]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
b0c5eab93a5d09f2fd8545819dabc02681fc64a9
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
5 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free
6 Software Foundation, Inc.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 2 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program; if not, write to the Free Software
22 Foundation, Inc., 59 Temple Place - Suite 330,
23 Boston, MA 02111-1307, USA. */
24
25 #include "defs.h"
26 #include "gdb_string.h"
27 #include <ctype.h>
28 #include "symtab.h"
29 #include "frame.h"
30 #include "inferior.h"
31 #include "breakpoint.h"
32 #include "gdb_wait.h"
33 #include "gdbcore.h"
34 #include "gdbcmd.h"
35 #include "cli/cli-script.h"
36 #include "target.h"
37 #include "gdbthread.h"
38 #include "annotate.h"
39 #include "symfile.h"
40 #include "top.h"
41 #include <signal.h>
42 #include "inf-loop.h"
43 #include "regcache.h"
44 #include "value.h"
45 #include "observer.h"
46 #include "language.h"
47 #include "gdb_assert.h"
48
49 /* Prototypes for local functions */
50
51 static void signals_info (char *, int);
52
53 static void handle_command (char *, int);
54
55 static void sig_print_info (enum target_signal);
56
57 static void sig_print_header (void);
58
59 static void resume_cleanups (void *);
60
61 static int hook_stop_stub (void *);
62
63 static int restore_selected_frame (void *);
64
65 static void build_infrun (void);
66
67 static int follow_fork (void);
68
69 static void set_schedlock_func (char *args, int from_tty,
70 struct cmd_list_element *c);
71
72 struct execution_control_state;
73
74 static int currently_stepping (struct execution_control_state *ecs);
75
76 static void xdb_handle_command (char *args, int from_tty);
77
78 static int prepare_to_proceed (void);
79
80 void _initialize_infrun (void);
81
82 int inferior_ignoring_startup_exec_events = 0;
83 int inferior_ignoring_leading_exec_events = 0;
84
85 /* When set, stop the 'step' command if we enter a function which has
86 no line number information. The normal behavior is that we step
87 over such function. */
88 int step_stop_if_no_debug = 0;
89
90 /* In asynchronous mode, but simulating synchronous execution. */
91
92 int sync_execution = 0;
93
94 /* wait_for_inferior and normal_stop use this to notify the user
95 when the inferior stopped in a different thread than it had been
96 running in. */
97
98 static ptid_t previous_inferior_ptid;
99
100 /* This is true for configurations that may follow through execl() and
101 similar functions. At present this is only true for HP-UX native. */
102
103 #ifndef MAY_FOLLOW_EXEC
104 #define MAY_FOLLOW_EXEC (0)
105 #endif
106
107 static int may_follow_exec = MAY_FOLLOW_EXEC;
108
109 /* If the program uses ELF-style shared libraries, then calls to
110 functions in shared libraries go through stubs, which live in a
111 table called the PLT (Procedure Linkage Table). The first time the
112 function is called, the stub sends control to the dynamic linker,
113 which looks up the function's real address, patches the stub so
114 that future calls will go directly to the function, and then passes
115 control to the function.
116
117 If we are stepping at the source level, we don't want to see any of
118 this --- we just want to skip over the stub and the dynamic linker.
119 The simple approach is to single-step until control leaves the
120 dynamic linker.
121
122 However, on some systems (e.g., Red Hat's 5.2 distribution) the
123 dynamic linker calls functions in the shared C library, so you
124 can't tell from the PC alone whether the dynamic linker is still
125 running. In this case, we use a step-resume breakpoint to get us
126 past the dynamic linker, as if we were using "next" to step over a
127 function call.
128
129 IN_SOLIB_DYNSYM_RESOLVE_CODE says whether we're in the dynamic
130 linker code or not. Normally, this means we single-step. However,
131 if SKIP_SOLIB_RESOLVER then returns non-zero, then its value is an
132 address where we can place a step-resume breakpoint to get past the
133 linker's symbol resolution function.
134
135 IN_SOLIB_DYNSYM_RESOLVE_CODE can generally be implemented in a
136 pretty portable way, by comparing the PC against the address ranges
137 of the dynamic linker's sections.
138
139 SKIP_SOLIB_RESOLVER is generally going to be system-specific, since
140 it depends on internal details of the dynamic linker. It's usually
141 not too hard to figure out where to put a breakpoint, but it
142 certainly isn't portable. SKIP_SOLIB_RESOLVER should do plenty of
143 sanity checking. If it can't figure things out, returning zero and
144 getting the (possibly confusing) stepping behavior is better than
145 signalling an error, which will obscure the change in the
146 inferior's state. */
147
148 #ifndef IN_SOLIB_DYNSYM_RESOLVE_CODE
149 #define IN_SOLIB_DYNSYM_RESOLVE_CODE(pc) 0
150 #endif
151
152 /* This function returns TRUE if pc is the address of an instruction
153 that lies within the dynamic linker (such as the event hook, or the
154 dld itself).
155
156 This function must be used only when a dynamic linker event has
157 been caught, and the inferior is being stepped out of the hook, or
158 undefined results are guaranteed. */
159
160 #ifndef SOLIB_IN_DYNAMIC_LINKER
161 #define SOLIB_IN_DYNAMIC_LINKER(pid,pc) 0
162 #endif
163
164 /* On some systems, the PC may be left pointing at an instruction that won't
165 actually be executed. This is usually indicated by a bit in the PSW. If
166 we find ourselves in such a state, then we step the target beyond the
167 nullified instruction before returning control to the user so as to avoid
168 confusion. */
169
170 #ifndef INSTRUCTION_NULLIFIED
171 #define INSTRUCTION_NULLIFIED 0
172 #endif
173
174 /* We can't step off a permanent breakpoint in the ordinary way, because we
175 can't remove it. Instead, we have to advance the PC to the next
176 instruction. This macro should expand to a pointer to a function that
177 does that, or zero if we have no such function. If we don't have a
178 definition for it, we have to report an error. */
179 #ifndef SKIP_PERMANENT_BREAKPOINT
180 #define SKIP_PERMANENT_BREAKPOINT (default_skip_permanent_breakpoint)
181 static void
182 default_skip_permanent_breakpoint (void)
183 {
184 error ("\
185 The program is stopped at a permanent breakpoint, but GDB does not know\n\
186 how to step past a permanent breakpoint on this architecture. Try using\n\
187 a command like `return' or `jump' to continue execution.");
188 }
189 #endif
190
191
192 /* Convert the #defines into values. This is temporary until wfi control
193 flow is completely sorted out. */
194
195 #ifndef HAVE_STEPPABLE_WATCHPOINT
196 #define HAVE_STEPPABLE_WATCHPOINT 0
197 #else
198 #undef HAVE_STEPPABLE_WATCHPOINT
199 #define HAVE_STEPPABLE_WATCHPOINT 1
200 #endif
201
202 #ifndef CANNOT_STEP_HW_WATCHPOINTS
203 #define CANNOT_STEP_HW_WATCHPOINTS 0
204 #else
205 #undef CANNOT_STEP_HW_WATCHPOINTS
206 #define CANNOT_STEP_HW_WATCHPOINTS 1
207 #endif
208
209 /* Tables of how to react to signals; the user sets them. */
210
211 static unsigned char *signal_stop;
212 static unsigned char *signal_print;
213 static unsigned char *signal_program;
214
215 #define SET_SIGS(nsigs,sigs,flags) \
216 do { \
217 int signum = (nsigs); \
218 while (signum-- > 0) \
219 if ((sigs)[signum]) \
220 (flags)[signum] = 1; \
221 } while (0)
222
223 #define UNSET_SIGS(nsigs,sigs,flags) \
224 do { \
225 int signum = (nsigs); \
226 while (signum-- > 0) \
227 if ((sigs)[signum]) \
228 (flags)[signum] = 0; \
229 } while (0)
230
231 /* Value to pass to target_resume() to cause all threads to resume */
232
233 #define RESUME_ALL (pid_to_ptid (-1))
234
235 /* Command list pointer for the "stop" placeholder. */
236
237 static struct cmd_list_element *stop_command;
238
239 /* Nonzero if breakpoints are now inserted in the inferior. */
240
241 static int breakpoints_inserted;
242
243 /* Function inferior was in as of last step command. */
244
245 static struct symbol *step_start_function;
246
247 /* Nonzero if we are expecting a trace trap and should proceed from it. */
248
249 static int trap_expected;
250
251 #ifdef SOLIB_ADD
252 /* Nonzero if we want to give control to the user when we're notified
253 of shared library events by the dynamic linker. */
254 static int stop_on_solib_events;
255 #endif
256
257 /* Nonzero means expecting a trace trap
258 and should stop the inferior and return silently when it happens. */
259
260 int stop_after_trap;
261
262 /* Nonzero means expecting a trap and caller will handle it themselves.
263 It is used after attach, due to attaching to a process;
264 when running in the shell before the child program has been exec'd;
265 and when running some kinds of remote stuff (FIXME?). */
266
267 enum stop_kind stop_soon;
268
269 /* Nonzero if proceed is being used for a "finish" command or a similar
270 situation when stop_registers should be saved. */
271
272 int proceed_to_finish;
273
274 /* Save register contents here when about to pop a stack dummy frame,
275 if-and-only-if proceed_to_finish is set.
276 Thus this contains the return value from the called function (assuming
277 values are returned in a register). */
278
279 struct regcache *stop_registers;
280
281 /* Nonzero if program stopped due to error trying to insert breakpoints. */
282
283 static int breakpoints_failed;
284
285 /* Nonzero after stop if current stack frame should be printed. */
286
287 static int stop_print_frame;
288
289 static struct breakpoint *step_resume_breakpoint = NULL;
290
291 /* On some platforms (e.g., HP-UX), hardware watchpoints have bad
292 interactions with an inferior that is running a kernel function
293 (aka, a system call or "syscall"). wait_for_inferior therefore
294 may have a need to know when the inferior is in a syscall. This
295 is a count of the number of inferior threads which are known to
296 currently be running in a syscall. */
297 static int number_of_threads_in_syscalls;
298
299 /* This is a cached copy of the pid/waitstatus of the last event
300 returned by target_wait()/deprecated_target_wait_hook(). This
301 information is returned by get_last_target_status(). */
302 static ptid_t target_last_wait_ptid;
303 static struct target_waitstatus target_last_waitstatus;
304
305 /* This is used to remember when a fork, vfork or exec event
306 was caught by a catchpoint, and thus the event is to be
307 followed at the next resume of the inferior, and not
308 immediately. */
309 static struct
310 {
311 enum target_waitkind kind;
312 struct
313 {
314 int parent_pid;
315 int child_pid;
316 }
317 fork_event;
318 char *execd_pathname;
319 }
320 pending_follow;
321
322 static const char follow_fork_mode_child[] = "child";
323 static const char follow_fork_mode_parent[] = "parent";
324
325 static const char *follow_fork_mode_kind_names[] = {
326 follow_fork_mode_child,
327 follow_fork_mode_parent,
328 NULL
329 };
330
331 static const char *follow_fork_mode_string = follow_fork_mode_parent;
332 \f
333
334 static int
335 follow_fork (void)
336 {
337 int follow_child = (follow_fork_mode_string == follow_fork_mode_child);
338
339 return target_follow_fork (follow_child);
340 }
341
342 void
343 follow_inferior_reset_breakpoints (void)
344 {
345 /* Was there a step_resume breakpoint? (There was if the user
346 did a "next" at the fork() call.) If so, explicitly reset its
347 thread number.
348
349 step_resumes are a form of bp that are made to be per-thread.
350 Since we created the step_resume bp when the parent process
351 was being debugged, and now are switching to the child process,
352 from the breakpoint package's viewpoint, that's a switch of
353 "threads". We must update the bp's notion of which thread
354 it is for, or it'll be ignored when it triggers. */
355
356 if (step_resume_breakpoint)
357 breakpoint_re_set_thread (step_resume_breakpoint);
358
359 /* Reinsert all breakpoints in the child. The user may have set
360 breakpoints after catching the fork, in which case those
361 were never set in the child, but only in the parent. This makes
362 sure the inserted breakpoints match the breakpoint list. */
363
364 breakpoint_re_set ();
365 insert_breakpoints ();
366 }
367
368 /* EXECD_PATHNAME is assumed to be non-NULL. */
369
370 static void
371 follow_exec (int pid, char *execd_pathname)
372 {
373 int saved_pid = pid;
374 struct target_ops *tgt;
375
376 if (!may_follow_exec)
377 return;
378
379 /* This is an exec event that we actually wish to pay attention to.
380 Refresh our symbol table to the newly exec'd program, remove any
381 momentary bp's, etc.
382
383 If there are breakpoints, they aren't really inserted now,
384 since the exec() transformed our inferior into a fresh set
385 of instructions.
386
387 We want to preserve symbolic breakpoints on the list, since
388 we have hopes that they can be reset after the new a.out's
389 symbol table is read.
390
391 However, any "raw" breakpoints must be removed from the list
392 (e.g., the solib bp's), since their address is probably invalid
393 now.
394
395 And, we DON'T want to call delete_breakpoints() here, since
396 that may write the bp's "shadow contents" (the instruction
397 value that was overwritten witha TRAP instruction). Since
398 we now have a new a.out, those shadow contents aren't valid. */
399 update_breakpoints_after_exec ();
400
401 /* If there was one, it's gone now. We cannot truly step-to-next
402 statement through an exec(). */
403 step_resume_breakpoint = NULL;
404 step_range_start = 0;
405 step_range_end = 0;
406
407 /* What is this a.out's name? */
408 printf_unfiltered ("Executing new program: %s\n", execd_pathname);
409
410 /* We've followed the inferior through an exec. Therefore, the
411 inferior has essentially been killed & reborn. */
412
413 /* First collect the run target in effect. */
414 tgt = find_run_target ();
415 /* If we can't find one, things are in a very strange state... */
416 if (tgt == NULL)
417 error ("Could find run target to save before following exec");
418
419 gdb_flush (gdb_stdout);
420 target_mourn_inferior ();
421 inferior_ptid = pid_to_ptid (saved_pid);
422 /* Because mourn_inferior resets inferior_ptid. */
423 push_target (tgt);
424
425 /* That a.out is now the one to use. */
426 exec_file_attach (execd_pathname, 0);
427
428 /* And also is where symbols can be found. */
429 symbol_file_add_main (execd_pathname, 0);
430
431 /* Reset the shared library package. This ensures that we get
432 a shlib event when the child reaches "_start", at which point
433 the dld will have had a chance to initialize the child. */
434 #if defined(SOLIB_RESTART)
435 SOLIB_RESTART ();
436 #endif
437 #ifdef SOLIB_CREATE_INFERIOR_HOOK
438 SOLIB_CREATE_INFERIOR_HOOK (PIDGET (inferior_ptid));
439 #endif
440
441 /* Reinsert all breakpoints. (Those which were symbolic have
442 been reset to the proper address in the new a.out, thanks
443 to symbol_file_command...) */
444 insert_breakpoints ();
445
446 /* The next resume of this inferior should bring it to the shlib
447 startup breakpoints. (If the user had also set bp's on
448 "main" from the old (parent) process, then they'll auto-
449 matically get reset there in the new process.) */
450 }
451
452 /* Non-zero if we just simulating a single-step. This is needed
453 because we cannot remove the breakpoints in the inferior process
454 until after the `wait' in `wait_for_inferior'. */
455 static int singlestep_breakpoints_inserted_p = 0;
456
457 /* The thread we inserted single-step breakpoints for. */
458 static ptid_t singlestep_ptid;
459
460 /* If another thread hit the singlestep breakpoint, we save the original
461 thread here so that we can resume single-stepping it later. */
462 static ptid_t saved_singlestep_ptid;
463 static int stepping_past_singlestep_breakpoint;
464 \f
465
466 /* Things to clean up if we QUIT out of resume (). */
467 static void
468 resume_cleanups (void *ignore)
469 {
470 normal_stop ();
471 }
472
473 static const char schedlock_off[] = "off";
474 static const char schedlock_on[] = "on";
475 static const char schedlock_step[] = "step";
476 static const char *scheduler_mode = schedlock_off;
477 static const char *scheduler_enums[] = {
478 schedlock_off,
479 schedlock_on,
480 schedlock_step,
481 NULL
482 };
483
484 static void
485 set_schedlock_func (char *args, int from_tty, struct cmd_list_element *c)
486 {
487 /* NOTE: cagney/2002-03-17: The deprecated_add_show_from_set()
488 function clones the set command passed as a parameter. The clone
489 operation will include (BUG?) any ``set'' command callback, if
490 present. Commands like ``info set'' call all the ``show''
491 command callbacks. Unfortunately, for ``show'' commands cloned
492 from ``set'', this includes callbacks belonging to ``set''
493 commands. Making this worse, this only occures if
494 deprecated_add_show_from_set() is called after add_cmd_sfunc()
495 (BUG?). */
496 if (cmd_type (c) == set_cmd)
497 if (!target_can_lock_scheduler)
498 {
499 scheduler_mode = schedlock_off;
500 error ("Target '%s' cannot support this command.", target_shortname);
501 }
502 }
503
504
505 /* Resume the inferior, but allow a QUIT. This is useful if the user
506 wants to interrupt some lengthy single-stepping operation
507 (for child processes, the SIGINT goes to the inferior, and so
508 we get a SIGINT random_signal, but for remote debugging and perhaps
509 other targets, that's not true).
510
511 STEP nonzero if we should step (zero to continue instead).
512 SIG is the signal to give the inferior (zero for none). */
513 void
514 resume (int step, enum target_signal sig)
515 {
516 int should_resume = 1;
517 struct cleanup *old_cleanups = make_cleanup (resume_cleanups, 0);
518 QUIT;
519
520 /* FIXME: calling breakpoint_here_p (read_pc ()) three times! */
521
522
523 /* Some targets (e.g. Solaris x86) have a kernel bug when stepping
524 over an instruction that causes a page fault without triggering
525 a hardware watchpoint. The kernel properly notices that it shouldn't
526 stop, because the hardware watchpoint is not triggered, but it forgets
527 the step request and continues the program normally.
528 Work around the problem by removing hardware watchpoints if a step is
529 requested, GDB will check for a hardware watchpoint trigger after the
530 step anyway. */
531 if (CANNOT_STEP_HW_WATCHPOINTS && step && breakpoints_inserted)
532 remove_hw_watchpoints ();
533
534
535 /* Normally, by the time we reach `resume', the breakpoints are either
536 removed or inserted, as appropriate. The exception is if we're sitting
537 at a permanent breakpoint; we need to step over it, but permanent
538 breakpoints can't be removed. So we have to test for it here. */
539 if (breakpoint_here_p (read_pc ()) == permanent_breakpoint_here)
540 SKIP_PERMANENT_BREAKPOINT ();
541
542 if (SOFTWARE_SINGLE_STEP_P () && step)
543 {
544 /* Do it the hard way, w/temp breakpoints */
545 SOFTWARE_SINGLE_STEP (sig, 1 /*insert-breakpoints */ );
546 /* ...and don't ask hardware to do it. */
547 step = 0;
548 /* and do not pull these breakpoints until after a `wait' in
549 `wait_for_inferior' */
550 singlestep_breakpoints_inserted_p = 1;
551 singlestep_ptid = inferior_ptid;
552 }
553
554 /* If there were any forks/vforks/execs that were caught and are
555 now to be followed, then do so. */
556 switch (pending_follow.kind)
557 {
558 case TARGET_WAITKIND_FORKED:
559 case TARGET_WAITKIND_VFORKED:
560 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
561 if (follow_fork ())
562 should_resume = 0;
563 break;
564
565 case TARGET_WAITKIND_EXECD:
566 /* follow_exec is called as soon as the exec event is seen. */
567 pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
568 break;
569
570 default:
571 break;
572 }
573
574 /* Install inferior's terminal modes. */
575 target_terminal_inferior ();
576
577 if (should_resume)
578 {
579 ptid_t resume_ptid;
580
581 resume_ptid = RESUME_ALL; /* Default */
582
583 if ((step || singlestep_breakpoints_inserted_p)
584 && (stepping_past_singlestep_breakpoint
585 || (!breakpoints_inserted && breakpoint_here_p (read_pc ()))))
586 {
587 /* Stepping past a breakpoint without inserting breakpoints.
588 Make sure only the current thread gets to step, so that
589 other threads don't sneak past breakpoints while they are
590 not inserted. */
591
592 resume_ptid = inferior_ptid;
593 }
594
595 if ((scheduler_mode == schedlock_on)
596 || (scheduler_mode == schedlock_step
597 && (step || singlestep_breakpoints_inserted_p)))
598 {
599 /* User-settable 'scheduler' mode requires solo thread resume. */
600 resume_ptid = inferior_ptid;
601 }
602
603 if (CANNOT_STEP_BREAKPOINT)
604 {
605 /* Most targets can step a breakpoint instruction, thus
606 executing it normally. But if this one cannot, just
607 continue and we will hit it anyway. */
608 if (step && breakpoints_inserted && breakpoint_here_p (read_pc ()))
609 step = 0;
610 }
611 target_resume (resume_ptid, step, sig);
612 }
613
614 discard_cleanups (old_cleanups);
615 }
616 \f
617
618 /* Clear out all variables saying what to do when inferior is continued.
619 First do this, then set the ones you want, then call `proceed'. */
620
621 void
622 clear_proceed_status (void)
623 {
624 trap_expected = 0;
625 step_range_start = 0;
626 step_range_end = 0;
627 step_frame_id = null_frame_id;
628 step_over_calls = STEP_OVER_UNDEBUGGABLE;
629 stop_after_trap = 0;
630 stop_soon = NO_STOP_QUIETLY;
631 proceed_to_finish = 0;
632 breakpoint_proceeded = 1; /* We're about to proceed... */
633
634 /* Discard any remaining commands or status from previous stop. */
635 bpstat_clear (&stop_bpstat);
636 }
637
638 /* This should be suitable for any targets that support threads. */
639
640 static int
641 prepare_to_proceed (void)
642 {
643 ptid_t wait_ptid;
644 struct target_waitstatus wait_status;
645
646 /* Get the last target status returned by target_wait(). */
647 get_last_target_status (&wait_ptid, &wait_status);
648
649 /* Make sure we were stopped either at a breakpoint, or because
650 of a Ctrl-C. */
651 if (wait_status.kind != TARGET_WAITKIND_STOPPED
652 || (wait_status.value.sig != TARGET_SIGNAL_TRAP
653 && wait_status.value.sig != TARGET_SIGNAL_INT))
654 {
655 return 0;
656 }
657
658 if (!ptid_equal (wait_ptid, minus_one_ptid)
659 && !ptid_equal (inferior_ptid, wait_ptid))
660 {
661 /* Switched over from WAIT_PID. */
662 CORE_ADDR wait_pc = read_pc_pid (wait_ptid);
663
664 if (wait_pc != read_pc ())
665 {
666 /* Switch back to WAIT_PID thread. */
667 inferior_ptid = wait_ptid;
668
669 /* FIXME: This stuff came from switch_to_thread() in
670 thread.c (which should probably be a public function). */
671 flush_cached_frames ();
672 registers_changed ();
673 stop_pc = wait_pc;
674 select_frame (get_current_frame ());
675 }
676
677 /* We return 1 to indicate that there is a breakpoint here,
678 so we need to step over it before continuing to avoid
679 hitting it straight away. */
680 if (breakpoint_here_p (wait_pc))
681 return 1;
682 }
683
684 return 0;
685
686 }
687
688 /* Record the pc of the program the last time it stopped. This is
689 just used internally by wait_for_inferior, but need to be preserved
690 over calls to it and cleared when the inferior is started. */
691 static CORE_ADDR prev_pc;
692
693 /* Basic routine for continuing the program in various fashions.
694
695 ADDR is the address to resume at, or -1 for resume where stopped.
696 SIGGNAL is the signal to give it, or 0 for none,
697 or -1 for act according to how it stopped.
698 STEP is nonzero if should trap after one instruction.
699 -1 means return after that and print nothing.
700 You should probably set various step_... variables
701 before calling here, if you are stepping.
702
703 You should call clear_proceed_status before calling proceed. */
704
705 void
706 proceed (CORE_ADDR addr, enum target_signal siggnal, int step)
707 {
708 int oneproc = 0;
709
710 if (step > 0)
711 step_start_function = find_pc_function (read_pc ());
712 if (step < 0)
713 stop_after_trap = 1;
714
715 if (addr == (CORE_ADDR) -1)
716 {
717 /* If there is a breakpoint at the address we will resume at,
718 step one instruction before inserting breakpoints
719 so that we do not stop right away (and report a second
720 hit at this breakpoint). */
721
722 if (read_pc () == stop_pc && breakpoint_here_p (read_pc ()))
723 oneproc = 1;
724
725 #ifndef STEP_SKIPS_DELAY
726 #define STEP_SKIPS_DELAY(pc) (0)
727 #define STEP_SKIPS_DELAY_P (0)
728 #endif
729 /* Check breakpoint_here_p first, because breakpoint_here_p is fast
730 (it just checks internal GDB data structures) and STEP_SKIPS_DELAY
731 is slow (it needs to read memory from the target). */
732 if (STEP_SKIPS_DELAY_P
733 && breakpoint_here_p (read_pc () + 4)
734 && STEP_SKIPS_DELAY (read_pc ()))
735 oneproc = 1;
736 }
737 else
738 {
739 write_pc (addr);
740 }
741
742 /* In a multi-threaded task we may select another thread
743 and then continue or step.
744
745 But if the old thread was stopped at a breakpoint, it
746 will immediately cause another breakpoint stop without
747 any execution (i.e. it will report a breakpoint hit
748 incorrectly). So we must step over it first.
749
750 prepare_to_proceed checks the current thread against the thread
751 that reported the most recent event. If a step-over is required
752 it returns TRUE and sets the current thread to the old thread. */
753 if (prepare_to_proceed () && breakpoint_here_p (read_pc ()))
754 oneproc = 1;
755
756 if (oneproc)
757 /* We will get a trace trap after one instruction.
758 Continue it automatically and insert breakpoints then. */
759 trap_expected = 1;
760 else
761 {
762 insert_breakpoints ();
763 /* If we get here there was no call to error() in
764 insert breakpoints -- so they were inserted. */
765 breakpoints_inserted = 1;
766 }
767
768 if (siggnal != TARGET_SIGNAL_DEFAULT)
769 stop_signal = siggnal;
770 /* If this signal should not be seen by program,
771 give it zero. Used for debugging signals. */
772 else if (!signal_program[stop_signal])
773 stop_signal = TARGET_SIGNAL_0;
774
775 annotate_starting ();
776
777 /* Make sure that output from GDB appears before output from the
778 inferior. */
779 gdb_flush (gdb_stdout);
780
781 /* Refresh prev_pc value just prior to resuming. This used to be
782 done in stop_stepping, however, setting prev_pc there did not handle
783 scenarios such as inferior function calls or returning from
784 a function via the return command. In those cases, the prev_pc
785 value was not set properly for subsequent commands. The prev_pc value
786 is used to initialize the starting line number in the ecs. With an
787 invalid value, the gdb next command ends up stopping at the position
788 represented by the next line table entry past our start position.
789 On platforms that generate one line table entry per line, this
790 is not a problem. However, on the ia64, the compiler generates
791 extraneous line table entries that do not increase the line number.
792 When we issue the gdb next command on the ia64 after an inferior call
793 or a return command, we often end up a few instructions forward, still
794 within the original line we started.
795
796 An attempt was made to have init_execution_control_state () refresh
797 the prev_pc value before calculating the line number. This approach
798 did not work because on platforms that use ptrace, the pc register
799 cannot be read unless the inferior is stopped. At that point, we
800 are not guaranteed the inferior is stopped and so the read_pc ()
801 call can fail. Setting the prev_pc value here ensures the value is
802 updated correctly when the inferior is stopped. */
803 prev_pc = read_pc ();
804
805 /* Resume inferior. */
806 resume (oneproc || step || bpstat_should_step (), stop_signal);
807
808 /* Wait for it to stop (if not standalone)
809 and in any case decode why it stopped, and act accordingly. */
810 /* Do this only if we are not using the event loop, or if the target
811 does not support asynchronous execution. */
812 if (!event_loop_p || !target_can_async_p ())
813 {
814 wait_for_inferior ();
815 normal_stop ();
816 }
817 }
818 \f
819
820 /* Start remote-debugging of a machine over a serial link. */
821
822 void
823 start_remote (void)
824 {
825 init_thread_list ();
826 init_wait_for_inferior ();
827 stop_soon = STOP_QUIETLY;
828 trap_expected = 0;
829
830 /* Always go on waiting for the target, regardless of the mode. */
831 /* FIXME: cagney/1999-09-23: At present it isn't possible to
832 indicate to wait_for_inferior that a target should timeout if
833 nothing is returned (instead of just blocking). Because of this,
834 targets expecting an immediate response need to, internally, set
835 things up so that the target_wait() is forced to eventually
836 timeout. */
837 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
838 differentiate to its caller what the state of the target is after
839 the initial open has been performed. Here we're assuming that
840 the target has stopped. It should be possible to eventually have
841 target_open() return to the caller an indication that the target
842 is currently running and GDB state should be set to the same as
843 for an async run. */
844 wait_for_inferior ();
845 normal_stop ();
846 }
847
848 /* Initialize static vars when a new inferior begins. */
849
850 void
851 init_wait_for_inferior (void)
852 {
853 /* These are meaningless until the first time through wait_for_inferior. */
854 prev_pc = 0;
855
856 breakpoints_inserted = 0;
857 breakpoint_init_inferior (inf_starting);
858
859 /* Don't confuse first call to proceed(). */
860 stop_signal = TARGET_SIGNAL_0;
861
862 /* The first resume is not following a fork/vfork/exec. */
863 pending_follow.kind = TARGET_WAITKIND_SPURIOUS; /* I.e., none. */
864
865 /* See wait_for_inferior's handling of SYSCALL_ENTRY/RETURN events. */
866 number_of_threads_in_syscalls = 0;
867
868 clear_proceed_status ();
869
870 stepping_past_singlestep_breakpoint = 0;
871 }
872 \f
873 /* This enum encodes possible reasons for doing a target_wait, so that
874 wfi can call target_wait in one place. (Ultimately the call will be
875 moved out of the infinite loop entirely.) */
876
877 enum infwait_states
878 {
879 infwait_normal_state,
880 infwait_thread_hop_state,
881 infwait_nullified_state,
882 infwait_nonstep_watch_state
883 };
884
885 /* Why did the inferior stop? Used to print the appropriate messages
886 to the interface from within handle_inferior_event(). */
887 enum inferior_stop_reason
888 {
889 /* We don't know why. */
890 STOP_UNKNOWN,
891 /* Step, next, nexti, stepi finished. */
892 END_STEPPING_RANGE,
893 /* Found breakpoint. */
894 BREAKPOINT_HIT,
895 /* Inferior terminated by signal. */
896 SIGNAL_EXITED,
897 /* Inferior exited. */
898 EXITED,
899 /* Inferior received signal, and user asked to be notified. */
900 SIGNAL_RECEIVED
901 };
902
903 /* This structure contains what used to be local variables in
904 wait_for_inferior. Probably many of them can return to being
905 locals in handle_inferior_event. */
906
907 struct execution_control_state
908 {
909 struct target_waitstatus ws;
910 struct target_waitstatus *wp;
911 int another_trap;
912 int random_signal;
913 CORE_ADDR stop_func_start;
914 CORE_ADDR stop_func_end;
915 char *stop_func_name;
916 struct symtab_and_line sal;
917 int remove_breakpoints_on_following_step;
918 int current_line;
919 struct symtab *current_symtab;
920 int handling_longjmp; /* FIXME */
921 ptid_t ptid;
922 ptid_t saved_inferior_ptid;
923 int stepping_through_solib_after_catch;
924 bpstat stepping_through_solib_catchpoints;
925 int enable_hw_watchpoints_after_wait;
926 int stepping_through_sigtramp;
927 int new_thread_event;
928 struct target_waitstatus tmpstatus;
929 enum infwait_states infwait_state;
930 ptid_t waiton_ptid;
931 int wait_some_more;
932 };
933
934 void init_execution_control_state (struct execution_control_state *ecs);
935
936 void handle_inferior_event (struct execution_control_state *ecs);
937
938 static void step_into_function (struct execution_control_state *ecs);
939 static void insert_step_resume_breakpoint (struct frame_info *step_frame,
940 struct execution_control_state
941 *ecs);
942 static void stop_stepping (struct execution_control_state *ecs);
943 static void prepare_to_wait (struct execution_control_state *ecs);
944 static void keep_going (struct execution_control_state *ecs);
945 static void print_stop_reason (enum inferior_stop_reason stop_reason,
946 int stop_info);
947
948 /* Wait for control to return from inferior to debugger.
949 If inferior gets a signal, we may decide to start it up again
950 instead of returning. That is why there is a loop in this function.
951 When this function actually returns it means the inferior
952 should be left stopped and GDB should read more commands. */
953
954 void
955 wait_for_inferior (void)
956 {
957 struct cleanup *old_cleanups;
958 struct execution_control_state ecss;
959 struct execution_control_state *ecs;
960
961 old_cleanups = make_cleanup (delete_step_resume_breakpoint,
962 &step_resume_breakpoint);
963
964 /* wfi still stays in a loop, so it's OK just to take the address of
965 a local to get the ecs pointer. */
966 ecs = &ecss;
967
968 /* Fill in with reasonable starting values. */
969 init_execution_control_state (ecs);
970
971 /* We'll update this if & when we switch to a new thread. */
972 previous_inferior_ptid = inferior_ptid;
973
974 overlay_cache_invalid = 1;
975
976 /* We have to invalidate the registers BEFORE calling target_wait
977 because they can be loaded from the target while in target_wait.
978 This makes remote debugging a bit more efficient for those
979 targets that provide critical registers as part of their normal
980 status mechanism. */
981
982 registers_changed ();
983
984 while (1)
985 {
986 if (deprecated_target_wait_hook)
987 ecs->ptid = deprecated_target_wait_hook (ecs->waiton_ptid, ecs->wp);
988 else
989 ecs->ptid = target_wait (ecs->waiton_ptid, ecs->wp);
990
991 /* Now figure out what to do with the result of the result. */
992 handle_inferior_event (ecs);
993
994 if (!ecs->wait_some_more)
995 break;
996 }
997 do_cleanups (old_cleanups);
998 }
999
1000 /* Asynchronous version of wait_for_inferior. It is called by the
1001 event loop whenever a change of state is detected on the file
1002 descriptor corresponding to the target. It can be called more than
1003 once to complete a single execution command. In such cases we need
1004 to keep the state in a global variable ASYNC_ECSS. If it is the
1005 last time that this function is called for a single execution
1006 command, then report to the user that the inferior has stopped, and
1007 do the necessary cleanups. */
1008
1009 struct execution_control_state async_ecss;
1010 struct execution_control_state *async_ecs;
1011
1012 void
1013 fetch_inferior_event (void *client_data)
1014 {
1015 static struct cleanup *old_cleanups;
1016
1017 async_ecs = &async_ecss;
1018
1019 if (!async_ecs->wait_some_more)
1020 {
1021 old_cleanups = make_exec_cleanup (delete_step_resume_breakpoint,
1022 &step_resume_breakpoint);
1023
1024 /* Fill in with reasonable starting values. */
1025 init_execution_control_state (async_ecs);
1026
1027 /* We'll update this if & when we switch to a new thread. */
1028 previous_inferior_ptid = inferior_ptid;
1029
1030 overlay_cache_invalid = 1;
1031
1032 /* We have to invalidate the registers BEFORE calling target_wait
1033 because they can be loaded from the target while in target_wait.
1034 This makes remote debugging a bit more efficient for those
1035 targets that provide critical registers as part of their normal
1036 status mechanism. */
1037
1038 registers_changed ();
1039 }
1040
1041 if (deprecated_target_wait_hook)
1042 async_ecs->ptid =
1043 deprecated_target_wait_hook (async_ecs->waiton_ptid, async_ecs->wp);
1044 else
1045 async_ecs->ptid = target_wait (async_ecs->waiton_ptid, async_ecs->wp);
1046
1047 /* Now figure out what to do with the result of the result. */
1048 handle_inferior_event (async_ecs);
1049
1050 if (!async_ecs->wait_some_more)
1051 {
1052 /* Do only the cleanups that have been added by this
1053 function. Let the continuations for the commands do the rest,
1054 if there are any. */
1055 do_exec_cleanups (old_cleanups);
1056 normal_stop ();
1057 if (step_multi && stop_step)
1058 inferior_event_handler (INF_EXEC_CONTINUE, NULL);
1059 else
1060 inferior_event_handler (INF_EXEC_COMPLETE, NULL);
1061 }
1062 }
1063
1064 /* Prepare an execution control state for looping through a
1065 wait_for_inferior-type loop. */
1066
1067 void
1068 init_execution_control_state (struct execution_control_state *ecs)
1069 {
1070 /* ecs->another_trap? */
1071 ecs->random_signal = 0;
1072 ecs->remove_breakpoints_on_following_step = 0;
1073 ecs->handling_longjmp = 0; /* FIXME */
1074 ecs->stepping_through_solib_after_catch = 0;
1075 ecs->stepping_through_solib_catchpoints = NULL;
1076 ecs->enable_hw_watchpoints_after_wait = 0;
1077 ecs->stepping_through_sigtramp = 0;
1078 ecs->sal = find_pc_line (prev_pc, 0);
1079 ecs->current_line = ecs->sal.line;
1080 ecs->current_symtab = ecs->sal.symtab;
1081 ecs->infwait_state = infwait_normal_state;
1082 ecs->waiton_ptid = pid_to_ptid (-1);
1083 ecs->wp = &(ecs->ws);
1084 }
1085
1086 /* Call this function before setting step_resume_breakpoint, as a
1087 sanity check. There should never be more than one step-resume
1088 breakpoint per thread, so we should never be setting a new
1089 step_resume_breakpoint when one is already active. */
1090 static void
1091 check_for_old_step_resume_breakpoint (void)
1092 {
1093 if (step_resume_breakpoint)
1094 warning
1095 ("GDB bug: infrun.c (wait_for_inferior): dropping old step_resume breakpoint");
1096 }
1097
1098 /* Return the cached copy of the last pid/waitstatus returned by
1099 target_wait()/deprecated_target_wait_hook(). The data is actually
1100 cached by handle_inferior_event(), which gets called immediately
1101 after target_wait()/deprecated_target_wait_hook(). */
1102
1103 void
1104 get_last_target_status (ptid_t *ptidp, struct target_waitstatus *status)
1105 {
1106 *ptidp = target_last_wait_ptid;
1107 *status = target_last_waitstatus;
1108 }
1109
1110 /* Switch thread contexts, maintaining "infrun state". */
1111
1112 static void
1113 context_switch (struct execution_control_state *ecs)
1114 {
1115 /* Caution: it may happen that the new thread (or the old one!)
1116 is not in the thread list. In this case we must not attempt
1117 to "switch context", or we run the risk that our context may
1118 be lost. This may happen as a result of the target module
1119 mishandling thread creation. */
1120
1121 if (in_thread_list (inferior_ptid) && in_thread_list (ecs->ptid))
1122 { /* Perform infrun state context switch: */
1123 /* Save infrun state for the old thread. */
1124 save_infrun_state (inferior_ptid, prev_pc,
1125 trap_expected, step_resume_breakpoint,
1126 step_range_start,
1127 step_range_end, &step_frame_id,
1128 ecs->handling_longjmp, ecs->another_trap,
1129 ecs->stepping_through_solib_after_catch,
1130 ecs->stepping_through_solib_catchpoints,
1131 ecs->stepping_through_sigtramp,
1132 ecs->current_line, ecs->current_symtab);
1133
1134 /* Load infrun state for the new thread. */
1135 load_infrun_state (ecs->ptid, &prev_pc,
1136 &trap_expected, &step_resume_breakpoint,
1137 &step_range_start,
1138 &step_range_end, &step_frame_id,
1139 &ecs->handling_longjmp, &ecs->another_trap,
1140 &ecs->stepping_through_solib_after_catch,
1141 &ecs->stepping_through_solib_catchpoints,
1142 &ecs->stepping_through_sigtramp,
1143 &ecs->current_line, &ecs->current_symtab);
1144 }
1145 inferior_ptid = ecs->ptid;
1146 }
1147
1148 static void
1149 adjust_pc_after_break (struct execution_control_state *ecs)
1150 {
1151 CORE_ADDR breakpoint_pc;
1152
1153 /* If this target does not decrement the PC after breakpoints, then
1154 we have nothing to do. */
1155 if (DECR_PC_AFTER_BREAK == 0)
1156 return;
1157
1158 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
1159 we aren't, just return.
1160
1161 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
1162 affected by DECR_PC_AFTER_BREAK. Other waitkinds which are implemented
1163 by software breakpoints should be handled through the normal breakpoint
1164 layer.
1165
1166 NOTE drow/2004-01-31: On some targets, breakpoints may generate
1167 different signals (SIGILL or SIGEMT for instance), but it is less
1168 clear where the PC is pointing afterwards. It may not match
1169 DECR_PC_AFTER_BREAK. I don't know any specific target that generates
1170 these signals at breakpoints (the code has been in GDB since at least
1171 1992) so I can not guess how to handle them here.
1172
1173 In earlier versions of GDB, a target with HAVE_NONSTEPPABLE_WATCHPOINTS
1174 would have the PC after hitting a watchpoint affected by
1175 DECR_PC_AFTER_BREAK. I haven't found any target with both of these set
1176 in GDB history, and it seems unlikely to be correct, so
1177 HAVE_NONSTEPPABLE_WATCHPOINTS is not checked here. */
1178
1179 if (ecs->ws.kind != TARGET_WAITKIND_STOPPED)
1180 return;
1181
1182 if (ecs->ws.value.sig != TARGET_SIGNAL_TRAP)
1183 return;
1184
1185 /* Find the location where (if we've hit a breakpoint) the
1186 breakpoint would be. */
1187 breakpoint_pc = read_pc_pid (ecs->ptid) - DECR_PC_AFTER_BREAK;
1188
1189 if (SOFTWARE_SINGLE_STEP_P ())
1190 {
1191 /* When using software single-step, a SIGTRAP can only indicate
1192 an inserted breakpoint. This actually makes things
1193 easier. */
1194 if (singlestep_breakpoints_inserted_p)
1195 /* When software single stepping, the instruction at [prev_pc]
1196 is never a breakpoint, but the instruction following
1197 [prev_pc] (in program execution order) always is. Assume
1198 that following instruction was reached and hence a software
1199 breakpoint was hit. */
1200 write_pc_pid (breakpoint_pc, ecs->ptid);
1201 else if (software_breakpoint_inserted_here_p (breakpoint_pc))
1202 /* The inferior was free running (i.e., no single-step
1203 breakpoints inserted) and it hit a software breakpoint. */
1204 write_pc_pid (breakpoint_pc, ecs->ptid);
1205 }
1206 else
1207 {
1208 /* When using hardware single-step, a SIGTRAP is reported for
1209 both a completed single-step and a software breakpoint. Need
1210 to differentiate between the two as the latter needs
1211 adjusting but the former does not. */
1212 if (currently_stepping (ecs))
1213 {
1214 if (prev_pc == breakpoint_pc
1215 && software_breakpoint_inserted_here_p (breakpoint_pc))
1216 /* Hardware single-stepped a software breakpoint (as
1217 occures when the inferior is resumed with PC pointing
1218 at not-yet-hit software breakpoint). Since the
1219 breakpoint really is executed, the inferior needs to be
1220 backed up to the breakpoint address. */
1221 write_pc_pid (breakpoint_pc, ecs->ptid);
1222 }
1223 else
1224 {
1225 if (software_breakpoint_inserted_here_p (breakpoint_pc))
1226 /* The inferior was free running (i.e., no hardware
1227 single-step and no possibility of a false SIGTRAP) and
1228 hit a software breakpoint. */
1229 write_pc_pid (breakpoint_pc, ecs->ptid);
1230 }
1231 }
1232 }
1233
1234 /* Given an execution control state that has been freshly filled in
1235 by an event from the inferior, figure out what it means and take
1236 appropriate action. */
1237
1238 int stepped_after_stopped_by_watchpoint;
1239
1240 void
1241 handle_inferior_event (struct execution_control_state *ecs)
1242 {
1243 /* NOTE: cagney/2003-03-28: If you're looking at this code and
1244 thinking that the variable stepped_after_stopped_by_watchpoint
1245 isn't used, then you're wrong! The macro STOPPED_BY_WATCHPOINT,
1246 defined in the file "config/pa/nm-hppah.h", accesses the variable
1247 indirectly. Mutter something rude about the HP merge. */
1248 int sw_single_step_trap_p = 0;
1249 int stopped_by_watchpoint = -1; /* Mark as unknown. */
1250
1251 /* Cache the last pid/waitstatus. */
1252 target_last_wait_ptid = ecs->ptid;
1253 target_last_waitstatus = *ecs->wp;
1254
1255 adjust_pc_after_break (ecs);
1256
1257 switch (ecs->infwait_state)
1258 {
1259 case infwait_thread_hop_state:
1260 /* Cancel the waiton_ptid. */
1261 ecs->waiton_ptid = pid_to_ptid (-1);
1262 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1263 is serviced in this loop, below. */
1264 if (ecs->enable_hw_watchpoints_after_wait)
1265 {
1266 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1267 ecs->enable_hw_watchpoints_after_wait = 0;
1268 }
1269 stepped_after_stopped_by_watchpoint = 0;
1270 break;
1271
1272 case infwait_normal_state:
1273 /* See comments where a TARGET_WAITKIND_SYSCALL_RETURN event
1274 is serviced in this loop, below. */
1275 if (ecs->enable_hw_watchpoints_after_wait)
1276 {
1277 TARGET_ENABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1278 ecs->enable_hw_watchpoints_after_wait = 0;
1279 }
1280 stepped_after_stopped_by_watchpoint = 0;
1281 break;
1282
1283 case infwait_nullified_state:
1284 stepped_after_stopped_by_watchpoint = 0;
1285 break;
1286
1287 case infwait_nonstep_watch_state:
1288 insert_breakpoints ();
1289
1290 /* FIXME-maybe: is this cleaner than setting a flag? Does it
1291 handle things like signals arriving and other things happening
1292 in combination correctly? */
1293 stepped_after_stopped_by_watchpoint = 1;
1294 break;
1295
1296 default:
1297 internal_error (__FILE__, __LINE__, "bad switch");
1298 }
1299 ecs->infwait_state = infwait_normal_state;
1300
1301 flush_cached_frames ();
1302
1303 /* If it's a new process, add it to the thread database */
1304
1305 ecs->new_thread_event = (!ptid_equal (ecs->ptid, inferior_ptid)
1306 && !ptid_equal (ecs->ptid, minus_one_ptid)
1307 && !in_thread_list (ecs->ptid));
1308
1309 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
1310 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED && ecs->new_thread_event)
1311 {
1312 add_thread (ecs->ptid);
1313
1314 ui_out_text (uiout, "[New ");
1315 ui_out_text (uiout, target_pid_or_tid_to_str (ecs->ptid));
1316 ui_out_text (uiout, "]\n");
1317 }
1318
1319 switch (ecs->ws.kind)
1320 {
1321 case TARGET_WAITKIND_LOADED:
1322 /* Ignore gracefully during startup of the inferior, as it
1323 might be the shell which has just loaded some objects,
1324 otherwise add the symbols for the newly loaded objects. */
1325 #ifdef SOLIB_ADD
1326 if (stop_soon == NO_STOP_QUIETLY)
1327 {
1328 /* Remove breakpoints, SOLIB_ADD might adjust
1329 breakpoint addresses via breakpoint_re_set. */
1330 if (breakpoints_inserted)
1331 remove_breakpoints ();
1332
1333 /* Check for any newly added shared libraries if we're
1334 supposed to be adding them automatically. Switch
1335 terminal for any messages produced by
1336 breakpoint_re_set. */
1337 target_terminal_ours_for_output ();
1338 /* NOTE: cagney/2003-11-25: Make certain that the target
1339 stack's section table is kept up-to-date. Architectures,
1340 (e.g., PPC64), use the section table to perform
1341 operations such as address => section name and hence
1342 require the table to contain all sections (including
1343 those found in shared libraries). */
1344 /* NOTE: cagney/2003-11-25: Pass current_target and not
1345 exec_ops to SOLIB_ADD. This is because current GDB is
1346 only tooled to propagate section_table changes out from
1347 the "current_target" (see target_resize_to_sections), and
1348 not up from the exec stratum. This, of course, isn't
1349 right. "infrun.c" should only interact with the
1350 exec/process stratum, instead relying on the target stack
1351 to propagate relevant changes (stop, section table
1352 changed, ...) up to other layers. */
1353 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
1354 target_terminal_inferior ();
1355
1356 /* Reinsert breakpoints and continue. */
1357 if (breakpoints_inserted)
1358 insert_breakpoints ();
1359 }
1360 #endif
1361 resume (0, TARGET_SIGNAL_0);
1362 prepare_to_wait (ecs);
1363 return;
1364
1365 case TARGET_WAITKIND_SPURIOUS:
1366 resume (0, TARGET_SIGNAL_0);
1367 prepare_to_wait (ecs);
1368 return;
1369
1370 case TARGET_WAITKIND_EXITED:
1371 target_terminal_ours (); /* Must do this before mourn anyway */
1372 print_stop_reason (EXITED, ecs->ws.value.integer);
1373
1374 /* Record the exit code in the convenience variable $_exitcode, so
1375 that the user can inspect this again later. */
1376 set_internalvar (lookup_internalvar ("_exitcode"),
1377 value_from_longest (builtin_type_int,
1378 (LONGEST) ecs->ws.value.integer));
1379 gdb_flush (gdb_stdout);
1380 target_mourn_inferior ();
1381 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1382 stop_print_frame = 0;
1383 stop_stepping (ecs);
1384 return;
1385
1386 case TARGET_WAITKIND_SIGNALLED:
1387 stop_print_frame = 0;
1388 stop_signal = ecs->ws.value.sig;
1389 target_terminal_ours (); /* Must do this before mourn anyway */
1390
1391 /* Note: By definition of TARGET_WAITKIND_SIGNALLED, we shouldn't
1392 reach here unless the inferior is dead. However, for years
1393 target_kill() was called here, which hints that fatal signals aren't
1394 really fatal on some systems. If that's true, then some changes
1395 may be needed. */
1396 target_mourn_inferior ();
1397
1398 print_stop_reason (SIGNAL_EXITED, stop_signal);
1399 singlestep_breakpoints_inserted_p = 0; /*SOFTWARE_SINGLE_STEP_P() */
1400 stop_stepping (ecs);
1401 return;
1402
1403 /* The following are the only cases in which we keep going;
1404 the above cases end in a continue or goto. */
1405 case TARGET_WAITKIND_FORKED:
1406 case TARGET_WAITKIND_VFORKED:
1407 stop_signal = TARGET_SIGNAL_TRAP;
1408 pending_follow.kind = ecs->ws.kind;
1409
1410 pending_follow.fork_event.parent_pid = PIDGET (ecs->ptid);
1411 pending_follow.fork_event.child_pid = ecs->ws.value.related_pid;
1412
1413 stop_pc = read_pc ();
1414
1415 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1416
1417 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1418
1419 /* If no catchpoint triggered for this, then keep going. */
1420 if (ecs->random_signal)
1421 {
1422 stop_signal = TARGET_SIGNAL_0;
1423 keep_going (ecs);
1424 return;
1425 }
1426 goto process_event_stop_test;
1427
1428 case TARGET_WAITKIND_EXECD:
1429 stop_signal = TARGET_SIGNAL_TRAP;
1430
1431 /* NOTE drow/2002-12-05: This code should be pushed down into the
1432 target_wait function. Until then following vfork on HP/UX 10.20
1433 is probably broken by this. Of course, it's broken anyway. */
1434 /* Is this a target which reports multiple exec events per actual
1435 call to exec()? (HP-UX using ptrace does, for example.) If so,
1436 ignore all but the last one. Just resume the exec'r, and wait
1437 for the next exec event. */
1438 if (inferior_ignoring_leading_exec_events)
1439 {
1440 inferior_ignoring_leading_exec_events--;
1441 if (pending_follow.kind == TARGET_WAITKIND_VFORKED)
1442 ENSURE_VFORKING_PARENT_REMAINS_STOPPED (pending_follow.fork_event.
1443 parent_pid);
1444 target_resume (ecs->ptid, 0, TARGET_SIGNAL_0);
1445 prepare_to_wait (ecs);
1446 return;
1447 }
1448 inferior_ignoring_leading_exec_events =
1449 target_reported_exec_events_per_exec_call () - 1;
1450
1451 pending_follow.execd_pathname =
1452 savestring (ecs->ws.value.execd_pathname,
1453 strlen (ecs->ws.value.execd_pathname));
1454
1455 /* This causes the eventpoints and symbol table to be reset. Must
1456 do this now, before trying to determine whether to stop. */
1457 follow_exec (PIDGET (inferior_ptid), pending_follow.execd_pathname);
1458 xfree (pending_follow.execd_pathname);
1459
1460 stop_pc = read_pc_pid (ecs->ptid);
1461 ecs->saved_inferior_ptid = inferior_ptid;
1462 inferior_ptid = ecs->ptid;
1463
1464 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid, 0);
1465
1466 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1467 inferior_ptid = ecs->saved_inferior_ptid;
1468
1469 /* If no catchpoint triggered for this, then keep going. */
1470 if (ecs->random_signal)
1471 {
1472 stop_signal = TARGET_SIGNAL_0;
1473 keep_going (ecs);
1474 return;
1475 }
1476 goto process_event_stop_test;
1477
1478 /* These syscall events are returned on HP-UX, as part of its
1479 implementation of page-protection-based "hardware" watchpoints.
1480 HP-UX has unfortunate interactions between page-protections and
1481 some system calls. Our solution is to disable hardware watches
1482 when a system call is entered, and reenable them when the syscall
1483 completes. The downside of this is that we may miss the precise
1484 point at which a watched piece of memory is modified. "Oh well."
1485
1486 Note that we may have multiple threads running, which may each
1487 enter syscalls at roughly the same time. Since we don't have a
1488 good notion currently of whether a watched piece of memory is
1489 thread-private, we'd best not have any page-protections active
1490 when any thread is in a syscall. Thus, we only want to reenable
1491 hardware watches when no threads are in a syscall.
1492
1493 Also, be careful not to try to gather much state about a thread
1494 that's in a syscall. It's frequently a losing proposition. */
1495 case TARGET_WAITKIND_SYSCALL_ENTRY:
1496 number_of_threads_in_syscalls++;
1497 if (number_of_threads_in_syscalls == 1)
1498 {
1499 TARGET_DISABLE_HW_WATCHPOINTS (PIDGET (inferior_ptid));
1500 }
1501 resume (0, TARGET_SIGNAL_0);
1502 prepare_to_wait (ecs);
1503 return;
1504
1505 /* Before examining the threads further, step this thread to
1506 get it entirely out of the syscall. (We get notice of the
1507 event when the thread is just on the verge of exiting a
1508 syscall. Stepping one instruction seems to get it back
1509 into user code.)
1510
1511 Note that although the logical place to reenable h/w watches
1512 is here, we cannot. We cannot reenable them before stepping
1513 the thread (this causes the next wait on the thread to hang).
1514
1515 Nor can we enable them after stepping until we've done a wait.
1516 Thus, we simply set the flag ecs->enable_hw_watchpoints_after_wait
1517 here, which will be serviced immediately after the target
1518 is waited on. */
1519 case TARGET_WAITKIND_SYSCALL_RETURN:
1520 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1521
1522 if (number_of_threads_in_syscalls > 0)
1523 {
1524 number_of_threads_in_syscalls--;
1525 ecs->enable_hw_watchpoints_after_wait =
1526 (number_of_threads_in_syscalls == 0);
1527 }
1528 prepare_to_wait (ecs);
1529 return;
1530
1531 case TARGET_WAITKIND_STOPPED:
1532 stop_signal = ecs->ws.value.sig;
1533 break;
1534
1535 /* We had an event in the inferior, but we are not interested
1536 in handling it at this level. The lower layers have already
1537 done what needs to be done, if anything.
1538
1539 One of the possible circumstances for this is when the
1540 inferior produces output for the console. The inferior has
1541 not stopped, and we are ignoring the event. Another possible
1542 circumstance is any event which the lower level knows will be
1543 reported multiple times without an intervening resume. */
1544 case TARGET_WAITKIND_IGNORE:
1545 prepare_to_wait (ecs);
1546 return;
1547 }
1548
1549 /* We may want to consider not doing a resume here in order to give
1550 the user a chance to play with the new thread. It might be good
1551 to make that a user-settable option. */
1552
1553 /* At this point, all threads are stopped (happens automatically in
1554 either the OS or the native code). Therefore we need to continue
1555 all threads in order to make progress. */
1556 if (ecs->new_thread_event)
1557 {
1558 target_resume (RESUME_ALL, 0, TARGET_SIGNAL_0);
1559 prepare_to_wait (ecs);
1560 return;
1561 }
1562
1563 stop_pc = read_pc_pid (ecs->ptid);
1564
1565 if (stepping_past_singlestep_breakpoint)
1566 {
1567 gdb_assert (SOFTWARE_SINGLE_STEP_P ()
1568 && singlestep_breakpoints_inserted_p);
1569 gdb_assert (ptid_equal (singlestep_ptid, ecs->ptid));
1570 gdb_assert (!ptid_equal (singlestep_ptid, saved_singlestep_ptid));
1571
1572 stepping_past_singlestep_breakpoint = 0;
1573
1574 /* We've either finished single-stepping past the single-step
1575 breakpoint, or stopped for some other reason. It would be nice if
1576 we could tell, but we can't reliably. */
1577 if (stop_signal == TARGET_SIGNAL_TRAP)
1578 {
1579 /* Pull the single step breakpoints out of the target. */
1580 SOFTWARE_SINGLE_STEP (0, 0);
1581 singlestep_breakpoints_inserted_p = 0;
1582
1583 ecs->random_signal = 0;
1584
1585 ecs->ptid = saved_singlestep_ptid;
1586 context_switch (ecs);
1587 if (deprecated_context_hook)
1588 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1589
1590 resume (1, TARGET_SIGNAL_0);
1591 prepare_to_wait (ecs);
1592 return;
1593 }
1594 }
1595
1596 stepping_past_singlestep_breakpoint = 0;
1597
1598 /* See if a thread hit a thread-specific breakpoint that was meant for
1599 another thread. If so, then step that thread past the breakpoint,
1600 and continue it. */
1601
1602 if (stop_signal == TARGET_SIGNAL_TRAP)
1603 {
1604 int thread_hop_needed = 0;
1605
1606 /* Check if a regular breakpoint has been hit before checking
1607 for a potential single step breakpoint. Otherwise, GDB will
1608 not see this breakpoint hit when stepping onto breakpoints. */
1609 if (breakpoints_inserted && breakpoint_here_p (stop_pc))
1610 {
1611 ecs->random_signal = 0;
1612 if (!breakpoint_thread_match (stop_pc, ecs->ptid))
1613 thread_hop_needed = 1;
1614 }
1615 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1616 {
1617 ecs->random_signal = 0;
1618 /* The call to in_thread_list is necessary because PTIDs sometimes
1619 change when we go from single-threaded to multi-threaded. If
1620 the singlestep_ptid is still in the list, assume that it is
1621 really different from ecs->ptid. */
1622 if (!ptid_equal (singlestep_ptid, ecs->ptid)
1623 && in_thread_list (singlestep_ptid))
1624 {
1625 thread_hop_needed = 1;
1626 stepping_past_singlestep_breakpoint = 1;
1627 saved_singlestep_ptid = singlestep_ptid;
1628 }
1629 }
1630
1631 if (thread_hop_needed)
1632 {
1633 int remove_status;
1634
1635 /* Saw a breakpoint, but it was hit by the wrong thread.
1636 Just continue. */
1637
1638 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1639 {
1640 /* Pull the single step breakpoints out of the target. */
1641 SOFTWARE_SINGLE_STEP (0, 0);
1642 singlestep_breakpoints_inserted_p = 0;
1643 }
1644
1645 remove_status = remove_breakpoints ();
1646 /* Did we fail to remove breakpoints? If so, try
1647 to set the PC past the bp. (There's at least
1648 one situation in which we can fail to remove
1649 the bp's: On HP-UX's that use ttrace, we can't
1650 change the address space of a vforking child
1651 process until the child exits (well, okay, not
1652 then either :-) or execs. */
1653 if (remove_status != 0)
1654 {
1655 /* FIXME! This is obviously non-portable! */
1656 write_pc_pid (stop_pc + 4, ecs->ptid);
1657 /* We need to restart all the threads now,
1658 * unles we're running in scheduler-locked mode.
1659 * Use currently_stepping to determine whether to
1660 * step or continue.
1661 */
1662 /* FIXME MVS: is there any reason not to call resume()? */
1663 if (scheduler_mode == schedlock_on)
1664 target_resume (ecs->ptid,
1665 currently_stepping (ecs), TARGET_SIGNAL_0);
1666 else
1667 target_resume (RESUME_ALL,
1668 currently_stepping (ecs), TARGET_SIGNAL_0);
1669 prepare_to_wait (ecs);
1670 return;
1671 }
1672 else
1673 { /* Single step */
1674 breakpoints_inserted = 0;
1675 if (!ptid_equal (inferior_ptid, ecs->ptid))
1676 context_switch (ecs);
1677 ecs->waiton_ptid = ecs->ptid;
1678 ecs->wp = &(ecs->ws);
1679 ecs->another_trap = 1;
1680
1681 ecs->infwait_state = infwait_thread_hop_state;
1682 keep_going (ecs);
1683 registers_changed ();
1684 return;
1685 }
1686 }
1687 else if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1688 {
1689 sw_single_step_trap_p = 1;
1690 ecs->random_signal = 0;
1691 }
1692 }
1693 else
1694 ecs->random_signal = 1;
1695
1696 /* See if something interesting happened to the non-current thread. If
1697 so, then switch to that thread. */
1698 if (!ptid_equal (ecs->ptid, inferior_ptid))
1699 {
1700 context_switch (ecs);
1701
1702 if (deprecated_context_hook)
1703 deprecated_context_hook (pid_to_thread_id (ecs->ptid));
1704
1705 flush_cached_frames ();
1706 }
1707
1708 if (SOFTWARE_SINGLE_STEP_P () && singlestep_breakpoints_inserted_p)
1709 {
1710 /* Pull the single step breakpoints out of the target. */
1711 SOFTWARE_SINGLE_STEP (0, 0);
1712 singlestep_breakpoints_inserted_p = 0;
1713 }
1714
1715 /* If PC is pointing at a nullified instruction, then step beyond
1716 it so that the user won't be confused when GDB appears to be ready
1717 to execute it. */
1718
1719 /* if (INSTRUCTION_NULLIFIED && currently_stepping (ecs)) */
1720 if (INSTRUCTION_NULLIFIED)
1721 {
1722 registers_changed ();
1723 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0);
1724
1725 /* We may have received a signal that we want to pass to
1726 the inferior; therefore, we must not clobber the waitstatus
1727 in WS. */
1728
1729 ecs->infwait_state = infwait_nullified_state;
1730 ecs->waiton_ptid = ecs->ptid;
1731 ecs->wp = &(ecs->tmpstatus);
1732 prepare_to_wait (ecs);
1733 return;
1734 }
1735
1736 /* It may not be necessary to disable the watchpoint to stop over
1737 it. For example, the PA can (with some kernel cooperation)
1738 single step over a watchpoint without disabling the watchpoint. */
1739 if (HAVE_STEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1740 {
1741 resume (1, 0);
1742 prepare_to_wait (ecs);
1743 return;
1744 }
1745
1746 /* It is far more common to need to disable a watchpoint to step
1747 the inferior over it. FIXME. What else might a debug
1748 register or page protection watchpoint scheme need here? */
1749 if (HAVE_NONSTEPPABLE_WATCHPOINT && STOPPED_BY_WATCHPOINT (ecs->ws))
1750 {
1751 /* At this point, we are stopped at an instruction which has
1752 attempted to write to a piece of memory under control of
1753 a watchpoint. The instruction hasn't actually executed
1754 yet. If we were to evaluate the watchpoint expression
1755 now, we would get the old value, and therefore no change
1756 would seem to have occurred.
1757
1758 In order to make watchpoints work `right', we really need
1759 to complete the memory write, and then evaluate the
1760 watchpoint expression. The following code does that by
1761 removing the watchpoint (actually, all watchpoints and
1762 breakpoints), single-stepping the target, re-inserting
1763 watchpoints, and then falling through to let normal
1764 single-step processing handle proceed. Since this
1765 includes evaluating watchpoints, things will come to a
1766 stop in the correct manner. */
1767
1768 remove_breakpoints ();
1769 registers_changed ();
1770 target_resume (ecs->ptid, 1, TARGET_SIGNAL_0); /* Single step */
1771
1772 ecs->waiton_ptid = ecs->ptid;
1773 ecs->wp = &(ecs->ws);
1774 ecs->infwait_state = infwait_nonstep_watch_state;
1775 prepare_to_wait (ecs);
1776 return;
1777 }
1778
1779 /* It may be possible to simply continue after a watchpoint. */
1780 if (HAVE_CONTINUABLE_WATCHPOINT)
1781 stopped_by_watchpoint = STOPPED_BY_WATCHPOINT (ecs->ws);
1782
1783 ecs->stop_func_start = 0;
1784 ecs->stop_func_end = 0;
1785 ecs->stop_func_name = 0;
1786 /* Don't care about return value; stop_func_start and stop_func_name
1787 will both be 0 if it doesn't work. */
1788 find_pc_partial_function (stop_pc, &ecs->stop_func_name,
1789 &ecs->stop_func_start, &ecs->stop_func_end);
1790 ecs->stop_func_start += DEPRECATED_FUNCTION_START_OFFSET;
1791 ecs->another_trap = 0;
1792 bpstat_clear (&stop_bpstat);
1793 stop_step = 0;
1794 stop_stack_dummy = 0;
1795 stop_print_frame = 1;
1796 ecs->random_signal = 0;
1797 stopped_by_random_signal = 0;
1798 breakpoints_failed = 0;
1799
1800 /* Look at the cause of the stop, and decide what to do.
1801 The alternatives are:
1802 1) break; to really stop and return to the debugger,
1803 2) drop through to start up again
1804 (set ecs->another_trap to 1 to single step once)
1805 3) set ecs->random_signal to 1, and the decision between 1 and 2
1806 will be made according to the signal handling tables. */
1807
1808 /* First, distinguish signals caused by the debugger from signals
1809 that have to do with the program's own actions. Note that
1810 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
1811 on the operating system version. Here we detect when a SIGILL or
1812 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
1813 something similar for SIGSEGV, since a SIGSEGV will be generated
1814 when we're trying to execute a breakpoint instruction on a
1815 non-executable stack. This happens for call dummy breakpoints
1816 for architectures like SPARC that place call dummies on the
1817 stack. */
1818
1819 if (stop_signal == TARGET_SIGNAL_TRAP
1820 || (breakpoints_inserted
1821 && (stop_signal == TARGET_SIGNAL_ILL
1822 || stop_signal == TARGET_SIGNAL_SEGV
1823 || stop_signal == TARGET_SIGNAL_EMT))
1824 || stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1825 {
1826 if (stop_signal == TARGET_SIGNAL_TRAP && stop_after_trap)
1827 {
1828 stop_print_frame = 0;
1829 stop_stepping (ecs);
1830 return;
1831 }
1832
1833 /* This is originated from start_remote(), start_inferior() and
1834 shared libraries hook functions. */
1835 if (stop_soon == STOP_QUIETLY)
1836 {
1837 stop_stepping (ecs);
1838 return;
1839 }
1840
1841 /* This originates from attach_command(). We need to overwrite
1842 the stop_signal here, because some kernels don't ignore a
1843 SIGSTOP in a subsequent ptrace(PTRACE_SONT,SOGSTOP) call.
1844 See more comments in inferior.h. */
1845 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP)
1846 {
1847 stop_stepping (ecs);
1848 if (stop_signal == TARGET_SIGNAL_STOP)
1849 stop_signal = TARGET_SIGNAL_0;
1850 return;
1851 }
1852
1853 /* Don't even think about breakpoints if just proceeded over a
1854 breakpoint. */
1855 if (stop_signal == TARGET_SIGNAL_TRAP && trap_expected)
1856 bpstat_clear (&stop_bpstat);
1857 else
1858 {
1859 /* See if there is a breakpoint at the current PC. */
1860 stop_bpstat = bpstat_stop_status (stop_pc, ecs->ptid,
1861 stopped_by_watchpoint);
1862
1863 /* Following in case break condition called a
1864 function. */
1865 stop_print_frame = 1;
1866 }
1867
1868 /* NOTE: cagney/2003-03-29: These two checks for a random signal
1869 at one stage in the past included checks for an inferior
1870 function call's call dummy's return breakpoint. The original
1871 comment, that went with the test, read:
1872
1873 ``End of a stack dummy. Some systems (e.g. Sony news) give
1874 another signal besides SIGTRAP, so check here as well as
1875 above.''
1876
1877 If someone ever tries to get get call dummys on a
1878 non-executable stack to work (where the target would stop
1879 with something like a SIGSEGV), then those tests might need
1880 to be re-instated. Given, however, that the tests were only
1881 enabled when momentary breakpoints were not being used, I
1882 suspect that it won't be the case.
1883
1884 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
1885 be necessary for call dummies on a non-executable stack on
1886 SPARC. */
1887
1888 if (stop_signal == TARGET_SIGNAL_TRAP)
1889 ecs->random_signal
1890 = !(bpstat_explains_signal (stop_bpstat)
1891 || trap_expected
1892 || (step_range_end && step_resume_breakpoint == NULL));
1893 else
1894 {
1895 ecs->random_signal = !bpstat_explains_signal (stop_bpstat);
1896 if (!ecs->random_signal)
1897 stop_signal = TARGET_SIGNAL_TRAP;
1898 }
1899 }
1900
1901 /* When we reach this point, we've pretty much decided
1902 that the reason for stopping must've been a random
1903 (unexpected) signal. */
1904
1905 else
1906 ecs->random_signal = 1;
1907
1908 process_event_stop_test:
1909 /* For the program's own signals, act according to
1910 the signal handling tables. */
1911
1912 if (ecs->random_signal)
1913 {
1914 /* Signal not for debugging purposes. */
1915 int printed = 0;
1916
1917 stopped_by_random_signal = 1;
1918
1919 if (signal_print[stop_signal])
1920 {
1921 printed = 1;
1922 target_terminal_ours_for_output ();
1923 print_stop_reason (SIGNAL_RECEIVED, stop_signal);
1924 }
1925 if (signal_stop[stop_signal])
1926 {
1927 stop_stepping (ecs);
1928 return;
1929 }
1930 /* If not going to stop, give terminal back
1931 if we took it away. */
1932 else if (printed)
1933 target_terminal_inferior ();
1934
1935 /* Clear the signal if it should not be passed. */
1936 if (signal_program[stop_signal] == 0)
1937 stop_signal = TARGET_SIGNAL_0;
1938
1939 if (step_range_end != 0
1940 && stop_signal != TARGET_SIGNAL_0
1941 && stop_pc >= step_range_start && stop_pc < step_range_end
1942 && frame_id_eq (get_frame_id (get_current_frame ()), step_frame_id))
1943 {
1944 /* The inferior is about to take a signal that will take it
1945 out of the single step range. Set a breakpoint at the
1946 current PC (which is presumably where the signal handler
1947 will eventually return) and then allow the inferior to
1948 run free.
1949
1950 Note that this is only needed for a signal delivered
1951 while in the single-step range. Nested signals aren't a
1952 problem as they eventually all return. */
1953 insert_step_resume_breakpoint (get_current_frame (), ecs);
1954 }
1955 keep_going (ecs);
1956 return;
1957 }
1958
1959 /* Handle cases caused by hitting a breakpoint. */
1960 {
1961 CORE_ADDR jmp_buf_pc;
1962 struct bpstat_what what;
1963
1964 what = bpstat_what (stop_bpstat);
1965
1966 if (what.call_dummy)
1967 {
1968 stop_stack_dummy = 1;
1969 }
1970
1971 switch (what.main_action)
1972 {
1973 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
1974 /* If we hit the breakpoint at longjmp, disable it for the
1975 duration of this command. Then, install a temporary
1976 breakpoint at the target of the jmp_buf. */
1977 disable_longjmp_breakpoint ();
1978 remove_breakpoints ();
1979 breakpoints_inserted = 0;
1980 if (!GET_LONGJMP_TARGET_P () || !GET_LONGJMP_TARGET (&jmp_buf_pc))
1981 {
1982 keep_going (ecs);
1983 return;
1984 }
1985
1986 /* Need to blow away step-resume breakpoint, as it
1987 interferes with us */
1988 if (step_resume_breakpoint != NULL)
1989 {
1990 delete_step_resume_breakpoint (&step_resume_breakpoint);
1991 }
1992
1993 set_longjmp_resume_breakpoint (jmp_buf_pc, null_frame_id);
1994 ecs->handling_longjmp = 1; /* FIXME */
1995 keep_going (ecs);
1996 return;
1997
1998 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
1999 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME_SINGLE:
2000 remove_breakpoints ();
2001 breakpoints_inserted = 0;
2002 disable_longjmp_breakpoint ();
2003 ecs->handling_longjmp = 0; /* FIXME */
2004 if (what.main_action == BPSTAT_WHAT_CLEAR_LONGJMP_RESUME)
2005 break;
2006 /* else fallthrough */
2007
2008 case BPSTAT_WHAT_SINGLE:
2009 if (breakpoints_inserted)
2010 {
2011 remove_breakpoints ();
2012 }
2013 breakpoints_inserted = 0;
2014 ecs->another_trap = 1;
2015 /* Still need to check other stuff, at least the case
2016 where we are stepping and step out of the right range. */
2017 break;
2018
2019 case BPSTAT_WHAT_STOP_NOISY:
2020 stop_print_frame = 1;
2021
2022 /* We are about to nuke the step_resume_breakpointt via the
2023 cleanup chain, so no need to worry about it here. */
2024
2025 stop_stepping (ecs);
2026 return;
2027
2028 case BPSTAT_WHAT_STOP_SILENT:
2029 stop_print_frame = 0;
2030
2031 /* We are about to nuke the step_resume_breakpoin via the
2032 cleanup chain, so no need to worry about it here. */
2033
2034 stop_stepping (ecs);
2035 return;
2036
2037 case BPSTAT_WHAT_STEP_RESUME:
2038 /* This proably demands a more elegant solution, but, yeah
2039 right...
2040
2041 This function's use of the simple variable
2042 step_resume_breakpoint doesn't seem to accomodate
2043 simultaneously active step-resume bp's, although the
2044 breakpoint list certainly can.
2045
2046 If we reach here and step_resume_breakpoint is already
2047 NULL, then apparently we have multiple active
2048 step-resume bp's. We'll just delete the breakpoint we
2049 stopped at, and carry on.
2050
2051 Correction: what the code currently does is delete a
2052 step-resume bp, but it makes no effort to ensure that
2053 the one deleted is the one currently stopped at. MVS */
2054
2055 if (step_resume_breakpoint == NULL)
2056 {
2057 step_resume_breakpoint =
2058 bpstat_find_step_resume_breakpoint (stop_bpstat);
2059 }
2060 delete_step_resume_breakpoint (&step_resume_breakpoint);
2061 break;
2062
2063 case BPSTAT_WHAT_THROUGH_SIGTRAMP:
2064 /* If were waiting for a trap, hitting the step_resume_break
2065 doesn't count as getting it. */
2066 if (trap_expected)
2067 ecs->another_trap = 1;
2068 break;
2069
2070 case BPSTAT_WHAT_CHECK_SHLIBS:
2071 case BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK:
2072 #ifdef SOLIB_ADD
2073 {
2074 /* Remove breakpoints, we eventually want to step over the
2075 shlib event breakpoint, and SOLIB_ADD might adjust
2076 breakpoint addresses via breakpoint_re_set. */
2077 if (breakpoints_inserted)
2078 remove_breakpoints ();
2079 breakpoints_inserted = 0;
2080
2081 /* Check for any newly added shared libraries if we're
2082 supposed to be adding them automatically. Switch
2083 terminal for any messages produced by
2084 breakpoint_re_set. */
2085 target_terminal_ours_for_output ();
2086 /* NOTE: cagney/2003-11-25: Make certain that the target
2087 stack's section table is kept up-to-date. Architectures,
2088 (e.g., PPC64), use the section table to perform
2089 operations such as address => section name and hence
2090 require the table to contain all sections (including
2091 those found in shared libraries). */
2092 /* NOTE: cagney/2003-11-25: Pass current_target and not
2093 exec_ops to SOLIB_ADD. This is because current GDB is
2094 only tooled to propagate section_table changes out from
2095 the "current_target" (see target_resize_to_sections), and
2096 not up from the exec stratum. This, of course, isn't
2097 right. "infrun.c" should only interact with the
2098 exec/process stratum, instead relying on the target stack
2099 to propagate relevant changes (stop, section table
2100 changed, ...) up to other layers. */
2101 SOLIB_ADD (NULL, 0, &current_target, auto_solib_add);
2102 target_terminal_inferior ();
2103
2104 /* Try to reenable shared library breakpoints, additional
2105 code segments in shared libraries might be mapped in now. */
2106 re_enable_breakpoints_in_shlibs ();
2107
2108 /* If requested, stop when the dynamic linker notifies
2109 gdb of events. This allows the user to get control
2110 and place breakpoints in initializer routines for
2111 dynamically loaded objects (among other things). */
2112 if (stop_on_solib_events || stop_stack_dummy)
2113 {
2114 stop_stepping (ecs);
2115 return;
2116 }
2117
2118 /* If we stopped due to an explicit catchpoint, then the
2119 (see above) call to SOLIB_ADD pulled in any symbols
2120 from a newly-loaded library, if appropriate.
2121
2122 We do want the inferior to stop, but not where it is
2123 now, which is in the dynamic linker callback. Rather,
2124 we would like it stop in the user's program, just after
2125 the call that caused this catchpoint to trigger. That
2126 gives the user a more useful vantage from which to
2127 examine their program's state. */
2128 else if (what.main_action
2129 == BPSTAT_WHAT_CHECK_SHLIBS_RESUME_FROM_HOOK)
2130 {
2131 /* ??rehrauer: If I could figure out how to get the
2132 right return PC from here, we could just set a temp
2133 breakpoint and resume. I'm not sure we can without
2134 cracking open the dld's shared libraries and sniffing
2135 their unwind tables and text/data ranges, and that's
2136 not a terribly portable notion.
2137
2138 Until that time, we must step the inferior out of the
2139 dld callback, and also out of the dld itself (and any
2140 code or stubs in libdld.sl, such as "shl_load" and
2141 friends) until we reach non-dld code. At that point,
2142 we can stop stepping. */
2143 bpstat_get_triggered_catchpoints (stop_bpstat,
2144 &ecs->
2145 stepping_through_solib_catchpoints);
2146 ecs->stepping_through_solib_after_catch = 1;
2147
2148 /* Be sure to lift all breakpoints, so the inferior does
2149 actually step past this point... */
2150 ecs->another_trap = 1;
2151 break;
2152 }
2153 else
2154 {
2155 /* We want to step over this breakpoint, then keep going. */
2156 ecs->another_trap = 1;
2157 break;
2158 }
2159 }
2160 #endif
2161 break;
2162
2163 case BPSTAT_WHAT_LAST:
2164 /* Not a real code, but listed here to shut up gcc -Wall. */
2165
2166 case BPSTAT_WHAT_KEEP_CHECKING:
2167 break;
2168 }
2169 }
2170
2171 /* We come here if we hit a breakpoint but should not
2172 stop for it. Possibly we also were stepping
2173 and should stop for that. So fall through and
2174 test for stepping. But, if not stepping,
2175 do not stop. */
2176
2177 /* Are we stepping to get the inferior out of the dynamic
2178 linker's hook (and possibly the dld itself) after catching
2179 a shlib event? */
2180 if (ecs->stepping_through_solib_after_catch)
2181 {
2182 #if defined(SOLIB_ADD)
2183 /* Have we reached our destination? If not, keep going. */
2184 if (SOLIB_IN_DYNAMIC_LINKER (PIDGET (ecs->ptid), stop_pc))
2185 {
2186 ecs->another_trap = 1;
2187 keep_going (ecs);
2188 return;
2189 }
2190 #endif
2191 /* Else, stop and report the catchpoint(s) whose triggering
2192 caused us to begin stepping. */
2193 ecs->stepping_through_solib_after_catch = 0;
2194 bpstat_clear (&stop_bpstat);
2195 stop_bpstat = bpstat_copy (ecs->stepping_through_solib_catchpoints);
2196 bpstat_clear (&ecs->stepping_through_solib_catchpoints);
2197 stop_print_frame = 1;
2198 stop_stepping (ecs);
2199 return;
2200 }
2201
2202 if (step_resume_breakpoint)
2203 {
2204 /* Having a step-resume breakpoint overrides anything
2205 else having to do with stepping commands until
2206 that breakpoint is reached. */
2207 keep_going (ecs);
2208 return;
2209 }
2210
2211 if (step_range_end == 0)
2212 {
2213 /* Likewise if we aren't even stepping. */
2214 keep_going (ecs);
2215 return;
2216 }
2217
2218 /* If stepping through a line, keep going if still within it.
2219
2220 Note that step_range_end is the address of the first instruction
2221 beyond the step range, and NOT the address of the last instruction
2222 within it! */
2223 if (stop_pc >= step_range_start && stop_pc < step_range_end)
2224 {
2225 keep_going (ecs);
2226 return;
2227 }
2228
2229 /* We stepped out of the stepping range. */
2230
2231 /* If we are stepping at the source level and entered the runtime
2232 loader dynamic symbol resolution code, we keep on single stepping
2233 until we exit the run time loader code and reach the callee's
2234 address. */
2235 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2236 && IN_SOLIB_DYNSYM_RESOLVE_CODE (stop_pc))
2237 {
2238 CORE_ADDR pc_after_resolver =
2239 gdbarch_skip_solib_resolver (current_gdbarch, stop_pc);
2240
2241 if (pc_after_resolver)
2242 {
2243 /* Set up a step-resume breakpoint at the address
2244 indicated by SKIP_SOLIB_RESOLVER. */
2245 struct symtab_and_line sr_sal;
2246 init_sal (&sr_sal);
2247 sr_sal.pc = pc_after_resolver;
2248
2249 check_for_old_step_resume_breakpoint ();
2250 step_resume_breakpoint =
2251 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2252 if (breakpoints_inserted)
2253 insert_breakpoints ();
2254 }
2255
2256 keep_going (ecs);
2257 return;
2258 }
2259
2260 if (step_range_end != 1
2261 && (step_over_calls == STEP_OVER_UNDEBUGGABLE
2262 || step_over_calls == STEP_OVER_ALL)
2263 && get_frame_type (get_current_frame ()) == SIGTRAMP_FRAME)
2264 {
2265 /* The inferior, while doing a "step" or "next", has ended up in
2266 a signal trampoline (either by a signal being delivered or by
2267 the signal handler returning). Just single-step until the
2268 inferior leaves the trampoline (either by calling the handler
2269 or returning). */
2270 keep_going (ecs);
2271 return;
2272 }
2273
2274 if (frame_id_eq (frame_unwind_id (get_current_frame ()), step_frame_id))
2275 {
2276 /* It's a subroutine call. */
2277 CORE_ADDR real_stop_pc;
2278
2279 if ((step_over_calls == STEP_OVER_NONE)
2280 || ((step_range_end == 1)
2281 && in_prologue (prev_pc, ecs->stop_func_start)))
2282 {
2283 /* I presume that step_over_calls is only 0 when we're
2284 supposed to be stepping at the assembly language level
2285 ("stepi"). Just stop. */
2286 /* Also, maybe we just did a "nexti" inside a prolog, so we
2287 thought it was a subroutine call but it was not. Stop as
2288 well. FENN */
2289 stop_step = 1;
2290 print_stop_reason (END_STEPPING_RANGE, 0);
2291 stop_stepping (ecs);
2292 return;
2293 }
2294
2295 #ifdef DEPRECATED_IGNORE_HELPER_CALL
2296 /* On MIPS16, a function that returns a floating point value may
2297 call a library helper function to copy the return value to a
2298 floating point register. The DEPRECATED_IGNORE_HELPER_CALL
2299 macro returns non-zero if we should ignore (i.e. step over)
2300 this function call. */
2301 /* FIXME: cagney/2004-07-21: These custom ``ignore frame when
2302 stepping'' function attributes (SIGTRAMP_FRAME,
2303 DEPRECATED_IGNORE_HELPER_CALL, SKIP_TRAMPOLINE_CODE,
2304 skip_language_trampoline frame, et.al.) need to be replaced
2305 with generic attributes bound to the frame's function. */
2306 if (DEPRECATED_IGNORE_HELPER_CALL (stop_pc))
2307 {
2308 /* We're doing a "next", set a breakpoint at callee's return
2309 address (the address at which the caller will
2310 resume). */
2311 insert_step_resume_breakpoint (get_prev_frame
2312 (get_current_frame ()), ecs);
2313 keep_going (ecs);
2314 return;
2315 }
2316 #endif
2317 if (step_over_calls == STEP_OVER_ALL)
2318 {
2319 /* We're doing a "next", set a breakpoint at callee's return
2320 address (the address at which the caller will
2321 resume). */
2322 insert_step_resume_breakpoint (get_prev_frame
2323 (get_current_frame ()), ecs);
2324 keep_going (ecs);
2325 return;
2326 }
2327
2328 /* If we are in a function call trampoline (a stub between the
2329 calling routine and the real function), locate the real
2330 function. That's what tells us (a) whether we want to step
2331 into it at all, and (b) what prologue we want to run to the
2332 end of, if we do step into it. */
2333 real_stop_pc = skip_language_trampoline (stop_pc);
2334 if (real_stop_pc == 0)
2335 real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2336 if (real_stop_pc != 0)
2337 ecs->stop_func_start = real_stop_pc;
2338
2339 if (IN_SOLIB_DYNSYM_RESOLVE_CODE (ecs->stop_func_start))
2340 {
2341 struct symtab_and_line sr_sal;
2342 init_sal (&sr_sal);
2343 sr_sal.pc = ecs->stop_func_start;
2344
2345 check_for_old_step_resume_breakpoint ();
2346 step_resume_breakpoint =
2347 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2348 if (breakpoints_inserted)
2349 insert_breakpoints ();
2350
2351 keep_going (ecs);
2352 return;
2353 }
2354
2355 /* If we have line number information for the function we are
2356 thinking of stepping into, step into it.
2357
2358 If there are several symtabs at that PC (e.g. with include
2359 files), just want to know whether *any* of them have line
2360 numbers. find_pc_line handles this. */
2361 {
2362 struct symtab_and_line tmp_sal;
2363
2364 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
2365 if (tmp_sal.line != 0)
2366 {
2367 step_into_function (ecs);
2368 return;
2369 }
2370 }
2371
2372 /* If we have no line number and the step-stop-if-no-debug is
2373 set, we stop the step so that the user has a chance to switch
2374 in assembly mode. */
2375 if (step_over_calls == STEP_OVER_UNDEBUGGABLE && step_stop_if_no_debug)
2376 {
2377 stop_step = 1;
2378 print_stop_reason (END_STEPPING_RANGE, 0);
2379 stop_stepping (ecs);
2380 return;
2381 }
2382
2383 /* Set a breakpoint at callee's return address (the address at
2384 which the caller will resume). */
2385 insert_step_resume_breakpoint (get_prev_frame (get_current_frame ()),
2386 ecs);
2387 keep_going (ecs);
2388 return;
2389 }
2390
2391 /* If we're in the return path from a shared library trampoline,
2392 we want to proceed through the trampoline when stepping. */
2393 if (IN_SOLIB_RETURN_TRAMPOLINE (stop_pc, ecs->stop_func_name))
2394 {
2395 /* Determine where this trampoline returns. */
2396 CORE_ADDR real_stop_pc = SKIP_TRAMPOLINE_CODE (stop_pc);
2397
2398 /* Only proceed through if we know where it's going. */
2399 if (real_stop_pc)
2400 {
2401 /* And put the step-breakpoint there and go until there. */
2402 struct symtab_and_line sr_sal;
2403
2404 init_sal (&sr_sal); /* initialize to zeroes */
2405 sr_sal.pc = real_stop_pc;
2406 sr_sal.section = find_pc_overlay (sr_sal.pc);
2407 /* Do not specify what the fp should be when we stop
2408 since on some machines the prologue
2409 is where the new fp value is established. */
2410 check_for_old_step_resume_breakpoint ();
2411 step_resume_breakpoint =
2412 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2413 if (breakpoints_inserted)
2414 insert_breakpoints ();
2415
2416 /* Restart without fiddling with the step ranges or
2417 other state. */
2418 keep_going (ecs);
2419 return;
2420 }
2421 }
2422
2423 /* NOTE: tausq/2004-05-24: This if block used to be done before all
2424 the trampoline processing logic, however, there are some trampolines
2425 that have no names, so we should do trampoline handling first. */
2426 if (step_over_calls == STEP_OVER_UNDEBUGGABLE
2427 && ecs->stop_func_name == NULL)
2428 {
2429 /* The inferior just stepped into, or returned to, an
2430 undebuggable function (where there is no symbol, not even a
2431 minimal symbol, corresponding to the address where the
2432 inferior stopped). Since we want to skip this kind of code,
2433 we keep going until the inferior returns from this
2434 function. */
2435 if (step_stop_if_no_debug)
2436 {
2437 /* If we have no line number and the step-stop-if-no-debug
2438 is set, we stop the step so that the user has a chance to
2439 switch in assembly mode. */
2440 stop_step = 1;
2441 print_stop_reason (END_STEPPING_RANGE, 0);
2442 stop_stepping (ecs);
2443 return;
2444 }
2445 else
2446 {
2447 /* Set a breakpoint at callee's return address (the address
2448 at which the caller will resume). */
2449 insert_step_resume_breakpoint (get_prev_frame
2450 (get_current_frame ()), ecs);
2451 keep_going (ecs);
2452 return;
2453 }
2454 }
2455
2456 if (step_range_end == 1)
2457 {
2458 /* It is stepi or nexti. We always want to stop stepping after
2459 one instruction. */
2460 stop_step = 1;
2461 print_stop_reason (END_STEPPING_RANGE, 0);
2462 stop_stepping (ecs);
2463 return;
2464 }
2465
2466 ecs->sal = find_pc_line (stop_pc, 0);
2467
2468 if (ecs->sal.line == 0)
2469 {
2470 /* We have no line number information. That means to stop
2471 stepping (does this always happen right after one instruction,
2472 when we do "s" in a function with no line numbers,
2473 or can this happen as a result of a return or longjmp?). */
2474 stop_step = 1;
2475 print_stop_reason (END_STEPPING_RANGE, 0);
2476 stop_stepping (ecs);
2477 return;
2478 }
2479
2480 if ((stop_pc == ecs->sal.pc)
2481 && (ecs->current_line != ecs->sal.line
2482 || ecs->current_symtab != ecs->sal.symtab))
2483 {
2484 /* We are at the start of a different line. So stop. Note that
2485 we don't stop if we step into the middle of a different line.
2486 That is said to make things like for (;;) statements work
2487 better. */
2488 stop_step = 1;
2489 print_stop_reason (END_STEPPING_RANGE, 0);
2490 stop_stepping (ecs);
2491 return;
2492 }
2493
2494 /* We aren't done stepping.
2495
2496 Optimize by setting the stepping range to the line.
2497 (We might not be in the original line, but if we entered a
2498 new line in mid-statement, we continue stepping. This makes
2499 things like for(;;) statements work better.) */
2500
2501 if (ecs->stop_func_end && ecs->sal.end >= ecs->stop_func_end)
2502 {
2503 /* If this is the last line of the function, don't keep stepping
2504 (it would probably step us out of the function).
2505 This is particularly necessary for a one-line function,
2506 in which after skipping the prologue we better stop even though
2507 we will be in mid-line. */
2508 stop_step = 1;
2509 print_stop_reason (END_STEPPING_RANGE, 0);
2510 stop_stepping (ecs);
2511 return;
2512 }
2513 step_range_start = ecs->sal.pc;
2514 step_range_end = ecs->sal.end;
2515 step_frame_id = get_frame_id (get_current_frame ());
2516 ecs->current_line = ecs->sal.line;
2517 ecs->current_symtab = ecs->sal.symtab;
2518
2519 /* In the case where we just stepped out of a function into the
2520 middle of a line of the caller, continue stepping, but
2521 step_frame_id must be modified to current frame */
2522 #if 0
2523 /* NOTE: cagney/2003-10-16: I think this frame ID inner test is too
2524 generous. It will trigger on things like a step into a frameless
2525 stackless leaf function. I think the logic should instead look
2526 at the unwound frame ID has that should give a more robust
2527 indication of what happened. */
2528 if (step - ID == current - ID)
2529 still stepping in same function;
2530 else if (step - ID == unwind (current - ID))
2531 stepped into a function;
2532 else
2533 stepped out of a function;
2534 /* Of course this assumes that the frame ID unwind code is robust
2535 and we're willing to introduce frame unwind logic into this
2536 function. Fortunately, those days are nearly upon us. */
2537 #endif
2538 {
2539 struct frame_id current_frame = get_frame_id (get_current_frame ());
2540 if (!(frame_id_inner (current_frame, step_frame_id)))
2541 step_frame_id = current_frame;
2542 }
2543
2544 keep_going (ecs);
2545 }
2546
2547 /* Are we in the middle of stepping? */
2548
2549 static int
2550 currently_stepping (struct execution_control_state *ecs)
2551 {
2552 return ((!ecs->handling_longjmp
2553 && ((step_range_end && step_resume_breakpoint == NULL)
2554 || trap_expected))
2555 || ecs->stepping_through_solib_after_catch
2556 || bpstat_should_step ());
2557 }
2558
2559 /* Subroutine call with source code we should not step over. Do step
2560 to the first line of code in it. */
2561
2562 static void
2563 step_into_function (struct execution_control_state *ecs)
2564 {
2565 struct symtab *s;
2566 struct symtab_and_line sr_sal;
2567
2568 s = find_pc_symtab (stop_pc);
2569 if (s && s->language != language_asm)
2570 ecs->stop_func_start = SKIP_PROLOGUE (ecs->stop_func_start);
2571
2572 ecs->sal = find_pc_line (ecs->stop_func_start, 0);
2573 /* Use the step_resume_break to step until the end of the prologue,
2574 even if that involves jumps (as it seems to on the vax under
2575 4.2). */
2576 /* If the prologue ends in the middle of a source line, continue to
2577 the end of that source line (if it is still within the function).
2578 Otherwise, just go to end of prologue. */
2579 if (ecs->sal.end
2580 && ecs->sal.pc != ecs->stop_func_start
2581 && ecs->sal.end < ecs->stop_func_end)
2582 ecs->stop_func_start = ecs->sal.end;
2583
2584 /* Architectures which require breakpoint adjustment might not be able
2585 to place a breakpoint at the computed address. If so, the test
2586 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
2587 ecs->stop_func_start to an address at which a breakpoint may be
2588 legitimately placed.
2589
2590 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
2591 made, GDB will enter an infinite loop when stepping through
2592 optimized code consisting of VLIW instructions which contain
2593 subinstructions corresponding to different source lines. On
2594 FR-V, it's not permitted to place a breakpoint on any but the
2595 first subinstruction of a VLIW instruction. When a breakpoint is
2596 set, GDB will adjust the breakpoint address to the beginning of
2597 the VLIW instruction. Thus, we need to make the corresponding
2598 adjustment here when computing the stop address. */
2599
2600 if (gdbarch_adjust_breakpoint_address_p (current_gdbarch))
2601 {
2602 ecs->stop_func_start
2603 = gdbarch_adjust_breakpoint_address (current_gdbarch,
2604 ecs->stop_func_start);
2605 }
2606
2607 if (ecs->stop_func_start == stop_pc)
2608 {
2609 /* We are already there: stop now. */
2610 stop_step = 1;
2611 print_stop_reason (END_STEPPING_RANGE, 0);
2612 stop_stepping (ecs);
2613 return;
2614 }
2615 else
2616 {
2617 /* Put the step-breakpoint there and go until there. */
2618 init_sal (&sr_sal); /* initialize to zeroes */
2619 sr_sal.pc = ecs->stop_func_start;
2620 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
2621 /* Do not specify what the fp should be when we stop since on
2622 some machines the prologue is where the new fp value is
2623 established. */
2624 check_for_old_step_resume_breakpoint ();
2625 step_resume_breakpoint =
2626 set_momentary_breakpoint (sr_sal, null_frame_id, bp_step_resume);
2627 if (breakpoints_inserted)
2628 insert_breakpoints ();
2629
2630 /* And make sure stepping stops right away then. */
2631 step_range_end = step_range_start;
2632 }
2633 keep_going (ecs);
2634 }
2635
2636 /* Insert a "step resume breakpoint" at RETURN_FRAME.pc. This is used
2637 to skip a function (next, skip-no-debug) or signal. It's assumed
2638 that the function/signal handler being skipped eventually returns
2639 to the breakpoint inserted at RETURN_FRAME.pc.
2640
2641 For the skip-function case, the function may have been reached by
2642 either single stepping a call / return / signal-return instruction,
2643 or by hitting a breakpoint. In all cases, the RETURN_FRAME belongs
2644 to the skip-function's caller.
2645
2646 For the signals case, this is called with the interrupted
2647 function's frame. The signal handler, when it returns, will resume
2648 the interrupted function at RETURN_FRAME.pc. */
2649
2650 static void
2651 insert_step_resume_breakpoint (struct frame_info *return_frame,
2652 struct execution_control_state *ecs)
2653 {
2654 struct symtab_and_line sr_sal;
2655
2656 init_sal (&sr_sal); /* initialize to zeros */
2657
2658 sr_sal.pc = ADDR_BITS_REMOVE (get_frame_pc (return_frame));
2659 sr_sal.section = find_pc_overlay (sr_sal.pc);
2660
2661 check_for_old_step_resume_breakpoint ();
2662
2663 step_resume_breakpoint
2664 = set_momentary_breakpoint (sr_sal, get_frame_id (return_frame),
2665 bp_step_resume);
2666
2667 if (breakpoints_inserted)
2668 insert_breakpoints ();
2669 }
2670
2671 static void
2672 stop_stepping (struct execution_control_state *ecs)
2673 {
2674 /* Let callers know we don't want to wait for the inferior anymore. */
2675 ecs->wait_some_more = 0;
2676 }
2677
2678 /* This function handles various cases where we need to continue
2679 waiting for the inferior. */
2680 /* (Used to be the keep_going: label in the old wait_for_inferior) */
2681
2682 static void
2683 keep_going (struct execution_control_state *ecs)
2684 {
2685 /* Save the pc before execution, to compare with pc after stop. */
2686 prev_pc = read_pc (); /* Might have been DECR_AFTER_BREAK */
2687
2688 /* If we did not do break;, it means we should keep running the
2689 inferior and not return to debugger. */
2690
2691 if (trap_expected && stop_signal != TARGET_SIGNAL_TRAP)
2692 {
2693 /* We took a signal (which we are supposed to pass through to
2694 the inferior, else we'd have done a break above) and we
2695 haven't yet gotten our trap. Simply continue. */
2696 resume (currently_stepping (ecs), stop_signal);
2697 }
2698 else
2699 {
2700 /* Either the trap was not expected, but we are continuing
2701 anyway (the user asked that this signal be passed to the
2702 child)
2703 -- or --
2704 The signal was SIGTRAP, e.g. it was our signal, but we
2705 decided we should resume from it.
2706
2707 We're going to run this baby now!
2708
2709 Insert breakpoints now, unless we are trying to one-proceed
2710 past a breakpoint. */
2711 /* If we've just finished a special step resume and we don't
2712 want to hit a breakpoint, pull em out. */
2713 if (step_resume_breakpoint == NULL
2714 && ecs->remove_breakpoints_on_following_step)
2715 {
2716 ecs->remove_breakpoints_on_following_step = 0;
2717 remove_breakpoints ();
2718 breakpoints_inserted = 0;
2719 }
2720 else if (!breakpoints_inserted && !ecs->another_trap)
2721 {
2722 breakpoints_failed = insert_breakpoints ();
2723 if (breakpoints_failed)
2724 {
2725 stop_stepping (ecs);
2726 return;
2727 }
2728 breakpoints_inserted = 1;
2729 }
2730
2731 trap_expected = ecs->another_trap;
2732
2733 /* Do not deliver SIGNAL_TRAP (except when the user explicitly
2734 specifies that such a signal should be delivered to the
2735 target program).
2736
2737 Typically, this would occure when a user is debugging a
2738 target monitor on a simulator: the target monitor sets a
2739 breakpoint; the simulator encounters this break-point and
2740 halts the simulation handing control to GDB; GDB, noteing
2741 that the break-point isn't valid, returns control back to the
2742 simulator; the simulator then delivers the hardware
2743 equivalent of a SIGNAL_TRAP to the program being debugged. */
2744
2745 if (stop_signal == TARGET_SIGNAL_TRAP && !signal_program[stop_signal])
2746 stop_signal = TARGET_SIGNAL_0;
2747
2748
2749 resume (currently_stepping (ecs), stop_signal);
2750 }
2751
2752 prepare_to_wait (ecs);
2753 }
2754
2755 /* This function normally comes after a resume, before
2756 handle_inferior_event exits. It takes care of any last bits of
2757 housekeeping, and sets the all-important wait_some_more flag. */
2758
2759 static void
2760 prepare_to_wait (struct execution_control_state *ecs)
2761 {
2762 if (ecs->infwait_state == infwait_normal_state)
2763 {
2764 overlay_cache_invalid = 1;
2765
2766 /* We have to invalidate the registers BEFORE calling
2767 target_wait because they can be loaded from the target while
2768 in target_wait. This makes remote debugging a bit more
2769 efficient for those targets that provide critical registers
2770 as part of their normal status mechanism. */
2771
2772 registers_changed ();
2773 ecs->waiton_ptid = pid_to_ptid (-1);
2774 ecs->wp = &(ecs->ws);
2775 }
2776 /* This is the old end of the while loop. Let everybody know we
2777 want to wait for the inferior some more and get called again
2778 soon. */
2779 ecs->wait_some_more = 1;
2780 }
2781
2782 /* Print why the inferior has stopped. We always print something when
2783 the inferior exits, or receives a signal. The rest of the cases are
2784 dealt with later on in normal_stop() and print_it_typical(). Ideally
2785 there should be a call to this function from handle_inferior_event()
2786 each time stop_stepping() is called.*/
2787 static void
2788 print_stop_reason (enum inferior_stop_reason stop_reason, int stop_info)
2789 {
2790 switch (stop_reason)
2791 {
2792 case STOP_UNKNOWN:
2793 /* We don't deal with these cases from handle_inferior_event()
2794 yet. */
2795 break;
2796 case END_STEPPING_RANGE:
2797 /* We are done with a step/next/si/ni command. */
2798 /* For now print nothing. */
2799 /* Print a message only if not in the middle of doing a "step n"
2800 operation for n > 1 */
2801 if (!step_multi || !stop_step)
2802 if (ui_out_is_mi_like_p (uiout))
2803 ui_out_field_string (uiout, "reason", "end-stepping-range");
2804 break;
2805 case BREAKPOINT_HIT:
2806 /* We found a breakpoint. */
2807 /* For now print nothing. */
2808 break;
2809 case SIGNAL_EXITED:
2810 /* The inferior was terminated by a signal. */
2811 annotate_signalled ();
2812 if (ui_out_is_mi_like_p (uiout))
2813 ui_out_field_string (uiout, "reason", "exited-signalled");
2814 ui_out_text (uiout, "\nProgram terminated with signal ");
2815 annotate_signal_name ();
2816 ui_out_field_string (uiout, "signal-name",
2817 target_signal_to_name (stop_info));
2818 annotate_signal_name_end ();
2819 ui_out_text (uiout, ", ");
2820 annotate_signal_string ();
2821 ui_out_field_string (uiout, "signal-meaning",
2822 target_signal_to_string (stop_info));
2823 annotate_signal_string_end ();
2824 ui_out_text (uiout, ".\n");
2825 ui_out_text (uiout, "The program no longer exists.\n");
2826 break;
2827 case EXITED:
2828 /* The inferior program is finished. */
2829 annotate_exited (stop_info);
2830 if (stop_info)
2831 {
2832 if (ui_out_is_mi_like_p (uiout))
2833 ui_out_field_string (uiout, "reason", "exited");
2834 ui_out_text (uiout, "\nProgram exited with code ");
2835 ui_out_field_fmt (uiout, "exit-code", "0%o",
2836 (unsigned int) stop_info);
2837 ui_out_text (uiout, ".\n");
2838 }
2839 else
2840 {
2841 if (ui_out_is_mi_like_p (uiout))
2842 ui_out_field_string (uiout, "reason", "exited-normally");
2843 ui_out_text (uiout, "\nProgram exited normally.\n");
2844 }
2845 break;
2846 case SIGNAL_RECEIVED:
2847 /* Signal received. The signal table tells us to print about
2848 it. */
2849 annotate_signal ();
2850 ui_out_text (uiout, "\nProgram received signal ");
2851 annotate_signal_name ();
2852 if (ui_out_is_mi_like_p (uiout))
2853 ui_out_field_string (uiout, "reason", "signal-received");
2854 ui_out_field_string (uiout, "signal-name",
2855 target_signal_to_name (stop_info));
2856 annotate_signal_name_end ();
2857 ui_out_text (uiout, ", ");
2858 annotate_signal_string ();
2859 ui_out_field_string (uiout, "signal-meaning",
2860 target_signal_to_string (stop_info));
2861 annotate_signal_string_end ();
2862 ui_out_text (uiout, ".\n");
2863 break;
2864 default:
2865 internal_error (__FILE__, __LINE__,
2866 "print_stop_reason: unrecognized enum value");
2867 break;
2868 }
2869 }
2870 \f
2871
2872 /* Here to return control to GDB when the inferior stops for real.
2873 Print appropriate messages, remove breakpoints, give terminal our modes.
2874
2875 STOP_PRINT_FRAME nonzero means print the executing frame
2876 (pc, function, args, file, line number and line text).
2877 BREAKPOINTS_FAILED nonzero means stop was due to error
2878 attempting to insert breakpoints. */
2879
2880 void
2881 normal_stop (void)
2882 {
2883 struct target_waitstatus last;
2884 ptid_t last_ptid;
2885
2886 get_last_target_status (&last_ptid, &last);
2887
2888 /* As with the notification of thread events, we want to delay
2889 notifying the user that we've switched thread context until
2890 the inferior actually stops.
2891
2892 There's no point in saying anything if the inferior has exited.
2893 Note that SIGNALLED here means "exited with a signal", not
2894 "received a signal". */
2895 if (!ptid_equal (previous_inferior_ptid, inferior_ptid)
2896 && target_has_execution
2897 && last.kind != TARGET_WAITKIND_SIGNALLED
2898 && last.kind != TARGET_WAITKIND_EXITED)
2899 {
2900 target_terminal_ours_for_output ();
2901 printf_filtered ("[Switching to %s]\n",
2902 target_pid_or_tid_to_str (inferior_ptid));
2903 previous_inferior_ptid = inferior_ptid;
2904 }
2905
2906 /* NOTE drow/2004-01-17: Is this still necessary? */
2907 /* Make sure that the current_frame's pc is correct. This
2908 is a correction for setting up the frame info before doing
2909 DECR_PC_AFTER_BREAK */
2910 if (target_has_execution)
2911 /* FIXME: cagney/2002-12-06: Has the PC changed? Thanks to
2912 DECR_PC_AFTER_BREAK, the program counter can change. Ask the
2913 frame code to check for this and sort out any resultant mess.
2914 DECR_PC_AFTER_BREAK needs to just go away. */
2915 deprecated_update_frame_pc_hack (get_current_frame (), read_pc ());
2916
2917 if (target_has_execution && breakpoints_inserted)
2918 {
2919 if (remove_breakpoints ())
2920 {
2921 target_terminal_ours_for_output ();
2922 printf_filtered ("Cannot remove breakpoints because ");
2923 printf_filtered ("program is no longer writable.\n");
2924 printf_filtered ("It might be running in another process.\n");
2925 printf_filtered ("Further execution is probably impossible.\n");
2926 }
2927 }
2928 breakpoints_inserted = 0;
2929
2930 /* Delete the breakpoint we stopped at, if it wants to be deleted.
2931 Delete any breakpoint that is to be deleted at the next stop. */
2932
2933 breakpoint_auto_delete (stop_bpstat);
2934
2935 /* If an auto-display called a function and that got a signal,
2936 delete that auto-display to avoid an infinite recursion. */
2937
2938 if (stopped_by_random_signal)
2939 disable_current_display ();
2940
2941 /* Don't print a message if in the middle of doing a "step n"
2942 operation for n > 1 */
2943 if (step_multi && stop_step)
2944 goto done;
2945
2946 target_terminal_ours ();
2947
2948 /* Look up the hook_stop and run it (CLI internally handles problem
2949 of stop_command's pre-hook not existing). */
2950 if (stop_command)
2951 catch_errors (hook_stop_stub, stop_command,
2952 "Error while running hook_stop:\n", RETURN_MASK_ALL);
2953
2954 if (!target_has_stack)
2955 {
2956
2957 goto done;
2958 }
2959
2960 /* Select innermost stack frame - i.e., current frame is frame 0,
2961 and current location is based on that.
2962 Don't do this on return from a stack dummy routine,
2963 or if the program has exited. */
2964
2965 if (!stop_stack_dummy)
2966 {
2967 select_frame (get_current_frame ());
2968
2969 /* Print current location without a level number, if
2970 we have changed functions or hit a breakpoint.
2971 Print source line if we have one.
2972 bpstat_print() contains the logic deciding in detail
2973 what to print, based on the event(s) that just occurred. */
2974
2975 if (stop_print_frame && deprecated_selected_frame)
2976 {
2977 int bpstat_ret;
2978 int source_flag;
2979 int do_frame_printing = 1;
2980
2981 bpstat_ret = bpstat_print (stop_bpstat);
2982 switch (bpstat_ret)
2983 {
2984 case PRINT_UNKNOWN:
2985 /* FIXME: cagney/2002-12-01: Given that a frame ID does
2986 (or should) carry around the function and does (or
2987 should) use that when doing a frame comparison. */
2988 if (stop_step
2989 && frame_id_eq (step_frame_id,
2990 get_frame_id (get_current_frame ()))
2991 && step_start_function == find_pc_function (stop_pc))
2992 source_flag = SRC_LINE; /* finished step, just print source line */
2993 else
2994 source_flag = SRC_AND_LOC; /* print location and source line */
2995 break;
2996 case PRINT_SRC_AND_LOC:
2997 source_flag = SRC_AND_LOC; /* print location and source line */
2998 break;
2999 case PRINT_SRC_ONLY:
3000 source_flag = SRC_LINE;
3001 break;
3002 case PRINT_NOTHING:
3003 source_flag = SRC_LINE; /* something bogus */
3004 do_frame_printing = 0;
3005 break;
3006 default:
3007 internal_error (__FILE__, __LINE__, "Unknown value.");
3008 }
3009 /* For mi, have the same behavior every time we stop:
3010 print everything but the source line. */
3011 if (ui_out_is_mi_like_p (uiout))
3012 source_flag = LOC_AND_ADDRESS;
3013
3014 if (ui_out_is_mi_like_p (uiout))
3015 ui_out_field_int (uiout, "thread-id",
3016 pid_to_thread_id (inferior_ptid));
3017 /* The behavior of this routine with respect to the source
3018 flag is:
3019 SRC_LINE: Print only source line
3020 LOCATION: Print only location
3021 SRC_AND_LOC: Print location and source line */
3022 if (do_frame_printing)
3023 print_stack_frame (get_selected_frame (), 0, source_flag);
3024
3025 /* Display the auto-display expressions. */
3026 do_displays ();
3027 }
3028 }
3029
3030 /* Save the function value return registers, if we care.
3031 We might be about to restore their previous contents. */
3032 if (proceed_to_finish)
3033 /* NB: The copy goes through to the target picking up the value of
3034 all the registers. */
3035 regcache_cpy (stop_registers, current_regcache);
3036
3037 if (stop_stack_dummy)
3038 {
3039 /* Pop the empty frame that contains the stack dummy. POP_FRAME
3040 ends with a setting of the current frame, so we can use that
3041 next. */
3042 frame_pop (get_current_frame ());
3043 /* Set stop_pc to what it was before we called the function.
3044 Can't rely on restore_inferior_status because that only gets
3045 called if we don't stop in the called function. */
3046 stop_pc = read_pc ();
3047 select_frame (get_current_frame ());
3048 }
3049
3050 done:
3051 annotate_stopped ();
3052 observer_notify_normal_stop (stop_bpstat);
3053 }
3054
3055 static int
3056 hook_stop_stub (void *cmd)
3057 {
3058 execute_cmd_pre_hook ((struct cmd_list_element *) cmd);
3059 return (0);
3060 }
3061 \f
3062 int
3063 signal_stop_state (int signo)
3064 {
3065 return signal_stop[signo];
3066 }
3067
3068 int
3069 signal_print_state (int signo)
3070 {
3071 return signal_print[signo];
3072 }
3073
3074 int
3075 signal_pass_state (int signo)
3076 {
3077 return signal_program[signo];
3078 }
3079
3080 int
3081 signal_stop_update (int signo, int state)
3082 {
3083 int ret = signal_stop[signo];
3084 signal_stop[signo] = state;
3085 return ret;
3086 }
3087
3088 int
3089 signal_print_update (int signo, int state)
3090 {
3091 int ret = signal_print[signo];
3092 signal_print[signo] = state;
3093 return ret;
3094 }
3095
3096 int
3097 signal_pass_update (int signo, int state)
3098 {
3099 int ret = signal_program[signo];
3100 signal_program[signo] = state;
3101 return ret;
3102 }
3103
3104 static void
3105 sig_print_header (void)
3106 {
3107 printf_filtered ("\
3108 Signal Stop\tPrint\tPass to program\tDescription\n");
3109 }
3110
3111 static void
3112 sig_print_info (enum target_signal oursig)
3113 {
3114 char *name = target_signal_to_name (oursig);
3115 int name_padding = 13 - strlen (name);
3116
3117 if (name_padding <= 0)
3118 name_padding = 0;
3119
3120 printf_filtered ("%s", name);
3121 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
3122 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
3123 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
3124 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
3125 printf_filtered ("%s\n", target_signal_to_string (oursig));
3126 }
3127
3128 /* Specify how various signals in the inferior should be handled. */
3129
3130 static void
3131 handle_command (char *args, int from_tty)
3132 {
3133 char **argv;
3134 int digits, wordlen;
3135 int sigfirst, signum, siglast;
3136 enum target_signal oursig;
3137 int allsigs;
3138 int nsigs;
3139 unsigned char *sigs;
3140 struct cleanup *old_chain;
3141
3142 if (args == NULL)
3143 {
3144 error_no_arg ("signal to handle");
3145 }
3146
3147 /* Allocate and zero an array of flags for which signals to handle. */
3148
3149 nsigs = (int) TARGET_SIGNAL_LAST;
3150 sigs = (unsigned char *) alloca (nsigs);
3151 memset (sigs, 0, nsigs);
3152
3153 /* Break the command line up into args. */
3154
3155 argv = buildargv (args);
3156 if (argv == NULL)
3157 {
3158 nomem (0);
3159 }
3160 old_chain = make_cleanup_freeargv (argv);
3161
3162 /* Walk through the args, looking for signal oursigs, signal names, and
3163 actions. Signal numbers and signal names may be interspersed with
3164 actions, with the actions being performed for all signals cumulatively
3165 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
3166
3167 while (*argv != NULL)
3168 {
3169 wordlen = strlen (*argv);
3170 for (digits = 0; isdigit ((*argv)[digits]); digits++)
3171 {;
3172 }
3173 allsigs = 0;
3174 sigfirst = siglast = -1;
3175
3176 if (wordlen >= 1 && !strncmp (*argv, "all", wordlen))
3177 {
3178 /* Apply action to all signals except those used by the
3179 debugger. Silently skip those. */
3180 allsigs = 1;
3181 sigfirst = 0;
3182 siglast = nsigs - 1;
3183 }
3184 else if (wordlen >= 1 && !strncmp (*argv, "stop", wordlen))
3185 {
3186 SET_SIGS (nsigs, sigs, signal_stop);
3187 SET_SIGS (nsigs, sigs, signal_print);
3188 }
3189 else if (wordlen >= 1 && !strncmp (*argv, "ignore", wordlen))
3190 {
3191 UNSET_SIGS (nsigs, sigs, signal_program);
3192 }
3193 else if (wordlen >= 2 && !strncmp (*argv, "print", wordlen))
3194 {
3195 SET_SIGS (nsigs, sigs, signal_print);
3196 }
3197 else if (wordlen >= 2 && !strncmp (*argv, "pass", wordlen))
3198 {
3199 SET_SIGS (nsigs, sigs, signal_program);
3200 }
3201 else if (wordlen >= 3 && !strncmp (*argv, "nostop", wordlen))
3202 {
3203 UNSET_SIGS (nsigs, sigs, signal_stop);
3204 }
3205 else if (wordlen >= 3 && !strncmp (*argv, "noignore", wordlen))
3206 {
3207 SET_SIGS (nsigs, sigs, signal_program);
3208 }
3209 else if (wordlen >= 4 && !strncmp (*argv, "noprint", wordlen))
3210 {
3211 UNSET_SIGS (nsigs, sigs, signal_print);
3212 UNSET_SIGS (nsigs, sigs, signal_stop);
3213 }
3214 else if (wordlen >= 4 && !strncmp (*argv, "nopass", wordlen))
3215 {
3216 UNSET_SIGS (nsigs, sigs, signal_program);
3217 }
3218 else if (digits > 0)
3219 {
3220 /* It is numeric. The numeric signal refers to our own
3221 internal signal numbering from target.h, not to host/target
3222 signal number. This is a feature; users really should be
3223 using symbolic names anyway, and the common ones like
3224 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
3225
3226 sigfirst = siglast = (int)
3227 target_signal_from_command (atoi (*argv));
3228 if ((*argv)[digits] == '-')
3229 {
3230 siglast = (int)
3231 target_signal_from_command (atoi ((*argv) + digits + 1));
3232 }
3233 if (sigfirst > siglast)
3234 {
3235 /* Bet he didn't figure we'd think of this case... */
3236 signum = sigfirst;
3237 sigfirst = siglast;
3238 siglast = signum;
3239 }
3240 }
3241 else
3242 {
3243 oursig = target_signal_from_name (*argv);
3244 if (oursig != TARGET_SIGNAL_UNKNOWN)
3245 {
3246 sigfirst = siglast = (int) oursig;
3247 }
3248 else
3249 {
3250 /* Not a number and not a recognized flag word => complain. */
3251 error ("Unrecognized or ambiguous flag word: \"%s\".", *argv);
3252 }
3253 }
3254
3255 /* If any signal numbers or symbol names were found, set flags for
3256 which signals to apply actions to. */
3257
3258 for (signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
3259 {
3260 switch ((enum target_signal) signum)
3261 {
3262 case TARGET_SIGNAL_TRAP:
3263 case TARGET_SIGNAL_INT:
3264 if (!allsigs && !sigs[signum])
3265 {
3266 if (query ("%s is used by the debugger.\n\
3267 Are you sure you want to change it? ", target_signal_to_name ((enum target_signal) signum)))
3268 {
3269 sigs[signum] = 1;
3270 }
3271 else
3272 {
3273 printf_unfiltered ("Not confirmed, unchanged.\n");
3274 gdb_flush (gdb_stdout);
3275 }
3276 }
3277 break;
3278 case TARGET_SIGNAL_0:
3279 case TARGET_SIGNAL_DEFAULT:
3280 case TARGET_SIGNAL_UNKNOWN:
3281 /* Make sure that "all" doesn't print these. */
3282 break;
3283 default:
3284 sigs[signum] = 1;
3285 break;
3286 }
3287 }
3288
3289 argv++;
3290 }
3291
3292 target_notice_signals (inferior_ptid);
3293
3294 if (from_tty)
3295 {
3296 /* Show the results. */
3297 sig_print_header ();
3298 for (signum = 0; signum < nsigs; signum++)
3299 {
3300 if (sigs[signum])
3301 {
3302 sig_print_info (signum);
3303 }
3304 }
3305 }
3306
3307 do_cleanups (old_chain);
3308 }
3309
3310 static void
3311 xdb_handle_command (char *args, int from_tty)
3312 {
3313 char **argv;
3314 struct cleanup *old_chain;
3315
3316 /* Break the command line up into args. */
3317
3318 argv = buildargv (args);
3319 if (argv == NULL)
3320 {
3321 nomem (0);
3322 }
3323 old_chain = make_cleanup_freeargv (argv);
3324 if (argv[1] != (char *) NULL)
3325 {
3326 char *argBuf;
3327 int bufLen;
3328
3329 bufLen = strlen (argv[0]) + 20;
3330 argBuf = (char *) xmalloc (bufLen);
3331 if (argBuf)
3332 {
3333 int validFlag = 1;
3334 enum target_signal oursig;
3335
3336 oursig = target_signal_from_name (argv[0]);
3337 memset (argBuf, 0, bufLen);
3338 if (strcmp (argv[1], "Q") == 0)
3339 sprintf (argBuf, "%s %s", argv[0], "noprint");
3340 else
3341 {
3342 if (strcmp (argv[1], "s") == 0)
3343 {
3344 if (!signal_stop[oursig])
3345 sprintf (argBuf, "%s %s", argv[0], "stop");
3346 else
3347 sprintf (argBuf, "%s %s", argv[0], "nostop");
3348 }
3349 else if (strcmp (argv[1], "i") == 0)
3350 {
3351 if (!signal_program[oursig])
3352 sprintf (argBuf, "%s %s", argv[0], "pass");
3353 else
3354 sprintf (argBuf, "%s %s", argv[0], "nopass");
3355 }
3356 else if (strcmp (argv[1], "r") == 0)
3357 {
3358 if (!signal_print[oursig])
3359 sprintf (argBuf, "%s %s", argv[0], "print");
3360 else
3361 sprintf (argBuf, "%s %s", argv[0], "noprint");
3362 }
3363 else
3364 validFlag = 0;
3365 }
3366 if (validFlag)
3367 handle_command (argBuf, from_tty);
3368 else
3369 printf_filtered ("Invalid signal handling flag.\n");
3370 if (argBuf)
3371 xfree (argBuf);
3372 }
3373 }
3374 do_cleanups (old_chain);
3375 }
3376
3377 /* Print current contents of the tables set by the handle command.
3378 It is possible we should just be printing signals actually used
3379 by the current target (but for things to work right when switching
3380 targets, all signals should be in the signal tables). */
3381
3382 static void
3383 signals_info (char *signum_exp, int from_tty)
3384 {
3385 enum target_signal oursig;
3386 sig_print_header ();
3387
3388 if (signum_exp)
3389 {
3390 /* First see if this is a symbol name. */
3391 oursig = target_signal_from_name (signum_exp);
3392 if (oursig == TARGET_SIGNAL_UNKNOWN)
3393 {
3394 /* No, try numeric. */
3395 oursig =
3396 target_signal_from_command (parse_and_eval_long (signum_exp));
3397 }
3398 sig_print_info (oursig);
3399 return;
3400 }
3401
3402 printf_filtered ("\n");
3403 /* These ugly casts brought to you by the native VAX compiler. */
3404 for (oursig = TARGET_SIGNAL_FIRST;
3405 (int) oursig < (int) TARGET_SIGNAL_LAST;
3406 oursig = (enum target_signal) ((int) oursig + 1))
3407 {
3408 QUIT;
3409
3410 if (oursig != TARGET_SIGNAL_UNKNOWN
3411 && oursig != TARGET_SIGNAL_DEFAULT && oursig != TARGET_SIGNAL_0)
3412 sig_print_info (oursig);
3413 }
3414
3415 printf_filtered ("\nUse the \"handle\" command to change these tables.\n");
3416 }
3417 \f
3418 struct inferior_status
3419 {
3420 enum target_signal stop_signal;
3421 CORE_ADDR stop_pc;
3422 bpstat stop_bpstat;
3423 int stop_step;
3424 int stop_stack_dummy;
3425 int stopped_by_random_signal;
3426 int trap_expected;
3427 CORE_ADDR step_range_start;
3428 CORE_ADDR step_range_end;
3429 struct frame_id step_frame_id;
3430 enum step_over_calls_kind step_over_calls;
3431 CORE_ADDR step_resume_break_address;
3432 int stop_after_trap;
3433 int stop_soon;
3434 struct regcache *stop_registers;
3435
3436 /* These are here because if call_function_by_hand has written some
3437 registers and then decides to call error(), we better not have changed
3438 any registers. */
3439 struct regcache *registers;
3440
3441 /* A frame unique identifier. */
3442 struct frame_id selected_frame_id;
3443
3444 int breakpoint_proceeded;
3445 int restore_stack_info;
3446 int proceed_to_finish;
3447 };
3448
3449 void
3450 write_inferior_status_register (struct inferior_status *inf_status, int regno,
3451 LONGEST val)
3452 {
3453 int size = register_size (current_gdbarch, regno);
3454 void *buf = alloca (size);
3455 store_signed_integer (buf, size, val);
3456 regcache_raw_write (inf_status->registers, regno, buf);
3457 }
3458
3459 /* Save all of the information associated with the inferior<==>gdb
3460 connection. INF_STATUS is a pointer to a "struct inferior_status"
3461 (defined in inferior.h). */
3462
3463 struct inferior_status *
3464 save_inferior_status (int restore_stack_info)
3465 {
3466 struct inferior_status *inf_status = XMALLOC (struct inferior_status);
3467
3468 inf_status->stop_signal = stop_signal;
3469 inf_status->stop_pc = stop_pc;
3470 inf_status->stop_step = stop_step;
3471 inf_status->stop_stack_dummy = stop_stack_dummy;
3472 inf_status->stopped_by_random_signal = stopped_by_random_signal;
3473 inf_status->trap_expected = trap_expected;
3474 inf_status->step_range_start = step_range_start;
3475 inf_status->step_range_end = step_range_end;
3476 inf_status->step_frame_id = step_frame_id;
3477 inf_status->step_over_calls = step_over_calls;
3478 inf_status->stop_after_trap = stop_after_trap;
3479 inf_status->stop_soon = stop_soon;
3480 /* Save original bpstat chain here; replace it with copy of chain.
3481 If caller's caller is walking the chain, they'll be happier if we
3482 hand them back the original chain when restore_inferior_status is
3483 called. */
3484 inf_status->stop_bpstat = stop_bpstat;
3485 stop_bpstat = bpstat_copy (stop_bpstat);
3486 inf_status->breakpoint_proceeded = breakpoint_proceeded;
3487 inf_status->restore_stack_info = restore_stack_info;
3488 inf_status->proceed_to_finish = proceed_to_finish;
3489
3490 inf_status->stop_registers = regcache_dup_no_passthrough (stop_registers);
3491
3492 inf_status->registers = regcache_dup (current_regcache);
3493
3494 inf_status->selected_frame_id = get_frame_id (deprecated_selected_frame);
3495 return inf_status;
3496 }
3497
3498 static int
3499 restore_selected_frame (void *args)
3500 {
3501 struct frame_id *fid = (struct frame_id *) args;
3502 struct frame_info *frame;
3503
3504 frame = frame_find_by_id (*fid);
3505
3506 /* If inf_status->selected_frame_id is NULL, there was no previously
3507 selected frame. */
3508 if (frame == NULL)
3509 {
3510 warning ("Unable to restore previously selected frame.\n");
3511 return 0;
3512 }
3513
3514 select_frame (frame);
3515
3516 return (1);
3517 }
3518
3519 void
3520 restore_inferior_status (struct inferior_status *inf_status)
3521 {
3522 stop_signal = inf_status->stop_signal;
3523 stop_pc = inf_status->stop_pc;
3524 stop_step = inf_status->stop_step;
3525 stop_stack_dummy = inf_status->stop_stack_dummy;
3526 stopped_by_random_signal = inf_status->stopped_by_random_signal;
3527 trap_expected = inf_status->trap_expected;
3528 step_range_start = inf_status->step_range_start;
3529 step_range_end = inf_status->step_range_end;
3530 step_frame_id = inf_status->step_frame_id;
3531 step_over_calls = inf_status->step_over_calls;
3532 stop_after_trap = inf_status->stop_after_trap;
3533 stop_soon = inf_status->stop_soon;
3534 bpstat_clear (&stop_bpstat);
3535 stop_bpstat = inf_status->stop_bpstat;
3536 breakpoint_proceeded = inf_status->breakpoint_proceeded;
3537 proceed_to_finish = inf_status->proceed_to_finish;
3538
3539 /* FIXME: Is the restore of stop_registers always needed. */
3540 regcache_xfree (stop_registers);
3541 stop_registers = inf_status->stop_registers;
3542
3543 /* The inferior can be gone if the user types "print exit(0)"
3544 (and perhaps other times). */
3545 if (target_has_execution)
3546 /* NB: The register write goes through to the target. */
3547 regcache_cpy (current_regcache, inf_status->registers);
3548 regcache_xfree (inf_status->registers);
3549
3550 /* FIXME: If we are being called after stopping in a function which
3551 is called from gdb, we should not be trying to restore the
3552 selected frame; it just prints a spurious error message (The
3553 message is useful, however, in detecting bugs in gdb (like if gdb
3554 clobbers the stack)). In fact, should we be restoring the
3555 inferior status at all in that case? . */
3556
3557 if (target_has_stack && inf_status->restore_stack_info)
3558 {
3559 /* The point of catch_errors is that if the stack is clobbered,
3560 walking the stack might encounter a garbage pointer and
3561 error() trying to dereference it. */
3562 if (catch_errors
3563 (restore_selected_frame, &inf_status->selected_frame_id,
3564 "Unable to restore previously selected frame:\n",
3565 RETURN_MASK_ERROR) == 0)
3566 /* Error in restoring the selected frame. Select the innermost
3567 frame. */
3568 select_frame (get_current_frame ());
3569
3570 }
3571
3572 xfree (inf_status);
3573 }
3574
3575 static void
3576 do_restore_inferior_status_cleanup (void *sts)
3577 {
3578 restore_inferior_status (sts);
3579 }
3580
3581 struct cleanup *
3582 make_cleanup_restore_inferior_status (struct inferior_status *inf_status)
3583 {
3584 return make_cleanup (do_restore_inferior_status_cleanup, inf_status);
3585 }
3586
3587 void
3588 discard_inferior_status (struct inferior_status *inf_status)
3589 {
3590 /* See save_inferior_status for info on stop_bpstat. */
3591 bpstat_clear (&inf_status->stop_bpstat);
3592 regcache_xfree (inf_status->registers);
3593 regcache_xfree (inf_status->stop_registers);
3594 xfree (inf_status);
3595 }
3596
3597 int
3598 inferior_has_forked (int pid, int *child_pid)
3599 {
3600 struct target_waitstatus last;
3601 ptid_t last_ptid;
3602
3603 get_last_target_status (&last_ptid, &last);
3604
3605 if (last.kind != TARGET_WAITKIND_FORKED)
3606 return 0;
3607
3608 if (ptid_get_pid (last_ptid) != pid)
3609 return 0;
3610
3611 *child_pid = last.value.related_pid;
3612 return 1;
3613 }
3614
3615 int
3616 inferior_has_vforked (int pid, int *child_pid)
3617 {
3618 struct target_waitstatus last;
3619 ptid_t last_ptid;
3620
3621 get_last_target_status (&last_ptid, &last);
3622
3623 if (last.kind != TARGET_WAITKIND_VFORKED)
3624 return 0;
3625
3626 if (ptid_get_pid (last_ptid) != pid)
3627 return 0;
3628
3629 *child_pid = last.value.related_pid;
3630 return 1;
3631 }
3632
3633 int
3634 inferior_has_execd (int pid, char **execd_pathname)
3635 {
3636 struct target_waitstatus last;
3637 ptid_t last_ptid;
3638
3639 get_last_target_status (&last_ptid, &last);
3640
3641 if (last.kind != TARGET_WAITKIND_EXECD)
3642 return 0;
3643
3644 if (ptid_get_pid (last_ptid) != pid)
3645 return 0;
3646
3647 *execd_pathname = xstrdup (last.value.execd_pathname);
3648 return 1;
3649 }
3650
3651 /* Oft used ptids */
3652 ptid_t null_ptid;
3653 ptid_t minus_one_ptid;
3654
3655 /* Create a ptid given the necessary PID, LWP, and TID components. */
3656
3657 ptid_t
3658 ptid_build (int pid, long lwp, long tid)
3659 {
3660 ptid_t ptid;
3661
3662 ptid.pid = pid;
3663 ptid.lwp = lwp;
3664 ptid.tid = tid;
3665 return ptid;
3666 }
3667
3668 /* Create a ptid from just a pid. */
3669
3670 ptid_t
3671 pid_to_ptid (int pid)
3672 {
3673 return ptid_build (pid, 0, 0);
3674 }
3675
3676 /* Fetch the pid (process id) component from a ptid. */
3677
3678 int
3679 ptid_get_pid (ptid_t ptid)
3680 {
3681 return ptid.pid;
3682 }
3683
3684 /* Fetch the lwp (lightweight process) component from a ptid. */
3685
3686 long
3687 ptid_get_lwp (ptid_t ptid)
3688 {
3689 return ptid.lwp;
3690 }
3691
3692 /* Fetch the tid (thread id) component from a ptid. */
3693
3694 long
3695 ptid_get_tid (ptid_t ptid)
3696 {
3697 return ptid.tid;
3698 }
3699
3700 /* ptid_equal() is used to test equality of two ptids. */
3701
3702 int
3703 ptid_equal (ptid_t ptid1, ptid_t ptid2)
3704 {
3705 return (ptid1.pid == ptid2.pid && ptid1.lwp == ptid2.lwp
3706 && ptid1.tid == ptid2.tid);
3707 }
3708
3709 /* restore_inferior_ptid() will be used by the cleanup machinery
3710 to restore the inferior_ptid value saved in a call to
3711 save_inferior_ptid(). */
3712
3713 static void
3714 restore_inferior_ptid (void *arg)
3715 {
3716 ptid_t *saved_ptid_ptr = arg;
3717 inferior_ptid = *saved_ptid_ptr;
3718 xfree (arg);
3719 }
3720
3721 /* Save the value of inferior_ptid so that it may be restored by a
3722 later call to do_cleanups(). Returns the struct cleanup pointer
3723 needed for later doing the cleanup. */
3724
3725 struct cleanup *
3726 save_inferior_ptid (void)
3727 {
3728 ptid_t *saved_ptid_ptr;
3729
3730 saved_ptid_ptr = xmalloc (sizeof (ptid_t));
3731 *saved_ptid_ptr = inferior_ptid;
3732 return make_cleanup (restore_inferior_ptid, saved_ptid_ptr);
3733 }
3734 \f
3735
3736 static void
3737 build_infrun (void)
3738 {
3739 stop_registers = regcache_xmalloc (current_gdbarch);
3740 }
3741
3742 void
3743 _initialize_infrun (void)
3744 {
3745 int i;
3746 int numsigs;
3747 struct cmd_list_element *c;
3748
3749 DEPRECATED_REGISTER_GDBARCH_SWAP (stop_registers);
3750 deprecated_register_gdbarch_swap (NULL, 0, build_infrun);
3751
3752 add_info ("signals", signals_info,
3753 "What debugger does when program gets various signals.\n\
3754 Specify a signal as argument to print info on that signal only.");
3755 add_info_alias ("handle", "signals", 0);
3756
3757 add_com ("handle", class_run, handle_command,
3758 concat ("Specify how to handle a signal.\n\
3759 Args are signals and actions to apply to those signals.\n\
3760 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3761 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3762 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3763 The special arg \"all\" is recognized to mean all signals except those\n\
3764 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
3765 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
3766 Stop means reenter debugger if this signal happens (implies print).\n\
3767 Print means print a message if this signal happens.\n\
3768 Pass means let program see this signal; otherwise program doesn't know.\n\
3769 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3770 Pass and Stop may be combined.", NULL));
3771 if (xdb_commands)
3772 {
3773 add_com ("lz", class_info, signals_info,
3774 "What debugger does when program gets various signals.\n\
3775 Specify a signal as argument to print info on that signal only.");
3776 add_com ("z", class_run, xdb_handle_command,
3777 concat ("Specify how to handle a signal.\n\
3778 Args are signals and actions to apply to those signals.\n\
3779 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
3780 from 1-15 are allowed for compatibility with old versions of GDB.\n\
3781 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
3782 The special arg \"all\" is recognized to mean all signals except those\n\
3783 used by the debugger, typically SIGTRAP and SIGINT.\n", "Recognized actions include \"s\" (toggles between stop and nostop), \n\
3784 \"r\" (toggles between print and noprint), \"i\" (toggles between pass and \
3785 nopass), \"Q\" (noprint)\n\
3786 Stop means reenter debugger if this signal happens (implies print).\n\
3787 Print means print a message if this signal happens.\n\
3788 Pass means let program see this signal; otherwise program doesn't know.\n\
3789 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
3790 Pass and Stop may be combined.", NULL));
3791 }
3792
3793 if (!dbx_commands)
3794 stop_command =
3795 add_cmd ("stop", class_obscure, not_just_help_class_command, "There is no `stop' command, but you can set a hook on `stop'.\n\
3796 This allows you to set a list of commands to be run each time execution\n\
3797 of the program stops.", &cmdlist);
3798
3799 numsigs = (int) TARGET_SIGNAL_LAST;
3800 signal_stop = (unsigned char *) xmalloc (sizeof (signal_stop[0]) * numsigs);
3801 signal_print = (unsigned char *)
3802 xmalloc (sizeof (signal_print[0]) * numsigs);
3803 signal_program = (unsigned char *)
3804 xmalloc (sizeof (signal_program[0]) * numsigs);
3805 for (i = 0; i < numsigs; i++)
3806 {
3807 signal_stop[i] = 1;
3808 signal_print[i] = 1;
3809 signal_program[i] = 1;
3810 }
3811
3812 /* Signals caused by debugger's own actions
3813 should not be given to the program afterwards. */
3814 signal_program[TARGET_SIGNAL_TRAP] = 0;
3815 signal_program[TARGET_SIGNAL_INT] = 0;
3816
3817 /* Signals that are not errors should not normally enter the debugger. */
3818 signal_stop[TARGET_SIGNAL_ALRM] = 0;
3819 signal_print[TARGET_SIGNAL_ALRM] = 0;
3820 signal_stop[TARGET_SIGNAL_VTALRM] = 0;
3821 signal_print[TARGET_SIGNAL_VTALRM] = 0;
3822 signal_stop[TARGET_SIGNAL_PROF] = 0;
3823 signal_print[TARGET_SIGNAL_PROF] = 0;
3824 signal_stop[TARGET_SIGNAL_CHLD] = 0;
3825 signal_print[TARGET_SIGNAL_CHLD] = 0;
3826 signal_stop[TARGET_SIGNAL_IO] = 0;
3827 signal_print[TARGET_SIGNAL_IO] = 0;
3828 signal_stop[TARGET_SIGNAL_POLL] = 0;
3829 signal_print[TARGET_SIGNAL_POLL] = 0;
3830 signal_stop[TARGET_SIGNAL_URG] = 0;
3831 signal_print[TARGET_SIGNAL_URG] = 0;
3832 signal_stop[TARGET_SIGNAL_WINCH] = 0;
3833 signal_print[TARGET_SIGNAL_WINCH] = 0;
3834
3835 /* These signals are used internally by user-level thread
3836 implementations. (See signal(5) on Solaris.) Like the above
3837 signals, a healthy program receives and handles them as part of
3838 its normal operation. */
3839 signal_stop[TARGET_SIGNAL_LWP] = 0;
3840 signal_print[TARGET_SIGNAL_LWP] = 0;
3841 signal_stop[TARGET_SIGNAL_WAITING] = 0;
3842 signal_print[TARGET_SIGNAL_WAITING] = 0;
3843 signal_stop[TARGET_SIGNAL_CANCEL] = 0;
3844 signal_print[TARGET_SIGNAL_CANCEL] = 0;
3845
3846 #ifdef SOLIB_ADD
3847 deprecated_add_show_from_set
3848 (add_set_cmd ("stop-on-solib-events", class_support, var_zinteger,
3849 (char *) &stop_on_solib_events,
3850 "Set stopping for shared library events.\n\
3851 If nonzero, gdb will give control to the user when the dynamic linker\n\
3852 notifies gdb of shared library events. The most common event of interest\n\
3853 to the user would be loading/unloading of a new library.\n", &setlist), &showlist);
3854 #endif
3855
3856 c = add_set_enum_cmd ("follow-fork-mode",
3857 class_run,
3858 follow_fork_mode_kind_names, &follow_fork_mode_string,
3859 "Set debugger response to a program call of fork \
3860 or vfork.\n\
3861 A fork or vfork creates a new process. follow-fork-mode can be:\n\
3862 parent - the original process is debugged after a fork\n\
3863 child - the new process is debugged after a fork\n\
3864 The unfollowed process will continue to run.\n\
3865 By default, the debugger will follow the parent process.", &setlist);
3866 deprecated_add_show_from_set (c, &showlist);
3867
3868 c = add_set_enum_cmd ("scheduler-locking", class_run, scheduler_enums, /* array of string names */
3869 &scheduler_mode, /* current mode */
3870 "Set mode for locking scheduler during execution.\n\
3871 off == no locking (threads may preempt at any time)\n\
3872 on == full locking (no thread except the current thread may run)\n\
3873 step == scheduler locked during every single-step operation.\n\
3874 In this mode, no other thread may run during a step command.\n\
3875 Other threads may run while stepping over a function call ('next').", &setlist);
3876
3877 set_cmd_sfunc (c, set_schedlock_func); /* traps on target vector */
3878 deprecated_add_show_from_set (c, &showlist);
3879
3880 c = add_set_cmd ("step-mode", class_run,
3881 var_boolean, (char *) &step_stop_if_no_debug,
3882 "Set mode of the step operation. When set, doing a step over a\n\
3883 function without debug line information will stop at the first\n\
3884 instruction of that function. Otherwise, the function is skipped and\n\
3885 the step command stops at a different source line.", &setlist);
3886 deprecated_add_show_from_set (c, &showlist);
3887
3888 /* ptid initializations */
3889 null_ptid = ptid_build (0, 0, 0);
3890 minus_one_ptid = ptid_build (-1, 0, 0);
3891 inferior_ptid = null_ptid;
3892 target_last_wait_ptid = minus_one_ptid;
3893 }