]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/dwarfread.c
cec763a1c7bd5f0035fa6655b2ef415c630d794e
[thirdparty/binutils-gdb.git] / gdb / dwarfread.c
1 /* DWARF debugging format support for GDB.
2 Copyright (C) 1991, 1992, 1993, 1994, 1995, 1996
3 Free Software Foundation, Inc.
4 Written by Fred Fish at Cygnus Support. Portions based on dbxread.c,
5 mipsread.c, coffread.c, and dwarfread.c from a Data General SVR4 gdb port.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
22
23 /*
24
25 FIXME: Do we need to generate dependencies in partial symtabs?
26 (Perhaps we don't need to).
27
28 FIXME: Resolve minor differences between what information we put in the
29 partial symbol table and what dbxread puts in. For example, we don't yet
30 put enum constants there. And dbxread seems to invent a lot of typedefs
31 we never see. Use the new printpsym command to see the partial symbol table
32 contents.
33
34 FIXME: Figure out a better way to tell gdb about the name of the function
35 contain the user's entry point (I.E. main())
36
37 FIXME: See other FIXME's and "ifdef 0" scattered throughout the code for
38 other things to work on, if you get bored. :-)
39
40 */
41
42 #include "defs.h"
43 #include "symtab.h"
44 #include "gdbtypes.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "elf/dwarf.h"
48 #include "buildsym.h"
49 #include "demangle.h"
50 #include "expression.h" /* Needed for enum exp_opcode in language.h, sigh... */
51 #include "language.h"
52 #include "complaints.h"
53
54 #include <fcntl.h>
55 #include "gdb_string.h"
56
57 /* Some macros to provide DIE info for complaints. */
58
59 #define DIE_ID (curdie!=NULL ? curdie->die_ref : 0)
60 #define DIE_NAME (curdie!=NULL && curdie->at_name!=NULL) ? curdie->at_name : ""
61
62 /* Complaints that can be issued during DWARF debug info reading. */
63
64 struct complaint no_bfd_get_N =
65 {
66 "DIE @ 0x%x \"%s\", no bfd support for %d byte data object", 0, 0
67 };
68
69 struct complaint malformed_die =
70 {
71 "DIE @ 0x%x \"%s\", malformed DIE, bad length (%d bytes)", 0, 0
72 };
73
74 struct complaint bad_die_ref =
75 {
76 "DIE @ 0x%x \"%s\", reference to DIE (0x%x) outside compilation unit", 0, 0
77 };
78
79 struct complaint unknown_attribute_form =
80 {
81 "DIE @ 0x%x \"%s\", unknown attribute form (0x%x)", 0, 0
82 };
83
84 struct complaint unknown_attribute_length =
85 {
86 "DIE @ 0x%x \"%s\", unknown attribute length, skipped remaining attributes", 0, 0
87 };
88
89 struct complaint unexpected_fund_type =
90 {
91 "DIE @ 0x%x \"%s\", unexpected fundamental type 0x%x", 0, 0
92 };
93
94 struct complaint unknown_type_modifier =
95 {
96 "DIE @ 0x%x \"%s\", unknown type modifier %u", 0, 0
97 };
98
99 struct complaint volatile_ignored =
100 {
101 "DIE @ 0x%x \"%s\", type modifier 'volatile' ignored", 0, 0
102 };
103
104 struct complaint const_ignored =
105 {
106 "DIE @ 0x%x \"%s\", type modifier 'const' ignored", 0, 0
107 };
108
109 struct complaint botched_modified_type =
110 {
111 "DIE @ 0x%x \"%s\", botched modified type decoding (mtype 0x%x)", 0, 0
112 };
113
114 struct complaint op_deref2 =
115 {
116 "DIE @ 0x%x \"%s\", OP_DEREF2 address 0x%x not handled", 0, 0
117 };
118
119 struct complaint op_deref4 =
120 {
121 "DIE @ 0x%x \"%s\", OP_DEREF4 address 0x%x not handled", 0, 0
122 };
123
124 struct complaint basereg_not_handled =
125 {
126 "DIE @ 0x%x \"%s\", BASEREG %d not handled", 0, 0
127 };
128
129 struct complaint dup_user_type_allocation =
130 {
131 "DIE @ 0x%x \"%s\", internal error: duplicate user type allocation", 0, 0
132 };
133
134 struct complaint dup_user_type_definition =
135 {
136 "DIE @ 0x%x \"%s\", internal error: duplicate user type definition", 0, 0
137 };
138
139 struct complaint missing_tag =
140 {
141 "DIE @ 0x%x \"%s\", missing class, structure, or union tag", 0, 0
142 };
143
144 struct complaint bad_array_element_type =
145 {
146 "DIE @ 0x%x \"%s\", bad array element type attribute 0x%x", 0, 0
147 };
148
149 struct complaint subscript_data_items =
150 {
151 "DIE @ 0x%x \"%s\", can't decode subscript data items", 0, 0
152 };
153
154 struct complaint unhandled_array_subscript_format =
155 {
156 "DIE @ 0x%x \"%s\", array subscript format 0x%x not handled yet", 0, 0
157 };
158
159 struct complaint unknown_array_subscript_format =
160 {
161 "DIE @ 0x%x \"%s\", unknown array subscript format %x", 0, 0
162 };
163
164 struct complaint not_row_major =
165 {
166 "DIE @ 0x%x \"%s\", array not row major; not handled correctly", 0, 0
167 };
168
169 struct complaint missing_at_name =
170 {
171 "DIE @ 0x%x, AT_name tag missing", 0, 0
172 };
173
174 typedef unsigned int DIE_REF; /* Reference to a DIE */
175
176 #ifndef GCC_PRODUCER
177 #define GCC_PRODUCER "GNU C "
178 #endif
179
180 #ifndef GPLUS_PRODUCER
181 #define GPLUS_PRODUCER "GNU C++ "
182 #endif
183
184 #ifndef LCC_PRODUCER
185 #define LCC_PRODUCER "NCR C/C++"
186 #endif
187
188 #ifndef CHILL_PRODUCER
189 #define CHILL_PRODUCER "GNU Chill "
190 #endif
191
192 /* Provide a default mapping from a DWARF register number to a gdb REGNUM. */
193 #ifndef DWARF_REG_TO_REGNUM
194 #define DWARF_REG_TO_REGNUM(num) (num)
195 #endif
196
197 /* Flags to target_to_host() that tell whether or not the data object is
198 expected to be signed. Used, for example, when fetching a signed
199 integer in the target environment which is used as a signed integer
200 in the host environment, and the two environments have different sized
201 ints. In this case, *somebody* has to sign extend the smaller sized
202 int. */
203
204 #define GET_UNSIGNED 0 /* No sign extension required */
205 #define GET_SIGNED 1 /* Sign extension required */
206
207 /* Defines for things which are specified in the document "DWARF Debugging
208 Information Format" published by UNIX International, Programming Languages
209 SIG. These defines are based on revision 1.0.0, Jan 20, 1992. */
210
211 #define SIZEOF_DIE_LENGTH 4
212 #define SIZEOF_DIE_TAG 2
213 #define SIZEOF_ATTRIBUTE 2
214 #define SIZEOF_FORMAT_SPECIFIER 1
215 #define SIZEOF_FMT_FT 2
216 #define SIZEOF_LINETBL_LENGTH 4
217 #define SIZEOF_LINETBL_LINENO 4
218 #define SIZEOF_LINETBL_STMT 2
219 #define SIZEOF_LINETBL_DELTA 4
220 #define SIZEOF_LOC_ATOM_CODE 1
221
222 #define FORM_FROM_ATTR(attr) ((attr) & 0xF) /* Implicitly specified */
223
224 /* Macros that return the sizes of various types of data in the target
225 environment.
226
227 FIXME: Currently these are just compile time constants (as they are in
228 other parts of gdb as well). They need to be able to get the right size
229 either from the bfd or possibly from the DWARF info. It would be nice if
230 the DWARF producer inserted DIES that describe the fundamental types in
231 the target environment into the DWARF info, similar to the way dbx stabs
232 producers produce information about their fundamental types. */
233
234 #define TARGET_FT_POINTER_SIZE(objfile) (TARGET_PTR_BIT / TARGET_CHAR_BIT)
235 #define TARGET_FT_LONG_SIZE(objfile) (TARGET_LONG_BIT / TARGET_CHAR_BIT)
236
237 /* The Amiga SVR4 header file <dwarf.h> defines AT_element_list as a
238 FORM_BLOCK2, and this is the value emitted by the AT&T compiler.
239 However, the Issue 2 DWARF specification from AT&T defines it as
240 a FORM_BLOCK4, as does the latest specification from UI/PLSIG.
241 For backwards compatibility with the AT&T compiler produced executables
242 we define AT_short_element_list for this variant. */
243
244 #define AT_short_element_list (0x00f0|FORM_BLOCK2)
245
246 /* External variables referenced. */
247
248 extern int info_verbose; /* From main.c; nonzero => verbose */
249 extern char *warning_pre_print; /* From utils.c */
250
251 /* The DWARF debugging information consists of two major pieces,
252 one is a block of DWARF Information Entries (DIE's) and the other
253 is a line number table. The "struct dieinfo" structure contains
254 the information for a single DIE, the one currently being processed.
255
256 In order to make it easier to randomly access the attribute fields
257 of the current DIE, which are specifically unordered within the DIE,
258 each DIE is scanned and an instance of the "struct dieinfo"
259 structure is initialized.
260
261 Initialization is done in two levels. The first, done by basicdieinfo(),
262 just initializes those fields that are vital to deciding whether or not
263 to use this DIE, how to skip past it, etc. The second, done by the
264 function completedieinfo(), fills in the rest of the information.
265
266 Attributes which have block forms are not interpreted at the time
267 the DIE is scanned, instead we just save pointers to the start
268 of their value fields.
269
270 Some fields have a flag <name>_p that is set when the value of the
271 field is valid (I.E. we found a matching attribute in the DIE). Since
272 we may want to test for the presence of some attributes in the DIE,
273 such as AT_low_pc, without restricting the values of the field,
274 we need someway to note that we found such an attribute.
275
276 */
277
278 typedef char BLOCK;
279
280 struct dieinfo {
281 char * die; /* Pointer to the raw DIE data */
282 unsigned long die_length; /* Length of the raw DIE data */
283 DIE_REF die_ref; /* Offset of this DIE */
284 unsigned short die_tag; /* Tag for this DIE */
285 unsigned long at_padding;
286 unsigned long at_sibling;
287 BLOCK * at_location;
288 char * at_name;
289 unsigned short at_fund_type;
290 BLOCK * at_mod_fund_type;
291 unsigned long at_user_def_type;
292 BLOCK * at_mod_u_d_type;
293 unsigned short at_ordering;
294 BLOCK * at_subscr_data;
295 unsigned long at_byte_size;
296 unsigned short at_bit_offset;
297 unsigned long at_bit_size;
298 BLOCK * at_element_list;
299 unsigned long at_stmt_list;
300 CORE_ADDR at_low_pc;
301 CORE_ADDR at_high_pc;
302 unsigned long at_language;
303 unsigned long at_member;
304 unsigned long at_discr;
305 BLOCK * at_discr_value;
306 BLOCK * at_string_length;
307 char * at_comp_dir;
308 char * at_producer;
309 unsigned long at_start_scope;
310 unsigned long at_stride_size;
311 unsigned long at_src_info;
312 char * at_prototyped;
313 unsigned int has_at_low_pc:1;
314 unsigned int has_at_stmt_list:1;
315 unsigned int has_at_byte_size:1;
316 unsigned int short_element_list:1;
317
318 /* Kludge to identify register variables */
319
320 unsigned int isreg;
321
322 /* Kludge to identify optimized out variables */
323
324 unsigned int optimized_out;
325
326 /* Kludge to identify basereg references.
327 Nonzero if we have an offset relative to a basereg. */
328
329 unsigned int offreg;
330
331 /* Kludge to identify which base register is it relative to. */
332
333 unsigned int basereg;
334 };
335
336 static int diecount; /* Approximate count of dies for compilation unit */
337 static struct dieinfo *curdie; /* For warnings and such */
338
339 static char *dbbase; /* Base pointer to dwarf info */
340 static int dbsize; /* Size of dwarf info in bytes */
341 static int dbroff; /* Relative offset from start of .debug section */
342 static char *lnbase; /* Base pointer to line section */
343
344 /* This value is added to each symbol value. FIXME: Generalize to
345 the section_offsets structure used by dbxread (once this is done,
346 pass the appropriate section number to end_symtab). */
347 static CORE_ADDR baseaddr; /* Add to each symbol value */
348
349 /* The section offsets used in the current psymtab or symtab. FIXME,
350 only used to pass one value (baseaddr) at the moment. */
351 static struct section_offsets *base_section_offsets;
352
353 /* We put a pointer to this structure in the read_symtab_private field
354 of the psymtab. */
355
356 struct dwfinfo {
357 /* Always the absolute file offset to the start of the ".debug"
358 section for the file containing the DIE's being accessed. */
359 file_ptr dbfoff;
360 /* Relative offset from the start of the ".debug" section to the
361 first DIE to be accessed. When building the partial symbol
362 table, this value will be zero since we are accessing the
363 entire ".debug" section. When expanding a partial symbol
364 table entry, this value will be the offset to the first
365 DIE for the compilation unit containing the symbol that
366 triggers the expansion. */
367 int dbroff;
368 /* The size of the chunk of DIE's being examined, in bytes. */
369 int dblength;
370 /* The absolute file offset to the line table fragment. Ignored
371 when building partial symbol tables, but used when expanding
372 them, and contains the absolute file offset to the fragment
373 of the ".line" section containing the line numbers for the
374 current compilation unit. */
375 file_ptr lnfoff;
376 };
377
378 #define DBFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbfoff)
379 #define DBROFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->dbroff)
380 #define DBLENGTH(p) (((struct dwfinfo *)((p)->read_symtab_private))->dblength)
381 #define LNFOFF(p) (((struct dwfinfo *)((p)->read_symtab_private))->lnfoff)
382
383 /* The generic symbol table building routines have separate lists for
384 file scope symbols and all all other scopes (local scopes). So
385 we need to select the right one to pass to add_symbol_to_list().
386 We do it by keeping a pointer to the correct list in list_in_scope.
387
388 FIXME: The original dwarf code just treated the file scope as the first
389 local scope, and all other local scopes as nested local scopes, and worked
390 fine. Check to see if we really need to distinguish these in buildsym.c */
391
392 struct pending **list_in_scope = &file_symbols;
393
394 /* DIES which have user defined types or modified user defined types refer to
395 other DIES for the type information. Thus we need to associate the offset
396 of a DIE for a user defined type with a pointer to the type information.
397
398 Originally this was done using a simple but expensive algorithm, with an
399 array of unsorted structures, each containing an offset/type-pointer pair.
400 This array was scanned linearly each time a lookup was done. The result
401 was that gdb was spending over half it's startup time munging through this
402 array of pointers looking for a structure that had the right offset member.
403
404 The second attempt used the same array of structures, but the array was
405 sorted using qsort each time a new offset/type was recorded, and a binary
406 search was used to find the type pointer for a given DIE offset. This was
407 even slower, due to the overhead of sorting the array each time a new
408 offset/type pair was entered.
409
410 The third attempt uses a fixed size array of type pointers, indexed by a
411 value derived from the DIE offset. Since the minimum DIE size is 4 bytes,
412 we can divide any DIE offset by 4 to obtain a unique index into this fixed
413 size array. Since each element is a 4 byte pointer, it takes exactly as
414 much memory to hold this array as to hold the DWARF info for a given
415 compilation unit. But it gets freed as soon as we are done with it.
416 This has worked well in practice, as a reasonable tradeoff between memory
417 consumption and speed, without having to resort to much more complicated
418 algorithms. */
419
420 static struct type **utypes; /* Pointer to array of user type pointers */
421 static int numutypes; /* Max number of user type pointers */
422
423 /* Maintain an array of referenced fundamental types for the current
424 compilation unit being read. For DWARF version 1, we have to construct
425 the fundamental types on the fly, since no information about the
426 fundamental types is supplied. Each such fundamental type is created by
427 calling a language dependent routine to create the type, and then a
428 pointer to that type is then placed in the array at the index specified
429 by it's FT_<TYPENAME> value. The array has a fixed size set by the
430 FT_NUM_MEMBERS compile time constant, which is the number of predefined
431 fundamental types gdb knows how to construct. */
432
433 static struct type *ftypes[FT_NUM_MEMBERS]; /* Fundamental types */
434
435 /* Record the language for the compilation unit which is currently being
436 processed. We know it once we have seen the TAG_compile_unit DIE,
437 and we need it while processing the DIE's for that compilation unit.
438 It is eventually saved in the symtab structure, but we don't finalize
439 the symtab struct until we have processed all the DIE's for the
440 compilation unit. We also need to get and save a pointer to the
441 language struct for this language, so we can call the language
442 dependent routines for doing things such as creating fundamental
443 types. */
444
445 static enum language cu_language;
446 static const struct language_defn *cu_language_defn;
447
448 /* Forward declarations of static functions so we don't have to worry
449 about ordering within this file. */
450
451 static void
452 free_utypes PARAMS ((PTR));
453
454 static int
455 attribute_size PARAMS ((unsigned int));
456
457 static CORE_ADDR
458 target_to_host PARAMS ((char *, int, int, struct objfile *));
459
460 static void
461 add_enum_psymbol PARAMS ((struct dieinfo *, struct objfile *));
462
463 static void
464 handle_producer PARAMS ((char *));
465
466 static void
467 read_file_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
468
469 static void
470 read_func_scope PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
471
472 static void
473 read_lexical_block_scope PARAMS ((struct dieinfo *, char *, char *,
474 struct objfile *));
475
476 static void
477 scan_partial_symbols PARAMS ((char *, char *, struct objfile *));
478
479 static void
480 scan_compilation_units PARAMS ((char *, char *, file_ptr,
481 file_ptr, struct objfile *));
482
483 static void
484 add_partial_symbol PARAMS ((struct dieinfo *, struct objfile *));
485
486 static void
487 basicdieinfo PARAMS ((struct dieinfo *, char *, struct objfile *));
488
489 static void
490 completedieinfo PARAMS ((struct dieinfo *, struct objfile *));
491
492 static void
493 dwarf_psymtab_to_symtab PARAMS ((struct partial_symtab *));
494
495 static void
496 psymtab_to_symtab_1 PARAMS ((struct partial_symtab *));
497
498 static void
499 read_ofile_symtab PARAMS ((struct partial_symtab *));
500
501 static void
502 process_dies PARAMS ((char *, char *, struct objfile *));
503
504 static void
505 read_structure_scope PARAMS ((struct dieinfo *, char *, char *,
506 struct objfile *));
507
508 static struct type *
509 decode_array_element_type PARAMS ((char *));
510
511 static struct type *
512 decode_subscript_data_item PARAMS ((char *, char *));
513
514 static void
515 dwarf_read_array_type PARAMS ((struct dieinfo *));
516
517 static void
518 read_tag_pointer_type PARAMS ((struct dieinfo *dip));
519
520 static void
521 read_tag_string_type PARAMS ((struct dieinfo *dip));
522
523 static void
524 read_subroutine_type PARAMS ((struct dieinfo *, char *, char *));
525
526 static void
527 read_enumeration PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
528
529 static struct type *
530 struct_type PARAMS ((struct dieinfo *, char *, char *, struct objfile *));
531
532 static struct type *
533 enum_type PARAMS ((struct dieinfo *, struct objfile *));
534
535 static void
536 decode_line_numbers PARAMS ((char *));
537
538 static struct type *
539 decode_die_type PARAMS ((struct dieinfo *));
540
541 static struct type *
542 decode_mod_fund_type PARAMS ((char *));
543
544 static struct type *
545 decode_mod_u_d_type PARAMS ((char *));
546
547 static struct type *
548 decode_modified_type PARAMS ((char *, unsigned int, int));
549
550 static struct type *
551 decode_fund_type PARAMS ((unsigned int));
552
553 static char *
554 create_name PARAMS ((char *, struct obstack *));
555
556 static struct type *
557 lookup_utype PARAMS ((DIE_REF));
558
559 static struct type *
560 alloc_utype PARAMS ((DIE_REF, struct type *));
561
562 static struct symbol *
563 new_symbol PARAMS ((struct dieinfo *, struct objfile *));
564
565 static void
566 synthesize_typedef PARAMS ((struct dieinfo *, struct objfile *,
567 struct type *));
568
569 static int
570 locval PARAMS ((struct dieinfo *));
571
572 static void
573 set_cu_language PARAMS ((struct dieinfo *));
574
575 static struct type *
576 dwarf_fundamental_type PARAMS ((struct objfile *, int));
577
578
579 /*
580
581 LOCAL FUNCTION
582
583 dwarf_fundamental_type -- lookup or create a fundamental type
584
585 SYNOPSIS
586
587 struct type *
588 dwarf_fundamental_type (struct objfile *objfile, int typeid)
589
590 DESCRIPTION
591
592 DWARF version 1 doesn't supply any fundamental type information,
593 so gdb has to construct such types. It has a fixed number of
594 fundamental types that it knows how to construct, which is the
595 union of all types that it knows how to construct for all languages
596 that it knows about. These are enumerated in gdbtypes.h.
597
598 As an example, assume we find a DIE that references a DWARF
599 fundamental type of FT_integer. We first look in the ftypes
600 array to see if we already have such a type, indexed by the
601 gdb internal value of FT_INTEGER. If so, we simply return a
602 pointer to that type. If not, then we ask an appropriate
603 language dependent routine to create a type FT_INTEGER, using
604 defaults reasonable for the current target machine, and install
605 that type in ftypes for future reference.
606
607 RETURNS
608
609 Pointer to a fundamental type.
610
611 */
612
613 static struct type *
614 dwarf_fundamental_type (objfile, typeid)
615 struct objfile *objfile;
616 int typeid;
617 {
618 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
619 {
620 error ("internal error - invalid fundamental type id %d", typeid);
621 }
622
623 /* Look for this particular type in the fundamental type vector. If one is
624 not found, create and install one appropriate for the current language
625 and the current target machine. */
626
627 if (ftypes[typeid] == NULL)
628 {
629 ftypes[typeid] = cu_language_defn -> la_fund_type(objfile, typeid);
630 }
631
632 return (ftypes[typeid]);
633 }
634
635 /*
636
637 LOCAL FUNCTION
638
639 set_cu_language -- set local copy of language for compilation unit
640
641 SYNOPSIS
642
643 void
644 set_cu_language (struct dieinfo *dip)
645
646 DESCRIPTION
647
648 Decode the language attribute for a compilation unit DIE and
649 remember what the language was. We use this at various times
650 when processing DIE's for a given compilation unit.
651
652 RETURNS
653
654 No return value.
655
656 */
657
658 static void
659 set_cu_language (dip)
660 struct dieinfo *dip;
661 {
662 switch (dip -> at_language)
663 {
664 case LANG_C89:
665 case LANG_C:
666 cu_language = language_c;
667 break;
668 case LANG_C_PLUS_PLUS:
669 cu_language = language_cplus;
670 break;
671 case LANG_CHILL:
672 cu_language = language_chill;
673 break;
674 case LANG_MODULA2:
675 cu_language = language_m2;
676 break;
677 case LANG_ADA83:
678 case LANG_COBOL74:
679 case LANG_COBOL85:
680 case LANG_FORTRAN77:
681 case LANG_FORTRAN90:
682 case LANG_PASCAL83:
683 /* We don't know anything special about these yet. */
684 cu_language = language_unknown;
685 break;
686 default:
687 /* If no at_language, try to deduce one from the filename */
688 cu_language = deduce_language_from_filename (dip -> at_name);
689 break;
690 }
691 cu_language_defn = language_def (cu_language);
692 }
693
694 /*
695
696 GLOBAL FUNCTION
697
698 dwarf_build_psymtabs -- build partial symtabs from DWARF debug info
699
700 SYNOPSIS
701
702 void dwarf_build_psymtabs (struct objfile *objfile,
703 struct section_offsets *section_offsets,
704 int mainline, file_ptr dbfoff, unsigned int dbfsize,
705 file_ptr lnoffset, unsigned int lnsize)
706
707 DESCRIPTION
708
709 This function is called upon to build partial symtabs from files
710 containing DIE's (Dwarf Information Entries) and DWARF line numbers.
711
712 It is passed a bfd* containing the DIES
713 and line number information, the corresponding filename for that
714 file, a base address for relocating the symbols, a flag indicating
715 whether or not this debugging information is from a "main symbol
716 table" rather than a shared library or dynamically linked file,
717 and file offset/size pairs for the DIE information and line number
718 information.
719
720 RETURNS
721
722 No return value.
723
724 */
725
726 void
727 dwarf_build_psymtabs (objfile, section_offsets, mainline, dbfoff, dbfsize,
728 lnoffset, lnsize)
729 struct objfile *objfile;
730 struct section_offsets *section_offsets;
731 int mainline;
732 file_ptr dbfoff;
733 unsigned int dbfsize;
734 file_ptr lnoffset;
735 unsigned int lnsize;
736 {
737 bfd *abfd = objfile->obfd;
738 struct cleanup *back_to;
739
740 current_objfile = objfile;
741 dbsize = dbfsize;
742 dbbase = xmalloc (dbsize);
743 dbroff = 0;
744 if ((bfd_seek (abfd, dbfoff, SEEK_SET) != 0) ||
745 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
746 {
747 free (dbbase);
748 error ("can't read DWARF data from '%s'", bfd_get_filename (abfd));
749 }
750 back_to = make_cleanup (free, dbbase);
751
752 /* If we are reinitializing, or if we have never loaded syms yet, init.
753 Since we have no idea how many DIES we are looking at, we just guess
754 some arbitrary value. */
755
756 if (mainline || objfile -> global_psymbols.size == 0 ||
757 objfile -> static_psymbols.size == 0)
758 {
759 init_psymbol_list (objfile, 1024);
760 }
761
762 /* Save the relocation factor where everybody can see it. */
763
764 base_section_offsets = section_offsets;
765 baseaddr = ANOFFSET (section_offsets, 0);
766
767 /* Follow the compilation unit sibling chain, building a partial symbol
768 table entry for each one. Save enough information about each compilation
769 unit to locate the full DWARF information later. */
770
771 scan_compilation_units (dbbase, dbbase + dbsize, dbfoff, lnoffset, objfile);
772
773 do_cleanups (back_to);
774 current_objfile = NULL;
775 }
776
777 /*
778
779 LOCAL FUNCTION
780
781 read_lexical_block_scope -- process all dies in a lexical block
782
783 SYNOPSIS
784
785 static void read_lexical_block_scope (struct dieinfo *dip,
786 char *thisdie, char *enddie)
787
788 DESCRIPTION
789
790 Process all the DIES contained within a lexical block scope.
791 Start a new scope, process the dies, and then close the scope.
792
793 */
794
795 static void
796 read_lexical_block_scope (dip, thisdie, enddie, objfile)
797 struct dieinfo *dip;
798 char *thisdie;
799 char *enddie;
800 struct objfile *objfile;
801 {
802 register struct context_stack *new;
803
804 push_context (0, dip -> at_low_pc);
805 process_dies (thisdie + dip -> die_length, enddie, objfile);
806 new = pop_context ();
807 if (local_symbols != NULL)
808 {
809 finish_block (0, &local_symbols, new -> old_blocks, new -> start_addr,
810 dip -> at_high_pc, objfile);
811 }
812 local_symbols = new -> locals;
813 }
814
815 /*
816
817 LOCAL FUNCTION
818
819 lookup_utype -- look up a user defined type from die reference
820
821 SYNOPSIS
822
823 static type *lookup_utype (DIE_REF die_ref)
824
825 DESCRIPTION
826
827 Given a DIE reference, lookup the user defined type associated with
828 that DIE, if it has been registered already. If not registered, then
829 return NULL. Alloc_utype() can be called to register an empty
830 type for this reference, which will be filled in later when the
831 actual referenced DIE is processed.
832 */
833
834 static struct type *
835 lookup_utype (die_ref)
836 DIE_REF die_ref;
837 {
838 struct type *type = NULL;
839 int utypeidx;
840
841 utypeidx = (die_ref - dbroff) / 4;
842 if ((utypeidx < 0) || (utypeidx >= numutypes))
843 {
844 complain (&bad_die_ref, DIE_ID, DIE_NAME);
845 }
846 else
847 {
848 type = *(utypes + utypeidx);
849 }
850 return (type);
851 }
852
853
854 /*
855
856 LOCAL FUNCTION
857
858 alloc_utype -- add a user defined type for die reference
859
860 SYNOPSIS
861
862 static type *alloc_utype (DIE_REF die_ref, struct type *utypep)
863
864 DESCRIPTION
865
866 Given a die reference DIE_REF, and a possible pointer to a user
867 defined type UTYPEP, register that this reference has a user
868 defined type and either use the specified type in UTYPEP or
869 make a new empty type that will be filled in later.
870
871 We should only be called after calling lookup_utype() to verify that
872 there is not currently a type registered for DIE_REF.
873 */
874
875 static struct type *
876 alloc_utype (die_ref, utypep)
877 DIE_REF die_ref;
878 struct type *utypep;
879 {
880 struct type **typep;
881 int utypeidx;
882
883 utypeidx = (die_ref - dbroff) / 4;
884 typep = utypes + utypeidx;
885 if ((utypeidx < 0) || (utypeidx >= numutypes))
886 {
887 utypep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
888 complain (&bad_die_ref, DIE_ID, DIE_NAME);
889 }
890 else if (*typep != NULL)
891 {
892 utypep = *typep;
893 complain (&dup_user_type_allocation, DIE_ID, DIE_NAME);
894 }
895 else
896 {
897 if (utypep == NULL)
898 {
899 utypep = alloc_type (current_objfile);
900 }
901 *typep = utypep;
902 }
903 return (utypep);
904 }
905
906 /*
907
908 LOCAL FUNCTION
909
910 free_utypes -- free the utypes array and reset pointer & count
911
912 SYNOPSIS
913
914 static void free_utypes (PTR dummy)
915
916 DESCRIPTION
917
918 Called via do_cleanups to free the utypes array, reset the pointer to NULL,
919 and set numutypes back to zero. This ensures that the utypes does not get
920 referenced after being freed.
921 */
922
923 static void
924 free_utypes (dummy)
925 PTR dummy;
926 {
927 free (utypes);
928 utypes = NULL;
929 numutypes = 0;
930 }
931
932
933 /*
934
935 LOCAL FUNCTION
936
937 decode_die_type -- return a type for a specified die
938
939 SYNOPSIS
940
941 static struct type *decode_die_type (struct dieinfo *dip)
942
943 DESCRIPTION
944
945 Given a pointer to a die information structure DIP, decode the
946 type of the die and return a pointer to the decoded type. All
947 dies without specific types default to type int.
948 */
949
950 static struct type *
951 decode_die_type (dip)
952 struct dieinfo *dip;
953 {
954 struct type *type = NULL;
955
956 if (dip -> at_fund_type != 0)
957 {
958 type = decode_fund_type (dip -> at_fund_type);
959 }
960 else if (dip -> at_mod_fund_type != NULL)
961 {
962 type = decode_mod_fund_type (dip -> at_mod_fund_type);
963 }
964 else if (dip -> at_user_def_type)
965 {
966 if ((type = lookup_utype (dip -> at_user_def_type)) == NULL)
967 {
968 type = alloc_utype (dip -> at_user_def_type, NULL);
969 }
970 }
971 else if (dip -> at_mod_u_d_type)
972 {
973 type = decode_mod_u_d_type (dip -> at_mod_u_d_type);
974 }
975 else
976 {
977 type = dwarf_fundamental_type (current_objfile, FT_VOID);
978 }
979 return (type);
980 }
981
982 /*
983
984 LOCAL FUNCTION
985
986 struct_type -- compute and return the type for a struct or union
987
988 SYNOPSIS
989
990 static struct type *struct_type (struct dieinfo *dip, char *thisdie,
991 char *enddie, struct objfile *objfile)
992
993 DESCRIPTION
994
995 Given pointer to a die information structure for a die which
996 defines a union or structure (and MUST define one or the other),
997 and pointers to the raw die data that define the range of dies which
998 define the members, compute and return the user defined type for the
999 structure or union.
1000 */
1001
1002 static struct type *
1003 struct_type (dip, thisdie, enddie, objfile)
1004 struct dieinfo *dip;
1005 char *thisdie;
1006 char *enddie;
1007 struct objfile *objfile;
1008 {
1009 struct type *type;
1010 struct nextfield {
1011 struct nextfield *next;
1012 struct field field;
1013 };
1014 struct nextfield *list = NULL;
1015 struct nextfield *new;
1016 int nfields = 0;
1017 int n;
1018 struct dieinfo mbr;
1019 char *nextdie;
1020 int anonymous_size;
1021
1022 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1023 {
1024 /* No forward references created an empty type, so install one now */
1025 type = alloc_utype (dip -> die_ref, NULL);
1026 }
1027 INIT_CPLUS_SPECIFIC(type);
1028 switch (dip -> die_tag)
1029 {
1030 case TAG_class_type:
1031 TYPE_CODE (type) = TYPE_CODE_CLASS;
1032 break;
1033 case TAG_structure_type:
1034 TYPE_CODE (type) = TYPE_CODE_STRUCT;
1035 break;
1036 case TAG_union_type:
1037 TYPE_CODE (type) = TYPE_CODE_UNION;
1038 break;
1039 default:
1040 /* Should never happen */
1041 TYPE_CODE (type) = TYPE_CODE_UNDEF;
1042 complain (&missing_tag, DIE_ID, DIE_NAME);
1043 break;
1044 }
1045 /* Some compilers try to be helpful by inventing "fake" names for
1046 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1047 Thanks, but no thanks... */
1048 if (dip -> at_name != NULL
1049 && *dip -> at_name != '~'
1050 && *dip -> at_name != '.')
1051 {
1052 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1053 "", "", dip -> at_name);
1054 }
1055 /* Use whatever size is known. Zero is a valid size. We might however
1056 wish to check has_at_byte_size to make sure that some byte size was
1057 given explicitly, but DWARF doesn't specify that explicit sizes of
1058 zero have to present, so complaining about missing sizes should
1059 probably not be the default. */
1060 TYPE_LENGTH (type) = dip -> at_byte_size;
1061 thisdie += dip -> die_length;
1062 while (thisdie < enddie)
1063 {
1064 basicdieinfo (&mbr, thisdie, objfile);
1065 completedieinfo (&mbr, objfile);
1066 if (mbr.die_length <= SIZEOF_DIE_LENGTH)
1067 {
1068 break;
1069 }
1070 else if (mbr.at_sibling != 0)
1071 {
1072 nextdie = dbbase + mbr.at_sibling - dbroff;
1073 }
1074 else
1075 {
1076 nextdie = thisdie + mbr.die_length;
1077 }
1078 switch (mbr.die_tag)
1079 {
1080 case TAG_member:
1081 /* Get space to record the next field's data. */
1082 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1083 new -> next = list;
1084 list = new;
1085 /* Save the data. */
1086 list -> field.name =
1087 obsavestring (mbr.at_name, strlen (mbr.at_name),
1088 &objfile -> type_obstack);
1089 list -> field.type = decode_die_type (&mbr);
1090 list -> field.bitpos = 8 * locval (&mbr);
1091 /* Handle bit fields. */
1092 list -> field.bitsize = mbr.at_bit_size;
1093 if (BITS_BIG_ENDIAN)
1094 {
1095 /* For big endian bits, the at_bit_offset gives the
1096 additional bit offset from the MSB of the containing
1097 anonymous object to the MSB of the field. We don't
1098 have to do anything special since we don't need to
1099 know the size of the anonymous object. */
1100 list -> field.bitpos += mbr.at_bit_offset;
1101 }
1102 else
1103 {
1104 /* For little endian bits, we need to have a non-zero
1105 at_bit_size, so that we know we are in fact dealing
1106 with a bitfield. Compute the bit offset to the MSB
1107 of the anonymous object, subtract off the number of
1108 bits from the MSB of the field to the MSB of the
1109 object, and then subtract off the number of bits of
1110 the field itself. The result is the bit offset of
1111 the LSB of the field. */
1112 if (mbr.at_bit_size > 0)
1113 {
1114 if (mbr.has_at_byte_size)
1115 {
1116 /* The size of the anonymous object containing
1117 the bit field is explicit, so use the
1118 indicated size (in bytes). */
1119 anonymous_size = mbr.at_byte_size;
1120 }
1121 else
1122 {
1123 /* The size of the anonymous object containing
1124 the bit field matches the size of an object
1125 of the bit field's type. DWARF allows
1126 at_byte_size to be left out in such cases, as
1127 a debug information size optimization. */
1128 anonymous_size = TYPE_LENGTH (list -> field.type);
1129 }
1130 list -> field.bitpos +=
1131 anonymous_size * 8 - mbr.at_bit_offset - mbr.at_bit_size;
1132 }
1133 }
1134 nfields++;
1135 break;
1136 default:
1137 process_dies (thisdie, nextdie, objfile);
1138 break;
1139 }
1140 thisdie = nextdie;
1141 }
1142 /* Now create the vector of fields, and record how big it is. We may
1143 not even have any fields, if this DIE was generated due to a reference
1144 to an anonymous structure or union. In this case, TYPE_FLAG_STUB is
1145 set, which clues gdb in to the fact that it needs to search elsewhere
1146 for the full structure definition. */
1147 if (nfields == 0)
1148 {
1149 TYPE_FLAGS (type) |= TYPE_FLAG_STUB;
1150 }
1151 else
1152 {
1153 TYPE_NFIELDS (type) = nfields;
1154 TYPE_FIELDS (type) = (struct field *)
1155 TYPE_ALLOC (type, sizeof (struct field) * nfields);
1156 /* Copy the saved-up fields into the field vector. */
1157 for (n = nfields; list; list = list -> next)
1158 {
1159 TYPE_FIELD (type, --n) = list -> field;
1160 }
1161 }
1162 return (type);
1163 }
1164
1165 /*
1166
1167 LOCAL FUNCTION
1168
1169 read_structure_scope -- process all dies within struct or union
1170
1171 SYNOPSIS
1172
1173 static void read_structure_scope (struct dieinfo *dip,
1174 char *thisdie, char *enddie, struct objfile *objfile)
1175
1176 DESCRIPTION
1177
1178 Called when we find the DIE that starts a structure or union
1179 scope (definition) to process all dies that define the members
1180 of the structure or union. DIP is a pointer to the die info
1181 struct for the DIE that names the structure or union.
1182
1183 NOTES
1184
1185 Note that we need to call struct_type regardless of whether or not
1186 the DIE has an at_name attribute, since it might be an anonymous
1187 structure or union. This gets the type entered into our set of
1188 user defined types.
1189
1190 However, if the structure is incomplete (an opaque struct/union)
1191 then suppress creating a symbol table entry for it since gdb only
1192 wants to find the one with the complete definition. Note that if
1193 it is complete, we just call new_symbol, which does it's own
1194 checking about whether the struct/union is anonymous or not (and
1195 suppresses creating a symbol table entry itself).
1196
1197 */
1198
1199 static void
1200 read_structure_scope (dip, thisdie, enddie, objfile)
1201 struct dieinfo *dip;
1202 char *thisdie;
1203 char *enddie;
1204 struct objfile *objfile;
1205 {
1206 struct type *type;
1207 struct symbol *sym;
1208
1209 type = struct_type (dip, thisdie, enddie, objfile);
1210 if (!(TYPE_FLAGS (type) & TYPE_FLAG_STUB))
1211 {
1212 sym = new_symbol (dip, objfile);
1213 if (sym != NULL)
1214 {
1215 SYMBOL_TYPE (sym) = type;
1216 if (cu_language == language_cplus)
1217 {
1218 synthesize_typedef (dip, objfile, type);
1219 }
1220 }
1221 }
1222 }
1223
1224 /*
1225
1226 LOCAL FUNCTION
1227
1228 decode_array_element_type -- decode type of the array elements
1229
1230 SYNOPSIS
1231
1232 static struct type *decode_array_element_type (char *scan, char *end)
1233
1234 DESCRIPTION
1235
1236 As the last step in decoding the array subscript information for an
1237 array DIE, we need to decode the type of the array elements. We are
1238 passed a pointer to this last part of the subscript information and
1239 must return the appropriate type. If the type attribute is not
1240 recognized, just warn about the problem and return type int.
1241 */
1242
1243 static struct type *
1244 decode_array_element_type (scan)
1245 char *scan;
1246 {
1247 struct type *typep;
1248 DIE_REF die_ref;
1249 unsigned short attribute;
1250 unsigned short fundtype;
1251 int nbytes;
1252
1253 attribute = target_to_host (scan, SIZEOF_ATTRIBUTE, GET_UNSIGNED,
1254 current_objfile);
1255 scan += SIZEOF_ATTRIBUTE;
1256 if ((nbytes = attribute_size (attribute)) == -1)
1257 {
1258 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1259 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1260 }
1261 else
1262 {
1263 switch (attribute)
1264 {
1265 case AT_fund_type:
1266 fundtype = target_to_host (scan, nbytes, GET_UNSIGNED,
1267 current_objfile);
1268 typep = decode_fund_type (fundtype);
1269 break;
1270 case AT_mod_fund_type:
1271 typep = decode_mod_fund_type (scan);
1272 break;
1273 case AT_user_def_type:
1274 die_ref = target_to_host (scan, nbytes, GET_UNSIGNED,
1275 current_objfile);
1276 if ((typep = lookup_utype (die_ref)) == NULL)
1277 {
1278 typep = alloc_utype (die_ref, NULL);
1279 }
1280 break;
1281 case AT_mod_u_d_type:
1282 typep = decode_mod_u_d_type (scan);
1283 break;
1284 default:
1285 complain (&bad_array_element_type, DIE_ID, DIE_NAME, attribute);
1286 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1287 break;
1288 }
1289 }
1290 return (typep);
1291 }
1292
1293 /*
1294
1295 LOCAL FUNCTION
1296
1297 decode_subscript_data_item -- decode array subscript item
1298
1299 SYNOPSIS
1300
1301 static struct type *
1302 decode_subscript_data_item (char *scan, char *end)
1303
1304 DESCRIPTION
1305
1306 The array subscripts and the data type of the elements of an
1307 array are described by a list of data items, stored as a block
1308 of contiguous bytes. There is a data item describing each array
1309 dimension, and a final data item describing the element type.
1310 The data items are ordered the same as their appearance in the
1311 source (I.E. leftmost dimension first, next to leftmost second,
1312 etc).
1313
1314 The data items describing each array dimension consist of four
1315 parts: (1) a format specifier, (2) type type of the subscript
1316 index, (3) a description of the low bound of the array dimension,
1317 and (4) a description of the high bound of the array dimension.
1318
1319 The last data item is the description of the type of each of
1320 the array elements.
1321
1322 We are passed a pointer to the start of the block of bytes
1323 containing the remaining data items, and a pointer to the first
1324 byte past the data. This function recursively decodes the
1325 remaining data items and returns a type.
1326
1327 If we somehow fail to decode some data, we complain about it
1328 and return a type "array of int".
1329
1330 BUGS
1331 FIXME: This code only implements the forms currently used
1332 by the AT&T and GNU C compilers.
1333
1334 The end pointer is supplied for error checking, maybe we should
1335 use it for that...
1336 */
1337
1338 static struct type *
1339 decode_subscript_data_item (scan, end)
1340 char *scan;
1341 char *end;
1342 {
1343 struct type *typep = NULL; /* Array type we are building */
1344 struct type *nexttype; /* Type of each element (may be array) */
1345 struct type *indextype; /* Type of this index */
1346 struct type *rangetype;
1347 unsigned int format;
1348 unsigned short fundtype;
1349 unsigned long lowbound;
1350 unsigned long highbound;
1351 int nbytes;
1352
1353 format = target_to_host (scan, SIZEOF_FORMAT_SPECIFIER, GET_UNSIGNED,
1354 current_objfile);
1355 scan += SIZEOF_FORMAT_SPECIFIER;
1356 switch (format)
1357 {
1358 case FMT_ET:
1359 typep = decode_array_element_type (scan);
1360 break;
1361 case FMT_FT_C_C:
1362 fundtype = target_to_host (scan, SIZEOF_FMT_FT, GET_UNSIGNED,
1363 current_objfile);
1364 indextype = decode_fund_type (fundtype);
1365 scan += SIZEOF_FMT_FT;
1366 nbytes = TARGET_FT_LONG_SIZE (current_objfile);
1367 lowbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1368 scan += nbytes;
1369 highbound = target_to_host (scan, nbytes, GET_UNSIGNED, current_objfile);
1370 scan += nbytes;
1371 nexttype = decode_subscript_data_item (scan, end);
1372 if (nexttype == NULL)
1373 {
1374 /* Munged subscript data or other problem, fake it. */
1375 complain (&subscript_data_items, DIE_ID, DIE_NAME);
1376 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1377 }
1378 rangetype = create_range_type ((struct type *) NULL, indextype,
1379 lowbound, highbound);
1380 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1381 break;
1382 case FMT_FT_C_X:
1383 case FMT_FT_X_C:
1384 case FMT_FT_X_X:
1385 case FMT_UT_C_C:
1386 case FMT_UT_C_X:
1387 case FMT_UT_X_C:
1388 case FMT_UT_X_X:
1389 complain (&unhandled_array_subscript_format, DIE_ID, DIE_NAME, format);
1390 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1391 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1392 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1393 break;
1394 default:
1395 complain (&unknown_array_subscript_format, DIE_ID, DIE_NAME, format);
1396 nexttype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1397 rangetype = create_range_type ((struct type *) NULL, nexttype, 0, 0);
1398 typep = create_array_type ((struct type *) NULL, nexttype, rangetype);
1399 break;
1400 }
1401 return (typep);
1402 }
1403
1404 /*
1405
1406 LOCAL FUNCTION
1407
1408 dwarf_read_array_type -- read TAG_array_type DIE
1409
1410 SYNOPSIS
1411
1412 static void dwarf_read_array_type (struct dieinfo *dip)
1413
1414 DESCRIPTION
1415
1416 Extract all information from a TAG_array_type DIE and add to
1417 the user defined type vector.
1418 */
1419
1420 static void
1421 dwarf_read_array_type (dip)
1422 struct dieinfo *dip;
1423 {
1424 struct type *type;
1425 struct type *utype;
1426 char *sub;
1427 char *subend;
1428 unsigned short blocksz;
1429 int nbytes;
1430
1431 if (dip -> at_ordering != ORD_row_major)
1432 {
1433 /* FIXME: Can gdb even handle column major arrays? */
1434 complain (&not_row_major, DIE_ID, DIE_NAME);
1435 }
1436 if ((sub = dip -> at_subscr_data) != NULL)
1437 {
1438 nbytes = attribute_size (AT_subscr_data);
1439 blocksz = target_to_host (sub, nbytes, GET_UNSIGNED, current_objfile);
1440 subend = sub + nbytes + blocksz;
1441 sub += nbytes;
1442 type = decode_subscript_data_item (sub, subend);
1443 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1444 {
1445 /* Install user defined type that has not been referenced yet. */
1446 alloc_utype (dip -> die_ref, type);
1447 }
1448 else if (TYPE_CODE (utype) == TYPE_CODE_UNDEF)
1449 {
1450 /* Ick! A forward ref has already generated a blank type in our
1451 slot, and this type probably already has things pointing to it
1452 (which is what caused it to be created in the first place).
1453 If it's just a place holder we can plop our fully defined type
1454 on top of it. We can't recover the space allocated for our
1455 new type since it might be on an obstack, but we could reuse
1456 it if we kept a list of them, but it might not be worth it
1457 (FIXME). */
1458 *utype = *type;
1459 }
1460 else
1461 {
1462 /* Double ick! Not only is a type already in our slot, but
1463 someone has decorated it. Complain and leave it alone. */
1464 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1465 }
1466 }
1467 }
1468
1469 /*
1470
1471 LOCAL FUNCTION
1472
1473 read_tag_pointer_type -- read TAG_pointer_type DIE
1474
1475 SYNOPSIS
1476
1477 static void read_tag_pointer_type (struct dieinfo *dip)
1478
1479 DESCRIPTION
1480
1481 Extract all information from a TAG_pointer_type DIE and add to
1482 the user defined type vector.
1483 */
1484
1485 static void
1486 read_tag_pointer_type (dip)
1487 struct dieinfo *dip;
1488 {
1489 struct type *type;
1490 struct type *utype;
1491
1492 type = decode_die_type (dip);
1493 if ((utype = lookup_utype (dip -> die_ref)) == NULL)
1494 {
1495 utype = lookup_pointer_type (type);
1496 alloc_utype (dip -> die_ref, utype);
1497 }
1498 else
1499 {
1500 TYPE_TARGET_TYPE (utype) = type;
1501 TYPE_POINTER_TYPE (type) = utype;
1502
1503 /* We assume the machine has only one representation for pointers! */
1504 /* FIXME: This confuses host<->target data representations, and is a
1505 poor assumption besides. */
1506
1507 TYPE_LENGTH (utype) = sizeof (char *);
1508 TYPE_CODE (utype) = TYPE_CODE_PTR;
1509 }
1510 }
1511
1512 /*
1513
1514 LOCAL FUNCTION
1515
1516 read_tag_string_type -- read TAG_string_type DIE
1517
1518 SYNOPSIS
1519
1520 static void read_tag_string_type (struct dieinfo *dip)
1521
1522 DESCRIPTION
1523
1524 Extract all information from a TAG_string_type DIE and add to
1525 the user defined type vector. It isn't really a user defined
1526 type, but it behaves like one, with other DIE's using an
1527 AT_user_def_type attribute to reference it.
1528 */
1529
1530 static void
1531 read_tag_string_type (dip)
1532 struct dieinfo *dip;
1533 {
1534 struct type *utype;
1535 struct type *indextype;
1536 struct type *rangetype;
1537 unsigned long lowbound = 0;
1538 unsigned long highbound;
1539
1540 if (dip -> has_at_byte_size)
1541 {
1542 /* A fixed bounds string */
1543 highbound = dip -> at_byte_size - 1;
1544 }
1545 else
1546 {
1547 /* A varying length string. Stub for now. (FIXME) */
1548 highbound = 1;
1549 }
1550 indextype = dwarf_fundamental_type (current_objfile, FT_INTEGER);
1551 rangetype = create_range_type ((struct type *) NULL, indextype, lowbound,
1552 highbound);
1553
1554 utype = lookup_utype (dip -> die_ref);
1555 if (utype == NULL)
1556 {
1557 /* No type defined, go ahead and create a blank one to use. */
1558 utype = alloc_utype (dip -> die_ref, (struct type *) NULL);
1559 }
1560 else
1561 {
1562 /* Already a type in our slot due to a forward reference. Make sure it
1563 is a blank one. If not, complain and leave it alone. */
1564 if (TYPE_CODE (utype) != TYPE_CODE_UNDEF)
1565 {
1566 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1567 return;
1568 }
1569 }
1570
1571 /* Create the string type using the blank type we either found or created. */
1572 utype = create_string_type (utype, rangetype);
1573 }
1574
1575 /*
1576
1577 LOCAL FUNCTION
1578
1579 read_subroutine_type -- process TAG_subroutine_type dies
1580
1581 SYNOPSIS
1582
1583 static void read_subroutine_type (struct dieinfo *dip, char thisdie,
1584 char *enddie)
1585
1586 DESCRIPTION
1587
1588 Handle DIES due to C code like:
1589
1590 struct foo {
1591 int (*funcp)(int a, long l); (Generates TAG_subroutine_type DIE)
1592 int b;
1593 };
1594
1595 NOTES
1596
1597 The parameter DIES are currently ignored. See if gdb has a way to
1598 include this info in it's type system, and decode them if so. Is
1599 this what the type structure's "arg_types" field is for? (FIXME)
1600 */
1601
1602 static void
1603 read_subroutine_type (dip, thisdie, enddie)
1604 struct dieinfo *dip;
1605 char *thisdie;
1606 char *enddie;
1607 {
1608 struct type *type; /* Type that this function returns */
1609 struct type *ftype; /* Function that returns above type */
1610
1611 /* Decode the type that this subroutine returns */
1612
1613 type = decode_die_type (dip);
1614
1615 /* Check to see if we already have a partially constructed user
1616 defined type for this DIE, from a forward reference. */
1617
1618 if ((ftype = lookup_utype (dip -> die_ref)) == NULL)
1619 {
1620 /* This is the first reference to one of these types. Make
1621 a new one and place it in the user defined types. */
1622 ftype = lookup_function_type (type);
1623 alloc_utype (dip -> die_ref, ftype);
1624 }
1625 else if (TYPE_CODE (ftype) == TYPE_CODE_UNDEF)
1626 {
1627 /* We have an existing partially constructed type, so bash it
1628 into the correct type. */
1629 TYPE_TARGET_TYPE (ftype) = type;
1630 TYPE_LENGTH (ftype) = 1;
1631 TYPE_CODE (ftype) = TYPE_CODE_FUNC;
1632 }
1633 else
1634 {
1635 complain (&dup_user_type_definition, DIE_ID, DIE_NAME);
1636 }
1637 }
1638
1639 /*
1640
1641 LOCAL FUNCTION
1642
1643 read_enumeration -- process dies which define an enumeration
1644
1645 SYNOPSIS
1646
1647 static void read_enumeration (struct dieinfo *dip, char *thisdie,
1648 char *enddie, struct objfile *objfile)
1649
1650 DESCRIPTION
1651
1652 Given a pointer to a die which begins an enumeration, process all
1653 the dies that define the members of the enumeration.
1654
1655 NOTES
1656
1657 Note that we need to call enum_type regardless of whether or not we
1658 have a symbol, since we might have an enum without a tag name (thus
1659 no symbol for the tagname).
1660 */
1661
1662 static void
1663 read_enumeration (dip, thisdie, enddie, objfile)
1664 struct dieinfo *dip;
1665 char *thisdie;
1666 char *enddie;
1667 struct objfile *objfile;
1668 {
1669 struct type *type;
1670 struct symbol *sym;
1671
1672 type = enum_type (dip, objfile);
1673 sym = new_symbol (dip, objfile);
1674 if (sym != NULL)
1675 {
1676 SYMBOL_TYPE (sym) = type;
1677 if (cu_language == language_cplus)
1678 {
1679 synthesize_typedef (dip, objfile, type);
1680 }
1681 }
1682 }
1683
1684 /*
1685
1686 LOCAL FUNCTION
1687
1688 enum_type -- decode and return a type for an enumeration
1689
1690 SYNOPSIS
1691
1692 static type *enum_type (struct dieinfo *dip, struct objfile *objfile)
1693
1694 DESCRIPTION
1695
1696 Given a pointer to a die information structure for the die which
1697 starts an enumeration, process all the dies that define the members
1698 of the enumeration and return a type pointer for the enumeration.
1699
1700 At the same time, for each member of the enumeration, create a
1701 symbol for it with namespace VAR_NAMESPACE and class LOC_CONST,
1702 and give it the type of the enumeration itself.
1703
1704 NOTES
1705
1706 Note that the DWARF specification explicitly mandates that enum
1707 constants occur in reverse order from the source program order,
1708 for "consistency" and because this ordering is easier for many
1709 compilers to generate. (Draft 6, sec 3.8.5, Enumeration type
1710 Entries). Because gdb wants to see the enum members in program
1711 source order, we have to ensure that the order gets reversed while
1712 we are processing them.
1713 */
1714
1715 static struct type *
1716 enum_type (dip, objfile)
1717 struct dieinfo *dip;
1718 struct objfile *objfile;
1719 {
1720 struct type *type;
1721 struct nextfield {
1722 struct nextfield *next;
1723 struct field field;
1724 };
1725 struct nextfield *list = NULL;
1726 struct nextfield *new;
1727 int nfields = 0;
1728 int n;
1729 char *scan;
1730 char *listend;
1731 unsigned short blocksz;
1732 struct symbol *sym;
1733 int nbytes;
1734 int unsigned_enum = 1;
1735
1736 if ((type = lookup_utype (dip -> die_ref)) == NULL)
1737 {
1738 /* No forward references created an empty type, so install one now */
1739 type = alloc_utype (dip -> die_ref, NULL);
1740 }
1741 TYPE_CODE (type) = TYPE_CODE_ENUM;
1742 /* Some compilers try to be helpful by inventing "fake" names for
1743 anonymous enums, structures, and unions, like "~0fake" or ".0fake".
1744 Thanks, but no thanks... */
1745 if (dip -> at_name != NULL
1746 && *dip -> at_name != '~'
1747 && *dip -> at_name != '.')
1748 {
1749 TYPE_TAG_NAME (type) = obconcat (&objfile -> type_obstack,
1750 "", "", dip -> at_name);
1751 }
1752 if (dip -> at_byte_size != 0)
1753 {
1754 TYPE_LENGTH (type) = dip -> at_byte_size;
1755 }
1756 if ((scan = dip -> at_element_list) != NULL)
1757 {
1758 if (dip -> short_element_list)
1759 {
1760 nbytes = attribute_size (AT_short_element_list);
1761 }
1762 else
1763 {
1764 nbytes = attribute_size (AT_element_list);
1765 }
1766 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
1767 listend = scan + nbytes + blocksz;
1768 scan += nbytes;
1769 while (scan < listend)
1770 {
1771 new = (struct nextfield *) alloca (sizeof (struct nextfield));
1772 new -> next = list;
1773 list = new;
1774 list -> field.type = NULL;
1775 list -> field.bitsize = 0;
1776 list -> field.bitpos =
1777 target_to_host (scan, TARGET_FT_LONG_SIZE (objfile), GET_SIGNED,
1778 objfile);
1779 scan += TARGET_FT_LONG_SIZE (objfile);
1780 list -> field.name = obsavestring (scan, strlen (scan),
1781 &objfile -> type_obstack);
1782 scan += strlen (scan) + 1;
1783 nfields++;
1784 /* Handcraft a new symbol for this enum member. */
1785 sym = (struct symbol *) obstack_alloc (&objfile->symbol_obstack,
1786 sizeof (struct symbol));
1787 memset (sym, 0, sizeof (struct symbol));
1788 SYMBOL_NAME (sym) = create_name (list -> field.name,
1789 &objfile->symbol_obstack);
1790 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
1791 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
1792 SYMBOL_CLASS (sym) = LOC_CONST;
1793 SYMBOL_TYPE (sym) = type;
1794 SYMBOL_VALUE (sym) = list -> field.bitpos;
1795 if (SYMBOL_VALUE (sym) < 0)
1796 unsigned_enum = 0;
1797 add_symbol_to_list (sym, list_in_scope);
1798 }
1799 /* Now create the vector of fields, and record how big it is. This is
1800 where we reverse the order, by pulling the members off the list in
1801 reverse order from how they were inserted. If we have no fields
1802 (this is apparently possible in C++) then skip building a field
1803 vector. */
1804 if (nfields > 0)
1805 {
1806 if (unsigned_enum)
1807 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
1808 TYPE_NFIELDS (type) = nfields;
1809 TYPE_FIELDS (type) = (struct field *)
1810 obstack_alloc (&objfile->symbol_obstack, sizeof (struct field) * nfields);
1811 /* Copy the saved-up fields into the field vector. */
1812 for (n = 0; (n < nfields) && (list != NULL); list = list -> next)
1813 {
1814 TYPE_FIELD (type, n++) = list -> field;
1815 }
1816 }
1817 }
1818 return (type);
1819 }
1820
1821 /*
1822
1823 LOCAL FUNCTION
1824
1825 read_func_scope -- process all dies within a function scope
1826
1827 DESCRIPTION
1828
1829 Process all dies within a given function scope. We are passed
1830 a die information structure pointer DIP for the die which
1831 starts the function scope, and pointers into the raw die data
1832 that define the dies within the function scope.
1833
1834 For now, we ignore lexical block scopes within the function.
1835 The problem is that AT&T cc does not define a DWARF lexical
1836 block scope for the function itself, while gcc defines a
1837 lexical block scope for the function. We need to think about
1838 how to handle this difference, or if it is even a problem.
1839 (FIXME)
1840 */
1841
1842 static void
1843 read_func_scope (dip, thisdie, enddie, objfile)
1844 struct dieinfo *dip;
1845 char *thisdie;
1846 char *enddie;
1847 struct objfile *objfile;
1848 {
1849 register struct context_stack *new;
1850
1851 /* AT_name is absent if the function is described with an
1852 AT_abstract_origin tag.
1853 Ignore the function description for now to avoid GDB core dumps.
1854 FIXME: Add code to handle AT_abstract_origin tags properly. */
1855 if (dip -> at_name == NULL)
1856 {
1857 complain (&missing_at_name, DIE_ID);
1858 return;
1859 }
1860
1861 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1862 objfile -> ei.entry_point < dip -> at_high_pc)
1863 {
1864 objfile -> ei.entry_func_lowpc = dip -> at_low_pc;
1865 objfile -> ei.entry_func_highpc = dip -> at_high_pc;
1866 }
1867 if (STREQ (dip -> at_name, "main")) /* FIXME: hardwired name */
1868 {
1869 objfile -> ei.main_func_lowpc = dip -> at_low_pc;
1870 objfile -> ei.main_func_highpc = dip -> at_high_pc;
1871 }
1872 new = push_context (0, dip -> at_low_pc);
1873 new -> name = new_symbol (dip, objfile);
1874 list_in_scope = &local_symbols;
1875 process_dies (thisdie + dip -> die_length, enddie, objfile);
1876 new = pop_context ();
1877 /* Make a block for the local symbols within. */
1878 finish_block (new -> name, &local_symbols, new -> old_blocks,
1879 new -> start_addr, dip -> at_high_pc, objfile);
1880 list_in_scope = &file_symbols;
1881 }
1882
1883
1884 /*
1885
1886 LOCAL FUNCTION
1887
1888 handle_producer -- process the AT_producer attribute
1889
1890 DESCRIPTION
1891
1892 Perform any operations that depend on finding a particular
1893 AT_producer attribute.
1894
1895 */
1896
1897 static void
1898 handle_producer (producer)
1899 char *producer;
1900 {
1901
1902 /* If this compilation unit was compiled with g++ or gcc, then set the
1903 processing_gcc_compilation flag. */
1904
1905 processing_gcc_compilation =
1906 STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER))
1907 || STREQN (producer, CHILL_PRODUCER, strlen (CHILL_PRODUCER))
1908 || STREQN (producer, GCC_PRODUCER, strlen (GCC_PRODUCER));
1909
1910 /* Select a demangling style if we can identify the producer and if
1911 the current style is auto. We leave the current style alone if it
1912 is not auto. We also leave the demangling style alone if we find a
1913 gcc (cc1) producer, as opposed to a g++ (cc1plus) producer. */
1914
1915 if (AUTO_DEMANGLING)
1916 {
1917 if (STREQN (producer, GPLUS_PRODUCER, strlen (GPLUS_PRODUCER)))
1918 {
1919 set_demangling_style (GNU_DEMANGLING_STYLE_STRING);
1920 }
1921 else if (STREQN (producer, LCC_PRODUCER, strlen (LCC_PRODUCER)))
1922 {
1923 set_demangling_style (LUCID_DEMANGLING_STYLE_STRING);
1924 }
1925 }
1926 }
1927
1928
1929 /*
1930
1931 LOCAL FUNCTION
1932
1933 read_file_scope -- process all dies within a file scope
1934
1935 DESCRIPTION
1936
1937 Process all dies within a given file scope. We are passed a
1938 pointer to the die information structure for the die which
1939 starts the file scope, and pointers into the raw die data which
1940 mark the range of dies within the file scope.
1941
1942 When the partial symbol table is built, the file offset for the line
1943 number table for each compilation unit is saved in the partial symbol
1944 table entry for that compilation unit. As the symbols for each
1945 compilation unit are read, the line number table is read into memory
1946 and the variable lnbase is set to point to it. Thus all we have to
1947 do is use lnbase to access the line number table for the current
1948 compilation unit.
1949 */
1950
1951 static void
1952 read_file_scope (dip, thisdie, enddie, objfile)
1953 struct dieinfo *dip;
1954 char *thisdie;
1955 char *enddie;
1956 struct objfile *objfile;
1957 {
1958 struct cleanup *back_to;
1959 struct symtab *symtab;
1960
1961 if (objfile -> ei.entry_point >= dip -> at_low_pc &&
1962 objfile -> ei.entry_point < dip -> at_high_pc)
1963 {
1964 objfile -> ei.entry_file_lowpc = dip -> at_low_pc;
1965 objfile -> ei.entry_file_highpc = dip -> at_high_pc;
1966 }
1967 set_cu_language (dip);
1968 if (dip -> at_producer != NULL)
1969 {
1970 handle_producer (dip -> at_producer);
1971 }
1972 numutypes = (enddie - thisdie) / 4;
1973 utypes = (struct type **) xmalloc (numutypes * sizeof (struct type *));
1974 back_to = make_cleanup (free_utypes, NULL);
1975 memset (utypes, 0, numutypes * sizeof (struct type *));
1976 memset (ftypes, 0, FT_NUM_MEMBERS * sizeof (struct type *));
1977 start_symtab (dip -> at_name, dip -> at_comp_dir, dip -> at_low_pc);
1978 record_debugformat ("DWARF 1");
1979 decode_line_numbers (lnbase);
1980 process_dies (thisdie + dip -> die_length, enddie, objfile);
1981
1982 symtab = end_symtab (dip -> at_high_pc, objfile, 0);
1983 if (symtab != NULL)
1984 {
1985 symtab -> language = cu_language;
1986 }
1987 do_cleanups (back_to);
1988 }
1989
1990 /*
1991
1992 LOCAL FUNCTION
1993
1994 process_dies -- process a range of DWARF Information Entries
1995
1996 SYNOPSIS
1997
1998 static void process_dies (char *thisdie, char *enddie,
1999 struct objfile *objfile)
2000
2001 DESCRIPTION
2002
2003 Process all DIE's in a specified range. May be (and almost
2004 certainly will be) called recursively.
2005 */
2006
2007 static void
2008 process_dies (thisdie, enddie, objfile)
2009 char *thisdie;
2010 char *enddie;
2011 struct objfile *objfile;
2012 {
2013 char *nextdie;
2014 struct dieinfo di;
2015
2016 while (thisdie < enddie)
2017 {
2018 basicdieinfo (&di, thisdie, objfile);
2019 if (di.die_length < SIZEOF_DIE_LENGTH)
2020 {
2021 break;
2022 }
2023 else if (di.die_tag == TAG_padding)
2024 {
2025 nextdie = thisdie + di.die_length;
2026 }
2027 else
2028 {
2029 completedieinfo (&di, objfile);
2030 if (di.at_sibling != 0)
2031 {
2032 nextdie = dbbase + di.at_sibling - dbroff;
2033 }
2034 else
2035 {
2036 nextdie = thisdie + di.die_length;
2037 }
2038 #ifdef SMASH_TEXT_ADDRESS
2039 /* I think that these are always text, not data, addresses. */
2040 SMASH_TEXT_ADDRESS (di.at_low_pc);
2041 SMASH_TEXT_ADDRESS (di.at_high_pc);
2042 #endif
2043 switch (di.die_tag)
2044 {
2045 case TAG_compile_unit:
2046 /* Skip Tag_compile_unit if we are already inside a compilation
2047 unit, we are unable to handle nested compilation units
2048 properly (FIXME). */
2049 if (current_subfile == NULL)
2050 read_file_scope (&di, thisdie, nextdie, objfile);
2051 else
2052 nextdie = thisdie + di.die_length;
2053 break;
2054 case TAG_global_subroutine:
2055 case TAG_subroutine:
2056 if (di.has_at_low_pc)
2057 {
2058 read_func_scope (&di, thisdie, nextdie, objfile);
2059 }
2060 break;
2061 case TAG_lexical_block:
2062 read_lexical_block_scope (&di, thisdie, nextdie, objfile);
2063 break;
2064 case TAG_class_type:
2065 case TAG_structure_type:
2066 case TAG_union_type:
2067 read_structure_scope (&di, thisdie, nextdie, objfile);
2068 break;
2069 case TAG_enumeration_type:
2070 read_enumeration (&di, thisdie, nextdie, objfile);
2071 break;
2072 case TAG_subroutine_type:
2073 read_subroutine_type (&di, thisdie, nextdie);
2074 break;
2075 case TAG_array_type:
2076 dwarf_read_array_type (&di);
2077 break;
2078 case TAG_pointer_type:
2079 read_tag_pointer_type (&di);
2080 break;
2081 case TAG_string_type:
2082 read_tag_string_type (&di);
2083 break;
2084 default:
2085 new_symbol (&di, objfile);
2086 break;
2087 }
2088 }
2089 thisdie = nextdie;
2090 }
2091 }
2092
2093 /*
2094
2095 LOCAL FUNCTION
2096
2097 decode_line_numbers -- decode a line number table fragment
2098
2099 SYNOPSIS
2100
2101 static void decode_line_numbers (char *tblscan, char *tblend,
2102 long length, long base, long line, long pc)
2103
2104 DESCRIPTION
2105
2106 Translate the DWARF line number information to gdb form.
2107
2108 The ".line" section contains one or more line number tables, one for
2109 each ".line" section from the objects that were linked.
2110
2111 The AT_stmt_list attribute for each TAG_source_file entry in the
2112 ".debug" section contains the offset into the ".line" section for the
2113 start of the table for that file.
2114
2115 The table itself has the following structure:
2116
2117 <table length><base address><source statement entry>
2118 4 bytes 4 bytes 10 bytes
2119
2120 The table length is the total size of the table, including the 4 bytes
2121 for the length information.
2122
2123 The base address is the address of the first instruction generated
2124 for the source file.
2125
2126 Each source statement entry has the following structure:
2127
2128 <line number><statement position><address delta>
2129 4 bytes 2 bytes 4 bytes
2130
2131 The line number is relative to the start of the file, starting with
2132 line 1.
2133
2134 The statement position either -1 (0xFFFF) or the number of characters
2135 from the beginning of the line to the beginning of the statement.
2136
2137 The address delta is the difference between the base address and
2138 the address of the first instruction for the statement.
2139
2140 Note that we must copy the bytes from the packed table to our local
2141 variables before attempting to use them, to avoid alignment problems
2142 on some machines, particularly RISC processors.
2143
2144 BUGS
2145
2146 Does gdb expect the line numbers to be sorted? They are now by
2147 chance/luck, but are not required to be. (FIXME)
2148
2149 The line with number 0 is unused, gdb apparently can discover the
2150 span of the last line some other way. How? (FIXME)
2151 */
2152
2153 static void
2154 decode_line_numbers (linetable)
2155 char *linetable;
2156 {
2157 char *tblscan;
2158 char *tblend;
2159 unsigned long length;
2160 unsigned long base;
2161 unsigned long line;
2162 unsigned long pc;
2163
2164 if (linetable != NULL)
2165 {
2166 tblscan = tblend = linetable;
2167 length = target_to_host (tblscan, SIZEOF_LINETBL_LENGTH, GET_UNSIGNED,
2168 current_objfile);
2169 tblscan += SIZEOF_LINETBL_LENGTH;
2170 tblend += length;
2171 base = target_to_host (tblscan, TARGET_FT_POINTER_SIZE (objfile),
2172 GET_UNSIGNED, current_objfile);
2173 tblscan += TARGET_FT_POINTER_SIZE (objfile);
2174 base += baseaddr;
2175 while (tblscan < tblend)
2176 {
2177 line = target_to_host (tblscan, SIZEOF_LINETBL_LINENO, GET_UNSIGNED,
2178 current_objfile);
2179 tblscan += SIZEOF_LINETBL_LINENO + SIZEOF_LINETBL_STMT;
2180 pc = target_to_host (tblscan, SIZEOF_LINETBL_DELTA, GET_UNSIGNED,
2181 current_objfile);
2182 tblscan += SIZEOF_LINETBL_DELTA;
2183 pc += base;
2184 if (line != 0)
2185 {
2186 record_line (current_subfile, line, pc);
2187 }
2188 }
2189 }
2190 }
2191
2192 /*
2193
2194 LOCAL FUNCTION
2195
2196 locval -- compute the value of a location attribute
2197
2198 SYNOPSIS
2199
2200 static int locval (struct dieinfo *dip)
2201
2202 DESCRIPTION
2203
2204 Given pointer to a string of bytes that define a location, compute
2205 the location and return the value.
2206 A location description containing no atoms indicates that the
2207 object is optimized out. The optimized_out flag is set for those,
2208 the return value is meaningless.
2209
2210 When computing values involving the current value of the frame pointer,
2211 the value zero is used, which results in a value relative to the frame
2212 pointer, rather than the absolute value. This is what GDB wants
2213 anyway.
2214
2215 When the result is a register number, the isreg flag is set, otherwise
2216 it is cleared. This is a kludge until we figure out a better
2217 way to handle the problem. Gdb's design does not mesh well with the
2218 DWARF notion of a location computing interpreter, which is a shame
2219 because the flexibility goes unused.
2220
2221 NOTES
2222
2223 Note that stack[0] is unused except as a default error return.
2224 Note that stack overflow is not yet handled.
2225 */
2226
2227 static int
2228 locval (dip)
2229 struct dieinfo *dip;
2230 {
2231 unsigned short nbytes;
2232 unsigned short locsize;
2233 auto long stack[64];
2234 int stacki;
2235 char *loc;
2236 char *end;
2237 int loc_atom_code;
2238 int loc_value_size;
2239
2240 loc = dip -> at_location;
2241 nbytes = attribute_size (AT_location);
2242 locsize = target_to_host (loc, nbytes, GET_UNSIGNED, current_objfile);
2243 loc += nbytes;
2244 end = loc + locsize;
2245 stacki = 0;
2246 stack[stacki] = 0;
2247 dip -> isreg = 0;
2248 dip -> offreg = 0;
2249 dip -> optimized_out = 1;
2250 loc_value_size = TARGET_FT_LONG_SIZE (current_objfile);
2251 while (loc < end)
2252 {
2253 dip -> optimized_out = 0;
2254 loc_atom_code = target_to_host (loc, SIZEOF_LOC_ATOM_CODE, GET_UNSIGNED,
2255 current_objfile);
2256 loc += SIZEOF_LOC_ATOM_CODE;
2257 switch (loc_atom_code)
2258 {
2259 case 0:
2260 /* error */
2261 loc = end;
2262 break;
2263 case OP_REG:
2264 /* push register (number) */
2265 stack[++stacki]
2266 = DWARF_REG_TO_REGNUM (target_to_host (loc, loc_value_size,
2267 GET_UNSIGNED,
2268 current_objfile));
2269 loc += loc_value_size;
2270 dip -> isreg = 1;
2271 break;
2272 case OP_BASEREG:
2273 /* push value of register (number) */
2274 /* Actually, we compute the value as if register has 0, so the
2275 value ends up being the offset from that register. */
2276 dip -> offreg = 1;
2277 dip -> basereg = target_to_host (loc, loc_value_size, GET_UNSIGNED,
2278 current_objfile);
2279 loc += loc_value_size;
2280 stack[++stacki] = 0;
2281 break;
2282 case OP_ADDR:
2283 /* push address (relocated address) */
2284 stack[++stacki] = target_to_host (loc, loc_value_size,
2285 GET_UNSIGNED, current_objfile);
2286 loc += loc_value_size;
2287 break;
2288 case OP_CONST:
2289 /* push constant (number) FIXME: signed or unsigned! */
2290 stack[++stacki] = target_to_host (loc, loc_value_size,
2291 GET_SIGNED, current_objfile);
2292 loc += loc_value_size;
2293 break;
2294 case OP_DEREF2:
2295 /* pop, deref and push 2 bytes (as a long) */
2296 complain (&op_deref2, DIE_ID, DIE_NAME, stack[stacki]);
2297 break;
2298 case OP_DEREF4: /* pop, deref and push 4 bytes (as a long) */
2299 complain (&op_deref4, DIE_ID, DIE_NAME, stack[stacki]);
2300 break;
2301 case OP_ADD: /* pop top 2 items, add, push result */
2302 stack[stacki - 1] += stack[stacki];
2303 stacki--;
2304 break;
2305 }
2306 }
2307 return (stack[stacki]);
2308 }
2309
2310 /*
2311
2312 LOCAL FUNCTION
2313
2314 read_ofile_symtab -- build a full symtab entry from chunk of DIE's
2315
2316 SYNOPSIS
2317
2318 static void read_ofile_symtab (struct partial_symtab *pst)
2319
2320 DESCRIPTION
2321
2322 When expanding a partial symbol table entry to a full symbol table
2323 entry, this is the function that gets called to read in the symbols
2324 for the compilation unit. A pointer to the newly constructed symtab,
2325 which is now the new first one on the objfile's symtab list, is
2326 stashed in the partial symbol table entry.
2327 */
2328
2329 static void
2330 read_ofile_symtab (pst)
2331 struct partial_symtab *pst;
2332 {
2333 struct cleanup *back_to;
2334 unsigned long lnsize;
2335 file_ptr foffset;
2336 bfd *abfd;
2337 char lnsizedata[SIZEOF_LINETBL_LENGTH];
2338
2339 abfd = pst -> objfile -> obfd;
2340 current_objfile = pst -> objfile;
2341
2342 /* Allocate a buffer for the entire chunk of DIE's for this compilation
2343 unit, seek to the location in the file, and read in all the DIE's. */
2344
2345 diecount = 0;
2346 dbsize = DBLENGTH (pst);
2347 dbbase = xmalloc (dbsize);
2348 dbroff = DBROFF(pst);
2349 foffset = DBFOFF(pst) + dbroff;
2350 base_section_offsets = pst->section_offsets;
2351 baseaddr = ANOFFSET (pst->section_offsets, 0);
2352 if (bfd_seek (abfd, foffset, SEEK_SET) ||
2353 (bfd_read (dbbase, dbsize, 1, abfd) != dbsize))
2354 {
2355 free (dbbase);
2356 error ("can't read DWARF data");
2357 }
2358 back_to = make_cleanup (free, dbbase);
2359
2360 /* If there is a line number table associated with this compilation unit
2361 then read the size of this fragment in bytes, from the fragment itself.
2362 Allocate a buffer for the fragment and read it in for future
2363 processing. */
2364
2365 lnbase = NULL;
2366 if (LNFOFF (pst))
2367 {
2368 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2369 (bfd_read ((PTR) lnsizedata, sizeof (lnsizedata), 1, abfd) !=
2370 sizeof (lnsizedata)))
2371 {
2372 error ("can't read DWARF line number table size");
2373 }
2374 lnsize = target_to_host (lnsizedata, SIZEOF_LINETBL_LENGTH,
2375 GET_UNSIGNED, pst -> objfile);
2376 lnbase = xmalloc (lnsize);
2377 if (bfd_seek (abfd, LNFOFF (pst), SEEK_SET) ||
2378 (bfd_read (lnbase, lnsize, 1, abfd) != lnsize))
2379 {
2380 free (lnbase);
2381 error ("can't read DWARF line numbers");
2382 }
2383 make_cleanup (free, lnbase);
2384 }
2385
2386 process_dies (dbbase, dbbase + dbsize, pst -> objfile);
2387 do_cleanups (back_to);
2388 current_objfile = NULL;
2389 pst -> symtab = pst -> objfile -> symtabs;
2390 }
2391
2392 /*
2393
2394 LOCAL FUNCTION
2395
2396 psymtab_to_symtab_1 -- do grunt work for building a full symtab entry
2397
2398 SYNOPSIS
2399
2400 static void psymtab_to_symtab_1 (struct partial_symtab *pst)
2401
2402 DESCRIPTION
2403
2404 Called once for each partial symbol table entry that needs to be
2405 expanded into a full symbol table entry.
2406
2407 */
2408
2409 static void
2410 psymtab_to_symtab_1 (pst)
2411 struct partial_symtab *pst;
2412 {
2413 int i;
2414 struct cleanup *old_chain;
2415
2416 if (pst != NULL)
2417 {
2418 if (pst->readin)
2419 {
2420 warning ("psymtab for %s already read in. Shouldn't happen.",
2421 pst -> filename);
2422 }
2423 else
2424 {
2425 /* Read in all partial symtabs on which this one is dependent */
2426 for (i = 0; i < pst -> number_of_dependencies; i++)
2427 {
2428 if (!pst -> dependencies[i] -> readin)
2429 {
2430 /* Inform about additional files that need to be read in. */
2431 if (info_verbose)
2432 {
2433 fputs_filtered (" ", gdb_stdout);
2434 wrap_here ("");
2435 fputs_filtered ("and ", gdb_stdout);
2436 wrap_here ("");
2437 printf_filtered ("%s...",
2438 pst -> dependencies[i] -> filename);
2439 wrap_here ("");
2440 gdb_flush (gdb_stdout); /* Flush output */
2441 }
2442 psymtab_to_symtab_1 (pst -> dependencies[i]);
2443 }
2444 }
2445 if (DBLENGTH (pst)) /* Otherwise it's a dummy */
2446 {
2447 buildsym_init ();
2448 old_chain = make_cleanup (really_free_pendings, 0);
2449 read_ofile_symtab (pst);
2450 if (info_verbose)
2451 {
2452 printf_filtered ("%d DIE's, sorting...", diecount);
2453 wrap_here ("");
2454 gdb_flush (gdb_stdout);
2455 }
2456 sort_symtab_syms (pst -> symtab);
2457 do_cleanups (old_chain);
2458 }
2459 pst -> readin = 1;
2460 }
2461 }
2462 }
2463
2464 /*
2465
2466 LOCAL FUNCTION
2467
2468 dwarf_psymtab_to_symtab -- build a full symtab entry from partial one
2469
2470 SYNOPSIS
2471
2472 static void dwarf_psymtab_to_symtab (struct partial_symtab *pst)
2473
2474 DESCRIPTION
2475
2476 This is the DWARF support entry point for building a full symbol
2477 table entry from a partial symbol table entry. We are passed a
2478 pointer to the partial symbol table entry that needs to be expanded.
2479
2480 */
2481
2482 static void
2483 dwarf_psymtab_to_symtab (pst)
2484 struct partial_symtab *pst;
2485 {
2486
2487 if (pst != NULL)
2488 {
2489 if (pst -> readin)
2490 {
2491 warning ("psymtab for %s already read in. Shouldn't happen.",
2492 pst -> filename);
2493 }
2494 else
2495 {
2496 if (DBLENGTH (pst) || pst -> number_of_dependencies)
2497 {
2498 /* Print the message now, before starting serious work, to avoid
2499 disconcerting pauses. */
2500 if (info_verbose)
2501 {
2502 printf_filtered ("Reading in symbols for %s...",
2503 pst -> filename);
2504 gdb_flush (gdb_stdout);
2505 }
2506
2507 psymtab_to_symtab_1 (pst);
2508
2509 #if 0 /* FIXME: Check to see what dbxread is doing here and see if
2510 we need to do an equivalent or is this something peculiar to
2511 stabs/a.out format.
2512 Match with global symbols. This only needs to be done once,
2513 after all of the symtabs and dependencies have been read in.
2514 */
2515 scan_file_globals (pst -> objfile);
2516 #endif
2517
2518 /* Finish up the verbose info message. */
2519 if (info_verbose)
2520 {
2521 printf_filtered ("done.\n");
2522 gdb_flush (gdb_stdout);
2523 }
2524 }
2525 }
2526 }
2527 }
2528
2529 /*
2530
2531 LOCAL FUNCTION
2532
2533 add_enum_psymbol -- add enumeration members to partial symbol table
2534
2535 DESCRIPTION
2536
2537 Given pointer to a DIE that is known to be for an enumeration,
2538 extract the symbolic names of the enumeration members and add
2539 partial symbols for them.
2540 */
2541
2542 static void
2543 add_enum_psymbol (dip, objfile)
2544 struct dieinfo *dip;
2545 struct objfile *objfile;
2546 {
2547 char *scan;
2548 char *listend;
2549 unsigned short blocksz;
2550 int nbytes;
2551
2552 if ((scan = dip -> at_element_list) != NULL)
2553 {
2554 if (dip -> short_element_list)
2555 {
2556 nbytes = attribute_size (AT_short_element_list);
2557 }
2558 else
2559 {
2560 nbytes = attribute_size (AT_element_list);
2561 }
2562 blocksz = target_to_host (scan, nbytes, GET_UNSIGNED, objfile);
2563 scan += nbytes;
2564 listend = scan + blocksz;
2565 while (scan < listend)
2566 {
2567 scan += TARGET_FT_LONG_SIZE (objfile);
2568 add_psymbol_to_list (scan, strlen (scan), VAR_NAMESPACE, LOC_CONST,
2569 &objfile -> static_psymbols, 0, 0, cu_language,
2570 objfile);
2571 scan += strlen (scan) + 1;
2572 }
2573 }
2574 }
2575
2576 /*
2577
2578 LOCAL FUNCTION
2579
2580 add_partial_symbol -- add symbol to partial symbol table
2581
2582 DESCRIPTION
2583
2584 Given a DIE, if it is one of the types that we want to
2585 add to a partial symbol table, finish filling in the die info
2586 and then add a partial symbol table entry for it.
2587
2588 NOTES
2589
2590 The caller must ensure that the DIE has a valid name attribute.
2591 */
2592
2593 static void
2594 add_partial_symbol (dip, objfile)
2595 struct dieinfo *dip;
2596 struct objfile *objfile;
2597 {
2598 switch (dip -> die_tag)
2599 {
2600 case TAG_global_subroutine:
2601 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2602 VAR_NAMESPACE, LOC_BLOCK,
2603 &objfile -> global_psymbols,
2604 0, dip -> at_low_pc, cu_language, objfile);
2605 break;
2606 case TAG_global_variable:
2607 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2608 VAR_NAMESPACE, LOC_STATIC,
2609 &objfile -> global_psymbols,
2610 0, 0, cu_language, objfile);
2611 break;
2612 case TAG_subroutine:
2613 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2614 VAR_NAMESPACE, LOC_BLOCK,
2615 &objfile -> static_psymbols,
2616 0, dip -> at_low_pc, cu_language, objfile);
2617 break;
2618 case TAG_local_variable:
2619 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2620 VAR_NAMESPACE, LOC_STATIC,
2621 &objfile -> static_psymbols,
2622 0, 0, cu_language, objfile);
2623 break;
2624 case TAG_typedef:
2625 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2626 VAR_NAMESPACE, LOC_TYPEDEF,
2627 &objfile -> static_psymbols,
2628 0, 0, cu_language, objfile);
2629 break;
2630 case TAG_class_type:
2631 case TAG_structure_type:
2632 case TAG_union_type:
2633 case TAG_enumeration_type:
2634 /* Do not add opaque aggregate definitions to the psymtab. */
2635 if (!dip -> has_at_byte_size)
2636 break;
2637 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2638 STRUCT_NAMESPACE, LOC_TYPEDEF,
2639 &objfile -> static_psymbols,
2640 0, 0, cu_language, objfile);
2641 if (cu_language == language_cplus)
2642 {
2643 /* For C++, these implicitly act as typedefs as well. */
2644 add_psymbol_to_list (dip -> at_name, strlen (dip -> at_name),
2645 VAR_NAMESPACE, LOC_TYPEDEF,
2646 &objfile -> static_psymbols,
2647 0, 0, cu_language, objfile);
2648 }
2649 break;
2650 }
2651 }
2652
2653 /*
2654
2655 LOCAL FUNCTION
2656
2657 scan_partial_symbols -- scan DIE's within a single compilation unit
2658
2659 DESCRIPTION
2660
2661 Process the DIE's within a single compilation unit, looking for
2662 interesting DIE's that contribute to the partial symbol table entry
2663 for this compilation unit.
2664
2665 NOTES
2666
2667 There are some DIE's that may appear both at file scope and within
2668 the scope of a function. We are only interested in the ones at file
2669 scope, and the only way to tell them apart is to keep track of the
2670 scope. For example, consider the test case:
2671
2672 static int i;
2673 main () { int j; }
2674
2675 for which the relevant DWARF segment has the structure:
2676
2677 0x51:
2678 0x23 global subrtn sibling 0x9b
2679 name main
2680 fund_type FT_integer
2681 low_pc 0x800004cc
2682 high_pc 0x800004d4
2683
2684 0x74:
2685 0x23 local var sibling 0x97
2686 name j
2687 fund_type FT_integer
2688 location OP_BASEREG 0xe
2689 OP_CONST 0xfffffffc
2690 OP_ADD
2691 0x97:
2692 0x4
2693
2694 0x9b:
2695 0x1d local var sibling 0xb8
2696 name i
2697 fund_type FT_integer
2698 location OP_ADDR 0x800025dc
2699
2700 0xb8:
2701 0x4
2702
2703 We want to include the symbol 'i' in the partial symbol table, but
2704 not the symbol 'j'. In essence, we want to skip all the dies within
2705 the scope of a TAG_global_subroutine DIE.
2706
2707 Don't attempt to add anonymous structures or unions since they have
2708 no name. Anonymous enumerations however are processed, because we
2709 want to extract their member names (the check for a tag name is
2710 done later).
2711
2712 Also, for variables and subroutines, check that this is the place
2713 where the actual definition occurs, rather than just a reference
2714 to an external.
2715 */
2716
2717 static void
2718 scan_partial_symbols (thisdie, enddie, objfile)
2719 char *thisdie;
2720 char *enddie;
2721 struct objfile *objfile;
2722 {
2723 char *nextdie;
2724 char *temp;
2725 struct dieinfo di;
2726
2727 while (thisdie < enddie)
2728 {
2729 basicdieinfo (&di, thisdie, objfile);
2730 if (di.die_length < SIZEOF_DIE_LENGTH)
2731 {
2732 break;
2733 }
2734 else
2735 {
2736 nextdie = thisdie + di.die_length;
2737 /* To avoid getting complete die information for every die, we
2738 only do it (below) for the cases we are interested in. */
2739 switch (di.die_tag)
2740 {
2741 case TAG_global_subroutine:
2742 case TAG_subroutine:
2743 completedieinfo (&di, objfile);
2744 if (di.at_name && (di.has_at_low_pc || di.at_location))
2745 {
2746 add_partial_symbol (&di, objfile);
2747 /* If there is a sibling attribute, adjust the nextdie
2748 pointer to skip the entire scope of the subroutine.
2749 Apply some sanity checking to make sure we don't
2750 overrun or underrun the range of remaining DIE's */
2751 if (di.at_sibling != 0)
2752 {
2753 temp = dbbase + di.at_sibling - dbroff;
2754 if ((temp < thisdie) || (temp >= enddie))
2755 {
2756 complain (&bad_die_ref, DIE_ID, DIE_NAME,
2757 di.at_sibling);
2758 }
2759 else
2760 {
2761 nextdie = temp;
2762 }
2763 }
2764 }
2765 break;
2766 case TAG_global_variable:
2767 case TAG_local_variable:
2768 completedieinfo (&di, objfile);
2769 if (di.at_name && (di.has_at_low_pc || di.at_location))
2770 {
2771 add_partial_symbol (&di, objfile);
2772 }
2773 break;
2774 case TAG_typedef:
2775 case TAG_class_type:
2776 case TAG_structure_type:
2777 case TAG_union_type:
2778 completedieinfo (&di, objfile);
2779 if (di.at_name)
2780 {
2781 add_partial_symbol (&di, objfile);
2782 }
2783 break;
2784 case TAG_enumeration_type:
2785 completedieinfo (&di, objfile);
2786 if (di.at_name)
2787 {
2788 add_partial_symbol (&di, objfile);
2789 }
2790 add_enum_psymbol (&di, objfile);
2791 break;
2792 }
2793 }
2794 thisdie = nextdie;
2795 }
2796 }
2797
2798 /*
2799
2800 LOCAL FUNCTION
2801
2802 scan_compilation_units -- build a psymtab entry for each compilation
2803
2804 DESCRIPTION
2805
2806 This is the top level dwarf parsing routine for building partial
2807 symbol tables.
2808
2809 It scans from the beginning of the DWARF table looking for the first
2810 TAG_compile_unit DIE, and then follows the sibling chain to locate
2811 each additional TAG_compile_unit DIE.
2812
2813 For each TAG_compile_unit DIE it creates a partial symtab structure,
2814 calls a subordinate routine to collect all the compilation unit's
2815 global DIE's, file scope DIEs, typedef DIEs, etc, and then links the
2816 new partial symtab structure into the partial symbol table. It also
2817 records the appropriate information in the partial symbol table entry
2818 to allow the chunk of DIE's and line number table for this compilation
2819 unit to be located and re-read later, to generate a complete symbol
2820 table entry for the compilation unit.
2821
2822 Thus it effectively partitions up a chunk of DIE's for multiple
2823 compilation units into smaller DIE chunks and line number tables,
2824 and associates them with a partial symbol table entry.
2825
2826 NOTES
2827
2828 If any compilation unit has no line number table associated with
2829 it for some reason (a missing at_stmt_list attribute, rather than
2830 just one with a value of zero, which is valid) then we ensure that
2831 the recorded file offset is zero so that the routine which later
2832 reads line number table fragments knows that there is no fragment
2833 to read.
2834
2835 RETURNS
2836
2837 Returns no value.
2838
2839 */
2840
2841 static void
2842 scan_compilation_units (thisdie, enddie, dbfoff, lnoffset, objfile)
2843 char *thisdie;
2844 char *enddie;
2845 file_ptr dbfoff;
2846 file_ptr lnoffset;
2847 struct objfile *objfile;
2848 {
2849 char *nextdie;
2850 struct dieinfo di;
2851 struct partial_symtab *pst;
2852 int culength;
2853 int curoff;
2854 file_ptr curlnoffset;
2855
2856 while (thisdie < enddie)
2857 {
2858 basicdieinfo (&di, thisdie, objfile);
2859 if (di.die_length < SIZEOF_DIE_LENGTH)
2860 {
2861 break;
2862 }
2863 else if (di.die_tag != TAG_compile_unit)
2864 {
2865 nextdie = thisdie + di.die_length;
2866 }
2867 else
2868 {
2869 completedieinfo (&di, objfile);
2870 set_cu_language (&di);
2871 if (di.at_sibling != 0)
2872 {
2873 nextdie = dbbase + di.at_sibling - dbroff;
2874 }
2875 else
2876 {
2877 nextdie = thisdie + di.die_length;
2878 }
2879 curoff = thisdie - dbbase;
2880 culength = nextdie - thisdie;
2881 curlnoffset = di.has_at_stmt_list ? lnoffset + di.at_stmt_list : 0;
2882
2883 /* First allocate a new partial symbol table structure */
2884
2885 pst = start_psymtab_common (objfile, base_section_offsets,
2886 di.at_name, di.at_low_pc,
2887 objfile -> global_psymbols.next,
2888 objfile -> static_psymbols.next);
2889
2890 pst -> texthigh = di.at_high_pc;
2891 pst -> read_symtab_private = (char *)
2892 obstack_alloc (&objfile -> psymbol_obstack,
2893 sizeof (struct dwfinfo));
2894 DBFOFF (pst) = dbfoff;
2895 DBROFF (pst) = curoff;
2896 DBLENGTH (pst) = culength;
2897 LNFOFF (pst) = curlnoffset;
2898 pst -> read_symtab = dwarf_psymtab_to_symtab;
2899
2900 /* Now look for partial symbols */
2901
2902 scan_partial_symbols (thisdie + di.die_length, nextdie, objfile);
2903
2904 pst -> n_global_syms = objfile -> global_psymbols.next -
2905 (objfile -> global_psymbols.list + pst -> globals_offset);
2906 pst -> n_static_syms = objfile -> static_psymbols.next -
2907 (objfile -> static_psymbols.list + pst -> statics_offset);
2908 sort_pst_symbols (pst);
2909 /* If there is already a psymtab or symtab for a file of this name,
2910 remove it. (If there is a symtab, more drastic things also
2911 happen.) This happens in VxWorks. */
2912 free_named_symtabs (pst -> filename);
2913 }
2914 thisdie = nextdie;
2915 }
2916 }
2917
2918 /*
2919
2920 LOCAL FUNCTION
2921
2922 new_symbol -- make a symbol table entry for a new symbol
2923
2924 SYNOPSIS
2925
2926 static struct symbol *new_symbol (struct dieinfo *dip,
2927 struct objfile *objfile)
2928
2929 DESCRIPTION
2930
2931 Given a pointer to a DWARF information entry, figure out if we need
2932 to make a symbol table entry for it, and if so, create a new entry
2933 and return a pointer to it.
2934 */
2935
2936 static struct symbol *
2937 new_symbol (dip, objfile)
2938 struct dieinfo *dip;
2939 struct objfile *objfile;
2940 {
2941 struct symbol *sym = NULL;
2942
2943 if (dip -> at_name != NULL)
2944 {
2945 sym = (struct symbol *) obstack_alloc (&objfile -> symbol_obstack,
2946 sizeof (struct symbol));
2947 OBJSTAT (objfile, n_syms++);
2948 memset (sym, 0, sizeof (struct symbol));
2949 SYMBOL_NAME (sym) = create_name (dip -> at_name,
2950 &objfile->symbol_obstack);
2951 /* default assumptions */
2952 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
2953 SYMBOL_CLASS (sym) = LOC_STATIC;
2954 SYMBOL_TYPE (sym) = decode_die_type (dip);
2955
2956 /* If this symbol is from a C++ compilation, then attempt to cache the
2957 demangled form for future reference. This is a typical time versus
2958 space tradeoff, that was decided in favor of time because it sped up
2959 C++ symbol lookups by a factor of about 20. */
2960
2961 SYMBOL_LANGUAGE (sym) = cu_language;
2962 SYMBOL_INIT_DEMANGLED_NAME (sym, &objfile -> symbol_obstack);
2963 switch (dip -> die_tag)
2964 {
2965 case TAG_label:
2966 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2967 SYMBOL_CLASS (sym) = LOC_LABEL;
2968 break;
2969 case TAG_global_subroutine:
2970 case TAG_subroutine:
2971 SYMBOL_VALUE_ADDRESS (sym) = dip -> at_low_pc;
2972 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
2973 if (dip -> at_prototyped)
2974 TYPE_FLAGS (SYMBOL_TYPE (sym)) |= TYPE_FLAG_PROTOTYPED;
2975 SYMBOL_CLASS (sym) = LOC_BLOCK;
2976 if (dip -> die_tag == TAG_global_subroutine)
2977 {
2978 add_symbol_to_list (sym, &global_symbols);
2979 }
2980 else
2981 {
2982 add_symbol_to_list (sym, list_in_scope);
2983 }
2984 break;
2985 case TAG_global_variable:
2986 if (dip -> at_location != NULL)
2987 {
2988 SYMBOL_VALUE_ADDRESS (sym) = locval (dip);
2989 add_symbol_to_list (sym, &global_symbols);
2990 SYMBOL_CLASS (sym) = LOC_STATIC;
2991 SYMBOL_VALUE (sym) += baseaddr;
2992 }
2993 break;
2994 case TAG_local_variable:
2995 if (dip -> at_location != NULL)
2996 {
2997 int loc = locval (dip);
2998 if (dip -> optimized_out)
2999 {
3000 SYMBOL_CLASS (sym) = LOC_OPTIMIZED_OUT;
3001 }
3002 else if (dip -> isreg)
3003 {
3004 SYMBOL_CLASS (sym) = LOC_REGISTER;
3005 }
3006 else if (dip -> offreg)
3007 {
3008 SYMBOL_CLASS (sym) = LOC_BASEREG;
3009 SYMBOL_BASEREG (sym) = dip -> basereg;
3010 }
3011 else
3012 {
3013 SYMBOL_CLASS (sym) = LOC_STATIC;
3014 SYMBOL_VALUE (sym) += baseaddr;
3015 }
3016 if (SYMBOL_CLASS (sym) == LOC_STATIC)
3017 {
3018 /* LOC_STATIC address class MUST use SYMBOL_VALUE_ADDRESS,
3019 which may store to a bigger location than SYMBOL_VALUE. */
3020 SYMBOL_VALUE_ADDRESS (sym) = loc;
3021 }
3022 else
3023 {
3024 SYMBOL_VALUE (sym) = loc;
3025 }
3026 add_symbol_to_list (sym, list_in_scope);
3027 }
3028 break;
3029 case TAG_formal_parameter:
3030 if (dip -> at_location != NULL)
3031 {
3032 SYMBOL_VALUE (sym) = locval (dip);
3033 }
3034 add_symbol_to_list (sym, list_in_scope);
3035 if (dip -> isreg)
3036 {
3037 SYMBOL_CLASS (sym) = LOC_REGPARM;
3038 }
3039 else if (dip -> offreg)
3040 {
3041 SYMBOL_CLASS (sym) = LOC_BASEREG_ARG;
3042 SYMBOL_BASEREG (sym) = dip -> basereg;
3043 }
3044 else
3045 {
3046 SYMBOL_CLASS (sym) = LOC_ARG;
3047 }
3048 break;
3049 case TAG_unspecified_parameters:
3050 /* From varargs functions; gdb doesn't seem to have any interest in
3051 this information, so just ignore it for now. (FIXME?) */
3052 break;
3053 case TAG_class_type:
3054 case TAG_structure_type:
3055 case TAG_union_type:
3056 case TAG_enumeration_type:
3057 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3058 SYMBOL_NAMESPACE (sym) = STRUCT_NAMESPACE;
3059 add_symbol_to_list (sym, list_in_scope);
3060 break;
3061 case TAG_typedef:
3062 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3063 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3064 add_symbol_to_list (sym, list_in_scope);
3065 break;
3066 default:
3067 /* Not a tag we recognize. Hopefully we aren't processing trash
3068 data, but since we must specifically ignore things we don't
3069 recognize, there is nothing else we should do at this point. */
3070 break;
3071 }
3072 }
3073 return (sym);
3074 }
3075
3076 /*
3077
3078 LOCAL FUNCTION
3079
3080 synthesize_typedef -- make a symbol table entry for a "fake" typedef
3081
3082 SYNOPSIS
3083
3084 static void synthesize_typedef (struct dieinfo *dip,
3085 struct objfile *objfile,
3086 struct type *type);
3087
3088 DESCRIPTION
3089
3090 Given a pointer to a DWARF information entry, synthesize a typedef
3091 for the name in the DIE, using the specified type.
3092
3093 This is used for C++ class, structs, unions, and enumerations to
3094 set up the tag name as a type.
3095
3096 */
3097
3098 static void
3099 synthesize_typedef (dip, objfile, type)
3100 struct dieinfo *dip;
3101 struct objfile *objfile;
3102 struct type *type;
3103 {
3104 struct symbol *sym = NULL;
3105
3106 if (dip -> at_name != NULL)
3107 {
3108 sym = (struct symbol *)
3109 obstack_alloc (&objfile -> symbol_obstack, sizeof (struct symbol));
3110 OBJSTAT (objfile, n_syms++);
3111 memset (sym, 0, sizeof (struct symbol));
3112 SYMBOL_NAME (sym) = create_name (dip -> at_name,
3113 &objfile->symbol_obstack);
3114 SYMBOL_INIT_LANGUAGE_SPECIFIC (sym, cu_language);
3115 SYMBOL_TYPE (sym) = type;
3116 SYMBOL_CLASS (sym) = LOC_TYPEDEF;
3117 SYMBOL_NAMESPACE (sym) = VAR_NAMESPACE;
3118 add_symbol_to_list (sym, list_in_scope);
3119 }
3120 }
3121
3122 /*
3123
3124 LOCAL FUNCTION
3125
3126 decode_mod_fund_type -- decode a modified fundamental type
3127
3128 SYNOPSIS
3129
3130 static struct type *decode_mod_fund_type (char *typedata)
3131
3132 DESCRIPTION
3133
3134 Decode a block of data containing a modified fundamental
3135 type specification. TYPEDATA is a pointer to the block,
3136 which starts with a length containing the size of the rest
3137 of the block. At the end of the block is a fundmental type
3138 code value that gives the fundamental type. Everything
3139 in between are type modifiers.
3140
3141 We simply compute the number of modifiers and call the general
3142 function decode_modified_type to do the actual work.
3143 */
3144
3145 static struct type *
3146 decode_mod_fund_type (typedata)
3147 char *typedata;
3148 {
3149 struct type *typep = NULL;
3150 unsigned short modcount;
3151 int nbytes;
3152
3153 /* Get the total size of the block, exclusive of the size itself */
3154
3155 nbytes = attribute_size (AT_mod_fund_type);
3156 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3157 typedata += nbytes;
3158
3159 /* Deduct the size of the fundamental type bytes at the end of the block. */
3160
3161 modcount -= attribute_size (AT_fund_type);
3162
3163 /* Now do the actual decoding */
3164
3165 typep = decode_modified_type (typedata, modcount, AT_mod_fund_type);
3166 return (typep);
3167 }
3168
3169 /*
3170
3171 LOCAL FUNCTION
3172
3173 decode_mod_u_d_type -- decode a modified user defined type
3174
3175 SYNOPSIS
3176
3177 static struct type *decode_mod_u_d_type (char *typedata)
3178
3179 DESCRIPTION
3180
3181 Decode a block of data containing a modified user defined
3182 type specification. TYPEDATA is a pointer to the block,
3183 which consists of a two byte length, containing the size
3184 of the rest of the block. At the end of the block is a
3185 four byte value that gives a reference to a user defined type.
3186 Everything in between are type modifiers.
3187
3188 We simply compute the number of modifiers and call the general
3189 function decode_modified_type to do the actual work.
3190 */
3191
3192 static struct type *
3193 decode_mod_u_d_type (typedata)
3194 char *typedata;
3195 {
3196 struct type *typep = NULL;
3197 unsigned short modcount;
3198 int nbytes;
3199
3200 /* Get the total size of the block, exclusive of the size itself */
3201
3202 nbytes = attribute_size (AT_mod_u_d_type);
3203 modcount = target_to_host (typedata, nbytes, GET_UNSIGNED, current_objfile);
3204 typedata += nbytes;
3205
3206 /* Deduct the size of the reference type bytes at the end of the block. */
3207
3208 modcount -= attribute_size (AT_user_def_type);
3209
3210 /* Now do the actual decoding */
3211
3212 typep = decode_modified_type (typedata, modcount, AT_mod_u_d_type);
3213 return (typep);
3214 }
3215
3216 /*
3217
3218 LOCAL FUNCTION
3219
3220 decode_modified_type -- decode modified user or fundamental type
3221
3222 SYNOPSIS
3223
3224 static struct type *decode_modified_type (char *modifiers,
3225 unsigned short modcount, int mtype)
3226
3227 DESCRIPTION
3228
3229 Decode a modified type, either a modified fundamental type or
3230 a modified user defined type. MODIFIERS is a pointer to the
3231 block of bytes that define MODCOUNT modifiers. Immediately
3232 following the last modifier is a short containing the fundamental
3233 type or a long containing the reference to the user defined
3234 type. Which one is determined by MTYPE, which is either
3235 AT_mod_fund_type or AT_mod_u_d_type to indicate what modified
3236 type we are generating.
3237
3238 We call ourself recursively to generate each modified type,`
3239 until MODCOUNT reaches zero, at which point we have consumed
3240 all the modifiers and generate either the fundamental type or
3241 user defined type. When the recursion unwinds, each modifier
3242 is applied in turn to generate the full modified type.
3243
3244 NOTES
3245
3246 If we find a modifier that we don't recognize, and it is not one
3247 of those reserved for application specific use, then we issue a
3248 warning and simply ignore the modifier.
3249
3250 BUGS
3251
3252 We currently ignore MOD_const and MOD_volatile. (FIXME)
3253
3254 */
3255
3256 static struct type *
3257 decode_modified_type (modifiers, modcount, mtype)
3258 char *modifiers;
3259 unsigned int modcount;
3260 int mtype;
3261 {
3262 struct type *typep = NULL;
3263 unsigned short fundtype;
3264 DIE_REF die_ref;
3265 char modifier;
3266 int nbytes;
3267
3268 if (modcount == 0)
3269 {
3270 switch (mtype)
3271 {
3272 case AT_mod_fund_type:
3273 nbytes = attribute_size (AT_fund_type);
3274 fundtype = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3275 current_objfile);
3276 typep = decode_fund_type (fundtype);
3277 break;
3278 case AT_mod_u_d_type:
3279 nbytes = attribute_size (AT_user_def_type);
3280 die_ref = target_to_host (modifiers, nbytes, GET_UNSIGNED,
3281 current_objfile);
3282 if ((typep = lookup_utype (die_ref)) == NULL)
3283 {
3284 typep = alloc_utype (die_ref, NULL);
3285 }
3286 break;
3287 default:
3288 complain (&botched_modified_type, DIE_ID, DIE_NAME, mtype);
3289 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3290 break;
3291 }
3292 }
3293 else
3294 {
3295 modifier = *modifiers++;
3296 typep = decode_modified_type (modifiers, --modcount, mtype);
3297 switch (modifier)
3298 {
3299 case MOD_pointer_to:
3300 typep = lookup_pointer_type (typep);
3301 break;
3302 case MOD_reference_to:
3303 typep = lookup_reference_type (typep);
3304 break;
3305 case MOD_const:
3306 complain (&const_ignored, DIE_ID, DIE_NAME); /* FIXME */
3307 break;
3308 case MOD_volatile:
3309 complain (&volatile_ignored, DIE_ID, DIE_NAME); /* FIXME */
3310 break;
3311 default:
3312 if (!(MOD_lo_user <= (unsigned char) modifier
3313 && (unsigned char) modifier <= MOD_hi_user))
3314 {
3315 complain (&unknown_type_modifier, DIE_ID, DIE_NAME, modifier);
3316 }
3317 break;
3318 }
3319 }
3320 return (typep);
3321 }
3322
3323 /*
3324
3325 LOCAL FUNCTION
3326
3327 decode_fund_type -- translate basic DWARF type to gdb base type
3328
3329 DESCRIPTION
3330
3331 Given an integer that is one of the fundamental DWARF types,
3332 translate it to one of the basic internal gdb types and return
3333 a pointer to the appropriate gdb type (a "struct type *").
3334
3335 NOTES
3336
3337 For robustness, if we are asked to translate a fundamental
3338 type that we are unprepared to deal with, we return int so
3339 callers can always depend upon a valid type being returned,
3340 and so gdb may at least do something reasonable by default.
3341 If the type is not in the range of those types defined as
3342 application specific types, we also issue a warning.
3343 */
3344
3345 static struct type *
3346 decode_fund_type (fundtype)
3347 unsigned int fundtype;
3348 {
3349 struct type *typep = NULL;
3350
3351 switch (fundtype)
3352 {
3353
3354 case FT_void:
3355 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3356 break;
3357
3358 case FT_boolean: /* Was FT_set in AT&T version */
3359 typep = dwarf_fundamental_type (current_objfile, FT_BOOLEAN);
3360 break;
3361
3362 case FT_pointer: /* (void *) */
3363 typep = dwarf_fundamental_type (current_objfile, FT_VOID);
3364 typep = lookup_pointer_type (typep);
3365 break;
3366
3367 case FT_char:
3368 typep = dwarf_fundamental_type (current_objfile, FT_CHAR);
3369 break;
3370
3371 case FT_signed_char:
3372 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_CHAR);
3373 break;
3374
3375 case FT_unsigned_char:
3376 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_CHAR);
3377 break;
3378
3379 case FT_short:
3380 typep = dwarf_fundamental_type (current_objfile, FT_SHORT);
3381 break;
3382
3383 case FT_signed_short:
3384 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_SHORT);
3385 break;
3386
3387 case FT_unsigned_short:
3388 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_SHORT);
3389 break;
3390
3391 case FT_integer:
3392 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3393 break;
3394
3395 case FT_signed_integer:
3396 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_INTEGER);
3397 break;
3398
3399 case FT_unsigned_integer:
3400 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_INTEGER);
3401 break;
3402
3403 case FT_long:
3404 typep = dwarf_fundamental_type (current_objfile, FT_LONG);
3405 break;
3406
3407 case FT_signed_long:
3408 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG);
3409 break;
3410
3411 case FT_unsigned_long:
3412 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG);
3413 break;
3414
3415 case FT_long_long:
3416 typep = dwarf_fundamental_type (current_objfile, FT_LONG_LONG);
3417 break;
3418
3419 case FT_signed_long_long:
3420 typep = dwarf_fundamental_type (current_objfile, FT_SIGNED_LONG_LONG);
3421 break;
3422
3423 case FT_unsigned_long_long:
3424 typep = dwarf_fundamental_type (current_objfile, FT_UNSIGNED_LONG_LONG);
3425 break;
3426
3427 case FT_float:
3428 typep = dwarf_fundamental_type (current_objfile, FT_FLOAT);
3429 break;
3430
3431 case FT_dbl_prec_float:
3432 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_FLOAT);
3433 break;
3434
3435 case FT_ext_prec_float:
3436 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_FLOAT);
3437 break;
3438
3439 case FT_complex:
3440 typep = dwarf_fundamental_type (current_objfile, FT_COMPLEX);
3441 break;
3442
3443 case FT_dbl_prec_complex:
3444 typep = dwarf_fundamental_type (current_objfile, FT_DBL_PREC_COMPLEX);
3445 break;
3446
3447 case FT_ext_prec_complex:
3448 typep = dwarf_fundamental_type (current_objfile, FT_EXT_PREC_COMPLEX);
3449 break;
3450
3451 }
3452
3453 if (typep == NULL)
3454 {
3455 typep = dwarf_fundamental_type (current_objfile, FT_INTEGER);
3456 if (!(FT_lo_user <= fundtype && fundtype <= FT_hi_user))
3457 {
3458 complain (&unexpected_fund_type, DIE_ID, DIE_NAME, fundtype);
3459 }
3460 }
3461
3462 return (typep);
3463 }
3464
3465 /*
3466
3467 LOCAL FUNCTION
3468
3469 create_name -- allocate a fresh copy of a string on an obstack
3470
3471 DESCRIPTION
3472
3473 Given a pointer to a string and a pointer to an obstack, allocates
3474 a fresh copy of the string on the specified obstack.
3475
3476 */
3477
3478 static char *
3479 create_name (name, obstackp)
3480 char *name;
3481 struct obstack *obstackp;
3482 {
3483 int length;
3484 char *newname;
3485
3486 length = strlen (name) + 1;
3487 newname = (char *) obstack_alloc (obstackp, length);
3488 strcpy (newname, name);
3489 return (newname);
3490 }
3491
3492 /*
3493
3494 LOCAL FUNCTION
3495
3496 basicdieinfo -- extract the minimal die info from raw die data
3497
3498 SYNOPSIS
3499
3500 void basicdieinfo (char *diep, struct dieinfo *dip,
3501 struct objfile *objfile)
3502
3503 DESCRIPTION
3504
3505 Given a pointer to raw DIE data, and a pointer to an instance of a
3506 die info structure, this function extracts the basic information
3507 from the DIE data required to continue processing this DIE, along
3508 with some bookkeeping information about the DIE.
3509
3510 The information we absolutely must have includes the DIE tag,
3511 and the DIE length. If we need the sibling reference, then we
3512 will have to call completedieinfo() to process all the remaining
3513 DIE information.
3514
3515 Note that since there is no guarantee that the data is properly
3516 aligned in memory for the type of access required (indirection
3517 through anything other than a char pointer), and there is no
3518 guarantee that it is in the same byte order as the gdb host,
3519 we call a function which deals with both alignment and byte
3520 swapping issues. Possibly inefficient, but quite portable.
3521
3522 We also take care of some other basic things at this point, such
3523 as ensuring that the instance of the die info structure starts
3524 out completely zero'd and that curdie is initialized for use
3525 in error reporting if we have a problem with the current die.
3526
3527 NOTES
3528
3529 All DIE's must have at least a valid length, thus the minimum
3530 DIE size is SIZEOF_DIE_LENGTH. In order to have a valid tag, the
3531 DIE size must be at least SIZEOF_DIE_TAG larger, otherwise they
3532 are forced to be TAG_padding DIES.
3533
3534 Padding DIES must be at least SIZEOF_DIE_LENGTH in length, implying
3535 that if a padding DIE is used for alignment and the amount needed is
3536 less than SIZEOF_DIE_LENGTH, then the padding DIE has to be big
3537 enough to align to the next alignment boundry.
3538
3539 We do some basic sanity checking here, such as verifying that the
3540 length of the die would not cause it to overrun the recorded end of
3541 the buffer holding the DIE info. If we find a DIE that is either
3542 too small or too large, we force it's length to zero which should
3543 cause the caller to take appropriate action.
3544 */
3545
3546 static void
3547 basicdieinfo (dip, diep, objfile)
3548 struct dieinfo *dip;
3549 char *diep;
3550 struct objfile *objfile;
3551 {
3552 curdie = dip;
3553 memset (dip, 0, sizeof (struct dieinfo));
3554 dip -> die = diep;
3555 dip -> die_ref = dbroff + (diep - dbbase);
3556 dip -> die_length = target_to_host (diep, SIZEOF_DIE_LENGTH, GET_UNSIGNED,
3557 objfile);
3558 if ((dip -> die_length < SIZEOF_DIE_LENGTH) ||
3559 ((diep + dip -> die_length) > (dbbase + dbsize)))
3560 {
3561 complain (&malformed_die, DIE_ID, DIE_NAME, dip -> die_length);
3562 dip -> die_length = 0;
3563 }
3564 else if (dip -> die_length < (SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG))
3565 {
3566 dip -> die_tag = TAG_padding;
3567 }
3568 else
3569 {
3570 diep += SIZEOF_DIE_LENGTH;
3571 dip -> die_tag = target_to_host (diep, SIZEOF_DIE_TAG, GET_UNSIGNED,
3572 objfile);
3573 }
3574 }
3575
3576 /*
3577
3578 LOCAL FUNCTION
3579
3580 completedieinfo -- finish reading the information for a given DIE
3581
3582 SYNOPSIS
3583
3584 void completedieinfo (struct dieinfo *dip, struct objfile *objfile)
3585
3586 DESCRIPTION
3587
3588 Given a pointer to an already partially initialized die info structure,
3589 scan the raw DIE data and finish filling in the die info structure
3590 from the various attributes found.
3591
3592 Note that since there is no guarantee that the data is properly
3593 aligned in memory for the type of access required (indirection
3594 through anything other than a char pointer), and there is no
3595 guarantee that it is in the same byte order as the gdb host,
3596 we call a function which deals with both alignment and byte
3597 swapping issues. Possibly inefficient, but quite portable.
3598
3599 NOTES
3600
3601 Each time we are called, we increment the diecount variable, which
3602 keeps an approximate count of the number of dies processed for
3603 each compilation unit. This information is presented to the user
3604 if the info_verbose flag is set.
3605
3606 */
3607
3608 static void
3609 completedieinfo (dip, objfile)
3610 struct dieinfo *dip;
3611 struct objfile *objfile;
3612 {
3613 char *diep; /* Current pointer into raw DIE data */
3614 char *end; /* Terminate DIE scan here */
3615 unsigned short attr; /* Current attribute being scanned */
3616 unsigned short form; /* Form of the attribute */
3617 int nbytes; /* Size of next field to read */
3618
3619 diecount++;
3620 diep = dip -> die;
3621 end = diep + dip -> die_length;
3622 diep += SIZEOF_DIE_LENGTH + SIZEOF_DIE_TAG;
3623 while (diep < end)
3624 {
3625 attr = target_to_host (diep, SIZEOF_ATTRIBUTE, GET_UNSIGNED, objfile);
3626 diep += SIZEOF_ATTRIBUTE;
3627 if ((nbytes = attribute_size (attr)) == -1)
3628 {
3629 complain (&unknown_attribute_length, DIE_ID, DIE_NAME);
3630 diep = end;
3631 continue;
3632 }
3633 switch (attr)
3634 {
3635 case AT_fund_type:
3636 dip -> at_fund_type = target_to_host (diep, nbytes, GET_UNSIGNED,
3637 objfile);
3638 break;
3639 case AT_ordering:
3640 dip -> at_ordering = target_to_host (diep, nbytes, GET_UNSIGNED,
3641 objfile);
3642 break;
3643 case AT_bit_offset:
3644 dip -> at_bit_offset = target_to_host (diep, nbytes, GET_UNSIGNED,
3645 objfile);
3646 break;
3647 case AT_sibling:
3648 dip -> at_sibling = target_to_host (diep, nbytes, GET_UNSIGNED,
3649 objfile);
3650 break;
3651 case AT_stmt_list:
3652 dip -> at_stmt_list = target_to_host (diep, nbytes, GET_UNSIGNED,
3653 objfile);
3654 dip -> has_at_stmt_list = 1;
3655 break;
3656 case AT_low_pc:
3657 dip -> at_low_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3658 objfile);
3659 dip -> at_low_pc += baseaddr;
3660 dip -> has_at_low_pc = 1;
3661 break;
3662 case AT_high_pc:
3663 dip -> at_high_pc = target_to_host (diep, nbytes, GET_UNSIGNED,
3664 objfile);
3665 dip -> at_high_pc += baseaddr;
3666 break;
3667 case AT_language:
3668 dip -> at_language = target_to_host (diep, nbytes, GET_UNSIGNED,
3669 objfile);
3670 break;
3671 case AT_user_def_type:
3672 dip -> at_user_def_type = target_to_host (diep, nbytes,
3673 GET_UNSIGNED, objfile);
3674 break;
3675 case AT_byte_size:
3676 dip -> at_byte_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3677 objfile);
3678 dip -> has_at_byte_size = 1;
3679 break;
3680 case AT_bit_size:
3681 dip -> at_bit_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3682 objfile);
3683 break;
3684 case AT_member:
3685 dip -> at_member = target_to_host (diep, nbytes, GET_UNSIGNED,
3686 objfile);
3687 break;
3688 case AT_discr:
3689 dip -> at_discr = target_to_host (diep, nbytes, GET_UNSIGNED,
3690 objfile);
3691 break;
3692 case AT_location:
3693 dip -> at_location = diep;
3694 break;
3695 case AT_mod_fund_type:
3696 dip -> at_mod_fund_type = diep;
3697 break;
3698 case AT_subscr_data:
3699 dip -> at_subscr_data = diep;
3700 break;
3701 case AT_mod_u_d_type:
3702 dip -> at_mod_u_d_type = diep;
3703 break;
3704 case AT_element_list:
3705 dip -> at_element_list = diep;
3706 dip -> short_element_list = 0;
3707 break;
3708 case AT_short_element_list:
3709 dip -> at_element_list = diep;
3710 dip -> short_element_list = 1;
3711 break;
3712 case AT_discr_value:
3713 dip -> at_discr_value = diep;
3714 break;
3715 case AT_string_length:
3716 dip -> at_string_length = diep;
3717 break;
3718 case AT_name:
3719 dip -> at_name = diep;
3720 break;
3721 case AT_comp_dir:
3722 /* For now, ignore any "hostname:" portion, since gdb doesn't
3723 know how to deal with it. (FIXME). */
3724 dip -> at_comp_dir = strrchr (diep, ':');
3725 if (dip -> at_comp_dir != NULL)
3726 {
3727 dip -> at_comp_dir++;
3728 }
3729 else
3730 {
3731 dip -> at_comp_dir = diep;
3732 }
3733 break;
3734 case AT_producer:
3735 dip -> at_producer = diep;
3736 break;
3737 case AT_start_scope:
3738 dip -> at_start_scope = target_to_host (diep, nbytes, GET_UNSIGNED,
3739 objfile);
3740 break;
3741 case AT_stride_size:
3742 dip -> at_stride_size = target_to_host (diep, nbytes, GET_UNSIGNED,
3743 objfile);
3744 break;
3745 case AT_src_info:
3746 dip -> at_src_info = target_to_host (diep, nbytes, GET_UNSIGNED,
3747 objfile);
3748 break;
3749 case AT_prototyped:
3750 dip -> at_prototyped = diep;
3751 break;
3752 default:
3753 /* Found an attribute that we are unprepared to handle. However
3754 it is specifically one of the design goals of DWARF that
3755 consumers should ignore unknown attributes. As long as the
3756 form is one that we recognize (so we know how to skip it),
3757 we can just ignore the unknown attribute. */
3758 break;
3759 }
3760 form = FORM_FROM_ATTR (attr);
3761 switch (form)
3762 {
3763 case FORM_DATA2:
3764 diep += 2;
3765 break;
3766 case FORM_DATA4:
3767 case FORM_REF:
3768 diep += 4;
3769 break;
3770 case FORM_DATA8:
3771 diep += 8;
3772 break;
3773 case FORM_ADDR:
3774 diep += TARGET_FT_POINTER_SIZE (objfile);
3775 break;
3776 case FORM_BLOCK2:
3777 diep += 2 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3778 break;
3779 case FORM_BLOCK4:
3780 diep += 4 + target_to_host (diep, nbytes, GET_UNSIGNED, objfile);
3781 break;
3782 case FORM_STRING:
3783 diep += strlen (diep) + 1;
3784 break;
3785 default:
3786 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3787 diep = end;
3788 break;
3789 }
3790 }
3791 }
3792
3793 /*
3794
3795 LOCAL FUNCTION
3796
3797 target_to_host -- swap in target data to host
3798
3799 SYNOPSIS
3800
3801 target_to_host (char *from, int nbytes, int signextend,
3802 struct objfile *objfile)
3803
3804 DESCRIPTION
3805
3806 Given pointer to data in target format in FROM, a byte count for
3807 the size of the data in NBYTES, a flag indicating whether or not
3808 the data is signed in SIGNEXTEND, and a pointer to the current
3809 objfile in OBJFILE, convert the data to host format and return
3810 the converted value.
3811
3812 NOTES
3813
3814 FIXME: If we read data that is known to be signed, and expect to
3815 use it as signed data, then we need to explicitly sign extend the
3816 result until the bfd library is able to do this for us.
3817
3818 FIXME: Would a 32 bit target ever need an 8 byte result?
3819
3820 */
3821
3822 static CORE_ADDR
3823 target_to_host (from, nbytes, signextend, objfile)
3824 char *from;
3825 int nbytes;
3826 int signextend; /* FIXME: Unused */
3827 struct objfile *objfile;
3828 {
3829 CORE_ADDR rtnval;
3830
3831 switch (nbytes)
3832 {
3833 case 8:
3834 rtnval = bfd_get_64 (objfile -> obfd, (bfd_byte *) from);
3835 break;
3836 case 4:
3837 rtnval = bfd_get_32 (objfile -> obfd, (bfd_byte *) from);
3838 break;
3839 case 2:
3840 rtnval = bfd_get_16 (objfile -> obfd, (bfd_byte *) from);
3841 break;
3842 case 1:
3843 rtnval = bfd_get_8 (objfile -> obfd, (bfd_byte *) from);
3844 break;
3845 default:
3846 complain (&no_bfd_get_N, DIE_ID, DIE_NAME, nbytes);
3847 rtnval = 0;
3848 break;
3849 }
3850 return (rtnval);
3851 }
3852
3853 /*
3854
3855 LOCAL FUNCTION
3856
3857 attribute_size -- compute size of data for a DWARF attribute
3858
3859 SYNOPSIS
3860
3861 static int attribute_size (unsigned int attr)
3862
3863 DESCRIPTION
3864
3865 Given a DWARF attribute in ATTR, compute the size of the first
3866 piece of data associated with this attribute and return that
3867 size.
3868
3869 Returns -1 for unrecognized attributes.
3870
3871 */
3872
3873 static int
3874 attribute_size (attr)
3875 unsigned int attr;
3876 {
3877 int nbytes; /* Size of next data for this attribute */
3878 unsigned short form; /* Form of the attribute */
3879
3880 form = FORM_FROM_ATTR (attr);
3881 switch (form)
3882 {
3883 case FORM_STRING: /* A variable length field is next */
3884 nbytes = 0;
3885 break;
3886 case FORM_DATA2: /* Next 2 byte field is the data itself */
3887 case FORM_BLOCK2: /* Next 2 byte field is a block length */
3888 nbytes = 2;
3889 break;
3890 case FORM_DATA4: /* Next 4 byte field is the data itself */
3891 case FORM_BLOCK4: /* Next 4 byte field is a block length */
3892 case FORM_REF: /* Next 4 byte field is a DIE offset */
3893 nbytes = 4;
3894 break;
3895 case FORM_DATA8: /* Next 8 byte field is the data itself */
3896 nbytes = 8;
3897 break;
3898 case FORM_ADDR: /* Next field size is target sizeof(void *) */
3899 nbytes = TARGET_FT_POINTER_SIZE (objfile);
3900 break;
3901 default:
3902 complain (&unknown_attribute_form, DIE_ID, DIE_NAME, form);
3903 nbytes = -1;
3904 break;
3905 }
3906 return (nbytes);
3907 }