]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
91198b7dff6bde712b7c671953836eae392d8bf3
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
5 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007
6 Free Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 51 Franklin Street, Fifth Floor,
23 Boston, MA 02110-1301, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "exceptions.h"
32 #include "breakpoint.h"
33 #include "gdb_wait.h"
34 #include "gdbcore.h"
35 #include "gdbcmd.h"
36 #include "cli/cli-script.h"
37 #include "target.h"
38 #include "gdbthread.h"
39 #include "annotate.h"
40 #include "symfile.h"
41 #include "top.h"
42 #include <signal.h>
43 #include "inf-loop.h"
44 #include "regcache.h"
45 #include "value.h"
46 #include "observer.h"
47 #include "language.h"
48 #include "solib.h"
49 #include "main.h"
50
51 #include "gdb_assert.h"
52 #include "mi/mi-common.h"
53
54 /* Prototypes for local functions */
55
56 static void signals_info (char *, int);
57
58 static void handle_command (char *, int);
59
60 static void sig_print_info (enum target_signal);
61
62 static void sig_print_header (void);
63
64 static void resume_cleanups (void *);
65
66 static int hook_stop_stub (void *);
67
68 static int restore_selected_frame (void *);
69
70 static void build_infrun (void);
71
72 static int follow_fork (void);
73
74 static void set_schedlock_func (char *args, int from_tty,
75 struct cmd_list_element *c);
76
77 struct execution_control_state;
78
79 static int currently_stepping (struct execution_control_state *ecs);
80
81 static void xdb_handle_command (char *args, int from_tty);
82
83 static int prepare_to_proceed (void);
84
85 void _initialize_infrun (void);
86
87 int inferior_ignoring_startup_exec_events = 0;
88 int inferior_ignoring_leading_exec_events = 0;
89
90 /* When set, stop the 'step' command if we enter a function which has
91 no line number information. The normal behavior is that we step
92 over such function. */
93 int step_stop_if_no_debug = 0;
94 static void
95 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
96 struct cmd_list_element *c, const char *value)
97 {
98 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
99 }
100
101 /* In asynchronous mode, but simulating synchronous execution. */
102
103 int sync_execution = 0;
104
105 /* wait_for_inferior and normal_stop use this to notify the user
106 when the inferior stopped in a different thread than it had been
107 running in. */
108
109 static ptid_t previous_inferior_ptid;
110
111 /* This is true for configurations that may follow through execl() and
112 similar functions. At present this is only true for HP-UX native. */
113
114 #ifndef MAY_FOLLOW_EXEC
115 #define MAY_FOLLOW_EXEC (0)
116 #endif
117
118 static int may_follow_exec = MAY_FOLLOW_EXEC;
119
120 static int debug_infrun = 0;
121 static void
122 show_debug_infrun (struct ui_file *file, int from_tty,
123 struct cmd_list_element *c, const char *value)
124 {
125 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
126 }
127
128 /* If the program uses ELF-style shared libraries, then calls to
129 functions in shared libraries go through stubs, which live in a
130 table called the PLT (Procedure Linkage Table). The first time the
131 function is called, the stub sends control to the dynamic linker,
132 which looks up the function's real address, patches the stub so
133 that future calls will go directly to the function, and then passes
134 control to the function.
135
136 If we are stepping at the source level, we don't want to see any of
137 this --- we just want to skip over the stub and the dynamic linker.
138 The simple approach is to single-step until control leaves the
139 dynamic linker.
140
141 However, on some systems (e.g., Red Hat's 5.2 distribution) the
142 dynamic linker calls functions in the shared C library, so you
143 can't tell from the PC alone whether the dynamic linker is still
144 running. In this case, we use a step-resume breakpoint to get us
145 past the dynamic linker, as if we were using "next" to step over a
146 function call.
147
148 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
149 linker code or not. Normally, this means we single-step. However,
150 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
151 address where we can place a step-resume breakpoint to get past the
152 linker's symbol resolution function.
153
154 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
155 pretty portable way, by comparing the PC against the address ranges
156 of the dynamic linker's sections.
157
158 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
159 it depends on internal details of the dynamic linker. It's usually
160 not too hard to figure out where to put a breakpoint, but it
161 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
162 sanity checking. If it can't figure things out, returning zero and
163 getting the (possibly confusing) stepping behavior is better than
164 signalling an error, which will obscure the change in the
165 inferior's state. */
166
167 /* This function returns TRUE if pc is the address of an instruction
168 that lies within the dynamic linker (such as the event hook, or the
169 dld itself).
170
171 This function must be used only when a dynamic linker event has
172 been caught, and the inferior is being stepped out of the hook, or
173 undefined results are guaranteed. */
174
175 #ifndef SOLIB_IN_DYNAMIC_LINKER
176 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
177 #endif
178
179 /* We can't step off a permanent breakpoint in the ordinary way, because we
180 can't remove it. Instead, we have to advance the PC to the next
181 instruction. This macro should expand to a pointer to a function that
182 does that, or zero if we have no such function. If we don't have a
183 definition for it, we have to report an error. */
184 #ifndef SKIP_PERMANENT_BREAKPOINT
185 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
186 static void
187 default_skip_permanent_breakpoint (void)
188 {
189 error (_("\
190 The program is stopped at a permanent breakpoint, but GDB does not know\n\
191 how to step past a permanent breakpoint on this architecture. Try using\n\
192 a command like `return' or `jump' to continue execution."));
193 }
194 #endif
195
196
197 /* Convert the #defines into values. This is temporary until wfi control
198 flow is completely sorted out. */
199
200 #ifndef CANNOT_STEP_HW_WATCHPOINTS
201 #define CANNOT_STEP_HW_WATCHPOINTS 0
202 #else
203 #undef CANNOT_STEP_HW_WATCHPOINTS
204 #define CANNOT_STEP_HW_WATCHPOINTS 1
205 #endif
206
207 /* Tables of how to react to signals; the user sets them. */
208
209 static unsigned char *signal_stop;
210 static unsigned char *signal_print;
211 static unsigned char *signal_program;
212
213 #define SET_SIGS(nsigs,sigs,flags) \
214 do { \
215 int signum = (nsigs); \
216 while (signum-- > 0) \
217 if ((sigs)[signum]) \
218 (flags)[signum] = 1; \
219 } while (0)
220
221 #define UNSET_SIGS(nsigs,sigs,flags) \
222 do { \
223 int signum = (nsigs); \
224 while (signum-- > 0) \
225 if ((sigs)[signum]) \
226 (flags)[signum] = 0; \
227 } while (0)
228
229 /* Value to pass to target_resume() to cause all threads to resume */
230
231 #define RESUME_ALL (pid_to_ptid (-1))
232
233 /* Command list pointer for the "stop" placeholder. */
234
235 static struct cmd_list_element *stop_command;
236
237 /* Nonzero if breakpoints are now inserted in the inferior. */
238
239 static int breakpoints_inserted;
240
241 /* Function inferior was in as of last step command. */
242
243 static struct symbol *step_start_function;
244
245 /* Nonzero if we are expecting a trace trap and should proceed from it. */
246
247 static int trap_expected;
248
249 /* Nonzero if we want to give control to the user when we're notified
250 of shared library events by the dynamic linker. */
251 static int stop_on_solib_events;
252 static void
253 show_stop_on_solib_events (struct ui_file *file, int from_tty,
254 struct cmd_list_element *c, const char *value)
255 {
256 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
257 value);
258 }
259
260 /* Nonzero means expecting a trace trap
261 and should stop the inferior and return silently when it happens. */
262
263 int stop_after_trap;
264
265 /* Nonzero means expecting a trap and caller will handle it themselves.
266 It is used after attach, due to attaching to a process;
267 when running in the shell before the child program has been exec'd;
268 and when running some kinds of remote stuff (FIXME?). */
269
270 enum stop_kind stop_soon;
271
272 /* Nonzero if proceed is being used for a "finish" command or a similar
273 situation when stop_registers should be saved. */
274
275 int proceed_to_finish;
276
277 /* Save register contents here when about to pop a stack dummy frame,
278 if-and-only-if proceed_to_finish is set.
279 Thus this contains the return value from the called function (assuming
280 values are returned in a register). */
281
282 struct regcache *stop_registers;
283
284 /* Nonzero after stop if current stack frame should be printed. */
285
286 static int stop_print_frame;
287
288 static struct breakpoint *step_resume_breakpoint = NULL;
289
290 /* This is a cached copy of the pid/waitstatus of the last event
291 returned by target_wait()/deprecated_target_wait_hook(). This
292 information is returned by get_last_target_status(). */
293 static ptid_t target_last_wait_ptid;
294 static struct target_waitstatus target_last_waitstatus;
295
296 /* This is used to remember when a fork, vfork or exec event
297 was caught by a catchpoint, and thus the event is to be
298 followed at the next resume of the inferior, and not
299 immediately. */
300 static struct
301 {
302 enum target_waitkind kind;
303 struct
304 {
305 int parent_pid;
306 int child_pid;
307 }
308 fork_event;
309 char *execd_pathname;
310 }
311 pending_follow;
312
313 static const char follow_fork_mode_child[] = "child";
314 static const char follow_fork_mode_parent[] = "parent";
315
316 static const char *follow_fork_mode_kind_names[] = {
317 follow_fork_mode_child,
318 follow_fork_mode_parent,
319 NULL
320 };
321
322 static const char *follow_fork_mode_string = follow_fork_mode_parent;
323 static void
324 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
325 struct cmd_list_element *c, const char *value)
326 {
327 fprintf_filtered (file, _("\
328 Debugger response to a program call of fork or vfork is \"%s\".\n"),
329 value);
330 }
331 \f
332
333 static int
334 follow_fork (void)
335 {
336 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
337
338 return target_follow_fork (follow_child);
339 }
340
341 void
342 follow_inferior_reset_breakpoints (void)
343 {
344 /* Was there a step_resume breakpoint? (There was if the user
345 did a "next" at the fork() call.) If so, explicitly reset its
346 thread number.
347
348 step_resumes are a form of bp that are made to be per-thread.
349 Since we created the step_resume bp when the parent process
350 was being debugged, and now are switching to the child process,
351 from the breakpoint package's viewpoint, that's a switch of
352 "threads". We must update the bp's notion of which thread
353 it is for, or it'll be ignored when it triggers. */
354
355 if (step_resume_breakpoint)
356 breakpoint_re_set_thread (step_resume_breakpoint);
357
358 /* Reinsert all breakpoints in the child. The user may have set
359 breakpoints after catching the fork, in which case those
360 were never set in the child, but only in the parent. This makes
361 sure the inserted breakpoints match the breakpoint list. */
362
363 breakpoint_re_set ();
364 insert_breakpoints ();
365 }
366
367 /* EXECD_PATHNAME is assumed to be non-NULL. */
368
369 static void
370 follow_exec (int pid, char *execd_pathname)
371 {
372 int saved_pid = pid;
373 struct target_ops *tgt;
374
375 if (!may_follow_exec)
376 return;
377
378 /* This is an exec event that we actually wish to pay attention to.
379 Refresh our symbol table to the newly exec'd program, remove any
380 momentary bp's, etc.
381
382 If there are breakpoints, they aren't really inserted now,
383 since the exec() transformed our inferior into a fresh set
384 of instructions.
385
386 We want to preserve symbolic breakpoints on the list, since
387 we have hopes that they can be reset after the new a.out's
388 symbol table is read.
389
390 However, any "raw" breakpoints must be removed from the list
391 (e.g., the solib bp's), since their address is probably invalid
392 now.
393
394 And, we DON'T want to call delete_breakpoints() here, since
395 that may write the bp's "shadow contents" (the instruction
396 value that was overwritten witha TRAP instruction). Since
397 we now have a new a.out, those shadow contents aren't valid. */
398 update_breakpoints_after_exec ();
399
400 /* If there was one, it's gone now. We cannot truly step-to-next
401 statement through an exec(). */
402 step_resume_breakpoint = NULL;
403 step_range_start = 0;
404 step_range_end = 0;
405
406 /* What is this a.out's name? */
407 printf_unfiltered (_("Executing new program: %s\n"), execd_pathname);
408
409 /* We've followed the inferior through an exec. Therefore, the
410 inferior has essentially been killed & reborn. */
411
412 /* First collect the run target in effect. */
413 tgt = find_run_target ();
414 /* If we can't find one, things are in a very strange state... */
415 if (tgt == NULL)
416 error (_("Could find run target to save before following exec"));
417
418 gdb_flush (gdb_stdout);
419 target_mourn_inferior ();
420 inferior_ptid = pid_to_ptid (saved_pid);
421 /* Because mourn_inferior resets inferior_ptid. */
422 push_target (tgt);
423
424 /* That a.out is now the one to use. */
425 exec_file_attach (execd_pathname, 0);
426
427 /* And also is where symbols can be found. */
428 symbol_file_add_main (execd_pathname, 0);
429
430 /* Reset the shared library package. This ensures that we get
431 a shlib event when the child reaches "_start", at which point
432 the dld will have had a chance to initialize the child. */
433 #if defined(SOLIB_RESTART)
434 SOLIB_RESTART ();
435 #endif
436 #ifdef SOLIB_CREATE_INFERIOR_HOOK
437 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
438 #else
439 solib_create_inferior_hook ();
440 #endif
441
442 /* Reinsert all breakpoints. (Those which were symbolic have
443 been reset to the proper address in the new a.out, thanks
444 to symbol_file_command...) */
445 insert_breakpoints ();
446
447 /* The next resume of this inferior should bring it to the shlib
448 startup breakpoints. (If the user had also set bp's on
449 "main" from the old (parent) process, then they'll auto-
450 matically get reset there in the new process.) */
451 }
452
453 /* Non-zero if we just simulating a single-step. This is needed
454 because we cannot remove the breakpoints in the inferior process
455 until after the `wait' in `wait_for_inferior'. */
456 static int singlestep_breakpoints_inserted_p = 0;
457
458 /* The thread we inserted single-step breakpoints for. */
459 static ptid_t singlestep_ptid;
460
461 /* PC when we started this single-step. */
462 static CORE_ADDR singlestep_pc;
463
464 /* If another thread hit the singlestep breakpoint, we save the original
465 thread here so that we can resume single-stepping it later. */
466 static ptid_t saved_singlestep_ptid;
467 static int stepping_past_singlestep_breakpoint;
468 \f
469
470 /* Things to clean up if we QUIT out of resume (). */
471 static void
472 resume_cleanups (void *ignore)
473 {
474 normal_stop ();
475 }
476
477 static const char schedlock_off[] = "off";
478 static const char schedlock_on[] = "on";
479 static const char schedlock_step[] = "step";
480 static const char *scheduler_enums[] = {
481 schedlock_off,
482 schedlock_on,
483 schedlock_step,
484 NULL
485 };
486 static const char *scheduler_mode = schedlock_off;
487 static void
488 show_scheduler_mode (struct ui_file *file, int from_tty,
489 struct cmd_list_element *c, const char *value)
490 {
491 fprintf_filtered (file, _("\
492 Mode for locking scheduler during execution is \"%s\".\n"),
493 value);
494 }
495
496 static void
497 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
498 {
499 if (!target_can_lock_scheduler)
500 {
501 scheduler_mode = schedlock_off;
502 error (_("Target '%s' cannot support this command."), target_shortname);
503 }
504 }
505
506
507 /* Resume the inferior, but allow a QUIT. This is useful if the user
508 wants to interrupt some lengthy single-stepping operation
509 (for child processes, the SIGINT goes to the inferior, and so
510 we get a SIGINT random_signal, but for remote debugging and perhaps
511 other targets, that's not true).
512
513 STEP nonzero if we should step (zero to continue instead).
514 SIG is the signal to give the inferior (zero for none). */
515 void
516 resume (int step, enum target_signal sig)
517 {
518 int should_resume = 1;
519 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
520 QUIT;
521
522 if (debug_infrun)
523 fprintf_unfiltered (gdb_stdlog, "infrun: resume (step=%d, signal=%d)\n",
524 step, sig);
525
526 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
527
528
529 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
530 over an instruction that causes a page fault without triggering
531 a hardware watchpoint. The kernel properly notices that it shouldn't
532 stop, because the hardware watchpoint is not triggered, but it forgets
533 the step request and continues the program normally.
534 Work around the problem by removing hardware watchpoints if a step is
535 requested, GDB will check for a hardware watchpoint trigger after the
536 step anyway. */
537 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
538 remove_hw_watchpoints ();
539
540
541 /* Normally, by the time we reach `resume', the breakpoints are either
542 removed or inserted, as appropriate. The exception is if we're sitting
543 at a permanent breakpoint; we need to step over it, but permanent
544 breakpoints can't be removed. So we have to test for it here. */
545 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
546 SKIP_PERMANENT_BREAKPOINT ();
547
548 if (SOFTWARE_SINGLE_STEP_P () && step)
549 {
550 /* Do it the hard way, w/temp breakpoints */
551 if (SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ ))
552 {
553 /* ...and don't ask hardware to do it. */
554 step = 0;
555 /* and do not pull these breakpoints until after a `wait' in
556 `wait_for_inferior' */
557 singlestep_breakpoints_inserted_p = 1;
558 singlestep_ptid = inferior_ptid;
559 singlestep_pc = read_pc ();
560 }
561 }
562
563 /* If there were any forks/vforks/execs that were caught and are
564 now to be followed, then do so. */
565 switch (pending_follow.kind)
566 {
567 case TARGET_WAITKIND_FORKED:
568 case TARGET_WAITKIND_VFORKED:
569 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
570 if (follow_fork ())
571 should_resume = 0;
572 break;
573
574 case TARGET_WAITKIND_EXECD:
575 /* follow_exec is called as soon as the exec event is seen. */
576 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
577 break;
578
579 default:
580 break;
581 }
582
583 /* Install inferior's terminal modes. */
584 target_terminal_inferior ();
585
586 if (should_resume)
587 {
588 ptid_t resume_ptid;
589
590 resume_ptid = RESUME_ALL; /* Default */
591
592 if ((step || singlestep_breakpoints_inserted_p)
593 && (stepping_past_singlestep_breakpoint
594 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
595 {
596 /* Stepping past a breakpoint without inserting breakpoints.
597 Make sure only the current thread gets to step, so that
598 other threads don't sneak past breakpoints while they are
599 not inserted. */
600
601 resume_ptid = inferior_ptid;
602 }
603
604 if ((scheduler_mode == schedlock_on)
605 || (scheduler_mode == schedlock_step
606 && (step || singlestep_breakpoints_inserted_p)))
607 {
608 /* User-settable 'scheduler' mode requires solo thread resume. */
609 resume_ptid = inferior_ptid;
610 }
611
612 if (CANNOT_STEP_BREAKPOINT)
613 {
614 /* Most targets can step a breakpoint instruction, thus
615 executing it normally. But if this one cannot, just
616 continue and we will hit it anyway. */
617 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
618 step = 0;
619 }
620 target_resume (resume_ptid, step, sig);
621 }
622
623 discard_cleanups (old_cleanups);
624 }
625 \f
626
627 /* Clear out all variables saying what to do when inferior is continued.
628 First do this, then set the ones you want, then call `proceed'. */
629
630 void
631 clear_proceed_status (void)
632 {
633 trap_expected = 0;
634 step_range_start = 0;
635 step_range_end = 0;
636 step_frame_id = null_frame_id;
637 step_over_calls = STEP_OVER_UNDEBUGGABLE;
638 stop_after_trap = 0;
639 stop_soon = NO_STOP_QUIETLY;
640 proceed_to_finish = 0;
641 breakpoint_proceeded = 1; /* We're about to proceed... */
642
643 /* Discard any remaining commands or status from previous stop. */
644 bpstat_clear (&stop_bpstat);
645 }
646
647 /* This should be suitable for any targets that support threads. */
648
649 static int
650 prepare_to_proceed (void)
651 {
652 ptid_t wait_ptid;
653 struct target_waitstatus wait_status;
654
655 /* Get the last target status returned by target_wait(). */
656 get_last_target_status (&wait_ptid, &wait_status);
657
658 /* Make sure we were stopped either at a breakpoint, or because
659 of a Ctrl-C. */
660 if (wait_status.kind != TARGET_WAITKIND_STOPPED
661 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
662 && wait_status.value.sig != TARGET_SIGNAL_INT))
663 {
664 return 0;
665 }
666
667 if (!ptid_equal (wait_ptid, minus_one_ptid)
668 && !ptid_equal (inferior_ptid, wait_ptid))
669 {
670 /* Switched over from WAIT_PID. */
671 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
672
673 if (wait_pc != read_pc ())
674 {
675 /* Switch back to WAIT_PID thread. */
676 inferior_ptid = wait_ptid;
677
678 /* FIXME: This stuff came from switch_to_thread() in
679 thread.c (which should probably be a public function). */
680 reinit_frame_cache ();
681 registers_changed ();
682 stop_pc = wait_pc;
683 }
684
685 /* We return 1 to indicate that there is a breakpoint here,
686 so we need to step over it before continuing to avoid
687 hitting it straight away. */
688 if (breakpoint_here_p (wait_pc))
689 return 1;
690 }
691
692 return 0;
693
694 }
695
696 /* Record the pc of the program the last time it stopped. This is
697 just used internally by wait_for_inferior, but need to be preserved
698 over calls to it and cleared when the inferior is started. */
699 static CORE_ADDR prev_pc;
700
701 /* Basic routine for continuing the program in various fashions.
702
703 ADDR is the address to resume at, or -1 for resume where stopped.
704 SIGGNAL is the signal to give it, or 0 for none,
705 or -1 for act according to how it stopped.
706 STEP is nonzero if should trap after one instruction.
707 -1 means return after that and print nothing.
708 You should probably set various step_... variables
709 before calling here, if you are stepping.
710
711 You should call clear_proceed_status before calling proceed. */
712
713 void
714 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
715 {
716 int oneproc = 0;
717
718 if (step > 0)
719 step_start_function = find_pc_function (read_pc ());
720 if (step < 0)
721 stop_after_trap = 1;
722
723 if (addr == (CORE_ADDR) -1)
724 {
725 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
726 /* There is a breakpoint at the address we will resume at,
727 step one instruction before inserting breakpoints so that
728 we do not stop right away (and report a second hit at this
729 breakpoint). */
730 oneproc = 1;
731 else if (gdbarch_single_step_through_delay_p (current_gdbarch)
732 && gdbarch_single_step_through_delay (current_gdbarch,
733 get_current_frame ()))
734 /* We stepped onto an instruction that needs to be stepped
735 again before re-inserting the breakpoint, do so. */
736 oneproc = 1;
737 }
738 else
739 {
740 write_pc (addr);
741 }
742
743 if (debug_infrun)
744 fprintf_unfiltered (gdb_stdlog,
745 "infrun: proceed (addr=0x%s, signal=%d, step=%d)\n",
746 paddr_nz (addr), siggnal, step);
747
748 /* In a multi-threaded task we may select another thread
749 and then continue or step.
750
751 But if the old thread was stopped at a breakpoint, it
752 will immediately cause another breakpoint stop without
753 any execution (i.e. it will report a breakpoint hit
754 incorrectly). So we must step over it first.
755
756 prepare_to_proceed checks the current thread against the thread
757 that reported the most recent event. If a step-over is required
758 it returns TRUE and sets the current thread to the old thread. */
759 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
760 oneproc = 1;
761
762 if (oneproc)
763 /* We will get a trace trap after one instruction.
764 Continue it automatically and insert breakpoints then. */
765 trap_expected = 1;
766 else
767 {
768 insert_breakpoints ();
769 /* If we get here there was no call to error() in
770 insert breakpoints -- so they were inserted. */
771 breakpoints_inserted = 1;
772 }
773
774 if (siggnal != TARGET_SIGNAL_DEFAULT)
775 stop_signal = siggnal;
776 /* If this signal should not be seen by program,
777 give it zero. Used for debugging signals. */
778 else if (!signal_program[stop_signal])
779 stop_signal = TARGET_SIGNAL_0;
780
781 annotate_starting ();
782
783 /* Make sure that output from GDB appears before output from the
784 inferior. */
785 gdb_flush (gdb_stdout);
786
787 /* Refresh prev_pc value just prior to resuming. This used to be
788 done in stop_stepping, however, setting prev_pc there did not handle
789 scenarios such as inferior function calls or returning from
790 a function via the return command. In those cases, the prev_pc
791 value was not set properly for subsequent commands. The prev_pc value
792 is used to initialize the starting line number in the ecs. With an
793 invalid value, the gdb next command ends up stopping at the position
794 represented by the next line table entry past our start position.
795 On platforms that generate one line table entry per line, this
796 is not a problem. However, on the ia64, the compiler generates
797 extraneous line table entries that do not increase the line number.
798 When we issue the gdb next command on the ia64 after an inferior call
799 or a return command, we often end up a few instructions forward, still
800 within the original line we started.
801
802 An attempt was made to have init_execution_control_state () refresh
803 the prev_pc value before calculating the line number. This approach
804 did not work because on platforms that use ptrace, the pc register
805 cannot be read unless the inferior is stopped. At that point, we
806 are not guaranteed the inferior is stopped and so the read_pc ()
807 call can fail. Setting the prev_pc value here ensures the value is
808 updated correctly when the inferior is stopped. */
809 prev_pc = read_pc ();
810
811 /* Resume inferior. */
812 resume (oneproc || step || bpstat_should_step (), stop_signal);
813
814 /* Wait for it to stop (if not standalone)
815 and in any case decode why it stopped, and act accordingly. */
816 /* Do this only if we are not using the event loop, or if the target
817 does not support asynchronous execution. */
818 if (!target_can_async_p ())
819 {
820 wait_for_inferior ();
821 normal_stop ();
822 }
823 }
824 \f
825
826 /* Start remote-debugging of a machine over a serial link. */
827
828 void
829 start_remote (int from_tty)
830 {
831 init_thread_list ();
832 init_wait_for_inferior ();
833 stop_soon = STOP_QUIETLY;
834 trap_expected = 0;
835
836 /* Always go on waiting for the target, regardless of the mode. */
837 /* FIXME: cagney/1999-09-23: At present it isn't possible to
838 indicate to wait_for_inferior that a target should timeout if
839 nothing is returned (instead of just blocking). Because of this,
840 targets expecting an immediate response need to, internally, set
841 things up so that the target_wait() is forced to eventually
842 timeout. */
843 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
844 differentiate to its caller what the state of the target is after
845 the initial open has been performed. Here we're assuming that
846 the target has stopped. It should be possible to eventually have
847 target_open() return to the caller an indication that the target
848 is currently running and GDB state should be set to the same as
849 for an async run. */
850 wait_for_inferior ();
851
852 /* Now that the inferior has stopped, do any bookkeeping like
853 loading shared libraries. We want to do this before normal_stop,
854 so that the displayed frame is up to date. */
855 post_create_inferior (&current_target, from_tty);
856
857 normal_stop ();
858 }
859
860 /* Initialize static vars when a new inferior begins. */
861
862 void
863 init_wait_for_inferior (void)
864 {
865 /* These are meaningless until the first time through wait_for_inferior. */
866 prev_pc = 0;
867
868 breakpoints_inserted = 0;
869 breakpoint_init_inferior (inf_starting);
870
871 /* Don't confuse first call to proceed(). */
872 stop_signal = TARGET_SIGNAL_0;
873
874 /* The first resume is not following a fork/vfork/exec. */
875 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
876
877 clear_proceed_status ();
878
879 stepping_past_singlestep_breakpoint = 0;
880 }
881 \f
882 /* This enum encodes possible reasons for doing a target_wait, so that
883 wfi can call target_wait in one place. (Ultimately the call will be
884 moved out of the infinite loop entirely.) */
885
886 enum infwait_states
887 {
888 infwait_normal_state,
889 infwait_thread_hop_state,
890 infwait_nonstep_watch_state
891 };
892
893 /* Why did the inferior stop? Used to print the appropriate messages
894 to the interface from within handle_inferior_event(). */
895 enum inferior_stop_reason
896 {
897 /* Step, next, nexti, stepi finished. */
898 END_STEPPING_RANGE,
899 /* Inferior terminated by signal. */
900 SIGNAL_EXITED,
901 /* Inferior exited. */
902 EXITED,
903 /* Inferior received signal, and user asked to be notified. */
904 SIGNAL_RECEIVED
905 };
906
907 /* This structure contains what used to be local variables in
908 wait_for_inferior. Probably many of them can return to being
909 locals in handle_inferior_event. */
910
911 struct execution_control_state
912 {
913 struct target_waitstatus ws;
914 struct target_waitstatus *wp;
915 int another_trap;
916 int random_signal;
917 CORE_ADDR stop_func_start;
918 CORE_ADDR stop_func_end;
919 char *stop_func_name;
920 struct symtab_and_line sal;
921 int current_line;
922 struct symtab *current_symtab;
923 int handling_longjmp; /* FIXME */
924 ptid_t ptid;
925 ptid_t saved_inferior_ptid;
926 int step_after_step_resume_breakpoint;
927 int stepping_through_solib_after_catch;
928 bpstat stepping_through_solib_catchpoints;
929 int new_thread_event;
930 struct target_waitstatus tmpstatus;
931 enum infwait_states infwait_state;
932 ptid_t waiton_ptid;
933 int wait_some_more;
934 };
935
936 void init_execution_control_state (struct execution_control_state *ecs);
937
938 void handle_inferior_event (struct execution_control_state *ecs);
939
940 static void step_into_function (struct execution_control_state *ecs);
941 static void insert_step_resume_breakpoint_at_frame (struct frame_info *step_frame);
942 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
943 static void insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
944 struct frame_id sr_id);
945 static void stop_stepping (struct execution_control_state *ecs);
946 static void prepare_to_wait (struct execution_control_state *ecs);
947 static void keep_going (struct execution_control_state *ecs);
948 static void print_stop_reason (enum inferior_stop_reason stop_reason,
949 int stop_info);
950
951 /* Wait for control to return from inferior to debugger.
952 If inferior gets a signal, we may decide to start it up again
953 instead of returning. That is why there is a loop in this function.
954 When this function actually returns it means the inferior
955 should be left stopped and GDB should read more commands. */
956
957 void
958 wait_for_inferior (void)
959 {
960 struct cleanup *old_cleanups;
961 struct execution_control_state ecss;
962 struct execution_control_state *ecs;
963
964 if (debug_infrun)
965 fprintf_unfiltered (gdb_stdlog, "infrun: wait_for_inferior\n");
966
967 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
968 &step_resume_breakpoint);
969
970 /* wfi still stays in a loop, so it's OK just to take the address of
971 a local to get the ecs pointer. */
972 ecs = &ecss;
973
974 /* Fill in with reasonable starting values. */
975 init_execution_control_state (ecs);
976
977 /* We'll update this if & when we switch to a new thread. */
978 previous_inferior_ptid = inferior_ptid;
979
980 overlay_cache_invalid = 1;
981
982 /* We have to invalidate the registers BEFORE calling target_wait
983 because they can be loaded from the target while in target_wait.
984 This makes remote debugging a bit more efficient for those
985 targets that provide critical registers as part of their normal
986 status mechanism. */
987
988 registers_changed ();
989
990 while (1)
991 {
992 if (deprecated_target_wait_hook)
993 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
994 else
995 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
996
997 /* Now figure out what to do with the result of the result. */
998 handle_inferior_event (ecs);
999
1000 if (!ecs->wait_some_more)
1001 break;
1002 }
1003 do_cleanups (old_cleanups);
1004 }
1005
1006 /* Asynchronous version of wait_for_inferior. It is called by the
1007 event loop whenever a change of state is detected on the file
1008 descriptor corresponding to the target. It can be called more than
1009 once to complete a single execution command. In such cases we need
1010 to keep the state in a global variable ASYNC_ECSS. If it is the
1011 last time that this function is called for a single execution
1012 command, then report to the user that the inferior has stopped, and
1013 do the necessary cleanups. */
1014
1015 struct execution_control_state async_ecss;
1016 struct execution_control_state *async_ecs;
1017
1018 void
1019 fetch_inferior_event (void *client_data)
1020 {
1021 static struct cleanup *old_cleanups;
1022
1023 async_ecs = &async_ecss;
1024
1025 if (!async_ecs->wait_some_more)
1026 {
1027 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1028 &step_resume_breakpoint);
1029
1030 /* Fill in with reasonable starting values. */
1031 init_execution_control_state (async_ecs);
1032
1033 /* We'll update this if & when we switch to a new thread. */
1034 previous_inferior_ptid = inferior_ptid;
1035
1036 overlay_cache_invalid = 1;
1037
1038 /* We have to invalidate the registers BEFORE calling target_wait
1039 because they can be loaded from the target while in target_wait.
1040 This makes remote debugging a bit more efficient for those
1041 targets that provide critical registers as part of their normal
1042 status mechanism. */
1043
1044 registers_changed ();
1045 }
1046
1047 if (deprecated_target_wait_hook)
1048 async_ecs->ptid =
1049 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1050 else
1051 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1052
1053 /* Now figure out what to do with the result of the result. */
1054 handle_inferior_event (async_ecs);
1055
1056 if (!async_ecs->wait_some_more)
1057 {
1058 /* Do only the cleanups that have been added by this
1059 function. Let the continuations for the commands do the rest,
1060 if there are any. */
1061 do_exec_cleanups (old_cleanups);
1062 normal_stop ();
1063 if (step_multi && stop_step)
1064 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1065 else
1066 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1067 }
1068 }
1069
1070 /* Prepare an execution control state for looping through a
1071 wait_for_inferior-type loop. */
1072
1073 void
1074 init_execution_control_state (struct execution_control_state *ecs)
1075 {
1076 ecs->another_trap = 0;
1077 ecs->random_signal = 0;
1078 ecs->step_after_step_resume_breakpoint = 0;
1079 ecs->handling_longjmp = 0; /* FIXME */
1080 ecs->stepping_through_solib_after_catch = 0;
1081 ecs->stepping_through_solib_catchpoints = NULL;
1082 ecs->sal = find_pc_line (prev_pc, 0);
1083 ecs->current_line = ecs->sal.line;
1084 ecs->current_symtab = ecs->sal.symtab;
1085 ecs->infwait_state = infwait_normal_state;
1086 ecs->waiton_ptid = pid_to_ptid (-1);
1087 ecs->wp = &(ecs->ws);
1088 }
1089
1090 /* Return the cached copy of the last pid/waitstatus returned by
1091 target_wait()/deprecated_target_wait_hook(). The data is actually
1092 cached by handle_inferior_event(), which gets called immediately
1093 after target_wait()/deprecated_target_wait_hook(). */
1094
1095 void
1096 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1097 {
1098 *ptidp = target_last_wait_ptid;
1099 *status = target_last_waitstatus;
1100 }
1101
1102 void
1103 nullify_last_target_wait_ptid (void)
1104 {
1105 target_last_wait_ptid = minus_one_ptid;
1106 }
1107
1108 /* Switch thread contexts, maintaining "infrun state". */
1109
1110 static void
1111 context_switch (struct execution_control_state *ecs)
1112 {
1113 /* Caution: it may happen that the new thread (or the old one!)
1114 is not in the thread list. In this case we must not attempt
1115 to "switch context", or we run the risk that our context may
1116 be lost. This may happen as a result of the target module
1117 mishandling thread creation. */
1118
1119 if (debug_infrun)
1120 {
1121 fprintf_unfiltered (gdb_stdlog, "infrun: Switching context from %s ",
1122 target_pid_to_str (inferior_ptid));
1123 fprintf_unfiltered (gdb_stdlog, "to %s\n",
1124 target_pid_to_str (ecs->ptid));
1125 }
1126
1127 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1128 { /* Perform infrun state context switch: */
1129 /* Save infrun state for the old thread. */
1130 save_infrun_state (inferior_ptid, prev_pc,
1131 trap_expected, step_resume_breakpoint,
1132 step_range_start,
1133 step_range_end, &step_frame_id,
1134 ecs->handling_longjmp, ecs->another_trap,
1135 ecs->stepping_through_solib_after_catch,
1136 ecs->stepping_through_solib_catchpoints,
1137 ecs->current_line, ecs->current_symtab);
1138
1139 /* Load infrun state for the new thread. */
1140 load_infrun_state (ecs->ptid, &prev_pc,
1141 &trap_expected, &step_resume_breakpoint,
1142 &step_range_start,
1143 &step_range_end, &step_frame_id,
1144 &ecs->handling_longjmp, &ecs->another_trap,
1145 &ecs->stepping_through_solib_after_catch,
1146 &ecs->stepping_through_solib_catchpoints,
1147 &ecs->current_line, &ecs->current_symtab);
1148 }
1149 inferior_ptid = ecs->ptid;
1150 reinit_frame_cache ();
1151 }
1152
1153 static void
1154 adjust_pc_after_break (struct execution_control_state *ecs)
1155 {
1156 CORE_ADDR breakpoint_pc;
1157
1158 /* If this target does not decrement the PC after breakpoints, then
1159 we have nothing to do. */
1160 if (DECR_PC_AFTER_BREAK == 0)
1161 return;
1162
1163 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1164 we aren't, just return.
1165
1166 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1167 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1168 by software breakpoints should be handled through the normal breakpoint
1169 layer.
1170
1171 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1172 different signals (SIGILL or SIGEMT for instance), but it is less
1173 clear where the PC is pointing afterwards. It may not match
1174 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1175 these signals at breakpoints (the code has been in GDB since at least
1176 1992) so I can not guess how to handle them here.
1177
1178 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1179 would have the PC after hitting a watchpoint affected by
1180 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1181 in GDB history, and it seems unlikely to be correct, so
1182 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1183
1184 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1185 return;
1186
1187 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1188 return;
1189
1190 /* Find the location where (if we've hit a breakpoint) the
1191 breakpoint would be. */
1192 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1193
1194 if (SOFTWARE_SINGLE_STEP_P ())
1195 {
1196 /* When using software single-step, a SIGTRAP can only indicate
1197 an inserted breakpoint. This actually makes things
1198 easier. */
1199 if (singlestep_breakpoints_inserted_p)
1200 /* When software single stepping, the instruction at [prev_pc]
1201 is never a breakpoint, but the instruction following
1202 [prev_pc] (in program execution order) always is. Assume
1203 that following instruction was reached and hence a software
1204 breakpoint was hit. */
1205 write_pc_pid (breakpoint_pc, ecs->ptid);
1206 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1207 /* The inferior was free running (i.e., no single-step
1208 breakpoints inserted) and it hit a software breakpoint. */
1209 write_pc_pid (breakpoint_pc, ecs->ptid);
1210 }
1211 else
1212 {
1213 /* When using hardware single-step, a SIGTRAP is reported for
1214 both a completed single-step and a software breakpoint. Need
1215 to differentiate between the two as the latter needs
1216 adjusting but the former does not.
1217
1218 When the thread to be examined does not match the current thread
1219 context we can't use currently_stepping, so assume no
1220 single-stepping in this case. */
1221 if (ptid_equal (ecs->ptid, inferior_ptid) && currently_stepping (ecs))
1222 {
1223 if (prev_pc == breakpoint_pc
1224 && software_breakpoint_inserted_here_p (breakpoint_pc))
1225 /* Hardware single-stepped a software breakpoint (as
1226 occures when the inferior is resumed with PC pointing
1227 at not-yet-hit software breakpoint). Since the
1228 breakpoint really is executed, the inferior needs to be
1229 backed up to the breakpoint address. */
1230 write_pc_pid (breakpoint_pc, ecs->ptid);
1231 }
1232 else
1233 {
1234 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1235 /* The inferior was free running (i.e., no hardware
1236 single-step and no possibility of a false SIGTRAP) and
1237 hit a software breakpoint. */
1238 write_pc_pid (breakpoint_pc, ecs->ptid);
1239 }
1240 }
1241 }
1242
1243 /* Given an execution control state that has been freshly filled in
1244 by an event from the inferior, figure out what it means and take
1245 appropriate action. */
1246
1247 int stepped_after_stopped_by_watchpoint;
1248
1249 void
1250 handle_inferior_event (struct execution_control_state *ecs)
1251 {
1252 /* NOTE: bje/2005-05-02: If you're looking at this code and thinking
1253 that the variable stepped_after_stopped_by_watchpoint isn't used,
1254 then you're wrong! See remote.c:remote_stopped_data_address. */
1255
1256 int sw_single_step_trap_p = 0;
1257 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1258
1259 /* Cache the last pid/waitstatus. */
1260 target_last_wait_ptid = ecs->ptid;
1261 target_last_waitstatus = *ecs->wp;
1262
1263 adjust_pc_after_break (ecs);
1264
1265 switch (ecs->infwait_state)
1266 {
1267 case infwait_thread_hop_state:
1268 if (debug_infrun)
1269 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_thread_hop_state\n");
1270 /* Cancel the waiton_ptid. */
1271 ecs->waiton_ptid = pid_to_ptid (-1);
1272 break;
1273
1274 case infwait_normal_state:
1275 if (debug_infrun)
1276 fprintf_unfiltered (gdb_stdlog, "infrun: infwait_normal_state\n");
1277 stepped_after_stopped_by_watchpoint = 0;
1278 break;
1279
1280 case infwait_nonstep_watch_state:
1281 if (debug_infrun)
1282 fprintf_unfiltered (gdb_stdlog,
1283 "infrun: infwait_nonstep_watch_state\n");
1284 insert_breakpoints ();
1285
1286 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1287 handle things like signals arriving and other things happening
1288 in combination correctly? */
1289 stepped_after_stopped_by_watchpoint = 1;
1290 break;
1291
1292 default:
1293 internal_error (__FILE__, __LINE__, _("bad switch"));
1294 }
1295 ecs->infwait_state = infwait_normal_state;
1296
1297 reinit_frame_cache ();
1298
1299 /* If it's a new process, add it to the thread database */
1300
1301 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1302 && !ptid_equal (ecs->ptid, minus_one_ptid)
1303 && !in_thread_list (ecs->ptid));
1304
1305 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1306 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1307 {
1308 add_thread (ecs->ptid);
1309
1310 ui_out_text (uiout, "[New ");
1311 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1312 ui_out_text (uiout, "]\n");
1313 }
1314
1315 switch (ecs->ws.kind)
1316 {
1317 case TARGET_WAITKIND_LOADED:
1318 if (debug_infrun)
1319 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_LOADED\n");
1320 /* Ignore gracefully during startup of the inferior, as it
1321 might be the shell which has just loaded some objects,
1322 otherwise add the symbols for the newly loaded objects. */
1323 #ifdef SOLIB_ADD
1324 if (stop_soon == NO_STOP_QUIETLY)
1325 {
1326 /* Remove breakpoints, SOLIB_ADD might adjust
1327 breakpoint addresses via breakpoint_re_set. */
1328 if (breakpoints_inserted)
1329 remove_breakpoints ();
1330
1331 /* Check for any newly added shared libraries if we're
1332 supposed to be adding them automatically. Switch
1333 terminal for any messages produced by
1334 breakpoint_re_set. */
1335 target_terminal_ours_for_output ();
1336 /* NOTE: cagney/2003-11-25: Make certain that the target
1337 stack's section table is kept up-to-date. Architectures,
1338 (e.g., PPC64), use the section table to perform
1339 operations such as address => section name and hence
1340 require the table to contain all sections (including
1341 those found in shared libraries). */
1342 /* NOTE: cagney/2003-11-25: Pass current_target and not
1343 exec_ops to SOLIB_ADD. This is because current GDB is
1344 only tooled to propagate section_table changes out from
1345 the "current_target" (see target_resize_to_sections), and
1346 not up from the exec stratum. This, of course, isn't
1347 right. "infrun.c" should only interact with the
1348 exec/process stratum, instead relying on the target stack
1349 to propagate relevant changes (stop, section table
1350 changed, ...) up to other layers. */
1351 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1352 target_terminal_inferior ();
1353
1354 /* Reinsert breakpoints and continue. */
1355 if (breakpoints_inserted)
1356 insert_breakpoints ();
1357 }
1358 #endif
1359 resume (0, TARGET_SIGNAL_0);
1360 prepare_to_wait (ecs);
1361 return;
1362
1363 case TARGET_WAITKIND_SPURIOUS:
1364 if (debug_infrun)
1365 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SPURIOUS\n");
1366 resume (0, TARGET_SIGNAL_0);
1367 prepare_to_wait (ecs);
1368 return;
1369
1370 case TARGET_WAITKIND_EXITED:
1371 if (debug_infrun)
1372 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXITED\n");
1373 target_terminal_ours (); /* Must do this before mourn anyway */
1374 print_stop_reason (EXITED, ecs->ws.value.integer);
1375
1376 /* Record the exit code in the convenience variable $_exitcode, so
1377 that the user can inspect this again later. */
1378 set_internalvar (lookup_internalvar ("_exitcode"),
1379 value_from_longest (builtin_type_int,
1380 (LONGEST) ecs->ws.value.integer));
1381 gdb_flush (gdb_stdout);
1382 target_mourn_inferior ();
1383 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1384 stop_print_frame = 0;
1385 stop_stepping (ecs);
1386 return;
1387
1388 case TARGET_WAITKIND_SIGNALLED:
1389 if (debug_infrun)
1390 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SIGNALLED\n");
1391 stop_print_frame = 0;
1392 stop_signal = ecs->ws.value.sig;
1393 target_terminal_ours (); /* Must do this before mourn anyway */
1394
1395 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1396 reach here unless the inferior is dead. However, for years
1397 target_kill() was called here, which hints that fatal signals aren't
1398 really fatal on some systems. If that's true, then some changes
1399 may be needed. */
1400 target_mourn_inferior ();
1401
1402 print_stop_reason (SIGNAL_EXITED, stop_signal);
1403 singlestep_breakpoints_inserted_p = 0; /* SOFTWARE_SINGLE_STEP_P() */
1404 stop_stepping (ecs);
1405 return;
1406
1407 /* The following are the only cases in which we keep going;
1408 the above cases end in a continue or goto. */
1409 case TARGET_WAITKIND_FORKED:
1410 case TARGET_WAITKIND_VFORKED:
1411 if (debug_infrun)
1412 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_FORKED\n");
1413 stop_signal = TARGET_SIGNAL_TRAP;
1414 pending_follow.kind = ecs->ws.kind;
1415
1416 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1417 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1418
1419 if (!ptid_equal (ecs->ptid, inferior_ptid))
1420 {
1421 context_switch (ecs);
1422 reinit_frame_cache ();
1423 }
1424
1425 stop_pc = read_pc ();
1426
1427 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1428
1429 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1430
1431 /* If no catchpoint triggered for this, then keep going. */
1432 if (ecs->random_signal)
1433 {
1434 stop_signal = TARGET_SIGNAL_0;
1435 keep_going (ecs);
1436 return;
1437 }
1438 goto process_event_stop_test;
1439
1440 case TARGET_WAITKIND_EXECD:
1441 if (debug_infrun)
1442 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_EXECD\n");
1443 stop_signal = TARGET_SIGNAL_TRAP;
1444
1445 /* NOTE drow/2002-12-05: This code should be pushed down into the
1446 target_wait function. Until then following vfork on HP/UX 10.20
1447 is probably broken by this. Of course, it's broken anyway. */
1448 /* Is this a target which reports multiple exec events per actual
1449 call to exec()? (HP-UX using ptrace does, for example.) If so,
1450 ignore all but the last one. Just resume the exec'r, and wait
1451 for the next exec event. */
1452 if (inferior_ignoring_leading_exec_events)
1453 {
1454 inferior_ignoring_leading_exec_events--;
1455 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1456 prepare_to_wait (ecs);
1457 return;
1458 }
1459 inferior_ignoring_leading_exec_events =
1460 target_reported_exec_events_per_exec_call () - 1;
1461
1462 pending_follow.execd_pathname =
1463 savestring (ecs->ws.value.execd_pathname,
1464 strlen (ecs->ws.value.execd_pathname));
1465
1466 /* This causes the eventpoints and symbol table to be reset. Must
1467 do this now, before trying to determine whether to stop. */
1468 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1469 xfree (pending_follow.execd_pathname);
1470
1471 stop_pc = read_pc_pid (ecs->ptid);
1472 ecs->saved_inferior_ptid = inferior_ptid;
1473 inferior_ptid = ecs->ptid;
1474
1475 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1476
1477 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1478 inferior_ptid = ecs->saved_inferior_ptid;
1479
1480 if (!ptid_equal (ecs->ptid, inferior_ptid))
1481 {
1482 context_switch (ecs);
1483 reinit_frame_cache ();
1484 }
1485
1486 /* If no catchpoint triggered for this, then keep going. */
1487 if (ecs->random_signal)
1488 {
1489 stop_signal = TARGET_SIGNAL_0;
1490 keep_going (ecs);
1491 return;
1492 }
1493 goto process_event_stop_test;
1494
1495 /* Be careful not to try to gather much state about a thread
1496 that's in a syscall. It's frequently a losing proposition. */
1497 case TARGET_WAITKIND_SYSCALL_ENTRY:
1498 if (debug_infrun)
1499 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_ENTRY\n");
1500 resume (0, TARGET_SIGNAL_0);
1501 prepare_to_wait (ecs);
1502 return;
1503
1504 /* Before examining the threads further, step this thread to
1505 get it entirely out of the syscall. (We get notice of the
1506 event when the thread is just on the verge of exiting a
1507 syscall. Stepping one instruction seems to get it back
1508 into user code.) */
1509 case TARGET_WAITKIND_SYSCALL_RETURN:
1510 if (debug_infrun)
1511 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_SYSCALL_RETURN\n");
1512 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1513 prepare_to_wait (ecs);
1514 return;
1515
1516 case TARGET_WAITKIND_STOPPED:
1517 if (debug_infrun)
1518 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_STOPPED\n");
1519 stop_signal = ecs->ws.value.sig;
1520 break;
1521
1522 /* We had an event in the inferior, but we are not interested
1523 in handling it at this level. The lower layers have already
1524 done what needs to be done, if anything.
1525
1526 One of the possible circumstances for this is when the
1527 inferior produces output for the console. The inferior has
1528 not stopped, and we are ignoring the event. Another possible
1529 circumstance is any event which the lower level knows will be
1530 reported multiple times without an intervening resume. */
1531 case TARGET_WAITKIND_IGNORE:
1532 if (debug_infrun)
1533 fprintf_unfiltered (gdb_stdlog, "infrun: TARGET_WAITKIND_IGNORE\n");
1534 prepare_to_wait (ecs);
1535 return;
1536 }
1537
1538 /* We may want to consider not doing a resume here in order to give
1539 the user a chance to play with the new thread. It might be good
1540 to make that a user-settable option. */
1541
1542 /* At this point, all threads are stopped (happens automatically in
1543 either the OS or the native code). Therefore we need to continue
1544 all threads in order to make progress. */
1545 if (ecs->new_thread_event)
1546 {
1547 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1548 prepare_to_wait (ecs);
1549 return;
1550 }
1551
1552 stop_pc = read_pc_pid (ecs->ptid);
1553
1554 if (debug_infrun)
1555 fprintf_unfiltered (gdb_stdlog, "infrun: stop_pc = 0x%s\n", paddr_nz (stop_pc));
1556
1557 if (stepping_past_singlestep_breakpoint)
1558 {
1559 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1560 && singlestep_breakpoints_inserted_p);
1561 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1562 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1563
1564 stepping_past_singlestep_breakpoint = 0;
1565
1566 /* We've either finished single-stepping past the single-step
1567 breakpoint, or stopped for some other reason. It would be nice if
1568 we could tell, but we can't reliably. */
1569 if (stop_signal == TARGET_SIGNAL_TRAP)
1570 {
1571 if (debug_infrun)
1572 fprintf_unfiltered (gdb_stdlog, "infrun: stepping_past_singlestep_breakpoint\n");
1573 /* Pull the single step breakpoints out of the target. */
1574 (void) SOFTWARE_SINGLE_STEP (0, 0);
1575 singlestep_breakpoints_inserted_p = 0;
1576
1577 ecs->random_signal = 0;
1578
1579 ecs->ptid = saved_singlestep_ptid;
1580 context_switch (ecs);
1581 if (deprecated_context_hook)
1582 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1583
1584 resume (1, TARGET_SIGNAL_0);
1585 prepare_to_wait (ecs);
1586 return;
1587 }
1588 }
1589
1590 stepping_past_singlestep_breakpoint = 0;
1591
1592 /* See if a thread hit a thread-specific breakpoint that was meant for
1593 another thread. If so, then step that thread past the breakpoint,
1594 and continue it. */
1595
1596 if (stop_signal == TARGET_SIGNAL_TRAP)
1597 {
1598 int thread_hop_needed = 0;
1599
1600 /* Check if a regular breakpoint has been hit before checking
1601 for a potential single step breakpoint. Otherwise, GDB will
1602 not see this breakpoint hit when stepping onto breakpoints. */
1603 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1604 {
1605 ecs->random_signal = 0;
1606 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1607 thread_hop_needed = 1;
1608 }
1609 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1610 {
1611 /* We have not context switched yet, so this should be true
1612 no matter which thread hit the singlestep breakpoint. */
1613 gdb_assert (ptid_equal (inferior_ptid, singlestep_ptid));
1614 if (debug_infrun)
1615 fprintf_unfiltered (gdb_stdlog, "infrun: software single step "
1616 "trap for %s\n",
1617 target_pid_to_str (ecs->ptid));
1618
1619 ecs->random_signal = 0;
1620 /* The call to in_thread_list is necessary because PTIDs sometimes
1621 change when we go from single-threaded to multi-threaded. If
1622 the singlestep_ptid is still in the list, assume that it is
1623 really different from ecs->ptid. */
1624 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1625 && in_thread_list (singlestep_ptid))
1626 {
1627 /* If the PC of the thread we were trying to single-step
1628 has changed, discard this event (which we were going
1629 to ignore anyway), and pretend we saw that thread
1630 trap. This prevents us continuously moving the
1631 single-step breakpoint forward, one instruction at a
1632 time. If the PC has changed, then the thread we were
1633 trying to single-step has trapped or been signalled,
1634 but the event has not been reported to GDB yet.
1635
1636 There might be some cases where this loses signal
1637 information, if a signal has arrived at exactly the
1638 same time that the PC changed, but this is the best
1639 we can do with the information available. Perhaps we
1640 should arrange to report all events for all threads
1641 when they stop, or to re-poll the remote looking for
1642 this particular thread (i.e. temporarily enable
1643 schedlock). */
1644 if (read_pc_pid (singlestep_ptid) != singlestep_pc)
1645 {
1646 if (debug_infrun)
1647 fprintf_unfiltered (gdb_stdlog, "infrun: unexpected thread,"
1648 " but expected thread advanced also\n");
1649
1650 /* The current context still belongs to
1651 singlestep_ptid. Don't swap here, since that's
1652 the context we want to use. Just fudge our
1653 state and continue. */
1654 ecs->ptid = singlestep_ptid;
1655 stop_pc = read_pc_pid (ecs->ptid);
1656 }
1657 else
1658 {
1659 if (debug_infrun)
1660 fprintf_unfiltered (gdb_stdlog,
1661 "infrun: unexpected thread\n");
1662
1663 thread_hop_needed = 1;
1664 stepping_past_singlestep_breakpoint = 1;
1665 saved_singlestep_ptid = singlestep_ptid;
1666 }
1667 }
1668 }
1669
1670 if (thread_hop_needed)
1671 {
1672 int remove_status;
1673
1674 if (debug_infrun)
1675 fprintf_unfiltered (gdb_stdlog, "infrun: thread_hop_needed\n");
1676
1677 /* Saw a breakpoint, but it was hit by the wrong thread.
1678 Just continue. */
1679
1680 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1681 {
1682 /* Pull the single step breakpoints out of the target. */
1683 (void) SOFTWARE_SINGLE_STEP (0, 0);
1684 singlestep_breakpoints_inserted_p = 0;
1685 }
1686
1687 remove_status = remove_breakpoints ();
1688 /* Did we fail to remove breakpoints? If so, try
1689 to set the PC past the bp. (There's at least
1690 one situation in which we can fail to remove
1691 the bp's: On HP-UX's that use ttrace, we can't
1692 change the address space of a vforking child
1693 process until the child exits (well, okay, not
1694 then either :-) or execs. */
1695 if (remove_status != 0)
1696 {
1697 /* FIXME! This is obviously non-portable! */
1698 write_pc_pid (stop_pc + 4, ecs->ptid);
1699 /* We need to restart all the threads now,
1700 * unles we're running in scheduler-locked mode.
1701 * Use currently_stepping to determine whether to
1702 * step or continue.
1703 */
1704 /* FIXME MVS: is there any reason not to call resume()? */
1705 if (scheduler_mode == schedlock_on)
1706 target_resume (ecs->ptid,
1707 currently_stepping (ecs), TARGET_SIGNAL_0);
1708 else
1709 target_resume (RESUME_ALL,
1710 currently_stepping (ecs), TARGET_SIGNAL_0);
1711 prepare_to_wait (ecs);
1712 return;
1713 }
1714 else
1715 { /* Single step */
1716 breakpoints_inserted = 0;
1717 if (!ptid_equal (inferior_ptid, ecs->ptid))
1718 context_switch (ecs);
1719 ecs->waiton_ptid = ecs->ptid;
1720 ecs->wp = &(ecs->ws);
1721 ecs->another_trap = 1;
1722
1723 ecs->infwait_state = infwait_thread_hop_state;
1724 keep_going (ecs);
1725 registers_changed ();
1726 return;
1727 }
1728 }
1729 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1730 {
1731 sw_single_step_trap_p = 1;
1732 ecs->random_signal = 0;
1733 }
1734 }
1735 else
1736 ecs->random_signal = 1;
1737
1738 /* See if something interesting happened to the non-current thread. If
1739 so, then switch to that thread. */
1740 if (!ptid_equal (ecs->ptid, inferior_ptid))
1741 {
1742 if (debug_infrun)
1743 fprintf_unfiltered (gdb_stdlog, "infrun: context switch\n");
1744
1745 context_switch (ecs);
1746
1747 if (deprecated_context_hook)
1748 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1749 }
1750
1751 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1752 {
1753 /* Pull the single step breakpoints out of the target. */
1754 (void) SOFTWARE_SINGLE_STEP (0, 0);
1755 singlestep_breakpoints_inserted_p = 0;
1756 }
1757
1758 /* It may not be necessary to disable the watchpoint to stop over
1759 it. For example, the PA can (with some kernel cooperation)
1760 single step over a watchpoint without disabling the watchpoint. */
1761 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1762 {
1763 if (debug_infrun)
1764 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1765 resume (1, 0);
1766 prepare_to_wait (ecs);
1767 return;
1768 }
1769
1770 /* It is far more common to need to disable a watchpoint to step
1771 the inferior over it. FIXME. What else might a debug
1772 register or page protection watchpoint scheme need here? */
1773 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1774 {
1775 /* At this point, we are stopped at an instruction which has
1776 attempted to write to a piece of memory under control of
1777 a watchpoint. The instruction hasn't actually executed
1778 yet. If we were to evaluate the watchpoint expression
1779 now, we would get the old value, and therefore no change
1780 would seem to have occurred.
1781
1782 In order to make watchpoints work `right', we really need
1783 to complete the memory write, and then evaluate the
1784 watchpoint expression. The following code does that by
1785 removing the watchpoint (actually, all watchpoints and
1786 breakpoints), single-stepping the target, re-inserting
1787 watchpoints, and then falling through to let normal
1788 single-step processing handle proceed. Since this
1789 includes evaluating watchpoints, things will come to a
1790 stop in the correct manner. */
1791
1792 if (debug_infrun)
1793 fprintf_unfiltered (gdb_stdlog, "infrun: STOPPED_BY_WATCHPOINT\n");
1794 remove_breakpoints ();
1795 registers_changed ();
1796 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1797
1798 ecs->waiton_ptid = ecs->ptid;
1799 ecs->wp = &(ecs->ws);
1800 ecs->infwait_state = infwait_nonstep_watch_state;
1801 prepare_to_wait (ecs);
1802 return;
1803 }
1804
1805 /* It may be possible to simply continue after a watchpoint. */
1806 if (HAVE_CONTINUABLE_WATCHPOINT)
1807 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1808
1809 ecs->stop_func_start = 0;
1810 ecs->stop_func_end = 0;
1811 ecs->stop_func_name = 0;
1812 /* Don't care about return value; stop_func_start and stop_func_name
1813 will both be 0 if it doesn't work. */
1814 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1815 &ecs->stop_func_start, &ecs->stop_func_end);
1816 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1817 ecs->another_trap = 0;
1818 bpstat_clear (&stop_bpstat);
1819 stop_step = 0;
1820 stop_stack_dummy = 0;
1821 stop_print_frame = 1;
1822 ecs->random_signal = 0;
1823 stopped_by_random_signal = 0;
1824
1825 if (stop_signal == TARGET_SIGNAL_TRAP
1826 && trap_expected
1827 && gdbarch_single_step_through_delay_p (current_gdbarch)
1828 && currently_stepping (ecs))
1829 {
1830 /* We're trying to step of a breakpoint. Turns out that we're
1831 also on an instruction that needs to be stepped multiple
1832 times before it's been fully executing. E.g., architectures
1833 with a delay slot. It needs to be stepped twice, once for
1834 the instruction and once for the delay slot. */
1835 int step_through_delay
1836 = gdbarch_single_step_through_delay (current_gdbarch,
1837 get_current_frame ());
1838 if (debug_infrun && step_through_delay)
1839 fprintf_unfiltered (gdb_stdlog, "infrun: step through delay\n");
1840 if (step_range_end == 0 && step_through_delay)
1841 {
1842 /* The user issued a continue when stopped at a breakpoint.
1843 Set up for another trap and get out of here. */
1844 ecs->another_trap = 1;
1845 keep_going (ecs);
1846 return;
1847 }
1848 else if (step_through_delay)
1849 {
1850 /* The user issued a step when stopped at a breakpoint.
1851 Maybe we should stop, maybe we should not - the delay
1852 slot *might* correspond to a line of source. In any
1853 case, don't decide that here, just set ecs->another_trap,
1854 making sure we single-step again before breakpoints are
1855 re-inserted. */
1856 ecs->another_trap = 1;
1857 }
1858 }
1859
1860 /* Look at the cause of the stop, and decide what to do.
1861 The alternatives are:
1862 1) break; to really stop and return to the debugger,
1863 2) drop through to start up again
1864 (set ecs->another_trap to 1 to single step once)
1865 3) set ecs->random_signal to 1, and the decision between 1 and 2
1866 will be made according to the signal handling tables. */
1867
1868 /* First, distinguish signals caused by the debugger from signals
1869 that have to do with the program's own actions. Note that
1870 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1871 on the operating system version. Here we detect when a SIGILL or
1872 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1873 something similar for SIGSEGV, since a SIGSEGV will be generated
1874 when we're trying to execute a breakpoint instruction on a
1875 non-executable stack. This happens for call dummy breakpoints
1876 for architectures like SPARC that place call dummies on the
1877 stack. */
1878
1879 if (stop_signal == TARGET_SIGNAL_TRAP
1880 || (breakpoints_inserted
1881 && (stop_signal == TARGET_SIGNAL_ILL
1882 || stop_signal == TARGET_SIGNAL_SEGV
1883 || stop_signal == TARGET_SIGNAL_EMT))
1884 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1885 {
1886 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1887 {
1888 if (debug_infrun)
1889 fprintf_unfiltered (gdb_stdlog, "infrun: stopped\n");
1890 stop_print_frame = 0;
1891 stop_stepping (ecs);
1892 return;
1893 }
1894
1895 /* This is originated from start_remote(), start_inferior() and
1896 shared libraries hook functions. */
1897 if (stop_soon == STOP_QUIETLY)
1898 {
1899 if (debug_infrun)
1900 fprintf_unfiltered (gdb_stdlog, "infrun: quietly stopped\n");
1901 stop_stepping (ecs);
1902 return;
1903 }
1904
1905 /* This originates from attach_command(). We need to overwrite
1906 the stop_signal here, because some kernels don't ignore a
1907 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1908 See more comments in inferior.h. */
1909 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1910 {
1911 stop_stepping (ecs);
1912 if (stop_signal == TARGET_SIGNAL_STOP)
1913 stop_signal = TARGET_SIGNAL_0;
1914 return;
1915 }
1916
1917 /* Don't even think about breakpoints if just proceeded over a
1918 breakpoint. */
1919 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1920 {
1921 if (debug_infrun)
1922 fprintf_unfiltered (gdb_stdlog, "infrun: trap expected\n");
1923 bpstat_clear (&stop_bpstat);
1924 }
1925 else
1926 {
1927 /* See if there is a breakpoint at the current PC. */
1928 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1929 stopped_by_watchpoint);
1930
1931 /* Following in case break condition called a
1932 function. */
1933 stop_print_frame = 1;
1934 }
1935
1936 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1937 at one stage in the past included checks for an inferior
1938 function call's call dummy's return breakpoint. The original
1939 comment, that went with the test, read:
1940
1941 ``End of a stack dummy. Some systems (e.g. Sony news) give
1942 another signal besides SIGTRAP, so check here as well as
1943 above.''
1944
1945 If someone ever tries to get get call dummys on a
1946 non-executable stack to work (where the target would stop
1947 with something like a SIGSEGV), then those tests might need
1948 to be re-instated. Given, however, that the tests were only
1949 enabled when momentary breakpoints were not being used, I
1950 suspect that it won't be the case.
1951
1952 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1953 be necessary for call dummies on a non-executable stack on
1954 SPARC. */
1955
1956 if (stop_signal == TARGET_SIGNAL_TRAP)
1957 ecs->random_signal
1958 = !(bpstat_explains_signal (stop_bpstat)
1959 || trap_expected
1960 || (step_range_end && step_resume_breakpoint == NULL));
1961 else
1962 {
1963 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1964 if (!ecs->random_signal)
1965 stop_signal = TARGET_SIGNAL_TRAP;
1966 }
1967 }
1968
1969 /* When we reach this point, we've pretty much decided
1970 that the reason for stopping must've been a random
1971 (unexpected) signal. */
1972
1973 else
1974 ecs->random_signal = 1;
1975
1976 process_event_stop_test:
1977 /* For the program's own signals, act according to
1978 the signal handling tables. */
1979
1980 if (ecs->random_signal)
1981 {
1982 /* Signal not for debugging purposes. */
1983 int printed = 0;
1984
1985 if (debug_infrun)
1986 fprintf_unfiltered (gdb_stdlog, "infrun: random signal %d\n", stop_signal);
1987
1988 stopped_by_random_signal = 1;
1989
1990 if (signal_print[stop_signal])
1991 {
1992 printed = 1;
1993 target_terminal_ours_for_output ();
1994 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1995 }
1996 if (signal_stop[stop_signal])
1997 {
1998 stop_stepping (ecs);
1999 return;
2000 }
2001 /* If not going to stop, give terminal back
2002 if we took it away. */
2003 else if (printed)
2004 target_terminal_inferior ();
2005
2006 /* Clear the signal if it should not be passed. */
2007 if (signal_program[stop_signal] == 0)
2008 stop_signal = TARGET_SIGNAL_0;
2009
2010 if (prev_pc == read_pc ()
2011 && !breakpoints_inserted
2012 && breakpoint_here_p (read_pc ())
2013 && step_resume_breakpoint == NULL)
2014 {
2015 /* We were just starting a new sequence, attempting to
2016 single-step off of a breakpoint and expecting a SIGTRAP.
2017 Intead this signal arrives. This signal will take us out
2018 of the stepping range so GDB needs to remember to, when
2019 the signal handler returns, resume stepping off that
2020 breakpoint. */
2021 /* To simplify things, "continue" is forced to use the same
2022 code paths as single-step - set a breakpoint at the
2023 signal return address and then, once hit, step off that
2024 breakpoint. */
2025 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2026 ecs->step_after_step_resume_breakpoint = 1;
2027 keep_going (ecs);
2028 return;
2029 }
2030
2031 if (step_range_end != 0
2032 && stop_signal != TARGET_SIGNAL_0
2033 && stop_pc >= step_range_start && stop_pc < step_range_end
2034 && frame_id_eq (get_frame_id (get_current_frame ()),
2035 step_frame_id)
2036 && step_resume_breakpoint == NULL)
2037 {
2038 /* The inferior is about to take a signal that will take it
2039 out of the single step range. Set a breakpoint at the
2040 current PC (which is presumably where the signal handler
2041 will eventually return) and then allow the inferior to
2042 run free.
2043
2044 Note that this is only needed for a signal delivered
2045 while in the single-step range. Nested signals aren't a
2046 problem as they eventually all return. */
2047 insert_step_resume_breakpoint_at_frame (get_current_frame ());
2048 keep_going (ecs);
2049 return;
2050 }
2051
2052 /* Note: step_resume_breakpoint may be non-NULL. This occures
2053 when either there's a nested signal, or when there's a
2054 pending signal enabled just as the signal handler returns
2055 (leaving the inferior at the step-resume-breakpoint without
2056 actually executing it). Either way continue until the
2057 breakpoint is really hit. */
2058 keep_going (ecs);
2059 return;
2060 }
2061
2062 /* Handle cases caused by hitting a breakpoint. */
2063 {
2064 CORE_ADDR jmp_buf_pc;
2065 struct bpstat_what what;
2066
2067 what = bpstat_what (stop_bpstat);
2068
2069 if (what.call_dummy)
2070 {
2071 stop_stack_dummy = 1;
2072 }
2073
2074 switch (what.main_action)
2075 {
2076 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
2077 /* If we hit the breakpoint at longjmp, disable it for the
2078 duration of this command. Then, install a temporary
2079 breakpoint at the target of the jmp_buf. */
2080 if (debug_infrun)
2081 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SET_LONGJMP_RESUME\n");
2082 disable_longjmp_breakpoint ();
2083 remove_breakpoints ();
2084 breakpoints_inserted = 0;
2085 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
2086 {
2087 keep_going (ecs);
2088 return;
2089 }
2090
2091 /* Need to blow away step-resume breakpoint, as it
2092 interferes with us */
2093 if (step_resume_breakpoint != NULL)
2094 {
2095 delete_step_resume_breakpoint (&step_resume_breakpoint);
2096 }
2097
2098 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
2099 ecs->handling_longjmp = 1; /* FIXME */
2100 keep_going (ecs);
2101 return;
2102
2103 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
2104 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2105 if (debug_infrun)
2106 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CLEAR_LONGJMP_RESUME\n");
2107 remove_breakpoints ();
2108 breakpoints_inserted = 0;
2109 disable_longjmp_breakpoint ();
2110 ecs->handling_longjmp = 0; /* FIXME */
2111 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2112 break;
2113 /* else fallthrough */
2114
2115 case BPSTAT_WHAT_SINGLE:
2116 if (debug_infrun)
2117 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_SINGLE\n");
2118 if (breakpoints_inserted)
2119 remove_breakpoints ();
2120 breakpoints_inserted = 0;
2121 ecs->another_trap = 1;
2122 /* Still need to check other stuff, at least the case
2123 where we are stepping and step out of the right range. */
2124 break;
2125
2126 case BPSTAT_WHAT_STOP_NOISY:
2127 if (debug_infrun)
2128 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_NOISY\n");
2129 stop_print_frame = 1;
2130
2131 /* We are about to nuke the step_resume_breakpointt via the
2132 cleanup chain, so no need to worry about it here. */
2133
2134 stop_stepping (ecs);
2135 return;
2136
2137 case BPSTAT_WHAT_STOP_SILENT:
2138 if (debug_infrun)
2139 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STOP_SILENT\n");
2140 stop_print_frame = 0;
2141
2142 /* We are about to nuke the step_resume_breakpoin via the
2143 cleanup chain, so no need to worry about it here. */
2144
2145 stop_stepping (ecs);
2146 return;
2147
2148 case BPSTAT_WHAT_STEP_RESUME:
2149 /* This proably demands a more elegant solution, but, yeah
2150 right...
2151
2152 This function's use of the simple variable
2153 step_resume_breakpoint doesn't seem to accomodate
2154 simultaneously active step-resume bp's, although the
2155 breakpoint list certainly can.
2156
2157 If we reach here and step_resume_breakpoint is already
2158 NULL, then apparently we have multiple active
2159 step-resume bp's. We'll just delete the breakpoint we
2160 stopped at, and carry on.
2161
2162 Correction: what the code currently does is delete a
2163 step-resume bp, but it makes no effort to ensure that
2164 the one deleted is the one currently stopped at. MVS */
2165
2166 if (debug_infrun)
2167 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_STEP_RESUME\n");
2168
2169 if (step_resume_breakpoint == NULL)
2170 {
2171 step_resume_breakpoint =
2172 bpstat_find_step_resume_breakpoint (stop_bpstat);
2173 }
2174 delete_step_resume_breakpoint (&step_resume_breakpoint);
2175 if (ecs->step_after_step_resume_breakpoint)
2176 {
2177 /* Back when the step-resume breakpoint was inserted, we
2178 were trying to single-step off a breakpoint. Go back
2179 to doing that. */
2180 ecs->step_after_step_resume_breakpoint = 0;
2181 remove_breakpoints ();
2182 breakpoints_inserted = 0;
2183 ecs->another_trap = 1;
2184 keep_going (ecs);
2185 return;
2186 }
2187 break;
2188
2189 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2190 if (debug_infrun)
2191 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_THROUGH_SIGTRAMP\n");
2192 /* If were waiting for a trap, hitting the step_resume_break
2193 doesn't count as getting it. */
2194 if (trap_expected)
2195 ecs->another_trap = 1;
2196 break;
2197
2198 case BPSTAT_WHAT_CHECK_SHLIBS:
2199 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2200 {
2201 if (debug_infrun)
2202 fprintf_unfiltered (gdb_stdlog, "infrun: BPSTAT_WHAT_CHECK_SHLIBS\n");
2203 /* Remove breakpoints, we eventually want to step over the
2204 shlib event breakpoint, and SOLIB_ADD might adjust
2205 breakpoint addresses via breakpoint_re_set. */
2206 if (breakpoints_inserted)
2207 remove_breakpoints ();
2208 breakpoints_inserted = 0;
2209
2210 /* Check for any newly added shared libraries if we're
2211 supposed to be adding them automatically. Switch
2212 terminal for any messages produced by
2213 breakpoint_re_set. */
2214 target_terminal_ours_for_output ();
2215 /* NOTE: cagney/2003-11-25: Make certain that the target
2216 stack's section table is kept up-to-date. Architectures,
2217 (e.g., PPC64), use the section table to perform
2218 operations such as address => section name and hence
2219 require the table to contain all sections (including
2220 those found in shared libraries). */
2221 /* NOTE: cagney/2003-11-25: Pass current_target and not
2222 exec_ops to SOLIB_ADD. This is because current GDB is
2223 only tooled to propagate section_table changes out from
2224 the "current_target" (see target_resize_to_sections), and
2225 not up from the exec stratum. This, of course, isn't
2226 right. "infrun.c" should only interact with the
2227 exec/process stratum, instead relying on the target stack
2228 to propagate relevant changes (stop, section table
2229 changed, ...) up to other layers. */
2230 #ifdef SOLIB_ADD
2231 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2232 #else
2233 solib_add (NULL, 0, &current_target, auto_solib_add);
2234 #endif
2235 target_terminal_inferior ();
2236
2237 /* Try to reenable shared library breakpoints, additional
2238 code segments in shared libraries might be mapped in now. */
2239 re_enable_breakpoints_in_shlibs ();
2240
2241 /* If requested, stop when the dynamic linker notifies
2242 gdb of events. This allows the user to get control
2243 and place breakpoints in initializer routines for
2244 dynamically loaded objects (among other things). */
2245 if (stop_on_solib_events || stop_stack_dummy)
2246 {
2247 stop_stepping (ecs);
2248 return;
2249 }
2250
2251 /* If we stopped due to an explicit catchpoint, then the
2252 (see above) call to SOLIB_ADD pulled in any symbols
2253 from a newly-loaded library, if appropriate.
2254
2255 We do want the inferior to stop, but not where it is
2256 now, which is in the dynamic linker callback. Rather,
2257 we would like it stop in the user's program, just after
2258 the call that caused this catchpoint to trigger. That
2259 gives the user a more useful vantage from which to
2260 examine their program's state. */
2261 else if (what.main_action
2262 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2263 {
2264 /* ??rehrauer: If I could figure out how to get the
2265 right return PC from here, we could just set a temp
2266 breakpoint and resume. I'm not sure we can without
2267 cracking open the dld's shared libraries and sniffing
2268 their unwind tables and text/data ranges, and that's
2269 not a terribly portable notion.
2270
2271 Until that time, we must step the inferior out of the
2272 dld callback, and also out of the dld itself (and any
2273 code or stubs in libdld.sl, such as "shl_load" and
2274 friends) until we reach non-dld code. At that point,
2275 we can stop stepping. */
2276 bpstat_get_triggered_catchpoints (stop_bpstat,
2277 &ecs->
2278 stepping_through_solib_catchpoints);
2279 ecs->stepping_through_solib_after_catch = 1;
2280
2281 /* Be sure to lift all breakpoints, so the inferior does
2282 actually step past this point... */
2283 ecs->another_trap = 1;
2284 break;
2285 }
2286 else
2287 {
2288 /* We want to step over this breakpoint, then keep going. */
2289 ecs->another_trap = 1;
2290 break;
2291 }
2292 }
2293 break;
2294
2295 case BPSTAT_WHAT_LAST:
2296 /* Not a real code, but listed here to shut up gcc -Wall. */
2297
2298 case BPSTAT_WHAT_KEEP_CHECKING:
2299 break;
2300 }
2301 }
2302
2303 /* We come here if we hit a breakpoint but should not
2304 stop for it. Possibly we also were stepping
2305 and should stop for that. So fall through and
2306 test for stepping. But, if not stepping,
2307 do not stop. */
2308
2309 /* Are we stepping to get the inferior out of the dynamic linker's
2310 hook (and possibly the dld itself) after catching a shlib
2311 event? */
2312 if (ecs->stepping_through_solib_after_catch)
2313 {
2314 #if defined(SOLIB_ADD)
2315 /* Have we reached our destination? If not, keep going. */
2316 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2317 {
2318 if (debug_infrun)
2319 fprintf_unfiltered (gdb_stdlog, "infrun: stepping in dynamic linker\n");
2320 ecs->another_trap = 1;
2321 keep_going (ecs);
2322 return;
2323 }
2324 #endif
2325 if (debug_infrun)
2326 fprintf_unfiltered (gdb_stdlog, "infrun: step past dynamic linker\n");
2327 /* Else, stop and report the catchpoint(s) whose triggering
2328 caused us to begin stepping. */
2329 ecs->stepping_through_solib_after_catch = 0;
2330 bpstat_clear (&stop_bpstat);
2331 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2332 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2333 stop_print_frame = 1;
2334 stop_stepping (ecs);
2335 return;
2336 }
2337
2338 if (step_resume_breakpoint)
2339 {
2340 if (debug_infrun)
2341 fprintf_unfiltered (gdb_stdlog, "infrun: step-resume breakpoint\n");
2342
2343 /* Having a step-resume breakpoint overrides anything
2344 else having to do with stepping commands until
2345 that breakpoint is reached. */
2346 keep_going (ecs);
2347 return;
2348 }
2349
2350 if (step_range_end == 0)
2351 {
2352 if (debug_infrun)
2353 fprintf_unfiltered (gdb_stdlog, "infrun: no stepping, continue\n");
2354 /* Likewise if we aren't even stepping. */
2355 keep_going (ecs);
2356 return;
2357 }
2358
2359 /* If stepping through a line, keep going if still within it.
2360
2361 Note that step_range_end is the address of the first instruction
2362 beyond the step range, and NOT the address of the last instruction
2363 within it! */
2364 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2365 {
2366 if (debug_infrun)
2367 fprintf_unfiltered (gdb_stdlog, "infrun: stepping inside range [0x%s-0x%s]\n",
2368 paddr_nz (step_range_start),
2369 paddr_nz (step_range_end));
2370 keep_going (ecs);
2371 return;
2372 }
2373
2374 /* We stepped out of the stepping range. */
2375
2376 /* If we are stepping at the source level and entered the runtime
2377 loader dynamic symbol resolution code, we keep on single stepping
2378 until we exit the run time loader code and reach the callee's
2379 address. */
2380 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2381 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2382 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc)
2383 #else
2384 && in_solib_dynsym_resolve_code (stop_pc)
2385 #endif
2386 )
2387 {
2388 CORE_ADDR pc_after_resolver =
2389 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2390
2391 if (debug_infrun)
2392 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into dynsym resolve code\n");
2393
2394 if (pc_after_resolver)
2395 {
2396 /* Set up a step-resume breakpoint at the address
2397 indicated by SKIP_SOLIB_RESOLVER. */
2398 struct symtab_and_line sr_sal;
2399 init_sal (&sr_sal);
2400 sr_sal.pc = pc_after_resolver;
2401
2402 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2403 }
2404
2405 keep_going (ecs);
2406 return;
2407 }
2408
2409 if (step_range_end != 1
2410 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2411 || step_over_calls == STEP_OVER_ALL)
2412 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2413 {
2414 if (debug_infrun)
2415 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into signal trampoline\n");
2416 /* The inferior, while doing a "step" or "next", has ended up in
2417 a signal trampoline (either by a signal being delivered or by
2418 the signal handler returning). Just single-step until the
2419 inferior leaves the trampoline (either by calling the handler
2420 or returning). */
2421 keep_going (ecs);
2422 return;
2423 }
2424
2425 /* Check for subroutine calls. The check for the current frame
2426 equalling the step ID is not necessary - the check of the
2427 previous frame's ID is sufficient - but it is a common case and
2428 cheaper than checking the previous frame's ID.
2429
2430 NOTE: frame_id_eq will never report two invalid frame IDs as
2431 being equal, so to get into this block, both the current and
2432 previous frame must have valid frame IDs. */
2433 if (!frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id)
2434 && frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2435 {
2436 CORE_ADDR real_stop_pc;
2437
2438 if (debug_infrun)
2439 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into subroutine\n");
2440
2441 if ((step_over_calls == STEP_OVER_NONE)
2442 || ((step_range_end == 1)
2443 && in_prologue (prev_pc, ecs->stop_func_start)))
2444 {
2445 /* I presume that step_over_calls is only 0 when we're
2446 supposed to be stepping at the assembly language level
2447 ("stepi"). Just stop. */
2448 /* Also, maybe we just did a "nexti" inside a prolog, so we
2449 thought it was a subroutine call but it was not. Stop as
2450 well. FENN */
2451 stop_step = 1;
2452 print_stop_reason (END_STEPPING_RANGE, 0);
2453 stop_stepping (ecs);
2454 return;
2455 }
2456
2457 if (step_over_calls == STEP_OVER_ALL)
2458 {
2459 /* We're doing a "next", set a breakpoint at callee's return
2460 address (the address at which the caller will
2461 resume). */
2462 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2463 keep_going (ecs);
2464 return;
2465 }
2466
2467 /* If we are in a function call trampoline (a stub between the
2468 calling routine and the real function), locate the real
2469 function. That's what tells us (a) whether we want to step
2470 into it at all, and (b) what prologue we want to run to the
2471 end of, if we do step into it. */
2472 real_stop_pc = skip_language_trampoline (stop_pc);
2473 if (real_stop_pc == 0)
2474 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2475 if (real_stop_pc != 0)
2476 ecs->stop_func_start = real_stop_pc;
2477
2478 if (
2479 #ifdef IN_SOLIB_DYNSYM_RESOLVE_CODE
2480 IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start)
2481 #else
2482 in_solib_dynsym_resolve_code (ecs->stop_func_start)
2483 #endif
2484 )
2485 {
2486 struct symtab_and_line sr_sal;
2487 init_sal (&sr_sal);
2488 sr_sal.pc = ecs->stop_func_start;
2489
2490 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2491 keep_going (ecs);
2492 return;
2493 }
2494
2495 /* If we have line number information for the function we are
2496 thinking of stepping into, step into it.
2497
2498 If there are several symtabs at that PC (e.g. with include
2499 files), just want to know whether *any* of them have line
2500 numbers. find_pc_line handles this. */
2501 {
2502 struct symtab_and_line tmp_sal;
2503
2504 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2505 if (tmp_sal.line != 0)
2506 {
2507 step_into_function (ecs);
2508 return;
2509 }
2510 }
2511
2512 /* If we have no line number and the step-stop-if-no-debug is
2513 set, we stop the step so that the user has a chance to switch
2514 in assembly mode. */
2515 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2516 {
2517 stop_step = 1;
2518 print_stop_reason (END_STEPPING_RANGE, 0);
2519 stop_stepping (ecs);
2520 return;
2521 }
2522
2523 /* Set a breakpoint at callee's return address (the address at
2524 which the caller will resume). */
2525 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2526 keep_going (ecs);
2527 return;
2528 }
2529
2530 /* If we're in the return path from a shared library trampoline,
2531 we want to proceed through the trampoline when stepping. */
2532 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2533 {
2534 /* Determine where this trampoline returns. */
2535 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2536
2537 if (debug_infrun)
2538 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into solib return tramp\n");
2539
2540 /* Only proceed through if we know where it's going. */
2541 if (real_stop_pc)
2542 {
2543 /* And put the step-breakpoint there and go until there. */
2544 struct symtab_and_line sr_sal;
2545
2546 init_sal (&sr_sal); /* initialize to zeroes */
2547 sr_sal.pc = real_stop_pc;
2548 sr_sal.section = find_pc_overlay (sr_sal.pc);
2549
2550 /* Do not specify what the fp should be when we stop since
2551 on some machines the prologue is where the new fp value
2552 is established. */
2553 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2554
2555 /* Restart without fiddling with the step ranges or
2556 other state. */
2557 keep_going (ecs);
2558 return;
2559 }
2560 }
2561
2562 ecs->sal = find_pc_line (stop_pc, 0);
2563
2564 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2565 the trampoline processing logic, however, there are some trampolines
2566 that have no names, so we should do trampoline handling first. */
2567 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2568 && ecs->stop_func_name == NULL
2569 && ecs->sal.line == 0)
2570 {
2571 if (debug_infrun)
2572 fprintf_unfiltered (gdb_stdlog, "infrun: stepped into undebuggable function\n");
2573
2574 /* The inferior just stepped into, or returned to, an
2575 undebuggable function (where there is no debugging information
2576 and no line number corresponding to the address where the
2577 inferior stopped). Since we want to skip this kind of code,
2578 we keep going until the inferior returns from this
2579 function - unless the user has asked us not to (via
2580 set step-mode) or we no longer know how to get back
2581 to the call site. */
2582 if (step_stop_if_no_debug
2583 || !frame_id_p (frame_unwind_id (get_current_frame ())))
2584 {
2585 /* If we have no line number and the step-stop-if-no-debug
2586 is set, we stop the step so that the user has a chance to
2587 switch in assembly mode. */
2588 stop_step = 1;
2589 print_stop_reason (END_STEPPING_RANGE, 0);
2590 stop_stepping (ecs);
2591 return;
2592 }
2593 else
2594 {
2595 /* Set a breakpoint at callee's return address (the address
2596 at which the caller will resume). */
2597 insert_step_resume_breakpoint_at_caller (get_current_frame ());
2598 keep_going (ecs);
2599 return;
2600 }
2601 }
2602
2603 if (step_range_end == 1)
2604 {
2605 /* It is stepi or nexti. We always want to stop stepping after
2606 one instruction. */
2607 if (debug_infrun)
2608 fprintf_unfiltered (gdb_stdlog, "infrun: stepi/nexti\n");
2609 stop_step = 1;
2610 print_stop_reason (END_STEPPING_RANGE, 0);
2611 stop_stepping (ecs);
2612 return;
2613 }
2614
2615 if (ecs->sal.line == 0)
2616 {
2617 /* We have no line number information. That means to stop
2618 stepping (does this always happen right after one instruction,
2619 when we do "s" in a function with no line numbers,
2620 or can this happen as a result of a return or longjmp?). */
2621 if (debug_infrun)
2622 fprintf_unfiltered (gdb_stdlog, "infrun: no line number info\n");
2623 stop_step = 1;
2624 print_stop_reason (END_STEPPING_RANGE, 0);
2625 stop_stepping (ecs);
2626 return;
2627 }
2628
2629 if ((stop_pc == ecs->sal.pc)
2630 && (ecs->current_line != ecs->sal.line
2631 || ecs->current_symtab != ecs->sal.symtab))
2632 {
2633 /* We are at the start of a different line. So stop. Note that
2634 we don't stop if we step into the middle of a different line.
2635 That is said to make things like for (;;) statements work
2636 better. */
2637 if (debug_infrun)
2638 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different line\n");
2639 stop_step = 1;
2640 print_stop_reason (END_STEPPING_RANGE, 0);
2641 stop_stepping (ecs);
2642 return;
2643 }
2644
2645 /* We aren't done stepping.
2646
2647 Optimize by setting the stepping range to the line.
2648 (We might not be in the original line, but if we entered a
2649 new line in mid-statement, we continue stepping. This makes
2650 things like for(;;) statements work better.) */
2651
2652 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2653 {
2654 /* If this is the last line of the function, don't keep stepping
2655 (it would probably step us out of the function).
2656 This is particularly necessary for a one-line function,
2657 in which after skipping the prologue we better stop even though
2658 we will be in mid-line. */
2659 if (debug_infrun)
2660 fprintf_unfiltered (gdb_stdlog, "infrun: stepped to a different function\n");
2661 stop_step = 1;
2662 print_stop_reason (END_STEPPING_RANGE, 0);
2663 stop_stepping (ecs);
2664 return;
2665 }
2666 step_range_start = ecs->sal.pc;
2667 step_range_end = ecs->sal.end;
2668 step_frame_id = get_frame_id (get_current_frame ());
2669 ecs->current_line = ecs->sal.line;
2670 ecs->current_symtab = ecs->sal.symtab;
2671
2672 /* In the case where we just stepped out of a function into the
2673 middle of a line of the caller, continue stepping, but
2674 step_frame_id must be modified to current frame */
2675 #if 0
2676 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2677 generous. It will trigger on things like a step into a frameless
2678 stackless leaf function. I think the logic should instead look
2679 at the unwound frame ID has that should give a more robust
2680 indication of what happened. */
2681 if (step - ID == current - ID)
2682 still stepping in same function;
2683 else if (step - ID == unwind (current - ID))
2684 stepped into a function;
2685 else
2686 stepped out of a function;
2687 /* Of course this assumes that the frame ID unwind code is robust
2688 and we're willing to introduce frame unwind logic into this
2689 function. Fortunately, those days are nearly upon us. */
2690 #endif
2691 {
2692 struct frame_id current_frame = get_frame_id (get_current_frame ());
2693 if (!(frame_id_inner (current_frame, step_frame_id)))
2694 step_frame_id = current_frame;
2695 }
2696
2697 if (debug_infrun)
2698 fprintf_unfiltered (gdb_stdlog, "infrun: keep going\n");
2699 keep_going (ecs);
2700 }
2701
2702 /* Are we in the middle of stepping? */
2703
2704 static int
2705 currently_stepping (struct execution_control_state *ecs)
2706 {
2707 return ((!ecs->handling_longjmp
2708 && ((step_range_end && step_resume_breakpoint == NULL)
2709 || trap_expected))
2710 || ecs->stepping_through_solib_after_catch
2711 || bpstat_should_step ());
2712 }
2713
2714 /* Subroutine call with source code we should not step over. Do step
2715 to the first line of code in it. */
2716
2717 static void
2718 step_into_function (struct execution_control_state *ecs)
2719 {
2720 struct symtab *s;
2721 struct symtab_and_line sr_sal;
2722
2723 s = find_pc_symtab (stop_pc);
2724 if (s && s->language != language_asm)
2725 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2726
2727 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2728 /* Use the step_resume_break to step until the end of the prologue,
2729 even if that involves jumps (as it seems to on the vax under
2730 4.2). */
2731 /* If the prologue ends in the middle of a source line, continue to
2732 the end of that source line (if it is still within the function).
2733 Otherwise, just go to end of prologue. */
2734 if (ecs->sal.end
2735 && ecs->sal.pc != ecs->stop_func_start
2736 && ecs->sal.end < ecs->stop_func_end)
2737 ecs->stop_func_start = ecs->sal.end;
2738
2739 /* Architectures which require breakpoint adjustment might not be able
2740 to place a breakpoint at the computed address. If so, the test
2741 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2742 ecs->stop_func_start to an address at which a breakpoint may be
2743 legitimately placed.
2744
2745 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2746 made, GDB will enter an infinite loop when stepping through
2747 optimized code consisting of VLIW instructions which contain
2748 subinstructions corresponding to different source lines. On
2749 FR-V, it's not permitted to place a breakpoint on any but the
2750 first subinstruction of a VLIW instruction. When a breakpoint is
2751 set, GDB will adjust the breakpoint address to the beginning of
2752 the VLIW instruction. Thus, we need to make the corresponding
2753 adjustment here when computing the stop address. */
2754
2755 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2756 {
2757 ecs->stop_func_start
2758 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2759 ecs->stop_func_start);
2760 }
2761
2762 if (ecs->stop_func_start == stop_pc)
2763 {
2764 /* We are already there: stop now. */
2765 stop_step = 1;
2766 print_stop_reason (END_STEPPING_RANGE, 0);
2767 stop_stepping (ecs);
2768 return;
2769 }
2770 else
2771 {
2772 /* Put the step-breakpoint there and go until there. */
2773 init_sal (&sr_sal); /* initialize to zeroes */
2774 sr_sal.pc = ecs->stop_func_start;
2775 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2776
2777 /* Do not specify what the fp should be when we stop since on
2778 some machines the prologue is where the new fp value is
2779 established. */
2780 insert_step_resume_breakpoint_at_sal (sr_sal, null_frame_id);
2781
2782 /* And make sure stepping stops right away then. */
2783 step_range_end = step_range_start;
2784 }
2785 keep_going (ecs);
2786 }
2787
2788 /* Insert a "step resume breakpoint" at SR_SAL with frame ID SR_ID.
2789 This is used to both functions and to skip over code. */
2790
2791 static void
2792 insert_step_resume_breakpoint_at_sal (struct symtab_and_line sr_sal,
2793 struct frame_id sr_id)
2794 {
2795 /* There should never be more than one step-resume breakpoint per
2796 thread, so we should never be setting a new
2797 step_resume_breakpoint when one is already active. */
2798 gdb_assert (step_resume_breakpoint == NULL);
2799 step_resume_breakpoint = set_momentary_breakpoint (sr_sal, sr_id,
2800 bp_step_resume);
2801 if (breakpoints_inserted)
2802 insert_breakpoints ();
2803 }
2804
2805 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2806 to skip a potential signal handler.
2807
2808 This is called with the interrupted function's frame. The signal
2809 handler, when it returns, will resume the interrupted function at
2810 RETURN_FRAME.pc. */
2811
2812 static void
2813 insert_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
2814 {
2815 struct symtab_and_line sr_sal;
2816
2817 init_sal (&sr_sal); /* initialize to zeros */
2818
2819 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2820 sr_sal.section = find_pc_overlay (sr_sal.pc);
2821
2822 insert_step_resume_breakpoint_at_sal (sr_sal, get_frame_id (return_frame));
2823 }
2824
2825 /* Similar to insert_step_resume_breakpoint_at_frame, except
2826 but a breakpoint at the previous frame's PC. This is used to
2827 skip a function after stepping into it (for "next" or if the called
2828 function has no debugging information).
2829
2830 The current function has almost always been reached by single
2831 stepping a call or return instruction. NEXT_FRAME belongs to the
2832 current function, and the breakpoint will be set at the caller's
2833 resume address.
2834
2835 This is a separate function rather than reusing
2836 insert_step_resume_breakpoint_at_frame in order to avoid
2837 get_prev_frame, which may stop prematurely (see the implementation
2838 of frame_unwind_id for an example). */
2839
2840 static void
2841 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
2842 {
2843 struct symtab_and_line sr_sal;
2844
2845 /* We shouldn't have gotten here if we don't know where the call site
2846 is. */
2847 gdb_assert (frame_id_p (frame_unwind_id (next_frame)));
2848
2849 init_sal (&sr_sal); /* initialize to zeros */
2850
2851 sr_sal.pc = ADDR_BITS_REMOVE (frame_pc_unwind (next_frame));
2852 sr_sal.section = find_pc_overlay (sr_sal.pc);
2853
2854 insert_step_resume_breakpoint_at_sal (sr_sal, frame_unwind_id (next_frame));
2855 }
2856
2857 static void
2858 stop_stepping (struct execution_control_state *ecs)
2859 {
2860 if (debug_infrun)
2861 fprintf_unfiltered (gdb_stdlog, "infrun: stop_stepping\n");
2862
2863 /* Let callers know we don't want to wait for the inferior anymore. */
2864 ecs->wait_some_more = 0;
2865 }
2866
2867 /* This function handles various cases where we need to continue
2868 waiting for the inferior. */
2869 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2870
2871 static void
2872 keep_going (struct execution_control_state *ecs)
2873 {
2874 /* Save the pc before execution, to compare with pc after stop. */
2875 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2876
2877 /* If we did not do break;, it means we should keep running the
2878 inferior and not return to debugger. */
2879
2880 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2881 {
2882 /* We took a signal (which we are supposed to pass through to
2883 the inferior, else we'd have done a break above) and we
2884 haven't yet gotten our trap. Simply continue. */
2885 resume (currently_stepping (ecs), stop_signal);
2886 }
2887 else
2888 {
2889 /* Either the trap was not expected, but we are continuing
2890 anyway (the user asked that this signal be passed to the
2891 child)
2892 -- or --
2893 The signal was SIGTRAP, e.g. it was our signal, but we
2894 decided we should resume from it.
2895
2896 We're going to run this baby now! */
2897
2898 if (!breakpoints_inserted && !ecs->another_trap)
2899 {
2900 /* Stop stepping when inserting breakpoints
2901 has failed. */
2902 if (insert_breakpoints () != 0)
2903 {
2904 stop_stepping (ecs);
2905 return;
2906 }
2907 breakpoints_inserted = 1;
2908 }
2909
2910 trap_expected = ecs->another_trap;
2911
2912 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2913 specifies that such a signal should be delivered to the
2914 target program).
2915
2916 Typically, this would occure when a user is debugging a
2917 target monitor on a simulator: the target monitor sets a
2918 breakpoint; the simulator encounters this break-point and
2919 halts the simulation handing control to GDB; GDB, noteing
2920 that the break-point isn't valid, returns control back to the
2921 simulator; the simulator then delivers the hardware
2922 equivalent of a SIGNAL_TRAP to the program being debugged. */
2923
2924 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2925 stop_signal = TARGET_SIGNAL_0;
2926
2927
2928 resume (currently_stepping (ecs), stop_signal);
2929 }
2930
2931 prepare_to_wait (ecs);
2932 }
2933
2934 /* This function normally comes after a resume, before
2935 handle_inferior_event exits. It takes care of any last bits of
2936 housekeeping, and sets the all-important wait_some_more flag. */
2937
2938 static void
2939 prepare_to_wait (struct execution_control_state *ecs)
2940 {
2941 if (debug_infrun)
2942 fprintf_unfiltered (gdb_stdlog, "infrun: prepare_to_wait\n");
2943 if (ecs->infwait_state == infwait_normal_state)
2944 {
2945 overlay_cache_invalid = 1;
2946
2947 /* We have to invalidate the registers BEFORE calling
2948 target_wait because they can be loaded from the target while
2949 in target_wait. This makes remote debugging a bit more
2950 efficient for those targets that provide critical registers
2951 as part of their normal status mechanism. */
2952
2953 registers_changed ();
2954 ecs->waiton_ptid = pid_to_ptid (-1);
2955 ecs->wp = &(ecs->ws);
2956 }
2957 /* This is the old end of the while loop. Let everybody know we
2958 want to wait for the inferior some more and get called again
2959 soon. */
2960 ecs->wait_some_more = 1;
2961 }
2962
2963 /* Print why the inferior has stopped. We always print something when
2964 the inferior exits, or receives a signal. The rest of the cases are
2965 dealt with later on in normal_stop() and print_it_typical(). Ideally
2966 there should be a call to this function from handle_inferior_event()
2967 each time stop_stepping() is called.*/
2968 static void
2969 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2970 {
2971 switch (stop_reason)
2972 {
2973 case END_STEPPING_RANGE:
2974 /* We are done with a step/next/si/ni command. */
2975 /* For now print nothing. */
2976 /* Print a message only if not in the middle of doing a "step n"
2977 operation for n > 1 */
2978 if (!step_multi || !stop_step)
2979 if (ui_out_is_mi_like_p (uiout))
2980 ui_out_field_string
2981 (uiout, "reason",
2982 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
2983 break;
2984 case SIGNAL_EXITED:
2985 /* The inferior was terminated by a signal. */
2986 annotate_signalled ();
2987 if (ui_out_is_mi_like_p (uiout))
2988 ui_out_field_string
2989 (uiout, "reason",
2990 async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
2991 ui_out_text (uiout, "\nProgram terminated with signal ");
2992 annotate_signal_name ();
2993 ui_out_field_string (uiout, "signal-name",
2994 target_signal_to_name (stop_info));
2995 annotate_signal_name_end ();
2996 ui_out_text (uiout, ", ");
2997 annotate_signal_string ();
2998 ui_out_field_string (uiout, "signal-meaning",
2999 target_signal_to_string (stop_info));
3000 annotate_signal_string_end ();
3001 ui_out_text (uiout, ".\n");
3002 ui_out_text (uiout, "The program no longer exists.\n");
3003 break;
3004 case EXITED:
3005 /* The inferior program is finished. */
3006 annotate_exited (stop_info);
3007 if (stop_info)
3008 {
3009 if (ui_out_is_mi_like_p (uiout))
3010 ui_out_field_string (uiout, "reason",
3011 async_reason_lookup (EXEC_ASYNC_EXITED));
3012 ui_out_text (uiout, "\nProgram exited with code ");
3013 ui_out_field_fmt (uiout, "exit-code", "0%o",
3014 (unsigned int) stop_info);
3015 ui_out_text (uiout, ".\n");
3016 }
3017 else
3018 {
3019 if (ui_out_is_mi_like_p (uiout))
3020 ui_out_field_string
3021 (uiout, "reason",
3022 async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
3023 ui_out_text (uiout, "\nProgram exited normally.\n");
3024 }
3025 /* Support the --return-child-result option. */
3026 return_child_result_value = stop_info;
3027 break;
3028 case SIGNAL_RECEIVED:
3029 /* Signal received. The signal table tells us to print about
3030 it. */
3031 annotate_signal ();
3032 ui_out_text (uiout, "\nProgram received signal ");
3033 annotate_signal_name ();
3034 if (ui_out_is_mi_like_p (uiout))
3035 ui_out_field_string
3036 (uiout, "reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
3037 ui_out_field_string (uiout, "signal-name",
3038 target_signal_to_name (stop_info));
3039 annotate_signal_name_end ();
3040 ui_out_text (uiout, ", ");
3041 annotate_signal_string ();
3042 ui_out_field_string (uiout, "signal-meaning",
3043 target_signal_to_string (stop_info));
3044 annotate_signal_string_end ();
3045 ui_out_text (uiout, ".\n");
3046 break;
3047 default:
3048 internal_error (__FILE__, __LINE__,
3049 _("print_stop_reason: unrecognized enum value"));
3050 break;
3051 }
3052 }
3053 \f
3054
3055 /* Here to return control to GDB when the inferior stops for real.
3056 Print appropriate messages, remove breakpoints, give terminal our modes.
3057
3058 STOP_PRINT_FRAME nonzero means print the executing frame
3059 (pc, function, args, file, line number and line text).
3060 BREAKPOINTS_FAILED nonzero means stop was due to error
3061 attempting to insert breakpoints. */
3062
3063 void
3064 normal_stop (void)
3065 {
3066 struct target_waitstatus last;
3067 ptid_t last_ptid;
3068
3069 get_last_target_status (&last_ptid, &last);
3070
3071 /* As with the notification of thread events, we want to delay
3072 notifying the user that we've switched thread context until
3073 the inferior actually stops.
3074
3075 There's no point in saying anything if the inferior has exited.
3076 Note that SIGNALLED here means "exited with a signal", not
3077 "received a signal". */
3078 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
3079 && target_has_execution
3080 && last.kind != TARGET_WAITKIND_SIGNALLED
3081 && last.kind != TARGET_WAITKIND_EXITED)
3082 {
3083 target_terminal_ours_for_output ();
3084 printf_filtered (_("[Switching to %s]\n"),
3085 target_pid_or_tid_to_str (inferior_ptid));
3086 previous_inferior_ptid = inferior_ptid;
3087 }
3088
3089 /* NOTE drow/2004-01-17: Is this still necessary? */
3090 /* Make sure that the current_frame's pc is correct. This
3091 is a correction for setting up the frame info before doing
3092 DECR_PC_AFTER_BREAK */
3093 if (target_has_execution)
3094 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
3095 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
3096 frame code to check for this and sort out any resultant mess.
3097 DECR_PC_AFTER_BREAK needs to just go away. */
3098 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
3099
3100 if (target_has_execution && breakpoints_inserted)
3101 {
3102 if (remove_breakpoints ())
3103 {
3104 target_terminal_ours_for_output ();
3105 printf_filtered (_("\
3106 Cannot remove breakpoints because program is no longer writable.\n\
3107 It might be running in another process.\n\
3108 Further execution is probably impossible.\n"));
3109 }
3110 }
3111 breakpoints_inserted = 0;
3112
3113 /* Delete the breakpoint we stopped at, if it wants to be deleted.
3114 Delete any breakpoint that is to be deleted at the next stop. */
3115
3116 breakpoint_auto_delete (stop_bpstat);
3117
3118 /* If an auto-display called a function and that got a signal,
3119 delete that auto-display to avoid an infinite recursion. */
3120
3121 if (stopped_by_random_signal)
3122 disable_current_display ();
3123
3124 /* Don't print a message if in the middle of doing a "step n"
3125 operation for n > 1 */
3126 if (step_multi && stop_step)
3127 goto done;
3128
3129 target_terminal_ours ();
3130
3131 /* Set the current source location. This will also happen if we
3132 display the frame below, but the current SAL will be incorrect
3133 during a user hook-stop function. */
3134 if (target_has_stack && !stop_stack_dummy)
3135 set_current_sal_from_frame (get_current_frame (), 1);
3136
3137 /* Look up the hook_stop and run it (CLI internally handles problem
3138 of stop_command's pre-hook not existing). */
3139 if (stop_command)
3140 catch_errors (hook_stop_stub, stop_command,
3141 "Error while running hook_stop:\n", RETURN_MASK_ALL);
3142
3143 if (!target_has_stack)
3144 {
3145
3146 goto done;
3147 }
3148
3149 /* Select innermost stack frame - i.e., current frame is frame 0,
3150 and current location is based on that.
3151 Don't do this on return from a stack dummy routine,
3152 or if the program has exited. */
3153
3154 if (!stop_stack_dummy)
3155 {
3156 select_frame (get_current_frame ());
3157
3158 /* Print current location without a level number, if
3159 we have changed functions or hit a breakpoint.
3160 Print source line if we have one.
3161 bpstat_print() contains the logic deciding in detail
3162 what to print, based on the event(s) that just occurred. */
3163
3164 if (stop_print_frame)
3165 {
3166 int bpstat_ret;
3167 int source_flag;
3168 int do_frame_printing = 1;
3169
3170 bpstat_ret = bpstat_print (stop_bpstat);
3171 switch (bpstat_ret)
3172 {
3173 case PRINT_UNKNOWN:
3174 /* FIXME: cagney/2002-12-01: Given that a frame ID does
3175 (or should) carry around the function and does (or
3176 should) use that when doing a frame comparison. */
3177 if (stop_step
3178 && frame_id_eq (step_frame_id,
3179 get_frame_id (get_current_frame ()))
3180 && step_start_function == find_pc_function (stop_pc))
3181 source_flag = SRC_LINE; /* finished step, just print source line */
3182 else
3183 source_flag = SRC_AND_LOC; /* print location and source line */
3184 break;
3185 case PRINT_SRC_AND_LOC:
3186 source_flag = SRC_AND_LOC; /* print location and source line */
3187 break;
3188 case PRINT_SRC_ONLY:
3189 source_flag = SRC_LINE;
3190 break;
3191 case PRINT_NOTHING:
3192 source_flag = SRC_LINE; /* something bogus */
3193 do_frame_printing = 0;
3194 break;
3195 default:
3196 internal_error (__FILE__, __LINE__, _("Unknown value."));
3197 }
3198
3199 if (ui_out_is_mi_like_p (uiout))
3200 ui_out_field_int (uiout, "thread-id",
3201 pid_to_thread_id (inferior_ptid));
3202 /* The behavior of this routine with respect to the source
3203 flag is:
3204 SRC_LINE: Print only source line
3205 LOCATION: Print only location
3206 SRC_AND_LOC: Print location and source line */
3207 if (do_frame_printing)
3208 print_stack_frame (get_selected_frame (NULL), 0, source_flag);
3209
3210 /* Display the auto-display expressions. */
3211 do_displays ();
3212 }
3213 }
3214
3215 /* Save the function value return registers, if we care.
3216 We might be about to restore their previous contents. */
3217 if (proceed_to_finish)
3218 /* NB: The copy goes through to the target picking up the value of
3219 all the registers. */
3220 regcache_cpy (stop_registers, current_regcache);
3221
3222 if (stop_stack_dummy)
3223 {
3224 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3225 ends with a setting of the current frame, so we can use that
3226 next. */
3227 frame_pop (get_current_frame ());
3228 /* Set stop_pc to what it was before we called the function.
3229 Can't rely on restore_inferior_status because that only gets
3230 called if we don't stop in the called function. */
3231 stop_pc = read_pc ();
3232 select_frame (get_current_frame ());
3233 }
3234
3235 done:
3236 annotate_stopped ();
3237 observer_notify_normal_stop (stop_bpstat);
3238 }
3239
3240 static int
3241 hook_stop_stub (void *cmd)
3242 {
3243 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3244 return (0);
3245 }
3246 \f
3247 int
3248 signal_stop_state (int signo)
3249 {
3250 return signal_stop[signo];
3251 }
3252
3253 int
3254 signal_print_state (int signo)
3255 {
3256 return signal_print[signo];
3257 }
3258
3259 int
3260 signal_pass_state (int signo)
3261 {
3262 return signal_program[signo];
3263 }
3264
3265 int
3266 signal_stop_update (int signo, int state)
3267 {
3268 int ret = signal_stop[signo];
3269 signal_stop[signo] = state;
3270 return ret;
3271 }
3272
3273 int
3274 signal_print_update (int signo, int state)
3275 {
3276 int ret = signal_print[signo];
3277 signal_print[signo] = state;
3278 return ret;
3279 }
3280
3281 int
3282 signal_pass_update (int signo, int state)
3283 {
3284 int ret = signal_program[signo];
3285 signal_program[signo] = state;
3286 return ret;
3287 }
3288
3289 static void
3290 sig_print_header (void)
3291 {
3292 printf_filtered (_("\
3293 Signal Stop\tPrint\tPass to program\tDescription\n"));
3294 }
3295
3296 static void
3297 sig_print_info (enum target_signal oursig)
3298 {
3299 char *name = target_signal_to_name (oursig);
3300 int name_padding = 13 - strlen (name);
3301
3302 if (name_padding <= 0)
3303 name_padding = 0;
3304
3305 printf_filtered ("%s", name);
3306 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3307 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3308 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3309 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3310 printf_filtered ("%s\n", target_signal_to_string (oursig));
3311 }
3312
3313 /* Specify how various signals in the inferior should be handled. */
3314
3315 static void
3316 handle_command (char *args, int from_tty)
3317 {
3318 char **argv;
3319 int digits, wordlen;
3320 int sigfirst, signum, siglast;
3321 enum target_signal oursig;
3322 int allsigs;
3323 int nsigs;
3324 unsigned char *sigs;
3325 struct cleanup *old_chain;
3326
3327 if (args == NULL)
3328 {
3329 error_no_arg (_("signal to handle"));
3330 }
3331
3332 /* Allocate and zero an array of flags for which signals to handle. */
3333
3334 nsigs = (int) TARGET_SIGNAL_LAST;
3335 sigs = (unsigned char *) alloca (nsigs);
3336 memset (sigs, 0, nsigs);
3337
3338 /* Break the command line up into args. */
3339
3340 argv = buildargv (args);
3341 if (argv == NULL)
3342 {
3343 nomem (0);
3344 }
3345 old_chain = make_cleanup_freeargv (argv);
3346
3347 /* Walk through the args, looking for signal oursigs, signal names, and
3348 actions. Signal numbers and signal names may be interspersed with
3349 actions, with the actions being performed for all signals cumulatively
3350 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3351
3352 while (*argv != NULL)
3353 {
3354 wordlen = strlen (*argv);
3355 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3356 {;
3357 }
3358 allsigs = 0;
3359 sigfirst = siglast = -1;
3360
3361 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3362 {
3363 /* Apply action to all signals except those used by the
3364 debugger. Silently skip those. */
3365 allsigs = 1;
3366 sigfirst = 0;
3367 siglast = nsigs - 1;
3368 }
3369 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3370 {
3371 SET_SIGS (nsigs, sigs, signal_stop);
3372 SET_SIGS (nsigs, sigs, signal_print);
3373 }
3374 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3375 {
3376 UNSET_SIGS (nsigs, sigs, signal_program);
3377 }
3378 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3379 {
3380 SET_SIGS (nsigs, sigs, signal_print);
3381 }
3382 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3383 {
3384 SET_SIGS (nsigs, sigs, signal_program);
3385 }
3386 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3387 {
3388 UNSET_SIGS (nsigs, sigs, signal_stop);
3389 }
3390 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3391 {
3392 SET_SIGS (nsigs, sigs, signal_program);
3393 }
3394 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3395 {
3396 UNSET_SIGS (nsigs, sigs, signal_print);
3397 UNSET_SIGS (nsigs, sigs, signal_stop);
3398 }
3399 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3400 {
3401 UNSET_SIGS (nsigs, sigs, signal_program);
3402 }
3403 else if (digits > 0)
3404 {
3405 /* It is numeric. The numeric signal refers to our own
3406 internal signal numbering from target.h, not to host/target
3407 signal number. This is a feature; users really should be
3408 using symbolic names anyway, and the common ones like
3409 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3410
3411 sigfirst = siglast = (int)
3412 target_signal_from_command (atoi (*argv));
3413 if ((*argv)[digits] == '-')
3414 {
3415 siglast = (int)
3416 target_signal_from_command (atoi ((*argv) + digits + 1));
3417 }
3418 if (sigfirst > siglast)
3419 {
3420 /* Bet he didn't figure we'd think of this case... */
3421 signum = sigfirst;
3422 sigfirst = siglast;
3423 siglast = signum;
3424 }
3425 }
3426 else
3427 {
3428 oursig = target_signal_from_name (*argv);
3429 if (oursig != TARGET_SIGNAL_UNKNOWN)
3430 {
3431 sigfirst = siglast = (int) oursig;
3432 }
3433 else
3434 {
3435 /* Not a number and not a recognized flag word => complain. */
3436 error (_("Unrecognized or ambiguous flag word: \"%s\"."), *argv);
3437 }
3438 }
3439
3440 /* If any signal numbers or symbol names were found, set flags for
3441 which signals to apply actions to. */
3442
3443 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3444 {
3445 switch ((enum target_signal) signum)
3446 {
3447 case TARGET_SIGNAL_TRAP:
3448 case TARGET_SIGNAL_INT:
3449 if (!allsigs && !sigs[signum])
3450 {
3451 if (query ("%s is used by the debugger.\n\
3452 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3453 {
3454 sigs[signum] = 1;
3455 }
3456 else
3457 {
3458 printf_unfiltered (_("Not confirmed, unchanged.\n"));
3459 gdb_flush (gdb_stdout);
3460 }
3461 }
3462 break;
3463 case TARGET_SIGNAL_0:
3464 case TARGET_SIGNAL_DEFAULT:
3465 case TARGET_SIGNAL_UNKNOWN:
3466 /* Make sure that "all" doesn't print these. */
3467 break;
3468 default:
3469 sigs[signum] = 1;
3470 break;
3471 }
3472 }
3473
3474 argv++;
3475 }
3476
3477 target_notice_signals (inferior_ptid);
3478
3479 if (from_tty)
3480 {
3481 /* Show the results. */
3482 sig_print_header ();
3483 for (signum = 0; signum < nsigs; signum++)
3484 {
3485 if (sigs[signum])
3486 {
3487 sig_print_info (signum);
3488 }
3489 }
3490 }
3491
3492 do_cleanups (old_chain);
3493 }
3494
3495 static void
3496 xdb_handle_command (char *args, int from_tty)
3497 {
3498 char **argv;
3499 struct cleanup *old_chain;
3500
3501 /* Break the command line up into args. */
3502
3503 argv = buildargv (args);
3504 if (argv == NULL)
3505 {
3506 nomem (0);
3507 }
3508 old_chain = make_cleanup_freeargv (argv);
3509 if (argv[1] != (char *) NULL)
3510 {
3511 char *argBuf;
3512 int bufLen;
3513
3514 bufLen = strlen (argv[0]) + 20;
3515 argBuf = (char *) xmalloc (bufLen);
3516 if (argBuf)
3517 {
3518 int validFlag = 1;
3519 enum target_signal oursig;
3520
3521 oursig = target_signal_from_name (argv[0]);
3522 memset (argBuf, 0, bufLen);
3523 if (strcmp (argv[1], "Q") == 0)
3524 sprintf (argBuf, "%s %s", argv[0], "noprint");
3525 else
3526 {
3527 if (strcmp (argv[1], "s") == 0)
3528 {
3529 if (!signal_stop[oursig])
3530 sprintf (argBuf, "%s %s", argv[0], "stop");
3531 else
3532 sprintf (argBuf, "%s %s", argv[0], "nostop");
3533 }
3534 else if (strcmp (argv[1], "i") == 0)
3535 {
3536 if (!signal_program[oursig])
3537 sprintf (argBuf, "%s %s", argv[0], "pass");
3538 else
3539 sprintf (argBuf, "%s %s", argv[0], "nopass");
3540 }
3541 else if (strcmp (argv[1], "r") == 0)
3542 {
3543 if (!signal_print[oursig])
3544 sprintf (argBuf, "%s %s", argv[0], "print");
3545 else
3546 sprintf (argBuf, "%s %s", argv[0], "noprint");
3547 }
3548 else
3549 validFlag = 0;
3550 }
3551 if (validFlag)
3552 handle_command (argBuf, from_tty);
3553 else
3554 printf_filtered (_("Invalid signal handling flag.\n"));
3555 if (argBuf)
3556 xfree (argBuf);
3557 }
3558 }
3559 do_cleanups (old_chain);
3560 }
3561
3562 /* Print current contents of the tables set by the handle command.
3563 It is possible we should just be printing signals actually used
3564 by the current target (but for things to work right when switching
3565 targets, all signals should be in the signal tables). */
3566
3567 static void
3568 signals_info (char *signum_exp, int from_tty)
3569 {
3570 enum target_signal oursig;
3571 sig_print_header ();
3572
3573 if (signum_exp)
3574 {
3575 /* First see if this is a symbol name. */
3576 oursig = target_signal_from_name (signum_exp);
3577 if (oursig == TARGET_SIGNAL_UNKNOWN)
3578 {
3579 /* No, try numeric. */
3580 oursig =
3581 target_signal_from_command (parse_and_eval_long (signum_exp));
3582 }
3583 sig_print_info (oursig);
3584 return;
3585 }
3586
3587 printf_filtered ("\n");
3588 /* These ugly casts brought to you by the native VAX compiler. */
3589 for (oursig = TARGET_SIGNAL_FIRST;
3590 (int) oursig < (int) TARGET_SIGNAL_LAST;
3591 oursig = (enum target_signal) ((int) oursig + 1))
3592 {
3593 QUIT;
3594
3595 if (oursig != TARGET_SIGNAL_UNKNOWN
3596 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3597 sig_print_info (oursig);
3598 }
3599
3600 printf_filtered (_("\nUse the \"handle\" command to change these tables.\n"));
3601 }
3602 \f
3603 struct inferior_status
3604 {
3605 enum target_signal stop_signal;
3606 CORE_ADDR stop_pc;
3607 bpstat stop_bpstat;
3608 int stop_step;
3609 int stop_stack_dummy;
3610 int stopped_by_random_signal;
3611 int trap_expected;
3612 CORE_ADDR step_range_start;
3613 CORE_ADDR step_range_end;
3614 struct frame_id step_frame_id;
3615 enum step_over_calls_kind step_over_calls;
3616 CORE_ADDR step_resume_break_address;
3617 int stop_after_trap;
3618 int stop_soon;
3619 struct regcache *stop_registers;
3620
3621 /* These are here because if call_function_by_hand has written some
3622 registers and then decides to call error(), we better not have changed
3623 any registers. */
3624 struct regcache *registers;
3625
3626 /* A frame unique identifier. */
3627 struct frame_id selected_frame_id;
3628
3629 int breakpoint_proceeded;
3630 int restore_stack_info;
3631 int proceed_to_finish;
3632 };
3633
3634 void
3635 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3636 LONGEST val)
3637 {
3638 int size = register_size (current_gdbarch, regno);
3639 void *buf = alloca (size);
3640 store_signed_integer (buf, size, val);
3641 regcache_raw_write (inf_status->registers, regno, buf);
3642 }
3643
3644 /* Save all of the information associated with the inferior<==>gdb
3645 connection. INF_STATUS is a pointer to a "struct inferior_status"
3646 (defined in inferior.h). */
3647
3648 struct inferior_status *
3649 save_inferior_status (int restore_stack_info)
3650 {
3651 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3652
3653 inf_status->stop_signal = stop_signal;
3654 inf_status->stop_pc = stop_pc;
3655 inf_status->stop_step = stop_step;
3656 inf_status->stop_stack_dummy = stop_stack_dummy;
3657 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3658 inf_status->trap_expected = trap_expected;
3659 inf_status->step_range_start = step_range_start;
3660 inf_status->step_range_end = step_range_end;
3661 inf_status->step_frame_id = step_frame_id;
3662 inf_status->step_over_calls = step_over_calls;
3663 inf_status->stop_after_trap = stop_after_trap;
3664 inf_status->stop_soon = stop_soon;
3665 /* Save original bpstat chain here; replace it with copy of chain.
3666 If caller's caller is walking the chain, they'll be happier if we
3667 hand them back the original chain when restore_inferior_status is
3668 called. */
3669 inf_status->stop_bpstat = stop_bpstat;
3670 stop_bpstat = bpstat_copy (stop_bpstat);
3671 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3672 inf_status->restore_stack_info = restore_stack_info;
3673 inf_status->proceed_to_finish = proceed_to_finish;
3674
3675 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3676
3677 inf_status->registers = regcache_dup (current_regcache);
3678
3679 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
3680 return inf_status;
3681 }
3682
3683 static int
3684 restore_selected_frame (void *args)
3685 {
3686 struct frame_id *fid = (struct frame_id *) args;
3687 struct frame_info *frame;
3688
3689 frame = frame_find_by_id (*fid);
3690
3691 /* If inf_status->selected_frame_id is NULL, there was no previously
3692 selected frame. */
3693 if (frame == NULL)
3694 {
3695 warning (_("Unable to restore previously selected frame."));
3696 return 0;
3697 }
3698
3699 select_frame (frame);
3700
3701 return (1);
3702 }
3703
3704 void
3705 restore_inferior_status (struct inferior_status *inf_status)
3706 {
3707 stop_signal = inf_status->stop_signal;
3708 stop_pc = inf_status->stop_pc;
3709 stop_step = inf_status->stop_step;
3710 stop_stack_dummy = inf_status->stop_stack_dummy;
3711 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3712 trap_expected = inf_status->trap_expected;
3713 step_range_start = inf_status->step_range_start;
3714 step_range_end = inf_status->step_range_end;
3715 step_frame_id = inf_status->step_frame_id;
3716 step_over_calls = inf_status->step_over_calls;
3717 stop_after_trap = inf_status->stop_after_trap;
3718 stop_soon = inf_status->stop_soon;
3719 bpstat_clear (&stop_bpstat);
3720 stop_bpstat = inf_status->stop_bpstat;
3721 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3722 proceed_to_finish = inf_status->proceed_to_finish;
3723
3724 /* FIXME: Is the restore of stop_registers always needed. */
3725 regcache_xfree (stop_registers);
3726 stop_registers = inf_status->stop_registers;
3727
3728 /* The inferior can be gone if the user types "print exit(0)"
3729 (and perhaps other times). */
3730 if (target_has_execution)
3731 /* NB: The register write goes through to the target. */
3732 regcache_cpy (current_regcache, inf_status->registers);
3733 regcache_xfree (inf_status->registers);
3734
3735 /* FIXME: If we are being called after stopping in a function which
3736 is called from gdb, we should not be trying to restore the
3737 selected frame; it just prints a spurious error message (The
3738 message is useful, however, in detecting bugs in gdb (like if gdb
3739 clobbers the stack)). In fact, should we be restoring the
3740 inferior status at all in that case? . */
3741
3742 if (target_has_stack && inf_status->restore_stack_info)
3743 {
3744 /* The point of catch_errors is that if the stack is clobbered,
3745 walking the stack might encounter a garbage pointer and
3746 error() trying to dereference it. */
3747 if (catch_errors
3748 (restore_selected_frame, &inf_status->selected_frame_id,
3749 "Unable to restore previously selected frame:\n",
3750 RETURN_MASK_ERROR) == 0)
3751 /* Error in restoring the selected frame. Select the innermost
3752 frame. */
3753 select_frame (get_current_frame ());
3754
3755 }
3756
3757 xfree (inf_status);
3758 }
3759
3760 static void
3761 do_restore_inferior_status_cleanup (void *sts)
3762 {
3763 restore_inferior_status (sts);
3764 }
3765
3766 struct cleanup *
3767 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3768 {
3769 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3770 }
3771
3772 void
3773 discard_inferior_status (struct inferior_status *inf_status)
3774 {
3775 /* See save_inferior_status for info on stop_bpstat. */
3776 bpstat_clear (&inf_status->stop_bpstat);
3777 regcache_xfree (inf_status->registers);
3778 regcache_xfree (inf_status->stop_registers);
3779 xfree (inf_status);
3780 }
3781
3782 int
3783 inferior_has_forked (int pid, int *child_pid)
3784 {
3785 struct target_waitstatus last;
3786 ptid_t last_ptid;
3787
3788 get_last_target_status (&last_ptid, &last);
3789
3790 if (last.kind != TARGET_WAITKIND_FORKED)
3791 return 0;
3792
3793 if (ptid_get_pid (last_ptid) != pid)
3794 return 0;
3795
3796 *child_pid = last.value.related_pid;
3797 return 1;
3798 }
3799
3800 int
3801 inferior_has_vforked (int pid, int *child_pid)
3802 {
3803 struct target_waitstatus last;
3804 ptid_t last_ptid;
3805
3806 get_last_target_status (&last_ptid, &last);
3807
3808 if (last.kind != TARGET_WAITKIND_VFORKED)
3809 return 0;
3810
3811 if (ptid_get_pid (last_ptid) != pid)
3812 return 0;
3813
3814 *child_pid = last.value.related_pid;
3815 return 1;
3816 }
3817
3818 int
3819 inferior_has_execd (int pid, char **execd_pathname)
3820 {
3821 struct target_waitstatus last;
3822 ptid_t last_ptid;
3823
3824 get_last_target_status (&last_ptid, &last);
3825
3826 if (last.kind != TARGET_WAITKIND_EXECD)
3827 return 0;
3828
3829 if (ptid_get_pid (last_ptid) != pid)
3830 return 0;
3831
3832 *execd_pathname = xstrdup (last.value.execd_pathname);
3833 return 1;
3834 }
3835
3836 /* Oft used ptids */
3837 ptid_t null_ptid;
3838 ptid_t minus_one_ptid;
3839
3840 /* Create a ptid given the necessary PID, LWP, and TID components. */
3841
3842 ptid_t
3843 ptid_build (int pid, long lwp, long tid)
3844 {
3845 ptid_t ptid;
3846
3847 ptid.pid = pid;
3848 ptid.lwp = lwp;
3849 ptid.tid = tid;
3850 return ptid;
3851 }
3852
3853 /* Create a ptid from just a pid. */
3854
3855 ptid_t
3856 pid_to_ptid (int pid)
3857 {
3858 return ptid_build (pid, 0, 0);
3859 }
3860
3861 /* Fetch the pid (process id) component from a ptid. */
3862
3863 int
3864 ptid_get_pid (ptid_t ptid)
3865 {
3866 return ptid.pid;
3867 }
3868
3869 /* Fetch the lwp (lightweight process) component from a ptid. */
3870
3871 long
3872 ptid_get_lwp (ptid_t ptid)
3873 {
3874 return ptid.lwp;
3875 }
3876
3877 /* Fetch the tid (thread id) component from a ptid. */
3878
3879 long
3880 ptid_get_tid (ptid_t ptid)
3881 {
3882 return ptid.tid;
3883 }
3884
3885 /* ptid_equal() is used to test equality of two ptids. */
3886
3887 int
3888 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3889 {
3890 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3891 && ptid1.tid == ptid2.tid);
3892 }
3893
3894 /* restore_inferior_ptid() will be used by the cleanup machinery
3895 to restore the inferior_ptid value saved in a call to
3896 save_inferior_ptid(). */
3897
3898 static void
3899 restore_inferior_ptid (void *arg)
3900 {
3901 ptid_t *saved_ptid_ptr = arg;
3902 inferior_ptid = *saved_ptid_ptr;
3903 xfree (arg);
3904 }
3905
3906 /* Save the value of inferior_ptid so that it may be restored by a
3907 later call to do_cleanups(). Returns the struct cleanup pointer
3908 needed for later doing the cleanup. */
3909
3910 struct cleanup *
3911 save_inferior_ptid (void)
3912 {
3913 ptid_t *saved_ptid_ptr;
3914
3915 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3916 *saved_ptid_ptr = inferior_ptid;
3917 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3918 }
3919 \f
3920
3921 static void
3922 build_infrun (void)
3923 {
3924 stop_registers = regcache_xmalloc (current_gdbarch);
3925 }
3926
3927 void
3928 _initialize_infrun (void)
3929 {
3930 int i;
3931 int numsigs;
3932 struct cmd_list_element *c;
3933
3934 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3935 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3936
3937 add_info ("signals", signals_info, _("\
3938 What debugger does when program gets various signals.\n\
3939 Specify a signal as argument to print info on that signal only."));
3940 add_info_alias ("handle", "signals", 0);
3941
3942 add_com ("handle", class_run, handle_command, _("\
3943 Specify how to handle a signal.\n\
3944 Args are signals and actions to apply to those signals.\n\
3945 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3946 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3947 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3948 The special arg \"all\" is recognized to mean all signals except those\n\
3949 used by the debugger, typically SIGTRAP and SIGINT.\n\
3950 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3951 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3952 Stop means reenter debugger if this signal happens (implies print).\n\
3953 Print means print a message if this signal happens.\n\
3954 Pass means let program see this signal; otherwise program doesn't know.\n\
3955 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3956 Pass and Stop may be combined."));
3957 if (xdb_commands)
3958 {
3959 add_com ("lz", class_info, signals_info, _("\
3960 What debugger does when program gets various signals.\n\
3961 Specify a signal as argument to print info on that signal only."));
3962 add_com ("z", class_run, xdb_handle_command, _("\
3963 Specify how to handle a signal.\n\
3964 Args are signals and actions to apply to those signals.\n\
3965 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3966 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3967 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3968 The special arg \"all\" is recognized to mean all signals except those\n\
3969 used by the debugger, typically SIGTRAP and SIGINT.\n\
3970 Recognized actions include \"s\" (toggles between stop and nostop), \n\
3971 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3972 nopass), \"Q\" (noprint)\n\
3973 Stop means reenter debugger if this signal happens (implies print).\n\
3974 Print means print a message if this signal happens.\n\
3975 Pass means let program see this signal; otherwise program doesn't know.\n\
3976 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3977 Pass and Stop may be combined."));
3978 }
3979
3980 if (!dbx_commands)
3981 stop_command = add_cmd ("stop", class_obscure,
3982 not_just_help_class_command, _("\
3983 There is no `stop' command, but you can set a hook on `stop'.\n\
3984 This allows you to set a list of commands to be run each time execution\n\
3985 of the program stops."), &cmdlist);
3986
3987 add_setshow_zinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
3988 Set inferior debugging."), _("\
3989 Show inferior debugging."), _("\
3990 When non-zero, inferior specific debugging is enabled."),
3991 NULL,
3992 show_debug_infrun,
3993 &setdebuglist, &showdebuglist);
3994
3995 numsigs = (int) TARGET_SIGNAL_LAST;
3996 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3997 signal_print = (unsigned char *)
3998 xmalloc (sizeof (signal_print[0]) * numsigs);
3999 signal_program = (unsigned char *)
4000 xmalloc (sizeof (signal_program[0]) * numsigs);
4001 for (i = 0; i < numsigs; i++)
4002 {
4003 signal_stop[i] = 1;
4004 signal_print[i] = 1;
4005 signal_program[i] = 1;
4006 }
4007
4008 /* Signals caused by debugger's own actions
4009 should not be given to the program afterwards. */
4010 signal_program[TARGET_SIGNAL_TRAP] = 0;
4011 signal_program[TARGET_SIGNAL_INT] = 0;
4012
4013 /* Signals that are not errors should not normally enter the debugger. */
4014 signal_stop[TARGET_SIGNAL_ALRM] = 0;
4015 signal_print[TARGET_SIGNAL_ALRM] = 0;
4016 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
4017 signal_print[TARGET_SIGNAL_VTALRM] = 0;
4018 signal_stop[TARGET_SIGNAL_PROF] = 0;
4019 signal_print[TARGET_SIGNAL_PROF] = 0;
4020 signal_stop[TARGET_SIGNAL_CHLD] = 0;
4021 signal_print[TARGET_SIGNAL_CHLD] = 0;
4022 signal_stop[TARGET_SIGNAL_IO] = 0;
4023 signal_print[TARGET_SIGNAL_IO] = 0;
4024 signal_stop[TARGET_SIGNAL_POLL] = 0;
4025 signal_print[TARGET_SIGNAL_POLL] = 0;
4026 signal_stop[TARGET_SIGNAL_URG] = 0;
4027 signal_print[TARGET_SIGNAL_URG] = 0;
4028 signal_stop[TARGET_SIGNAL_WINCH] = 0;
4029 signal_print[TARGET_SIGNAL_WINCH] = 0;
4030
4031 /* These signals are used internally by user-level thread
4032 implementations. (See signal(5) on Solaris.) Like the above
4033 signals, a healthy program receives and handles them as part of
4034 its normal operation. */
4035 signal_stop[TARGET_SIGNAL_LWP] = 0;
4036 signal_print[TARGET_SIGNAL_LWP] = 0;
4037 signal_stop[TARGET_SIGNAL_WAITING] = 0;
4038 signal_print[TARGET_SIGNAL_WAITING] = 0;
4039 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
4040 signal_print[TARGET_SIGNAL_CANCEL] = 0;
4041
4042 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
4043 &stop_on_solib_events, _("\
4044 Set stopping for shared library events."), _("\
4045 Show stopping for shared library events."), _("\
4046 If nonzero, gdb will give control to the user when the dynamic linker\n\
4047 notifies gdb of shared library events. The most common event of interest\n\
4048 to the user would be loading/unloading of a new library."),
4049 NULL,
4050 show_stop_on_solib_events,
4051 &setlist, &showlist);
4052
4053 add_setshow_enum_cmd ("follow-fork-mode", class_run,
4054 follow_fork_mode_kind_names,
4055 &follow_fork_mode_string, _("\
4056 Set debugger response to a program call of fork or vfork."), _("\
4057 Show debugger response to a program call of fork or vfork."), _("\
4058 A fork or vfork creates a new process. follow-fork-mode can be:\n\
4059 parent - the original process is debugged after a fork\n\
4060 child - the new process is debugged after a fork\n\
4061 The unfollowed process will continue to run.\n\
4062 By default, the debugger will follow the parent process."),
4063 NULL,
4064 show_follow_fork_mode_string,
4065 &setlist, &showlist);
4066
4067 add_setshow_enum_cmd ("scheduler-locking", class_run,
4068 scheduler_enums, &scheduler_mode, _("\
4069 Set mode for locking scheduler during execution."), _("\
4070 Show mode for locking scheduler during execution."), _("\
4071 off == no locking (threads may preempt at any time)\n\
4072 on == full locking (no thread except the current thread may run)\n\
4073 step == scheduler locked during every single-step operation.\n\
4074 In this mode, no other thread may run during a step command.\n\
4075 Other threads may run while stepping over a function call ('next')."),
4076 set_schedlock_func, /* traps on target vector */
4077 show_scheduler_mode,
4078 &setlist, &showlist);
4079
4080 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
4081 Set mode of the step operation."), _("\
4082 Show mode of the step operation."), _("\
4083 When set, doing a step over a function without debug line information\n\
4084 will stop at the first instruction of that function. Otherwise, the\n\
4085 function is skipped and the step command stops at a different source line."),
4086 NULL,
4087 show_step_stop_if_no_debug,
4088 &setlist, &showlist);
4089
4090 /* ptid initializations */
4091 null_ptid = ptid_build (0, 0, 0);
4092 minus_one_ptid = ptid_build (-1, 0, 0);
4093 inferior_ptid = null_ptid;
4094 target_last_wait_ptid = minus_one_ptid;
4095 }