21504
21505 return NULL;
21506 }
21507
21508 /* GCC might emit a nameless typedef that has a linkage name. Determine the
21509 prefix part in such case. See
21510 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21511
21512 static const char *
21513 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
21514 {
21515 struct attribute *attr;
21516 const char *base;
21517
21518 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
21519 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
21520 return NULL;
21521
21522 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
21523 return NULL;
21524
21525 attr = dw2_linkage_name_attr (die, cu);
21526 if (attr == NULL || DW_STRING (attr) == NULL)
21527 return NULL;
21528
21529 /* dwarf2_name had to be already called. */
21530 gdb_assert (DW_STRING_IS_CANONICAL (attr));
21531
21532 /* Strip the base name, keep any leading namespaces/classes. */
21533 base = strrchr (DW_STRING (attr), ':');
21534 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
21535 return "";
21536
21537 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21538 return obstack_strndup (&objfile->per_bfd->storage_obstack,
21539 DW_STRING (attr),
21540 &base[-1] - DW_STRING (attr));
21541 }
21542
21543 /* Return the name of the namespace/class that DIE is defined within,
21544 or "" if we can't tell. The caller should not xfree the result.
21545
21546 For example, if we're within the method foo() in the following
21547 code:
21548
21549 namespace N {
21550 class C {
21551 void foo () {
21552 }
21553 };
21554 }
21555
21556 then determine_prefix on foo's die will return "N::C". */
21557
21558 static const char *
21559 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
21560 {
21561 struct dwarf2_per_objfile *dwarf2_per_objfile
21562 = cu->per_cu->dwarf2_per_objfile;
21563 struct die_info *parent, *spec_die;
21564 struct dwarf2_cu *spec_cu;
21565 struct type *parent_type;
21566 const char *retval;
21567
21568 if (cu->language != language_cplus
21569 && cu->language != language_fortran && cu->language != language_d
21570 && cu->language != language_rust)
21571 return "";
21572
21573 retval = anonymous_struct_prefix (die, cu);
21574 if (retval)
21575 return retval;
21576
21577 /* We have to be careful in the presence of DW_AT_specification.
21578 For example, with GCC 3.4, given the code
21579
21580 namespace N {
21581 void foo() {
21582 // Definition of N::foo.
21583 }
21584 }
21585
21586 then we'll have a tree of DIEs like this:
21587
21588 1: DW_TAG_compile_unit
21589 2: DW_TAG_namespace // N
21590 3: DW_TAG_subprogram // declaration of N::foo
21591 4: DW_TAG_subprogram // definition of N::foo
21592 DW_AT_specification // refers to die #3
21593
21594 Thus, when processing die #4, we have to pretend that we're in
21595 the context of its DW_AT_specification, namely the contex of die
21596 #3. */
21597 spec_cu = cu;
21598 spec_die = die_specification (die, &spec_cu);
21599 if (spec_die == NULL)
21600 parent = die->parent;
21601 else
21602 {
21603 parent = spec_die->parent;
21604 cu = spec_cu;
21605 }
21606
21607 if (parent == NULL)
21608 return "";
21609 else if (parent->building_fullname)
21610 {
21611 const char *name;
21612 const char *parent_name;
21613
21614 /* It has been seen on RealView 2.2 built binaries,
21615 DW_TAG_template_type_param types actually _defined_ as
21616 children of the parent class:
21617
21618 enum E {};
21619 template class <class Enum> Class{};
21620 Class<enum E> class_e;
21621
21622 1: DW_TAG_class_type (Class)
21623 2: DW_TAG_enumeration_type (E)
21624 3: DW_TAG_enumerator (enum1:0)
21625 3: DW_TAG_enumerator (enum2:1)
21626 ...
21627 2: DW_TAG_template_type_param
21628 DW_AT_type DW_FORM_ref_udata (E)
21629
21630 Besides being broken debug info, it can put GDB into an
21631 infinite loop. Consider:
21632
21633 When we're building the full name for Class<E>, we'll start
21634 at Class, and go look over its template type parameters,
21635 finding E. We'll then try to build the full name of E, and
21636 reach here. We're now trying to build the full name of E,
21637 and look over the parent DIE for containing scope. In the
21638 broken case, if we followed the parent DIE of E, we'd again
21639 find Class, and once again go look at its template type
21640 arguments, etc., etc. Simply don't consider such parent die
21641 as source-level parent of this die (it can't be, the language
21642 doesn't allow it), and break the loop here. */
21643 name = dwarf2_name (die, cu);
21644 parent_name = dwarf2_name (parent, cu);
21645 complaint (_("template param type '%s' defined within parent '%s'"),
21646 name ? name : "<unknown>",
21647 parent_name ? parent_name : "<unknown>");
21648 return "";
21649 }
21650 else
21651 switch (parent->tag)
21652 {
21653 case DW_TAG_namespace:
21654 parent_type = read_type_die (parent, cu);
21655 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
21656 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
21657 Work around this problem here. */
21658 if (cu->language == language_cplus
21659 && strcmp (TYPE_NAME (parent_type), "::") == 0)
21660 return "";
21661 /* We give a name to even anonymous namespaces. */
21662 return TYPE_NAME (parent_type);
21663 case DW_TAG_class_type:
21664 case DW_TAG_interface_type:
21665 case DW_TAG_structure_type:
21666 case DW_TAG_union_type:
21667 case DW_TAG_module:
21668 parent_type = read_type_die (parent, cu);
21669 if (TYPE_NAME (parent_type) != NULL)
21670 return TYPE_NAME (parent_type);
21671 else
21672 /* An anonymous structure is only allowed non-static data
21673 members; no typedefs, no member functions, et cetera.
21674 So it does not need a prefix. */
21675 return "";
21676 case DW_TAG_compile_unit:
21677 case DW_TAG_partial_unit:
21678 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
21679 if (cu->language == language_cplus
21680 && !dwarf2_per_objfile->types.empty ()
21681 && die->child != NULL
21682 && (die->tag == DW_TAG_class_type
21683 || die->tag == DW_TAG_structure_type
21684 || die->tag == DW_TAG_union_type))
21685 {
21686 const char *name = guess_full_die_structure_name (die, cu);
21687 if (name != NULL)
21688 return name;
21689 }
21690 return "";
21691 case DW_TAG_subprogram:
21692 /* Nested subroutines in Fortran get a prefix with the name
21693 of the parent's subroutine. */
21694 if (cu->language == language_fortran)
21695 {
21696 if ((die->tag == DW_TAG_subprogram)
21697 && (dwarf2_name (parent, cu) != NULL))
21698 return dwarf2_name (parent, cu);
21699 }
21700 return determine_prefix (parent, cu);
21701 case DW_TAG_enumeration_type:
21702 parent_type = read_type_die (parent, cu);
21703 if (TYPE_DECLARED_CLASS (parent_type))
21704 {
21705 if (TYPE_NAME (parent_type) != NULL)
21706 return TYPE_NAME (parent_type);
21707 return "";
21708 }
21709 /* Fall through. */
21710 default:
21711 return determine_prefix (parent, cu);
21712 }
21713 }
21714
21715 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
21716 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
21717 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
21718 an obconcat, otherwise allocate storage for the result. The CU argument is
21719 used to determine the language and hence, the appropriate separator. */
21720
21721 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
21722
21723 static char *
21724 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
21725 int physname, struct dwarf2_cu *cu)
21726 {
21727 const char *lead = "";
21728 const char *sep;
21729
21730 if (suffix == NULL || suffix[0] == '\0'
21731 || prefix == NULL || prefix[0] == '\0')
21732 sep = "";
21733 else if (cu->language == language_d)
21734 {
21735 /* For D, the 'main' function could be defined in any module, but it
21736 should never be prefixed. */
21737 if (strcmp (suffix, "D main") == 0)
21738 {
21739 prefix = "";
21740 sep = "";
21741 }
21742 else
21743 sep = ".";
21744 }
21745 else if (cu->language == language_fortran && physname)
21746 {
21747 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
21748 DW_AT_MIPS_linkage_name is preferred and used instead. */
21749
21750 lead = "__";
21751 sep = "_MOD_";
21752 }
21753 else
21754 sep = "::";
21755
21756 if (prefix == NULL)
21757 prefix = "";
21758 if (suffix == NULL)
21759 suffix = "";
21760
21761 if (obs == NULL)
21762 {
21763 char *retval
21764 = ((char *)
21765 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
21766
21767 strcpy (retval, lead);
21768 strcat (retval, prefix);
21769 strcat (retval, sep);
21770 strcat (retval, suffix);
21771 return retval;
21772 }
21773 else
21774 {
21775 /* We have an obstack. */
21776 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
21777 }
21778 }
21779
21780 /* Get name of a die, return NULL if not found. */
21781
21782 static const char *
21783 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
21784 struct objfile *objfile)
21785 {
21786 if (name && cu->language == language_cplus)
21787 {
21788 gdb::unique_xmalloc_ptr<char> canon_name
21789 = cp_canonicalize_string (name);
21790
21791 if (canon_name != nullptr)
21792 name = objfile->intern (canon_name.get ());
21793 }
21794
21795 return name;
21796 }
21797
21798 /* Get name of a die, return NULL if not found.
21799 Anonymous namespaces are converted to their magic string. */
21800
21801 static const char *
21802 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
21803 {
21804 struct attribute *attr;
21805 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21806
21807 attr = dwarf2_attr (die, DW_AT_name, cu);
21808 if ((!attr || !DW_STRING (attr))
21809 && die->tag != DW_TAG_namespace
21810 && die->tag != DW_TAG_class_type
21811 && die->tag != DW_TAG_interface_type
21812 && die->tag != DW_TAG_structure_type
21813 && die->tag != DW_TAG_union_type)
21814 return NULL;
21815
21816 switch (die->tag)
21817 {
21818 case DW_TAG_compile_unit:
21819 case DW_TAG_partial_unit:
21820 /* Compilation units have a DW_AT_name that is a filename, not
21821 a source language identifier. */
21822 case DW_TAG_enumeration_type:
21823 case DW_TAG_enumerator:
21824 /* These tags always have simple identifiers already; no need
21825 to canonicalize them. */
21826 return DW_STRING (attr);
21827
21828 case DW_TAG_namespace:
21829 if (attr != NULL && DW_STRING (attr) != NULL)
21830 return DW_STRING (attr);
21831 return CP_ANONYMOUS_NAMESPACE_STR;
21832
21833 case DW_TAG_class_type:
21834 case DW_TAG_interface_type:
21835 case DW_TAG_structure_type:
21836 case DW_TAG_union_type:
21837 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
21838 structures or unions. These were of the form "._%d" in GCC 4.1,
21839 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
21840 and GCC 4.4. We work around this problem by ignoring these. */
21841 if (attr && DW_STRING (attr)
21842 && (startswith (DW_STRING (attr), "._")
21843 || startswith (DW_STRING (attr), "<anonymous")))
21844 return NULL;
21845
21846 /* GCC might emit a nameless typedef that has a linkage name. See
21847 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
21848 if (!attr || DW_STRING (attr) == NULL)
21849 {
21850 attr = dw2_linkage_name_attr (die, cu);
21851 if (attr == NULL || DW_STRING (attr) == NULL)
21852 return NULL;
21853
21854 /* Avoid demangling DW_STRING (attr) the second time on a second
21855 call for the same DIE. */
21856 if (!DW_STRING_IS_CANONICAL (attr))
21857 {
21858 gdb::unique_xmalloc_ptr<char> demangled
21859 (gdb_demangle (DW_STRING (attr), DMGL_TYPES));
21860 if (demangled == nullptr)
21861 return nullptr;
21862
21863 DW_STRING (attr) = objfile->intern (demangled.get ());
21864 DW_STRING_IS_CANONICAL (attr) = 1;
21865 }
21866
21867 /* Strip any leading namespaces/classes, keep only the base name.
21868 DW_AT_name for named DIEs does not contain the prefixes. */
21869 const char *base = strrchr (DW_STRING (attr), ':');
21870 if (base && base > DW_STRING (attr) && base[-1] == ':')
21871 return &base[1];
21872 else
21873 return DW_STRING (attr);
21874 }
21875 break;
21876
21877 default:
21878 break;
21879 }
21880
21881 if (!DW_STRING_IS_CANONICAL (attr))
21882 {
21883 DW_STRING (attr) = dwarf2_canonicalize_name (DW_STRING (attr), cu,
21884 objfile);
21885 DW_STRING_IS_CANONICAL (attr) = 1;
21886 }
21887 return DW_STRING (attr);
21888 }
21889
21890 /* Return the die that this die in an extension of, or NULL if there
21891 is none. *EXT_CU is the CU containing DIE on input, and the CU
21892 containing the return value on output. */
21893
21894 static struct die_info *
21895 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
21896 {
21897 struct attribute *attr;
21898
21899 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
21900 if (attr == NULL)
21901 return NULL;
21902
21903 return follow_die_ref (die, attr, ext_cu);
21904 }
21905
21906 static void
21907 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
21908 {
21909 unsigned int i;
21910
21911 print_spaces (indent, f);
21912 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
21913 dwarf_tag_name (die->tag), die->abbrev,
21914 sect_offset_str (die->sect_off));
21915
21916 if (die->parent != NULL)
21917 {
21918 print_spaces (indent, f);
21919 fprintf_unfiltered (f, " parent at offset: %s\n",
21920 sect_offset_str (die->parent->sect_off));
21921 }
21922
21923 print_spaces (indent, f);
21924 fprintf_unfiltered (f, " has children: %s\n",
21925 dwarf_bool_name (die->child != NULL));
21926
21927 print_spaces (indent, f);
21928 fprintf_unfiltered (f, " attributes:\n");
21929
21930 for (i = 0; i < die->num_attrs; ++i)
21931 {
21932 print_spaces (indent, f);
21933 fprintf_unfiltered (f, " %s (%s) ",
21934 dwarf_attr_name (die->attrs[i].name),
21935 dwarf_form_name (die->attrs[i].form));
21936
21937 switch (die->attrs[i].form)
21938 {
21939 case DW_FORM_addr:
21940 case DW_FORM_addrx:
21941 case DW_FORM_GNU_addr_index:
21942 fprintf_unfiltered (f, "address: ");
21943 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
21944 break;
21945 case DW_FORM_block2:
21946 case DW_FORM_block4:
21947 case DW_FORM_block:
21948 case DW_FORM_block1:
21949 fprintf_unfiltered (f, "block: size %s",
21950 pulongest (DW_BLOCK (&die->attrs[i])->size));
21951 break;
21952 case DW_FORM_exprloc:
21953 fprintf_unfiltered (f, "expression: size %s",
21954 pulongest (DW_BLOCK (&die->attrs[i])->size));
21955 break;
21956 case DW_FORM_data16:
21957 fprintf_unfiltered (f, "constant of 16 bytes");
21958 break;
21959 case DW_FORM_ref_addr:
21960 fprintf_unfiltered (f, "ref address: ");
21961 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21962 break;
21963 case DW_FORM_GNU_ref_alt:
21964 fprintf_unfiltered (f, "alt ref address: ");
21965 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
21966 break;
21967 case DW_FORM_ref1:
21968 case DW_FORM_ref2:
21969 case DW_FORM_ref4:
21970 case DW_FORM_ref8:
21971 case DW_FORM_ref_udata:
21972 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
21973 (long) (DW_UNSND (&die->attrs[i])));
21974 break;
21975 case DW_FORM_data1:
21976 case DW_FORM_data2:
21977 case DW_FORM_data4:
21978 case DW_FORM_data8:
21979 case DW_FORM_udata:
21980 case DW_FORM_sdata:
21981 fprintf_unfiltered (f, "constant: %s",
21982 pulongest (DW_UNSND (&die->attrs[i])));
21983 break;
21984 case DW_FORM_sec_offset:
21985 fprintf_unfiltered (f, "section offset: %s",
21986 pulongest (DW_UNSND (&die->attrs[i])));
21987 break;
21988 case DW_FORM_ref_sig8:
21989 fprintf_unfiltered (f, "signature: %s",
21990 hex_string (DW_SIGNATURE (&die->attrs[i])));
21991 break;
21992 case DW_FORM_string:
21993 case DW_FORM_strp:
21994 case DW_FORM_line_strp:
21995 case DW_FORM_strx:
21996 case DW_FORM_GNU_str_index:
21997 case DW_FORM_GNU_strp_alt:
21998 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
21999 DW_STRING (&die->attrs[i])
22000 ? DW_STRING (&die->attrs[i]) : "",
22001 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
22002 break;
22003 case DW_FORM_flag:
22004 if (DW_UNSND (&die->attrs[i]))
22005 fprintf_unfiltered (f, "flag: TRUE");
22006 else
22007 fprintf_unfiltered (f, "flag: FALSE");
22008 break;
22009 case DW_FORM_flag_present:
22010 fprintf_unfiltered (f, "flag: TRUE");
22011 break;
22012 case DW_FORM_indirect:
22013 /* The reader will have reduced the indirect form to
22014 the "base form" so this form should not occur. */
22015 fprintf_unfiltered (f,
22016 "unexpected attribute form: DW_FORM_indirect");
22017 break;
22018 case DW_FORM_implicit_const:
22019 fprintf_unfiltered (f, "constant: %s",
22020 plongest (DW_SND (&die->attrs[i])));
22021 break;
22022 default:
22023 fprintf_unfiltered (f, "unsupported attribute form: %d.",
22024 die->attrs[i].form);
22025 break;
22026 }
22027 fprintf_unfiltered (f, "\n");
22028 }
22029 }
22030
22031 static void
22032 dump_die_for_error (struct die_info *die)
22033 {
22034 dump_die_shallow (gdb_stderr, 0, die);
22035 }
22036
22037 static void
22038 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
22039 {
22040 int indent = level * 4;
22041
22042 gdb_assert (die != NULL);
22043
22044 if (level >= max_level)
22045 return;
22046
22047 dump_die_shallow (f, indent, die);
22048
22049 if (die->child != NULL)
22050 {
22051 print_spaces (indent, f);
22052 fprintf_unfiltered (f, " Children:");
22053 if (level + 1 < max_level)
22054 {
22055 fprintf_unfiltered (f, "\n");
22056 dump_die_1 (f, level + 1, max_level, die->child);
22057 }
22058 else
22059 {
22060 fprintf_unfiltered (f,
22061 " [not printed, max nesting level reached]\n");
22062 }
22063 }
22064
22065 if (die->sibling != NULL && level > 0)
22066 {
22067 dump_die_1 (f, level, max_level, die->sibling);
22068 }
22069 }
22070
22071 /* This is called from the pdie macro in gdbinit.in.
22072 It's not static so gcc will keep a copy callable from gdb. */
22073
22074 void
22075 dump_die (struct die_info *die, int max_level)
22076 {
22077 dump_die_1 (gdb_stdlog, 0, max_level, die);
22078 }
22079
22080 static void
22081 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
22082 {
22083 void **slot;
22084
22085 slot = htab_find_slot_with_hash (cu->die_hash, die,
22086 to_underlying (die->sect_off),
22087 INSERT);
22088
22089 *slot = die;
22090 }
22091
22092 /* Follow reference or signature attribute ATTR of SRC_DIE.
22093 On entry *REF_CU is the CU of SRC_DIE.
22094 On exit *REF_CU is the CU of the result. */
22095
22096 static struct die_info *
22097 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
22098 struct dwarf2_cu **ref_cu)
22099 {
22100 struct die_info *die;
22101
22102 if (attr->form_is_ref ())
22103 die = follow_die_ref (src_die, attr, ref_cu);
22104 else if (attr->form == DW_FORM_ref_sig8)
22105 die = follow_die_sig (src_die, attr, ref_cu);
22106 else
22107 {
22108 dump_die_for_error (src_die);
22109 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
22110 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22111 }
22112
22113 return die;
22114 }
22115
22116 /* Follow reference OFFSET.
22117 On entry *REF_CU is the CU of the source die referencing OFFSET.
22118 On exit *REF_CU is the CU of the result.
22119 Returns NULL if OFFSET is invalid. */
22120
22121 static struct die_info *
22122 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
22123 struct dwarf2_cu **ref_cu)
22124 {
22125 struct die_info temp_die;
22126 struct dwarf2_cu *target_cu, *cu = *ref_cu;
22127 struct dwarf2_per_objfile *dwarf2_per_objfile
22128 = cu->per_cu->dwarf2_per_objfile;
22129
22130 gdb_assert (cu->per_cu != NULL);
22131
22132 target_cu = cu;
22133
22134 if (cu->per_cu->is_debug_types)
22135 {
22136 /* .debug_types CUs cannot reference anything outside their CU.
22137 If they need to, they have to reference a signatured type via
22138 DW_FORM_ref_sig8. */
22139 if (!cu->header.offset_in_cu_p (sect_off))
22140 return NULL;
22141 }
22142 else if (offset_in_dwz != cu->per_cu->is_dwz
22143 || !cu->header.offset_in_cu_p (sect_off))
22144 {
22145 struct dwarf2_per_cu_data *per_cu;
22146
22147 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
22148 dwarf2_per_objfile);
22149
22150 /* If necessary, add it to the queue and load its DIEs. */
22151 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
22152 load_full_comp_unit (per_cu, false, cu->language);
22153
22154 target_cu = per_cu->cu;
22155 }
22156 else if (cu->dies == NULL)
22157 {
22158 /* We're loading full DIEs during partial symbol reading. */
22159 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
22160 load_full_comp_unit (cu->per_cu, false, language_minimal);
22161 }
22162
22163 *ref_cu = target_cu;
22164 temp_die.sect_off = sect_off;
22165
22166 if (target_cu != cu)
22167 target_cu->ancestor = cu;
22168
22169 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
22170 &temp_die,
22171 to_underlying (sect_off));
22172 }
22173
22174 /* Follow reference attribute ATTR of SRC_DIE.
22175 On entry *REF_CU is the CU of SRC_DIE.
22176 On exit *REF_CU is the CU of the result. */
22177
22178 static struct die_info *
22179 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
22180 struct dwarf2_cu **ref_cu)
22181 {
22182 sect_offset sect_off = attr->get_ref_die_offset ();
22183 struct dwarf2_cu *cu = *ref_cu;
22184 struct die_info *die;
22185
22186 die = follow_die_offset (sect_off,
22187 (attr->form == DW_FORM_GNU_ref_alt
22188 || cu->per_cu->is_dwz),
22189 ref_cu);
22190 if (!die)
22191 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
22192 "at %s [in module %s]"),
22193 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
22194 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
22195
22196 return die;
22197 }
22198
22199 /* See read.h. */
22200
22201 struct dwarf2_locexpr_baton
22202 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
22203 dwarf2_per_cu_data *per_cu,
22204 CORE_ADDR (*get_frame_pc) (void *baton),
22205 void *baton, bool resolve_abstract_p)
22206 {
22207 struct dwarf2_cu *cu;
22208 struct die_info *die;
22209 struct attribute *attr;
22210 struct dwarf2_locexpr_baton retval;
22211 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
22212 struct objfile *objfile = dwarf2_per_objfile->objfile;
22213
22214 if (per_cu->cu == NULL)
22215 load_cu (per_cu, false);
22216 cu = per_cu->cu;
22217 if (cu == NULL)
22218 {
22219 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22220 Instead just throw an error, not much else we can do. */
22221 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22222 sect_offset_str (sect_off), objfile_name (objfile));
22223 }
22224
22225 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22226 if (!die)
22227 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22228 sect_offset_str (sect_off), objfile_name (objfile));
22229
22230 attr = dwarf2_attr (die, DW_AT_location, cu);
22231 if (!attr && resolve_abstract_p
22232 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
22233 != dwarf2_per_objfile->abstract_to_concrete.end ()))
22234 {
22235 CORE_ADDR pc = (*get_frame_pc) (baton);
22236 CORE_ADDR baseaddr = objfile->text_section_offset ();
22237 struct gdbarch *gdbarch = objfile->arch ();
22238
22239 for (const auto &cand_off
22240 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
22241 {
22242 struct dwarf2_cu *cand_cu = cu;
22243 struct die_info *cand
22244 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
22245 if (!cand
22246 || !cand->parent
22247 || cand->parent->tag != DW_TAG_subprogram)
22248 continue;
22249
22250 CORE_ADDR pc_low, pc_high;
22251 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
22252 if (pc_low == ((CORE_ADDR) -1))
22253 continue;
22254 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
22255 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
22256 if (!(pc_low <= pc && pc < pc_high))
22257 continue;
22258
22259 die = cand;
22260 attr = dwarf2_attr (die, DW_AT_location, cu);
22261 break;
22262 }
22263 }
22264
22265 if (!attr)
22266 {
22267 /* DWARF: "If there is no such attribute, then there is no effect.".
22268 DATA is ignored if SIZE is 0. */
22269
22270 retval.data = NULL;
22271 retval.size = 0;
22272 }
22273 else if (attr->form_is_section_offset ())
22274 {
22275 struct dwarf2_loclist_baton loclist_baton;
22276 CORE_ADDR pc = (*get_frame_pc) (baton);
22277 size_t size;
22278
22279 fill_in_loclist_baton (cu, &loclist_baton, attr);
22280
22281 retval.data = dwarf2_find_location_expression (&loclist_baton,
22282 &size, pc);
22283 retval.size = size;
22284 }
22285 else
22286 {
22287 if (!attr->form_is_block ())
22288 error (_("Dwarf Error: DIE at %s referenced in module %s "
22289 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
22290 sect_offset_str (sect_off), objfile_name (objfile));
22291
22292 retval.data = DW_BLOCK (attr)->data;
22293 retval.size = DW_BLOCK (attr)->size;
22294 }
22295 retval.per_cu = cu->per_cu;
22296
22297 age_cached_comp_units (dwarf2_per_objfile);
22298
22299 return retval;
22300 }
22301
22302 /* See read.h. */
22303
22304 struct dwarf2_locexpr_baton
22305 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
22306 dwarf2_per_cu_data *per_cu,
22307 CORE_ADDR (*get_frame_pc) (void *baton),
22308 void *baton)
22309 {
22310 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
22311
22312 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
22313 }
22314
22315 /* Write a constant of a given type as target-ordered bytes into
22316 OBSTACK. */
22317
22318 static const gdb_byte *
22319 write_constant_as_bytes (struct obstack *obstack,
22320 enum bfd_endian byte_order,
22321 struct type *type,
22322 ULONGEST value,
22323 LONGEST *len)
22324 {
22325 gdb_byte *result;
22326
22327 *len = TYPE_LENGTH (type);
22328 result = (gdb_byte *) obstack_alloc (obstack, *len);
22329 store_unsigned_integer (result, *len, byte_order, value);
22330
22331 return result;
22332 }
22333
22334 /* See read.h. */
22335
22336 const gdb_byte *
22337 dwarf2_fetch_constant_bytes (sect_offset sect_off,
22338 dwarf2_per_cu_data *per_cu,
22339 obstack *obstack,
22340 LONGEST *len)
22341 {
22342 struct dwarf2_cu *cu;
22343 struct die_info *die;
22344 struct attribute *attr;
22345 const gdb_byte *result = NULL;
22346 struct type *type;
22347 LONGEST value;
22348 enum bfd_endian byte_order;
22349 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
22350
22351 if (per_cu->cu == NULL)
22352 load_cu (per_cu, false);
22353 cu = per_cu->cu;
22354 if (cu == NULL)
22355 {
22356 /* We shouldn't get here for a dummy CU, but don't crash on the user.
22357 Instead just throw an error, not much else we can do. */
22358 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
22359 sect_offset_str (sect_off), objfile_name (objfile));
22360 }
22361
22362 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22363 if (!die)
22364 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
22365 sect_offset_str (sect_off), objfile_name (objfile));
22366
22367 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22368 if (attr == NULL)
22369 return NULL;
22370
22371 byte_order = (bfd_big_endian (objfile->obfd)
22372 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22373
22374 switch (attr->form)
22375 {
22376 case DW_FORM_addr:
22377 case DW_FORM_addrx:
22378 case DW_FORM_GNU_addr_index:
22379 {
22380 gdb_byte *tem;
22381
22382 *len = cu->header.addr_size;
22383 tem = (gdb_byte *) obstack_alloc (obstack, *len);
22384 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
22385 result = tem;
22386 }
22387 break;
22388 case DW_FORM_string:
22389 case DW_FORM_strp:
22390 case DW_FORM_strx:
22391 case DW_FORM_GNU_str_index:
22392 case DW_FORM_GNU_strp_alt:
22393 /* DW_STRING is already allocated on the objfile obstack, point
22394 directly to it. */
22395 result = (const gdb_byte *) DW_STRING (attr);
22396 *len = strlen (DW_STRING (attr));
22397 break;
22398 case DW_FORM_block1:
22399 case DW_FORM_block2:
22400 case DW_FORM_block4:
22401 case DW_FORM_block:
22402 case DW_FORM_exprloc:
22403 case DW_FORM_data16:
22404 result = DW_BLOCK (attr)->data;
22405 *len = DW_BLOCK (attr)->size;
22406 break;
22407
22408 /* The DW_AT_const_value attributes are supposed to carry the
22409 symbol's value "represented as it would be on the target
22410 architecture." By the time we get here, it's already been
22411 converted to host endianness, so we just need to sign- or
22412 zero-extend it as appropriate. */
22413 case DW_FORM_data1:
22414 type = die_type (die, cu);
22415 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
22416 if (result == NULL)
22417 result = write_constant_as_bytes (obstack, byte_order,
22418 type, value, len);
22419 break;
22420 case DW_FORM_data2:
22421 type = die_type (die, cu);
22422 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
22423 if (result == NULL)
22424 result = write_constant_as_bytes (obstack, byte_order,
22425 type, value, len);
22426 break;
22427 case DW_FORM_data4:
22428 type = die_type (die, cu);
22429 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
22430 if (result == NULL)
22431 result = write_constant_as_bytes (obstack, byte_order,
22432 type, value, len);
22433 break;
22434 case DW_FORM_data8:
22435 type = die_type (die, cu);
22436 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
22437 if (result == NULL)
22438 result = write_constant_as_bytes (obstack, byte_order,
22439 type, value, len);
22440 break;
22441
22442 case DW_FORM_sdata:
22443 case DW_FORM_implicit_const:
22444 type = die_type (die, cu);
22445 result = write_constant_as_bytes (obstack, byte_order,
22446 type, DW_SND (attr), len);
22447 break;
22448
22449 case DW_FORM_udata:
22450 type = die_type (die, cu);
22451 result = write_constant_as_bytes (obstack, byte_order,
22452 type, DW_UNSND (attr), len);
22453 break;
22454
22455 default:
22456 complaint (_("unsupported const value attribute form: '%s'"),
22457 dwarf_form_name (attr->form));
22458 break;
22459 }
22460
22461 return result;
22462 }
22463
22464 /* See read.h. */
22465
22466 struct type *
22467 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
22468 dwarf2_per_cu_data *per_cu)
22469 {
22470 struct dwarf2_cu *cu;
22471 struct die_info *die;
22472
22473 if (per_cu->cu == NULL)
22474 load_cu (per_cu, false);
22475 cu = per_cu->cu;
22476 if (!cu)
22477 return NULL;
22478
22479 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
22480 if (!die)
22481 return NULL;
22482
22483 return die_type (die, cu);
22484 }
22485
22486 /* See read.h. */
22487
22488 struct type *
22489 dwarf2_get_die_type (cu_offset die_offset,
22490 struct dwarf2_per_cu_data *per_cu)
22491 {
22492 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
22493 return get_die_type_at_offset (die_offset_sect, per_cu);
22494 }
22495
22496 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
22497 On entry *REF_CU is the CU of SRC_DIE.
22498 On exit *REF_CU is the CU of the result.
22499 Returns NULL if the referenced DIE isn't found. */
22500
22501 static struct die_info *
22502 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
22503 struct dwarf2_cu **ref_cu)
22504 {
22505 struct die_info temp_die;
22506 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
22507 struct die_info *die;
22508
22509 /* While it might be nice to assert sig_type->type == NULL here,
22510 we can get here for DW_AT_imported_declaration where we need
22511 the DIE not the type. */
22512
22513 /* If necessary, add it to the queue and load its DIEs. */
22514
22515 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
22516 read_signatured_type (sig_type);
22517
22518 sig_cu = sig_type->per_cu.cu;
22519 gdb_assert (sig_cu != NULL);
22520 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
22521 temp_die.sect_off = sig_type->type_offset_in_section;
22522 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
22523 to_underlying (temp_die.sect_off));
22524 if (die)
22525 {
22526 struct dwarf2_per_objfile *dwarf2_per_objfile
22527 = (*ref_cu)->per_cu->dwarf2_per_objfile;
22528
22529 /* For .gdb_index version 7 keep track of included TUs.
22530 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
22531 if (dwarf2_per_objfile->index_table != NULL
22532 && dwarf2_per_objfile->index_table->version <= 7)
22533 {
22534 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
22535 }
22536
22537 *ref_cu = sig_cu;
22538 if (sig_cu != cu)
22539 sig_cu->ancestor = cu;
22540
22541 return die;
22542 }
22543
22544 return NULL;
22545 }
22546
22547 /* Follow signatured type referenced by ATTR in SRC_DIE.
22548 On entry *REF_CU is the CU of SRC_DIE.
22549 On exit *REF_CU is the CU of the result.
22550 The result is the DIE of the type.
22551 If the referenced type cannot be found an error is thrown. */
22552
22553 static struct die_info *
22554 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
22555 struct dwarf2_cu **ref_cu)
22556 {
22557 ULONGEST signature = DW_SIGNATURE (attr);
22558 struct signatured_type *sig_type;
22559 struct die_info *die;
22560
22561 gdb_assert (attr->form == DW_FORM_ref_sig8);
22562
22563 sig_type = lookup_signatured_type (*ref_cu, signature);
22564 /* sig_type will be NULL if the signatured type is missing from
22565 the debug info. */
22566 if (sig_type == NULL)
22567 {
22568 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22569 " from DIE at %s [in module %s]"),
22570 hex_string (signature), sect_offset_str (src_die->sect_off),
22571 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22572 }
22573
22574 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
22575 if (die == NULL)
22576 {
22577 dump_die_for_error (src_die);
22578 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22579 " from DIE at %s [in module %s]"),
22580 hex_string (signature), sect_offset_str (src_die->sect_off),
22581 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
22582 }
22583
22584 return die;
22585 }
22586
22587 /* Get the type specified by SIGNATURE referenced in DIE/CU,
22588 reading in and processing the type unit if necessary. */
22589
22590 static struct type *
22591 get_signatured_type (struct die_info *die, ULONGEST signature,
22592 struct dwarf2_cu *cu)
22593 {
22594 struct dwarf2_per_objfile *dwarf2_per_objfile
22595 = cu->per_cu->dwarf2_per_objfile;
22596 struct signatured_type *sig_type;
22597 struct dwarf2_cu *type_cu;
22598 struct die_info *type_die;
22599 struct type *type;
22600
22601 sig_type = lookup_signatured_type (cu, signature);
22602 /* sig_type will be NULL if the signatured type is missing from
22603 the debug info. */
22604 if (sig_type == NULL)
22605 {
22606 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
22607 " from DIE at %s [in module %s]"),
22608 hex_string (signature), sect_offset_str (die->sect_off),
22609 objfile_name (dwarf2_per_objfile->objfile));
22610 return build_error_marker_type (cu, die);
22611 }
22612
22613 /* If we already know the type we're done. */
22614 if (sig_type->type != NULL)
22615 return sig_type->type;
22616
22617 type_cu = cu;
22618 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
22619 if (type_die != NULL)
22620 {
22621 /* N.B. We need to call get_die_type to ensure only one type for this DIE
22622 is created. This is important, for example, because for c++ classes
22623 we need TYPE_NAME set which is only done by new_symbol. Blech. */
22624 type = read_type_die (type_die, type_cu);
22625 if (type == NULL)
22626 {
22627 complaint (_("Dwarf Error: Cannot build signatured type %s"
22628 " referenced from DIE at %s [in module %s]"),
22629 hex_string (signature), sect_offset_str (die->sect_off),
22630 objfile_name (dwarf2_per_objfile->objfile));
22631 type = build_error_marker_type (cu, die);
22632 }
22633 }
22634 else
22635 {
22636 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
22637 " from DIE at %s [in module %s]"),
22638 hex_string (signature), sect_offset_str (die->sect_off),
22639 objfile_name (dwarf2_per_objfile->objfile));
22640 type = build_error_marker_type (cu, die);
22641 }
22642 sig_type->type = type;
22643
22644 return type;
22645 }
22646
22647 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
22648 reading in and processing the type unit if necessary. */
22649
22650 static struct type *
22651 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
22652 struct dwarf2_cu *cu) /* ARI: editCase function */
22653 {
22654 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
22655 if (attr->form_is_ref ())
22656 {
22657 struct dwarf2_cu *type_cu = cu;
22658 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
22659
22660 return read_type_die (type_die, type_cu);
22661 }
22662 else if (attr->form == DW_FORM_ref_sig8)
22663 {
22664 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
22665 }
22666 else
22667 {
22668 struct dwarf2_per_objfile *dwarf2_per_objfile
22669 = cu->per_cu->dwarf2_per_objfile;
22670
22671 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
22672 " at %s [in module %s]"),
22673 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
22674 objfile_name (dwarf2_per_objfile->objfile));
22675 return build_error_marker_type (cu, die);
22676 }
22677 }
22678
22679 /* Load the DIEs associated with type unit PER_CU into memory. */
22680
22681 static void
22682 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
22683 {
22684 struct signatured_type *sig_type;
22685
22686 /* Caller is responsible for ensuring type_unit_groups don't get here. */
22687 gdb_assert (! per_cu->type_unit_group_p ());
22688
22689 /* We have the per_cu, but we need the signatured_type.
22690 Fortunately this is an easy translation. */
22691 gdb_assert (per_cu->is_debug_types);
22692 sig_type = (struct signatured_type *) per_cu;
22693
22694 gdb_assert (per_cu->cu == NULL);
22695
22696 read_signatured_type (sig_type);
22697
22698 gdb_assert (per_cu->cu != NULL);
22699 }
22700
22701 /* Read in a signatured type and build its CU and DIEs.
22702 If the type is a stub for the real type in a DWO file,
22703 read in the real type from the DWO file as well. */
22704
22705 static void
22706 read_signatured_type (struct signatured_type *sig_type)
22707 {
22708 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
22709
22710 gdb_assert (per_cu->is_debug_types);
22711 gdb_assert (per_cu->cu == NULL);
22712
22713 cutu_reader reader (per_cu, NULL, 0, false);
22714
22715 if (!reader.dummy_p)
22716 {
22717 struct dwarf2_cu *cu = reader.cu;
22718 const gdb_byte *info_ptr = reader.info_ptr;
22719
22720 gdb_assert (cu->die_hash == NULL);
22721 cu->die_hash =
22722 htab_create_alloc_ex (cu->header.length / 12,
22723 die_hash,
22724 die_eq,
22725 NULL,
22726 &cu->comp_unit_obstack,
22727 hashtab_obstack_allocate,
22728 dummy_obstack_deallocate);
22729
22730 if (reader.comp_unit_die->has_children)
22731 reader.comp_unit_die->child
22732 = read_die_and_siblings (&reader, info_ptr, &info_ptr,
22733 reader.comp_unit_die);
22734 cu->dies = reader.comp_unit_die;
22735 /* comp_unit_die is not stored in die_hash, no need. */
22736
22737 /* We try not to read any attributes in this function, because
22738 not all CUs needed for references have been loaded yet, and
22739 symbol table processing isn't initialized. But we have to
22740 set the CU language, or we won't be able to build types
22741 correctly. Similarly, if we do not read the producer, we can
22742 not apply producer-specific interpretation. */
22743 prepare_one_comp_unit (cu, cu->dies, language_minimal);
22744
22745 reader.keep ();
22746 }
22747
22748 sig_type->per_cu.tu_read = 1;
22749 }
22750
22751 /* Decode simple location descriptions.
22752 Given a pointer to a dwarf block that defines a location, compute
22753 the location and return the value. If COMPUTED is non-null, it is
22754 set to true to indicate that decoding was successful, and false
22755 otherwise. If COMPUTED is null, then this function may emit a
22756 complaint. */
22757
22758 static CORE_ADDR
22759 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu, bool *computed)
22760 {
22761 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22762 size_t i;
22763 size_t size = blk->size;
22764 const gdb_byte *data = blk->data;
22765 CORE_ADDR stack[64];
22766 int stacki;
22767 unsigned int bytes_read, unsnd;
22768 gdb_byte op;
22769
22770 if (computed != nullptr)
22771 *computed = false;
22772
22773 i = 0;
22774 stacki = 0;
22775 stack[stacki] = 0;
22776 stack[++stacki] = 0;
22777
22778 while (i < size)
22779 {
22780 op = data[i++];
22781 switch (op)
22782 {
22783 case DW_OP_lit0:
22784 case DW_OP_lit1:
22785 case DW_OP_lit2:
22786 case DW_OP_lit3:
22787 case DW_OP_lit4:
22788 case DW_OP_lit5:
22789 case DW_OP_lit6:
22790 case DW_OP_lit7:
22791 case DW_OP_lit8:
22792 case DW_OP_lit9:
22793 case DW_OP_lit10:
22794 case DW_OP_lit11:
22795 case DW_OP_lit12:
22796 case DW_OP_lit13:
22797 case DW_OP_lit14:
22798 case DW_OP_lit15:
22799 case DW_OP_lit16:
22800 case DW_OP_lit17:
22801 case DW_OP_lit18:
22802 case DW_OP_lit19:
22803 case DW_OP_lit20:
22804 case DW_OP_lit21:
22805 case DW_OP_lit22:
22806 case DW_OP_lit23:
22807 case DW_OP_lit24:
22808 case DW_OP_lit25:
22809 case DW_OP_lit26:
22810 case DW_OP_lit27:
22811 case DW_OP_lit28:
22812 case DW_OP_lit29:
22813 case DW_OP_lit30:
22814 case DW_OP_lit31:
22815 stack[++stacki] = op - DW_OP_lit0;
22816 break;
22817
22818 case DW_OP_reg0:
22819 case DW_OP_reg1:
22820 case DW_OP_reg2:
22821 case DW_OP_reg3:
22822 case DW_OP_reg4:
22823 case DW_OP_reg5:
22824 case DW_OP_reg6:
22825 case DW_OP_reg7:
22826 case DW_OP_reg8:
22827 case DW_OP_reg9:
22828 case DW_OP_reg10:
22829 case DW_OP_reg11:
22830 case DW_OP_reg12:
22831 case DW_OP_reg13:
22832 case DW_OP_reg14:
22833 case DW_OP_reg15:
22834 case DW_OP_reg16:
22835 case DW_OP_reg17:
22836 case DW_OP_reg18:
22837 case DW_OP_reg19:
22838 case DW_OP_reg20:
22839 case DW_OP_reg21:
22840 case DW_OP_reg22:
22841 case DW_OP_reg23:
22842 case DW_OP_reg24:
22843 case DW_OP_reg25:
22844 case DW_OP_reg26:
22845 case DW_OP_reg27:
22846 case DW_OP_reg28:
22847 case DW_OP_reg29:
22848 case DW_OP_reg30:
22849 case DW_OP_reg31:
22850 stack[++stacki] = op - DW_OP_reg0;
22851 if (i < size)
22852 {
22853 if (computed == nullptr)
22854 dwarf2_complex_location_expr_complaint ();
22855 else
22856 return 0;
22857 }
22858 break;
22859
22860 case DW_OP_regx:
22861 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
22862 i += bytes_read;
22863 stack[++stacki] = unsnd;
22864 if (i < size)
22865 {
22866 if (computed == nullptr)
22867 dwarf2_complex_location_expr_complaint ();
22868 else
22869 return 0;
22870 }
22871 break;
22872
22873 case DW_OP_addr:
22874 stack[++stacki] = cu->header.read_address (objfile->obfd, &data[i],
22875 &bytes_read);
22876 i += bytes_read;
22877 break;
22878
22879 case DW_OP_const1u:
22880 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
22881 i += 1;
22882 break;
22883
22884 case DW_OP_const1s:
22885 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
22886 i += 1;
22887 break;
22888
22889 case DW_OP_const2u:
22890 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
22891 i += 2;
22892 break;
22893
22894 case DW_OP_const2s:
22895 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
22896 i += 2;
22897 break;
22898
22899 case DW_OP_const4u:
22900 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
22901 i += 4;
22902 break;
22903
22904 case DW_OP_const4s:
22905 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
22906 i += 4;
22907 break;
22908
22909 case DW_OP_const8u:
22910 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
22911 i += 8;
22912 break;
22913
22914 case DW_OP_constu:
22915 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
22916 &bytes_read);
22917 i += bytes_read;
22918 break;
22919
22920 case DW_OP_consts:
22921 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
22922 i += bytes_read;
22923 break;
22924
22925 case DW_OP_dup:
22926 stack[stacki + 1] = stack[stacki];
22927 stacki++;
22928 break;
22929
22930 case DW_OP_plus:
22931 stack[stacki - 1] += stack[stacki];
22932 stacki--;
22933 break;
22934
22935 case DW_OP_plus_uconst:
22936 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
22937 &bytes_read);
22938 i += bytes_read;
22939 break;
22940
22941 case DW_OP_minus:
22942 stack[stacki - 1] -= stack[stacki];
22943 stacki--;
22944 break;
22945
22946 case DW_OP_deref:
22947 /* If we're not the last op, then we definitely can't encode
22948 this using GDB's address_class enum. This is valid for partial
22949 global symbols, although the variable's address will be bogus
22950 in the psymtab. */
22951 if (i < size)
22952 {
22953 if (computed == nullptr)
22954 dwarf2_complex_location_expr_complaint ();
22955 else
22956 return 0;
22957 }
22958 break;
22959
22960 case DW_OP_GNU_push_tls_address:
22961 case DW_OP_form_tls_address:
22962 /* The top of the stack has the offset from the beginning
22963 of the thread control block at which the variable is located. */
22964 /* Nothing should follow this operator, so the top of stack would
22965 be returned. */
22966 /* This is valid for partial global symbols, but the variable's
22967 address will be bogus in the psymtab. Make it always at least
22968 non-zero to not look as a variable garbage collected by linker
22969 which have DW_OP_addr 0. */
22970 if (i < size)
22971 {
22972 if (computed == nullptr)
22973 dwarf2_complex_location_expr_complaint ();
22974 else
22975 return 0;
22976 }
22977 stack[stacki]++;
22978 break;
22979
22980 case DW_OP_GNU_uninit:
22981 if (computed != nullptr)
22982 return 0;
22983 break;
22984
22985 case DW_OP_addrx:
22986 case DW_OP_GNU_addr_index:
22987 case DW_OP_GNU_const_index:
22988 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
22989 &bytes_read);
22990 i += bytes_read;
22991 break;
22992
22993 default:
22994 if (computed == nullptr)
22995 {
22996 const char *name = get_DW_OP_name (op);
22997
22998 if (name)
22999 complaint (_("unsupported stack op: '%s'"),
23000 name);
23001 else
23002 complaint (_("unsupported stack op: '%02x'"),
23003 op);
23004 }
23005
23006 return (stack[stacki]);
23007 }
23008
23009 /* Enforce maximum stack depth of SIZE-1 to avoid writing
23010 outside of the allocated space. Also enforce minimum>0. */
23011 if (stacki >= ARRAY_SIZE (stack) - 1)
23012 {
23013 if (computed == nullptr)
23014 complaint (_("location description stack overflow"));
23015 return 0;
23016 }
23017
23018 if (stacki <= 0)
23019 {
23020 if (computed == nullptr)
23021 complaint (_("location description stack underflow"));
23022 return 0;
23023 }
23024 }
23025
23026 if (computed != nullptr)
23027 *computed = true;
23028 return (stack[stacki]);
23029 }
23030
23031 /* memory allocation interface */
23032
23033 static struct dwarf_block *
23034 dwarf_alloc_block (struct dwarf2_cu *cu)
23035 {
23036 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
23037 }
23038
23039 static struct die_info *
23040 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
23041 {
23042 struct die_info *die;
23043 size_t size = sizeof (struct die_info);
23044
23045 if (num_attrs > 1)
23046 size += (num_attrs - 1) * sizeof (struct attribute);
23047
23048 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
23049 memset (die, 0, sizeof (struct die_info));
23050 return (die);
23051 }
23052
23053 \f
23054
23055 /* Macro support. */
23056
23057 /* An overload of dwarf_decode_macros that finds the correct section
23058 and ensures it is read in before calling the other overload. */
23059
23060 static void
23061 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
23062 int section_is_gnu)
23063 {
23064 struct dwarf2_per_objfile *dwarf2_per_objfile
23065 = cu->per_cu->dwarf2_per_objfile;
23066 struct objfile *objfile = dwarf2_per_objfile->objfile;
23067 const struct line_header *lh = cu->line_header;
23068 unsigned int offset_size = cu->header.offset_size;
23069 struct dwarf2_section_info *section;
23070 const char *section_name;
23071
23072 if (cu->dwo_unit != nullptr)
23073 {
23074 if (section_is_gnu)
23075 {
23076 section = &cu->dwo_unit->dwo_file->sections.macro;
23077 section_name = ".debug_macro.dwo";
23078 }
23079 else
23080 {
23081 section = &cu->dwo_unit->dwo_file->sections.macinfo;
23082 section_name = ".debug_macinfo.dwo";
23083 }
23084 }
23085 else
23086 {
23087 if (section_is_gnu)
23088 {
23089 section = &dwarf2_per_objfile->macro;
23090 section_name = ".debug_macro";
23091 }
23092 else
23093 {
23094 section = &dwarf2_per_objfile->macinfo;
23095 section_name = ".debug_macinfo";
23096 }
23097 }
23098
23099 section->read (objfile);
23100 if (section->buffer == nullptr)
23101 {
23102 complaint (_("missing %s section"), section_name);
23103 return;
23104 }
23105
23106 buildsym_compunit *builder = cu->get_builder ();
23107
23108 dwarf_decode_macros (dwarf2_per_objfile, builder, section, lh,
23109 offset_size, offset, section_is_gnu);
23110 }
23111
23112 /* Return the .debug_loc section to use for CU.
23113 For DWO files use .debug_loc.dwo. */
23114
23115 static struct dwarf2_section_info *
23116 cu_debug_loc_section (struct dwarf2_cu *cu)
23117 {
23118 struct dwarf2_per_objfile *dwarf2_per_objfile
23119 = cu->per_cu->dwarf2_per_objfile;
23120
23121 if (cu->dwo_unit)
23122 {
23123 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
23124
23125 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
23126 }
23127 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
23128 : &dwarf2_per_objfile->loc);
23129 }
23130
23131 /* A helper function that fills in a dwarf2_loclist_baton. */
23132
23133 static void
23134 fill_in_loclist_baton (struct dwarf2_cu *cu,
23135 struct dwarf2_loclist_baton *baton,
23136 const struct attribute *attr)
23137 {
23138 struct dwarf2_per_objfile *dwarf2_per_objfile
23139 = cu->per_cu->dwarf2_per_objfile;
23140 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23141
23142 section->read (dwarf2_per_objfile->objfile);
23143
23144 baton->per_cu = cu->per_cu;
23145 gdb_assert (baton->per_cu);
23146 /* We don't know how long the location list is, but make sure we
23147 don't run off the edge of the section. */
23148 baton->size = section->size - DW_UNSND (attr);
23149 baton->data = section->buffer + DW_UNSND (attr);
23150 if (cu->base_address.has_value ())
23151 baton->base_address = *cu->base_address;
23152 else
23153 baton->base_address = 0;
23154 baton->from_dwo = cu->dwo_unit != NULL;
23155 }
23156
23157 static void
23158 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
23159 struct dwarf2_cu *cu, int is_block)
23160 {
23161 struct dwarf2_per_objfile *dwarf2_per_objfile
23162 = cu->per_cu->dwarf2_per_objfile;
23163 struct objfile *objfile = dwarf2_per_objfile->objfile;
23164 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
23165
23166 if (attr->form_is_section_offset ()
23167 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
23168 the section. If so, fall through to the complaint in the
23169 other branch. */
23170 && DW_UNSND (attr) < section->get_size (objfile))
23171 {
23172 struct dwarf2_loclist_baton *baton;
23173
23174 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
23175
23176 fill_in_loclist_baton (cu, baton, attr);
23177
23178 if (!cu->base_address.has_value ())
23179 complaint (_("Location list used without "
23180 "specifying the CU base address."));
23181
23182 SYMBOL_ACLASS_INDEX (sym) = (is_block
23183 ? dwarf2_loclist_block_index
23184 : dwarf2_loclist_index);
23185 SYMBOL_LOCATION_BATON (sym) = baton;
23186 }
23187 else
23188 {
23189 struct dwarf2_locexpr_baton *baton;
23190
23191 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
23192 baton->per_cu = cu->per_cu;
23193 gdb_assert (baton->per_cu);
23194
23195 if (attr->form_is_block ())
23196 {
23197 /* Note that we're just copying the block's data pointer
23198 here, not the actual data. We're still pointing into the
23199 info_buffer for SYM's objfile; right now we never release
23200 that buffer, but when we do clean up properly this may
23201 need to change. */
23202 baton->size = DW_BLOCK (attr)->size;
23203 baton->data = DW_BLOCK (attr)->data;
23204 }
23205 else
23206 {
23207 dwarf2_invalid_attrib_class_complaint ("location description",
23208 sym->natural_name ());
23209 baton->size = 0;
23210 }
23211
23212 SYMBOL_ACLASS_INDEX (sym) = (is_block
23213 ? dwarf2_locexpr_block_index
23214 : dwarf2_locexpr_index);
23215 SYMBOL_LOCATION_BATON (sym) = baton;
23216 }
23217 }
23218
23219 /* See read.h. */
23220
23221 struct objfile *
23222 dwarf2_per_cu_data::objfile () const
23223 {
23224 struct objfile *objfile = dwarf2_per_objfile->objfile;
23225
23226 /* Return the master objfile, so that we can report and look up the
23227 correct file containing this variable. */
23228 if (objfile->separate_debug_objfile_backlink)
23229 objfile = objfile->separate_debug_objfile_backlink;
23230
23231 return objfile;
23232 }
23233
23234 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
23235 (CU_HEADERP is unused in such case) or prepare a temporary copy at
23236 CU_HEADERP first. */
23237
23238 static const struct comp_unit_head *
23239 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
23240 const struct dwarf2_per_cu_data *per_cu)
23241 {
23242 const gdb_byte *info_ptr;
23243
23244 if (per_cu->cu)
23245 return &per_cu->cu->header;
23246
23247 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
23248
23249 memset (cu_headerp, 0, sizeof (*cu_headerp));
23250 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
23251 rcuh_kind::COMPILE);
23252
23253 return cu_headerp;
23254 }
23255
23256 /* See read.h. */
23257
23258 int
23259 dwarf2_per_cu_data::addr_size () const
23260 {
23261 struct comp_unit_head cu_header_local;
23262 const struct comp_unit_head *cu_headerp;
23263
23264 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23265
23266 return cu_headerp->addr_size;
23267 }
23268
23269 /* See read.h. */
23270
23271 int
23272 dwarf2_per_cu_data::offset_size () const
23273 {
23274 struct comp_unit_head cu_header_local;
23275 const struct comp_unit_head *cu_headerp;
23276
23277 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23278
23279 return cu_headerp->offset_size;
23280 }
23281
23282 /* See read.h. */
23283
23284 int
23285 dwarf2_per_cu_data::ref_addr_size () const
23286 {
23287 struct comp_unit_head cu_header_local;
23288 const struct comp_unit_head *cu_headerp;
23289
23290 cu_headerp = per_cu_header_read_in (&cu_header_local, this);
23291
23292 if (cu_headerp->version == 2)
23293 return cu_headerp->addr_size;
23294 else
23295 return cu_headerp->offset_size;
23296 }
23297
23298 /* See read.h. */
23299
23300 CORE_ADDR
23301 dwarf2_per_cu_data::text_offset () const
23302 {
23303 struct objfile *objfile = dwarf2_per_objfile->objfile;
23304
23305 return objfile->text_section_offset ();
23306 }
23307
23308 /* See read.h. */
23309
23310 struct type *
23311 dwarf2_per_cu_data::addr_type () const
23312 {
23313 struct objfile *objfile = dwarf2_per_objfile->objfile;
23314 struct type *void_type = objfile_type (objfile)->builtin_void;
23315 struct type *addr_type = lookup_pointer_type (void_type);
23316 int addr_size = this->addr_size ();
23317
23318 if (TYPE_LENGTH (addr_type) == addr_size)
23319 return addr_type;
23320
23321 addr_type = addr_sized_int_type (TYPE_UNSIGNED (addr_type));
23322 return addr_type;
23323 }
23324
23325 /* A helper function for dwarf2_find_containing_comp_unit that returns
23326 the index of the result, and that searches a vector. It will
23327 return a result even if the offset in question does not actually
23328 occur in any CU. This is separate so that it can be unit
23329 tested. */
23330
23331 static int
23332 dwarf2_find_containing_comp_unit
23333 (sect_offset sect_off,
23334 unsigned int offset_in_dwz,
23335 const std::vector<dwarf2_per_cu_data *> &all_comp_units)
23336 {
23337 int low, high;
23338
23339 low = 0;
23340 high = all_comp_units.size () - 1;
23341 while (high > low)
23342 {
23343 struct dwarf2_per_cu_data *mid_cu;
23344 int mid = low + (high - low) / 2;
23345
23346 mid_cu = all_comp_units[mid];
23347 if (mid_cu->is_dwz > offset_in_dwz
23348 || (mid_cu->is_dwz == offset_in_dwz
23349 && mid_cu->sect_off + mid_cu->length > sect_off))
23350 high = mid;
23351 else
23352 low = mid + 1;
23353 }
23354 gdb_assert (low == high);
23355 return low;
23356 }
23357
23358 /* Locate the .debug_info compilation unit from CU's objfile which contains
23359 the DIE at OFFSET. Raises an error on failure. */
23360
23361 static struct dwarf2_per_cu_data *
23362 dwarf2_find_containing_comp_unit (sect_offset sect_off,
23363 unsigned int offset_in_dwz,
23364 struct dwarf2_per_objfile *dwarf2_per_objfile)
23365 {
23366 int low
23367 = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23368 dwarf2_per_objfile->all_comp_units);
23369 struct dwarf2_per_cu_data *this_cu
23370 = dwarf2_per_objfile->all_comp_units[low];
23371
23372 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
23373 {
23374 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
23375 error (_("Dwarf Error: could not find partial DIE containing "
23376 "offset %s [in module %s]"),
23377 sect_offset_str (sect_off),
23378 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
23379
23380 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
23381 <= sect_off);
23382 return dwarf2_per_objfile->all_comp_units[low-1];
23383 }
23384 else
23385 {
23386 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
23387 && sect_off >= this_cu->sect_off + this_cu->length)
23388 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
23389 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
23390 return this_cu;
23391 }
23392 }
23393
23394 #if GDB_SELF_TEST
23395
23396 namespace selftests {
23397 namespace find_containing_comp_unit {
23398
23399 static void
23400 run_test ()
23401 {
23402 struct dwarf2_per_cu_data one {};
23403 struct dwarf2_per_cu_data two {};
23404 struct dwarf2_per_cu_data three {};
23405 struct dwarf2_per_cu_data four {};
23406
23407 one.length = 5;
23408 two.sect_off = sect_offset (one.length);
23409 two.length = 7;
23410
23411 three.length = 5;
23412 three.is_dwz = 1;
23413 four.sect_off = sect_offset (three.length);
23414 four.length = 7;
23415 four.is_dwz = 1;
23416
23417 std::vector<dwarf2_per_cu_data *> units;
23418 units.push_back (&one);
23419 units.push_back (&two);
23420 units.push_back (&three);
23421 units.push_back (&four);
23422
23423 int result;
23424
23425 result = dwarf2_find_containing_comp_unit (sect_offset (0), 0, units);
23426 SELF_CHECK (units[result] == &one);
23427 result = dwarf2_find_containing_comp_unit (sect_offset (3), 0, units);
23428 SELF_CHECK (units[result] == &one);
23429 result = dwarf2_find_containing_comp_unit (sect_offset (5), 0, units);
23430 SELF_CHECK (units[result] == &two);
23431
23432 result = dwarf2_find_containing_comp_unit (sect_offset (0), 1, units);
23433 SELF_CHECK (units[result] == &three);
23434 result = dwarf2_find_containing_comp_unit (sect_offset (3), 1, units);
23435 SELF_CHECK (units[result] == &three);
23436 result = dwarf2_find_containing_comp_unit (sect_offset (5), 1, units);
23437 SELF_CHECK (units[result] == &four);
23438 }
23439
23440 }
23441 }
23442
23443 #endif /* GDB_SELF_TEST */
23444
23445 /* Initialize dwarf2_cu CU, owned by PER_CU. */
23446
23447 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
23448 : per_cu (per_cu_),
23449 mark (false),
23450 has_loclist (false),
23451 checked_producer (false),
23452 producer_is_gxx_lt_4_6 (false),
23453 producer_is_gcc_lt_4_3 (false),
23454 producer_is_icc (false),
23455 producer_is_icc_lt_14 (false),
23456 producer_is_codewarrior (false),
23457 processing_has_namespace_info (false)
23458 {
23459 per_cu->cu = this;
23460 }
23461
23462 /* Destroy a dwarf2_cu. */
23463
23464 dwarf2_cu::~dwarf2_cu ()
23465 {
23466 per_cu->cu = NULL;
23467 }
23468
23469 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
23470
23471 static void
23472 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
23473 enum language pretend_language)
23474 {
23475 struct attribute *attr;
23476
23477 /* Set the language we're debugging. */
23478 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
23479 if (attr != nullptr)
23480 set_cu_language (DW_UNSND (attr), cu);
23481 else
23482 {
23483 cu->language = pretend_language;
23484 cu->language_defn = language_def (cu->language);
23485 }
23486
23487 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
23488 }
23489
23490 /* Increase the age counter on each cached compilation unit, and free
23491 any that are too old. */
23492
23493 static void
23494 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
23495 {
23496 struct dwarf2_per_cu_data *per_cu, **last_chain;
23497
23498 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
23499 per_cu = dwarf2_per_objfile->read_in_chain;
23500 while (per_cu != NULL)
23501 {
23502 per_cu->cu->last_used ++;
23503 if (per_cu->cu->last_used <= dwarf_max_cache_age)
23504 dwarf2_mark (per_cu->cu);
23505 per_cu = per_cu->cu->read_in_chain;
23506 }
23507
23508 per_cu = dwarf2_per_objfile->read_in_chain;
23509 last_chain = &dwarf2_per_objfile->read_in_chain;
23510 while (per_cu != NULL)
23511 {
23512 struct dwarf2_per_cu_data *next_cu;
23513
23514 next_cu = per_cu->cu->read_in_chain;
23515
23516 if (!per_cu->cu->mark)
23517 {
23518 delete per_cu->cu;
23519 *last_chain = next_cu;
23520 }
23521 else
23522 last_chain = &per_cu->cu->read_in_chain;
23523
23524 per_cu = next_cu;
23525 }
23526 }
23527
23528 /* Remove a single compilation unit from the cache. */
23529
23530 static void
23531 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
23532 {
23533 struct dwarf2_per_cu_data *per_cu, **last_chain;
23534 struct dwarf2_per_objfile *dwarf2_per_objfile
23535 = target_per_cu->dwarf2_per_objfile;
23536
23537 per_cu = dwarf2_per_objfile->read_in_chain;
23538 last_chain = &dwarf2_per_objfile->read_in_chain;
23539 while (per_cu != NULL)
23540 {
23541 struct dwarf2_per_cu_data *next_cu;
23542
23543 next_cu = per_cu->cu->read_in_chain;
23544
23545 if (per_cu == target_per_cu)
23546 {
23547 delete per_cu->cu;
23548 per_cu->cu = NULL;
23549 *last_chain = next_cu;
23550 break;
23551 }
23552 else
23553 last_chain = &per_cu->cu->read_in_chain;
23554
23555 per_cu = next_cu;
23556 }
23557 }
23558
23559 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
23560 We store these in a hash table separate from the DIEs, and preserve them
23561 when the DIEs are flushed out of cache.
23562
23563 The CU "per_cu" pointer is needed because offset alone is not enough to
23564 uniquely identify the type. A file may have multiple .debug_types sections,
23565 or the type may come from a DWO file. Furthermore, while it's more logical
23566 to use per_cu->section+offset, with Fission the section with the data is in
23567 the DWO file but we don't know that section at the point we need it.
23568 We have to use something in dwarf2_per_cu_data (or the pointer to it)
23569 because we can enter the lookup routine, get_die_type_at_offset, from
23570 outside this file, and thus won't necessarily have PER_CU->cu.
23571 Fortunately, PER_CU is stable for the life of the objfile. */
23572
23573 struct dwarf2_per_cu_offset_and_type
23574 {
23575 const struct dwarf2_per_cu_data *per_cu;
23576 sect_offset sect_off;
23577 struct type *type;
23578 };
23579
23580 /* Hash function for a dwarf2_per_cu_offset_and_type. */
23581
23582 static hashval_t
23583 per_cu_offset_and_type_hash (const void *item)
23584 {
23585 const struct dwarf2_per_cu_offset_and_type *ofs
23586 = (const struct dwarf2_per_cu_offset_and_type *) item;
23587
23588 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
23589 }
23590
23591 /* Equality function for a dwarf2_per_cu_offset_and_type. */
23592
23593 static int
23594 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
23595 {
23596 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
23597 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
23598 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
23599 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
23600
23601 return (ofs_lhs->per_cu == ofs_rhs->per_cu
23602 && ofs_lhs->sect_off == ofs_rhs->sect_off);
23603 }
23604
23605 /* Set the type associated with DIE to TYPE. Save it in CU's hash
23606 table if necessary. For convenience, return TYPE.
23607
23608 The DIEs reading must have careful ordering to:
23609 * Not cause infinite loops trying to read in DIEs as a prerequisite for
23610 reading current DIE.
23611 * Not trying to dereference contents of still incompletely read in types
23612 while reading in other DIEs.
23613 * Enable referencing still incompletely read in types just by a pointer to
23614 the type without accessing its fields.
23615
23616 Therefore caller should follow these rules:
23617 * Try to fetch any prerequisite types we may need to build this DIE type
23618 before building the type and calling set_die_type.
23619 * After building type call set_die_type for current DIE as soon as
23620 possible before fetching more types to complete the current type.
23621 * Make the type as complete as possible before fetching more types. */
23622
23623 static struct type *
23624 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
23625 {
23626 struct dwarf2_per_objfile *dwarf2_per_objfile
23627 = cu->per_cu->dwarf2_per_objfile;
23628 struct dwarf2_per_cu_offset_and_type **slot, ofs;
23629 struct objfile *objfile = dwarf2_per_objfile->objfile;
23630 struct attribute *attr;
23631 struct dynamic_prop prop;
23632
23633 /* For Ada types, make sure that the gnat-specific data is always
23634 initialized (if not already set). There are a few types where
23635 we should not be doing so, because the type-specific area is
23636 already used to hold some other piece of info (eg: TYPE_CODE_FLT
23637 where the type-specific area is used to store the floatformat).
23638 But this is not a problem, because the gnat-specific information
23639 is actually not needed for these types. */
23640 if (need_gnat_info (cu)
23641 && type->code () != TYPE_CODE_FUNC
23642 && type->code () != TYPE_CODE_FLT
23643 && type->code () != TYPE_CODE_METHODPTR
23644 && type->code () != TYPE_CODE_MEMBERPTR
23645 && type->code () != TYPE_CODE_METHOD
23646 && !HAVE_GNAT_AUX_INFO (type))
23647 INIT_GNAT_SPECIFIC (type);
23648
23649 /* Read DW_AT_allocated and set in type. */
23650 attr = dwarf2_attr (die, DW_AT_allocated, cu);
23651 if (attr != NULL && attr->form_is_block ())
23652 {
23653 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23654 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23655 type->add_dyn_prop (DYN_PROP_ALLOCATED, prop);
23656 }
23657 else if (attr != NULL)
23658 {
23659 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
23660 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23661 sect_offset_str (die->sect_off));
23662 }
23663
23664 /* Read DW_AT_associated and set in type. */
23665 attr = dwarf2_attr (die, DW_AT_associated, cu);
23666 if (attr != NULL && attr->form_is_block ())
23667 {
23668 struct type *prop_type = cu->per_cu->addr_sized_int_type (false);
23669 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
23670 type->add_dyn_prop (DYN_PROP_ASSOCIATED, prop);
23671 }
23672 else if (attr != NULL)
23673 {
23674 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
23675 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
23676 sect_offset_str (die->sect_off));
23677 }
23678
23679 /* Read DW_AT_data_location and set in type. */
23680 attr = dwarf2_attr (die, DW_AT_data_location, cu);
23681 if (attr_to_dynamic_prop (attr, die, cu, &prop,
23682 cu->per_cu->addr_type ()))
23683 type->add_dyn_prop (DYN_PROP_DATA_LOCATION, prop);
23684
23685 if (dwarf2_per_objfile->die_type_hash == NULL)
23686 dwarf2_per_objfile->die_type_hash
23687 = htab_up (htab_create_alloc (127,
23688 per_cu_offset_and_type_hash,
23689 per_cu_offset_and_type_eq,
23690 NULL, xcalloc, xfree));
23691
23692 ofs.per_cu = cu->per_cu;
23693 ofs.sect_off = die->sect_off;
23694 ofs.type = type;
23695 slot = (struct dwarf2_per_cu_offset_and_type **)
23696 htab_find_slot (dwarf2_per_objfile->die_type_hash.get (), &ofs, INSERT);
23697 if (*slot)
23698 complaint (_("A problem internal to GDB: DIE %s has type already set"),
23699 sect_offset_str (die->sect_off));
23700 *slot = XOBNEW (&objfile->objfile_obstack,
23701 struct dwarf2_per_cu_offset_and_type);
23702 **slot = ofs;
23703 return type;
23704 }
23705
23706 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
23707 or return NULL if the die does not have a saved type. */
23708
23709 static struct type *
23710 get_die_type_at_offset (sect_offset sect_off,
23711 struct dwarf2_per_cu_data *per_cu)
23712 {
23713 struct dwarf2_per_cu_offset_and_type *slot, ofs;
23714 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23715
23716 if (dwarf2_per_objfile->die_type_hash == NULL)
23717 return NULL;
23718
23719 ofs.per_cu = per_cu;
23720 ofs.sect_off = sect_off;
23721 slot = ((struct dwarf2_per_cu_offset_and_type *)
23722 htab_find (dwarf2_per_objfile->die_type_hash.get (), &ofs));
23723 if (slot)
23724 return slot->type;
23725 else
23726 return NULL;
23727 }
23728
23729 /* Look up the type for DIE in CU in die_type_hash,
23730 or return NULL if DIE does not have a saved type. */
23731
23732 static struct type *
23733 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
23734 {
23735 return get_die_type_at_offset (die->sect_off, cu->per_cu);
23736 }
23737
23738 /* Add a dependence relationship from CU to REF_PER_CU. */
23739
23740 static void
23741 dwarf2_add_dependence (struct dwarf2_cu *cu,
23742 struct dwarf2_per_cu_data *ref_per_cu)
23743 {
23744 void **slot;
23745
23746 if (cu->dependencies == NULL)
23747 cu->dependencies
23748 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
23749 NULL, &cu->comp_unit_obstack,
23750 hashtab_obstack_allocate,
23751 dummy_obstack_deallocate);
23752
23753 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
23754 if (*slot == NULL)
23755 *slot = ref_per_cu;
23756 }
23757
23758 /* Subroutine of dwarf2_mark to pass to htab_traverse.
23759 Set the mark field in every compilation unit in the
23760 cache that we must keep because we are keeping CU. */
23761
23762 static int
23763 dwarf2_mark_helper (void **slot, void *data)
23764 {
23765 struct dwarf2_per_cu_data *per_cu;
23766
23767 per_cu = (struct dwarf2_per_cu_data *) *slot;
23768
23769 /* cu->dependencies references may not yet have been ever read if QUIT aborts
23770 reading of the chain. As such dependencies remain valid it is not much
23771 useful to track and undo them during QUIT cleanups. */
23772 if (per_cu->cu == NULL)
23773 return 1;
23774
23775 if (per_cu->cu->mark)
23776 return 1;
23777 per_cu->cu->mark = true;
23778
23779 if (per_cu->cu->dependencies != NULL)
23780 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
23781
23782 return 1;
23783 }
23784
23785 /* Set the mark field in CU and in every other compilation unit in the
23786 cache that we must keep because we are keeping CU. */
23787
23788 static void
23789 dwarf2_mark (struct dwarf2_cu *cu)
23790 {
23791 if (cu->mark)
23792 return;
23793 cu->mark = true;
23794 if (cu->dependencies != NULL)
23795 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
23796 }
23797
23798 static void
23799 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
23800 {
23801 while (per_cu)
23802 {
23803 per_cu->cu->mark = false;
23804 per_cu = per_cu->cu->read_in_chain;
23805 }
23806 }
23807
23808 /* Trivial hash function for partial_die_info: the hash value of a DIE
23809 is its offset in .debug_info for this objfile. */
23810
23811 static hashval_t
23812 partial_die_hash (const void *item)
23813 {
23814 const struct partial_die_info *part_die
23815 = (const struct partial_die_info *) item;
23816
23817 return to_underlying (part_die->sect_off);
23818 }
23819
23820 /* Trivial comparison function for partial_die_info structures: two DIEs
23821 are equal if they have the same offset. */
23822
23823 static int
23824 partial_die_eq (const void *item_lhs, const void *item_rhs)
23825 {
23826 const struct partial_die_info *part_die_lhs
23827 = (const struct partial_die_info *) item_lhs;
23828 const struct partial_die_info *part_die_rhs
23829 = (const struct partial_die_info *) item_rhs;
23830
23831 return part_die_lhs->sect_off == part_die_rhs->sect_off;
23832 }
23833
23834 struct cmd_list_element *set_dwarf_cmdlist;
23835 struct cmd_list_element *show_dwarf_cmdlist;
23836
23837 static void
23838 show_check_physname (struct ui_file *file, int from_tty,
23839 struct cmd_list_element *c, const char *value)
23840 {
23841 fprintf_filtered (file,
23842 _("Whether to check \"physname\" is %s.\n"),
23843 value);
23844 }
23845
23846 void _initialize_dwarf2_read ();
23847 void
23848 _initialize_dwarf2_read ()
23849 {
23850 add_basic_prefix_cmd ("dwarf", class_maintenance, _("\
23851 Set DWARF specific variables.\n\
23852 Configure DWARF variables such as the cache size."),
23853 &set_dwarf_cmdlist, "maintenance set dwarf ",
23854 0/*allow-unknown*/, &maintenance_set_cmdlist);
23855
23856 add_show_prefix_cmd ("dwarf", class_maintenance, _("\
23857 Show DWARF specific variables.\n\
23858 Show DWARF variables such as the cache size."),
23859 &show_dwarf_cmdlist, "maintenance show dwarf ",
23860 0/*allow-unknown*/, &maintenance_show_cmdlist);
23861
23862 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
23863 &dwarf_max_cache_age, _("\
23864 Set the upper bound on the age of cached DWARF compilation units."), _("\
23865 Show the upper bound on the age of cached DWARF compilation units."), _("\
23866 A higher limit means that cached compilation units will be stored\n\
23867 in memory longer, and more total memory will be used. Zero disables\n\
23868 caching, which can slow down startup."),
23869 NULL,
23870 show_dwarf_max_cache_age,
23871 &set_dwarf_cmdlist,
23872 &show_dwarf_cmdlist);
23873
23874 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
23875 Set debugging of the DWARF reader."), _("\
23876 Show debugging of the DWARF reader."), _("\
23877 When enabled (non-zero), debugging messages are printed during DWARF\n\
23878 reading and symtab expansion. A value of 1 (one) provides basic\n\
23879 information. A value greater than 1 provides more verbose information."),
23880 NULL,
23881 NULL,
23882 &setdebuglist, &showdebuglist);
23883
23884 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
23885 Set debugging of the DWARF DIE reader."), _("\
23886 Show debugging of the DWARF DIE reader."), _("\
23887 When enabled (non-zero), DIEs are dumped after they are read in.\n\
23888 The value is the maximum depth to print."),
23889 NULL,
23890 NULL,
23891 &setdebuglist, &showdebuglist);
23892
23893 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
23894 Set debugging of the dwarf line reader."), _("\
23895 Show debugging of the dwarf line reader."), _("\
23896 When enabled (non-zero), line number entries are dumped as they are read in.\n\
23897 A value of 1 (one) provides basic information.\n\
23898 A value greater than 1 provides more verbose information."),
23899 NULL,
23900 NULL,
23901 &setdebuglist, &showdebuglist);
23902
23903 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
23904 Set cross-checking of \"physname\" code against demangler."), _("\
23905 Show cross-checking of \"physname\" code against demangler."), _("\
23906 When enabled, GDB's internal \"physname\" code is checked against\n\
23907 the demangler."),
23908 NULL, show_check_physname,
23909 &setdebuglist, &showdebuglist);
23910
23911 add_setshow_boolean_cmd ("use-deprecated-index-sections",
23912 no_class, &use_deprecated_index_sections, _("\
23913 Set whether to use deprecated gdb_index sections."), _("\
23914 Show whether to use deprecated gdb_index sections."), _("\
23915 When enabled, deprecated .gdb_index sections are used anyway.\n\
23916 Normally they are ignored either because of a missing feature or\n\
23917 performance issue.\n\
23918 Warning: This option must be enabled before gdb reads the file."),
23919 NULL,
23920 NULL,
23921 &setlist, &showlist);
23922
23923 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
23924 &dwarf2_locexpr_funcs);
23925 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
23926 &dwarf2_loclist_funcs);
23927
23928 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
23929 &dwarf2_block_frame_base_locexpr_funcs);
23930 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
23931 &dwarf2_block_frame_base_loclist_funcs);
23932
23933 #if GDB_SELF_TEST
23934 selftests::register_test ("dw2_expand_symtabs_matching",
23935 selftests::dw2_expand_symtabs_matching::run_test);
23936 selftests::register_test ("dwarf2_find_containing_comp_unit",
23937 selftests::find_containing_comp_unit::run_test);
23938 #endif
23939 }