1 /* Functions specific to running gdb native on IA-64 running
4 Copyright (C) 1999-2025 Free Software Foundation, Inc.
6 This file is part of GDB.
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26 #include "ia64-tdep.h"
27 #include "linux-nat.h"
30 #include "nat/gdb_ptrace.h"
31 #include "gdbsupport/gdb_wait.h"
35 #include <sys/syscall.h>
38 #include <asm/ptrace_offsets.h>
39 #include <sys/procfs.h>
41 /* Prototypes for supply_gregset etc. */
44 #include "inf-ptrace.h"
46 class ia64_linux_nat_target final
: public linux_nat_target
49 /* Add our register access methods. */
50 void fetch_registers (struct regcache
*, int) override
;
51 void store_registers (struct regcache
*, int) override
;
53 enum target_xfer_status
xfer_partial (enum target_object object
,
56 const gdb_byte
*writebuf
,
57 ULONGEST offset
, ULONGEST len
,
58 ULONGEST
*xfered_len
) override
;
60 /* Override watchpoint routines. */
62 /* The IA-64 architecture can step over a watch point (without
63 triggering it again) if the "dd" (data debug fault disable) bit
64 in the processor status word is set.
66 This PSR bit is set in
67 ia64_linux_nat_target::stopped_by_watchpoint when the code there
68 has determined that a hardware watchpoint has indeed been hit.
69 The CPU will then be able to execute one instruction without
70 triggering a watchpoint. */
71 bool have_steppable_watchpoint () override
{ return true; }
73 int can_use_hw_breakpoint (enum bptype
, int, int) override
;
74 bool stopped_by_watchpoint () override
;
75 bool stopped_data_address (CORE_ADDR
*) override
;
76 int insert_watchpoint (CORE_ADDR
, int, enum target_hw_bp_type
,
77 struct expression
*) override
;
78 int remove_watchpoint (CORE_ADDR
, int, enum target_hw_bp_type
,
79 struct expression
*) override
;
80 /* Override linux_nat_target low methods. */
81 void low_new_thread (struct lwp_info
*lp
) override
;
82 bool low_status_is_event (int status
) override
;
84 void enable_watchpoints_in_psr (ptid_t ptid
);
87 static ia64_linux_nat_target the_ia64_linux_nat_target
;
89 /* These must match the order of the register names.
91 Some sort of lookup table is needed because the offsets associated
92 with the registers are all over the board. */
94 static int u_offsets
[] =
96 /* general registers */
97 -1, /* gr0 not available; i.e, it's always zero. */
129 /* gr32 through gr127 not directly available via the ptrace interface. */
130 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
131 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
132 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
133 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
134 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
135 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
136 /* Floating point registers */
137 -1, -1, /* f0 and f1 not available (f0 is +0.0 and f1 is +1.0). */
264 /* Predicate registers - we don't fetch these individually. */
265 -1, -1, -1, -1, -1, -1, -1, -1,
266 -1, -1, -1, -1, -1, -1, -1, -1,
267 -1, -1, -1, -1, -1, -1, -1, -1,
268 -1, -1, -1, -1, -1, -1, -1, -1,
269 -1, -1, -1, -1, -1, -1, -1, -1,
270 -1, -1, -1, -1, -1, -1, -1, -1,
271 -1, -1, -1, -1, -1, -1, -1, -1,
272 -1, -1, -1, -1, -1, -1, -1, -1,
273 /* branch registers */
282 /* Virtual frame pointer and virtual return address pointer. */
284 /* other registers */
287 PT_CR_IPSR
, /* psr */
289 /* kernel registers not visible via ptrace interface (?) */
290 -1, -1, -1, -1, -1, -1, -1, -1,
292 -1, -1, -1, -1, -1, -1, -1, -1,
298 -1, /* Not available: FCR, IA32 floating control register. */
300 -1, /* Not available: EFLAG */
301 -1, /* Not available: CSD */
302 -1, /* Not available: SSD */
303 -1, /* Not available: CFLG */
304 -1, /* Not available: FSR */
305 -1, /* Not available: FIR */
306 -1, /* Not available: FDR */
314 -1, /* Not available: ITC */
315 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
316 -1, -1, -1, -1, -1, -1, -1, -1, -1,
320 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
321 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
322 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
323 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
324 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
325 -1, -1, -1, -1, -1, -1, -1, -1, -1, -1,
327 /* nat bits - not fetched directly; instead we obtain these bits from
328 either rnat or unat or from memory. */
329 -1, -1, -1, -1, -1, -1, -1, -1,
330 -1, -1, -1, -1, -1, -1, -1, -1,
331 -1, -1, -1, -1, -1, -1, -1, -1,
332 -1, -1, -1, -1, -1, -1, -1, -1,
333 -1, -1, -1, -1, -1, -1, -1, -1,
334 -1, -1, -1, -1, -1, -1, -1, -1,
335 -1, -1, -1, -1, -1, -1, -1, -1,
336 -1, -1, -1, -1, -1, -1, -1, -1,
337 -1, -1, -1, -1, -1, -1, -1, -1,
338 -1, -1, -1, -1, -1, -1, -1, -1,
339 -1, -1, -1, -1, -1, -1, -1, -1,
340 -1, -1, -1, -1, -1, -1, -1, -1,
341 -1, -1, -1, -1, -1, -1, -1, -1,
342 -1, -1, -1, -1, -1, -1, -1, -1,
343 -1, -1, -1, -1, -1, -1, -1, -1,
344 -1, -1, -1, -1, -1, -1, -1, -1,
348 ia64_register_addr (struct gdbarch
*gdbarch
, int regno
)
352 if (regno
< 0 || regno
>= gdbarch_num_regs (gdbarch
))
353 error (_("Invalid register number %d."), regno
);
355 if (u_offsets
[regno
] == -1)
358 addr
= (CORE_ADDR
) u_offsets
[regno
];
364 ia64_cannot_fetch_register (struct gdbarch
*gdbarch
, int regno
)
367 || regno
>= gdbarch_num_regs (gdbarch
)
368 || u_offsets
[regno
] == -1;
372 ia64_cannot_store_register (struct gdbarch
*gdbarch
, int regno
)
374 /* Rationale behind not permitting stores to bspstore...
376 The IA-64 architecture provides bspstore and bsp which refer
377 memory locations in the RSE's backing store. bspstore is the
378 next location which will be written when the RSE needs to write
379 to memory. bsp is the address at which r32 in the current frame
380 would be found if it were written to the backing store.
382 The IA-64 architecture provides read-only access to bsp and
383 read/write access to bspstore (but only when the RSE is in
384 the enforced lazy mode). It should be noted that stores
385 to bspstore also affect the value of bsp. Changing bspstore
386 does not affect the number of dirty entries between bspstore
387 and bsp, so changing bspstore by N words will also cause bsp
388 to be changed by (roughly) N as well. (It could be N-1 or N+1
389 depending upon where the NaT collection bits fall.)
391 OTOH, the Linux kernel provides read/write access to bsp (and
392 currently read/write access to bspstore as well). But it
393 is definitely the case that if you change one, the other
394 will change at the same time. It is more useful to gdb to
395 be able to change bsp. So in order to prevent strange and
396 undesirable things from happening when a dummy stack frame
397 is popped (after calling an inferior function), we allow
398 bspstore to be read, but not written. (Note that popping
399 a (generic) dummy stack frame causes all registers that
400 were previously read from the inferior process to be written
404 || regno
>= gdbarch_num_regs (gdbarch
)
405 || u_offsets
[regno
] == -1
406 || regno
== IA64_BSPSTORE_REGNUM
;
410 supply_gregset (struct regcache
*regcache
, const gregset_t
*gregsetp
)
413 const greg_t
*regp
= (const greg_t
*) gregsetp
;
415 for (regi
= IA64_GR0_REGNUM
; regi
<= IA64_GR31_REGNUM
; regi
++)
417 regcache
->raw_supply (regi
, regp
+ (regi
- IA64_GR0_REGNUM
));
420 /* FIXME: NAT collection bits are at index 32; gotta deal with these
423 regcache
->raw_supply (IA64_PR_REGNUM
, regp
+ 33);
425 for (regi
= IA64_BR0_REGNUM
; regi
<= IA64_BR7_REGNUM
; regi
++)
427 regcache
->raw_supply (regi
, regp
+ 34 + (regi
- IA64_BR0_REGNUM
));
430 regcache
->raw_supply (IA64_IP_REGNUM
, regp
+ 42);
431 regcache
->raw_supply (IA64_CFM_REGNUM
, regp
+ 43);
432 regcache
->raw_supply (IA64_PSR_REGNUM
, regp
+ 44);
433 regcache
->raw_supply (IA64_RSC_REGNUM
, regp
+ 45);
434 regcache
->raw_supply (IA64_BSP_REGNUM
, regp
+ 46);
435 regcache
->raw_supply (IA64_BSPSTORE_REGNUM
, regp
+ 47);
436 regcache
->raw_supply (IA64_RNAT_REGNUM
, regp
+ 48);
437 regcache
->raw_supply (IA64_CCV_REGNUM
, regp
+ 49);
438 regcache
->raw_supply (IA64_UNAT_REGNUM
, regp
+ 50);
439 regcache
->raw_supply (IA64_FPSR_REGNUM
, regp
+ 51);
440 regcache
->raw_supply (IA64_PFS_REGNUM
, regp
+ 52);
441 regcache
->raw_supply (IA64_LC_REGNUM
, regp
+ 53);
442 regcache
->raw_supply (IA64_EC_REGNUM
, regp
+ 54);
446 fill_gregset (const struct regcache
*regcache
, gregset_t
*gregsetp
, int regno
)
449 greg_t
*regp
= (greg_t
*) gregsetp
;
451 #define COPY_REG(_idx_,_regi_) \
452 if ((regno == -1) || regno == _regi_) \
453 regcache->raw_collect (_regi_, regp + _idx_)
455 for (regi
= IA64_GR0_REGNUM
; regi
<= IA64_GR31_REGNUM
; regi
++)
457 COPY_REG (regi
- IA64_GR0_REGNUM
, regi
);
460 /* FIXME: NAT collection bits at index 32? */
462 COPY_REG (33, IA64_PR_REGNUM
);
464 for (regi
= IA64_BR0_REGNUM
; regi
<= IA64_BR7_REGNUM
; regi
++)
466 COPY_REG (34 + (regi
- IA64_BR0_REGNUM
), regi
);
469 COPY_REG (42, IA64_IP_REGNUM
);
470 COPY_REG (43, IA64_CFM_REGNUM
);
471 COPY_REG (44, IA64_PSR_REGNUM
);
472 COPY_REG (45, IA64_RSC_REGNUM
);
473 COPY_REG (46, IA64_BSP_REGNUM
);
474 COPY_REG (47, IA64_BSPSTORE_REGNUM
);
475 COPY_REG (48, IA64_RNAT_REGNUM
);
476 COPY_REG (49, IA64_CCV_REGNUM
);
477 COPY_REG (50, IA64_UNAT_REGNUM
);
478 COPY_REG (51, IA64_FPSR_REGNUM
);
479 COPY_REG (52, IA64_PFS_REGNUM
);
480 COPY_REG (53, IA64_LC_REGNUM
);
481 COPY_REG (54, IA64_EC_REGNUM
);
484 /* Given a pointer to a floating point register set in /proc format
485 (fpregset_t *), unpack the register contents and supply them as gdb's
486 idea of the current floating point register values. */
489 supply_fpregset (struct regcache
*regcache
, const fpregset_t
*fpregsetp
)
493 const gdb_byte f_one
[16] =
494 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
496 /* Kernel generated cores have fr1==0 instead of 1.0. Older GDBs
497 did the same. So ignore whatever might be recorded in fpregset_t
498 for fr0/fr1 and always supply their expected values. */
500 /* fr0 is always read as zero. */
501 regcache
->raw_supply_zeroed (IA64_FR0_REGNUM
);
502 /* fr1 is always read as one (1.0). */
503 regcache
->raw_supply (IA64_FR1_REGNUM
, f_one
);
505 for (regi
= IA64_FR2_REGNUM
; regi
<= IA64_FR127_REGNUM
; regi
++)
507 from
= (const char *) &((*fpregsetp
)[regi
- IA64_FR0_REGNUM
]);
508 regcache
->raw_supply (regi
, from
);
512 /* Given a pointer to a floating point register set in /proc format
513 (fpregset_t *), update the register specified by REGNO from gdb's idea
514 of the current floating point register set. If REGNO is -1, update
518 fill_fpregset (const struct regcache
*regcache
,
519 fpregset_t
*fpregsetp
, int regno
)
523 for (regi
= IA64_FR0_REGNUM
; regi
<= IA64_FR127_REGNUM
; regi
++)
525 if ((regno
== -1) || (regno
== regi
))
526 regcache
->raw_collect (regi
, &((*fpregsetp
)[regi
- IA64_FR0_REGNUM
]));
530 #define IA64_PSR_DB (1UL << 24)
531 #define IA64_PSR_DD (1UL << 39)
534 ia64_linux_nat_target::enable_watchpoints_in_psr (ptid_t ptid
)
536 struct regcache
*regcache
= get_thread_regcache (this, ptid
);
539 regcache_cooked_read_unsigned (regcache
, IA64_PSR_REGNUM
, &psr
);
540 if (!(psr
& IA64_PSR_DB
))
542 psr
|= IA64_PSR_DB
; /* Set the db bit - this enables hardware
543 watchpoints and breakpoints. */
544 regcache_cooked_write_unsigned (regcache
, IA64_PSR_REGNUM
, psr
);
548 static long debug_registers
[8];
551 store_debug_register (ptid_t ptid
, int idx
, long val
)
559 (void) ptrace (PT_WRITE_U
, tid
, (PTRACE_TYPE_ARG3
) (PT_DBR
+ 8 * idx
), val
);
563 store_debug_register_pair (ptid_t ptid
, int idx
, long *dbr_addr
,
567 store_debug_register (ptid
, 2 * idx
, *dbr_addr
);
569 store_debug_register (ptid
, 2 * idx
+ 1, *dbr_mask
);
573 is_power_of_2 (int val
)
578 for (i
= 0; i
< 8 * sizeof (val
); i
++)
582 return onecount
<= 1;
586 ia64_linux_nat_target::insert_watchpoint (CORE_ADDR addr
, int len
,
587 enum target_hw_bp_type type
,
588 struct expression
*cond
)
591 long dbr_addr
, dbr_mask
;
592 int max_watchpoints
= 4;
594 if (len
<= 0 || !is_power_of_2 (len
))
597 for (idx
= 0; idx
< max_watchpoints
; idx
++)
599 dbr_mask
= debug_registers
[idx
* 2 + 1];
600 if ((dbr_mask
& (0x3UL
<< 62)) == 0)
602 /* Exit loop if both r and w bits clear. */
607 if (idx
== max_watchpoints
)
610 dbr_addr
= (long) addr
;
611 dbr_mask
= (~(len
- 1) & 0x00ffffffffffffffL
); /* construct mask to match */
612 dbr_mask
|= 0x0800000000000000L
; /* Only match privilege level 3 */
616 dbr_mask
|= (1L << 62); /* Set w bit */
619 dbr_mask
|= (1L << 63); /* Set r bit */
622 dbr_mask
|= (3L << 62); /* Set both r and w bits */
628 debug_registers
[2 * idx
] = dbr_addr
;
629 debug_registers
[2 * idx
+ 1] = dbr_mask
;
631 for (const lwp_info
*lp
: all_lwps ())
633 store_debug_register_pair (lp
->ptid
, idx
, &dbr_addr
, &dbr_mask
);
634 enable_watchpoints_in_psr (lp
->ptid
);
641 ia64_linux_nat_target::remove_watchpoint (CORE_ADDR addr
, int len
,
642 enum target_hw_bp_type type
,
643 struct expression
*cond
)
646 long dbr_addr
, dbr_mask
;
647 int max_watchpoints
= 4;
649 if (len
<= 0 || !is_power_of_2 (len
))
652 for (idx
= 0; idx
< max_watchpoints
; idx
++)
654 dbr_addr
= debug_registers
[2 * idx
];
655 dbr_mask
= debug_registers
[2 * idx
+ 1];
656 if ((dbr_mask
& (0x3UL
<< 62)) && addr
== (CORE_ADDR
) dbr_addr
)
658 debug_registers
[2 * idx
] = 0;
659 debug_registers
[2 * idx
+ 1] = 0;
663 for (const lwp_info
*lp
: all_lwps ())
664 store_debug_register_pair (lp
->ptid
, idx
, &dbr_addr
, &dbr_mask
);
673 ia64_linux_nat_target::low_new_thread (struct lwp_info
*lp
)
678 for (i
= 0; i
< 8; i
++)
680 if (debug_registers
[i
] != 0)
682 store_debug_register (lp
->ptid
, i
, debug_registers
[i
]);
686 enable_watchpoints_in_psr (lp
->ptid
);
690 ia64_linux_nat_target::stopped_data_address (CORE_ADDR
*addr_p
)
694 regcache
*regcache
= get_thread_regcache (inferior_thread ());
696 if (!linux_nat_get_siginfo (inferior_ptid
, &siginfo
))
699 if (siginfo
.si_signo
!= SIGTRAP
700 || (siginfo
.si_code
& 0xffff) != 0x0004 /* TRAP_HWBKPT */)
703 regcache_cooked_read_unsigned (regcache
, IA64_PSR_REGNUM
, &psr
);
704 psr
|= IA64_PSR_DD
; /* Set the dd bit - this will disable the watchpoint
705 for the next instruction. */
706 regcache_cooked_write_unsigned (regcache
, IA64_PSR_REGNUM
, psr
);
708 *addr_p
= (CORE_ADDR
) siginfo
.si_addr
;
713 ia64_linux_nat_target::stopped_by_watchpoint ()
716 return stopped_data_address (&addr
);
720 ia64_linux_nat_target::can_use_hw_breakpoint (enum bptype type
,
721 int cnt
, int othertype
)
727 /* Fetch register REGNUM from the inferior. */
730 ia64_linux_fetch_register (struct regcache
*regcache
, int regnum
)
732 struct gdbarch
*gdbarch
= regcache
->arch ();
735 PTRACE_TYPE_RET
*buf
;
739 /* r0 cannot be fetched but is always zero. */
740 if (regnum
== IA64_GR0_REGNUM
)
742 regcache
->raw_supply_zeroed (regnum
);
746 /* fr0 cannot be fetched but is always zero. */
747 if (regnum
== IA64_FR0_REGNUM
)
749 regcache
->raw_supply_zeroed (regnum
);
753 /* fr1 cannot be fetched but is always one (1.0). */
754 if (regnum
== IA64_FR1_REGNUM
)
756 const gdb_byte f_one
[16] =
757 { 0, 0, 0, 0, 0, 0, 0, 0x80, 0xff, 0xff, 0, 0, 0, 0, 0, 0 };
759 gdb_assert (sizeof (f_one
) == register_size (gdbarch
, regnum
));
760 regcache
->raw_supply (regnum
, f_one
);
764 if (ia64_cannot_fetch_register (gdbarch
, regnum
))
766 regcache
->raw_supply (regnum
, NULL
);
770 pid
= get_ptrace_pid (regcache
->ptid ());
772 /* This isn't really an address, but ptrace thinks of it as one. */
773 addr
= ia64_register_addr (gdbarch
, regnum
);
774 size
= register_size (gdbarch
, regnum
);
776 gdb_assert ((size
% sizeof (PTRACE_TYPE_RET
)) == 0);
777 buf
= (PTRACE_TYPE_RET
*) alloca (size
);
779 /* Read the register contents from the inferior a chunk at a time. */
780 for (i
= 0; i
< size
/ sizeof (PTRACE_TYPE_RET
); i
++)
783 buf
[i
] = ptrace (PT_READ_U
, pid
, (PTRACE_TYPE_ARG3
)addr
, 0);
785 error (_("Couldn't read register %s (#%d): %s."),
786 gdbarch_register_name (gdbarch
, regnum
),
787 regnum
, safe_strerror (errno
));
789 addr
+= sizeof (PTRACE_TYPE_RET
);
791 regcache
->raw_supply (regnum
, buf
);
794 /* Fetch register REGNUM from the inferior. If REGNUM is -1, do this
795 for all registers. */
798 ia64_linux_nat_target::fetch_registers (struct regcache
*regcache
, int regnum
)
802 regnum
< gdbarch_num_regs (regcache
->arch ());
804 ia64_linux_fetch_register (regcache
, regnum
);
806 ia64_linux_fetch_register (regcache
, regnum
);
809 /* Store register REGNUM into the inferior. */
812 ia64_linux_store_register (const struct regcache
*regcache
, int regnum
)
814 struct gdbarch
*gdbarch
= regcache
->arch ();
817 PTRACE_TYPE_RET
*buf
;
821 if (ia64_cannot_store_register (gdbarch
, regnum
))
824 pid
= get_ptrace_pid (regcache
->ptid ());
826 /* This isn't really an address, but ptrace thinks of it as one. */
827 addr
= ia64_register_addr (gdbarch
, regnum
);
828 size
= register_size (gdbarch
, regnum
);
830 gdb_assert ((size
% sizeof (PTRACE_TYPE_RET
)) == 0);
831 buf
= (PTRACE_TYPE_RET
*) alloca (size
);
833 /* Write the register contents into the inferior a chunk at a time. */
834 regcache
->raw_collect (regnum
, buf
);
835 for (i
= 0; i
< size
/ sizeof (PTRACE_TYPE_RET
); i
++)
838 ptrace (PT_WRITE_U
, pid
, (PTRACE_TYPE_ARG3
)addr
, buf
[i
]);
840 error (_("Couldn't write register %s (#%d): %s."),
841 gdbarch_register_name (gdbarch
, regnum
),
842 regnum
, safe_strerror (errno
));
844 addr
+= sizeof (PTRACE_TYPE_RET
);
848 /* Store register REGNUM back into the inferior. If REGNUM is -1, do
849 this for all registers. */
852 ia64_linux_nat_target::store_registers (struct regcache
*regcache
, int regnum
)
856 regnum
< gdbarch_num_regs (regcache
->arch ());
858 ia64_linux_store_register (regcache
, regnum
);
860 ia64_linux_store_register (regcache
, regnum
);
863 /* Implement the xfer_partial target_ops method. */
865 enum target_xfer_status
866 ia64_linux_nat_target::xfer_partial (enum target_object object
,
868 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
869 ULONGEST offset
, ULONGEST len
,
870 ULONGEST
*xfered_len
)
872 if (object
== TARGET_OBJECT_UNWIND_TABLE
&& readbuf
!= NULL
)
874 static long gate_table_size
;
878 /* Probe for the table size once. */
879 if (gate_table_size
== 0)
880 gate_table_size
= syscall (__NR_getunwind
, NULL
, 0);
881 if (gate_table_size
< 0)
882 return TARGET_XFER_E_IO
;
884 if (offset
>= gate_table_size
)
885 return TARGET_XFER_EOF
;
887 tmp_buf
= (gdb_byte
*) alloca (gate_table_size
);
888 res
= syscall (__NR_getunwind
, tmp_buf
, gate_table_size
);
890 return TARGET_XFER_E_IO
;
891 gdb_assert (res
== gate_table_size
);
893 if (offset
+ len
> gate_table_size
)
894 len
= gate_table_size
- offset
;
896 memcpy (readbuf
, tmp_buf
+ offset
, len
);
898 return TARGET_XFER_OK
;
901 return linux_nat_target::xfer_partial (object
, annex
, readbuf
, writebuf
,
902 offset
, len
, xfered_len
);
905 /* For break.b instruction ia64 CPU forgets the immediate value and generates
906 SIGILL with ILL_ILLOPC instead of more common SIGTRAP with TRAP_BRKPT.
907 ia64 does not use gdbarch_decr_pc_after_break so we do not have to make any
908 difference for the signals here. */
911 ia64_linux_nat_target::low_status_is_event (int status
)
913 return WIFSTOPPED (status
) && (WSTOPSIG (status
) == SIGTRAP
914 || WSTOPSIG (status
) == SIGILL
);
917 INIT_GDB_FILE (ia64_linux_nat
)
919 /* Register the target. */
920 linux_target
= &the_ia64_linux_nat_target
;
921 add_inf_child_target (&the_ia64_linux_nat_target
);