1 /* Target-dependent code for the Fujitsu FR-V, for GDB, the GNU Debugger.
3 Copyright (C) 2002-2025 Free Software Foundation, Inc.
5 This file is part of GDB.
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20 #include "extract-store-integer.h"
23 #include "arch-utils.h"
26 #include "frame-unwind.h"
27 #include "frame-base.h"
28 #include "solib-frv.h"
29 #include "trad-frame.h"
31 #include "sim-regno.h"
32 #include "sim/sim-frv.h"
43 /* Make cgen names unique to prevent ODR conflicts with other targets. */
44 #define GDB_CGEN_REMAP_PREFIX frv
45 #include "cgen-remap.h"
46 #include "opcodes/frv-desc.h"
48 struct frv_unwind_cache
/* was struct frame_extra_info */
50 /* The previous frame's inner-most stack address. Used as this
51 frame ID's stack_addr. */
54 /* The frame's base, optionally used by the high-level debug info. */
57 /* Table indicating the location of each and every register. */
58 trad_frame_saved_reg
*saved_regs
;
61 /* A structure describing a particular variant of the FRV.
62 We allocate and initialize one of these structures when we create
63 the gdbarch object for a variant.
65 At the moment, all the FR variants we support differ only in which
66 registers are present; the portable code of GDB knows that
67 registers whose names are the empty string don't exist, so the
68 `register_names' array captures all the per-variant information we
71 in the future, if we need to have per-variant maps for raw size,
72 virtual type, etc., we should replace register_names with an array
73 of structures, each of which gives all the necessary info for one
74 register. Don't stick parallel arrays in here --- that's so
76 struct frv_gdbarch_tdep
: gdbarch_tdep_base
78 /* Which ABI is in use? */
79 enum frv_abi frv_abi
{};
81 /* How many general-purpose registers does this variant have? */
84 /* How many floating-point registers does this variant have? */
87 /* How many hardware watchpoints can it support? */
88 int num_hw_watchpoints
= 0;
90 /* How many hardware breakpoints can it support? */
91 int num_hw_breakpoints
= 0;
94 const char **register_names
= nullptr;
97 using frv_gdbarch_tdep_up
= std::unique_ptr
<frv_gdbarch_tdep
>;
99 /* Return the FR-V ABI associated with GDBARCH. */
101 frv_abi (struct gdbarch
*gdbarch
)
103 frv_gdbarch_tdep
*tdep
= gdbarch_tdep
<frv_gdbarch_tdep
> (gdbarch
);
104 return tdep
->frv_abi
;
107 /* Fetch the interpreter and executable loadmap addresses (for shared
108 library support) for the FDPIC ABI. Return 0 if successful, -1 if
109 not. (E.g, -1 will be returned if the ABI isn't the FDPIC ABI.) */
111 frv_fdpic_loadmap_addresses (struct gdbarch
*gdbarch
, CORE_ADDR
*interp_addr
,
112 CORE_ADDR
*exec_addr
)
114 if (frv_abi (gdbarch
) != FRV_ABI_FDPIC
)
118 regcache
*regcache
= get_thread_regcache (inferior_thread ());
120 if (interp_addr
!= NULL
)
123 regcache_cooked_read_unsigned (regcache
,
124 fdpic_loadmap_interp_regnum
, &val
);
127 if (exec_addr
!= NULL
)
130 regcache_cooked_read_unsigned (regcache
,
131 fdpic_loadmap_exec_regnum
, &val
);
138 /* Allocate a new variant structure, and set up default values for all
140 static frv_gdbarch_tdep_up
145 frv_gdbarch_tdep_up
var (new frv_gdbarch_tdep
);
147 var
->frv_abi
= FRV_ABI_EABI
;
150 var
->num_hw_watchpoints
= 0;
151 var
->num_hw_breakpoints
= 0;
153 /* By default, don't supply any general-purpose or floating-point
156 = (const char **) xmalloc ((frv_num_regs
+ frv_num_pseudo_regs
)
157 * sizeof (const char *));
158 for (r
= 0; r
< frv_num_regs
+ frv_num_pseudo_regs
; r
++)
159 var
->register_names
[r
] = "";
161 /* Do, however, supply default names for the known special-purpose
164 var
->register_names
[pc_regnum
] = "pc";
165 var
->register_names
[lr_regnum
] = "lr";
166 var
->register_names
[lcr_regnum
] = "lcr";
168 var
->register_names
[psr_regnum
] = "psr";
169 var
->register_names
[ccr_regnum
] = "ccr";
170 var
->register_names
[cccr_regnum
] = "cccr";
171 var
->register_names
[tbr_regnum
] = "tbr";
173 /* Debug registers. */
174 var
->register_names
[brr_regnum
] = "brr";
175 var
->register_names
[dbar0_regnum
] = "dbar0";
176 var
->register_names
[dbar1_regnum
] = "dbar1";
177 var
->register_names
[dbar2_regnum
] = "dbar2";
178 var
->register_names
[dbar3_regnum
] = "dbar3";
180 /* iacc0 (Only found on MB93405.) */
181 var
->register_names
[iacc0h_regnum
] = "iacc0h";
182 var
->register_names
[iacc0l_regnum
] = "iacc0l";
183 var
->register_names
[iacc0_regnum
] = "iacc0";
185 /* fsr0 (Found on FR555 and FR501.) */
186 var
->register_names
[fsr0_regnum
] = "fsr0";
188 /* acc0 - acc7. The architecture provides for the possibility of many
189 more (up to 64 total), but we don't want to make that big of a hole
190 in the G packet. If we need more in the future, we'll add them
192 for (r
= acc0_regnum
; r
<= acc7_regnum
; r
++)
193 var
->register_names
[r
]
194 = xstrprintf ("acc%d", r
- acc0_regnum
).release ();
196 /* accg0 - accg7: These are one byte registers. The remote protocol
197 provides the raw values packed four into a slot. accg0123 and
198 accg4567 correspond to accg0 - accg3 and accg4-accg7 respectively.
199 We don't provide names for accg0123 and accg4567 since the user will
200 likely not want to see these raw values. */
202 for (r
= accg0_regnum
; r
<= accg7_regnum
; r
++)
203 var
->register_names
[r
]
204 = xstrprintf ("accg%d", r
- accg0_regnum
).release ();
208 var
->register_names
[msr0_regnum
] = "msr0";
209 var
->register_names
[msr1_regnum
] = "msr1";
211 /* gner and fner registers. */
212 var
->register_names
[gner0_regnum
] = "gner0";
213 var
->register_names
[gner1_regnum
] = "gner1";
214 var
->register_names
[fner0_regnum
] = "fner0";
215 var
->register_names
[fner1_regnum
] = "fner1";
221 /* Indicate that the variant VAR has NUM_GPRS general-purpose
222 registers, and fill in the names array appropriately. */
224 set_variant_num_gprs (frv_gdbarch_tdep
*var
, int num_gprs
)
228 var
->num_gprs
= num_gprs
;
230 for (r
= 0; r
< num_gprs
; ++r
)
234 xsnprintf (buf
, sizeof (buf
), "gr%d", r
);
235 var
->register_names
[first_gpr_regnum
+ r
] = xstrdup (buf
);
240 /* Indicate that the variant VAR has NUM_FPRS floating-point
241 registers, and fill in the names array appropriately. */
243 set_variant_num_fprs (frv_gdbarch_tdep
*var
, int num_fprs
)
247 var
->num_fprs
= num_fprs
;
249 for (r
= 0; r
< num_fprs
; ++r
)
253 xsnprintf (buf
, sizeof (buf
), "fr%d", r
);
254 var
->register_names
[first_fpr_regnum
+ r
] = xstrdup (buf
);
259 set_variant_abi_fdpic (frv_gdbarch_tdep
*var
)
261 var
->frv_abi
= FRV_ABI_FDPIC
;
262 var
->register_names
[fdpic_loadmap_exec_regnum
] = xstrdup ("loadmap_exec");
263 var
->register_names
[fdpic_loadmap_interp_regnum
]
264 = xstrdup ("loadmap_interp");
268 set_variant_scratch_registers (frv_gdbarch_tdep
*var
)
270 var
->register_names
[scr0_regnum
] = xstrdup ("scr0");
271 var
->register_names
[scr1_regnum
] = xstrdup ("scr1");
272 var
->register_names
[scr2_regnum
] = xstrdup ("scr2");
273 var
->register_names
[scr3_regnum
] = xstrdup ("scr3");
277 frv_register_name (struct gdbarch
*gdbarch
, int reg
)
279 frv_gdbarch_tdep
*tdep
= gdbarch_tdep
<frv_gdbarch_tdep
> (gdbarch
);
280 return tdep
->register_names
[reg
];
285 frv_register_type (struct gdbarch
*gdbarch
, int reg
)
287 if (reg
>= first_fpr_regnum
&& reg
<= last_fpr_regnum
)
288 return builtin_type (gdbarch
)->builtin_float
;
289 else if (reg
== iacc0_regnum
)
290 return builtin_type (gdbarch
)->builtin_int64
;
292 return builtin_type (gdbarch
)->builtin_int32
;
295 static enum register_status
296 frv_pseudo_register_read (struct gdbarch
*gdbarch
, readable_regcache
*regcache
,
297 int reg
, gdb_byte
*buffer
)
299 enum register_status status
;
301 if (reg
== iacc0_regnum
)
303 status
= regcache
->raw_read (iacc0h_regnum
, buffer
);
304 if (status
== REG_VALID
)
305 status
= regcache
->raw_read (iacc0l_regnum
, (bfd_byte
*) buffer
+ 4);
307 else if (accg0_regnum
<= reg
&& reg
<= accg7_regnum
)
309 /* The accg raw registers have four values in each slot with the
310 lowest register number occupying the first byte. */
312 int raw_regnum
= accg0123_regnum
+ (reg
- accg0_regnum
) / 4;
313 int byte_num
= (reg
- accg0_regnum
) % 4;
316 status
= regcache
->raw_read (raw_regnum
, buf
);
317 if (status
== REG_VALID
)
319 memset (buffer
, 0, 4);
320 /* FR-V is big endian, so put the requested byte in the
321 first byte of the buffer allocated to hold the
323 buffer
[0] = buf
[byte_num
];
327 gdb_assert_not_reached ("invalid pseudo register number");
333 frv_pseudo_register_write (struct gdbarch
*gdbarch
, struct regcache
*regcache
,
334 int reg
, const gdb_byte
*buffer
)
336 if (reg
== iacc0_regnum
)
338 regcache
->raw_write (iacc0h_regnum
, buffer
);
339 regcache
->raw_write (iacc0l_regnum
, (bfd_byte
*) buffer
+ 4);
341 else if (accg0_regnum
<= reg
&& reg
<= accg7_regnum
)
343 /* The accg raw registers have four values in each slot with the
344 lowest register number occupying the first byte. */
346 int raw_regnum
= accg0123_regnum
+ (reg
- accg0_regnum
) / 4;
347 int byte_num
= (reg
- accg0_regnum
) % 4;
350 regcache
->raw_read (raw_regnum
, buf
);
351 buf
[byte_num
] = ((bfd_byte
*) buffer
)[0];
352 regcache
->raw_write (raw_regnum
, buf
);
357 frv_register_sim_regno (struct gdbarch
*gdbarch
, int reg
)
359 static const int spr_map
[] =
361 H_SPR_PSR
, /* psr_regnum */
362 H_SPR_CCR
, /* ccr_regnum */
363 H_SPR_CCCR
, /* cccr_regnum */
364 -1, /* fdpic_loadmap_exec_regnum */
365 -1, /* fdpic_loadmap_interp_regnum */
367 H_SPR_TBR
, /* tbr_regnum */
368 H_SPR_BRR
, /* brr_regnum */
369 H_SPR_DBAR0
, /* dbar0_regnum */
370 H_SPR_DBAR1
, /* dbar1_regnum */
371 H_SPR_DBAR2
, /* dbar2_regnum */
372 H_SPR_DBAR3
, /* dbar3_regnum */
373 H_SPR_SCR0
, /* scr0_regnum */
374 H_SPR_SCR1
, /* scr1_regnum */
375 H_SPR_SCR2
, /* scr2_regnum */
376 H_SPR_SCR3
, /* scr3_regnum */
377 H_SPR_LR
, /* lr_regnum */
378 H_SPR_LCR
, /* lcr_regnum */
379 H_SPR_IACC0H
, /* iacc0h_regnum */
380 H_SPR_IACC0L
, /* iacc0l_regnum */
381 H_SPR_FSR0
, /* fsr0_regnum */
382 /* FIXME: Add infrastructure for fetching/setting ACC and ACCG regs. */
383 -1, /* acc0_regnum */
384 -1, /* acc1_regnum */
385 -1, /* acc2_regnum */
386 -1, /* acc3_regnum */
387 -1, /* acc4_regnum */
388 -1, /* acc5_regnum */
389 -1, /* acc6_regnum */
390 -1, /* acc7_regnum */
391 -1, /* acc0123_regnum */
392 -1, /* acc4567_regnum */
393 H_SPR_MSR0
, /* msr0_regnum */
394 H_SPR_MSR1
, /* msr1_regnum */
395 H_SPR_GNER0
, /* gner0_regnum */
396 H_SPR_GNER1
, /* gner1_regnum */
397 H_SPR_FNER0
, /* fner0_regnum */
398 H_SPR_FNER1
, /* fner1_regnum */
401 gdb_assert (reg
>= 0 && reg
< gdbarch_num_regs (gdbarch
));
403 if (first_gpr_regnum
<= reg
&& reg
<= last_gpr_regnum
)
404 return reg
- first_gpr_regnum
+ SIM_FRV_GR0_REGNUM
;
405 else if (first_fpr_regnum
<= reg
&& reg
<= last_fpr_regnum
)
406 return reg
- first_fpr_regnum
+ SIM_FRV_FR0_REGNUM
;
407 else if (pc_regnum
== reg
)
408 return SIM_FRV_PC_REGNUM
;
409 else if (reg
>= first_spr_regnum
410 && reg
< first_spr_regnum
+ sizeof (spr_map
) / sizeof (spr_map
[0]))
412 int spr_reg_offset
= spr_map
[reg
- first_spr_regnum
];
414 if (spr_reg_offset
< 0)
415 return SIM_REGNO_DOES_NOT_EXIST
;
417 return SIM_FRV_SPR0_REGNUM
+ spr_reg_offset
;
420 internal_error (_("Bad register number %d"), reg
);
423 constexpr gdb_byte frv_break_insn
[] = {0xc0, 0x70, 0x00, 0x01};
425 typedef BP_MANIPULATION (frv_break_insn
) frv_breakpoint
;
427 /* Define the maximum number of instructions which may be packed into a
428 bundle (VLIW instruction). */
429 static const int max_instrs_per_bundle
= 8;
431 /* Define the size (in bytes) of an FR-V instruction. */
432 static const int frv_instr_size
= 4;
434 /* Adjust a breakpoint's address to account for the FR-V architecture's
435 constraint that a break instruction must not appear as any but the
436 first instruction in the bundle. */
438 frv_adjust_breakpoint_address (struct gdbarch
*gdbarch
, CORE_ADDR bpaddr
)
440 int count
= max_instrs_per_bundle
;
441 CORE_ADDR addr
= bpaddr
- frv_instr_size
;
442 CORE_ADDR func_start
= get_pc_function_start (bpaddr
);
444 /* Find the end of the previous packing sequence. This will be indicated
445 by either attempting to access some inaccessible memory or by finding
446 an instruction word whose packing bit is set to one. */
447 while (count
-- > 0 && addr
>= func_start
)
449 gdb_byte instr
[frv_instr_size
];
452 status
= target_read_memory (addr
, instr
, sizeof instr
);
457 /* This is a big endian architecture, so byte zero will have most
458 significant byte. The most significant bit of this byte is the
463 addr
-= frv_instr_size
;
467 bpaddr
= addr
+ frv_instr_size
;
473 /* Return true if REG is a caller-saves ("scratch") register,
476 is_caller_saves_reg (int reg
)
478 return ((4 <= reg
&& reg
<= 7)
479 || (14 <= reg
&& reg
<= 15)
480 || (32 <= reg
&& reg
<= 47));
484 /* Return true if REG is a callee-saves register, false otherwise. */
486 is_callee_saves_reg (int reg
)
488 return ((16 <= reg
&& reg
<= 31)
489 || (48 <= reg
&& reg
<= 63));
493 /* Return true if REG is an argument register, false otherwise. */
495 is_argument_reg (int reg
)
497 return (8 <= reg
&& reg
<= 13);
500 /* Scan an FR-V prologue, starting at PC, until frame->PC.
501 If FRAME is non-zero, fill in its saved_regs with appropriate addresses.
502 We assume FRAME's saved_regs array has already been allocated and cleared.
503 Return the first PC value after the prologue.
505 Note that, for unoptimized code, we almost don't need this function
506 at all; all arguments and locals live on the stack, so we just need
507 the FP to find everything. The catch: structures passed by value
508 have their addresses living in registers; they're never spilled to
509 the stack. So if you ever want to be able to get to these
510 arguments in any frame but the top, you'll need to do this serious
511 prologue analysis. */
513 frv_analyze_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
,
514 const frame_info_ptr
&this_frame
,
515 struct frv_unwind_cache
*info
)
517 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
519 /* When writing out instruction bitpatterns, we use the following
520 letters to label instruction fields:
521 P - The parallel bit. We don't use this.
522 J - The register number of GRj in the instruction description.
523 K - The register number of GRk in the instruction description.
524 I - The register number of GRi.
525 S - a signed immediate offset.
526 U - an unsigned immediate offset.
528 The dots below the numbers indicate where hex digit boundaries
529 fall, to make it easier to check the numbers. */
531 /* Non-zero iff we've seen the instruction that initializes the
532 frame pointer for this function's frame. */
535 /* If fp_set is non_zero, then this is the distance from
536 the stack pointer to frame pointer: fp = sp + fp_offset. */
539 /* Total size of frame prior to any alloca operations. */
542 /* Flag indicating if lr has been saved on the stack. */
543 int lr_saved_on_stack
= 0;
545 /* The number of the general-purpose register we saved the return
546 address ("link register") in, or -1 if we haven't moved it yet. */
547 int lr_save_reg
= -1;
549 /* Offset (from sp) at which lr has been saved on the stack. */
551 int lr_sp_offset
= 0;
553 /* If gr_saved[i] is non-zero, then we've noticed that general
554 register i has been saved at gr_sp_offset[i] from the stack
557 int gr_sp_offset
[64];
559 /* The address of the most recently scanned prologue instruction. */
560 CORE_ADDR last_prologue_pc
;
562 /* The address of the next instruction. */
565 /* The upper bound to of the pc values to scan. */
568 memset (gr_saved
, 0, sizeof (gr_saved
));
570 last_prologue_pc
= pc
;
572 /* Try to compute an upper limit (on how far to scan) based on the
574 lim_pc
= skip_prologue_using_sal (gdbarch
, pc
);
575 /* If there's no line number info, lim_pc will be 0. In that case,
576 set the limit to be 100 instructions away from pc. Hopefully, this
577 will be far enough away to account for the entire prologue. Don't
578 worry about overshooting the end of the function. The scan loop
579 below contains some checks to avoid scanning unreasonably far. */
583 /* If we have a frame, we don't want to scan past the frame's pc. This
584 will catch those cases where the pc is in the prologue. */
587 CORE_ADDR frame_pc
= get_frame_pc (this_frame
);
588 if (frame_pc
< lim_pc
)
592 /* Scan the prologue. */
595 gdb_byte buf
[frv_instr_size
];
598 if (target_read_memory (pc
, buf
, sizeof buf
) != 0)
600 op
= extract_signed_integer (buf
, byte_order
);
604 /* The tests in this chain of ifs should be in order of
605 decreasing selectivity, so that more particular patterns get
606 to fire before less particular patterns. */
608 /* Some sort of control transfer instruction: stop scanning prologue.
609 Integer Conditional Branch:
610 X XXXX XX 0000110 XX XXXXXXXXXXXXXXXX
611 Floating-point / media Conditional Branch:
612 X XXXX XX 0000111 XX XXXXXXXXXXXXXXXX
613 LCR Conditional Branch to LR
614 X XXXX XX 0001110 XX XX 001 X XXXXXXXXXX
615 Integer conditional Branches to LR
616 X XXXX XX 0001110 XX XX 010 X XXXXXXXXXX
617 X XXXX XX 0001110 XX XX 011 X XXXXXXXXXX
618 Floating-point/Media Branches to LR
619 X XXXX XX 0001110 XX XX 110 X XXXXXXXXXX
620 X XXXX XX 0001110 XX XX 111 X XXXXXXXXXX
622 X XXXXX X 0001100 XXXXXX XXXXXX XXXXXX
623 X XXXXX X 0001101 XXXXXX XXXXXX XXXXXX
625 X XXXXXX 0001111 XXXXXXXXXXXXXXXXXX
627 X XXXXX X 0000101 XXXXXX XXXXXX XXXXXX
628 Integer Conditional Trap
629 X XXXX XX 0000100 XXXXXX XXXX 00 XXXXXX
630 X XXXX XX 0011100 XXXXXX XXXXXXXXXXXX
631 Floating-point /media Conditional Trap
632 X XXXX XX 0000100 XXXXXX XXXX 01 XXXXXX
633 X XXXX XX 0011101 XXXXXX XXXXXXXXXXXX
635 X XXXX XX 0000100 XXXXXX XXXX 11 XXXXXX
637 X XXXX XX 0000100 XXXXXX XXXX 10 XXXXXX */
638 if ((op
& 0x01d80000) == 0x00180000 /* Conditional branches and Call */
639 || (op
& 0x01f80000) == 0x00300000 /* Jump and Link */
640 || (op
& 0x01f80000) == 0x00100000 /* Return from Trap, Trap */
641 || (op
& 0x01f80000) == 0x00700000) /* Trap immediate */
643 /* Stop scanning; not in prologue any longer. */
647 /* Loading something from memory into fp probably means that
648 we're in the epilogue. Stop scanning the prologue.
650 X 000010 0000010 XXXXXX 000100 XXXXXX
652 X 000010 0110010 XXXXXX XXXXXXXXXXXX */
653 else if ((op
& 0x7ffc0fc0) == 0x04080100
654 || (op
& 0x7ffc0000) == 0x04c80000)
659 /* Setting the FP from the SP:
661 P 000010 0100010 000001 000000000000 = 0x04881000
662 0 111111 1111111 111111 111111111111 = 0x7fffffff
664 We treat this as part of the prologue. */
665 else if ((op
& 0x7fffffff) == 0x04881000)
669 last_prologue_pc
= next_pc
;
672 /* Move the link register to the scratch register grJ, before saving:
674 P 000100 0000011 010000 000111 JJJJJJ = 0x080d01c0
675 0 111111 1111111 111111 111111 000000 = 0x7fffffc0
677 We treat this as part of the prologue. */
678 else if ((op
& 0x7fffffc0) == 0x080d01c0)
680 int gr_j
= op
& 0x3f;
682 /* If we're moving it to a scratch register, that's fine. */
683 if (is_caller_saves_reg (gr_j
))
686 last_prologue_pc
= next_pc
;
690 /* To save multiple callee-saves registers on the stack, at
694 P KKKKKK 0000011 000001 000011 000000 = 0x000c10c0
695 0 000000 1111111 111111 111111 111111 = 0x01ffffff
698 P KKKKKK 0000011 000001 000100 000000 = 0x000c1100
699 0 000000 1111111 111111 111111 111111 = 0x01ffffff
701 We treat this as part of the prologue, and record the register's
702 saved address in the frame structure. */
703 else if ((op
& 0x01ffffff) == 0x000c10c0
704 || (op
& 0x01ffffff) == 0x000c1100)
706 int gr_k
= ((op
>> 25) & 0x3f);
707 int ope
= ((op
>> 6) & 0x3f);
711 /* Is it an std or an stq? */
717 /* Is it really a callee-saves register? */
718 if (is_callee_saves_reg (gr_k
))
720 for (i
= 0; i
< count
; i
++)
722 gr_saved
[gr_k
+ i
] = 1;
723 gr_sp_offset
[gr_k
+ i
] = 4 * i
;
725 last_prologue_pc
= next_pc
;
729 /* Adjusting the stack pointer. (The stack pointer is GR1.)
731 P 000001 0010000 000001 SSSSSSSSSSSS = 0x02401000
732 0 111111 1111111 111111 000000000000 = 0x7ffff000
734 We treat this as part of the prologue. */
735 else if ((op
& 0x7ffff000) == 0x02401000)
739 /* Sign-extend the twelve-bit field.
740 (Isn't there a better way to do this?) */
741 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
744 last_prologue_pc
= pc
;
748 /* If the prologue is being adjusted again, we've
749 likely gone too far; i.e. we're probably in the
755 /* Setting the FP to a constant distance from the SP:
757 P 000010 0010000 000001 SSSSSSSSSSSS = 0x04401000
758 0 111111 1111111 111111 000000000000 = 0x7ffff000
760 We treat this as part of the prologue. */
761 else if ((op
& 0x7ffff000) == 0x04401000)
763 /* Sign-extend the twelve-bit field.
764 (Isn't there a better way to do this?) */
765 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
768 last_prologue_pc
= pc
;
771 /* To spill an argument register to a scratch register:
773 P KKKKKK 0100010 IIIIII 000000000000 = 0x00880000
774 0 000000 1111111 000000 111111111111 = 0x01fc0fff
776 For the time being, we treat this as a prologue instruction,
777 assuming that GRi is an argument register. This one's kind
778 of suspicious, because it seems like it could be part of a
779 legitimate body instruction. But we only come here when the
780 source info wasn't helpful, so we have to do the best we can.
781 Hopefully once GCC and GDB agree on how to emit line number
782 info for prologues, then this code will never come into play. */
783 else if ((op
& 0x01fc0fff) == 0x00880000)
785 int gr_i
= ((op
>> 12) & 0x3f);
787 /* Make sure that the source is an arg register; if it is, we'll
788 treat it as a prologue instruction. */
789 if (is_argument_reg (gr_i
))
790 last_prologue_pc
= next_pc
;
793 /* To spill 16-bit values to the stack:
795 P KKKKKK 1010001 000010 SSSSSSSSSSSS = 0x01442000
796 0 000000 1111111 111111 000000000000 = 0x01fff000
798 And for 8-bit values, we use STB instructions.
800 P KKKKKK 1010000 000010 SSSSSSSSSSSS = 0x01402000
801 0 000000 1111111 111111 000000000000 = 0x01fff000
803 We check that GRk is really an argument register, and treat
804 all such as part of the prologue. */
805 else if ( (op
& 0x01fff000) == 0x01442000
806 || (op
& 0x01fff000) == 0x01402000)
808 int gr_k
= ((op
>> 25) & 0x3f);
810 /* Make sure that GRk is really an argument register; treat
811 it as a prologue instruction if so. */
812 if (is_argument_reg (gr_k
))
813 last_prologue_pc
= next_pc
;
816 /* To save multiple callee-saves register on the stack, at a
820 P KKKKKK 1010011 000001 SSSSSSSSSSSS = 0x014c1000
821 0 000000 1111111 111111 000000000000 = 0x01fff000
824 P KKKKKK 1010100 000001 SSSSSSSSSSSS = 0x01501000
825 0 000000 1111111 111111 000000000000 = 0x01fff000
827 We treat this as part of the prologue, and record the register's
828 saved address in the frame structure. */
829 else if ((op
& 0x01fff000) == 0x014c1000
830 || (op
& 0x01fff000) == 0x01501000)
832 int gr_k
= ((op
>> 25) & 0x3f);
836 /* Is it a stdi or a stqi? */
837 if ((op
& 0x01fff000) == 0x014c1000)
842 /* Is it really a callee-saves register? */
843 if (is_callee_saves_reg (gr_k
))
845 /* Sign-extend the twelve-bit field.
846 (Isn't there a better way to do this?) */
847 int s
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
849 for (i
= 0; i
< count
; i
++)
851 gr_saved
[gr_k
+ i
] = 1;
852 gr_sp_offset
[gr_k
+ i
] = s
+ (4 * i
);
854 last_prologue_pc
= next_pc
;
858 /* Storing any kind of integer register at any constant offset
859 from any other register.
862 P KKKKKK 0000011 IIIIII 000010 000000 = 0x000c0080
863 0 000000 1111111 000000 111111 111111 = 0x01fc0fff
866 P KKKKKK 1010010 IIIIII SSSSSSSSSSSS = 0x01480000
867 0 000000 1111111 000000 000000000000 = 0x01fc0000
869 These could be almost anything, but a lot of prologue
870 instructions fall into this pattern, so let's decode the
871 instruction once, and then work at a higher level. */
872 else if (((op
& 0x01fc0fff) == 0x000c0080)
873 || ((op
& 0x01fc0000) == 0x01480000))
875 int gr_k
= ((op
>> 25) & 0x3f);
876 int gr_i
= ((op
>> 12) & 0x3f);
879 /* Are we storing with gr0 as an offset, or using an
881 if ((op
& 0x01fc0fff) == 0x000c0080)
884 offset
= (((op
& 0xfff) - 0x800) & 0xfff) - 0x800;
886 /* If the address isn't relative to the SP or FP, it's not a
887 prologue instruction. */
888 if (gr_i
!= sp_regnum
&& gr_i
!= fp_regnum
)
890 /* Do nothing; not a prologue instruction. */
893 /* Saving the old FP in the new frame (relative to the SP). */
894 else if (gr_k
== fp_regnum
&& gr_i
== sp_regnum
)
896 gr_saved
[fp_regnum
] = 1;
897 gr_sp_offset
[fp_regnum
] = offset
;
898 last_prologue_pc
= next_pc
;
901 /* Saving callee-saves register(s) on the stack, relative to
903 else if (gr_i
== sp_regnum
904 && is_callee_saves_reg (gr_k
))
907 if (gr_i
== sp_regnum
)
908 gr_sp_offset
[gr_k
] = offset
;
910 gr_sp_offset
[gr_k
] = offset
+ fp_offset
;
911 last_prologue_pc
= next_pc
;
914 /* Saving the scratch register holding the return address. */
915 else if (lr_save_reg
!= -1
916 && gr_k
== lr_save_reg
)
918 lr_saved_on_stack
= 1;
919 if (gr_i
== sp_regnum
)
920 lr_sp_offset
= offset
;
922 lr_sp_offset
= offset
+ fp_offset
;
923 last_prologue_pc
= next_pc
;
926 /* Spilling int-sized arguments to the stack. */
927 else if (is_argument_reg (gr_k
))
928 last_prologue_pc
= next_pc
;
933 if (this_frame
&& info
)
938 /* If we know the relationship between the stack and frame
939 pointers, record the addresses of the registers we noticed.
940 Note that we have to do this as a separate step at the end,
941 because instructions may save relative to the SP, but we need
942 their addresses relative to the FP. */
944 this_base
= get_frame_register_unsigned (this_frame
, fp_regnum
);
946 this_base
= get_frame_register_unsigned (this_frame
, sp_regnum
);
948 for (i
= 0; i
< 64; i
++)
950 info
->saved_regs
[i
].set_addr (this_base
- fp_offset
953 info
->prev_sp
= this_base
- fp_offset
+ framesize
;
954 info
->base
= this_base
;
956 /* If LR was saved on the stack, record its location. */
957 if (lr_saved_on_stack
)
958 info
->saved_regs
[lr_regnum
].set_addr (this_base
- fp_offset
961 /* The call instruction moves the caller's PC in the callee's LR.
962 Since this is an unwind, do the reverse. Copy the location of LR
963 into PC (the address / regnum) so that a request for PC will be
964 converted into a request for the LR. */
965 info
->saved_regs
[pc_regnum
] = info
->saved_regs
[lr_regnum
];
967 /* Save the previous frame's computed SP value. */
968 info
->saved_regs
[sp_regnum
].set_value (info
->prev_sp
);
971 return last_prologue_pc
;
976 frv_skip_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
978 CORE_ADDR func_addr
, func_end
, new_pc
;
982 /* If the line table has entry for a line *within* the function
983 (i.e., not in the prologue, and not past the end), then that's
985 if (find_pc_partial_function (pc
, NULL
, &func_addr
, &func_end
))
987 struct symtab_and_line sal
;
989 sal
= find_pc_line (func_addr
, 0);
991 if (sal
.line
!= 0 && sal
.end
< func_end
)
997 /* The FR-V prologue is at least five instructions long (twenty bytes).
998 If we didn't find a real source location past that, then
999 do a full analysis of the prologue. */
1000 if (new_pc
< pc
+ 20)
1001 new_pc
= frv_analyze_prologue (gdbarch
, pc
, 0, 0);
1007 /* Examine the instruction pointed to by PC. If it corresponds to
1008 a call to __main, return the address of the next instruction.
1009 Otherwise, return PC. */
1012 frv_skip_main_prologue (struct gdbarch
*gdbarch
, CORE_ADDR pc
)
1014 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1017 CORE_ADDR orig_pc
= pc
;
1019 if (target_read_memory (pc
, buf
, 4))
1021 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1023 /* In PIC code, GR15 may be loaded from some offset off of FP prior
1024 to the call instruction.
1026 Skip over this instruction if present. It won't be present in
1027 non-PIC code, and even in PIC code, it might not be present.
1028 (This is due to the fact that GR15, the FDPIC register, already
1029 contains the correct value.)
1031 The general form of the LDI is given first, followed by the
1032 specific instruction with the GRi and GRk filled in as FP and
1035 ldi @(GRi, d12), GRk
1036 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x00c80000
1037 0 000000 1111111 000000 000000000000 = 0x01fc0000
1039 ldi @(FP, d12), GR15
1040 P KKKKKK 0110010 IIIIII SSSSSSSSSSSS = 0x1ec82000
1041 0 001111 1111111 000010 000000000000 = 0x7ffff000
1044 if ((op
& 0x7ffff000) == 0x1ec82000)
1047 if (target_read_memory (pc
, buf
, 4))
1049 op
= extract_unsigned_integer (buf
, 4, byte_order
);
1052 /* The format of an FRV CALL instruction is as follows:
1055 P HHHHHH 0001111 LLLLLLLLLLLLLLLLLL = 0x003c0000
1056 0 000000 1111111 000000000000000000 = 0x01fc0000
1059 where label24 is constructed by concatenating the H bits with the
1060 L bits. The call target is PC + (4 * sign_ext(label24)). */
1062 if ((op
& 0x01fc0000) == 0x003c0000)
1065 CORE_ADDR call_dest
;
1067 displ
= ((op
& 0xfe000000) >> 7) | (op
& 0x0003ffff);
1068 if ((displ
& 0x00800000) != 0)
1069 displ
|= ~((LONGEST
) 0x00ffffff);
1071 call_dest
= pc
+ 4 * displ
;
1072 bound_minimal_symbol s
= lookup_minimal_symbol_by_pc (call_dest
);
1074 if (s
.minsym
!= NULL
1075 && s
.minsym
->linkage_name () != NULL
1076 && strcmp (s
.minsym
->linkage_name (), "__main") == 0)
1086 static struct frv_unwind_cache
*
1087 frv_frame_unwind_cache (const frame_info_ptr
&this_frame
,
1088 void **this_prologue_cache
)
1090 struct gdbarch
*gdbarch
= get_frame_arch (this_frame
);
1091 struct frv_unwind_cache
*info
;
1093 if ((*this_prologue_cache
))
1094 return (struct frv_unwind_cache
*) (*this_prologue_cache
);
1096 info
= FRAME_OBSTACK_ZALLOC (struct frv_unwind_cache
);
1097 (*this_prologue_cache
) = info
;
1098 info
->saved_regs
= trad_frame_alloc_saved_regs (this_frame
);
1100 /* Prologue analysis does the rest... */
1101 frv_analyze_prologue (gdbarch
,
1102 get_frame_func (this_frame
), this_frame
, info
);
1108 frv_extract_return_value (struct type
*type
, struct regcache
*regcache
,
1111 struct gdbarch
*gdbarch
= regcache
->arch ();
1112 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1113 int len
= type
->length ();
1118 regcache_cooked_read_unsigned (regcache
, 8, &gpr8_val
);
1119 store_unsigned_integer (valbuf
, len
, byte_order
, gpr8_val
);
1125 regcache_cooked_read_unsigned (regcache
, 8, ®val
);
1126 store_unsigned_integer (valbuf
, 4, byte_order
, regval
);
1127 regcache_cooked_read_unsigned (regcache
, 9, ®val
);
1128 store_unsigned_integer ((bfd_byte
*) valbuf
+ 4, 4, byte_order
, regval
);
1131 internal_error (_("Illegal return value length: %d"), len
);
1135 frv_frame_align (struct gdbarch
*gdbarch
, CORE_ADDR sp
)
1137 /* Require dword alignment. */
1138 return align_down (sp
, 8);
1142 find_func_descr (struct gdbarch
*gdbarch
, CORE_ADDR entry_point
)
1144 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1147 CORE_ADDR start_addr
;
1149 /* If we can't find the function in the symbol table, then we assume
1150 that the function address is already in descriptor form. */
1151 if (!find_pc_partial_function (entry_point
, NULL
, &start_addr
, NULL
)
1152 || entry_point
!= start_addr
)
1155 descr
= frv_fdpic_find_canonical_descriptor (entry_point
);
1160 /* Construct a non-canonical descriptor from space allocated on
1163 descr
= value_as_long (value_allocate_space_in_inferior (8));
1164 store_unsigned_integer (valbuf
, 4, byte_order
, entry_point
);
1165 write_memory (descr
, valbuf
, 4);
1166 store_unsigned_integer (valbuf
, 4, byte_order
,
1167 frv_fdpic_find_global_pointer (entry_point
));
1168 write_memory (descr
+ 4, valbuf
, 4);
1173 frv_convert_from_func_ptr_addr (struct gdbarch
*gdbarch
, CORE_ADDR addr
,
1174 struct target_ops
*targ
)
1176 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1177 CORE_ADDR entry_point
;
1178 CORE_ADDR got_address
;
1180 entry_point
= get_target_memory_unsigned (targ
, addr
, 4, byte_order
);
1181 got_address
= get_target_memory_unsigned (targ
, addr
+ 4, 4, byte_order
);
1183 if (got_address
== frv_fdpic_find_global_pointer (entry_point
))
1190 frv_push_dummy_call (struct gdbarch
*gdbarch
, struct value
*function
,
1191 struct regcache
*regcache
, CORE_ADDR bp_addr
,
1192 int nargs
, struct value
**args
, CORE_ADDR sp
,
1193 function_call_return_method return_method
,
1194 CORE_ADDR struct_addr
)
1196 enum bfd_endian byte_order
= gdbarch_byte_order (gdbarch
);
1199 const gdb_byte
*val
;
1202 struct type
*arg_type
;
1204 enum type_code typecode
;
1208 enum frv_abi abi
= frv_abi (gdbarch
);
1209 CORE_ADDR func_addr
= find_function_addr (function
, NULL
);
1212 printf("Push %d args at sp = %x, struct_return=%d (%x)\n",
1213 nargs
, (int) sp
, struct_return
, struct_addr
);
1217 for (argnum
= 0; argnum
< nargs
; ++argnum
)
1218 stack_space
+= align_up (args
[argnum
]->type ()->length (), 4);
1220 stack_space
-= (6 * 4);
1221 if (stack_space
> 0)
1224 /* Make sure stack is dword aligned. */
1225 sp
= align_down (sp
, 8);
1231 if (return_method
== return_method_struct
)
1232 regcache_cooked_write_unsigned (regcache
, struct_return_regnum
,
1235 for (argnum
= 0; argnum
< nargs
; ++argnum
)
1238 arg_type
= check_typedef (arg
->type ());
1239 len
= arg_type
->length ();
1240 typecode
= arg_type
->code ();
1242 if (typecode
== TYPE_CODE_STRUCT
|| typecode
== TYPE_CODE_UNION
)
1244 store_unsigned_integer (valbuf
, 4, byte_order
,
1246 typecode
= TYPE_CODE_PTR
;
1250 else if (abi
== FRV_ABI_FDPIC
1252 && typecode
== TYPE_CODE_PTR
1253 && arg_type
->target_type ()->code () == TYPE_CODE_FUNC
)
1255 /* The FDPIC ABI requires function descriptors to be passed instead
1257 CORE_ADDR addr
= extract_unsigned_integer
1258 (arg
->contents ().data (), 4, byte_order
);
1259 addr
= find_func_descr (gdbarch
, addr
);
1260 store_unsigned_integer (valbuf
, 4, byte_order
, addr
);
1261 typecode
= TYPE_CODE_PTR
;
1267 val
= arg
->contents ().data ();
1272 int partial_len
= (len
< 4 ? len
: 4);
1276 regval
= extract_unsigned_integer (val
, partial_len
, byte_order
);
1278 printf(" Argnum %d data %x -> reg %d\n",
1279 argnum
, (int) regval
, argreg
);
1281 regcache_cooked_write_unsigned (regcache
, argreg
, regval
);
1287 printf(" Argnum %d data %x -> offset %d (%x)\n",
1288 argnum
, *((int *)val
), stack_offset
,
1289 (int) (sp
+ stack_offset
));
1291 write_memory (sp
+ stack_offset
, val
, partial_len
);
1292 stack_offset
+= align_up (partial_len
, 4);
1299 /* Set the return address. For the frv, the return breakpoint is
1300 always at BP_ADDR. */
1301 regcache_cooked_write_unsigned (regcache
, lr_regnum
, bp_addr
);
1303 if (abi
== FRV_ABI_FDPIC
)
1305 /* Set the GOT register for the FDPIC ABI. */
1306 regcache_cooked_write_unsigned
1307 (regcache
, first_gpr_regnum
+ 15,
1308 frv_fdpic_find_global_pointer (func_addr
));
1311 /* Finally, update the SP register. */
1312 regcache_cooked_write_unsigned (regcache
, sp_regnum
, sp
);
1318 frv_store_return_value (struct type
*type
, struct regcache
*regcache
,
1319 const gdb_byte
*valbuf
)
1321 int len
= type
->length ();
1326 memset (val
, 0, sizeof (val
));
1327 memcpy (val
+ (4 - len
), valbuf
, len
);
1328 regcache
->cooked_write (8, val
);
1332 regcache
->cooked_write (8, valbuf
);
1333 regcache
->cooked_write (9, (bfd_byte
*) valbuf
+ 4);
1336 internal_error (_("Don't know how to return a %d-byte value."), len
);
1339 static enum return_value_convention
1340 frv_return_value (struct gdbarch
*gdbarch
, struct value
*function
,
1341 struct type
*valtype
, struct regcache
*regcache
,
1342 gdb_byte
*readbuf
, const gdb_byte
*writebuf
)
1344 int struct_return
= valtype
->code () == TYPE_CODE_STRUCT
1345 || valtype
->code () == TYPE_CODE_UNION
1346 || valtype
->code () == TYPE_CODE_ARRAY
;
1348 if (writebuf
!= NULL
)
1350 gdb_assert (!struct_return
);
1351 frv_store_return_value (valtype
, regcache
, writebuf
);
1354 if (readbuf
!= NULL
)
1356 gdb_assert (!struct_return
);
1357 frv_extract_return_value (valtype
, regcache
, readbuf
);
1361 return RETURN_VALUE_STRUCT_CONVENTION
;
1363 return RETURN_VALUE_REGISTER_CONVENTION
;
1366 /* Given a GDB frame, determine the address of the calling function's
1367 frame. This will be used to create a new GDB frame struct. */
1370 frv_frame_this_id (const frame_info_ptr
&this_frame
,
1371 void **this_prologue_cache
, struct frame_id
*this_id
)
1373 struct frv_unwind_cache
*info
1374 = frv_frame_unwind_cache (this_frame
, this_prologue_cache
);
1379 /* The FUNC is easy. */
1380 func
= get_frame_func (this_frame
);
1382 /* Check if the stack is empty. */
1383 bound_minimal_symbol msym_stack
1384 = lookup_minimal_symbol (current_program_space
, "_stack");
1385 if (msym_stack
.minsym
&& info
->base
== msym_stack
.value_address ())
1388 /* Hopefully the prologue analysis either correctly determined the
1389 frame's base (which is the SP from the previous frame), or set
1390 that base to "NULL". */
1391 base
= info
->prev_sp
;
1395 id
= frame_id_build (base
, func
);
1399 static struct value
*
1400 frv_frame_prev_register (const frame_info_ptr
&this_frame
,
1401 void **this_prologue_cache
, int regnum
)
1403 struct frv_unwind_cache
*info
1404 = frv_frame_unwind_cache (this_frame
, this_prologue_cache
);
1405 return trad_frame_get_prev_register (this_frame
, info
->saved_regs
, regnum
);
1408 static const struct frame_unwind_legacy
frv_frame_unwind (
1412 default_frame_unwind_stop_reason
,
1414 frv_frame_prev_register
,
1416 default_frame_sniffer
1420 frv_frame_base_address (const frame_info_ptr
&this_frame
, void **this_cache
)
1422 struct frv_unwind_cache
*info
1423 = frv_frame_unwind_cache (this_frame
, this_cache
);
1427 static const struct frame_base frv_frame_base
= {
1429 frv_frame_base_address
,
1430 frv_frame_base_address
,
1431 frv_frame_base_address
1434 static struct gdbarch
*
1435 frv_gdbarch_init (struct gdbarch_info info
, struct gdbarch_list
*arches
)
1439 /* Check to see if we've already built an appropriate architecture
1440 object for this executable. */
1441 arches
= gdbarch_list_lookup_by_info (arches
, &info
);
1443 return arches
->gdbarch
;
1445 /* Select the right tdep structure for this variant. */
1446 gdbarch
*gdbarch
= gdbarch_alloc (&info
, new_variant ());
1447 frv_gdbarch_tdep
*var
= gdbarch_tdep
<frv_gdbarch_tdep
> (gdbarch
);
1449 switch (info
.bfd_arch_info
->mach
)
1452 case bfd_mach_frvsimple
:
1453 case bfd_mach_fr300
:
1454 case bfd_mach_fr500
:
1455 case bfd_mach_frvtomcat
:
1456 case bfd_mach_fr550
:
1457 set_variant_num_gprs (var
, 64);
1458 set_variant_num_fprs (var
, 64);
1461 case bfd_mach_fr400
:
1462 case bfd_mach_fr450
:
1463 set_variant_num_gprs (var
, 32);
1464 set_variant_num_fprs (var
, 32);
1468 /* Never heard of this variant. */
1472 /* Extract the ELF flags, if available. */
1473 if (info
.abfd
&& bfd_get_flavour (info
.abfd
) == bfd_target_elf_flavour
)
1474 elf_flags
= elf_elfheader (info
.abfd
)->e_flags
;
1476 if (elf_flags
& EF_FRV_FDPIC
)
1477 set_variant_abi_fdpic (var
);
1479 if (elf_flags
& EF_FRV_CPU_FR450
)
1480 set_variant_scratch_registers (var
);
1482 set_gdbarch_short_bit (gdbarch
, 16);
1483 set_gdbarch_int_bit (gdbarch
, 32);
1484 set_gdbarch_long_bit (gdbarch
, 32);
1485 set_gdbarch_long_long_bit (gdbarch
, 64);
1486 set_gdbarch_float_bit (gdbarch
, 32);
1487 set_gdbarch_double_bit (gdbarch
, 64);
1488 set_gdbarch_long_double_bit (gdbarch
, 64);
1489 set_gdbarch_ptr_bit (gdbarch
, 32);
1491 set_gdbarch_num_regs (gdbarch
, frv_num_regs
);
1492 set_gdbarch_num_pseudo_regs (gdbarch
, frv_num_pseudo_regs
);
1494 set_gdbarch_sp_regnum (gdbarch
, sp_regnum
);
1495 set_gdbarch_deprecated_fp_regnum (gdbarch
, fp_regnum
);
1496 set_gdbarch_pc_regnum (gdbarch
, pc_regnum
);
1498 set_gdbarch_register_name (gdbarch
, frv_register_name
);
1499 set_gdbarch_register_type (gdbarch
, frv_register_type
);
1500 set_gdbarch_register_sim_regno (gdbarch
, frv_register_sim_regno
);
1502 set_gdbarch_pseudo_register_read (gdbarch
, frv_pseudo_register_read
);
1503 set_gdbarch_deprecated_pseudo_register_write (gdbarch
,
1504 frv_pseudo_register_write
);
1506 set_gdbarch_skip_prologue (gdbarch
, frv_skip_prologue
);
1507 set_gdbarch_skip_main_prologue (gdbarch
, frv_skip_main_prologue
);
1508 set_gdbarch_breakpoint_kind_from_pc (gdbarch
, frv_breakpoint::kind_from_pc
);
1509 set_gdbarch_sw_breakpoint_from_kind (gdbarch
, frv_breakpoint::bp_from_kind
);
1510 set_gdbarch_adjust_breakpoint_address
1511 (gdbarch
, frv_adjust_breakpoint_address
);
1513 set_gdbarch_return_value (gdbarch
, frv_return_value
);
1516 set_gdbarch_frame_align (gdbarch
, frv_frame_align
);
1517 frame_base_set_default (gdbarch
, &frv_frame_base
);
1518 /* We set the sniffer lower down after the OSABI hooks have been
1521 /* Settings for calling functions in the inferior. */
1522 set_gdbarch_push_dummy_call (gdbarch
, frv_push_dummy_call
);
1524 /* Settings that should be unnecessary. */
1525 set_gdbarch_inner_than (gdbarch
, core_addr_lessthan
);
1527 /* Hardware watchpoint / breakpoint support. */
1528 switch (info
.bfd_arch_info
->mach
)
1531 case bfd_mach_frvsimple
:
1532 case bfd_mach_fr300
:
1533 case bfd_mach_fr500
:
1534 case bfd_mach_frvtomcat
:
1535 /* fr500-style hardware debugging support. */
1536 var
->num_hw_watchpoints
= 4;
1537 var
->num_hw_breakpoints
= 4;
1540 case bfd_mach_fr400
:
1541 case bfd_mach_fr450
:
1542 /* fr400-style hardware debugging support. */
1543 var
->num_hw_watchpoints
= 2;
1544 var
->num_hw_breakpoints
= 4;
1548 /* Otherwise, assume we don't have hardware debugging support. */
1549 var
->num_hw_watchpoints
= 0;
1550 var
->num_hw_breakpoints
= 0;
1554 if (frv_abi (gdbarch
) == FRV_ABI_FDPIC
)
1555 set_gdbarch_convert_from_func_ptr_addr (gdbarch
,
1556 frv_convert_from_func_ptr_addr
);
1558 set_gdbarch_make_solib_ops (gdbarch
, make_frv_solib_ops
);
1560 /* Hook in ABI-specific overrides, if they have been registered. */
1561 gdbarch_init_osabi (info
, gdbarch
);
1563 /* Set the fallback (prologue based) frame sniffer. */
1564 frame_unwind_append_unwinder (gdbarch
, &frv_frame_unwind
);
1566 /* Enable TLS support. */
1567 set_gdbarch_fetch_tls_load_module_address (gdbarch
,
1568 frv_fetch_objfile_link_map
);
1573 INIT_GDB_FILE (frv_tdep
)
1575 gdbarch_register (bfd_arch_frv
, frv_gdbarch_init
);