]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
52bb0643dcdb2eb8d3214cbbbe3f357605b50d19
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2013 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdb_string.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "exceptions.h"
28 #include "breakpoint.h"
29 #include "gdb_wait.h"
30 #include "gdbcore.h"
31 #include "gdbcmd.h"
32 #include "cli/cli-script.h"
33 #include "target.h"
34 #include "gdbthread.h"
35 #include "annotate.h"
36 #include "symfile.h"
37 #include "top.h"
38 #include <signal.h>
39 #include "inf-loop.h"
40 #include "regcache.h"
41 #include "value.h"
42 #include "observer.h"
43 #include "language.h"
44 #include "solib.h"
45 #include "main.h"
46 #include "dictionary.h"
47 #include "block.h"
48 #include "gdb_assert.h"
49 #include "mi/mi-common.h"
50 #include "event-top.h"
51 #include "record.h"
52 #include "record-full.h"
53 #include "inline-frame.h"
54 #include "jit.h"
55 #include "tracepoint.h"
56 #include "continuations.h"
57 #include "interps.h"
58 #include "skip.h"
59 #include "probe.h"
60 #include "objfiles.h"
61 #include "completer.h"
62 #include "target-descriptions.h"
63
64 /* Prototypes for local functions */
65
66 static void signals_info (char *, int);
67
68 static void handle_command (char *, int);
69
70 static void sig_print_info (enum gdb_signal);
71
72 static void sig_print_header (void);
73
74 static void resume_cleanups (void *);
75
76 static int hook_stop_stub (void *);
77
78 static int restore_selected_frame (void *);
79
80 static int follow_fork (void);
81
82 static void set_schedlock_func (char *args, int from_tty,
83 struct cmd_list_element *c);
84
85 static int currently_stepping (struct thread_info *tp);
86
87 static int currently_stepping_or_nexting_callback (struct thread_info *tp,
88 void *data);
89
90 static void xdb_handle_command (char *args, int from_tty);
91
92 static int prepare_to_proceed (int);
93
94 static void print_exited_reason (int exitstatus);
95
96 static void print_signal_exited_reason (enum gdb_signal siggnal);
97
98 static void print_no_history_reason (void);
99
100 static void print_signal_received_reason (enum gdb_signal siggnal);
101
102 static void print_end_stepping_range_reason (void);
103
104 void _initialize_infrun (void);
105
106 void nullify_last_target_wait_ptid (void);
107
108 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
109
110 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
111
112 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
113
114 /* When set, stop the 'step' command if we enter a function which has
115 no line number information. The normal behavior is that we step
116 over such function. */
117 int step_stop_if_no_debug = 0;
118 static void
119 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c, const char *value)
121 {
122 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
123 }
124
125 /* In asynchronous mode, but simulating synchronous execution. */
126
127 int sync_execution = 0;
128
129 /* wait_for_inferior and normal_stop use this to notify the user
130 when the inferior stopped in a different thread than it had been
131 running in. */
132
133 static ptid_t previous_inferior_ptid;
134
135 /* If set (default for legacy reasons), when following a fork, GDB
136 will detach from one of the fork branches, child or parent.
137 Exactly which branch is detached depends on 'set follow-fork-mode'
138 setting. */
139
140 static int detach_fork = 1;
141
142 int debug_displaced = 0;
143 static void
144 show_debug_displaced (struct ui_file *file, int from_tty,
145 struct cmd_list_element *c, const char *value)
146 {
147 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
148 }
149
150 unsigned int debug_infrun = 0;
151 static void
152 show_debug_infrun (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
156 }
157
158
159 /* Support for disabling address space randomization. */
160
161 int disable_randomization = 1;
162
163 static void
164 show_disable_randomization (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 if (target_supports_disable_randomization ())
168 fprintf_filtered (file,
169 _("Disabling randomization of debuggee's "
170 "virtual address space is %s.\n"),
171 value);
172 else
173 fputs_filtered (_("Disabling randomization of debuggee's "
174 "virtual address space is unsupported on\n"
175 "this platform.\n"), file);
176 }
177
178 static void
179 set_disable_randomization (char *args, int from_tty,
180 struct cmd_list_element *c)
181 {
182 if (!target_supports_disable_randomization ())
183 error (_("Disabling randomization of debuggee's "
184 "virtual address space is unsupported on\n"
185 "this platform."));
186 }
187
188 /* User interface for non-stop mode. */
189
190 int non_stop = 0;
191 static int non_stop_1 = 0;
192
193 static void
194 set_non_stop (char *args, int from_tty,
195 struct cmd_list_element *c)
196 {
197 if (target_has_execution)
198 {
199 non_stop_1 = non_stop;
200 error (_("Cannot change this setting while the inferior is running."));
201 }
202
203 non_stop = non_stop_1;
204 }
205
206 static void
207 show_non_stop (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Controlling the inferior in non-stop mode is %s.\n"),
212 value);
213 }
214
215 /* "Observer mode" is somewhat like a more extreme version of
216 non-stop, in which all GDB operations that might affect the
217 target's execution have been disabled. */
218
219 int observer_mode = 0;
220 static int observer_mode_1 = 0;
221
222 static void
223 set_observer_mode (char *args, int from_tty,
224 struct cmd_list_element *c)
225 {
226 if (target_has_execution)
227 {
228 observer_mode_1 = observer_mode;
229 error (_("Cannot change this setting while the inferior is running."));
230 }
231
232 observer_mode = observer_mode_1;
233
234 may_write_registers = !observer_mode;
235 may_write_memory = !observer_mode;
236 may_insert_breakpoints = !observer_mode;
237 may_insert_tracepoints = !observer_mode;
238 /* We can insert fast tracepoints in or out of observer mode,
239 but enable them if we're going into this mode. */
240 if (observer_mode)
241 may_insert_fast_tracepoints = 1;
242 may_stop = !observer_mode;
243 update_target_permissions ();
244
245 /* Going *into* observer mode we must force non-stop, then
246 going out we leave it that way. */
247 if (observer_mode)
248 {
249 target_async_permitted = 1;
250 pagination_enabled = 0;
251 non_stop = non_stop_1 = 1;
252 }
253
254 if (from_tty)
255 printf_filtered (_("Observer mode is now %s.\n"),
256 (observer_mode ? "on" : "off"));
257 }
258
259 static void
260 show_observer_mode (struct ui_file *file, int from_tty,
261 struct cmd_list_element *c, const char *value)
262 {
263 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
264 }
265
266 /* This updates the value of observer mode based on changes in
267 permissions. Note that we are deliberately ignoring the values of
268 may-write-registers and may-write-memory, since the user may have
269 reason to enable these during a session, for instance to turn on a
270 debugging-related global. */
271
272 void
273 update_observer_mode (void)
274 {
275 int newval;
276
277 newval = (!may_insert_breakpoints
278 && !may_insert_tracepoints
279 && may_insert_fast_tracepoints
280 && !may_stop
281 && non_stop);
282
283 /* Let the user know if things change. */
284 if (newval != observer_mode)
285 printf_filtered (_("Observer mode is now %s.\n"),
286 (newval ? "on" : "off"));
287
288 observer_mode = observer_mode_1 = newval;
289 }
290
291 /* Tables of how to react to signals; the user sets them. */
292
293 static unsigned char *signal_stop;
294 static unsigned char *signal_print;
295 static unsigned char *signal_program;
296
297 /* Table of signals that are registered with "catch signal". A
298 non-zero entry indicates that the signal is caught by some "catch
299 signal" command. This has size GDB_SIGNAL_LAST, to accommodate all
300 signals. */
301 static unsigned char *signal_catch;
302
303 /* Table of signals that the target may silently handle.
304 This is automatically determined from the flags above,
305 and simply cached here. */
306 static unsigned char *signal_pass;
307
308 #define SET_SIGS(nsigs,sigs,flags) \
309 do { \
310 int signum = (nsigs); \
311 while (signum-- > 0) \
312 if ((sigs)[signum]) \
313 (flags)[signum] = 1; \
314 } while (0)
315
316 #define UNSET_SIGS(nsigs,sigs,flags) \
317 do { \
318 int signum = (nsigs); \
319 while (signum-- > 0) \
320 if ((sigs)[signum]) \
321 (flags)[signum] = 0; \
322 } while (0)
323
324 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
325 this function is to avoid exporting `signal_program'. */
326
327 void
328 update_signals_program_target (void)
329 {
330 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
331 }
332
333 /* Value to pass to target_resume() to cause all threads to resume. */
334
335 #define RESUME_ALL minus_one_ptid
336
337 /* Command list pointer for the "stop" placeholder. */
338
339 static struct cmd_list_element *stop_command;
340
341 /* Function inferior was in as of last step command. */
342
343 static struct symbol *step_start_function;
344
345 /* Nonzero if we want to give control to the user when we're notified
346 of shared library events by the dynamic linker. */
347 int stop_on_solib_events;
348
349 /* Enable or disable optional shared library event breakpoints
350 as appropriate when the above flag is changed. */
351
352 static void
353 set_stop_on_solib_events (char *args, int from_tty, struct cmd_list_element *c)
354 {
355 update_solib_breakpoints ();
356 }
357
358 static void
359 show_stop_on_solib_events (struct ui_file *file, int from_tty,
360 struct cmd_list_element *c, const char *value)
361 {
362 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
363 value);
364 }
365
366 /* Nonzero means expecting a trace trap
367 and should stop the inferior and return silently when it happens. */
368
369 int stop_after_trap;
370
371 /* Save register contents here when executing a "finish" command or are
372 about to pop a stack dummy frame, if-and-only-if proceed_to_finish is set.
373 Thus this contains the return value from the called function (assuming
374 values are returned in a register). */
375
376 struct regcache *stop_registers;
377
378 /* Nonzero after stop if current stack frame should be printed. */
379
380 static int stop_print_frame;
381
382 /* This is a cached copy of the pid/waitstatus of the last event
383 returned by target_wait()/deprecated_target_wait_hook(). This
384 information is returned by get_last_target_status(). */
385 static ptid_t target_last_wait_ptid;
386 static struct target_waitstatus target_last_waitstatus;
387
388 static void context_switch (ptid_t ptid);
389
390 void init_thread_stepping_state (struct thread_info *tss);
391
392 static void init_infwait_state (void);
393
394 static const char follow_fork_mode_child[] = "child";
395 static const char follow_fork_mode_parent[] = "parent";
396
397 static const char *const follow_fork_mode_kind_names[] = {
398 follow_fork_mode_child,
399 follow_fork_mode_parent,
400 NULL
401 };
402
403 static const char *follow_fork_mode_string = follow_fork_mode_parent;
404 static void
405 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
406 struct cmd_list_element *c, const char *value)
407 {
408 fprintf_filtered (file,
409 _("Debugger response to a program "
410 "call of fork or vfork is \"%s\".\n"),
411 value);
412 }
413 \f
414
415 /* Tell the target to follow the fork we're stopped at. Returns true
416 if the inferior should be resumed; false, if the target for some
417 reason decided it's best not to resume. */
418
419 static int
420 follow_fork (void)
421 {
422 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
423 int should_resume = 1;
424 struct thread_info *tp;
425
426 /* Copy user stepping state to the new inferior thread. FIXME: the
427 followed fork child thread should have a copy of most of the
428 parent thread structure's run control related fields, not just these.
429 Initialized to avoid "may be used uninitialized" warnings from gcc. */
430 struct breakpoint *step_resume_breakpoint = NULL;
431 struct breakpoint *exception_resume_breakpoint = NULL;
432 CORE_ADDR step_range_start = 0;
433 CORE_ADDR step_range_end = 0;
434 struct frame_id step_frame_id = { 0 };
435
436 if (!non_stop)
437 {
438 ptid_t wait_ptid;
439 struct target_waitstatus wait_status;
440
441 /* Get the last target status returned by target_wait(). */
442 get_last_target_status (&wait_ptid, &wait_status);
443
444 /* If not stopped at a fork event, then there's nothing else to
445 do. */
446 if (wait_status.kind != TARGET_WAITKIND_FORKED
447 && wait_status.kind != TARGET_WAITKIND_VFORKED)
448 return 1;
449
450 /* Check if we switched over from WAIT_PTID, since the event was
451 reported. */
452 if (!ptid_equal (wait_ptid, minus_one_ptid)
453 && !ptid_equal (inferior_ptid, wait_ptid))
454 {
455 /* We did. Switch back to WAIT_PTID thread, to tell the
456 target to follow it (in either direction). We'll
457 afterwards refuse to resume, and inform the user what
458 happened. */
459 switch_to_thread (wait_ptid);
460 should_resume = 0;
461 }
462 }
463
464 tp = inferior_thread ();
465
466 /* If there were any forks/vforks that were caught and are now to be
467 followed, then do so now. */
468 switch (tp->pending_follow.kind)
469 {
470 case TARGET_WAITKIND_FORKED:
471 case TARGET_WAITKIND_VFORKED:
472 {
473 ptid_t parent, child;
474
475 /* If the user did a next/step, etc, over a fork call,
476 preserve the stepping state in the fork child. */
477 if (follow_child && should_resume)
478 {
479 step_resume_breakpoint = clone_momentary_breakpoint
480 (tp->control.step_resume_breakpoint);
481 step_range_start = tp->control.step_range_start;
482 step_range_end = tp->control.step_range_end;
483 step_frame_id = tp->control.step_frame_id;
484 exception_resume_breakpoint
485 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
486
487 /* For now, delete the parent's sr breakpoint, otherwise,
488 parent/child sr breakpoints are considered duplicates,
489 and the child version will not be installed. Remove
490 this when the breakpoints module becomes aware of
491 inferiors and address spaces. */
492 delete_step_resume_breakpoint (tp);
493 tp->control.step_range_start = 0;
494 tp->control.step_range_end = 0;
495 tp->control.step_frame_id = null_frame_id;
496 delete_exception_resume_breakpoint (tp);
497 }
498
499 parent = inferior_ptid;
500 child = tp->pending_follow.value.related_pid;
501
502 /* Tell the target to do whatever is necessary to follow
503 either parent or child. */
504 if (target_follow_fork (follow_child, detach_fork))
505 {
506 /* Target refused to follow, or there's some other reason
507 we shouldn't resume. */
508 should_resume = 0;
509 }
510 else
511 {
512 /* This pending follow fork event is now handled, one way
513 or another. The previous selected thread may be gone
514 from the lists by now, but if it is still around, need
515 to clear the pending follow request. */
516 tp = find_thread_ptid (parent);
517 if (tp)
518 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
519
520 /* This makes sure we don't try to apply the "Switched
521 over from WAIT_PID" logic above. */
522 nullify_last_target_wait_ptid ();
523
524 /* If we followed the child, switch to it... */
525 if (follow_child)
526 {
527 switch_to_thread (child);
528
529 /* ... and preserve the stepping state, in case the
530 user was stepping over the fork call. */
531 if (should_resume)
532 {
533 tp = inferior_thread ();
534 tp->control.step_resume_breakpoint
535 = step_resume_breakpoint;
536 tp->control.step_range_start = step_range_start;
537 tp->control.step_range_end = step_range_end;
538 tp->control.step_frame_id = step_frame_id;
539 tp->control.exception_resume_breakpoint
540 = exception_resume_breakpoint;
541 }
542 else
543 {
544 /* If we get here, it was because we're trying to
545 resume from a fork catchpoint, but, the user
546 has switched threads away from the thread that
547 forked. In that case, the resume command
548 issued is most likely not applicable to the
549 child, so just warn, and refuse to resume. */
550 warning (_("Not resuming: switched threads "
551 "before following fork child.\n"));
552 }
553
554 /* Reset breakpoints in the child as appropriate. */
555 follow_inferior_reset_breakpoints ();
556 }
557 else
558 switch_to_thread (parent);
559 }
560 }
561 break;
562 case TARGET_WAITKIND_SPURIOUS:
563 /* Nothing to follow. */
564 break;
565 default:
566 internal_error (__FILE__, __LINE__,
567 "Unexpected pending_follow.kind %d\n",
568 tp->pending_follow.kind);
569 break;
570 }
571
572 return should_resume;
573 }
574
575 void
576 follow_inferior_reset_breakpoints (void)
577 {
578 struct thread_info *tp = inferior_thread ();
579
580 /* Was there a step_resume breakpoint? (There was if the user
581 did a "next" at the fork() call.) If so, explicitly reset its
582 thread number.
583
584 step_resumes are a form of bp that are made to be per-thread.
585 Since we created the step_resume bp when the parent process
586 was being debugged, and now are switching to the child process,
587 from the breakpoint package's viewpoint, that's a switch of
588 "threads". We must update the bp's notion of which thread
589 it is for, or it'll be ignored when it triggers. */
590
591 if (tp->control.step_resume_breakpoint)
592 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
593
594 if (tp->control.exception_resume_breakpoint)
595 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
596
597 /* Reinsert all breakpoints in the child. The user may have set
598 breakpoints after catching the fork, in which case those
599 were never set in the child, but only in the parent. This makes
600 sure the inserted breakpoints match the breakpoint list. */
601
602 breakpoint_re_set ();
603 insert_breakpoints ();
604 }
605
606 /* The child has exited or execed: resume threads of the parent the
607 user wanted to be executing. */
608
609 static int
610 proceed_after_vfork_done (struct thread_info *thread,
611 void *arg)
612 {
613 int pid = * (int *) arg;
614
615 if (ptid_get_pid (thread->ptid) == pid
616 && is_running (thread->ptid)
617 && !is_executing (thread->ptid)
618 && !thread->stop_requested
619 && thread->suspend.stop_signal == GDB_SIGNAL_0)
620 {
621 if (debug_infrun)
622 fprintf_unfiltered (gdb_stdlog,
623 "infrun: resuming vfork parent thread %s\n",
624 target_pid_to_str (thread->ptid));
625
626 switch_to_thread (thread->ptid);
627 clear_proceed_status ();
628 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT, 0);
629 }
630
631 return 0;
632 }
633
634 /* Called whenever we notice an exec or exit event, to handle
635 detaching or resuming a vfork parent. */
636
637 static void
638 handle_vfork_child_exec_or_exit (int exec)
639 {
640 struct inferior *inf = current_inferior ();
641
642 if (inf->vfork_parent)
643 {
644 int resume_parent = -1;
645
646 /* This exec or exit marks the end of the shared memory region
647 between the parent and the child. If the user wanted to
648 detach from the parent, now is the time. */
649
650 if (inf->vfork_parent->pending_detach)
651 {
652 struct thread_info *tp;
653 struct cleanup *old_chain;
654 struct program_space *pspace;
655 struct address_space *aspace;
656
657 /* follow-fork child, detach-on-fork on. */
658
659 inf->vfork_parent->pending_detach = 0;
660
661 if (!exec)
662 {
663 /* If we're handling a child exit, then inferior_ptid
664 points at the inferior's pid, not to a thread. */
665 old_chain = save_inferior_ptid ();
666 save_current_program_space ();
667 save_current_inferior ();
668 }
669 else
670 old_chain = save_current_space_and_thread ();
671
672 /* We're letting loose of the parent. */
673 tp = any_live_thread_of_process (inf->vfork_parent->pid);
674 switch_to_thread (tp->ptid);
675
676 /* We're about to detach from the parent, which implicitly
677 removes breakpoints from its address space. There's a
678 catch here: we want to reuse the spaces for the child,
679 but, parent/child are still sharing the pspace at this
680 point, although the exec in reality makes the kernel give
681 the child a fresh set of new pages. The problem here is
682 that the breakpoints module being unaware of this, would
683 likely chose the child process to write to the parent
684 address space. Swapping the child temporarily away from
685 the spaces has the desired effect. Yes, this is "sort
686 of" a hack. */
687
688 pspace = inf->pspace;
689 aspace = inf->aspace;
690 inf->aspace = NULL;
691 inf->pspace = NULL;
692
693 if (debug_infrun || info_verbose)
694 {
695 target_terminal_ours ();
696
697 if (exec)
698 fprintf_filtered (gdb_stdlog,
699 "Detaching vfork parent process "
700 "%d after child exec.\n",
701 inf->vfork_parent->pid);
702 else
703 fprintf_filtered (gdb_stdlog,
704 "Detaching vfork parent process "
705 "%d after child exit.\n",
706 inf->vfork_parent->pid);
707 }
708
709 target_detach (NULL, 0);
710
711 /* Put it back. */
712 inf->pspace = pspace;
713 inf->aspace = aspace;
714
715 do_cleanups (old_chain);
716 }
717 else if (exec)
718 {
719 /* We're staying attached to the parent, so, really give the
720 child a new address space. */
721 inf->pspace = add_program_space (maybe_new_address_space ());
722 inf->aspace = inf->pspace->aspace;
723 inf->removable = 1;
724 set_current_program_space (inf->pspace);
725
726 resume_parent = inf->vfork_parent->pid;
727
728 /* Break the bonds. */
729 inf->vfork_parent->vfork_child = NULL;
730 }
731 else
732 {
733 struct cleanup *old_chain;
734 struct program_space *pspace;
735
736 /* If this is a vfork child exiting, then the pspace and
737 aspaces were shared with the parent. Since we're
738 reporting the process exit, we'll be mourning all that is
739 found in the address space, and switching to null_ptid,
740 preparing to start a new inferior. But, since we don't
741 want to clobber the parent's address/program spaces, we
742 go ahead and create a new one for this exiting
743 inferior. */
744
745 /* Switch to null_ptid, so that clone_program_space doesn't want
746 to read the selected frame of a dead process. */
747 old_chain = save_inferior_ptid ();
748 inferior_ptid = null_ptid;
749
750 /* This inferior is dead, so avoid giving the breakpoints
751 module the option to write through to it (cloning a
752 program space resets breakpoints). */
753 inf->aspace = NULL;
754 inf->pspace = NULL;
755 pspace = add_program_space (maybe_new_address_space ());
756 set_current_program_space (pspace);
757 inf->removable = 1;
758 inf->symfile_flags = SYMFILE_NO_READ;
759 clone_program_space (pspace, inf->vfork_parent->pspace);
760 inf->pspace = pspace;
761 inf->aspace = pspace->aspace;
762
763 /* Put back inferior_ptid. We'll continue mourning this
764 inferior. */
765 do_cleanups (old_chain);
766
767 resume_parent = inf->vfork_parent->pid;
768 /* Break the bonds. */
769 inf->vfork_parent->vfork_child = NULL;
770 }
771
772 inf->vfork_parent = NULL;
773
774 gdb_assert (current_program_space == inf->pspace);
775
776 if (non_stop && resume_parent != -1)
777 {
778 /* If the user wanted the parent to be running, let it go
779 free now. */
780 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
781
782 if (debug_infrun)
783 fprintf_unfiltered (gdb_stdlog,
784 "infrun: resuming vfork parent process %d\n",
785 resume_parent);
786
787 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
788
789 do_cleanups (old_chain);
790 }
791 }
792 }
793
794 /* Enum strings for "set|show follow-exec-mode". */
795
796 static const char follow_exec_mode_new[] = "new";
797 static const char follow_exec_mode_same[] = "same";
798 static const char *const follow_exec_mode_names[] =
799 {
800 follow_exec_mode_new,
801 follow_exec_mode_same,
802 NULL,
803 };
804
805 static const char *follow_exec_mode_string = follow_exec_mode_same;
806 static void
807 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
808 struct cmd_list_element *c, const char *value)
809 {
810 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
811 }
812
813 /* EXECD_PATHNAME is assumed to be non-NULL. */
814
815 static void
816 follow_exec (ptid_t pid, char *execd_pathname)
817 {
818 struct thread_info *th = inferior_thread ();
819 struct inferior *inf = current_inferior ();
820
821 /* This is an exec event that we actually wish to pay attention to.
822 Refresh our symbol table to the newly exec'd program, remove any
823 momentary bp's, etc.
824
825 If there are breakpoints, they aren't really inserted now,
826 since the exec() transformed our inferior into a fresh set
827 of instructions.
828
829 We want to preserve symbolic breakpoints on the list, since
830 we have hopes that they can be reset after the new a.out's
831 symbol table is read.
832
833 However, any "raw" breakpoints must be removed from the list
834 (e.g., the solib bp's), since their address is probably invalid
835 now.
836
837 And, we DON'T want to call delete_breakpoints() here, since
838 that may write the bp's "shadow contents" (the instruction
839 value that was overwritten witha TRAP instruction). Since
840 we now have a new a.out, those shadow contents aren't valid. */
841
842 mark_breakpoints_out ();
843
844 update_breakpoints_after_exec ();
845
846 /* If there was one, it's gone now. We cannot truly step-to-next
847 statement through an exec(). */
848 th->control.step_resume_breakpoint = NULL;
849 th->control.exception_resume_breakpoint = NULL;
850 th->control.step_range_start = 0;
851 th->control.step_range_end = 0;
852
853 /* The target reports the exec event to the main thread, even if
854 some other thread does the exec, and even if the main thread was
855 already stopped --- if debugging in non-stop mode, it's possible
856 the user had the main thread held stopped in the previous image
857 --- release it now. This is the same behavior as step-over-exec
858 with scheduler-locking on in all-stop mode. */
859 th->stop_requested = 0;
860
861 /* What is this a.out's name? */
862 printf_unfiltered (_("%s is executing new program: %s\n"),
863 target_pid_to_str (inferior_ptid),
864 execd_pathname);
865
866 /* We've followed the inferior through an exec. Therefore, the
867 inferior has essentially been killed & reborn. */
868
869 gdb_flush (gdb_stdout);
870
871 breakpoint_init_inferior (inf_execd);
872
873 if (gdb_sysroot && *gdb_sysroot)
874 {
875 char *name = alloca (strlen (gdb_sysroot)
876 + strlen (execd_pathname)
877 + 1);
878
879 strcpy (name, gdb_sysroot);
880 strcat (name, execd_pathname);
881 execd_pathname = name;
882 }
883
884 /* Reset the shared library package. This ensures that we get a
885 shlib event when the child reaches "_start", at which point the
886 dld will have had a chance to initialize the child. */
887 /* Also, loading a symbol file below may trigger symbol lookups, and
888 we don't want those to be satisfied by the libraries of the
889 previous incarnation of this process. */
890 no_shared_libraries (NULL, 0);
891
892 if (follow_exec_mode_string == follow_exec_mode_new)
893 {
894 struct program_space *pspace;
895
896 /* The user wants to keep the old inferior and program spaces
897 around. Create a new fresh one, and switch to it. */
898
899 inf = add_inferior (current_inferior ()->pid);
900 pspace = add_program_space (maybe_new_address_space ());
901 inf->pspace = pspace;
902 inf->aspace = pspace->aspace;
903
904 exit_inferior_num_silent (current_inferior ()->num);
905
906 set_current_inferior (inf);
907 set_current_program_space (pspace);
908 }
909 else
910 {
911 /* The old description may no longer be fit for the new image.
912 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
913 old description; we'll read a new one below. No need to do
914 this on "follow-exec-mode new", as the old inferior stays
915 around (its description is later cleared/refetched on
916 restart). */
917 target_clear_description ();
918 }
919
920 gdb_assert (current_program_space == inf->pspace);
921
922 /* That a.out is now the one to use. */
923 exec_file_attach (execd_pathname, 0);
924
925 /* SYMFILE_DEFER_BP_RESET is used as the proper displacement for PIE
926 (Position Independent Executable) main symbol file will get applied by
927 solib_create_inferior_hook below. breakpoint_re_set would fail to insert
928 the breakpoints with the zero displacement. */
929
930 symbol_file_add (execd_pathname,
931 (inf->symfile_flags
932 | SYMFILE_MAINLINE | SYMFILE_DEFER_BP_RESET),
933 NULL, 0);
934
935 if ((inf->symfile_flags & SYMFILE_NO_READ) == 0)
936 set_initial_language ();
937
938 /* If the target can specify a description, read it. Must do this
939 after flipping to the new executable (because the target supplied
940 description must be compatible with the executable's
941 architecture, and the old executable may e.g., be 32-bit, while
942 the new one 64-bit), and before anything involving memory or
943 registers. */
944 target_find_description ();
945
946 solib_create_inferior_hook (0);
947
948 jit_inferior_created_hook ();
949
950 breakpoint_re_set ();
951
952 /* Reinsert all breakpoints. (Those which were symbolic have
953 been reset to the proper address in the new a.out, thanks
954 to symbol_file_command...). */
955 insert_breakpoints ();
956
957 /* The next resume of this inferior should bring it to the shlib
958 startup breakpoints. (If the user had also set bp's on
959 "main" from the old (parent) process, then they'll auto-
960 matically get reset there in the new process.). */
961 }
962
963 /* Non-zero if we just simulating a single-step. This is needed
964 because we cannot remove the breakpoints in the inferior process
965 until after the `wait' in `wait_for_inferior'. */
966 static int singlestep_breakpoints_inserted_p = 0;
967
968 /* The thread we inserted single-step breakpoints for. */
969 static ptid_t singlestep_ptid;
970
971 /* PC when we started this single-step. */
972 static CORE_ADDR singlestep_pc;
973
974 /* If another thread hit the singlestep breakpoint, we save the original
975 thread here so that we can resume single-stepping it later. */
976 static ptid_t saved_singlestep_ptid;
977 static int stepping_past_singlestep_breakpoint;
978
979 /* If not equal to null_ptid, this means that after stepping over breakpoint
980 is finished, we need to switch to deferred_step_ptid, and step it.
981
982 The use case is when one thread has hit a breakpoint, and then the user
983 has switched to another thread and issued 'step'. We need to step over
984 breakpoint in the thread which hit the breakpoint, but then continue
985 stepping the thread user has selected. */
986 static ptid_t deferred_step_ptid;
987 \f
988 /* Displaced stepping. */
989
990 /* In non-stop debugging mode, we must take special care to manage
991 breakpoints properly; in particular, the traditional strategy for
992 stepping a thread past a breakpoint it has hit is unsuitable.
993 'Displaced stepping' is a tactic for stepping one thread past a
994 breakpoint it has hit while ensuring that other threads running
995 concurrently will hit the breakpoint as they should.
996
997 The traditional way to step a thread T off a breakpoint in a
998 multi-threaded program in all-stop mode is as follows:
999
1000 a0) Initially, all threads are stopped, and breakpoints are not
1001 inserted.
1002 a1) We single-step T, leaving breakpoints uninserted.
1003 a2) We insert breakpoints, and resume all threads.
1004
1005 In non-stop debugging, however, this strategy is unsuitable: we
1006 don't want to have to stop all threads in the system in order to
1007 continue or step T past a breakpoint. Instead, we use displaced
1008 stepping:
1009
1010 n0) Initially, T is stopped, other threads are running, and
1011 breakpoints are inserted.
1012 n1) We copy the instruction "under" the breakpoint to a separate
1013 location, outside the main code stream, making any adjustments
1014 to the instruction, register, and memory state as directed by
1015 T's architecture.
1016 n2) We single-step T over the instruction at its new location.
1017 n3) We adjust the resulting register and memory state as directed
1018 by T's architecture. This includes resetting T's PC to point
1019 back into the main instruction stream.
1020 n4) We resume T.
1021
1022 This approach depends on the following gdbarch methods:
1023
1024 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1025 indicate where to copy the instruction, and how much space must
1026 be reserved there. We use these in step n1.
1027
1028 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1029 address, and makes any necessary adjustments to the instruction,
1030 register contents, and memory. We use this in step n1.
1031
1032 - gdbarch_displaced_step_fixup adjusts registers and memory after
1033 we have successfuly single-stepped the instruction, to yield the
1034 same effect the instruction would have had if we had executed it
1035 at its original address. We use this in step n3.
1036
1037 - gdbarch_displaced_step_free_closure provides cleanup.
1038
1039 The gdbarch_displaced_step_copy_insn and
1040 gdbarch_displaced_step_fixup functions must be written so that
1041 copying an instruction with gdbarch_displaced_step_copy_insn,
1042 single-stepping across the copied instruction, and then applying
1043 gdbarch_displaced_insn_fixup should have the same effects on the
1044 thread's memory and registers as stepping the instruction in place
1045 would have. Exactly which responsibilities fall to the copy and
1046 which fall to the fixup is up to the author of those functions.
1047
1048 See the comments in gdbarch.sh for details.
1049
1050 Note that displaced stepping and software single-step cannot
1051 currently be used in combination, although with some care I think
1052 they could be made to. Software single-step works by placing
1053 breakpoints on all possible subsequent instructions; if the
1054 displaced instruction is a PC-relative jump, those breakpoints
1055 could fall in very strange places --- on pages that aren't
1056 executable, or at addresses that are not proper instruction
1057 boundaries. (We do generally let other threads run while we wait
1058 to hit the software single-step breakpoint, and they might
1059 encounter such a corrupted instruction.) One way to work around
1060 this would be to have gdbarch_displaced_step_copy_insn fully
1061 simulate the effect of PC-relative instructions (and return NULL)
1062 on architectures that use software single-stepping.
1063
1064 In non-stop mode, we can have independent and simultaneous step
1065 requests, so more than one thread may need to simultaneously step
1066 over a breakpoint. The current implementation assumes there is
1067 only one scratch space per process. In this case, we have to
1068 serialize access to the scratch space. If thread A wants to step
1069 over a breakpoint, but we are currently waiting for some other
1070 thread to complete a displaced step, we leave thread A stopped and
1071 place it in the displaced_step_request_queue. Whenever a displaced
1072 step finishes, we pick the next thread in the queue and start a new
1073 displaced step operation on it. See displaced_step_prepare and
1074 displaced_step_fixup for details. */
1075
1076 struct displaced_step_request
1077 {
1078 ptid_t ptid;
1079 struct displaced_step_request *next;
1080 };
1081
1082 /* Per-inferior displaced stepping state. */
1083 struct displaced_step_inferior_state
1084 {
1085 /* Pointer to next in linked list. */
1086 struct displaced_step_inferior_state *next;
1087
1088 /* The process this displaced step state refers to. */
1089 int pid;
1090
1091 /* A queue of pending displaced stepping requests. One entry per
1092 thread that needs to do a displaced step. */
1093 struct displaced_step_request *step_request_queue;
1094
1095 /* If this is not null_ptid, this is the thread carrying out a
1096 displaced single-step in process PID. This thread's state will
1097 require fixing up once it has completed its step. */
1098 ptid_t step_ptid;
1099
1100 /* The architecture the thread had when we stepped it. */
1101 struct gdbarch *step_gdbarch;
1102
1103 /* The closure provided gdbarch_displaced_step_copy_insn, to be used
1104 for post-step cleanup. */
1105 struct displaced_step_closure *step_closure;
1106
1107 /* The address of the original instruction, and the copy we
1108 made. */
1109 CORE_ADDR step_original, step_copy;
1110
1111 /* Saved contents of copy area. */
1112 gdb_byte *step_saved_copy;
1113 };
1114
1115 /* The list of states of processes involved in displaced stepping
1116 presently. */
1117 static struct displaced_step_inferior_state *displaced_step_inferior_states;
1118
1119 /* Get the displaced stepping state of process PID. */
1120
1121 static struct displaced_step_inferior_state *
1122 get_displaced_stepping_state (int pid)
1123 {
1124 struct displaced_step_inferior_state *state;
1125
1126 for (state = displaced_step_inferior_states;
1127 state != NULL;
1128 state = state->next)
1129 if (state->pid == pid)
1130 return state;
1131
1132 return NULL;
1133 }
1134
1135 /* Add a new displaced stepping state for process PID to the displaced
1136 stepping state list, or return a pointer to an already existing
1137 entry, if it already exists. Never returns NULL. */
1138
1139 static struct displaced_step_inferior_state *
1140 add_displaced_stepping_state (int pid)
1141 {
1142 struct displaced_step_inferior_state *state;
1143
1144 for (state = displaced_step_inferior_states;
1145 state != NULL;
1146 state = state->next)
1147 if (state->pid == pid)
1148 return state;
1149
1150 state = xcalloc (1, sizeof (*state));
1151 state->pid = pid;
1152 state->next = displaced_step_inferior_states;
1153 displaced_step_inferior_states = state;
1154
1155 return state;
1156 }
1157
1158 /* If inferior is in displaced stepping, and ADDR equals to starting address
1159 of copy area, return corresponding displaced_step_closure. Otherwise,
1160 return NULL. */
1161
1162 struct displaced_step_closure*
1163 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1164 {
1165 struct displaced_step_inferior_state *displaced
1166 = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1167
1168 /* If checking the mode of displaced instruction in copy area. */
1169 if (displaced && !ptid_equal (displaced->step_ptid, null_ptid)
1170 && (displaced->step_copy == addr))
1171 return displaced->step_closure;
1172
1173 return NULL;
1174 }
1175
1176 /* Remove the displaced stepping state of process PID. */
1177
1178 static void
1179 remove_displaced_stepping_state (int pid)
1180 {
1181 struct displaced_step_inferior_state *it, **prev_next_p;
1182
1183 gdb_assert (pid != 0);
1184
1185 it = displaced_step_inferior_states;
1186 prev_next_p = &displaced_step_inferior_states;
1187 while (it)
1188 {
1189 if (it->pid == pid)
1190 {
1191 *prev_next_p = it->next;
1192 xfree (it);
1193 return;
1194 }
1195
1196 prev_next_p = &it->next;
1197 it = *prev_next_p;
1198 }
1199 }
1200
1201 static void
1202 infrun_inferior_exit (struct inferior *inf)
1203 {
1204 remove_displaced_stepping_state (inf->pid);
1205 }
1206
1207 /* If ON, and the architecture supports it, GDB will use displaced
1208 stepping to step over breakpoints. If OFF, or if the architecture
1209 doesn't support it, GDB will instead use the traditional
1210 hold-and-step approach. If AUTO (which is the default), GDB will
1211 decide which technique to use to step over breakpoints depending on
1212 which of all-stop or non-stop mode is active --- displaced stepping
1213 in non-stop mode; hold-and-step in all-stop mode. */
1214
1215 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1216
1217 static void
1218 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1219 struct cmd_list_element *c,
1220 const char *value)
1221 {
1222 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1223 fprintf_filtered (file,
1224 _("Debugger's willingness to use displaced stepping "
1225 "to step over breakpoints is %s (currently %s).\n"),
1226 value, non_stop ? "on" : "off");
1227 else
1228 fprintf_filtered (file,
1229 _("Debugger's willingness to use displaced stepping "
1230 "to step over breakpoints is %s.\n"), value);
1231 }
1232
1233 /* Return non-zero if displaced stepping can/should be used to step
1234 over breakpoints. */
1235
1236 static int
1237 use_displaced_stepping (struct gdbarch *gdbarch)
1238 {
1239 return (((can_use_displaced_stepping == AUTO_BOOLEAN_AUTO && non_stop)
1240 || can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1241 && gdbarch_displaced_step_copy_insn_p (gdbarch)
1242 && !RECORD_IS_USED);
1243 }
1244
1245 /* Clean out any stray displaced stepping state. */
1246 static void
1247 displaced_step_clear (struct displaced_step_inferior_state *displaced)
1248 {
1249 /* Indicate that there is no cleanup pending. */
1250 displaced->step_ptid = null_ptid;
1251
1252 if (displaced->step_closure)
1253 {
1254 gdbarch_displaced_step_free_closure (displaced->step_gdbarch,
1255 displaced->step_closure);
1256 displaced->step_closure = NULL;
1257 }
1258 }
1259
1260 static void
1261 displaced_step_clear_cleanup (void *arg)
1262 {
1263 struct displaced_step_inferior_state *state = arg;
1264
1265 displaced_step_clear (state);
1266 }
1267
1268 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1269 void
1270 displaced_step_dump_bytes (struct ui_file *file,
1271 const gdb_byte *buf,
1272 size_t len)
1273 {
1274 int i;
1275
1276 for (i = 0; i < len; i++)
1277 fprintf_unfiltered (file, "%02x ", buf[i]);
1278 fputs_unfiltered ("\n", file);
1279 }
1280
1281 /* Prepare to single-step, using displaced stepping.
1282
1283 Note that we cannot use displaced stepping when we have a signal to
1284 deliver. If we have a signal to deliver and an instruction to step
1285 over, then after the step, there will be no indication from the
1286 target whether the thread entered a signal handler or ignored the
1287 signal and stepped over the instruction successfully --- both cases
1288 result in a simple SIGTRAP. In the first case we mustn't do a
1289 fixup, and in the second case we must --- but we can't tell which.
1290 Comments in the code for 'random signals' in handle_inferior_event
1291 explain how we handle this case instead.
1292
1293 Returns 1 if preparing was successful -- this thread is going to be
1294 stepped now; or 0 if displaced stepping this thread got queued. */
1295 static int
1296 displaced_step_prepare (ptid_t ptid)
1297 {
1298 struct cleanup *old_cleanups, *ignore_cleanups;
1299 struct thread_info *tp = find_thread_ptid (ptid);
1300 struct regcache *regcache = get_thread_regcache (ptid);
1301 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1302 CORE_ADDR original, copy;
1303 ULONGEST len;
1304 struct displaced_step_closure *closure;
1305 struct displaced_step_inferior_state *displaced;
1306 int status;
1307
1308 /* We should never reach this function if the architecture does not
1309 support displaced stepping. */
1310 gdb_assert (gdbarch_displaced_step_copy_insn_p (gdbarch));
1311
1312 /* Disable range stepping while executing in the scratch pad. We
1313 want a single-step even if executing the displaced instruction in
1314 the scratch buffer lands within the stepping range (e.g., a
1315 jump/branch). */
1316 tp->control.may_range_step = 0;
1317
1318 /* We have to displaced step one thread at a time, as we only have
1319 access to a single scratch space per inferior. */
1320
1321 displaced = add_displaced_stepping_state (ptid_get_pid (ptid));
1322
1323 if (!ptid_equal (displaced->step_ptid, null_ptid))
1324 {
1325 /* Already waiting for a displaced step to finish. Defer this
1326 request and place in queue. */
1327 struct displaced_step_request *req, *new_req;
1328
1329 if (debug_displaced)
1330 fprintf_unfiltered (gdb_stdlog,
1331 "displaced: defering step of %s\n",
1332 target_pid_to_str (ptid));
1333
1334 new_req = xmalloc (sizeof (*new_req));
1335 new_req->ptid = ptid;
1336 new_req->next = NULL;
1337
1338 if (displaced->step_request_queue)
1339 {
1340 for (req = displaced->step_request_queue;
1341 req && req->next;
1342 req = req->next)
1343 ;
1344 req->next = new_req;
1345 }
1346 else
1347 displaced->step_request_queue = new_req;
1348
1349 return 0;
1350 }
1351 else
1352 {
1353 if (debug_displaced)
1354 fprintf_unfiltered (gdb_stdlog,
1355 "displaced: stepping %s now\n",
1356 target_pid_to_str (ptid));
1357 }
1358
1359 displaced_step_clear (displaced);
1360
1361 old_cleanups = save_inferior_ptid ();
1362 inferior_ptid = ptid;
1363
1364 original = regcache_read_pc (regcache);
1365
1366 copy = gdbarch_displaced_step_location (gdbarch);
1367 len = gdbarch_max_insn_length (gdbarch);
1368
1369 /* Save the original contents of the copy area. */
1370 displaced->step_saved_copy = xmalloc (len);
1371 ignore_cleanups = make_cleanup (free_current_contents,
1372 &displaced->step_saved_copy);
1373 status = target_read_memory (copy, displaced->step_saved_copy, len);
1374 if (status != 0)
1375 throw_error (MEMORY_ERROR,
1376 _("Error accessing memory address %s (%s) for "
1377 "displaced-stepping scratch space."),
1378 paddress (gdbarch, copy), safe_strerror (status));
1379 if (debug_displaced)
1380 {
1381 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1382 paddress (gdbarch, copy));
1383 displaced_step_dump_bytes (gdb_stdlog,
1384 displaced->step_saved_copy,
1385 len);
1386 };
1387
1388 closure = gdbarch_displaced_step_copy_insn (gdbarch,
1389 original, copy, regcache);
1390
1391 /* We don't support the fully-simulated case at present. */
1392 gdb_assert (closure);
1393
1394 /* Save the information we need to fix things up if the step
1395 succeeds. */
1396 displaced->step_ptid = ptid;
1397 displaced->step_gdbarch = gdbarch;
1398 displaced->step_closure = closure;
1399 displaced->step_original = original;
1400 displaced->step_copy = copy;
1401
1402 make_cleanup (displaced_step_clear_cleanup, displaced);
1403
1404 /* Resume execution at the copy. */
1405 regcache_write_pc (regcache, copy);
1406
1407 discard_cleanups (ignore_cleanups);
1408
1409 do_cleanups (old_cleanups);
1410
1411 if (debug_displaced)
1412 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1413 paddress (gdbarch, copy));
1414
1415 return 1;
1416 }
1417
1418 static void
1419 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1420 const gdb_byte *myaddr, int len)
1421 {
1422 struct cleanup *ptid_cleanup = save_inferior_ptid ();
1423
1424 inferior_ptid = ptid;
1425 write_memory (memaddr, myaddr, len);
1426 do_cleanups (ptid_cleanup);
1427 }
1428
1429 /* Restore the contents of the copy area for thread PTID. */
1430
1431 static void
1432 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1433 ptid_t ptid)
1434 {
1435 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1436
1437 write_memory_ptid (ptid, displaced->step_copy,
1438 displaced->step_saved_copy, len);
1439 if (debug_displaced)
1440 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1441 target_pid_to_str (ptid),
1442 paddress (displaced->step_gdbarch,
1443 displaced->step_copy));
1444 }
1445
1446 static void
1447 displaced_step_fixup (ptid_t event_ptid, enum gdb_signal signal)
1448 {
1449 struct cleanup *old_cleanups;
1450 struct displaced_step_inferior_state *displaced
1451 = get_displaced_stepping_state (ptid_get_pid (event_ptid));
1452
1453 /* Was any thread of this process doing a displaced step? */
1454 if (displaced == NULL)
1455 return;
1456
1457 /* Was this event for the pid we displaced? */
1458 if (ptid_equal (displaced->step_ptid, null_ptid)
1459 || ! ptid_equal (displaced->step_ptid, event_ptid))
1460 return;
1461
1462 old_cleanups = make_cleanup (displaced_step_clear_cleanup, displaced);
1463
1464 displaced_step_restore (displaced, displaced->step_ptid);
1465
1466 /* Did the instruction complete successfully? */
1467 if (signal == GDB_SIGNAL_TRAP)
1468 {
1469 /* Fix up the resulting state. */
1470 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1471 displaced->step_closure,
1472 displaced->step_original,
1473 displaced->step_copy,
1474 get_thread_regcache (displaced->step_ptid));
1475 }
1476 else
1477 {
1478 /* Since the instruction didn't complete, all we can do is
1479 relocate the PC. */
1480 struct regcache *regcache = get_thread_regcache (event_ptid);
1481 CORE_ADDR pc = regcache_read_pc (regcache);
1482
1483 pc = displaced->step_original + (pc - displaced->step_copy);
1484 regcache_write_pc (regcache, pc);
1485 }
1486
1487 do_cleanups (old_cleanups);
1488
1489 displaced->step_ptid = null_ptid;
1490
1491 /* Are there any pending displaced stepping requests? If so, run
1492 one now. Leave the state object around, since we're likely to
1493 need it again soon. */
1494 while (displaced->step_request_queue)
1495 {
1496 struct displaced_step_request *head;
1497 ptid_t ptid;
1498 struct regcache *regcache;
1499 struct gdbarch *gdbarch;
1500 CORE_ADDR actual_pc;
1501 struct address_space *aspace;
1502
1503 head = displaced->step_request_queue;
1504 ptid = head->ptid;
1505 displaced->step_request_queue = head->next;
1506 xfree (head);
1507
1508 context_switch (ptid);
1509
1510 regcache = get_thread_regcache (ptid);
1511 actual_pc = regcache_read_pc (regcache);
1512 aspace = get_regcache_aspace (regcache);
1513
1514 if (breakpoint_here_p (aspace, actual_pc))
1515 {
1516 if (debug_displaced)
1517 fprintf_unfiltered (gdb_stdlog,
1518 "displaced: stepping queued %s now\n",
1519 target_pid_to_str (ptid));
1520
1521 displaced_step_prepare (ptid);
1522
1523 gdbarch = get_regcache_arch (regcache);
1524
1525 if (debug_displaced)
1526 {
1527 CORE_ADDR actual_pc = regcache_read_pc (regcache);
1528 gdb_byte buf[4];
1529
1530 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1531 paddress (gdbarch, actual_pc));
1532 read_memory (actual_pc, buf, sizeof (buf));
1533 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1534 }
1535
1536 if (gdbarch_displaced_step_hw_singlestep (gdbarch,
1537 displaced->step_closure))
1538 target_resume (ptid, 1, GDB_SIGNAL_0);
1539 else
1540 target_resume (ptid, 0, GDB_SIGNAL_0);
1541
1542 /* Done, we're stepping a thread. */
1543 break;
1544 }
1545 else
1546 {
1547 int step;
1548 struct thread_info *tp = inferior_thread ();
1549
1550 /* The breakpoint we were sitting under has since been
1551 removed. */
1552 tp->control.trap_expected = 0;
1553
1554 /* Go back to what we were trying to do. */
1555 step = currently_stepping (tp);
1556
1557 if (debug_displaced)
1558 fprintf_unfiltered (gdb_stdlog,
1559 "displaced: breakpoint is gone: %s, step(%d)\n",
1560 target_pid_to_str (tp->ptid), step);
1561
1562 target_resume (ptid, step, GDB_SIGNAL_0);
1563 tp->suspend.stop_signal = GDB_SIGNAL_0;
1564
1565 /* This request was discarded. See if there's any other
1566 thread waiting for its turn. */
1567 }
1568 }
1569 }
1570
1571 /* Update global variables holding ptids to hold NEW_PTID if they were
1572 holding OLD_PTID. */
1573 static void
1574 infrun_thread_ptid_changed (ptid_t old_ptid, ptid_t new_ptid)
1575 {
1576 struct displaced_step_request *it;
1577 struct displaced_step_inferior_state *displaced;
1578
1579 if (ptid_equal (inferior_ptid, old_ptid))
1580 inferior_ptid = new_ptid;
1581
1582 if (ptid_equal (singlestep_ptid, old_ptid))
1583 singlestep_ptid = new_ptid;
1584
1585 if (ptid_equal (deferred_step_ptid, old_ptid))
1586 deferred_step_ptid = new_ptid;
1587
1588 for (displaced = displaced_step_inferior_states;
1589 displaced;
1590 displaced = displaced->next)
1591 {
1592 if (ptid_equal (displaced->step_ptid, old_ptid))
1593 displaced->step_ptid = new_ptid;
1594
1595 for (it = displaced->step_request_queue; it; it = it->next)
1596 if (ptid_equal (it->ptid, old_ptid))
1597 it->ptid = new_ptid;
1598 }
1599 }
1600
1601 \f
1602 /* Resuming. */
1603
1604 /* Things to clean up if we QUIT out of resume (). */
1605 static void
1606 resume_cleanups (void *ignore)
1607 {
1608 normal_stop ();
1609 }
1610
1611 static const char schedlock_off[] = "off";
1612 static const char schedlock_on[] = "on";
1613 static const char schedlock_step[] = "step";
1614 static const char *const scheduler_enums[] = {
1615 schedlock_off,
1616 schedlock_on,
1617 schedlock_step,
1618 NULL
1619 };
1620 static const char *scheduler_mode = schedlock_off;
1621 static void
1622 show_scheduler_mode (struct ui_file *file, int from_tty,
1623 struct cmd_list_element *c, const char *value)
1624 {
1625 fprintf_filtered (file,
1626 _("Mode for locking scheduler "
1627 "during execution is \"%s\".\n"),
1628 value);
1629 }
1630
1631 static void
1632 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
1633 {
1634 if (!target_can_lock_scheduler)
1635 {
1636 scheduler_mode = schedlock_off;
1637 error (_("Target '%s' cannot support this command."), target_shortname);
1638 }
1639 }
1640
1641 /* True if execution commands resume all threads of all processes by
1642 default; otherwise, resume only threads of the current inferior
1643 process. */
1644 int sched_multi = 0;
1645
1646 /* Try to setup for software single stepping over the specified location.
1647 Return 1 if target_resume() should use hardware single step.
1648
1649 GDBARCH the current gdbarch.
1650 PC the location to step over. */
1651
1652 static int
1653 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
1654 {
1655 int hw_step = 1;
1656
1657 if (execution_direction == EXEC_FORWARD
1658 && gdbarch_software_single_step_p (gdbarch)
1659 && gdbarch_software_single_step (gdbarch, get_current_frame ()))
1660 {
1661 hw_step = 0;
1662 /* Do not pull these breakpoints until after a `wait' in
1663 `wait_for_inferior'. */
1664 singlestep_breakpoints_inserted_p = 1;
1665 singlestep_ptid = inferior_ptid;
1666 singlestep_pc = pc;
1667 }
1668 return hw_step;
1669 }
1670
1671 /* Return a ptid representing the set of threads that we will proceed,
1672 in the perspective of the user/frontend. We may actually resume
1673 fewer threads at first, e.g., if a thread is stopped at a
1674 breakpoint that needs stepping-off, but that should not be visible
1675 to the user/frontend, and neither should the frontend/user be
1676 allowed to proceed any of the threads that happen to be stopped for
1677 internal run control handling, if a previous command wanted them
1678 resumed. */
1679
1680 ptid_t
1681 user_visible_resume_ptid (int step)
1682 {
1683 /* By default, resume all threads of all processes. */
1684 ptid_t resume_ptid = RESUME_ALL;
1685
1686 /* Maybe resume only all threads of the current process. */
1687 if (!sched_multi && target_supports_multi_process ())
1688 {
1689 resume_ptid = pid_to_ptid (ptid_get_pid (inferior_ptid));
1690 }
1691
1692 /* Maybe resume a single thread after all. */
1693 if (non_stop)
1694 {
1695 /* With non-stop mode on, threads are always handled
1696 individually. */
1697 resume_ptid = inferior_ptid;
1698 }
1699 else if ((scheduler_mode == schedlock_on)
1700 || (scheduler_mode == schedlock_step
1701 && (step || singlestep_breakpoints_inserted_p)))
1702 {
1703 /* User-settable 'scheduler' mode requires solo thread resume. */
1704 resume_ptid = inferior_ptid;
1705 }
1706
1707 return resume_ptid;
1708 }
1709
1710 /* Resume the inferior, but allow a QUIT. This is useful if the user
1711 wants to interrupt some lengthy single-stepping operation
1712 (for child processes, the SIGINT goes to the inferior, and so
1713 we get a SIGINT random_signal, but for remote debugging and perhaps
1714 other targets, that's not true).
1715
1716 STEP nonzero if we should step (zero to continue instead).
1717 SIG is the signal to give the inferior (zero for none). */
1718 void
1719 resume (int step, enum gdb_signal sig)
1720 {
1721 int should_resume = 1;
1722 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
1723 struct regcache *regcache = get_current_regcache ();
1724 struct gdbarch *gdbarch = get_regcache_arch (regcache);
1725 struct thread_info *tp = inferior_thread ();
1726 CORE_ADDR pc = regcache_read_pc (regcache);
1727 struct address_space *aspace = get_regcache_aspace (regcache);
1728
1729 QUIT;
1730
1731 if (current_inferior ()->waiting_for_vfork_done)
1732 {
1733 /* Don't try to single-step a vfork parent that is waiting for
1734 the child to get out of the shared memory region (by exec'ing
1735 or exiting). This is particularly important on software
1736 single-step archs, as the child process would trip on the
1737 software single step breakpoint inserted for the parent
1738 process. Since the parent will not actually execute any
1739 instruction until the child is out of the shared region (such
1740 are vfork's semantics), it is safe to simply continue it.
1741 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
1742 the parent, and tell it to `keep_going', which automatically
1743 re-sets it stepping. */
1744 if (debug_infrun)
1745 fprintf_unfiltered (gdb_stdlog,
1746 "infrun: resume : clear step\n");
1747 step = 0;
1748 }
1749
1750 if (debug_infrun)
1751 fprintf_unfiltered (gdb_stdlog,
1752 "infrun: resume (step=%d, signal=%s), "
1753 "trap_expected=%d, current thread [%s] at %s\n",
1754 step, gdb_signal_to_symbol_string (sig),
1755 tp->control.trap_expected,
1756 target_pid_to_str (inferior_ptid),
1757 paddress (gdbarch, pc));
1758
1759 /* Normally, by the time we reach `resume', the breakpoints are either
1760 removed or inserted, as appropriate. The exception is if we're sitting
1761 at a permanent breakpoint; we need to step over it, but permanent
1762 breakpoints can't be removed. So we have to test for it here. */
1763 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
1764 {
1765 if (gdbarch_skip_permanent_breakpoint_p (gdbarch))
1766 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
1767 else
1768 error (_("\
1769 The program is stopped at a permanent breakpoint, but GDB does not know\n\
1770 how to step past a permanent breakpoint on this architecture. Try using\n\
1771 a command like `return' or `jump' to continue execution."));
1772 }
1773
1774 /* If we have a breakpoint to step over, make sure to do a single
1775 step only. Same if we have software watchpoints. */
1776 if (tp->control.trap_expected || bpstat_should_step ())
1777 tp->control.may_range_step = 0;
1778
1779 /* If enabled, step over breakpoints by executing a copy of the
1780 instruction at a different address.
1781
1782 We can't use displaced stepping when we have a signal to deliver;
1783 the comments for displaced_step_prepare explain why. The
1784 comments in the handle_inferior event for dealing with 'random
1785 signals' explain what we do instead.
1786
1787 We can't use displaced stepping when we are waiting for vfork_done
1788 event, displaced stepping breaks the vfork child similarly as single
1789 step software breakpoint. */
1790 if (use_displaced_stepping (gdbarch)
1791 && (tp->control.trap_expected
1792 || (step && gdbarch_software_single_step_p (gdbarch)))
1793 && sig == GDB_SIGNAL_0
1794 && !current_inferior ()->waiting_for_vfork_done)
1795 {
1796 struct displaced_step_inferior_state *displaced;
1797
1798 if (!displaced_step_prepare (inferior_ptid))
1799 {
1800 /* Got placed in displaced stepping queue. Will be resumed
1801 later when all the currently queued displaced stepping
1802 requests finish. The thread is not executing at this point,
1803 and the call to set_executing will be made later. But we
1804 need to call set_running here, since from frontend point of view,
1805 the thread is running. */
1806 set_running (inferior_ptid, 1);
1807 discard_cleanups (old_cleanups);
1808 return;
1809 }
1810
1811 /* Update pc to reflect the new address from which we will execute
1812 instructions due to displaced stepping. */
1813 pc = regcache_read_pc (get_thread_regcache (inferior_ptid));
1814
1815 displaced = get_displaced_stepping_state (ptid_get_pid (inferior_ptid));
1816 step = gdbarch_displaced_step_hw_singlestep (gdbarch,
1817 displaced->step_closure);
1818 }
1819
1820 /* Do we need to do it the hard way, w/temp breakpoints? */
1821 else if (step)
1822 step = maybe_software_singlestep (gdbarch, pc);
1823
1824 /* Currently, our software single-step implementation leads to different
1825 results than hardware single-stepping in one situation: when stepping
1826 into delivering a signal which has an associated signal handler,
1827 hardware single-step will stop at the first instruction of the handler,
1828 while software single-step will simply skip execution of the handler.
1829
1830 For now, this difference in behavior is accepted since there is no
1831 easy way to actually implement single-stepping into a signal handler
1832 without kernel support.
1833
1834 However, there is one scenario where this difference leads to follow-on
1835 problems: if we're stepping off a breakpoint by removing all breakpoints
1836 and then single-stepping. In this case, the software single-step
1837 behavior means that even if there is a *breakpoint* in the signal
1838 handler, GDB still would not stop.
1839
1840 Fortunately, we can at least fix this particular issue. We detect
1841 here the case where we are about to deliver a signal while software
1842 single-stepping with breakpoints removed. In this situation, we
1843 revert the decisions to remove all breakpoints and insert single-
1844 step breakpoints, and instead we install a step-resume breakpoint
1845 at the current address, deliver the signal without stepping, and
1846 once we arrive back at the step-resume breakpoint, actually step
1847 over the breakpoint we originally wanted to step over. */
1848 if (singlestep_breakpoints_inserted_p
1849 && tp->control.trap_expected && sig != GDB_SIGNAL_0)
1850 {
1851 /* If we have nested signals or a pending signal is delivered
1852 immediately after a handler returns, might might already have
1853 a step-resume breakpoint set on the earlier handler. We cannot
1854 set another step-resume breakpoint; just continue on until the
1855 original breakpoint is hit. */
1856 if (tp->control.step_resume_breakpoint == NULL)
1857 {
1858 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
1859 tp->step_after_step_resume_breakpoint = 1;
1860 }
1861
1862 remove_single_step_breakpoints ();
1863 singlestep_breakpoints_inserted_p = 0;
1864
1865 insert_breakpoints ();
1866 tp->control.trap_expected = 0;
1867 }
1868
1869 if (should_resume)
1870 {
1871 ptid_t resume_ptid;
1872
1873 /* If STEP is set, it's a request to use hardware stepping
1874 facilities. But in that case, we should never
1875 use singlestep breakpoint. */
1876 gdb_assert (!(singlestep_breakpoints_inserted_p && step));
1877
1878 /* Decide the set of threads to ask the target to resume. Start
1879 by assuming everything will be resumed, than narrow the set
1880 by applying increasingly restricting conditions. */
1881 resume_ptid = user_visible_resume_ptid (step);
1882
1883 /* Maybe resume a single thread after all. */
1884 if (singlestep_breakpoints_inserted_p
1885 && stepping_past_singlestep_breakpoint)
1886 {
1887 /* The situation here is as follows. In thread T1 we wanted to
1888 single-step. Lacking hardware single-stepping we've
1889 set breakpoint at the PC of the next instruction -- call it
1890 P. After resuming, we've hit that breakpoint in thread T2.
1891 Now we've removed original breakpoint, inserted breakpoint
1892 at P+1, and try to step to advance T2 past breakpoint.
1893 We need to step only T2, as if T1 is allowed to freely run,
1894 it can run past P, and if other threads are allowed to run,
1895 they can hit breakpoint at P+1, and nested hits of single-step
1896 breakpoints is not something we'd want -- that's complicated
1897 to support, and has no value. */
1898 resume_ptid = inferior_ptid;
1899 }
1900 else if ((step || singlestep_breakpoints_inserted_p)
1901 && tp->control.trap_expected)
1902 {
1903 /* We're allowing a thread to run past a breakpoint it has
1904 hit, by single-stepping the thread with the breakpoint
1905 removed. In which case, we need to single-step only this
1906 thread, and keep others stopped, as they can miss this
1907 breakpoint if allowed to run.
1908
1909 The current code actually removes all breakpoints when
1910 doing this, not just the one being stepped over, so if we
1911 let other threads run, we can actually miss any
1912 breakpoint, not just the one at PC. */
1913 resume_ptid = inferior_ptid;
1914 }
1915
1916 if (gdbarch_cannot_step_breakpoint (gdbarch))
1917 {
1918 /* Most targets can step a breakpoint instruction, thus
1919 executing it normally. But if this one cannot, just
1920 continue and we will hit it anyway. */
1921 if (step && breakpoint_inserted_here_p (aspace, pc))
1922 step = 0;
1923 }
1924
1925 if (debug_displaced
1926 && use_displaced_stepping (gdbarch)
1927 && tp->control.trap_expected)
1928 {
1929 struct regcache *resume_regcache = get_thread_regcache (resume_ptid);
1930 struct gdbarch *resume_gdbarch = get_regcache_arch (resume_regcache);
1931 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
1932 gdb_byte buf[4];
1933
1934 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
1935 paddress (resume_gdbarch, actual_pc));
1936 read_memory (actual_pc, buf, sizeof (buf));
1937 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
1938 }
1939
1940 if (tp->control.may_range_step)
1941 {
1942 /* If we're resuming a thread with the PC out of the step
1943 range, then we're doing some nested/finer run control
1944 operation, like stepping the thread out of the dynamic
1945 linker or the displaced stepping scratch pad. We
1946 shouldn't have allowed a range step then. */
1947 gdb_assert (pc_in_thread_step_range (pc, tp));
1948 }
1949
1950 /* Install inferior's terminal modes. */
1951 target_terminal_inferior ();
1952
1953 /* Avoid confusing the next resume, if the next stop/resume
1954 happens to apply to another thread. */
1955 tp->suspend.stop_signal = GDB_SIGNAL_0;
1956
1957 /* Advise target which signals may be handled silently. If we have
1958 removed breakpoints because we are stepping over one (which can
1959 happen only if we are not using displaced stepping), we need to
1960 receive all signals to avoid accidentally skipping a breakpoint
1961 during execution of a signal handler. */
1962 if ((step || singlestep_breakpoints_inserted_p)
1963 && tp->control.trap_expected
1964 && !use_displaced_stepping (gdbarch))
1965 target_pass_signals (0, NULL);
1966 else
1967 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
1968
1969 target_resume (resume_ptid, step, sig);
1970 }
1971
1972 discard_cleanups (old_cleanups);
1973 }
1974 \f
1975 /* Proceeding. */
1976
1977 /* Clear out all variables saying what to do when inferior is continued.
1978 First do this, then set the ones you want, then call `proceed'. */
1979
1980 static void
1981 clear_proceed_status_thread (struct thread_info *tp)
1982 {
1983 if (debug_infrun)
1984 fprintf_unfiltered (gdb_stdlog,
1985 "infrun: clear_proceed_status_thread (%s)\n",
1986 target_pid_to_str (tp->ptid));
1987
1988 tp->control.trap_expected = 0;
1989 tp->control.step_range_start = 0;
1990 tp->control.step_range_end = 0;
1991 tp->control.may_range_step = 0;
1992 tp->control.step_frame_id = null_frame_id;
1993 tp->control.step_stack_frame_id = null_frame_id;
1994 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
1995 tp->stop_requested = 0;
1996
1997 tp->control.stop_step = 0;
1998
1999 tp->control.proceed_to_finish = 0;
2000
2001 /* Discard any remaining commands or status from previous stop. */
2002 bpstat_clear (&tp->control.stop_bpstat);
2003 }
2004
2005 static int
2006 clear_proceed_status_callback (struct thread_info *tp, void *data)
2007 {
2008 if (is_exited (tp->ptid))
2009 return 0;
2010
2011 clear_proceed_status_thread (tp);
2012 return 0;
2013 }
2014
2015 void
2016 clear_proceed_status (void)
2017 {
2018 if (!non_stop)
2019 {
2020 /* In all-stop mode, delete the per-thread status of all
2021 threads, even if inferior_ptid is null_ptid, there may be
2022 threads on the list. E.g., we may be launching a new
2023 process, while selecting the executable. */
2024 iterate_over_threads (clear_proceed_status_callback, NULL);
2025 }
2026
2027 if (!ptid_equal (inferior_ptid, null_ptid))
2028 {
2029 struct inferior *inferior;
2030
2031 if (non_stop)
2032 {
2033 /* If in non-stop mode, only delete the per-thread status of
2034 the current thread. */
2035 clear_proceed_status_thread (inferior_thread ());
2036 }
2037
2038 inferior = current_inferior ();
2039 inferior->control.stop_soon = NO_STOP_QUIETLY;
2040 }
2041
2042 stop_after_trap = 0;
2043
2044 observer_notify_about_to_proceed ();
2045
2046 if (stop_registers)
2047 {
2048 regcache_xfree (stop_registers);
2049 stop_registers = NULL;
2050 }
2051 }
2052
2053 /* Check the current thread against the thread that reported the most recent
2054 event. If a step-over is required return TRUE and set the current thread
2055 to the old thread. Otherwise return FALSE.
2056
2057 This should be suitable for any targets that support threads. */
2058
2059 static int
2060 prepare_to_proceed (int step)
2061 {
2062 ptid_t wait_ptid;
2063 struct target_waitstatus wait_status;
2064 int schedlock_enabled;
2065
2066 /* With non-stop mode on, threads are always handled individually. */
2067 gdb_assert (! non_stop);
2068
2069 /* Get the last target status returned by target_wait(). */
2070 get_last_target_status (&wait_ptid, &wait_status);
2071
2072 /* Make sure we were stopped at a breakpoint. */
2073 if (wait_status.kind != TARGET_WAITKIND_STOPPED
2074 || (wait_status.value.sig != GDB_SIGNAL_TRAP
2075 && wait_status.value.sig != GDB_SIGNAL_ILL
2076 && wait_status.value.sig != GDB_SIGNAL_SEGV
2077 && wait_status.value.sig != GDB_SIGNAL_EMT))
2078 {
2079 return 0;
2080 }
2081
2082 schedlock_enabled = (scheduler_mode == schedlock_on
2083 || (scheduler_mode == schedlock_step
2084 && step));
2085
2086 /* Don't switch over to WAIT_PTID if scheduler locking is on. */
2087 if (schedlock_enabled)
2088 return 0;
2089
2090 /* Don't switch over if we're about to resume some other process
2091 other than WAIT_PTID's, and schedule-multiple is off. */
2092 if (!sched_multi
2093 && ptid_get_pid (wait_ptid) != ptid_get_pid (inferior_ptid))
2094 return 0;
2095
2096 /* Switched over from WAIT_PID. */
2097 if (!ptid_equal (wait_ptid, minus_one_ptid)
2098 && !ptid_equal (inferior_ptid, wait_ptid))
2099 {
2100 struct regcache *regcache = get_thread_regcache (wait_ptid);
2101
2102 if (breakpoint_here_p (get_regcache_aspace (regcache),
2103 regcache_read_pc (regcache)))
2104 {
2105 /* If stepping, remember current thread to switch back to. */
2106 if (step)
2107 deferred_step_ptid = inferior_ptid;
2108
2109 /* Switch back to WAIT_PID thread. */
2110 switch_to_thread (wait_ptid);
2111
2112 if (debug_infrun)
2113 fprintf_unfiltered (gdb_stdlog,
2114 "infrun: prepare_to_proceed (step=%d), "
2115 "switched to [%s]\n",
2116 step, target_pid_to_str (inferior_ptid));
2117
2118 /* We return 1 to indicate that there is a breakpoint here,
2119 so we need to step over it before continuing to avoid
2120 hitting it straight away. */
2121 return 1;
2122 }
2123 }
2124
2125 return 0;
2126 }
2127
2128 /* Basic routine for continuing the program in various fashions.
2129
2130 ADDR is the address to resume at, or -1 for resume where stopped.
2131 SIGGNAL is the signal to give it, or 0 for none,
2132 or -1 for act according to how it stopped.
2133 STEP is nonzero if should trap after one instruction.
2134 -1 means return after that and print nothing.
2135 You should probably set various step_... variables
2136 before calling here, if you are stepping.
2137
2138 You should call clear_proceed_status before calling proceed. */
2139
2140 void
2141 proceed (CORE_ADDR addr, enum gdb_signal siggnal, int step)
2142 {
2143 struct regcache *regcache;
2144 struct gdbarch *gdbarch;
2145 struct thread_info *tp;
2146 CORE_ADDR pc;
2147 struct address_space *aspace;
2148 /* GDB may force the inferior to step due to various reasons. */
2149 int force_step = 0;
2150
2151 /* If we're stopped at a fork/vfork, follow the branch set by the
2152 "set follow-fork-mode" command; otherwise, we'll just proceed
2153 resuming the current thread. */
2154 if (!follow_fork ())
2155 {
2156 /* The target for some reason decided not to resume. */
2157 normal_stop ();
2158 if (target_can_async_p ())
2159 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2160 return;
2161 }
2162
2163 /* We'll update this if & when we switch to a new thread. */
2164 previous_inferior_ptid = inferior_ptid;
2165
2166 regcache = get_current_regcache ();
2167 gdbarch = get_regcache_arch (regcache);
2168 aspace = get_regcache_aspace (regcache);
2169 pc = regcache_read_pc (regcache);
2170
2171 if (step > 0)
2172 step_start_function = find_pc_function (pc);
2173 if (step < 0)
2174 stop_after_trap = 1;
2175
2176 if (addr == (CORE_ADDR) -1)
2177 {
2178 if (pc == stop_pc && breakpoint_here_p (aspace, pc)
2179 && execution_direction != EXEC_REVERSE)
2180 /* There is a breakpoint at the address we will resume at,
2181 step one instruction before inserting breakpoints so that
2182 we do not stop right away (and report a second hit at this
2183 breakpoint).
2184
2185 Note, we don't do this in reverse, because we won't
2186 actually be executing the breakpoint insn anyway.
2187 We'll be (un-)executing the previous instruction. */
2188
2189 force_step = 1;
2190 else if (gdbarch_single_step_through_delay_p (gdbarch)
2191 && gdbarch_single_step_through_delay (gdbarch,
2192 get_current_frame ()))
2193 /* We stepped onto an instruction that needs to be stepped
2194 again before re-inserting the breakpoint, do so. */
2195 force_step = 1;
2196 }
2197 else
2198 {
2199 regcache_write_pc (regcache, addr);
2200 }
2201
2202 if (debug_infrun)
2203 fprintf_unfiltered (gdb_stdlog,
2204 "infrun: proceed (addr=%s, signal=%s, step=%d)\n",
2205 paddress (gdbarch, addr),
2206 gdb_signal_to_symbol_string (siggnal), step);
2207
2208 if (non_stop)
2209 /* In non-stop, each thread is handled individually. The context
2210 must already be set to the right thread here. */
2211 ;
2212 else
2213 {
2214 /* In a multi-threaded task we may select another thread and
2215 then continue or step.
2216
2217 But if the old thread was stopped at a breakpoint, it will
2218 immediately cause another breakpoint stop without any
2219 execution (i.e. it will report a breakpoint hit incorrectly).
2220 So we must step over it first.
2221
2222 prepare_to_proceed checks the current thread against the
2223 thread that reported the most recent event. If a step-over
2224 is required it returns TRUE and sets the current thread to
2225 the old thread. */
2226 if (prepare_to_proceed (step))
2227 force_step = 1;
2228 }
2229
2230 /* prepare_to_proceed may change the current thread. */
2231 tp = inferior_thread ();
2232
2233 if (force_step)
2234 {
2235 tp->control.trap_expected = 1;
2236 /* If displaced stepping is enabled, we can step over the
2237 breakpoint without hitting it, so leave all breakpoints
2238 inserted. Otherwise we need to disable all breakpoints, step
2239 one instruction, and then re-add them when that step is
2240 finished. */
2241 if (!use_displaced_stepping (gdbarch))
2242 remove_breakpoints ();
2243 }
2244
2245 /* We can insert breakpoints if we're not trying to step over one,
2246 or if we are stepping over one but we're using displaced stepping
2247 to do so. */
2248 if (! tp->control.trap_expected || use_displaced_stepping (gdbarch))
2249 insert_breakpoints ();
2250
2251 if (!non_stop)
2252 {
2253 /* Pass the last stop signal to the thread we're resuming,
2254 irrespective of whether the current thread is the thread that
2255 got the last event or not. This was historically GDB's
2256 behaviour before keeping a stop_signal per thread. */
2257
2258 struct thread_info *last_thread;
2259 ptid_t last_ptid;
2260 struct target_waitstatus last_status;
2261
2262 get_last_target_status (&last_ptid, &last_status);
2263 if (!ptid_equal (inferior_ptid, last_ptid)
2264 && !ptid_equal (last_ptid, null_ptid)
2265 && !ptid_equal (last_ptid, minus_one_ptid))
2266 {
2267 last_thread = find_thread_ptid (last_ptid);
2268 if (last_thread)
2269 {
2270 tp->suspend.stop_signal = last_thread->suspend.stop_signal;
2271 last_thread->suspend.stop_signal = GDB_SIGNAL_0;
2272 }
2273 }
2274 }
2275
2276 if (siggnal != GDB_SIGNAL_DEFAULT)
2277 tp->suspend.stop_signal = siggnal;
2278 /* If this signal should not be seen by program,
2279 give it zero. Used for debugging signals. */
2280 else if (!signal_program[tp->suspend.stop_signal])
2281 tp->suspend.stop_signal = GDB_SIGNAL_0;
2282
2283 annotate_starting ();
2284
2285 /* Make sure that output from GDB appears before output from the
2286 inferior. */
2287 gdb_flush (gdb_stdout);
2288
2289 /* Refresh prev_pc value just prior to resuming. This used to be
2290 done in stop_stepping, however, setting prev_pc there did not handle
2291 scenarios such as inferior function calls or returning from
2292 a function via the return command. In those cases, the prev_pc
2293 value was not set properly for subsequent commands. The prev_pc value
2294 is used to initialize the starting line number in the ecs. With an
2295 invalid value, the gdb next command ends up stopping at the position
2296 represented by the next line table entry past our start position.
2297 On platforms that generate one line table entry per line, this
2298 is not a problem. However, on the ia64, the compiler generates
2299 extraneous line table entries that do not increase the line number.
2300 When we issue the gdb next command on the ia64 after an inferior call
2301 or a return command, we often end up a few instructions forward, still
2302 within the original line we started.
2303
2304 An attempt was made to refresh the prev_pc at the same time the
2305 execution_control_state is initialized (for instance, just before
2306 waiting for an inferior event). But this approach did not work
2307 because of platforms that use ptrace, where the pc register cannot
2308 be read unless the inferior is stopped. At that point, we are not
2309 guaranteed the inferior is stopped and so the regcache_read_pc() call
2310 can fail. Setting the prev_pc value here ensures the value is updated
2311 correctly when the inferior is stopped. */
2312 tp->prev_pc = regcache_read_pc (get_current_regcache ());
2313
2314 /* Fill in with reasonable starting values. */
2315 init_thread_stepping_state (tp);
2316
2317 /* Reset to normal state. */
2318 init_infwait_state ();
2319
2320 /* Resume inferior. */
2321 resume (force_step || step || bpstat_should_step (),
2322 tp->suspend.stop_signal);
2323
2324 /* Wait for it to stop (if not standalone)
2325 and in any case decode why it stopped, and act accordingly. */
2326 /* Do this only if we are not using the event loop, or if the target
2327 does not support asynchronous execution. */
2328 if (!target_can_async_p ())
2329 {
2330 wait_for_inferior ();
2331 normal_stop ();
2332 }
2333 }
2334 \f
2335
2336 /* Start remote-debugging of a machine over a serial link. */
2337
2338 void
2339 start_remote (int from_tty)
2340 {
2341 struct inferior *inferior;
2342
2343 inferior = current_inferior ();
2344 inferior->control.stop_soon = STOP_QUIETLY_REMOTE;
2345
2346 /* Always go on waiting for the target, regardless of the mode. */
2347 /* FIXME: cagney/1999-09-23: At present it isn't possible to
2348 indicate to wait_for_inferior that a target should timeout if
2349 nothing is returned (instead of just blocking). Because of this,
2350 targets expecting an immediate response need to, internally, set
2351 things up so that the target_wait() is forced to eventually
2352 timeout. */
2353 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
2354 differentiate to its caller what the state of the target is after
2355 the initial open has been performed. Here we're assuming that
2356 the target has stopped. It should be possible to eventually have
2357 target_open() return to the caller an indication that the target
2358 is currently running and GDB state should be set to the same as
2359 for an async run. */
2360 wait_for_inferior ();
2361
2362 /* Now that the inferior has stopped, do any bookkeeping like
2363 loading shared libraries. We want to do this before normal_stop,
2364 so that the displayed frame is up to date. */
2365 post_create_inferior (&current_target, from_tty);
2366
2367 normal_stop ();
2368 }
2369
2370 /* Initialize static vars when a new inferior begins. */
2371
2372 void
2373 init_wait_for_inferior (void)
2374 {
2375 /* These are meaningless until the first time through wait_for_inferior. */
2376
2377 breakpoint_init_inferior (inf_starting);
2378
2379 clear_proceed_status ();
2380
2381 stepping_past_singlestep_breakpoint = 0;
2382 deferred_step_ptid = null_ptid;
2383
2384 target_last_wait_ptid = minus_one_ptid;
2385
2386 previous_inferior_ptid = inferior_ptid;
2387 init_infwait_state ();
2388
2389 /* Discard any skipped inlined frames. */
2390 clear_inline_frame_state (minus_one_ptid);
2391 }
2392
2393 \f
2394 /* This enum encodes possible reasons for doing a target_wait, so that
2395 wfi can call target_wait in one place. (Ultimately the call will be
2396 moved out of the infinite loop entirely.) */
2397
2398 enum infwait_states
2399 {
2400 infwait_normal_state,
2401 infwait_thread_hop_state,
2402 infwait_step_watch_state,
2403 infwait_nonstep_watch_state
2404 };
2405
2406 /* The PTID we'll do a target_wait on.*/
2407 ptid_t waiton_ptid;
2408
2409 /* Current inferior wait state. */
2410 static enum infwait_states infwait_state;
2411
2412 /* Data to be passed around while handling an event. This data is
2413 discarded between events. */
2414 struct execution_control_state
2415 {
2416 ptid_t ptid;
2417 /* The thread that got the event, if this was a thread event; NULL
2418 otherwise. */
2419 struct thread_info *event_thread;
2420
2421 struct target_waitstatus ws;
2422 int stop_func_filled_in;
2423 CORE_ADDR stop_func_start;
2424 CORE_ADDR stop_func_end;
2425 const char *stop_func_name;
2426 int wait_some_more;
2427
2428 /* We were in infwait_step_watch_state or
2429 infwait_nonstep_watch_state state, and the thread reported an
2430 event. */
2431 int stepped_after_stopped_by_watchpoint;
2432 };
2433
2434 static void handle_inferior_event (struct execution_control_state *ecs);
2435
2436 static void handle_step_into_function (struct gdbarch *gdbarch,
2437 struct execution_control_state *ecs);
2438 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
2439 struct execution_control_state *ecs);
2440 static void handle_signal_stop (struct execution_control_state *ecs);
2441 static void check_exception_resume (struct execution_control_state *,
2442 struct frame_info *);
2443
2444 static void stop_stepping (struct execution_control_state *ecs);
2445 static void prepare_to_wait (struct execution_control_state *ecs);
2446 static void keep_going (struct execution_control_state *ecs);
2447 static void process_event_stop_test (struct execution_control_state *ecs);
2448 static int switch_back_to_stepped_thread (struct execution_control_state *ecs);
2449
2450 /* Callback for iterate over threads. If the thread is stopped, but
2451 the user/frontend doesn't know about that yet, go through
2452 normal_stop, as if the thread had just stopped now. ARG points at
2453 a ptid. If PTID is MINUS_ONE_PTID, applies to all threads. If
2454 ptid_is_pid(PTID) is true, applies to all threads of the process
2455 pointed at by PTID. Otherwise, apply only to the thread pointed by
2456 PTID. */
2457
2458 static int
2459 infrun_thread_stop_requested_callback (struct thread_info *info, void *arg)
2460 {
2461 ptid_t ptid = * (ptid_t *) arg;
2462
2463 if ((ptid_equal (info->ptid, ptid)
2464 || ptid_equal (minus_one_ptid, ptid)
2465 || (ptid_is_pid (ptid)
2466 && ptid_get_pid (ptid) == ptid_get_pid (info->ptid)))
2467 && is_running (info->ptid)
2468 && !is_executing (info->ptid))
2469 {
2470 struct cleanup *old_chain;
2471 struct execution_control_state ecss;
2472 struct execution_control_state *ecs = &ecss;
2473
2474 memset (ecs, 0, sizeof (*ecs));
2475
2476 old_chain = make_cleanup_restore_current_thread ();
2477
2478 /* Go through handle_inferior_event/normal_stop, so we always
2479 have consistent output as if the stop event had been
2480 reported. */
2481 ecs->ptid = info->ptid;
2482 ecs->event_thread = find_thread_ptid (info->ptid);
2483 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
2484 ecs->ws.value.sig = GDB_SIGNAL_0;
2485
2486 handle_inferior_event (ecs);
2487
2488 if (!ecs->wait_some_more)
2489 {
2490 struct thread_info *tp;
2491
2492 normal_stop ();
2493
2494 /* Finish off the continuations. */
2495 tp = inferior_thread ();
2496 do_all_intermediate_continuations_thread (tp, 1);
2497 do_all_continuations_thread (tp, 1);
2498 }
2499
2500 do_cleanups (old_chain);
2501 }
2502
2503 return 0;
2504 }
2505
2506 /* This function is attached as a "thread_stop_requested" observer.
2507 Cleanup local state that assumed the PTID was to be resumed, and
2508 report the stop to the frontend. */
2509
2510 static void
2511 infrun_thread_stop_requested (ptid_t ptid)
2512 {
2513 struct displaced_step_inferior_state *displaced;
2514
2515 /* PTID was requested to stop. Remove it from the displaced
2516 stepping queue, so we don't try to resume it automatically. */
2517
2518 for (displaced = displaced_step_inferior_states;
2519 displaced;
2520 displaced = displaced->next)
2521 {
2522 struct displaced_step_request *it, **prev_next_p;
2523
2524 it = displaced->step_request_queue;
2525 prev_next_p = &displaced->step_request_queue;
2526 while (it)
2527 {
2528 if (ptid_match (it->ptid, ptid))
2529 {
2530 *prev_next_p = it->next;
2531 it->next = NULL;
2532 xfree (it);
2533 }
2534 else
2535 {
2536 prev_next_p = &it->next;
2537 }
2538
2539 it = *prev_next_p;
2540 }
2541 }
2542
2543 iterate_over_threads (infrun_thread_stop_requested_callback, &ptid);
2544 }
2545
2546 static void
2547 infrun_thread_thread_exit (struct thread_info *tp, int silent)
2548 {
2549 if (ptid_equal (target_last_wait_ptid, tp->ptid))
2550 nullify_last_target_wait_ptid ();
2551 }
2552
2553 /* Callback for iterate_over_threads. */
2554
2555 static int
2556 delete_step_resume_breakpoint_callback (struct thread_info *info, void *data)
2557 {
2558 if (is_exited (info->ptid))
2559 return 0;
2560
2561 delete_step_resume_breakpoint (info);
2562 delete_exception_resume_breakpoint (info);
2563 return 0;
2564 }
2565
2566 /* In all-stop, delete the step resume breakpoint of any thread that
2567 had one. In non-stop, delete the step resume breakpoint of the
2568 thread that just stopped. */
2569
2570 static void
2571 delete_step_thread_step_resume_breakpoint (void)
2572 {
2573 if (!target_has_execution
2574 || ptid_equal (inferior_ptid, null_ptid))
2575 /* If the inferior has exited, we have already deleted the step
2576 resume breakpoints out of GDB's lists. */
2577 return;
2578
2579 if (non_stop)
2580 {
2581 /* If in non-stop mode, only delete the step-resume or
2582 longjmp-resume breakpoint of the thread that just stopped
2583 stepping. */
2584 struct thread_info *tp = inferior_thread ();
2585
2586 delete_step_resume_breakpoint (tp);
2587 delete_exception_resume_breakpoint (tp);
2588 }
2589 else
2590 /* In all-stop mode, delete all step-resume and longjmp-resume
2591 breakpoints of any thread that had them. */
2592 iterate_over_threads (delete_step_resume_breakpoint_callback, NULL);
2593 }
2594
2595 /* A cleanup wrapper. */
2596
2597 static void
2598 delete_step_thread_step_resume_breakpoint_cleanup (void *arg)
2599 {
2600 delete_step_thread_step_resume_breakpoint ();
2601 }
2602
2603 /* Pretty print the results of target_wait, for debugging purposes. */
2604
2605 static void
2606 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
2607 const struct target_waitstatus *ws)
2608 {
2609 char *status_string = target_waitstatus_to_string (ws);
2610 struct ui_file *tmp_stream = mem_fileopen ();
2611 char *text;
2612
2613 /* The text is split over several lines because it was getting too long.
2614 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
2615 output as a unit; we want only one timestamp printed if debug_timestamp
2616 is set. */
2617
2618 fprintf_unfiltered (tmp_stream,
2619 "infrun: target_wait (%d", ptid_get_pid (waiton_ptid));
2620 if (ptid_get_pid (waiton_ptid) != -1)
2621 fprintf_unfiltered (tmp_stream,
2622 " [%s]", target_pid_to_str (waiton_ptid));
2623 fprintf_unfiltered (tmp_stream, ", status) =\n");
2624 fprintf_unfiltered (tmp_stream,
2625 "infrun: %d [%s],\n",
2626 ptid_get_pid (result_ptid),
2627 target_pid_to_str (result_ptid));
2628 fprintf_unfiltered (tmp_stream,
2629 "infrun: %s\n",
2630 status_string);
2631
2632 text = ui_file_xstrdup (tmp_stream, NULL);
2633
2634 /* This uses %s in part to handle %'s in the text, but also to avoid
2635 a gcc error: the format attribute requires a string literal. */
2636 fprintf_unfiltered (gdb_stdlog, "%s", text);
2637
2638 xfree (status_string);
2639 xfree (text);
2640 ui_file_delete (tmp_stream);
2641 }
2642
2643 /* Prepare and stabilize the inferior for detaching it. E.g.,
2644 detaching while a thread is displaced stepping is a recipe for
2645 crashing it, as nothing would readjust the PC out of the scratch
2646 pad. */
2647
2648 void
2649 prepare_for_detach (void)
2650 {
2651 struct inferior *inf = current_inferior ();
2652 ptid_t pid_ptid = pid_to_ptid (inf->pid);
2653 struct cleanup *old_chain_1;
2654 struct displaced_step_inferior_state *displaced;
2655
2656 displaced = get_displaced_stepping_state (inf->pid);
2657
2658 /* Is any thread of this process displaced stepping? If not,
2659 there's nothing else to do. */
2660 if (displaced == NULL || ptid_equal (displaced->step_ptid, null_ptid))
2661 return;
2662
2663 if (debug_infrun)
2664 fprintf_unfiltered (gdb_stdlog,
2665 "displaced-stepping in-process while detaching");
2666
2667 old_chain_1 = make_cleanup_restore_integer (&inf->detaching);
2668 inf->detaching = 1;
2669
2670 while (!ptid_equal (displaced->step_ptid, null_ptid))
2671 {
2672 struct cleanup *old_chain_2;
2673 struct execution_control_state ecss;
2674 struct execution_control_state *ecs;
2675
2676 ecs = &ecss;
2677 memset (ecs, 0, sizeof (*ecs));
2678
2679 overlay_cache_invalid = 1;
2680
2681 if (deprecated_target_wait_hook)
2682 ecs->ptid = deprecated_target_wait_hook (pid_ptid, &ecs->ws, 0);
2683 else
2684 ecs->ptid = target_wait (pid_ptid, &ecs->ws, 0);
2685
2686 if (debug_infrun)
2687 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
2688
2689 /* If an error happens while handling the event, propagate GDB's
2690 knowledge of the executing state to the frontend/user running
2691 state. */
2692 old_chain_2 = make_cleanup (finish_thread_state_cleanup,
2693 &minus_one_ptid);
2694
2695 /* Now figure out what to do with the result of the result. */
2696 handle_inferior_event (ecs);
2697
2698 /* No error, don't finish the state yet. */
2699 discard_cleanups (old_chain_2);
2700
2701 /* Breakpoints and watchpoints are not installed on the target
2702 at this point, and signals are passed directly to the
2703 inferior, so this must mean the process is gone. */
2704 if (!ecs->wait_some_more)
2705 {
2706 discard_cleanups (old_chain_1);
2707 error (_("Program exited while detaching"));
2708 }
2709 }
2710
2711 discard_cleanups (old_chain_1);
2712 }
2713
2714 /* Wait for control to return from inferior to debugger.
2715
2716 If inferior gets a signal, we may decide to start it up again
2717 instead of returning. That is why there is a loop in this function.
2718 When this function actually returns it means the inferior
2719 should be left stopped and GDB should read more commands. */
2720
2721 void
2722 wait_for_inferior (void)
2723 {
2724 struct cleanup *old_cleanups;
2725
2726 if (debug_infrun)
2727 fprintf_unfiltered
2728 (gdb_stdlog, "infrun: wait_for_inferior ()\n");
2729
2730 old_cleanups =
2731 make_cleanup (delete_step_thread_step_resume_breakpoint_cleanup, NULL);
2732
2733 while (1)
2734 {
2735 struct execution_control_state ecss;
2736 struct execution_control_state *ecs = &ecss;
2737 struct cleanup *old_chain;
2738
2739 memset (ecs, 0, sizeof (*ecs));
2740
2741 overlay_cache_invalid = 1;
2742
2743 if (deprecated_target_wait_hook)
2744 ecs->ptid = deprecated_target_wait_hook (waiton_ptid, &ecs->ws, 0);
2745 else
2746 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, 0);
2747
2748 if (debug_infrun)
2749 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2750
2751 /* If an error happens while handling the event, propagate GDB's
2752 knowledge of the executing state to the frontend/user running
2753 state. */
2754 old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2755
2756 /* Now figure out what to do with the result of the result. */
2757 handle_inferior_event (ecs);
2758
2759 /* No error, don't finish the state yet. */
2760 discard_cleanups (old_chain);
2761
2762 if (!ecs->wait_some_more)
2763 break;
2764 }
2765
2766 do_cleanups (old_cleanups);
2767 }
2768
2769 /* Asynchronous version of wait_for_inferior. It is called by the
2770 event loop whenever a change of state is detected on the file
2771 descriptor corresponding to the target. It can be called more than
2772 once to complete a single execution command. In such cases we need
2773 to keep the state in a global variable ECSS. If it is the last time
2774 that this function is called for a single execution command, then
2775 report to the user that the inferior has stopped, and do the
2776 necessary cleanups. */
2777
2778 void
2779 fetch_inferior_event (void *client_data)
2780 {
2781 struct execution_control_state ecss;
2782 struct execution_control_state *ecs = &ecss;
2783 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
2784 struct cleanup *ts_old_chain;
2785 int was_sync = sync_execution;
2786 int cmd_done = 0;
2787
2788 memset (ecs, 0, sizeof (*ecs));
2789
2790 /* We're handling a live event, so make sure we're doing live
2791 debugging. If we're looking at traceframes while the target is
2792 running, we're going to need to get back to that mode after
2793 handling the event. */
2794 if (non_stop)
2795 {
2796 make_cleanup_restore_current_traceframe ();
2797 set_current_traceframe (-1);
2798 }
2799
2800 if (non_stop)
2801 /* In non-stop mode, the user/frontend should not notice a thread
2802 switch due to internal events. Make sure we reverse to the
2803 user selected thread and frame after handling the event and
2804 running any breakpoint commands. */
2805 make_cleanup_restore_current_thread ();
2806
2807 overlay_cache_invalid = 1;
2808
2809 make_cleanup_restore_integer (&execution_direction);
2810 execution_direction = target_execution_direction ();
2811
2812 if (deprecated_target_wait_hook)
2813 ecs->ptid =
2814 deprecated_target_wait_hook (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2815 else
2816 ecs->ptid = target_wait (waiton_ptid, &ecs->ws, TARGET_WNOHANG);
2817
2818 if (debug_infrun)
2819 print_target_wait_results (waiton_ptid, ecs->ptid, &ecs->ws);
2820
2821 /* If an error happens while handling the event, propagate GDB's
2822 knowledge of the executing state to the frontend/user running
2823 state. */
2824 if (!non_stop)
2825 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
2826 else
2827 ts_old_chain = make_cleanup (finish_thread_state_cleanup, &ecs->ptid);
2828
2829 /* Get executed before make_cleanup_restore_current_thread above to apply
2830 still for the thread which has thrown the exception. */
2831 make_bpstat_clear_actions_cleanup ();
2832
2833 /* Now figure out what to do with the result of the result. */
2834 handle_inferior_event (ecs);
2835
2836 if (!ecs->wait_some_more)
2837 {
2838 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
2839
2840 delete_step_thread_step_resume_breakpoint ();
2841
2842 /* We may not find an inferior if this was a process exit. */
2843 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
2844 normal_stop ();
2845
2846 if (target_has_execution
2847 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED
2848 && ecs->ws.kind != TARGET_WAITKIND_EXITED
2849 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
2850 && ecs->event_thread->step_multi
2851 && ecs->event_thread->control.stop_step)
2852 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
2853 else
2854 {
2855 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
2856 cmd_done = 1;
2857 }
2858 }
2859
2860 /* No error, don't finish the thread states yet. */
2861 discard_cleanups (ts_old_chain);
2862
2863 /* Revert thread and frame. */
2864 do_cleanups (old_chain);
2865
2866 /* If the inferior was in sync execution mode, and now isn't,
2867 restore the prompt (a synchronous execution command has finished,
2868 and we're ready for input). */
2869 if (interpreter_async && was_sync && !sync_execution)
2870 display_gdb_prompt (0);
2871
2872 if (cmd_done
2873 && !was_sync
2874 && exec_done_display_p
2875 && (ptid_equal (inferior_ptid, null_ptid)
2876 || !is_running (inferior_ptid)))
2877 printf_unfiltered (_("completed.\n"));
2878 }
2879
2880 /* Record the frame and location we're currently stepping through. */
2881 void
2882 set_step_info (struct frame_info *frame, struct symtab_and_line sal)
2883 {
2884 struct thread_info *tp = inferior_thread ();
2885
2886 tp->control.step_frame_id = get_frame_id (frame);
2887 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
2888
2889 tp->current_symtab = sal.symtab;
2890 tp->current_line = sal.line;
2891 }
2892
2893 /* Clear context switchable stepping state. */
2894
2895 void
2896 init_thread_stepping_state (struct thread_info *tss)
2897 {
2898 tss->stepping_over_breakpoint = 0;
2899 tss->step_after_step_resume_breakpoint = 0;
2900 }
2901
2902 /* Return the cached copy of the last pid/waitstatus returned by
2903 target_wait()/deprecated_target_wait_hook(). The data is actually
2904 cached by handle_inferior_event(), which gets called immediately
2905 after target_wait()/deprecated_target_wait_hook(). */
2906
2907 void
2908 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
2909 {
2910 *ptidp = target_last_wait_ptid;
2911 *status = target_last_waitstatus;
2912 }
2913
2914 void
2915 nullify_last_target_wait_ptid (void)
2916 {
2917 target_last_wait_ptid = minus_one_ptid;
2918 }
2919
2920 /* Switch thread contexts. */
2921
2922 static void
2923 context_switch (ptid_t ptid)
2924 {
2925 if (debug_infrun && !ptid_equal (ptid, inferior_ptid))
2926 {
2927 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
2928 target_pid_to_str (inferior_ptid));
2929 fprintf_unfiltered (gdb_stdlog, "to %s\n",
2930 target_pid_to_str (ptid));
2931 }
2932
2933 switch_to_thread (ptid);
2934 }
2935
2936 static void
2937 adjust_pc_after_break (struct execution_control_state *ecs)
2938 {
2939 struct regcache *regcache;
2940 struct gdbarch *gdbarch;
2941 struct address_space *aspace;
2942 CORE_ADDR breakpoint_pc;
2943
2944 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
2945 we aren't, just return.
2946
2947 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
2948 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
2949 implemented by software breakpoints should be handled through the normal
2950 breakpoint layer.
2951
2952 NOTE drow/2004-01-31: On some targets, breakpoints may generate
2953 different signals (SIGILL or SIGEMT for instance), but it is less
2954 clear where the PC is pointing afterwards. It may not match
2955 gdbarch_decr_pc_after_break. I don't know any specific target that
2956 generates these signals at breakpoints (the code has been in GDB since at
2957 least 1992) so I can not guess how to handle them here.
2958
2959 In earlier versions of GDB, a target with
2960 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
2961 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
2962 target with both of these set in GDB history, and it seems unlikely to be
2963 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
2964
2965 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
2966 return;
2967
2968 if (ecs->ws.value.sig != GDB_SIGNAL_TRAP)
2969 return;
2970
2971 /* In reverse execution, when a breakpoint is hit, the instruction
2972 under it has already been de-executed. The reported PC always
2973 points at the breakpoint address, so adjusting it further would
2974 be wrong. E.g., consider this case on a decr_pc_after_break == 1
2975 architecture:
2976
2977 B1 0x08000000 : INSN1
2978 B2 0x08000001 : INSN2
2979 0x08000002 : INSN3
2980 PC -> 0x08000003 : INSN4
2981
2982 Say you're stopped at 0x08000003 as above. Reverse continuing
2983 from that point should hit B2 as below. Reading the PC when the
2984 SIGTRAP is reported should read 0x08000001 and INSN2 should have
2985 been de-executed already.
2986
2987 B1 0x08000000 : INSN1
2988 B2 PC -> 0x08000001 : INSN2
2989 0x08000002 : INSN3
2990 0x08000003 : INSN4
2991
2992 We can't apply the same logic as for forward execution, because
2993 we would wrongly adjust the PC to 0x08000000, since there's a
2994 breakpoint at PC - 1. We'd then report a hit on B1, although
2995 INSN1 hadn't been de-executed yet. Doing nothing is the correct
2996 behaviour. */
2997 if (execution_direction == EXEC_REVERSE)
2998 return;
2999
3000 /* If this target does not decrement the PC after breakpoints, then
3001 we have nothing to do. */
3002 regcache = get_thread_regcache (ecs->ptid);
3003 gdbarch = get_regcache_arch (regcache);
3004 if (gdbarch_decr_pc_after_break (gdbarch) == 0)
3005 return;
3006
3007 aspace = get_regcache_aspace (regcache);
3008
3009 /* Find the location where (if we've hit a breakpoint) the
3010 breakpoint would be. */
3011 breakpoint_pc = regcache_read_pc (regcache)
3012 - gdbarch_decr_pc_after_break (gdbarch);
3013
3014 /* Check whether there actually is a software breakpoint inserted at
3015 that location.
3016
3017 If in non-stop mode, a race condition is possible where we've
3018 removed a breakpoint, but stop events for that breakpoint were
3019 already queued and arrive later. To suppress those spurious
3020 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
3021 and retire them after a number of stop events are reported. */
3022 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
3023 || (non_stop && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
3024 {
3025 struct cleanup *old_cleanups = make_cleanup (null_cleanup, NULL);
3026
3027 if (RECORD_IS_USED)
3028 record_full_gdb_operation_disable_set ();
3029
3030 /* When using hardware single-step, a SIGTRAP is reported for both
3031 a completed single-step and a software breakpoint. Need to
3032 differentiate between the two, as the latter needs adjusting
3033 but the former does not.
3034
3035 The SIGTRAP can be due to a completed hardware single-step only if
3036 - we didn't insert software single-step breakpoints
3037 - the thread to be examined is still the current thread
3038 - this thread is currently being stepped
3039
3040 If any of these events did not occur, we must have stopped due
3041 to hitting a software breakpoint, and have to back up to the
3042 breakpoint address.
3043
3044 As a special case, we could have hardware single-stepped a
3045 software breakpoint. In this case (prev_pc == breakpoint_pc),
3046 we also need to back up to the breakpoint address. */
3047
3048 if (singlestep_breakpoints_inserted_p
3049 || !ptid_equal (ecs->ptid, inferior_ptid)
3050 || !currently_stepping (ecs->event_thread)
3051 || ecs->event_thread->prev_pc == breakpoint_pc)
3052 regcache_write_pc (regcache, breakpoint_pc);
3053
3054 do_cleanups (old_cleanups);
3055 }
3056 }
3057
3058 static void
3059 init_infwait_state (void)
3060 {
3061 waiton_ptid = pid_to_ptid (-1);
3062 infwait_state = infwait_normal_state;
3063 }
3064
3065 static int
3066 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
3067 {
3068 for (frame = get_prev_frame (frame);
3069 frame != NULL;
3070 frame = get_prev_frame (frame))
3071 {
3072 if (frame_id_eq (get_frame_id (frame), step_frame_id))
3073 return 1;
3074 if (get_frame_type (frame) != INLINE_FRAME)
3075 break;
3076 }
3077
3078 return 0;
3079 }
3080
3081 /* Auxiliary function that handles syscall entry/return events.
3082 It returns 1 if the inferior should keep going (and GDB
3083 should ignore the event), or 0 if the event deserves to be
3084 processed. */
3085
3086 static int
3087 handle_syscall_event (struct execution_control_state *ecs)
3088 {
3089 struct regcache *regcache;
3090 int syscall_number;
3091
3092 if (!ptid_equal (ecs->ptid, inferior_ptid))
3093 context_switch (ecs->ptid);
3094
3095 regcache = get_thread_regcache (ecs->ptid);
3096 syscall_number = ecs->ws.value.syscall_number;
3097 stop_pc = regcache_read_pc (regcache);
3098
3099 if (catch_syscall_enabled () > 0
3100 && catching_syscall_number (syscall_number) > 0)
3101 {
3102 if (debug_infrun)
3103 fprintf_unfiltered (gdb_stdlog, "infrun: syscall number = '%d'\n",
3104 syscall_number);
3105
3106 ecs->event_thread->control.stop_bpstat
3107 = bpstat_stop_status (get_regcache_aspace (regcache),
3108 stop_pc, ecs->ptid, &ecs->ws);
3109
3110 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3111 {
3112 /* Catchpoint hit. */
3113 return 0;
3114 }
3115 }
3116
3117 /* If no catchpoint triggered for this, then keep going. */
3118 keep_going (ecs);
3119 return 1;
3120 }
3121
3122 /* Lazily fill in the execution_control_state's stop_func_* fields. */
3123
3124 static void
3125 fill_in_stop_func (struct gdbarch *gdbarch,
3126 struct execution_control_state *ecs)
3127 {
3128 if (!ecs->stop_func_filled_in)
3129 {
3130 /* Don't care about return value; stop_func_start and stop_func_name
3131 will both be 0 if it doesn't work. */
3132 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
3133 &ecs->stop_func_start, &ecs->stop_func_end);
3134 ecs->stop_func_start
3135 += gdbarch_deprecated_function_start_offset (gdbarch);
3136
3137 ecs->stop_func_filled_in = 1;
3138 }
3139 }
3140
3141
3142 /* Return the STOP_SOON field of the inferior pointed at by PTID. */
3143
3144 static enum stop_kind
3145 get_inferior_stop_soon (ptid_t ptid)
3146 {
3147 struct inferior *inf = find_inferior_pid (ptid_get_pid (ptid));
3148
3149 gdb_assert (inf != NULL);
3150 return inf->control.stop_soon;
3151 }
3152
3153 /* Given an execution control state that has been freshly filled in by
3154 an event from the inferior, figure out what it means and take
3155 appropriate action.
3156
3157 The alternatives are:
3158
3159 1) stop_stepping and return; to really stop and return to the
3160 debugger.
3161
3162 2) keep_going and return; to wait for the next event (set
3163 ecs->event_thread->stepping_over_breakpoint to 1 to single step
3164 once). */
3165
3166 static void
3167 handle_inferior_event (struct execution_control_state *ecs)
3168 {
3169 enum stop_kind stop_soon;
3170
3171 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
3172 {
3173 /* We had an event in the inferior, but we are not interested in
3174 handling it at this level. The lower layers have already
3175 done what needs to be done, if anything.
3176
3177 One of the possible circumstances for this is when the
3178 inferior produces output for the console. The inferior has
3179 not stopped, and we are ignoring the event. Another possible
3180 circumstance is any event which the lower level knows will be
3181 reported multiple times without an intervening resume. */
3182 if (debug_infrun)
3183 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
3184 prepare_to_wait (ecs);
3185 return;
3186 }
3187
3188 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
3189 && target_can_async_p () && !sync_execution)
3190 {
3191 /* There were no unwaited-for children left in the target, but,
3192 we're not synchronously waiting for events either. Just
3193 ignore. Otherwise, if we were running a synchronous
3194 execution command, we need to cancel it and give the user
3195 back the terminal. */
3196 if (debug_infrun)
3197 fprintf_unfiltered (gdb_stdlog,
3198 "infrun: TARGET_WAITKIND_NO_RESUMED (ignoring)\n");
3199 prepare_to_wait (ecs);
3200 return;
3201 }
3202
3203 /* Cache the last pid/waitstatus. */
3204 target_last_wait_ptid = ecs->ptid;
3205 target_last_waitstatus = ecs->ws;
3206
3207 /* Always clear state belonging to the previous time we stopped. */
3208 stop_stack_dummy = STOP_NONE;
3209
3210 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
3211 {
3212 /* No unwaited-for children left. IOW, all resumed children
3213 have exited. */
3214 if (debug_infrun)
3215 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_RESUMED\n");
3216
3217 stop_print_frame = 0;
3218 stop_stepping (ecs);
3219 return;
3220 }
3221
3222 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
3223 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
3224 {
3225 ecs->event_thread = find_thread_ptid (ecs->ptid);
3226 /* If it's a new thread, add it to the thread database. */
3227 if (ecs->event_thread == NULL)
3228 ecs->event_thread = add_thread (ecs->ptid);
3229
3230 /* Disable range stepping. If the next step request could use a
3231 range, this will be end up re-enabled then. */
3232 ecs->event_thread->control.may_range_step = 0;
3233 }
3234
3235 /* Dependent on valid ECS->EVENT_THREAD. */
3236 adjust_pc_after_break (ecs);
3237
3238 /* Dependent on the current PC value modified by adjust_pc_after_break. */
3239 reinit_frame_cache ();
3240
3241 breakpoint_retire_moribund ();
3242
3243 /* First, distinguish signals caused by the debugger from signals
3244 that have to do with the program's own actions. Note that
3245 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
3246 on the operating system version. Here we detect when a SIGILL or
3247 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
3248 something similar for SIGSEGV, since a SIGSEGV will be generated
3249 when we're trying to execute a breakpoint instruction on a
3250 non-executable stack. This happens for call dummy breakpoints
3251 for architectures like SPARC that place call dummies on the
3252 stack. */
3253 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
3254 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
3255 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
3256 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
3257 {
3258 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3259
3260 if (breakpoint_inserted_here_p (get_regcache_aspace (regcache),
3261 regcache_read_pc (regcache)))
3262 {
3263 if (debug_infrun)
3264 fprintf_unfiltered (gdb_stdlog,
3265 "infrun: Treating signal as SIGTRAP\n");
3266 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
3267 }
3268 }
3269
3270 /* Mark the non-executing threads accordingly. In all-stop, all
3271 threads of all processes are stopped when we get any event
3272 reported. In non-stop mode, only the event thread stops. If
3273 we're handling a process exit in non-stop mode, there's nothing
3274 to do, as threads of the dead process are gone, and threads of
3275 any other process were left running. */
3276 if (!non_stop)
3277 set_executing (minus_one_ptid, 0);
3278 else if (ecs->ws.kind != TARGET_WAITKIND_SIGNALLED
3279 && ecs->ws.kind != TARGET_WAITKIND_EXITED)
3280 set_executing (ecs->ptid, 0);
3281
3282 switch (infwait_state)
3283 {
3284 case infwait_thread_hop_state:
3285 if (debug_infrun)
3286 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
3287 break;
3288
3289 case infwait_normal_state:
3290 if (debug_infrun)
3291 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
3292 break;
3293
3294 case infwait_step_watch_state:
3295 if (debug_infrun)
3296 fprintf_unfiltered (gdb_stdlog,
3297 "infrun: infwait_step_watch_state\n");
3298
3299 ecs->stepped_after_stopped_by_watchpoint = 1;
3300 break;
3301
3302 case infwait_nonstep_watch_state:
3303 if (debug_infrun)
3304 fprintf_unfiltered (gdb_stdlog,
3305 "infrun: infwait_nonstep_watch_state\n");
3306 insert_breakpoints ();
3307
3308 /* FIXME-maybe: is this cleaner than setting a flag? Does it
3309 handle things like signals arriving and other things happening
3310 in combination correctly? */
3311 ecs->stepped_after_stopped_by_watchpoint = 1;
3312 break;
3313
3314 default:
3315 internal_error (__FILE__, __LINE__, _("bad switch"));
3316 }
3317
3318 infwait_state = infwait_normal_state;
3319 waiton_ptid = pid_to_ptid (-1);
3320
3321 switch (ecs->ws.kind)
3322 {
3323 case TARGET_WAITKIND_LOADED:
3324 if (debug_infrun)
3325 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
3326 if (!ptid_equal (ecs->ptid, inferior_ptid))
3327 context_switch (ecs->ptid);
3328 /* Ignore gracefully during startup of the inferior, as it might
3329 be the shell which has just loaded some objects, otherwise
3330 add the symbols for the newly loaded objects. Also ignore at
3331 the beginning of an attach or remote session; we will query
3332 the full list of libraries once the connection is
3333 established. */
3334
3335 stop_soon = get_inferior_stop_soon (ecs->ptid);
3336 if (stop_soon == NO_STOP_QUIETLY)
3337 {
3338 struct regcache *regcache;
3339
3340 regcache = get_thread_regcache (ecs->ptid);
3341
3342 handle_solib_event ();
3343
3344 ecs->event_thread->control.stop_bpstat
3345 = bpstat_stop_status (get_regcache_aspace (regcache),
3346 stop_pc, ecs->ptid, &ecs->ws);
3347
3348 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3349 {
3350 /* A catchpoint triggered. */
3351 process_event_stop_test (ecs);
3352 return;
3353 }
3354
3355 /* If requested, stop when the dynamic linker notifies
3356 gdb of events. This allows the user to get control
3357 and place breakpoints in initializer routines for
3358 dynamically loaded objects (among other things). */
3359 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3360 if (stop_on_solib_events)
3361 {
3362 /* Make sure we print "Stopped due to solib-event" in
3363 normal_stop. */
3364 stop_print_frame = 1;
3365
3366 stop_stepping (ecs);
3367 return;
3368 }
3369 }
3370
3371 /* If we are skipping through a shell, or through shared library
3372 loading that we aren't interested in, resume the program. If
3373 we're running the program normally, also resume. */
3374 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
3375 {
3376 /* Loading of shared libraries might have changed breakpoint
3377 addresses. Make sure new breakpoints are inserted. */
3378 if (stop_soon == NO_STOP_QUIETLY
3379 && !breakpoints_always_inserted_mode ())
3380 insert_breakpoints ();
3381 resume (0, GDB_SIGNAL_0);
3382 prepare_to_wait (ecs);
3383 return;
3384 }
3385
3386 /* But stop if we're attaching or setting up a remote
3387 connection. */
3388 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
3389 || stop_soon == STOP_QUIETLY_REMOTE)
3390 {
3391 if (debug_infrun)
3392 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
3393 stop_stepping (ecs);
3394 return;
3395 }
3396
3397 internal_error (__FILE__, __LINE__,
3398 _("unhandled stop_soon: %d"), (int) stop_soon);
3399
3400 case TARGET_WAITKIND_SPURIOUS:
3401 if (debug_infrun)
3402 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
3403 if (!ptid_equal (ecs->ptid, inferior_ptid))
3404 context_switch (ecs->ptid);
3405 resume (0, GDB_SIGNAL_0);
3406 prepare_to_wait (ecs);
3407 return;
3408
3409 case TARGET_WAITKIND_EXITED:
3410 case TARGET_WAITKIND_SIGNALLED:
3411 if (debug_infrun)
3412 {
3413 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3414 fprintf_unfiltered (gdb_stdlog,
3415 "infrun: TARGET_WAITKIND_EXITED\n");
3416 else
3417 fprintf_unfiltered (gdb_stdlog,
3418 "infrun: TARGET_WAITKIND_SIGNALLED\n");
3419 }
3420
3421 inferior_ptid = ecs->ptid;
3422 set_current_inferior (find_inferior_pid (ptid_get_pid (ecs->ptid)));
3423 set_current_program_space (current_inferior ()->pspace);
3424 handle_vfork_child_exec_or_exit (0);
3425 target_terminal_ours (); /* Must do this before mourn anyway. */
3426
3427 /* Clearing any previous state of convenience variables. */
3428 clear_exit_convenience_vars ();
3429
3430 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
3431 {
3432 /* Record the exit code in the convenience variable $_exitcode, so
3433 that the user can inspect this again later. */
3434 set_internalvar_integer (lookup_internalvar ("_exitcode"),
3435 (LONGEST) ecs->ws.value.integer);
3436
3437 /* Also record this in the inferior itself. */
3438 current_inferior ()->has_exit_code = 1;
3439 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
3440
3441 print_exited_reason (ecs->ws.value.integer);
3442 }
3443 else
3444 {
3445 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3446 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3447
3448 if (gdbarch_gdb_signal_to_target_p (gdbarch))
3449 {
3450 /* Set the value of the internal variable $_exitsignal,
3451 which holds the signal uncaught by the inferior. */
3452 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
3453 gdbarch_gdb_signal_to_target (gdbarch,
3454 ecs->ws.value.sig));
3455 }
3456 else
3457 {
3458 /* We don't have access to the target's method used for
3459 converting between signal numbers (GDB's internal
3460 representation <-> target's representation).
3461 Therefore, we cannot do a good job at displaying this
3462 information to the user. It's better to just warn
3463 her about it (if infrun debugging is enabled), and
3464 give up. */
3465 if (debug_infrun)
3466 fprintf_filtered (gdb_stdlog, _("\
3467 Cannot fill $_exitsignal with the correct signal number.\n"));
3468 }
3469
3470 print_signal_exited_reason (ecs->ws.value.sig);
3471 }
3472
3473 gdb_flush (gdb_stdout);
3474 target_mourn_inferior ();
3475 singlestep_breakpoints_inserted_p = 0;
3476 cancel_single_step_breakpoints ();
3477 stop_print_frame = 0;
3478 stop_stepping (ecs);
3479 return;
3480
3481 /* The following are the only cases in which we keep going;
3482 the above cases end in a continue or goto. */
3483 case TARGET_WAITKIND_FORKED:
3484 case TARGET_WAITKIND_VFORKED:
3485 if (debug_infrun)
3486 {
3487 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3488 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
3489 else
3490 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_VFORKED\n");
3491 }
3492
3493 /* Check whether the inferior is displaced stepping. */
3494 {
3495 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3496 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3497 struct displaced_step_inferior_state *displaced
3498 = get_displaced_stepping_state (ptid_get_pid (ecs->ptid));
3499
3500 /* If checking displaced stepping is supported, and thread
3501 ecs->ptid is displaced stepping. */
3502 if (displaced && ptid_equal (displaced->step_ptid, ecs->ptid))
3503 {
3504 struct inferior *parent_inf
3505 = find_inferior_pid (ptid_get_pid (ecs->ptid));
3506 struct regcache *child_regcache;
3507 CORE_ADDR parent_pc;
3508
3509 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
3510 indicating that the displaced stepping of syscall instruction
3511 has been done. Perform cleanup for parent process here. Note
3512 that this operation also cleans up the child process for vfork,
3513 because their pages are shared. */
3514 displaced_step_fixup (ecs->ptid, GDB_SIGNAL_TRAP);
3515
3516 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
3517 {
3518 /* Restore scratch pad for child process. */
3519 displaced_step_restore (displaced, ecs->ws.value.related_pid);
3520 }
3521
3522 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
3523 the child's PC is also within the scratchpad. Set the child's PC
3524 to the parent's PC value, which has already been fixed up.
3525 FIXME: we use the parent's aspace here, although we're touching
3526 the child, because the child hasn't been added to the inferior
3527 list yet at this point. */
3528
3529 child_regcache
3530 = get_thread_arch_aspace_regcache (ecs->ws.value.related_pid,
3531 gdbarch,
3532 parent_inf->aspace);
3533 /* Read PC value of parent process. */
3534 parent_pc = regcache_read_pc (regcache);
3535
3536 if (debug_displaced)
3537 fprintf_unfiltered (gdb_stdlog,
3538 "displaced: write child pc from %s to %s\n",
3539 paddress (gdbarch,
3540 regcache_read_pc (child_regcache)),
3541 paddress (gdbarch, parent_pc));
3542
3543 regcache_write_pc (child_regcache, parent_pc);
3544 }
3545 }
3546
3547 if (!ptid_equal (ecs->ptid, inferior_ptid))
3548 context_switch (ecs->ptid);
3549
3550 /* Immediately detach breakpoints from the child before there's
3551 any chance of letting the user delete breakpoints from the
3552 breakpoint lists. If we don't do this early, it's easy to
3553 leave left over traps in the child, vis: "break foo; catch
3554 fork; c; <fork>; del; c; <child calls foo>". We only follow
3555 the fork on the last `continue', and by that time the
3556 breakpoint at "foo" is long gone from the breakpoint table.
3557 If we vforked, then we don't need to unpatch here, since both
3558 parent and child are sharing the same memory pages; we'll
3559 need to unpatch at follow/detach time instead to be certain
3560 that new breakpoints added between catchpoint hit time and
3561 vfork follow are detached. */
3562 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
3563 {
3564 /* This won't actually modify the breakpoint list, but will
3565 physically remove the breakpoints from the child. */
3566 detach_breakpoints (ecs->ws.value.related_pid);
3567 }
3568
3569 if (singlestep_breakpoints_inserted_p)
3570 {
3571 /* Pull the single step breakpoints out of the target. */
3572 remove_single_step_breakpoints ();
3573 singlestep_breakpoints_inserted_p = 0;
3574 }
3575
3576 /* In case the event is caught by a catchpoint, remember that
3577 the event is to be followed at the next resume of the thread,
3578 and not immediately. */
3579 ecs->event_thread->pending_follow = ecs->ws;
3580
3581 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3582
3583 ecs->event_thread->control.stop_bpstat
3584 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3585 stop_pc, ecs->ptid, &ecs->ws);
3586
3587 /* If no catchpoint triggered for this, then keep going. Note
3588 that we're interested in knowing the bpstat actually causes a
3589 stop, not just if it may explain the signal. Software
3590 watchpoints, for example, always appear in the bpstat. */
3591 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3592 {
3593 ptid_t parent;
3594 ptid_t child;
3595 int should_resume;
3596 int follow_child
3597 = (follow_fork_mode_string == follow_fork_mode_child);
3598
3599 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3600
3601 should_resume = follow_fork ();
3602
3603 parent = ecs->ptid;
3604 child = ecs->ws.value.related_pid;
3605
3606 /* In non-stop mode, also resume the other branch. */
3607 if (non_stop && !detach_fork)
3608 {
3609 if (follow_child)
3610 switch_to_thread (parent);
3611 else
3612 switch_to_thread (child);
3613
3614 ecs->event_thread = inferior_thread ();
3615 ecs->ptid = inferior_ptid;
3616 keep_going (ecs);
3617 }
3618
3619 if (follow_child)
3620 switch_to_thread (child);
3621 else
3622 switch_to_thread (parent);
3623
3624 ecs->event_thread = inferior_thread ();
3625 ecs->ptid = inferior_ptid;
3626
3627 if (should_resume)
3628 keep_going (ecs);
3629 else
3630 stop_stepping (ecs);
3631 return;
3632 }
3633 process_event_stop_test (ecs);
3634 return;
3635
3636 case TARGET_WAITKIND_VFORK_DONE:
3637 /* Done with the shared memory region. Re-insert breakpoints in
3638 the parent, and keep going. */
3639
3640 if (debug_infrun)
3641 fprintf_unfiltered (gdb_stdlog,
3642 "infrun: TARGET_WAITKIND_VFORK_DONE\n");
3643
3644 if (!ptid_equal (ecs->ptid, inferior_ptid))
3645 context_switch (ecs->ptid);
3646
3647 current_inferior ()->waiting_for_vfork_done = 0;
3648 current_inferior ()->pspace->breakpoints_not_allowed = 0;
3649 /* This also takes care of reinserting breakpoints in the
3650 previously locked inferior. */
3651 keep_going (ecs);
3652 return;
3653
3654 case TARGET_WAITKIND_EXECD:
3655 if (debug_infrun)
3656 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
3657
3658 if (!ptid_equal (ecs->ptid, inferior_ptid))
3659 context_switch (ecs->ptid);
3660
3661 singlestep_breakpoints_inserted_p = 0;
3662 cancel_single_step_breakpoints ();
3663
3664 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3665
3666 /* Do whatever is necessary to the parent branch of the vfork. */
3667 handle_vfork_child_exec_or_exit (1);
3668
3669 /* This causes the eventpoints and symbol table to be reset.
3670 Must do this now, before trying to determine whether to
3671 stop. */
3672 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
3673
3674 ecs->event_thread->control.stop_bpstat
3675 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
3676 stop_pc, ecs->ptid, &ecs->ws);
3677
3678 /* Note that this may be referenced from inside
3679 bpstat_stop_status above, through inferior_has_execd. */
3680 xfree (ecs->ws.value.execd_pathname);
3681 ecs->ws.value.execd_pathname = NULL;
3682
3683 /* If no catchpoint triggered for this, then keep going. */
3684 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
3685 {
3686 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3687 keep_going (ecs);
3688 return;
3689 }
3690 process_event_stop_test (ecs);
3691 return;
3692
3693 /* Be careful not to try to gather much state about a thread
3694 that's in a syscall. It's frequently a losing proposition. */
3695 case TARGET_WAITKIND_SYSCALL_ENTRY:
3696 if (debug_infrun)
3697 fprintf_unfiltered (gdb_stdlog,
3698 "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
3699 /* Getting the current syscall number. */
3700 if (handle_syscall_event (ecs) == 0)
3701 process_event_stop_test (ecs);
3702 return;
3703
3704 /* Before examining the threads further, step this thread to
3705 get it entirely out of the syscall. (We get notice of the
3706 event when the thread is just on the verge of exiting a
3707 syscall. Stepping one instruction seems to get it back
3708 into user code.) */
3709 case TARGET_WAITKIND_SYSCALL_RETURN:
3710 if (debug_infrun)
3711 fprintf_unfiltered (gdb_stdlog,
3712 "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
3713 if (handle_syscall_event (ecs) == 0)
3714 process_event_stop_test (ecs);
3715 return;
3716
3717 case TARGET_WAITKIND_STOPPED:
3718 if (debug_infrun)
3719 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
3720 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
3721 handle_signal_stop (ecs);
3722 return;
3723
3724 case TARGET_WAITKIND_NO_HISTORY:
3725 if (debug_infrun)
3726 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_NO_HISTORY\n");
3727 /* Reverse execution: target ran out of history info. */
3728
3729 /* Pull the single step breakpoints out of the target. */
3730 if (singlestep_breakpoints_inserted_p)
3731 {
3732 if (!ptid_equal (ecs->ptid, inferior_ptid))
3733 context_switch (ecs->ptid);
3734 remove_single_step_breakpoints ();
3735 singlestep_breakpoints_inserted_p = 0;
3736 }
3737 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3738 print_no_history_reason ();
3739 stop_stepping (ecs);
3740 return;
3741 }
3742 }
3743
3744 /* Come here when the program has stopped with a signal. */
3745
3746 static void
3747 handle_signal_stop (struct execution_control_state *ecs)
3748 {
3749 struct frame_info *frame;
3750 struct gdbarch *gdbarch;
3751 int stopped_by_watchpoint;
3752 enum stop_kind stop_soon;
3753 int random_signal;
3754
3755 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED)
3756 {
3757 /* Do we need to clean up the state of a thread that has
3758 completed a displaced single-step? (Doing so usually affects
3759 the PC, so do it here, before we set stop_pc.) */
3760 displaced_step_fixup (ecs->ptid,
3761 ecs->event_thread->suspend.stop_signal);
3762
3763 /* If we either finished a single-step or hit a breakpoint, but
3764 the user wanted this thread to be stopped, pretend we got a
3765 SIG0 (generic unsignaled stop). */
3766
3767 if (ecs->event_thread->stop_requested
3768 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3769 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3770 }
3771
3772 stop_pc = regcache_read_pc (get_thread_regcache (ecs->ptid));
3773
3774 if (debug_infrun)
3775 {
3776 struct regcache *regcache = get_thread_regcache (ecs->ptid);
3777 struct gdbarch *gdbarch = get_regcache_arch (regcache);
3778 struct cleanup *old_chain = save_inferior_ptid ();
3779
3780 inferior_ptid = ecs->ptid;
3781
3782 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = %s\n",
3783 paddress (gdbarch, stop_pc));
3784 if (target_stopped_by_watchpoint ())
3785 {
3786 CORE_ADDR addr;
3787
3788 fprintf_unfiltered (gdb_stdlog, "infrun: stopped by watchpoint\n");
3789
3790 if (target_stopped_data_address (&current_target, &addr))
3791 fprintf_unfiltered (gdb_stdlog,
3792 "infrun: stopped data address = %s\n",
3793 paddress (gdbarch, addr));
3794 else
3795 fprintf_unfiltered (gdb_stdlog,
3796 "infrun: (no data address available)\n");
3797 }
3798
3799 do_cleanups (old_chain);
3800 }
3801
3802 if (stepping_past_singlestep_breakpoint)
3803 {
3804 gdb_assert (singlestep_breakpoints_inserted_p);
3805 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
3806 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
3807
3808 stepping_past_singlestep_breakpoint = 0;
3809
3810 /* We've either finished single-stepping past the single-step
3811 breakpoint, or stopped for some other reason. It would be nice if
3812 we could tell, but we can't reliably. */
3813 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3814 {
3815 if (debug_infrun)
3816 fprintf_unfiltered (gdb_stdlog,
3817 "infrun: stepping_past_"
3818 "singlestep_breakpoint\n");
3819 /* Pull the single step breakpoints out of the target. */
3820 if (!ptid_equal (ecs->ptid, inferior_ptid))
3821 context_switch (ecs->ptid);
3822 remove_single_step_breakpoints ();
3823 singlestep_breakpoints_inserted_p = 0;
3824
3825 ecs->event_thread->control.trap_expected = 0;
3826
3827 context_switch (saved_singlestep_ptid);
3828 if (deprecated_context_hook)
3829 deprecated_context_hook (pid_to_thread_id (saved_singlestep_ptid));
3830
3831 resume (1, GDB_SIGNAL_0);
3832 prepare_to_wait (ecs);
3833 return;
3834 }
3835 }
3836
3837 if (!ptid_equal (deferred_step_ptid, null_ptid))
3838 {
3839 /* In non-stop mode, there's never a deferred_step_ptid set. */
3840 gdb_assert (!non_stop);
3841
3842 /* If we stopped for some other reason than single-stepping, ignore
3843 the fact that we were supposed to switch back. */
3844 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3845 {
3846 if (debug_infrun)
3847 fprintf_unfiltered (gdb_stdlog,
3848 "infrun: handling deferred step\n");
3849
3850 /* Pull the single step breakpoints out of the target. */
3851 if (singlestep_breakpoints_inserted_p)
3852 {
3853 if (!ptid_equal (ecs->ptid, inferior_ptid))
3854 context_switch (ecs->ptid);
3855 remove_single_step_breakpoints ();
3856 singlestep_breakpoints_inserted_p = 0;
3857 }
3858
3859 ecs->event_thread->control.trap_expected = 0;
3860
3861 context_switch (deferred_step_ptid);
3862 deferred_step_ptid = null_ptid;
3863 /* Suppress spurious "Switching to ..." message. */
3864 previous_inferior_ptid = inferior_ptid;
3865
3866 resume (1, GDB_SIGNAL_0);
3867 prepare_to_wait (ecs);
3868 return;
3869 }
3870
3871 deferred_step_ptid = null_ptid;
3872 }
3873
3874 /* See if a thread hit a thread-specific breakpoint that was meant for
3875 another thread. If so, then step that thread past the breakpoint,
3876 and continue it. */
3877
3878 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
3879 {
3880 int thread_hop_needed = 0;
3881 struct address_space *aspace =
3882 get_regcache_aspace (get_thread_regcache (ecs->ptid));
3883
3884 /* Check if a regular breakpoint has been hit before checking
3885 for a potential single step breakpoint. Otherwise, GDB will
3886 not see this breakpoint hit when stepping onto breakpoints. */
3887 if (regular_breakpoint_inserted_here_p (aspace, stop_pc))
3888 {
3889 if (!breakpoint_thread_match (aspace, stop_pc, ecs->ptid))
3890 thread_hop_needed = 1;
3891 }
3892 else if (singlestep_breakpoints_inserted_p)
3893 {
3894 /* We have not context switched yet, so this should be true
3895 no matter which thread hit the singlestep breakpoint. */
3896 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
3897 if (debug_infrun)
3898 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
3899 "trap for %s\n",
3900 target_pid_to_str (ecs->ptid));
3901
3902 /* The call to in_thread_list is necessary because PTIDs sometimes
3903 change when we go from single-threaded to multi-threaded. If
3904 the singlestep_ptid is still in the list, assume that it is
3905 really different from ecs->ptid. */
3906 if (!ptid_equal (singlestep_ptid, ecs->ptid)
3907 && in_thread_list (singlestep_ptid))
3908 {
3909 /* If the PC of the thread we were trying to single-step
3910 has changed, discard this event (which we were going
3911 to ignore anyway), and pretend we saw that thread
3912 trap. This prevents us continuously moving the
3913 single-step breakpoint forward, one instruction at a
3914 time. If the PC has changed, then the thread we were
3915 trying to single-step has trapped or been signalled,
3916 but the event has not been reported to GDB yet.
3917
3918 There might be some cases where this loses signal
3919 information, if a signal has arrived at exactly the
3920 same time that the PC changed, but this is the best
3921 we can do with the information available. Perhaps we
3922 should arrange to report all events for all threads
3923 when they stop, or to re-poll the remote looking for
3924 this particular thread (i.e. temporarily enable
3925 schedlock). */
3926
3927 CORE_ADDR new_singlestep_pc
3928 = regcache_read_pc (get_thread_regcache (singlestep_ptid));
3929
3930 if (new_singlestep_pc != singlestep_pc)
3931 {
3932 enum gdb_signal stop_signal;
3933
3934 if (debug_infrun)
3935 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
3936 " but expected thread advanced also\n");
3937
3938 /* The current context still belongs to
3939 singlestep_ptid. Don't swap here, since that's
3940 the context we want to use. Just fudge our
3941 state and continue. */
3942 stop_signal = ecs->event_thread->suspend.stop_signal;
3943 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
3944 ecs->ptid = singlestep_ptid;
3945 ecs->event_thread = find_thread_ptid (ecs->ptid);
3946 ecs->event_thread->suspend.stop_signal = stop_signal;
3947 stop_pc = new_singlestep_pc;
3948 }
3949 else
3950 {
3951 if (debug_infrun)
3952 fprintf_unfiltered (gdb_stdlog,
3953 "infrun: unexpected thread\n");
3954
3955 thread_hop_needed = 1;
3956 stepping_past_singlestep_breakpoint = 1;
3957 saved_singlestep_ptid = singlestep_ptid;
3958 }
3959 }
3960 }
3961
3962 if (thread_hop_needed)
3963 {
3964 struct regcache *thread_regcache;
3965 int remove_status = 0;
3966
3967 if (debug_infrun)
3968 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
3969
3970 /* Switch context before touching inferior memory, the
3971 previous thread may have exited. */
3972 if (!ptid_equal (inferior_ptid, ecs->ptid))
3973 context_switch (ecs->ptid);
3974
3975 /* Saw a breakpoint, but it was hit by the wrong thread.
3976 Just continue. */
3977
3978 if (singlestep_breakpoints_inserted_p)
3979 {
3980 /* Pull the single step breakpoints out of the target. */
3981 remove_single_step_breakpoints ();
3982 singlestep_breakpoints_inserted_p = 0;
3983 }
3984
3985 /* If the arch can displace step, don't remove the
3986 breakpoints. */
3987 thread_regcache = get_thread_regcache (ecs->ptid);
3988 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
3989 remove_status = remove_breakpoints ();
3990
3991 /* Did we fail to remove breakpoints? If so, try
3992 to set the PC past the bp. (There's at least
3993 one situation in which we can fail to remove
3994 the bp's: On HP-UX's that use ttrace, we can't
3995 change the address space of a vforking child
3996 process until the child exits (well, okay, not
3997 then either :-) or execs. */
3998 if (remove_status != 0)
3999 error (_("Cannot step over breakpoint hit in wrong thread"));
4000 else
4001 { /* Single step */
4002 if (!non_stop)
4003 {
4004 /* Only need to require the next event from this
4005 thread in all-stop mode. */
4006 waiton_ptid = ecs->ptid;
4007 infwait_state = infwait_thread_hop_state;
4008 }
4009
4010 ecs->event_thread->stepping_over_breakpoint = 1;
4011 keep_going (ecs);
4012 return;
4013 }
4014 }
4015 }
4016
4017 /* See if something interesting happened to the non-current thread. If
4018 so, then switch to that thread. */
4019 if (!ptid_equal (ecs->ptid, inferior_ptid))
4020 {
4021 if (debug_infrun)
4022 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
4023
4024 context_switch (ecs->ptid);
4025
4026 if (deprecated_context_hook)
4027 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
4028 }
4029
4030 /* At this point, get hold of the now-current thread's frame. */
4031 frame = get_current_frame ();
4032 gdbarch = get_frame_arch (frame);
4033
4034 if (singlestep_breakpoints_inserted_p)
4035 {
4036 /* Pull the single step breakpoints out of the target. */
4037 remove_single_step_breakpoints ();
4038 singlestep_breakpoints_inserted_p = 0;
4039 }
4040
4041 if (ecs->stepped_after_stopped_by_watchpoint)
4042 stopped_by_watchpoint = 0;
4043 else
4044 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
4045
4046 /* If necessary, step over this watchpoint. We'll be back to display
4047 it in a moment. */
4048 if (stopped_by_watchpoint
4049 && (target_have_steppable_watchpoint
4050 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
4051 {
4052 /* At this point, we are stopped at an instruction which has
4053 attempted to write to a piece of memory under control of
4054 a watchpoint. The instruction hasn't actually executed
4055 yet. If we were to evaluate the watchpoint expression
4056 now, we would get the old value, and therefore no change
4057 would seem to have occurred.
4058
4059 In order to make watchpoints work `right', we really need
4060 to complete the memory write, and then evaluate the
4061 watchpoint expression. We do this by single-stepping the
4062 target.
4063
4064 It may not be necessary to disable the watchpoint to stop over
4065 it. For example, the PA can (with some kernel cooperation)
4066 single step over a watchpoint without disabling the watchpoint.
4067
4068 It is far more common to need to disable a watchpoint to step
4069 the inferior over it. If we have non-steppable watchpoints,
4070 we must disable the current watchpoint; it's simplest to
4071 disable all watchpoints and breakpoints. */
4072 int hw_step = 1;
4073
4074 if (!target_have_steppable_watchpoint)
4075 {
4076 remove_breakpoints ();
4077 /* See comment in resume why we need to stop bypassing signals
4078 while breakpoints have been removed. */
4079 target_pass_signals (0, NULL);
4080 }
4081 /* Single step */
4082 hw_step = maybe_software_singlestep (gdbarch, stop_pc);
4083 target_resume (ecs->ptid, hw_step, GDB_SIGNAL_0);
4084 waiton_ptid = ecs->ptid;
4085 if (target_have_steppable_watchpoint)
4086 infwait_state = infwait_step_watch_state;
4087 else
4088 infwait_state = infwait_nonstep_watch_state;
4089 prepare_to_wait (ecs);
4090 return;
4091 }
4092
4093 ecs->event_thread->stepping_over_breakpoint = 0;
4094 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
4095 ecs->event_thread->control.stop_step = 0;
4096 stop_print_frame = 1;
4097 stopped_by_random_signal = 0;
4098
4099 /* Hide inlined functions starting here, unless we just performed stepi or
4100 nexti. After stepi and nexti, always show the innermost frame (not any
4101 inline function call sites). */
4102 if (ecs->event_thread->control.step_range_end != 1)
4103 {
4104 struct address_space *aspace =
4105 get_regcache_aspace (get_thread_regcache (ecs->ptid));
4106
4107 /* skip_inline_frames is expensive, so we avoid it if we can
4108 determine that the address is one where functions cannot have
4109 been inlined. This improves performance with inferiors that
4110 load a lot of shared libraries, because the solib event
4111 breakpoint is defined as the address of a function (i.e. not
4112 inline). Note that we have to check the previous PC as well
4113 as the current one to catch cases when we have just
4114 single-stepped off a breakpoint prior to reinstating it.
4115 Note that we're assuming that the code we single-step to is
4116 not inline, but that's not definitive: there's nothing
4117 preventing the event breakpoint function from containing
4118 inlined code, and the single-step ending up there. If the
4119 user had set a breakpoint on that inlined code, the missing
4120 skip_inline_frames call would break things. Fortunately
4121 that's an extremely unlikely scenario. */
4122 if (!pc_at_non_inline_function (aspace, stop_pc, &ecs->ws)
4123 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4124 && ecs->event_thread->control.trap_expected
4125 && pc_at_non_inline_function (aspace,
4126 ecs->event_thread->prev_pc,
4127 &ecs->ws)))
4128 {
4129 skip_inline_frames (ecs->ptid);
4130
4131 /* Re-fetch current thread's frame in case that invalidated
4132 the frame cache. */
4133 frame = get_current_frame ();
4134 gdbarch = get_frame_arch (frame);
4135 }
4136 }
4137
4138 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4139 && ecs->event_thread->control.trap_expected
4140 && gdbarch_single_step_through_delay_p (gdbarch)
4141 && currently_stepping (ecs->event_thread))
4142 {
4143 /* We're trying to step off a breakpoint. Turns out that we're
4144 also on an instruction that needs to be stepped multiple
4145 times before it's been fully executing. E.g., architectures
4146 with a delay slot. It needs to be stepped twice, once for
4147 the instruction and once for the delay slot. */
4148 int step_through_delay
4149 = gdbarch_single_step_through_delay (gdbarch, frame);
4150
4151 if (debug_infrun && step_through_delay)
4152 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
4153 if (ecs->event_thread->control.step_range_end == 0
4154 && step_through_delay)
4155 {
4156 /* The user issued a continue when stopped at a breakpoint.
4157 Set up for another trap and get out of here. */
4158 ecs->event_thread->stepping_over_breakpoint = 1;
4159 keep_going (ecs);
4160 return;
4161 }
4162 else if (step_through_delay)
4163 {
4164 /* The user issued a step when stopped at a breakpoint.
4165 Maybe we should stop, maybe we should not - the delay
4166 slot *might* correspond to a line of source. In any
4167 case, don't decide that here, just set
4168 ecs->stepping_over_breakpoint, making sure we
4169 single-step again before breakpoints are re-inserted. */
4170 ecs->event_thread->stepping_over_breakpoint = 1;
4171 }
4172 }
4173
4174 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4175 && stop_after_trap)
4176 {
4177 if (debug_infrun)
4178 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
4179 stop_print_frame = 0;
4180 stop_stepping (ecs);
4181 return;
4182 }
4183
4184 /* This is originated from start_remote(), start_inferior() and
4185 shared libraries hook functions. */
4186 stop_soon = get_inferior_stop_soon (ecs->ptid);
4187 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
4188 {
4189 if (debug_infrun)
4190 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
4191 stop_stepping (ecs);
4192 return;
4193 }
4194
4195 /* This originates from attach_command(). We need to overwrite
4196 the stop_signal here, because some kernels don't ignore a
4197 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
4198 See more comments in inferior.h. On the other hand, if we
4199 get a non-SIGSTOP, report it to the user - assume the backend
4200 will handle the SIGSTOP if it should show up later.
4201
4202 Also consider that the attach is complete when we see a
4203 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
4204 target extended-remote report it instead of a SIGSTOP
4205 (e.g. gdbserver). We already rely on SIGTRAP being our
4206 signal, so this is no exception.
4207
4208 Also consider that the attach is complete when we see a
4209 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
4210 the target to stop all threads of the inferior, in case the
4211 low level attach operation doesn't stop them implicitly. If
4212 they weren't stopped implicitly, then the stub will report a
4213 GDB_SIGNAL_0, meaning: stopped for no particular reason
4214 other than GDB's request. */
4215 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
4216 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
4217 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4218 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
4219 {
4220 stop_stepping (ecs);
4221 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4222 return;
4223 }
4224
4225 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
4226 handles this event. */
4227 ecs->event_thread->control.stop_bpstat
4228 = bpstat_stop_status (get_regcache_aspace (get_current_regcache ()),
4229 stop_pc, ecs->ptid, &ecs->ws);
4230
4231 /* Following in case break condition called a
4232 function. */
4233 stop_print_frame = 1;
4234
4235 /* This is where we handle "moribund" watchpoints. Unlike
4236 software breakpoints traps, hardware watchpoint traps are
4237 always distinguishable from random traps. If no high-level
4238 watchpoint is associated with the reported stop data address
4239 anymore, then the bpstat does not explain the signal ---
4240 simply make sure to ignore it if `stopped_by_watchpoint' is
4241 set. */
4242
4243 if (debug_infrun
4244 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4245 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4246 GDB_SIGNAL_TRAP)
4247 && stopped_by_watchpoint)
4248 fprintf_unfiltered (gdb_stdlog,
4249 "infrun: no user watchpoint explains "
4250 "watchpoint SIGTRAP, ignoring\n");
4251
4252 /* NOTE: cagney/2003-03-29: These checks for a random signal
4253 at one stage in the past included checks for an inferior
4254 function call's call dummy's return breakpoint. The original
4255 comment, that went with the test, read:
4256
4257 ``End of a stack dummy. Some systems (e.g. Sony news) give
4258 another signal besides SIGTRAP, so check here as well as
4259 above.''
4260
4261 If someone ever tries to get call dummys on a
4262 non-executable stack to work (where the target would stop
4263 with something like a SIGSEGV), then those tests might need
4264 to be re-instated. Given, however, that the tests were only
4265 enabled when momentary breakpoints were not being used, I
4266 suspect that it won't be the case.
4267
4268 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
4269 be necessary for call dummies on a non-executable stack on
4270 SPARC. */
4271
4272 /* See if the breakpoints module can explain the signal. */
4273 random_signal
4274 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
4275 ecs->event_thread->suspend.stop_signal);
4276
4277 /* If not, perhaps stepping/nexting can. */
4278 if (random_signal)
4279 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
4280 && currently_stepping (ecs->event_thread));
4281
4282 /* No? Perhaps we got a moribund watchpoint. */
4283 if (random_signal)
4284 random_signal = !stopped_by_watchpoint;
4285
4286 /* For the program's own signals, act according to
4287 the signal handling tables. */
4288
4289 if (random_signal)
4290 {
4291 /* Signal not for debugging purposes. */
4292 int printed = 0;
4293 struct inferior *inf = find_inferior_pid (ptid_get_pid (ecs->ptid));
4294 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
4295
4296 if (debug_infrun)
4297 fprintf_unfiltered (gdb_stdlog, "infrun: random signal (%s)\n",
4298 gdb_signal_to_symbol_string (stop_signal));
4299
4300 stopped_by_random_signal = 1;
4301
4302 if (signal_print[ecs->event_thread->suspend.stop_signal])
4303 {
4304 printed = 1;
4305 target_terminal_ours_for_output ();
4306 print_signal_received_reason
4307 (ecs->event_thread->suspend.stop_signal);
4308 }
4309 /* Always stop on signals if we're either just gaining control
4310 of the program, or the user explicitly requested this thread
4311 to remain stopped. */
4312 if (stop_soon != NO_STOP_QUIETLY
4313 || ecs->event_thread->stop_requested
4314 || (!inf->detaching
4315 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
4316 {
4317 stop_stepping (ecs);
4318 return;
4319 }
4320 /* If not going to stop, give terminal back
4321 if we took it away. */
4322 else if (printed)
4323 target_terminal_inferior ();
4324
4325 /* Clear the signal if it should not be passed. */
4326 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
4327 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
4328
4329 if (ecs->event_thread->prev_pc == stop_pc
4330 && ecs->event_thread->control.trap_expected
4331 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4332 {
4333 /* We were just starting a new sequence, attempting to
4334 single-step off of a breakpoint and expecting a SIGTRAP.
4335 Instead this signal arrives. This signal will take us out
4336 of the stepping range so GDB needs to remember to, when
4337 the signal handler returns, resume stepping off that
4338 breakpoint. */
4339 /* To simplify things, "continue" is forced to use the same
4340 code paths as single-step - set a breakpoint at the
4341 signal return address and then, once hit, step off that
4342 breakpoint. */
4343 if (debug_infrun)
4344 fprintf_unfiltered (gdb_stdlog,
4345 "infrun: signal arrived while stepping over "
4346 "breakpoint\n");
4347
4348 insert_hp_step_resume_breakpoint_at_frame (frame);
4349 ecs->event_thread->step_after_step_resume_breakpoint = 1;
4350 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4351 ecs->event_thread->control.trap_expected = 0;
4352 keep_going (ecs);
4353 return;
4354 }
4355
4356 if (ecs->event_thread->control.step_range_end != 0
4357 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
4358 && pc_in_thread_step_range (stop_pc, ecs->event_thread)
4359 && frame_id_eq (get_stack_frame_id (frame),
4360 ecs->event_thread->control.step_stack_frame_id)
4361 && ecs->event_thread->control.step_resume_breakpoint == NULL)
4362 {
4363 /* The inferior is about to take a signal that will take it
4364 out of the single step range. Set a breakpoint at the
4365 current PC (which is presumably where the signal handler
4366 will eventually return) and then allow the inferior to
4367 run free.
4368
4369 Note that this is only needed for a signal delivered
4370 while in the single-step range. Nested signals aren't a
4371 problem as they eventually all return. */
4372 if (debug_infrun)
4373 fprintf_unfiltered (gdb_stdlog,
4374 "infrun: signal may take us out of "
4375 "single-step range\n");
4376
4377 insert_hp_step_resume_breakpoint_at_frame (frame);
4378 /* Reset trap_expected to ensure breakpoints are re-inserted. */
4379 ecs->event_thread->control.trap_expected = 0;
4380 keep_going (ecs);
4381 return;
4382 }
4383
4384 /* Note: step_resume_breakpoint may be non-NULL. This occures
4385 when either there's a nested signal, or when there's a
4386 pending signal enabled just as the signal handler returns
4387 (leaving the inferior at the step-resume-breakpoint without
4388 actually executing it). Either way continue until the
4389 breakpoint is really hit. */
4390
4391 if (!switch_back_to_stepped_thread (ecs))
4392 {
4393 if (debug_infrun)
4394 fprintf_unfiltered (gdb_stdlog,
4395 "infrun: random signal, keep going\n");
4396
4397 keep_going (ecs);
4398 }
4399 return;
4400 }
4401
4402 process_event_stop_test (ecs);
4403 }
4404
4405 /* Come here when we've got some debug event / signal we can explain
4406 (IOW, not a random signal), and test whether it should cause a
4407 stop, or whether we should resume the inferior (transparently).
4408 E.g., could be a breakpoint whose condition evaluates false; we
4409 could be still stepping within the line; etc. */
4410
4411 static void
4412 process_event_stop_test (struct execution_control_state *ecs)
4413 {
4414 struct symtab_and_line stop_pc_sal;
4415 struct frame_info *frame;
4416 struct gdbarch *gdbarch;
4417 CORE_ADDR jmp_buf_pc;
4418 struct bpstat_what what;
4419
4420 /* Handle cases caused by hitting a breakpoint. */
4421
4422 frame = get_current_frame ();
4423 gdbarch = get_frame_arch (frame);
4424
4425 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
4426
4427 if (what.call_dummy)
4428 {
4429 stop_stack_dummy = what.call_dummy;
4430 }
4431
4432 /* If we hit an internal event that triggers symbol changes, the
4433 current frame will be invalidated within bpstat_what (e.g., if we
4434 hit an internal solib event). Re-fetch it. */
4435 frame = get_current_frame ();
4436 gdbarch = get_frame_arch (frame);
4437
4438 switch (what.main_action)
4439 {
4440 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
4441 /* If we hit the breakpoint at longjmp while stepping, we
4442 install a momentary breakpoint at the target of the
4443 jmp_buf. */
4444
4445 if (debug_infrun)
4446 fprintf_unfiltered (gdb_stdlog,
4447 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
4448
4449 ecs->event_thread->stepping_over_breakpoint = 1;
4450
4451 if (what.is_longjmp)
4452 {
4453 struct value *arg_value;
4454
4455 /* If we set the longjmp breakpoint via a SystemTap probe,
4456 then use it to extract the arguments. The destination PC
4457 is the third argument to the probe. */
4458 arg_value = probe_safe_evaluate_at_pc (frame, 2);
4459 if (arg_value)
4460 jmp_buf_pc = value_as_address (arg_value);
4461 else if (!gdbarch_get_longjmp_target_p (gdbarch)
4462 || !gdbarch_get_longjmp_target (gdbarch,
4463 frame, &jmp_buf_pc))
4464 {
4465 if (debug_infrun)
4466 fprintf_unfiltered (gdb_stdlog,
4467 "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME "
4468 "(!gdbarch_get_longjmp_target)\n");
4469 keep_going (ecs);
4470 return;
4471 }
4472
4473 /* Insert a breakpoint at resume address. */
4474 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
4475 }
4476 else
4477 check_exception_resume (ecs, frame);
4478 keep_going (ecs);
4479 return;
4480
4481 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
4482 {
4483 struct frame_info *init_frame;
4484
4485 /* There are several cases to consider.
4486
4487 1. The initiating frame no longer exists. In this case we
4488 must stop, because the exception or longjmp has gone too
4489 far.
4490
4491 2. The initiating frame exists, and is the same as the
4492 current frame. We stop, because the exception or longjmp
4493 has been caught.
4494
4495 3. The initiating frame exists and is different from the
4496 current frame. This means the exception or longjmp has
4497 been caught beneath the initiating frame, so keep going.
4498
4499 4. longjmp breakpoint has been placed just to protect
4500 against stale dummy frames and user is not interested in
4501 stopping around longjmps. */
4502
4503 if (debug_infrun)
4504 fprintf_unfiltered (gdb_stdlog,
4505 "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
4506
4507 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
4508 != NULL);
4509 delete_exception_resume_breakpoint (ecs->event_thread);
4510
4511 if (what.is_longjmp)
4512 {
4513 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread->num);
4514
4515 if (!frame_id_p (ecs->event_thread->initiating_frame))
4516 {
4517 /* Case 4. */
4518 keep_going (ecs);
4519 return;
4520 }
4521 }
4522
4523 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
4524
4525 if (init_frame)
4526 {
4527 struct frame_id current_id
4528 = get_frame_id (get_current_frame ());
4529 if (frame_id_eq (current_id,
4530 ecs->event_thread->initiating_frame))
4531 {
4532 /* Case 2. Fall through. */
4533 }
4534 else
4535 {
4536 /* Case 3. */
4537 keep_going (ecs);
4538 return;
4539 }
4540 }
4541
4542 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
4543 exists. */
4544 delete_step_resume_breakpoint (ecs->event_thread);
4545
4546 ecs->event_thread->control.stop_step = 1;
4547 print_end_stepping_range_reason ();
4548 stop_stepping (ecs);
4549 }
4550 return;
4551
4552 case BPSTAT_WHAT_SINGLE:
4553 if (debug_infrun)
4554 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
4555 ecs->event_thread->stepping_over_breakpoint = 1;
4556 /* Still need to check other stuff, at least the case where we
4557 are stepping and step out of the right range. */
4558 break;
4559
4560 case BPSTAT_WHAT_STEP_RESUME:
4561 if (debug_infrun)
4562 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
4563
4564 delete_step_resume_breakpoint (ecs->event_thread);
4565 if (ecs->event_thread->control.proceed_to_finish
4566 && execution_direction == EXEC_REVERSE)
4567 {
4568 struct thread_info *tp = ecs->event_thread;
4569
4570 /* We are finishing a function in reverse, and just hit the
4571 step-resume breakpoint at the start address of the
4572 function, and we're almost there -- just need to back up
4573 by one more single-step, which should take us back to the
4574 function call. */
4575 tp->control.step_range_start = tp->control.step_range_end = 1;
4576 keep_going (ecs);
4577 return;
4578 }
4579 fill_in_stop_func (gdbarch, ecs);
4580 if (stop_pc == ecs->stop_func_start
4581 && execution_direction == EXEC_REVERSE)
4582 {
4583 /* We are stepping over a function call in reverse, and just
4584 hit the step-resume breakpoint at the start address of
4585 the function. Go back to single-stepping, which should
4586 take us back to the function call. */
4587 ecs->event_thread->stepping_over_breakpoint = 1;
4588 keep_going (ecs);
4589 return;
4590 }
4591 break;
4592
4593 case BPSTAT_WHAT_STOP_NOISY:
4594 if (debug_infrun)
4595 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
4596 stop_print_frame = 1;
4597
4598 /* We are about to nuke the step_resume_breakpointt via the
4599 cleanup chain, so no need to worry about it here. */
4600
4601 stop_stepping (ecs);
4602 return;
4603
4604 case BPSTAT_WHAT_STOP_SILENT:
4605 if (debug_infrun)
4606 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
4607 stop_print_frame = 0;
4608
4609 /* We are about to nuke the step_resume_breakpoin via the
4610 cleanup chain, so no need to worry about it here. */
4611
4612 stop_stepping (ecs);
4613 return;
4614
4615 case BPSTAT_WHAT_HP_STEP_RESUME:
4616 if (debug_infrun)
4617 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_HP_STEP_RESUME\n");
4618
4619 delete_step_resume_breakpoint (ecs->event_thread);
4620 if (ecs->event_thread->step_after_step_resume_breakpoint)
4621 {
4622 /* Back when the step-resume breakpoint was inserted, we
4623 were trying to single-step off a breakpoint. Go back to
4624 doing that. */
4625 ecs->event_thread->step_after_step_resume_breakpoint = 0;
4626 ecs->event_thread->stepping_over_breakpoint = 1;
4627 keep_going (ecs);
4628 return;
4629 }
4630 break;
4631
4632 case BPSTAT_WHAT_KEEP_CHECKING:
4633 break;
4634 }
4635
4636 /* We come here if we hit a breakpoint but should not stop for it.
4637 Possibly we also were stepping and should stop for that. So fall
4638 through and test for stepping. But, if not stepping, do not
4639 stop. */
4640
4641 /* In all-stop mode, if we're currently stepping but have stopped in
4642 some other thread, we need to switch back to the stepped thread. */
4643 if (switch_back_to_stepped_thread (ecs))
4644 return;
4645
4646 if (ecs->event_thread->control.step_resume_breakpoint)
4647 {
4648 if (debug_infrun)
4649 fprintf_unfiltered (gdb_stdlog,
4650 "infrun: step-resume breakpoint is inserted\n");
4651
4652 /* Having a step-resume breakpoint overrides anything
4653 else having to do with stepping commands until
4654 that breakpoint is reached. */
4655 keep_going (ecs);
4656 return;
4657 }
4658
4659 if (ecs->event_thread->control.step_range_end == 0)
4660 {
4661 if (debug_infrun)
4662 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
4663 /* Likewise if we aren't even stepping. */
4664 keep_going (ecs);
4665 return;
4666 }
4667
4668 /* Re-fetch current thread's frame in case the code above caused
4669 the frame cache to be re-initialized, making our FRAME variable
4670 a dangling pointer. */
4671 frame = get_current_frame ();
4672 gdbarch = get_frame_arch (frame);
4673 fill_in_stop_func (gdbarch, ecs);
4674
4675 /* If stepping through a line, keep going if still within it.
4676
4677 Note that step_range_end is the address of the first instruction
4678 beyond the step range, and NOT the address of the last instruction
4679 within it!
4680
4681 Note also that during reverse execution, we may be stepping
4682 through a function epilogue and therefore must detect when
4683 the current-frame changes in the middle of a line. */
4684
4685 if (pc_in_thread_step_range (stop_pc, ecs->event_thread)
4686 && (execution_direction != EXEC_REVERSE
4687 || frame_id_eq (get_frame_id (frame),
4688 ecs->event_thread->control.step_frame_id)))
4689 {
4690 if (debug_infrun)
4691 fprintf_unfiltered
4692 (gdb_stdlog, "infrun: stepping inside range [%s-%s]\n",
4693 paddress (gdbarch, ecs->event_thread->control.step_range_start),
4694 paddress (gdbarch, ecs->event_thread->control.step_range_end));
4695
4696 /* Tentatively re-enable range stepping; `resume' disables it if
4697 necessary (e.g., if we're stepping over a breakpoint or we
4698 have software watchpoints). */
4699 ecs->event_thread->control.may_range_step = 1;
4700
4701 /* When stepping backward, stop at beginning of line range
4702 (unless it's the function entry point, in which case
4703 keep going back to the call point). */
4704 if (stop_pc == ecs->event_thread->control.step_range_start
4705 && stop_pc != ecs->stop_func_start
4706 && execution_direction == EXEC_REVERSE)
4707 {
4708 ecs->event_thread->control.stop_step = 1;
4709 print_end_stepping_range_reason ();
4710 stop_stepping (ecs);
4711 }
4712 else
4713 keep_going (ecs);
4714
4715 return;
4716 }
4717
4718 /* We stepped out of the stepping range. */
4719
4720 /* If we are stepping at the source level and entered the runtime
4721 loader dynamic symbol resolution code...
4722
4723 EXEC_FORWARD: we keep on single stepping until we exit the run
4724 time loader code and reach the callee's address.
4725
4726 EXEC_REVERSE: we've already executed the callee (backward), and
4727 the runtime loader code is handled just like any other
4728 undebuggable function call. Now we need only keep stepping
4729 backward through the trampoline code, and that's handled further
4730 down, so there is nothing for us to do here. */
4731
4732 if (execution_direction != EXEC_REVERSE
4733 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4734 && in_solib_dynsym_resolve_code (stop_pc))
4735 {
4736 CORE_ADDR pc_after_resolver =
4737 gdbarch_skip_solib_resolver (gdbarch, stop_pc);
4738
4739 if (debug_infrun)
4740 fprintf_unfiltered (gdb_stdlog,
4741 "infrun: stepped into dynsym resolve code\n");
4742
4743 if (pc_after_resolver)
4744 {
4745 /* Set up a step-resume breakpoint at the address
4746 indicated by SKIP_SOLIB_RESOLVER. */
4747 struct symtab_and_line sr_sal;
4748
4749 init_sal (&sr_sal);
4750 sr_sal.pc = pc_after_resolver;
4751 sr_sal.pspace = get_frame_program_space (frame);
4752
4753 insert_step_resume_breakpoint_at_sal (gdbarch,
4754 sr_sal, null_frame_id);
4755 }
4756
4757 keep_going (ecs);
4758 return;
4759 }
4760
4761 if (ecs->event_thread->control.step_range_end != 1
4762 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4763 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4764 && get_frame_type (frame) == SIGTRAMP_FRAME)
4765 {
4766 if (debug_infrun)
4767 fprintf_unfiltered (gdb_stdlog,
4768 "infrun: stepped into signal trampoline\n");
4769 /* The inferior, while doing a "step" or "next", has ended up in
4770 a signal trampoline (either by a signal being delivered or by
4771 the signal handler returning). Just single-step until the
4772 inferior leaves the trampoline (either by calling the handler
4773 or returning). */
4774 keep_going (ecs);
4775 return;
4776 }
4777
4778 /* If we're in the return path from a shared library trampoline,
4779 we want to proceed through the trampoline when stepping. */
4780 /* macro/2012-04-25: This needs to come before the subroutine
4781 call check below as on some targets return trampolines look
4782 like subroutine calls (MIPS16 return thunks). */
4783 if (gdbarch_in_solib_return_trampoline (gdbarch,
4784 stop_pc, ecs->stop_func_name)
4785 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
4786 {
4787 /* Determine where this trampoline returns. */
4788 CORE_ADDR real_stop_pc;
4789
4790 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4791
4792 if (debug_infrun)
4793 fprintf_unfiltered (gdb_stdlog,
4794 "infrun: stepped into solib return tramp\n");
4795
4796 /* Only proceed through if we know where it's going. */
4797 if (real_stop_pc)
4798 {
4799 /* And put the step-breakpoint there and go until there. */
4800 struct symtab_and_line sr_sal;
4801
4802 init_sal (&sr_sal); /* initialize to zeroes */
4803 sr_sal.pc = real_stop_pc;
4804 sr_sal.section = find_pc_overlay (sr_sal.pc);
4805 sr_sal.pspace = get_frame_program_space (frame);
4806
4807 /* Do not specify what the fp should be when we stop since
4808 on some machines the prologue is where the new fp value
4809 is established. */
4810 insert_step_resume_breakpoint_at_sal (gdbarch,
4811 sr_sal, null_frame_id);
4812
4813 /* Restart without fiddling with the step ranges or
4814 other state. */
4815 keep_going (ecs);
4816 return;
4817 }
4818 }
4819
4820 /* Check for subroutine calls. The check for the current frame
4821 equalling the step ID is not necessary - the check of the
4822 previous frame's ID is sufficient - but it is a common case and
4823 cheaper than checking the previous frame's ID.
4824
4825 NOTE: frame_id_eq will never report two invalid frame IDs as
4826 being equal, so to get into this block, both the current and
4827 previous frame must have valid frame IDs. */
4828 /* The outer_frame_id check is a heuristic to detect stepping
4829 through startup code. If we step over an instruction which
4830 sets the stack pointer from an invalid value to a valid value,
4831 we may detect that as a subroutine call from the mythical
4832 "outermost" function. This could be fixed by marking
4833 outermost frames as !stack_p,code_p,special_p. Then the
4834 initial outermost frame, before sp was valid, would
4835 have code_addr == &_start. See the comment in frame_id_eq
4836 for more. */
4837 if (!frame_id_eq (get_stack_frame_id (frame),
4838 ecs->event_thread->control.step_stack_frame_id)
4839 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
4840 ecs->event_thread->control.step_stack_frame_id)
4841 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
4842 outer_frame_id)
4843 || step_start_function != find_pc_function (stop_pc))))
4844 {
4845 CORE_ADDR real_stop_pc;
4846
4847 if (debug_infrun)
4848 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
4849
4850 if ((ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
4851 || ((ecs->event_thread->control.step_range_end == 1)
4852 && in_prologue (gdbarch, ecs->event_thread->prev_pc,
4853 ecs->stop_func_start)))
4854 {
4855 /* I presume that step_over_calls is only 0 when we're
4856 supposed to be stepping at the assembly language level
4857 ("stepi"). Just stop. */
4858 /* Also, maybe we just did a "nexti" inside a prolog, so we
4859 thought it was a subroutine call but it was not. Stop as
4860 well. FENN */
4861 /* And this works the same backward as frontward. MVS */
4862 ecs->event_thread->control.stop_step = 1;
4863 print_end_stepping_range_reason ();
4864 stop_stepping (ecs);
4865 return;
4866 }
4867
4868 /* Reverse stepping through solib trampolines. */
4869
4870 if (execution_direction == EXEC_REVERSE
4871 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
4872 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
4873 || (ecs->stop_func_start == 0
4874 && in_solib_dynsym_resolve_code (stop_pc))))
4875 {
4876 /* Any solib trampoline code can be handled in reverse
4877 by simply continuing to single-step. We have already
4878 executed the solib function (backwards), and a few
4879 steps will take us back through the trampoline to the
4880 caller. */
4881 keep_going (ecs);
4882 return;
4883 }
4884
4885 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
4886 {
4887 /* We're doing a "next".
4888
4889 Normal (forward) execution: set a breakpoint at the
4890 callee's return address (the address at which the caller
4891 will resume).
4892
4893 Reverse (backward) execution. set the step-resume
4894 breakpoint at the start of the function that we just
4895 stepped into (backwards), and continue to there. When we
4896 get there, we'll need to single-step back to the caller. */
4897
4898 if (execution_direction == EXEC_REVERSE)
4899 {
4900 /* If we're already at the start of the function, we've either
4901 just stepped backward into a single instruction function,
4902 or stepped back out of a signal handler to the first instruction
4903 of the function. Just keep going, which will single-step back
4904 to the caller. */
4905 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
4906 {
4907 struct symtab_and_line sr_sal;
4908
4909 /* Normal function call return (static or dynamic). */
4910 init_sal (&sr_sal);
4911 sr_sal.pc = ecs->stop_func_start;
4912 sr_sal.pspace = get_frame_program_space (frame);
4913 insert_step_resume_breakpoint_at_sal (gdbarch,
4914 sr_sal, null_frame_id);
4915 }
4916 }
4917 else
4918 insert_step_resume_breakpoint_at_caller (frame);
4919
4920 keep_going (ecs);
4921 return;
4922 }
4923
4924 /* If we are in a function call trampoline (a stub between the
4925 calling routine and the real function), locate the real
4926 function. That's what tells us (a) whether we want to step
4927 into it at all, and (b) what prologue we want to run to the
4928 end of, if we do step into it. */
4929 real_stop_pc = skip_language_trampoline (frame, stop_pc);
4930 if (real_stop_pc == 0)
4931 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
4932 if (real_stop_pc != 0)
4933 ecs->stop_func_start = real_stop_pc;
4934
4935 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
4936 {
4937 struct symtab_and_line sr_sal;
4938
4939 init_sal (&sr_sal);
4940 sr_sal.pc = ecs->stop_func_start;
4941 sr_sal.pspace = get_frame_program_space (frame);
4942
4943 insert_step_resume_breakpoint_at_sal (gdbarch,
4944 sr_sal, null_frame_id);
4945 keep_going (ecs);
4946 return;
4947 }
4948
4949 /* If we have line number information for the function we are
4950 thinking of stepping into and the function isn't on the skip
4951 list, step into it.
4952
4953 If there are several symtabs at that PC (e.g. with include
4954 files), just want to know whether *any* of them have line
4955 numbers. find_pc_line handles this. */
4956 {
4957 struct symtab_and_line tmp_sal;
4958
4959 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
4960 if (tmp_sal.line != 0
4961 && !function_name_is_marked_for_skip (ecs->stop_func_name,
4962 &tmp_sal))
4963 {
4964 if (execution_direction == EXEC_REVERSE)
4965 handle_step_into_function_backward (gdbarch, ecs);
4966 else
4967 handle_step_into_function (gdbarch, ecs);
4968 return;
4969 }
4970 }
4971
4972 /* If we have no line number and the step-stop-if-no-debug is
4973 set, we stop the step so that the user has a chance to switch
4974 in assembly mode. */
4975 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
4976 && step_stop_if_no_debug)
4977 {
4978 ecs->event_thread->control.stop_step = 1;
4979 print_end_stepping_range_reason ();
4980 stop_stepping (ecs);
4981 return;
4982 }
4983
4984 if (execution_direction == EXEC_REVERSE)
4985 {
4986 /* If we're already at the start of the function, we've either just
4987 stepped backward into a single instruction function without line
4988 number info, or stepped back out of a signal handler to the first
4989 instruction of the function without line number info. Just keep
4990 going, which will single-step back to the caller. */
4991 if (ecs->stop_func_start != stop_pc)
4992 {
4993 /* Set a breakpoint at callee's start address.
4994 From there we can step once and be back in the caller. */
4995 struct symtab_and_line sr_sal;
4996
4997 init_sal (&sr_sal);
4998 sr_sal.pc = ecs->stop_func_start;
4999 sr_sal.pspace = get_frame_program_space (frame);
5000 insert_step_resume_breakpoint_at_sal (gdbarch,
5001 sr_sal, null_frame_id);
5002 }
5003 }
5004 else
5005 /* Set a breakpoint at callee's return address (the address
5006 at which the caller will resume). */
5007 insert_step_resume_breakpoint_at_caller (frame);
5008
5009 keep_going (ecs);
5010 return;
5011 }
5012
5013 /* Reverse stepping through solib trampolines. */
5014
5015 if (execution_direction == EXEC_REVERSE
5016 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
5017 {
5018 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
5019 || (ecs->stop_func_start == 0
5020 && in_solib_dynsym_resolve_code (stop_pc)))
5021 {
5022 /* Any solib trampoline code can be handled in reverse
5023 by simply continuing to single-step. We have already
5024 executed the solib function (backwards), and a few
5025 steps will take us back through the trampoline to the
5026 caller. */
5027 keep_going (ecs);
5028 return;
5029 }
5030 else if (in_solib_dynsym_resolve_code (stop_pc))
5031 {
5032 /* Stepped backward into the solib dynsym resolver.
5033 Set a breakpoint at its start and continue, then
5034 one more step will take us out. */
5035 struct symtab_and_line sr_sal;
5036
5037 init_sal (&sr_sal);
5038 sr_sal.pc = ecs->stop_func_start;
5039 sr_sal.pspace = get_frame_program_space (frame);
5040 insert_step_resume_breakpoint_at_sal (gdbarch,
5041 sr_sal, null_frame_id);
5042 keep_going (ecs);
5043 return;
5044 }
5045 }
5046
5047 stop_pc_sal = find_pc_line (stop_pc, 0);
5048
5049 /* NOTE: tausq/2004-05-24: This if block used to be done before all
5050 the trampoline processing logic, however, there are some trampolines
5051 that have no names, so we should do trampoline handling first. */
5052 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
5053 && ecs->stop_func_name == NULL
5054 && stop_pc_sal.line == 0)
5055 {
5056 if (debug_infrun)
5057 fprintf_unfiltered (gdb_stdlog,
5058 "infrun: stepped into undebuggable function\n");
5059
5060 /* The inferior just stepped into, or returned to, an
5061 undebuggable function (where there is no debugging information
5062 and no line number corresponding to the address where the
5063 inferior stopped). Since we want to skip this kind of code,
5064 we keep going until the inferior returns from this
5065 function - unless the user has asked us not to (via
5066 set step-mode) or we no longer know how to get back
5067 to the call site. */
5068 if (step_stop_if_no_debug
5069 || !frame_id_p (frame_unwind_caller_id (frame)))
5070 {
5071 /* If we have no line number and the step-stop-if-no-debug
5072 is set, we stop the step so that the user has a chance to
5073 switch in assembly mode. */
5074 ecs->event_thread->control.stop_step = 1;
5075 print_end_stepping_range_reason ();
5076 stop_stepping (ecs);
5077 return;
5078 }
5079 else
5080 {
5081 /* Set a breakpoint at callee's return address (the address
5082 at which the caller will resume). */
5083 insert_step_resume_breakpoint_at_caller (frame);
5084 keep_going (ecs);
5085 return;
5086 }
5087 }
5088
5089 if (ecs->event_thread->control.step_range_end == 1)
5090 {
5091 /* It is stepi or nexti. We always want to stop stepping after
5092 one instruction. */
5093 if (debug_infrun)
5094 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
5095 ecs->event_thread->control.stop_step = 1;
5096 print_end_stepping_range_reason ();
5097 stop_stepping (ecs);
5098 return;
5099 }
5100
5101 if (stop_pc_sal.line == 0)
5102 {
5103 /* We have no line number information. That means to stop
5104 stepping (does this always happen right after one instruction,
5105 when we do "s" in a function with no line numbers,
5106 or can this happen as a result of a return or longjmp?). */
5107 if (debug_infrun)
5108 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
5109 ecs->event_thread->control.stop_step = 1;
5110 print_end_stepping_range_reason ();
5111 stop_stepping (ecs);
5112 return;
5113 }
5114
5115 /* Look for "calls" to inlined functions, part one. If the inline
5116 frame machinery detected some skipped call sites, we have entered
5117 a new inline function. */
5118
5119 if (frame_id_eq (get_frame_id (get_current_frame ()),
5120 ecs->event_thread->control.step_frame_id)
5121 && inline_skipped_frames (ecs->ptid))
5122 {
5123 struct symtab_and_line call_sal;
5124
5125 if (debug_infrun)
5126 fprintf_unfiltered (gdb_stdlog,
5127 "infrun: stepped into inlined function\n");
5128
5129 find_frame_sal (get_current_frame (), &call_sal);
5130
5131 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
5132 {
5133 /* For "step", we're going to stop. But if the call site
5134 for this inlined function is on the same source line as
5135 we were previously stepping, go down into the function
5136 first. Otherwise stop at the call site. */
5137
5138 if (call_sal.line == ecs->event_thread->current_line
5139 && call_sal.symtab == ecs->event_thread->current_symtab)
5140 step_into_inline_frame (ecs->ptid);
5141
5142 ecs->event_thread->control.stop_step = 1;
5143 print_end_stepping_range_reason ();
5144 stop_stepping (ecs);
5145 return;
5146 }
5147 else
5148 {
5149 /* For "next", we should stop at the call site if it is on a
5150 different source line. Otherwise continue through the
5151 inlined function. */
5152 if (call_sal.line == ecs->event_thread->current_line
5153 && call_sal.symtab == ecs->event_thread->current_symtab)
5154 keep_going (ecs);
5155 else
5156 {
5157 ecs->event_thread->control.stop_step = 1;
5158 print_end_stepping_range_reason ();
5159 stop_stepping (ecs);
5160 }
5161 return;
5162 }
5163 }
5164
5165 /* Look for "calls" to inlined functions, part two. If we are still
5166 in the same real function we were stepping through, but we have
5167 to go further up to find the exact frame ID, we are stepping
5168 through a more inlined call beyond its call site. */
5169
5170 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
5171 && !frame_id_eq (get_frame_id (get_current_frame ()),
5172 ecs->event_thread->control.step_frame_id)
5173 && stepped_in_from (get_current_frame (),
5174 ecs->event_thread->control.step_frame_id))
5175 {
5176 if (debug_infrun)
5177 fprintf_unfiltered (gdb_stdlog,
5178 "infrun: stepping through inlined function\n");
5179
5180 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
5181 keep_going (ecs);
5182 else
5183 {
5184 ecs->event_thread->control.stop_step = 1;
5185 print_end_stepping_range_reason ();
5186 stop_stepping (ecs);
5187 }
5188 return;
5189 }
5190
5191 if ((stop_pc == stop_pc_sal.pc)
5192 && (ecs->event_thread->current_line != stop_pc_sal.line
5193 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
5194 {
5195 /* We are at the start of a different line. So stop. Note that
5196 we don't stop if we step into the middle of a different line.
5197 That is said to make things like for (;;) statements work
5198 better. */
5199 if (debug_infrun)
5200 fprintf_unfiltered (gdb_stdlog,
5201 "infrun: stepped to a different line\n");
5202 ecs->event_thread->control.stop_step = 1;
5203 print_end_stepping_range_reason ();
5204 stop_stepping (ecs);
5205 return;
5206 }
5207
5208 /* We aren't done stepping.
5209
5210 Optimize by setting the stepping range to the line.
5211 (We might not be in the original line, but if we entered a
5212 new line in mid-statement, we continue stepping. This makes
5213 things like for(;;) statements work better.) */
5214
5215 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
5216 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
5217 ecs->event_thread->control.may_range_step = 1;
5218 set_step_info (frame, stop_pc_sal);
5219
5220 if (debug_infrun)
5221 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
5222 keep_going (ecs);
5223 }
5224
5225 /* In all-stop mode, if we're currently stepping but have stopped in
5226 some other thread, we may need to switch back to the stepped
5227 thread. Returns true we set the inferior running, false if we left
5228 it stopped (and the event needs further processing). */
5229
5230 static int
5231 switch_back_to_stepped_thread (struct execution_control_state *ecs)
5232 {
5233 if (!non_stop)
5234 {
5235 struct thread_info *tp;
5236
5237 tp = iterate_over_threads (currently_stepping_or_nexting_callback,
5238 ecs->event_thread);
5239 if (tp)
5240 {
5241 /* However, if the current thread is blocked on some internal
5242 breakpoint, and we simply need to step over that breakpoint
5243 to get it going again, do that first. */
5244 if ((ecs->event_thread->control.trap_expected
5245 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5246 || ecs->event_thread->stepping_over_breakpoint)
5247 {
5248 keep_going (ecs);
5249 return 1;
5250 }
5251
5252 /* If the stepping thread exited, then don't try to switch
5253 back and resume it, which could fail in several different
5254 ways depending on the target. Instead, just keep going.
5255
5256 We can find a stepping dead thread in the thread list in
5257 two cases:
5258
5259 - The target supports thread exit events, and when the
5260 target tries to delete the thread from the thread list,
5261 inferior_ptid pointed at the exiting thread. In such
5262 case, calling delete_thread does not really remove the
5263 thread from the list; instead, the thread is left listed,
5264 with 'exited' state.
5265
5266 - The target's debug interface does not support thread
5267 exit events, and so we have no idea whatsoever if the
5268 previously stepping thread is still alive. For that
5269 reason, we need to synchronously query the target
5270 now. */
5271 if (is_exited (tp->ptid)
5272 || !target_thread_alive (tp->ptid))
5273 {
5274 if (debug_infrun)
5275 fprintf_unfiltered (gdb_stdlog,
5276 "infrun: not switching back to "
5277 "stepped thread, it has vanished\n");
5278
5279 delete_thread (tp->ptid);
5280 keep_going (ecs);
5281 return 1;
5282 }
5283
5284 /* Otherwise, we no longer expect a trap in the current thread.
5285 Clear the trap_expected flag before switching back -- this is
5286 what keep_going would do as well, if we called it. */
5287 ecs->event_thread->control.trap_expected = 0;
5288
5289 if (debug_infrun)
5290 fprintf_unfiltered (gdb_stdlog,
5291 "infrun: switching back to stepped thread\n");
5292
5293 ecs->event_thread = tp;
5294 ecs->ptid = tp->ptid;
5295 context_switch (ecs->ptid);
5296 keep_going (ecs);
5297 return 1;
5298 }
5299 }
5300 return 0;
5301 }
5302
5303 /* Is thread TP in the middle of single-stepping? */
5304
5305 static int
5306 currently_stepping (struct thread_info *tp)
5307 {
5308 return ((tp->control.step_range_end
5309 && tp->control.step_resume_breakpoint == NULL)
5310 || tp->control.trap_expected
5311 || bpstat_should_step ());
5312 }
5313
5314 /* Returns true if any thread *but* the one passed in "data" is in the
5315 middle of stepping or of handling a "next". */
5316
5317 static int
5318 currently_stepping_or_nexting_callback (struct thread_info *tp, void *data)
5319 {
5320 if (tp == data)
5321 return 0;
5322
5323 return (tp->control.step_range_end
5324 || tp->control.trap_expected);
5325 }
5326
5327 /* Inferior has stepped into a subroutine call with source code that
5328 we should not step over. Do step to the first line of code in
5329 it. */
5330
5331 static void
5332 handle_step_into_function (struct gdbarch *gdbarch,
5333 struct execution_control_state *ecs)
5334 {
5335 struct symtab *s;
5336 struct symtab_and_line stop_func_sal, sr_sal;
5337
5338 fill_in_stop_func (gdbarch, ecs);
5339
5340 s = find_pc_symtab (stop_pc);
5341 if (s && s->language != language_asm)
5342 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5343 ecs->stop_func_start);
5344
5345 stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
5346 /* Use the step_resume_break to step until the end of the prologue,
5347 even if that involves jumps (as it seems to on the vax under
5348 4.2). */
5349 /* If the prologue ends in the middle of a source line, continue to
5350 the end of that source line (if it is still within the function).
5351 Otherwise, just go to end of prologue. */
5352 if (stop_func_sal.end
5353 && stop_func_sal.pc != ecs->stop_func_start
5354 && stop_func_sal.end < ecs->stop_func_end)
5355 ecs->stop_func_start = stop_func_sal.end;
5356
5357 /* Architectures which require breakpoint adjustment might not be able
5358 to place a breakpoint at the computed address. If so, the test
5359 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
5360 ecs->stop_func_start to an address at which a breakpoint may be
5361 legitimately placed.
5362
5363 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
5364 made, GDB will enter an infinite loop when stepping through
5365 optimized code consisting of VLIW instructions which contain
5366 subinstructions corresponding to different source lines. On
5367 FR-V, it's not permitted to place a breakpoint on any but the
5368 first subinstruction of a VLIW instruction. When a breakpoint is
5369 set, GDB will adjust the breakpoint address to the beginning of
5370 the VLIW instruction. Thus, we need to make the corresponding
5371 adjustment here when computing the stop address. */
5372
5373 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
5374 {
5375 ecs->stop_func_start
5376 = gdbarch_adjust_breakpoint_address (gdbarch,
5377 ecs->stop_func_start);
5378 }
5379
5380 if (ecs->stop_func_start == stop_pc)
5381 {
5382 /* We are already there: stop now. */
5383 ecs->event_thread->control.stop_step = 1;
5384 print_end_stepping_range_reason ();
5385 stop_stepping (ecs);
5386 return;
5387 }
5388 else
5389 {
5390 /* Put the step-breakpoint there and go until there. */
5391 init_sal (&sr_sal); /* initialize to zeroes */
5392 sr_sal.pc = ecs->stop_func_start;
5393 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
5394 sr_sal.pspace = get_frame_program_space (get_current_frame ());
5395
5396 /* Do not specify what the fp should be when we stop since on
5397 some machines the prologue is where the new fp value is
5398 established. */
5399 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
5400
5401 /* And make sure stepping stops right away then. */
5402 ecs->event_thread->control.step_range_end
5403 = ecs->event_thread->control.step_range_start;
5404 }
5405 keep_going (ecs);
5406 }
5407
5408 /* Inferior has stepped backward into a subroutine call with source
5409 code that we should not step over. Do step to the beginning of the
5410 last line of code in it. */
5411
5412 static void
5413 handle_step_into_function_backward (struct gdbarch *gdbarch,
5414 struct execution_control_state *ecs)
5415 {
5416 struct symtab *s;
5417 struct symtab_and_line stop_func_sal;
5418
5419 fill_in_stop_func (gdbarch, ecs);
5420
5421 s = find_pc_symtab (stop_pc);
5422 if (s && s->language != language_asm)
5423 ecs->stop_func_start = gdbarch_skip_prologue (gdbarch,
5424 ecs->stop_func_start);
5425
5426 stop_func_sal = find_pc_line (stop_pc, 0);
5427
5428 /* OK, we're just going to keep stepping here. */
5429 if (stop_func_sal.pc == stop_pc)
5430 {
5431 /* We're there already. Just stop stepping now. */
5432 ecs->event_thread->control.stop_step = 1;
5433 print_end_stepping_range_reason ();
5434 stop_stepping (ecs);
5435 }
5436 else
5437 {
5438 /* Else just reset the step range and keep going.
5439 No step-resume breakpoint, they don't work for
5440 epilogues, which can have multiple entry paths. */
5441 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
5442 ecs->event_thread->control.step_range_end = stop_func_sal.end;
5443 keep_going (ecs);
5444 }
5445 return;
5446 }
5447
5448 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
5449 This is used to both functions and to skip over code. */
5450
5451 static void
5452 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
5453 struct symtab_and_line sr_sal,
5454 struct frame_id sr_id,
5455 enum bptype sr_type)
5456 {
5457 /* There should never be more than one step-resume or longjmp-resume
5458 breakpoint per thread, so we should never be setting a new
5459 step_resume_breakpoint when one is already active. */
5460 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
5461 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
5462
5463 if (debug_infrun)
5464 fprintf_unfiltered (gdb_stdlog,
5465 "infrun: inserting step-resume breakpoint at %s\n",
5466 paddress (gdbarch, sr_sal.pc));
5467
5468 inferior_thread ()->control.step_resume_breakpoint
5469 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type);
5470 }
5471
5472 void
5473 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
5474 struct symtab_and_line sr_sal,
5475 struct frame_id sr_id)
5476 {
5477 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
5478 sr_sal, sr_id,
5479 bp_step_resume);
5480 }
5481
5482 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
5483 This is used to skip a potential signal handler.
5484
5485 This is called with the interrupted function's frame. The signal
5486 handler, when it returns, will resume the interrupted function at
5487 RETURN_FRAME.pc. */
5488
5489 static void
5490 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
5491 {
5492 struct symtab_and_line sr_sal;
5493 struct gdbarch *gdbarch;
5494
5495 gdb_assert (return_frame != NULL);
5496 init_sal (&sr_sal); /* initialize to zeros */
5497
5498 gdbarch = get_frame_arch (return_frame);
5499 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
5500 sr_sal.section = find_pc_overlay (sr_sal.pc);
5501 sr_sal.pspace = get_frame_program_space (return_frame);
5502
5503 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
5504 get_stack_frame_id (return_frame),
5505 bp_hp_step_resume);
5506 }
5507
5508 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
5509 is used to skip a function after stepping into it (for "next" or if
5510 the called function has no debugging information).
5511
5512 The current function has almost always been reached by single
5513 stepping a call or return instruction. NEXT_FRAME belongs to the
5514 current function, and the breakpoint will be set at the caller's
5515 resume address.
5516
5517 This is a separate function rather than reusing
5518 insert_hp_step_resume_breakpoint_at_frame in order to avoid
5519 get_prev_frame, which may stop prematurely (see the implementation
5520 of frame_unwind_caller_id for an example). */
5521
5522 static void
5523 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
5524 {
5525 struct symtab_and_line sr_sal;
5526 struct gdbarch *gdbarch;
5527
5528 /* We shouldn't have gotten here if we don't know where the call site
5529 is. */
5530 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
5531
5532 init_sal (&sr_sal); /* initialize to zeros */
5533
5534 gdbarch = frame_unwind_caller_arch (next_frame);
5535 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
5536 frame_unwind_caller_pc (next_frame));
5537 sr_sal.section = find_pc_overlay (sr_sal.pc);
5538 sr_sal.pspace = frame_unwind_program_space (next_frame);
5539
5540 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
5541 frame_unwind_caller_id (next_frame));
5542 }
5543
5544 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
5545 new breakpoint at the target of a jmp_buf. The handling of
5546 longjmp-resume uses the same mechanisms used for handling
5547 "step-resume" breakpoints. */
5548
5549 static void
5550 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
5551 {
5552 /* There should never be more than one longjmp-resume breakpoint per
5553 thread, so we should never be setting a new
5554 longjmp_resume_breakpoint when one is already active. */
5555 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
5556
5557 if (debug_infrun)
5558 fprintf_unfiltered (gdb_stdlog,
5559 "infrun: inserting longjmp-resume breakpoint at %s\n",
5560 paddress (gdbarch, pc));
5561
5562 inferior_thread ()->control.exception_resume_breakpoint =
5563 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume);
5564 }
5565
5566 /* Insert an exception resume breakpoint. TP is the thread throwing
5567 the exception. The block B is the block of the unwinder debug hook
5568 function. FRAME is the frame corresponding to the call to this
5569 function. SYM is the symbol of the function argument holding the
5570 target PC of the exception. */
5571
5572 static void
5573 insert_exception_resume_breakpoint (struct thread_info *tp,
5574 struct block *b,
5575 struct frame_info *frame,
5576 struct symbol *sym)
5577 {
5578 volatile struct gdb_exception e;
5579
5580 /* We want to ignore errors here. */
5581 TRY_CATCH (e, RETURN_MASK_ERROR)
5582 {
5583 struct symbol *vsym;
5584 struct value *value;
5585 CORE_ADDR handler;
5586 struct breakpoint *bp;
5587
5588 vsym = lookup_symbol (SYMBOL_LINKAGE_NAME (sym), b, VAR_DOMAIN, NULL);
5589 value = read_var_value (vsym, frame);
5590 /* If the value was optimized out, revert to the old behavior. */
5591 if (! value_optimized_out (value))
5592 {
5593 handler = value_as_address (value);
5594
5595 if (debug_infrun)
5596 fprintf_unfiltered (gdb_stdlog,
5597 "infrun: exception resume at %lx\n",
5598 (unsigned long) handler);
5599
5600 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5601 handler, bp_exception_resume);
5602
5603 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
5604 frame = NULL;
5605
5606 bp->thread = tp->num;
5607 inferior_thread ()->control.exception_resume_breakpoint = bp;
5608 }
5609 }
5610 }
5611
5612 /* A helper for check_exception_resume that sets an
5613 exception-breakpoint based on a SystemTap probe. */
5614
5615 static void
5616 insert_exception_resume_from_probe (struct thread_info *tp,
5617 const struct probe *probe,
5618 struct frame_info *frame)
5619 {
5620 struct value *arg_value;
5621 CORE_ADDR handler;
5622 struct breakpoint *bp;
5623
5624 arg_value = probe_safe_evaluate_at_pc (frame, 1);
5625 if (!arg_value)
5626 return;
5627
5628 handler = value_as_address (arg_value);
5629
5630 if (debug_infrun)
5631 fprintf_unfiltered (gdb_stdlog,
5632 "infrun: exception resume at %s\n",
5633 paddress (get_objfile_arch (probe->objfile),
5634 handler));
5635
5636 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
5637 handler, bp_exception_resume);
5638 bp->thread = tp->num;
5639 inferior_thread ()->control.exception_resume_breakpoint = bp;
5640 }
5641
5642 /* This is called when an exception has been intercepted. Check to
5643 see whether the exception's destination is of interest, and if so,
5644 set an exception resume breakpoint there. */
5645
5646 static void
5647 check_exception_resume (struct execution_control_state *ecs,
5648 struct frame_info *frame)
5649 {
5650 volatile struct gdb_exception e;
5651 const struct probe *probe;
5652 struct symbol *func;
5653
5654 /* First see if this exception unwinding breakpoint was set via a
5655 SystemTap probe point. If so, the probe has two arguments: the
5656 CFA and the HANDLER. We ignore the CFA, extract the handler, and
5657 set a breakpoint there. */
5658 probe = find_probe_by_pc (get_frame_pc (frame));
5659 if (probe)
5660 {
5661 insert_exception_resume_from_probe (ecs->event_thread, probe, frame);
5662 return;
5663 }
5664
5665 func = get_frame_function (frame);
5666 if (!func)
5667 return;
5668
5669 TRY_CATCH (e, RETURN_MASK_ERROR)
5670 {
5671 struct block *b;
5672 struct block_iterator iter;
5673 struct symbol *sym;
5674 int argno = 0;
5675
5676 /* The exception breakpoint is a thread-specific breakpoint on
5677 the unwinder's debug hook, declared as:
5678
5679 void _Unwind_DebugHook (void *cfa, void *handler);
5680
5681 The CFA argument indicates the frame to which control is
5682 about to be transferred. HANDLER is the destination PC.
5683
5684 We ignore the CFA and set a temporary breakpoint at HANDLER.
5685 This is not extremely efficient but it avoids issues in gdb
5686 with computing the DWARF CFA, and it also works even in weird
5687 cases such as throwing an exception from inside a signal
5688 handler. */
5689
5690 b = SYMBOL_BLOCK_VALUE (func);
5691 ALL_BLOCK_SYMBOLS (b, iter, sym)
5692 {
5693 if (!SYMBOL_IS_ARGUMENT (sym))
5694 continue;
5695
5696 if (argno == 0)
5697 ++argno;
5698 else
5699 {
5700 insert_exception_resume_breakpoint (ecs->event_thread,
5701 b, frame, sym);
5702 break;
5703 }
5704 }
5705 }
5706 }
5707
5708 static void
5709 stop_stepping (struct execution_control_state *ecs)
5710 {
5711 if (debug_infrun)
5712 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
5713
5714 /* Let callers know we don't want to wait for the inferior anymore. */
5715 ecs->wait_some_more = 0;
5716 }
5717
5718 /* Called when we should continue running the inferior, because the
5719 current event doesn't cause a user visible stop. This does the
5720 resuming part; waiting for the next event is done elsewhere. */
5721
5722 static void
5723 keep_going (struct execution_control_state *ecs)
5724 {
5725 /* Make sure normal_stop is called if we get a QUIT handled before
5726 reaching resume. */
5727 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
5728
5729 /* Save the pc before execution, to compare with pc after stop. */
5730 ecs->event_thread->prev_pc
5731 = regcache_read_pc (get_thread_regcache (ecs->ptid));
5732
5733 if (ecs->event_thread->control.trap_expected
5734 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
5735 {
5736 /* We haven't yet gotten our trap, and either: intercepted a
5737 non-signal event (e.g., a fork); or took a signal which we
5738 are supposed to pass through to the inferior. Simply
5739 continue. */
5740 discard_cleanups (old_cleanups);
5741 resume (currently_stepping (ecs->event_thread),
5742 ecs->event_thread->suspend.stop_signal);
5743 }
5744 else
5745 {
5746 /* Either the trap was not expected, but we are continuing
5747 anyway (if we got a signal, the user asked it be passed to
5748 the child)
5749 -- or --
5750 We got our expected trap, but decided we should resume from
5751 it.
5752
5753 We're going to run this baby now!
5754
5755 Note that insert_breakpoints won't try to re-insert
5756 already inserted breakpoints. Therefore, we don't
5757 care if breakpoints were already inserted, or not. */
5758
5759 if (ecs->event_thread->stepping_over_breakpoint)
5760 {
5761 struct regcache *thread_regcache = get_thread_regcache (ecs->ptid);
5762
5763 if (!use_displaced_stepping (get_regcache_arch (thread_regcache)))
5764 {
5765 /* Since we can't do a displaced step, we have to remove
5766 the breakpoint while we step it. To keep things
5767 simple, we remove them all. */
5768 remove_breakpoints ();
5769 }
5770 }
5771 else
5772 {
5773 volatile struct gdb_exception e;
5774
5775 /* Stop stepping if inserting breakpoints fails. */
5776 TRY_CATCH (e, RETURN_MASK_ERROR)
5777 {
5778 insert_breakpoints ();
5779 }
5780 if (e.reason < 0)
5781 {
5782 exception_print (gdb_stderr, e);
5783 stop_stepping (ecs);
5784 return;
5785 }
5786 }
5787
5788 ecs->event_thread->control.trap_expected
5789 = ecs->event_thread->stepping_over_breakpoint;
5790
5791 /* Do not deliver GDB_SIGNAL_TRAP (except when the user
5792 explicitly specifies that such a signal should be delivered
5793 to the target program). Typically, that would occur when a
5794 user is debugging a target monitor on a simulator: the target
5795 monitor sets a breakpoint; the simulator encounters this
5796 breakpoint and halts the simulation handing control to GDB;
5797 GDB, noting that the stop address doesn't map to any known
5798 breakpoint, returns control back to the simulator; the
5799 simulator then delivers the hardware equivalent of a
5800 GDB_SIGNAL_TRAP to the program being debugged. */
5801 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5802 && !signal_program[ecs->event_thread->suspend.stop_signal])
5803 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5804
5805 discard_cleanups (old_cleanups);
5806 resume (currently_stepping (ecs->event_thread),
5807 ecs->event_thread->suspend.stop_signal);
5808 }
5809
5810 prepare_to_wait (ecs);
5811 }
5812
5813 /* This function normally comes after a resume, before
5814 handle_inferior_event exits. It takes care of any last bits of
5815 housekeeping, and sets the all-important wait_some_more flag. */
5816
5817 static void
5818 prepare_to_wait (struct execution_control_state *ecs)
5819 {
5820 if (debug_infrun)
5821 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
5822
5823 /* This is the old end of the while loop. Let everybody know we
5824 want to wait for the inferior some more and get called again
5825 soon. */
5826 ecs->wait_some_more = 1;
5827 }
5828
5829 /* Several print_*_reason functions to print why the inferior has stopped.
5830 We always print something when the inferior exits, or receives a signal.
5831 The rest of the cases are dealt with later on in normal_stop and
5832 print_it_typical. Ideally there should be a call to one of these
5833 print_*_reason functions functions from handle_inferior_event each time
5834 stop_stepping is called. */
5835
5836 /* Print why the inferior has stopped.
5837 We are done with a step/next/si/ni command, print why the inferior has
5838 stopped. For now print nothing. Print a message only if not in the middle
5839 of doing a "step n" operation for n > 1. */
5840
5841 static void
5842 print_end_stepping_range_reason (void)
5843 {
5844 if ((!inferior_thread ()->step_multi
5845 || !inferior_thread ()->control.stop_step)
5846 && ui_out_is_mi_like_p (current_uiout))
5847 ui_out_field_string (current_uiout, "reason",
5848 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
5849 }
5850
5851 /* The inferior was terminated by a signal, print why it stopped. */
5852
5853 static void
5854 print_signal_exited_reason (enum gdb_signal siggnal)
5855 {
5856 struct ui_out *uiout = current_uiout;
5857
5858 annotate_signalled ();
5859 if (ui_out_is_mi_like_p (uiout))
5860 ui_out_field_string
5861 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
5862 ui_out_text (uiout, "\nProgram terminated with signal ");
5863 annotate_signal_name ();
5864 ui_out_field_string (uiout, "signal-name",
5865 gdb_signal_to_name (siggnal));
5866 annotate_signal_name_end ();
5867 ui_out_text (uiout, ", ");
5868 annotate_signal_string ();
5869 ui_out_field_string (uiout, "signal-meaning",
5870 gdb_signal_to_string (siggnal));
5871 annotate_signal_string_end ();
5872 ui_out_text (uiout, ".\n");
5873 ui_out_text (uiout, "The program no longer exists.\n");
5874 }
5875
5876 /* The inferior program is finished, print why it stopped. */
5877
5878 static void
5879 print_exited_reason (int exitstatus)
5880 {
5881 struct inferior *inf = current_inferior ();
5882 const char *pidstr = target_pid_to_str (pid_to_ptid (inf->pid));
5883 struct ui_out *uiout = current_uiout;
5884
5885 annotate_exited (exitstatus);
5886 if (exitstatus)
5887 {
5888 if (ui_out_is_mi_like_p (uiout))
5889 ui_out_field_string (uiout, "reason",
5890 async_reason_lookup (EXEC_ASYNC_EXITED));
5891 ui_out_text (uiout, "[Inferior ");
5892 ui_out_text (uiout, plongest (inf->num));
5893 ui_out_text (uiout, " (");
5894 ui_out_text (uiout, pidstr);
5895 ui_out_text (uiout, ") exited with code ");
5896 ui_out_field_fmt (uiout, "exit-code", "0%o", (unsigned int) exitstatus);
5897 ui_out_text (uiout, "]\n");
5898 }
5899 else
5900 {
5901 if (ui_out_is_mi_like_p (uiout))
5902 ui_out_field_string
5903 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
5904 ui_out_text (uiout, "[Inferior ");
5905 ui_out_text (uiout, plongest (inf->num));
5906 ui_out_text (uiout, " (");
5907 ui_out_text (uiout, pidstr);
5908 ui_out_text (uiout, ") exited normally]\n");
5909 }
5910 /* Support the --return-child-result option. */
5911 return_child_result_value = exitstatus;
5912 }
5913
5914 /* Signal received, print why the inferior has stopped. The signal table
5915 tells us to print about it. */
5916
5917 static void
5918 print_signal_received_reason (enum gdb_signal siggnal)
5919 {
5920 struct ui_out *uiout = current_uiout;
5921
5922 annotate_signal ();
5923
5924 if (siggnal == GDB_SIGNAL_0 && !ui_out_is_mi_like_p (uiout))
5925 {
5926 struct thread_info *t = inferior_thread ();
5927
5928 ui_out_text (uiout, "\n[");
5929 ui_out_field_string (uiout, "thread-name",
5930 target_pid_to_str (t->ptid));
5931 ui_out_field_fmt (uiout, "thread-id", "] #%d", t->num);
5932 ui_out_text (uiout, " stopped");
5933 }
5934 else
5935 {
5936 ui_out_text (uiout, "\nProgram received signal ");
5937 annotate_signal_name ();
5938 if (ui_out_is_mi_like_p (uiout))
5939 ui_out_field_string
5940 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
5941 ui_out_field_string (uiout, "signal-name",
5942 gdb_signal_to_name (siggnal));
5943 annotate_signal_name_end ();
5944 ui_out_text (uiout, ", ");
5945 annotate_signal_string ();
5946 ui_out_field_string (uiout, "signal-meaning",
5947 gdb_signal_to_string (siggnal));
5948 annotate_signal_string_end ();
5949 }
5950 ui_out_text (uiout, ".\n");
5951 }
5952
5953 /* Reverse execution: target ran out of history info, print why the inferior
5954 has stopped. */
5955
5956 static void
5957 print_no_history_reason (void)
5958 {
5959 ui_out_text (current_uiout, "\nNo more reverse-execution history.\n");
5960 }
5961
5962 /* Here to return control to GDB when the inferior stops for real.
5963 Print appropriate messages, remove breakpoints, give terminal our modes.
5964
5965 STOP_PRINT_FRAME nonzero means print the executing frame
5966 (pc, function, args, file, line number and line text).
5967 BREAKPOINTS_FAILED nonzero means stop was due to error
5968 attempting to insert breakpoints. */
5969
5970 void
5971 normal_stop (void)
5972 {
5973 struct target_waitstatus last;
5974 ptid_t last_ptid;
5975 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
5976
5977 get_last_target_status (&last_ptid, &last);
5978
5979 /* If an exception is thrown from this point on, make sure to
5980 propagate GDB's knowledge of the executing state to the
5981 frontend/user running state. A QUIT is an easy exception to see
5982 here, so do this before any filtered output. */
5983 if (!non_stop)
5984 make_cleanup (finish_thread_state_cleanup, &minus_one_ptid);
5985 else if (last.kind != TARGET_WAITKIND_SIGNALLED
5986 && last.kind != TARGET_WAITKIND_EXITED
5987 && last.kind != TARGET_WAITKIND_NO_RESUMED)
5988 make_cleanup (finish_thread_state_cleanup, &inferior_ptid);
5989
5990 /* In non-stop mode, we don't want GDB to switch threads behind the
5991 user's back, to avoid races where the user is typing a command to
5992 apply to thread x, but GDB switches to thread y before the user
5993 finishes entering the command. */
5994
5995 /* As with the notification of thread events, we want to delay
5996 notifying the user that we've switched thread context until
5997 the inferior actually stops.
5998
5999 There's no point in saying anything if the inferior has exited.
6000 Note that SIGNALLED here means "exited with a signal", not
6001 "received a signal". */
6002 if (!non_stop
6003 && !ptid_equal (previous_inferior_ptid, inferior_ptid)
6004 && target_has_execution
6005 && last.kind != TARGET_WAITKIND_SIGNALLED
6006 && last.kind != TARGET_WAITKIND_EXITED
6007 && last.kind != TARGET_WAITKIND_NO_RESUMED)
6008 {
6009 target_terminal_ours_for_output ();
6010 printf_filtered (_("[Switching to %s]\n"),
6011 target_pid_to_str (inferior_ptid));
6012 annotate_thread_changed ();
6013 previous_inferior_ptid = inferior_ptid;
6014 }
6015
6016 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
6017 {
6018 gdb_assert (sync_execution || !target_can_async_p ());
6019
6020 target_terminal_ours_for_output ();
6021 printf_filtered (_("No unwaited-for children left.\n"));
6022 }
6023
6024 if (!breakpoints_always_inserted_mode () && target_has_execution)
6025 {
6026 if (remove_breakpoints ())
6027 {
6028 target_terminal_ours_for_output ();
6029 printf_filtered (_("Cannot remove breakpoints because "
6030 "program is no longer writable.\nFurther "
6031 "execution is probably impossible.\n"));
6032 }
6033 }
6034
6035 /* If an auto-display called a function and that got a signal,
6036 delete that auto-display to avoid an infinite recursion. */
6037
6038 if (stopped_by_random_signal)
6039 disable_current_display ();
6040
6041 /* Don't print a message if in the middle of doing a "step n"
6042 operation for n > 1 */
6043 if (target_has_execution
6044 && last.kind != TARGET_WAITKIND_SIGNALLED
6045 && last.kind != TARGET_WAITKIND_EXITED
6046 && inferior_thread ()->step_multi
6047 && inferior_thread ()->control.stop_step)
6048 goto done;
6049
6050 target_terminal_ours ();
6051 async_enable_stdin ();
6052
6053 /* Set the current source location. This will also happen if we
6054 display the frame below, but the current SAL will be incorrect
6055 during a user hook-stop function. */
6056 if (has_stack_frames () && !stop_stack_dummy)
6057 set_current_sal_from_frame (get_current_frame (), 1);
6058
6059 /* Let the user/frontend see the threads as stopped. */
6060 do_cleanups (old_chain);
6061
6062 /* Look up the hook_stop and run it (CLI internally handles problem
6063 of stop_command's pre-hook not existing). */
6064 if (stop_command)
6065 catch_errors (hook_stop_stub, stop_command,
6066 "Error while running hook_stop:\n", RETURN_MASK_ALL);
6067
6068 if (!has_stack_frames ())
6069 goto done;
6070
6071 if (last.kind == TARGET_WAITKIND_SIGNALLED
6072 || last.kind == TARGET_WAITKIND_EXITED)
6073 goto done;
6074
6075 /* Select innermost stack frame - i.e., current frame is frame 0,
6076 and current location is based on that.
6077 Don't do this on return from a stack dummy routine,
6078 or if the program has exited. */
6079
6080 if (!stop_stack_dummy)
6081 {
6082 select_frame (get_current_frame ());
6083
6084 /* Print current location without a level number, if
6085 we have changed functions or hit a breakpoint.
6086 Print source line if we have one.
6087 bpstat_print() contains the logic deciding in detail
6088 what to print, based on the event(s) that just occurred. */
6089
6090 /* If --batch-silent is enabled then there's no need to print the current
6091 source location, and to try risks causing an error message about
6092 missing source files. */
6093 if (stop_print_frame && !batch_silent)
6094 {
6095 int bpstat_ret;
6096 int source_flag;
6097 int do_frame_printing = 1;
6098 struct thread_info *tp = inferior_thread ();
6099
6100 bpstat_ret = bpstat_print (tp->control.stop_bpstat, last.kind);
6101 switch (bpstat_ret)
6102 {
6103 case PRINT_UNKNOWN:
6104 /* FIXME: cagney/2002-12-01: Given that a frame ID does
6105 (or should) carry around the function and does (or
6106 should) use that when doing a frame comparison. */
6107 if (tp->control.stop_step
6108 && frame_id_eq (tp->control.step_frame_id,
6109 get_frame_id (get_current_frame ()))
6110 && step_start_function == find_pc_function (stop_pc))
6111 source_flag = SRC_LINE; /* Finished step, just
6112 print source line. */
6113 else
6114 source_flag = SRC_AND_LOC; /* Print location and
6115 source line. */
6116 break;
6117 case PRINT_SRC_AND_LOC:
6118 source_flag = SRC_AND_LOC; /* Print location and
6119 source line. */
6120 break;
6121 case PRINT_SRC_ONLY:
6122 source_flag = SRC_LINE;
6123 break;
6124 case PRINT_NOTHING:
6125 source_flag = SRC_LINE; /* something bogus */
6126 do_frame_printing = 0;
6127 break;
6128 default:
6129 internal_error (__FILE__, __LINE__, _("Unknown value."));
6130 }
6131
6132 /* The behavior of this routine with respect to the source
6133 flag is:
6134 SRC_LINE: Print only source line
6135 LOCATION: Print only location
6136 SRC_AND_LOC: Print location and source line. */
6137 if (do_frame_printing)
6138 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
6139
6140 /* Display the auto-display expressions. */
6141 do_displays ();
6142 }
6143 }
6144
6145 /* Save the function value return registers, if we care.
6146 We might be about to restore their previous contents. */
6147 if (inferior_thread ()->control.proceed_to_finish
6148 && execution_direction != EXEC_REVERSE)
6149 {
6150 /* This should not be necessary. */
6151 if (stop_registers)
6152 regcache_xfree (stop_registers);
6153
6154 /* NB: The copy goes through to the target picking up the value of
6155 all the registers. */
6156 stop_registers = regcache_dup (get_current_regcache ());
6157 }
6158
6159 if (stop_stack_dummy == STOP_STACK_DUMMY)
6160 {
6161 /* Pop the empty frame that contains the stack dummy.
6162 This also restores inferior state prior to the call
6163 (struct infcall_suspend_state). */
6164 struct frame_info *frame = get_current_frame ();
6165
6166 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
6167 frame_pop (frame);
6168 /* frame_pop() calls reinit_frame_cache as the last thing it
6169 does which means there's currently no selected frame. We
6170 don't need to re-establish a selected frame if the dummy call
6171 returns normally, that will be done by
6172 restore_infcall_control_state. However, we do have to handle
6173 the case where the dummy call is returning after being
6174 stopped (e.g. the dummy call previously hit a breakpoint).
6175 We can't know which case we have so just always re-establish
6176 a selected frame here. */
6177 select_frame (get_current_frame ());
6178 }
6179
6180 done:
6181 annotate_stopped ();
6182
6183 /* Suppress the stop observer if we're in the middle of:
6184
6185 - a step n (n > 1), as there still more steps to be done.
6186
6187 - a "finish" command, as the observer will be called in
6188 finish_command_continuation, so it can include the inferior
6189 function's return value.
6190
6191 - calling an inferior function, as we pretend we inferior didn't
6192 run at all. The return value of the call is handled by the
6193 expression evaluator, through call_function_by_hand. */
6194
6195 if (!target_has_execution
6196 || last.kind == TARGET_WAITKIND_SIGNALLED
6197 || last.kind == TARGET_WAITKIND_EXITED
6198 || last.kind == TARGET_WAITKIND_NO_RESUMED
6199 || (!(inferior_thread ()->step_multi
6200 && inferior_thread ()->control.stop_step)
6201 && !(inferior_thread ()->control.stop_bpstat
6202 && inferior_thread ()->control.proceed_to_finish)
6203 && !inferior_thread ()->control.in_infcall))
6204 {
6205 if (!ptid_equal (inferior_ptid, null_ptid))
6206 observer_notify_normal_stop (inferior_thread ()->control.stop_bpstat,
6207 stop_print_frame);
6208 else
6209 observer_notify_normal_stop (NULL, stop_print_frame);
6210 }
6211
6212 if (target_has_execution)
6213 {
6214 if (last.kind != TARGET_WAITKIND_SIGNALLED
6215 && last.kind != TARGET_WAITKIND_EXITED)
6216 /* Delete the breakpoint we stopped at, if it wants to be deleted.
6217 Delete any breakpoint that is to be deleted at the next stop. */
6218 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
6219 }
6220
6221 /* Try to get rid of automatically added inferiors that are no
6222 longer needed. Keeping those around slows down things linearly.
6223 Note that this never removes the current inferior. */
6224 prune_inferiors ();
6225 }
6226
6227 static int
6228 hook_stop_stub (void *cmd)
6229 {
6230 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
6231 return (0);
6232 }
6233 \f
6234 int
6235 signal_stop_state (int signo)
6236 {
6237 return signal_stop[signo];
6238 }
6239
6240 int
6241 signal_print_state (int signo)
6242 {
6243 return signal_print[signo];
6244 }
6245
6246 int
6247 signal_pass_state (int signo)
6248 {
6249 return signal_program[signo];
6250 }
6251
6252 static void
6253 signal_cache_update (int signo)
6254 {
6255 if (signo == -1)
6256 {
6257 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
6258 signal_cache_update (signo);
6259
6260 return;
6261 }
6262
6263 signal_pass[signo] = (signal_stop[signo] == 0
6264 && signal_print[signo] == 0
6265 && signal_program[signo] == 1
6266 && signal_catch[signo] == 0);
6267 }
6268
6269 int
6270 signal_stop_update (int signo, int state)
6271 {
6272 int ret = signal_stop[signo];
6273
6274 signal_stop[signo] = state;
6275 signal_cache_update (signo);
6276 return ret;
6277 }
6278
6279 int
6280 signal_print_update (int signo, int state)
6281 {
6282 int ret = signal_print[signo];
6283
6284 signal_print[signo] = state;
6285 signal_cache_update (signo);
6286 return ret;
6287 }
6288
6289 int
6290 signal_pass_update (int signo, int state)
6291 {
6292 int ret = signal_program[signo];
6293
6294 signal_program[signo] = state;
6295 signal_cache_update (signo);
6296 return ret;
6297 }
6298
6299 /* Update the global 'signal_catch' from INFO and notify the
6300 target. */
6301
6302 void
6303 signal_catch_update (const unsigned int *info)
6304 {
6305 int i;
6306
6307 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
6308 signal_catch[i] = info[i] > 0;
6309 signal_cache_update (-1);
6310 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6311 }
6312
6313 static void
6314 sig_print_header (void)
6315 {
6316 printf_filtered (_("Signal Stop\tPrint\tPass "
6317 "to program\tDescription\n"));
6318 }
6319
6320 static void
6321 sig_print_info (enum gdb_signal oursig)
6322 {
6323 const char *name = gdb_signal_to_name (oursig);
6324 int name_padding = 13 - strlen (name);
6325
6326 if (name_padding <= 0)
6327 name_padding = 0;
6328
6329 printf_filtered ("%s", name);
6330 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
6331 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
6332 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
6333 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
6334 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
6335 }
6336
6337 /* Specify how various signals in the inferior should be handled. */
6338
6339 static void
6340 handle_command (char *args, int from_tty)
6341 {
6342 char **argv;
6343 int digits, wordlen;
6344 int sigfirst, signum, siglast;
6345 enum gdb_signal oursig;
6346 int allsigs;
6347 int nsigs;
6348 unsigned char *sigs;
6349 struct cleanup *old_chain;
6350
6351 if (args == NULL)
6352 {
6353 error_no_arg (_("signal to handle"));
6354 }
6355
6356 /* Allocate and zero an array of flags for which signals to handle. */
6357
6358 nsigs = (int) GDB_SIGNAL_LAST;
6359 sigs = (unsigned char *) alloca (nsigs);
6360 memset (sigs, 0, nsigs);
6361
6362 /* Break the command line up into args. */
6363
6364 argv = gdb_buildargv (args);
6365 old_chain = make_cleanup_freeargv (argv);
6366
6367 /* Walk through the args, looking for signal oursigs, signal names, and
6368 actions. Signal numbers and signal names may be interspersed with
6369 actions, with the actions being performed for all signals cumulatively
6370 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
6371
6372 while (*argv != NULL)
6373 {
6374 wordlen = strlen (*argv);
6375 for (digits = 0; isdigit ((*argv)[digits]); digits++)
6376 {;
6377 }
6378 allsigs = 0;
6379 sigfirst = siglast = -1;
6380
6381 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
6382 {
6383 /* Apply action to all signals except those used by the
6384 debugger. Silently skip those. */
6385 allsigs = 1;
6386 sigfirst = 0;
6387 siglast = nsigs - 1;
6388 }
6389 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
6390 {
6391 SET_SIGS (nsigs, sigs, signal_stop);
6392 SET_SIGS (nsigs, sigs, signal_print);
6393 }
6394 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
6395 {
6396 UNSET_SIGS (nsigs, sigs, signal_program);
6397 }
6398 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
6399 {
6400 SET_SIGS (nsigs, sigs, signal_print);
6401 }
6402 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
6403 {
6404 SET_SIGS (nsigs, sigs, signal_program);
6405 }
6406 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
6407 {
6408 UNSET_SIGS (nsigs, sigs, signal_stop);
6409 }
6410 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
6411 {
6412 SET_SIGS (nsigs, sigs, signal_program);
6413 }
6414 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
6415 {
6416 UNSET_SIGS (nsigs, sigs, signal_print);
6417 UNSET_SIGS (nsigs, sigs, signal_stop);
6418 }
6419 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
6420 {
6421 UNSET_SIGS (nsigs, sigs, signal_program);
6422 }
6423 else if (digits > 0)
6424 {
6425 /* It is numeric. The numeric signal refers to our own
6426 internal signal numbering from target.h, not to host/target
6427 signal number. This is a feature; users really should be
6428 using symbolic names anyway, and the common ones like
6429 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
6430
6431 sigfirst = siglast = (int)
6432 gdb_signal_from_command (atoi (*argv));
6433 if ((*argv)[digits] == '-')
6434 {
6435 siglast = (int)
6436 gdb_signal_from_command (atoi ((*argv) + digits + 1));
6437 }
6438 if (sigfirst > siglast)
6439 {
6440 /* Bet he didn't figure we'd think of this case... */
6441 signum = sigfirst;
6442 sigfirst = siglast;
6443 siglast = signum;
6444 }
6445 }
6446 else
6447 {
6448 oursig = gdb_signal_from_name (*argv);
6449 if (oursig != GDB_SIGNAL_UNKNOWN)
6450 {
6451 sigfirst = siglast = (int) oursig;
6452 }
6453 else
6454 {
6455 /* Not a number and not a recognized flag word => complain. */
6456 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
6457 }
6458 }
6459
6460 /* If any signal numbers or symbol names were found, set flags for
6461 which signals to apply actions to. */
6462
6463 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
6464 {
6465 switch ((enum gdb_signal) signum)
6466 {
6467 case GDB_SIGNAL_TRAP:
6468 case GDB_SIGNAL_INT:
6469 if (!allsigs && !sigs[signum])
6470 {
6471 if (query (_("%s is used by the debugger.\n\
6472 Are you sure you want to change it? "),
6473 gdb_signal_to_name ((enum gdb_signal) signum)))
6474 {
6475 sigs[signum] = 1;
6476 }
6477 else
6478 {
6479 printf_unfiltered (_("Not confirmed, unchanged.\n"));
6480 gdb_flush (gdb_stdout);
6481 }
6482 }
6483 break;
6484 case GDB_SIGNAL_0:
6485 case GDB_SIGNAL_DEFAULT:
6486 case GDB_SIGNAL_UNKNOWN:
6487 /* Make sure that "all" doesn't print these. */
6488 break;
6489 default:
6490 sigs[signum] = 1;
6491 break;
6492 }
6493 }
6494
6495 argv++;
6496 }
6497
6498 for (signum = 0; signum < nsigs; signum++)
6499 if (sigs[signum])
6500 {
6501 signal_cache_update (-1);
6502 target_pass_signals ((int) GDB_SIGNAL_LAST, signal_pass);
6503 target_program_signals ((int) GDB_SIGNAL_LAST, signal_program);
6504
6505 if (from_tty)
6506 {
6507 /* Show the results. */
6508 sig_print_header ();
6509 for (; signum < nsigs; signum++)
6510 if (sigs[signum])
6511 sig_print_info (signum);
6512 }
6513
6514 break;
6515 }
6516
6517 do_cleanups (old_chain);
6518 }
6519
6520 /* Complete the "handle" command. */
6521
6522 static VEC (char_ptr) *
6523 handle_completer (struct cmd_list_element *ignore,
6524 const char *text, const char *word)
6525 {
6526 VEC (char_ptr) *vec_signals, *vec_keywords, *return_val;
6527 static const char * const keywords[] =
6528 {
6529 "all",
6530 "stop",
6531 "ignore",
6532 "print",
6533 "pass",
6534 "nostop",
6535 "noignore",
6536 "noprint",
6537 "nopass",
6538 NULL,
6539 };
6540
6541 vec_signals = signal_completer (ignore, text, word);
6542 vec_keywords = complete_on_enum (keywords, word, word);
6543
6544 return_val = VEC_merge (char_ptr, vec_signals, vec_keywords);
6545 VEC_free (char_ptr, vec_signals);
6546 VEC_free (char_ptr, vec_keywords);
6547 return return_val;
6548 }
6549
6550 static void
6551 xdb_handle_command (char *args, int from_tty)
6552 {
6553 char **argv;
6554 struct cleanup *old_chain;
6555
6556 if (args == NULL)
6557 error_no_arg (_("xdb command"));
6558
6559 /* Break the command line up into args. */
6560
6561 argv = gdb_buildargv (args);
6562 old_chain = make_cleanup_freeargv (argv);
6563 if (argv[1] != (char *) NULL)
6564 {
6565 char *argBuf;
6566 int bufLen;
6567
6568 bufLen = strlen (argv[0]) + 20;
6569 argBuf = (char *) xmalloc (bufLen);
6570 if (argBuf)
6571 {
6572 int validFlag = 1;
6573 enum gdb_signal oursig;
6574
6575 oursig = gdb_signal_from_name (argv[0]);
6576 memset (argBuf, 0, bufLen);
6577 if (strcmp (argv[1], "Q") == 0)
6578 sprintf (argBuf, "%s %s", argv[0], "noprint");
6579 else
6580 {
6581 if (strcmp (argv[1], "s") == 0)
6582 {
6583 if (!signal_stop[oursig])
6584 sprintf (argBuf, "%s %s", argv[0], "stop");
6585 else
6586 sprintf (argBuf, "%s %s", argv[0], "nostop");
6587 }
6588 else if (strcmp (argv[1], "i") == 0)
6589 {
6590 if (!signal_program[oursig])
6591 sprintf (argBuf, "%s %s", argv[0], "pass");
6592 else
6593 sprintf (argBuf, "%s %s", argv[0], "nopass");
6594 }
6595 else if (strcmp (argv[1], "r") == 0)
6596 {
6597 if (!signal_print[oursig])
6598 sprintf (argBuf, "%s %s", argv[0], "print");
6599 else
6600 sprintf (argBuf, "%s %s", argv[0], "noprint");
6601 }
6602 else
6603 validFlag = 0;
6604 }
6605 if (validFlag)
6606 handle_command (argBuf, from_tty);
6607 else
6608 printf_filtered (_("Invalid signal handling flag.\n"));
6609 if (argBuf)
6610 xfree (argBuf);
6611 }
6612 }
6613 do_cleanups (old_chain);
6614 }
6615
6616 enum gdb_signal
6617 gdb_signal_from_command (int num)
6618 {
6619 if (num >= 1 && num <= 15)
6620 return (enum gdb_signal) num;
6621 error (_("Only signals 1-15 are valid as numeric signals.\n\
6622 Use \"info signals\" for a list of symbolic signals."));
6623 }
6624
6625 /* Print current contents of the tables set by the handle command.
6626 It is possible we should just be printing signals actually used
6627 by the current target (but for things to work right when switching
6628 targets, all signals should be in the signal tables). */
6629
6630 static void
6631 signals_info (char *signum_exp, int from_tty)
6632 {
6633 enum gdb_signal oursig;
6634
6635 sig_print_header ();
6636
6637 if (signum_exp)
6638 {
6639 /* First see if this is a symbol name. */
6640 oursig = gdb_signal_from_name (signum_exp);
6641 if (oursig == GDB_SIGNAL_UNKNOWN)
6642 {
6643 /* No, try numeric. */
6644 oursig =
6645 gdb_signal_from_command (parse_and_eval_long (signum_exp));
6646 }
6647 sig_print_info (oursig);
6648 return;
6649 }
6650
6651 printf_filtered ("\n");
6652 /* These ugly casts brought to you by the native VAX compiler. */
6653 for (oursig = GDB_SIGNAL_FIRST;
6654 (int) oursig < (int) GDB_SIGNAL_LAST;
6655 oursig = (enum gdb_signal) ((int) oursig + 1))
6656 {
6657 QUIT;
6658
6659 if (oursig != GDB_SIGNAL_UNKNOWN
6660 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
6661 sig_print_info (oursig);
6662 }
6663
6664 printf_filtered (_("\nUse the \"handle\" command "
6665 "to change these tables.\n"));
6666 }
6667
6668 /* Check if it makes sense to read $_siginfo from the current thread
6669 at this point. If not, throw an error. */
6670
6671 static void
6672 validate_siginfo_access (void)
6673 {
6674 /* No current inferior, no siginfo. */
6675 if (ptid_equal (inferior_ptid, null_ptid))
6676 error (_("No thread selected."));
6677
6678 /* Don't try to read from a dead thread. */
6679 if (is_exited (inferior_ptid))
6680 error (_("The current thread has terminated"));
6681
6682 /* ... or from a spinning thread. */
6683 if (is_running (inferior_ptid))
6684 error (_("Selected thread is running."));
6685 }
6686
6687 /* The $_siginfo convenience variable is a bit special. We don't know
6688 for sure the type of the value until we actually have a chance to
6689 fetch the data. The type can change depending on gdbarch, so it is
6690 also dependent on which thread you have selected.
6691
6692 1. making $_siginfo be an internalvar that creates a new value on
6693 access.
6694
6695 2. making the value of $_siginfo be an lval_computed value. */
6696
6697 /* This function implements the lval_computed support for reading a
6698 $_siginfo value. */
6699
6700 static void
6701 siginfo_value_read (struct value *v)
6702 {
6703 LONGEST transferred;
6704
6705 validate_siginfo_access ();
6706
6707 transferred =
6708 target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO,
6709 NULL,
6710 value_contents_all_raw (v),
6711 value_offset (v),
6712 TYPE_LENGTH (value_type (v)));
6713
6714 if (transferred != TYPE_LENGTH (value_type (v)))
6715 error (_("Unable to read siginfo"));
6716 }
6717
6718 /* This function implements the lval_computed support for writing a
6719 $_siginfo value. */
6720
6721 static void
6722 siginfo_value_write (struct value *v, struct value *fromval)
6723 {
6724 LONGEST transferred;
6725
6726 validate_siginfo_access ();
6727
6728 transferred = target_write (&current_target,
6729 TARGET_OBJECT_SIGNAL_INFO,
6730 NULL,
6731 value_contents_all_raw (fromval),
6732 value_offset (v),
6733 TYPE_LENGTH (value_type (fromval)));
6734
6735 if (transferred != TYPE_LENGTH (value_type (fromval)))
6736 error (_("Unable to write siginfo"));
6737 }
6738
6739 static const struct lval_funcs siginfo_value_funcs =
6740 {
6741 siginfo_value_read,
6742 siginfo_value_write
6743 };
6744
6745 /* Return a new value with the correct type for the siginfo object of
6746 the current thread using architecture GDBARCH. Return a void value
6747 if there's no object available. */
6748
6749 static struct value *
6750 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
6751 void *ignore)
6752 {
6753 if (target_has_stack
6754 && !ptid_equal (inferior_ptid, null_ptid)
6755 && gdbarch_get_siginfo_type_p (gdbarch))
6756 {
6757 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6758
6759 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
6760 }
6761
6762 return allocate_value (builtin_type (gdbarch)->builtin_void);
6763 }
6764
6765 \f
6766 /* infcall_suspend_state contains state about the program itself like its
6767 registers and any signal it received when it last stopped.
6768 This state must be restored regardless of how the inferior function call
6769 ends (either successfully, or after it hits a breakpoint or signal)
6770 if the program is to properly continue where it left off. */
6771
6772 struct infcall_suspend_state
6773 {
6774 struct thread_suspend_state thread_suspend;
6775 #if 0 /* Currently unused and empty structures are not valid C. */
6776 struct inferior_suspend_state inferior_suspend;
6777 #endif
6778
6779 /* Other fields: */
6780 CORE_ADDR stop_pc;
6781 struct regcache *registers;
6782
6783 /* Format of SIGINFO_DATA or NULL if it is not present. */
6784 struct gdbarch *siginfo_gdbarch;
6785
6786 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
6787 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
6788 content would be invalid. */
6789 gdb_byte *siginfo_data;
6790 };
6791
6792 struct infcall_suspend_state *
6793 save_infcall_suspend_state (void)
6794 {
6795 struct infcall_suspend_state *inf_state;
6796 struct thread_info *tp = inferior_thread ();
6797 #if 0
6798 struct inferior *inf = current_inferior ();
6799 #endif
6800 struct regcache *regcache = get_current_regcache ();
6801 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6802 gdb_byte *siginfo_data = NULL;
6803
6804 if (gdbarch_get_siginfo_type_p (gdbarch))
6805 {
6806 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6807 size_t len = TYPE_LENGTH (type);
6808 struct cleanup *back_to;
6809
6810 siginfo_data = xmalloc (len);
6811 back_to = make_cleanup (xfree, siginfo_data);
6812
6813 if (target_read (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6814 siginfo_data, 0, len) == len)
6815 discard_cleanups (back_to);
6816 else
6817 {
6818 /* Errors ignored. */
6819 do_cleanups (back_to);
6820 siginfo_data = NULL;
6821 }
6822 }
6823
6824 inf_state = XZALLOC (struct infcall_suspend_state);
6825
6826 if (siginfo_data)
6827 {
6828 inf_state->siginfo_gdbarch = gdbarch;
6829 inf_state->siginfo_data = siginfo_data;
6830 }
6831
6832 inf_state->thread_suspend = tp->suspend;
6833 #if 0 /* Currently unused and empty structures are not valid C. */
6834 inf_state->inferior_suspend = inf->suspend;
6835 #endif
6836
6837 /* run_inferior_call will not use the signal due to its `proceed' call with
6838 GDB_SIGNAL_0 anyway. */
6839 tp->suspend.stop_signal = GDB_SIGNAL_0;
6840
6841 inf_state->stop_pc = stop_pc;
6842
6843 inf_state->registers = regcache_dup (regcache);
6844
6845 return inf_state;
6846 }
6847
6848 /* Restore inferior session state to INF_STATE. */
6849
6850 void
6851 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6852 {
6853 struct thread_info *tp = inferior_thread ();
6854 #if 0
6855 struct inferior *inf = current_inferior ();
6856 #endif
6857 struct regcache *regcache = get_current_regcache ();
6858 struct gdbarch *gdbarch = get_regcache_arch (regcache);
6859
6860 tp->suspend = inf_state->thread_suspend;
6861 #if 0 /* Currently unused and empty structures are not valid C. */
6862 inf->suspend = inf_state->inferior_suspend;
6863 #endif
6864
6865 stop_pc = inf_state->stop_pc;
6866
6867 if (inf_state->siginfo_gdbarch == gdbarch)
6868 {
6869 struct type *type = gdbarch_get_siginfo_type (gdbarch);
6870
6871 /* Errors ignored. */
6872 target_write (&current_target, TARGET_OBJECT_SIGNAL_INFO, NULL,
6873 inf_state->siginfo_data, 0, TYPE_LENGTH (type));
6874 }
6875
6876 /* The inferior can be gone if the user types "print exit(0)"
6877 (and perhaps other times). */
6878 if (target_has_execution)
6879 /* NB: The register write goes through to the target. */
6880 regcache_cpy (regcache, inf_state->registers);
6881
6882 discard_infcall_suspend_state (inf_state);
6883 }
6884
6885 static void
6886 do_restore_infcall_suspend_state_cleanup (void *state)
6887 {
6888 restore_infcall_suspend_state (state);
6889 }
6890
6891 struct cleanup *
6892 make_cleanup_restore_infcall_suspend_state
6893 (struct infcall_suspend_state *inf_state)
6894 {
6895 return make_cleanup (do_restore_infcall_suspend_state_cleanup, inf_state);
6896 }
6897
6898 void
6899 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
6900 {
6901 regcache_xfree (inf_state->registers);
6902 xfree (inf_state->siginfo_data);
6903 xfree (inf_state);
6904 }
6905
6906 struct regcache *
6907 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
6908 {
6909 return inf_state->registers;
6910 }
6911
6912 /* infcall_control_state contains state regarding gdb's control of the
6913 inferior itself like stepping control. It also contains session state like
6914 the user's currently selected frame. */
6915
6916 struct infcall_control_state
6917 {
6918 struct thread_control_state thread_control;
6919 struct inferior_control_state inferior_control;
6920
6921 /* Other fields: */
6922 enum stop_stack_kind stop_stack_dummy;
6923 int stopped_by_random_signal;
6924 int stop_after_trap;
6925
6926 /* ID if the selected frame when the inferior function call was made. */
6927 struct frame_id selected_frame_id;
6928 };
6929
6930 /* Save all of the information associated with the inferior<==>gdb
6931 connection. */
6932
6933 struct infcall_control_state *
6934 save_infcall_control_state (void)
6935 {
6936 struct infcall_control_state *inf_status = xmalloc (sizeof (*inf_status));
6937 struct thread_info *tp = inferior_thread ();
6938 struct inferior *inf = current_inferior ();
6939
6940 inf_status->thread_control = tp->control;
6941 inf_status->inferior_control = inf->control;
6942
6943 tp->control.step_resume_breakpoint = NULL;
6944 tp->control.exception_resume_breakpoint = NULL;
6945
6946 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
6947 chain. If caller's caller is walking the chain, they'll be happier if we
6948 hand them back the original chain when restore_infcall_control_state is
6949 called. */
6950 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
6951
6952 /* Other fields: */
6953 inf_status->stop_stack_dummy = stop_stack_dummy;
6954 inf_status->stopped_by_random_signal = stopped_by_random_signal;
6955 inf_status->stop_after_trap = stop_after_trap;
6956
6957 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
6958
6959 return inf_status;
6960 }
6961
6962 static int
6963 restore_selected_frame (void *args)
6964 {
6965 struct frame_id *fid = (struct frame_id *) args;
6966 struct frame_info *frame;
6967
6968 frame = frame_find_by_id (*fid);
6969
6970 /* If inf_status->selected_frame_id is NULL, there was no previously
6971 selected frame. */
6972 if (frame == NULL)
6973 {
6974 warning (_("Unable to restore previously selected frame."));
6975 return 0;
6976 }
6977
6978 select_frame (frame);
6979
6980 return (1);
6981 }
6982
6983 /* Restore inferior session state to INF_STATUS. */
6984
6985 void
6986 restore_infcall_control_state (struct infcall_control_state *inf_status)
6987 {
6988 struct thread_info *tp = inferior_thread ();
6989 struct inferior *inf = current_inferior ();
6990
6991 if (tp->control.step_resume_breakpoint)
6992 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
6993
6994 if (tp->control.exception_resume_breakpoint)
6995 tp->control.exception_resume_breakpoint->disposition
6996 = disp_del_at_next_stop;
6997
6998 /* Handle the bpstat_copy of the chain. */
6999 bpstat_clear (&tp->control.stop_bpstat);
7000
7001 tp->control = inf_status->thread_control;
7002 inf->control = inf_status->inferior_control;
7003
7004 /* Other fields: */
7005 stop_stack_dummy = inf_status->stop_stack_dummy;
7006 stopped_by_random_signal = inf_status->stopped_by_random_signal;
7007 stop_after_trap = inf_status->stop_after_trap;
7008
7009 if (target_has_stack)
7010 {
7011 /* The point of catch_errors is that if the stack is clobbered,
7012 walking the stack might encounter a garbage pointer and
7013 error() trying to dereference it. */
7014 if (catch_errors
7015 (restore_selected_frame, &inf_status->selected_frame_id,
7016 "Unable to restore previously selected frame:\n",
7017 RETURN_MASK_ERROR) == 0)
7018 /* Error in restoring the selected frame. Select the innermost
7019 frame. */
7020 select_frame (get_current_frame ());
7021 }
7022
7023 xfree (inf_status);
7024 }
7025
7026 static void
7027 do_restore_infcall_control_state_cleanup (void *sts)
7028 {
7029 restore_infcall_control_state (sts);
7030 }
7031
7032 struct cleanup *
7033 make_cleanup_restore_infcall_control_state
7034 (struct infcall_control_state *inf_status)
7035 {
7036 return make_cleanup (do_restore_infcall_control_state_cleanup, inf_status);
7037 }
7038
7039 void
7040 discard_infcall_control_state (struct infcall_control_state *inf_status)
7041 {
7042 if (inf_status->thread_control.step_resume_breakpoint)
7043 inf_status->thread_control.step_resume_breakpoint->disposition
7044 = disp_del_at_next_stop;
7045
7046 if (inf_status->thread_control.exception_resume_breakpoint)
7047 inf_status->thread_control.exception_resume_breakpoint->disposition
7048 = disp_del_at_next_stop;
7049
7050 /* See save_infcall_control_state for info on stop_bpstat. */
7051 bpstat_clear (&inf_status->thread_control.stop_bpstat);
7052
7053 xfree (inf_status);
7054 }
7055 \f
7056 int
7057 ptid_match (ptid_t ptid, ptid_t filter)
7058 {
7059 if (ptid_equal (filter, minus_one_ptid))
7060 return 1;
7061 if (ptid_is_pid (filter)
7062 && ptid_get_pid (ptid) == ptid_get_pid (filter))
7063 return 1;
7064 else if (ptid_equal (ptid, filter))
7065 return 1;
7066
7067 return 0;
7068 }
7069
7070 /* restore_inferior_ptid() will be used by the cleanup machinery
7071 to restore the inferior_ptid value saved in a call to
7072 save_inferior_ptid(). */
7073
7074 static void
7075 restore_inferior_ptid (void *arg)
7076 {
7077 ptid_t *saved_ptid_ptr = arg;
7078
7079 inferior_ptid = *saved_ptid_ptr;
7080 xfree (arg);
7081 }
7082
7083 /* Save the value of inferior_ptid so that it may be restored by a
7084 later call to do_cleanups(). Returns the struct cleanup pointer
7085 needed for later doing the cleanup. */
7086
7087 struct cleanup *
7088 save_inferior_ptid (void)
7089 {
7090 ptid_t *saved_ptid_ptr;
7091
7092 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
7093 *saved_ptid_ptr = inferior_ptid;
7094 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
7095 }
7096
7097 /* See inferior.h. */
7098
7099 void
7100 clear_exit_convenience_vars (void)
7101 {
7102 clear_internalvar (lookup_internalvar ("_exitsignal"));
7103 clear_internalvar (lookup_internalvar ("_exitcode"));
7104 }
7105 \f
7106
7107 /* User interface for reverse debugging:
7108 Set exec-direction / show exec-direction commands
7109 (returns error unless target implements to_set_exec_direction method). */
7110
7111 int execution_direction = EXEC_FORWARD;
7112 static const char exec_forward[] = "forward";
7113 static const char exec_reverse[] = "reverse";
7114 static const char *exec_direction = exec_forward;
7115 static const char *const exec_direction_names[] = {
7116 exec_forward,
7117 exec_reverse,
7118 NULL
7119 };
7120
7121 static void
7122 set_exec_direction_func (char *args, int from_tty,
7123 struct cmd_list_element *cmd)
7124 {
7125 if (target_can_execute_reverse)
7126 {
7127 if (!strcmp (exec_direction, exec_forward))
7128 execution_direction = EXEC_FORWARD;
7129 else if (!strcmp (exec_direction, exec_reverse))
7130 execution_direction = EXEC_REVERSE;
7131 }
7132 else
7133 {
7134 exec_direction = exec_forward;
7135 error (_("Target does not support this operation."));
7136 }
7137 }
7138
7139 static void
7140 show_exec_direction_func (struct ui_file *out, int from_tty,
7141 struct cmd_list_element *cmd, const char *value)
7142 {
7143 switch (execution_direction) {
7144 case EXEC_FORWARD:
7145 fprintf_filtered (out, _("Forward.\n"));
7146 break;
7147 case EXEC_REVERSE:
7148 fprintf_filtered (out, _("Reverse.\n"));
7149 break;
7150 default:
7151 internal_error (__FILE__, __LINE__,
7152 _("bogus execution_direction value: %d"),
7153 (int) execution_direction);
7154 }
7155 }
7156
7157 static void
7158 show_schedule_multiple (struct ui_file *file, int from_tty,
7159 struct cmd_list_element *c, const char *value)
7160 {
7161 fprintf_filtered (file, _("Resuming the execution of threads "
7162 "of all processes is %s.\n"), value);
7163 }
7164
7165 /* Implementation of `siginfo' variable. */
7166
7167 static const struct internalvar_funcs siginfo_funcs =
7168 {
7169 siginfo_make_value,
7170 NULL,
7171 NULL
7172 };
7173
7174 void
7175 _initialize_infrun (void)
7176 {
7177 int i;
7178 int numsigs;
7179 struct cmd_list_element *c;
7180
7181 add_info ("signals", signals_info, _("\
7182 What debugger does when program gets various signals.\n\
7183 Specify a signal as argument to print info on that signal only."));
7184 add_info_alias ("handle", "signals", 0);
7185
7186 c = add_com ("handle", class_run, handle_command, _("\
7187 Specify how to handle signals.\n\
7188 Usage: handle SIGNAL [ACTIONS]\n\
7189 Args are signals and actions to apply to those signals.\n\
7190 If no actions are specified, the current settings for the specified signals\n\
7191 will be displayed instead.\n\
7192 \n\
7193 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7194 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7195 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7196 The special arg \"all\" is recognized to mean all signals except those\n\
7197 used by the debugger, typically SIGTRAP and SIGINT.\n\
7198 \n\
7199 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
7200 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
7201 Stop means reenter debugger if this signal happens (implies print).\n\
7202 Print means print a message if this signal happens.\n\
7203 Pass means let program see this signal; otherwise program doesn't know.\n\
7204 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7205 Pass and Stop may be combined.\n\
7206 \n\
7207 Multiple signals may be specified. Signal numbers and signal names\n\
7208 may be interspersed with actions, with the actions being performed for\n\
7209 all signals cumulatively specified."));
7210 set_cmd_completer (c, handle_completer);
7211
7212 if (xdb_commands)
7213 {
7214 add_com ("lz", class_info, signals_info, _("\
7215 What debugger does when program gets various signals.\n\
7216 Specify a signal as argument to print info on that signal only."));
7217 add_com ("z", class_run, xdb_handle_command, _("\
7218 Specify how to handle a signal.\n\
7219 Args are signals and actions to apply to those signals.\n\
7220 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
7221 from 1-15 are allowed for compatibility with old versions of GDB.\n\
7222 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
7223 The special arg \"all\" is recognized to mean all signals except those\n\
7224 used by the debugger, typically SIGTRAP and SIGINT.\n\
7225 Recognized actions include \"s\" (toggles between stop and nostop),\n\
7226 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
7227 nopass), \"Q\" (noprint)\n\
7228 Stop means reenter debugger if this signal happens (implies print).\n\
7229 Print means print a message if this signal happens.\n\
7230 Pass means let program see this signal; otherwise program doesn't know.\n\
7231 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
7232 Pass and Stop may be combined."));
7233 }
7234
7235 if (!dbx_commands)
7236 stop_command = add_cmd ("stop", class_obscure,
7237 not_just_help_class_command, _("\
7238 There is no `stop' command, but you can set a hook on `stop'.\n\
7239 This allows you to set a list of commands to be run each time execution\n\
7240 of the program stops."), &cmdlist);
7241
7242 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
7243 Set inferior debugging."), _("\
7244 Show inferior debugging."), _("\
7245 When non-zero, inferior specific debugging is enabled."),
7246 NULL,
7247 show_debug_infrun,
7248 &setdebuglist, &showdebuglist);
7249
7250 add_setshow_boolean_cmd ("displaced", class_maintenance,
7251 &debug_displaced, _("\
7252 Set displaced stepping debugging."), _("\
7253 Show displaced stepping debugging."), _("\
7254 When non-zero, displaced stepping specific debugging is enabled."),
7255 NULL,
7256 show_debug_displaced,
7257 &setdebuglist, &showdebuglist);
7258
7259 add_setshow_boolean_cmd ("non-stop", no_class,
7260 &non_stop_1, _("\
7261 Set whether gdb controls the inferior in non-stop mode."), _("\
7262 Show whether gdb controls the inferior in non-stop mode."), _("\
7263 When debugging a multi-threaded program and this setting is\n\
7264 off (the default, also called all-stop mode), when one thread stops\n\
7265 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
7266 all other threads in the program while you interact with the thread of\n\
7267 interest. When you continue or step a thread, you can allow the other\n\
7268 threads to run, or have them remain stopped, but while you inspect any\n\
7269 thread's state, all threads stop.\n\
7270 \n\
7271 In non-stop mode, when one thread stops, other threads can continue\n\
7272 to run freely. You'll be able to step each thread independently,\n\
7273 leave it stopped or free to run as needed."),
7274 set_non_stop,
7275 show_non_stop,
7276 &setlist,
7277 &showlist);
7278
7279 numsigs = (int) GDB_SIGNAL_LAST;
7280 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
7281 signal_print = (unsigned char *)
7282 xmalloc (sizeof (signal_print[0]) * numsigs);
7283 signal_program = (unsigned char *)
7284 xmalloc (sizeof (signal_program[0]) * numsigs);
7285 signal_catch = (unsigned char *)
7286 xmalloc (sizeof (signal_catch[0]) * numsigs);
7287 signal_pass = (unsigned char *)
7288 xmalloc (sizeof (signal_program[0]) * numsigs);
7289 for (i = 0; i < numsigs; i++)
7290 {
7291 signal_stop[i] = 1;
7292 signal_print[i] = 1;
7293 signal_program[i] = 1;
7294 signal_catch[i] = 0;
7295 }
7296
7297 /* Signals caused by debugger's own actions
7298 should not be given to the program afterwards. */
7299 signal_program[GDB_SIGNAL_TRAP] = 0;
7300 signal_program[GDB_SIGNAL_INT] = 0;
7301
7302 /* Signals that are not errors should not normally enter the debugger. */
7303 signal_stop[GDB_SIGNAL_ALRM] = 0;
7304 signal_print[GDB_SIGNAL_ALRM] = 0;
7305 signal_stop[GDB_SIGNAL_VTALRM] = 0;
7306 signal_print[GDB_SIGNAL_VTALRM] = 0;
7307 signal_stop[GDB_SIGNAL_PROF] = 0;
7308 signal_print[GDB_SIGNAL_PROF] = 0;
7309 signal_stop[GDB_SIGNAL_CHLD] = 0;
7310 signal_print[GDB_SIGNAL_CHLD] = 0;
7311 signal_stop[GDB_SIGNAL_IO] = 0;
7312 signal_print[GDB_SIGNAL_IO] = 0;
7313 signal_stop[GDB_SIGNAL_POLL] = 0;
7314 signal_print[GDB_SIGNAL_POLL] = 0;
7315 signal_stop[GDB_SIGNAL_URG] = 0;
7316 signal_print[GDB_SIGNAL_URG] = 0;
7317 signal_stop[GDB_SIGNAL_WINCH] = 0;
7318 signal_print[GDB_SIGNAL_WINCH] = 0;
7319 signal_stop[GDB_SIGNAL_PRIO] = 0;
7320 signal_print[GDB_SIGNAL_PRIO] = 0;
7321
7322 /* These signals are used internally by user-level thread
7323 implementations. (See signal(5) on Solaris.) Like the above
7324 signals, a healthy program receives and handles them as part of
7325 its normal operation. */
7326 signal_stop[GDB_SIGNAL_LWP] = 0;
7327 signal_print[GDB_SIGNAL_LWP] = 0;
7328 signal_stop[GDB_SIGNAL_WAITING] = 0;
7329 signal_print[GDB_SIGNAL_WAITING] = 0;
7330 signal_stop[GDB_SIGNAL_CANCEL] = 0;
7331 signal_print[GDB_SIGNAL_CANCEL] = 0;
7332
7333 /* Update cached state. */
7334 signal_cache_update (-1);
7335
7336 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
7337 &stop_on_solib_events, _("\
7338 Set stopping for shared library events."), _("\
7339 Show stopping for shared library events."), _("\
7340 If nonzero, gdb will give control to the user when the dynamic linker\n\
7341 notifies gdb of shared library events. The most common event of interest\n\
7342 to the user would be loading/unloading of a new library."),
7343 set_stop_on_solib_events,
7344 show_stop_on_solib_events,
7345 &setlist, &showlist);
7346
7347 add_setshow_enum_cmd ("follow-fork-mode", class_run,
7348 follow_fork_mode_kind_names,
7349 &follow_fork_mode_string, _("\
7350 Set debugger response to a program call of fork or vfork."), _("\
7351 Show debugger response to a program call of fork or vfork."), _("\
7352 A fork or vfork creates a new process. follow-fork-mode can be:\n\
7353 parent - the original process is debugged after a fork\n\
7354 child - the new process is debugged after a fork\n\
7355 The unfollowed process will continue to run.\n\
7356 By default, the debugger will follow the parent process."),
7357 NULL,
7358 show_follow_fork_mode_string,
7359 &setlist, &showlist);
7360
7361 add_setshow_enum_cmd ("follow-exec-mode", class_run,
7362 follow_exec_mode_names,
7363 &follow_exec_mode_string, _("\
7364 Set debugger response to a program call of exec."), _("\
7365 Show debugger response to a program call of exec."), _("\
7366 An exec call replaces the program image of a process.\n\
7367 \n\
7368 follow-exec-mode can be:\n\
7369 \n\
7370 new - the debugger creates a new inferior and rebinds the process\n\
7371 to this new inferior. The program the process was running before\n\
7372 the exec call can be restarted afterwards by restarting the original\n\
7373 inferior.\n\
7374 \n\
7375 same - the debugger keeps the process bound to the same inferior.\n\
7376 The new executable image replaces the previous executable loaded in\n\
7377 the inferior. Restarting the inferior after the exec call restarts\n\
7378 the executable the process was running after the exec call.\n\
7379 \n\
7380 By default, the debugger will use the same inferior."),
7381 NULL,
7382 show_follow_exec_mode_string,
7383 &setlist, &showlist);
7384
7385 add_setshow_enum_cmd ("scheduler-locking", class_run,
7386 scheduler_enums, &scheduler_mode, _("\
7387 Set mode for locking scheduler during execution."), _("\
7388 Show mode for locking scheduler during execution."), _("\
7389 off == no locking (threads may preempt at any time)\n\
7390 on == full locking (no thread except the current thread may run)\n\
7391 step == scheduler locked during every single-step operation.\n\
7392 In this mode, no other thread may run during a step command.\n\
7393 Other threads may run while stepping over a function call ('next')."),
7394 set_schedlock_func, /* traps on target vector */
7395 show_scheduler_mode,
7396 &setlist, &showlist);
7397
7398 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
7399 Set mode for resuming threads of all processes."), _("\
7400 Show mode for resuming threads of all processes."), _("\
7401 When on, execution commands (such as 'continue' or 'next') resume all\n\
7402 threads of all processes. When off (which is the default), execution\n\
7403 commands only resume the threads of the current process. The set of\n\
7404 threads that are resumed is further refined by the scheduler-locking\n\
7405 mode (see help set scheduler-locking)."),
7406 NULL,
7407 show_schedule_multiple,
7408 &setlist, &showlist);
7409
7410 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
7411 Set mode of the step operation."), _("\
7412 Show mode of the step operation."), _("\
7413 When set, doing a step over a function without debug line information\n\
7414 will stop at the first instruction of that function. Otherwise, the\n\
7415 function is skipped and the step command stops at a different source line."),
7416 NULL,
7417 show_step_stop_if_no_debug,
7418 &setlist, &showlist);
7419
7420 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
7421 &can_use_displaced_stepping, _("\
7422 Set debugger's willingness to use displaced stepping."), _("\
7423 Show debugger's willingness to use displaced stepping."), _("\
7424 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
7425 supported by the target architecture. If off, gdb will not use displaced\n\
7426 stepping to step over breakpoints, even if such is supported by the target\n\
7427 architecture. If auto (which is the default), gdb will use displaced stepping\n\
7428 if the target architecture supports it and non-stop mode is active, but will not\n\
7429 use it in all-stop mode (see help set non-stop)."),
7430 NULL,
7431 show_can_use_displaced_stepping,
7432 &setlist, &showlist);
7433
7434 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
7435 &exec_direction, _("Set direction of execution.\n\
7436 Options are 'forward' or 'reverse'."),
7437 _("Show direction of execution (forward/reverse)."),
7438 _("Tells gdb whether to execute forward or backward."),
7439 set_exec_direction_func, show_exec_direction_func,
7440 &setlist, &showlist);
7441
7442 /* Set/show detach-on-fork: user-settable mode. */
7443
7444 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
7445 Set whether gdb will detach the child of a fork."), _("\
7446 Show whether gdb will detach the child of a fork."), _("\
7447 Tells gdb whether to detach the child of a fork."),
7448 NULL, NULL, &setlist, &showlist);
7449
7450 /* Set/show disable address space randomization mode. */
7451
7452 add_setshow_boolean_cmd ("disable-randomization", class_support,
7453 &disable_randomization, _("\
7454 Set disabling of debuggee's virtual address space randomization."), _("\
7455 Show disabling of debuggee's virtual address space randomization."), _("\
7456 When this mode is on (which is the default), randomization of the virtual\n\
7457 address space is disabled. Standalone programs run with the randomization\n\
7458 enabled by default on some platforms."),
7459 &set_disable_randomization,
7460 &show_disable_randomization,
7461 &setlist, &showlist);
7462
7463 /* ptid initializations */
7464 inferior_ptid = null_ptid;
7465 target_last_wait_ptid = minus_one_ptid;
7466
7467 observer_attach_thread_ptid_changed (infrun_thread_ptid_changed);
7468 observer_attach_thread_stop_requested (infrun_thread_stop_requested);
7469 observer_attach_thread_exit (infrun_thread_thread_exit);
7470 observer_attach_inferior_exit (infrun_inferior_exit);
7471
7472 /* Explicitly create without lookup, since that tries to create a
7473 value with a void typed value, and when we get here, gdbarch
7474 isn't initialized yet. At this point, we're quite sure there
7475 isn't another convenience variable of the same name. */
7476 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
7477
7478 add_setshow_boolean_cmd ("observer", no_class,
7479 &observer_mode_1, _("\
7480 Set whether gdb controls the inferior in observer mode."), _("\
7481 Show whether gdb controls the inferior in observer mode."), _("\
7482 In observer mode, GDB can get data from the inferior, but not\n\
7483 affect its execution. Registers and memory may not be changed,\n\
7484 breakpoints may not be set, and the program cannot be interrupted\n\
7485 or signalled."),
7486 set_observer_mode,
7487 show_observer_mode,
7488 &setlist,
7489 &showlist);
7490 }