]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/gdbtypes.h
92a2b7cf20731c84210c12c1dccef06b269de6eb
[thirdparty/binutils-gdb.git] / gdb / gdbtypes.h
1
2 /* Internal type definitions for GDB.
3
4 Copyright (C) 1992-2022 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #if !defined (GDBTYPES_H)
24 #define GDBTYPES_H 1
25
26 /* * \page gdbtypes GDB Types
27
28 GDB represents all the different kinds of types in programming
29 languages using a common representation defined in gdbtypes.h.
30
31 The main data structure is main_type; it consists of a code (such
32 as #TYPE_CODE_ENUM for enumeration types), a number of
33 generally-useful fields such as the printable name, and finally a
34 field main_type::type_specific that is a union of info specific to
35 particular languages or other special cases (such as calling
36 convention).
37
38 The available type codes are defined in enum #type_code. The enum
39 includes codes both for types that are common across a variety
40 of languages, and for types that are language-specific.
41
42 Most accesses to type fields go through macros such as
43 #TYPE_CODE(thistype) and #TYPE_FN_FIELD_CONST(thisfn, n). These are
44 written such that they can be used as both rvalues and lvalues.
45 */
46
47 #include "hashtab.h"
48 #include "gdbsupport/array-view.h"
49 #include "gdbsupport/gdb-hashtab.h"
50 #include "gdbsupport/gdb_optional.h"
51 #include "gdbsupport/offset-type.h"
52 #include "gdbsupport/enum-flags.h"
53 #include "gdbsupport/underlying.h"
54 #include "gdbsupport/print-utils.h"
55 #include "gdbsupport/function-view.h"
56 #include "dwarf2.h"
57 #include "gdbsupport/gdb_obstack.h"
58 #include "gmp-utils.h"
59
60 /* Forward declarations for prototypes. */
61 struct field;
62 struct block;
63 struct value_print_options;
64 struct language_defn;
65 struct dwarf2_per_cu_data;
66 struct dwarf2_per_objfile;
67
68 /* These declarations are DWARF-specific as some of the gdbtypes.h data types
69 are already DWARF-specific. */
70
71 /* * Offset relative to the start of its containing CU (compilation
72 unit). */
73 DEFINE_OFFSET_TYPE (cu_offset, unsigned int);
74
75 /* * Offset relative to the start of its .debug_info or .debug_types
76 section. */
77 DEFINE_OFFSET_TYPE (sect_offset, uint64_t);
78
79 static inline char *
80 sect_offset_str (sect_offset offset)
81 {
82 return hex_string (to_underlying (offset));
83 }
84
85 /* Some macros for char-based bitfields. */
86
87 #define B_SET(a,x) ((a)[(x)>>3] |= (1 << ((x)&7)))
88 #define B_CLR(a,x) ((a)[(x)>>3] &= ~(1 << ((x)&7)))
89 #define B_TST(a,x) ((a)[(x)>>3] & (1 << ((x)&7)))
90 #define B_TYPE unsigned char
91 #define B_BYTES(x) ( 1 + ((x)>>3) )
92 #define B_CLRALL(a,x) memset ((a), 0, B_BYTES(x))
93
94 /* * Different kinds of data types are distinguished by the `code'
95 field. */
96
97 enum type_code
98 {
99 TYPE_CODE_BITSTRING = -1, /**< Deprecated */
100 TYPE_CODE_UNDEF = 0, /**< Not used; catches errors */
101 TYPE_CODE_PTR, /**< Pointer type */
102
103 /* * Array type with lower & upper bounds.
104
105 Regardless of the language, GDB represents multidimensional
106 array types the way C does: as arrays of arrays. So an
107 instance of a GDB array type T can always be seen as a series
108 of instances of TYPE_TARGET_TYPE (T) laid out sequentially in
109 memory.
110
111 Row-major languages like C lay out multi-dimensional arrays so
112 that incrementing the rightmost index in a subscripting
113 expression results in the smallest change in the address of the
114 element referred to. Column-major languages like Fortran lay
115 them out so that incrementing the leftmost index results in the
116 smallest change.
117
118 This means that, in column-major languages, working our way
119 from type to target type corresponds to working through indices
120 from right to left, not left to right. */
121 TYPE_CODE_ARRAY,
122
123 TYPE_CODE_STRUCT, /**< C struct or Pascal record */
124 TYPE_CODE_UNION, /**< C union or Pascal variant part */
125 TYPE_CODE_ENUM, /**< Enumeration type */
126 TYPE_CODE_FLAGS, /**< Bit flags type */
127 TYPE_CODE_FUNC, /**< Function type */
128 TYPE_CODE_INT, /**< Integer type */
129
130 /* * Floating type. This is *NOT* a complex type. */
131 TYPE_CODE_FLT,
132
133 /* * Void type. The length field specifies the length (probably
134 always one) which is used in pointer arithmetic involving
135 pointers to this type, but actually dereferencing such a
136 pointer is invalid; a void type has no length and no actual
137 representation in memory or registers. A pointer to a void
138 type is a generic pointer. */
139 TYPE_CODE_VOID,
140
141 TYPE_CODE_SET, /**< Pascal sets */
142 TYPE_CODE_RANGE, /**< Range (integers within spec'd bounds). */
143
144 /* * A string type which is like an array of character but prints
145 differently. It does not contain a length field as Pascal
146 strings (for many Pascals, anyway) do; if we want to deal with
147 such strings, we should use a new type code. */
148 TYPE_CODE_STRING,
149
150 /* * Unknown type. The length field is valid if we were able to
151 deduce that much about the type, or 0 if we don't even know
152 that. */
153 TYPE_CODE_ERROR,
154
155 /* C++ */
156 TYPE_CODE_METHOD, /**< Method type */
157
158 /* * Pointer-to-member-function type. This describes how to access a
159 particular member function of a class (possibly a virtual
160 member function). The representation may vary between different
161 C++ ABIs. */
162 TYPE_CODE_METHODPTR,
163
164 /* * Pointer-to-member type. This is the offset within a class to
165 some particular data member. The only currently supported
166 representation uses an unbiased offset, with -1 representing
167 NULL; this is used by the Itanium C++ ABI (used by GCC on all
168 platforms). */
169 TYPE_CODE_MEMBERPTR,
170
171 TYPE_CODE_REF, /**< C++ Reference types */
172
173 TYPE_CODE_RVALUE_REF, /**< C++ rvalue reference types */
174
175 TYPE_CODE_CHAR, /**< *real* character type */
176
177 /* * Boolean type. 0 is false, 1 is true, and other values are
178 non-boolean (e.g. FORTRAN "logical" used as unsigned int). */
179 TYPE_CODE_BOOL,
180
181 /* Fortran */
182 TYPE_CODE_COMPLEX, /**< Complex float */
183
184 TYPE_CODE_TYPEDEF,
185
186 TYPE_CODE_NAMESPACE, /**< C++ namespace. */
187
188 TYPE_CODE_DECFLOAT, /**< Decimal floating point. */
189
190 TYPE_CODE_MODULE, /**< Fortran module. */
191
192 /* * Internal function type. */
193 TYPE_CODE_INTERNAL_FUNCTION,
194
195 /* * Methods implemented in extension languages. */
196 TYPE_CODE_XMETHOD,
197
198 /* * Fixed Point type. */
199 TYPE_CODE_FIXED_POINT,
200
201 /* * Fortran namelist is a group of variables or arrays that can be
202 read or written.
203
204 Namelist syntax: NAMELIST / groupname / namelist_items ...
205 NAMELIST statement assign a group name to a collection of variables
206 called as namelist items. The namelist items can be of any data type
207 and can be variables or arrays.
208
209 Compiler emit DW_TAG_namelist for group name and DW_TAG_namelist_item
210 for each of the namelist items. GDB process these namelist dies
211 and print namelist variables during print and ptype commands. */
212 TYPE_CODE_NAMELIST,
213 };
214
215 /* * Some bits for the type's instance_flags word. See the macros
216 below for documentation on each bit. */
217
218 enum type_instance_flag_value : unsigned
219 {
220 TYPE_INSTANCE_FLAG_CONST = (1 << 0),
221 TYPE_INSTANCE_FLAG_VOLATILE = (1 << 1),
222 TYPE_INSTANCE_FLAG_CODE_SPACE = (1 << 2),
223 TYPE_INSTANCE_FLAG_DATA_SPACE = (1 << 3),
224 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 = (1 << 4),
225 TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2 = (1 << 5),
226 TYPE_INSTANCE_FLAG_NOTTEXT = (1 << 6),
227 TYPE_INSTANCE_FLAG_RESTRICT = (1 << 7),
228 TYPE_INSTANCE_FLAG_ATOMIC = (1 << 8)
229 };
230
231 DEF_ENUM_FLAGS_TYPE (enum type_instance_flag_value, type_instance_flags);
232
233 /* * Not textual. By default, GDB treats all single byte integers as
234 characters (or elements of strings) unless this flag is set. */
235
236 #define TYPE_NOTTEXT(t) (((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_NOTTEXT)
237
238 /* * Constant type. If this is set, the corresponding type has a
239 const modifier. */
240
241 #define TYPE_CONST(t) ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CONST) != 0)
242
243 /* * Volatile type. If this is set, the corresponding type has a
244 volatile modifier. */
245
246 #define TYPE_VOLATILE(t) \
247 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_VOLATILE) != 0)
248
249 /* * Restrict type. If this is set, the corresponding type has a
250 restrict modifier. */
251
252 #define TYPE_RESTRICT(t) \
253 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_RESTRICT) != 0)
254
255 /* * Atomic type. If this is set, the corresponding type has an
256 _Atomic modifier. */
257
258 #define TYPE_ATOMIC(t) \
259 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_ATOMIC) != 0)
260
261 /* * True if this type represents either an lvalue or lvalue reference type. */
262
263 #define TYPE_IS_REFERENCE(t) \
264 ((t)->code () == TYPE_CODE_REF || (t)->code () == TYPE_CODE_RVALUE_REF)
265
266 /* * True if this type is allocatable. */
267 #define TYPE_IS_ALLOCATABLE(t) \
268 ((t)->dyn_prop (DYN_PROP_ALLOCATED) != NULL)
269
270 /* * True if this type has variant parts. */
271 #define TYPE_HAS_VARIANT_PARTS(t) \
272 ((t)->dyn_prop (DYN_PROP_VARIANT_PARTS) != nullptr)
273
274 /* * True if this type has a dynamic length. */
275 #define TYPE_HAS_DYNAMIC_LENGTH(t) \
276 ((t)->dyn_prop (DYN_PROP_BYTE_SIZE) != nullptr)
277
278 /* * Instruction-space delimited type. This is for Harvard architectures
279 which have separate instruction and data address spaces (and perhaps
280 others).
281
282 GDB usually defines a flat address space that is a superset of the
283 architecture's two (or more) address spaces, but this is an extension
284 of the architecture's model.
285
286 If TYPE_INSTANCE_FLAG_CODE_SPACE is set, an object of the corresponding type
287 resides in instruction memory, even if its address (in the extended
288 flat address space) does not reflect this.
289
290 Similarly, if TYPE_INSTANCE_FLAG_DATA_SPACE is set, then an object of the
291 corresponding type resides in the data memory space, even if
292 this is not indicated by its (flat address space) address.
293
294 If neither flag is set, the default space for functions / methods
295 is instruction space, and for data objects is data memory. */
296
297 #define TYPE_CODE_SPACE(t) \
298 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_CODE_SPACE) != 0)
299
300 #define TYPE_DATA_SPACE(t) \
301 ((((t)->instance_flags ()) & TYPE_INSTANCE_FLAG_DATA_SPACE) != 0)
302
303 /* * Address class flags. Some environments provide for pointers
304 whose size is different from that of a normal pointer or address
305 types where the bits are interpreted differently than normal
306 addresses. The TYPE_INSTANCE_FLAG_ADDRESS_CLASS_n flags may be used in
307 target specific ways to represent these different types of address
308 classes. */
309
310 #define TYPE_ADDRESS_CLASS_1(t) (((t)->instance_flags ()) \
311 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1)
312 #define TYPE_ADDRESS_CLASS_2(t) (((t)->instance_flags ()) \
313 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
314 #define TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL \
315 (TYPE_INSTANCE_FLAG_ADDRESS_CLASS_1 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_2)
316 #define TYPE_ADDRESS_CLASS_ALL(t) (((t)->instance_flags ()) \
317 & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
318
319 /* * Information about a single discriminant. */
320
321 struct discriminant_range
322 {
323 /* * The range of values for the variant. This is an inclusive
324 range. */
325 ULONGEST low, high;
326
327 /* * Return true if VALUE is contained in this range. IS_UNSIGNED
328 is true if this should be an unsigned comparison; false for
329 signed. */
330 bool contains (ULONGEST value, bool is_unsigned) const
331 {
332 if (is_unsigned)
333 return value >= low && value <= high;
334 LONGEST valuel = (LONGEST) value;
335 return valuel >= (LONGEST) low && valuel <= (LONGEST) high;
336 }
337 };
338
339 struct variant_part;
340
341 /* * A single variant. A variant has a list of discriminant values.
342 When the discriminator matches one of these, the variant is
343 enabled. Each variant controls zero or more fields; and may also
344 control other variant parts as well. This struct corresponds to
345 DW_TAG_variant in DWARF. */
346
347 struct variant : allocate_on_obstack
348 {
349 /* * The discriminant ranges for this variant. */
350 gdb::array_view<discriminant_range> discriminants;
351
352 /* * The fields controlled by this variant. This is inclusive on
353 the low end and exclusive on the high end. A variant may not
354 control any fields, in which case the two values will be equal.
355 These are indexes into the type's array of fields. */
356 int first_field;
357 int last_field;
358
359 /* * Variant parts controlled by this variant. */
360 gdb::array_view<variant_part> parts;
361
362 /* * Return true if this is the default variant. The default
363 variant can be recognized because it has no associated
364 discriminants. */
365 bool is_default () const
366 {
367 return discriminants.empty ();
368 }
369
370 /* * Return true if this variant matches VALUE. IS_UNSIGNED is true
371 if this should be an unsigned comparison; false for signed. */
372 bool matches (ULONGEST value, bool is_unsigned) const;
373 };
374
375 /* * A variant part. Each variant part has an optional discriminant
376 and holds an array of variants. This struct corresponds to
377 DW_TAG_variant_part in DWARF. */
378
379 struct variant_part : allocate_on_obstack
380 {
381 /* * The index of the discriminant field in the outer type. This is
382 an index into the type's array of fields. If this is -1, there
383 is no discriminant, and only the default variant can be
384 considered to be selected. */
385 int discriminant_index;
386
387 /* * True if this discriminant is unsigned; false if signed. This
388 comes from the type of the discriminant. */
389 bool is_unsigned;
390
391 /* * The variants that are controlled by this variant part. Note
392 that these will always be sorted by field number. */
393 gdb::array_view<variant> variants;
394 };
395
396
397 enum dynamic_prop_kind
398 {
399 PROP_UNDEFINED, /* Not defined. */
400 PROP_CONST, /* Constant. */
401 PROP_ADDR_OFFSET, /* Address offset. */
402 PROP_LOCEXPR, /* Location expression. */
403 PROP_LOCLIST, /* Location list. */
404 PROP_VARIANT_PARTS, /* Variant parts. */
405 PROP_TYPE, /* Type. */
406 PROP_VARIABLE_NAME, /* Variable name. */
407 };
408
409 union dynamic_prop_data
410 {
411 /* Storage for constant property. */
412
413 LONGEST const_val;
414
415 /* Storage for dynamic property. */
416
417 void *baton;
418
419 /* Storage of variant parts for a type. A type with variant parts
420 has all its fields "linearized" -- stored in a single field
421 array, just as if they had all been declared that way. The
422 variant parts are attached via a dynamic property, and then are
423 used to control which fields end up in the final type during
424 dynamic type resolution. */
425
426 const gdb::array_view<variant_part> *variant_parts;
427
428 /* Once a variant type is resolved, we may want to be able to go
429 from the resolved type to the original type. In this case we
430 rewrite the property's kind and set this field. */
431
432 struct type *original_type;
433
434 /* Name of a variable to look up; the variable holds the value of
435 this property. */
436
437 const char *variable_name;
438 };
439
440 /* * Used to store a dynamic property. */
441
442 struct dynamic_prop
443 {
444 dynamic_prop_kind kind () const
445 {
446 return m_kind;
447 }
448
449 void set_undefined ()
450 {
451 m_kind = PROP_UNDEFINED;
452 }
453
454 LONGEST const_val () const
455 {
456 gdb_assert (m_kind == PROP_CONST);
457
458 return m_data.const_val;
459 }
460
461 void set_const_val (LONGEST const_val)
462 {
463 m_kind = PROP_CONST;
464 m_data.const_val = const_val;
465 }
466
467 void *baton () const
468 {
469 gdb_assert (m_kind == PROP_LOCEXPR
470 || m_kind == PROP_LOCLIST
471 || m_kind == PROP_ADDR_OFFSET);
472
473 return m_data.baton;
474 }
475
476 void set_locexpr (void *baton)
477 {
478 m_kind = PROP_LOCEXPR;
479 m_data.baton = baton;
480 }
481
482 void set_loclist (void *baton)
483 {
484 m_kind = PROP_LOCLIST;
485 m_data.baton = baton;
486 }
487
488 void set_addr_offset (void *baton)
489 {
490 m_kind = PROP_ADDR_OFFSET;
491 m_data.baton = baton;
492 }
493
494 const gdb::array_view<variant_part> *variant_parts () const
495 {
496 gdb_assert (m_kind == PROP_VARIANT_PARTS);
497
498 return m_data.variant_parts;
499 }
500
501 void set_variant_parts (gdb::array_view<variant_part> *variant_parts)
502 {
503 m_kind = PROP_VARIANT_PARTS;
504 m_data.variant_parts = variant_parts;
505 }
506
507 struct type *original_type () const
508 {
509 gdb_assert (m_kind == PROP_TYPE);
510
511 return m_data.original_type;
512 }
513
514 void set_original_type (struct type *original_type)
515 {
516 m_kind = PROP_TYPE;
517 m_data.original_type = original_type;
518 }
519
520 /* Return the name of the variable that holds this property's value.
521 Only valid for PROP_VARIABLE_NAME. */
522 const char *variable_name () const
523 {
524 gdb_assert (m_kind == PROP_VARIABLE_NAME);
525 return m_data.variable_name;
526 }
527
528 /* Set the name of the variable that holds this property's value,
529 and set this property to be of kind PROP_VARIABLE_NAME. */
530 void set_variable_name (const char *name)
531 {
532 m_kind = PROP_VARIABLE_NAME;
533 m_data.variable_name = name;
534 }
535
536 /* Determine which field of the union dynamic_prop.data is used. */
537 enum dynamic_prop_kind m_kind;
538
539 /* Storage for dynamic or static value. */
540 union dynamic_prop_data m_data;
541 };
542
543 /* Compare two dynamic_prop objects for equality. dynamic_prop
544 instances are equal iff they have the same type and storage. */
545 extern bool operator== (const dynamic_prop &l, const dynamic_prop &r);
546
547 /* Compare two dynamic_prop objects for inequality. */
548 static inline bool operator!= (const dynamic_prop &l, const dynamic_prop &r)
549 {
550 return !(l == r);
551 }
552
553 /* * Define a type's dynamic property node kind. */
554 enum dynamic_prop_node_kind
555 {
556 /* A property providing a type's data location.
557 Evaluating this field yields to the location of an object's data. */
558 DYN_PROP_DATA_LOCATION,
559
560 /* A property representing DW_AT_allocated. The presence of this attribute
561 indicates that the object of the type can be allocated/deallocated. */
562 DYN_PROP_ALLOCATED,
563
564 /* A property representing DW_AT_associated. The presence of this attribute
565 indicated that the object of the type can be associated. */
566 DYN_PROP_ASSOCIATED,
567
568 /* A property providing an array's byte stride. */
569 DYN_PROP_BYTE_STRIDE,
570
571 /* A property holding variant parts. */
572 DYN_PROP_VARIANT_PARTS,
573
574 /* A property holding the size of the type. */
575 DYN_PROP_BYTE_SIZE,
576 };
577
578 /* * List for dynamic type attributes. */
579 struct dynamic_prop_list
580 {
581 /* The kind of dynamic prop in this node. */
582 enum dynamic_prop_node_kind prop_kind;
583
584 /* The dynamic property itself. */
585 struct dynamic_prop prop;
586
587 /* A pointer to the next dynamic property. */
588 struct dynamic_prop_list *next;
589 };
590
591 /* * Determine which field of the union main_type.fields[x].loc is
592 used. */
593
594 enum field_loc_kind
595 {
596 FIELD_LOC_KIND_BITPOS, /**< bitpos */
597 FIELD_LOC_KIND_ENUMVAL, /**< enumval */
598 FIELD_LOC_KIND_PHYSADDR, /**< physaddr */
599 FIELD_LOC_KIND_PHYSNAME, /**< physname */
600 FIELD_LOC_KIND_DWARF_BLOCK /**< dwarf_block */
601 };
602
603 /* * A discriminant to determine which field in the
604 main_type.type_specific union is being used, if any.
605
606 For types such as TYPE_CODE_FLT, the use of this
607 discriminant is really redundant, as we know from the type code
608 which field is going to be used. As such, it would be possible to
609 reduce the size of this enum in order to save a bit or two for
610 other fields of struct main_type. But, since we still have extra
611 room , and for the sake of clarity and consistency, we treat all fields
612 of the union the same way. */
613
614 enum type_specific_kind
615 {
616 TYPE_SPECIFIC_NONE,
617 TYPE_SPECIFIC_CPLUS_STUFF,
618 TYPE_SPECIFIC_GNAT_STUFF,
619 TYPE_SPECIFIC_FLOATFORMAT,
620 /* Note: This is used by TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
621 TYPE_SPECIFIC_FUNC,
622 TYPE_SPECIFIC_SELF_TYPE,
623 TYPE_SPECIFIC_INT,
624 TYPE_SPECIFIC_FIXED_POINT,
625 };
626
627 union type_owner
628 {
629 struct objfile *objfile;
630 struct gdbarch *gdbarch;
631 };
632
633 union field_location
634 {
635 /* * Position of this field, counting in bits from start of
636 containing structure. For big-endian targets, it is the bit
637 offset to the MSB. For little-endian targets, it is the bit
638 offset to the LSB. */
639
640 LONGEST bitpos;
641
642 /* * Enum value. */
643 LONGEST enumval;
644
645 /* * For a static field, if TYPE_FIELD_STATIC_HAS_ADDR then
646 physaddr is the location (in the target) of the static
647 field. Otherwise, physname is the mangled label of the
648 static field. */
649
650 CORE_ADDR physaddr;
651 const char *physname;
652
653 /* * The field location can be computed by evaluating the
654 following DWARF block. Its DATA is allocated on
655 objfile_obstack - no CU load is needed to access it. */
656
657 struct dwarf2_locexpr_baton *dwarf_block;
658 };
659
660 struct field
661 {
662 struct type *type () const
663 {
664 return this->m_type;
665 }
666
667 void set_type (struct type *type)
668 {
669 this->m_type = type;
670 }
671
672 const char *name () const
673 {
674 return m_name;
675 }
676
677 void set_name (const char *name)
678 {
679 m_name = name;
680 }
681
682 /* Location getters / setters. */
683
684 field_loc_kind loc_kind () const
685 {
686 return m_loc_kind;
687 }
688
689 LONGEST loc_bitpos () const
690 {
691 gdb_assert (m_loc_kind == FIELD_LOC_KIND_BITPOS);
692 return m_loc.bitpos;
693 }
694
695 void set_loc_bitpos (LONGEST bitpos)
696 {
697 m_loc_kind = FIELD_LOC_KIND_BITPOS;
698 m_loc.bitpos = bitpos;
699 }
700
701 LONGEST loc_enumval () const
702 {
703 gdb_assert (m_loc_kind == FIELD_LOC_KIND_ENUMVAL);
704 return m_loc.enumval;
705 }
706
707 void set_loc_enumval (LONGEST enumval)
708 {
709 m_loc_kind = FIELD_LOC_KIND_ENUMVAL;
710 m_loc.enumval = enumval;
711 }
712
713 CORE_ADDR loc_physaddr () const
714 {
715 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSADDR);
716 return m_loc.physaddr;
717 }
718
719 void set_loc_physaddr (CORE_ADDR physaddr)
720 {
721 m_loc_kind = FIELD_LOC_KIND_PHYSADDR;
722 m_loc.physaddr = physaddr;
723 }
724
725 const char *loc_physname () const
726 {
727 gdb_assert (m_loc_kind == FIELD_LOC_KIND_PHYSNAME);
728 return m_loc.physname;
729 }
730
731 void set_loc_physname (const char *physname)
732 {
733 m_loc_kind = FIELD_LOC_KIND_PHYSNAME;
734 m_loc.physname = physname;
735 }
736
737 dwarf2_locexpr_baton *loc_dwarf_block () const
738 {
739 gdb_assert (m_loc_kind == FIELD_LOC_KIND_DWARF_BLOCK);
740 return m_loc.dwarf_block;
741 }
742
743 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
744 {
745 m_loc_kind = FIELD_LOC_KIND_DWARF_BLOCK;
746 m_loc.dwarf_block = dwarf_block;
747 }
748
749 union field_location m_loc;
750
751 /* * For a function or member type, this is 1 if the argument is
752 marked artificial. Artificial arguments should not be shown
753 to the user. For TYPE_CODE_RANGE it is set if the specific
754 bound is not defined. */
755
756 unsigned int artificial : 1;
757
758 /* * Discriminant for union field_location. */
759
760 ENUM_BITFIELD(field_loc_kind) m_loc_kind : 3;
761
762 /* * Size of this field, in bits, or zero if not packed.
763 If non-zero in an array type, indicates the element size in
764 bits (used only in Ada at the moment).
765 For an unpacked field, the field's type's length
766 says how many bytes the field occupies. */
767
768 unsigned int bitsize : 28;
769
770 /* * In a struct or union type, type of this field.
771 - In a function or member type, type of this argument.
772 - In an array type, the domain-type of the array. */
773
774 struct type *m_type;
775
776 /* * Name of field, value or argument.
777 NULL for range bounds, array domains, and member function
778 arguments. */
779
780 const char *m_name;
781 };
782
783 struct range_bounds
784 {
785 ULONGEST bit_stride () const
786 {
787 if (this->flag_is_byte_stride)
788 return this->stride.const_val () * 8;
789 else
790 return this->stride.const_val ();
791 }
792
793 /* * Low bound of range. */
794
795 struct dynamic_prop low;
796
797 /* * High bound of range. */
798
799 struct dynamic_prop high;
800
801 /* The stride value for this range. This can be stored in bits or bytes
802 based on the value of BYTE_STRIDE_P. It is optional to have a stride
803 value, if this range has no stride value defined then this will be set
804 to the constant zero. */
805
806 struct dynamic_prop stride;
807
808 /* * The bias. Sometimes a range value is biased before storage.
809 The bias is added to the stored bits to form the true value. */
810
811 LONGEST bias;
812
813 /* True if HIGH range bound contains the number of elements in the
814 subrange. This affects how the final high bound is computed. */
815
816 unsigned int flag_upper_bound_is_count : 1;
817
818 /* True if LOW or/and HIGH are resolved into a static bound from
819 a dynamic one. */
820
821 unsigned int flag_bound_evaluated : 1;
822
823 /* If this is true this STRIDE is in bytes, otherwise STRIDE is in bits. */
824
825 unsigned int flag_is_byte_stride : 1;
826 };
827
828 /* Compare two range_bounds objects for equality. Simply does
829 memberwise comparison. */
830 extern bool operator== (const range_bounds &l, const range_bounds &r);
831
832 /* Compare two range_bounds objects for inequality. */
833 static inline bool operator!= (const range_bounds &l, const range_bounds &r)
834 {
835 return !(l == r);
836 }
837
838 union type_specific
839 {
840 /* * CPLUS_STUFF is for TYPE_CODE_STRUCT. It is initialized to
841 point to cplus_struct_default, a default static instance of a
842 struct cplus_struct_type. */
843
844 struct cplus_struct_type *cplus_stuff;
845
846 /* * GNAT_STUFF is for types for which the GNAT Ada compiler
847 provides additional information. */
848
849 struct gnat_aux_type *gnat_stuff;
850
851 /* * FLOATFORMAT is for TYPE_CODE_FLT. It is a pointer to a
852 floatformat object that describes the floating-point value
853 that resides within the type. */
854
855 const struct floatformat *floatformat;
856
857 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
858
859 struct func_type *func_stuff;
860
861 /* * For types that are pointer to member types (TYPE_CODE_METHODPTR,
862 TYPE_CODE_MEMBERPTR), SELF_TYPE is the type that this pointer
863 is a member of. */
864
865 struct type *self_type;
866
867 /* * For TYPE_CODE_FIXED_POINT types, the info necessary to decode
868 values of that type. */
869 struct fixed_point_type_info *fixed_point_info;
870
871 /* * An integer-like scalar type may be stored in just part of its
872 enclosing storage bytes. This structure describes this
873 situation. */
874 struct
875 {
876 /* * The bit size of the integer. This can be 0. For integers
877 that fill their storage (the ordinary case), this field holds
878 the byte size times 8. */
879 unsigned short bit_size;
880 /* * The bit offset of the integer. This is ordinarily 0, and can
881 only be non-zero if the bit size is less than the storage
882 size. */
883 unsigned short bit_offset;
884 } int_stuff;
885 };
886
887 /* * Main structure representing a type in GDB.
888
889 This structure is space-critical. Its layout has been tweaked to
890 reduce the space used. */
891
892 struct main_type
893 {
894 /* * Code for kind of type. */
895
896 ENUM_BITFIELD(type_code) code : 8;
897
898 /* * Flags about this type. These fields appear at this location
899 because they packs nicely here. See the TYPE_* macros for
900 documentation about these fields. */
901
902 unsigned int m_flag_unsigned : 1;
903 unsigned int m_flag_nosign : 1;
904 unsigned int m_flag_stub : 1;
905 unsigned int m_flag_target_stub : 1;
906 unsigned int m_flag_prototyped : 1;
907 unsigned int m_flag_varargs : 1;
908 unsigned int m_flag_vector : 1;
909 unsigned int m_flag_stub_supported : 1;
910 unsigned int m_flag_gnu_ifunc : 1;
911 unsigned int m_flag_fixed_instance : 1;
912 unsigned int m_flag_objfile_owned : 1;
913 unsigned int m_flag_endianity_not_default : 1;
914
915 /* * True if this type was declared with "class" rather than
916 "struct". */
917
918 unsigned int m_flag_declared_class : 1;
919
920 /* * True if this is an enum type with disjoint values. This
921 affects how the enum is printed. */
922
923 unsigned int m_flag_flag_enum : 1;
924
925 /* * A discriminant telling us which field of the type_specific
926 union is being used for this type, if any. */
927
928 ENUM_BITFIELD(type_specific_kind) type_specific_field : 3;
929
930 /* * Number of fields described for this type. This field appears
931 at this location because it packs nicely here. */
932
933 short nfields;
934
935 /* * Name of this type, or NULL if none.
936
937 This is used for printing only. For looking up a name, look for
938 a symbol in the VAR_DOMAIN. This is generally allocated in the
939 objfile's obstack. However coffread.c uses malloc. */
940
941 const char *name;
942
943 /* * Every type is now associated with a particular objfile, and the
944 type is allocated on the objfile_obstack for that objfile. One
945 problem however, is that there are times when gdb allocates new
946 types while it is not in the process of reading symbols from a
947 particular objfile. Fortunately, these happen when the type
948 being created is a derived type of an existing type, such as in
949 lookup_pointer_type(). So we can just allocate the new type
950 using the same objfile as the existing type, but to do this we
951 need a backpointer to the objfile from the existing type. Yes
952 this is somewhat ugly, but without major overhaul of the internal
953 type system, it can't be avoided for now. */
954
955 union type_owner m_owner;
956
957 /* * For a pointer type, describes the type of object pointed to.
958 - For an array type, describes the type of the elements.
959 - For a function or method type, describes the type of the return value.
960 - For a range type, describes the type of the full range.
961 - For a complex type, describes the type of each coordinate.
962 - For a special record or union type encoding a dynamic-sized type
963 in GNAT, a memoized pointer to a corresponding static version of
964 the type.
965 - Unused otherwise. */
966
967 struct type *target_type;
968
969 /* * For structure and union types, a description of each field.
970 For set and pascal array types, there is one "field",
971 whose type is the domain type of the set or array.
972 For range types, there are two "fields",
973 the minimum and maximum values (both inclusive).
974 For enum types, each possible value is described by one "field".
975 For a function or method type, a "field" for each parameter.
976 For C++ classes, there is one field for each base class (if it is
977 a derived class) plus one field for each class data member. Member
978 functions are recorded elsewhere.
979
980 Using a pointer to a separate array of fields
981 allows all types to have the same size, which is useful
982 because we can allocate the space for a type before
983 we know what to put in it. */
984
985 union
986 {
987 struct field *fields;
988
989 /* * Union member used for range types. */
990
991 struct range_bounds *bounds;
992
993 /* If this is a scalar type, then this is its corresponding
994 complex type. */
995 struct type *complex_type;
996
997 } flds_bnds;
998
999 /* * Slot to point to additional language-specific fields of this
1000 type. */
1001
1002 union type_specific type_specific;
1003
1004 /* * Contains all dynamic type properties. */
1005 struct dynamic_prop_list *dyn_prop_list;
1006 };
1007
1008 /* * Number of bits allocated for alignment. */
1009
1010 #define TYPE_ALIGN_BITS 8
1011
1012 /* * A ``struct type'' describes a particular instance of a type, with
1013 some particular qualification. */
1014
1015 struct type
1016 {
1017 /* Get the type code of this type.
1018
1019 Note that the code can be TYPE_CODE_TYPEDEF, so if you want the real
1020 type, you need to do `check_typedef (type)->code ()`. */
1021 type_code code () const
1022 {
1023 return this->main_type->code;
1024 }
1025
1026 /* Set the type code of this type. */
1027 void set_code (type_code code)
1028 {
1029 this->main_type->code = code;
1030 }
1031
1032 /* Get the name of this type. */
1033 const char *name () const
1034 {
1035 return this->main_type->name;
1036 }
1037
1038 /* Set the name of this type. */
1039 void set_name (const char *name)
1040 {
1041 this->main_type->name = name;
1042 }
1043
1044 /* Get the number of fields of this type. */
1045 int num_fields () const
1046 {
1047 return this->main_type->nfields;
1048 }
1049
1050 /* Set the number of fields of this type. */
1051 void set_num_fields (int num_fields)
1052 {
1053 this->main_type->nfields = num_fields;
1054 }
1055
1056 /* Get the fields array of this type. */
1057 struct field *fields () const
1058 {
1059 return this->main_type->flds_bnds.fields;
1060 }
1061
1062 /* Get the field at index IDX. */
1063 struct field &field (int idx) const
1064 {
1065 gdb_assert (idx >= 0 && idx < num_fields ());
1066 return this->fields ()[idx];
1067 }
1068
1069 /* Set the fields array of this type. */
1070 void set_fields (struct field *fields)
1071 {
1072 this->main_type->flds_bnds.fields = fields;
1073 }
1074
1075 type *index_type () const
1076 {
1077 return this->field (0).type ();
1078 }
1079
1080 void set_index_type (type *index_type)
1081 {
1082 this->field (0).set_type (index_type);
1083 }
1084
1085 /* Return the instance flags converted to the correct type. */
1086 const type_instance_flags instance_flags () const
1087 {
1088 return (enum type_instance_flag_value) this->m_instance_flags;
1089 }
1090
1091 /* Set the instance flags. */
1092 void set_instance_flags (type_instance_flags flags)
1093 {
1094 this->m_instance_flags = flags;
1095 }
1096
1097 /* Get the bounds bounds of this type. The type must be a range type. */
1098 range_bounds *bounds () const
1099 {
1100 switch (this->code ())
1101 {
1102 case TYPE_CODE_RANGE:
1103 return this->main_type->flds_bnds.bounds;
1104
1105 case TYPE_CODE_ARRAY:
1106 case TYPE_CODE_STRING:
1107 return this->index_type ()->bounds ();
1108
1109 default:
1110 gdb_assert_not_reached
1111 ("type::bounds called on type with invalid code");
1112 }
1113 }
1114
1115 /* Set the bounds of this type. The type must be a range type. */
1116 void set_bounds (range_bounds *bounds)
1117 {
1118 gdb_assert (this->code () == TYPE_CODE_RANGE);
1119
1120 this->main_type->flds_bnds.bounds = bounds;
1121 }
1122
1123 ULONGEST bit_stride () const
1124 {
1125 if (this->code () == TYPE_CODE_ARRAY && this->field (0).bitsize != 0)
1126 return this->field (0).bitsize;
1127 return this->bounds ()->bit_stride ();
1128 }
1129
1130 /* Unsigned integer type. If this is not set for a TYPE_CODE_INT,
1131 the type is signed (unless TYPE_NOSIGN is set). */
1132
1133 bool is_unsigned () const
1134 {
1135 return this->main_type->m_flag_unsigned;
1136 }
1137
1138 void set_is_unsigned (bool is_unsigned)
1139 {
1140 this->main_type->m_flag_unsigned = is_unsigned;
1141 }
1142
1143 /* No sign for this type. In C++, "char", "signed char", and
1144 "unsigned char" are distinct types; so we need an extra flag to
1145 indicate the absence of a sign! */
1146
1147 bool has_no_signedness () const
1148 {
1149 return this->main_type->m_flag_nosign;
1150 }
1151
1152 void set_has_no_signedness (bool has_no_signedness)
1153 {
1154 this->main_type->m_flag_nosign = has_no_signedness;
1155 }
1156
1157 /* This appears in a type's flags word if it is a stub type (e.g.,
1158 if someone referenced a type that wasn't defined in a source file
1159 via (struct sir_not_appearing_in_this_film *)). */
1160
1161 bool is_stub () const
1162 {
1163 return this->main_type->m_flag_stub;
1164 }
1165
1166 void set_is_stub (bool is_stub)
1167 {
1168 this->main_type->m_flag_stub = is_stub;
1169 }
1170
1171 /* The target type of this type is a stub type, and this type needs
1172 to be updated if it gets un-stubbed in check_typedef. Used for
1173 arrays and ranges, in which TYPE_LENGTH of the array/range gets set
1174 based on the TYPE_LENGTH of the target type. Also, set for
1175 TYPE_CODE_TYPEDEF. */
1176
1177 bool target_is_stub () const
1178 {
1179 return this->main_type->m_flag_target_stub;
1180 }
1181
1182 void set_target_is_stub (bool target_is_stub)
1183 {
1184 this->main_type->m_flag_target_stub = target_is_stub;
1185 }
1186
1187 /* This is a function type which appears to have a prototype. We
1188 need this for function calls in order to tell us if it's necessary
1189 to coerce the args, or to just do the standard conversions. This
1190 is used with a short field. */
1191
1192 bool is_prototyped () const
1193 {
1194 return this->main_type->m_flag_prototyped;
1195 }
1196
1197 void set_is_prototyped (bool is_prototyped)
1198 {
1199 this->main_type->m_flag_prototyped = is_prototyped;
1200 }
1201
1202 /* FIXME drow/2002-06-03: Only used for methods, but applies as well
1203 to functions. */
1204
1205 bool has_varargs () const
1206 {
1207 return this->main_type->m_flag_varargs;
1208 }
1209
1210 void set_has_varargs (bool has_varargs)
1211 {
1212 this->main_type->m_flag_varargs = has_varargs;
1213 }
1214
1215 /* Identify a vector type. Gcc is handling this by adding an extra
1216 attribute to the array type. We slurp that in as a new flag of a
1217 type. This is used only in dwarf2read.c. */
1218
1219 bool is_vector () const
1220 {
1221 return this->main_type->m_flag_vector;
1222 }
1223
1224 void set_is_vector (bool is_vector)
1225 {
1226 this->main_type->m_flag_vector = is_vector;
1227 }
1228
1229 /* This debug target supports TYPE_STUB(t). In the unsupported case
1230 we have to rely on NFIELDS to be zero etc., see TYPE_IS_OPAQUE().
1231 TYPE_STUB(t) with !TYPE_STUB_SUPPORTED(t) may exist if we only
1232 guessed the TYPE_STUB(t) value (see dwarfread.c). */
1233
1234 bool stub_is_supported () const
1235 {
1236 return this->main_type->m_flag_stub_supported;
1237 }
1238
1239 void set_stub_is_supported (bool stub_is_supported)
1240 {
1241 this->main_type->m_flag_stub_supported = stub_is_supported;
1242 }
1243
1244 /* Used only for TYPE_CODE_FUNC where it specifies the real function
1245 address is returned by this function call. TYPE_TARGET_TYPE
1246 determines the final returned function type to be presented to
1247 user. */
1248
1249 bool is_gnu_ifunc () const
1250 {
1251 return this->main_type->m_flag_gnu_ifunc;
1252 }
1253
1254 void set_is_gnu_ifunc (bool is_gnu_ifunc)
1255 {
1256 this->main_type->m_flag_gnu_ifunc = is_gnu_ifunc;
1257 }
1258
1259 /* The debugging formats (especially STABS) do not contain enough
1260 information to represent all Ada types---especially those whose
1261 size depends on dynamic quantities. Therefore, the GNAT Ada
1262 compiler includes extra information in the form of additional type
1263 definitions connected by naming conventions. This flag indicates
1264 that the type is an ordinary (unencoded) GDB type that has been
1265 created from the necessary run-time information, and does not need
1266 further interpretation. Optionally marks ordinary, fixed-size GDB
1267 type. */
1268
1269 bool is_fixed_instance () const
1270 {
1271 return this->main_type->m_flag_fixed_instance;
1272 }
1273
1274 void set_is_fixed_instance (bool is_fixed_instance)
1275 {
1276 this->main_type->m_flag_fixed_instance = is_fixed_instance;
1277 }
1278
1279 /* A compiler may supply dwarf instrumentation that indicates the desired
1280 endian interpretation of the variable differs from the native endian
1281 representation. */
1282
1283 bool endianity_is_not_default () const
1284 {
1285 return this->main_type->m_flag_endianity_not_default;
1286 }
1287
1288 void set_endianity_is_not_default (bool endianity_is_not_default)
1289 {
1290 this->main_type->m_flag_endianity_not_default = endianity_is_not_default;
1291 }
1292
1293
1294 /* True if this type was declared using the "class" keyword. This is
1295 only valid for C++ structure and enum types. If false, a structure
1296 was declared as a "struct"; if true it was declared "class". For
1297 enum types, this is true when "enum class" or "enum struct" was
1298 used to declare the type. */
1299
1300 bool is_declared_class () const
1301 {
1302 return this->main_type->m_flag_declared_class;
1303 }
1304
1305 void set_is_declared_class (bool is_declared_class) const
1306 {
1307 this->main_type->m_flag_declared_class = is_declared_class;
1308 }
1309
1310 /* True if this type is a "flag" enum. A flag enum is one where all
1311 the values are pairwise disjoint when "and"ed together. This
1312 affects how enum values are printed. */
1313
1314 bool is_flag_enum () const
1315 {
1316 return this->main_type->m_flag_flag_enum;
1317 }
1318
1319 void set_is_flag_enum (bool is_flag_enum)
1320 {
1321 this->main_type->m_flag_flag_enum = is_flag_enum;
1322 }
1323
1324 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return a reference
1325 to this type's fixed_point_info. */
1326
1327 struct fixed_point_type_info &fixed_point_info () const
1328 {
1329 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1330 gdb_assert (this->main_type->type_specific.fixed_point_info != nullptr);
1331
1332 return *this->main_type->type_specific.fixed_point_info;
1333 }
1334
1335 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, set this type's
1336 fixed_point_info to INFO. */
1337
1338 void set_fixed_point_info (struct fixed_point_type_info *info) const
1339 {
1340 gdb_assert (this->code () == TYPE_CODE_FIXED_POINT);
1341
1342 this->main_type->type_specific.fixed_point_info = info;
1343 }
1344
1345 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its base type.
1346
1347 In other words, this returns the type after having peeled all
1348 intermediate type layers (such as TYPE_CODE_RANGE, for instance).
1349 The TYPE_CODE of the type returned is guaranteed to be
1350 a TYPE_CODE_FIXED_POINT. */
1351
1352 struct type *fixed_point_type_base_type ();
1353
1354 /* * Assuming that THIS is a TYPE_CODE_FIXED_POINT, return its scaling
1355 factor. */
1356
1357 const gdb_mpq &fixed_point_scaling_factor ();
1358
1359 /* * Return the dynamic property of the requested KIND from this type's
1360 list of dynamic properties. */
1361 dynamic_prop *dyn_prop (dynamic_prop_node_kind kind) const;
1362
1363 /* * Given a dynamic property PROP of a given KIND, add this dynamic
1364 property to this type.
1365
1366 This function assumes that this type is objfile-owned. */
1367 void add_dyn_prop (dynamic_prop_node_kind kind, dynamic_prop prop);
1368
1369 /* * Remove dynamic property of kind KIND from this type, if it exists. */
1370 void remove_dyn_prop (dynamic_prop_node_kind kind);
1371
1372 /* Return true if this type is owned by an objfile. Return false if it is
1373 owned by an architecture. */
1374 bool is_objfile_owned () const
1375 {
1376 return this->main_type->m_flag_objfile_owned;
1377 }
1378
1379 /* Set the owner of the type to be OBJFILE. */
1380 void set_owner (objfile *objfile)
1381 {
1382 gdb_assert (objfile != nullptr);
1383
1384 this->main_type->m_owner.objfile = objfile;
1385 this->main_type->m_flag_objfile_owned = true;
1386 }
1387
1388 /* Set the owner of the type to be ARCH. */
1389 void set_owner (gdbarch *arch)
1390 {
1391 gdb_assert (arch != nullptr);
1392
1393 this->main_type->m_owner.gdbarch = arch;
1394 this->main_type->m_flag_objfile_owned = false;
1395 }
1396
1397 /* Return the objfile owner of this type.
1398
1399 Return nullptr if this type is not objfile-owned. */
1400 struct objfile *objfile_owner () const
1401 {
1402 if (!this->is_objfile_owned ())
1403 return nullptr;
1404
1405 return this->main_type->m_owner.objfile;
1406 }
1407
1408 /* Return the gdbarch owner of this type.
1409
1410 Return nullptr if this type is not gdbarch-owned. */
1411 gdbarch *arch_owner () const
1412 {
1413 if (this->is_objfile_owned ())
1414 return nullptr;
1415
1416 return this->main_type->m_owner.gdbarch;
1417 }
1418
1419 /* Return the type's architecture. For types owned by an
1420 architecture, that architecture is returned. For types owned by an
1421 objfile, that objfile's architecture is returned.
1422
1423 The return value is always non-nullptr. */
1424 gdbarch *arch () const;
1425
1426 /* * Return true if this is an integer type whose logical (bit) size
1427 differs from its storage size; false otherwise. Always return
1428 false for non-integer (i.e., non-TYPE_SPECIFIC_INT) types. */
1429 bool bit_size_differs_p () const
1430 {
1431 return (main_type->type_specific_field == TYPE_SPECIFIC_INT
1432 && main_type->type_specific.int_stuff.bit_size != 8 * length);
1433 }
1434
1435 /* * Return the logical (bit) size for this integer type. Only
1436 valid for integer (TYPE_SPECIFIC_INT) types. */
1437 unsigned short bit_size () const
1438 {
1439 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1440 return main_type->type_specific.int_stuff.bit_size;
1441 }
1442
1443 /* * Return the bit offset for this integer type. Only valid for
1444 integer (TYPE_SPECIFIC_INT) types. */
1445 unsigned short bit_offset () const
1446 {
1447 gdb_assert (main_type->type_specific_field == TYPE_SPECIFIC_INT);
1448 return main_type->type_specific.int_stuff.bit_offset;
1449 }
1450
1451 /* Return true if this is a pointer or reference type. */
1452 bool is_pointer_or_reference () const
1453 {
1454 return this->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (this);
1455 }
1456
1457 /* * Type that is a pointer to this type.
1458 NULL if no such pointer-to type is known yet.
1459 The debugger may add the address of such a type
1460 if it has to construct one later. */
1461
1462 struct type *pointer_type;
1463
1464 /* * C++: also need a reference type. */
1465
1466 struct type *reference_type;
1467
1468 /* * A C++ rvalue reference type added in C++11. */
1469
1470 struct type *rvalue_reference_type;
1471
1472 /* * Variant chain. This points to a type that differs from this
1473 one only in qualifiers and length. Currently, the possible
1474 qualifiers are const, volatile, code-space, data-space, and
1475 address class. The length may differ only when one of the
1476 address class flags are set. The variants are linked in a
1477 circular ring and share MAIN_TYPE. */
1478
1479 struct type *chain;
1480
1481 /* * The alignment for this type. Zero means that the alignment was
1482 not specified in the debug info. Note that this is stored in a
1483 funny way: as the log base 2 (plus 1) of the alignment; so a
1484 value of 1 means the alignment is 1, and a value of 9 means the
1485 alignment is 256. */
1486
1487 unsigned align_log2 : TYPE_ALIGN_BITS;
1488
1489 /* * Flags specific to this instance of the type, indicating where
1490 on the ring we are.
1491
1492 For TYPE_CODE_TYPEDEF the flags of the typedef type should be
1493 binary or-ed with the target type, with a special case for
1494 address class and space class. For example if this typedef does
1495 not specify any new qualifiers, TYPE_INSTANCE_FLAGS is 0 and the
1496 instance flags are completely inherited from the target type. No
1497 qualifiers can be cleared by the typedef. See also
1498 check_typedef. */
1499 unsigned m_instance_flags : 9;
1500
1501 /* * Length of storage for a value of this type. The value is the
1502 expression in host bytes of what sizeof(type) would return. This
1503 size includes padding. For example, an i386 extended-precision
1504 floating point value really only occupies ten bytes, but most
1505 ABI's declare its size to be 12 bytes, to preserve alignment.
1506 A `struct type' representing such a floating-point type would
1507 have a `length' value of 12, even though the last two bytes are
1508 unused.
1509
1510 Since this field is expressed in host bytes, its value is appropriate
1511 to pass to memcpy and such (it is assumed that GDB itself always runs
1512 on an 8-bits addressable architecture). However, when using it for
1513 target address arithmetic (e.g. adding it to a target address), the
1514 type_length_units function should be used in order to get the length
1515 expressed in target addressable memory units. */
1516
1517 ULONGEST length;
1518
1519 /* * Core type, shared by a group of qualified types. */
1520
1521 struct main_type *main_type;
1522 };
1523
1524 struct fn_fieldlist
1525 {
1526
1527 /* * The overloaded name.
1528 This is generally allocated in the objfile's obstack.
1529 However stabsread.c sometimes uses malloc. */
1530
1531 const char *name;
1532
1533 /* * The number of methods with this name. */
1534
1535 int length;
1536
1537 /* * The list of methods. */
1538
1539 struct fn_field *fn_fields;
1540 };
1541
1542
1543
1544 struct fn_field
1545 {
1546 /* * If is_stub is clear, this is the mangled name which we can look
1547 up to find the address of the method (FIXME: it would be cleaner
1548 to have a pointer to the struct symbol here instead).
1549
1550 If is_stub is set, this is the portion of the mangled name which
1551 specifies the arguments. For example, "ii", if there are two int
1552 arguments, or "" if there are no arguments. See gdb_mangle_name
1553 for the conversion from this format to the one used if is_stub is
1554 clear. */
1555
1556 const char *physname;
1557
1558 /* * The function type for the method.
1559
1560 (This comment used to say "The return value of the method", but
1561 that's wrong. The function type is expected here, i.e. something
1562 with TYPE_CODE_METHOD, and *not* the return-value type). */
1563
1564 struct type *type;
1565
1566 /* * For virtual functions. First baseclass that defines this
1567 virtual function. */
1568
1569 struct type *fcontext;
1570
1571 /* Attributes. */
1572
1573 unsigned int is_const:1;
1574 unsigned int is_volatile:1;
1575 unsigned int is_private:1;
1576 unsigned int is_protected:1;
1577 unsigned int is_artificial:1;
1578
1579 /* * A stub method only has some fields valid (but they are enough
1580 to reconstruct the rest of the fields). */
1581
1582 unsigned int is_stub:1;
1583
1584 /* * True if this function is a constructor, false otherwise. */
1585
1586 unsigned int is_constructor : 1;
1587
1588 /* * True if this function is deleted, false otherwise. */
1589
1590 unsigned int is_deleted : 1;
1591
1592 /* * DW_AT_defaulted attribute for this function. The value is one
1593 of the DW_DEFAULTED constants. */
1594
1595 ENUM_BITFIELD (dwarf_defaulted_attribute) defaulted : 2;
1596
1597 /* * Unused. */
1598
1599 unsigned int dummy:6;
1600
1601 /* * Index into that baseclass's virtual function table, minus 2;
1602 else if static: VOFFSET_STATIC; else: 0. */
1603
1604 unsigned int voffset:16;
1605
1606 #define VOFFSET_STATIC 1
1607
1608 };
1609
1610 struct decl_field
1611 {
1612 /* * Unqualified name to be prefixed by owning class qualified
1613 name. */
1614
1615 const char *name;
1616
1617 /* * Type this typedef named NAME represents. */
1618
1619 struct type *type;
1620
1621 /* * True if this field was declared protected, false otherwise. */
1622 unsigned int is_protected : 1;
1623
1624 /* * True if this field was declared private, false otherwise. */
1625 unsigned int is_private : 1;
1626 };
1627
1628 /* * C++ language-specific information for TYPE_CODE_STRUCT and
1629 TYPE_CODE_UNION nodes. */
1630
1631 struct cplus_struct_type
1632 {
1633 /* * Number of base classes this type derives from. The
1634 baseclasses are stored in the first N_BASECLASSES fields
1635 (i.e. the `fields' field of the struct type). The only fields
1636 of struct field that are used are: type, name, loc.bitpos. */
1637
1638 short n_baseclasses;
1639
1640 /* * Field number of the virtual function table pointer in VPTR_BASETYPE.
1641 All access to this field must be through TYPE_VPTR_FIELDNO as one
1642 thing it does is check whether the field has been initialized.
1643 Initially TYPE_RAW_CPLUS_SPECIFIC has the value of cplus_struct_default,
1644 which for portability reasons doesn't initialize this field.
1645 TYPE_VPTR_FIELDNO returns -1 for this case.
1646
1647 If -1, we were unable to find the virtual function table pointer in
1648 initial symbol reading, and get_vptr_fieldno should be called to find
1649 it if possible. get_vptr_fieldno will update this field if possible.
1650 Otherwise the value is left at -1.
1651
1652 Unused if this type does not have virtual functions. */
1653
1654 short vptr_fieldno;
1655
1656 /* * Number of methods with unique names. All overloaded methods
1657 with the same name count only once. */
1658
1659 short nfn_fields;
1660
1661 /* * Number of template arguments. */
1662
1663 unsigned short n_template_arguments;
1664
1665 /* * One if this struct is a dynamic class, as defined by the
1666 Itanium C++ ABI: if it requires a virtual table pointer,
1667 because it or any of its base classes have one or more virtual
1668 member functions or virtual base classes. Minus one if not
1669 dynamic. Zero if not yet computed. */
1670
1671 int is_dynamic : 2;
1672
1673 /* * The calling convention for this type, fetched from the
1674 DW_AT_calling_convention attribute. The value is one of the
1675 DW_CC constants. */
1676
1677 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1678
1679 /* * The base class which defined the virtual function table pointer. */
1680
1681 struct type *vptr_basetype;
1682
1683 /* * For derived classes, the number of base classes is given by
1684 n_baseclasses and virtual_field_bits is a bit vector containing
1685 one bit per base class. If the base class is virtual, the
1686 corresponding bit will be set.
1687 I.E, given:
1688
1689 class A{};
1690 class B{};
1691 class C : public B, public virtual A {};
1692
1693 B is a baseclass of C; A is a virtual baseclass for C.
1694 This is a C++ 2.0 language feature. */
1695
1696 B_TYPE *virtual_field_bits;
1697
1698 /* * For classes with private fields, the number of fields is
1699 given by nfields and private_field_bits is a bit vector
1700 containing one bit per field.
1701
1702 If the field is private, the corresponding bit will be set. */
1703
1704 B_TYPE *private_field_bits;
1705
1706 /* * For classes with protected fields, the number of fields is
1707 given by nfields and protected_field_bits is a bit vector
1708 containing one bit per field.
1709
1710 If the field is private, the corresponding bit will be set. */
1711
1712 B_TYPE *protected_field_bits;
1713
1714 /* * For classes with fields to be ignored, either this is
1715 optimized out or this field has length 0. */
1716
1717 B_TYPE *ignore_field_bits;
1718
1719 /* * For classes, structures, and unions, a description of each
1720 field, which consists of an overloaded name, followed by the
1721 types of arguments that the method expects, and then the name
1722 after it has been renamed to make it distinct.
1723
1724 fn_fieldlists points to an array of nfn_fields of these. */
1725
1726 struct fn_fieldlist *fn_fieldlists;
1727
1728 /* * typedefs defined inside this class. typedef_field points to
1729 an array of typedef_field_count elements. */
1730
1731 struct decl_field *typedef_field;
1732
1733 unsigned typedef_field_count;
1734
1735 /* * The nested types defined by this type. nested_types points to
1736 an array of nested_types_count elements. */
1737
1738 struct decl_field *nested_types;
1739
1740 unsigned nested_types_count;
1741
1742 /* * The template arguments. This is an array with
1743 N_TEMPLATE_ARGUMENTS elements. This is NULL for non-template
1744 classes. */
1745
1746 struct symbol **template_arguments;
1747 };
1748
1749 /* * Struct used to store conversion rankings. */
1750
1751 struct rank
1752 {
1753 short rank;
1754
1755 /* * When two conversions are of the same type and therefore have
1756 the same rank, subrank is used to differentiate the two.
1757
1758 Eg: Two derived-class-pointer to base-class-pointer conversions
1759 would both have base pointer conversion rank, but the
1760 conversion with the shorter distance to the ancestor is
1761 preferable. 'subrank' would be used to reflect that. */
1762
1763 short subrank;
1764 };
1765
1766 /* * Used for ranking a function for overload resolution. */
1767
1768 typedef std::vector<rank> badness_vector;
1769
1770 /* * GNAT Ada-specific information for various Ada types. */
1771
1772 struct gnat_aux_type
1773 {
1774 /* * Parallel type used to encode information about dynamic types
1775 used in Ada (such as variant records, variable-size array,
1776 etc). */
1777 struct type* descriptive_type;
1778 };
1779
1780 /* * For TYPE_CODE_FUNC and TYPE_CODE_METHOD types. */
1781
1782 struct func_type
1783 {
1784 /* * The calling convention for targets supporting multiple ABIs.
1785 Right now this is only fetched from the Dwarf-2
1786 DW_AT_calling_convention attribute. The value is one of the
1787 DW_CC constants. */
1788
1789 ENUM_BITFIELD (dwarf_calling_convention) calling_convention : 8;
1790
1791 /* * Whether this function normally returns to its caller. It is
1792 set from the DW_AT_noreturn attribute if set on the
1793 DW_TAG_subprogram. */
1794
1795 unsigned int is_noreturn : 1;
1796
1797 /* * Only those DW_TAG_call_site's in this function that have
1798 DW_AT_call_tail_call set are linked in this list. Function
1799 without its tail call list complete
1800 (DW_AT_call_all_tail_calls or its superset
1801 DW_AT_call_all_calls) has TAIL_CALL_LIST NULL, even if some
1802 DW_TAG_call_site's exist in such function. */
1803
1804 struct call_site *tail_call_list;
1805
1806 /* * For method types (TYPE_CODE_METHOD), the aggregate type that
1807 contains the method. */
1808
1809 struct type *self_type;
1810 };
1811
1812 /* struct call_site_parameter can be referenced in callees by several ways. */
1813
1814 enum call_site_parameter_kind
1815 {
1816 /* * Use field call_site_parameter.u.dwarf_reg. */
1817 CALL_SITE_PARAMETER_DWARF_REG,
1818
1819 /* * Use field call_site_parameter.u.fb_offset. */
1820 CALL_SITE_PARAMETER_FB_OFFSET,
1821
1822 /* * Use field call_site_parameter.u.param_offset. */
1823 CALL_SITE_PARAMETER_PARAM_OFFSET
1824 };
1825
1826 struct call_site_target
1827 {
1828 /* The kind of location held by this call site target. */
1829 enum kind
1830 {
1831 /* An address. */
1832 PHYSADDR,
1833 /* A name. */
1834 PHYSNAME,
1835 /* A DWARF block. */
1836 DWARF_BLOCK,
1837 /* An array of addresses. */
1838 ADDRESSES,
1839 };
1840
1841 void set_loc_physaddr (CORE_ADDR physaddr)
1842 {
1843 m_loc_kind = PHYSADDR;
1844 m_loc.physaddr = physaddr;
1845 }
1846
1847 void set_loc_physname (const char *physname)
1848 {
1849 m_loc_kind = PHYSNAME;
1850 m_loc.physname = physname;
1851 }
1852
1853 void set_loc_dwarf_block (dwarf2_locexpr_baton *dwarf_block)
1854 {
1855 m_loc_kind = DWARF_BLOCK;
1856 m_loc.dwarf_block = dwarf_block;
1857 }
1858
1859 void set_loc_array (unsigned length, const CORE_ADDR *data)
1860 {
1861 m_loc_kind = ADDRESSES;
1862 m_loc.addresses.length = length;
1863 m_loc.addresses.values = data;
1864 }
1865
1866 /* Callback type for iterate_over_addresses. */
1867
1868 using iterate_ftype = gdb::function_view<void (CORE_ADDR)>;
1869
1870 /* Call CALLBACK for each DW_TAG_call_site's DW_AT_call_target
1871 address. CALLER_FRAME (for registers) can be NULL if it is not
1872 known. This function always may throw NO_ENTRY_VALUE_ERROR. */
1873
1874 void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1875 const struct call_site *call_site,
1876 struct frame_info *caller_frame,
1877 iterate_ftype callback) const;
1878
1879 private:
1880
1881 union
1882 {
1883 /* Address. */
1884 CORE_ADDR physaddr;
1885 /* Mangled name. */
1886 const char *physname;
1887 /* DWARF block. */
1888 struct dwarf2_locexpr_baton *dwarf_block;
1889 /* Array of addresses. */
1890 struct
1891 {
1892 unsigned length;
1893 const CORE_ADDR *values;
1894 } addresses;
1895 } m_loc;
1896
1897 /* * Discriminant for union field_location. */
1898 enum kind m_loc_kind;
1899 };
1900
1901 union call_site_parameter_u
1902 {
1903 /* * DW_TAG_formal_parameter's DW_AT_location's DW_OP_regX
1904 as DWARF register number, for register passed
1905 parameters. */
1906
1907 int dwarf_reg;
1908
1909 /* * Offset from the callee's frame base, for stack passed
1910 parameters. This equals offset from the caller's stack
1911 pointer. */
1912
1913 CORE_ADDR fb_offset;
1914
1915 /* * Offset relative to the start of this PER_CU to
1916 DW_TAG_formal_parameter which is referenced by both
1917 caller and the callee. */
1918
1919 cu_offset param_cu_off;
1920 };
1921
1922 struct call_site_parameter
1923 {
1924 ENUM_BITFIELD (call_site_parameter_kind) kind : 2;
1925
1926 union call_site_parameter_u u;
1927
1928 /* * DW_TAG_formal_parameter's DW_AT_call_value. It is never NULL. */
1929
1930 const gdb_byte *value;
1931 size_t value_size;
1932
1933 /* * DW_TAG_formal_parameter's DW_AT_call_data_value.
1934 It may be NULL if not provided by DWARF. */
1935
1936 const gdb_byte *data_value;
1937 size_t data_value_size;
1938 };
1939
1940 /* * A place where a function gets called from, represented by
1941 DW_TAG_call_site. It can be looked up from symtab->call_site_htab. */
1942
1943 struct call_site
1944 {
1945 call_site (CORE_ADDR pc, dwarf2_per_cu_data *per_cu,
1946 dwarf2_per_objfile *per_objfile)
1947 : per_cu (per_cu), per_objfile (per_objfile), m_unrelocated_pc (pc)
1948 {}
1949
1950 static int
1951 eq (const call_site *a, const call_site *b)
1952 {
1953 return a->m_unrelocated_pc == b->m_unrelocated_pc;
1954 }
1955
1956 static hashval_t
1957 hash (const call_site *a)
1958 {
1959 return a->m_unrelocated_pc;
1960 }
1961
1962 static int
1963 eq (const void *a, const void *b)
1964 {
1965 return eq ((const call_site *)a, (const call_site *)b);
1966 }
1967
1968 static hashval_t
1969 hash (const void *a)
1970 {
1971 return hash ((const call_site *)a);
1972 }
1973
1974 /* Return the address of the first instruction after this call. */
1975
1976 CORE_ADDR pc () const;
1977
1978 /* Call CALLBACK for each target address. CALLER_FRAME (for
1979 registers) can be NULL if it is not known. This function may
1980 throw NO_ENTRY_VALUE_ERROR. */
1981
1982 void iterate_over_addresses (struct gdbarch *call_site_gdbarch,
1983 struct frame_info *caller_frame,
1984 call_site_target::iterate_ftype callback)
1985 const
1986 {
1987 return target.iterate_over_addresses (call_site_gdbarch, this,
1988 caller_frame, callback);
1989 }
1990
1991 /* * List successor with head in FUNC_TYPE.TAIL_CALL_LIST. */
1992
1993 struct call_site *tail_call_next = nullptr;
1994
1995 /* * Describe DW_AT_call_target. Missing attribute uses
1996 FIELD_LOC_KIND_DWARF_BLOCK with FIELD_DWARF_BLOCK == NULL. */
1997
1998 struct call_site_target target {};
1999
2000 /* * Size of the PARAMETER array. */
2001
2002 unsigned parameter_count = 0;
2003
2004 /* * CU of the function where the call is located. It gets used
2005 for DWARF blocks execution in the parameter array below. */
2006
2007 dwarf2_per_cu_data *const per_cu = nullptr;
2008
2009 /* objfile of the function where the call is located. */
2010
2011 dwarf2_per_objfile *const per_objfile = nullptr;
2012
2013 private:
2014 /* Unrelocated address of the first instruction after this call. */
2015 const CORE_ADDR m_unrelocated_pc;
2016
2017 public:
2018 /* * Describe DW_TAG_call_site's DW_TAG_formal_parameter. */
2019
2020 struct call_site_parameter parameter[];
2021 };
2022
2023 /* The type-specific info for TYPE_CODE_FIXED_POINT types. */
2024
2025 struct fixed_point_type_info
2026 {
2027 /* The fixed point type's scaling factor. */
2028 gdb_mpq scaling_factor;
2029 };
2030
2031 /* * The default value of TYPE_CPLUS_SPECIFIC(T) points to this shared
2032 static structure. */
2033
2034 extern const struct cplus_struct_type cplus_struct_default;
2035
2036 extern void allocate_cplus_struct_type (struct type *);
2037
2038 #define INIT_CPLUS_SPECIFIC(type) \
2039 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF, \
2040 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type*) \
2041 &cplus_struct_default)
2042
2043 #define ALLOCATE_CPLUS_STRUCT_TYPE(type) allocate_cplus_struct_type (type)
2044
2045 #define HAVE_CPLUS_STRUCT(type) \
2046 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF \
2047 && TYPE_RAW_CPLUS_SPECIFIC (type) != &cplus_struct_default)
2048
2049 #define INIT_NONE_SPECIFIC(type) \
2050 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_NONE, \
2051 TYPE_MAIN_TYPE (type)->type_specific = {})
2052
2053 extern const struct gnat_aux_type gnat_aux_default;
2054
2055 extern void allocate_gnat_aux_type (struct type *);
2056
2057 #define INIT_GNAT_SPECIFIC(type) \
2058 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF, \
2059 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *) &gnat_aux_default)
2060 #define ALLOCATE_GNAT_AUX_TYPE(type) allocate_gnat_aux_type (type)
2061 /* * A macro that returns non-zero if the type-specific data should be
2062 read as "gnat-stuff". */
2063 #define HAVE_GNAT_AUX_INFO(type) \
2064 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF)
2065
2066 /* * True if TYPE is known to be an Ada type of some kind. */
2067 #define ADA_TYPE_P(type) \
2068 (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_GNAT_STUFF \
2069 || (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE \
2070 && (type)->is_fixed_instance ()))
2071
2072 #define INIT_FUNC_SPECIFIC(type) \
2073 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FUNC, \
2074 TYPE_MAIN_TYPE (type)->type_specific.func_stuff = (struct func_type *) \
2075 TYPE_ZALLOC (type, \
2076 sizeof (*TYPE_MAIN_TYPE (type)->type_specific.func_stuff)))
2077
2078 /* "struct fixed_point_type_info" has a field that has a destructor.
2079 See allocate_fixed_point_type_info to understand how this is
2080 handled. */
2081 #define INIT_FIXED_POINT_SPECIFIC(type) \
2082 (TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FIXED_POINT, \
2083 allocate_fixed_point_type_info (type))
2084
2085 #define TYPE_MAIN_TYPE(thistype) (thistype)->main_type
2086 #define TYPE_TARGET_TYPE(thistype) TYPE_MAIN_TYPE(thistype)->target_type
2087 #define TYPE_POINTER_TYPE(thistype) (thistype)->pointer_type
2088 #define TYPE_REFERENCE_TYPE(thistype) (thistype)->reference_type
2089 #define TYPE_RVALUE_REFERENCE_TYPE(thistype) (thistype)->rvalue_reference_type
2090 #define TYPE_CHAIN(thistype) (thistype)->chain
2091 /* * Note that if thistype is a TYPEDEF type, you have to call check_typedef.
2092 But check_typedef does set the TYPE_LENGTH of the TYPEDEF type,
2093 so you only have to call check_typedef once. Since allocate_value
2094 calls check_typedef, TYPE_LENGTH (VALUE_TYPE (X)) is safe. */
2095 #define TYPE_LENGTH(thistype) (thistype)->length
2096
2097 /* * Return the alignment of the type in target addressable memory
2098 units, or 0 if no alignment was specified. */
2099 #define TYPE_RAW_ALIGN(thistype) type_raw_align (thistype)
2100
2101 /* * Return the alignment of the type in target addressable memory
2102 units, or 0 if no alignment was specified. */
2103 extern unsigned type_raw_align (struct type *);
2104
2105 /* * Return the alignment of the type in target addressable memory
2106 units. Return 0 if the alignment cannot be determined; but note
2107 that this makes an effort to compute the alignment even it it was
2108 not specified in the debug info. */
2109 extern unsigned type_align (struct type *);
2110
2111 /* * Set the alignment of the type. The alignment must be a power of
2112 2. Returns false if the given value does not fit in the available
2113 space in struct type. */
2114 extern bool set_type_align (struct type *, ULONGEST);
2115
2116 /* Property accessors for the type data location. */
2117 #define TYPE_DATA_LOCATION(thistype) \
2118 ((thistype)->dyn_prop (DYN_PROP_DATA_LOCATION))
2119 #define TYPE_DATA_LOCATION_BATON(thistype) \
2120 TYPE_DATA_LOCATION (thistype)->data.baton
2121 #define TYPE_DATA_LOCATION_ADDR(thistype) \
2122 (TYPE_DATA_LOCATION (thistype)->const_val ())
2123 #define TYPE_DATA_LOCATION_KIND(thistype) \
2124 (TYPE_DATA_LOCATION (thistype)->kind ())
2125 #define TYPE_DYNAMIC_LENGTH(thistype) \
2126 ((thistype)->dyn_prop (DYN_PROP_BYTE_SIZE))
2127
2128 /* Property accessors for the type allocated/associated. */
2129 #define TYPE_ALLOCATED_PROP(thistype) \
2130 ((thistype)->dyn_prop (DYN_PROP_ALLOCATED))
2131 #define TYPE_ASSOCIATED_PROP(thistype) \
2132 ((thistype)->dyn_prop (DYN_PROP_ASSOCIATED))
2133
2134 /* C++ */
2135
2136 #define TYPE_SELF_TYPE(thistype) internal_type_self_type (thistype)
2137 /* Do not call this, use TYPE_SELF_TYPE. */
2138 extern struct type *internal_type_self_type (struct type *);
2139 extern void set_type_self_type (struct type *, struct type *);
2140
2141 extern int internal_type_vptr_fieldno (struct type *);
2142 extern void set_type_vptr_fieldno (struct type *, int);
2143 extern struct type *internal_type_vptr_basetype (struct type *);
2144 extern void set_type_vptr_basetype (struct type *, struct type *);
2145 #define TYPE_VPTR_FIELDNO(thistype) internal_type_vptr_fieldno (thistype)
2146 #define TYPE_VPTR_BASETYPE(thistype) internal_type_vptr_basetype (thistype)
2147
2148 #define TYPE_NFN_FIELDS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->nfn_fields
2149 #define TYPE_SPECIFIC_FIELD(thistype) \
2150 TYPE_MAIN_TYPE(thistype)->type_specific_field
2151 /* We need this tap-dance with the TYPE_RAW_SPECIFIC because of the case
2152 where we're trying to print an Ada array using the C language.
2153 In that case, there is no "cplus_stuff", but the C language assumes
2154 that there is. What we do, in that case, is pretend that there is
2155 an implicit one which is the default cplus stuff. */
2156 #define TYPE_CPLUS_SPECIFIC(thistype) \
2157 (!HAVE_CPLUS_STRUCT(thistype) \
2158 ? (struct cplus_struct_type*)&cplus_struct_default \
2159 : TYPE_RAW_CPLUS_SPECIFIC(thistype))
2160 #define TYPE_RAW_CPLUS_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff
2161 #define TYPE_CPLUS_CALLING_CONVENTION(thistype) \
2162 TYPE_MAIN_TYPE(thistype)->type_specific.cplus_stuff->calling_convention
2163 #define TYPE_FLOATFORMAT(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.floatformat
2164 #define TYPE_GNAT_SPECIFIC(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.gnat_stuff
2165 #define TYPE_DESCRIPTIVE_TYPE(thistype) TYPE_GNAT_SPECIFIC(thistype)->descriptive_type
2166 #define TYPE_CALLING_CONVENTION(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->calling_convention
2167 #define TYPE_NO_RETURN(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->is_noreturn
2168 #define TYPE_TAIL_CALL_LIST(thistype) TYPE_MAIN_TYPE(thistype)->type_specific.func_stuff->tail_call_list
2169 #define TYPE_BASECLASS(thistype,index) ((thistype)->field (index).type ())
2170 #define TYPE_N_BASECLASSES(thistype) TYPE_CPLUS_SPECIFIC(thistype)->n_baseclasses
2171 #define TYPE_BASECLASS_NAME(thistype,index) (thistype->field (index).name ())
2172 #define TYPE_BASECLASS_BITPOS(thistype,index) (thistype->field (index).loc_bitpos ())
2173 #define BASETYPE_VIA_PUBLIC(thistype, index) \
2174 ((!TYPE_FIELD_PRIVATE(thistype, index)) && (!TYPE_FIELD_PROTECTED(thistype, index)))
2175 #define TYPE_CPLUS_DYNAMIC(thistype) TYPE_CPLUS_SPECIFIC (thistype)->is_dynamic
2176
2177 #define BASETYPE_VIA_VIRTUAL(thistype, index) \
2178 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2179 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (index)))
2180
2181 #define FIELD_ARTIFICIAL(thisfld) ((thisfld).artificial)
2182 #define FIELD_BITSIZE(thisfld) ((thisfld).bitsize)
2183
2184 #define TYPE_FIELD_ARTIFICIAL(thistype, n) FIELD_ARTIFICIAL((thistype)->field (n))
2185 #define TYPE_FIELD_BITSIZE(thistype, n) FIELD_BITSIZE((thistype)->field (n))
2186 #define TYPE_FIELD_PACKED(thistype, n) (FIELD_BITSIZE((thistype)->field (n))!=0)
2187
2188 #define TYPE_FIELD_PRIVATE_BITS(thistype) \
2189 TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits
2190 #define TYPE_FIELD_PROTECTED_BITS(thistype) \
2191 TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits
2192 #define TYPE_FIELD_IGNORE_BITS(thistype) \
2193 TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits
2194 #define TYPE_FIELD_VIRTUAL_BITS(thistype) \
2195 TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits
2196 #define SET_TYPE_FIELD_PRIVATE(thistype, n) \
2197 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n))
2198 #define SET_TYPE_FIELD_PROTECTED(thistype, n) \
2199 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n))
2200 #define SET_TYPE_FIELD_IGNORE(thistype, n) \
2201 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n))
2202 #define SET_TYPE_FIELD_VIRTUAL(thistype, n) \
2203 B_SET (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n))
2204 #define TYPE_FIELD_PRIVATE(thistype, n) \
2205 (TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits == NULL ? 0 \
2206 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->private_field_bits, (n)))
2207 #define TYPE_FIELD_PROTECTED(thistype, n) \
2208 (TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits == NULL ? 0 \
2209 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->protected_field_bits, (n)))
2210 #define TYPE_FIELD_IGNORE(thistype, n) \
2211 (TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits == NULL ? 0 \
2212 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->ignore_field_bits, (n)))
2213 #define TYPE_FIELD_VIRTUAL(thistype, n) \
2214 (TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits == NULL ? 0 \
2215 : B_TST(TYPE_CPLUS_SPECIFIC(thistype)->virtual_field_bits, (n)))
2216
2217 #define TYPE_FN_FIELDLISTS(thistype) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists
2218 #define TYPE_FN_FIELDLIST(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n]
2219 #define TYPE_FN_FIELDLIST1(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].fn_fields
2220 #define TYPE_FN_FIELDLIST_NAME(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].name
2221 #define TYPE_FN_FIELDLIST_LENGTH(thistype, n) TYPE_CPLUS_SPECIFIC(thistype)->fn_fieldlists[n].length
2222
2223 #define TYPE_N_TEMPLATE_ARGUMENTS(thistype) \
2224 TYPE_CPLUS_SPECIFIC (thistype)->n_template_arguments
2225 #define TYPE_TEMPLATE_ARGUMENTS(thistype) \
2226 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments
2227 #define TYPE_TEMPLATE_ARGUMENT(thistype, n) \
2228 TYPE_CPLUS_SPECIFIC (thistype)->template_arguments[n]
2229
2230 #define TYPE_FN_FIELD(thisfn, n) (thisfn)[n]
2231 #define TYPE_FN_FIELD_PHYSNAME(thisfn, n) (thisfn)[n].physname
2232 #define TYPE_FN_FIELD_TYPE(thisfn, n) (thisfn)[n].type
2233 #define TYPE_FN_FIELD_ARGS(thisfn, n) (((thisfn)[n].type)->fields ())
2234 #define TYPE_FN_FIELD_CONST(thisfn, n) ((thisfn)[n].is_const)
2235 #define TYPE_FN_FIELD_VOLATILE(thisfn, n) ((thisfn)[n].is_volatile)
2236 #define TYPE_FN_FIELD_PRIVATE(thisfn, n) ((thisfn)[n].is_private)
2237 #define TYPE_FN_FIELD_PROTECTED(thisfn, n) ((thisfn)[n].is_protected)
2238 #define TYPE_FN_FIELD_ARTIFICIAL(thisfn, n) ((thisfn)[n].is_artificial)
2239 #define TYPE_FN_FIELD_STUB(thisfn, n) ((thisfn)[n].is_stub)
2240 #define TYPE_FN_FIELD_CONSTRUCTOR(thisfn, n) ((thisfn)[n].is_constructor)
2241 #define TYPE_FN_FIELD_FCONTEXT(thisfn, n) ((thisfn)[n].fcontext)
2242 #define TYPE_FN_FIELD_VOFFSET(thisfn, n) ((thisfn)[n].voffset-2)
2243 #define TYPE_FN_FIELD_VIRTUAL_P(thisfn, n) ((thisfn)[n].voffset > 1)
2244 #define TYPE_FN_FIELD_STATIC_P(thisfn, n) ((thisfn)[n].voffset == VOFFSET_STATIC)
2245 #define TYPE_FN_FIELD_DEFAULTED(thisfn, n) ((thisfn)[n].defaulted)
2246 #define TYPE_FN_FIELD_DELETED(thisfn, n) ((thisfn)[n].is_deleted)
2247
2248 /* Accessors for typedefs defined by a class. */
2249 #define TYPE_TYPEDEF_FIELD_ARRAY(thistype) \
2250 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field
2251 #define TYPE_TYPEDEF_FIELD(thistype, n) \
2252 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field[n]
2253 #define TYPE_TYPEDEF_FIELD_NAME(thistype, n) \
2254 TYPE_TYPEDEF_FIELD (thistype, n).name
2255 #define TYPE_TYPEDEF_FIELD_TYPE(thistype, n) \
2256 TYPE_TYPEDEF_FIELD (thistype, n).type
2257 #define TYPE_TYPEDEF_FIELD_COUNT(thistype) \
2258 TYPE_CPLUS_SPECIFIC (thistype)->typedef_field_count
2259 #define TYPE_TYPEDEF_FIELD_PROTECTED(thistype, n) \
2260 TYPE_TYPEDEF_FIELD (thistype, n).is_protected
2261 #define TYPE_TYPEDEF_FIELD_PRIVATE(thistype, n) \
2262 TYPE_TYPEDEF_FIELD (thistype, n).is_private
2263
2264 #define TYPE_NESTED_TYPES_ARRAY(thistype) \
2265 TYPE_CPLUS_SPECIFIC (thistype)->nested_types
2266 #define TYPE_NESTED_TYPES_FIELD(thistype, n) \
2267 TYPE_CPLUS_SPECIFIC (thistype)->nested_types[n]
2268 #define TYPE_NESTED_TYPES_FIELD_NAME(thistype, n) \
2269 TYPE_NESTED_TYPES_FIELD (thistype, n).name
2270 #define TYPE_NESTED_TYPES_FIELD_TYPE(thistype, n) \
2271 TYPE_NESTED_TYPES_FIELD (thistype, n).type
2272 #define TYPE_NESTED_TYPES_COUNT(thistype) \
2273 TYPE_CPLUS_SPECIFIC (thistype)->nested_types_count
2274 #define TYPE_NESTED_TYPES_FIELD_PROTECTED(thistype, n) \
2275 TYPE_NESTED_TYPES_FIELD (thistype, n).is_protected
2276 #define TYPE_NESTED_TYPES_FIELD_PRIVATE(thistype, n) \
2277 TYPE_NESTED_TYPES_FIELD (thistype, n).is_private
2278
2279 #define TYPE_IS_OPAQUE(thistype) \
2280 ((((thistype)->code () == TYPE_CODE_STRUCT) \
2281 || ((thistype)->code () == TYPE_CODE_UNION)) \
2282 && ((thistype)->num_fields () == 0) \
2283 && (!HAVE_CPLUS_STRUCT (thistype) \
2284 || TYPE_NFN_FIELDS (thistype) == 0) \
2285 && ((thistype)->is_stub () || !(thistype)->stub_is_supported ()))
2286
2287 /* * A helper macro that returns the name of a type or "unnamed type"
2288 if the type has no name. */
2289
2290 #define TYPE_SAFE_NAME(type) \
2291 (type->name () != nullptr ? type->name () : _("<unnamed type>"))
2292
2293 /* * A helper macro that returns the name of an error type. If the
2294 type has a name, it is used; otherwise, a default is used. */
2295
2296 #define TYPE_ERROR_NAME(type) \
2297 (type->name () ? type->name () : _("<error type>"))
2298
2299 /* Given TYPE, return its floatformat. */
2300 const struct floatformat *floatformat_from_type (const struct type *type);
2301
2302 struct builtin_type
2303 {
2304 /* Integral types. */
2305
2306 /* Implicit size/sign (based on the architecture's ABI). */
2307 struct type *builtin_void;
2308 struct type *builtin_char;
2309 struct type *builtin_short;
2310 struct type *builtin_int;
2311 struct type *builtin_long;
2312 struct type *builtin_signed_char;
2313 struct type *builtin_unsigned_char;
2314 struct type *builtin_unsigned_short;
2315 struct type *builtin_unsigned_int;
2316 struct type *builtin_unsigned_long;
2317 struct type *builtin_bfloat16;
2318 struct type *builtin_half;
2319 struct type *builtin_float;
2320 struct type *builtin_double;
2321 struct type *builtin_long_double;
2322 struct type *builtin_complex;
2323 struct type *builtin_double_complex;
2324 struct type *builtin_string;
2325 struct type *builtin_bool;
2326 struct type *builtin_long_long;
2327 struct type *builtin_unsigned_long_long;
2328 struct type *builtin_decfloat;
2329 struct type *builtin_decdouble;
2330 struct type *builtin_declong;
2331
2332 /* "True" character types.
2333 We use these for the '/c' print format, because c_char is just a
2334 one-byte integral type, which languages less laid back than C
2335 will print as ... well, a one-byte integral type. */
2336 struct type *builtin_true_char;
2337 struct type *builtin_true_unsigned_char;
2338
2339 /* Explicit sizes - see C9X <intypes.h> for naming scheme. The "int0"
2340 is for when an architecture needs to describe a register that has
2341 no size. */
2342 struct type *builtin_int0;
2343 struct type *builtin_int8;
2344 struct type *builtin_uint8;
2345 struct type *builtin_int16;
2346 struct type *builtin_uint16;
2347 struct type *builtin_int24;
2348 struct type *builtin_uint24;
2349 struct type *builtin_int32;
2350 struct type *builtin_uint32;
2351 struct type *builtin_int64;
2352 struct type *builtin_uint64;
2353 struct type *builtin_int128;
2354 struct type *builtin_uint128;
2355
2356 /* Wide character types. */
2357 struct type *builtin_char16;
2358 struct type *builtin_char32;
2359 struct type *builtin_wchar;
2360
2361 /* Pointer types. */
2362
2363 /* * `pointer to data' type. Some target platforms use an implicitly
2364 {sign,zero} -extended 32-bit ABI pointer on a 64-bit ISA. */
2365 struct type *builtin_data_ptr;
2366
2367 /* * `pointer to function (returning void)' type. Harvard
2368 architectures mean that ABI function and code pointers are not
2369 interconvertible. Similarly, since ANSI, C standards have
2370 explicitly said that pointers to functions and pointers to data
2371 are not interconvertible --- that is, you can't cast a function
2372 pointer to void * and back, and expect to get the same value.
2373 However, all function pointer types are interconvertible, so void
2374 (*) () can server as a generic function pointer. */
2375
2376 struct type *builtin_func_ptr;
2377
2378 /* * `function returning pointer to function (returning void)' type.
2379 The final void return type is not significant for it. */
2380
2381 struct type *builtin_func_func;
2382
2383 /* Special-purpose types. */
2384
2385 /* * This type is used to represent a GDB internal function. */
2386
2387 struct type *internal_fn;
2388
2389 /* * This type is used to represent an xmethod. */
2390 struct type *xmethod;
2391 };
2392
2393 /* * Return the type table for the specified architecture. */
2394
2395 extern const struct builtin_type *builtin_type (struct gdbarch *gdbarch);
2396
2397 /* * Per-objfile types used by symbol readers. */
2398
2399 struct objfile_type
2400 {
2401 /* Basic types based on the objfile architecture. */
2402 struct type *builtin_void;
2403 struct type *builtin_char;
2404 struct type *builtin_short;
2405 struct type *builtin_int;
2406 struct type *builtin_long;
2407 struct type *builtin_long_long;
2408 struct type *builtin_signed_char;
2409 struct type *builtin_unsigned_char;
2410 struct type *builtin_unsigned_short;
2411 struct type *builtin_unsigned_int;
2412 struct type *builtin_unsigned_long;
2413 struct type *builtin_unsigned_long_long;
2414 struct type *builtin_half;
2415 struct type *builtin_float;
2416 struct type *builtin_double;
2417 struct type *builtin_long_double;
2418
2419 /* * This type is used to represent symbol addresses. */
2420 struct type *builtin_core_addr;
2421
2422 /* * This type represents a type that was unrecognized in symbol
2423 read-in. */
2424 struct type *builtin_error;
2425
2426 /* * Types used for symbols with no debug information. */
2427 struct type *nodebug_text_symbol;
2428 struct type *nodebug_text_gnu_ifunc_symbol;
2429 struct type *nodebug_got_plt_symbol;
2430 struct type *nodebug_data_symbol;
2431 struct type *nodebug_unknown_symbol;
2432 struct type *nodebug_tls_symbol;
2433 };
2434
2435 /* * Return the type table for the specified objfile. */
2436
2437 extern const struct objfile_type *objfile_type (struct objfile *objfile);
2438
2439 /* Explicit floating-point formats. See "floatformat.h". */
2440 extern const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN];
2441 extern const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN];
2442 extern const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN];
2443 extern const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN];
2444 extern const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN];
2445 extern const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN];
2446 extern const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN];
2447 extern const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN];
2448 extern const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN];
2449 extern const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN];
2450 extern const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN];
2451 extern const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN];
2452 extern const struct floatformat *floatformats_bfloat16[BFD_ENDIAN_UNKNOWN];
2453
2454 /* Allocate space for storing data associated with a particular
2455 type. We ensure that the space is allocated using the same
2456 mechanism that was used to allocate the space for the type
2457 structure itself. I.e. if the type is on an objfile's
2458 objfile_obstack, then the space for data associated with that type
2459 will also be allocated on the objfile_obstack. If the type is
2460 associated with a gdbarch, then the space for data associated with that
2461 type will also be allocated on the gdbarch_obstack.
2462
2463 If a type is not associated with neither an objfile or a gdbarch then
2464 you should not use this macro to allocate space for data, instead you
2465 should call xmalloc directly, and ensure the memory is correctly freed
2466 when it is no longer needed. */
2467
2468 #define TYPE_ALLOC(t,size) \
2469 (obstack_alloc (((t)->is_objfile_owned () \
2470 ? &((t)->objfile_owner ()->objfile_obstack) \
2471 : gdbarch_obstack ((t)->arch_owner ())), \
2472 size))
2473
2474
2475 /* See comment on TYPE_ALLOC. */
2476
2477 #define TYPE_ZALLOC(t,size) (memset (TYPE_ALLOC (t, size), 0, size))
2478
2479 /* Use alloc_type to allocate a type owned by an objfile. Use
2480 alloc_type_arch to allocate a type owned by an architecture. Use
2481 alloc_type_copy to allocate a type with the same owner as a
2482 pre-existing template type, no matter whether objfile or
2483 gdbarch. */
2484 extern struct type *alloc_type (struct objfile *);
2485 extern struct type *alloc_type_arch (struct gdbarch *);
2486 extern struct type *alloc_type_copy (const struct type *);
2487
2488 /* * This returns the target type (or NULL) of TYPE, also skipping
2489 past typedefs. */
2490
2491 extern struct type *get_target_type (struct type *type);
2492
2493 /* Return the equivalent of TYPE_LENGTH, but in number of target
2494 addressable memory units of the associated gdbarch instead of bytes. */
2495
2496 extern unsigned int type_length_units (struct type *type);
2497
2498 /* * Helper function to construct objfile-owned types. */
2499
2500 extern struct type *init_type (struct objfile *, enum type_code, int,
2501 const char *);
2502 extern struct type *init_integer_type (struct objfile *, int, int,
2503 const char *);
2504 extern struct type *init_character_type (struct objfile *, int, int,
2505 const char *);
2506 extern struct type *init_boolean_type (struct objfile *, int, int,
2507 const char *);
2508 extern struct type *init_float_type (struct objfile *, int, const char *,
2509 const struct floatformat **,
2510 enum bfd_endian = BFD_ENDIAN_UNKNOWN);
2511 extern struct type *init_decfloat_type (struct objfile *, int, const char *);
2512 extern bool can_create_complex_type (struct type *);
2513 extern struct type *init_complex_type (const char *, struct type *);
2514 extern struct type *init_pointer_type (struct objfile *, int, const char *,
2515 struct type *);
2516 extern struct type *init_fixed_point_type (struct objfile *, int, int,
2517 const char *);
2518
2519 /* Helper functions to construct architecture-owned types. */
2520 extern struct type *arch_type (struct gdbarch *, enum type_code, int,
2521 const char *);
2522 extern struct type *arch_integer_type (struct gdbarch *, int, int,
2523 const char *);
2524 extern struct type *arch_character_type (struct gdbarch *, int, int,
2525 const char *);
2526 extern struct type *arch_boolean_type (struct gdbarch *, int, int,
2527 const char *);
2528 extern struct type *arch_float_type (struct gdbarch *, int, const char *,
2529 const struct floatformat **);
2530 extern struct type *arch_decfloat_type (struct gdbarch *, int, const char *);
2531 extern struct type *arch_pointer_type (struct gdbarch *, int, const char *,
2532 struct type *);
2533
2534 /* Helper functions to construct a struct or record type. An
2535 initially empty type is created using arch_composite_type().
2536 Fields are then added using append_composite_type_field*(). A union
2537 type has its size set to the largest field. A struct type has each
2538 field packed against the previous. */
2539
2540 extern struct type *arch_composite_type (struct gdbarch *gdbarch,
2541 const char *name, enum type_code code);
2542 extern void append_composite_type_field (struct type *t, const char *name,
2543 struct type *field);
2544 extern void append_composite_type_field_aligned (struct type *t,
2545 const char *name,
2546 struct type *field,
2547 int alignment);
2548 struct field *append_composite_type_field_raw (struct type *t, const char *name,
2549 struct type *field);
2550
2551 /* Helper functions to construct a bit flags type. An initially empty
2552 type is created using arch_flag_type(). Flags are then added using
2553 append_flag_type_field() and append_flag_type_flag(). */
2554 extern struct type *arch_flags_type (struct gdbarch *gdbarch,
2555 const char *name, int bit);
2556 extern void append_flags_type_field (struct type *type,
2557 int start_bitpos, int nr_bits,
2558 struct type *field_type, const char *name);
2559 extern void append_flags_type_flag (struct type *type, int bitpos,
2560 const char *name);
2561
2562 extern void make_vector_type (struct type *array_type);
2563 extern struct type *init_vector_type (struct type *elt_type, int n);
2564
2565 extern struct type *lookup_reference_type (struct type *, enum type_code);
2566 extern struct type *lookup_lvalue_reference_type (struct type *);
2567 extern struct type *lookup_rvalue_reference_type (struct type *);
2568
2569
2570 extern struct type *make_reference_type (struct type *, struct type **,
2571 enum type_code);
2572
2573 extern struct type *make_cv_type (int, int, struct type *, struct type **);
2574
2575 extern struct type *make_restrict_type (struct type *);
2576
2577 extern struct type *make_unqualified_type (struct type *);
2578
2579 extern struct type *make_atomic_type (struct type *);
2580
2581 extern void replace_type (struct type *, struct type *);
2582
2583 extern type_instance_flags address_space_name_to_type_instance_flags
2584 (struct gdbarch *, const char *);
2585
2586 extern const char *address_space_type_instance_flags_to_name
2587 (struct gdbarch *, type_instance_flags);
2588
2589 extern struct type *make_type_with_address_space
2590 (struct type *type, type_instance_flags space_identifier);
2591
2592 extern struct type *lookup_memberptr_type (struct type *, struct type *);
2593
2594 extern struct type *lookup_methodptr_type (struct type *);
2595
2596 extern void smash_to_method_type (struct type *type, struct type *self_type,
2597 struct type *to_type, struct field *args,
2598 int nargs, int varargs);
2599
2600 extern void smash_to_memberptr_type (struct type *, struct type *,
2601 struct type *);
2602
2603 extern void smash_to_methodptr_type (struct type *, struct type *);
2604
2605 extern struct type *allocate_stub_method (struct type *);
2606
2607 extern const char *type_name_or_error (struct type *type);
2608
2609 struct struct_elt
2610 {
2611 /* The field of the element, or NULL if no element was found. */
2612 struct field *field;
2613
2614 /* The bit offset of the element in the parent structure. */
2615 LONGEST offset;
2616 };
2617
2618 /* Given a type TYPE, lookup the field and offset of the component named
2619 NAME.
2620
2621 TYPE can be either a struct or union, or a pointer or reference to
2622 a struct or union. If it is a pointer or reference, its target
2623 type is automatically used. Thus '.' and '->' are interchangable,
2624 as specified for the definitions of the expression element types
2625 STRUCTOP_STRUCT and STRUCTOP_PTR.
2626
2627 If NOERR is nonzero, the returned structure will have field set to
2628 NULL if there is no component named NAME.
2629
2630 If the component NAME is a field in an anonymous substructure of
2631 TYPE, the returned offset is a "global" offset relative to TYPE
2632 rather than an offset within the substructure. */
2633
2634 extern struct_elt lookup_struct_elt (struct type *, const char *, int);
2635
2636 /* Given a type TYPE, lookup the type of the component named NAME.
2637
2638 TYPE can be either a struct or union, or a pointer or reference to
2639 a struct or union. If it is a pointer or reference, its target
2640 type is automatically used. Thus '.' and '->' are interchangable,
2641 as specified for the definitions of the expression element types
2642 STRUCTOP_STRUCT and STRUCTOP_PTR.
2643
2644 If NOERR is nonzero, return NULL if there is no component named
2645 NAME. */
2646
2647 extern struct type *lookup_struct_elt_type (struct type *, const char *, int);
2648
2649 extern struct type *make_pointer_type (struct type *, struct type **);
2650
2651 extern struct type *lookup_pointer_type (struct type *);
2652
2653 extern struct type *make_function_type (struct type *, struct type **);
2654
2655 extern struct type *lookup_function_type (struct type *);
2656
2657 extern struct type *lookup_function_type_with_arguments (struct type *,
2658 int,
2659 struct type **);
2660
2661 extern struct type *create_static_range_type (struct type *, struct type *,
2662 LONGEST, LONGEST);
2663
2664
2665 extern struct type *create_array_type_with_stride
2666 (struct type *, struct type *, struct type *,
2667 struct dynamic_prop *, unsigned int);
2668
2669 extern struct type *create_range_type (struct type *, struct type *,
2670 const struct dynamic_prop *,
2671 const struct dynamic_prop *,
2672 LONGEST);
2673
2674 /* Like CREATE_RANGE_TYPE but also sets up a stride. When BYTE_STRIDE_P
2675 is true the value in STRIDE is a byte stride, otherwise STRIDE is a bit
2676 stride. */
2677
2678 extern struct type * create_range_type_with_stride
2679 (struct type *result_type, struct type *index_type,
2680 const struct dynamic_prop *low_bound,
2681 const struct dynamic_prop *high_bound, LONGEST bias,
2682 const struct dynamic_prop *stride, bool byte_stride_p);
2683
2684 extern struct type *create_array_type (struct type *, struct type *,
2685 struct type *);
2686
2687 extern struct type *lookup_array_range_type (struct type *, LONGEST, LONGEST);
2688
2689 extern struct type *create_string_type (struct type *, struct type *,
2690 struct type *);
2691 extern struct type *lookup_string_range_type (struct type *, LONGEST, LONGEST);
2692
2693 extern struct type *create_set_type (struct type *, struct type *);
2694
2695 extern struct type *lookup_unsigned_typename (const struct language_defn *,
2696 const char *);
2697
2698 extern struct type *lookup_signed_typename (const struct language_defn *,
2699 const char *);
2700
2701 extern ULONGEST get_unsigned_type_max (struct type *);
2702
2703 extern void get_signed_type_minmax (struct type *, LONGEST *, LONGEST *);
2704
2705 extern CORE_ADDR get_pointer_type_max (struct type *);
2706
2707 /* * Resolve all dynamic values of a type e.g. array bounds to static values.
2708 ADDR specifies the location of the variable the type is bound to.
2709 If TYPE has no dynamic properties return TYPE; otherwise a new type with
2710 static properties is returned.
2711
2712 For an array type, if the element type is dynamic, then that will
2713 not be resolved. This is done because each individual element may
2714 have a different type when resolved (depending on the contents of
2715 memory). In this situation, 'is_dynamic_type' will still return
2716 true for the return value of this function. */
2717 extern struct type *resolve_dynamic_type
2718 (struct type *type, gdb::array_view<const gdb_byte> valaddr,
2719 CORE_ADDR addr);
2720
2721 /* * Predicate if the type has dynamic values, which are not resolved yet.
2722 See the caveat in 'resolve_dynamic_type' to understand a scenario
2723 where an apparently-resolved type may still be considered
2724 "dynamic". */
2725 extern int is_dynamic_type (struct type *type);
2726
2727 extern struct type *check_typedef (struct type *);
2728
2729 extern void check_stub_method_group (struct type *, int);
2730
2731 extern char *gdb_mangle_name (struct type *, int, int);
2732
2733 extern struct type *lookup_typename (const struct language_defn *,
2734 const char *, const struct block *, int);
2735
2736 extern struct type *lookup_template_type (const char *, struct type *,
2737 const struct block *);
2738
2739 extern int get_vptr_fieldno (struct type *, struct type **);
2740
2741 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
2742 TYPE.
2743
2744 Return true if the two bounds are available, false otherwise. */
2745
2746 extern bool get_discrete_bounds (struct type *type, LONGEST *lowp,
2747 LONGEST *highp);
2748
2749 /* If TYPE's low bound is a known constant, return it, else return nullopt. */
2750
2751 extern gdb::optional<LONGEST> get_discrete_low_bound (struct type *type);
2752
2753 /* If TYPE's high bound is a known constant, return it, else return nullopt. */
2754
2755 extern gdb::optional<LONGEST> get_discrete_high_bound (struct type *type);
2756
2757 /* Assuming TYPE is a simple, non-empty array type, compute its upper
2758 and lower bound. Save the low bound into LOW_BOUND if not NULL.
2759 Save the high bound into HIGH_BOUND if not NULL.
2760
2761 Return true if the operation was successful. Return false otherwise,
2762 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified. */
2763
2764 extern bool get_array_bounds (struct type *type, LONGEST *low_bound,
2765 LONGEST *high_bound);
2766
2767 extern gdb::optional<LONGEST> discrete_position (struct type *type,
2768 LONGEST val);
2769
2770 extern int class_types_same_p (const struct type *, const struct type *);
2771
2772 extern int is_ancestor (struct type *, struct type *);
2773
2774 extern int is_public_ancestor (struct type *, struct type *);
2775
2776 extern int is_unique_ancestor (struct type *, struct value *);
2777
2778 /* Overload resolution */
2779
2780 /* * Badness if parameter list length doesn't match arg list length. */
2781 extern const struct rank LENGTH_MISMATCH_BADNESS;
2782
2783 /* * Dummy badness value for nonexistent parameter positions. */
2784 extern const struct rank TOO_FEW_PARAMS_BADNESS;
2785 /* * Badness if no conversion among types. */
2786 extern const struct rank INCOMPATIBLE_TYPE_BADNESS;
2787
2788 /* * Badness of an exact match. */
2789 extern const struct rank EXACT_MATCH_BADNESS;
2790
2791 /* * Badness of integral promotion. */
2792 extern const struct rank INTEGER_PROMOTION_BADNESS;
2793 /* * Badness of floating promotion. */
2794 extern const struct rank FLOAT_PROMOTION_BADNESS;
2795 /* * Badness of converting a derived class pointer
2796 to a base class pointer. */
2797 extern const struct rank BASE_PTR_CONVERSION_BADNESS;
2798 /* * Badness of integral conversion. */
2799 extern const struct rank INTEGER_CONVERSION_BADNESS;
2800 /* * Badness of floating conversion. */
2801 extern const struct rank FLOAT_CONVERSION_BADNESS;
2802 /* * Badness of integer<->floating conversions. */
2803 extern const struct rank INT_FLOAT_CONVERSION_BADNESS;
2804 /* * Badness of conversion of pointer to void pointer. */
2805 extern const struct rank VOID_PTR_CONVERSION_BADNESS;
2806 /* * Badness of conversion to boolean. */
2807 extern const struct rank BOOL_CONVERSION_BADNESS;
2808 /* * Badness of converting derived to base class. */
2809 extern const struct rank BASE_CONVERSION_BADNESS;
2810 /* * Badness of converting from non-reference to reference. Subrank
2811 is the type of reference conversion being done. */
2812 extern const struct rank REFERENCE_CONVERSION_BADNESS;
2813 extern const struct rank REFERENCE_SEE_THROUGH_BADNESS;
2814 /* * Conversion to rvalue reference. */
2815 #define REFERENCE_CONVERSION_RVALUE 1
2816 /* * Conversion to const lvalue reference. */
2817 #define REFERENCE_CONVERSION_CONST_LVALUE 2
2818
2819 /* * Badness of converting integer 0 to NULL pointer. */
2820 extern const struct rank NULL_POINTER_CONVERSION;
2821 /* * Badness of cv-conversion. Subrank is a flag describing the conversions
2822 being done. */
2823 extern const struct rank CV_CONVERSION_BADNESS;
2824 #define CV_CONVERSION_CONST 1
2825 #define CV_CONVERSION_VOLATILE 2
2826
2827 /* Non-standard conversions allowed by the debugger */
2828
2829 /* * Converting a pointer to an int is usually OK. */
2830 extern const struct rank NS_POINTER_CONVERSION_BADNESS;
2831
2832 /* * Badness of converting a (non-zero) integer constant
2833 to a pointer. */
2834 extern const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS;
2835
2836 extern struct rank sum_ranks (struct rank a, struct rank b);
2837 extern int compare_ranks (struct rank a, struct rank b);
2838
2839 extern int compare_badness (const badness_vector &,
2840 const badness_vector &);
2841
2842 extern badness_vector rank_function (gdb::array_view<type *> parms,
2843 gdb::array_view<value *> args);
2844
2845 extern struct rank rank_one_type (struct type *, struct type *,
2846 struct value *);
2847
2848 extern void recursive_dump_type (struct type *, int);
2849
2850 extern int field_is_static (struct field *);
2851
2852 /* printcmd.c */
2853
2854 extern void print_scalar_formatted (const gdb_byte *, struct type *,
2855 const struct value_print_options *,
2856 int, struct ui_file *);
2857
2858 extern int can_dereference (struct type *);
2859
2860 extern int is_integral_type (struct type *);
2861
2862 extern int is_floating_type (struct type *);
2863
2864 extern int is_scalar_type (struct type *type);
2865
2866 extern int is_scalar_type_recursive (struct type *);
2867
2868 extern int class_or_union_p (const struct type *);
2869
2870 extern void maintenance_print_type (const char *, int);
2871
2872 extern htab_up create_copied_types_hash (struct objfile *objfile);
2873
2874 extern struct type *copy_type_recursive (struct objfile *objfile,
2875 struct type *type,
2876 htab_t copied_types);
2877
2878 extern struct type *copy_type (const struct type *type);
2879
2880 extern bool types_equal (struct type *, struct type *);
2881
2882 extern bool types_deeply_equal (struct type *, struct type *);
2883
2884 extern int type_not_allocated (const struct type *type);
2885
2886 extern int type_not_associated (const struct type *type);
2887
2888 /* Return True if TYPE is a TYPE_CODE_FIXED_POINT or if TYPE is
2889 a range type whose base type is a TYPE_CODE_FIXED_POINT. */
2890 extern bool is_fixed_point_type (struct type *type);
2891
2892 /* Allocate a fixed-point type info for TYPE. This should only be
2893 called by INIT_FIXED_POINT_SPECIFIC. */
2894 extern void allocate_fixed_point_type_info (struct type *type);
2895
2896 /* * When the type includes explicit byte ordering, return that.
2897 Otherwise, the byte ordering from gdbarch_byte_order for
2898 the type's arch is returned. */
2899
2900 extern enum bfd_endian type_byte_order (const struct type *type);
2901
2902 /* A flag to enable printing of debugging information of C++
2903 overloading. */
2904
2905 extern unsigned int overload_debug;
2906
2907 /* Return whether the function type represented by TYPE is marked as unsafe
2908 to call by the debugger.
2909
2910 This usually indicates that the function does not follow the target's
2911 standard calling convention.
2912
2913 The TYPE argument must be of code TYPE_CODE_FUNC or TYPE_CODE_METHOD. */
2914
2915 extern bool is_nocall_function (const struct type *type);
2916
2917 #endif /* GDBTYPES_H */