]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
90bab8d984f5b1bd557e8cb58faf04c17f38a79e
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2021 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "displaced-stepping.h"
23 #include "infrun.h"
24 #include <ctype.h>
25 #include "symtab.h"
26 #include "frame.h"
27 #include "inferior.h"
28 #include "breakpoint.h"
29 #include "gdbcore.h"
30 #include "gdbcmd.h"
31 #include "target.h"
32 #include "target-connection.h"
33 #include "gdbthread.h"
34 #include "annotate.h"
35 #include "symfile.h"
36 #include "top.h"
37 #include "inf-loop.h"
38 #include "regcache.h"
39 #include "value.h"
40 #include "observable.h"
41 #include "language.h"
42 #include "solib.h"
43 #include "main.h"
44 #include "block.h"
45 #include "mi/mi-common.h"
46 #include "event-top.h"
47 #include "record.h"
48 #include "record-full.h"
49 #include "inline-frame.h"
50 #include "jit.h"
51 #include "tracepoint.h"
52 #include "skip.h"
53 #include "probe.h"
54 #include "objfiles.h"
55 #include "completer.h"
56 #include "target-descriptions.h"
57 #include "target-dcache.h"
58 #include "terminal.h"
59 #include "solist.h"
60 #include "gdbsupport/event-loop.h"
61 #include "thread-fsm.h"
62 #include "gdbsupport/enum-flags.h"
63 #include "progspace-and-thread.h"
64 #include "gdbsupport/gdb_optional.h"
65 #include "arch-utils.h"
66 #include "gdbsupport/scope-exit.h"
67 #include "gdbsupport/forward-scope-exit.h"
68 #include "gdbsupport/gdb_select.h"
69 #include <unordered_map>
70 #include "async-event.h"
71 #include "gdbsupport/selftest.h"
72 #include "scoped-mock-context.h"
73 #include "test-target.h"
74 #include "gdbsupport/common-debug.h"
75
76 /* Prototypes for local functions */
77
78 static void sig_print_info (enum gdb_signal);
79
80 static void sig_print_header (void);
81
82 static void follow_inferior_reset_breakpoints (void);
83
84 static bool currently_stepping (struct thread_info *tp);
85
86 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
87
88 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
89
90 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
91
92 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
93
94 static void resume (gdb_signal sig);
95
96 static void wait_for_inferior (inferior *inf);
97
98 /* Asynchronous signal handler registered as event loop source for
99 when we have pending events ready to be passed to the core. */
100 static struct async_event_handler *infrun_async_inferior_event_token;
101
102 /* Stores whether infrun_async was previously enabled or disabled.
103 Starts off as -1, indicating "never enabled/disabled". */
104 static int infrun_is_async = -1;
105
106 /* See infrun.h. */
107
108 void
109 infrun_async (int enable)
110 {
111 if (infrun_is_async != enable)
112 {
113 infrun_is_async = enable;
114
115 infrun_debug_printf ("enable=%d", enable);
116
117 if (enable)
118 mark_async_event_handler (infrun_async_inferior_event_token);
119 else
120 clear_async_event_handler (infrun_async_inferior_event_token);
121 }
122 }
123
124 /* See infrun.h. */
125
126 void
127 mark_infrun_async_event_handler (void)
128 {
129 mark_async_event_handler (infrun_async_inferior_event_token);
130 }
131
132 /* When set, stop the 'step' command if we enter a function which has
133 no line number information. The normal behavior is that we step
134 over such function. */
135 bool step_stop_if_no_debug = false;
136 static void
137 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
138 struct cmd_list_element *c, const char *value)
139 {
140 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
141 }
142
143 /* proceed and normal_stop use this to notify the user when the
144 inferior stopped in a different thread than it had been running
145 in. */
146
147 static ptid_t previous_inferior_ptid;
148
149 /* If set (default for legacy reasons), when following a fork, GDB
150 will detach from one of the fork branches, child or parent.
151 Exactly which branch is detached depends on 'set follow-fork-mode'
152 setting. */
153
154 static bool detach_fork = true;
155
156 bool debug_infrun = false;
157 static void
158 show_debug_infrun (struct ui_file *file, int from_tty,
159 struct cmd_list_element *c, const char *value)
160 {
161 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
162 }
163
164 /* Support for disabling address space randomization. */
165
166 bool disable_randomization = true;
167
168 static void
169 show_disable_randomization (struct ui_file *file, int from_tty,
170 struct cmd_list_element *c, const char *value)
171 {
172 if (target_supports_disable_randomization ())
173 fprintf_filtered (file,
174 _("Disabling randomization of debuggee's "
175 "virtual address space is %s.\n"),
176 value);
177 else
178 fputs_filtered (_("Disabling randomization of debuggee's "
179 "virtual address space is unsupported on\n"
180 "this platform.\n"), file);
181 }
182
183 static void
184 set_disable_randomization (const char *args, int from_tty,
185 struct cmd_list_element *c)
186 {
187 if (!target_supports_disable_randomization ())
188 error (_("Disabling randomization of debuggee's "
189 "virtual address space is unsupported on\n"
190 "this platform."));
191 }
192
193 /* User interface for non-stop mode. */
194
195 bool non_stop = false;
196 static bool non_stop_1 = false;
197
198 static void
199 set_non_stop (const char *args, int from_tty,
200 struct cmd_list_element *c)
201 {
202 if (target_has_execution ())
203 {
204 non_stop_1 = non_stop;
205 error (_("Cannot change this setting while the inferior is running."));
206 }
207
208 non_stop = non_stop_1;
209 }
210
211 static void
212 show_non_stop (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file,
216 _("Controlling the inferior in non-stop mode is %s.\n"),
217 value);
218 }
219
220 /* "Observer mode" is somewhat like a more extreme version of
221 non-stop, in which all GDB operations that might affect the
222 target's execution have been disabled. */
223
224 static bool observer_mode = false;
225 static bool observer_mode_1 = false;
226
227 static void
228 set_observer_mode (const char *args, int from_tty,
229 struct cmd_list_element *c)
230 {
231 if (target_has_execution ())
232 {
233 observer_mode_1 = observer_mode;
234 error (_("Cannot change this setting while the inferior is running."));
235 }
236
237 observer_mode = observer_mode_1;
238
239 may_write_registers = !observer_mode;
240 may_write_memory = !observer_mode;
241 may_insert_breakpoints = !observer_mode;
242 may_insert_tracepoints = !observer_mode;
243 /* We can insert fast tracepoints in or out of observer mode,
244 but enable them if we're going into this mode. */
245 if (observer_mode)
246 may_insert_fast_tracepoints = true;
247 may_stop = !observer_mode;
248 update_target_permissions ();
249
250 /* Going *into* observer mode we must force non-stop, then
251 going out we leave it that way. */
252 if (observer_mode)
253 {
254 pagination_enabled = 0;
255 non_stop = non_stop_1 = true;
256 }
257
258 if (from_tty)
259 printf_filtered (_("Observer mode is now %s.\n"),
260 (observer_mode ? "on" : "off"));
261 }
262
263 static void
264 show_observer_mode (struct ui_file *file, int from_tty,
265 struct cmd_list_element *c, const char *value)
266 {
267 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
268 }
269
270 /* This updates the value of observer mode based on changes in
271 permissions. Note that we are deliberately ignoring the values of
272 may-write-registers and may-write-memory, since the user may have
273 reason to enable these during a session, for instance to turn on a
274 debugging-related global. */
275
276 void
277 update_observer_mode (void)
278 {
279 bool newval = (!may_insert_breakpoints
280 && !may_insert_tracepoints
281 && may_insert_fast_tracepoints
282 && !may_stop
283 && non_stop);
284
285 /* Let the user know if things change. */
286 if (newval != observer_mode)
287 printf_filtered (_("Observer mode is now %s.\n"),
288 (newval ? "on" : "off"));
289
290 observer_mode = observer_mode_1 = newval;
291 }
292
293 /* Tables of how to react to signals; the user sets them. */
294
295 static unsigned char signal_stop[GDB_SIGNAL_LAST];
296 static unsigned char signal_print[GDB_SIGNAL_LAST];
297 static unsigned char signal_program[GDB_SIGNAL_LAST];
298
299 /* Table of signals that are registered with "catch signal". A
300 non-zero entry indicates that the signal is caught by some "catch
301 signal" command. */
302 static unsigned char signal_catch[GDB_SIGNAL_LAST];
303
304 /* Table of signals that the target may silently handle.
305 This is automatically determined from the flags above,
306 and simply cached here. */
307 static unsigned char signal_pass[GDB_SIGNAL_LAST];
308
309 #define SET_SIGS(nsigs,sigs,flags) \
310 do { \
311 int signum = (nsigs); \
312 while (signum-- > 0) \
313 if ((sigs)[signum]) \
314 (flags)[signum] = 1; \
315 } while (0)
316
317 #define UNSET_SIGS(nsigs,sigs,flags) \
318 do { \
319 int signum = (nsigs); \
320 while (signum-- > 0) \
321 if ((sigs)[signum]) \
322 (flags)[signum] = 0; \
323 } while (0)
324
325 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
326 this function is to avoid exporting `signal_program'. */
327
328 void
329 update_signals_program_target (void)
330 {
331 target_program_signals (signal_program);
332 }
333
334 /* Value to pass to target_resume() to cause all threads to resume. */
335
336 #define RESUME_ALL minus_one_ptid
337
338 /* Command list pointer for the "stop" placeholder. */
339
340 static struct cmd_list_element *stop_command;
341
342 /* Nonzero if we want to give control to the user when we're notified
343 of shared library events by the dynamic linker. */
344 int stop_on_solib_events;
345
346 /* Enable or disable optional shared library event breakpoints
347 as appropriate when the above flag is changed. */
348
349 static void
350 set_stop_on_solib_events (const char *args,
351 int from_tty, struct cmd_list_element *c)
352 {
353 update_solib_breakpoints ();
354 }
355
356 static void
357 show_stop_on_solib_events (struct ui_file *file, int from_tty,
358 struct cmd_list_element *c, const char *value)
359 {
360 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
361 value);
362 }
363
364 /* True after stop if current stack frame should be printed. */
365
366 static bool stop_print_frame;
367
368 /* This is a cached copy of the target/ptid/waitstatus of the last
369 event returned by target_wait()/deprecated_target_wait_hook().
370 This information is returned by get_last_target_status(). */
371 static process_stratum_target *target_last_proc_target;
372 static ptid_t target_last_wait_ptid;
373 static struct target_waitstatus target_last_waitstatus;
374
375 void init_thread_stepping_state (struct thread_info *tss);
376
377 static const char follow_fork_mode_child[] = "child";
378 static const char follow_fork_mode_parent[] = "parent";
379
380 static const char *const follow_fork_mode_kind_names[] = {
381 follow_fork_mode_child,
382 follow_fork_mode_parent,
383 NULL
384 };
385
386 static const char *follow_fork_mode_string = follow_fork_mode_parent;
387 static void
388 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
389 struct cmd_list_element *c, const char *value)
390 {
391 fprintf_filtered (file,
392 _("Debugger response to a program "
393 "call of fork or vfork is \"%s\".\n"),
394 value);
395 }
396 \f
397
398 /* Handle changes to the inferior list based on the type of fork,
399 which process is being followed, and whether the other process
400 should be detached. On entry inferior_ptid must be the ptid of
401 the fork parent. At return inferior_ptid is the ptid of the
402 followed inferior. */
403
404 static bool
405 follow_fork_inferior (bool follow_child, bool detach_fork)
406 {
407 int has_vforked;
408 ptid_t parent_ptid, child_ptid;
409
410 has_vforked = (inferior_thread ()->pending_follow.kind
411 == TARGET_WAITKIND_VFORKED);
412 parent_ptid = inferior_ptid;
413 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
414
415 if (has_vforked
416 && !non_stop /* Non-stop always resumes both branches. */
417 && current_ui->prompt_state == PROMPT_BLOCKED
418 && !(follow_child || detach_fork || sched_multi))
419 {
420 /* The parent stays blocked inside the vfork syscall until the
421 child execs or exits. If we don't let the child run, then
422 the parent stays blocked. If we're telling the parent to run
423 in the foreground, the user will not be able to ctrl-c to get
424 back the terminal, effectively hanging the debug session. */
425 fprintf_filtered (gdb_stderr, _("\
426 Can not resume the parent process over vfork in the foreground while\n\
427 holding the child stopped. Try \"set detach-on-fork\" or \
428 \"set schedule-multiple\".\n"));
429 return true;
430 }
431
432 if (!follow_child)
433 {
434 /* Detach new forked process? */
435 if (detach_fork)
436 {
437 /* Before detaching from the child, remove all breakpoints
438 from it. If we forked, then this has already been taken
439 care of by infrun.c. If we vforked however, any
440 breakpoint inserted in the parent is visible in the
441 child, even those added while stopped in a vfork
442 catchpoint. This will remove the breakpoints from the
443 parent also, but they'll be reinserted below. */
444 if (has_vforked)
445 {
446 /* Keep breakpoints list in sync. */
447 remove_breakpoints_inf (current_inferior ());
448 }
449
450 if (print_inferior_events)
451 {
452 /* Ensure that we have a process ptid. */
453 ptid_t process_ptid = ptid_t (child_ptid.pid ());
454
455 target_terminal::ours_for_output ();
456 fprintf_filtered (gdb_stdlog,
457 _("[Detaching after %s from child %s]\n"),
458 has_vforked ? "vfork" : "fork",
459 target_pid_to_str (process_ptid).c_str ());
460 }
461 }
462 else
463 {
464 struct inferior *parent_inf, *child_inf;
465
466 /* Add process to GDB's tables. */
467 child_inf = add_inferior (child_ptid.pid ());
468
469 parent_inf = current_inferior ();
470 child_inf->attach_flag = parent_inf->attach_flag;
471 copy_terminal_info (child_inf, parent_inf);
472 child_inf->gdbarch = parent_inf->gdbarch;
473 copy_inferior_target_desc_info (child_inf, parent_inf);
474
475 scoped_restore_current_pspace_and_thread restore_pspace_thread;
476
477 set_current_inferior (child_inf);
478 switch_to_no_thread ();
479 child_inf->symfile_flags = SYMFILE_NO_READ;
480 child_inf->push_target (parent_inf->process_target ());
481 thread_info *child_thr
482 = add_thread_silent (child_inf->process_target (), child_ptid);
483
484 /* If this is a vfork child, then the address-space is
485 shared with the parent. */
486 if (has_vforked)
487 {
488 child_inf->pspace = parent_inf->pspace;
489 child_inf->aspace = parent_inf->aspace;
490
491 exec_on_vfork ();
492
493 /* The parent will be frozen until the child is done
494 with the shared region. Keep track of the
495 parent. */
496 child_inf->vfork_parent = parent_inf;
497 child_inf->pending_detach = 0;
498 parent_inf->vfork_child = child_inf;
499 parent_inf->pending_detach = 0;
500
501 /* Now that the inferiors and program spaces are all
502 wired up, we can switch to the child thread (which
503 switches inferior and program space too). */
504 switch_to_thread (child_thr);
505 }
506 else
507 {
508 child_inf->aspace = new_address_space ();
509 child_inf->pspace = new program_space (child_inf->aspace);
510 child_inf->removable = 1;
511 set_current_program_space (child_inf->pspace);
512 clone_program_space (child_inf->pspace, parent_inf->pspace);
513
514 /* solib_create_inferior_hook relies on the current
515 thread. */
516 switch_to_thread (child_thr);
517
518 /* Let the shared library layer (e.g., solib-svr4) learn
519 about this new process, relocate the cloned exec, pull
520 in shared libraries, and install the solib event
521 breakpoint. If a "cloned-VM" event was propagated
522 better throughout the core, this wouldn't be
523 required. */
524 solib_create_inferior_hook (0);
525 }
526 }
527
528 if (has_vforked)
529 {
530 struct inferior *parent_inf;
531
532 parent_inf = current_inferior ();
533
534 /* If we detached from the child, then we have to be careful
535 to not insert breakpoints in the parent until the child
536 is done with the shared memory region. However, if we're
537 staying attached to the child, then we can and should
538 insert breakpoints, so that we can debug it. A
539 subsequent child exec or exit is enough to know when does
540 the child stops using the parent's address space. */
541 parent_inf->waiting_for_vfork_done = detach_fork;
542 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
543 }
544 }
545 else
546 {
547 /* Follow the child. */
548 struct inferior *parent_inf, *child_inf;
549 struct program_space *parent_pspace;
550
551 if (print_inferior_events)
552 {
553 std::string parent_pid = target_pid_to_str (parent_ptid);
554 std::string child_pid = target_pid_to_str (child_ptid);
555
556 target_terminal::ours_for_output ();
557 fprintf_filtered (gdb_stdlog,
558 _("[Attaching after %s %s to child %s]\n"),
559 parent_pid.c_str (),
560 has_vforked ? "vfork" : "fork",
561 child_pid.c_str ());
562 }
563
564 /* Add the new inferior first, so that the target_detach below
565 doesn't unpush the target. */
566
567 child_inf = add_inferior (child_ptid.pid ());
568
569 parent_inf = current_inferior ();
570 child_inf->attach_flag = parent_inf->attach_flag;
571 copy_terminal_info (child_inf, parent_inf);
572 child_inf->gdbarch = parent_inf->gdbarch;
573 copy_inferior_target_desc_info (child_inf, parent_inf);
574
575 parent_pspace = parent_inf->pspace;
576
577 process_stratum_target *target = parent_inf->process_target ();
578
579 {
580 /* Hold a strong reference to the target while (maybe)
581 detaching the parent. Otherwise detaching could close the
582 target. */
583 auto target_ref = target_ops_ref::new_reference (target);
584
585 /* If we're vforking, we want to hold on to the parent until
586 the child exits or execs. At child exec or exit time we
587 can remove the old breakpoints from the parent and detach
588 or resume debugging it. Otherwise, detach the parent now;
589 we'll want to reuse it's program/address spaces, but we
590 can't set them to the child before removing breakpoints
591 from the parent, otherwise, the breakpoints module could
592 decide to remove breakpoints from the wrong process (since
593 they'd be assigned to the same address space). */
594
595 if (has_vforked)
596 {
597 gdb_assert (child_inf->vfork_parent == NULL);
598 gdb_assert (parent_inf->vfork_child == NULL);
599 child_inf->vfork_parent = parent_inf;
600 child_inf->pending_detach = 0;
601 parent_inf->vfork_child = child_inf;
602 parent_inf->pending_detach = detach_fork;
603 parent_inf->waiting_for_vfork_done = 0;
604 }
605 else if (detach_fork)
606 {
607 if (print_inferior_events)
608 {
609 /* Ensure that we have a process ptid. */
610 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
611
612 target_terminal::ours_for_output ();
613 fprintf_filtered (gdb_stdlog,
614 _("[Detaching after fork from "
615 "parent %s]\n"),
616 target_pid_to_str (process_ptid).c_str ());
617 }
618
619 target_detach (parent_inf, 0);
620 parent_inf = NULL;
621 }
622
623 /* Note that the detach above makes PARENT_INF dangling. */
624
625 /* Add the child thread to the appropriate lists, and switch
626 to this new thread, before cloning the program space, and
627 informing the solib layer about this new process. */
628
629 set_current_inferior (child_inf);
630 child_inf->push_target (target);
631 }
632
633 thread_info *child_thr = add_thread_silent (target, child_ptid);
634
635 /* If this is a vfork child, then the address-space is shared
636 with the parent. If we detached from the parent, then we can
637 reuse the parent's program/address spaces. */
638 if (has_vforked || detach_fork)
639 {
640 child_inf->pspace = parent_pspace;
641 child_inf->aspace = child_inf->pspace->aspace;
642
643 exec_on_vfork ();
644 }
645 else
646 {
647 child_inf->aspace = new_address_space ();
648 child_inf->pspace = new program_space (child_inf->aspace);
649 child_inf->removable = 1;
650 child_inf->symfile_flags = SYMFILE_NO_READ;
651 set_current_program_space (child_inf->pspace);
652 clone_program_space (child_inf->pspace, parent_pspace);
653
654 /* Let the shared library layer (e.g., solib-svr4) learn
655 about this new process, relocate the cloned exec, pull in
656 shared libraries, and install the solib event breakpoint.
657 If a "cloned-VM" event was propagated better throughout
658 the core, this wouldn't be required. */
659 solib_create_inferior_hook (0);
660 }
661
662 switch_to_thread (child_thr);
663 }
664
665 target_follow_fork (follow_child, detach_fork);
666
667 return false;
668 }
669
670 /* Tell the target to follow the fork we're stopped at. Returns true
671 if the inferior should be resumed; false, if the target for some
672 reason decided it's best not to resume. */
673
674 static bool
675 follow_fork ()
676 {
677 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
678 bool should_resume = true;
679 struct thread_info *tp;
680
681 /* Copy user stepping state to the new inferior thread. FIXME: the
682 followed fork child thread should have a copy of most of the
683 parent thread structure's run control related fields, not just these.
684 Initialized to avoid "may be used uninitialized" warnings from gcc. */
685 struct breakpoint *step_resume_breakpoint = NULL;
686 struct breakpoint *exception_resume_breakpoint = NULL;
687 CORE_ADDR step_range_start = 0;
688 CORE_ADDR step_range_end = 0;
689 int current_line = 0;
690 symtab *current_symtab = NULL;
691 struct frame_id step_frame_id = { 0 };
692 struct thread_fsm *thread_fsm = NULL;
693
694 if (!non_stop)
695 {
696 process_stratum_target *wait_target;
697 ptid_t wait_ptid;
698 struct target_waitstatus wait_status;
699
700 /* Get the last target status returned by target_wait(). */
701 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
702
703 /* If not stopped at a fork event, then there's nothing else to
704 do. */
705 if (wait_status.kind != TARGET_WAITKIND_FORKED
706 && wait_status.kind != TARGET_WAITKIND_VFORKED)
707 return 1;
708
709 /* Check if we switched over from WAIT_PTID, since the event was
710 reported. */
711 if (wait_ptid != minus_one_ptid
712 && (current_inferior ()->process_target () != wait_target
713 || inferior_ptid != wait_ptid))
714 {
715 /* We did. Switch back to WAIT_PTID thread, to tell the
716 target to follow it (in either direction). We'll
717 afterwards refuse to resume, and inform the user what
718 happened. */
719 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
720 switch_to_thread (wait_thread);
721 should_resume = false;
722 }
723 }
724
725 tp = inferior_thread ();
726
727 /* If there were any forks/vforks that were caught and are now to be
728 followed, then do so now. */
729 switch (tp->pending_follow.kind)
730 {
731 case TARGET_WAITKIND_FORKED:
732 case TARGET_WAITKIND_VFORKED:
733 {
734 ptid_t parent, child;
735
736 /* If the user did a next/step, etc, over a fork call,
737 preserve the stepping state in the fork child. */
738 if (follow_child && should_resume)
739 {
740 step_resume_breakpoint = clone_momentary_breakpoint
741 (tp->control.step_resume_breakpoint);
742 step_range_start = tp->control.step_range_start;
743 step_range_end = tp->control.step_range_end;
744 current_line = tp->current_line;
745 current_symtab = tp->current_symtab;
746 step_frame_id = tp->control.step_frame_id;
747 exception_resume_breakpoint
748 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
749 thread_fsm = tp->thread_fsm;
750
751 /* For now, delete the parent's sr breakpoint, otherwise,
752 parent/child sr breakpoints are considered duplicates,
753 and the child version will not be installed. Remove
754 this when the breakpoints module becomes aware of
755 inferiors and address spaces. */
756 delete_step_resume_breakpoint (tp);
757 tp->control.step_range_start = 0;
758 tp->control.step_range_end = 0;
759 tp->control.step_frame_id = null_frame_id;
760 delete_exception_resume_breakpoint (tp);
761 tp->thread_fsm = NULL;
762 }
763
764 parent = inferior_ptid;
765 child = tp->pending_follow.value.related_pid;
766
767 process_stratum_target *parent_targ = tp->inf->process_target ();
768 /* Set up inferior(s) as specified by the caller, and tell the
769 target to do whatever is necessary to follow either parent
770 or child. */
771 if (follow_fork_inferior (follow_child, detach_fork))
772 {
773 /* Target refused to follow, or there's some other reason
774 we shouldn't resume. */
775 should_resume = 0;
776 }
777 else
778 {
779 /* This pending follow fork event is now handled, one way
780 or another. The previous selected thread may be gone
781 from the lists by now, but if it is still around, need
782 to clear the pending follow request. */
783 tp = find_thread_ptid (parent_targ, parent);
784 if (tp)
785 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
786
787 /* This makes sure we don't try to apply the "Switched
788 over from WAIT_PID" logic above. */
789 nullify_last_target_wait_ptid ();
790
791 /* If we followed the child, switch to it... */
792 if (follow_child)
793 {
794 thread_info *child_thr = find_thread_ptid (parent_targ, child);
795 switch_to_thread (child_thr);
796
797 /* ... and preserve the stepping state, in case the
798 user was stepping over the fork call. */
799 if (should_resume)
800 {
801 tp = inferior_thread ();
802 tp->control.step_resume_breakpoint
803 = step_resume_breakpoint;
804 tp->control.step_range_start = step_range_start;
805 tp->control.step_range_end = step_range_end;
806 tp->current_line = current_line;
807 tp->current_symtab = current_symtab;
808 tp->control.step_frame_id = step_frame_id;
809 tp->control.exception_resume_breakpoint
810 = exception_resume_breakpoint;
811 tp->thread_fsm = thread_fsm;
812 }
813 else
814 {
815 /* If we get here, it was because we're trying to
816 resume from a fork catchpoint, but, the user
817 has switched threads away from the thread that
818 forked. In that case, the resume command
819 issued is most likely not applicable to the
820 child, so just warn, and refuse to resume. */
821 warning (_("Not resuming: switched threads "
822 "before following fork child."));
823 }
824
825 /* Reset breakpoints in the child as appropriate. */
826 follow_inferior_reset_breakpoints ();
827 }
828 }
829 }
830 break;
831 case TARGET_WAITKIND_SPURIOUS:
832 /* Nothing to follow. */
833 break;
834 default:
835 internal_error (__FILE__, __LINE__,
836 "Unexpected pending_follow.kind %d\n",
837 tp->pending_follow.kind);
838 break;
839 }
840
841 return should_resume;
842 }
843
844 static void
845 follow_inferior_reset_breakpoints (void)
846 {
847 struct thread_info *tp = inferior_thread ();
848
849 /* Was there a step_resume breakpoint? (There was if the user
850 did a "next" at the fork() call.) If so, explicitly reset its
851 thread number. Cloned step_resume breakpoints are disabled on
852 creation, so enable it here now that it is associated with the
853 correct thread.
854
855 step_resumes are a form of bp that are made to be per-thread.
856 Since we created the step_resume bp when the parent process
857 was being debugged, and now are switching to the child process,
858 from the breakpoint package's viewpoint, that's a switch of
859 "threads". We must update the bp's notion of which thread
860 it is for, or it'll be ignored when it triggers. */
861
862 if (tp->control.step_resume_breakpoint)
863 {
864 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
865 tp->control.step_resume_breakpoint->loc->enabled = 1;
866 }
867
868 /* Treat exception_resume breakpoints like step_resume breakpoints. */
869 if (tp->control.exception_resume_breakpoint)
870 {
871 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
872 tp->control.exception_resume_breakpoint->loc->enabled = 1;
873 }
874
875 /* Reinsert all breakpoints in the child. The user may have set
876 breakpoints after catching the fork, in which case those
877 were never set in the child, but only in the parent. This makes
878 sure the inserted breakpoints match the breakpoint list. */
879
880 breakpoint_re_set ();
881 insert_breakpoints ();
882 }
883
884 /* The child has exited or execed: resume threads of the parent the
885 user wanted to be executing. */
886
887 static int
888 proceed_after_vfork_done (struct thread_info *thread,
889 void *arg)
890 {
891 int pid = * (int *) arg;
892
893 if (thread->ptid.pid () == pid
894 && thread->state == THREAD_RUNNING
895 && !thread->executing
896 && !thread->stop_requested
897 && thread->suspend.stop_signal == GDB_SIGNAL_0)
898 {
899 infrun_debug_printf ("resuming vfork parent thread %s",
900 target_pid_to_str (thread->ptid).c_str ());
901
902 switch_to_thread (thread);
903 clear_proceed_status (0);
904 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
905 }
906
907 return 0;
908 }
909
910 /* Called whenever we notice an exec or exit event, to handle
911 detaching or resuming a vfork parent. */
912
913 static void
914 handle_vfork_child_exec_or_exit (int exec)
915 {
916 struct inferior *inf = current_inferior ();
917
918 if (inf->vfork_parent)
919 {
920 int resume_parent = -1;
921
922 /* This exec or exit marks the end of the shared memory region
923 between the parent and the child. Break the bonds. */
924 inferior *vfork_parent = inf->vfork_parent;
925 inf->vfork_parent->vfork_child = NULL;
926 inf->vfork_parent = NULL;
927
928 /* If the user wanted to detach from the parent, now is the
929 time. */
930 if (vfork_parent->pending_detach)
931 {
932 struct program_space *pspace;
933 struct address_space *aspace;
934
935 /* follow-fork child, detach-on-fork on. */
936
937 vfork_parent->pending_detach = 0;
938
939 scoped_restore_current_pspace_and_thread restore_thread;
940
941 /* We're letting loose of the parent. */
942 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
943 switch_to_thread (tp);
944
945 /* We're about to detach from the parent, which implicitly
946 removes breakpoints from its address space. There's a
947 catch here: we want to reuse the spaces for the child,
948 but, parent/child are still sharing the pspace at this
949 point, although the exec in reality makes the kernel give
950 the child a fresh set of new pages. The problem here is
951 that the breakpoints module being unaware of this, would
952 likely chose the child process to write to the parent
953 address space. Swapping the child temporarily away from
954 the spaces has the desired effect. Yes, this is "sort
955 of" a hack. */
956
957 pspace = inf->pspace;
958 aspace = inf->aspace;
959 inf->aspace = NULL;
960 inf->pspace = NULL;
961
962 if (print_inferior_events)
963 {
964 std::string pidstr
965 = target_pid_to_str (ptid_t (vfork_parent->pid));
966
967 target_terminal::ours_for_output ();
968
969 if (exec)
970 {
971 fprintf_filtered (gdb_stdlog,
972 _("[Detaching vfork parent %s "
973 "after child exec]\n"), pidstr.c_str ());
974 }
975 else
976 {
977 fprintf_filtered (gdb_stdlog,
978 _("[Detaching vfork parent %s "
979 "after child exit]\n"), pidstr.c_str ());
980 }
981 }
982
983 target_detach (vfork_parent, 0);
984
985 /* Put it back. */
986 inf->pspace = pspace;
987 inf->aspace = aspace;
988 }
989 else if (exec)
990 {
991 /* We're staying attached to the parent, so, really give the
992 child a new address space. */
993 inf->pspace = new program_space (maybe_new_address_space ());
994 inf->aspace = inf->pspace->aspace;
995 inf->removable = 1;
996 set_current_program_space (inf->pspace);
997
998 resume_parent = vfork_parent->pid;
999 }
1000 else
1001 {
1002 /* If this is a vfork child exiting, then the pspace and
1003 aspaces were shared with the parent. Since we're
1004 reporting the process exit, we'll be mourning all that is
1005 found in the address space, and switching to null_ptid,
1006 preparing to start a new inferior. But, since we don't
1007 want to clobber the parent's address/program spaces, we
1008 go ahead and create a new one for this exiting
1009 inferior. */
1010
1011 /* Switch to no-thread while running clone_program_space, so
1012 that clone_program_space doesn't want to read the
1013 selected frame of a dead process. */
1014 scoped_restore_current_thread restore_thread;
1015 switch_to_no_thread ();
1016
1017 inf->pspace = new program_space (maybe_new_address_space ());
1018 inf->aspace = inf->pspace->aspace;
1019 set_current_program_space (inf->pspace);
1020 inf->removable = 1;
1021 inf->symfile_flags = SYMFILE_NO_READ;
1022 clone_program_space (inf->pspace, vfork_parent->pspace);
1023
1024 resume_parent = vfork_parent->pid;
1025 }
1026
1027 gdb_assert (current_program_space == inf->pspace);
1028
1029 if (non_stop && resume_parent != -1)
1030 {
1031 /* If the user wanted the parent to be running, let it go
1032 free now. */
1033 scoped_restore_current_thread restore_thread;
1034
1035 infrun_debug_printf ("resuming vfork parent process %d",
1036 resume_parent);
1037
1038 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1039 }
1040 }
1041 }
1042
1043 /* Enum strings for "set|show follow-exec-mode". */
1044
1045 static const char follow_exec_mode_new[] = "new";
1046 static const char follow_exec_mode_same[] = "same";
1047 static const char *const follow_exec_mode_names[] =
1048 {
1049 follow_exec_mode_new,
1050 follow_exec_mode_same,
1051 NULL,
1052 };
1053
1054 static const char *follow_exec_mode_string = follow_exec_mode_same;
1055 static void
1056 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1057 struct cmd_list_element *c, const char *value)
1058 {
1059 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1060 }
1061
1062 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1063
1064 static void
1065 follow_exec (ptid_t ptid, const char *exec_file_target)
1066 {
1067 struct inferior *inf = current_inferior ();
1068 int pid = ptid.pid ();
1069 ptid_t process_ptid;
1070
1071 /* Switch terminal for any messages produced e.g. by
1072 breakpoint_re_set. */
1073 target_terminal::ours_for_output ();
1074
1075 /* This is an exec event that we actually wish to pay attention to.
1076 Refresh our symbol table to the newly exec'd program, remove any
1077 momentary bp's, etc.
1078
1079 If there are breakpoints, they aren't really inserted now,
1080 since the exec() transformed our inferior into a fresh set
1081 of instructions.
1082
1083 We want to preserve symbolic breakpoints on the list, since
1084 we have hopes that they can be reset after the new a.out's
1085 symbol table is read.
1086
1087 However, any "raw" breakpoints must be removed from the list
1088 (e.g., the solib bp's), since their address is probably invalid
1089 now.
1090
1091 And, we DON'T want to call delete_breakpoints() here, since
1092 that may write the bp's "shadow contents" (the instruction
1093 value that was overwritten with a TRAP instruction). Since
1094 we now have a new a.out, those shadow contents aren't valid. */
1095
1096 mark_breakpoints_out ();
1097
1098 /* The target reports the exec event to the main thread, even if
1099 some other thread does the exec, and even if the main thread was
1100 stopped or already gone. We may still have non-leader threads of
1101 the process on our list. E.g., on targets that don't have thread
1102 exit events (like remote); or on native Linux in non-stop mode if
1103 there were only two threads in the inferior and the non-leader
1104 one is the one that execs (and nothing forces an update of the
1105 thread list up to here). When debugging remotely, it's best to
1106 avoid extra traffic, when possible, so avoid syncing the thread
1107 list with the target, and instead go ahead and delete all threads
1108 of the process but one that reported the event. Note this must
1109 be done before calling update_breakpoints_after_exec, as
1110 otherwise clearing the threads' resources would reference stale
1111 thread breakpoints -- it may have been one of these threads that
1112 stepped across the exec. We could just clear their stepping
1113 states, but as long as we're iterating, might as well delete
1114 them. Deleting them now rather than at the next user-visible
1115 stop provides a nicer sequence of events for user and MI
1116 notifications. */
1117 for (thread_info *th : all_threads_safe ())
1118 if (th->ptid.pid () == pid && th->ptid != ptid)
1119 delete_thread (th);
1120
1121 /* We also need to clear any left over stale state for the
1122 leader/event thread. E.g., if there was any step-resume
1123 breakpoint or similar, it's gone now. We cannot truly
1124 step-to-next statement through an exec(). */
1125 thread_info *th = inferior_thread ();
1126 th->control.step_resume_breakpoint = NULL;
1127 th->control.exception_resume_breakpoint = NULL;
1128 th->control.single_step_breakpoints = NULL;
1129 th->control.step_range_start = 0;
1130 th->control.step_range_end = 0;
1131
1132 /* The user may have had the main thread held stopped in the
1133 previous image (e.g., schedlock on, or non-stop). Release
1134 it now. */
1135 th->stop_requested = 0;
1136
1137 update_breakpoints_after_exec ();
1138
1139 /* What is this a.out's name? */
1140 process_ptid = ptid_t (pid);
1141 printf_unfiltered (_("%s is executing new program: %s\n"),
1142 target_pid_to_str (process_ptid).c_str (),
1143 exec_file_target);
1144
1145 /* We've followed the inferior through an exec. Therefore, the
1146 inferior has essentially been killed & reborn. */
1147
1148 breakpoint_init_inferior (inf_execd);
1149
1150 gdb::unique_xmalloc_ptr<char> exec_file_host
1151 = exec_file_find (exec_file_target, NULL);
1152
1153 /* If we were unable to map the executable target pathname onto a host
1154 pathname, tell the user that. Otherwise GDB's subsequent behavior
1155 is confusing. Maybe it would even be better to stop at this point
1156 so that the user can specify a file manually before continuing. */
1157 if (exec_file_host == NULL)
1158 warning (_("Could not load symbols for executable %s.\n"
1159 "Do you need \"set sysroot\"?"),
1160 exec_file_target);
1161
1162 /* Reset the shared library package. This ensures that we get a
1163 shlib event when the child reaches "_start", at which point the
1164 dld will have had a chance to initialize the child. */
1165 /* Also, loading a symbol file below may trigger symbol lookups, and
1166 we don't want those to be satisfied by the libraries of the
1167 previous incarnation of this process. */
1168 no_shared_libraries (NULL, 0);
1169
1170 if (follow_exec_mode_string == follow_exec_mode_new)
1171 {
1172 /* The user wants to keep the old inferior and program spaces
1173 around. Create a new fresh one, and switch to it. */
1174
1175 /* Do exit processing for the original inferior before setting the new
1176 inferior's pid. Having two inferiors with the same pid would confuse
1177 find_inferior_p(t)id. Transfer the terminal state and info from the
1178 old to the new inferior. */
1179 inf = add_inferior_with_spaces ();
1180 swap_terminal_info (inf, current_inferior ());
1181 exit_inferior_silent (current_inferior ());
1182
1183 inf->pid = pid;
1184 target_follow_exec (inf, exec_file_target);
1185
1186 inferior *org_inferior = current_inferior ();
1187 switch_to_inferior_no_thread (inf);
1188 inf->push_target (org_inferior->process_target ());
1189 thread_info *thr = add_thread (inf->process_target (), ptid);
1190 switch_to_thread (thr);
1191 }
1192 else
1193 {
1194 /* The old description may no longer be fit for the new image.
1195 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1196 old description; we'll read a new one below. No need to do
1197 this on "follow-exec-mode new", as the old inferior stays
1198 around (its description is later cleared/refetched on
1199 restart). */
1200 target_clear_description ();
1201 }
1202
1203 gdb_assert (current_program_space == inf->pspace);
1204
1205 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1206 because the proper displacement for a PIE (Position Independent
1207 Executable) main symbol file will only be computed by
1208 solib_create_inferior_hook below. breakpoint_re_set would fail
1209 to insert the breakpoints with the zero displacement. */
1210 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1211
1212 /* If the target can specify a description, read it. Must do this
1213 after flipping to the new executable (because the target supplied
1214 description must be compatible with the executable's
1215 architecture, and the old executable may e.g., be 32-bit, while
1216 the new one 64-bit), and before anything involving memory or
1217 registers. */
1218 target_find_description ();
1219
1220 gdb::observers::inferior_execd.notify (inf);
1221
1222 breakpoint_re_set ();
1223
1224 /* Reinsert all breakpoints. (Those which were symbolic have
1225 been reset to the proper address in the new a.out, thanks
1226 to symbol_file_command...). */
1227 insert_breakpoints ();
1228
1229 /* The next resume of this inferior should bring it to the shlib
1230 startup breakpoints. (If the user had also set bp's on
1231 "main" from the old (parent) process, then they'll auto-
1232 matically get reset there in the new process.). */
1233 }
1234
1235 /* The chain of threads that need to do a step-over operation to get
1236 past e.g., a breakpoint. What technique is used to step over the
1237 breakpoint/watchpoint does not matter -- all threads end up in the
1238 same queue, to maintain rough temporal order of execution, in order
1239 to avoid starvation, otherwise, we could e.g., find ourselves
1240 constantly stepping the same couple threads past their breakpoints
1241 over and over, if the single-step finish fast enough. */
1242 struct thread_info *global_thread_step_over_chain_head;
1243
1244 /* Bit flags indicating what the thread needs to step over. */
1245
1246 enum step_over_what_flag
1247 {
1248 /* Step over a breakpoint. */
1249 STEP_OVER_BREAKPOINT = 1,
1250
1251 /* Step past a non-continuable watchpoint, in order to let the
1252 instruction execute so we can evaluate the watchpoint
1253 expression. */
1254 STEP_OVER_WATCHPOINT = 2
1255 };
1256 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1257
1258 /* Info about an instruction that is being stepped over. */
1259
1260 struct step_over_info
1261 {
1262 /* If we're stepping past a breakpoint, this is the address space
1263 and address of the instruction the breakpoint is set at. We'll
1264 skip inserting all breakpoints here. Valid iff ASPACE is
1265 non-NULL. */
1266 const address_space *aspace = nullptr;
1267 CORE_ADDR address = 0;
1268
1269 /* The instruction being stepped over triggers a nonsteppable
1270 watchpoint. If true, we'll skip inserting watchpoints. */
1271 int nonsteppable_watchpoint_p = 0;
1272
1273 /* The thread's global number. */
1274 int thread = -1;
1275 };
1276
1277 /* The step-over info of the location that is being stepped over.
1278
1279 Note that with async/breakpoint always-inserted mode, a user might
1280 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1281 being stepped over. As setting a new breakpoint inserts all
1282 breakpoints, we need to make sure the breakpoint being stepped over
1283 isn't inserted then. We do that by only clearing the step-over
1284 info when the step-over is actually finished (or aborted).
1285
1286 Presently GDB can only step over one breakpoint at any given time.
1287 Given threads that can't run code in the same address space as the
1288 breakpoint's can't really miss the breakpoint, GDB could be taught
1289 to step-over at most one breakpoint per address space (so this info
1290 could move to the address space object if/when GDB is extended).
1291 The set of breakpoints being stepped over will normally be much
1292 smaller than the set of all breakpoints, so a flag in the
1293 breakpoint location structure would be wasteful. A separate list
1294 also saves complexity and run-time, as otherwise we'd have to go
1295 through all breakpoint locations clearing their flag whenever we
1296 start a new sequence. Similar considerations weigh against storing
1297 this info in the thread object. Plus, not all step overs actually
1298 have breakpoint locations -- e.g., stepping past a single-step
1299 breakpoint, or stepping to complete a non-continuable
1300 watchpoint. */
1301 static struct step_over_info step_over_info;
1302
1303 /* Record the address of the breakpoint/instruction we're currently
1304 stepping over.
1305 N.B. We record the aspace and address now, instead of say just the thread,
1306 because when we need the info later the thread may be running. */
1307
1308 static void
1309 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1310 int nonsteppable_watchpoint_p,
1311 int thread)
1312 {
1313 step_over_info.aspace = aspace;
1314 step_over_info.address = address;
1315 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1316 step_over_info.thread = thread;
1317 }
1318
1319 /* Called when we're not longer stepping over a breakpoint / an
1320 instruction, so all breakpoints are free to be (re)inserted. */
1321
1322 static void
1323 clear_step_over_info (void)
1324 {
1325 infrun_debug_printf ("clearing step over info");
1326 step_over_info.aspace = NULL;
1327 step_over_info.address = 0;
1328 step_over_info.nonsteppable_watchpoint_p = 0;
1329 step_over_info.thread = -1;
1330 }
1331
1332 /* See infrun.h. */
1333
1334 int
1335 stepping_past_instruction_at (struct address_space *aspace,
1336 CORE_ADDR address)
1337 {
1338 return (step_over_info.aspace != NULL
1339 && breakpoint_address_match (aspace, address,
1340 step_over_info.aspace,
1341 step_over_info.address));
1342 }
1343
1344 /* See infrun.h. */
1345
1346 int
1347 thread_is_stepping_over_breakpoint (int thread)
1348 {
1349 return (step_over_info.thread != -1
1350 && thread == step_over_info.thread);
1351 }
1352
1353 /* See infrun.h. */
1354
1355 int
1356 stepping_past_nonsteppable_watchpoint (void)
1357 {
1358 return step_over_info.nonsteppable_watchpoint_p;
1359 }
1360
1361 /* Returns true if step-over info is valid. */
1362
1363 static bool
1364 step_over_info_valid_p (void)
1365 {
1366 return (step_over_info.aspace != NULL
1367 || stepping_past_nonsteppable_watchpoint ());
1368 }
1369
1370 \f
1371 /* Displaced stepping. */
1372
1373 /* In non-stop debugging mode, we must take special care to manage
1374 breakpoints properly; in particular, the traditional strategy for
1375 stepping a thread past a breakpoint it has hit is unsuitable.
1376 'Displaced stepping' is a tactic for stepping one thread past a
1377 breakpoint it has hit while ensuring that other threads running
1378 concurrently will hit the breakpoint as they should.
1379
1380 The traditional way to step a thread T off a breakpoint in a
1381 multi-threaded program in all-stop mode is as follows:
1382
1383 a0) Initially, all threads are stopped, and breakpoints are not
1384 inserted.
1385 a1) We single-step T, leaving breakpoints uninserted.
1386 a2) We insert breakpoints, and resume all threads.
1387
1388 In non-stop debugging, however, this strategy is unsuitable: we
1389 don't want to have to stop all threads in the system in order to
1390 continue or step T past a breakpoint. Instead, we use displaced
1391 stepping:
1392
1393 n0) Initially, T is stopped, other threads are running, and
1394 breakpoints are inserted.
1395 n1) We copy the instruction "under" the breakpoint to a separate
1396 location, outside the main code stream, making any adjustments
1397 to the instruction, register, and memory state as directed by
1398 T's architecture.
1399 n2) We single-step T over the instruction at its new location.
1400 n3) We adjust the resulting register and memory state as directed
1401 by T's architecture. This includes resetting T's PC to point
1402 back into the main instruction stream.
1403 n4) We resume T.
1404
1405 This approach depends on the following gdbarch methods:
1406
1407 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1408 indicate where to copy the instruction, and how much space must
1409 be reserved there. We use these in step n1.
1410
1411 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1412 address, and makes any necessary adjustments to the instruction,
1413 register contents, and memory. We use this in step n1.
1414
1415 - gdbarch_displaced_step_fixup adjusts registers and memory after
1416 we have successfully single-stepped the instruction, to yield the
1417 same effect the instruction would have had if we had executed it
1418 at its original address. We use this in step n3.
1419
1420 The gdbarch_displaced_step_copy_insn and
1421 gdbarch_displaced_step_fixup functions must be written so that
1422 copying an instruction with gdbarch_displaced_step_copy_insn,
1423 single-stepping across the copied instruction, and then applying
1424 gdbarch_displaced_insn_fixup should have the same effects on the
1425 thread's memory and registers as stepping the instruction in place
1426 would have. Exactly which responsibilities fall to the copy and
1427 which fall to the fixup is up to the author of those functions.
1428
1429 See the comments in gdbarch.sh for details.
1430
1431 Note that displaced stepping and software single-step cannot
1432 currently be used in combination, although with some care I think
1433 they could be made to. Software single-step works by placing
1434 breakpoints on all possible subsequent instructions; if the
1435 displaced instruction is a PC-relative jump, those breakpoints
1436 could fall in very strange places --- on pages that aren't
1437 executable, or at addresses that are not proper instruction
1438 boundaries. (We do generally let other threads run while we wait
1439 to hit the software single-step breakpoint, and they might
1440 encounter such a corrupted instruction.) One way to work around
1441 this would be to have gdbarch_displaced_step_copy_insn fully
1442 simulate the effect of PC-relative instructions (and return NULL)
1443 on architectures that use software single-stepping.
1444
1445 In non-stop mode, we can have independent and simultaneous step
1446 requests, so more than one thread may need to simultaneously step
1447 over a breakpoint. The current implementation assumes there is
1448 only one scratch space per process. In this case, we have to
1449 serialize access to the scratch space. If thread A wants to step
1450 over a breakpoint, but we are currently waiting for some other
1451 thread to complete a displaced step, we leave thread A stopped and
1452 place it in the displaced_step_request_queue. Whenever a displaced
1453 step finishes, we pick the next thread in the queue and start a new
1454 displaced step operation on it. See displaced_step_prepare and
1455 displaced_step_finish for details. */
1456
1457 /* Return true if THREAD is doing a displaced step. */
1458
1459 static bool
1460 displaced_step_in_progress_thread (thread_info *thread)
1461 {
1462 gdb_assert (thread != NULL);
1463
1464 return thread->displaced_step_state.in_progress ();
1465 }
1466
1467 /* Return true if INF has a thread doing a displaced step. */
1468
1469 static bool
1470 displaced_step_in_progress (inferior *inf)
1471 {
1472 return inf->displaced_step_state.in_progress_count > 0;
1473 }
1474
1475 /* Return true if any thread is doing a displaced step. */
1476
1477 static bool
1478 displaced_step_in_progress_any_thread ()
1479 {
1480 for (inferior *inf : all_non_exited_inferiors ())
1481 {
1482 if (displaced_step_in_progress (inf))
1483 return true;
1484 }
1485
1486 return false;
1487 }
1488
1489 static void
1490 infrun_inferior_exit (struct inferior *inf)
1491 {
1492 inf->displaced_step_state.reset ();
1493 }
1494
1495 static void
1496 infrun_inferior_execd (inferior *inf)
1497 {
1498 /* If some threads where was doing a displaced step in this inferior at the
1499 moment of the exec, they no longer exist. Even if the exec'ing thread
1500 doing a displaced step, we don't want to to any fixup nor restore displaced
1501 stepping buffer bytes. */
1502 inf->displaced_step_state.reset ();
1503
1504 for (thread_info *thread : inf->threads ())
1505 thread->displaced_step_state.reset ();
1506
1507 /* Since an in-line step is done with everything else stopped, if there was
1508 one in progress at the time of the exec, it must have been the exec'ing
1509 thread. */
1510 clear_step_over_info ();
1511 }
1512
1513 /* If ON, and the architecture supports it, GDB will use displaced
1514 stepping to step over breakpoints. If OFF, or if the architecture
1515 doesn't support it, GDB will instead use the traditional
1516 hold-and-step approach. If AUTO (which is the default), GDB will
1517 decide which technique to use to step over breakpoints depending on
1518 whether the target works in a non-stop way (see use_displaced_stepping). */
1519
1520 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1521
1522 static void
1523 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1524 struct cmd_list_element *c,
1525 const char *value)
1526 {
1527 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1528 fprintf_filtered (file,
1529 _("Debugger's willingness to use displaced stepping "
1530 "to step over breakpoints is %s (currently %s).\n"),
1531 value, target_is_non_stop_p () ? "on" : "off");
1532 else
1533 fprintf_filtered (file,
1534 _("Debugger's willingness to use displaced stepping "
1535 "to step over breakpoints is %s.\n"), value);
1536 }
1537
1538 /* Return true if the gdbarch implements the required methods to use
1539 displaced stepping. */
1540
1541 static bool
1542 gdbarch_supports_displaced_stepping (gdbarch *arch)
1543 {
1544 /* Only check for the presence of `prepare`. The gdbarch verification ensures
1545 that if `prepare` is provided, so is `finish`. */
1546 return gdbarch_displaced_step_prepare_p (arch);
1547 }
1548
1549 /* Return non-zero if displaced stepping can/should be used to step
1550 over breakpoints of thread TP. */
1551
1552 static bool
1553 use_displaced_stepping (thread_info *tp)
1554 {
1555 /* If the user disabled it explicitly, don't use displaced stepping. */
1556 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1557 return false;
1558
1559 /* If "auto", only use displaced stepping if the target operates in a non-stop
1560 way. */
1561 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1562 && !target_is_non_stop_p ())
1563 return false;
1564
1565 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1566
1567 /* If the architecture doesn't implement displaced stepping, don't use
1568 it. */
1569 if (!gdbarch_supports_displaced_stepping (gdbarch))
1570 return false;
1571
1572 /* If recording, don't use displaced stepping. */
1573 if (find_record_target () != nullptr)
1574 return false;
1575
1576 /* If displaced stepping failed before for this inferior, don't bother trying
1577 again. */
1578 if (tp->inf->displaced_step_state.failed_before)
1579 return false;
1580
1581 return true;
1582 }
1583
1584 /* Simple function wrapper around displaced_step_thread_state::reset. */
1585
1586 static void
1587 displaced_step_reset (displaced_step_thread_state *displaced)
1588 {
1589 displaced->reset ();
1590 }
1591
1592 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1593 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1594
1595 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1596
1597 /* See infrun.h. */
1598
1599 std::string
1600 displaced_step_dump_bytes (const gdb_byte *buf, size_t len)
1601 {
1602 std::string ret;
1603
1604 for (size_t i = 0; i < len; i++)
1605 {
1606 if (i == 0)
1607 ret += string_printf ("%02x", buf[i]);
1608 else
1609 ret += string_printf (" %02x", buf[i]);
1610 }
1611
1612 return ret;
1613 }
1614
1615 /* Prepare to single-step, using displaced stepping.
1616
1617 Note that we cannot use displaced stepping when we have a signal to
1618 deliver. If we have a signal to deliver and an instruction to step
1619 over, then after the step, there will be no indication from the
1620 target whether the thread entered a signal handler or ignored the
1621 signal and stepped over the instruction successfully --- both cases
1622 result in a simple SIGTRAP. In the first case we mustn't do a
1623 fixup, and in the second case we must --- but we can't tell which.
1624 Comments in the code for 'random signals' in handle_inferior_event
1625 explain how we handle this case instead.
1626
1627 Returns DISPLACED_STEP_PREPARE_STATUS_OK if preparing was successful -- this
1628 thread is going to be stepped now; DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE
1629 if displaced stepping this thread got queued; or
1630 DISPLACED_STEP_PREPARE_STATUS_CANT if this instruction can't be displaced
1631 stepped. */
1632
1633 static displaced_step_prepare_status
1634 displaced_step_prepare_throw (thread_info *tp)
1635 {
1636 regcache *regcache = get_thread_regcache (tp);
1637 struct gdbarch *gdbarch = regcache->arch ();
1638 displaced_step_thread_state &disp_step_thread_state
1639 = tp->displaced_step_state;
1640
1641 /* We should never reach this function if the architecture does not
1642 support displaced stepping. */
1643 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1644
1645 /* Nor if the thread isn't meant to step over a breakpoint. */
1646 gdb_assert (tp->control.trap_expected);
1647
1648 /* Disable range stepping while executing in the scratch pad. We
1649 want a single-step even if executing the displaced instruction in
1650 the scratch buffer lands within the stepping range (e.g., a
1651 jump/branch). */
1652 tp->control.may_range_step = 0;
1653
1654 /* We are about to start a displaced step for this thread. If one is already
1655 in progress, something's wrong. */
1656 gdb_assert (!disp_step_thread_state.in_progress ());
1657
1658 if (tp->inf->displaced_step_state.unavailable)
1659 {
1660 /* The gdbarch tells us it's not worth asking to try a prepare because
1661 it is likely that it will return unavailable, so don't bother asking. */
1662
1663 displaced_debug_printf ("deferring step of %s",
1664 target_pid_to_str (tp->ptid).c_str ());
1665
1666 global_thread_step_over_chain_enqueue (tp);
1667 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1668 }
1669
1670 displaced_debug_printf ("displaced-stepping %s now",
1671 target_pid_to_str (tp->ptid).c_str ());
1672
1673 scoped_restore_current_thread restore_thread;
1674
1675 switch_to_thread (tp);
1676
1677 CORE_ADDR original_pc = regcache_read_pc (regcache);
1678 CORE_ADDR displaced_pc;
1679
1680 displaced_step_prepare_status status
1681 = gdbarch_displaced_step_prepare (gdbarch, tp, displaced_pc);
1682
1683 if (status == DISPLACED_STEP_PREPARE_STATUS_CANT)
1684 {
1685 displaced_debug_printf ("failed to prepare (%s)",
1686 target_pid_to_str (tp->ptid).c_str ());
1687
1688 return DISPLACED_STEP_PREPARE_STATUS_CANT;
1689 }
1690 else if (status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
1691 {
1692 /* Not enough displaced stepping resources available, defer this
1693 request by placing it the queue. */
1694
1695 displaced_debug_printf ("not enough resources available, "
1696 "deferring step of %s",
1697 target_pid_to_str (tp->ptid).c_str ());
1698
1699 global_thread_step_over_chain_enqueue (tp);
1700
1701 return DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE;
1702 }
1703
1704 gdb_assert (status == DISPLACED_STEP_PREPARE_STATUS_OK);
1705
1706 /* Save the information we need to fix things up if the step
1707 succeeds. */
1708 disp_step_thread_state.set (gdbarch);
1709
1710 tp->inf->displaced_step_state.in_progress_count++;
1711
1712 displaced_debug_printf ("prepared successfully thread=%s, "
1713 "original_pc=%s, displaced_pc=%s",
1714 target_pid_to_str (tp->ptid).c_str (),
1715 paddress (gdbarch, original_pc),
1716 paddress (gdbarch, displaced_pc));
1717
1718 return DISPLACED_STEP_PREPARE_STATUS_OK;
1719 }
1720
1721 /* Wrapper for displaced_step_prepare_throw that disabled further
1722 attempts at displaced stepping if we get a memory error. */
1723
1724 static displaced_step_prepare_status
1725 displaced_step_prepare (thread_info *thread)
1726 {
1727 displaced_step_prepare_status status
1728 = DISPLACED_STEP_PREPARE_STATUS_CANT;
1729
1730 try
1731 {
1732 status = displaced_step_prepare_throw (thread);
1733 }
1734 catch (const gdb_exception_error &ex)
1735 {
1736 if (ex.error != MEMORY_ERROR
1737 && ex.error != NOT_SUPPORTED_ERROR)
1738 throw;
1739
1740 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1741 ex.what ());
1742
1743 /* Be verbose if "set displaced-stepping" is "on", silent if
1744 "auto". */
1745 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1746 {
1747 warning (_("disabling displaced stepping: %s"),
1748 ex.what ());
1749 }
1750
1751 /* Disable further displaced stepping attempts. */
1752 thread->inf->displaced_step_state.failed_before = 1;
1753 }
1754
1755 return status;
1756 }
1757
1758 /* If we displaced stepped an instruction successfully, adjust registers and
1759 memory to yield the same effect the instruction would have had if we had
1760 executed it at its original address, and return
1761 DISPLACED_STEP_FINISH_STATUS_OK. If the instruction didn't complete,
1762 relocate the PC and return DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED.
1763
1764 If the thread wasn't displaced stepping, return
1765 DISPLACED_STEP_FINISH_STATUS_OK as well. */
1766
1767 static displaced_step_finish_status
1768 displaced_step_finish (thread_info *event_thread, enum gdb_signal signal)
1769 {
1770 displaced_step_thread_state *displaced = &event_thread->displaced_step_state;
1771
1772 /* Was this thread performing a displaced step? */
1773 if (!displaced->in_progress ())
1774 return DISPLACED_STEP_FINISH_STATUS_OK;
1775
1776 gdb_assert (event_thread->inf->displaced_step_state.in_progress_count > 0);
1777 event_thread->inf->displaced_step_state.in_progress_count--;
1778
1779 /* Fixup may need to read memory/registers. Switch to the thread
1780 that we're fixing up. Also, target_stopped_by_watchpoint checks
1781 the current thread, and displaced_step_restore performs ptid-dependent
1782 memory accesses using current_inferior(). */
1783 switch_to_thread (event_thread);
1784
1785 displaced_step_reset_cleanup cleanup (displaced);
1786
1787 /* Do the fixup, and release the resources acquired to do the displaced
1788 step. */
1789 return gdbarch_displaced_step_finish (displaced->get_original_gdbarch (),
1790 event_thread, signal);
1791 }
1792
1793 /* Data to be passed around while handling an event. This data is
1794 discarded between events. */
1795 struct execution_control_state
1796 {
1797 process_stratum_target *target;
1798 ptid_t ptid;
1799 /* The thread that got the event, if this was a thread event; NULL
1800 otherwise. */
1801 struct thread_info *event_thread;
1802
1803 struct target_waitstatus ws;
1804 int stop_func_filled_in;
1805 CORE_ADDR stop_func_start;
1806 CORE_ADDR stop_func_end;
1807 const char *stop_func_name;
1808 int wait_some_more;
1809
1810 /* True if the event thread hit the single-step breakpoint of
1811 another thread. Thus the event doesn't cause a stop, the thread
1812 needs to be single-stepped past the single-step breakpoint before
1813 we can switch back to the original stepping thread. */
1814 int hit_singlestep_breakpoint;
1815 };
1816
1817 /* Clear ECS and set it to point at TP. */
1818
1819 static void
1820 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1821 {
1822 memset (ecs, 0, sizeof (*ecs));
1823 ecs->event_thread = tp;
1824 ecs->ptid = tp->ptid;
1825 }
1826
1827 static void keep_going_pass_signal (struct execution_control_state *ecs);
1828 static void prepare_to_wait (struct execution_control_state *ecs);
1829 static bool keep_going_stepped_thread (struct thread_info *tp);
1830 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1831
1832 /* Are there any pending step-over requests? If so, run all we can
1833 now and return true. Otherwise, return false. */
1834
1835 static bool
1836 start_step_over (void)
1837 {
1838 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
1839
1840 thread_info *next;
1841
1842 /* Don't start a new step-over if we already have an in-line
1843 step-over operation ongoing. */
1844 if (step_over_info_valid_p ())
1845 return false;
1846
1847 /* Steal the global thread step over chain. As we try to initiate displaced
1848 steps, threads will be enqueued in the global chain if no buffers are
1849 available. If we iterated on the global chain directly, we might iterate
1850 indefinitely. */
1851 thread_info *threads_to_step = global_thread_step_over_chain_head;
1852 global_thread_step_over_chain_head = NULL;
1853
1854 infrun_debug_printf ("stealing global queue of threads to step, length = %d",
1855 thread_step_over_chain_length (threads_to_step));
1856
1857 bool started = false;
1858
1859 /* On scope exit (whatever the reason, return or exception), if there are
1860 threads left in the THREADS_TO_STEP chain, put back these threads in the
1861 global list. */
1862 SCOPE_EXIT
1863 {
1864 if (threads_to_step == nullptr)
1865 infrun_debug_printf ("step-over queue now empty");
1866 else
1867 {
1868 infrun_debug_printf ("putting back %d threads to step in global queue",
1869 thread_step_over_chain_length (threads_to_step));
1870
1871 global_thread_step_over_chain_enqueue_chain (threads_to_step);
1872 }
1873 };
1874
1875 for (thread_info *tp = threads_to_step; tp != NULL; tp = next)
1876 {
1877 struct execution_control_state ecss;
1878 struct execution_control_state *ecs = &ecss;
1879 step_over_what step_what;
1880 int must_be_in_line;
1881
1882 gdb_assert (!tp->stop_requested);
1883
1884 next = thread_step_over_chain_next (threads_to_step, tp);
1885
1886 if (tp->inf->displaced_step_state.unavailable)
1887 {
1888 /* The arch told us to not even try preparing another displaced step
1889 for this inferior. Just leave the thread in THREADS_TO_STEP, it
1890 will get moved to the global chain on scope exit. */
1891 continue;
1892 }
1893
1894 /* Remove thread from the THREADS_TO_STEP chain. If anything goes wrong
1895 while we try to prepare the displaced step, we don't add it back to
1896 the global step over chain. This is to avoid a thread staying in the
1897 step over chain indefinitely if something goes wrong when resuming it
1898 If the error is intermittent and it still needs a step over, it will
1899 get enqueued again when we try to resume it normally. */
1900 thread_step_over_chain_remove (&threads_to_step, tp);
1901
1902 step_what = thread_still_needs_step_over (tp);
1903 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1904 || ((step_what & STEP_OVER_BREAKPOINT)
1905 && !use_displaced_stepping (tp)));
1906
1907 /* We currently stop all threads of all processes to step-over
1908 in-line. If we need to start a new in-line step-over, let
1909 any pending displaced steps finish first. */
1910 if (must_be_in_line && displaced_step_in_progress_any_thread ())
1911 {
1912 global_thread_step_over_chain_enqueue (tp);
1913 continue;
1914 }
1915
1916 if (tp->control.trap_expected
1917 || tp->resumed
1918 || tp->executing)
1919 {
1920 internal_error (__FILE__, __LINE__,
1921 "[%s] has inconsistent state: "
1922 "trap_expected=%d, resumed=%d, executing=%d\n",
1923 target_pid_to_str (tp->ptid).c_str (),
1924 tp->control.trap_expected,
1925 tp->resumed,
1926 tp->executing);
1927 }
1928
1929 infrun_debug_printf ("resuming [%s] for step-over",
1930 target_pid_to_str (tp->ptid).c_str ());
1931
1932 /* keep_going_pass_signal skips the step-over if the breakpoint
1933 is no longer inserted. In all-stop, we want to keep looking
1934 for a thread that needs a step-over instead of resuming TP,
1935 because we wouldn't be able to resume anything else until the
1936 target stops again. In non-stop, the resume always resumes
1937 only TP, so it's OK to let the thread resume freely. */
1938 if (!target_is_non_stop_p () && !step_what)
1939 continue;
1940
1941 switch_to_thread (tp);
1942 reset_ecs (ecs, tp);
1943 keep_going_pass_signal (ecs);
1944
1945 if (!ecs->wait_some_more)
1946 error (_("Command aborted."));
1947
1948 /* If the thread's step over could not be initiated because no buffers
1949 were available, it was re-added to the global step over chain. */
1950 if (tp->resumed)
1951 {
1952 infrun_debug_printf ("[%s] was resumed.",
1953 target_pid_to_str (tp->ptid).c_str ());
1954 gdb_assert (!thread_is_in_step_over_chain (tp));
1955 }
1956 else
1957 {
1958 infrun_debug_printf ("[%s] was NOT resumed.",
1959 target_pid_to_str (tp->ptid).c_str ());
1960 gdb_assert (thread_is_in_step_over_chain (tp));
1961 }
1962
1963 /* If we started a new in-line step-over, we're done. */
1964 if (step_over_info_valid_p ())
1965 {
1966 gdb_assert (tp->control.trap_expected);
1967 started = true;
1968 break;
1969 }
1970
1971 if (!target_is_non_stop_p ())
1972 {
1973 /* On all-stop, shouldn't have resumed unless we needed a
1974 step over. */
1975 gdb_assert (tp->control.trap_expected
1976 || tp->step_after_step_resume_breakpoint);
1977
1978 /* With remote targets (at least), in all-stop, we can't
1979 issue any further remote commands until the program stops
1980 again. */
1981 started = true;
1982 break;
1983 }
1984
1985 /* Either the thread no longer needed a step-over, or a new
1986 displaced stepping sequence started. Even in the latter
1987 case, continue looking. Maybe we can also start another
1988 displaced step on a thread of other process. */
1989 }
1990
1991 return started;
1992 }
1993
1994 /* Update global variables holding ptids to hold NEW_PTID if they were
1995 holding OLD_PTID. */
1996 static void
1997 infrun_thread_ptid_changed (process_stratum_target *target,
1998 ptid_t old_ptid, ptid_t new_ptid)
1999 {
2000 if (inferior_ptid == old_ptid
2001 && current_inferior ()->process_target () == target)
2002 inferior_ptid = new_ptid;
2003 }
2004
2005 \f
2006
2007 static const char schedlock_off[] = "off";
2008 static const char schedlock_on[] = "on";
2009 static const char schedlock_step[] = "step";
2010 static const char schedlock_replay[] = "replay";
2011 static const char *const scheduler_enums[] = {
2012 schedlock_off,
2013 schedlock_on,
2014 schedlock_step,
2015 schedlock_replay,
2016 NULL
2017 };
2018 static const char *scheduler_mode = schedlock_replay;
2019 static void
2020 show_scheduler_mode (struct ui_file *file, int from_tty,
2021 struct cmd_list_element *c, const char *value)
2022 {
2023 fprintf_filtered (file,
2024 _("Mode for locking scheduler "
2025 "during execution is \"%s\".\n"),
2026 value);
2027 }
2028
2029 static void
2030 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2031 {
2032 if (!target_can_lock_scheduler ())
2033 {
2034 scheduler_mode = schedlock_off;
2035 error (_("Target '%s' cannot support this command."),
2036 target_shortname ());
2037 }
2038 }
2039
2040 /* True if execution commands resume all threads of all processes by
2041 default; otherwise, resume only threads of the current inferior
2042 process. */
2043 bool sched_multi = false;
2044
2045 /* Try to setup for software single stepping over the specified location.
2046 Return true if target_resume() should use hardware single step.
2047
2048 GDBARCH the current gdbarch.
2049 PC the location to step over. */
2050
2051 static bool
2052 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2053 {
2054 bool hw_step = true;
2055
2056 if (execution_direction == EXEC_FORWARD
2057 && gdbarch_software_single_step_p (gdbarch))
2058 hw_step = !insert_single_step_breakpoints (gdbarch);
2059
2060 return hw_step;
2061 }
2062
2063 /* See infrun.h. */
2064
2065 ptid_t
2066 user_visible_resume_ptid (int step)
2067 {
2068 ptid_t resume_ptid;
2069
2070 if (non_stop)
2071 {
2072 /* With non-stop mode on, threads are always handled
2073 individually. */
2074 resume_ptid = inferior_ptid;
2075 }
2076 else if ((scheduler_mode == schedlock_on)
2077 || (scheduler_mode == schedlock_step && step))
2078 {
2079 /* User-settable 'scheduler' mode requires solo thread
2080 resume. */
2081 resume_ptid = inferior_ptid;
2082 }
2083 else if ((scheduler_mode == schedlock_replay)
2084 && target_record_will_replay (minus_one_ptid, execution_direction))
2085 {
2086 /* User-settable 'scheduler' mode requires solo thread resume in replay
2087 mode. */
2088 resume_ptid = inferior_ptid;
2089 }
2090 else if (!sched_multi && target_supports_multi_process ())
2091 {
2092 /* Resume all threads of the current process (and none of other
2093 processes). */
2094 resume_ptid = ptid_t (inferior_ptid.pid ());
2095 }
2096 else
2097 {
2098 /* Resume all threads of all processes. */
2099 resume_ptid = RESUME_ALL;
2100 }
2101
2102 return resume_ptid;
2103 }
2104
2105 /* See infrun.h. */
2106
2107 process_stratum_target *
2108 user_visible_resume_target (ptid_t resume_ptid)
2109 {
2110 return (resume_ptid == minus_one_ptid && sched_multi
2111 ? NULL
2112 : current_inferior ()->process_target ());
2113 }
2114
2115 /* Return a ptid representing the set of threads that we will resume,
2116 in the perspective of the target, assuming run control handling
2117 does not require leaving some threads stopped (e.g., stepping past
2118 breakpoint). USER_STEP indicates whether we're about to start the
2119 target for a stepping command. */
2120
2121 static ptid_t
2122 internal_resume_ptid (int user_step)
2123 {
2124 /* In non-stop, we always control threads individually. Note that
2125 the target may always work in non-stop mode even with "set
2126 non-stop off", in which case user_visible_resume_ptid could
2127 return a wildcard ptid. */
2128 if (target_is_non_stop_p ())
2129 return inferior_ptid;
2130 else
2131 return user_visible_resume_ptid (user_step);
2132 }
2133
2134 /* Wrapper for target_resume, that handles infrun-specific
2135 bookkeeping. */
2136
2137 static void
2138 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2139 {
2140 struct thread_info *tp = inferior_thread ();
2141
2142 gdb_assert (!tp->stop_requested);
2143
2144 /* Install inferior's terminal modes. */
2145 target_terminal::inferior ();
2146
2147 /* Avoid confusing the next resume, if the next stop/resume
2148 happens to apply to another thread. */
2149 tp->suspend.stop_signal = GDB_SIGNAL_0;
2150
2151 /* Advise target which signals may be handled silently.
2152
2153 If we have removed breakpoints because we are stepping over one
2154 in-line (in any thread), we need to receive all signals to avoid
2155 accidentally skipping a breakpoint during execution of a signal
2156 handler.
2157
2158 Likewise if we're displaced stepping, otherwise a trap for a
2159 breakpoint in a signal handler might be confused with the
2160 displaced step finishing. We don't make the displaced_step_finish
2161 step distinguish the cases instead, because:
2162
2163 - a backtrace while stopped in the signal handler would show the
2164 scratch pad as frame older than the signal handler, instead of
2165 the real mainline code.
2166
2167 - when the thread is later resumed, the signal handler would
2168 return to the scratch pad area, which would no longer be
2169 valid. */
2170 if (step_over_info_valid_p ()
2171 || displaced_step_in_progress (tp->inf))
2172 target_pass_signals ({});
2173 else
2174 target_pass_signals (signal_pass);
2175
2176 target_resume (resume_ptid, step, sig);
2177
2178 if (target_can_async_p ())
2179 target_async (1);
2180 }
2181
2182 /* Resume the inferior. SIG is the signal to give the inferior
2183 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2184 call 'resume', which handles exceptions. */
2185
2186 static void
2187 resume_1 (enum gdb_signal sig)
2188 {
2189 struct regcache *regcache = get_current_regcache ();
2190 struct gdbarch *gdbarch = regcache->arch ();
2191 struct thread_info *tp = inferior_thread ();
2192 const address_space *aspace = regcache->aspace ();
2193 ptid_t resume_ptid;
2194 /* This represents the user's step vs continue request. When
2195 deciding whether "set scheduler-locking step" applies, it's the
2196 user's intention that counts. */
2197 const int user_step = tp->control.stepping_command;
2198 /* This represents what we'll actually request the target to do.
2199 This can decay from a step to a continue, if e.g., we need to
2200 implement single-stepping with breakpoints (software
2201 single-step). */
2202 bool step;
2203
2204 gdb_assert (!tp->stop_requested);
2205 gdb_assert (!thread_is_in_step_over_chain (tp));
2206
2207 if (tp->suspend.waitstatus_pending_p)
2208 {
2209 infrun_debug_printf
2210 ("thread %s has pending wait "
2211 "status %s (currently_stepping=%d).",
2212 target_pid_to_str (tp->ptid).c_str (),
2213 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2214 currently_stepping (tp));
2215
2216 tp->inf->process_target ()->threads_executing = true;
2217 tp->resumed = true;
2218
2219 /* FIXME: What should we do if we are supposed to resume this
2220 thread with a signal? Maybe we should maintain a queue of
2221 pending signals to deliver. */
2222 if (sig != GDB_SIGNAL_0)
2223 {
2224 warning (_("Couldn't deliver signal %s to %s."),
2225 gdb_signal_to_name (sig),
2226 target_pid_to_str (tp->ptid).c_str ());
2227 }
2228
2229 tp->suspend.stop_signal = GDB_SIGNAL_0;
2230
2231 if (target_can_async_p ())
2232 {
2233 target_async (1);
2234 /* Tell the event loop we have an event to process. */
2235 mark_async_event_handler (infrun_async_inferior_event_token);
2236 }
2237 return;
2238 }
2239
2240 tp->stepped_breakpoint = 0;
2241
2242 /* Depends on stepped_breakpoint. */
2243 step = currently_stepping (tp);
2244
2245 if (current_inferior ()->waiting_for_vfork_done)
2246 {
2247 /* Don't try to single-step a vfork parent that is waiting for
2248 the child to get out of the shared memory region (by exec'ing
2249 or exiting). This is particularly important on software
2250 single-step archs, as the child process would trip on the
2251 software single step breakpoint inserted for the parent
2252 process. Since the parent will not actually execute any
2253 instruction until the child is out of the shared region (such
2254 are vfork's semantics), it is safe to simply continue it.
2255 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2256 the parent, and tell it to `keep_going', which automatically
2257 re-sets it stepping. */
2258 infrun_debug_printf ("resume : clear step");
2259 step = false;
2260 }
2261
2262 CORE_ADDR pc = regcache_read_pc (regcache);
2263
2264 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2265 "current thread [%s] at %s",
2266 step, gdb_signal_to_symbol_string (sig),
2267 tp->control.trap_expected,
2268 target_pid_to_str (inferior_ptid).c_str (),
2269 paddress (gdbarch, pc));
2270
2271 /* Normally, by the time we reach `resume', the breakpoints are either
2272 removed or inserted, as appropriate. The exception is if we're sitting
2273 at a permanent breakpoint; we need to step over it, but permanent
2274 breakpoints can't be removed. So we have to test for it here. */
2275 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2276 {
2277 if (sig != GDB_SIGNAL_0)
2278 {
2279 /* We have a signal to pass to the inferior. The resume
2280 may, or may not take us to the signal handler. If this
2281 is a step, we'll need to stop in the signal handler, if
2282 there's one, (if the target supports stepping into
2283 handlers), or in the next mainline instruction, if
2284 there's no handler. If this is a continue, we need to be
2285 sure to run the handler with all breakpoints inserted.
2286 In all cases, set a breakpoint at the current address
2287 (where the handler returns to), and once that breakpoint
2288 is hit, resume skipping the permanent breakpoint. If
2289 that breakpoint isn't hit, then we've stepped into the
2290 signal handler (or hit some other event). We'll delete
2291 the step-resume breakpoint then. */
2292
2293 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2294 "deliver signal first");
2295
2296 clear_step_over_info ();
2297 tp->control.trap_expected = 0;
2298
2299 if (tp->control.step_resume_breakpoint == NULL)
2300 {
2301 /* Set a "high-priority" step-resume, as we don't want
2302 user breakpoints at PC to trigger (again) when this
2303 hits. */
2304 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2305 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2306
2307 tp->step_after_step_resume_breakpoint = step;
2308 }
2309
2310 insert_breakpoints ();
2311 }
2312 else
2313 {
2314 /* There's no signal to pass, we can go ahead and skip the
2315 permanent breakpoint manually. */
2316 infrun_debug_printf ("skipping permanent breakpoint");
2317 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2318 /* Update pc to reflect the new address from which we will
2319 execute instructions. */
2320 pc = regcache_read_pc (regcache);
2321
2322 if (step)
2323 {
2324 /* We've already advanced the PC, so the stepping part
2325 is done. Now we need to arrange for a trap to be
2326 reported to handle_inferior_event. Set a breakpoint
2327 at the current PC, and run to it. Don't update
2328 prev_pc, because if we end in
2329 switch_back_to_stepped_thread, we want the "expected
2330 thread advanced also" branch to be taken. IOW, we
2331 don't want this thread to step further from PC
2332 (overstep). */
2333 gdb_assert (!step_over_info_valid_p ());
2334 insert_single_step_breakpoint (gdbarch, aspace, pc);
2335 insert_breakpoints ();
2336
2337 resume_ptid = internal_resume_ptid (user_step);
2338 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2339 tp->resumed = true;
2340 return;
2341 }
2342 }
2343 }
2344
2345 /* If we have a breakpoint to step over, make sure to do a single
2346 step only. Same if we have software watchpoints. */
2347 if (tp->control.trap_expected || bpstat_should_step ())
2348 tp->control.may_range_step = 0;
2349
2350 /* If displaced stepping is enabled, step over breakpoints by executing a
2351 copy of the instruction at a different address.
2352
2353 We can't use displaced stepping when we have a signal to deliver;
2354 the comments for displaced_step_prepare explain why. The
2355 comments in the handle_inferior event for dealing with 'random
2356 signals' explain what we do instead.
2357
2358 We can't use displaced stepping when we are waiting for vfork_done
2359 event, displaced stepping breaks the vfork child similarly as single
2360 step software breakpoint. */
2361 if (tp->control.trap_expected
2362 && use_displaced_stepping (tp)
2363 && !step_over_info_valid_p ()
2364 && sig == GDB_SIGNAL_0
2365 && !current_inferior ()->waiting_for_vfork_done)
2366 {
2367 displaced_step_prepare_status prepare_status
2368 = displaced_step_prepare (tp);
2369
2370 if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_UNAVAILABLE)
2371 {
2372 infrun_debug_printf ("Got placed in step-over queue");
2373
2374 tp->control.trap_expected = 0;
2375 return;
2376 }
2377 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_CANT)
2378 {
2379 /* Fallback to stepping over the breakpoint in-line. */
2380
2381 if (target_is_non_stop_p ())
2382 stop_all_threads ();
2383
2384 set_step_over_info (regcache->aspace (),
2385 regcache_read_pc (regcache), 0, tp->global_num);
2386
2387 step = maybe_software_singlestep (gdbarch, pc);
2388
2389 insert_breakpoints ();
2390 }
2391 else if (prepare_status == DISPLACED_STEP_PREPARE_STATUS_OK)
2392 {
2393 /* Update pc to reflect the new address from which we will
2394 execute instructions due to displaced stepping. */
2395 pc = regcache_read_pc (get_thread_regcache (tp));
2396
2397 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2398 }
2399 else
2400 gdb_assert_not_reached (_("Invalid displaced_step_prepare_status "
2401 "value."));
2402 }
2403
2404 /* Do we need to do it the hard way, w/temp breakpoints? */
2405 else if (step)
2406 step = maybe_software_singlestep (gdbarch, pc);
2407
2408 /* Currently, our software single-step implementation leads to different
2409 results than hardware single-stepping in one situation: when stepping
2410 into delivering a signal which has an associated signal handler,
2411 hardware single-step will stop at the first instruction of the handler,
2412 while software single-step will simply skip execution of the handler.
2413
2414 For now, this difference in behavior is accepted since there is no
2415 easy way to actually implement single-stepping into a signal handler
2416 without kernel support.
2417
2418 However, there is one scenario where this difference leads to follow-on
2419 problems: if we're stepping off a breakpoint by removing all breakpoints
2420 and then single-stepping. In this case, the software single-step
2421 behavior means that even if there is a *breakpoint* in the signal
2422 handler, GDB still would not stop.
2423
2424 Fortunately, we can at least fix this particular issue. We detect
2425 here the case where we are about to deliver a signal while software
2426 single-stepping with breakpoints removed. In this situation, we
2427 revert the decisions to remove all breakpoints and insert single-
2428 step breakpoints, and instead we install a step-resume breakpoint
2429 at the current address, deliver the signal without stepping, and
2430 once we arrive back at the step-resume breakpoint, actually step
2431 over the breakpoint we originally wanted to step over. */
2432 if (thread_has_single_step_breakpoints_set (tp)
2433 && sig != GDB_SIGNAL_0
2434 && step_over_info_valid_p ())
2435 {
2436 /* If we have nested signals or a pending signal is delivered
2437 immediately after a handler returns, might already have
2438 a step-resume breakpoint set on the earlier handler. We cannot
2439 set another step-resume breakpoint; just continue on until the
2440 original breakpoint is hit. */
2441 if (tp->control.step_resume_breakpoint == NULL)
2442 {
2443 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2444 tp->step_after_step_resume_breakpoint = 1;
2445 }
2446
2447 delete_single_step_breakpoints (tp);
2448
2449 clear_step_over_info ();
2450 tp->control.trap_expected = 0;
2451
2452 insert_breakpoints ();
2453 }
2454
2455 /* If STEP is set, it's a request to use hardware stepping
2456 facilities. But in that case, we should never
2457 use singlestep breakpoint. */
2458 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2459
2460 /* Decide the set of threads to ask the target to resume. */
2461 if (tp->control.trap_expected)
2462 {
2463 /* We're allowing a thread to run past a breakpoint it has
2464 hit, either by single-stepping the thread with the breakpoint
2465 removed, or by displaced stepping, with the breakpoint inserted.
2466 In the former case, we need to single-step only this thread,
2467 and keep others stopped, as they can miss this breakpoint if
2468 allowed to run. That's not really a problem for displaced
2469 stepping, but, we still keep other threads stopped, in case
2470 another thread is also stopped for a breakpoint waiting for
2471 its turn in the displaced stepping queue. */
2472 resume_ptid = inferior_ptid;
2473 }
2474 else
2475 resume_ptid = internal_resume_ptid (user_step);
2476
2477 if (execution_direction != EXEC_REVERSE
2478 && step && breakpoint_inserted_here_p (aspace, pc))
2479 {
2480 /* There are two cases where we currently need to step a
2481 breakpoint instruction when we have a signal to deliver:
2482
2483 - See handle_signal_stop where we handle random signals that
2484 could take out us out of the stepping range. Normally, in
2485 that case we end up continuing (instead of stepping) over the
2486 signal handler with a breakpoint at PC, but there are cases
2487 where we should _always_ single-step, even if we have a
2488 step-resume breakpoint, like when a software watchpoint is
2489 set. Assuming single-stepping and delivering a signal at the
2490 same time would takes us to the signal handler, then we could
2491 have removed the breakpoint at PC to step over it. However,
2492 some hardware step targets (like e.g., Mac OS) can't step
2493 into signal handlers, and for those, we need to leave the
2494 breakpoint at PC inserted, as otherwise if the handler
2495 recurses and executes PC again, it'll miss the breakpoint.
2496 So we leave the breakpoint inserted anyway, but we need to
2497 record that we tried to step a breakpoint instruction, so
2498 that adjust_pc_after_break doesn't end up confused.
2499
2500 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2501 in one thread after another thread that was stepping had been
2502 momentarily paused for a step-over. When we re-resume the
2503 stepping thread, it may be resumed from that address with a
2504 breakpoint that hasn't trapped yet. Seen with
2505 gdb.threads/non-stop-fair-events.exp, on targets that don't
2506 do displaced stepping. */
2507
2508 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2509 target_pid_to_str (tp->ptid).c_str ());
2510
2511 tp->stepped_breakpoint = 1;
2512
2513 /* Most targets can step a breakpoint instruction, thus
2514 executing it normally. But if this one cannot, just
2515 continue and we will hit it anyway. */
2516 if (gdbarch_cannot_step_breakpoint (gdbarch))
2517 step = false;
2518 }
2519
2520 if (debug_displaced
2521 && tp->control.trap_expected
2522 && use_displaced_stepping (tp)
2523 && !step_over_info_valid_p ())
2524 {
2525 struct regcache *resume_regcache = get_thread_regcache (tp);
2526 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2527 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2528 gdb_byte buf[4];
2529
2530 read_memory (actual_pc, buf, sizeof (buf));
2531 displaced_debug_printf ("run %s: %s",
2532 paddress (resume_gdbarch, actual_pc),
2533 displaced_step_dump_bytes
2534 (buf, sizeof (buf)).c_str ());
2535 }
2536
2537 if (tp->control.may_range_step)
2538 {
2539 /* If we're resuming a thread with the PC out of the step
2540 range, then we're doing some nested/finer run control
2541 operation, like stepping the thread out of the dynamic
2542 linker or the displaced stepping scratch pad. We
2543 shouldn't have allowed a range step then. */
2544 gdb_assert (pc_in_thread_step_range (pc, tp));
2545 }
2546
2547 do_target_resume (resume_ptid, step, sig);
2548 tp->resumed = true;
2549 }
2550
2551 /* Resume the inferior. SIG is the signal to give the inferior
2552 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2553 rolls back state on error. */
2554
2555 static void
2556 resume (gdb_signal sig)
2557 {
2558 try
2559 {
2560 resume_1 (sig);
2561 }
2562 catch (const gdb_exception &ex)
2563 {
2564 /* If resuming is being aborted for any reason, delete any
2565 single-step breakpoint resume_1 may have created, to avoid
2566 confusing the following resumption, and to avoid leaving
2567 single-step breakpoints perturbing other threads, in case
2568 we're running in non-stop mode. */
2569 if (inferior_ptid != null_ptid)
2570 delete_single_step_breakpoints (inferior_thread ());
2571 throw;
2572 }
2573 }
2574
2575 \f
2576 /* Proceeding. */
2577
2578 /* See infrun.h. */
2579
2580 /* Counter that tracks number of user visible stops. This can be used
2581 to tell whether a command has proceeded the inferior past the
2582 current location. This allows e.g., inferior function calls in
2583 breakpoint commands to not interrupt the command list. When the
2584 call finishes successfully, the inferior is standing at the same
2585 breakpoint as if nothing happened (and so we don't call
2586 normal_stop). */
2587 static ULONGEST current_stop_id;
2588
2589 /* See infrun.h. */
2590
2591 ULONGEST
2592 get_stop_id (void)
2593 {
2594 return current_stop_id;
2595 }
2596
2597 /* Called when we report a user visible stop. */
2598
2599 static void
2600 new_stop_id (void)
2601 {
2602 current_stop_id++;
2603 }
2604
2605 /* Clear out all variables saying what to do when inferior is continued.
2606 First do this, then set the ones you want, then call `proceed'. */
2607
2608 static void
2609 clear_proceed_status_thread (struct thread_info *tp)
2610 {
2611 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2612
2613 /* If we're starting a new sequence, then the previous finished
2614 single-step is no longer relevant. */
2615 if (tp->suspend.waitstatus_pending_p)
2616 {
2617 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2618 {
2619 infrun_debug_printf ("pending event of %s was a finished step. "
2620 "Discarding.",
2621 target_pid_to_str (tp->ptid).c_str ());
2622
2623 tp->suspend.waitstatus_pending_p = 0;
2624 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2625 }
2626 else
2627 {
2628 infrun_debug_printf
2629 ("thread %s has pending wait status %s (currently_stepping=%d).",
2630 target_pid_to_str (tp->ptid).c_str (),
2631 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2632 currently_stepping (tp));
2633 }
2634 }
2635
2636 /* If this signal should not be seen by program, give it zero.
2637 Used for debugging signals. */
2638 if (!signal_pass_state (tp->suspend.stop_signal))
2639 tp->suspend.stop_signal = GDB_SIGNAL_0;
2640
2641 delete tp->thread_fsm;
2642 tp->thread_fsm = NULL;
2643
2644 tp->control.trap_expected = 0;
2645 tp->control.step_range_start = 0;
2646 tp->control.step_range_end = 0;
2647 tp->control.may_range_step = 0;
2648 tp->control.step_frame_id = null_frame_id;
2649 tp->control.step_stack_frame_id = null_frame_id;
2650 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2651 tp->control.step_start_function = NULL;
2652 tp->stop_requested = 0;
2653
2654 tp->control.stop_step = 0;
2655
2656 tp->control.proceed_to_finish = 0;
2657
2658 tp->control.stepping_command = 0;
2659
2660 /* Discard any remaining commands or status from previous stop. */
2661 bpstat_clear (&tp->control.stop_bpstat);
2662 }
2663
2664 void
2665 clear_proceed_status (int step)
2666 {
2667 /* With scheduler-locking replay, stop replaying other threads if we're
2668 not replaying the user-visible resume ptid.
2669
2670 This is a convenience feature to not require the user to explicitly
2671 stop replaying the other threads. We're assuming that the user's
2672 intent is to resume tracing the recorded process. */
2673 if (!non_stop && scheduler_mode == schedlock_replay
2674 && target_record_is_replaying (minus_one_ptid)
2675 && !target_record_will_replay (user_visible_resume_ptid (step),
2676 execution_direction))
2677 target_record_stop_replaying ();
2678
2679 if (!non_stop && inferior_ptid != null_ptid)
2680 {
2681 ptid_t resume_ptid = user_visible_resume_ptid (step);
2682 process_stratum_target *resume_target
2683 = user_visible_resume_target (resume_ptid);
2684
2685 /* In all-stop mode, delete the per-thread status of all threads
2686 we're about to resume, implicitly and explicitly. */
2687 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2688 clear_proceed_status_thread (tp);
2689 }
2690
2691 if (inferior_ptid != null_ptid)
2692 {
2693 struct inferior *inferior;
2694
2695 if (non_stop)
2696 {
2697 /* If in non-stop mode, only delete the per-thread status of
2698 the current thread. */
2699 clear_proceed_status_thread (inferior_thread ());
2700 }
2701
2702 inferior = current_inferior ();
2703 inferior->control.stop_soon = NO_STOP_QUIETLY;
2704 }
2705
2706 gdb::observers::about_to_proceed.notify ();
2707 }
2708
2709 /* Returns true if TP is still stopped at a breakpoint that needs
2710 stepping-over in order to make progress. If the breakpoint is gone
2711 meanwhile, we can skip the whole step-over dance. */
2712
2713 static bool
2714 thread_still_needs_step_over_bp (struct thread_info *tp)
2715 {
2716 if (tp->stepping_over_breakpoint)
2717 {
2718 struct regcache *regcache = get_thread_regcache (tp);
2719
2720 if (breakpoint_here_p (regcache->aspace (),
2721 regcache_read_pc (regcache))
2722 == ordinary_breakpoint_here)
2723 return true;
2724
2725 tp->stepping_over_breakpoint = 0;
2726 }
2727
2728 return false;
2729 }
2730
2731 /* Check whether thread TP still needs to start a step-over in order
2732 to make progress when resumed. Returns an bitwise or of enum
2733 step_over_what bits, indicating what needs to be stepped over. */
2734
2735 static step_over_what
2736 thread_still_needs_step_over (struct thread_info *tp)
2737 {
2738 step_over_what what = 0;
2739
2740 if (thread_still_needs_step_over_bp (tp))
2741 what |= STEP_OVER_BREAKPOINT;
2742
2743 if (tp->stepping_over_watchpoint
2744 && !target_have_steppable_watchpoint ())
2745 what |= STEP_OVER_WATCHPOINT;
2746
2747 return what;
2748 }
2749
2750 /* Returns true if scheduler locking applies. STEP indicates whether
2751 we're about to do a step/next-like command to a thread. */
2752
2753 static bool
2754 schedlock_applies (struct thread_info *tp)
2755 {
2756 return (scheduler_mode == schedlock_on
2757 || (scheduler_mode == schedlock_step
2758 && tp->control.stepping_command)
2759 || (scheduler_mode == schedlock_replay
2760 && target_record_will_replay (minus_one_ptid,
2761 execution_direction)));
2762 }
2763
2764 /* Set process_stratum_target::COMMIT_RESUMED_STATE in all target
2765 stacks that have threads executing and don't have threads with
2766 pending events. */
2767
2768 static void
2769 maybe_set_commit_resumed_all_targets ()
2770 {
2771 scoped_restore_current_thread restore_thread;
2772
2773 for (inferior *inf : all_non_exited_inferiors ())
2774 {
2775 process_stratum_target *proc_target = inf->process_target ();
2776
2777 if (proc_target->commit_resumed_state)
2778 {
2779 /* We already set this in a previous iteration, via another
2780 inferior sharing the process_stratum target. */
2781 continue;
2782 }
2783
2784 /* If the target has no resumed threads, it would be useless to
2785 ask it to commit the resumed threads. */
2786 if (!proc_target->threads_executing)
2787 {
2788 infrun_debug_printf ("not requesting commit-resumed for target "
2789 "%s, no resumed threads",
2790 proc_target->shortname ());
2791 continue;
2792 }
2793
2794 /* As an optimization, if a thread from this target has some
2795 status to report, handle it before requiring the target to
2796 commit its resumed threads: handling the status might lead to
2797 resuming more threads. */
2798 bool has_thread_with_pending_status = false;
2799 for (thread_info *thread : all_non_exited_threads (proc_target))
2800 if (thread->resumed && thread->suspend.waitstatus_pending_p)
2801 {
2802 has_thread_with_pending_status = true;
2803 break;
2804 }
2805
2806 if (has_thread_with_pending_status)
2807 {
2808 infrun_debug_printf ("not requesting commit-resumed for target %s, a"
2809 " thread has a pending waitstatus",
2810 proc_target->shortname ());
2811 continue;
2812 }
2813
2814 switch_to_inferior_no_thread (inf);
2815
2816 if (target_has_pending_events ())
2817 {
2818 infrun_debug_printf ("not requesting commit-resumed for target %s, "
2819 "target has pending events",
2820 proc_target->shortname ());
2821 continue;
2822 }
2823
2824 infrun_debug_printf ("enabling commit-resumed for target %s",
2825 proc_target->shortname ());
2826
2827 proc_target->commit_resumed_state = true;
2828 }
2829 }
2830
2831 /* See infrun.h. */
2832
2833 void
2834 maybe_call_commit_resumed_all_targets ()
2835 {
2836 scoped_restore_current_thread restore_thread;
2837
2838 for (inferior *inf : all_non_exited_inferiors ())
2839 {
2840 process_stratum_target *proc_target = inf->process_target ();
2841
2842 if (!proc_target->commit_resumed_state)
2843 continue;
2844
2845 switch_to_inferior_no_thread (inf);
2846
2847 infrun_debug_printf ("calling commit_resumed for target %s",
2848 proc_target->shortname());
2849
2850 target_commit_resumed ();
2851 }
2852 }
2853
2854 /* To track nesting of scoped_disable_commit_resumed objects, ensuring
2855 that only the outermost one attempts to re-enable
2856 commit-resumed. */
2857 static bool enable_commit_resumed = true;
2858
2859 /* See infrun.h. */
2860
2861 scoped_disable_commit_resumed::scoped_disable_commit_resumed
2862 (const char *reason)
2863 : m_reason (reason),
2864 m_prev_enable_commit_resumed (enable_commit_resumed)
2865 {
2866 infrun_debug_printf ("reason=%s", m_reason);
2867
2868 enable_commit_resumed = false;
2869
2870 for (inferior *inf : all_non_exited_inferiors ())
2871 {
2872 process_stratum_target *proc_target = inf->process_target ();
2873
2874 if (m_prev_enable_commit_resumed)
2875 {
2876 /* This is the outermost instance: force all
2877 COMMIT_RESUMED_STATE to false. */
2878 proc_target->commit_resumed_state = false;
2879 }
2880 else
2881 {
2882 /* This is not the outermost instance, we expect
2883 COMMIT_RESUMED_STATE to have been cleared by the
2884 outermost instance. */
2885 gdb_assert (!proc_target->commit_resumed_state);
2886 }
2887 }
2888 }
2889
2890 /* See infrun.h. */
2891
2892 void
2893 scoped_disable_commit_resumed::reset ()
2894 {
2895 if (m_reset)
2896 return;
2897 m_reset = true;
2898
2899 infrun_debug_printf ("reason=%s", m_reason);
2900
2901 gdb_assert (!enable_commit_resumed);
2902
2903 enable_commit_resumed = m_prev_enable_commit_resumed;
2904
2905 if (m_prev_enable_commit_resumed)
2906 {
2907 /* This is the outermost instance, re-enable
2908 COMMIT_RESUMED_STATE on the targets where it's possible. */
2909 maybe_set_commit_resumed_all_targets ();
2910 }
2911 else
2912 {
2913 /* This is not the outermost instance, we expect
2914 COMMIT_RESUMED_STATE to still be false. */
2915 for (inferior *inf : all_non_exited_inferiors ())
2916 {
2917 process_stratum_target *proc_target = inf->process_target ();
2918 gdb_assert (!proc_target->commit_resumed_state);
2919 }
2920 }
2921 }
2922
2923 /* See infrun.h. */
2924
2925 scoped_disable_commit_resumed::~scoped_disable_commit_resumed ()
2926 {
2927 reset ();
2928 }
2929
2930 /* See infrun.h. */
2931
2932 void
2933 scoped_disable_commit_resumed::reset_and_commit ()
2934 {
2935 reset ();
2936 maybe_call_commit_resumed_all_targets ();
2937 }
2938
2939 /* See infrun.h. */
2940
2941 scoped_enable_commit_resumed::scoped_enable_commit_resumed
2942 (const char *reason)
2943 : m_reason (reason),
2944 m_prev_enable_commit_resumed (enable_commit_resumed)
2945 {
2946 infrun_debug_printf ("reason=%s", m_reason);
2947
2948 if (!enable_commit_resumed)
2949 {
2950 enable_commit_resumed = true;
2951
2952 /* Re-enable COMMIT_RESUMED_STATE on the targets where it's
2953 possible. */
2954 maybe_set_commit_resumed_all_targets ();
2955
2956 maybe_call_commit_resumed_all_targets ();
2957 }
2958 }
2959
2960 /* See infrun.h. */
2961
2962 scoped_enable_commit_resumed::~scoped_enable_commit_resumed ()
2963 {
2964 infrun_debug_printf ("reason=%s", m_reason);
2965
2966 gdb_assert (enable_commit_resumed);
2967
2968 enable_commit_resumed = m_prev_enable_commit_resumed;
2969
2970 if (!enable_commit_resumed)
2971 {
2972 /* Force all COMMIT_RESUMED_STATE back to false. */
2973 for (inferior *inf : all_non_exited_inferiors ())
2974 {
2975 process_stratum_target *proc_target = inf->process_target ();
2976 proc_target->commit_resumed_state = false;
2977 }
2978 }
2979 }
2980
2981 /* Check that all the targets we're about to resume are in non-stop
2982 mode. Ideally, we'd only care whether all targets support
2983 target-async, but we're not there yet. E.g., stop_all_threads
2984 doesn't know how to handle all-stop targets. Also, the remote
2985 protocol in all-stop mode is synchronous, irrespective of
2986 target-async, which means that things like a breakpoint re-set
2987 triggered by one target would try to read memory from all targets
2988 and fail. */
2989
2990 static void
2991 check_multi_target_resumption (process_stratum_target *resume_target)
2992 {
2993 if (!non_stop && resume_target == nullptr)
2994 {
2995 scoped_restore_current_thread restore_thread;
2996
2997 /* This is used to track whether we're resuming more than one
2998 target. */
2999 process_stratum_target *first_connection = nullptr;
3000
3001 /* The first inferior we see with a target that does not work in
3002 always-non-stop mode. */
3003 inferior *first_not_non_stop = nullptr;
3004
3005 for (inferior *inf : all_non_exited_inferiors ())
3006 {
3007 switch_to_inferior_no_thread (inf);
3008
3009 if (!target_has_execution ())
3010 continue;
3011
3012 process_stratum_target *proc_target
3013 = current_inferior ()->process_target();
3014
3015 if (!target_is_non_stop_p ())
3016 first_not_non_stop = inf;
3017
3018 if (first_connection == nullptr)
3019 first_connection = proc_target;
3020 else if (first_connection != proc_target
3021 && first_not_non_stop != nullptr)
3022 {
3023 switch_to_inferior_no_thread (first_not_non_stop);
3024
3025 proc_target = current_inferior ()->process_target();
3026
3027 error (_("Connection %d (%s) does not support "
3028 "multi-target resumption."),
3029 proc_target->connection_number,
3030 make_target_connection_string (proc_target).c_str ());
3031 }
3032 }
3033 }
3034 }
3035
3036 /* Basic routine for continuing the program in various fashions.
3037
3038 ADDR is the address to resume at, or -1 for resume where stopped.
3039 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
3040 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
3041
3042 You should call clear_proceed_status before calling proceed. */
3043
3044 void
3045 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
3046 {
3047 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
3048
3049 struct regcache *regcache;
3050 struct gdbarch *gdbarch;
3051 CORE_ADDR pc;
3052 struct execution_control_state ecss;
3053 struct execution_control_state *ecs = &ecss;
3054 bool started;
3055
3056 /* If we're stopped at a fork/vfork, follow the branch set by the
3057 "set follow-fork-mode" command; otherwise, we'll just proceed
3058 resuming the current thread. */
3059 if (!follow_fork ())
3060 {
3061 /* The target for some reason decided not to resume. */
3062 normal_stop ();
3063 if (target_can_async_p ())
3064 inferior_event_handler (INF_EXEC_COMPLETE);
3065 return;
3066 }
3067
3068 /* We'll update this if & when we switch to a new thread. */
3069 previous_inferior_ptid = inferior_ptid;
3070
3071 regcache = get_current_regcache ();
3072 gdbarch = regcache->arch ();
3073 const address_space *aspace = regcache->aspace ();
3074
3075 pc = regcache_read_pc_protected (regcache);
3076
3077 thread_info *cur_thr = inferior_thread ();
3078
3079 /* Fill in with reasonable starting values. */
3080 init_thread_stepping_state (cur_thr);
3081
3082 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
3083
3084 ptid_t resume_ptid
3085 = user_visible_resume_ptid (cur_thr->control.stepping_command);
3086 process_stratum_target *resume_target
3087 = user_visible_resume_target (resume_ptid);
3088
3089 check_multi_target_resumption (resume_target);
3090
3091 if (addr == (CORE_ADDR) -1)
3092 {
3093 if (pc == cur_thr->suspend.stop_pc
3094 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
3095 && execution_direction != EXEC_REVERSE)
3096 /* There is a breakpoint at the address we will resume at,
3097 step one instruction before inserting breakpoints so that
3098 we do not stop right away (and report a second hit at this
3099 breakpoint).
3100
3101 Note, we don't do this in reverse, because we won't
3102 actually be executing the breakpoint insn anyway.
3103 We'll be (un-)executing the previous instruction. */
3104 cur_thr->stepping_over_breakpoint = 1;
3105 else if (gdbarch_single_step_through_delay_p (gdbarch)
3106 && gdbarch_single_step_through_delay (gdbarch,
3107 get_current_frame ()))
3108 /* We stepped onto an instruction that needs to be stepped
3109 again before re-inserting the breakpoint, do so. */
3110 cur_thr->stepping_over_breakpoint = 1;
3111 }
3112 else
3113 {
3114 regcache_write_pc (regcache, addr);
3115 }
3116
3117 if (siggnal != GDB_SIGNAL_DEFAULT)
3118 cur_thr->suspend.stop_signal = siggnal;
3119
3120 /* If an exception is thrown from this point on, make sure to
3121 propagate GDB's knowledge of the executing state to the
3122 frontend/user running state. */
3123 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
3124
3125 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
3126 threads (e.g., we might need to set threads stepping over
3127 breakpoints first), from the user/frontend's point of view, all
3128 threads in RESUME_PTID are now running. Unless we're calling an
3129 inferior function, as in that case we pretend the inferior
3130 doesn't run at all. */
3131 if (!cur_thr->control.in_infcall)
3132 set_running (resume_target, resume_ptid, true);
3133
3134 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3135 gdb_signal_to_symbol_string (siggnal));
3136
3137 annotate_starting ();
3138
3139 /* Make sure that output from GDB appears before output from the
3140 inferior. */
3141 gdb_flush (gdb_stdout);
3142
3143 /* Since we've marked the inferior running, give it the terminal. A
3144 QUIT/Ctrl-C from here on is forwarded to the target (which can
3145 still detect attempts to unblock a stuck connection with repeated
3146 Ctrl-C from within target_pass_ctrlc). */
3147 target_terminal::inferior ();
3148
3149 /* In a multi-threaded task we may select another thread and
3150 then continue or step.
3151
3152 But if a thread that we're resuming had stopped at a breakpoint,
3153 it will immediately cause another breakpoint stop without any
3154 execution (i.e. it will report a breakpoint hit incorrectly). So
3155 we must step over it first.
3156
3157 Look for threads other than the current (TP) that reported a
3158 breakpoint hit and haven't been resumed yet since. */
3159
3160 /* If scheduler locking applies, we can avoid iterating over all
3161 threads. */
3162 if (!non_stop && !schedlock_applies (cur_thr))
3163 {
3164 for (thread_info *tp : all_non_exited_threads (resume_target,
3165 resume_ptid))
3166 {
3167 switch_to_thread_no_regs (tp);
3168
3169 /* Ignore the current thread here. It's handled
3170 afterwards. */
3171 if (tp == cur_thr)
3172 continue;
3173
3174 if (!thread_still_needs_step_over (tp))
3175 continue;
3176
3177 gdb_assert (!thread_is_in_step_over_chain (tp));
3178
3179 infrun_debug_printf ("need to step-over [%s] first",
3180 target_pid_to_str (tp->ptid).c_str ());
3181
3182 global_thread_step_over_chain_enqueue (tp);
3183 }
3184
3185 switch_to_thread (cur_thr);
3186 }
3187
3188 /* Enqueue the current thread last, so that we move all other
3189 threads over their breakpoints first. */
3190 if (cur_thr->stepping_over_breakpoint)
3191 global_thread_step_over_chain_enqueue (cur_thr);
3192
3193 /* If the thread isn't started, we'll still need to set its prev_pc,
3194 so that switch_back_to_stepped_thread knows the thread hasn't
3195 advanced. Must do this before resuming any thread, as in
3196 all-stop/remote, once we resume we can't send any other packet
3197 until the target stops again. */
3198 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3199
3200 {
3201 scoped_disable_commit_resumed disable_commit_resumed ("proceeding");
3202
3203 started = start_step_over ();
3204
3205 if (step_over_info_valid_p ())
3206 {
3207 /* Either this thread started a new in-line step over, or some
3208 other thread was already doing one. In either case, don't
3209 resume anything else until the step-over is finished. */
3210 }
3211 else if (started && !target_is_non_stop_p ())
3212 {
3213 /* A new displaced stepping sequence was started. In all-stop,
3214 we can't talk to the target anymore until it next stops. */
3215 }
3216 else if (!non_stop && target_is_non_stop_p ())
3217 {
3218 INFRUN_SCOPED_DEBUG_START_END
3219 ("resuming threads, all-stop-on-top-of-non-stop");
3220
3221 /* In all-stop, but the target is always in non-stop mode.
3222 Start all other threads that are implicitly resumed too. */
3223 for (thread_info *tp : all_non_exited_threads (resume_target,
3224 resume_ptid))
3225 {
3226 switch_to_thread_no_regs (tp);
3227
3228 if (!tp->inf->has_execution ())
3229 {
3230 infrun_debug_printf ("[%s] target has no execution",
3231 target_pid_to_str (tp->ptid).c_str ());
3232 continue;
3233 }
3234
3235 if (tp->resumed)
3236 {
3237 infrun_debug_printf ("[%s] resumed",
3238 target_pid_to_str (tp->ptid).c_str ());
3239 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3240 continue;
3241 }
3242
3243 if (thread_is_in_step_over_chain (tp))
3244 {
3245 infrun_debug_printf ("[%s] needs step-over",
3246 target_pid_to_str (tp->ptid).c_str ());
3247 continue;
3248 }
3249
3250 infrun_debug_printf ("resuming %s",
3251 target_pid_to_str (tp->ptid).c_str ());
3252
3253 reset_ecs (ecs, tp);
3254 switch_to_thread (tp);
3255 keep_going_pass_signal (ecs);
3256 if (!ecs->wait_some_more)
3257 error (_("Command aborted."));
3258 }
3259 }
3260 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3261 {
3262 /* The thread wasn't started, and isn't queued, run it now. */
3263 reset_ecs (ecs, cur_thr);
3264 switch_to_thread (cur_thr);
3265 keep_going_pass_signal (ecs);
3266 if (!ecs->wait_some_more)
3267 error (_("Command aborted."));
3268 }
3269
3270 disable_commit_resumed.reset_and_commit ();
3271 }
3272
3273 finish_state.release ();
3274
3275 /* If we've switched threads above, switch back to the previously
3276 current thread. We don't want the user to see a different
3277 selected thread. */
3278 switch_to_thread (cur_thr);
3279
3280 /* Tell the event loop to wait for it to stop. If the target
3281 supports asynchronous execution, it'll do this from within
3282 target_resume. */
3283 if (!target_can_async_p ())
3284 mark_async_event_handler (infrun_async_inferior_event_token);
3285 }
3286 \f
3287
3288 /* Start remote-debugging of a machine over a serial link. */
3289
3290 void
3291 start_remote (int from_tty)
3292 {
3293 inferior *inf = current_inferior ();
3294 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3295
3296 /* Always go on waiting for the target, regardless of the mode. */
3297 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3298 indicate to wait_for_inferior that a target should timeout if
3299 nothing is returned (instead of just blocking). Because of this,
3300 targets expecting an immediate response need to, internally, set
3301 things up so that the target_wait() is forced to eventually
3302 timeout. */
3303 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3304 differentiate to its caller what the state of the target is after
3305 the initial open has been performed. Here we're assuming that
3306 the target has stopped. It should be possible to eventually have
3307 target_open() return to the caller an indication that the target
3308 is currently running and GDB state should be set to the same as
3309 for an async run. */
3310 wait_for_inferior (inf);
3311
3312 /* Now that the inferior has stopped, do any bookkeeping like
3313 loading shared libraries. We want to do this before normal_stop,
3314 so that the displayed frame is up to date. */
3315 post_create_inferior (from_tty);
3316
3317 normal_stop ();
3318 }
3319
3320 /* Initialize static vars when a new inferior begins. */
3321
3322 void
3323 init_wait_for_inferior (void)
3324 {
3325 /* These are meaningless until the first time through wait_for_inferior. */
3326
3327 breakpoint_init_inferior (inf_starting);
3328
3329 clear_proceed_status (0);
3330
3331 nullify_last_target_wait_ptid ();
3332
3333 previous_inferior_ptid = inferior_ptid;
3334 }
3335
3336 \f
3337
3338 static void handle_inferior_event (struct execution_control_state *ecs);
3339
3340 static void handle_step_into_function (struct gdbarch *gdbarch,
3341 struct execution_control_state *ecs);
3342 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3343 struct execution_control_state *ecs);
3344 static void handle_signal_stop (struct execution_control_state *ecs);
3345 static void check_exception_resume (struct execution_control_state *,
3346 struct frame_info *);
3347
3348 static void end_stepping_range (struct execution_control_state *ecs);
3349 static void stop_waiting (struct execution_control_state *ecs);
3350 static void keep_going (struct execution_control_state *ecs);
3351 static void process_event_stop_test (struct execution_control_state *ecs);
3352 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3353
3354 /* This function is attached as a "thread_stop_requested" observer.
3355 Cleanup local state that assumed the PTID was to be resumed, and
3356 report the stop to the frontend. */
3357
3358 static void
3359 infrun_thread_stop_requested (ptid_t ptid)
3360 {
3361 process_stratum_target *curr_target = current_inferior ()->process_target ();
3362
3363 /* PTID was requested to stop. If the thread was already stopped,
3364 but the user/frontend doesn't know about that yet (e.g., the
3365 thread had been temporarily paused for some step-over), set up
3366 for reporting the stop now. */
3367 for (thread_info *tp : all_threads (curr_target, ptid))
3368 {
3369 if (tp->state != THREAD_RUNNING)
3370 continue;
3371 if (tp->executing)
3372 continue;
3373
3374 /* Remove matching threads from the step-over queue, so
3375 start_step_over doesn't try to resume them
3376 automatically. */
3377 if (thread_is_in_step_over_chain (tp))
3378 global_thread_step_over_chain_remove (tp);
3379
3380 /* If the thread is stopped, but the user/frontend doesn't
3381 know about that yet, queue a pending event, as if the
3382 thread had just stopped now. Unless the thread already had
3383 a pending event. */
3384 if (!tp->suspend.waitstatus_pending_p)
3385 {
3386 tp->suspend.waitstatus_pending_p = 1;
3387 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3388 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3389 }
3390
3391 /* Clear the inline-frame state, since we're re-processing the
3392 stop. */
3393 clear_inline_frame_state (tp);
3394
3395 /* If this thread was paused because some other thread was
3396 doing an inline-step over, let that finish first. Once
3397 that happens, we'll restart all threads and consume pending
3398 stop events then. */
3399 if (step_over_info_valid_p ())
3400 continue;
3401
3402 /* Otherwise we can process the (new) pending event now. Set
3403 it so this pending event is considered by
3404 do_target_wait. */
3405 tp->resumed = true;
3406 }
3407 }
3408
3409 static void
3410 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3411 {
3412 if (target_last_proc_target == tp->inf->process_target ()
3413 && target_last_wait_ptid == tp->ptid)
3414 nullify_last_target_wait_ptid ();
3415 }
3416
3417 /* Delete the step resume, single-step and longjmp/exception resume
3418 breakpoints of TP. */
3419
3420 static void
3421 delete_thread_infrun_breakpoints (struct thread_info *tp)
3422 {
3423 delete_step_resume_breakpoint (tp);
3424 delete_exception_resume_breakpoint (tp);
3425 delete_single_step_breakpoints (tp);
3426 }
3427
3428 /* If the target still has execution, call FUNC for each thread that
3429 just stopped. In all-stop, that's all the non-exited threads; in
3430 non-stop, that's the current thread, only. */
3431
3432 typedef void (*for_each_just_stopped_thread_callback_func)
3433 (struct thread_info *tp);
3434
3435 static void
3436 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3437 {
3438 if (!target_has_execution () || inferior_ptid == null_ptid)
3439 return;
3440
3441 if (target_is_non_stop_p ())
3442 {
3443 /* If in non-stop mode, only the current thread stopped. */
3444 func (inferior_thread ());
3445 }
3446 else
3447 {
3448 /* In all-stop mode, all threads have stopped. */
3449 for (thread_info *tp : all_non_exited_threads ())
3450 func (tp);
3451 }
3452 }
3453
3454 /* Delete the step resume and longjmp/exception resume breakpoints of
3455 the threads that just stopped. */
3456
3457 static void
3458 delete_just_stopped_threads_infrun_breakpoints (void)
3459 {
3460 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3461 }
3462
3463 /* Delete the single-step breakpoints of the threads that just
3464 stopped. */
3465
3466 static void
3467 delete_just_stopped_threads_single_step_breakpoints (void)
3468 {
3469 for_each_just_stopped_thread (delete_single_step_breakpoints);
3470 }
3471
3472 /* See infrun.h. */
3473
3474 void
3475 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3476 const struct target_waitstatus *ws)
3477 {
3478 infrun_debug_printf ("target_wait (%d.%ld.%ld [%s], status) =",
3479 waiton_ptid.pid (),
3480 waiton_ptid.lwp (),
3481 waiton_ptid.tid (),
3482 target_pid_to_str (waiton_ptid).c_str ());
3483 infrun_debug_printf (" %d.%ld.%ld [%s],",
3484 result_ptid.pid (),
3485 result_ptid.lwp (),
3486 result_ptid.tid (),
3487 target_pid_to_str (result_ptid).c_str ());
3488 infrun_debug_printf (" %s", target_waitstatus_to_string (ws).c_str ());
3489 }
3490
3491 /* Select a thread at random, out of those which are resumed and have
3492 had events. */
3493
3494 static struct thread_info *
3495 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3496 {
3497 int num_events = 0;
3498
3499 auto has_event = [&] (thread_info *tp)
3500 {
3501 return (tp->ptid.matches (waiton_ptid)
3502 && tp->resumed
3503 && tp->suspend.waitstatus_pending_p);
3504 };
3505
3506 /* First see how many events we have. Count only resumed threads
3507 that have an event pending. */
3508 for (thread_info *tp : inf->non_exited_threads ())
3509 if (has_event (tp))
3510 num_events++;
3511
3512 if (num_events == 0)
3513 return NULL;
3514
3515 /* Now randomly pick a thread out of those that have had events. */
3516 int random_selector = (int) ((num_events * (double) rand ())
3517 / (RAND_MAX + 1.0));
3518
3519 if (num_events > 1)
3520 infrun_debug_printf ("Found %d events, selecting #%d",
3521 num_events, random_selector);
3522
3523 /* Select the Nth thread that has had an event. */
3524 for (thread_info *tp : inf->non_exited_threads ())
3525 if (has_event (tp))
3526 if (random_selector-- == 0)
3527 return tp;
3528
3529 gdb_assert_not_reached ("event thread not found");
3530 }
3531
3532 /* Wrapper for target_wait that first checks whether threads have
3533 pending statuses to report before actually asking the target for
3534 more events. INF is the inferior we're using to call target_wait
3535 on. */
3536
3537 static ptid_t
3538 do_target_wait_1 (inferior *inf, ptid_t ptid,
3539 target_waitstatus *status, target_wait_flags options)
3540 {
3541 ptid_t event_ptid;
3542 struct thread_info *tp;
3543
3544 /* We know that we are looking for an event in the target of inferior
3545 INF, but we don't know which thread the event might come from. As
3546 such we want to make sure that INFERIOR_PTID is reset so that none of
3547 the wait code relies on it - doing so is always a mistake. */
3548 switch_to_inferior_no_thread (inf);
3549
3550 /* First check if there is a resumed thread with a wait status
3551 pending. */
3552 if (ptid == minus_one_ptid || ptid.is_pid ())
3553 {
3554 tp = random_pending_event_thread (inf, ptid);
3555 }
3556 else
3557 {
3558 infrun_debug_printf ("Waiting for specific thread %s.",
3559 target_pid_to_str (ptid).c_str ());
3560
3561 /* We have a specific thread to check. */
3562 tp = find_thread_ptid (inf, ptid);
3563 gdb_assert (tp != NULL);
3564 if (!tp->suspend.waitstatus_pending_p)
3565 tp = NULL;
3566 }
3567
3568 if (tp != NULL
3569 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3570 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3571 {
3572 struct regcache *regcache = get_thread_regcache (tp);
3573 struct gdbarch *gdbarch = regcache->arch ();
3574 CORE_ADDR pc;
3575 int discard = 0;
3576
3577 pc = regcache_read_pc (regcache);
3578
3579 if (pc != tp->suspend.stop_pc)
3580 {
3581 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3582 target_pid_to_str (tp->ptid).c_str (),
3583 paddress (gdbarch, tp->suspend.stop_pc),
3584 paddress (gdbarch, pc));
3585 discard = 1;
3586 }
3587 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3588 {
3589 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3590 target_pid_to_str (tp->ptid).c_str (),
3591 paddress (gdbarch, pc));
3592
3593 discard = 1;
3594 }
3595
3596 if (discard)
3597 {
3598 infrun_debug_printf ("pending event of %s cancelled.",
3599 target_pid_to_str (tp->ptid).c_str ());
3600
3601 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3602 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3603 }
3604 }
3605
3606 if (tp != NULL)
3607 {
3608 infrun_debug_printf ("Using pending wait status %s for %s.",
3609 target_waitstatus_to_string
3610 (&tp->suspend.waitstatus).c_str (),
3611 target_pid_to_str (tp->ptid).c_str ());
3612
3613 /* Now that we've selected our final event LWP, un-adjust its PC
3614 if it was a software breakpoint (and the target doesn't
3615 always adjust the PC itself). */
3616 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3617 && !target_supports_stopped_by_sw_breakpoint ())
3618 {
3619 struct regcache *regcache;
3620 struct gdbarch *gdbarch;
3621 int decr_pc;
3622
3623 regcache = get_thread_regcache (tp);
3624 gdbarch = regcache->arch ();
3625
3626 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3627 if (decr_pc != 0)
3628 {
3629 CORE_ADDR pc;
3630
3631 pc = regcache_read_pc (regcache);
3632 regcache_write_pc (regcache, pc + decr_pc);
3633 }
3634 }
3635
3636 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3637 *status = tp->suspend.waitstatus;
3638 tp->suspend.waitstatus_pending_p = 0;
3639
3640 /* Wake up the event loop again, until all pending events are
3641 processed. */
3642 if (target_is_async_p ())
3643 mark_async_event_handler (infrun_async_inferior_event_token);
3644 return tp->ptid;
3645 }
3646
3647 /* But if we don't find one, we'll have to wait. */
3648
3649 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3650 a blocking wait. */
3651 if (!target_can_async_p ())
3652 options &= ~TARGET_WNOHANG;
3653
3654 if (deprecated_target_wait_hook)
3655 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3656 else
3657 event_ptid = target_wait (ptid, status, options);
3658
3659 return event_ptid;
3660 }
3661
3662 /* Wrapper for target_wait that first checks whether threads have
3663 pending statuses to report before actually asking the target for
3664 more events. Polls for events from all inferiors/targets. */
3665
3666 static bool
3667 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3668 target_wait_flags options)
3669 {
3670 int num_inferiors = 0;
3671 int random_selector;
3672
3673 /* For fairness, we pick the first inferior/target to poll at random
3674 out of all inferiors that may report events, and then continue
3675 polling the rest of the inferior list starting from that one in a
3676 circular fashion until the whole list is polled once. */
3677
3678 auto inferior_matches = [&wait_ptid] (inferior *inf)
3679 {
3680 return (inf->process_target () != NULL
3681 && ptid_t (inf->pid).matches (wait_ptid));
3682 };
3683
3684 /* First see how many matching inferiors we have. */
3685 for (inferior *inf : all_inferiors ())
3686 if (inferior_matches (inf))
3687 num_inferiors++;
3688
3689 if (num_inferiors == 0)
3690 {
3691 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3692 return false;
3693 }
3694
3695 /* Now randomly pick an inferior out of those that matched. */
3696 random_selector = (int)
3697 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3698
3699 if (num_inferiors > 1)
3700 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3701 num_inferiors, random_selector);
3702
3703 /* Select the Nth inferior that matched. */
3704
3705 inferior *selected = nullptr;
3706
3707 for (inferior *inf : all_inferiors ())
3708 if (inferior_matches (inf))
3709 if (random_selector-- == 0)
3710 {
3711 selected = inf;
3712 break;
3713 }
3714
3715 /* Now poll for events out of each of the matching inferior's
3716 targets, starting from the selected one. */
3717
3718 auto do_wait = [&] (inferior *inf)
3719 {
3720 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3721 ecs->target = inf->process_target ();
3722 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3723 };
3724
3725 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3726 here spuriously after the target is all stopped and we've already
3727 reported the stop to the user, polling for events. */
3728 scoped_restore_current_thread restore_thread;
3729
3730 int inf_num = selected->num;
3731 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3732 if (inferior_matches (inf))
3733 if (do_wait (inf))
3734 return true;
3735
3736 for (inferior *inf = inferior_list;
3737 inf != NULL && inf->num < inf_num;
3738 inf = inf->next)
3739 if (inferior_matches (inf))
3740 if (do_wait (inf))
3741 return true;
3742
3743 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3744 return false;
3745 }
3746
3747 /* An event reported by wait_one. */
3748
3749 struct wait_one_event
3750 {
3751 /* The target the event came out of. */
3752 process_stratum_target *target;
3753
3754 /* The PTID the event was for. */
3755 ptid_t ptid;
3756
3757 /* The waitstatus. */
3758 target_waitstatus ws;
3759 };
3760
3761 static bool handle_one (const wait_one_event &event);
3762 static void restart_threads (struct thread_info *event_thread);
3763
3764 /* Prepare and stabilize the inferior for detaching it. E.g.,
3765 detaching while a thread is displaced stepping is a recipe for
3766 crashing it, as nothing would readjust the PC out of the scratch
3767 pad. */
3768
3769 void
3770 prepare_for_detach (void)
3771 {
3772 struct inferior *inf = current_inferior ();
3773 ptid_t pid_ptid = ptid_t (inf->pid);
3774 scoped_restore_current_thread restore_thread;
3775
3776 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3777
3778 /* Remove all threads of INF from the global step-over chain. We
3779 want to stop any ongoing step-over, not start any new one. */
3780 thread_info *next;
3781 for (thread_info *tp = global_thread_step_over_chain_head;
3782 tp != nullptr;
3783 tp = next)
3784 {
3785 next = global_thread_step_over_chain_next (tp);
3786 if (tp->inf == inf)
3787 global_thread_step_over_chain_remove (tp);
3788 }
3789
3790 /* If we were already in the middle of an inline step-over, and the
3791 thread stepping belongs to the inferior we're detaching, we need
3792 to restart the threads of other inferiors. */
3793 if (step_over_info.thread != -1)
3794 {
3795 infrun_debug_printf ("inline step-over in-process while detaching");
3796
3797 thread_info *thr = find_thread_global_id (step_over_info.thread);
3798 if (thr->inf == inf)
3799 {
3800 /* Since we removed threads of INF from the step-over chain,
3801 we know this won't start a step-over for INF. */
3802 clear_step_over_info ();
3803
3804 if (target_is_non_stop_p ())
3805 {
3806 /* Start a new step-over in another thread if there's
3807 one that needs it. */
3808 start_step_over ();
3809
3810 /* Restart all other threads (except the
3811 previously-stepping thread, since that one is still
3812 running). */
3813 if (!step_over_info_valid_p ())
3814 restart_threads (thr);
3815 }
3816 }
3817 }
3818
3819 if (displaced_step_in_progress (inf))
3820 {
3821 infrun_debug_printf ("displaced-stepping in-process while detaching");
3822
3823 /* Stop threads currently displaced stepping, aborting it. */
3824
3825 for (thread_info *thr : inf->non_exited_threads ())
3826 {
3827 if (thr->displaced_step_state.in_progress ())
3828 {
3829 if (thr->executing)
3830 {
3831 if (!thr->stop_requested)
3832 {
3833 target_stop (thr->ptid);
3834 thr->stop_requested = true;
3835 }
3836 }
3837 else
3838 thr->resumed = false;
3839 }
3840 }
3841
3842 while (displaced_step_in_progress (inf))
3843 {
3844 wait_one_event event;
3845
3846 event.target = inf->process_target ();
3847 event.ptid = do_target_wait_1 (inf, pid_ptid, &event.ws, 0);
3848
3849 if (debug_infrun)
3850 print_target_wait_results (pid_ptid, event.ptid, &event.ws);
3851
3852 handle_one (event);
3853 }
3854
3855 /* It's OK to leave some of the threads of INF stopped, since
3856 they'll be detached shortly. */
3857 }
3858 }
3859
3860 /* Wait for control to return from inferior to debugger.
3861
3862 If inferior gets a signal, we may decide to start it up again
3863 instead of returning. That is why there is a loop in this function.
3864 When this function actually returns it means the inferior
3865 should be left stopped and GDB should read more commands. */
3866
3867 static void
3868 wait_for_inferior (inferior *inf)
3869 {
3870 infrun_debug_printf ("wait_for_inferior ()");
3871
3872 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3873
3874 /* If an error happens while handling the event, propagate GDB's
3875 knowledge of the executing state to the frontend/user running
3876 state. */
3877 scoped_finish_thread_state finish_state
3878 (inf->process_target (), minus_one_ptid);
3879
3880 while (1)
3881 {
3882 struct execution_control_state ecss;
3883 struct execution_control_state *ecs = &ecss;
3884
3885 memset (ecs, 0, sizeof (*ecs));
3886
3887 overlay_cache_invalid = 1;
3888
3889 /* Flush target cache before starting to handle each event.
3890 Target was running and cache could be stale. This is just a
3891 heuristic. Running threads may modify target memory, but we
3892 don't get any event. */
3893 target_dcache_invalidate ();
3894
3895 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3896 ecs->target = inf->process_target ();
3897
3898 if (debug_infrun)
3899 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3900
3901 /* Now figure out what to do with the result of the result. */
3902 handle_inferior_event (ecs);
3903
3904 if (!ecs->wait_some_more)
3905 break;
3906 }
3907
3908 /* No error, don't finish the state yet. */
3909 finish_state.release ();
3910 }
3911
3912 /* Cleanup that reinstalls the readline callback handler, if the
3913 target is running in the background. If while handling the target
3914 event something triggered a secondary prompt, like e.g., a
3915 pagination prompt, we'll have removed the callback handler (see
3916 gdb_readline_wrapper_line). Need to do this as we go back to the
3917 event loop, ready to process further input. Note this has no
3918 effect if the handler hasn't actually been removed, because calling
3919 rl_callback_handler_install resets the line buffer, thus losing
3920 input. */
3921
3922 static void
3923 reinstall_readline_callback_handler_cleanup ()
3924 {
3925 struct ui *ui = current_ui;
3926
3927 if (!ui->async)
3928 {
3929 /* We're not going back to the top level event loop yet. Don't
3930 install the readline callback, as it'd prep the terminal,
3931 readline-style (raw, noecho) (e.g., --batch). We'll install
3932 it the next time the prompt is displayed, when we're ready
3933 for input. */
3934 return;
3935 }
3936
3937 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3938 gdb_rl_callback_handler_reinstall ();
3939 }
3940
3941 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3942 that's just the event thread. In all-stop, that's all threads. */
3943
3944 static void
3945 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3946 {
3947 if (ecs->event_thread != NULL
3948 && ecs->event_thread->thread_fsm != NULL)
3949 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3950
3951 if (!non_stop)
3952 {
3953 for (thread_info *thr : all_non_exited_threads ())
3954 {
3955 if (thr->thread_fsm == NULL)
3956 continue;
3957 if (thr == ecs->event_thread)
3958 continue;
3959
3960 switch_to_thread (thr);
3961 thr->thread_fsm->clean_up (thr);
3962 }
3963
3964 if (ecs->event_thread != NULL)
3965 switch_to_thread (ecs->event_thread);
3966 }
3967 }
3968
3969 /* Helper for all_uis_check_sync_execution_done that works on the
3970 current UI. */
3971
3972 static void
3973 check_curr_ui_sync_execution_done (void)
3974 {
3975 struct ui *ui = current_ui;
3976
3977 if (ui->prompt_state == PROMPT_NEEDED
3978 && ui->async
3979 && !gdb_in_secondary_prompt_p (ui))
3980 {
3981 target_terminal::ours ();
3982 gdb::observers::sync_execution_done.notify ();
3983 ui_register_input_event_handler (ui);
3984 }
3985 }
3986
3987 /* See infrun.h. */
3988
3989 void
3990 all_uis_check_sync_execution_done (void)
3991 {
3992 SWITCH_THRU_ALL_UIS ()
3993 {
3994 check_curr_ui_sync_execution_done ();
3995 }
3996 }
3997
3998 /* See infrun.h. */
3999
4000 void
4001 all_uis_on_sync_execution_starting (void)
4002 {
4003 SWITCH_THRU_ALL_UIS ()
4004 {
4005 if (current_ui->prompt_state == PROMPT_NEEDED)
4006 async_disable_stdin ();
4007 }
4008 }
4009
4010 /* Asynchronous version of wait_for_inferior. It is called by the
4011 event loop whenever a change of state is detected on the file
4012 descriptor corresponding to the target. It can be called more than
4013 once to complete a single execution command. In such cases we need
4014 to keep the state in a global variable ECSS. If it is the last time
4015 that this function is called for a single execution command, then
4016 report to the user that the inferior has stopped, and do the
4017 necessary cleanups. */
4018
4019 void
4020 fetch_inferior_event ()
4021 {
4022 INFRUN_SCOPED_DEBUG_ENTER_EXIT;
4023
4024 struct execution_control_state ecss;
4025 struct execution_control_state *ecs = &ecss;
4026 int cmd_done = 0;
4027
4028 memset (ecs, 0, sizeof (*ecs));
4029
4030 /* Events are always processed with the main UI as current UI. This
4031 way, warnings, debug output, etc. are always consistently sent to
4032 the main console. */
4033 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
4034
4035 /* Temporarily disable pagination. Otherwise, the user would be
4036 given an option to press 'q' to quit, which would cause an early
4037 exit and could leave GDB in a half-baked state. */
4038 scoped_restore save_pagination
4039 = make_scoped_restore (&pagination_enabled, false);
4040
4041 /* End up with readline processing input, if necessary. */
4042 {
4043 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
4044
4045 /* We're handling a live event, so make sure we're doing live
4046 debugging. If we're looking at traceframes while the target is
4047 running, we're going to need to get back to that mode after
4048 handling the event. */
4049 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
4050 if (non_stop)
4051 {
4052 maybe_restore_traceframe.emplace ();
4053 set_current_traceframe (-1);
4054 }
4055
4056 /* The user/frontend should not notice a thread switch due to
4057 internal events. Make sure we revert to the user selected
4058 thread and frame after handling the event and running any
4059 breakpoint commands. */
4060 scoped_restore_current_thread restore_thread;
4061
4062 overlay_cache_invalid = 1;
4063 /* Flush target cache before starting to handle each event. Target
4064 was running and cache could be stale. This is just a heuristic.
4065 Running threads may modify target memory, but we don't get any
4066 event. */
4067 target_dcache_invalidate ();
4068
4069 scoped_restore save_exec_dir
4070 = make_scoped_restore (&execution_direction,
4071 target_execution_direction ());
4072
4073 /* Allow targets to pause their resumed threads while we handle
4074 the event. */
4075 scoped_disable_commit_resumed disable_commit_resumed ("handling event");
4076
4077 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
4078 {
4079 infrun_debug_printf ("do_target_wait returned no event");
4080 disable_commit_resumed.reset_and_commit ();
4081 return;
4082 }
4083
4084 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
4085
4086 /* Switch to the target that generated the event, so we can do
4087 target calls. */
4088 switch_to_target_no_thread (ecs->target);
4089
4090 if (debug_infrun)
4091 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
4092
4093 /* If an error happens while handling the event, propagate GDB's
4094 knowledge of the executing state to the frontend/user running
4095 state. */
4096 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
4097 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
4098
4099 /* Get executed before scoped_restore_current_thread above to apply
4100 still for the thread which has thrown the exception. */
4101 auto defer_bpstat_clear
4102 = make_scope_exit (bpstat_clear_actions);
4103 auto defer_delete_threads
4104 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
4105
4106 /* Now figure out what to do with the result of the result. */
4107 handle_inferior_event (ecs);
4108
4109 if (!ecs->wait_some_more)
4110 {
4111 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4112 bool should_stop = true;
4113 struct thread_info *thr = ecs->event_thread;
4114
4115 delete_just_stopped_threads_infrun_breakpoints ();
4116
4117 if (thr != NULL)
4118 {
4119 struct thread_fsm *thread_fsm = thr->thread_fsm;
4120
4121 if (thread_fsm != NULL)
4122 should_stop = thread_fsm->should_stop (thr);
4123 }
4124
4125 if (!should_stop)
4126 {
4127 keep_going (ecs);
4128 }
4129 else
4130 {
4131 bool should_notify_stop = true;
4132 int proceeded = 0;
4133
4134 clean_up_just_stopped_threads_fsms (ecs);
4135
4136 if (thr != NULL && thr->thread_fsm != NULL)
4137 should_notify_stop = thr->thread_fsm->should_notify_stop ();
4138
4139 if (should_notify_stop)
4140 {
4141 /* We may not find an inferior if this was a process exit. */
4142 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
4143 proceeded = normal_stop ();
4144 }
4145
4146 if (!proceeded)
4147 {
4148 inferior_event_handler (INF_EXEC_COMPLETE);
4149 cmd_done = 1;
4150 }
4151
4152 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
4153 previously selected thread is gone. We have two
4154 choices - switch to no thread selected, or restore the
4155 previously selected thread (now exited). We chose the
4156 later, just because that's what GDB used to do. After
4157 this, "info threads" says "The current thread <Thread
4158 ID 2> has terminated." instead of "No thread
4159 selected.". */
4160 if (!non_stop
4161 && cmd_done
4162 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
4163 restore_thread.dont_restore ();
4164 }
4165 }
4166
4167 defer_delete_threads.release ();
4168 defer_bpstat_clear.release ();
4169
4170 /* No error, don't finish the thread states yet. */
4171 finish_state.release ();
4172
4173 disable_commit_resumed.reset_and_commit ();
4174
4175 /* This scope is used to ensure that readline callbacks are
4176 reinstalled here. */
4177 }
4178
4179 /* If a UI was in sync execution mode, and now isn't, restore its
4180 prompt (a synchronous execution command has finished, and we're
4181 ready for input). */
4182 all_uis_check_sync_execution_done ();
4183
4184 if (cmd_done
4185 && exec_done_display_p
4186 && (inferior_ptid == null_ptid
4187 || inferior_thread ()->state != THREAD_RUNNING))
4188 printf_unfiltered (_("completed.\n"));
4189 }
4190
4191 /* See infrun.h. */
4192
4193 void
4194 set_step_info (thread_info *tp, struct frame_info *frame,
4195 struct symtab_and_line sal)
4196 {
4197 /* This can be removed once this function no longer implicitly relies on the
4198 inferior_ptid value. */
4199 gdb_assert (inferior_ptid == tp->ptid);
4200
4201 tp->control.step_frame_id = get_frame_id (frame);
4202 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4203
4204 tp->current_symtab = sal.symtab;
4205 tp->current_line = sal.line;
4206 }
4207
4208 /* Clear context switchable stepping state. */
4209
4210 void
4211 init_thread_stepping_state (struct thread_info *tss)
4212 {
4213 tss->stepped_breakpoint = 0;
4214 tss->stepping_over_breakpoint = 0;
4215 tss->stepping_over_watchpoint = 0;
4216 tss->step_after_step_resume_breakpoint = 0;
4217 }
4218
4219 /* See infrun.h. */
4220
4221 void
4222 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4223 target_waitstatus status)
4224 {
4225 target_last_proc_target = target;
4226 target_last_wait_ptid = ptid;
4227 target_last_waitstatus = status;
4228 }
4229
4230 /* See infrun.h. */
4231
4232 void
4233 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4234 target_waitstatus *status)
4235 {
4236 if (target != nullptr)
4237 *target = target_last_proc_target;
4238 if (ptid != nullptr)
4239 *ptid = target_last_wait_ptid;
4240 if (status != nullptr)
4241 *status = target_last_waitstatus;
4242 }
4243
4244 /* See infrun.h. */
4245
4246 void
4247 nullify_last_target_wait_ptid (void)
4248 {
4249 target_last_proc_target = nullptr;
4250 target_last_wait_ptid = minus_one_ptid;
4251 target_last_waitstatus = {};
4252 }
4253
4254 /* Switch thread contexts. */
4255
4256 static void
4257 context_switch (execution_control_state *ecs)
4258 {
4259 if (ecs->ptid != inferior_ptid
4260 && (inferior_ptid == null_ptid
4261 || ecs->event_thread != inferior_thread ()))
4262 {
4263 infrun_debug_printf ("Switching context from %s to %s",
4264 target_pid_to_str (inferior_ptid).c_str (),
4265 target_pid_to_str (ecs->ptid).c_str ());
4266 }
4267
4268 switch_to_thread (ecs->event_thread);
4269 }
4270
4271 /* If the target can't tell whether we've hit breakpoints
4272 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4273 check whether that could have been caused by a breakpoint. If so,
4274 adjust the PC, per gdbarch_decr_pc_after_break. */
4275
4276 static void
4277 adjust_pc_after_break (struct thread_info *thread,
4278 struct target_waitstatus *ws)
4279 {
4280 struct regcache *regcache;
4281 struct gdbarch *gdbarch;
4282 CORE_ADDR breakpoint_pc, decr_pc;
4283
4284 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4285 we aren't, just return.
4286
4287 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4288 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4289 implemented by software breakpoints should be handled through the normal
4290 breakpoint layer.
4291
4292 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4293 different signals (SIGILL or SIGEMT for instance), but it is less
4294 clear where the PC is pointing afterwards. It may not match
4295 gdbarch_decr_pc_after_break. I don't know any specific target that
4296 generates these signals at breakpoints (the code has been in GDB since at
4297 least 1992) so I can not guess how to handle them here.
4298
4299 In earlier versions of GDB, a target with
4300 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4301 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4302 target with both of these set in GDB history, and it seems unlikely to be
4303 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4304
4305 if (ws->kind != TARGET_WAITKIND_STOPPED)
4306 return;
4307
4308 if (ws->value.sig != GDB_SIGNAL_TRAP)
4309 return;
4310
4311 /* In reverse execution, when a breakpoint is hit, the instruction
4312 under it has already been de-executed. The reported PC always
4313 points at the breakpoint address, so adjusting it further would
4314 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4315 architecture:
4316
4317 B1 0x08000000 : INSN1
4318 B2 0x08000001 : INSN2
4319 0x08000002 : INSN3
4320 PC -> 0x08000003 : INSN4
4321
4322 Say you're stopped at 0x08000003 as above. Reverse continuing
4323 from that point should hit B2 as below. Reading the PC when the
4324 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4325 been de-executed already.
4326
4327 B1 0x08000000 : INSN1
4328 B2 PC -> 0x08000001 : INSN2
4329 0x08000002 : INSN3
4330 0x08000003 : INSN4
4331
4332 We can't apply the same logic as for forward execution, because
4333 we would wrongly adjust the PC to 0x08000000, since there's a
4334 breakpoint at PC - 1. We'd then report a hit on B1, although
4335 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4336 behaviour. */
4337 if (execution_direction == EXEC_REVERSE)
4338 return;
4339
4340 /* If the target can tell whether the thread hit a SW breakpoint,
4341 trust it. Targets that can tell also adjust the PC
4342 themselves. */
4343 if (target_supports_stopped_by_sw_breakpoint ())
4344 return;
4345
4346 /* Note that relying on whether a breakpoint is planted in memory to
4347 determine this can fail. E.g,. the breakpoint could have been
4348 removed since. Or the thread could have been told to step an
4349 instruction the size of a breakpoint instruction, and only
4350 _after_ was a breakpoint inserted at its address. */
4351
4352 /* If this target does not decrement the PC after breakpoints, then
4353 we have nothing to do. */
4354 regcache = get_thread_regcache (thread);
4355 gdbarch = regcache->arch ();
4356
4357 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4358 if (decr_pc == 0)
4359 return;
4360
4361 const address_space *aspace = regcache->aspace ();
4362
4363 /* Find the location where (if we've hit a breakpoint) the
4364 breakpoint would be. */
4365 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4366
4367 /* If the target can't tell whether a software breakpoint triggered,
4368 fallback to figuring it out based on breakpoints we think were
4369 inserted in the target, and on whether the thread was stepped or
4370 continued. */
4371
4372 /* Check whether there actually is a software breakpoint inserted at
4373 that location.
4374
4375 If in non-stop mode, a race condition is possible where we've
4376 removed a breakpoint, but stop events for that breakpoint were
4377 already queued and arrive later. To suppress those spurious
4378 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4379 and retire them after a number of stop events are reported. Note
4380 this is an heuristic and can thus get confused. The real fix is
4381 to get the "stopped by SW BP and needs adjustment" info out of
4382 the target/kernel (and thus never reach here; see above). */
4383 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4384 || (target_is_non_stop_p ()
4385 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4386 {
4387 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4388
4389 if (record_full_is_used ())
4390 restore_operation_disable.emplace
4391 (record_full_gdb_operation_disable_set ());
4392
4393 /* When using hardware single-step, a SIGTRAP is reported for both
4394 a completed single-step and a software breakpoint. Need to
4395 differentiate between the two, as the latter needs adjusting
4396 but the former does not.
4397
4398 The SIGTRAP can be due to a completed hardware single-step only if
4399 - we didn't insert software single-step breakpoints
4400 - this thread is currently being stepped
4401
4402 If any of these events did not occur, we must have stopped due
4403 to hitting a software breakpoint, and have to back up to the
4404 breakpoint address.
4405
4406 As a special case, we could have hardware single-stepped a
4407 software breakpoint. In this case (prev_pc == breakpoint_pc),
4408 we also need to back up to the breakpoint address. */
4409
4410 if (thread_has_single_step_breakpoints_set (thread)
4411 || !currently_stepping (thread)
4412 || (thread->stepped_breakpoint
4413 && thread->prev_pc == breakpoint_pc))
4414 regcache_write_pc (regcache, breakpoint_pc);
4415 }
4416 }
4417
4418 static bool
4419 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4420 {
4421 for (frame = get_prev_frame (frame);
4422 frame != NULL;
4423 frame = get_prev_frame (frame))
4424 {
4425 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4426 return true;
4427
4428 if (get_frame_type (frame) != INLINE_FRAME)
4429 break;
4430 }
4431
4432 return false;
4433 }
4434
4435 /* Look for an inline frame that is marked for skip.
4436 If PREV_FRAME is TRUE start at the previous frame,
4437 otherwise start at the current frame. Stop at the
4438 first non-inline frame, or at the frame where the
4439 step started. */
4440
4441 static bool
4442 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4443 {
4444 struct frame_info *frame = get_current_frame ();
4445
4446 if (prev_frame)
4447 frame = get_prev_frame (frame);
4448
4449 for (; frame != NULL; frame = get_prev_frame (frame))
4450 {
4451 const char *fn = NULL;
4452 symtab_and_line sal;
4453 struct symbol *sym;
4454
4455 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4456 break;
4457 if (get_frame_type (frame) != INLINE_FRAME)
4458 break;
4459
4460 sal = find_frame_sal (frame);
4461 sym = get_frame_function (frame);
4462
4463 if (sym != NULL)
4464 fn = sym->print_name ();
4465
4466 if (sal.line != 0
4467 && function_name_is_marked_for_skip (fn, sal))
4468 return true;
4469 }
4470
4471 return false;
4472 }
4473
4474 /* If the event thread has the stop requested flag set, pretend it
4475 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4476 target_stop). */
4477
4478 static bool
4479 handle_stop_requested (struct execution_control_state *ecs)
4480 {
4481 if (ecs->event_thread->stop_requested)
4482 {
4483 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4484 ecs->ws.value.sig = GDB_SIGNAL_0;
4485 handle_signal_stop (ecs);
4486 return true;
4487 }
4488 return false;
4489 }
4490
4491 /* Auxiliary function that handles syscall entry/return events.
4492 It returns true if the inferior should keep going (and GDB
4493 should ignore the event), or false if the event deserves to be
4494 processed. */
4495
4496 static bool
4497 handle_syscall_event (struct execution_control_state *ecs)
4498 {
4499 struct regcache *regcache;
4500 int syscall_number;
4501
4502 context_switch (ecs);
4503
4504 regcache = get_thread_regcache (ecs->event_thread);
4505 syscall_number = ecs->ws.value.syscall_number;
4506 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4507
4508 if (catch_syscall_enabled () > 0
4509 && catching_syscall_number (syscall_number) > 0)
4510 {
4511 infrun_debug_printf ("syscall number=%d", syscall_number);
4512
4513 ecs->event_thread->control.stop_bpstat
4514 = bpstat_stop_status (regcache->aspace (),
4515 ecs->event_thread->suspend.stop_pc,
4516 ecs->event_thread, &ecs->ws);
4517
4518 if (handle_stop_requested (ecs))
4519 return false;
4520
4521 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4522 {
4523 /* Catchpoint hit. */
4524 return false;
4525 }
4526 }
4527
4528 if (handle_stop_requested (ecs))
4529 return false;
4530
4531 /* If no catchpoint triggered for this, then keep going. */
4532 keep_going (ecs);
4533
4534 return true;
4535 }
4536
4537 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4538
4539 static void
4540 fill_in_stop_func (struct gdbarch *gdbarch,
4541 struct execution_control_state *ecs)
4542 {
4543 if (!ecs->stop_func_filled_in)
4544 {
4545 const block *block;
4546 const general_symbol_info *gsi;
4547
4548 /* Don't care about return value; stop_func_start and stop_func_name
4549 will both be 0 if it doesn't work. */
4550 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4551 &gsi,
4552 &ecs->stop_func_start,
4553 &ecs->stop_func_end,
4554 &block);
4555 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4556
4557 /* The call to find_pc_partial_function, above, will set
4558 stop_func_start and stop_func_end to the start and end
4559 of the range containing the stop pc. If this range
4560 contains the entry pc for the block (which is always the
4561 case for contiguous blocks), advance stop_func_start past
4562 the function's start offset and entrypoint. Note that
4563 stop_func_start is NOT advanced when in a range of a
4564 non-contiguous block that does not contain the entry pc. */
4565 if (block != nullptr
4566 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4567 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4568 {
4569 ecs->stop_func_start
4570 += gdbarch_deprecated_function_start_offset (gdbarch);
4571
4572 if (gdbarch_skip_entrypoint_p (gdbarch))
4573 ecs->stop_func_start
4574 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4575 }
4576
4577 ecs->stop_func_filled_in = 1;
4578 }
4579 }
4580
4581
4582 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4583
4584 static enum stop_kind
4585 get_inferior_stop_soon (execution_control_state *ecs)
4586 {
4587 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4588
4589 gdb_assert (inf != NULL);
4590 return inf->control.stop_soon;
4591 }
4592
4593 /* Poll for one event out of the current target. Store the resulting
4594 waitstatus in WS, and return the event ptid. Does not block. */
4595
4596 static ptid_t
4597 poll_one_curr_target (struct target_waitstatus *ws)
4598 {
4599 ptid_t event_ptid;
4600
4601 overlay_cache_invalid = 1;
4602
4603 /* Flush target cache before starting to handle each event.
4604 Target was running and cache could be stale. This is just a
4605 heuristic. Running threads may modify target memory, but we
4606 don't get any event. */
4607 target_dcache_invalidate ();
4608
4609 if (deprecated_target_wait_hook)
4610 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4611 else
4612 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4613
4614 if (debug_infrun)
4615 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4616
4617 return event_ptid;
4618 }
4619
4620 /* Wait for one event out of any target. */
4621
4622 static wait_one_event
4623 wait_one ()
4624 {
4625 while (1)
4626 {
4627 for (inferior *inf : all_inferiors ())
4628 {
4629 process_stratum_target *target = inf->process_target ();
4630 if (target == NULL
4631 || !target->is_async_p ()
4632 || !target->threads_executing)
4633 continue;
4634
4635 switch_to_inferior_no_thread (inf);
4636
4637 wait_one_event event;
4638 event.target = target;
4639 event.ptid = poll_one_curr_target (&event.ws);
4640
4641 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4642 {
4643 /* If nothing is resumed, remove the target from the
4644 event loop. */
4645 target_async (0);
4646 }
4647 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4648 return event;
4649 }
4650
4651 /* Block waiting for some event. */
4652
4653 fd_set readfds;
4654 int nfds = 0;
4655
4656 FD_ZERO (&readfds);
4657
4658 for (inferior *inf : all_inferiors ())
4659 {
4660 process_stratum_target *target = inf->process_target ();
4661 if (target == NULL
4662 || !target->is_async_p ()
4663 || !target->threads_executing)
4664 continue;
4665
4666 int fd = target->async_wait_fd ();
4667 FD_SET (fd, &readfds);
4668 if (nfds <= fd)
4669 nfds = fd + 1;
4670 }
4671
4672 if (nfds == 0)
4673 {
4674 /* No waitable targets left. All must be stopped. */
4675 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4676 }
4677
4678 QUIT;
4679
4680 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4681 if (numfds < 0)
4682 {
4683 if (errno == EINTR)
4684 continue;
4685 else
4686 perror_with_name ("interruptible_select");
4687 }
4688 }
4689 }
4690
4691 /* Save the thread's event and stop reason to process it later. */
4692
4693 static void
4694 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4695 {
4696 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4697 target_waitstatus_to_string (ws).c_str (),
4698 tp->ptid.pid (),
4699 tp->ptid.lwp (),
4700 tp->ptid.tid ());
4701
4702 /* Record for later. */
4703 tp->suspend.waitstatus = *ws;
4704 tp->suspend.waitstatus_pending_p = 1;
4705
4706 if (ws->kind == TARGET_WAITKIND_STOPPED
4707 && ws->value.sig == GDB_SIGNAL_TRAP)
4708 {
4709 struct regcache *regcache = get_thread_regcache (tp);
4710 const address_space *aspace = regcache->aspace ();
4711 CORE_ADDR pc = regcache_read_pc (regcache);
4712
4713 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4714
4715 scoped_restore_current_thread restore_thread;
4716 switch_to_thread (tp);
4717
4718 if (target_stopped_by_watchpoint ())
4719 {
4720 tp->suspend.stop_reason
4721 = TARGET_STOPPED_BY_WATCHPOINT;
4722 }
4723 else if (target_supports_stopped_by_sw_breakpoint ()
4724 && target_stopped_by_sw_breakpoint ())
4725 {
4726 tp->suspend.stop_reason
4727 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4728 }
4729 else if (target_supports_stopped_by_hw_breakpoint ()
4730 && target_stopped_by_hw_breakpoint ())
4731 {
4732 tp->suspend.stop_reason
4733 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4734 }
4735 else if (!target_supports_stopped_by_hw_breakpoint ()
4736 && hardware_breakpoint_inserted_here_p (aspace,
4737 pc))
4738 {
4739 tp->suspend.stop_reason
4740 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4741 }
4742 else if (!target_supports_stopped_by_sw_breakpoint ()
4743 && software_breakpoint_inserted_here_p (aspace,
4744 pc))
4745 {
4746 tp->suspend.stop_reason
4747 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4748 }
4749 else if (!thread_has_single_step_breakpoints_set (tp)
4750 && currently_stepping (tp))
4751 {
4752 tp->suspend.stop_reason
4753 = TARGET_STOPPED_BY_SINGLE_STEP;
4754 }
4755 }
4756 }
4757
4758 /* Mark the non-executing threads accordingly. In all-stop, all
4759 threads of all processes are stopped when we get any event
4760 reported. In non-stop mode, only the event thread stops. */
4761
4762 static void
4763 mark_non_executing_threads (process_stratum_target *target,
4764 ptid_t event_ptid,
4765 struct target_waitstatus ws)
4766 {
4767 ptid_t mark_ptid;
4768
4769 if (!target_is_non_stop_p ())
4770 mark_ptid = minus_one_ptid;
4771 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4772 || ws.kind == TARGET_WAITKIND_EXITED)
4773 {
4774 /* If we're handling a process exit in non-stop mode, even
4775 though threads haven't been deleted yet, one would think
4776 that there is nothing to do, as threads of the dead process
4777 will be soon deleted, and threads of any other process were
4778 left running. However, on some targets, threads survive a
4779 process exit event. E.g., for the "checkpoint" command,
4780 when the current checkpoint/fork exits, linux-fork.c
4781 automatically switches to another fork from within
4782 target_mourn_inferior, by associating the same
4783 inferior/thread to another fork. We haven't mourned yet at
4784 this point, but we must mark any threads left in the
4785 process as not-executing so that finish_thread_state marks
4786 them stopped (in the user's perspective) if/when we present
4787 the stop to the user. */
4788 mark_ptid = ptid_t (event_ptid.pid ());
4789 }
4790 else
4791 mark_ptid = event_ptid;
4792
4793 set_executing (target, mark_ptid, false);
4794
4795 /* Likewise the resumed flag. */
4796 set_resumed (target, mark_ptid, false);
4797 }
4798
4799 /* Handle one event after stopping threads. If the eventing thread
4800 reports back any interesting event, we leave it pending. If the
4801 eventing thread was in the middle of a displaced step, we
4802 cancel/finish it, and unless the thread's inferior is being
4803 detached, put the thread back in the step-over chain. Returns true
4804 if there are no resumed threads left in the target (thus there's no
4805 point in waiting further), false otherwise. */
4806
4807 static bool
4808 handle_one (const wait_one_event &event)
4809 {
4810 infrun_debug_printf
4811 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4812 target_pid_to_str (event.ptid).c_str ());
4813
4814 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4815 {
4816 /* All resumed threads exited. */
4817 return true;
4818 }
4819 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4820 || event.ws.kind == TARGET_WAITKIND_EXITED
4821 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4822 {
4823 /* One thread/process exited/signalled. */
4824
4825 thread_info *t = nullptr;
4826
4827 /* The target may have reported just a pid. If so, try
4828 the first non-exited thread. */
4829 if (event.ptid.is_pid ())
4830 {
4831 int pid = event.ptid.pid ();
4832 inferior *inf = find_inferior_pid (event.target, pid);
4833 for (thread_info *tp : inf->non_exited_threads ())
4834 {
4835 t = tp;
4836 break;
4837 }
4838
4839 /* If there is no available thread, the event would
4840 have to be appended to a per-inferior event list,
4841 which does not exist (and if it did, we'd have
4842 to adjust run control command to be able to
4843 resume such an inferior). We assert here instead
4844 of going into an infinite loop. */
4845 gdb_assert (t != nullptr);
4846
4847 infrun_debug_printf
4848 ("using %s", target_pid_to_str (t->ptid).c_str ());
4849 }
4850 else
4851 {
4852 t = find_thread_ptid (event.target, event.ptid);
4853 /* Check if this is the first time we see this thread.
4854 Don't bother adding if it individually exited. */
4855 if (t == nullptr
4856 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4857 t = add_thread (event.target, event.ptid);
4858 }
4859
4860 if (t != nullptr)
4861 {
4862 /* Set the threads as non-executing to avoid
4863 another stop attempt on them. */
4864 switch_to_thread_no_regs (t);
4865 mark_non_executing_threads (event.target, event.ptid,
4866 event.ws);
4867 save_waitstatus (t, &event.ws);
4868 t->stop_requested = false;
4869 }
4870 }
4871 else
4872 {
4873 thread_info *t = find_thread_ptid (event.target, event.ptid);
4874 if (t == NULL)
4875 t = add_thread (event.target, event.ptid);
4876
4877 t->stop_requested = 0;
4878 t->executing = 0;
4879 t->resumed = false;
4880 t->control.may_range_step = 0;
4881
4882 /* This may be the first time we see the inferior report
4883 a stop. */
4884 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4885 if (inf->needs_setup)
4886 {
4887 switch_to_thread_no_regs (t);
4888 setup_inferior (0);
4889 }
4890
4891 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4892 && event.ws.value.sig == GDB_SIGNAL_0)
4893 {
4894 /* We caught the event that we intended to catch, so
4895 there's no event pending. */
4896 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4897 t->suspend.waitstatus_pending_p = 0;
4898
4899 if (displaced_step_finish (t, GDB_SIGNAL_0)
4900 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4901 {
4902 /* Add it back to the step-over queue. */
4903 infrun_debug_printf
4904 ("displaced-step of %s canceled",
4905 target_pid_to_str (t->ptid).c_str ());
4906
4907 t->control.trap_expected = 0;
4908 if (!t->inf->detaching)
4909 global_thread_step_over_chain_enqueue (t);
4910 }
4911 }
4912 else
4913 {
4914 enum gdb_signal sig;
4915 struct regcache *regcache;
4916
4917 infrun_debug_printf
4918 ("target_wait %s, saving status for %d.%ld.%ld",
4919 target_waitstatus_to_string (&event.ws).c_str (),
4920 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4921
4922 /* Record for later. */
4923 save_waitstatus (t, &event.ws);
4924
4925 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4926 ? event.ws.value.sig : GDB_SIGNAL_0);
4927
4928 if (displaced_step_finish (t, sig)
4929 == DISPLACED_STEP_FINISH_STATUS_NOT_EXECUTED)
4930 {
4931 /* Add it back to the step-over queue. */
4932 t->control.trap_expected = 0;
4933 if (!t->inf->detaching)
4934 global_thread_step_over_chain_enqueue (t);
4935 }
4936
4937 regcache = get_thread_regcache (t);
4938 t->suspend.stop_pc = regcache_read_pc (regcache);
4939
4940 infrun_debug_printf ("saved stop_pc=%s for %s "
4941 "(currently_stepping=%d)",
4942 paddress (target_gdbarch (),
4943 t->suspend.stop_pc),
4944 target_pid_to_str (t->ptid).c_str (),
4945 currently_stepping (t));
4946 }
4947 }
4948
4949 return false;
4950 }
4951
4952 /* See infrun.h. */
4953
4954 void
4955 stop_all_threads (void)
4956 {
4957 /* We may need multiple passes to discover all threads. */
4958 int pass;
4959 int iterations = 0;
4960
4961 gdb_assert (exists_non_stop_target ());
4962
4963 infrun_debug_printf ("starting");
4964
4965 scoped_restore_current_thread restore_thread;
4966
4967 /* Enable thread events of all targets. */
4968 for (auto *target : all_non_exited_process_targets ())
4969 {
4970 switch_to_target_no_thread (target);
4971 target_thread_events (true);
4972 }
4973
4974 SCOPE_EXIT
4975 {
4976 /* Disable thread events of all targets. */
4977 for (auto *target : all_non_exited_process_targets ())
4978 {
4979 switch_to_target_no_thread (target);
4980 target_thread_events (false);
4981 }
4982
4983 /* Use debug_prefixed_printf directly to get a meaningful function
4984 name. */
4985 if (debug_infrun)
4986 debug_prefixed_printf ("infrun", "stop_all_threads", "done");
4987 };
4988
4989 /* Request threads to stop, and then wait for the stops. Because
4990 threads we already know about can spawn more threads while we're
4991 trying to stop them, and we only learn about new threads when we
4992 update the thread list, do this in a loop, and keep iterating
4993 until two passes find no threads that need to be stopped. */
4994 for (pass = 0; pass < 2; pass++, iterations++)
4995 {
4996 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4997 while (1)
4998 {
4999 int waits_needed = 0;
5000
5001 for (auto *target : all_non_exited_process_targets ())
5002 {
5003 switch_to_target_no_thread (target);
5004 update_thread_list ();
5005 }
5006
5007 /* Go through all threads looking for threads that we need
5008 to tell the target to stop. */
5009 for (thread_info *t : all_non_exited_threads ())
5010 {
5011 /* For a single-target setting with an all-stop target,
5012 we would not even arrive here. For a multi-target
5013 setting, until GDB is able to handle a mixture of
5014 all-stop and non-stop targets, simply skip all-stop
5015 targets' threads. This should be fine due to the
5016 protection of 'check_multi_target_resumption'. */
5017
5018 switch_to_thread_no_regs (t);
5019 if (!target_is_non_stop_p ())
5020 continue;
5021
5022 if (t->executing)
5023 {
5024 /* If already stopping, don't request a stop again.
5025 We just haven't seen the notification yet. */
5026 if (!t->stop_requested)
5027 {
5028 infrun_debug_printf (" %s executing, need stop",
5029 target_pid_to_str (t->ptid).c_str ());
5030 target_stop (t->ptid);
5031 t->stop_requested = 1;
5032 }
5033 else
5034 {
5035 infrun_debug_printf (" %s executing, already stopping",
5036 target_pid_to_str (t->ptid).c_str ());
5037 }
5038
5039 if (t->stop_requested)
5040 waits_needed++;
5041 }
5042 else
5043 {
5044 infrun_debug_printf (" %s not executing",
5045 target_pid_to_str (t->ptid).c_str ());
5046
5047 /* The thread may be not executing, but still be
5048 resumed with a pending status to process. */
5049 t->resumed = false;
5050 }
5051 }
5052
5053 if (waits_needed == 0)
5054 break;
5055
5056 /* If we find new threads on the second iteration, restart
5057 over. We want to see two iterations in a row with all
5058 threads stopped. */
5059 if (pass > 0)
5060 pass = -1;
5061
5062 for (int i = 0; i < waits_needed; i++)
5063 {
5064 wait_one_event event = wait_one ();
5065 if (handle_one (event))
5066 break;
5067 }
5068 }
5069 }
5070 }
5071
5072 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
5073
5074 static bool
5075 handle_no_resumed (struct execution_control_state *ecs)
5076 {
5077 if (target_can_async_p ())
5078 {
5079 bool any_sync = false;
5080
5081 for (ui *ui : all_uis ())
5082 {
5083 if (ui->prompt_state == PROMPT_BLOCKED)
5084 {
5085 any_sync = true;
5086 break;
5087 }
5088 }
5089 if (!any_sync)
5090 {
5091 /* There were no unwaited-for children left in the target, but,
5092 we're not synchronously waiting for events either. Just
5093 ignore. */
5094
5095 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
5096 prepare_to_wait (ecs);
5097 return true;
5098 }
5099 }
5100
5101 /* Otherwise, if we were running a synchronous execution command, we
5102 may need to cancel it and give the user back the terminal.
5103
5104 In non-stop mode, the target can't tell whether we've already
5105 consumed previous stop events, so it can end up sending us a
5106 no-resumed event like so:
5107
5108 #0 - thread 1 is left stopped
5109
5110 #1 - thread 2 is resumed and hits breakpoint
5111 -> TARGET_WAITKIND_STOPPED
5112
5113 #2 - thread 3 is resumed and exits
5114 this is the last resumed thread, so
5115 -> TARGET_WAITKIND_NO_RESUMED
5116
5117 #3 - gdb processes stop for thread 2 and decides to re-resume
5118 it.
5119
5120 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
5121 thread 2 is now resumed, so the event should be ignored.
5122
5123 IOW, if the stop for thread 2 doesn't end a foreground command,
5124 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
5125 event. But it could be that the event meant that thread 2 itself
5126 (or whatever other thread was the last resumed thread) exited.
5127
5128 To address this we refresh the thread list and check whether we
5129 have resumed threads _now_. In the example above, this removes
5130 thread 3 from the thread list. If thread 2 was re-resumed, we
5131 ignore this event. If we find no thread resumed, then we cancel
5132 the synchronous command and show "no unwaited-for " to the
5133 user. */
5134
5135 inferior *curr_inf = current_inferior ();
5136
5137 scoped_restore_current_thread restore_thread;
5138
5139 for (auto *target : all_non_exited_process_targets ())
5140 {
5141 switch_to_target_no_thread (target);
5142 update_thread_list ();
5143 }
5144
5145 /* If:
5146
5147 - the current target has no thread executing, and
5148 - the current inferior is native, and
5149 - the current inferior is the one which has the terminal, and
5150 - we did nothing,
5151
5152 then a Ctrl-C from this point on would remain stuck in the
5153 kernel, until a thread resumes and dequeues it. That would
5154 result in the GDB CLI not reacting to Ctrl-C, not able to
5155 interrupt the program. To address this, if the current inferior
5156 no longer has any thread executing, we give the terminal to some
5157 other inferior that has at least one thread executing. */
5158 bool swap_terminal = true;
5159
5160 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
5161 whether to report it to the user. */
5162 bool ignore_event = false;
5163
5164 for (thread_info *thread : all_non_exited_threads ())
5165 {
5166 if (swap_terminal && thread->executing)
5167 {
5168 if (thread->inf != curr_inf)
5169 {
5170 target_terminal::ours ();
5171
5172 switch_to_thread (thread);
5173 target_terminal::inferior ();
5174 }
5175 swap_terminal = false;
5176 }
5177
5178 if (!ignore_event
5179 && (thread->executing
5180 || thread->suspend.waitstatus_pending_p))
5181 {
5182 /* Either there were no unwaited-for children left in the
5183 target at some point, but there are now, or some target
5184 other than the eventing one has unwaited-for children
5185 left. Just ignore. */
5186 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5187 "(ignoring: found resumed)");
5188
5189 ignore_event = true;
5190 }
5191
5192 if (ignore_event && !swap_terminal)
5193 break;
5194 }
5195
5196 if (ignore_event)
5197 {
5198 switch_to_inferior_no_thread (curr_inf);
5199 prepare_to_wait (ecs);
5200 return true;
5201 }
5202
5203 /* Go ahead and report the event. */
5204 return false;
5205 }
5206
5207 /* Given an execution control state that has been freshly filled in by
5208 an event from the inferior, figure out what it means and take
5209 appropriate action.
5210
5211 The alternatives are:
5212
5213 1) stop_waiting and return; to really stop and return to the
5214 debugger.
5215
5216 2) keep_going and return; to wait for the next event (set
5217 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5218 once). */
5219
5220 static void
5221 handle_inferior_event (struct execution_control_state *ecs)
5222 {
5223 /* Make sure that all temporary struct value objects that were
5224 created during the handling of the event get deleted at the
5225 end. */
5226 scoped_value_mark free_values;
5227
5228 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5229
5230 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5231 {
5232 /* We had an event in the inferior, but we are not interested in
5233 handling it at this level. The lower layers have already
5234 done what needs to be done, if anything.
5235
5236 One of the possible circumstances for this is when the
5237 inferior produces output for the console. The inferior has
5238 not stopped, and we are ignoring the event. Another possible
5239 circumstance is any event which the lower level knows will be
5240 reported multiple times without an intervening resume. */
5241 prepare_to_wait (ecs);
5242 return;
5243 }
5244
5245 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5246 {
5247 prepare_to_wait (ecs);
5248 return;
5249 }
5250
5251 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5252 && handle_no_resumed (ecs))
5253 return;
5254
5255 /* Cache the last target/ptid/waitstatus. */
5256 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5257
5258 /* Always clear state belonging to the previous time we stopped. */
5259 stop_stack_dummy = STOP_NONE;
5260
5261 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5262 {
5263 /* No unwaited-for children left. IOW, all resumed children
5264 have exited. */
5265 stop_print_frame = false;
5266 stop_waiting (ecs);
5267 return;
5268 }
5269
5270 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5271 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5272 {
5273 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5274 /* If it's a new thread, add it to the thread database. */
5275 if (ecs->event_thread == NULL)
5276 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5277
5278 /* Disable range stepping. If the next step request could use a
5279 range, this will be end up re-enabled then. */
5280 ecs->event_thread->control.may_range_step = 0;
5281 }
5282
5283 /* Dependent on valid ECS->EVENT_THREAD. */
5284 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5285
5286 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5287 reinit_frame_cache ();
5288
5289 breakpoint_retire_moribund ();
5290
5291 /* First, distinguish signals caused by the debugger from signals
5292 that have to do with the program's own actions. Note that
5293 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5294 on the operating system version. Here we detect when a SIGILL or
5295 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5296 something similar for SIGSEGV, since a SIGSEGV will be generated
5297 when we're trying to execute a breakpoint instruction on a
5298 non-executable stack. This happens for call dummy breakpoints
5299 for architectures like SPARC that place call dummies on the
5300 stack. */
5301 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5302 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5303 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5304 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5305 {
5306 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5307
5308 if (breakpoint_inserted_here_p (regcache->aspace (),
5309 regcache_read_pc (regcache)))
5310 {
5311 infrun_debug_printf ("Treating signal as SIGTRAP");
5312 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5313 }
5314 }
5315
5316 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5317
5318 switch (ecs->ws.kind)
5319 {
5320 case TARGET_WAITKIND_LOADED:
5321 {
5322 context_switch (ecs);
5323 /* Ignore gracefully during startup of the inferior, as it might
5324 be the shell which has just loaded some objects, otherwise
5325 add the symbols for the newly loaded objects. Also ignore at
5326 the beginning of an attach or remote session; we will query
5327 the full list of libraries once the connection is
5328 established. */
5329
5330 stop_kind stop_soon = get_inferior_stop_soon (ecs);
5331 if (stop_soon == NO_STOP_QUIETLY)
5332 {
5333 struct regcache *regcache;
5334
5335 regcache = get_thread_regcache (ecs->event_thread);
5336
5337 handle_solib_event ();
5338
5339 ecs->event_thread->control.stop_bpstat
5340 = bpstat_stop_status (regcache->aspace (),
5341 ecs->event_thread->suspend.stop_pc,
5342 ecs->event_thread, &ecs->ws);
5343
5344 if (handle_stop_requested (ecs))
5345 return;
5346
5347 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5348 {
5349 /* A catchpoint triggered. */
5350 process_event_stop_test (ecs);
5351 return;
5352 }
5353
5354 /* If requested, stop when the dynamic linker notifies
5355 gdb of events. This allows the user to get control
5356 and place breakpoints in initializer routines for
5357 dynamically loaded objects (among other things). */
5358 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5359 if (stop_on_solib_events)
5360 {
5361 /* Make sure we print "Stopped due to solib-event" in
5362 normal_stop. */
5363 stop_print_frame = true;
5364
5365 stop_waiting (ecs);
5366 return;
5367 }
5368 }
5369
5370 /* If we are skipping through a shell, or through shared library
5371 loading that we aren't interested in, resume the program. If
5372 we're running the program normally, also resume. */
5373 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5374 {
5375 /* Loading of shared libraries might have changed breakpoint
5376 addresses. Make sure new breakpoints are inserted. */
5377 if (stop_soon == NO_STOP_QUIETLY)
5378 insert_breakpoints ();
5379 resume (GDB_SIGNAL_0);
5380 prepare_to_wait (ecs);
5381 return;
5382 }
5383
5384 /* But stop if we're attaching or setting up a remote
5385 connection. */
5386 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5387 || stop_soon == STOP_QUIETLY_REMOTE)
5388 {
5389 infrun_debug_printf ("quietly stopped");
5390 stop_waiting (ecs);
5391 return;
5392 }
5393
5394 internal_error (__FILE__, __LINE__,
5395 _("unhandled stop_soon: %d"), (int) stop_soon);
5396 }
5397
5398 case TARGET_WAITKIND_SPURIOUS:
5399 if (handle_stop_requested (ecs))
5400 return;
5401 context_switch (ecs);
5402 resume (GDB_SIGNAL_0);
5403 prepare_to_wait (ecs);
5404 return;
5405
5406 case TARGET_WAITKIND_THREAD_CREATED:
5407 if (handle_stop_requested (ecs))
5408 return;
5409 context_switch (ecs);
5410 if (!switch_back_to_stepped_thread (ecs))
5411 keep_going (ecs);
5412 return;
5413
5414 case TARGET_WAITKIND_EXITED:
5415 case TARGET_WAITKIND_SIGNALLED:
5416 {
5417 /* Depending on the system, ecs->ptid may point to a thread or
5418 to a process. On some targets, target_mourn_inferior may
5419 need to have access to the just-exited thread. That is the
5420 case of GNU/Linux's "checkpoint" support, for example.
5421 Call the switch_to_xxx routine as appropriate. */
5422 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5423 if (thr != nullptr)
5424 switch_to_thread (thr);
5425 else
5426 {
5427 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5428 switch_to_inferior_no_thread (inf);
5429 }
5430 }
5431 handle_vfork_child_exec_or_exit (0);
5432 target_terminal::ours (); /* Must do this before mourn anyway. */
5433
5434 /* Clearing any previous state of convenience variables. */
5435 clear_exit_convenience_vars ();
5436
5437 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5438 {
5439 /* Record the exit code in the convenience variable $_exitcode, so
5440 that the user can inspect this again later. */
5441 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5442 (LONGEST) ecs->ws.value.integer);
5443
5444 /* Also record this in the inferior itself. */
5445 current_inferior ()->has_exit_code = 1;
5446 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5447
5448 /* Support the --return-child-result option. */
5449 return_child_result_value = ecs->ws.value.integer;
5450
5451 gdb::observers::exited.notify (ecs->ws.value.integer);
5452 }
5453 else
5454 {
5455 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5456
5457 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5458 {
5459 /* Set the value of the internal variable $_exitsignal,
5460 which holds the signal uncaught by the inferior. */
5461 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5462 gdbarch_gdb_signal_to_target (gdbarch,
5463 ecs->ws.value.sig));
5464 }
5465 else
5466 {
5467 /* We don't have access to the target's method used for
5468 converting between signal numbers (GDB's internal
5469 representation <-> target's representation).
5470 Therefore, we cannot do a good job at displaying this
5471 information to the user. It's better to just warn
5472 her about it (if infrun debugging is enabled), and
5473 give up. */
5474 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5475 "signal number.");
5476 }
5477
5478 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5479 }
5480
5481 gdb_flush (gdb_stdout);
5482 target_mourn_inferior (inferior_ptid);
5483 stop_print_frame = false;
5484 stop_waiting (ecs);
5485 return;
5486
5487 case TARGET_WAITKIND_FORKED:
5488 case TARGET_WAITKIND_VFORKED:
5489 /* Check whether the inferior is displaced stepping. */
5490 {
5491 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5492 struct gdbarch *gdbarch = regcache->arch ();
5493 inferior *parent_inf = find_inferior_ptid (ecs->target, ecs->ptid);
5494
5495 /* If this is a fork (child gets its own address space copy) and some
5496 displaced step buffers were in use at the time of the fork, restore
5497 the displaced step buffer bytes in the child process. */
5498 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5499 gdbarch_displaced_step_restore_all_in_ptid
5500 (gdbarch, parent_inf, ecs->ws.value.related_pid);
5501
5502 /* If displaced stepping is supported, and thread ecs->ptid is
5503 displaced stepping. */
5504 if (displaced_step_in_progress_thread (ecs->event_thread))
5505 {
5506 struct regcache *child_regcache;
5507 CORE_ADDR parent_pc;
5508
5509 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5510 indicating that the displaced stepping of syscall instruction
5511 has been done. Perform cleanup for parent process here. Note
5512 that this operation also cleans up the child process for vfork,
5513 because their pages are shared. */
5514 displaced_step_finish (ecs->event_thread, GDB_SIGNAL_TRAP);
5515 /* Start a new step-over in another thread if there's one
5516 that needs it. */
5517 start_step_over ();
5518
5519 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5520 the child's PC is also within the scratchpad. Set the child's PC
5521 to the parent's PC value, which has already been fixed up.
5522 FIXME: we use the parent's aspace here, although we're touching
5523 the child, because the child hasn't been added to the inferior
5524 list yet at this point. */
5525
5526 child_regcache
5527 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5528 ecs->ws.value.related_pid,
5529 gdbarch,
5530 parent_inf->aspace);
5531 /* Read PC value of parent process. */
5532 parent_pc = regcache_read_pc (regcache);
5533
5534 displaced_debug_printf ("write child pc from %s to %s",
5535 paddress (gdbarch,
5536 regcache_read_pc (child_regcache)),
5537 paddress (gdbarch, parent_pc));
5538
5539 regcache_write_pc (child_regcache, parent_pc);
5540 }
5541 }
5542
5543 context_switch (ecs);
5544
5545 /* Immediately detach breakpoints from the child before there's
5546 any chance of letting the user delete breakpoints from the
5547 breakpoint lists. If we don't do this early, it's easy to
5548 leave left over traps in the child, vis: "break foo; catch
5549 fork; c; <fork>; del; c; <child calls foo>". We only follow
5550 the fork on the last `continue', and by that time the
5551 breakpoint at "foo" is long gone from the breakpoint table.
5552 If we vforked, then we don't need to unpatch here, since both
5553 parent and child are sharing the same memory pages; we'll
5554 need to unpatch at follow/detach time instead to be certain
5555 that new breakpoints added between catchpoint hit time and
5556 vfork follow are detached. */
5557 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5558 {
5559 /* This won't actually modify the breakpoint list, but will
5560 physically remove the breakpoints from the child. */
5561 detach_breakpoints (ecs->ws.value.related_pid);
5562 }
5563
5564 delete_just_stopped_threads_single_step_breakpoints ();
5565
5566 /* In case the event is caught by a catchpoint, remember that
5567 the event is to be followed at the next resume of the thread,
5568 and not immediately. */
5569 ecs->event_thread->pending_follow = ecs->ws;
5570
5571 ecs->event_thread->suspend.stop_pc
5572 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5573
5574 ecs->event_thread->control.stop_bpstat
5575 = bpstat_stop_status (get_current_regcache ()->aspace (),
5576 ecs->event_thread->suspend.stop_pc,
5577 ecs->event_thread, &ecs->ws);
5578
5579 if (handle_stop_requested (ecs))
5580 return;
5581
5582 /* If no catchpoint triggered for this, then keep going. Note
5583 that we're interested in knowing the bpstat actually causes a
5584 stop, not just if it may explain the signal. Software
5585 watchpoints, for example, always appear in the bpstat. */
5586 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5587 {
5588 bool follow_child
5589 = (follow_fork_mode_string == follow_fork_mode_child);
5590
5591 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5592
5593 process_stratum_target *targ
5594 = ecs->event_thread->inf->process_target ();
5595
5596 bool should_resume = follow_fork ();
5597
5598 /* Note that one of these may be an invalid pointer,
5599 depending on detach_fork. */
5600 thread_info *parent = ecs->event_thread;
5601 thread_info *child
5602 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5603
5604 /* At this point, the parent is marked running, and the
5605 child is marked stopped. */
5606
5607 /* If not resuming the parent, mark it stopped. */
5608 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5609 parent->set_running (false);
5610
5611 /* If resuming the child, mark it running. */
5612 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5613 child->set_running (true);
5614
5615 /* In non-stop mode, also resume the other branch. */
5616 if (!detach_fork && (non_stop
5617 || (sched_multi && target_is_non_stop_p ())))
5618 {
5619 if (follow_child)
5620 switch_to_thread (parent);
5621 else
5622 switch_to_thread (child);
5623
5624 ecs->event_thread = inferior_thread ();
5625 ecs->ptid = inferior_ptid;
5626 keep_going (ecs);
5627 }
5628
5629 if (follow_child)
5630 switch_to_thread (child);
5631 else
5632 switch_to_thread (parent);
5633
5634 ecs->event_thread = inferior_thread ();
5635 ecs->ptid = inferior_ptid;
5636
5637 if (should_resume)
5638 keep_going (ecs);
5639 else
5640 stop_waiting (ecs);
5641 return;
5642 }
5643 process_event_stop_test (ecs);
5644 return;
5645
5646 case TARGET_WAITKIND_VFORK_DONE:
5647 /* Done with the shared memory region. Re-insert breakpoints in
5648 the parent, and keep going. */
5649
5650 context_switch (ecs);
5651
5652 current_inferior ()->waiting_for_vfork_done = 0;
5653 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5654
5655 if (handle_stop_requested (ecs))
5656 return;
5657
5658 /* This also takes care of reinserting breakpoints in the
5659 previously locked inferior. */
5660 keep_going (ecs);
5661 return;
5662
5663 case TARGET_WAITKIND_EXECD:
5664
5665 /* Note we can't read registers yet (the stop_pc), because we
5666 don't yet know the inferior's post-exec architecture.
5667 'stop_pc' is explicitly read below instead. */
5668 switch_to_thread_no_regs (ecs->event_thread);
5669
5670 /* Do whatever is necessary to the parent branch of the vfork. */
5671 handle_vfork_child_exec_or_exit (1);
5672
5673 /* This causes the eventpoints and symbol table to be reset.
5674 Must do this now, before trying to determine whether to
5675 stop. */
5676 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5677
5678 /* In follow_exec we may have deleted the original thread and
5679 created a new one. Make sure that the event thread is the
5680 execd thread for that case (this is a nop otherwise). */
5681 ecs->event_thread = inferior_thread ();
5682
5683 ecs->event_thread->suspend.stop_pc
5684 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5685
5686 ecs->event_thread->control.stop_bpstat
5687 = bpstat_stop_status (get_current_regcache ()->aspace (),
5688 ecs->event_thread->suspend.stop_pc,
5689 ecs->event_thread, &ecs->ws);
5690
5691 /* Note that this may be referenced from inside
5692 bpstat_stop_status above, through inferior_has_execd. */
5693 xfree (ecs->ws.value.execd_pathname);
5694 ecs->ws.value.execd_pathname = NULL;
5695
5696 if (handle_stop_requested (ecs))
5697 return;
5698
5699 /* If no catchpoint triggered for this, then keep going. */
5700 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5701 {
5702 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5703 keep_going (ecs);
5704 return;
5705 }
5706 process_event_stop_test (ecs);
5707 return;
5708
5709 /* Be careful not to try to gather much state about a thread
5710 that's in a syscall. It's frequently a losing proposition. */
5711 case TARGET_WAITKIND_SYSCALL_ENTRY:
5712 /* Getting the current syscall number. */
5713 if (handle_syscall_event (ecs) == 0)
5714 process_event_stop_test (ecs);
5715 return;
5716
5717 /* Before examining the threads further, step this thread to
5718 get it entirely out of the syscall. (We get notice of the
5719 event when the thread is just on the verge of exiting a
5720 syscall. Stepping one instruction seems to get it back
5721 into user code.) */
5722 case TARGET_WAITKIND_SYSCALL_RETURN:
5723 if (handle_syscall_event (ecs) == 0)
5724 process_event_stop_test (ecs);
5725 return;
5726
5727 case TARGET_WAITKIND_STOPPED:
5728 handle_signal_stop (ecs);
5729 return;
5730
5731 case TARGET_WAITKIND_NO_HISTORY:
5732 /* Reverse execution: target ran out of history info. */
5733
5734 /* Switch to the stopped thread. */
5735 context_switch (ecs);
5736 infrun_debug_printf ("stopped");
5737
5738 delete_just_stopped_threads_single_step_breakpoints ();
5739 ecs->event_thread->suspend.stop_pc
5740 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5741
5742 if (handle_stop_requested (ecs))
5743 return;
5744
5745 gdb::observers::no_history.notify ();
5746 stop_waiting (ecs);
5747 return;
5748 }
5749 }
5750
5751 /* Restart threads back to what they were trying to do back when we
5752 paused them for an in-line step-over. The EVENT_THREAD thread is
5753 ignored. */
5754
5755 static void
5756 restart_threads (struct thread_info *event_thread)
5757 {
5758 /* In case the instruction just stepped spawned a new thread. */
5759 update_thread_list ();
5760
5761 for (thread_info *tp : all_non_exited_threads ())
5762 {
5763 if (tp->inf->detaching)
5764 {
5765 infrun_debug_printf ("restart threads: [%s] inferior detaching",
5766 target_pid_to_str (tp->ptid).c_str ());
5767 continue;
5768 }
5769
5770 switch_to_thread_no_regs (tp);
5771
5772 if (tp == event_thread)
5773 {
5774 infrun_debug_printf ("restart threads: [%s] is event thread",
5775 target_pid_to_str (tp->ptid).c_str ());
5776 continue;
5777 }
5778
5779 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5780 {
5781 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5782 target_pid_to_str (tp->ptid).c_str ());
5783 continue;
5784 }
5785
5786 if (tp->resumed)
5787 {
5788 infrun_debug_printf ("restart threads: [%s] resumed",
5789 target_pid_to_str (tp->ptid).c_str ());
5790 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5791 continue;
5792 }
5793
5794 if (thread_is_in_step_over_chain (tp))
5795 {
5796 infrun_debug_printf ("restart threads: [%s] needs step-over",
5797 target_pid_to_str (tp->ptid).c_str ());
5798 gdb_assert (!tp->resumed);
5799 continue;
5800 }
5801
5802
5803 if (tp->suspend.waitstatus_pending_p)
5804 {
5805 infrun_debug_printf ("restart threads: [%s] has pending status",
5806 target_pid_to_str (tp->ptid).c_str ());
5807 tp->resumed = true;
5808 continue;
5809 }
5810
5811 gdb_assert (!tp->stop_requested);
5812
5813 /* If some thread needs to start a step-over at this point, it
5814 should still be in the step-over queue, and thus skipped
5815 above. */
5816 if (thread_still_needs_step_over (tp))
5817 {
5818 internal_error (__FILE__, __LINE__,
5819 "thread [%s] needs a step-over, but not in "
5820 "step-over queue\n",
5821 target_pid_to_str (tp->ptid).c_str ());
5822 }
5823
5824 if (currently_stepping (tp))
5825 {
5826 infrun_debug_printf ("restart threads: [%s] was stepping",
5827 target_pid_to_str (tp->ptid).c_str ());
5828 keep_going_stepped_thread (tp);
5829 }
5830 else
5831 {
5832 struct execution_control_state ecss;
5833 struct execution_control_state *ecs = &ecss;
5834
5835 infrun_debug_printf ("restart threads: [%s] continuing",
5836 target_pid_to_str (tp->ptid).c_str ());
5837 reset_ecs (ecs, tp);
5838 switch_to_thread (tp);
5839 keep_going_pass_signal (ecs);
5840 }
5841 }
5842 }
5843
5844 /* Callback for iterate_over_threads. Find a resumed thread that has
5845 a pending waitstatus. */
5846
5847 static int
5848 resumed_thread_with_pending_status (struct thread_info *tp,
5849 void *arg)
5850 {
5851 return (tp->resumed
5852 && tp->suspend.waitstatus_pending_p);
5853 }
5854
5855 /* Called when we get an event that may finish an in-line or
5856 out-of-line (displaced stepping) step-over started previously.
5857 Return true if the event is processed and we should go back to the
5858 event loop; false if the caller should continue processing the
5859 event. */
5860
5861 static int
5862 finish_step_over (struct execution_control_state *ecs)
5863 {
5864 displaced_step_finish (ecs->event_thread,
5865 ecs->event_thread->suspend.stop_signal);
5866
5867 bool had_step_over_info = step_over_info_valid_p ();
5868
5869 if (had_step_over_info)
5870 {
5871 /* If we're stepping over a breakpoint with all threads locked,
5872 then only the thread that was stepped should be reporting
5873 back an event. */
5874 gdb_assert (ecs->event_thread->control.trap_expected);
5875
5876 clear_step_over_info ();
5877 }
5878
5879 if (!target_is_non_stop_p ())
5880 return 0;
5881
5882 /* Start a new step-over in another thread if there's one that
5883 needs it. */
5884 start_step_over ();
5885
5886 /* If we were stepping over a breakpoint before, and haven't started
5887 a new in-line step-over sequence, then restart all other threads
5888 (except the event thread). We can't do this in all-stop, as then
5889 e.g., we wouldn't be able to issue any other remote packet until
5890 these other threads stop. */
5891 if (had_step_over_info && !step_over_info_valid_p ())
5892 {
5893 struct thread_info *pending;
5894
5895 /* If we only have threads with pending statuses, the restart
5896 below won't restart any thread and so nothing re-inserts the
5897 breakpoint we just stepped over. But we need it inserted
5898 when we later process the pending events, otherwise if
5899 another thread has a pending event for this breakpoint too,
5900 we'd discard its event (because the breakpoint that
5901 originally caused the event was no longer inserted). */
5902 context_switch (ecs);
5903 insert_breakpoints ();
5904
5905 restart_threads (ecs->event_thread);
5906
5907 /* If we have events pending, go through handle_inferior_event
5908 again, picking up a pending event at random. This avoids
5909 thread starvation. */
5910
5911 /* But not if we just stepped over a watchpoint in order to let
5912 the instruction execute so we can evaluate its expression.
5913 The set of watchpoints that triggered is recorded in the
5914 breakpoint objects themselves (see bp->watchpoint_triggered).
5915 If we processed another event first, that other event could
5916 clobber this info. */
5917 if (ecs->event_thread->stepping_over_watchpoint)
5918 return 0;
5919
5920 pending = iterate_over_threads (resumed_thread_with_pending_status,
5921 NULL);
5922 if (pending != NULL)
5923 {
5924 struct thread_info *tp = ecs->event_thread;
5925 struct regcache *regcache;
5926
5927 infrun_debug_printf ("found resumed threads with "
5928 "pending events, saving status");
5929
5930 gdb_assert (pending != tp);
5931
5932 /* Record the event thread's event for later. */
5933 save_waitstatus (tp, &ecs->ws);
5934 /* This was cleared early, by handle_inferior_event. Set it
5935 so this pending event is considered by
5936 do_target_wait. */
5937 tp->resumed = true;
5938
5939 gdb_assert (!tp->executing);
5940
5941 regcache = get_thread_regcache (tp);
5942 tp->suspend.stop_pc = regcache_read_pc (regcache);
5943
5944 infrun_debug_printf ("saved stop_pc=%s for %s "
5945 "(currently_stepping=%d)",
5946 paddress (target_gdbarch (),
5947 tp->suspend.stop_pc),
5948 target_pid_to_str (tp->ptid).c_str (),
5949 currently_stepping (tp));
5950
5951 /* This in-line step-over finished; clear this so we won't
5952 start a new one. This is what handle_signal_stop would
5953 do, if we returned false. */
5954 tp->stepping_over_breakpoint = 0;
5955
5956 /* Wake up the event loop again. */
5957 mark_async_event_handler (infrun_async_inferior_event_token);
5958
5959 prepare_to_wait (ecs);
5960 return 1;
5961 }
5962 }
5963
5964 return 0;
5965 }
5966
5967 /* Come here when the program has stopped with a signal. */
5968
5969 static void
5970 handle_signal_stop (struct execution_control_state *ecs)
5971 {
5972 struct frame_info *frame;
5973 struct gdbarch *gdbarch;
5974 int stopped_by_watchpoint;
5975 enum stop_kind stop_soon;
5976 int random_signal;
5977
5978 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5979
5980 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5981
5982 /* Do we need to clean up the state of a thread that has
5983 completed a displaced single-step? (Doing so usually affects
5984 the PC, so do it here, before we set stop_pc.) */
5985 if (finish_step_over (ecs))
5986 return;
5987
5988 /* If we either finished a single-step or hit a breakpoint, but
5989 the user wanted this thread to be stopped, pretend we got a
5990 SIG0 (generic unsignaled stop). */
5991 if (ecs->event_thread->stop_requested
5992 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5993 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5994
5995 ecs->event_thread->suspend.stop_pc
5996 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5997
5998 context_switch (ecs);
5999
6000 if (deprecated_context_hook)
6001 deprecated_context_hook (ecs->event_thread->global_num);
6002
6003 if (debug_infrun)
6004 {
6005 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
6006 struct gdbarch *reg_gdbarch = regcache->arch ();
6007
6008 infrun_debug_printf ("stop_pc=%s",
6009 paddress (reg_gdbarch,
6010 ecs->event_thread->suspend.stop_pc));
6011 if (target_stopped_by_watchpoint ())
6012 {
6013 CORE_ADDR addr;
6014
6015 infrun_debug_printf ("stopped by watchpoint");
6016
6017 if (target_stopped_data_address (current_inferior ()->top_target (),
6018 &addr))
6019 infrun_debug_printf ("stopped data address=%s",
6020 paddress (reg_gdbarch, addr));
6021 else
6022 infrun_debug_printf ("(no data address available)");
6023 }
6024 }
6025
6026 /* This is originated from start_remote(), start_inferior() and
6027 shared libraries hook functions. */
6028 stop_soon = get_inferior_stop_soon (ecs);
6029 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
6030 {
6031 infrun_debug_printf ("quietly stopped");
6032 stop_print_frame = true;
6033 stop_waiting (ecs);
6034 return;
6035 }
6036
6037 /* This originates from attach_command(). We need to overwrite
6038 the stop_signal here, because some kernels don't ignore a
6039 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
6040 See more comments in inferior.h. On the other hand, if we
6041 get a non-SIGSTOP, report it to the user - assume the backend
6042 will handle the SIGSTOP if it should show up later.
6043
6044 Also consider that the attach is complete when we see a
6045 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
6046 target extended-remote report it instead of a SIGSTOP
6047 (e.g. gdbserver). We already rely on SIGTRAP being our
6048 signal, so this is no exception.
6049
6050 Also consider that the attach is complete when we see a
6051 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
6052 the target to stop all threads of the inferior, in case the
6053 low level attach operation doesn't stop them implicitly. If
6054 they weren't stopped implicitly, then the stub will report a
6055 GDB_SIGNAL_0, meaning: stopped for no particular reason
6056 other than GDB's request. */
6057 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
6058 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
6059 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6060 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
6061 {
6062 stop_print_frame = true;
6063 stop_waiting (ecs);
6064 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6065 return;
6066 }
6067
6068 /* At this point, get hold of the now-current thread's frame. */
6069 frame = get_current_frame ();
6070 gdbarch = get_frame_arch (frame);
6071
6072 /* Pull the single step breakpoints out of the target. */
6073 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
6074 {
6075 struct regcache *regcache;
6076 CORE_ADDR pc;
6077
6078 regcache = get_thread_regcache (ecs->event_thread);
6079 const address_space *aspace = regcache->aspace ();
6080
6081 pc = regcache_read_pc (regcache);
6082
6083 /* However, before doing so, if this single-step breakpoint was
6084 actually for another thread, set this thread up for moving
6085 past it. */
6086 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
6087 aspace, pc))
6088 {
6089 if (single_step_breakpoint_inserted_here_p (aspace, pc))
6090 {
6091 infrun_debug_printf ("[%s] hit another thread's single-step "
6092 "breakpoint",
6093 target_pid_to_str (ecs->ptid).c_str ());
6094 ecs->hit_singlestep_breakpoint = 1;
6095 }
6096 }
6097 else
6098 {
6099 infrun_debug_printf ("[%s] hit its single-step breakpoint",
6100 target_pid_to_str (ecs->ptid).c_str ());
6101 }
6102 }
6103 delete_just_stopped_threads_single_step_breakpoints ();
6104
6105 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6106 && ecs->event_thread->control.trap_expected
6107 && ecs->event_thread->stepping_over_watchpoint)
6108 stopped_by_watchpoint = 0;
6109 else
6110 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
6111
6112 /* If necessary, step over this watchpoint. We'll be back to display
6113 it in a moment. */
6114 if (stopped_by_watchpoint
6115 && (target_have_steppable_watchpoint ()
6116 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
6117 {
6118 /* At this point, we are stopped at an instruction which has
6119 attempted to write to a piece of memory under control of
6120 a watchpoint. The instruction hasn't actually executed
6121 yet. If we were to evaluate the watchpoint expression
6122 now, we would get the old value, and therefore no change
6123 would seem to have occurred.
6124
6125 In order to make watchpoints work `right', we really need
6126 to complete the memory write, and then evaluate the
6127 watchpoint expression. We do this by single-stepping the
6128 target.
6129
6130 It may not be necessary to disable the watchpoint to step over
6131 it. For example, the PA can (with some kernel cooperation)
6132 single step over a watchpoint without disabling the watchpoint.
6133
6134 It is far more common to need to disable a watchpoint to step
6135 the inferior over it. If we have non-steppable watchpoints,
6136 we must disable the current watchpoint; it's simplest to
6137 disable all watchpoints.
6138
6139 Any breakpoint at PC must also be stepped over -- if there's
6140 one, it will have already triggered before the watchpoint
6141 triggered, and we either already reported it to the user, or
6142 it didn't cause a stop and we called keep_going. In either
6143 case, if there was a breakpoint at PC, we must be trying to
6144 step past it. */
6145 ecs->event_thread->stepping_over_watchpoint = 1;
6146 keep_going (ecs);
6147 return;
6148 }
6149
6150 ecs->event_thread->stepping_over_breakpoint = 0;
6151 ecs->event_thread->stepping_over_watchpoint = 0;
6152 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
6153 ecs->event_thread->control.stop_step = 0;
6154 stop_print_frame = true;
6155 stopped_by_random_signal = 0;
6156 bpstat stop_chain = NULL;
6157
6158 /* Hide inlined functions starting here, unless we just performed stepi or
6159 nexti. After stepi and nexti, always show the innermost frame (not any
6160 inline function call sites). */
6161 if (ecs->event_thread->control.step_range_end != 1)
6162 {
6163 const address_space *aspace
6164 = get_thread_regcache (ecs->event_thread)->aspace ();
6165
6166 /* skip_inline_frames is expensive, so we avoid it if we can
6167 determine that the address is one where functions cannot have
6168 been inlined. This improves performance with inferiors that
6169 load a lot of shared libraries, because the solib event
6170 breakpoint is defined as the address of a function (i.e. not
6171 inline). Note that we have to check the previous PC as well
6172 as the current one to catch cases when we have just
6173 single-stepped off a breakpoint prior to reinstating it.
6174 Note that we're assuming that the code we single-step to is
6175 not inline, but that's not definitive: there's nothing
6176 preventing the event breakpoint function from containing
6177 inlined code, and the single-step ending up there. If the
6178 user had set a breakpoint on that inlined code, the missing
6179 skip_inline_frames call would break things. Fortunately
6180 that's an extremely unlikely scenario. */
6181 if (!pc_at_non_inline_function (aspace,
6182 ecs->event_thread->suspend.stop_pc,
6183 &ecs->ws)
6184 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6185 && ecs->event_thread->control.trap_expected
6186 && pc_at_non_inline_function (aspace,
6187 ecs->event_thread->prev_pc,
6188 &ecs->ws)))
6189 {
6190 stop_chain = build_bpstat_chain (aspace,
6191 ecs->event_thread->suspend.stop_pc,
6192 &ecs->ws);
6193 skip_inline_frames (ecs->event_thread, stop_chain);
6194
6195 /* Re-fetch current thread's frame in case that invalidated
6196 the frame cache. */
6197 frame = get_current_frame ();
6198 gdbarch = get_frame_arch (frame);
6199 }
6200 }
6201
6202 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6203 && ecs->event_thread->control.trap_expected
6204 && gdbarch_single_step_through_delay_p (gdbarch)
6205 && currently_stepping (ecs->event_thread))
6206 {
6207 /* We're trying to step off a breakpoint. Turns out that we're
6208 also on an instruction that needs to be stepped multiple
6209 times before it's been fully executing. E.g., architectures
6210 with a delay slot. It needs to be stepped twice, once for
6211 the instruction and once for the delay slot. */
6212 int step_through_delay
6213 = gdbarch_single_step_through_delay (gdbarch, frame);
6214
6215 if (step_through_delay)
6216 infrun_debug_printf ("step through delay");
6217
6218 if (ecs->event_thread->control.step_range_end == 0
6219 && step_through_delay)
6220 {
6221 /* The user issued a continue when stopped at a breakpoint.
6222 Set up for another trap and get out of here. */
6223 ecs->event_thread->stepping_over_breakpoint = 1;
6224 keep_going (ecs);
6225 return;
6226 }
6227 else if (step_through_delay)
6228 {
6229 /* The user issued a step when stopped at a breakpoint.
6230 Maybe we should stop, maybe we should not - the delay
6231 slot *might* correspond to a line of source. In any
6232 case, don't decide that here, just set
6233 ecs->stepping_over_breakpoint, making sure we
6234 single-step again before breakpoints are re-inserted. */
6235 ecs->event_thread->stepping_over_breakpoint = 1;
6236 }
6237 }
6238
6239 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6240 handles this event. */
6241 ecs->event_thread->control.stop_bpstat
6242 = bpstat_stop_status (get_current_regcache ()->aspace (),
6243 ecs->event_thread->suspend.stop_pc,
6244 ecs->event_thread, &ecs->ws, stop_chain);
6245
6246 /* Following in case break condition called a
6247 function. */
6248 stop_print_frame = true;
6249
6250 /* This is where we handle "moribund" watchpoints. Unlike
6251 software breakpoints traps, hardware watchpoint traps are
6252 always distinguishable from random traps. If no high-level
6253 watchpoint is associated with the reported stop data address
6254 anymore, then the bpstat does not explain the signal ---
6255 simply make sure to ignore it if `stopped_by_watchpoint' is
6256 set. */
6257
6258 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6259 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6260 GDB_SIGNAL_TRAP)
6261 && stopped_by_watchpoint)
6262 {
6263 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6264 "ignoring");
6265 }
6266
6267 /* NOTE: cagney/2003-03-29: These checks for a random signal
6268 at one stage in the past included checks for an inferior
6269 function call's call dummy's return breakpoint. The original
6270 comment, that went with the test, read:
6271
6272 ``End of a stack dummy. Some systems (e.g. Sony news) give
6273 another signal besides SIGTRAP, so check here as well as
6274 above.''
6275
6276 If someone ever tries to get call dummys on a
6277 non-executable stack to work (where the target would stop
6278 with something like a SIGSEGV), then those tests might need
6279 to be re-instated. Given, however, that the tests were only
6280 enabled when momentary breakpoints were not being used, I
6281 suspect that it won't be the case.
6282
6283 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6284 be necessary for call dummies on a non-executable stack on
6285 SPARC. */
6286
6287 /* See if the breakpoints module can explain the signal. */
6288 random_signal
6289 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6290 ecs->event_thread->suspend.stop_signal);
6291
6292 /* Maybe this was a trap for a software breakpoint that has since
6293 been removed. */
6294 if (random_signal && target_stopped_by_sw_breakpoint ())
6295 {
6296 if (gdbarch_program_breakpoint_here_p (gdbarch,
6297 ecs->event_thread->suspend.stop_pc))
6298 {
6299 struct regcache *regcache;
6300 int decr_pc;
6301
6302 /* Re-adjust PC to what the program would see if GDB was not
6303 debugging it. */
6304 regcache = get_thread_regcache (ecs->event_thread);
6305 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6306 if (decr_pc != 0)
6307 {
6308 gdb::optional<scoped_restore_tmpl<int>>
6309 restore_operation_disable;
6310
6311 if (record_full_is_used ())
6312 restore_operation_disable.emplace
6313 (record_full_gdb_operation_disable_set ());
6314
6315 regcache_write_pc (regcache,
6316 ecs->event_thread->suspend.stop_pc + decr_pc);
6317 }
6318 }
6319 else
6320 {
6321 /* A delayed software breakpoint event. Ignore the trap. */
6322 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6323 random_signal = 0;
6324 }
6325 }
6326
6327 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6328 has since been removed. */
6329 if (random_signal && target_stopped_by_hw_breakpoint ())
6330 {
6331 /* A delayed hardware breakpoint event. Ignore the trap. */
6332 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6333 "trap, ignoring");
6334 random_signal = 0;
6335 }
6336
6337 /* If not, perhaps stepping/nexting can. */
6338 if (random_signal)
6339 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6340 && currently_stepping (ecs->event_thread));
6341
6342 /* Perhaps the thread hit a single-step breakpoint of _another_
6343 thread. Single-step breakpoints are transparent to the
6344 breakpoints module. */
6345 if (random_signal)
6346 random_signal = !ecs->hit_singlestep_breakpoint;
6347
6348 /* No? Perhaps we got a moribund watchpoint. */
6349 if (random_signal)
6350 random_signal = !stopped_by_watchpoint;
6351
6352 /* Always stop if the user explicitly requested this thread to
6353 remain stopped. */
6354 if (ecs->event_thread->stop_requested)
6355 {
6356 random_signal = 1;
6357 infrun_debug_printf ("user-requested stop");
6358 }
6359
6360 /* For the program's own signals, act according to
6361 the signal handling tables. */
6362
6363 if (random_signal)
6364 {
6365 /* Signal not for debugging purposes. */
6366 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6367
6368 infrun_debug_printf ("random signal (%s)",
6369 gdb_signal_to_symbol_string (stop_signal));
6370
6371 stopped_by_random_signal = 1;
6372
6373 /* Always stop on signals if we're either just gaining control
6374 of the program, or the user explicitly requested this thread
6375 to remain stopped. */
6376 if (stop_soon != NO_STOP_QUIETLY
6377 || ecs->event_thread->stop_requested
6378 || signal_stop_state (ecs->event_thread->suspend.stop_signal))
6379 {
6380 stop_waiting (ecs);
6381 return;
6382 }
6383
6384 /* Notify observers the signal has "handle print" set. Note we
6385 returned early above if stopping; normal_stop handles the
6386 printing in that case. */
6387 if (signal_print[ecs->event_thread->suspend.stop_signal])
6388 {
6389 /* The signal table tells us to print about this signal. */
6390 target_terminal::ours_for_output ();
6391 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6392 target_terminal::inferior ();
6393 }
6394
6395 /* Clear the signal if it should not be passed. */
6396 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6397 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6398
6399 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6400 && ecs->event_thread->control.trap_expected
6401 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6402 {
6403 /* We were just starting a new sequence, attempting to
6404 single-step off of a breakpoint and expecting a SIGTRAP.
6405 Instead this signal arrives. This signal will take us out
6406 of the stepping range so GDB needs to remember to, when
6407 the signal handler returns, resume stepping off that
6408 breakpoint. */
6409 /* To simplify things, "continue" is forced to use the same
6410 code paths as single-step - set a breakpoint at the
6411 signal return address and then, once hit, step off that
6412 breakpoint. */
6413 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6414
6415 insert_hp_step_resume_breakpoint_at_frame (frame);
6416 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6417 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6418 ecs->event_thread->control.trap_expected = 0;
6419
6420 /* If we were nexting/stepping some other thread, switch to
6421 it, so that we don't continue it, losing control. */
6422 if (!switch_back_to_stepped_thread (ecs))
6423 keep_going (ecs);
6424 return;
6425 }
6426
6427 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6428 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6429 ecs->event_thread)
6430 || ecs->event_thread->control.step_range_end == 1)
6431 && frame_id_eq (get_stack_frame_id (frame),
6432 ecs->event_thread->control.step_stack_frame_id)
6433 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6434 {
6435 /* The inferior is about to take a signal that will take it
6436 out of the single step range. Set a breakpoint at the
6437 current PC (which is presumably where the signal handler
6438 will eventually return) and then allow the inferior to
6439 run free.
6440
6441 Note that this is only needed for a signal delivered
6442 while in the single-step range. Nested signals aren't a
6443 problem as they eventually all return. */
6444 infrun_debug_printf ("signal may take us out of single-step range");
6445
6446 clear_step_over_info ();
6447 insert_hp_step_resume_breakpoint_at_frame (frame);
6448 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6449 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6450 ecs->event_thread->control.trap_expected = 0;
6451 keep_going (ecs);
6452 return;
6453 }
6454
6455 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6456 when either there's a nested signal, or when there's a
6457 pending signal enabled just as the signal handler returns
6458 (leaving the inferior at the step-resume-breakpoint without
6459 actually executing it). Either way continue until the
6460 breakpoint is really hit. */
6461
6462 if (!switch_back_to_stepped_thread (ecs))
6463 {
6464 infrun_debug_printf ("random signal, keep going");
6465
6466 keep_going (ecs);
6467 }
6468 return;
6469 }
6470
6471 process_event_stop_test (ecs);
6472 }
6473
6474 /* Come here when we've got some debug event / signal we can explain
6475 (IOW, not a random signal), and test whether it should cause a
6476 stop, or whether we should resume the inferior (transparently).
6477 E.g., could be a breakpoint whose condition evaluates false; we
6478 could be still stepping within the line; etc. */
6479
6480 static void
6481 process_event_stop_test (struct execution_control_state *ecs)
6482 {
6483 struct symtab_and_line stop_pc_sal;
6484 struct frame_info *frame;
6485 struct gdbarch *gdbarch;
6486 CORE_ADDR jmp_buf_pc;
6487 struct bpstat_what what;
6488
6489 /* Handle cases caused by hitting a breakpoint. */
6490
6491 frame = get_current_frame ();
6492 gdbarch = get_frame_arch (frame);
6493
6494 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6495
6496 if (what.call_dummy)
6497 {
6498 stop_stack_dummy = what.call_dummy;
6499 }
6500
6501 /* A few breakpoint types have callbacks associated (e.g.,
6502 bp_jit_event). Run them now. */
6503 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6504
6505 /* If we hit an internal event that triggers symbol changes, the
6506 current frame will be invalidated within bpstat_what (e.g., if we
6507 hit an internal solib event). Re-fetch it. */
6508 frame = get_current_frame ();
6509 gdbarch = get_frame_arch (frame);
6510
6511 switch (what.main_action)
6512 {
6513 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6514 /* If we hit the breakpoint at longjmp while stepping, we
6515 install a momentary breakpoint at the target of the
6516 jmp_buf. */
6517
6518 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6519
6520 ecs->event_thread->stepping_over_breakpoint = 1;
6521
6522 if (what.is_longjmp)
6523 {
6524 struct value *arg_value;
6525
6526 /* If we set the longjmp breakpoint via a SystemTap probe,
6527 then use it to extract the arguments. The destination PC
6528 is the third argument to the probe. */
6529 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6530 if (arg_value)
6531 {
6532 jmp_buf_pc = value_as_address (arg_value);
6533 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6534 }
6535 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6536 || !gdbarch_get_longjmp_target (gdbarch,
6537 frame, &jmp_buf_pc))
6538 {
6539 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6540 "(!gdbarch_get_longjmp_target)");
6541 keep_going (ecs);
6542 return;
6543 }
6544
6545 /* Insert a breakpoint at resume address. */
6546 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6547 }
6548 else
6549 check_exception_resume (ecs, frame);
6550 keep_going (ecs);
6551 return;
6552
6553 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6554 {
6555 struct frame_info *init_frame;
6556
6557 /* There are several cases to consider.
6558
6559 1. The initiating frame no longer exists. In this case we
6560 must stop, because the exception or longjmp has gone too
6561 far.
6562
6563 2. The initiating frame exists, and is the same as the
6564 current frame. We stop, because the exception or longjmp
6565 has been caught.
6566
6567 3. The initiating frame exists and is different from the
6568 current frame. This means the exception or longjmp has
6569 been caught beneath the initiating frame, so keep going.
6570
6571 4. longjmp breakpoint has been placed just to protect
6572 against stale dummy frames and user is not interested in
6573 stopping around longjmps. */
6574
6575 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6576
6577 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6578 != NULL);
6579 delete_exception_resume_breakpoint (ecs->event_thread);
6580
6581 if (what.is_longjmp)
6582 {
6583 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6584
6585 if (!frame_id_p (ecs->event_thread->initiating_frame))
6586 {
6587 /* Case 4. */
6588 keep_going (ecs);
6589 return;
6590 }
6591 }
6592
6593 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6594
6595 if (init_frame)
6596 {
6597 struct frame_id current_id
6598 = get_frame_id (get_current_frame ());
6599 if (frame_id_eq (current_id,
6600 ecs->event_thread->initiating_frame))
6601 {
6602 /* Case 2. Fall through. */
6603 }
6604 else
6605 {
6606 /* Case 3. */
6607 keep_going (ecs);
6608 return;
6609 }
6610 }
6611
6612 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6613 exists. */
6614 delete_step_resume_breakpoint (ecs->event_thread);
6615
6616 end_stepping_range (ecs);
6617 }
6618 return;
6619
6620 case BPSTAT_WHAT_SINGLE:
6621 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6622 ecs->event_thread->stepping_over_breakpoint = 1;
6623 /* Still need to check other stuff, at least the case where we
6624 are stepping and step out of the right range. */
6625 break;
6626
6627 case BPSTAT_WHAT_STEP_RESUME:
6628 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6629
6630 delete_step_resume_breakpoint (ecs->event_thread);
6631 if (ecs->event_thread->control.proceed_to_finish
6632 && execution_direction == EXEC_REVERSE)
6633 {
6634 struct thread_info *tp = ecs->event_thread;
6635
6636 /* We are finishing a function in reverse, and just hit the
6637 step-resume breakpoint at the start address of the
6638 function, and we're almost there -- just need to back up
6639 by one more single-step, which should take us back to the
6640 function call. */
6641 tp->control.step_range_start = tp->control.step_range_end = 1;
6642 keep_going (ecs);
6643 return;
6644 }
6645 fill_in_stop_func (gdbarch, ecs);
6646 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6647 && execution_direction == EXEC_REVERSE)
6648 {
6649 /* We are stepping over a function call in reverse, and just
6650 hit the step-resume breakpoint at the start address of
6651 the function. Go back to single-stepping, which should
6652 take us back to the function call. */
6653 ecs->event_thread->stepping_over_breakpoint = 1;
6654 keep_going (ecs);
6655 return;
6656 }
6657 break;
6658
6659 case BPSTAT_WHAT_STOP_NOISY:
6660 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6661 stop_print_frame = true;
6662
6663 /* Assume the thread stopped for a breakpoint. We'll still check
6664 whether a/the breakpoint is there when the thread is next
6665 resumed. */
6666 ecs->event_thread->stepping_over_breakpoint = 1;
6667
6668 stop_waiting (ecs);
6669 return;
6670
6671 case BPSTAT_WHAT_STOP_SILENT:
6672 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6673 stop_print_frame = false;
6674
6675 /* Assume the thread stopped for a breakpoint. We'll still check
6676 whether a/the breakpoint is there when the thread is next
6677 resumed. */
6678 ecs->event_thread->stepping_over_breakpoint = 1;
6679 stop_waiting (ecs);
6680 return;
6681
6682 case BPSTAT_WHAT_HP_STEP_RESUME:
6683 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6684
6685 delete_step_resume_breakpoint (ecs->event_thread);
6686 if (ecs->event_thread->step_after_step_resume_breakpoint)
6687 {
6688 /* Back when the step-resume breakpoint was inserted, we
6689 were trying to single-step off a breakpoint. Go back to
6690 doing that. */
6691 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6692 ecs->event_thread->stepping_over_breakpoint = 1;
6693 keep_going (ecs);
6694 return;
6695 }
6696 break;
6697
6698 case BPSTAT_WHAT_KEEP_CHECKING:
6699 break;
6700 }
6701
6702 /* If we stepped a permanent breakpoint and we had a high priority
6703 step-resume breakpoint for the address we stepped, but we didn't
6704 hit it, then we must have stepped into the signal handler. The
6705 step-resume was only necessary to catch the case of _not_
6706 stepping into the handler, so delete it, and fall through to
6707 checking whether the step finished. */
6708 if (ecs->event_thread->stepped_breakpoint)
6709 {
6710 struct breakpoint *sr_bp
6711 = ecs->event_thread->control.step_resume_breakpoint;
6712
6713 if (sr_bp != NULL
6714 && sr_bp->loc->permanent
6715 && sr_bp->type == bp_hp_step_resume
6716 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6717 {
6718 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6719 delete_step_resume_breakpoint (ecs->event_thread);
6720 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6721 }
6722 }
6723
6724 /* We come here if we hit a breakpoint but should not stop for it.
6725 Possibly we also were stepping and should stop for that. So fall
6726 through and test for stepping. But, if not stepping, do not
6727 stop. */
6728
6729 /* In all-stop mode, if we're currently stepping but have stopped in
6730 some other thread, we need to switch back to the stepped thread. */
6731 if (switch_back_to_stepped_thread (ecs))
6732 return;
6733
6734 if (ecs->event_thread->control.step_resume_breakpoint)
6735 {
6736 infrun_debug_printf ("step-resume breakpoint is inserted");
6737
6738 /* Having a step-resume breakpoint overrides anything
6739 else having to do with stepping commands until
6740 that breakpoint is reached. */
6741 keep_going (ecs);
6742 return;
6743 }
6744
6745 if (ecs->event_thread->control.step_range_end == 0)
6746 {
6747 infrun_debug_printf ("no stepping, continue");
6748 /* Likewise if we aren't even stepping. */
6749 keep_going (ecs);
6750 return;
6751 }
6752
6753 /* Re-fetch current thread's frame in case the code above caused
6754 the frame cache to be re-initialized, making our FRAME variable
6755 a dangling pointer. */
6756 frame = get_current_frame ();
6757 gdbarch = get_frame_arch (frame);
6758 fill_in_stop_func (gdbarch, ecs);
6759
6760 /* If stepping through a line, keep going if still within it.
6761
6762 Note that step_range_end is the address of the first instruction
6763 beyond the step range, and NOT the address of the last instruction
6764 within it!
6765
6766 Note also that during reverse execution, we may be stepping
6767 through a function epilogue and therefore must detect when
6768 the current-frame changes in the middle of a line. */
6769
6770 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6771 ecs->event_thread)
6772 && (execution_direction != EXEC_REVERSE
6773 || frame_id_eq (get_frame_id (frame),
6774 ecs->event_thread->control.step_frame_id)))
6775 {
6776 infrun_debug_printf
6777 ("stepping inside range [%s-%s]",
6778 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6779 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6780
6781 /* Tentatively re-enable range stepping; `resume' disables it if
6782 necessary (e.g., if we're stepping over a breakpoint or we
6783 have software watchpoints). */
6784 ecs->event_thread->control.may_range_step = 1;
6785
6786 /* When stepping backward, stop at beginning of line range
6787 (unless it's the function entry point, in which case
6788 keep going back to the call point). */
6789 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6790 if (stop_pc == ecs->event_thread->control.step_range_start
6791 && stop_pc != ecs->stop_func_start
6792 && execution_direction == EXEC_REVERSE)
6793 end_stepping_range (ecs);
6794 else
6795 keep_going (ecs);
6796
6797 return;
6798 }
6799
6800 /* We stepped out of the stepping range. */
6801
6802 /* If we are stepping at the source level and entered the runtime
6803 loader dynamic symbol resolution code...
6804
6805 EXEC_FORWARD: we keep on single stepping until we exit the run
6806 time loader code and reach the callee's address.
6807
6808 EXEC_REVERSE: we've already executed the callee (backward), and
6809 the runtime loader code is handled just like any other
6810 undebuggable function call. Now we need only keep stepping
6811 backward through the trampoline code, and that's handled further
6812 down, so there is nothing for us to do here. */
6813
6814 if (execution_direction != EXEC_REVERSE
6815 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6816 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6817 {
6818 CORE_ADDR pc_after_resolver =
6819 gdbarch_skip_solib_resolver (gdbarch,
6820 ecs->event_thread->suspend.stop_pc);
6821
6822 infrun_debug_printf ("stepped into dynsym resolve code");
6823
6824 if (pc_after_resolver)
6825 {
6826 /* Set up a step-resume breakpoint at the address
6827 indicated by SKIP_SOLIB_RESOLVER. */
6828 symtab_and_line sr_sal;
6829 sr_sal.pc = pc_after_resolver;
6830 sr_sal.pspace = get_frame_program_space (frame);
6831
6832 insert_step_resume_breakpoint_at_sal (gdbarch,
6833 sr_sal, null_frame_id);
6834 }
6835
6836 keep_going (ecs);
6837 return;
6838 }
6839
6840 /* Step through an indirect branch thunk. */
6841 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6842 && gdbarch_in_indirect_branch_thunk (gdbarch,
6843 ecs->event_thread->suspend.stop_pc))
6844 {
6845 infrun_debug_printf ("stepped into indirect branch thunk");
6846 keep_going (ecs);
6847 return;
6848 }
6849
6850 if (ecs->event_thread->control.step_range_end != 1
6851 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6852 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6853 && get_frame_type (frame) == SIGTRAMP_FRAME)
6854 {
6855 infrun_debug_printf ("stepped into signal trampoline");
6856 /* The inferior, while doing a "step" or "next", has ended up in
6857 a signal trampoline (either by a signal being delivered or by
6858 the signal handler returning). Just single-step until the
6859 inferior leaves the trampoline (either by calling the handler
6860 or returning). */
6861 keep_going (ecs);
6862 return;
6863 }
6864
6865 /* If we're in the return path from a shared library trampoline,
6866 we want to proceed through the trampoline when stepping. */
6867 /* macro/2012-04-25: This needs to come before the subroutine
6868 call check below as on some targets return trampolines look
6869 like subroutine calls (MIPS16 return thunks). */
6870 if (gdbarch_in_solib_return_trampoline (gdbarch,
6871 ecs->event_thread->suspend.stop_pc,
6872 ecs->stop_func_name)
6873 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6874 {
6875 /* Determine where this trampoline returns. */
6876 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6877 CORE_ADDR real_stop_pc
6878 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6879
6880 infrun_debug_printf ("stepped into solib return tramp");
6881
6882 /* Only proceed through if we know where it's going. */
6883 if (real_stop_pc)
6884 {
6885 /* And put the step-breakpoint there and go until there. */
6886 symtab_and_line sr_sal;
6887 sr_sal.pc = real_stop_pc;
6888 sr_sal.section = find_pc_overlay (sr_sal.pc);
6889 sr_sal.pspace = get_frame_program_space (frame);
6890
6891 /* Do not specify what the fp should be when we stop since
6892 on some machines the prologue is where the new fp value
6893 is established. */
6894 insert_step_resume_breakpoint_at_sal (gdbarch,
6895 sr_sal, null_frame_id);
6896
6897 /* Restart without fiddling with the step ranges or
6898 other state. */
6899 keep_going (ecs);
6900 return;
6901 }
6902 }
6903
6904 /* Check for subroutine calls. The check for the current frame
6905 equalling the step ID is not necessary - the check of the
6906 previous frame's ID is sufficient - but it is a common case and
6907 cheaper than checking the previous frame's ID.
6908
6909 NOTE: frame_id_eq will never report two invalid frame IDs as
6910 being equal, so to get into this block, both the current and
6911 previous frame must have valid frame IDs. */
6912 /* The outer_frame_id check is a heuristic to detect stepping
6913 through startup code. If we step over an instruction which
6914 sets the stack pointer from an invalid value to a valid value,
6915 we may detect that as a subroutine call from the mythical
6916 "outermost" function. This could be fixed by marking
6917 outermost frames as !stack_p,code_p,special_p. Then the
6918 initial outermost frame, before sp was valid, would
6919 have code_addr == &_start. See the comment in frame_id_eq
6920 for more. */
6921 if (!frame_id_eq (get_stack_frame_id (frame),
6922 ecs->event_thread->control.step_stack_frame_id)
6923 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6924 ecs->event_thread->control.step_stack_frame_id)
6925 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6926 outer_frame_id)
6927 || (ecs->event_thread->control.step_start_function
6928 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6929 {
6930 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6931 CORE_ADDR real_stop_pc;
6932
6933 infrun_debug_printf ("stepped into subroutine");
6934
6935 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6936 {
6937 /* I presume that step_over_calls is only 0 when we're
6938 supposed to be stepping at the assembly language level
6939 ("stepi"). Just stop. */
6940 /* And this works the same backward as frontward. MVS */
6941 end_stepping_range (ecs);
6942 return;
6943 }
6944
6945 /* Reverse stepping through solib trampolines. */
6946
6947 if (execution_direction == EXEC_REVERSE
6948 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6949 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6950 || (ecs->stop_func_start == 0
6951 && in_solib_dynsym_resolve_code (stop_pc))))
6952 {
6953 /* Any solib trampoline code can be handled in reverse
6954 by simply continuing to single-step. We have already
6955 executed the solib function (backwards), and a few
6956 steps will take us back through the trampoline to the
6957 caller. */
6958 keep_going (ecs);
6959 return;
6960 }
6961
6962 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6963 {
6964 /* We're doing a "next".
6965
6966 Normal (forward) execution: set a breakpoint at the
6967 callee's return address (the address at which the caller
6968 will resume).
6969
6970 Reverse (backward) execution. set the step-resume
6971 breakpoint at the start of the function that we just
6972 stepped into (backwards), and continue to there. When we
6973 get there, we'll need to single-step back to the caller. */
6974
6975 if (execution_direction == EXEC_REVERSE)
6976 {
6977 /* If we're already at the start of the function, we've either
6978 just stepped backward into a single instruction function,
6979 or stepped back out of a signal handler to the first instruction
6980 of the function. Just keep going, which will single-step back
6981 to the caller. */
6982 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6983 {
6984 /* Normal function call return (static or dynamic). */
6985 symtab_and_line sr_sal;
6986 sr_sal.pc = ecs->stop_func_start;
6987 sr_sal.pspace = get_frame_program_space (frame);
6988 insert_step_resume_breakpoint_at_sal (gdbarch,
6989 sr_sal, null_frame_id);
6990 }
6991 }
6992 else
6993 insert_step_resume_breakpoint_at_caller (frame);
6994
6995 keep_going (ecs);
6996 return;
6997 }
6998
6999 /* If we are in a function call trampoline (a stub between the
7000 calling routine and the real function), locate the real
7001 function. That's what tells us (a) whether we want to step
7002 into it at all, and (b) what prologue we want to run to the
7003 end of, if we do step into it. */
7004 real_stop_pc = skip_language_trampoline (frame, stop_pc);
7005 if (real_stop_pc == 0)
7006 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
7007 if (real_stop_pc != 0)
7008 ecs->stop_func_start = real_stop_pc;
7009
7010 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
7011 {
7012 symtab_and_line sr_sal;
7013 sr_sal.pc = ecs->stop_func_start;
7014 sr_sal.pspace = get_frame_program_space (frame);
7015
7016 insert_step_resume_breakpoint_at_sal (gdbarch,
7017 sr_sal, null_frame_id);
7018 keep_going (ecs);
7019 return;
7020 }
7021
7022 /* If we have line number information for the function we are
7023 thinking of stepping into and the function isn't on the skip
7024 list, step into it.
7025
7026 If there are several symtabs at that PC (e.g. with include
7027 files), just want to know whether *any* of them have line
7028 numbers. find_pc_line handles this. */
7029 {
7030 struct symtab_and_line tmp_sal;
7031
7032 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
7033 if (tmp_sal.line != 0
7034 && !function_name_is_marked_for_skip (ecs->stop_func_name,
7035 tmp_sal)
7036 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
7037 {
7038 if (execution_direction == EXEC_REVERSE)
7039 handle_step_into_function_backward (gdbarch, ecs);
7040 else
7041 handle_step_into_function (gdbarch, ecs);
7042 return;
7043 }
7044 }
7045
7046 /* If we have no line number and the step-stop-if-no-debug is
7047 set, we stop the step so that the user has a chance to switch
7048 in assembly mode. */
7049 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7050 && step_stop_if_no_debug)
7051 {
7052 end_stepping_range (ecs);
7053 return;
7054 }
7055
7056 if (execution_direction == EXEC_REVERSE)
7057 {
7058 /* If we're already at the start of the function, we've either just
7059 stepped backward into a single instruction function without line
7060 number info, or stepped back out of a signal handler to the first
7061 instruction of the function without line number info. Just keep
7062 going, which will single-step back to the caller. */
7063 if (ecs->stop_func_start != stop_pc)
7064 {
7065 /* Set a breakpoint at callee's start address.
7066 From there we can step once and be back in the caller. */
7067 symtab_and_line sr_sal;
7068 sr_sal.pc = ecs->stop_func_start;
7069 sr_sal.pspace = get_frame_program_space (frame);
7070 insert_step_resume_breakpoint_at_sal (gdbarch,
7071 sr_sal, null_frame_id);
7072 }
7073 }
7074 else
7075 /* Set a breakpoint at callee's return address (the address
7076 at which the caller will resume). */
7077 insert_step_resume_breakpoint_at_caller (frame);
7078
7079 keep_going (ecs);
7080 return;
7081 }
7082
7083 /* Reverse stepping through solib trampolines. */
7084
7085 if (execution_direction == EXEC_REVERSE
7086 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
7087 {
7088 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
7089
7090 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
7091 || (ecs->stop_func_start == 0
7092 && in_solib_dynsym_resolve_code (stop_pc)))
7093 {
7094 /* Any solib trampoline code can be handled in reverse
7095 by simply continuing to single-step. We have already
7096 executed the solib function (backwards), and a few
7097 steps will take us back through the trampoline to the
7098 caller. */
7099 keep_going (ecs);
7100 return;
7101 }
7102 else if (in_solib_dynsym_resolve_code (stop_pc))
7103 {
7104 /* Stepped backward into the solib dynsym resolver.
7105 Set a breakpoint at its start and continue, then
7106 one more step will take us out. */
7107 symtab_and_line sr_sal;
7108 sr_sal.pc = ecs->stop_func_start;
7109 sr_sal.pspace = get_frame_program_space (frame);
7110 insert_step_resume_breakpoint_at_sal (gdbarch,
7111 sr_sal, null_frame_id);
7112 keep_going (ecs);
7113 return;
7114 }
7115 }
7116
7117 /* This always returns the sal for the inner-most frame when we are in a
7118 stack of inlined frames, even if GDB actually believes that it is in a
7119 more outer frame. This is checked for below by calls to
7120 inline_skipped_frames. */
7121 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7122
7123 /* NOTE: tausq/2004-05-24: This if block used to be done before all
7124 the trampoline processing logic, however, there are some trampolines
7125 that have no names, so we should do trampoline handling first. */
7126 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
7127 && ecs->stop_func_name == NULL
7128 && stop_pc_sal.line == 0)
7129 {
7130 infrun_debug_printf ("stepped into undebuggable function");
7131
7132 /* The inferior just stepped into, or returned to, an
7133 undebuggable function (where there is no debugging information
7134 and no line number corresponding to the address where the
7135 inferior stopped). Since we want to skip this kind of code,
7136 we keep going until the inferior returns from this
7137 function - unless the user has asked us not to (via
7138 set step-mode) or we no longer know how to get back
7139 to the call site. */
7140 if (step_stop_if_no_debug
7141 || !frame_id_p (frame_unwind_caller_id (frame)))
7142 {
7143 /* If we have no line number and the step-stop-if-no-debug
7144 is set, we stop the step so that the user has a chance to
7145 switch in assembly mode. */
7146 end_stepping_range (ecs);
7147 return;
7148 }
7149 else
7150 {
7151 /* Set a breakpoint at callee's return address (the address
7152 at which the caller will resume). */
7153 insert_step_resume_breakpoint_at_caller (frame);
7154 keep_going (ecs);
7155 return;
7156 }
7157 }
7158
7159 if (ecs->event_thread->control.step_range_end == 1)
7160 {
7161 /* It is stepi or nexti. We always want to stop stepping after
7162 one instruction. */
7163 infrun_debug_printf ("stepi/nexti");
7164 end_stepping_range (ecs);
7165 return;
7166 }
7167
7168 if (stop_pc_sal.line == 0)
7169 {
7170 /* We have no line number information. That means to stop
7171 stepping (does this always happen right after one instruction,
7172 when we do "s" in a function with no line numbers,
7173 or can this happen as a result of a return or longjmp?). */
7174 infrun_debug_printf ("line number info");
7175 end_stepping_range (ecs);
7176 return;
7177 }
7178
7179 /* Look for "calls" to inlined functions, part one. If the inline
7180 frame machinery detected some skipped call sites, we have entered
7181 a new inline function. */
7182
7183 if (frame_id_eq (get_frame_id (get_current_frame ()),
7184 ecs->event_thread->control.step_frame_id)
7185 && inline_skipped_frames (ecs->event_thread))
7186 {
7187 infrun_debug_printf ("stepped into inlined function");
7188
7189 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7190
7191 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7192 {
7193 /* For "step", we're going to stop. But if the call site
7194 for this inlined function is on the same source line as
7195 we were previously stepping, go down into the function
7196 first. Otherwise stop at the call site. */
7197
7198 if (call_sal.line == ecs->event_thread->current_line
7199 && call_sal.symtab == ecs->event_thread->current_symtab)
7200 {
7201 step_into_inline_frame (ecs->event_thread);
7202 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7203 {
7204 keep_going (ecs);
7205 return;
7206 }
7207 }
7208
7209 end_stepping_range (ecs);
7210 return;
7211 }
7212 else
7213 {
7214 /* For "next", we should stop at the call site if it is on a
7215 different source line. Otherwise continue through the
7216 inlined function. */
7217 if (call_sal.line == ecs->event_thread->current_line
7218 && call_sal.symtab == ecs->event_thread->current_symtab)
7219 keep_going (ecs);
7220 else
7221 end_stepping_range (ecs);
7222 return;
7223 }
7224 }
7225
7226 /* Look for "calls" to inlined functions, part two. If we are still
7227 in the same real function we were stepping through, but we have
7228 to go further up to find the exact frame ID, we are stepping
7229 through a more inlined call beyond its call site. */
7230
7231 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7232 && !frame_id_eq (get_frame_id (get_current_frame ()),
7233 ecs->event_thread->control.step_frame_id)
7234 && stepped_in_from (get_current_frame (),
7235 ecs->event_thread->control.step_frame_id))
7236 {
7237 infrun_debug_printf ("stepping through inlined function");
7238
7239 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7240 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7241 keep_going (ecs);
7242 else
7243 end_stepping_range (ecs);
7244 return;
7245 }
7246
7247 bool refresh_step_info = true;
7248 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7249 && (ecs->event_thread->current_line != stop_pc_sal.line
7250 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7251 {
7252 /* We are at a different line. */
7253
7254 if (stop_pc_sal.is_stmt)
7255 {
7256 /* We are at the start of a statement.
7257
7258 So stop. Note that we don't stop if we step into the middle of a
7259 statement. That is said to make things like for (;;) statements
7260 work better. */
7261 infrun_debug_printf ("stepped to a different line");
7262 end_stepping_range (ecs);
7263 return;
7264 }
7265 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7266 ecs->event_thread->control.step_frame_id))
7267 {
7268 /* We are not at the start of a statement, and we have not changed
7269 frame.
7270
7271 We ignore this line table entry, and continue stepping forward,
7272 looking for a better place to stop. */
7273 refresh_step_info = false;
7274 infrun_debug_printf ("stepped to a different line, but "
7275 "it's not the start of a statement");
7276 }
7277 else
7278 {
7279 /* We are not the start of a statement, and we have changed frame.
7280
7281 We ignore this line table entry, and continue stepping forward,
7282 looking for a better place to stop. Keep refresh_step_info at
7283 true to note that the frame has changed, but ignore the line
7284 number to make sure we don't ignore a subsequent entry with the
7285 same line number. */
7286 stop_pc_sal.line = 0;
7287 infrun_debug_printf ("stepped to a different frame, but "
7288 "it's not the start of a statement");
7289 }
7290 }
7291
7292 /* We aren't done stepping.
7293
7294 Optimize by setting the stepping range to the line.
7295 (We might not be in the original line, but if we entered a
7296 new line in mid-statement, we continue stepping. This makes
7297 things like for(;;) statements work better.)
7298
7299 If we entered a SAL that indicates a non-statement line table entry,
7300 then we update the stepping range, but we don't update the step info,
7301 which includes things like the line number we are stepping away from.
7302 This means we will stop when we find a line table entry that is marked
7303 as is-statement, even if it matches the non-statement one we just
7304 stepped into. */
7305
7306 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7307 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7308 ecs->event_thread->control.may_range_step = 1;
7309 if (refresh_step_info)
7310 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7311
7312 infrun_debug_printf ("keep going");
7313 keep_going (ecs);
7314 }
7315
7316 static bool restart_stepped_thread (process_stratum_target *resume_target,
7317 ptid_t resume_ptid);
7318
7319 /* In all-stop mode, if we're currently stepping but have stopped in
7320 some other thread, we may need to switch back to the stepped
7321 thread. Returns true we set the inferior running, false if we left
7322 it stopped (and the event needs further processing). */
7323
7324 static bool
7325 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7326 {
7327 if (!target_is_non_stop_p ())
7328 {
7329 /* If any thread is blocked on some internal breakpoint, and we
7330 simply need to step over that breakpoint to get it going
7331 again, do that first. */
7332
7333 /* However, if we see an event for the stepping thread, then we
7334 know all other threads have been moved past their breakpoints
7335 already. Let the caller check whether the step is finished,
7336 etc., before deciding to move it past a breakpoint. */
7337 if (ecs->event_thread->control.step_range_end != 0)
7338 return false;
7339
7340 /* Check if the current thread is blocked on an incomplete
7341 step-over, interrupted by a random signal. */
7342 if (ecs->event_thread->control.trap_expected
7343 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7344 {
7345 infrun_debug_printf
7346 ("need to finish step-over of [%s]",
7347 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7348 keep_going (ecs);
7349 return true;
7350 }
7351
7352 /* Check if the current thread is blocked by a single-step
7353 breakpoint of another thread. */
7354 if (ecs->hit_singlestep_breakpoint)
7355 {
7356 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7357 target_pid_to_str (ecs->ptid).c_str ());
7358 keep_going (ecs);
7359 return true;
7360 }
7361
7362 /* If this thread needs yet another step-over (e.g., stepping
7363 through a delay slot), do it first before moving on to
7364 another thread. */
7365 if (thread_still_needs_step_over (ecs->event_thread))
7366 {
7367 infrun_debug_printf
7368 ("thread [%s] still needs step-over",
7369 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7370 keep_going (ecs);
7371 return true;
7372 }
7373
7374 /* If scheduler locking applies even if not stepping, there's no
7375 need to walk over threads. Above we've checked whether the
7376 current thread is stepping. If some other thread not the
7377 event thread is stepping, then it must be that scheduler
7378 locking is not in effect. */
7379 if (schedlock_applies (ecs->event_thread))
7380 return false;
7381
7382 /* Otherwise, we no longer expect a trap in the current thread.
7383 Clear the trap_expected flag before switching back -- this is
7384 what keep_going does as well, if we call it. */
7385 ecs->event_thread->control.trap_expected = 0;
7386
7387 /* Likewise, clear the signal if it should not be passed. */
7388 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7389 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7390
7391 if (restart_stepped_thread (ecs->target, ecs->ptid))
7392 {
7393 prepare_to_wait (ecs);
7394 return true;
7395 }
7396
7397 switch_to_thread (ecs->event_thread);
7398 }
7399
7400 return false;
7401 }
7402
7403 /* Look for the thread that was stepping, and resume it.
7404 RESUME_TARGET / RESUME_PTID indicate the set of threads the caller
7405 is resuming. Return true if a thread was started, false
7406 otherwise. */
7407
7408 static bool
7409 restart_stepped_thread (process_stratum_target *resume_target,
7410 ptid_t resume_ptid)
7411 {
7412 /* Do all pending step-overs before actually proceeding with
7413 step/next/etc. */
7414 if (start_step_over ())
7415 return true;
7416
7417 for (thread_info *tp : all_threads_safe ())
7418 {
7419 if (tp->state == THREAD_EXITED)
7420 continue;
7421
7422 if (tp->suspend.waitstatus_pending_p)
7423 continue;
7424
7425 /* Ignore threads of processes the caller is not
7426 resuming. */
7427 if (!sched_multi
7428 && (tp->inf->process_target () != resume_target
7429 || tp->inf->pid != resume_ptid.pid ()))
7430 continue;
7431
7432 if (tp->control.trap_expected)
7433 {
7434 infrun_debug_printf ("switching back to stepped thread (step-over)");
7435
7436 if (keep_going_stepped_thread (tp))
7437 return true;
7438 }
7439 }
7440
7441 for (thread_info *tp : all_threads_safe ())
7442 {
7443 if (tp->state == THREAD_EXITED)
7444 continue;
7445
7446 if (tp->suspend.waitstatus_pending_p)
7447 continue;
7448
7449 /* Ignore threads of processes the caller is not
7450 resuming. */
7451 if (!sched_multi
7452 && (tp->inf->process_target () != resume_target
7453 || tp->inf->pid != resume_ptid.pid ()))
7454 continue;
7455
7456 /* Did we find the stepping thread? */
7457 if (tp->control.step_range_end)
7458 {
7459 infrun_debug_printf ("switching back to stepped thread (stepping)");
7460
7461 if (keep_going_stepped_thread (tp))
7462 return true;
7463 }
7464 }
7465
7466 return false;
7467 }
7468
7469 /* See infrun.h. */
7470
7471 void
7472 restart_after_all_stop_detach (process_stratum_target *proc_target)
7473 {
7474 /* Note we don't check target_is_non_stop_p() here, because the
7475 current inferior may no longer have a process_stratum target
7476 pushed, as we just detached. */
7477
7478 /* See if we have a THREAD_RUNNING thread that need to be
7479 re-resumed. If we have any thread that is already executing,
7480 then we don't need to resume the target -- it is already been
7481 resumed. With the remote target (in all-stop), it's even
7482 impossible to issue another resumption if the target is already
7483 resumed, until the target reports a stop. */
7484 for (thread_info *thr : all_threads (proc_target))
7485 {
7486 if (thr->state != THREAD_RUNNING)
7487 continue;
7488
7489 /* If we have any thread that is already executing, then we
7490 don't need to resume the target -- it is already been
7491 resumed. */
7492 if (thr->executing)
7493 return;
7494
7495 /* If we have a pending event to process, skip resuming the
7496 target and go straight to processing it. */
7497 if (thr->resumed && thr->suspend.waitstatus_pending_p)
7498 return;
7499 }
7500
7501 /* Alright, we need to re-resume the target. If a thread was
7502 stepping, we need to restart it stepping. */
7503 if (restart_stepped_thread (proc_target, minus_one_ptid))
7504 return;
7505
7506 /* Otherwise, find the first THREAD_RUNNING thread and resume
7507 it. */
7508 for (thread_info *thr : all_threads (proc_target))
7509 {
7510 if (thr->state != THREAD_RUNNING)
7511 continue;
7512
7513 execution_control_state ecs;
7514 reset_ecs (&ecs, thr);
7515 switch_to_thread (thr);
7516 keep_going (&ecs);
7517 return;
7518 }
7519 }
7520
7521 /* Set a previously stepped thread back to stepping. Returns true on
7522 success, false if the resume is not possible (e.g., the thread
7523 vanished). */
7524
7525 static bool
7526 keep_going_stepped_thread (struct thread_info *tp)
7527 {
7528 struct frame_info *frame;
7529 struct execution_control_state ecss;
7530 struct execution_control_state *ecs = &ecss;
7531
7532 /* If the stepping thread exited, then don't try to switch back and
7533 resume it, which could fail in several different ways depending
7534 on the target. Instead, just keep going.
7535
7536 We can find a stepping dead thread in the thread list in two
7537 cases:
7538
7539 - The target supports thread exit events, and when the target
7540 tries to delete the thread from the thread list, inferior_ptid
7541 pointed at the exiting thread. In such case, calling
7542 delete_thread does not really remove the thread from the list;
7543 instead, the thread is left listed, with 'exited' state.
7544
7545 - The target's debug interface does not support thread exit
7546 events, and so we have no idea whatsoever if the previously
7547 stepping thread is still alive. For that reason, we need to
7548 synchronously query the target now. */
7549
7550 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7551 {
7552 infrun_debug_printf ("not resuming previously stepped thread, it has "
7553 "vanished");
7554
7555 delete_thread (tp);
7556 return false;
7557 }
7558
7559 infrun_debug_printf ("resuming previously stepped thread");
7560
7561 reset_ecs (ecs, tp);
7562 switch_to_thread (tp);
7563
7564 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7565 frame = get_current_frame ();
7566
7567 /* If the PC of the thread we were trying to single-step has
7568 changed, then that thread has trapped or been signaled, but the
7569 event has not been reported to GDB yet. Re-poll the target
7570 looking for this particular thread's event (i.e. temporarily
7571 enable schedlock) by:
7572
7573 - setting a break at the current PC
7574 - resuming that particular thread, only (by setting trap
7575 expected)
7576
7577 This prevents us continuously moving the single-step breakpoint
7578 forward, one instruction at a time, overstepping. */
7579
7580 if (tp->suspend.stop_pc != tp->prev_pc)
7581 {
7582 ptid_t resume_ptid;
7583
7584 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7585 paddress (target_gdbarch (), tp->prev_pc),
7586 paddress (target_gdbarch (), tp->suspend.stop_pc));
7587
7588 /* Clear the info of the previous step-over, as it's no longer
7589 valid (if the thread was trying to step over a breakpoint, it
7590 has already succeeded). It's what keep_going would do too,
7591 if we called it. Do this before trying to insert the sss
7592 breakpoint, otherwise if we were previously trying to step
7593 over this exact address in another thread, the breakpoint is
7594 skipped. */
7595 clear_step_over_info ();
7596 tp->control.trap_expected = 0;
7597
7598 insert_single_step_breakpoint (get_frame_arch (frame),
7599 get_frame_address_space (frame),
7600 tp->suspend.stop_pc);
7601
7602 tp->resumed = true;
7603 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7604 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7605 }
7606 else
7607 {
7608 infrun_debug_printf ("expected thread still hasn't advanced");
7609
7610 keep_going_pass_signal (ecs);
7611 }
7612
7613 return true;
7614 }
7615
7616 /* Is thread TP in the middle of (software or hardware)
7617 single-stepping? (Note the result of this function must never be
7618 passed directly as target_resume's STEP parameter.) */
7619
7620 static bool
7621 currently_stepping (struct thread_info *tp)
7622 {
7623 return ((tp->control.step_range_end
7624 && tp->control.step_resume_breakpoint == NULL)
7625 || tp->control.trap_expected
7626 || tp->stepped_breakpoint
7627 || bpstat_should_step ());
7628 }
7629
7630 /* Inferior has stepped into a subroutine call with source code that
7631 we should not step over. Do step to the first line of code in
7632 it. */
7633
7634 static void
7635 handle_step_into_function (struct gdbarch *gdbarch,
7636 struct execution_control_state *ecs)
7637 {
7638 fill_in_stop_func (gdbarch, ecs);
7639
7640 compunit_symtab *cust
7641 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7642 if (cust != NULL && compunit_language (cust) != language_asm)
7643 ecs->stop_func_start
7644 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7645
7646 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7647 /* Use the step_resume_break to step until the end of the prologue,
7648 even if that involves jumps (as it seems to on the vax under
7649 4.2). */
7650 /* If the prologue ends in the middle of a source line, continue to
7651 the end of that source line (if it is still within the function).
7652 Otherwise, just go to end of prologue. */
7653 if (stop_func_sal.end
7654 && stop_func_sal.pc != ecs->stop_func_start
7655 && stop_func_sal.end < ecs->stop_func_end)
7656 ecs->stop_func_start = stop_func_sal.end;
7657
7658 /* Architectures which require breakpoint adjustment might not be able
7659 to place a breakpoint at the computed address. If so, the test
7660 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7661 ecs->stop_func_start to an address at which a breakpoint may be
7662 legitimately placed.
7663
7664 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7665 made, GDB will enter an infinite loop when stepping through
7666 optimized code consisting of VLIW instructions which contain
7667 subinstructions corresponding to different source lines. On
7668 FR-V, it's not permitted to place a breakpoint on any but the
7669 first subinstruction of a VLIW instruction. When a breakpoint is
7670 set, GDB will adjust the breakpoint address to the beginning of
7671 the VLIW instruction. Thus, we need to make the corresponding
7672 adjustment here when computing the stop address. */
7673
7674 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7675 {
7676 ecs->stop_func_start
7677 = gdbarch_adjust_breakpoint_address (gdbarch,
7678 ecs->stop_func_start);
7679 }
7680
7681 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7682 {
7683 /* We are already there: stop now. */
7684 end_stepping_range (ecs);
7685 return;
7686 }
7687 else
7688 {
7689 /* Put the step-breakpoint there and go until there. */
7690 symtab_and_line sr_sal;
7691 sr_sal.pc = ecs->stop_func_start;
7692 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7693 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7694
7695 /* Do not specify what the fp should be when we stop since on
7696 some machines the prologue is where the new fp value is
7697 established. */
7698 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7699
7700 /* And make sure stepping stops right away then. */
7701 ecs->event_thread->control.step_range_end
7702 = ecs->event_thread->control.step_range_start;
7703 }
7704 keep_going (ecs);
7705 }
7706
7707 /* Inferior has stepped backward into a subroutine call with source
7708 code that we should not step over. Do step to the beginning of the
7709 last line of code in it. */
7710
7711 static void
7712 handle_step_into_function_backward (struct gdbarch *gdbarch,
7713 struct execution_control_state *ecs)
7714 {
7715 struct compunit_symtab *cust;
7716 struct symtab_and_line stop_func_sal;
7717
7718 fill_in_stop_func (gdbarch, ecs);
7719
7720 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7721 if (cust != NULL && compunit_language (cust) != language_asm)
7722 ecs->stop_func_start
7723 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7724
7725 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7726
7727 /* OK, we're just going to keep stepping here. */
7728 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7729 {
7730 /* We're there already. Just stop stepping now. */
7731 end_stepping_range (ecs);
7732 }
7733 else
7734 {
7735 /* Else just reset the step range and keep going.
7736 No step-resume breakpoint, they don't work for
7737 epilogues, which can have multiple entry paths. */
7738 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7739 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7740 keep_going (ecs);
7741 }
7742 return;
7743 }
7744
7745 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7746 This is used to both functions and to skip over code. */
7747
7748 static void
7749 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7750 struct symtab_and_line sr_sal,
7751 struct frame_id sr_id,
7752 enum bptype sr_type)
7753 {
7754 /* There should never be more than one step-resume or longjmp-resume
7755 breakpoint per thread, so we should never be setting a new
7756 step_resume_breakpoint when one is already active. */
7757 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7758 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7759
7760 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7761 paddress (gdbarch, sr_sal.pc));
7762
7763 inferior_thread ()->control.step_resume_breakpoint
7764 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7765 }
7766
7767 void
7768 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7769 struct symtab_and_line sr_sal,
7770 struct frame_id sr_id)
7771 {
7772 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7773 sr_sal, sr_id,
7774 bp_step_resume);
7775 }
7776
7777 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7778 This is used to skip a potential signal handler.
7779
7780 This is called with the interrupted function's frame. The signal
7781 handler, when it returns, will resume the interrupted function at
7782 RETURN_FRAME.pc. */
7783
7784 static void
7785 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7786 {
7787 gdb_assert (return_frame != NULL);
7788
7789 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7790
7791 symtab_and_line sr_sal;
7792 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7793 sr_sal.section = find_pc_overlay (sr_sal.pc);
7794 sr_sal.pspace = get_frame_program_space (return_frame);
7795
7796 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7797 get_stack_frame_id (return_frame),
7798 bp_hp_step_resume);
7799 }
7800
7801 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7802 is used to skip a function after stepping into it (for "next" or if
7803 the called function has no debugging information).
7804
7805 The current function has almost always been reached by single
7806 stepping a call or return instruction. NEXT_FRAME belongs to the
7807 current function, and the breakpoint will be set at the caller's
7808 resume address.
7809
7810 This is a separate function rather than reusing
7811 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7812 get_prev_frame, which may stop prematurely (see the implementation
7813 of frame_unwind_caller_id for an example). */
7814
7815 static void
7816 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7817 {
7818 /* We shouldn't have gotten here if we don't know where the call site
7819 is. */
7820 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7821
7822 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7823
7824 symtab_and_line sr_sal;
7825 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7826 frame_unwind_caller_pc (next_frame));
7827 sr_sal.section = find_pc_overlay (sr_sal.pc);
7828 sr_sal.pspace = frame_unwind_program_space (next_frame);
7829
7830 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7831 frame_unwind_caller_id (next_frame));
7832 }
7833
7834 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7835 new breakpoint at the target of a jmp_buf. The handling of
7836 longjmp-resume uses the same mechanisms used for handling
7837 "step-resume" breakpoints. */
7838
7839 static void
7840 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7841 {
7842 /* There should never be more than one longjmp-resume breakpoint per
7843 thread, so we should never be setting a new
7844 longjmp_resume_breakpoint when one is already active. */
7845 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7846
7847 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7848 paddress (gdbarch, pc));
7849
7850 inferior_thread ()->control.exception_resume_breakpoint =
7851 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7852 }
7853
7854 /* Insert an exception resume breakpoint. TP is the thread throwing
7855 the exception. The block B is the block of the unwinder debug hook
7856 function. FRAME is the frame corresponding to the call to this
7857 function. SYM is the symbol of the function argument holding the
7858 target PC of the exception. */
7859
7860 static void
7861 insert_exception_resume_breakpoint (struct thread_info *tp,
7862 const struct block *b,
7863 struct frame_info *frame,
7864 struct symbol *sym)
7865 {
7866 try
7867 {
7868 struct block_symbol vsym;
7869 struct value *value;
7870 CORE_ADDR handler;
7871 struct breakpoint *bp;
7872
7873 vsym = lookup_symbol_search_name (sym->search_name (),
7874 b, VAR_DOMAIN);
7875 value = read_var_value (vsym.symbol, vsym.block, frame);
7876 /* If the value was optimized out, revert to the old behavior. */
7877 if (! value_optimized_out (value))
7878 {
7879 handler = value_as_address (value);
7880
7881 infrun_debug_printf ("exception resume at %lx",
7882 (unsigned long) handler);
7883
7884 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7885 handler,
7886 bp_exception_resume).release ();
7887
7888 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7889 frame = NULL;
7890
7891 bp->thread = tp->global_num;
7892 inferior_thread ()->control.exception_resume_breakpoint = bp;
7893 }
7894 }
7895 catch (const gdb_exception_error &e)
7896 {
7897 /* We want to ignore errors here. */
7898 }
7899 }
7900
7901 /* A helper for check_exception_resume that sets an
7902 exception-breakpoint based on a SystemTap probe. */
7903
7904 static void
7905 insert_exception_resume_from_probe (struct thread_info *tp,
7906 const struct bound_probe *probe,
7907 struct frame_info *frame)
7908 {
7909 struct value *arg_value;
7910 CORE_ADDR handler;
7911 struct breakpoint *bp;
7912
7913 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7914 if (!arg_value)
7915 return;
7916
7917 handler = value_as_address (arg_value);
7918
7919 infrun_debug_printf ("exception resume at %s",
7920 paddress (probe->objfile->arch (), handler));
7921
7922 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7923 handler, bp_exception_resume).release ();
7924 bp->thread = tp->global_num;
7925 inferior_thread ()->control.exception_resume_breakpoint = bp;
7926 }
7927
7928 /* This is called when an exception has been intercepted. Check to
7929 see whether the exception's destination is of interest, and if so,
7930 set an exception resume breakpoint there. */
7931
7932 static void
7933 check_exception_resume (struct execution_control_state *ecs,
7934 struct frame_info *frame)
7935 {
7936 struct bound_probe probe;
7937 struct symbol *func;
7938
7939 /* First see if this exception unwinding breakpoint was set via a
7940 SystemTap probe point. If so, the probe has two arguments: the
7941 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7942 set a breakpoint there. */
7943 probe = find_probe_by_pc (get_frame_pc (frame));
7944 if (probe.prob)
7945 {
7946 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7947 return;
7948 }
7949
7950 func = get_frame_function (frame);
7951 if (!func)
7952 return;
7953
7954 try
7955 {
7956 const struct block *b;
7957 struct block_iterator iter;
7958 struct symbol *sym;
7959 int argno = 0;
7960
7961 /* The exception breakpoint is a thread-specific breakpoint on
7962 the unwinder's debug hook, declared as:
7963
7964 void _Unwind_DebugHook (void *cfa, void *handler);
7965
7966 The CFA argument indicates the frame to which control is
7967 about to be transferred. HANDLER is the destination PC.
7968
7969 We ignore the CFA and set a temporary breakpoint at HANDLER.
7970 This is not extremely efficient but it avoids issues in gdb
7971 with computing the DWARF CFA, and it also works even in weird
7972 cases such as throwing an exception from inside a signal
7973 handler. */
7974
7975 b = SYMBOL_BLOCK_VALUE (func);
7976 ALL_BLOCK_SYMBOLS (b, iter, sym)
7977 {
7978 if (!SYMBOL_IS_ARGUMENT (sym))
7979 continue;
7980
7981 if (argno == 0)
7982 ++argno;
7983 else
7984 {
7985 insert_exception_resume_breakpoint (ecs->event_thread,
7986 b, frame, sym);
7987 break;
7988 }
7989 }
7990 }
7991 catch (const gdb_exception_error &e)
7992 {
7993 }
7994 }
7995
7996 static void
7997 stop_waiting (struct execution_control_state *ecs)
7998 {
7999 infrun_debug_printf ("stop_waiting");
8000
8001 /* Let callers know we don't want to wait for the inferior anymore. */
8002 ecs->wait_some_more = 0;
8003
8004 /* If all-stop, but there exists a non-stop target, stop all
8005 threads now that we're presenting the stop to the user. */
8006 if (!non_stop && exists_non_stop_target ())
8007 stop_all_threads ();
8008 }
8009
8010 /* Like keep_going, but passes the signal to the inferior, even if the
8011 signal is set to nopass. */
8012
8013 static void
8014 keep_going_pass_signal (struct execution_control_state *ecs)
8015 {
8016 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
8017 gdb_assert (!ecs->event_thread->resumed);
8018
8019 /* Save the pc before execution, to compare with pc after stop. */
8020 ecs->event_thread->prev_pc
8021 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
8022
8023 if (ecs->event_thread->control.trap_expected)
8024 {
8025 struct thread_info *tp = ecs->event_thread;
8026
8027 infrun_debug_printf ("%s has trap_expected set, "
8028 "resuming to collect trap",
8029 target_pid_to_str (tp->ptid).c_str ());
8030
8031 /* We haven't yet gotten our trap, and either: intercepted a
8032 non-signal event (e.g., a fork); or took a signal which we
8033 are supposed to pass through to the inferior. Simply
8034 continue. */
8035 resume (ecs->event_thread->suspend.stop_signal);
8036 }
8037 else if (step_over_info_valid_p ())
8038 {
8039 /* Another thread is stepping over a breakpoint in-line. If
8040 this thread needs a step-over too, queue the request. In
8041 either case, this resume must be deferred for later. */
8042 struct thread_info *tp = ecs->event_thread;
8043
8044 if (ecs->hit_singlestep_breakpoint
8045 || thread_still_needs_step_over (tp))
8046 {
8047 infrun_debug_printf ("step-over already in progress: "
8048 "step-over for %s deferred",
8049 target_pid_to_str (tp->ptid).c_str ());
8050 global_thread_step_over_chain_enqueue (tp);
8051 }
8052 else
8053 {
8054 infrun_debug_printf ("step-over in progress: resume of %s deferred",
8055 target_pid_to_str (tp->ptid).c_str ());
8056 }
8057 }
8058 else
8059 {
8060 struct regcache *regcache = get_current_regcache ();
8061 int remove_bp;
8062 int remove_wps;
8063 step_over_what step_what;
8064
8065 /* Either the trap was not expected, but we are continuing
8066 anyway (if we got a signal, the user asked it be passed to
8067 the child)
8068 -- or --
8069 We got our expected trap, but decided we should resume from
8070 it.
8071
8072 We're going to run this baby now!
8073
8074 Note that insert_breakpoints won't try to re-insert
8075 already inserted breakpoints. Therefore, we don't
8076 care if breakpoints were already inserted, or not. */
8077
8078 /* If we need to step over a breakpoint, and we're not using
8079 displaced stepping to do so, insert all breakpoints
8080 (watchpoints, etc.) but the one we're stepping over, step one
8081 instruction, and then re-insert the breakpoint when that step
8082 is finished. */
8083
8084 step_what = thread_still_needs_step_over (ecs->event_thread);
8085
8086 remove_bp = (ecs->hit_singlestep_breakpoint
8087 || (step_what & STEP_OVER_BREAKPOINT));
8088 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
8089
8090 /* We can't use displaced stepping if we need to step past a
8091 watchpoint. The instruction copied to the scratch pad would
8092 still trigger the watchpoint. */
8093 if (remove_bp
8094 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
8095 {
8096 set_step_over_info (regcache->aspace (),
8097 regcache_read_pc (regcache), remove_wps,
8098 ecs->event_thread->global_num);
8099 }
8100 else if (remove_wps)
8101 set_step_over_info (NULL, 0, remove_wps, -1);
8102
8103 /* If we now need to do an in-line step-over, we need to stop
8104 all other threads. Note this must be done before
8105 insert_breakpoints below, because that removes the breakpoint
8106 we're about to step over, otherwise other threads could miss
8107 it. */
8108 if (step_over_info_valid_p () && target_is_non_stop_p ())
8109 stop_all_threads ();
8110
8111 /* Stop stepping if inserting breakpoints fails. */
8112 try
8113 {
8114 insert_breakpoints ();
8115 }
8116 catch (const gdb_exception_error &e)
8117 {
8118 exception_print (gdb_stderr, e);
8119 stop_waiting (ecs);
8120 clear_step_over_info ();
8121 return;
8122 }
8123
8124 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
8125
8126 resume (ecs->event_thread->suspend.stop_signal);
8127 }
8128
8129 prepare_to_wait (ecs);
8130 }
8131
8132 /* Called when we should continue running the inferior, because the
8133 current event doesn't cause a user visible stop. This does the
8134 resuming part; waiting for the next event is done elsewhere. */
8135
8136 static void
8137 keep_going (struct execution_control_state *ecs)
8138 {
8139 if (ecs->event_thread->control.trap_expected
8140 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
8141 ecs->event_thread->control.trap_expected = 0;
8142
8143 if (!signal_program[ecs->event_thread->suspend.stop_signal])
8144 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
8145 keep_going_pass_signal (ecs);
8146 }
8147
8148 /* This function normally comes after a resume, before
8149 handle_inferior_event exits. It takes care of any last bits of
8150 housekeeping, and sets the all-important wait_some_more flag. */
8151
8152 static void
8153 prepare_to_wait (struct execution_control_state *ecs)
8154 {
8155 infrun_debug_printf ("prepare_to_wait");
8156
8157 ecs->wait_some_more = 1;
8158
8159 /* If the target can't async, emulate it by marking the infrun event
8160 handler such that as soon as we get back to the event-loop, we
8161 immediately end up in fetch_inferior_event again calling
8162 target_wait. */
8163 if (!target_can_async_p ())
8164 mark_infrun_async_event_handler ();
8165 }
8166
8167 /* We are done with the step range of a step/next/si/ni command.
8168 Called once for each n of a "step n" operation. */
8169
8170 static void
8171 end_stepping_range (struct execution_control_state *ecs)
8172 {
8173 ecs->event_thread->control.stop_step = 1;
8174 stop_waiting (ecs);
8175 }
8176
8177 /* Several print_*_reason functions to print why the inferior has stopped.
8178 We always print something when the inferior exits, or receives a signal.
8179 The rest of the cases are dealt with later on in normal_stop and
8180 print_it_typical. Ideally there should be a call to one of these
8181 print_*_reason functions functions from handle_inferior_event each time
8182 stop_waiting is called.
8183
8184 Note that we don't call these directly, instead we delegate that to
8185 the interpreters, through observers. Interpreters then call these
8186 with whatever uiout is right. */
8187
8188 void
8189 print_end_stepping_range_reason (struct ui_out *uiout)
8190 {
8191 /* For CLI-like interpreters, print nothing. */
8192
8193 if (uiout->is_mi_like_p ())
8194 {
8195 uiout->field_string ("reason",
8196 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
8197 }
8198 }
8199
8200 void
8201 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8202 {
8203 annotate_signalled ();
8204 if (uiout->is_mi_like_p ())
8205 uiout->field_string
8206 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
8207 uiout->text ("\nProgram terminated with signal ");
8208 annotate_signal_name ();
8209 uiout->field_string ("signal-name",
8210 gdb_signal_to_name (siggnal));
8211 annotate_signal_name_end ();
8212 uiout->text (", ");
8213 annotate_signal_string ();
8214 uiout->field_string ("signal-meaning",
8215 gdb_signal_to_string (siggnal));
8216 annotate_signal_string_end ();
8217 uiout->text (".\n");
8218 uiout->text ("The program no longer exists.\n");
8219 }
8220
8221 void
8222 print_exited_reason (struct ui_out *uiout, int exitstatus)
8223 {
8224 struct inferior *inf = current_inferior ();
8225 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
8226
8227 annotate_exited (exitstatus);
8228 if (exitstatus)
8229 {
8230 if (uiout->is_mi_like_p ())
8231 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
8232 std::string exit_code_str
8233 = string_printf ("0%o", (unsigned int) exitstatus);
8234 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
8235 plongest (inf->num), pidstr.c_str (),
8236 string_field ("exit-code", exit_code_str.c_str ()));
8237 }
8238 else
8239 {
8240 if (uiout->is_mi_like_p ())
8241 uiout->field_string
8242 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
8243 uiout->message ("[Inferior %s (%s) exited normally]\n",
8244 plongest (inf->num), pidstr.c_str ());
8245 }
8246 }
8247
8248 void
8249 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
8250 {
8251 struct thread_info *thr = inferior_thread ();
8252
8253 annotate_signal ();
8254
8255 if (uiout->is_mi_like_p ())
8256 ;
8257 else if (show_thread_that_caused_stop ())
8258 {
8259 const char *name;
8260
8261 uiout->text ("\nThread ");
8262 uiout->field_string ("thread-id", print_thread_id (thr));
8263
8264 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8265 if (name != NULL)
8266 {
8267 uiout->text (" \"");
8268 uiout->field_string ("name", name);
8269 uiout->text ("\"");
8270 }
8271 }
8272 else
8273 uiout->text ("\nProgram");
8274
8275 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8276 uiout->text (" stopped");
8277 else
8278 {
8279 uiout->text (" received signal ");
8280 annotate_signal_name ();
8281 if (uiout->is_mi_like_p ())
8282 uiout->field_string
8283 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8284 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8285 annotate_signal_name_end ();
8286 uiout->text (", ");
8287 annotate_signal_string ();
8288 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8289
8290 struct regcache *regcache = get_current_regcache ();
8291 struct gdbarch *gdbarch = regcache->arch ();
8292 if (gdbarch_report_signal_info_p (gdbarch))
8293 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8294
8295 annotate_signal_string_end ();
8296 }
8297 uiout->text (".\n");
8298 }
8299
8300 void
8301 print_no_history_reason (struct ui_out *uiout)
8302 {
8303 uiout->text ("\nNo more reverse-execution history.\n");
8304 }
8305
8306 /* Print current location without a level number, if we have changed
8307 functions or hit a breakpoint. Print source line if we have one.
8308 bpstat_print contains the logic deciding in detail what to print,
8309 based on the event(s) that just occurred. */
8310
8311 static void
8312 print_stop_location (struct target_waitstatus *ws)
8313 {
8314 int bpstat_ret;
8315 enum print_what source_flag;
8316 int do_frame_printing = 1;
8317 struct thread_info *tp = inferior_thread ();
8318
8319 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8320 switch (bpstat_ret)
8321 {
8322 case PRINT_UNKNOWN:
8323 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8324 should) carry around the function and does (or should) use
8325 that when doing a frame comparison. */
8326 if (tp->control.stop_step
8327 && frame_id_eq (tp->control.step_frame_id,
8328 get_frame_id (get_current_frame ()))
8329 && (tp->control.step_start_function
8330 == find_pc_function (tp->suspend.stop_pc)))
8331 {
8332 /* Finished step, just print source line. */
8333 source_flag = SRC_LINE;
8334 }
8335 else
8336 {
8337 /* Print location and source line. */
8338 source_flag = SRC_AND_LOC;
8339 }
8340 break;
8341 case PRINT_SRC_AND_LOC:
8342 /* Print location and source line. */
8343 source_flag = SRC_AND_LOC;
8344 break;
8345 case PRINT_SRC_ONLY:
8346 source_flag = SRC_LINE;
8347 break;
8348 case PRINT_NOTHING:
8349 /* Something bogus. */
8350 source_flag = SRC_LINE;
8351 do_frame_printing = 0;
8352 break;
8353 default:
8354 internal_error (__FILE__, __LINE__, _("Unknown value."));
8355 }
8356
8357 /* The behavior of this routine with respect to the source
8358 flag is:
8359 SRC_LINE: Print only source line
8360 LOCATION: Print only location
8361 SRC_AND_LOC: Print location and source line. */
8362 if (do_frame_printing)
8363 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8364 }
8365
8366 /* See infrun.h. */
8367
8368 void
8369 print_stop_event (struct ui_out *uiout, bool displays)
8370 {
8371 struct target_waitstatus last;
8372 struct thread_info *tp;
8373
8374 get_last_target_status (nullptr, nullptr, &last);
8375
8376 {
8377 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8378
8379 print_stop_location (&last);
8380
8381 /* Display the auto-display expressions. */
8382 if (displays)
8383 do_displays ();
8384 }
8385
8386 tp = inferior_thread ();
8387 if (tp->thread_fsm != NULL
8388 && tp->thread_fsm->finished_p ())
8389 {
8390 struct return_value_info *rv;
8391
8392 rv = tp->thread_fsm->return_value ();
8393 if (rv != NULL)
8394 print_return_value (uiout, rv);
8395 }
8396 }
8397
8398 /* See infrun.h. */
8399
8400 void
8401 maybe_remove_breakpoints (void)
8402 {
8403 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8404 {
8405 if (remove_breakpoints ())
8406 {
8407 target_terminal::ours_for_output ();
8408 printf_filtered (_("Cannot remove breakpoints because "
8409 "program is no longer writable.\nFurther "
8410 "execution is probably impossible.\n"));
8411 }
8412 }
8413 }
8414
8415 /* The execution context that just caused a normal stop. */
8416
8417 struct stop_context
8418 {
8419 stop_context ();
8420
8421 DISABLE_COPY_AND_ASSIGN (stop_context);
8422
8423 bool changed () const;
8424
8425 /* The stop ID. */
8426 ULONGEST stop_id;
8427
8428 /* The event PTID. */
8429
8430 ptid_t ptid;
8431
8432 /* If stopp for a thread event, this is the thread that caused the
8433 stop. */
8434 thread_info_ref thread;
8435
8436 /* The inferior that caused the stop. */
8437 int inf_num;
8438 };
8439
8440 /* Initializes a new stop context. If stopped for a thread event, this
8441 takes a strong reference to the thread. */
8442
8443 stop_context::stop_context ()
8444 {
8445 stop_id = get_stop_id ();
8446 ptid = inferior_ptid;
8447 inf_num = current_inferior ()->num;
8448
8449 if (inferior_ptid != null_ptid)
8450 {
8451 /* Take a strong reference so that the thread can't be deleted
8452 yet. */
8453 thread = thread_info_ref::new_reference (inferior_thread ());
8454 }
8455 }
8456
8457 /* Return true if the current context no longer matches the saved stop
8458 context. */
8459
8460 bool
8461 stop_context::changed () const
8462 {
8463 if (ptid != inferior_ptid)
8464 return true;
8465 if (inf_num != current_inferior ()->num)
8466 return true;
8467 if (thread != NULL && thread->state != THREAD_STOPPED)
8468 return true;
8469 if (get_stop_id () != stop_id)
8470 return true;
8471 return false;
8472 }
8473
8474 /* See infrun.h. */
8475
8476 int
8477 normal_stop (void)
8478 {
8479 struct target_waitstatus last;
8480
8481 get_last_target_status (nullptr, nullptr, &last);
8482
8483 new_stop_id ();
8484
8485 /* If an exception is thrown from this point on, make sure to
8486 propagate GDB's knowledge of the executing state to the
8487 frontend/user running state. A QUIT is an easy exception to see
8488 here, so do this before any filtered output. */
8489
8490 ptid_t finish_ptid = null_ptid;
8491
8492 if (!non_stop)
8493 finish_ptid = minus_one_ptid;
8494 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8495 || last.kind == TARGET_WAITKIND_EXITED)
8496 {
8497 /* On some targets, we may still have live threads in the
8498 inferior when we get a process exit event. E.g., for
8499 "checkpoint", when the current checkpoint/fork exits,
8500 linux-fork.c automatically switches to another fork from
8501 within target_mourn_inferior. */
8502 if (inferior_ptid != null_ptid)
8503 finish_ptid = ptid_t (inferior_ptid.pid ());
8504 }
8505 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8506 finish_ptid = inferior_ptid;
8507
8508 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8509 if (finish_ptid != null_ptid)
8510 {
8511 maybe_finish_thread_state.emplace
8512 (user_visible_resume_target (finish_ptid), finish_ptid);
8513 }
8514
8515 /* As we're presenting a stop, and potentially removing breakpoints,
8516 update the thread list so we can tell whether there are threads
8517 running on the target. With target remote, for example, we can
8518 only learn about new threads when we explicitly update the thread
8519 list. Do this before notifying the interpreters about signal
8520 stops, end of stepping ranges, etc., so that the "new thread"
8521 output is emitted before e.g., "Program received signal FOO",
8522 instead of after. */
8523 update_thread_list ();
8524
8525 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8526 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8527
8528 /* As with the notification of thread events, we want to delay
8529 notifying the user that we've switched thread context until
8530 the inferior actually stops.
8531
8532 There's no point in saying anything if the inferior has exited.
8533 Note that SIGNALLED here means "exited with a signal", not
8534 "received a signal".
8535
8536 Also skip saying anything in non-stop mode. In that mode, as we
8537 don't want GDB to switch threads behind the user's back, to avoid
8538 races where the user is typing a command to apply to thread x,
8539 but GDB switches to thread y before the user finishes entering
8540 the command, fetch_inferior_event installs a cleanup to restore
8541 the current thread back to the thread the user had selected right
8542 after this event is handled, so we're not really switching, only
8543 informing of a stop. */
8544 if (!non_stop
8545 && previous_inferior_ptid != inferior_ptid
8546 && target_has_execution ()
8547 && last.kind != TARGET_WAITKIND_SIGNALLED
8548 && last.kind != TARGET_WAITKIND_EXITED
8549 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8550 {
8551 SWITCH_THRU_ALL_UIS ()
8552 {
8553 target_terminal::ours_for_output ();
8554 printf_filtered (_("[Switching to %s]\n"),
8555 target_pid_to_str (inferior_ptid).c_str ());
8556 annotate_thread_changed ();
8557 }
8558 previous_inferior_ptid = inferior_ptid;
8559 }
8560
8561 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8562 {
8563 SWITCH_THRU_ALL_UIS ()
8564 if (current_ui->prompt_state == PROMPT_BLOCKED)
8565 {
8566 target_terminal::ours_for_output ();
8567 printf_filtered (_("No unwaited-for children left.\n"));
8568 }
8569 }
8570
8571 /* Note: this depends on the update_thread_list call above. */
8572 maybe_remove_breakpoints ();
8573
8574 /* If an auto-display called a function and that got a signal,
8575 delete that auto-display to avoid an infinite recursion. */
8576
8577 if (stopped_by_random_signal)
8578 disable_current_display ();
8579
8580 SWITCH_THRU_ALL_UIS ()
8581 {
8582 async_enable_stdin ();
8583 }
8584
8585 /* Let the user/frontend see the threads as stopped. */
8586 maybe_finish_thread_state.reset ();
8587
8588 /* Select innermost stack frame - i.e., current frame is frame 0,
8589 and current location is based on that. Handle the case where the
8590 dummy call is returning after being stopped. E.g. the dummy call
8591 previously hit a breakpoint. (If the dummy call returns
8592 normally, we won't reach here.) Do this before the stop hook is
8593 run, so that it doesn't get to see the temporary dummy frame,
8594 which is not where we'll present the stop. */
8595 if (has_stack_frames ())
8596 {
8597 if (stop_stack_dummy == STOP_STACK_DUMMY)
8598 {
8599 /* Pop the empty frame that contains the stack dummy. This
8600 also restores inferior state prior to the call (struct
8601 infcall_suspend_state). */
8602 struct frame_info *frame = get_current_frame ();
8603
8604 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8605 frame_pop (frame);
8606 /* frame_pop calls reinit_frame_cache as the last thing it
8607 does which means there's now no selected frame. */
8608 }
8609
8610 select_frame (get_current_frame ());
8611
8612 /* Set the current source location. */
8613 set_current_sal_from_frame (get_current_frame ());
8614 }
8615
8616 /* Look up the hook_stop and run it (CLI internally handles problem
8617 of stop_command's pre-hook not existing). */
8618 if (stop_command != NULL)
8619 {
8620 stop_context saved_context;
8621
8622 try
8623 {
8624 execute_cmd_pre_hook (stop_command);
8625 }
8626 catch (const gdb_exception &ex)
8627 {
8628 exception_fprintf (gdb_stderr, ex,
8629 "Error while running hook_stop:\n");
8630 }
8631
8632 /* If the stop hook resumes the target, then there's no point in
8633 trying to notify about the previous stop; its context is
8634 gone. Likewise if the command switches thread or inferior --
8635 the observers would print a stop for the wrong
8636 thread/inferior. */
8637 if (saved_context.changed ())
8638 return 1;
8639 }
8640
8641 /* Notify observers about the stop. This is where the interpreters
8642 print the stop event. */
8643 if (inferior_ptid != null_ptid)
8644 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8645 stop_print_frame);
8646 else
8647 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8648
8649 annotate_stopped ();
8650
8651 if (target_has_execution ())
8652 {
8653 if (last.kind != TARGET_WAITKIND_SIGNALLED
8654 && last.kind != TARGET_WAITKIND_EXITED
8655 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8656 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8657 Delete any breakpoint that is to be deleted at the next stop. */
8658 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8659 }
8660
8661 /* Try to get rid of automatically added inferiors that are no
8662 longer needed. Keeping those around slows down things linearly.
8663 Note that this never removes the current inferior. */
8664 prune_inferiors ();
8665
8666 return 0;
8667 }
8668 \f
8669 int
8670 signal_stop_state (int signo)
8671 {
8672 return signal_stop[signo];
8673 }
8674
8675 int
8676 signal_print_state (int signo)
8677 {
8678 return signal_print[signo];
8679 }
8680
8681 int
8682 signal_pass_state (int signo)
8683 {
8684 return signal_program[signo];
8685 }
8686
8687 static void
8688 signal_cache_update (int signo)
8689 {
8690 if (signo == -1)
8691 {
8692 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8693 signal_cache_update (signo);
8694
8695 return;
8696 }
8697
8698 signal_pass[signo] = (signal_stop[signo] == 0
8699 && signal_print[signo] == 0
8700 && signal_program[signo] == 1
8701 && signal_catch[signo] == 0);
8702 }
8703
8704 int
8705 signal_stop_update (int signo, int state)
8706 {
8707 int ret = signal_stop[signo];
8708
8709 signal_stop[signo] = state;
8710 signal_cache_update (signo);
8711 return ret;
8712 }
8713
8714 int
8715 signal_print_update (int signo, int state)
8716 {
8717 int ret = signal_print[signo];
8718
8719 signal_print[signo] = state;
8720 signal_cache_update (signo);
8721 return ret;
8722 }
8723
8724 int
8725 signal_pass_update (int signo, int state)
8726 {
8727 int ret = signal_program[signo];
8728
8729 signal_program[signo] = state;
8730 signal_cache_update (signo);
8731 return ret;
8732 }
8733
8734 /* Update the global 'signal_catch' from INFO and notify the
8735 target. */
8736
8737 void
8738 signal_catch_update (const unsigned int *info)
8739 {
8740 int i;
8741
8742 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8743 signal_catch[i] = info[i] > 0;
8744 signal_cache_update (-1);
8745 target_pass_signals (signal_pass);
8746 }
8747
8748 static void
8749 sig_print_header (void)
8750 {
8751 printf_filtered (_("Signal Stop\tPrint\tPass "
8752 "to program\tDescription\n"));
8753 }
8754
8755 static void
8756 sig_print_info (enum gdb_signal oursig)
8757 {
8758 const char *name = gdb_signal_to_name (oursig);
8759 int name_padding = 13 - strlen (name);
8760
8761 if (name_padding <= 0)
8762 name_padding = 0;
8763
8764 printf_filtered ("%s", name);
8765 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8766 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8767 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8768 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8769 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8770 }
8771
8772 /* Specify how various signals in the inferior should be handled. */
8773
8774 static void
8775 handle_command (const char *args, int from_tty)
8776 {
8777 int digits, wordlen;
8778 int sigfirst, siglast;
8779 enum gdb_signal oursig;
8780 int allsigs;
8781
8782 if (args == NULL)
8783 {
8784 error_no_arg (_("signal to handle"));
8785 }
8786
8787 /* Allocate and zero an array of flags for which signals to handle. */
8788
8789 const size_t nsigs = GDB_SIGNAL_LAST;
8790 unsigned char sigs[nsigs] {};
8791
8792 /* Break the command line up into args. */
8793
8794 gdb_argv built_argv (args);
8795
8796 /* Walk through the args, looking for signal oursigs, signal names, and
8797 actions. Signal numbers and signal names may be interspersed with
8798 actions, with the actions being performed for all signals cumulatively
8799 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8800
8801 for (char *arg : built_argv)
8802 {
8803 wordlen = strlen (arg);
8804 for (digits = 0; isdigit (arg[digits]); digits++)
8805 {;
8806 }
8807 allsigs = 0;
8808 sigfirst = siglast = -1;
8809
8810 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8811 {
8812 /* Apply action to all signals except those used by the
8813 debugger. Silently skip those. */
8814 allsigs = 1;
8815 sigfirst = 0;
8816 siglast = nsigs - 1;
8817 }
8818 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8819 {
8820 SET_SIGS (nsigs, sigs, signal_stop);
8821 SET_SIGS (nsigs, sigs, signal_print);
8822 }
8823 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8824 {
8825 UNSET_SIGS (nsigs, sigs, signal_program);
8826 }
8827 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8828 {
8829 SET_SIGS (nsigs, sigs, signal_print);
8830 }
8831 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8832 {
8833 SET_SIGS (nsigs, sigs, signal_program);
8834 }
8835 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8836 {
8837 UNSET_SIGS (nsigs, sigs, signal_stop);
8838 }
8839 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8840 {
8841 SET_SIGS (nsigs, sigs, signal_program);
8842 }
8843 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8844 {
8845 UNSET_SIGS (nsigs, sigs, signal_print);
8846 UNSET_SIGS (nsigs, sigs, signal_stop);
8847 }
8848 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8849 {
8850 UNSET_SIGS (nsigs, sigs, signal_program);
8851 }
8852 else if (digits > 0)
8853 {
8854 /* It is numeric. The numeric signal refers to our own
8855 internal signal numbering from target.h, not to host/target
8856 signal number. This is a feature; users really should be
8857 using symbolic names anyway, and the common ones like
8858 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8859
8860 sigfirst = siglast = (int)
8861 gdb_signal_from_command (atoi (arg));
8862 if (arg[digits] == '-')
8863 {
8864 siglast = (int)
8865 gdb_signal_from_command (atoi (arg + digits + 1));
8866 }
8867 if (sigfirst > siglast)
8868 {
8869 /* Bet he didn't figure we'd think of this case... */
8870 std::swap (sigfirst, siglast);
8871 }
8872 }
8873 else
8874 {
8875 oursig = gdb_signal_from_name (arg);
8876 if (oursig != GDB_SIGNAL_UNKNOWN)
8877 {
8878 sigfirst = siglast = (int) oursig;
8879 }
8880 else
8881 {
8882 /* Not a number and not a recognized flag word => complain. */
8883 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8884 }
8885 }
8886
8887 /* If any signal numbers or symbol names were found, set flags for
8888 which signals to apply actions to. */
8889
8890 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8891 {
8892 switch ((enum gdb_signal) signum)
8893 {
8894 case GDB_SIGNAL_TRAP:
8895 case GDB_SIGNAL_INT:
8896 if (!allsigs && !sigs[signum])
8897 {
8898 if (query (_("%s is used by the debugger.\n\
8899 Are you sure you want to change it? "),
8900 gdb_signal_to_name ((enum gdb_signal) signum)))
8901 {
8902 sigs[signum] = 1;
8903 }
8904 else
8905 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8906 }
8907 break;
8908 case GDB_SIGNAL_0:
8909 case GDB_SIGNAL_DEFAULT:
8910 case GDB_SIGNAL_UNKNOWN:
8911 /* Make sure that "all" doesn't print these. */
8912 break;
8913 default:
8914 sigs[signum] = 1;
8915 break;
8916 }
8917 }
8918 }
8919
8920 for (int signum = 0; signum < nsigs; signum++)
8921 if (sigs[signum])
8922 {
8923 signal_cache_update (-1);
8924 target_pass_signals (signal_pass);
8925 target_program_signals (signal_program);
8926
8927 if (from_tty)
8928 {
8929 /* Show the results. */
8930 sig_print_header ();
8931 for (; signum < nsigs; signum++)
8932 if (sigs[signum])
8933 sig_print_info ((enum gdb_signal) signum);
8934 }
8935
8936 break;
8937 }
8938 }
8939
8940 /* Complete the "handle" command. */
8941
8942 static void
8943 handle_completer (struct cmd_list_element *ignore,
8944 completion_tracker &tracker,
8945 const char *text, const char *word)
8946 {
8947 static const char * const keywords[] =
8948 {
8949 "all",
8950 "stop",
8951 "ignore",
8952 "print",
8953 "pass",
8954 "nostop",
8955 "noignore",
8956 "noprint",
8957 "nopass",
8958 NULL,
8959 };
8960
8961 signal_completer (ignore, tracker, text, word);
8962 complete_on_enum (tracker, keywords, word, word);
8963 }
8964
8965 enum gdb_signal
8966 gdb_signal_from_command (int num)
8967 {
8968 if (num >= 1 && num <= 15)
8969 return (enum gdb_signal) num;
8970 error (_("Only signals 1-15 are valid as numeric signals.\n\
8971 Use \"info signals\" for a list of symbolic signals."));
8972 }
8973
8974 /* Print current contents of the tables set by the handle command.
8975 It is possible we should just be printing signals actually used
8976 by the current target (but for things to work right when switching
8977 targets, all signals should be in the signal tables). */
8978
8979 static void
8980 info_signals_command (const char *signum_exp, int from_tty)
8981 {
8982 enum gdb_signal oursig;
8983
8984 sig_print_header ();
8985
8986 if (signum_exp)
8987 {
8988 /* First see if this is a symbol name. */
8989 oursig = gdb_signal_from_name (signum_exp);
8990 if (oursig == GDB_SIGNAL_UNKNOWN)
8991 {
8992 /* No, try numeric. */
8993 oursig =
8994 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8995 }
8996 sig_print_info (oursig);
8997 return;
8998 }
8999
9000 printf_filtered ("\n");
9001 /* These ugly casts brought to you by the native VAX compiler. */
9002 for (oursig = GDB_SIGNAL_FIRST;
9003 (int) oursig < (int) GDB_SIGNAL_LAST;
9004 oursig = (enum gdb_signal) ((int) oursig + 1))
9005 {
9006 QUIT;
9007
9008 if (oursig != GDB_SIGNAL_UNKNOWN
9009 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
9010 sig_print_info (oursig);
9011 }
9012
9013 printf_filtered (_("\nUse the \"handle\" command "
9014 "to change these tables.\n"));
9015 }
9016
9017 /* The $_siginfo convenience variable is a bit special. We don't know
9018 for sure the type of the value until we actually have a chance to
9019 fetch the data. The type can change depending on gdbarch, so it is
9020 also dependent on which thread you have selected.
9021
9022 1. making $_siginfo be an internalvar that creates a new value on
9023 access.
9024
9025 2. making the value of $_siginfo be an lval_computed value. */
9026
9027 /* This function implements the lval_computed support for reading a
9028 $_siginfo value. */
9029
9030 static void
9031 siginfo_value_read (struct value *v)
9032 {
9033 LONGEST transferred;
9034
9035 /* If we can access registers, so can we access $_siginfo. Likewise
9036 vice versa. */
9037 validate_registers_access ();
9038
9039 transferred =
9040 target_read (current_inferior ()->top_target (),
9041 TARGET_OBJECT_SIGNAL_INFO,
9042 NULL,
9043 value_contents_all_raw (v),
9044 value_offset (v),
9045 TYPE_LENGTH (value_type (v)));
9046
9047 if (transferred != TYPE_LENGTH (value_type (v)))
9048 error (_("Unable to read siginfo"));
9049 }
9050
9051 /* This function implements the lval_computed support for writing a
9052 $_siginfo value. */
9053
9054 static void
9055 siginfo_value_write (struct value *v, struct value *fromval)
9056 {
9057 LONGEST transferred;
9058
9059 /* If we can access registers, so can we access $_siginfo. Likewise
9060 vice versa. */
9061 validate_registers_access ();
9062
9063 transferred = target_write (current_inferior ()->top_target (),
9064 TARGET_OBJECT_SIGNAL_INFO,
9065 NULL,
9066 value_contents_all_raw (fromval),
9067 value_offset (v),
9068 TYPE_LENGTH (value_type (fromval)));
9069
9070 if (transferred != TYPE_LENGTH (value_type (fromval)))
9071 error (_("Unable to write siginfo"));
9072 }
9073
9074 static const struct lval_funcs siginfo_value_funcs =
9075 {
9076 siginfo_value_read,
9077 siginfo_value_write
9078 };
9079
9080 /* Return a new value with the correct type for the siginfo object of
9081 the current thread using architecture GDBARCH. Return a void value
9082 if there's no object available. */
9083
9084 static struct value *
9085 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
9086 void *ignore)
9087 {
9088 if (target_has_stack ()
9089 && inferior_ptid != null_ptid
9090 && gdbarch_get_siginfo_type_p (gdbarch))
9091 {
9092 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9093
9094 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
9095 }
9096
9097 return allocate_value (builtin_type (gdbarch)->builtin_void);
9098 }
9099
9100 \f
9101 /* infcall_suspend_state contains state about the program itself like its
9102 registers and any signal it received when it last stopped.
9103 This state must be restored regardless of how the inferior function call
9104 ends (either successfully, or after it hits a breakpoint or signal)
9105 if the program is to properly continue where it left off. */
9106
9107 class infcall_suspend_state
9108 {
9109 public:
9110 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
9111 once the inferior function call has finished. */
9112 infcall_suspend_state (struct gdbarch *gdbarch,
9113 const struct thread_info *tp,
9114 struct regcache *regcache)
9115 : m_thread_suspend (tp->suspend),
9116 m_registers (new readonly_detached_regcache (*regcache))
9117 {
9118 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
9119
9120 if (gdbarch_get_siginfo_type_p (gdbarch))
9121 {
9122 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9123 size_t len = TYPE_LENGTH (type);
9124
9125 siginfo_data.reset ((gdb_byte *) xmalloc (len));
9126
9127 if (target_read (current_inferior ()->top_target (),
9128 TARGET_OBJECT_SIGNAL_INFO, NULL,
9129 siginfo_data.get (), 0, len) != len)
9130 {
9131 /* Errors ignored. */
9132 siginfo_data.reset (nullptr);
9133 }
9134 }
9135
9136 if (siginfo_data)
9137 {
9138 m_siginfo_gdbarch = gdbarch;
9139 m_siginfo_data = std::move (siginfo_data);
9140 }
9141 }
9142
9143 /* Return a pointer to the stored register state. */
9144
9145 readonly_detached_regcache *registers () const
9146 {
9147 return m_registers.get ();
9148 }
9149
9150 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
9151
9152 void restore (struct gdbarch *gdbarch,
9153 struct thread_info *tp,
9154 struct regcache *regcache) const
9155 {
9156 tp->suspend = m_thread_suspend;
9157
9158 if (m_siginfo_gdbarch == gdbarch)
9159 {
9160 struct type *type = gdbarch_get_siginfo_type (gdbarch);
9161
9162 /* Errors ignored. */
9163 target_write (current_inferior ()->top_target (),
9164 TARGET_OBJECT_SIGNAL_INFO, NULL,
9165 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
9166 }
9167
9168 /* The inferior can be gone if the user types "print exit(0)"
9169 (and perhaps other times). */
9170 if (target_has_execution ())
9171 /* NB: The register write goes through to the target. */
9172 regcache->restore (registers ());
9173 }
9174
9175 private:
9176 /* How the current thread stopped before the inferior function call was
9177 executed. */
9178 struct thread_suspend_state m_thread_suspend;
9179
9180 /* The registers before the inferior function call was executed. */
9181 std::unique_ptr<readonly_detached_regcache> m_registers;
9182
9183 /* Format of SIGINFO_DATA or NULL if it is not present. */
9184 struct gdbarch *m_siginfo_gdbarch = nullptr;
9185
9186 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
9187 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
9188 content would be invalid. */
9189 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
9190 };
9191
9192 infcall_suspend_state_up
9193 save_infcall_suspend_state ()
9194 {
9195 struct thread_info *tp = inferior_thread ();
9196 struct regcache *regcache = get_current_regcache ();
9197 struct gdbarch *gdbarch = regcache->arch ();
9198
9199 infcall_suspend_state_up inf_state
9200 (new struct infcall_suspend_state (gdbarch, tp, regcache));
9201
9202 /* Having saved the current state, adjust the thread state, discarding
9203 any stop signal information. The stop signal is not useful when
9204 starting an inferior function call, and run_inferior_call will not use
9205 the signal due to its `proceed' call with GDB_SIGNAL_0. */
9206 tp->suspend.stop_signal = GDB_SIGNAL_0;
9207
9208 return inf_state;
9209 }
9210
9211 /* Restore inferior session state to INF_STATE. */
9212
9213 void
9214 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9215 {
9216 struct thread_info *tp = inferior_thread ();
9217 struct regcache *regcache = get_current_regcache ();
9218 struct gdbarch *gdbarch = regcache->arch ();
9219
9220 inf_state->restore (gdbarch, tp, regcache);
9221 discard_infcall_suspend_state (inf_state);
9222 }
9223
9224 void
9225 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
9226 {
9227 delete inf_state;
9228 }
9229
9230 readonly_detached_regcache *
9231 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
9232 {
9233 return inf_state->registers ();
9234 }
9235
9236 /* infcall_control_state contains state regarding gdb's control of the
9237 inferior itself like stepping control. It also contains session state like
9238 the user's currently selected frame. */
9239
9240 struct infcall_control_state
9241 {
9242 struct thread_control_state thread_control;
9243 struct inferior_control_state inferior_control;
9244
9245 /* Other fields: */
9246 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9247 int stopped_by_random_signal = 0;
9248
9249 /* ID and level of the selected frame when the inferior function
9250 call was made. */
9251 struct frame_id selected_frame_id {};
9252 int selected_frame_level = -1;
9253 };
9254
9255 /* Save all of the information associated with the inferior<==>gdb
9256 connection. */
9257
9258 infcall_control_state_up
9259 save_infcall_control_state ()
9260 {
9261 infcall_control_state_up inf_status (new struct infcall_control_state);
9262 struct thread_info *tp = inferior_thread ();
9263 struct inferior *inf = current_inferior ();
9264
9265 inf_status->thread_control = tp->control;
9266 inf_status->inferior_control = inf->control;
9267
9268 tp->control.step_resume_breakpoint = NULL;
9269 tp->control.exception_resume_breakpoint = NULL;
9270
9271 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9272 chain. If caller's caller is walking the chain, they'll be happier if we
9273 hand them back the original chain when restore_infcall_control_state is
9274 called. */
9275 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9276
9277 /* Other fields: */
9278 inf_status->stop_stack_dummy = stop_stack_dummy;
9279 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9280
9281 save_selected_frame (&inf_status->selected_frame_id,
9282 &inf_status->selected_frame_level);
9283
9284 return inf_status;
9285 }
9286
9287 /* Restore inferior session state to INF_STATUS. */
9288
9289 void
9290 restore_infcall_control_state (struct infcall_control_state *inf_status)
9291 {
9292 struct thread_info *tp = inferior_thread ();
9293 struct inferior *inf = current_inferior ();
9294
9295 if (tp->control.step_resume_breakpoint)
9296 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9297
9298 if (tp->control.exception_resume_breakpoint)
9299 tp->control.exception_resume_breakpoint->disposition
9300 = disp_del_at_next_stop;
9301
9302 /* Handle the bpstat_copy of the chain. */
9303 bpstat_clear (&tp->control.stop_bpstat);
9304
9305 tp->control = inf_status->thread_control;
9306 inf->control = inf_status->inferior_control;
9307
9308 /* Other fields: */
9309 stop_stack_dummy = inf_status->stop_stack_dummy;
9310 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9311
9312 if (target_has_stack ())
9313 {
9314 restore_selected_frame (inf_status->selected_frame_id,
9315 inf_status->selected_frame_level);
9316 }
9317
9318 delete inf_status;
9319 }
9320
9321 void
9322 discard_infcall_control_state (struct infcall_control_state *inf_status)
9323 {
9324 if (inf_status->thread_control.step_resume_breakpoint)
9325 inf_status->thread_control.step_resume_breakpoint->disposition
9326 = disp_del_at_next_stop;
9327
9328 if (inf_status->thread_control.exception_resume_breakpoint)
9329 inf_status->thread_control.exception_resume_breakpoint->disposition
9330 = disp_del_at_next_stop;
9331
9332 /* See save_infcall_control_state for info on stop_bpstat. */
9333 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9334
9335 delete inf_status;
9336 }
9337 \f
9338 /* See infrun.h. */
9339
9340 void
9341 clear_exit_convenience_vars (void)
9342 {
9343 clear_internalvar (lookup_internalvar ("_exitsignal"));
9344 clear_internalvar (lookup_internalvar ("_exitcode"));
9345 }
9346 \f
9347
9348 /* User interface for reverse debugging:
9349 Set exec-direction / show exec-direction commands
9350 (returns error unless target implements to_set_exec_direction method). */
9351
9352 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9353 static const char exec_forward[] = "forward";
9354 static const char exec_reverse[] = "reverse";
9355 static const char *exec_direction = exec_forward;
9356 static const char *const exec_direction_names[] = {
9357 exec_forward,
9358 exec_reverse,
9359 NULL
9360 };
9361
9362 static void
9363 set_exec_direction_func (const char *args, int from_tty,
9364 struct cmd_list_element *cmd)
9365 {
9366 if (target_can_execute_reverse ())
9367 {
9368 if (!strcmp (exec_direction, exec_forward))
9369 execution_direction = EXEC_FORWARD;
9370 else if (!strcmp (exec_direction, exec_reverse))
9371 execution_direction = EXEC_REVERSE;
9372 }
9373 else
9374 {
9375 exec_direction = exec_forward;
9376 error (_("Target does not support this operation."));
9377 }
9378 }
9379
9380 static void
9381 show_exec_direction_func (struct ui_file *out, int from_tty,
9382 struct cmd_list_element *cmd, const char *value)
9383 {
9384 switch (execution_direction) {
9385 case EXEC_FORWARD:
9386 fprintf_filtered (out, _("Forward.\n"));
9387 break;
9388 case EXEC_REVERSE:
9389 fprintf_filtered (out, _("Reverse.\n"));
9390 break;
9391 default:
9392 internal_error (__FILE__, __LINE__,
9393 _("bogus execution_direction value: %d"),
9394 (int) execution_direction);
9395 }
9396 }
9397
9398 static void
9399 show_schedule_multiple (struct ui_file *file, int from_tty,
9400 struct cmd_list_element *c, const char *value)
9401 {
9402 fprintf_filtered (file, _("Resuming the execution of threads "
9403 "of all processes is %s.\n"), value);
9404 }
9405
9406 /* Implementation of `siginfo' variable. */
9407
9408 static const struct internalvar_funcs siginfo_funcs =
9409 {
9410 siginfo_make_value,
9411 NULL,
9412 NULL
9413 };
9414
9415 /* Callback for infrun's target events source. This is marked when a
9416 thread has a pending status to process. */
9417
9418 static void
9419 infrun_async_inferior_event_handler (gdb_client_data data)
9420 {
9421 clear_async_event_handler (infrun_async_inferior_event_token);
9422 inferior_event_handler (INF_REG_EVENT);
9423 }
9424
9425 #if GDB_SELF_TEST
9426 namespace selftests
9427 {
9428
9429 /* Verify that when two threads with the same ptid exist (from two different
9430 targets) and one of them changes ptid, we only update inferior_ptid if
9431 it is appropriate. */
9432
9433 static void
9434 infrun_thread_ptid_changed ()
9435 {
9436 gdbarch *arch = current_inferior ()->gdbarch;
9437
9438 /* The thread which inferior_ptid represents changes ptid. */
9439 {
9440 scoped_restore_current_pspace_and_thread restore;
9441
9442 scoped_mock_context<test_target_ops> target1 (arch);
9443 scoped_mock_context<test_target_ops> target2 (arch);
9444 target2.mock_inferior.next = &target1.mock_inferior;
9445
9446 ptid_t old_ptid (111, 222);
9447 ptid_t new_ptid (111, 333);
9448
9449 target1.mock_inferior.pid = old_ptid.pid ();
9450 target1.mock_thread.ptid = old_ptid;
9451 target2.mock_inferior.pid = old_ptid.pid ();
9452 target2.mock_thread.ptid = old_ptid;
9453
9454 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9455 set_current_inferior (&target1.mock_inferior);
9456
9457 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9458
9459 gdb_assert (inferior_ptid == new_ptid);
9460 }
9461
9462 /* A thread with the same ptid as inferior_ptid, but from another target,
9463 changes ptid. */
9464 {
9465 scoped_restore_current_pspace_and_thread restore;
9466
9467 scoped_mock_context<test_target_ops> target1 (arch);
9468 scoped_mock_context<test_target_ops> target2 (arch);
9469 target2.mock_inferior.next = &target1.mock_inferior;
9470
9471 ptid_t old_ptid (111, 222);
9472 ptid_t new_ptid (111, 333);
9473
9474 target1.mock_inferior.pid = old_ptid.pid ();
9475 target1.mock_thread.ptid = old_ptid;
9476 target2.mock_inferior.pid = old_ptid.pid ();
9477 target2.mock_thread.ptid = old_ptid;
9478
9479 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9480 set_current_inferior (&target2.mock_inferior);
9481
9482 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9483
9484 gdb_assert (inferior_ptid == old_ptid);
9485 }
9486 }
9487
9488 } /* namespace selftests */
9489
9490 #endif /* GDB_SELF_TEST */
9491
9492 void _initialize_infrun ();
9493 void
9494 _initialize_infrun ()
9495 {
9496 struct cmd_list_element *c;
9497
9498 /* Register extra event sources in the event loop. */
9499 infrun_async_inferior_event_token
9500 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9501 "infrun");
9502
9503 add_info ("signals", info_signals_command, _("\
9504 What debugger does when program gets various signals.\n\
9505 Specify a signal as argument to print info on that signal only."));
9506 add_info_alias ("handle", "signals", 0);
9507
9508 c = add_com ("handle", class_run, handle_command, _("\
9509 Specify how to handle signals.\n\
9510 Usage: handle SIGNAL [ACTIONS]\n\
9511 Args are signals and actions to apply to those signals.\n\
9512 If no actions are specified, the current settings for the specified signals\n\
9513 will be displayed instead.\n\
9514 \n\
9515 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9516 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9517 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9518 The special arg \"all\" is recognized to mean all signals except those\n\
9519 used by the debugger, typically SIGTRAP and SIGINT.\n\
9520 \n\
9521 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9522 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9523 Stop means reenter debugger if this signal happens (implies print).\n\
9524 Print means print a message if this signal happens.\n\
9525 Pass means let program see this signal; otherwise program doesn't know.\n\
9526 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9527 Pass and Stop may be combined.\n\
9528 \n\
9529 Multiple signals may be specified. Signal numbers and signal names\n\
9530 may be interspersed with actions, with the actions being performed for\n\
9531 all signals cumulatively specified."));
9532 set_cmd_completer (c, handle_completer);
9533
9534 if (!dbx_commands)
9535 stop_command = add_cmd ("stop", class_obscure,
9536 not_just_help_class_command, _("\
9537 There is no `stop' command, but you can set a hook on `stop'.\n\
9538 This allows you to set a list of commands to be run each time execution\n\
9539 of the program stops."), &cmdlist);
9540
9541 add_setshow_boolean_cmd
9542 ("infrun", class_maintenance, &debug_infrun,
9543 _("Set inferior debugging."),
9544 _("Show inferior debugging."),
9545 _("When non-zero, inferior specific debugging is enabled."),
9546 NULL, show_debug_infrun, &setdebuglist, &showdebuglist);
9547
9548 add_setshow_boolean_cmd ("non-stop", no_class,
9549 &non_stop_1, _("\
9550 Set whether gdb controls the inferior in non-stop mode."), _("\
9551 Show whether gdb controls the inferior in non-stop mode."), _("\
9552 When debugging a multi-threaded program and this setting is\n\
9553 off (the default, also called all-stop mode), when one thread stops\n\
9554 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9555 all other threads in the program while you interact with the thread of\n\
9556 interest. When you continue or step a thread, you can allow the other\n\
9557 threads to run, or have them remain stopped, but while you inspect any\n\
9558 thread's state, all threads stop.\n\
9559 \n\
9560 In non-stop mode, when one thread stops, other threads can continue\n\
9561 to run freely. You'll be able to step each thread independently,\n\
9562 leave it stopped or free to run as needed."),
9563 set_non_stop,
9564 show_non_stop,
9565 &setlist,
9566 &showlist);
9567
9568 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9569 {
9570 signal_stop[i] = 1;
9571 signal_print[i] = 1;
9572 signal_program[i] = 1;
9573 signal_catch[i] = 0;
9574 }
9575
9576 /* Signals caused by debugger's own actions should not be given to
9577 the program afterwards.
9578
9579 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9580 explicitly specifies that it should be delivered to the target
9581 program. Typically, that would occur when a user is debugging a
9582 target monitor on a simulator: the target monitor sets a
9583 breakpoint; the simulator encounters this breakpoint and halts
9584 the simulation handing control to GDB; GDB, noting that the stop
9585 address doesn't map to any known breakpoint, returns control back
9586 to the simulator; the simulator then delivers the hardware
9587 equivalent of a GDB_SIGNAL_TRAP to the program being
9588 debugged. */
9589 signal_program[GDB_SIGNAL_TRAP] = 0;
9590 signal_program[GDB_SIGNAL_INT] = 0;
9591
9592 /* Signals that are not errors should not normally enter the debugger. */
9593 signal_stop[GDB_SIGNAL_ALRM] = 0;
9594 signal_print[GDB_SIGNAL_ALRM] = 0;
9595 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9596 signal_print[GDB_SIGNAL_VTALRM] = 0;
9597 signal_stop[GDB_SIGNAL_PROF] = 0;
9598 signal_print[GDB_SIGNAL_PROF] = 0;
9599 signal_stop[GDB_SIGNAL_CHLD] = 0;
9600 signal_print[GDB_SIGNAL_CHLD] = 0;
9601 signal_stop[GDB_SIGNAL_IO] = 0;
9602 signal_print[GDB_SIGNAL_IO] = 0;
9603 signal_stop[GDB_SIGNAL_POLL] = 0;
9604 signal_print[GDB_SIGNAL_POLL] = 0;
9605 signal_stop[GDB_SIGNAL_URG] = 0;
9606 signal_print[GDB_SIGNAL_URG] = 0;
9607 signal_stop[GDB_SIGNAL_WINCH] = 0;
9608 signal_print[GDB_SIGNAL_WINCH] = 0;
9609 signal_stop[GDB_SIGNAL_PRIO] = 0;
9610 signal_print[GDB_SIGNAL_PRIO] = 0;
9611
9612 /* These signals are used internally by user-level thread
9613 implementations. (See signal(5) on Solaris.) Like the above
9614 signals, a healthy program receives and handles them as part of
9615 its normal operation. */
9616 signal_stop[GDB_SIGNAL_LWP] = 0;
9617 signal_print[GDB_SIGNAL_LWP] = 0;
9618 signal_stop[GDB_SIGNAL_WAITING] = 0;
9619 signal_print[GDB_SIGNAL_WAITING] = 0;
9620 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9621 signal_print[GDB_SIGNAL_CANCEL] = 0;
9622 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9623 signal_print[GDB_SIGNAL_LIBRT] = 0;
9624
9625 /* Update cached state. */
9626 signal_cache_update (-1);
9627
9628 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9629 &stop_on_solib_events, _("\
9630 Set stopping for shared library events."), _("\
9631 Show stopping for shared library events."), _("\
9632 If nonzero, gdb will give control to the user when the dynamic linker\n\
9633 notifies gdb of shared library events. The most common event of interest\n\
9634 to the user would be loading/unloading of a new library."),
9635 set_stop_on_solib_events,
9636 show_stop_on_solib_events,
9637 &setlist, &showlist);
9638
9639 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9640 follow_fork_mode_kind_names,
9641 &follow_fork_mode_string, _("\
9642 Set debugger response to a program call of fork or vfork."), _("\
9643 Show debugger response to a program call of fork or vfork."), _("\
9644 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9645 parent - the original process is debugged after a fork\n\
9646 child - the new process is debugged after a fork\n\
9647 The unfollowed process will continue to run.\n\
9648 By default, the debugger will follow the parent process."),
9649 NULL,
9650 show_follow_fork_mode_string,
9651 &setlist, &showlist);
9652
9653 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9654 follow_exec_mode_names,
9655 &follow_exec_mode_string, _("\
9656 Set debugger response to a program call of exec."), _("\
9657 Show debugger response to a program call of exec."), _("\
9658 An exec call replaces the program image of a process.\n\
9659 \n\
9660 follow-exec-mode can be:\n\
9661 \n\
9662 new - the debugger creates a new inferior and rebinds the process\n\
9663 to this new inferior. The program the process was running before\n\
9664 the exec call can be restarted afterwards by restarting the original\n\
9665 inferior.\n\
9666 \n\
9667 same - the debugger keeps the process bound to the same inferior.\n\
9668 The new executable image replaces the previous executable loaded in\n\
9669 the inferior. Restarting the inferior after the exec call restarts\n\
9670 the executable the process was running after the exec call.\n\
9671 \n\
9672 By default, the debugger will use the same inferior."),
9673 NULL,
9674 show_follow_exec_mode_string,
9675 &setlist, &showlist);
9676
9677 add_setshow_enum_cmd ("scheduler-locking", class_run,
9678 scheduler_enums, &scheduler_mode, _("\
9679 Set mode for locking scheduler during execution."), _("\
9680 Show mode for locking scheduler during execution."), _("\
9681 off == no locking (threads may preempt at any time)\n\
9682 on == full locking (no thread except the current thread may run)\n\
9683 This applies to both normal execution and replay mode.\n\
9684 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9685 In this mode, other threads may run during other commands.\n\
9686 This applies to both normal execution and replay mode.\n\
9687 replay == scheduler locked in replay mode and unlocked during normal execution."),
9688 set_schedlock_func, /* traps on target vector */
9689 show_scheduler_mode,
9690 &setlist, &showlist);
9691
9692 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9693 Set mode for resuming threads of all processes."), _("\
9694 Show mode for resuming threads of all processes."), _("\
9695 When on, execution commands (such as 'continue' or 'next') resume all\n\
9696 threads of all processes. When off (which is the default), execution\n\
9697 commands only resume the threads of the current process. The set of\n\
9698 threads that are resumed is further refined by the scheduler-locking\n\
9699 mode (see help set scheduler-locking)."),
9700 NULL,
9701 show_schedule_multiple,
9702 &setlist, &showlist);
9703
9704 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9705 Set mode of the step operation."), _("\
9706 Show mode of the step operation."), _("\
9707 When set, doing a step over a function without debug line information\n\
9708 will stop at the first instruction of that function. Otherwise, the\n\
9709 function is skipped and the step command stops at a different source line."),
9710 NULL,
9711 show_step_stop_if_no_debug,
9712 &setlist, &showlist);
9713
9714 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9715 &can_use_displaced_stepping, _("\
9716 Set debugger's willingness to use displaced stepping."), _("\
9717 Show debugger's willingness to use displaced stepping."), _("\
9718 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9719 supported by the target architecture. If off, gdb will not use displaced\n\
9720 stepping to step over breakpoints, even if such is supported by the target\n\
9721 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9722 if the target architecture supports it and non-stop mode is active, but will not\n\
9723 use it in all-stop mode (see help set non-stop)."),
9724 NULL,
9725 show_can_use_displaced_stepping,
9726 &setlist, &showlist);
9727
9728 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9729 &exec_direction, _("Set direction of execution.\n\
9730 Options are 'forward' or 'reverse'."),
9731 _("Show direction of execution (forward/reverse)."),
9732 _("Tells gdb whether to execute forward or backward."),
9733 set_exec_direction_func, show_exec_direction_func,
9734 &setlist, &showlist);
9735
9736 /* Set/show detach-on-fork: user-settable mode. */
9737
9738 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9739 Set whether gdb will detach the child of a fork."), _("\
9740 Show whether gdb will detach the child of a fork."), _("\
9741 Tells gdb whether to detach the child of a fork."),
9742 NULL, NULL, &setlist, &showlist);
9743
9744 /* Set/show disable address space randomization mode. */
9745
9746 add_setshow_boolean_cmd ("disable-randomization", class_support,
9747 &disable_randomization, _("\
9748 Set disabling of debuggee's virtual address space randomization."), _("\
9749 Show disabling of debuggee's virtual address space randomization."), _("\
9750 When this mode is on (which is the default), randomization of the virtual\n\
9751 address space is disabled. Standalone programs run with the randomization\n\
9752 enabled by default on some platforms."),
9753 &set_disable_randomization,
9754 &show_disable_randomization,
9755 &setlist, &showlist);
9756
9757 /* ptid initializations */
9758 inferior_ptid = null_ptid;
9759 target_last_wait_ptid = minus_one_ptid;
9760
9761 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed,
9762 "infrun");
9763 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested,
9764 "infrun");
9765 gdb::observers::thread_exit.attach (infrun_thread_thread_exit, "infrun");
9766 gdb::observers::inferior_exit.attach (infrun_inferior_exit, "infrun");
9767 gdb::observers::inferior_execd.attach (infrun_inferior_execd, "infrun");
9768
9769 /* Explicitly create without lookup, since that tries to create a
9770 value with a void typed value, and when we get here, gdbarch
9771 isn't initialized yet. At this point, we're quite sure there
9772 isn't another convenience variable of the same name. */
9773 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9774
9775 add_setshow_boolean_cmd ("observer", no_class,
9776 &observer_mode_1, _("\
9777 Set whether gdb controls the inferior in observer mode."), _("\
9778 Show whether gdb controls the inferior in observer mode."), _("\
9779 In observer mode, GDB can get data from the inferior, but not\n\
9780 affect its execution. Registers and memory may not be changed,\n\
9781 breakpoints may not be set, and the program cannot be interrupted\n\
9782 or signalled."),
9783 set_observer_mode,
9784 show_observer_mode,
9785 &setlist,
9786 &showlist);
9787
9788 #if GDB_SELF_TEST
9789 selftests::register_test ("infrun_thread_ptid_changed",
9790 selftests::infrun_thread_ptid_changed);
9791 #endif
9792 }