]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbarch.sh
f1549062f9515ccdbf693127f6401df3548026f9
[thirdparty/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
6 # Free Software Foundation, Inc.
7 #
8 # This file is part of GDB.
9 #
10 # This program is free software; you can redistribute it and/or modify
11 # it under the terms of the GNU General Public License as published by
12 # the Free Software Foundation; either version 2 of the License, or
13 # (at your option) any later version.
14 #
15 # This program is distributed in the hope that it will be useful,
16 # but WITHOUT ANY WARRANTY; without even the implied warranty of
17 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 # GNU General Public License for more details.
19 #
20 # You should have received a copy of the GNU General Public License
21 # along with this program; if not, write to the Free Software
22 # Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 # Boston, MA 02110-1301, USA.
24
25 # Make certain that the script is not running in an internationalized
26 # environment.
27 LANG=c ; export LANG
28 LC_ALL=c ; export LC_ALL
29
30
31 compare_new ()
32 {
33 file=$1
34 if test ! -r ${file}
35 then
36 echo "${file} missing? cp new-${file} ${file}" 1>&2
37 elif diff -u ${file} new-${file}
38 then
39 echo "${file} unchanged" 1>&2
40 else
41 echo "${file} has changed? cp new-${file} ${file}" 1>&2
42 fi
43 }
44
45
46 # Format of the input table
47 read="class macro returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
48
49 do_read ()
50 {
51 comment=""
52 class=""
53 while read line
54 do
55 if test "${line}" = ""
56 then
57 continue
58 elif test "${line}" = "#" -a "${comment}" = ""
59 then
60 continue
61 elif expr "${line}" : "#" > /dev/null
62 then
63 comment="${comment}
64 ${line}"
65 else
66
67 # The semantics of IFS varies between different SH's. Some
68 # treat ``::' as three fields while some treat it as just too.
69 # Work around this by eliminating ``::'' ....
70 line="`echo "${line}" | sed -e 's/::/: :/g' -e 's/::/: :/g'`"
71
72 OFS="${IFS}" ; IFS="[:]"
73 eval read ${read} <<EOF
74 ${line}
75 EOF
76 IFS="${OFS}"
77
78 if test -n "${garbage_at_eol}"
79 then
80 echo "Garbage at end-of-line in ${line}" 1>&2
81 kill $$
82 exit 1
83 fi
84
85 # .... and then going back through each field and strip out those
86 # that ended up with just that space character.
87 for r in ${read}
88 do
89 if eval test \"\${${r}}\" = \"\ \"
90 then
91 eval ${r}=""
92 fi
93 done
94
95 FUNCTION=`echo ${function} | tr '[a-z]' '[A-Z]'`
96 if test "x${macro}" = "x="
97 then
98 # Provide a UCASE version of function (for when there isn't MACRO)
99 macro="${FUNCTION}"
100 elif test "${macro}" = "${FUNCTION}"
101 then
102 echo "${function}: Specify = for macro field" 1>&2
103 kill $$
104 exit 1
105 fi
106
107 # Check that macro definition wasn't supplied for multi-arch
108 case "${class}" in
109 [mM] )
110 if test "${macro}" != ""
111 then
112 echo "Error: Function ${function} multi-arch yet macro ${macro} supplied" 1>&2
113 kill $$
114 exit 1
115 fi
116 esac
117
118 case "${class}" in
119 m ) staticdefault="${predefault}" ;;
120 M ) staticdefault="0" ;;
121 * ) test "${staticdefault}" || staticdefault=0 ;;
122 esac
123
124 case "${class}" in
125 F | V | M )
126 case "${invalid_p}" in
127 "" )
128 if test -n "${predefault}"
129 then
130 #invalid_p="gdbarch->${function} == ${predefault}"
131 predicate="gdbarch->${function} != ${predefault}"
132 elif class_is_variable_p
133 then
134 predicate="gdbarch->${function} != 0"
135 elif class_is_function_p
136 then
137 predicate="gdbarch->${function} != NULL"
138 fi
139 ;;
140 * )
141 echo "Predicate function ${function} with invalid_p." 1>&2
142 kill $$
143 exit 1
144 ;;
145 esac
146 esac
147
148 # PREDEFAULT is a valid fallback definition of MEMBER when
149 # multi-arch is not enabled. This ensures that the
150 # default value, when multi-arch is the same as the
151 # default value when not multi-arch. POSTDEFAULT is
152 # always a valid definition of MEMBER as this again
153 # ensures consistency.
154
155 if [ -n "${postdefault}" ]
156 then
157 fallbackdefault="${postdefault}"
158 elif [ -n "${predefault}" ]
159 then
160 fallbackdefault="${predefault}"
161 else
162 fallbackdefault="0"
163 fi
164
165 #NOT YET: See gdbarch.log for basic verification of
166 # database
167
168 break
169 fi
170 done
171 if [ -n "${class}" ]
172 then
173 true
174 else
175 false
176 fi
177 }
178
179
180 fallback_default_p ()
181 {
182 [ -n "${postdefault}" -a "x${invalid_p}" != "x0" ] \
183 || [ -n "${predefault}" -a "x${invalid_p}" = "x0" ]
184 }
185
186 class_is_variable_p ()
187 {
188 case "${class}" in
189 *v* | *V* ) true ;;
190 * ) false ;;
191 esac
192 }
193
194 class_is_function_p ()
195 {
196 case "${class}" in
197 *f* | *F* | *m* | *M* ) true ;;
198 * ) false ;;
199 esac
200 }
201
202 class_is_multiarch_p ()
203 {
204 case "${class}" in
205 *m* | *M* ) true ;;
206 * ) false ;;
207 esac
208 }
209
210 class_is_predicate_p ()
211 {
212 case "${class}" in
213 *F* | *V* | *M* ) true ;;
214 * ) false ;;
215 esac
216 }
217
218 class_is_info_p ()
219 {
220 case "${class}" in
221 *i* ) true ;;
222 * ) false ;;
223 esac
224 }
225
226
227 # dump out/verify the doco
228 for field in ${read}
229 do
230 case ${field} in
231
232 class ) : ;;
233
234 # # -> line disable
235 # f -> function
236 # hiding a function
237 # F -> function + predicate
238 # hiding a function + predicate to test function validity
239 # v -> variable
240 # hiding a variable
241 # V -> variable + predicate
242 # hiding a variable + predicate to test variables validity
243 # i -> set from info
244 # hiding something from the ``struct info'' object
245 # m -> multi-arch function
246 # hiding a multi-arch function (parameterised with the architecture)
247 # M -> multi-arch function + predicate
248 # hiding a multi-arch function + predicate to test function validity
249
250 macro ) : ;;
251
252 # The name of the legacy C macro by which this method can be
253 # accessed. If empty, no macro is defined. If "=", a macro
254 # formed from the upper-case function name is used.
255
256 returntype ) : ;;
257
258 # For functions, the return type; for variables, the data type
259
260 function ) : ;;
261
262 # For functions, the member function name; for variables, the
263 # variable name. Member function names are always prefixed with
264 # ``gdbarch_'' for name-space purity.
265
266 formal ) : ;;
267
268 # The formal argument list. It is assumed that the formal
269 # argument list includes the actual name of each list element.
270 # A function with no arguments shall have ``void'' as the
271 # formal argument list.
272
273 actual ) : ;;
274
275 # The list of actual arguments. The arguments specified shall
276 # match the FORMAL list given above. Functions with out
277 # arguments leave this blank.
278
279 staticdefault ) : ;;
280
281 # To help with the GDB startup a static gdbarch object is
282 # created. STATICDEFAULT is the value to insert into that
283 # static gdbarch object. Since this a static object only
284 # simple expressions can be used.
285
286 # If STATICDEFAULT is empty, zero is used.
287
288 predefault ) : ;;
289
290 # An initial value to assign to MEMBER of the freshly
291 # malloc()ed gdbarch object. After initialization, the
292 # freshly malloc()ed object is passed to the target
293 # architecture code for further updates.
294
295 # If PREDEFAULT is empty, zero is used.
296
297 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
298 # INVALID_P are specified, PREDEFAULT will be used as the
299 # default for the non- multi-arch target.
300
301 # A zero PREDEFAULT function will force the fallback to call
302 # internal_error().
303
304 # Variable declarations can refer to ``gdbarch'' which will
305 # contain the current architecture. Care should be taken.
306
307 postdefault ) : ;;
308
309 # A value to assign to MEMBER of the new gdbarch object should
310 # the target architecture code fail to change the PREDEFAULT
311 # value.
312
313 # If POSTDEFAULT is empty, no post update is performed.
314
315 # If both INVALID_P and POSTDEFAULT are non-empty then
316 # INVALID_P will be used to determine if MEMBER should be
317 # changed to POSTDEFAULT.
318
319 # If a non-empty POSTDEFAULT and a zero INVALID_P are
320 # specified, POSTDEFAULT will be used as the default for the
321 # non- multi-arch target (regardless of the value of
322 # PREDEFAULT).
323
324 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
325
326 # Variable declarations can refer to ``current_gdbarch'' which
327 # will contain the current architecture. Care should be
328 # taken.
329
330 invalid_p ) : ;;
331
332 # A predicate equation that validates MEMBER. Non-zero is
333 # returned if the code creating the new architecture failed to
334 # initialize MEMBER or the initialized the member is invalid.
335 # If POSTDEFAULT is non-empty then MEMBER will be updated to
336 # that value. If POSTDEFAULT is empty then internal_error()
337 # is called.
338
339 # If INVALID_P is empty, a check that MEMBER is no longer
340 # equal to PREDEFAULT is used.
341
342 # The expression ``0'' disables the INVALID_P check making
343 # PREDEFAULT a legitimate value.
344
345 # See also PREDEFAULT and POSTDEFAULT.
346
347 print ) : ;;
348
349 # An optional expression that convers MEMBER to a value
350 # suitable for formatting using %s.
351
352 # If PRINT is empty, paddr_nz (for CORE_ADDR) or paddr_d
353 # (anything else) is used.
354
355 garbage_at_eol ) : ;;
356
357 # Catches stray fields.
358
359 *)
360 echo "Bad field ${field}"
361 exit 1;;
362 esac
363 done
364
365
366 function_list ()
367 {
368 # See below (DOCO) for description of each field
369 cat <<EOF
370 i:TARGET_ARCHITECTURE:const struct bfd_arch_info *:bfd_arch_info:::&bfd_default_arch_struct::::TARGET_ARCHITECTURE->printable_name
371 #
372 i:TARGET_BYTE_ORDER:int:byte_order:::BFD_ENDIAN_BIG
373 #
374 i:TARGET_OSABI:enum gdb_osabi:osabi:::GDB_OSABI_UNKNOWN
375 #
376 i::const struct target_desc *:target_desc:::::::paddr_d ((long) current_gdbarch->target_desc)
377 # Number of bits in a char or unsigned char for the target machine.
378 # Just like CHAR_BIT in <limits.h> but describes the target machine.
379 # v:TARGET_CHAR_BIT:int:char_bit::::8 * sizeof (char):8::0:
380 #
381 # Number of bits in a short or unsigned short for the target machine.
382 v:TARGET_SHORT_BIT:int:short_bit:::8 * sizeof (short):2*TARGET_CHAR_BIT::0
383 # Number of bits in an int or unsigned int for the target machine.
384 v:TARGET_INT_BIT:int:int_bit:::8 * sizeof (int):4*TARGET_CHAR_BIT::0
385 # Number of bits in a long or unsigned long for the target machine.
386 v:TARGET_LONG_BIT:int:long_bit:::8 * sizeof (long):4*TARGET_CHAR_BIT::0
387 # Number of bits in a long long or unsigned long long for the target
388 # machine.
389 v:TARGET_LONG_LONG_BIT:int:long_long_bit:::8 * sizeof (LONGEST):2*TARGET_LONG_BIT::0
390
391 # The ABI default bit-size and format for "float", "double", and "long
392 # double". These bit/format pairs should eventually be combined into
393 # a single object. For the moment, just initialize them as a pair.
394
395 v:TARGET_FLOAT_BIT:int:float_bit:::8 * sizeof (float):4*TARGET_CHAR_BIT::0
396 v:TARGET_FLOAT_FORMAT:const struct floatformat *:float_format:::::default_float_format (current_gdbarch)::pformat (current_gdbarch->float_format)
397 v:TARGET_DOUBLE_BIT:int:double_bit:::8 * sizeof (double):8*TARGET_CHAR_BIT::0
398 v:TARGET_DOUBLE_FORMAT:const struct floatformat *:double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->double_format)
399 v:TARGET_LONG_DOUBLE_BIT:int:long_double_bit:::8 * sizeof (long double):8*TARGET_CHAR_BIT::0
400 v:TARGET_LONG_DOUBLE_FORMAT:const struct floatformat *:long_double_format:::::default_double_format (current_gdbarch)::pformat (current_gdbarch->long_double_format)
401
402 # For most targets, a pointer on the target and its representation as an
403 # address in GDB have the same size and "look the same". For such a
404 # target, you need only set TARGET_PTR_BIT / ptr_bit and TARGET_ADDR_BIT
405 # / addr_bit will be set from it.
406 #
407 # If TARGET_PTR_BIT and TARGET_ADDR_BIT are different, you'll probably
408 # also need to set POINTER_TO_ADDRESS and ADDRESS_TO_POINTER as well.
409 #
410 # ptr_bit is the size of a pointer on the target
411 v:TARGET_PTR_BIT:int:ptr_bit:::8 * sizeof (void*):TARGET_INT_BIT::0
412 # addr_bit is the size of a target address as represented in gdb
413 v:TARGET_ADDR_BIT:int:addr_bit:::8 * sizeof (void*):0:TARGET_PTR_BIT:
414 # Number of bits in a BFD_VMA for the target object file format.
415 v:TARGET_BFD_VMA_BIT:int:bfd_vma_bit:::8 * sizeof (void*):TARGET_ARCHITECTURE->bits_per_address::0
416 #
417 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
418 v:TARGET_CHAR_SIGNED:int:char_signed:::1:-1:1
419 #
420 F:TARGET_READ_PC:CORE_ADDR:read_pc:ptid_t ptid:ptid
421 f:TARGET_WRITE_PC:void:write_pc:CORE_ADDR val, ptid_t ptid:val, ptid:0:generic_target_write_pc::0
422 # UNWIND_SP is a direct replacement for TARGET_READ_SP.
423 F:TARGET_READ_SP:CORE_ADDR:read_sp:void
424 # Function for getting target's idea of a frame pointer. FIXME: GDB's
425 # whole scheme for dealing with "frames" and "frame pointers" needs a
426 # serious shakedown.
427 f:TARGET_VIRTUAL_FRAME_POINTER:void:virtual_frame_pointer:CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset:pc, frame_regnum, frame_offset:0:legacy_virtual_frame_pointer::0
428 #
429 M::void:pseudo_register_read:struct regcache *regcache, int cookednum, gdb_byte *buf:regcache, cookednum, buf
430 M::void:pseudo_register_write:struct regcache *regcache, int cookednum, const gdb_byte *buf:regcache, cookednum, buf
431 #
432 v:=:int:num_regs:::0:-1
433 # This macro gives the number of pseudo-registers that live in the
434 # register namespace but do not get fetched or stored on the target.
435 # These pseudo-registers may be aliases for other registers,
436 # combinations of other registers, or they may be computed by GDB.
437 v:=:int:num_pseudo_regs:::0:0::0
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # SP_REGNUM will hopefully be replaced by UNWIND_SP.
443 v:=:int:sp_regnum:::-1:-1::0
444 v:=:int:pc_regnum:::-1:-1::0
445 v:=:int:ps_regnum:::-1:-1::0
446 v:=:int:fp0_regnum:::0:-1::0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 f:=:int:stab_reg_to_regnum:int stab_regnr:stab_regnr::no_op_reg_to_regnum::0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 f:=:int:ecoff_reg_to_regnum:int ecoff_regnr:ecoff_regnr::no_op_reg_to_regnum::0
451 # Provide a default mapping from a DWARF register number to a gdb REGNUM.
452 f:=:int:dwarf_reg_to_regnum:int dwarf_regnr:dwarf_regnr::no_op_reg_to_regnum::0
453 # Convert from an sdb register number to an internal gdb register number.
454 f:=:int:sdb_reg_to_regnum:int sdb_regnr:sdb_regnr::no_op_reg_to_regnum::0
455 f:=:int:dwarf2_reg_to_regnum:int dwarf2_regnr:dwarf2_regnr::no_op_reg_to_regnum::0
456 f:=:const char *:register_name:int regnr:regnr
457
458 # REGISTER_TYPE is a direct replacement for DEPRECATED_REGISTER_VIRTUAL_TYPE.
459 M::struct type *:register_type:int reg_nr:reg_nr
460 # If the value returned by DEPRECATED_REGISTER_BYTE agrees with the
461 # register offsets computed using just REGISTER_TYPE, this can be
462 # deleted. See: maint print registers. NOTE: cagney/2002-05-02: This
463 # function with predicate has a valid (callable) initial value. As a
464 # consequence, even when the predicate is false, the corresponding
465 # function works. This simplifies the migration process - old code,
466 # calling DEPRECATED_REGISTER_BYTE, doesn't need to be modified.
467 F:=:int:deprecated_register_byte:int reg_nr:reg_nr:generic_register_byte:generic_register_byte
468
469 # See gdbint.texinfo, and PUSH_DUMMY_CALL.
470 M::struct frame_id:unwind_dummy_id:struct frame_info *info:info
471 # Implement UNWIND_DUMMY_ID and PUSH_DUMMY_CALL, then delete
472 # DEPRECATED_FP_REGNUM.
473 v:=:int:deprecated_fp_regnum:::-1:-1::0
474
475 # See gdbint.texinfo. See infcall.c.
476 M::CORE_ADDR:push_dummy_call:struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, int struct_return, CORE_ADDR struct_addr:function, regcache, bp_addr, nargs, args, sp, struct_return, struct_addr
477 # DEPRECATED_REGISTER_SIZE can be deleted.
478 v:=:int:deprecated_register_size
479 v:=:int:call_dummy_location::::AT_ENTRY_POINT::0
480 M::CORE_ADDR:push_dummy_code:CORE_ADDR sp, CORE_ADDR funaddr, int using_gcc, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr:sp, funaddr, using_gcc, args, nargs, value_type, real_pc, bp_addr
481
482 m::void:print_registers_info:struct ui_file *file, struct frame_info *frame, int regnum, int all:file, frame, regnum, all::default_print_registers_info::0
483 M::void:print_float_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
484 M::void:print_vector_info:struct ui_file *file, struct frame_info *frame, const char *args:file, frame, args
485 # MAP a GDB RAW register number onto a simulator register number. See
486 # also include/...-sim.h.
487 f:=:int:register_sim_regno:int reg_nr:reg_nr::legacy_register_sim_regno::0
488 F:=:int:register_bytes_ok:long nr_bytes:nr_bytes
489 f:=:int:cannot_fetch_register:int regnum:regnum::cannot_register_not::0
490 f:=:int:cannot_store_register:int regnum:regnum::cannot_register_not::0
491 # setjmp/longjmp support.
492 F:=:int:get_longjmp_target:CORE_ADDR *pc:pc
493 #
494 v:=:int:believe_pcc_promotion:::::::
495 #
496 f:=:int:convert_register_p:int regnum, struct type *type:regnum, type:0:generic_convert_register_p::0
497 f:=:void:register_to_value:struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf:frame, regnum, type, buf:0
498 f:=:void:value_to_register:struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf:frame, regnum, type, buf:0
499 #
500 f:=:CORE_ADDR:pointer_to_address:struct type *type, const gdb_byte *buf:type, buf::unsigned_pointer_to_address::0
501 f:=:void:address_to_pointer:struct type *type, gdb_byte *buf, CORE_ADDR addr:type, buf, addr::unsigned_address_to_pointer::0
502 M::CORE_ADDR:integer_to_address:struct type *type, const gdb_byte *buf:type, buf
503 #
504 # NOTE: kettenis/2005-09-01: Replaced by PUSH_DUMMY_CALL.
505 F:=:void:deprecated_store_struct_return:CORE_ADDR addr, CORE_ADDR sp:addr, sp
506
507 # It has been suggested that this, well actually its predecessor,
508 # should take the type/value of the function to be called and not the
509 # return type. This is left as an exercise for the reader.
510
511 # NOTE: cagney/2004-06-13: The function stack.c:return_command uses
512 # the predicate with default hack to avoid calling STORE_RETURN_VALUE
513 # (via legacy_return_value), when a small struct is involved.
514
515 M::enum return_value_convention:return_value:struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf:valtype, regcache, readbuf, writebuf::legacy_return_value
516
517 # The deprecated methods EXTRACT_RETURN_VALUE, STORE_RETURN_VALUE,
518 # DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS and
519 # DEPRECATED_USE_STRUCT_CONVENTION have all been folded into
520 # RETURN_VALUE.
521
522 f:=:void:extract_return_value:struct type *type, struct regcache *regcache, gdb_byte *valbuf:type, regcache, valbuf::legacy_extract_return_value::0
523 f:=:void:store_return_value:struct type *type, struct regcache *regcache, const gdb_byte *valbuf:type, regcache, valbuf::legacy_store_return_value::0
524 f:=:void:deprecated_extract_return_value:struct type *type, gdb_byte *regbuf, gdb_byte *valbuf:type, regbuf, valbuf
525 f:=:void:deprecated_store_return_value:struct type *type, gdb_byte *valbuf:type, valbuf
526 f:=:int:deprecated_use_struct_convention:int gcc_p, struct type *value_type:gcc_p, value_type::generic_use_struct_convention::0
527
528 # As of 2004-01-17 only the 32-bit SPARC ABI has been identified as an
529 # ABI suitable for the implementation of a robust extract
530 # struct-convention return-value address method (the sparc saves the
531 # address in the callers frame). All the other cases so far examined,
532 # the DEPRECATED_EXTRACT_STRUCT_VALUE implementation has been
533 # erreneous - the code was incorrectly assuming that the return-value
534 # address, stored in a register, was preserved across the entire
535 # function call.
536
537 # For the moment retain DEPRECATED_EXTRACT_STRUCT_VALUE as a marker of
538 # the ABIs that are still to be analyzed - perhaps this should simply
539 # be deleted. The commented out extract_returned_value_address method
540 # is provided as a starting point for the 32-bit SPARC. It, or
541 # something like it, along with changes to both infcmd.c and stack.c
542 # will be needed for that case to work. NB: It is passed the callers
543 # frame since it is only after the callee has returned that this
544 # function is used.
545
546 #M::CORE_ADDR:extract_returned_value_address:struct frame_info *caller_frame:caller_frame
547 F:=:CORE_ADDR:deprecated_extract_struct_value_address:struct regcache *regcache:regcache
548
549 #
550 f:=:CORE_ADDR:skip_prologue:CORE_ADDR ip:ip:0:0
551 f:=:int:inner_than:CORE_ADDR lhs, CORE_ADDR rhs:lhs, rhs:0:0
552 f:=:const gdb_byte *:breakpoint_from_pc:CORE_ADDR *pcptr, int *lenptr:pcptr, lenptr::0:
553 M::CORE_ADDR:adjust_breakpoint_address:CORE_ADDR bpaddr:bpaddr
554 f:=:int:memory_insert_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_insert_breakpoint::0
555 f:=:int:memory_remove_breakpoint:struct bp_target_info *bp_tgt:bp_tgt:0:default_memory_remove_breakpoint::0
556 v:=:CORE_ADDR:decr_pc_after_break:::0:::0
557
558 # A function can be addressed by either it's "pointer" (possibly a
559 # descriptor address) or "entry point" (first executable instruction).
560 # The method "convert_from_func_ptr_addr" converting the former to the
561 # latter. DEPRECATED_FUNCTION_START_OFFSET is being used to implement
562 # a simplified subset of that functionality - the function's address
563 # corresponds to the "function pointer" and the function's start
564 # corresponds to the "function entry point" - and hence is redundant.
565
566 v:=:CORE_ADDR:deprecated_function_start_offset:::0:::0
567
568 m::void:remote_translate_xfer_address:struct regcache *regcache, CORE_ADDR gdb_addr, int gdb_len, CORE_ADDR *rem_addr, int *rem_len:regcache, gdb_addr, gdb_len, rem_addr, rem_len::generic_remote_translate_xfer_address::0
569
570 # Fetch the target specific address used to represent a load module.
571 F:=:CORE_ADDR:fetch_tls_load_module_address:struct objfile *objfile:objfile
572 #
573 v:=:CORE_ADDR:frame_args_skip:::0:::0
574 M::CORE_ADDR:unwind_pc:struct frame_info *next_frame:next_frame
575 M::CORE_ADDR:unwind_sp:struct frame_info *next_frame:next_frame
576 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
577 # frame-base. Enable frame-base before frame-unwind.
578 F:=:int:frame_num_args:struct frame_info *frame:frame
579 #
580 # DEPRECATED_STACK_ALIGN has been replaced by an initial aligning call
581 # to frame_align and the requirement that methods such as
582 # push_dummy_call and frame_red_zone_size maintain correct stack/frame
583 # alignment.
584 F:=:CORE_ADDR:deprecated_stack_align:CORE_ADDR sp:sp
585 M::CORE_ADDR:frame_align:CORE_ADDR address:address
586 # DEPRECATED_REG_STRUCT_HAS_ADDR has been replaced by
587 # stabs_argument_has_addr.
588 F:=:int:deprecated_reg_struct_has_addr:int gcc_p, struct type *type:gcc_p, type
589 m::int:stabs_argument_has_addr:struct type *type:type::default_stabs_argument_has_addr::0
590 v:=:int:frame_red_zone_size
591 #
592 m::CORE_ADDR:convert_from_func_ptr_addr:CORE_ADDR addr, struct target_ops *targ:addr, targ::convert_from_func_ptr_addr_identity::0
593 # On some machines there are bits in addresses which are not really
594 # part of the address, but are used by the kernel, the hardware, etc.
595 # for special purposes. ADDR_BITS_REMOVE takes out any such bits so
596 # we get a "real" address such as one would find in a symbol table.
597 # This is used only for addresses of instructions, and even then I'm
598 # not sure it's used in all contexts. It exists to deal with there
599 # being a few stray bits in the PC which would mislead us, not as some
600 # sort of generic thing to handle alignment or segmentation (it's
601 # possible it should be in TARGET_READ_PC instead).
602 f:=:CORE_ADDR:addr_bits_remove:CORE_ADDR addr:addr::core_addr_identity::0
603 # It is not at all clear why SMASH_TEXT_ADDRESS is not folded into
604 # ADDR_BITS_REMOVE.
605 f:=:CORE_ADDR:smash_text_address:CORE_ADDR addr:addr::core_addr_identity::0
606 # FIXME/cagney/2001-01-18: This should be split in two. A target method that indicates if
607 # the target needs software single step. An ISA method to implement it.
608 #
609 # FIXME/cagney/2001-01-18: This should be replaced with something that inserts breakpoints
610 # using the breakpoint system instead of blatting memory directly (as with rs6000).
611 #
612 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the target can
613 # single step. If not, then implement single step using breakpoints.
614 F:=:void:software_single_step:enum target_signal sig, int insert_breakpoints_p:sig, insert_breakpoints_p
615 # Return non-zero if the processor is executing a delay slot and a
616 # further single-step is needed before the instruction finishes.
617 M::int:single_step_through_delay:struct frame_info *frame:frame
618 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
619 # disassembler. Perhaps objdump can handle it?
620 f:TARGET_PRINT_INSN:int:print_insn:bfd_vma vma, struct disassemble_info *info:vma, info::0:
621 f:=:CORE_ADDR:skip_trampoline_code:CORE_ADDR pc:pc::generic_skip_trampoline_code::0
622
623
624 # If IN_SOLIB_DYNSYM_RESOLVE_CODE returns true, and SKIP_SOLIB_RESOLVER
625 # evaluates non-zero, this is the address where the debugger will place
626 # a step-resume breakpoint to get us past the dynamic linker.
627 m::CORE_ADDR:skip_solib_resolver:CORE_ADDR pc:pc::generic_skip_solib_resolver::0
628 # Some systems also have trampoline code for returning from shared libs.
629 f:=:int:in_solib_return_trampoline:CORE_ADDR pc, char *name:pc, name::generic_in_solib_return_trampoline::0
630
631 # A target might have problems with watchpoints as soon as the stack
632 # frame of the current function has been destroyed. This mostly happens
633 # as the first action in a funtion's epilogue. in_function_epilogue_p()
634 # is defined to return a non-zero value if either the given addr is one
635 # instruction after the stack destroying instruction up to the trailing
636 # return instruction or if we can figure out that the stack frame has
637 # already been invalidated regardless of the value of addr. Targets
638 # which don't suffer from that problem could just let this functionality
639 # untouched.
640 m::int:in_function_epilogue_p:CORE_ADDR addr:addr:0:generic_in_function_epilogue_p::0
641 # Given a vector of command-line arguments, return a newly allocated
642 # string which, when passed to the create_inferior function, will be
643 # parsed (on Unix systems, by the shell) to yield the same vector.
644 # This function should call error() if the argument vector is not
645 # representable for this target or if this target does not support
646 # command-line arguments.
647 # ARGC is the number of elements in the vector.
648 # ARGV is an array of strings, one per argument.
649 m::char *:construct_inferior_arguments:int argc, char **argv:argc, argv::construct_inferior_arguments::0
650 f:=:void:elf_make_msymbol_special:asymbol *sym, struct minimal_symbol *msym:sym, msym::default_elf_make_msymbol_special::0
651 f:=:void:coff_make_msymbol_special:int val, struct minimal_symbol *msym:val, msym::default_coff_make_msymbol_special::0
652 v:=:const char *:name_of_malloc:::"malloc":"malloc"::0:NAME_OF_MALLOC
653 v:=:int:cannot_step_breakpoint:::0:0::0
654 v:=:int:have_nonsteppable_watchpoint:::0:0::0
655 F:=:int:address_class_type_flags:int byte_size, int dwarf2_addr_class:byte_size, dwarf2_addr_class
656 M::const char *:address_class_type_flags_to_name:int type_flags:type_flags
657 M::int:address_class_name_to_type_flags:const char *name, int *type_flags_ptr:name, type_flags_ptr
658 # Is a register in a group
659 m::int:register_reggroup_p:int regnum, struct reggroup *reggroup:regnum, reggroup::default_register_reggroup_p::0
660 # Fetch the pointer to the ith function argument.
661 F:=:CORE_ADDR:fetch_pointer_argument:struct frame_info *frame, int argi, struct type *type:frame, argi, type
662
663 # Return the appropriate register set for a core file section with
664 # name SECT_NAME and size SECT_SIZE.
665 M::const struct regset *:regset_from_core_section:const char *sect_name, size_t sect_size:sect_name, sect_size
666
667 # If the elements of C++ vtables are in-place function descriptors rather
668 # than normal function pointers (which may point to code or a descriptor),
669 # set this to one.
670 v::int:vtable_function_descriptors:::0:0::0
671
672 # Set if the least significant bit of the delta is used instead of the least
673 # significant bit of the pfn for pointers to virtual member functions.
674 v::int:vbit_in_delta:::0:0::0
675 EOF
676 }
677
678 #
679 # The .log file
680 #
681 exec > new-gdbarch.log
682 function_list | while do_read
683 do
684 cat <<EOF
685 ${class} ${returntype} ${function} ($formal)
686 EOF
687 for r in ${read}
688 do
689 eval echo \"\ \ \ \ ${r}=\${${r}}\"
690 done
691 if class_is_predicate_p && fallback_default_p
692 then
693 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
694 kill $$
695 exit 1
696 fi
697 if [ "x${invalid_p}" = "x0" -a -n "${postdefault}" ]
698 then
699 echo "Error: postdefault is useless when invalid_p=0" 1>&2
700 kill $$
701 exit 1
702 fi
703 if class_is_multiarch_p
704 then
705 if class_is_predicate_p ; then :
706 elif test "x${predefault}" = "x"
707 then
708 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
709 kill $$
710 exit 1
711 fi
712 fi
713 echo ""
714 done
715
716 exec 1>&2
717 compare_new gdbarch.log
718
719
720 copyright ()
721 {
722 cat <<EOF
723 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED */
724
725 /* Dynamic architecture support for GDB, the GNU debugger.
726
727 Copyright (C) 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006
728 Free Software Foundation, Inc.
729
730 This file is part of GDB.
731
732 This program is free software; you can redistribute it and/or modify
733 it under the terms of the GNU General Public License as published by
734 the Free Software Foundation; either version 2 of the License, or
735 (at your option) any later version.
736
737 This program is distributed in the hope that it will be useful,
738 but WITHOUT ANY WARRANTY; without even the implied warranty of
739 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
740 GNU General Public License for more details.
741
742 You should have received a copy of the GNU General Public License
743 along with this program; if not, write to the Free Software
744 Foundation, Inc., 51 Franklin Street, Fifth Floor,
745 Boston, MA 02110-1301, USA. */
746
747 /* This file was created with the aid of \`\`gdbarch.sh''.
748
749 The Bourne shell script \`\`gdbarch.sh'' creates the files
750 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
751 against the existing \`\`gdbarch.[hc]''. Any differences found
752 being reported.
753
754 If editing this file, please also run gdbarch.sh and merge any
755 changes into that script. Conversely, when making sweeping changes
756 to this file, modifying gdbarch.sh and using its output may prove
757 easier. */
758
759 EOF
760 }
761
762 #
763 # The .h file
764 #
765
766 exec > new-gdbarch.h
767 copyright
768 cat <<EOF
769 #ifndef GDBARCH_H
770 #define GDBARCH_H
771
772 struct floatformat;
773 struct ui_file;
774 struct frame_info;
775 struct value;
776 struct objfile;
777 struct minimal_symbol;
778 struct regcache;
779 struct reggroup;
780 struct regset;
781 struct disassemble_info;
782 struct target_ops;
783 struct obstack;
784 struct bp_target_info;
785 struct target_desc;
786
787 extern struct gdbarch *current_gdbarch;
788 EOF
789
790 # function typedef's
791 printf "\n"
792 printf "\n"
793 printf "/* The following are pre-initialized by GDBARCH. */\n"
794 function_list | while do_read
795 do
796 if class_is_info_p
797 then
798 printf "\n"
799 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
800 printf "/* set_gdbarch_${function}() - not applicable - pre-initialized. */\n"
801 if test -n "${macro}"
802 then
803 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
804 printf "#error \"Non multi-arch definition of ${macro}\"\n"
805 printf "#endif\n"
806 printf "#if !defined (${macro})\n"
807 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
808 printf "#endif\n"
809 fi
810 fi
811 done
812
813 # function typedef's
814 printf "\n"
815 printf "\n"
816 printf "/* The following are initialized by the target dependent code. */\n"
817 function_list | while do_read
818 do
819 if [ -n "${comment}" ]
820 then
821 echo "${comment}" | sed \
822 -e '2 s,#,/*,' \
823 -e '3,$ s,#, ,' \
824 -e '$ s,$, */,'
825 fi
826
827 if class_is_predicate_p
828 then
829 if test -n "${macro}"
830 then
831 printf "\n"
832 printf "#if defined (${macro})\n"
833 printf "/* Legacy for systems yet to multi-arch ${macro} */\n"
834 printf "#if !defined (${macro}_P)\n"
835 printf "#define ${macro}_P() (1)\n"
836 printf "#endif\n"
837 printf "#endif\n"
838 fi
839 printf "\n"
840 printf "extern int gdbarch_${function}_p (struct gdbarch *gdbarch);\n"
841 if test -n "${macro}"
842 then
843 printf "#if !defined (GDB_TM_FILE) && defined (${macro}_P)\n"
844 printf "#error \"Non multi-arch definition of ${macro}\"\n"
845 printf "#endif\n"
846 printf "#if !defined (${macro}_P)\n"
847 printf "#define ${macro}_P() (gdbarch_${function}_p (current_gdbarch))\n"
848 printf "#endif\n"
849 fi
850 fi
851 if class_is_variable_p
852 then
853 printf "\n"
854 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
855 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, ${returntype} ${function});\n"
856 if test -n "${macro}"
857 then
858 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
859 printf "#error \"Non multi-arch definition of ${macro}\"\n"
860 printf "#endif\n"
861 printf "#if !defined (${macro})\n"
862 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
863 printf "#endif\n"
864 fi
865 fi
866 if class_is_function_p
867 then
868 printf "\n"
869 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
870 then
871 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch);\n"
872 elif class_is_multiarch_p
873 then
874 printf "typedef ${returntype} (gdbarch_${function}_ftype) (struct gdbarch *gdbarch, ${formal});\n"
875 else
876 printf "typedef ${returntype} (gdbarch_${function}_ftype) (${formal});\n"
877 fi
878 if [ "x${formal}" = "xvoid" ]
879 then
880 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch);\n"
881 else
882 printf "extern ${returntype} gdbarch_${function} (struct gdbarch *gdbarch, ${formal});\n"
883 fi
884 printf "extern void set_gdbarch_${function} (struct gdbarch *gdbarch, gdbarch_${function}_ftype *${function});\n"
885 if test -n "${macro}"
886 then
887 printf "#if !defined (GDB_TM_FILE) && defined (${macro})\n"
888 printf "#error \"Non multi-arch definition of ${macro}\"\n"
889 printf "#endif\n"
890 if [ "x${actual}" = "x" ]
891 then
892 d="#define ${macro}() (gdbarch_${function} (current_gdbarch))"
893 elif [ "x${actual}" = "x-" ]
894 then
895 d="#define ${macro} (gdbarch_${function} (current_gdbarch))"
896 else
897 d="#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))"
898 fi
899 printf "#if !defined (${macro})\n"
900 if [ "x${actual}" = "x" ]
901 then
902 printf "#define ${macro}() (gdbarch_${function} (current_gdbarch))\n"
903 elif [ "x${actual}" = "x-" ]
904 then
905 printf "#define ${macro} (gdbarch_${function} (current_gdbarch))\n"
906 else
907 printf "#define ${macro}(${actual}) (gdbarch_${function} (current_gdbarch, ${actual}))\n"
908 fi
909 printf "#endif\n"
910 fi
911 fi
912 done
913
914 # close it off
915 cat <<EOF
916
917 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
918
919
920 /* Mechanism for co-ordinating the selection of a specific
921 architecture.
922
923 GDB targets (*-tdep.c) can register an interest in a specific
924 architecture. Other GDB components can register a need to maintain
925 per-architecture data.
926
927 The mechanisms below ensures that there is only a loose connection
928 between the set-architecture command and the various GDB
929 components. Each component can independently register their need
930 to maintain architecture specific data with gdbarch.
931
932 Pragmatics:
933
934 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
935 didn't scale.
936
937 The more traditional mega-struct containing architecture specific
938 data for all the various GDB components was also considered. Since
939 GDB is built from a variable number of (fairly independent)
940 components it was determined that the global aproach was not
941 applicable. */
942
943
944 /* Register a new architectural family with GDB.
945
946 Register support for the specified ARCHITECTURE with GDB. When
947 gdbarch determines that the specified architecture has been
948 selected, the corresponding INIT function is called.
949
950 --
951
952 The INIT function takes two parameters: INFO which contains the
953 information available to gdbarch about the (possibly new)
954 architecture; ARCHES which is a list of the previously created
955 \`\`struct gdbarch'' for this architecture.
956
957 The INFO parameter is, as far as possible, be pre-initialized with
958 information obtained from INFO.ABFD or the global defaults.
959
960 The ARCHES parameter is a linked list (sorted most recently used)
961 of all the previously created architures for this architecture
962 family. The (possibly NULL) ARCHES->gdbarch can used to access
963 values from the previously selected architecture for this
964 architecture family. The global \`\`current_gdbarch'' shall not be
965 used.
966
967 The INIT function shall return any of: NULL - indicating that it
968 doesn't recognize the selected architecture; an existing \`\`struct
969 gdbarch'' from the ARCHES list - indicating that the new
970 architecture is just a synonym for an earlier architecture (see
971 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
972 - that describes the selected architecture (see gdbarch_alloc()).
973
974 The DUMP_TDEP function shall print out all target specific values.
975 Care should be taken to ensure that the function works in both the
976 multi-arch and non- multi-arch cases. */
977
978 struct gdbarch_list
979 {
980 struct gdbarch *gdbarch;
981 struct gdbarch_list *next;
982 };
983
984 struct gdbarch_info
985 {
986 /* Use default: NULL (ZERO). */
987 const struct bfd_arch_info *bfd_arch_info;
988
989 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
990 int byte_order;
991
992 /* Use default: NULL (ZERO). */
993 bfd *abfd;
994
995 /* Use default: NULL (ZERO). */
996 struct gdbarch_tdep_info *tdep_info;
997
998 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
999 enum gdb_osabi osabi;
1000
1001 /* Use default: NULL (ZERO). */
1002 const struct target_desc *target_desc;
1003 };
1004
1005 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1006 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1007
1008 /* DEPRECATED - use gdbarch_register() */
1009 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1010
1011 extern void gdbarch_register (enum bfd_architecture architecture,
1012 gdbarch_init_ftype *,
1013 gdbarch_dump_tdep_ftype *);
1014
1015
1016 /* Return a freshly allocated, NULL terminated, array of the valid
1017 architecture names. Since architectures are registered during the
1018 _initialize phase this function only returns useful information
1019 once initialization has been completed. */
1020
1021 extern const char **gdbarch_printable_names (void);
1022
1023
1024 /* Helper function. Search the list of ARCHES for a GDBARCH that
1025 matches the information provided by INFO. */
1026
1027 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1028
1029
1030 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1031 basic initialization using values obtained from the INFO and TDEP
1032 parameters. set_gdbarch_*() functions are called to complete the
1033 initialization of the object. */
1034
1035 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1036
1037
1038 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1039 It is assumed that the caller freeds the \`\`struct
1040 gdbarch_tdep''. */
1041
1042 extern void gdbarch_free (struct gdbarch *);
1043
1044
1045 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1046 obstack. The memory is freed when the corresponding architecture
1047 is also freed. */
1048
1049 extern void *gdbarch_obstack_zalloc (struct gdbarch *gdbarch, long size);
1050 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), (NR) * sizeof (TYPE)))
1051 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) ((TYPE *) gdbarch_obstack_zalloc ((GDBARCH), sizeof (TYPE)))
1052
1053
1054 /* Helper function. Force an update of the current architecture.
1055
1056 The actual architecture selected is determined by INFO, \`\`(gdb) set
1057 architecture'' et.al., the existing architecture and BFD's default
1058 architecture. INFO should be initialized to zero and then selected
1059 fields should be updated.
1060
1061 Returns non-zero if the update succeeds */
1062
1063 extern int gdbarch_update_p (struct gdbarch_info info);
1064
1065
1066 /* Helper function. Find an architecture matching info.
1067
1068 INFO should be initialized using gdbarch_info_init, relevant fields
1069 set, and then finished using gdbarch_info_fill.
1070
1071 Returns the corresponding architecture, or NULL if no matching
1072 architecture was found. "current_gdbarch" is not updated. */
1073
1074 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1075
1076
1077 /* Helper function. Set the global "current_gdbarch" to "gdbarch".
1078
1079 FIXME: kettenis/20031124: Of the functions that follow, only
1080 gdbarch_from_bfd is supposed to survive. The others will
1081 dissappear since in the future GDB will (hopefully) be truly
1082 multi-arch. However, for now we're still stuck with the concept of
1083 a single active architecture. */
1084
1085 extern void deprecated_current_gdbarch_select_hack (struct gdbarch *gdbarch);
1086
1087
1088 /* Register per-architecture data-pointer.
1089
1090 Reserve space for a per-architecture data-pointer. An identifier
1091 for the reserved data-pointer is returned. That identifer should
1092 be saved in a local static variable.
1093
1094 Memory for the per-architecture data shall be allocated using
1095 gdbarch_obstack_zalloc. That memory will be deleted when the
1096 corresponding architecture object is deleted.
1097
1098 When a previously created architecture is re-selected, the
1099 per-architecture data-pointer for that previous architecture is
1100 restored. INIT() is not re-called.
1101
1102 Multiple registrarants for any architecture are allowed (and
1103 strongly encouraged). */
1104
1105 struct gdbarch_data;
1106
1107 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1108 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1109 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1110 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1111 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1112 struct gdbarch_data *data,
1113 void *pointer);
1114
1115 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1116
1117
1118
1119 /* Register per-architecture memory region.
1120
1121 Provide a memory-region swap mechanism. Per-architecture memory
1122 region are created. These memory regions are swapped whenever the
1123 architecture is changed. For a new architecture, the memory region
1124 is initialized with zero (0) and the INIT function is called.
1125
1126 Memory regions are swapped / initialized in the order that they are
1127 registered. NULL DATA and/or INIT values can be specified.
1128
1129 New code should use gdbarch_data_register_*(). */
1130
1131 typedef void (gdbarch_swap_ftype) (void);
1132 extern void deprecated_register_gdbarch_swap (void *data, unsigned long size, gdbarch_swap_ftype *init);
1133 #define DEPRECATED_REGISTER_GDBARCH_SWAP(VAR) deprecated_register_gdbarch_swap (&(VAR), sizeof ((VAR)), NULL)
1134
1135
1136
1137 /* Set the dynamic target-system-dependent parameters (architecture,
1138 byte-order, ...) using information found in the BFD */
1139
1140 extern void set_gdbarch_from_file (bfd *);
1141
1142
1143 /* Initialize the current architecture to the "first" one we find on
1144 our list. */
1145
1146 extern void initialize_current_architecture (void);
1147
1148 /* gdbarch trace variable */
1149 extern int gdbarch_debug;
1150
1151 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1152
1153 #endif
1154 EOF
1155 exec 1>&2
1156 #../move-if-change new-gdbarch.h gdbarch.h
1157 compare_new gdbarch.h
1158
1159
1160 #
1161 # C file
1162 #
1163
1164 exec > new-gdbarch.c
1165 copyright
1166 cat <<EOF
1167
1168 #include "defs.h"
1169 #include "arch-utils.h"
1170
1171 #include "gdbcmd.h"
1172 #include "inferior.h" /* enum CALL_DUMMY_LOCATION et.al. */
1173 #include "symcat.h"
1174
1175 #include "floatformat.h"
1176
1177 #include "gdb_assert.h"
1178 #include "gdb_string.h"
1179 #include "gdb-events.h"
1180 #include "reggroups.h"
1181 #include "osabi.h"
1182 #include "gdb_obstack.h"
1183
1184 /* Static function declarations */
1185
1186 static void alloc_gdbarch_data (struct gdbarch *);
1187
1188 /* Non-zero if we want to trace architecture code. */
1189
1190 #ifndef GDBARCH_DEBUG
1191 #define GDBARCH_DEBUG 0
1192 #endif
1193 int gdbarch_debug = GDBARCH_DEBUG;
1194 static void
1195 show_gdbarch_debug (struct ui_file *file, int from_tty,
1196 struct cmd_list_element *c, const char *value)
1197 {
1198 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1199 }
1200
1201 static const char *
1202 pformat (const struct floatformat *format)
1203 {
1204 if (format == NULL)
1205 return "(null)";
1206 else
1207 return format->name;
1208 }
1209
1210 EOF
1211
1212 # gdbarch open the gdbarch object
1213 printf "\n"
1214 printf "/* Maintain the struct gdbarch object */\n"
1215 printf "\n"
1216 printf "struct gdbarch\n"
1217 printf "{\n"
1218 printf " /* Has this architecture been fully initialized? */\n"
1219 printf " int initialized_p;\n"
1220 printf "\n"
1221 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1222 printf " struct obstack *obstack;\n"
1223 printf "\n"
1224 printf " /* basic architectural information */\n"
1225 function_list | while do_read
1226 do
1227 if class_is_info_p
1228 then
1229 printf " ${returntype} ${function};\n"
1230 fi
1231 done
1232 printf "\n"
1233 printf " /* target specific vector. */\n"
1234 printf " struct gdbarch_tdep *tdep;\n"
1235 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1236 printf "\n"
1237 printf " /* per-architecture data-pointers */\n"
1238 printf " unsigned nr_data;\n"
1239 printf " void **data;\n"
1240 printf "\n"
1241 printf " /* per-architecture swap-regions */\n"
1242 printf " struct gdbarch_swap *swap;\n"
1243 printf "\n"
1244 cat <<EOF
1245 /* Multi-arch values.
1246
1247 When extending this structure you must:
1248
1249 Add the field below.
1250
1251 Declare set/get functions and define the corresponding
1252 macro in gdbarch.h.
1253
1254 gdbarch_alloc(): If zero/NULL is not a suitable default,
1255 initialize the new field.
1256
1257 verify_gdbarch(): Confirm that the target updated the field
1258 correctly.
1259
1260 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1261 field is dumped out
1262
1263 \`\`startup_gdbarch()'': Append an initial value to the static
1264 variable (base values on the host's c-type system).
1265
1266 get_gdbarch(): Implement the set/get functions (probably using
1267 the macro's as shortcuts).
1268
1269 */
1270
1271 EOF
1272 function_list | while do_read
1273 do
1274 if class_is_variable_p
1275 then
1276 printf " ${returntype} ${function};\n"
1277 elif class_is_function_p
1278 then
1279 printf " gdbarch_${function}_ftype *${function};\n"
1280 fi
1281 done
1282 printf "};\n"
1283
1284 # A pre-initialized vector
1285 printf "\n"
1286 printf "\n"
1287 cat <<EOF
1288 /* The default architecture uses host values (for want of a better
1289 choice). */
1290 EOF
1291 printf "\n"
1292 printf "extern const struct bfd_arch_info bfd_default_arch_struct;\n"
1293 printf "\n"
1294 printf "struct gdbarch startup_gdbarch =\n"
1295 printf "{\n"
1296 printf " 1, /* Always initialized. */\n"
1297 printf " NULL, /* The obstack. */\n"
1298 printf " /* basic architecture information */\n"
1299 function_list | while do_read
1300 do
1301 if class_is_info_p
1302 then
1303 printf " ${staticdefault}, /* ${function} */\n"
1304 fi
1305 done
1306 cat <<EOF
1307 /* target specific vector and its dump routine */
1308 NULL, NULL,
1309 /*per-architecture data-pointers and swap regions */
1310 0, NULL, NULL,
1311 /* Multi-arch values */
1312 EOF
1313 function_list | while do_read
1314 do
1315 if class_is_function_p || class_is_variable_p
1316 then
1317 printf " ${staticdefault}, /* ${function} */\n"
1318 fi
1319 done
1320 cat <<EOF
1321 /* startup_gdbarch() */
1322 };
1323
1324 struct gdbarch *current_gdbarch = &startup_gdbarch;
1325 EOF
1326
1327 # Create a new gdbarch struct
1328 cat <<EOF
1329
1330 /* Create a new \`\`struct gdbarch'' based on information provided by
1331 \`\`struct gdbarch_info''. */
1332 EOF
1333 printf "\n"
1334 cat <<EOF
1335 struct gdbarch *
1336 gdbarch_alloc (const struct gdbarch_info *info,
1337 struct gdbarch_tdep *tdep)
1338 {
1339 /* NOTE: The new architecture variable is named \`\`current_gdbarch''
1340 so that macros such as TARGET_DOUBLE_BIT, when expanded, refer to
1341 the current local architecture and not the previous global
1342 architecture. This ensures that the new architectures initial
1343 values are not influenced by the previous architecture. Once
1344 everything is parameterised with gdbarch, this will go away. */
1345 struct gdbarch *current_gdbarch;
1346
1347 /* Create an obstack for allocating all the per-architecture memory,
1348 then use that to allocate the architecture vector. */
1349 struct obstack *obstack = XMALLOC (struct obstack);
1350 obstack_init (obstack);
1351 current_gdbarch = obstack_alloc (obstack, sizeof (*current_gdbarch));
1352 memset (current_gdbarch, 0, sizeof (*current_gdbarch));
1353 current_gdbarch->obstack = obstack;
1354
1355 alloc_gdbarch_data (current_gdbarch);
1356
1357 current_gdbarch->tdep = tdep;
1358 EOF
1359 printf "\n"
1360 function_list | while do_read
1361 do
1362 if class_is_info_p
1363 then
1364 printf " current_gdbarch->${function} = info->${function};\n"
1365 fi
1366 done
1367 printf "\n"
1368 printf " /* Force the explicit initialization of these. */\n"
1369 function_list | while do_read
1370 do
1371 if class_is_function_p || class_is_variable_p
1372 then
1373 if [ -n "${predefault}" -a "x${predefault}" != "x0" ]
1374 then
1375 printf " current_gdbarch->${function} = ${predefault};\n"
1376 fi
1377 fi
1378 done
1379 cat <<EOF
1380 /* gdbarch_alloc() */
1381
1382 return current_gdbarch;
1383 }
1384 EOF
1385
1386 # Free a gdbarch struct.
1387 printf "\n"
1388 printf "\n"
1389 cat <<EOF
1390 /* Allocate extra space using the per-architecture obstack. */
1391
1392 void *
1393 gdbarch_obstack_zalloc (struct gdbarch *arch, long size)
1394 {
1395 void *data = obstack_alloc (arch->obstack, size);
1396 memset (data, 0, size);
1397 return data;
1398 }
1399
1400
1401 /* Free a gdbarch struct. This should never happen in normal
1402 operation --- once you've created a gdbarch, you keep it around.
1403 However, if an architecture's init function encounters an error
1404 building the structure, it may need to clean up a partially
1405 constructed gdbarch. */
1406
1407 void
1408 gdbarch_free (struct gdbarch *arch)
1409 {
1410 struct obstack *obstack;
1411 gdb_assert (arch != NULL);
1412 gdb_assert (!arch->initialized_p);
1413 obstack = arch->obstack;
1414 obstack_free (obstack, 0); /* Includes the ARCH. */
1415 xfree (obstack);
1416 }
1417 EOF
1418
1419 # verify a new architecture
1420 cat <<EOF
1421
1422
1423 /* Ensure that all values in a GDBARCH are reasonable. */
1424
1425 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1426 just happens to match the global variable \`\`current_gdbarch''. That
1427 way macros refering to that variable get the local and not the global
1428 version - ulgh. Once everything is parameterised with gdbarch, this
1429 will go away. */
1430
1431 static void
1432 verify_gdbarch (struct gdbarch *current_gdbarch)
1433 {
1434 struct ui_file *log;
1435 struct cleanup *cleanups;
1436 long dummy;
1437 char *buf;
1438 log = mem_fileopen ();
1439 cleanups = make_cleanup_ui_file_delete (log);
1440 /* fundamental */
1441 if (current_gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1442 fprintf_unfiltered (log, "\n\tbyte-order");
1443 if (current_gdbarch->bfd_arch_info == NULL)
1444 fprintf_unfiltered (log, "\n\tbfd_arch_info");
1445 /* Check those that need to be defined for the given multi-arch level. */
1446 EOF
1447 function_list | while do_read
1448 do
1449 if class_is_function_p || class_is_variable_p
1450 then
1451 if [ "x${invalid_p}" = "x0" ]
1452 then
1453 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1454 elif class_is_predicate_p
1455 then
1456 printf " /* Skip verify of ${function}, has predicate */\n"
1457 # FIXME: See do_read for potential simplification
1458 elif [ -n "${invalid_p}" -a -n "${postdefault}" ]
1459 then
1460 printf " if (${invalid_p})\n"
1461 printf " current_gdbarch->${function} = ${postdefault};\n"
1462 elif [ -n "${predefault}" -a -n "${postdefault}" ]
1463 then
1464 printf " if (current_gdbarch->${function} == ${predefault})\n"
1465 printf " current_gdbarch->${function} = ${postdefault};\n"
1466 elif [ -n "${postdefault}" ]
1467 then
1468 printf " if (current_gdbarch->${function} == 0)\n"
1469 printf " current_gdbarch->${function} = ${postdefault};\n"
1470 elif [ -n "${invalid_p}" ]
1471 then
1472 printf " if (${invalid_p})\n"
1473 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1474 elif [ -n "${predefault}" ]
1475 then
1476 printf " if (current_gdbarch->${function} == ${predefault})\n"
1477 printf " fprintf_unfiltered (log, \"\\\\n\\\\t${function}\");\n"
1478 fi
1479 fi
1480 done
1481 cat <<EOF
1482 buf = ui_file_xstrdup (log, &dummy);
1483 make_cleanup (xfree, buf);
1484 if (strlen (buf) > 0)
1485 internal_error (__FILE__, __LINE__,
1486 _("verify_gdbarch: the following are invalid ...%s"),
1487 buf);
1488 do_cleanups (cleanups);
1489 }
1490 EOF
1491
1492 # dump the structure
1493 printf "\n"
1494 printf "\n"
1495 cat <<EOF
1496 /* Print out the details of the current architecture. */
1497
1498 /* NOTE/WARNING: The parameter is called \`\`current_gdbarch'' so that it
1499 just happens to match the global variable \`\`current_gdbarch''. That
1500 way macros refering to that variable get the local and not the global
1501 version - ulgh. Once everything is parameterised with gdbarch, this
1502 will go away. */
1503
1504 void
1505 gdbarch_dump (struct gdbarch *current_gdbarch, struct ui_file *file)
1506 {
1507 const char *gdb_xm_file = "<not-defined>";
1508 const char *gdb_nm_file = "<not-defined>";
1509 const char *gdb_tm_file = "<not-defined>";
1510 #if defined (GDB_XM_FILE)
1511 gdb_xm_file = GDB_XM_FILE;
1512 #endif
1513 fprintf_unfiltered (file,
1514 "gdbarch_dump: GDB_XM_FILE = %s\\n",
1515 gdb_xm_file);
1516 #if defined (GDB_NM_FILE)
1517 gdb_nm_file = GDB_NM_FILE;
1518 #endif
1519 fprintf_unfiltered (file,
1520 "gdbarch_dump: GDB_NM_FILE = %s\\n",
1521 gdb_nm_file);
1522 #if defined (GDB_TM_FILE)
1523 gdb_tm_file = GDB_TM_FILE;
1524 #endif
1525 fprintf_unfiltered (file,
1526 "gdbarch_dump: GDB_TM_FILE = %s\\n",
1527 gdb_tm_file);
1528 EOF
1529 function_list | sort -t: -k 4 | while do_read
1530 do
1531 # First the predicate
1532 if class_is_predicate_p
1533 then
1534 if test -n "${macro}"
1535 then
1536 printf "#ifdef ${macro}_P\n"
1537 printf " fprintf_unfiltered (file,\n"
1538 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1539 printf " \"${macro}_P()\",\n"
1540 printf " XSTRING (${macro}_P ()));\n"
1541 printf "#endif\n"
1542 fi
1543 printf " fprintf_unfiltered (file,\n"
1544 printf " \"gdbarch_dump: gdbarch_${function}_p() = %%d\\\\n\",\n"
1545 printf " gdbarch_${function}_p (current_gdbarch));\n"
1546 fi
1547 # Print the macro definition.
1548 if test -n "${macro}"
1549 then
1550 printf "#ifdef ${macro}\n"
1551 if class_is_function_p
1552 then
1553 printf " fprintf_unfiltered (file,\n"
1554 printf " \"gdbarch_dump: %%s # %%s\\\\n\",\n"
1555 printf " \"${macro}(${actual})\",\n"
1556 printf " XSTRING (${macro} (${actual})));\n"
1557 else
1558 printf " fprintf_unfiltered (file,\n"
1559 printf " \"gdbarch_dump: ${macro} # %%s\\\\n\",\n"
1560 printf " XSTRING (${macro}));\n"
1561 fi
1562 printf "#endif\n"
1563 fi
1564 # Print the corresponding value.
1565 if class_is_function_p
1566 then
1567 printf " fprintf_unfiltered (file,\n"
1568 printf " \"gdbarch_dump: ${function} = <0x%%lx>\\\\n\",\n"
1569 printf " (long) current_gdbarch->${function});\n"
1570 else
1571 # It is a variable
1572 case "${print}:${returntype}" in
1573 :CORE_ADDR )
1574 fmt="0x%s"
1575 print="paddr_nz (current_gdbarch->${function})"
1576 ;;
1577 :* )
1578 fmt="%s"
1579 print="paddr_d (current_gdbarch->${function})"
1580 ;;
1581 * )
1582 fmt="%s"
1583 ;;
1584 esac
1585 printf " fprintf_unfiltered (file,\n"
1586 printf " \"gdbarch_dump: ${function} = %s\\\\n\",\n" "${fmt}"
1587 printf " ${print});\n"
1588 fi
1589 done
1590 cat <<EOF
1591 if (current_gdbarch->dump_tdep != NULL)
1592 current_gdbarch->dump_tdep (current_gdbarch, file);
1593 }
1594 EOF
1595
1596
1597 # GET/SET
1598 printf "\n"
1599 cat <<EOF
1600 struct gdbarch_tdep *
1601 gdbarch_tdep (struct gdbarch *gdbarch)
1602 {
1603 if (gdbarch_debug >= 2)
1604 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
1605 return gdbarch->tdep;
1606 }
1607 EOF
1608 printf "\n"
1609 function_list | while do_read
1610 do
1611 if class_is_predicate_p
1612 then
1613 printf "\n"
1614 printf "int\n"
1615 printf "gdbarch_${function}_p (struct gdbarch *gdbarch)\n"
1616 printf "{\n"
1617 printf " gdb_assert (gdbarch != NULL);\n"
1618 printf " return ${predicate};\n"
1619 printf "}\n"
1620 fi
1621 if class_is_function_p
1622 then
1623 printf "\n"
1624 printf "${returntype}\n"
1625 if [ "x${formal}" = "xvoid" ]
1626 then
1627 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1628 else
1629 printf "gdbarch_${function} (struct gdbarch *gdbarch, ${formal})\n"
1630 fi
1631 printf "{\n"
1632 printf " gdb_assert (gdbarch != NULL);\n"
1633 printf " gdb_assert (gdbarch->${function} != NULL);\n"
1634 if class_is_predicate_p && test -n "${predefault}"
1635 then
1636 # Allow a call to a function with a predicate.
1637 printf " /* Do not check predicate: ${predicate}, allow call. */\n"
1638 fi
1639 printf " if (gdbarch_debug >= 2)\n"
1640 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1641 if [ "x${actual}" = "x-" -o "x${actual}" = "x" ]
1642 then
1643 if class_is_multiarch_p
1644 then
1645 params="gdbarch"
1646 else
1647 params=""
1648 fi
1649 else
1650 if class_is_multiarch_p
1651 then
1652 params="gdbarch, ${actual}"
1653 else
1654 params="${actual}"
1655 fi
1656 fi
1657 if [ "x${returntype}" = "xvoid" ]
1658 then
1659 printf " gdbarch->${function} (${params});\n"
1660 else
1661 printf " return gdbarch->${function} (${params});\n"
1662 fi
1663 printf "}\n"
1664 printf "\n"
1665 printf "void\n"
1666 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1667 printf " `echo ${function} | sed -e 's/./ /g'` gdbarch_${function}_ftype ${function})\n"
1668 printf "{\n"
1669 printf " gdbarch->${function} = ${function};\n"
1670 printf "}\n"
1671 elif class_is_variable_p
1672 then
1673 printf "\n"
1674 printf "${returntype}\n"
1675 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1676 printf "{\n"
1677 printf " gdb_assert (gdbarch != NULL);\n"
1678 if [ "x${invalid_p}" = "x0" ]
1679 then
1680 printf " /* Skip verify of ${function}, invalid_p == 0 */\n"
1681 elif [ -n "${invalid_p}" ]
1682 then
1683 printf " /* Check variable is valid. */\n"
1684 printf " gdb_assert (!(${invalid_p}));\n"
1685 elif [ -n "${predefault}" ]
1686 then
1687 printf " /* Check variable changed from pre-default. */\n"
1688 printf " gdb_assert (gdbarch->${function} != ${predefault});\n"
1689 fi
1690 printf " if (gdbarch_debug >= 2)\n"
1691 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1692 printf " return gdbarch->${function};\n"
1693 printf "}\n"
1694 printf "\n"
1695 printf "void\n"
1696 printf "set_gdbarch_${function} (struct gdbarch *gdbarch,\n"
1697 printf " `echo ${function} | sed -e 's/./ /g'` ${returntype} ${function})\n"
1698 printf "{\n"
1699 printf " gdbarch->${function} = ${function};\n"
1700 printf "}\n"
1701 elif class_is_info_p
1702 then
1703 printf "\n"
1704 printf "${returntype}\n"
1705 printf "gdbarch_${function} (struct gdbarch *gdbarch)\n"
1706 printf "{\n"
1707 printf " gdb_assert (gdbarch != NULL);\n"
1708 printf " if (gdbarch_debug >= 2)\n"
1709 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_${function} called\\\\n\");\n"
1710 printf " return gdbarch->${function};\n"
1711 printf "}\n"
1712 fi
1713 done
1714
1715 # All the trailing guff
1716 cat <<EOF
1717
1718
1719 /* Keep a registry of per-architecture data-pointers required by GDB
1720 modules. */
1721
1722 struct gdbarch_data
1723 {
1724 unsigned index;
1725 int init_p;
1726 gdbarch_data_pre_init_ftype *pre_init;
1727 gdbarch_data_post_init_ftype *post_init;
1728 };
1729
1730 struct gdbarch_data_registration
1731 {
1732 struct gdbarch_data *data;
1733 struct gdbarch_data_registration *next;
1734 };
1735
1736 struct gdbarch_data_registry
1737 {
1738 unsigned nr;
1739 struct gdbarch_data_registration *registrations;
1740 };
1741
1742 struct gdbarch_data_registry gdbarch_data_registry =
1743 {
1744 0, NULL,
1745 };
1746
1747 static struct gdbarch_data *
1748 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
1749 gdbarch_data_post_init_ftype *post_init)
1750 {
1751 struct gdbarch_data_registration **curr;
1752 /* Append the new registraration. */
1753 for (curr = &gdbarch_data_registry.registrations;
1754 (*curr) != NULL;
1755 curr = &(*curr)->next);
1756 (*curr) = XMALLOC (struct gdbarch_data_registration);
1757 (*curr)->next = NULL;
1758 (*curr)->data = XMALLOC (struct gdbarch_data);
1759 (*curr)->data->index = gdbarch_data_registry.nr++;
1760 (*curr)->data->pre_init = pre_init;
1761 (*curr)->data->post_init = post_init;
1762 (*curr)->data->init_p = 1;
1763 return (*curr)->data;
1764 }
1765
1766 struct gdbarch_data *
1767 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
1768 {
1769 return gdbarch_data_register (pre_init, NULL);
1770 }
1771
1772 struct gdbarch_data *
1773 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
1774 {
1775 return gdbarch_data_register (NULL, post_init);
1776 }
1777
1778 /* Create/delete the gdbarch data vector. */
1779
1780 static void
1781 alloc_gdbarch_data (struct gdbarch *gdbarch)
1782 {
1783 gdb_assert (gdbarch->data == NULL);
1784 gdbarch->nr_data = gdbarch_data_registry.nr;
1785 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
1786 }
1787
1788 /* Initialize the current value of the specified per-architecture
1789 data-pointer. */
1790
1791 void
1792 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1793 struct gdbarch_data *data,
1794 void *pointer)
1795 {
1796 gdb_assert (data->index < gdbarch->nr_data);
1797 gdb_assert (gdbarch->data[data->index] == NULL);
1798 gdb_assert (data->pre_init == NULL);
1799 gdbarch->data[data->index] = pointer;
1800 }
1801
1802 /* Return the current value of the specified per-architecture
1803 data-pointer. */
1804
1805 void *
1806 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
1807 {
1808 gdb_assert (data->index < gdbarch->nr_data);
1809 if (gdbarch->data[data->index] == NULL)
1810 {
1811 /* The data-pointer isn't initialized, call init() to get a
1812 value. */
1813 if (data->pre_init != NULL)
1814 /* Mid architecture creation: pass just the obstack, and not
1815 the entire architecture, as that way it isn't possible for
1816 pre-init code to refer to undefined architecture
1817 fields. */
1818 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
1819 else if (gdbarch->initialized_p
1820 && data->post_init != NULL)
1821 /* Post architecture creation: pass the entire architecture
1822 (as all fields are valid), but be careful to also detect
1823 recursive references. */
1824 {
1825 gdb_assert (data->init_p);
1826 data->init_p = 0;
1827 gdbarch->data[data->index] = data->post_init (gdbarch);
1828 data->init_p = 1;
1829 }
1830 else
1831 /* The architecture initialization hasn't completed - punt -
1832 hope that the caller knows what they are doing. Once
1833 deprecated_set_gdbarch_data has been initialized, this can be
1834 changed to an internal error. */
1835 return NULL;
1836 gdb_assert (gdbarch->data[data->index] != NULL);
1837 }
1838 return gdbarch->data[data->index];
1839 }
1840
1841
1842
1843 /* Keep a registry of swapped data required by GDB modules. */
1844
1845 struct gdbarch_swap
1846 {
1847 void *swap;
1848 struct gdbarch_swap_registration *source;
1849 struct gdbarch_swap *next;
1850 };
1851
1852 struct gdbarch_swap_registration
1853 {
1854 void *data;
1855 unsigned long sizeof_data;
1856 gdbarch_swap_ftype *init;
1857 struct gdbarch_swap_registration *next;
1858 };
1859
1860 struct gdbarch_swap_registry
1861 {
1862 int nr;
1863 struct gdbarch_swap_registration *registrations;
1864 };
1865
1866 struct gdbarch_swap_registry gdbarch_swap_registry =
1867 {
1868 0, NULL,
1869 };
1870
1871 void
1872 deprecated_register_gdbarch_swap (void *data,
1873 unsigned long sizeof_data,
1874 gdbarch_swap_ftype *init)
1875 {
1876 struct gdbarch_swap_registration **rego;
1877 for (rego = &gdbarch_swap_registry.registrations;
1878 (*rego) != NULL;
1879 rego = &(*rego)->next);
1880 (*rego) = XMALLOC (struct gdbarch_swap_registration);
1881 (*rego)->next = NULL;
1882 (*rego)->init = init;
1883 (*rego)->data = data;
1884 (*rego)->sizeof_data = sizeof_data;
1885 }
1886
1887 static void
1888 current_gdbarch_swap_init_hack (void)
1889 {
1890 struct gdbarch_swap_registration *rego;
1891 struct gdbarch_swap **curr = &current_gdbarch->swap;
1892 for (rego = gdbarch_swap_registry.registrations;
1893 rego != NULL;
1894 rego = rego->next)
1895 {
1896 if (rego->data != NULL)
1897 {
1898 (*curr) = GDBARCH_OBSTACK_ZALLOC (current_gdbarch,
1899 struct gdbarch_swap);
1900 (*curr)->source = rego;
1901 (*curr)->swap = gdbarch_obstack_zalloc (current_gdbarch,
1902 rego->sizeof_data);
1903 (*curr)->next = NULL;
1904 curr = &(*curr)->next;
1905 }
1906 if (rego->init != NULL)
1907 rego->init ();
1908 }
1909 }
1910
1911 static struct gdbarch *
1912 current_gdbarch_swap_out_hack (void)
1913 {
1914 struct gdbarch *old_gdbarch = current_gdbarch;
1915 struct gdbarch_swap *curr;
1916
1917 gdb_assert (old_gdbarch != NULL);
1918 for (curr = old_gdbarch->swap;
1919 curr != NULL;
1920 curr = curr->next)
1921 {
1922 memcpy (curr->swap, curr->source->data, curr->source->sizeof_data);
1923 memset (curr->source->data, 0, curr->source->sizeof_data);
1924 }
1925 current_gdbarch = NULL;
1926 return old_gdbarch;
1927 }
1928
1929 static void
1930 current_gdbarch_swap_in_hack (struct gdbarch *new_gdbarch)
1931 {
1932 struct gdbarch_swap *curr;
1933
1934 gdb_assert (current_gdbarch == NULL);
1935 for (curr = new_gdbarch->swap;
1936 curr != NULL;
1937 curr = curr->next)
1938 memcpy (curr->source->data, curr->swap, curr->source->sizeof_data);
1939 current_gdbarch = new_gdbarch;
1940 }
1941
1942
1943 /* Keep a registry of the architectures known by GDB. */
1944
1945 struct gdbarch_registration
1946 {
1947 enum bfd_architecture bfd_architecture;
1948 gdbarch_init_ftype *init;
1949 gdbarch_dump_tdep_ftype *dump_tdep;
1950 struct gdbarch_list *arches;
1951 struct gdbarch_registration *next;
1952 };
1953
1954 static struct gdbarch_registration *gdbarch_registry = NULL;
1955
1956 static void
1957 append_name (const char ***buf, int *nr, const char *name)
1958 {
1959 *buf = xrealloc (*buf, sizeof (char**) * (*nr + 1));
1960 (*buf)[*nr] = name;
1961 *nr += 1;
1962 }
1963
1964 const char **
1965 gdbarch_printable_names (void)
1966 {
1967 /* Accumulate a list of names based on the registed list of
1968 architectures. */
1969 enum bfd_architecture a;
1970 int nr_arches = 0;
1971 const char **arches = NULL;
1972 struct gdbarch_registration *rego;
1973 for (rego = gdbarch_registry;
1974 rego != NULL;
1975 rego = rego->next)
1976 {
1977 const struct bfd_arch_info *ap;
1978 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
1979 if (ap == NULL)
1980 internal_error (__FILE__, __LINE__,
1981 _("gdbarch_architecture_names: multi-arch unknown"));
1982 do
1983 {
1984 append_name (&arches, &nr_arches, ap->printable_name);
1985 ap = ap->next;
1986 }
1987 while (ap != NULL);
1988 }
1989 append_name (&arches, &nr_arches, NULL);
1990 return arches;
1991 }
1992
1993
1994 void
1995 gdbarch_register (enum bfd_architecture bfd_architecture,
1996 gdbarch_init_ftype *init,
1997 gdbarch_dump_tdep_ftype *dump_tdep)
1998 {
1999 struct gdbarch_registration **curr;
2000 const struct bfd_arch_info *bfd_arch_info;
2001 /* Check that BFD recognizes this architecture */
2002 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2003 if (bfd_arch_info == NULL)
2004 {
2005 internal_error (__FILE__, __LINE__,
2006 _("gdbarch: Attempt to register unknown architecture (%d)"),
2007 bfd_architecture);
2008 }
2009 /* Check that we haven't seen this architecture before */
2010 for (curr = &gdbarch_registry;
2011 (*curr) != NULL;
2012 curr = &(*curr)->next)
2013 {
2014 if (bfd_architecture == (*curr)->bfd_architecture)
2015 internal_error (__FILE__, __LINE__,
2016 _("gdbarch: Duplicate registraration of architecture (%s)"),
2017 bfd_arch_info->printable_name);
2018 }
2019 /* log it */
2020 if (gdbarch_debug)
2021 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, 0x%08lx)\n",
2022 bfd_arch_info->printable_name,
2023 (long) init);
2024 /* Append it */
2025 (*curr) = XMALLOC (struct gdbarch_registration);
2026 (*curr)->bfd_architecture = bfd_architecture;
2027 (*curr)->init = init;
2028 (*curr)->dump_tdep = dump_tdep;
2029 (*curr)->arches = NULL;
2030 (*curr)->next = NULL;
2031 }
2032
2033 void
2034 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2035 gdbarch_init_ftype *init)
2036 {
2037 gdbarch_register (bfd_architecture, init, NULL);
2038 }
2039
2040
2041 /* Look for an architecture using gdbarch_info. */
2042
2043 struct gdbarch_list *
2044 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2045 const struct gdbarch_info *info)
2046 {
2047 for (; arches != NULL; arches = arches->next)
2048 {
2049 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2050 continue;
2051 if (info->byte_order != arches->gdbarch->byte_order)
2052 continue;
2053 if (info->osabi != arches->gdbarch->osabi)
2054 continue;
2055 if (info->target_desc != arches->gdbarch->target_desc)
2056 continue;
2057 return arches;
2058 }
2059 return NULL;
2060 }
2061
2062
2063 /* Find an architecture that matches the specified INFO. Create a new
2064 architecture if needed. Return that new architecture. Assumes
2065 that there is no current architecture. */
2066
2067 static struct gdbarch *
2068 find_arch_by_info (struct gdbarch_info info)
2069 {
2070 struct gdbarch *new_gdbarch;
2071 struct gdbarch_registration *rego;
2072
2073 /* The existing architecture has been swapped out - all this code
2074 works from a clean slate. */
2075 gdb_assert (current_gdbarch == NULL);
2076
2077 /* Fill in missing parts of the INFO struct using a number of
2078 sources: "set ..."; INFOabfd supplied; and the global
2079 defaults. */
2080 gdbarch_info_fill (&info);
2081
2082 /* Must have found some sort of architecture. */
2083 gdb_assert (info.bfd_arch_info != NULL);
2084
2085 if (gdbarch_debug)
2086 {
2087 fprintf_unfiltered (gdb_stdlog,
2088 "find_arch_by_info: info.bfd_arch_info %s\n",
2089 (info.bfd_arch_info != NULL
2090 ? info.bfd_arch_info->printable_name
2091 : "(null)"));
2092 fprintf_unfiltered (gdb_stdlog,
2093 "find_arch_by_info: info.byte_order %d (%s)\n",
2094 info.byte_order,
2095 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2096 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2097 : "default"));
2098 fprintf_unfiltered (gdb_stdlog,
2099 "find_arch_by_info: info.osabi %d (%s)\n",
2100 info.osabi, gdbarch_osabi_name (info.osabi));
2101 fprintf_unfiltered (gdb_stdlog,
2102 "find_arch_by_info: info.abfd 0x%lx\n",
2103 (long) info.abfd);
2104 fprintf_unfiltered (gdb_stdlog,
2105 "find_arch_by_info: info.tdep_info 0x%lx\n",
2106 (long) info.tdep_info);
2107 }
2108
2109 /* Find the tdep code that knows about this architecture. */
2110 for (rego = gdbarch_registry;
2111 rego != NULL;
2112 rego = rego->next)
2113 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2114 break;
2115 if (rego == NULL)
2116 {
2117 if (gdbarch_debug)
2118 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2119 "No matching architecture\n");
2120 return 0;
2121 }
2122
2123 /* Ask the tdep code for an architecture that matches "info". */
2124 new_gdbarch = rego->init (info, rego->arches);
2125
2126 /* Did the tdep code like it? No. Reject the change and revert to
2127 the old architecture. */
2128 if (new_gdbarch == NULL)
2129 {
2130 if (gdbarch_debug)
2131 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2132 "Target rejected architecture\n");
2133 return NULL;
2134 }
2135
2136 /* Is this a pre-existing architecture (as determined by already
2137 being initialized)? Move it to the front of the architecture
2138 list (keeping the list sorted Most Recently Used). */
2139 if (new_gdbarch->initialized_p)
2140 {
2141 struct gdbarch_list **list;
2142 struct gdbarch_list *this;
2143 if (gdbarch_debug)
2144 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2145 "Previous architecture 0x%08lx (%s) selected\n",
2146 (long) new_gdbarch,
2147 new_gdbarch->bfd_arch_info->printable_name);
2148 /* Find the existing arch in the list. */
2149 for (list = &rego->arches;
2150 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2151 list = &(*list)->next);
2152 /* It had better be in the list of architectures. */
2153 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2154 /* Unlink THIS. */
2155 this = (*list);
2156 (*list) = this->next;
2157 /* Insert THIS at the front. */
2158 this->next = rego->arches;
2159 rego->arches = this;
2160 /* Return it. */
2161 return new_gdbarch;
2162 }
2163
2164 /* It's a new architecture. */
2165 if (gdbarch_debug)
2166 fprintf_unfiltered (gdb_stdlog, "find_arch_by_info: "
2167 "New architecture 0x%08lx (%s) selected\n",
2168 (long) new_gdbarch,
2169 new_gdbarch->bfd_arch_info->printable_name);
2170
2171 /* Insert the new architecture into the front of the architecture
2172 list (keep the list sorted Most Recently Used). */
2173 {
2174 struct gdbarch_list *this = XMALLOC (struct gdbarch_list);
2175 this->next = rego->arches;
2176 this->gdbarch = new_gdbarch;
2177 rego->arches = this;
2178 }
2179
2180 /* Check that the newly installed architecture is valid. Plug in
2181 any post init values. */
2182 new_gdbarch->dump_tdep = rego->dump_tdep;
2183 verify_gdbarch (new_gdbarch);
2184 new_gdbarch->initialized_p = 1;
2185
2186 /* Initialize any per-architecture swap areas. This phase requires
2187 a valid global CURRENT_GDBARCH. Set it momentarially, and then
2188 swap the entire architecture out. */
2189 current_gdbarch = new_gdbarch;
2190 current_gdbarch_swap_init_hack ();
2191 current_gdbarch_swap_out_hack ();
2192
2193 if (gdbarch_debug)
2194 gdbarch_dump (new_gdbarch, gdb_stdlog);
2195
2196 return new_gdbarch;
2197 }
2198
2199 struct gdbarch *
2200 gdbarch_find_by_info (struct gdbarch_info info)
2201 {
2202 /* Save the previously selected architecture, setting the global to
2203 NULL. This stops things like gdbarch->init() trying to use the
2204 previous architecture's configuration. The previous architecture
2205 may not even be of the same architecture family. The most recent
2206 architecture of the same family is found at the head of the
2207 rego->arches list. */
2208 struct gdbarch *old_gdbarch = current_gdbarch_swap_out_hack ();
2209
2210 /* Find the specified architecture. */
2211 struct gdbarch *new_gdbarch = find_arch_by_info (info);
2212
2213 /* Restore the existing architecture. */
2214 gdb_assert (current_gdbarch == NULL);
2215 current_gdbarch_swap_in_hack (old_gdbarch);
2216
2217 return new_gdbarch;
2218 }
2219
2220 /* Make the specified architecture current, swapping the existing one
2221 out. */
2222
2223 void
2224 deprecated_current_gdbarch_select_hack (struct gdbarch *new_gdbarch)
2225 {
2226 gdb_assert (new_gdbarch != NULL);
2227 gdb_assert (current_gdbarch != NULL);
2228 gdb_assert (new_gdbarch->initialized_p);
2229 current_gdbarch_swap_out_hack ();
2230 current_gdbarch_swap_in_hack (new_gdbarch);
2231 architecture_changed_event ();
2232 flush_cached_frames ();
2233 }
2234
2235 extern void _initialize_gdbarch (void);
2236
2237 void
2238 _initialize_gdbarch (void)
2239 {
2240 struct cmd_list_element *c;
2241
2242 add_setshow_zinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2243 Set architecture debugging."), _("\\
2244 Show architecture debugging."), _("\\
2245 When non-zero, architecture debugging is enabled."),
2246 NULL,
2247 show_gdbarch_debug,
2248 &setdebuglist, &showdebuglist);
2249 }
2250 EOF
2251
2252 # close things off
2253 exec 1>&2
2254 #../move-if-change new-gdbarch.c gdbarch.c
2255 compare_new gdbarch.c