]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/infrun.c
gdb: remove parameter of gdbarch_displaced_step_hw_singlestep
[thirdparty/binutils-gdb.git] / gdb / infrun.c
1 /* Target-struct-independent code to start (run) and stop an inferior
2 process.
3
4 Copyright (C) 1986-2020 Free Software Foundation, Inc.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "infrun.h"
23 #include <ctype.h>
24 #include "symtab.h"
25 #include "frame.h"
26 #include "inferior.h"
27 #include "breakpoint.h"
28 #include "gdbcore.h"
29 #include "gdbcmd.h"
30 #include "target.h"
31 #include "target-connection.h"
32 #include "gdbthread.h"
33 #include "annotate.h"
34 #include "symfile.h"
35 #include "top.h"
36 #include "inf-loop.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "language.h"
41 #include "solib.h"
42 #include "main.h"
43 #include "block.h"
44 #include "mi/mi-common.h"
45 #include "event-top.h"
46 #include "record.h"
47 #include "record-full.h"
48 #include "inline-frame.h"
49 #include "jit.h"
50 #include "tracepoint.h"
51 #include "skip.h"
52 #include "probe.h"
53 #include "objfiles.h"
54 #include "completer.h"
55 #include "target-descriptions.h"
56 #include "target-dcache.h"
57 #include "terminal.h"
58 #include "solist.h"
59 #include "gdbsupport/event-loop.h"
60 #include "thread-fsm.h"
61 #include "gdbsupport/enum-flags.h"
62 #include "progspace-and-thread.h"
63 #include "gdbsupport/gdb_optional.h"
64 #include "arch-utils.h"
65 #include "gdbsupport/scope-exit.h"
66 #include "gdbsupport/forward-scope-exit.h"
67 #include "gdbsupport/gdb_select.h"
68 #include <unordered_map>
69 #include "async-event.h"
70 #include "gdbsupport/selftest.h"
71 #include "scoped-mock-context.h"
72 #include "test-target.h"
73 #include "gdbsupport/common-debug.h"
74
75 /* Prototypes for local functions */
76
77 static void sig_print_info (enum gdb_signal);
78
79 static void sig_print_header (void);
80
81 static void follow_inferior_reset_breakpoints (void);
82
83 static bool currently_stepping (struct thread_info *tp);
84
85 static void insert_hp_step_resume_breakpoint_at_frame (struct frame_info *);
86
87 static void insert_step_resume_breakpoint_at_caller (struct frame_info *);
88
89 static void insert_longjmp_resume_breakpoint (struct gdbarch *, CORE_ADDR);
90
91 static bool maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc);
92
93 static void resume (gdb_signal sig);
94
95 static void wait_for_inferior (inferior *inf);
96
97 /* Asynchronous signal handler registered as event loop source for
98 when we have pending events ready to be passed to the core. */
99 static struct async_event_handler *infrun_async_inferior_event_token;
100
101 /* Stores whether infrun_async was previously enabled or disabled.
102 Starts off as -1, indicating "never enabled/disabled". */
103 static int infrun_is_async = -1;
104
105 /* See infrun.h. */
106
107 void
108 infrun_debug_printf_1 (const char *func_name, const char *fmt, ...)
109 {
110 va_list ap;
111 va_start (ap, fmt);
112 debug_prefixed_vprintf ("infrun", func_name, fmt, ap);
113 va_end (ap);
114 }
115
116 /* See infrun.h. */
117
118 void
119 infrun_async (int enable)
120 {
121 if (infrun_is_async != enable)
122 {
123 infrun_is_async = enable;
124
125 infrun_debug_printf ("enable=%d", enable);
126
127 if (enable)
128 mark_async_event_handler (infrun_async_inferior_event_token);
129 else
130 clear_async_event_handler (infrun_async_inferior_event_token);
131 }
132 }
133
134 /* See infrun.h. */
135
136 void
137 mark_infrun_async_event_handler (void)
138 {
139 mark_async_event_handler (infrun_async_inferior_event_token);
140 }
141
142 /* When set, stop the 'step' command if we enter a function which has
143 no line number information. The normal behavior is that we step
144 over such function. */
145 bool step_stop_if_no_debug = false;
146 static void
147 show_step_stop_if_no_debug (struct ui_file *file, int from_tty,
148 struct cmd_list_element *c, const char *value)
149 {
150 fprintf_filtered (file, _("Mode of the step operation is %s.\n"), value);
151 }
152
153 /* proceed and normal_stop use this to notify the user when the
154 inferior stopped in a different thread than it had been running
155 in. */
156
157 static ptid_t previous_inferior_ptid;
158
159 /* If set (default for legacy reasons), when following a fork, GDB
160 will detach from one of the fork branches, child or parent.
161 Exactly which branch is detached depends on 'set follow-fork-mode'
162 setting. */
163
164 static bool detach_fork = true;
165
166 bool debug_displaced = false;
167 static void
168 show_debug_displaced (struct ui_file *file, int from_tty,
169 struct cmd_list_element *c, const char *value)
170 {
171 fprintf_filtered (file, _("Displace stepping debugging is %s.\n"), value);
172 }
173
174 unsigned int debug_infrun = 0;
175 static void
176 show_debug_infrun (struct ui_file *file, int from_tty,
177 struct cmd_list_element *c, const char *value)
178 {
179 fprintf_filtered (file, _("Inferior debugging is %s.\n"), value);
180 }
181
182
183 /* Support for disabling address space randomization. */
184
185 bool disable_randomization = true;
186
187 static void
188 show_disable_randomization (struct ui_file *file, int from_tty,
189 struct cmd_list_element *c, const char *value)
190 {
191 if (target_supports_disable_randomization ())
192 fprintf_filtered (file,
193 _("Disabling randomization of debuggee's "
194 "virtual address space is %s.\n"),
195 value);
196 else
197 fputs_filtered (_("Disabling randomization of debuggee's "
198 "virtual address space is unsupported on\n"
199 "this platform.\n"), file);
200 }
201
202 static void
203 set_disable_randomization (const char *args, int from_tty,
204 struct cmd_list_element *c)
205 {
206 if (!target_supports_disable_randomization ())
207 error (_("Disabling randomization of debuggee's "
208 "virtual address space is unsupported on\n"
209 "this platform."));
210 }
211
212 /* User interface for non-stop mode. */
213
214 bool non_stop = false;
215 static bool non_stop_1 = false;
216
217 static void
218 set_non_stop (const char *args, int from_tty,
219 struct cmd_list_element *c)
220 {
221 if (target_has_execution ())
222 {
223 non_stop_1 = non_stop;
224 error (_("Cannot change this setting while the inferior is running."));
225 }
226
227 non_stop = non_stop_1;
228 }
229
230 static void
231 show_non_stop (struct ui_file *file, int from_tty,
232 struct cmd_list_element *c, const char *value)
233 {
234 fprintf_filtered (file,
235 _("Controlling the inferior in non-stop mode is %s.\n"),
236 value);
237 }
238
239 /* "Observer mode" is somewhat like a more extreme version of
240 non-stop, in which all GDB operations that might affect the
241 target's execution have been disabled. */
242
243 bool observer_mode = false;
244 static bool observer_mode_1 = false;
245
246 static void
247 set_observer_mode (const char *args, int from_tty,
248 struct cmd_list_element *c)
249 {
250 if (target_has_execution ())
251 {
252 observer_mode_1 = observer_mode;
253 error (_("Cannot change this setting while the inferior is running."));
254 }
255
256 observer_mode = observer_mode_1;
257
258 may_write_registers = !observer_mode;
259 may_write_memory = !observer_mode;
260 may_insert_breakpoints = !observer_mode;
261 may_insert_tracepoints = !observer_mode;
262 /* We can insert fast tracepoints in or out of observer mode,
263 but enable them if we're going into this mode. */
264 if (observer_mode)
265 may_insert_fast_tracepoints = true;
266 may_stop = !observer_mode;
267 update_target_permissions ();
268
269 /* Going *into* observer mode we must force non-stop, then
270 going out we leave it that way. */
271 if (observer_mode)
272 {
273 pagination_enabled = 0;
274 non_stop = non_stop_1 = true;
275 }
276
277 if (from_tty)
278 printf_filtered (_("Observer mode is now %s.\n"),
279 (observer_mode ? "on" : "off"));
280 }
281
282 static void
283 show_observer_mode (struct ui_file *file, int from_tty,
284 struct cmd_list_element *c, const char *value)
285 {
286 fprintf_filtered (file, _("Observer mode is %s.\n"), value);
287 }
288
289 /* This updates the value of observer mode based on changes in
290 permissions. Note that we are deliberately ignoring the values of
291 may-write-registers and may-write-memory, since the user may have
292 reason to enable these during a session, for instance to turn on a
293 debugging-related global. */
294
295 void
296 update_observer_mode (void)
297 {
298 bool newval = (!may_insert_breakpoints
299 && !may_insert_tracepoints
300 && may_insert_fast_tracepoints
301 && !may_stop
302 && non_stop);
303
304 /* Let the user know if things change. */
305 if (newval != observer_mode)
306 printf_filtered (_("Observer mode is now %s.\n"),
307 (newval ? "on" : "off"));
308
309 observer_mode = observer_mode_1 = newval;
310 }
311
312 /* Tables of how to react to signals; the user sets them. */
313
314 static unsigned char signal_stop[GDB_SIGNAL_LAST];
315 static unsigned char signal_print[GDB_SIGNAL_LAST];
316 static unsigned char signal_program[GDB_SIGNAL_LAST];
317
318 /* Table of signals that are registered with "catch signal". A
319 non-zero entry indicates that the signal is caught by some "catch
320 signal" command. */
321 static unsigned char signal_catch[GDB_SIGNAL_LAST];
322
323 /* Table of signals that the target may silently handle.
324 This is automatically determined from the flags above,
325 and simply cached here. */
326 static unsigned char signal_pass[GDB_SIGNAL_LAST];
327
328 #define SET_SIGS(nsigs,sigs,flags) \
329 do { \
330 int signum = (nsigs); \
331 while (signum-- > 0) \
332 if ((sigs)[signum]) \
333 (flags)[signum] = 1; \
334 } while (0)
335
336 #define UNSET_SIGS(nsigs,sigs,flags) \
337 do { \
338 int signum = (nsigs); \
339 while (signum-- > 0) \
340 if ((sigs)[signum]) \
341 (flags)[signum] = 0; \
342 } while (0)
343
344 /* Update the target's copy of SIGNAL_PROGRAM. The sole purpose of
345 this function is to avoid exporting `signal_program'. */
346
347 void
348 update_signals_program_target (void)
349 {
350 target_program_signals (signal_program);
351 }
352
353 /* Value to pass to target_resume() to cause all threads to resume. */
354
355 #define RESUME_ALL minus_one_ptid
356
357 /* Command list pointer for the "stop" placeholder. */
358
359 static struct cmd_list_element *stop_command;
360
361 /* Nonzero if we want to give control to the user when we're notified
362 of shared library events by the dynamic linker. */
363 int stop_on_solib_events;
364
365 /* Enable or disable optional shared library event breakpoints
366 as appropriate when the above flag is changed. */
367
368 static void
369 set_stop_on_solib_events (const char *args,
370 int from_tty, struct cmd_list_element *c)
371 {
372 update_solib_breakpoints ();
373 }
374
375 static void
376 show_stop_on_solib_events (struct ui_file *file, int from_tty,
377 struct cmd_list_element *c, const char *value)
378 {
379 fprintf_filtered (file, _("Stopping for shared library events is %s.\n"),
380 value);
381 }
382
383 /* True after stop if current stack frame should be printed. */
384
385 static bool stop_print_frame;
386
387 /* This is a cached copy of the target/ptid/waitstatus of the last
388 event returned by target_wait()/deprecated_target_wait_hook().
389 This information is returned by get_last_target_status(). */
390 static process_stratum_target *target_last_proc_target;
391 static ptid_t target_last_wait_ptid;
392 static struct target_waitstatus target_last_waitstatus;
393
394 void init_thread_stepping_state (struct thread_info *tss);
395
396 static const char follow_fork_mode_child[] = "child";
397 static const char follow_fork_mode_parent[] = "parent";
398
399 static const char *const follow_fork_mode_kind_names[] = {
400 follow_fork_mode_child,
401 follow_fork_mode_parent,
402 NULL
403 };
404
405 static const char *follow_fork_mode_string = follow_fork_mode_parent;
406 static void
407 show_follow_fork_mode_string (struct ui_file *file, int from_tty,
408 struct cmd_list_element *c, const char *value)
409 {
410 fprintf_filtered (file,
411 _("Debugger response to a program "
412 "call of fork or vfork is \"%s\".\n"),
413 value);
414 }
415 \f
416
417 /* Handle changes to the inferior list based on the type of fork,
418 which process is being followed, and whether the other process
419 should be detached. On entry inferior_ptid must be the ptid of
420 the fork parent. At return inferior_ptid is the ptid of the
421 followed inferior. */
422
423 static bool
424 follow_fork_inferior (bool follow_child, bool detach_fork)
425 {
426 int has_vforked;
427 ptid_t parent_ptid, child_ptid;
428
429 has_vforked = (inferior_thread ()->pending_follow.kind
430 == TARGET_WAITKIND_VFORKED);
431 parent_ptid = inferior_ptid;
432 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
433
434 if (has_vforked
435 && !non_stop /* Non-stop always resumes both branches. */
436 && current_ui->prompt_state == PROMPT_BLOCKED
437 && !(follow_child || detach_fork || sched_multi))
438 {
439 /* The parent stays blocked inside the vfork syscall until the
440 child execs or exits. If we don't let the child run, then
441 the parent stays blocked. If we're telling the parent to run
442 in the foreground, the user will not be able to ctrl-c to get
443 back the terminal, effectively hanging the debug session. */
444 fprintf_filtered (gdb_stderr, _("\
445 Can not resume the parent process over vfork in the foreground while\n\
446 holding the child stopped. Try \"set detach-on-fork\" or \
447 \"set schedule-multiple\".\n"));
448 return 1;
449 }
450
451 if (!follow_child)
452 {
453 /* Detach new forked process? */
454 if (detach_fork)
455 {
456 /* Before detaching from the child, remove all breakpoints
457 from it. If we forked, then this has already been taken
458 care of by infrun.c. If we vforked however, any
459 breakpoint inserted in the parent is visible in the
460 child, even those added while stopped in a vfork
461 catchpoint. This will remove the breakpoints from the
462 parent also, but they'll be reinserted below. */
463 if (has_vforked)
464 {
465 /* Keep breakpoints list in sync. */
466 remove_breakpoints_inf (current_inferior ());
467 }
468
469 if (print_inferior_events)
470 {
471 /* Ensure that we have a process ptid. */
472 ptid_t process_ptid = ptid_t (child_ptid.pid ());
473
474 target_terminal::ours_for_output ();
475 fprintf_filtered (gdb_stdlog,
476 _("[Detaching after %s from child %s]\n"),
477 has_vforked ? "vfork" : "fork",
478 target_pid_to_str (process_ptid).c_str ());
479 }
480 }
481 else
482 {
483 struct inferior *parent_inf, *child_inf;
484
485 /* Add process to GDB's tables. */
486 child_inf = add_inferior (child_ptid.pid ());
487
488 parent_inf = current_inferior ();
489 child_inf->attach_flag = parent_inf->attach_flag;
490 copy_terminal_info (child_inf, parent_inf);
491 child_inf->gdbarch = parent_inf->gdbarch;
492 copy_inferior_target_desc_info (child_inf, parent_inf);
493
494 scoped_restore_current_pspace_and_thread restore_pspace_thread;
495
496 set_current_inferior (child_inf);
497 switch_to_no_thread ();
498 child_inf->symfile_flags = SYMFILE_NO_READ;
499 push_target (parent_inf->process_target ());
500 thread_info *child_thr
501 = add_thread_silent (child_inf->process_target (), child_ptid);
502
503 /* If this is a vfork child, then the address-space is
504 shared with the parent. */
505 if (has_vforked)
506 {
507 child_inf->pspace = parent_inf->pspace;
508 child_inf->aspace = parent_inf->aspace;
509
510 exec_on_vfork ();
511
512 /* The parent will be frozen until the child is done
513 with the shared region. Keep track of the
514 parent. */
515 child_inf->vfork_parent = parent_inf;
516 child_inf->pending_detach = 0;
517 parent_inf->vfork_child = child_inf;
518 parent_inf->pending_detach = 0;
519
520 /* Now that the inferiors and program spaces are all
521 wired up, we can switch to the child thread (which
522 switches inferior and program space too). */
523 switch_to_thread (child_thr);
524 }
525 else
526 {
527 child_inf->aspace = new_address_space ();
528 child_inf->pspace = new program_space (child_inf->aspace);
529 child_inf->removable = 1;
530 set_current_program_space (child_inf->pspace);
531 clone_program_space (child_inf->pspace, parent_inf->pspace);
532
533 /* solib_create_inferior_hook relies on the current
534 thread. */
535 switch_to_thread (child_thr);
536
537 /* Let the shared library layer (e.g., solib-svr4) learn
538 about this new process, relocate the cloned exec, pull
539 in shared libraries, and install the solib event
540 breakpoint. If a "cloned-VM" event was propagated
541 better throughout the core, this wouldn't be
542 required. */
543 solib_create_inferior_hook (0);
544 }
545 }
546
547 if (has_vforked)
548 {
549 struct inferior *parent_inf;
550
551 parent_inf = current_inferior ();
552
553 /* If we detached from the child, then we have to be careful
554 to not insert breakpoints in the parent until the child
555 is done with the shared memory region. However, if we're
556 staying attached to the child, then we can and should
557 insert breakpoints, so that we can debug it. A
558 subsequent child exec or exit is enough to know when does
559 the child stops using the parent's address space. */
560 parent_inf->waiting_for_vfork_done = detach_fork;
561 parent_inf->pspace->breakpoints_not_allowed = detach_fork;
562 }
563 }
564 else
565 {
566 /* Follow the child. */
567 struct inferior *parent_inf, *child_inf;
568 struct program_space *parent_pspace;
569
570 if (print_inferior_events)
571 {
572 std::string parent_pid = target_pid_to_str (parent_ptid);
573 std::string child_pid = target_pid_to_str (child_ptid);
574
575 target_terminal::ours_for_output ();
576 fprintf_filtered (gdb_stdlog,
577 _("[Attaching after %s %s to child %s]\n"),
578 parent_pid.c_str (),
579 has_vforked ? "vfork" : "fork",
580 child_pid.c_str ());
581 }
582
583 /* Add the new inferior first, so that the target_detach below
584 doesn't unpush the target. */
585
586 child_inf = add_inferior (child_ptid.pid ());
587
588 parent_inf = current_inferior ();
589 child_inf->attach_flag = parent_inf->attach_flag;
590 copy_terminal_info (child_inf, parent_inf);
591 child_inf->gdbarch = parent_inf->gdbarch;
592 copy_inferior_target_desc_info (child_inf, parent_inf);
593
594 parent_pspace = parent_inf->pspace;
595
596 process_stratum_target *target = parent_inf->process_target ();
597
598 {
599 /* Hold a strong reference to the target while (maybe)
600 detaching the parent. Otherwise detaching could close the
601 target. */
602 auto target_ref = target_ops_ref::new_reference (target);
603
604 /* If we're vforking, we want to hold on to the parent until
605 the child exits or execs. At child exec or exit time we
606 can remove the old breakpoints from the parent and detach
607 or resume debugging it. Otherwise, detach the parent now;
608 we'll want to reuse it's program/address spaces, but we
609 can't set them to the child before removing breakpoints
610 from the parent, otherwise, the breakpoints module could
611 decide to remove breakpoints from the wrong process (since
612 they'd be assigned to the same address space). */
613
614 if (has_vforked)
615 {
616 gdb_assert (child_inf->vfork_parent == NULL);
617 gdb_assert (parent_inf->vfork_child == NULL);
618 child_inf->vfork_parent = parent_inf;
619 child_inf->pending_detach = 0;
620 parent_inf->vfork_child = child_inf;
621 parent_inf->pending_detach = detach_fork;
622 parent_inf->waiting_for_vfork_done = 0;
623 }
624 else if (detach_fork)
625 {
626 if (print_inferior_events)
627 {
628 /* Ensure that we have a process ptid. */
629 ptid_t process_ptid = ptid_t (parent_ptid.pid ());
630
631 target_terminal::ours_for_output ();
632 fprintf_filtered (gdb_stdlog,
633 _("[Detaching after fork from "
634 "parent %s]\n"),
635 target_pid_to_str (process_ptid).c_str ());
636 }
637
638 target_detach (parent_inf, 0);
639 parent_inf = NULL;
640 }
641
642 /* Note that the detach above makes PARENT_INF dangling. */
643
644 /* Add the child thread to the appropriate lists, and switch
645 to this new thread, before cloning the program space, and
646 informing the solib layer about this new process. */
647
648 set_current_inferior (child_inf);
649 push_target (target);
650 }
651
652 thread_info *child_thr = add_thread_silent (target, child_ptid);
653
654 /* If this is a vfork child, then the address-space is shared
655 with the parent. If we detached from the parent, then we can
656 reuse the parent's program/address spaces. */
657 if (has_vforked || detach_fork)
658 {
659 child_inf->pspace = parent_pspace;
660 child_inf->aspace = child_inf->pspace->aspace;
661
662 exec_on_vfork ();
663 }
664 else
665 {
666 child_inf->aspace = new_address_space ();
667 child_inf->pspace = new program_space (child_inf->aspace);
668 child_inf->removable = 1;
669 child_inf->symfile_flags = SYMFILE_NO_READ;
670 set_current_program_space (child_inf->pspace);
671 clone_program_space (child_inf->pspace, parent_pspace);
672
673 /* Let the shared library layer (e.g., solib-svr4) learn
674 about this new process, relocate the cloned exec, pull in
675 shared libraries, and install the solib event breakpoint.
676 If a "cloned-VM" event was propagated better throughout
677 the core, this wouldn't be required. */
678 solib_create_inferior_hook (0);
679 }
680
681 switch_to_thread (child_thr);
682 }
683
684 return target_follow_fork (follow_child, detach_fork);
685 }
686
687 /* Tell the target to follow the fork we're stopped at. Returns true
688 if the inferior should be resumed; false, if the target for some
689 reason decided it's best not to resume. */
690
691 static bool
692 follow_fork ()
693 {
694 bool follow_child = (follow_fork_mode_string == follow_fork_mode_child);
695 bool should_resume = true;
696 struct thread_info *tp;
697
698 /* Copy user stepping state to the new inferior thread. FIXME: the
699 followed fork child thread should have a copy of most of the
700 parent thread structure's run control related fields, not just these.
701 Initialized to avoid "may be used uninitialized" warnings from gcc. */
702 struct breakpoint *step_resume_breakpoint = NULL;
703 struct breakpoint *exception_resume_breakpoint = NULL;
704 CORE_ADDR step_range_start = 0;
705 CORE_ADDR step_range_end = 0;
706 int current_line = 0;
707 symtab *current_symtab = NULL;
708 struct frame_id step_frame_id = { 0 };
709 struct thread_fsm *thread_fsm = NULL;
710
711 if (!non_stop)
712 {
713 process_stratum_target *wait_target;
714 ptid_t wait_ptid;
715 struct target_waitstatus wait_status;
716
717 /* Get the last target status returned by target_wait(). */
718 get_last_target_status (&wait_target, &wait_ptid, &wait_status);
719
720 /* If not stopped at a fork event, then there's nothing else to
721 do. */
722 if (wait_status.kind != TARGET_WAITKIND_FORKED
723 && wait_status.kind != TARGET_WAITKIND_VFORKED)
724 return 1;
725
726 /* Check if we switched over from WAIT_PTID, since the event was
727 reported. */
728 if (wait_ptid != minus_one_ptid
729 && (current_inferior ()->process_target () != wait_target
730 || inferior_ptid != wait_ptid))
731 {
732 /* We did. Switch back to WAIT_PTID thread, to tell the
733 target to follow it (in either direction). We'll
734 afterwards refuse to resume, and inform the user what
735 happened. */
736 thread_info *wait_thread = find_thread_ptid (wait_target, wait_ptid);
737 switch_to_thread (wait_thread);
738 should_resume = false;
739 }
740 }
741
742 tp = inferior_thread ();
743
744 /* If there were any forks/vforks that were caught and are now to be
745 followed, then do so now. */
746 switch (tp->pending_follow.kind)
747 {
748 case TARGET_WAITKIND_FORKED:
749 case TARGET_WAITKIND_VFORKED:
750 {
751 ptid_t parent, child;
752
753 /* If the user did a next/step, etc, over a fork call,
754 preserve the stepping state in the fork child. */
755 if (follow_child && should_resume)
756 {
757 step_resume_breakpoint = clone_momentary_breakpoint
758 (tp->control.step_resume_breakpoint);
759 step_range_start = tp->control.step_range_start;
760 step_range_end = tp->control.step_range_end;
761 current_line = tp->current_line;
762 current_symtab = tp->current_symtab;
763 step_frame_id = tp->control.step_frame_id;
764 exception_resume_breakpoint
765 = clone_momentary_breakpoint (tp->control.exception_resume_breakpoint);
766 thread_fsm = tp->thread_fsm;
767
768 /* For now, delete the parent's sr breakpoint, otherwise,
769 parent/child sr breakpoints are considered duplicates,
770 and the child version will not be installed. Remove
771 this when the breakpoints module becomes aware of
772 inferiors and address spaces. */
773 delete_step_resume_breakpoint (tp);
774 tp->control.step_range_start = 0;
775 tp->control.step_range_end = 0;
776 tp->control.step_frame_id = null_frame_id;
777 delete_exception_resume_breakpoint (tp);
778 tp->thread_fsm = NULL;
779 }
780
781 parent = inferior_ptid;
782 child = tp->pending_follow.value.related_pid;
783
784 process_stratum_target *parent_targ = tp->inf->process_target ();
785 /* Set up inferior(s) as specified by the caller, and tell the
786 target to do whatever is necessary to follow either parent
787 or child. */
788 if (follow_fork_inferior (follow_child, detach_fork))
789 {
790 /* Target refused to follow, or there's some other reason
791 we shouldn't resume. */
792 should_resume = 0;
793 }
794 else
795 {
796 /* This pending follow fork event is now handled, one way
797 or another. The previous selected thread may be gone
798 from the lists by now, but if it is still around, need
799 to clear the pending follow request. */
800 tp = find_thread_ptid (parent_targ, parent);
801 if (tp)
802 tp->pending_follow.kind = TARGET_WAITKIND_SPURIOUS;
803
804 /* This makes sure we don't try to apply the "Switched
805 over from WAIT_PID" logic above. */
806 nullify_last_target_wait_ptid ();
807
808 /* If we followed the child, switch to it... */
809 if (follow_child)
810 {
811 thread_info *child_thr = find_thread_ptid (parent_targ, child);
812 switch_to_thread (child_thr);
813
814 /* ... and preserve the stepping state, in case the
815 user was stepping over the fork call. */
816 if (should_resume)
817 {
818 tp = inferior_thread ();
819 tp->control.step_resume_breakpoint
820 = step_resume_breakpoint;
821 tp->control.step_range_start = step_range_start;
822 tp->control.step_range_end = step_range_end;
823 tp->current_line = current_line;
824 tp->current_symtab = current_symtab;
825 tp->control.step_frame_id = step_frame_id;
826 tp->control.exception_resume_breakpoint
827 = exception_resume_breakpoint;
828 tp->thread_fsm = thread_fsm;
829 }
830 else
831 {
832 /* If we get here, it was because we're trying to
833 resume from a fork catchpoint, but, the user
834 has switched threads away from the thread that
835 forked. In that case, the resume command
836 issued is most likely not applicable to the
837 child, so just warn, and refuse to resume. */
838 warning (_("Not resuming: switched threads "
839 "before following fork child."));
840 }
841
842 /* Reset breakpoints in the child as appropriate. */
843 follow_inferior_reset_breakpoints ();
844 }
845 }
846 }
847 break;
848 case TARGET_WAITKIND_SPURIOUS:
849 /* Nothing to follow. */
850 break;
851 default:
852 internal_error (__FILE__, __LINE__,
853 "Unexpected pending_follow.kind %d\n",
854 tp->pending_follow.kind);
855 break;
856 }
857
858 return should_resume;
859 }
860
861 static void
862 follow_inferior_reset_breakpoints (void)
863 {
864 struct thread_info *tp = inferior_thread ();
865
866 /* Was there a step_resume breakpoint? (There was if the user
867 did a "next" at the fork() call.) If so, explicitly reset its
868 thread number. Cloned step_resume breakpoints are disabled on
869 creation, so enable it here now that it is associated with the
870 correct thread.
871
872 step_resumes are a form of bp that are made to be per-thread.
873 Since we created the step_resume bp when the parent process
874 was being debugged, and now are switching to the child process,
875 from the breakpoint package's viewpoint, that's a switch of
876 "threads". We must update the bp's notion of which thread
877 it is for, or it'll be ignored when it triggers. */
878
879 if (tp->control.step_resume_breakpoint)
880 {
881 breakpoint_re_set_thread (tp->control.step_resume_breakpoint);
882 tp->control.step_resume_breakpoint->loc->enabled = 1;
883 }
884
885 /* Treat exception_resume breakpoints like step_resume breakpoints. */
886 if (tp->control.exception_resume_breakpoint)
887 {
888 breakpoint_re_set_thread (tp->control.exception_resume_breakpoint);
889 tp->control.exception_resume_breakpoint->loc->enabled = 1;
890 }
891
892 /* Reinsert all breakpoints in the child. The user may have set
893 breakpoints after catching the fork, in which case those
894 were never set in the child, but only in the parent. This makes
895 sure the inserted breakpoints match the breakpoint list. */
896
897 breakpoint_re_set ();
898 insert_breakpoints ();
899 }
900
901 /* The child has exited or execed: resume threads of the parent the
902 user wanted to be executing. */
903
904 static int
905 proceed_after_vfork_done (struct thread_info *thread,
906 void *arg)
907 {
908 int pid = * (int *) arg;
909
910 if (thread->ptid.pid () == pid
911 && thread->state == THREAD_RUNNING
912 && !thread->executing
913 && !thread->stop_requested
914 && thread->suspend.stop_signal == GDB_SIGNAL_0)
915 {
916 infrun_debug_printf ("resuming vfork parent thread %s",
917 target_pid_to_str (thread->ptid).c_str ());
918
919 switch_to_thread (thread);
920 clear_proceed_status (0);
921 proceed ((CORE_ADDR) -1, GDB_SIGNAL_DEFAULT);
922 }
923
924 return 0;
925 }
926
927 /* Called whenever we notice an exec or exit event, to handle
928 detaching or resuming a vfork parent. */
929
930 static void
931 handle_vfork_child_exec_or_exit (int exec)
932 {
933 struct inferior *inf = current_inferior ();
934
935 if (inf->vfork_parent)
936 {
937 int resume_parent = -1;
938
939 /* This exec or exit marks the end of the shared memory region
940 between the parent and the child. Break the bonds. */
941 inferior *vfork_parent = inf->vfork_parent;
942 inf->vfork_parent->vfork_child = NULL;
943 inf->vfork_parent = NULL;
944
945 /* If the user wanted to detach from the parent, now is the
946 time. */
947 if (vfork_parent->pending_detach)
948 {
949 struct program_space *pspace;
950 struct address_space *aspace;
951
952 /* follow-fork child, detach-on-fork on. */
953
954 vfork_parent->pending_detach = 0;
955
956 scoped_restore_current_pspace_and_thread restore_thread;
957
958 /* We're letting loose of the parent. */
959 thread_info *tp = any_live_thread_of_inferior (vfork_parent);
960 switch_to_thread (tp);
961
962 /* We're about to detach from the parent, which implicitly
963 removes breakpoints from its address space. There's a
964 catch here: we want to reuse the spaces for the child,
965 but, parent/child are still sharing the pspace at this
966 point, although the exec in reality makes the kernel give
967 the child a fresh set of new pages. The problem here is
968 that the breakpoints module being unaware of this, would
969 likely chose the child process to write to the parent
970 address space. Swapping the child temporarily away from
971 the spaces has the desired effect. Yes, this is "sort
972 of" a hack. */
973
974 pspace = inf->pspace;
975 aspace = inf->aspace;
976 inf->aspace = NULL;
977 inf->pspace = NULL;
978
979 if (print_inferior_events)
980 {
981 std::string pidstr
982 = target_pid_to_str (ptid_t (vfork_parent->pid));
983
984 target_terminal::ours_for_output ();
985
986 if (exec)
987 {
988 fprintf_filtered (gdb_stdlog,
989 _("[Detaching vfork parent %s "
990 "after child exec]\n"), pidstr.c_str ());
991 }
992 else
993 {
994 fprintf_filtered (gdb_stdlog,
995 _("[Detaching vfork parent %s "
996 "after child exit]\n"), pidstr.c_str ());
997 }
998 }
999
1000 target_detach (vfork_parent, 0);
1001
1002 /* Put it back. */
1003 inf->pspace = pspace;
1004 inf->aspace = aspace;
1005 }
1006 else if (exec)
1007 {
1008 /* We're staying attached to the parent, so, really give the
1009 child a new address space. */
1010 inf->pspace = new program_space (maybe_new_address_space ());
1011 inf->aspace = inf->pspace->aspace;
1012 inf->removable = 1;
1013 set_current_program_space (inf->pspace);
1014
1015 resume_parent = vfork_parent->pid;
1016 }
1017 else
1018 {
1019 /* If this is a vfork child exiting, then the pspace and
1020 aspaces were shared with the parent. Since we're
1021 reporting the process exit, we'll be mourning all that is
1022 found in the address space, and switching to null_ptid,
1023 preparing to start a new inferior. But, since we don't
1024 want to clobber the parent's address/program spaces, we
1025 go ahead and create a new one for this exiting
1026 inferior. */
1027
1028 /* Switch to no-thread while running clone_program_space, so
1029 that clone_program_space doesn't want to read the
1030 selected frame of a dead process. */
1031 scoped_restore_current_thread restore_thread;
1032 switch_to_no_thread ();
1033
1034 inf->pspace = new program_space (maybe_new_address_space ());
1035 inf->aspace = inf->pspace->aspace;
1036 set_current_program_space (inf->pspace);
1037 inf->removable = 1;
1038 inf->symfile_flags = SYMFILE_NO_READ;
1039 clone_program_space (inf->pspace, vfork_parent->pspace);
1040
1041 resume_parent = vfork_parent->pid;
1042 }
1043
1044 gdb_assert (current_program_space == inf->pspace);
1045
1046 if (non_stop && resume_parent != -1)
1047 {
1048 /* If the user wanted the parent to be running, let it go
1049 free now. */
1050 scoped_restore_current_thread restore_thread;
1051
1052 infrun_debug_printf ("resuming vfork parent process %d",
1053 resume_parent);
1054
1055 iterate_over_threads (proceed_after_vfork_done, &resume_parent);
1056 }
1057 }
1058 }
1059
1060 /* Enum strings for "set|show follow-exec-mode". */
1061
1062 static const char follow_exec_mode_new[] = "new";
1063 static const char follow_exec_mode_same[] = "same";
1064 static const char *const follow_exec_mode_names[] =
1065 {
1066 follow_exec_mode_new,
1067 follow_exec_mode_same,
1068 NULL,
1069 };
1070
1071 static const char *follow_exec_mode_string = follow_exec_mode_same;
1072 static void
1073 show_follow_exec_mode_string (struct ui_file *file, int from_tty,
1074 struct cmd_list_element *c, const char *value)
1075 {
1076 fprintf_filtered (file, _("Follow exec mode is \"%s\".\n"), value);
1077 }
1078
1079 /* EXEC_FILE_TARGET is assumed to be non-NULL. */
1080
1081 static void
1082 follow_exec (ptid_t ptid, const char *exec_file_target)
1083 {
1084 struct inferior *inf = current_inferior ();
1085 int pid = ptid.pid ();
1086 ptid_t process_ptid;
1087
1088 /* Switch terminal for any messages produced e.g. by
1089 breakpoint_re_set. */
1090 target_terminal::ours_for_output ();
1091
1092 /* This is an exec event that we actually wish to pay attention to.
1093 Refresh our symbol table to the newly exec'd program, remove any
1094 momentary bp's, etc.
1095
1096 If there are breakpoints, they aren't really inserted now,
1097 since the exec() transformed our inferior into a fresh set
1098 of instructions.
1099
1100 We want to preserve symbolic breakpoints on the list, since
1101 we have hopes that they can be reset after the new a.out's
1102 symbol table is read.
1103
1104 However, any "raw" breakpoints must be removed from the list
1105 (e.g., the solib bp's), since their address is probably invalid
1106 now.
1107
1108 And, we DON'T want to call delete_breakpoints() here, since
1109 that may write the bp's "shadow contents" (the instruction
1110 value that was overwritten with a TRAP instruction). Since
1111 we now have a new a.out, those shadow contents aren't valid. */
1112
1113 mark_breakpoints_out ();
1114
1115 /* The target reports the exec event to the main thread, even if
1116 some other thread does the exec, and even if the main thread was
1117 stopped or already gone. We may still have non-leader threads of
1118 the process on our list. E.g., on targets that don't have thread
1119 exit events (like remote); or on native Linux in non-stop mode if
1120 there were only two threads in the inferior and the non-leader
1121 one is the one that execs (and nothing forces an update of the
1122 thread list up to here). When debugging remotely, it's best to
1123 avoid extra traffic, when possible, so avoid syncing the thread
1124 list with the target, and instead go ahead and delete all threads
1125 of the process but one that reported the event. Note this must
1126 be done before calling update_breakpoints_after_exec, as
1127 otherwise clearing the threads' resources would reference stale
1128 thread breakpoints -- it may have been one of these threads that
1129 stepped across the exec. We could just clear their stepping
1130 states, but as long as we're iterating, might as well delete
1131 them. Deleting them now rather than at the next user-visible
1132 stop provides a nicer sequence of events for user and MI
1133 notifications. */
1134 for (thread_info *th : all_threads_safe ())
1135 if (th->ptid.pid () == pid && th->ptid != ptid)
1136 delete_thread (th);
1137
1138 /* We also need to clear any left over stale state for the
1139 leader/event thread. E.g., if there was any step-resume
1140 breakpoint or similar, it's gone now. We cannot truly
1141 step-to-next statement through an exec(). */
1142 thread_info *th = inferior_thread ();
1143 th->control.step_resume_breakpoint = NULL;
1144 th->control.exception_resume_breakpoint = NULL;
1145 th->control.single_step_breakpoints = NULL;
1146 th->control.step_range_start = 0;
1147 th->control.step_range_end = 0;
1148
1149 /* The user may have had the main thread held stopped in the
1150 previous image (e.g., schedlock on, or non-stop). Release
1151 it now. */
1152 th->stop_requested = 0;
1153
1154 update_breakpoints_after_exec ();
1155
1156 /* What is this a.out's name? */
1157 process_ptid = ptid_t (pid);
1158 printf_unfiltered (_("%s is executing new program: %s\n"),
1159 target_pid_to_str (process_ptid).c_str (),
1160 exec_file_target);
1161
1162 /* We've followed the inferior through an exec. Therefore, the
1163 inferior has essentially been killed & reborn. */
1164
1165 breakpoint_init_inferior (inf_execd);
1166
1167 gdb::unique_xmalloc_ptr<char> exec_file_host
1168 = exec_file_find (exec_file_target, NULL);
1169
1170 /* If we were unable to map the executable target pathname onto a host
1171 pathname, tell the user that. Otherwise GDB's subsequent behavior
1172 is confusing. Maybe it would even be better to stop at this point
1173 so that the user can specify a file manually before continuing. */
1174 if (exec_file_host == NULL)
1175 warning (_("Could not load symbols for executable %s.\n"
1176 "Do you need \"set sysroot\"?"),
1177 exec_file_target);
1178
1179 /* Reset the shared library package. This ensures that we get a
1180 shlib event when the child reaches "_start", at which point the
1181 dld will have had a chance to initialize the child. */
1182 /* Also, loading a symbol file below may trigger symbol lookups, and
1183 we don't want those to be satisfied by the libraries of the
1184 previous incarnation of this process. */
1185 no_shared_libraries (NULL, 0);
1186
1187 if (follow_exec_mode_string == follow_exec_mode_new)
1188 {
1189 /* The user wants to keep the old inferior and program spaces
1190 around. Create a new fresh one, and switch to it. */
1191
1192 /* Do exit processing for the original inferior before setting the new
1193 inferior's pid. Having two inferiors with the same pid would confuse
1194 find_inferior_p(t)id. Transfer the terminal state and info from the
1195 old to the new inferior. */
1196 inf = add_inferior_with_spaces ();
1197 swap_terminal_info (inf, current_inferior ());
1198 exit_inferior_silent (current_inferior ());
1199
1200 inf->pid = pid;
1201 target_follow_exec (inf, exec_file_target);
1202
1203 inferior *org_inferior = current_inferior ();
1204 switch_to_inferior_no_thread (inf);
1205 push_target (org_inferior->process_target ());
1206 thread_info *thr = add_thread (inf->process_target (), ptid);
1207 switch_to_thread (thr);
1208 }
1209 else
1210 {
1211 /* The old description may no longer be fit for the new image.
1212 E.g, a 64-bit process exec'ed a 32-bit process. Clear the
1213 old description; we'll read a new one below. No need to do
1214 this on "follow-exec-mode new", as the old inferior stays
1215 around (its description is later cleared/refetched on
1216 restart). */
1217 target_clear_description ();
1218 }
1219
1220 gdb_assert (current_program_space == inf->pspace);
1221
1222 /* Attempt to open the exec file. SYMFILE_DEFER_BP_RESET is used
1223 because the proper displacement for a PIE (Position Independent
1224 Executable) main symbol file will only be computed by
1225 solib_create_inferior_hook below. breakpoint_re_set would fail
1226 to insert the breakpoints with the zero displacement. */
1227 try_open_exec_file (exec_file_host.get (), inf, SYMFILE_DEFER_BP_RESET);
1228
1229 /* If the target can specify a description, read it. Must do this
1230 after flipping to the new executable (because the target supplied
1231 description must be compatible with the executable's
1232 architecture, and the old executable may e.g., be 32-bit, while
1233 the new one 64-bit), and before anything involving memory or
1234 registers. */
1235 target_find_description ();
1236
1237 solib_create_inferior_hook (0);
1238
1239 jit_inferior_created_hook (inf);
1240
1241 breakpoint_re_set ();
1242
1243 /* Reinsert all breakpoints. (Those which were symbolic have
1244 been reset to the proper address in the new a.out, thanks
1245 to symbol_file_command...). */
1246 insert_breakpoints ();
1247
1248 /* The next resume of this inferior should bring it to the shlib
1249 startup breakpoints. (If the user had also set bp's on
1250 "main" from the old (parent) process, then they'll auto-
1251 matically get reset there in the new process.). */
1252 }
1253
1254 /* The queue of threads that need to do a step-over operation to get
1255 past e.g., a breakpoint. What technique is used to step over the
1256 breakpoint/watchpoint does not matter -- all threads end up in the
1257 same queue, to maintain rough temporal order of execution, in order
1258 to avoid starvation, otherwise, we could e.g., find ourselves
1259 constantly stepping the same couple threads past their breakpoints
1260 over and over, if the single-step finish fast enough. */
1261 struct thread_info *step_over_queue_head;
1262
1263 /* Bit flags indicating what the thread needs to step over. */
1264
1265 enum step_over_what_flag
1266 {
1267 /* Step over a breakpoint. */
1268 STEP_OVER_BREAKPOINT = 1,
1269
1270 /* Step past a non-continuable watchpoint, in order to let the
1271 instruction execute so we can evaluate the watchpoint
1272 expression. */
1273 STEP_OVER_WATCHPOINT = 2
1274 };
1275 DEF_ENUM_FLAGS_TYPE (enum step_over_what_flag, step_over_what);
1276
1277 /* Info about an instruction that is being stepped over. */
1278
1279 struct step_over_info
1280 {
1281 /* If we're stepping past a breakpoint, this is the address space
1282 and address of the instruction the breakpoint is set at. We'll
1283 skip inserting all breakpoints here. Valid iff ASPACE is
1284 non-NULL. */
1285 const address_space *aspace;
1286 CORE_ADDR address;
1287
1288 /* The instruction being stepped over triggers a nonsteppable
1289 watchpoint. If true, we'll skip inserting watchpoints. */
1290 int nonsteppable_watchpoint_p;
1291
1292 /* The thread's global number. */
1293 int thread;
1294 };
1295
1296 /* The step-over info of the location that is being stepped over.
1297
1298 Note that with async/breakpoint always-inserted mode, a user might
1299 set a new breakpoint/watchpoint/etc. exactly while a breakpoint is
1300 being stepped over. As setting a new breakpoint inserts all
1301 breakpoints, we need to make sure the breakpoint being stepped over
1302 isn't inserted then. We do that by only clearing the step-over
1303 info when the step-over is actually finished (or aborted).
1304
1305 Presently GDB can only step over one breakpoint at any given time.
1306 Given threads that can't run code in the same address space as the
1307 breakpoint's can't really miss the breakpoint, GDB could be taught
1308 to step-over at most one breakpoint per address space (so this info
1309 could move to the address space object if/when GDB is extended).
1310 The set of breakpoints being stepped over will normally be much
1311 smaller than the set of all breakpoints, so a flag in the
1312 breakpoint location structure would be wasteful. A separate list
1313 also saves complexity and run-time, as otherwise we'd have to go
1314 through all breakpoint locations clearing their flag whenever we
1315 start a new sequence. Similar considerations weigh against storing
1316 this info in the thread object. Plus, not all step overs actually
1317 have breakpoint locations -- e.g., stepping past a single-step
1318 breakpoint, or stepping to complete a non-continuable
1319 watchpoint. */
1320 static struct step_over_info step_over_info;
1321
1322 /* Record the address of the breakpoint/instruction we're currently
1323 stepping over.
1324 N.B. We record the aspace and address now, instead of say just the thread,
1325 because when we need the info later the thread may be running. */
1326
1327 static void
1328 set_step_over_info (const address_space *aspace, CORE_ADDR address,
1329 int nonsteppable_watchpoint_p,
1330 int thread)
1331 {
1332 step_over_info.aspace = aspace;
1333 step_over_info.address = address;
1334 step_over_info.nonsteppable_watchpoint_p = nonsteppable_watchpoint_p;
1335 step_over_info.thread = thread;
1336 }
1337
1338 /* Called when we're not longer stepping over a breakpoint / an
1339 instruction, so all breakpoints are free to be (re)inserted. */
1340
1341 static void
1342 clear_step_over_info (void)
1343 {
1344 infrun_debug_printf ("clearing step over info");
1345 step_over_info.aspace = NULL;
1346 step_over_info.address = 0;
1347 step_over_info.nonsteppable_watchpoint_p = 0;
1348 step_over_info.thread = -1;
1349 }
1350
1351 /* See infrun.h. */
1352
1353 int
1354 stepping_past_instruction_at (struct address_space *aspace,
1355 CORE_ADDR address)
1356 {
1357 return (step_over_info.aspace != NULL
1358 && breakpoint_address_match (aspace, address,
1359 step_over_info.aspace,
1360 step_over_info.address));
1361 }
1362
1363 /* See infrun.h. */
1364
1365 int
1366 thread_is_stepping_over_breakpoint (int thread)
1367 {
1368 return (step_over_info.thread != -1
1369 && thread == step_over_info.thread);
1370 }
1371
1372 /* See infrun.h. */
1373
1374 int
1375 stepping_past_nonsteppable_watchpoint (void)
1376 {
1377 return step_over_info.nonsteppable_watchpoint_p;
1378 }
1379
1380 /* Returns true if step-over info is valid. */
1381
1382 static bool
1383 step_over_info_valid_p (void)
1384 {
1385 return (step_over_info.aspace != NULL
1386 || stepping_past_nonsteppable_watchpoint ());
1387 }
1388
1389 \f
1390 /* Displaced stepping. */
1391
1392 /* In non-stop debugging mode, we must take special care to manage
1393 breakpoints properly; in particular, the traditional strategy for
1394 stepping a thread past a breakpoint it has hit is unsuitable.
1395 'Displaced stepping' is a tactic for stepping one thread past a
1396 breakpoint it has hit while ensuring that other threads running
1397 concurrently will hit the breakpoint as they should.
1398
1399 The traditional way to step a thread T off a breakpoint in a
1400 multi-threaded program in all-stop mode is as follows:
1401
1402 a0) Initially, all threads are stopped, and breakpoints are not
1403 inserted.
1404 a1) We single-step T, leaving breakpoints uninserted.
1405 a2) We insert breakpoints, and resume all threads.
1406
1407 In non-stop debugging, however, this strategy is unsuitable: we
1408 don't want to have to stop all threads in the system in order to
1409 continue or step T past a breakpoint. Instead, we use displaced
1410 stepping:
1411
1412 n0) Initially, T is stopped, other threads are running, and
1413 breakpoints are inserted.
1414 n1) We copy the instruction "under" the breakpoint to a separate
1415 location, outside the main code stream, making any adjustments
1416 to the instruction, register, and memory state as directed by
1417 T's architecture.
1418 n2) We single-step T over the instruction at its new location.
1419 n3) We adjust the resulting register and memory state as directed
1420 by T's architecture. This includes resetting T's PC to point
1421 back into the main instruction stream.
1422 n4) We resume T.
1423
1424 This approach depends on the following gdbarch methods:
1425
1426 - gdbarch_max_insn_length and gdbarch_displaced_step_location
1427 indicate where to copy the instruction, and how much space must
1428 be reserved there. We use these in step n1.
1429
1430 - gdbarch_displaced_step_copy_insn copies a instruction to a new
1431 address, and makes any necessary adjustments to the instruction,
1432 register contents, and memory. We use this in step n1.
1433
1434 - gdbarch_displaced_step_fixup adjusts registers and memory after
1435 we have successfully single-stepped the instruction, to yield the
1436 same effect the instruction would have had if we had executed it
1437 at its original address. We use this in step n3.
1438
1439 The gdbarch_displaced_step_copy_insn and
1440 gdbarch_displaced_step_fixup functions must be written so that
1441 copying an instruction with gdbarch_displaced_step_copy_insn,
1442 single-stepping across the copied instruction, and then applying
1443 gdbarch_displaced_insn_fixup should have the same effects on the
1444 thread's memory and registers as stepping the instruction in place
1445 would have. Exactly which responsibilities fall to the copy and
1446 which fall to the fixup is up to the author of those functions.
1447
1448 See the comments in gdbarch.sh for details.
1449
1450 Note that displaced stepping and software single-step cannot
1451 currently be used in combination, although with some care I think
1452 they could be made to. Software single-step works by placing
1453 breakpoints on all possible subsequent instructions; if the
1454 displaced instruction is a PC-relative jump, those breakpoints
1455 could fall in very strange places --- on pages that aren't
1456 executable, or at addresses that are not proper instruction
1457 boundaries. (We do generally let other threads run while we wait
1458 to hit the software single-step breakpoint, and they might
1459 encounter such a corrupted instruction.) One way to work around
1460 this would be to have gdbarch_displaced_step_copy_insn fully
1461 simulate the effect of PC-relative instructions (and return NULL)
1462 on architectures that use software single-stepping.
1463
1464 In non-stop mode, we can have independent and simultaneous step
1465 requests, so more than one thread may need to simultaneously step
1466 over a breakpoint. The current implementation assumes there is
1467 only one scratch space per process. In this case, we have to
1468 serialize access to the scratch space. If thread A wants to step
1469 over a breakpoint, but we are currently waiting for some other
1470 thread to complete a displaced step, we leave thread A stopped and
1471 place it in the displaced_step_request_queue. Whenever a displaced
1472 step finishes, we pick the next thread in the queue and start a new
1473 displaced step operation on it. See displaced_step_prepare and
1474 displaced_step_fixup for details. */
1475
1476 /* Default destructor for displaced_step_closure. */
1477
1478 displaced_step_closure::~displaced_step_closure () = default;
1479
1480 /* Get the displaced stepping state of inferior INF. */
1481
1482 static displaced_step_inferior_state *
1483 get_displaced_stepping_state (inferior *inf)
1484 {
1485 return &inf->displaced_step_state;
1486 }
1487
1488 /* Returns true if any inferior has a thread doing a displaced
1489 step. */
1490
1491 static bool
1492 displaced_step_in_progress_any_inferior ()
1493 {
1494 for (inferior *i : all_inferiors ())
1495 {
1496 if (i->displaced_step_state.step_thread != nullptr)
1497 return true;
1498 }
1499
1500 return false;
1501 }
1502
1503 /* Return true if THREAD is doing a displaced step. */
1504
1505 static bool
1506 displaced_step_in_progress_thread (thread_info *thread)
1507 {
1508 gdb_assert (thread != NULL);
1509
1510 return get_displaced_stepping_state (thread->inf)->step_thread == thread;
1511 }
1512
1513 /* Return true if INF has a thread doing a displaced step. */
1514
1515 static bool
1516 displaced_step_in_progress (inferior *inf)
1517 {
1518 return get_displaced_stepping_state (inf)->step_thread != nullptr;
1519 }
1520
1521 /* If inferior is in displaced stepping, and ADDR equals to starting address
1522 of copy area, return corresponding displaced_step_closure. Otherwise,
1523 return NULL. */
1524
1525 struct displaced_step_closure*
1526 get_displaced_step_closure_by_addr (CORE_ADDR addr)
1527 {
1528 displaced_step_inferior_state *displaced
1529 = get_displaced_stepping_state (current_inferior ());
1530
1531 /* If checking the mode of displaced instruction in copy area. */
1532 if (displaced->step_thread != nullptr
1533 && displaced->step_copy == addr)
1534 return displaced->step_closure.get ();
1535
1536 return NULL;
1537 }
1538
1539 static void
1540 infrun_inferior_exit (struct inferior *inf)
1541 {
1542 inf->displaced_step_state.reset ();
1543 }
1544
1545 /* If ON, and the architecture supports it, GDB will use displaced
1546 stepping to step over breakpoints. If OFF, or if the architecture
1547 doesn't support it, GDB will instead use the traditional
1548 hold-and-step approach. If AUTO (which is the default), GDB will
1549 decide which technique to use to step over breakpoints depending on
1550 whether the target works in a non-stop way (see use_displaced_stepping). */
1551
1552 static enum auto_boolean can_use_displaced_stepping = AUTO_BOOLEAN_AUTO;
1553
1554 static void
1555 show_can_use_displaced_stepping (struct ui_file *file, int from_tty,
1556 struct cmd_list_element *c,
1557 const char *value)
1558 {
1559 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO)
1560 fprintf_filtered (file,
1561 _("Debugger's willingness to use displaced stepping "
1562 "to step over breakpoints is %s (currently %s).\n"),
1563 value, target_is_non_stop_p () ? "on" : "off");
1564 else
1565 fprintf_filtered (file,
1566 _("Debugger's willingness to use displaced stepping "
1567 "to step over breakpoints is %s.\n"), value);
1568 }
1569
1570 /* Return true if the gdbarch implements the required methods to use
1571 displaced stepping. */
1572
1573 static bool
1574 gdbarch_supports_displaced_stepping (gdbarch *arch)
1575 {
1576 /* Only check for the presence of step_copy_insn. Other required methods
1577 are checked by the gdbarch validation. */
1578 return gdbarch_displaced_step_copy_insn_p (arch);
1579 }
1580
1581 /* Return non-zero if displaced stepping can/should be used to step
1582 over breakpoints of thread TP. */
1583
1584 static bool
1585 use_displaced_stepping (thread_info *tp)
1586 {
1587 /* If the user disabled it explicitly, don't use displaced stepping. */
1588 if (can_use_displaced_stepping == AUTO_BOOLEAN_FALSE)
1589 return false;
1590
1591 /* If "auto", only use displaced stepping if the target operates in a non-stop
1592 way. */
1593 if (can_use_displaced_stepping == AUTO_BOOLEAN_AUTO
1594 && !target_is_non_stop_p ())
1595 return false;
1596
1597 gdbarch *gdbarch = get_thread_regcache (tp)->arch ();
1598
1599 /* If the architecture doesn't implement displaced stepping, don't use
1600 it. */
1601 if (!gdbarch_supports_displaced_stepping (gdbarch))
1602 return false;
1603
1604 /* If recording, don't use displaced stepping. */
1605 if (find_record_target () != nullptr)
1606 return false;
1607
1608 displaced_step_inferior_state *displaced_state
1609 = get_displaced_stepping_state (tp->inf);
1610
1611 /* If displaced stepping failed before for this inferior, don't bother trying
1612 again. */
1613 if (displaced_state->failed_before)
1614 return false;
1615
1616 return true;
1617 }
1618
1619 /* Simple function wrapper around displaced_step_inferior_state::reset. */
1620
1621 static void
1622 displaced_step_reset (displaced_step_inferior_state *displaced)
1623 {
1624 displaced->reset ();
1625 }
1626
1627 /* A cleanup that wraps displaced_step_reset. We use this instead of, say,
1628 SCOPE_EXIT, because it needs to be discardable with "cleanup.release ()". */
1629
1630 using displaced_step_reset_cleanup = FORWARD_SCOPE_EXIT (displaced_step_reset);
1631
1632 /* Dump LEN bytes at BUF in hex to FILE, followed by a newline. */
1633 void
1634 displaced_step_dump_bytes (struct ui_file *file,
1635 const gdb_byte *buf,
1636 size_t len)
1637 {
1638 int i;
1639
1640 for (i = 0; i < len; i++)
1641 fprintf_unfiltered (file, "%02x ", buf[i]);
1642 fputs_unfiltered ("\n", file);
1643 }
1644
1645 /* Prepare to single-step, using displaced stepping.
1646
1647 Note that we cannot use displaced stepping when we have a signal to
1648 deliver. If we have a signal to deliver and an instruction to step
1649 over, then after the step, there will be no indication from the
1650 target whether the thread entered a signal handler or ignored the
1651 signal and stepped over the instruction successfully --- both cases
1652 result in a simple SIGTRAP. In the first case we mustn't do a
1653 fixup, and in the second case we must --- but we can't tell which.
1654 Comments in the code for 'random signals' in handle_inferior_event
1655 explain how we handle this case instead.
1656
1657 Returns 1 if preparing was successful -- this thread is going to be
1658 stepped now; 0 if displaced stepping this thread got queued; or -1
1659 if this instruction can't be displaced stepped. */
1660
1661 static int
1662 displaced_step_prepare_throw (thread_info *tp)
1663 {
1664 regcache *regcache = get_thread_regcache (tp);
1665 struct gdbarch *gdbarch = regcache->arch ();
1666 const address_space *aspace = regcache->aspace ();
1667 CORE_ADDR original, copy;
1668 ULONGEST len;
1669 int status;
1670
1671 /* We should never reach this function if the architecture does not
1672 support displaced stepping. */
1673 gdb_assert (gdbarch_supports_displaced_stepping (gdbarch));
1674
1675 /* Nor if the thread isn't meant to step over a breakpoint. */
1676 gdb_assert (tp->control.trap_expected);
1677
1678 /* Disable range stepping while executing in the scratch pad. We
1679 want a single-step even if executing the displaced instruction in
1680 the scratch buffer lands within the stepping range (e.g., a
1681 jump/branch). */
1682 tp->control.may_range_step = 0;
1683
1684 /* We have to displaced step one thread at a time, as we only have
1685 access to a single scratch space per inferior. */
1686
1687 displaced_step_inferior_state *displaced
1688 = get_displaced_stepping_state (tp->inf);
1689
1690 if (displaced->step_thread != nullptr)
1691 {
1692 /* Already waiting for a displaced step to finish. Defer this
1693 request and place in queue. */
1694
1695 if (debug_displaced)
1696 fprintf_unfiltered (gdb_stdlog,
1697 "displaced: deferring step of %s\n",
1698 target_pid_to_str (tp->ptid).c_str ());
1699
1700 thread_step_over_chain_enqueue (tp);
1701 return 0;
1702 }
1703 else
1704 {
1705 if (debug_displaced)
1706 fprintf_unfiltered (gdb_stdlog,
1707 "displaced: stepping %s now\n",
1708 target_pid_to_str (tp->ptid).c_str ());
1709 }
1710
1711 displaced_step_reset (displaced);
1712
1713 scoped_restore_current_thread restore_thread;
1714
1715 switch_to_thread (tp);
1716
1717 original = regcache_read_pc (regcache);
1718
1719 copy = gdbarch_displaced_step_location (gdbarch);
1720 len = gdbarch_max_insn_length (gdbarch);
1721
1722 if (breakpoint_in_range_p (aspace, copy, len))
1723 {
1724 /* There's a breakpoint set in the scratch pad location range
1725 (which is usually around the entry point). We'd either
1726 install it before resuming, which would overwrite/corrupt the
1727 scratch pad, or if it was already inserted, this displaced
1728 step would overwrite it. The latter is OK in the sense that
1729 we already assume that no thread is going to execute the code
1730 in the scratch pad range (after initial startup) anyway, but
1731 the former is unacceptable. Simply punt and fallback to
1732 stepping over this breakpoint in-line. */
1733 if (debug_displaced)
1734 {
1735 fprintf_unfiltered (gdb_stdlog,
1736 "displaced: breakpoint set in scratch pad. "
1737 "Stepping over breakpoint in-line instead.\n");
1738 }
1739
1740 return -1;
1741 }
1742
1743 /* Save the original contents of the copy area. */
1744 displaced->step_saved_copy.resize (len);
1745 status = target_read_memory (copy, displaced->step_saved_copy.data (), len);
1746 if (status != 0)
1747 throw_error (MEMORY_ERROR,
1748 _("Error accessing memory address %s (%s) for "
1749 "displaced-stepping scratch space."),
1750 paddress (gdbarch, copy), safe_strerror (status));
1751 if (debug_displaced)
1752 {
1753 fprintf_unfiltered (gdb_stdlog, "displaced: saved %s: ",
1754 paddress (gdbarch, copy));
1755 displaced_step_dump_bytes (gdb_stdlog,
1756 displaced->step_saved_copy.data (),
1757 len);
1758 };
1759
1760 displaced->step_closure
1761 = gdbarch_displaced_step_copy_insn (gdbarch, original, copy, regcache);
1762 if (displaced->step_closure == NULL)
1763 {
1764 /* The architecture doesn't know how or want to displaced step
1765 this instruction or instruction sequence. Fallback to
1766 stepping over the breakpoint in-line. */
1767 return -1;
1768 }
1769
1770 /* Save the information we need to fix things up if the step
1771 succeeds. */
1772 displaced->step_thread = tp;
1773 displaced->step_gdbarch = gdbarch;
1774 displaced->step_original = original;
1775 displaced->step_copy = copy;
1776
1777 {
1778 displaced_step_reset_cleanup cleanup (displaced);
1779
1780 /* Resume execution at the copy. */
1781 regcache_write_pc (regcache, copy);
1782
1783 cleanup.release ();
1784 }
1785
1786 if (debug_displaced)
1787 fprintf_unfiltered (gdb_stdlog, "displaced: displaced pc to %s\n",
1788 paddress (gdbarch, copy));
1789
1790 return 1;
1791 }
1792
1793 /* Wrapper for displaced_step_prepare_throw that disabled further
1794 attempts at displaced stepping if we get a memory error. */
1795
1796 static int
1797 displaced_step_prepare (thread_info *thread)
1798 {
1799 int prepared = -1;
1800
1801 try
1802 {
1803 prepared = displaced_step_prepare_throw (thread);
1804 }
1805 catch (const gdb_exception_error &ex)
1806 {
1807 struct displaced_step_inferior_state *displaced_state;
1808
1809 if (ex.error != MEMORY_ERROR
1810 && ex.error != NOT_SUPPORTED_ERROR)
1811 throw;
1812
1813 infrun_debug_printf ("caught exception, disabling displaced stepping: %s",
1814 ex.what ());
1815
1816 /* Be verbose if "set displaced-stepping" is "on", silent if
1817 "auto". */
1818 if (can_use_displaced_stepping == AUTO_BOOLEAN_TRUE)
1819 {
1820 warning (_("disabling displaced stepping: %s"),
1821 ex.what ());
1822 }
1823
1824 /* Disable further displaced stepping attempts. */
1825 displaced_state
1826 = get_displaced_stepping_state (thread->inf);
1827 displaced_state->failed_before = 1;
1828 }
1829
1830 return prepared;
1831 }
1832
1833 static void
1834 write_memory_ptid (ptid_t ptid, CORE_ADDR memaddr,
1835 const gdb_byte *myaddr, int len)
1836 {
1837 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1838
1839 inferior_ptid = ptid;
1840 write_memory (memaddr, myaddr, len);
1841 }
1842
1843 /* Restore the contents of the copy area for thread PTID. */
1844
1845 static void
1846 displaced_step_restore (struct displaced_step_inferior_state *displaced,
1847 ptid_t ptid)
1848 {
1849 ULONGEST len = gdbarch_max_insn_length (displaced->step_gdbarch);
1850
1851 write_memory_ptid (ptid, displaced->step_copy,
1852 displaced->step_saved_copy.data (), len);
1853 if (debug_displaced)
1854 fprintf_unfiltered (gdb_stdlog, "displaced: restored %s %s\n",
1855 target_pid_to_str (ptid).c_str (),
1856 paddress (displaced->step_gdbarch,
1857 displaced->step_copy));
1858 }
1859
1860 /* If we displaced stepped an instruction successfully, adjust
1861 registers and memory to yield the same effect the instruction would
1862 have had if we had executed it at its original address, and return
1863 1. If the instruction didn't complete, relocate the PC and return
1864 -1. If the thread wasn't displaced stepping, return 0. */
1865
1866 static int
1867 displaced_step_fixup (thread_info *event_thread, enum gdb_signal signal)
1868 {
1869 struct displaced_step_inferior_state *displaced
1870 = get_displaced_stepping_state (event_thread->inf);
1871 int ret;
1872
1873 /* Was this event for the thread we displaced? */
1874 if (displaced->step_thread != event_thread)
1875 return 0;
1876
1877 /* Fixup may need to read memory/registers. Switch to the thread
1878 that we're fixing up. Also, target_stopped_by_watchpoint checks
1879 the current thread, and displaced_step_restore performs ptid-dependent
1880 memory accesses using current_inferior() and current_top_target(). */
1881 switch_to_thread (event_thread);
1882
1883 displaced_step_reset_cleanup cleanup (displaced);
1884
1885 displaced_step_restore (displaced, displaced->step_thread->ptid);
1886
1887 /* Did the instruction complete successfully? */
1888 if (signal == GDB_SIGNAL_TRAP
1889 && !(target_stopped_by_watchpoint ()
1890 && (gdbarch_have_nonsteppable_watchpoint (displaced->step_gdbarch)
1891 || target_have_steppable_watchpoint ())))
1892 {
1893 /* Fix up the resulting state. */
1894 gdbarch_displaced_step_fixup (displaced->step_gdbarch,
1895 displaced->step_closure.get (),
1896 displaced->step_original,
1897 displaced->step_copy,
1898 get_thread_regcache (displaced->step_thread));
1899 ret = 1;
1900 }
1901 else
1902 {
1903 /* Since the instruction didn't complete, all we can do is
1904 relocate the PC. */
1905 struct regcache *regcache = get_thread_regcache (event_thread);
1906 CORE_ADDR pc = regcache_read_pc (regcache);
1907
1908 pc = displaced->step_original + (pc - displaced->step_copy);
1909 regcache_write_pc (regcache, pc);
1910 ret = -1;
1911 }
1912
1913 return ret;
1914 }
1915
1916 /* Data to be passed around while handling an event. This data is
1917 discarded between events. */
1918 struct execution_control_state
1919 {
1920 process_stratum_target *target;
1921 ptid_t ptid;
1922 /* The thread that got the event, if this was a thread event; NULL
1923 otherwise. */
1924 struct thread_info *event_thread;
1925
1926 struct target_waitstatus ws;
1927 int stop_func_filled_in;
1928 CORE_ADDR stop_func_start;
1929 CORE_ADDR stop_func_end;
1930 const char *stop_func_name;
1931 int wait_some_more;
1932
1933 /* True if the event thread hit the single-step breakpoint of
1934 another thread. Thus the event doesn't cause a stop, the thread
1935 needs to be single-stepped past the single-step breakpoint before
1936 we can switch back to the original stepping thread. */
1937 int hit_singlestep_breakpoint;
1938 };
1939
1940 /* Clear ECS and set it to point at TP. */
1941
1942 static void
1943 reset_ecs (struct execution_control_state *ecs, struct thread_info *tp)
1944 {
1945 memset (ecs, 0, sizeof (*ecs));
1946 ecs->event_thread = tp;
1947 ecs->ptid = tp->ptid;
1948 }
1949
1950 static void keep_going_pass_signal (struct execution_control_state *ecs);
1951 static void prepare_to_wait (struct execution_control_state *ecs);
1952 static bool keep_going_stepped_thread (struct thread_info *tp);
1953 static step_over_what thread_still_needs_step_over (struct thread_info *tp);
1954
1955 /* Are there any pending step-over requests? If so, run all we can
1956 now and return true. Otherwise, return false. */
1957
1958 static bool
1959 start_step_over (void)
1960 {
1961 struct thread_info *tp, *next;
1962
1963 /* Don't start a new step-over if we already have an in-line
1964 step-over operation ongoing. */
1965 if (step_over_info_valid_p ())
1966 return false;
1967
1968 for (tp = step_over_queue_head; tp != NULL; tp = next)
1969 {
1970 struct execution_control_state ecss;
1971 struct execution_control_state *ecs = &ecss;
1972 step_over_what step_what;
1973 int must_be_in_line;
1974
1975 gdb_assert (!tp->stop_requested);
1976
1977 next = thread_step_over_chain_next (tp);
1978
1979 /* If this inferior already has a displaced step in process,
1980 don't start a new one. */
1981 if (displaced_step_in_progress (tp->inf))
1982 continue;
1983
1984 step_what = thread_still_needs_step_over (tp);
1985 must_be_in_line = ((step_what & STEP_OVER_WATCHPOINT)
1986 || ((step_what & STEP_OVER_BREAKPOINT)
1987 && !use_displaced_stepping (tp)));
1988
1989 /* We currently stop all threads of all processes to step-over
1990 in-line. If we need to start a new in-line step-over, let
1991 any pending displaced steps finish first. */
1992 if (must_be_in_line && displaced_step_in_progress_any_inferior ())
1993 return false;
1994
1995 thread_step_over_chain_remove (tp);
1996
1997 if (step_over_queue_head == NULL)
1998 infrun_debug_printf ("step-over queue now empty");
1999
2000 if (tp->control.trap_expected
2001 || tp->resumed
2002 || tp->executing)
2003 {
2004 internal_error (__FILE__, __LINE__,
2005 "[%s] has inconsistent state: "
2006 "trap_expected=%d, resumed=%d, executing=%d\n",
2007 target_pid_to_str (tp->ptid).c_str (),
2008 tp->control.trap_expected,
2009 tp->resumed,
2010 tp->executing);
2011 }
2012
2013 infrun_debug_printf ("resuming [%s] for step-over",
2014 target_pid_to_str (tp->ptid).c_str ());
2015
2016 /* keep_going_pass_signal skips the step-over if the breakpoint
2017 is no longer inserted. In all-stop, we want to keep looking
2018 for a thread that needs a step-over instead of resuming TP,
2019 because we wouldn't be able to resume anything else until the
2020 target stops again. In non-stop, the resume always resumes
2021 only TP, so it's OK to let the thread resume freely. */
2022 if (!target_is_non_stop_p () && !step_what)
2023 continue;
2024
2025 switch_to_thread (tp);
2026 reset_ecs (ecs, tp);
2027 keep_going_pass_signal (ecs);
2028
2029 if (!ecs->wait_some_more)
2030 error (_("Command aborted."));
2031
2032 gdb_assert (tp->resumed);
2033
2034 /* If we started a new in-line step-over, we're done. */
2035 if (step_over_info_valid_p ())
2036 {
2037 gdb_assert (tp->control.trap_expected);
2038 return true;
2039 }
2040
2041 if (!target_is_non_stop_p ())
2042 {
2043 /* On all-stop, shouldn't have resumed unless we needed a
2044 step over. */
2045 gdb_assert (tp->control.trap_expected
2046 || tp->step_after_step_resume_breakpoint);
2047
2048 /* With remote targets (at least), in all-stop, we can't
2049 issue any further remote commands until the program stops
2050 again. */
2051 return true;
2052 }
2053
2054 /* Either the thread no longer needed a step-over, or a new
2055 displaced stepping sequence started. Even in the latter
2056 case, continue looking. Maybe we can also start another
2057 displaced step on a thread of other process. */
2058 }
2059
2060 return false;
2061 }
2062
2063 /* Update global variables holding ptids to hold NEW_PTID if they were
2064 holding OLD_PTID. */
2065 static void
2066 infrun_thread_ptid_changed (process_stratum_target *target,
2067 ptid_t old_ptid, ptid_t new_ptid)
2068 {
2069 if (inferior_ptid == old_ptid
2070 && current_inferior ()->process_target () == target)
2071 inferior_ptid = new_ptid;
2072 }
2073
2074 \f
2075
2076 static const char schedlock_off[] = "off";
2077 static const char schedlock_on[] = "on";
2078 static const char schedlock_step[] = "step";
2079 static const char schedlock_replay[] = "replay";
2080 static const char *const scheduler_enums[] = {
2081 schedlock_off,
2082 schedlock_on,
2083 schedlock_step,
2084 schedlock_replay,
2085 NULL
2086 };
2087 static const char *scheduler_mode = schedlock_replay;
2088 static void
2089 show_scheduler_mode (struct ui_file *file, int from_tty,
2090 struct cmd_list_element *c, const char *value)
2091 {
2092 fprintf_filtered (file,
2093 _("Mode for locking scheduler "
2094 "during execution is \"%s\".\n"),
2095 value);
2096 }
2097
2098 static void
2099 set_schedlock_func (const char *args, int from_tty, struct cmd_list_element *c)
2100 {
2101 if (!target_can_lock_scheduler ())
2102 {
2103 scheduler_mode = schedlock_off;
2104 error (_("Target '%s' cannot support this command."), target_shortname);
2105 }
2106 }
2107
2108 /* True if execution commands resume all threads of all processes by
2109 default; otherwise, resume only threads of the current inferior
2110 process. */
2111 bool sched_multi = false;
2112
2113 /* Try to setup for software single stepping over the specified location.
2114 Return true if target_resume() should use hardware single step.
2115
2116 GDBARCH the current gdbarch.
2117 PC the location to step over. */
2118
2119 static bool
2120 maybe_software_singlestep (struct gdbarch *gdbarch, CORE_ADDR pc)
2121 {
2122 bool hw_step = true;
2123
2124 if (execution_direction == EXEC_FORWARD
2125 && gdbarch_software_single_step_p (gdbarch))
2126 hw_step = !insert_single_step_breakpoints (gdbarch);
2127
2128 return hw_step;
2129 }
2130
2131 /* See infrun.h. */
2132
2133 ptid_t
2134 user_visible_resume_ptid (int step)
2135 {
2136 ptid_t resume_ptid;
2137
2138 if (non_stop)
2139 {
2140 /* With non-stop mode on, threads are always handled
2141 individually. */
2142 resume_ptid = inferior_ptid;
2143 }
2144 else if ((scheduler_mode == schedlock_on)
2145 || (scheduler_mode == schedlock_step && step))
2146 {
2147 /* User-settable 'scheduler' mode requires solo thread
2148 resume. */
2149 resume_ptid = inferior_ptid;
2150 }
2151 else if ((scheduler_mode == schedlock_replay)
2152 && target_record_will_replay (minus_one_ptid, execution_direction))
2153 {
2154 /* User-settable 'scheduler' mode requires solo thread resume in replay
2155 mode. */
2156 resume_ptid = inferior_ptid;
2157 }
2158 else if (!sched_multi && target_supports_multi_process ())
2159 {
2160 /* Resume all threads of the current process (and none of other
2161 processes). */
2162 resume_ptid = ptid_t (inferior_ptid.pid ());
2163 }
2164 else
2165 {
2166 /* Resume all threads of all processes. */
2167 resume_ptid = RESUME_ALL;
2168 }
2169
2170 return resume_ptid;
2171 }
2172
2173 /* See infrun.h. */
2174
2175 process_stratum_target *
2176 user_visible_resume_target (ptid_t resume_ptid)
2177 {
2178 return (resume_ptid == minus_one_ptid && sched_multi
2179 ? NULL
2180 : current_inferior ()->process_target ());
2181 }
2182
2183 /* Return a ptid representing the set of threads that we will resume,
2184 in the perspective of the target, assuming run control handling
2185 does not require leaving some threads stopped (e.g., stepping past
2186 breakpoint). USER_STEP indicates whether we're about to start the
2187 target for a stepping command. */
2188
2189 static ptid_t
2190 internal_resume_ptid (int user_step)
2191 {
2192 /* In non-stop, we always control threads individually. Note that
2193 the target may always work in non-stop mode even with "set
2194 non-stop off", in which case user_visible_resume_ptid could
2195 return a wildcard ptid. */
2196 if (target_is_non_stop_p ())
2197 return inferior_ptid;
2198 else
2199 return user_visible_resume_ptid (user_step);
2200 }
2201
2202 /* Wrapper for target_resume, that handles infrun-specific
2203 bookkeeping. */
2204
2205 static void
2206 do_target_resume (ptid_t resume_ptid, bool step, enum gdb_signal sig)
2207 {
2208 struct thread_info *tp = inferior_thread ();
2209
2210 gdb_assert (!tp->stop_requested);
2211
2212 /* Install inferior's terminal modes. */
2213 target_terminal::inferior ();
2214
2215 /* Avoid confusing the next resume, if the next stop/resume
2216 happens to apply to another thread. */
2217 tp->suspend.stop_signal = GDB_SIGNAL_0;
2218
2219 /* Advise target which signals may be handled silently.
2220
2221 If we have removed breakpoints because we are stepping over one
2222 in-line (in any thread), we need to receive all signals to avoid
2223 accidentally skipping a breakpoint during execution of a signal
2224 handler.
2225
2226 Likewise if we're displaced stepping, otherwise a trap for a
2227 breakpoint in a signal handler might be confused with the
2228 displaced step finishing. We don't make the displaced_step_fixup
2229 step distinguish the cases instead, because:
2230
2231 - a backtrace while stopped in the signal handler would show the
2232 scratch pad as frame older than the signal handler, instead of
2233 the real mainline code.
2234
2235 - when the thread is later resumed, the signal handler would
2236 return to the scratch pad area, which would no longer be
2237 valid. */
2238 if (step_over_info_valid_p ()
2239 || displaced_step_in_progress (tp->inf))
2240 target_pass_signals ({});
2241 else
2242 target_pass_signals (signal_pass);
2243
2244 target_resume (resume_ptid, step, sig);
2245
2246 target_commit_resume ();
2247
2248 if (target_can_async_p ())
2249 target_async (1);
2250 }
2251
2252 /* Resume the inferior. SIG is the signal to give the inferior
2253 (GDB_SIGNAL_0 for none). Note: don't call this directly; instead
2254 call 'resume', which handles exceptions. */
2255
2256 static void
2257 resume_1 (enum gdb_signal sig)
2258 {
2259 struct regcache *regcache = get_current_regcache ();
2260 struct gdbarch *gdbarch = regcache->arch ();
2261 struct thread_info *tp = inferior_thread ();
2262 const address_space *aspace = regcache->aspace ();
2263 ptid_t resume_ptid;
2264 /* This represents the user's step vs continue request. When
2265 deciding whether "set scheduler-locking step" applies, it's the
2266 user's intention that counts. */
2267 const int user_step = tp->control.stepping_command;
2268 /* This represents what we'll actually request the target to do.
2269 This can decay from a step to a continue, if e.g., we need to
2270 implement single-stepping with breakpoints (software
2271 single-step). */
2272 bool step;
2273
2274 gdb_assert (!tp->stop_requested);
2275 gdb_assert (!thread_is_in_step_over_chain (tp));
2276
2277 if (tp->suspend.waitstatus_pending_p)
2278 {
2279 infrun_debug_printf
2280 ("thread %s has pending wait "
2281 "status %s (currently_stepping=%d).",
2282 target_pid_to_str (tp->ptid).c_str (),
2283 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2284 currently_stepping (tp));
2285
2286 tp->inf->process_target ()->threads_executing = true;
2287 tp->resumed = true;
2288
2289 /* FIXME: What should we do if we are supposed to resume this
2290 thread with a signal? Maybe we should maintain a queue of
2291 pending signals to deliver. */
2292 if (sig != GDB_SIGNAL_0)
2293 {
2294 warning (_("Couldn't deliver signal %s to %s."),
2295 gdb_signal_to_name (sig),
2296 target_pid_to_str (tp->ptid).c_str ());
2297 }
2298
2299 tp->suspend.stop_signal = GDB_SIGNAL_0;
2300
2301 if (target_can_async_p ())
2302 {
2303 target_async (1);
2304 /* Tell the event loop we have an event to process. */
2305 mark_async_event_handler (infrun_async_inferior_event_token);
2306 }
2307 return;
2308 }
2309
2310 tp->stepped_breakpoint = 0;
2311
2312 /* Depends on stepped_breakpoint. */
2313 step = currently_stepping (tp);
2314
2315 if (current_inferior ()->waiting_for_vfork_done)
2316 {
2317 /* Don't try to single-step a vfork parent that is waiting for
2318 the child to get out of the shared memory region (by exec'ing
2319 or exiting). This is particularly important on software
2320 single-step archs, as the child process would trip on the
2321 software single step breakpoint inserted for the parent
2322 process. Since the parent will not actually execute any
2323 instruction until the child is out of the shared region (such
2324 are vfork's semantics), it is safe to simply continue it.
2325 Eventually, we'll see a TARGET_WAITKIND_VFORK_DONE event for
2326 the parent, and tell it to `keep_going', which automatically
2327 re-sets it stepping. */
2328 infrun_debug_printf ("resume : clear step");
2329 step = false;
2330 }
2331
2332 CORE_ADDR pc = regcache_read_pc (regcache);
2333
2334 infrun_debug_printf ("step=%d, signal=%s, trap_expected=%d, "
2335 "current thread [%s] at %s",
2336 step, gdb_signal_to_symbol_string (sig),
2337 tp->control.trap_expected,
2338 target_pid_to_str (inferior_ptid).c_str (),
2339 paddress (gdbarch, pc));
2340
2341 /* Normally, by the time we reach `resume', the breakpoints are either
2342 removed or inserted, as appropriate. The exception is if we're sitting
2343 at a permanent breakpoint; we need to step over it, but permanent
2344 breakpoints can't be removed. So we have to test for it here. */
2345 if (breakpoint_here_p (aspace, pc) == permanent_breakpoint_here)
2346 {
2347 if (sig != GDB_SIGNAL_0)
2348 {
2349 /* We have a signal to pass to the inferior. The resume
2350 may, or may not take us to the signal handler. If this
2351 is a step, we'll need to stop in the signal handler, if
2352 there's one, (if the target supports stepping into
2353 handlers), or in the next mainline instruction, if
2354 there's no handler. If this is a continue, we need to be
2355 sure to run the handler with all breakpoints inserted.
2356 In all cases, set a breakpoint at the current address
2357 (where the handler returns to), and once that breakpoint
2358 is hit, resume skipping the permanent breakpoint. If
2359 that breakpoint isn't hit, then we've stepped into the
2360 signal handler (or hit some other event). We'll delete
2361 the step-resume breakpoint then. */
2362
2363 infrun_debug_printf ("resume: skipping permanent breakpoint, "
2364 "deliver signal first");
2365
2366 clear_step_over_info ();
2367 tp->control.trap_expected = 0;
2368
2369 if (tp->control.step_resume_breakpoint == NULL)
2370 {
2371 /* Set a "high-priority" step-resume, as we don't want
2372 user breakpoints at PC to trigger (again) when this
2373 hits. */
2374 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2375 gdb_assert (tp->control.step_resume_breakpoint->loc->permanent);
2376
2377 tp->step_after_step_resume_breakpoint = step;
2378 }
2379
2380 insert_breakpoints ();
2381 }
2382 else
2383 {
2384 /* There's no signal to pass, we can go ahead and skip the
2385 permanent breakpoint manually. */
2386 infrun_debug_printf ("skipping permanent breakpoint");
2387 gdbarch_skip_permanent_breakpoint (gdbarch, regcache);
2388 /* Update pc to reflect the new address from which we will
2389 execute instructions. */
2390 pc = regcache_read_pc (regcache);
2391
2392 if (step)
2393 {
2394 /* We've already advanced the PC, so the stepping part
2395 is done. Now we need to arrange for a trap to be
2396 reported to handle_inferior_event. Set a breakpoint
2397 at the current PC, and run to it. Don't update
2398 prev_pc, because if we end in
2399 switch_back_to_stepped_thread, we want the "expected
2400 thread advanced also" branch to be taken. IOW, we
2401 don't want this thread to step further from PC
2402 (overstep). */
2403 gdb_assert (!step_over_info_valid_p ());
2404 insert_single_step_breakpoint (gdbarch, aspace, pc);
2405 insert_breakpoints ();
2406
2407 resume_ptid = internal_resume_ptid (user_step);
2408 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
2409 tp->resumed = true;
2410 return;
2411 }
2412 }
2413 }
2414
2415 /* If we have a breakpoint to step over, make sure to do a single
2416 step only. Same if we have software watchpoints. */
2417 if (tp->control.trap_expected || bpstat_should_step ())
2418 tp->control.may_range_step = 0;
2419
2420 /* If displaced stepping is enabled, step over breakpoints by executing a
2421 copy of the instruction at a different address.
2422
2423 We can't use displaced stepping when we have a signal to deliver;
2424 the comments for displaced_step_prepare explain why. The
2425 comments in the handle_inferior event for dealing with 'random
2426 signals' explain what we do instead.
2427
2428 We can't use displaced stepping when we are waiting for vfork_done
2429 event, displaced stepping breaks the vfork child similarly as single
2430 step software breakpoint. */
2431 if (tp->control.trap_expected
2432 && use_displaced_stepping (tp)
2433 && !step_over_info_valid_p ()
2434 && sig == GDB_SIGNAL_0
2435 && !current_inferior ()->waiting_for_vfork_done)
2436 {
2437 int prepared = displaced_step_prepare (tp);
2438
2439 if (prepared == 0)
2440 {
2441 infrun_debug_printf ("Got placed in step-over queue");
2442
2443 tp->control.trap_expected = 0;
2444 return;
2445 }
2446 else if (prepared < 0)
2447 {
2448 /* Fallback to stepping over the breakpoint in-line. */
2449
2450 if (target_is_non_stop_p ())
2451 stop_all_threads ();
2452
2453 set_step_over_info (regcache->aspace (),
2454 regcache_read_pc (regcache), 0, tp->global_num);
2455
2456 step = maybe_software_singlestep (gdbarch, pc);
2457
2458 insert_breakpoints ();
2459 }
2460 else if (prepared > 0)
2461 {
2462 /* Update pc to reflect the new address from which we will
2463 execute instructions due to displaced stepping. */
2464 pc = regcache_read_pc (get_thread_regcache (tp));
2465
2466 step = gdbarch_displaced_step_hw_singlestep (gdbarch);
2467 }
2468 }
2469
2470 /* Do we need to do it the hard way, w/temp breakpoints? */
2471 else if (step)
2472 step = maybe_software_singlestep (gdbarch, pc);
2473
2474 /* Currently, our software single-step implementation leads to different
2475 results than hardware single-stepping in one situation: when stepping
2476 into delivering a signal which has an associated signal handler,
2477 hardware single-step will stop at the first instruction of the handler,
2478 while software single-step will simply skip execution of the handler.
2479
2480 For now, this difference in behavior is accepted since there is no
2481 easy way to actually implement single-stepping into a signal handler
2482 without kernel support.
2483
2484 However, there is one scenario where this difference leads to follow-on
2485 problems: if we're stepping off a breakpoint by removing all breakpoints
2486 and then single-stepping. In this case, the software single-step
2487 behavior means that even if there is a *breakpoint* in the signal
2488 handler, GDB still would not stop.
2489
2490 Fortunately, we can at least fix this particular issue. We detect
2491 here the case where we are about to deliver a signal while software
2492 single-stepping with breakpoints removed. In this situation, we
2493 revert the decisions to remove all breakpoints and insert single-
2494 step breakpoints, and instead we install a step-resume breakpoint
2495 at the current address, deliver the signal without stepping, and
2496 once we arrive back at the step-resume breakpoint, actually step
2497 over the breakpoint we originally wanted to step over. */
2498 if (thread_has_single_step_breakpoints_set (tp)
2499 && sig != GDB_SIGNAL_0
2500 && step_over_info_valid_p ())
2501 {
2502 /* If we have nested signals or a pending signal is delivered
2503 immediately after a handler returns, might already have
2504 a step-resume breakpoint set on the earlier handler. We cannot
2505 set another step-resume breakpoint; just continue on until the
2506 original breakpoint is hit. */
2507 if (tp->control.step_resume_breakpoint == NULL)
2508 {
2509 insert_hp_step_resume_breakpoint_at_frame (get_current_frame ());
2510 tp->step_after_step_resume_breakpoint = 1;
2511 }
2512
2513 delete_single_step_breakpoints (tp);
2514
2515 clear_step_over_info ();
2516 tp->control.trap_expected = 0;
2517
2518 insert_breakpoints ();
2519 }
2520
2521 /* If STEP is set, it's a request to use hardware stepping
2522 facilities. But in that case, we should never
2523 use singlestep breakpoint. */
2524 gdb_assert (!(thread_has_single_step_breakpoints_set (tp) && step));
2525
2526 /* Decide the set of threads to ask the target to resume. */
2527 if (tp->control.trap_expected)
2528 {
2529 /* We're allowing a thread to run past a breakpoint it has
2530 hit, either by single-stepping the thread with the breakpoint
2531 removed, or by displaced stepping, with the breakpoint inserted.
2532 In the former case, we need to single-step only this thread,
2533 and keep others stopped, as they can miss this breakpoint if
2534 allowed to run. That's not really a problem for displaced
2535 stepping, but, we still keep other threads stopped, in case
2536 another thread is also stopped for a breakpoint waiting for
2537 its turn in the displaced stepping queue. */
2538 resume_ptid = inferior_ptid;
2539 }
2540 else
2541 resume_ptid = internal_resume_ptid (user_step);
2542
2543 if (execution_direction != EXEC_REVERSE
2544 && step && breakpoint_inserted_here_p (aspace, pc))
2545 {
2546 /* There are two cases where we currently need to step a
2547 breakpoint instruction when we have a signal to deliver:
2548
2549 - See handle_signal_stop where we handle random signals that
2550 could take out us out of the stepping range. Normally, in
2551 that case we end up continuing (instead of stepping) over the
2552 signal handler with a breakpoint at PC, but there are cases
2553 where we should _always_ single-step, even if we have a
2554 step-resume breakpoint, like when a software watchpoint is
2555 set. Assuming single-stepping and delivering a signal at the
2556 same time would takes us to the signal handler, then we could
2557 have removed the breakpoint at PC to step over it. However,
2558 some hardware step targets (like e.g., Mac OS) can't step
2559 into signal handlers, and for those, we need to leave the
2560 breakpoint at PC inserted, as otherwise if the handler
2561 recurses and executes PC again, it'll miss the breakpoint.
2562 So we leave the breakpoint inserted anyway, but we need to
2563 record that we tried to step a breakpoint instruction, so
2564 that adjust_pc_after_break doesn't end up confused.
2565
2566 - In non-stop if we insert a breakpoint (e.g., a step-resume)
2567 in one thread after another thread that was stepping had been
2568 momentarily paused for a step-over. When we re-resume the
2569 stepping thread, it may be resumed from that address with a
2570 breakpoint that hasn't trapped yet. Seen with
2571 gdb.threads/non-stop-fair-events.exp, on targets that don't
2572 do displaced stepping. */
2573
2574 infrun_debug_printf ("resume: [%s] stepped breakpoint",
2575 target_pid_to_str (tp->ptid).c_str ());
2576
2577 tp->stepped_breakpoint = 1;
2578
2579 /* Most targets can step a breakpoint instruction, thus
2580 executing it normally. But if this one cannot, just
2581 continue and we will hit it anyway. */
2582 if (gdbarch_cannot_step_breakpoint (gdbarch))
2583 step = false;
2584 }
2585
2586 if (debug_displaced
2587 && tp->control.trap_expected
2588 && use_displaced_stepping (tp)
2589 && !step_over_info_valid_p ())
2590 {
2591 struct regcache *resume_regcache = get_thread_regcache (tp);
2592 struct gdbarch *resume_gdbarch = resume_regcache->arch ();
2593 CORE_ADDR actual_pc = regcache_read_pc (resume_regcache);
2594 gdb_byte buf[4];
2595
2596 fprintf_unfiltered (gdb_stdlog, "displaced: run %s: ",
2597 paddress (resume_gdbarch, actual_pc));
2598 read_memory (actual_pc, buf, sizeof (buf));
2599 displaced_step_dump_bytes (gdb_stdlog, buf, sizeof (buf));
2600 }
2601
2602 if (tp->control.may_range_step)
2603 {
2604 /* If we're resuming a thread with the PC out of the step
2605 range, then we're doing some nested/finer run control
2606 operation, like stepping the thread out of the dynamic
2607 linker or the displaced stepping scratch pad. We
2608 shouldn't have allowed a range step then. */
2609 gdb_assert (pc_in_thread_step_range (pc, tp));
2610 }
2611
2612 do_target_resume (resume_ptid, step, sig);
2613 tp->resumed = true;
2614 }
2615
2616 /* Resume the inferior. SIG is the signal to give the inferior
2617 (GDB_SIGNAL_0 for none). This is a wrapper around 'resume_1' that
2618 rolls back state on error. */
2619
2620 static void
2621 resume (gdb_signal sig)
2622 {
2623 try
2624 {
2625 resume_1 (sig);
2626 }
2627 catch (const gdb_exception &ex)
2628 {
2629 /* If resuming is being aborted for any reason, delete any
2630 single-step breakpoint resume_1 may have created, to avoid
2631 confusing the following resumption, and to avoid leaving
2632 single-step breakpoints perturbing other threads, in case
2633 we're running in non-stop mode. */
2634 if (inferior_ptid != null_ptid)
2635 delete_single_step_breakpoints (inferior_thread ());
2636 throw;
2637 }
2638 }
2639
2640 \f
2641 /* Proceeding. */
2642
2643 /* See infrun.h. */
2644
2645 /* Counter that tracks number of user visible stops. This can be used
2646 to tell whether a command has proceeded the inferior past the
2647 current location. This allows e.g., inferior function calls in
2648 breakpoint commands to not interrupt the command list. When the
2649 call finishes successfully, the inferior is standing at the same
2650 breakpoint as if nothing happened (and so we don't call
2651 normal_stop). */
2652 static ULONGEST current_stop_id;
2653
2654 /* See infrun.h. */
2655
2656 ULONGEST
2657 get_stop_id (void)
2658 {
2659 return current_stop_id;
2660 }
2661
2662 /* Called when we report a user visible stop. */
2663
2664 static void
2665 new_stop_id (void)
2666 {
2667 current_stop_id++;
2668 }
2669
2670 /* Clear out all variables saying what to do when inferior is continued.
2671 First do this, then set the ones you want, then call `proceed'. */
2672
2673 static void
2674 clear_proceed_status_thread (struct thread_info *tp)
2675 {
2676 infrun_debug_printf ("%s", target_pid_to_str (tp->ptid).c_str ());
2677
2678 /* If we're starting a new sequence, then the previous finished
2679 single-step is no longer relevant. */
2680 if (tp->suspend.waitstatus_pending_p)
2681 {
2682 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
2683 {
2684 infrun_debug_printf ("pending event of %s was a finished step. "
2685 "Discarding.",
2686 target_pid_to_str (tp->ptid).c_str ());
2687
2688 tp->suspend.waitstatus_pending_p = 0;
2689 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
2690 }
2691 else
2692 {
2693 infrun_debug_printf
2694 ("thread %s has pending wait status %s (currently_stepping=%d).",
2695 target_pid_to_str (tp->ptid).c_str (),
2696 target_waitstatus_to_string (&tp->suspend.waitstatus).c_str (),
2697 currently_stepping (tp));
2698 }
2699 }
2700
2701 /* If this signal should not be seen by program, give it zero.
2702 Used for debugging signals. */
2703 if (!signal_pass_state (tp->suspend.stop_signal))
2704 tp->suspend.stop_signal = GDB_SIGNAL_0;
2705
2706 delete tp->thread_fsm;
2707 tp->thread_fsm = NULL;
2708
2709 tp->control.trap_expected = 0;
2710 tp->control.step_range_start = 0;
2711 tp->control.step_range_end = 0;
2712 tp->control.may_range_step = 0;
2713 tp->control.step_frame_id = null_frame_id;
2714 tp->control.step_stack_frame_id = null_frame_id;
2715 tp->control.step_over_calls = STEP_OVER_UNDEBUGGABLE;
2716 tp->control.step_start_function = NULL;
2717 tp->stop_requested = 0;
2718
2719 tp->control.stop_step = 0;
2720
2721 tp->control.proceed_to_finish = 0;
2722
2723 tp->control.stepping_command = 0;
2724
2725 /* Discard any remaining commands or status from previous stop. */
2726 bpstat_clear (&tp->control.stop_bpstat);
2727 }
2728
2729 void
2730 clear_proceed_status (int step)
2731 {
2732 /* With scheduler-locking replay, stop replaying other threads if we're
2733 not replaying the user-visible resume ptid.
2734
2735 This is a convenience feature to not require the user to explicitly
2736 stop replaying the other threads. We're assuming that the user's
2737 intent is to resume tracing the recorded process. */
2738 if (!non_stop && scheduler_mode == schedlock_replay
2739 && target_record_is_replaying (minus_one_ptid)
2740 && !target_record_will_replay (user_visible_resume_ptid (step),
2741 execution_direction))
2742 target_record_stop_replaying ();
2743
2744 if (!non_stop && inferior_ptid != null_ptid)
2745 {
2746 ptid_t resume_ptid = user_visible_resume_ptid (step);
2747 process_stratum_target *resume_target
2748 = user_visible_resume_target (resume_ptid);
2749
2750 /* In all-stop mode, delete the per-thread status of all threads
2751 we're about to resume, implicitly and explicitly. */
2752 for (thread_info *tp : all_non_exited_threads (resume_target, resume_ptid))
2753 clear_proceed_status_thread (tp);
2754 }
2755
2756 if (inferior_ptid != null_ptid)
2757 {
2758 struct inferior *inferior;
2759
2760 if (non_stop)
2761 {
2762 /* If in non-stop mode, only delete the per-thread status of
2763 the current thread. */
2764 clear_proceed_status_thread (inferior_thread ());
2765 }
2766
2767 inferior = current_inferior ();
2768 inferior->control.stop_soon = NO_STOP_QUIETLY;
2769 }
2770
2771 gdb::observers::about_to_proceed.notify ();
2772 }
2773
2774 /* Returns true if TP is still stopped at a breakpoint that needs
2775 stepping-over in order to make progress. If the breakpoint is gone
2776 meanwhile, we can skip the whole step-over dance. */
2777
2778 static bool
2779 thread_still_needs_step_over_bp (struct thread_info *tp)
2780 {
2781 if (tp->stepping_over_breakpoint)
2782 {
2783 struct regcache *regcache = get_thread_regcache (tp);
2784
2785 if (breakpoint_here_p (regcache->aspace (),
2786 regcache_read_pc (regcache))
2787 == ordinary_breakpoint_here)
2788 return true;
2789
2790 tp->stepping_over_breakpoint = 0;
2791 }
2792
2793 return false;
2794 }
2795
2796 /* Check whether thread TP still needs to start a step-over in order
2797 to make progress when resumed. Returns an bitwise or of enum
2798 step_over_what bits, indicating what needs to be stepped over. */
2799
2800 static step_over_what
2801 thread_still_needs_step_over (struct thread_info *tp)
2802 {
2803 step_over_what what = 0;
2804
2805 if (thread_still_needs_step_over_bp (tp))
2806 what |= STEP_OVER_BREAKPOINT;
2807
2808 if (tp->stepping_over_watchpoint
2809 && !target_have_steppable_watchpoint ())
2810 what |= STEP_OVER_WATCHPOINT;
2811
2812 return what;
2813 }
2814
2815 /* Returns true if scheduler locking applies. STEP indicates whether
2816 we're about to do a step/next-like command to a thread. */
2817
2818 static bool
2819 schedlock_applies (struct thread_info *tp)
2820 {
2821 return (scheduler_mode == schedlock_on
2822 || (scheduler_mode == schedlock_step
2823 && tp->control.stepping_command)
2824 || (scheduler_mode == schedlock_replay
2825 && target_record_will_replay (minus_one_ptid,
2826 execution_direction)));
2827 }
2828
2829 /* Calls target_commit_resume on all targets. */
2830
2831 static void
2832 commit_resume_all_targets ()
2833 {
2834 scoped_restore_current_thread restore_thread;
2835
2836 /* Map between process_target and a representative inferior. This
2837 is to avoid committing a resume in the same target more than
2838 once. Resumptions must be idempotent, so this is an
2839 optimization. */
2840 std::unordered_map<process_stratum_target *, inferior *> conn_inf;
2841
2842 for (inferior *inf : all_non_exited_inferiors ())
2843 if (inf->has_execution ())
2844 conn_inf[inf->process_target ()] = inf;
2845
2846 for (const auto &ci : conn_inf)
2847 {
2848 inferior *inf = ci.second;
2849 switch_to_inferior_no_thread (inf);
2850 target_commit_resume ();
2851 }
2852 }
2853
2854 /* Check that all the targets we're about to resume are in non-stop
2855 mode. Ideally, we'd only care whether all targets support
2856 target-async, but we're not there yet. E.g., stop_all_threads
2857 doesn't know how to handle all-stop targets. Also, the remote
2858 protocol in all-stop mode is synchronous, irrespective of
2859 target-async, which means that things like a breakpoint re-set
2860 triggered by one target would try to read memory from all targets
2861 and fail. */
2862
2863 static void
2864 check_multi_target_resumption (process_stratum_target *resume_target)
2865 {
2866 if (!non_stop && resume_target == nullptr)
2867 {
2868 scoped_restore_current_thread restore_thread;
2869
2870 /* This is used to track whether we're resuming more than one
2871 target. */
2872 process_stratum_target *first_connection = nullptr;
2873
2874 /* The first inferior we see with a target that does not work in
2875 always-non-stop mode. */
2876 inferior *first_not_non_stop = nullptr;
2877
2878 for (inferior *inf : all_non_exited_inferiors (resume_target))
2879 {
2880 switch_to_inferior_no_thread (inf);
2881
2882 if (!target_has_execution ())
2883 continue;
2884
2885 process_stratum_target *proc_target
2886 = current_inferior ()->process_target();
2887
2888 if (!target_is_non_stop_p ())
2889 first_not_non_stop = inf;
2890
2891 if (first_connection == nullptr)
2892 first_connection = proc_target;
2893 else if (first_connection != proc_target
2894 && first_not_non_stop != nullptr)
2895 {
2896 switch_to_inferior_no_thread (first_not_non_stop);
2897
2898 proc_target = current_inferior ()->process_target();
2899
2900 error (_("Connection %d (%s) does not support "
2901 "multi-target resumption."),
2902 proc_target->connection_number,
2903 make_target_connection_string (proc_target).c_str ());
2904 }
2905 }
2906 }
2907 }
2908
2909 /* Basic routine for continuing the program in various fashions.
2910
2911 ADDR is the address to resume at, or -1 for resume where stopped.
2912 SIGGNAL is the signal to give it, or GDB_SIGNAL_0 for none,
2913 or GDB_SIGNAL_DEFAULT for act according to how it stopped.
2914
2915 You should call clear_proceed_status before calling proceed. */
2916
2917 void
2918 proceed (CORE_ADDR addr, enum gdb_signal siggnal)
2919 {
2920 struct regcache *regcache;
2921 struct gdbarch *gdbarch;
2922 CORE_ADDR pc;
2923 struct execution_control_state ecss;
2924 struct execution_control_state *ecs = &ecss;
2925 bool started;
2926
2927 /* If we're stopped at a fork/vfork, follow the branch set by the
2928 "set follow-fork-mode" command; otherwise, we'll just proceed
2929 resuming the current thread. */
2930 if (!follow_fork ())
2931 {
2932 /* The target for some reason decided not to resume. */
2933 normal_stop ();
2934 if (target_can_async_p ())
2935 inferior_event_handler (INF_EXEC_COMPLETE);
2936 return;
2937 }
2938
2939 /* We'll update this if & when we switch to a new thread. */
2940 previous_inferior_ptid = inferior_ptid;
2941
2942 regcache = get_current_regcache ();
2943 gdbarch = regcache->arch ();
2944 const address_space *aspace = regcache->aspace ();
2945
2946 pc = regcache_read_pc_protected (regcache);
2947
2948 thread_info *cur_thr = inferior_thread ();
2949
2950 /* Fill in with reasonable starting values. */
2951 init_thread_stepping_state (cur_thr);
2952
2953 gdb_assert (!thread_is_in_step_over_chain (cur_thr));
2954
2955 ptid_t resume_ptid
2956 = user_visible_resume_ptid (cur_thr->control.stepping_command);
2957 process_stratum_target *resume_target
2958 = user_visible_resume_target (resume_ptid);
2959
2960 check_multi_target_resumption (resume_target);
2961
2962 if (addr == (CORE_ADDR) -1)
2963 {
2964 if (pc == cur_thr->suspend.stop_pc
2965 && breakpoint_here_p (aspace, pc) == ordinary_breakpoint_here
2966 && execution_direction != EXEC_REVERSE)
2967 /* There is a breakpoint at the address we will resume at,
2968 step one instruction before inserting breakpoints so that
2969 we do not stop right away (and report a second hit at this
2970 breakpoint).
2971
2972 Note, we don't do this in reverse, because we won't
2973 actually be executing the breakpoint insn anyway.
2974 We'll be (un-)executing the previous instruction. */
2975 cur_thr->stepping_over_breakpoint = 1;
2976 else if (gdbarch_single_step_through_delay_p (gdbarch)
2977 && gdbarch_single_step_through_delay (gdbarch,
2978 get_current_frame ()))
2979 /* We stepped onto an instruction that needs to be stepped
2980 again before re-inserting the breakpoint, do so. */
2981 cur_thr->stepping_over_breakpoint = 1;
2982 }
2983 else
2984 {
2985 regcache_write_pc (regcache, addr);
2986 }
2987
2988 if (siggnal != GDB_SIGNAL_DEFAULT)
2989 cur_thr->suspend.stop_signal = siggnal;
2990
2991 /* If an exception is thrown from this point on, make sure to
2992 propagate GDB's knowledge of the executing state to the
2993 frontend/user running state. */
2994 scoped_finish_thread_state finish_state (resume_target, resume_ptid);
2995
2996 /* Even if RESUME_PTID is a wildcard, and we end up resuming fewer
2997 threads (e.g., we might need to set threads stepping over
2998 breakpoints first), from the user/frontend's point of view, all
2999 threads in RESUME_PTID are now running. Unless we're calling an
3000 inferior function, as in that case we pretend the inferior
3001 doesn't run at all. */
3002 if (!cur_thr->control.in_infcall)
3003 set_running (resume_target, resume_ptid, true);
3004
3005 infrun_debug_printf ("addr=%s, signal=%s", paddress (gdbarch, addr),
3006 gdb_signal_to_symbol_string (siggnal));
3007
3008 annotate_starting ();
3009
3010 /* Make sure that output from GDB appears before output from the
3011 inferior. */
3012 gdb_flush (gdb_stdout);
3013
3014 /* Since we've marked the inferior running, give it the terminal. A
3015 QUIT/Ctrl-C from here on is forwarded to the target (which can
3016 still detect attempts to unblock a stuck connection with repeated
3017 Ctrl-C from within target_pass_ctrlc). */
3018 target_terminal::inferior ();
3019
3020 /* In a multi-threaded task we may select another thread and
3021 then continue or step.
3022
3023 But if a thread that we're resuming had stopped at a breakpoint,
3024 it will immediately cause another breakpoint stop without any
3025 execution (i.e. it will report a breakpoint hit incorrectly). So
3026 we must step over it first.
3027
3028 Look for threads other than the current (TP) that reported a
3029 breakpoint hit and haven't been resumed yet since. */
3030
3031 /* If scheduler locking applies, we can avoid iterating over all
3032 threads. */
3033 if (!non_stop && !schedlock_applies (cur_thr))
3034 {
3035 for (thread_info *tp : all_non_exited_threads (resume_target,
3036 resume_ptid))
3037 {
3038 switch_to_thread_no_regs (tp);
3039
3040 /* Ignore the current thread here. It's handled
3041 afterwards. */
3042 if (tp == cur_thr)
3043 continue;
3044
3045 if (!thread_still_needs_step_over (tp))
3046 continue;
3047
3048 gdb_assert (!thread_is_in_step_over_chain (tp));
3049
3050 infrun_debug_printf ("need to step-over [%s] first",
3051 target_pid_to_str (tp->ptid).c_str ());
3052
3053 thread_step_over_chain_enqueue (tp);
3054 }
3055
3056 switch_to_thread (cur_thr);
3057 }
3058
3059 /* Enqueue the current thread last, so that we move all other
3060 threads over their breakpoints first. */
3061 if (cur_thr->stepping_over_breakpoint)
3062 thread_step_over_chain_enqueue (cur_thr);
3063
3064 /* If the thread isn't started, we'll still need to set its prev_pc,
3065 so that switch_back_to_stepped_thread knows the thread hasn't
3066 advanced. Must do this before resuming any thread, as in
3067 all-stop/remote, once we resume we can't send any other packet
3068 until the target stops again. */
3069 cur_thr->prev_pc = regcache_read_pc_protected (regcache);
3070
3071 {
3072 scoped_restore save_defer_tc = make_scoped_defer_target_commit_resume ();
3073
3074 started = start_step_over ();
3075
3076 if (step_over_info_valid_p ())
3077 {
3078 /* Either this thread started a new in-line step over, or some
3079 other thread was already doing one. In either case, don't
3080 resume anything else until the step-over is finished. */
3081 }
3082 else if (started && !target_is_non_stop_p ())
3083 {
3084 /* A new displaced stepping sequence was started. In all-stop,
3085 we can't talk to the target anymore until it next stops. */
3086 }
3087 else if (!non_stop && target_is_non_stop_p ())
3088 {
3089 /* In all-stop, but the target is always in non-stop mode.
3090 Start all other threads that are implicitly resumed too. */
3091 for (thread_info *tp : all_non_exited_threads (resume_target,
3092 resume_ptid))
3093 {
3094 switch_to_thread_no_regs (tp);
3095
3096 if (!tp->inf->has_execution ())
3097 {
3098 infrun_debug_printf ("[%s] target has no execution",
3099 target_pid_to_str (tp->ptid).c_str ());
3100 continue;
3101 }
3102
3103 if (tp->resumed)
3104 {
3105 infrun_debug_printf ("[%s] resumed",
3106 target_pid_to_str (tp->ptid).c_str ());
3107 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
3108 continue;
3109 }
3110
3111 if (thread_is_in_step_over_chain (tp))
3112 {
3113 infrun_debug_printf ("[%s] needs step-over",
3114 target_pid_to_str (tp->ptid).c_str ());
3115 continue;
3116 }
3117
3118 infrun_debug_printf ("resuming %s",
3119 target_pid_to_str (tp->ptid).c_str ());
3120
3121 reset_ecs (ecs, tp);
3122 switch_to_thread (tp);
3123 keep_going_pass_signal (ecs);
3124 if (!ecs->wait_some_more)
3125 error (_("Command aborted."));
3126 }
3127 }
3128 else if (!cur_thr->resumed && !thread_is_in_step_over_chain (cur_thr))
3129 {
3130 /* The thread wasn't started, and isn't queued, run it now. */
3131 reset_ecs (ecs, cur_thr);
3132 switch_to_thread (cur_thr);
3133 keep_going_pass_signal (ecs);
3134 if (!ecs->wait_some_more)
3135 error (_("Command aborted."));
3136 }
3137 }
3138
3139 commit_resume_all_targets ();
3140
3141 finish_state.release ();
3142
3143 /* If we've switched threads above, switch back to the previously
3144 current thread. We don't want the user to see a different
3145 selected thread. */
3146 switch_to_thread (cur_thr);
3147
3148 /* Tell the event loop to wait for it to stop. If the target
3149 supports asynchronous execution, it'll do this from within
3150 target_resume. */
3151 if (!target_can_async_p ())
3152 mark_async_event_handler (infrun_async_inferior_event_token);
3153 }
3154 \f
3155
3156 /* Start remote-debugging of a machine over a serial link. */
3157
3158 void
3159 start_remote (int from_tty)
3160 {
3161 inferior *inf = current_inferior ();
3162 inf->control.stop_soon = STOP_QUIETLY_REMOTE;
3163
3164 /* Always go on waiting for the target, regardless of the mode. */
3165 /* FIXME: cagney/1999-09-23: At present it isn't possible to
3166 indicate to wait_for_inferior that a target should timeout if
3167 nothing is returned (instead of just blocking). Because of this,
3168 targets expecting an immediate response need to, internally, set
3169 things up so that the target_wait() is forced to eventually
3170 timeout. */
3171 /* FIXME: cagney/1999-09-24: It isn't possible for target_open() to
3172 differentiate to its caller what the state of the target is after
3173 the initial open has been performed. Here we're assuming that
3174 the target has stopped. It should be possible to eventually have
3175 target_open() return to the caller an indication that the target
3176 is currently running and GDB state should be set to the same as
3177 for an async run. */
3178 wait_for_inferior (inf);
3179
3180 /* Now that the inferior has stopped, do any bookkeeping like
3181 loading shared libraries. We want to do this before normal_stop,
3182 so that the displayed frame is up to date. */
3183 post_create_inferior (from_tty);
3184
3185 normal_stop ();
3186 }
3187
3188 /* Initialize static vars when a new inferior begins. */
3189
3190 void
3191 init_wait_for_inferior (void)
3192 {
3193 /* These are meaningless until the first time through wait_for_inferior. */
3194
3195 breakpoint_init_inferior (inf_starting);
3196
3197 clear_proceed_status (0);
3198
3199 nullify_last_target_wait_ptid ();
3200
3201 previous_inferior_ptid = inferior_ptid;
3202 }
3203
3204 \f
3205
3206 static void handle_inferior_event (struct execution_control_state *ecs);
3207
3208 static void handle_step_into_function (struct gdbarch *gdbarch,
3209 struct execution_control_state *ecs);
3210 static void handle_step_into_function_backward (struct gdbarch *gdbarch,
3211 struct execution_control_state *ecs);
3212 static void handle_signal_stop (struct execution_control_state *ecs);
3213 static void check_exception_resume (struct execution_control_state *,
3214 struct frame_info *);
3215
3216 static void end_stepping_range (struct execution_control_state *ecs);
3217 static void stop_waiting (struct execution_control_state *ecs);
3218 static void keep_going (struct execution_control_state *ecs);
3219 static void process_event_stop_test (struct execution_control_state *ecs);
3220 static bool switch_back_to_stepped_thread (struct execution_control_state *ecs);
3221
3222 /* This function is attached as a "thread_stop_requested" observer.
3223 Cleanup local state that assumed the PTID was to be resumed, and
3224 report the stop to the frontend. */
3225
3226 static void
3227 infrun_thread_stop_requested (ptid_t ptid)
3228 {
3229 process_stratum_target *curr_target = current_inferior ()->process_target ();
3230
3231 /* PTID was requested to stop. If the thread was already stopped,
3232 but the user/frontend doesn't know about that yet (e.g., the
3233 thread had been temporarily paused for some step-over), set up
3234 for reporting the stop now. */
3235 for (thread_info *tp : all_threads (curr_target, ptid))
3236 {
3237 if (tp->state != THREAD_RUNNING)
3238 continue;
3239 if (tp->executing)
3240 continue;
3241
3242 /* Remove matching threads from the step-over queue, so
3243 start_step_over doesn't try to resume them
3244 automatically. */
3245 if (thread_is_in_step_over_chain (tp))
3246 thread_step_over_chain_remove (tp);
3247
3248 /* If the thread is stopped, but the user/frontend doesn't
3249 know about that yet, queue a pending event, as if the
3250 thread had just stopped now. Unless the thread already had
3251 a pending event. */
3252 if (!tp->suspend.waitstatus_pending_p)
3253 {
3254 tp->suspend.waitstatus_pending_p = 1;
3255 tp->suspend.waitstatus.kind = TARGET_WAITKIND_STOPPED;
3256 tp->suspend.waitstatus.value.sig = GDB_SIGNAL_0;
3257 }
3258
3259 /* Clear the inline-frame state, since we're re-processing the
3260 stop. */
3261 clear_inline_frame_state (tp);
3262
3263 /* If this thread was paused because some other thread was
3264 doing an inline-step over, let that finish first. Once
3265 that happens, we'll restart all threads and consume pending
3266 stop events then. */
3267 if (step_over_info_valid_p ())
3268 continue;
3269
3270 /* Otherwise we can process the (new) pending event now. Set
3271 it so this pending event is considered by
3272 do_target_wait. */
3273 tp->resumed = true;
3274 }
3275 }
3276
3277 static void
3278 infrun_thread_thread_exit (struct thread_info *tp, int silent)
3279 {
3280 if (target_last_proc_target == tp->inf->process_target ()
3281 && target_last_wait_ptid == tp->ptid)
3282 nullify_last_target_wait_ptid ();
3283 }
3284
3285 /* Delete the step resume, single-step and longjmp/exception resume
3286 breakpoints of TP. */
3287
3288 static void
3289 delete_thread_infrun_breakpoints (struct thread_info *tp)
3290 {
3291 delete_step_resume_breakpoint (tp);
3292 delete_exception_resume_breakpoint (tp);
3293 delete_single_step_breakpoints (tp);
3294 }
3295
3296 /* If the target still has execution, call FUNC for each thread that
3297 just stopped. In all-stop, that's all the non-exited threads; in
3298 non-stop, that's the current thread, only. */
3299
3300 typedef void (*for_each_just_stopped_thread_callback_func)
3301 (struct thread_info *tp);
3302
3303 static void
3304 for_each_just_stopped_thread (for_each_just_stopped_thread_callback_func func)
3305 {
3306 if (!target_has_execution () || inferior_ptid == null_ptid)
3307 return;
3308
3309 if (target_is_non_stop_p ())
3310 {
3311 /* If in non-stop mode, only the current thread stopped. */
3312 func (inferior_thread ());
3313 }
3314 else
3315 {
3316 /* In all-stop mode, all threads have stopped. */
3317 for (thread_info *tp : all_non_exited_threads ())
3318 func (tp);
3319 }
3320 }
3321
3322 /* Delete the step resume and longjmp/exception resume breakpoints of
3323 the threads that just stopped. */
3324
3325 static void
3326 delete_just_stopped_threads_infrun_breakpoints (void)
3327 {
3328 for_each_just_stopped_thread (delete_thread_infrun_breakpoints);
3329 }
3330
3331 /* Delete the single-step breakpoints of the threads that just
3332 stopped. */
3333
3334 static void
3335 delete_just_stopped_threads_single_step_breakpoints (void)
3336 {
3337 for_each_just_stopped_thread (delete_single_step_breakpoints);
3338 }
3339
3340 /* See infrun.h. */
3341
3342 void
3343 print_target_wait_results (ptid_t waiton_ptid, ptid_t result_ptid,
3344 const struct target_waitstatus *ws)
3345 {
3346 std::string status_string = target_waitstatus_to_string (ws);
3347 string_file stb;
3348
3349 /* The text is split over several lines because it was getting too long.
3350 Call fprintf_unfiltered (gdb_stdlog) once so that the text is still
3351 output as a unit; we want only one timestamp printed if debug_timestamp
3352 is set. */
3353
3354 stb.printf ("[infrun] target_wait (%d.%ld.%ld",
3355 waiton_ptid.pid (),
3356 waiton_ptid.lwp (),
3357 waiton_ptid.tid ());
3358 if (waiton_ptid.pid () != -1)
3359 stb.printf (" [%s]", target_pid_to_str (waiton_ptid).c_str ());
3360 stb.printf (", status) =\n");
3361 stb.printf ("[infrun] %d.%ld.%ld [%s],\n",
3362 result_ptid.pid (),
3363 result_ptid.lwp (),
3364 result_ptid.tid (),
3365 target_pid_to_str (result_ptid).c_str ());
3366 stb.printf ("[infrun] %s\n", status_string.c_str ());
3367
3368 /* This uses %s in part to handle %'s in the text, but also to avoid
3369 a gcc error: the format attribute requires a string literal. */
3370 fprintf_unfiltered (gdb_stdlog, "%s", stb.c_str ());
3371 }
3372
3373 /* Select a thread at random, out of those which are resumed and have
3374 had events. */
3375
3376 static struct thread_info *
3377 random_pending_event_thread (inferior *inf, ptid_t waiton_ptid)
3378 {
3379 int num_events = 0;
3380
3381 auto has_event = [&] (thread_info *tp)
3382 {
3383 return (tp->ptid.matches (waiton_ptid)
3384 && tp->resumed
3385 && tp->suspend.waitstatus_pending_p);
3386 };
3387
3388 /* First see how many events we have. Count only resumed threads
3389 that have an event pending. */
3390 for (thread_info *tp : inf->non_exited_threads ())
3391 if (has_event (tp))
3392 num_events++;
3393
3394 if (num_events == 0)
3395 return NULL;
3396
3397 /* Now randomly pick a thread out of those that have had events. */
3398 int random_selector = (int) ((num_events * (double) rand ())
3399 / (RAND_MAX + 1.0));
3400
3401 if (num_events > 1)
3402 infrun_debug_printf ("Found %d events, selecting #%d",
3403 num_events, random_selector);
3404
3405 /* Select the Nth thread that has had an event. */
3406 for (thread_info *tp : inf->non_exited_threads ())
3407 if (has_event (tp))
3408 if (random_selector-- == 0)
3409 return tp;
3410
3411 gdb_assert_not_reached ("event thread not found");
3412 }
3413
3414 /* Wrapper for target_wait that first checks whether threads have
3415 pending statuses to report before actually asking the target for
3416 more events. INF is the inferior we're using to call target_wait
3417 on. */
3418
3419 static ptid_t
3420 do_target_wait_1 (inferior *inf, ptid_t ptid,
3421 target_waitstatus *status, target_wait_flags options)
3422 {
3423 ptid_t event_ptid;
3424 struct thread_info *tp;
3425
3426 /* We know that we are looking for an event in the target of inferior
3427 INF, but we don't know which thread the event might come from. As
3428 such we want to make sure that INFERIOR_PTID is reset so that none of
3429 the wait code relies on it - doing so is always a mistake. */
3430 switch_to_inferior_no_thread (inf);
3431
3432 /* First check if there is a resumed thread with a wait status
3433 pending. */
3434 if (ptid == minus_one_ptid || ptid.is_pid ())
3435 {
3436 tp = random_pending_event_thread (inf, ptid);
3437 }
3438 else
3439 {
3440 infrun_debug_printf ("Waiting for specific thread %s.",
3441 target_pid_to_str (ptid).c_str ());
3442
3443 /* We have a specific thread to check. */
3444 tp = find_thread_ptid (inf, ptid);
3445 gdb_assert (tp != NULL);
3446 if (!tp->suspend.waitstatus_pending_p)
3447 tp = NULL;
3448 }
3449
3450 if (tp != NULL
3451 && (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3452 || tp->suspend.stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
3453 {
3454 struct regcache *regcache = get_thread_regcache (tp);
3455 struct gdbarch *gdbarch = regcache->arch ();
3456 CORE_ADDR pc;
3457 int discard = 0;
3458
3459 pc = regcache_read_pc (regcache);
3460
3461 if (pc != tp->suspend.stop_pc)
3462 {
3463 infrun_debug_printf ("PC of %s changed. was=%s, now=%s",
3464 target_pid_to_str (tp->ptid).c_str (),
3465 paddress (gdbarch, tp->suspend.stop_pc),
3466 paddress (gdbarch, pc));
3467 discard = 1;
3468 }
3469 else if (!breakpoint_inserted_here_p (regcache->aspace (), pc))
3470 {
3471 infrun_debug_printf ("previous breakpoint of %s, at %s gone",
3472 target_pid_to_str (tp->ptid).c_str (),
3473 paddress (gdbarch, pc));
3474
3475 discard = 1;
3476 }
3477
3478 if (discard)
3479 {
3480 infrun_debug_printf ("pending event of %s cancelled.",
3481 target_pid_to_str (tp->ptid).c_str ());
3482
3483 tp->suspend.waitstatus.kind = TARGET_WAITKIND_SPURIOUS;
3484 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3485 }
3486 }
3487
3488 if (tp != NULL)
3489 {
3490 infrun_debug_printf ("Using pending wait status %s for %s.",
3491 target_waitstatus_to_string
3492 (&tp->suspend.waitstatus).c_str (),
3493 target_pid_to_str (tp->ptid).c_str ());
3494
3495 /* Now that we've selected our final event LWP, un-adjust its PC
3496 if it was a software breakpoint (and the target doesn't
3497 always adjust the PC itself). */
3498 if (tp->suspend.stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3499 && !target_supports_stopped_by_sw_breakpoint ())
3500 {
3501 struct regcache *regcache;
3502 struct gdbarch *gdbarch;
3503 int decr_pc;
3504
3505 regcache = get_thread_regcache (tp);
3506 gdbarch = regcache->arch ();
3507
3508 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
3509 if (decr_pc != 0)
3510 {
3511 CORE_ADDR pc;
3512
3513 pc = regcache_read_pc (regcache);
3514 regcache_write_pc (regcache, pc + decr_pc);
3515 }
3516 }
3517
3518 tp->suspend.stop_reason = TARGET_STOPPED_BY_NO_REASON;
3519 *status = tp->suspend.waitstatus;
3520 tp->suspend.waitstatus_pending_p = 0;
3521
3522 /* Wake up the event loop again, until all pending events are
3523 processed. */
3524 if (target_is_async_p ())
3525 mark_async_event_handler (infrun_async_inferior_event_token);
3526 return tp->ptid;
3527 }
3528
3529 /* But if we don't find one, we'll have to wait. */
3530
3531 /* We can't ask a non-async target to do a non-blocking wait, so this will be
3532 a blocking wait. */
3533 if (!target_can_async_p ())
3534 options &= ~TARGET_WNOHANG;
3535
3536 if (deprecated_target_wait_hook)
3537 event_ptid = deprecated_target_wait_hook (ptid, status, options);
3538 else
3539 event_ptid = target_wait (ptid, status, options);
3540
3541 return event_ptid;
3542 }
3543
3544 /* Wrapper for target_wait that first checks whether threads have
3545 pending statuses to report before actually asking the target for
3546 more events. Polls for events from all inferiors/targets. */
3547
3548 static bool
3549 do_target_wait (ptid_t wait_ptid, execution_control_state *ecs,
3550 target_wait_flags options)
3551 {
3552 int num_inferiors = 0;
3553 int random_selector;
3554
3555 /* For fairness, we pick the first inferior/target to poll at random
3556 out of all inferiors that may report events, and then continue
3557 polling the rest of the inferior list starting from that one in a
3558 circular fashion until the whole list is polled once. */
3559
3560 auto inferior_matches = [&wait_ptid] (inferior *inf)
3561 {
3562 return (inf->process_target () != NULL
3563 && ptid_t (inf->pid).matches (wait_ptid));
3564 };
3565
3566 /* First see how many matching inferiors we have. */
3567 for (inferior *inf : all_inferiors ())
3568 if (inferior_matches (inf))
3569 num_inferiors++;
3570
3571 if (num_inferiors == 0)
3572 {
3573 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3574 return false;
3575 }
3576
3577 /* Now randomly pick an inferior out of those that matched. */
3578 random_selector = (int)
3579 ((num_inferiors * (double) rand ()) / (RAND_MAX + 1.0));
3580
3581 if (num_inferiors > 1)
3582 infrun_debug_printf ("Found %d inferiors, starting at #%d",
3583 num_inferiors, random_selector);
3584
3585 /* Select the Nth inferior that matched. */
3586
3587 inferior *selected = nullptr;
3588
3589 for (inferior *inf : all_inferiors ())
3590 if (inferior_matches (inf))
3591 if (random_selector-- == 0)
3592 {
3593 selected = inf;
3594 break;
3595 }
3596
3597 /* Now poll for events out of each of the matching inferior's
3598 targets, starting from the selected one. */
3599
3600 auto do_wait = [&] (inferior *inf)
3601 {
3602 ecs->ptid = do_target_wait_1 (inf, wait_ptid, &ecs->ws, options);
3603 ecs->target = inf->process_target ();
3604 return (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3605 };
3606
3607 /* Needed in 'all-stop + target-non-stop' mode, because we end up
3608 here spuriously after the target is all stopped and we've already
3609 reported the stop to the user, polling for events. */
3610 scoped_restore_current_thread restore_thread;
3611
3612 int inf_num = selected->num;
3613 for (inferior *inf = selected; inf != NULL; inf = inf->next)
3614 if (inferior_matches (inf))
3615 if (do_wait (inf))
3616 return true;
3617
3618 for (inferior *inf = inferior_list;
3619 inf != NULL && inf->num < inf_num;
3620 inf = inf->next)
3621 if (inferior_matches (inf))
3622 if (do_wait (inf))
3623 return true;
3624
3625 ecs->ws.kind = TARGET_WAITKIND_IGNORE;
3626 return false;
3627 }
3628
3629 /* Prepare and stabilize the inferior for detaching it. E.g.,
3630 detaching while a thread is displaced stepping is a recipe for
3631 crashing it, as nothing would readjust the PC out of the scratch
3632 pad. */
3633
3634 void
3635 prepare_for_detach (void)
3636 {
3637 struct inferior *inf = current_inferior ();
3638 ptid_t pid_ptid = ptid_t (inf->pid);
3639
3640 displaced_step_inferior_state *displaced = get_displaced_stepping_state (inf);
3641
3642 /* Is any thread of this process displaced stepping? If not,
3643 there's nothing else to do. */
3644 if (displaced->step_thread == nullptr)
3645 return;
3646
3647 infrun_debug_printf ("displaced-stepping in-process while detaching");
3648
3649 scoped_restore restore_detaching = make_scoped_restore (&inf->detaching, true);
3650
3651 while (displaced->step_thread != nullptr)
3652 {
3653 struct execution_control_state ecss;
3654 struct execution_control_state *ecs;
3655
3656 ecs = &ecss;
3657 memset (ecs, 0, sizeof (*ecs));
3658
3659 overlay_cache_invalid = 1;
3660 /* Flush target cache before starting to handle each event.
3661 Target was running and cache could be stale. This is just a
3662 heuristic. Running threads may modify target memory, but we
3663 don't get any event. */
3664 target_dcache_invalidate ();
3665
3666 do_target_wait (pid_ptid, ecs, 0);
3667
3668 if (debug_infrun)
3669 print_target_wait_results (pid_ptid, ecs->ptid, &ecs->ws);
3670
3671 /* If an error happens while handling the event, propagate GDB's
3672 knowledge of the executing state to the frontend/user running
3673 state. */
3674 scoped_finish_thread_state finish_state (inf->process_target (),
3675 minus_one_ptid);
3676
3677 /* Now figure out what to do with the result of the result. */
3678 handle_inferior_event (ecs);
3679
3680 /* No error, don't finish the state yet. */
3681 finish_state.release ();
3682
3683 /* Breakpoints and watchpoints are not installed on the target
3684 at this point, and signals are passed directly to the
3685 inferior, so this must mean the process is gone. */
3686 if (!ecs->wait_some_more)
3687 {
3688 restore_detaching.release ();
3689 error (_("Program exited while detaching"));
3690 }
3691 }
3692
3693 restore_detaching.release ();
3694 }
3695
3696 /* Wait for control to return from inferior to debugger.
3697
3698 If inferior gets a signal, we may decide to start it up again
3699 instead of returning. That is why there is a loop in this function.
3700 When this function actually returns it means the inferior
3701 should be left stopped and GDB should read more commands. */
3702
3703 static void
3704 wait_for_inferior (inferior *inf)
3705 {
3706 infrun_debug_printf ("wait_for_inferior ()");
3707
3708 SCOPE_EXIT { delete_just_stopped_threads_infrun_breakpoints (); };
3709
3710 /* If an error happens while handling the event, propagate GDB's
3711 knowledge of the executing state to the frontend/user running
3712 state. */
3713 scoped_finish_thread_state finish_state
3714 (inf->process_target (), minus_one_ptid);
3715
3716 while (1)
3717 {
3718 struct execution_control_state ecss;
3719 struct execution_control_state *ecs = &ecss;
3720
3721 memset (ecs, 0, sizeof (*ecs));
3722
3723 overlay_cache_invalid = 1;
3724
3725 /* Flush target cache before starting to handle each event.
3726 Target was running and cache could be stale. This is just a
3727 heuristic. Running threads may modify target memory, but we
3728 don't get any event. */
3729 target_dcache_invalidate ();
3730
3731 ecs->ptid = do_target_wait_1 (inf, minus_one_ptid, &ecs->ws, 0);
3732 ecs->target = inf->process_target ();
3733
3734 if (debug_infrun)
3735 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3736
3737 /* Now figure out what to do with the result of the result. */
3738 handle_inferior_event (ecs);
3739
3740 if (!ecs->wait_some_more)
3741 break;
3742 }
3743
3744 /* No error, don't finish the state yet. */
3745 finish_state.release ();
3746 }
3747
3748 /* Cleanup that reinstalls the readline callback handler, if the
3749 target is running in the background. If while handling the target
3750 event something triggered a secondary prompt, like e.g., a
3751 pagination prompt, we'll have removed the callback handler (see
3752 gdb_readline_wrapper_line). Need to do this as we go back to the
3753 event loop, ready to process further input. Note this has no
3754 effect if the handler hasn't actually been removed, because calling
3755 rl_callback_handler_install resets the line buffer, thus losing
3756 input. */
3757
3758 static void
3759 reinstall_readline_callback_handler_cleanup ()
3760 {
3761 struct ui *ui = current_ui;
3762
3763 if (!ui->async)
3764 {
3765 /* We're not going back to the top level event loop yet. Don't
3766 install the readline callback, as it'd prep the terminal,
3767 readline-style (raw, noecho) (e.g., --batch). We'll install
3768 it the next time the prompt is displayed, when we're ready
3769 for input. */
3770 return;
3771 }
3772
3773 if (ui->command_editing && ui->prompt_state != PROMPT_BLOCKED)
3774 gdb_rl_callback_handler_reinstall ();
3775 }
3776
3777 /* Clean up the FSMs of threads that are now stopped. In non-stop,
3778 that's just the event thread. In all-stop, that's all threads. */
3779
3780 static void
3781 clean_up_just_stopped_threads_fsms (struct execution_control_state *ecs)
3782 {
3783 if (ecs->event_thread != NULL
3784 && ecs->event_thread->thread_fsm != NULL)
3785 ecs->event_thread->thread_fsm->clean_up (ecs->event_thread);
3786
3787 if (!non_stop)
3788 {
3789 for (thread_info *thr : all_non_exited_threads ())
3790 {
3791 if (thr->thread_fsm == NULL)
3792 continue;
3793 if (thr == ecs->event_thread)
3794 continue;
3795
3796 switch_to_thread (thr);
3797 thr->thread_fsm->clean_up (thr);
3798 }
3799
3800 if (ecs->event_thread != NULL)
3801 switch_to_thread (ecs->event_thread);
3802 }
3803 }
3804
3805 /* Helper for all_uis_check_sync_execution_done that works on the
3806 current UI. */
3807
3808 static void
3809 check_curr_ui_sync_execution_done (void)
3810 {
3811 struct ui *ui = current_ui;
3812
3813 if (ui->prompt_state == PROMPT_NEEDED
3814 && ui->async
3815 && !gdb_in_secondary_prompt_p (ui))
3816 {
3817 target_terminal::ours ();
3818 gdb::observers::sync_execution_done.notify ();
3819 ui_register_input_event_handler (ui);
3820 }
3821 }
3822
3823 /* See infrun.h. */
3824
3825 void
3826 all_uis_check_sync_execution_done (void)
3827 {
3828 SWITCH_THRU_ALL_UIS ()
3829 {
3830 check_curr_ui_sync_execution_done ();
3831 }
3832 }
3833
3834 /* See infrun.h. */
3835
3836 void
3837 all_uis_on_sync_execution_starting (void)
3838 {
3839 SWITCH_THRU_ALL_UIS ()
3840 {
3841 if (current_ui->prompt_state == PROMPT_NEEDED)
3842 async_disable_stdin ();
3843 }
3844 }
3845
3846 /* Asynchronous version of wait_for_inferior. It is called by the
3847 event loop whenever a change of state is detected on the file
3848 descriptor corresponding to the target. It can be called more than
3849 once to complete a single execution command. In such cases we need
3850 to keep the state in a global variable ECSS. If it is the last time
3851 that this function is called for a single execution command, then
3852 report to the user that the inferior has stopped, and do the
3853 necessary cleanups. */
3854
3855 void
3856 fetch_inferior_event ()
3857 {
3858 struct execution_control_state ecss;
3859 struct execution_control_state *ecs = &ecss;
3860 int cmd_done = 0;
3861
3862 memset (ecs, 0, sizeof (*ecs));
3863
3864 /* Events are always processed with the main UI as current UI. This
3865 way, warnings, debug output, etc. are always consistently sent to
3866 the main console. */
3867 scoped_restore save_ui = make_scoped_restore (&current_ui, main_ui);
3868
3869 /* End up with readline processing input, if necessary. */
3870 {
3871 SCOPE_EXIT { reinstall_readline_callback_handler_cleanup (); };
3872
3873 /* We're handling a live event, so make sure we're doing live
3874 debugging. If we're looking at traceframes while the target is
3875 running, we're going to need to get back to that mode after
3876 handling the event. */
3877 gdb::optional<scoped_restore_current_traceframe> maybe_restore_traceframe;
3878 if (non_stop)
3879 {
3880 maybe_restore_traceframe.emplace ();
3881 set_current_traceframe (-1);
3882 }
3883
3884 /* The user/frontend should not notice a thread switch due to
3885 internal events. Make sure we revert to the user selected
3886 thread and frame after handling the event and running any
3887 breakpoint commands. */
3888 scoped_restore_current_thread restore_thread;
3889
3890 overlay_cache_invalid = 1;
3891 /* Flush target cache before starting to handle each event. Target
3892 was running and cache could be stale. This is just a heuristic.
3893 Running threads may modify target memory, but we don't get any
3894 event. */
3895 target_dcache_invalidate ();
3896
3897 scoped_restore save_exec_dir
3898 = make_scoped_restore (&execution_direction,
3899 target_execution_direction ());
3900
3901 if (!do_target_wait (minus_one_ptid, ecs, TARGET_WNOHANG))
3902 return;
3903
3904 gdb_assert (ecs->ws.kind != TARGET_WAITKIND_IGNORE);
3905
3906 /* Switch to the target that generated the event, so we can do
3907 target calls. */
3908 switch_to_target_no_thread (ecs->target);
3909
3910 if (debug_infrun)
3911 print_target_wait_results (minus_one_ptid, ecs->ptid, &ecs->ws);
3912
3913 /* If an error happens while handling the event, propagate GDB's
3914 knowledge of the executing state to the frontend/user running
3915 state. */
3916 ptid_t finish_ptid = !target_is_non_stop_p () ? minus_one_ptid : ecs->ptid;
3917 scoped_finish_thread_state finish_state (ecs->target, finish_ptid);
3918
3919 /* Get executed before scoped_restore_current_thread above to apply
3920 still for the thread which has thrown the exception. */
3921 auto defer_bpstat_clear
3922 = make_scope_exit (bpstat_clear_actions);
3923 auto defer_delete_threads
3924 = make_scope_exit (delete_just_stopped_threads_infrun_breakpoints);
3925
3926 /* Now figure out what to do with the result of the result. */
3927 handle_inferior_event (ecs);
3928
3929 if (!ecs->wait_some_more)
3930 {
3931 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
3932 int should_stop = 1;
3933 struct thread_info *thr = ecs->event_thread;
3934
3935 delete_just_stopped_threads_infrun_breakpoints ();
3936
3937 if (thr != NULL)
3938 {
3939 struct thread_fsm *thread_fsm = thr->thread_fsm;
3940
3941 if (thread_fsm != NULL)
3942 should_stop = thread_fsm->should_stop (thr);
3943 }
3944
3945 if (!should_stop)
3946 {
3947 keep_going (ecs);
3948 }
3949 else
3950 {
3951 bool should_notify_stop = true;
3952 int proceeded = 0;
3953
3954 clean_up_just_stopped_threads_fsms (ecs);
3955
3956 if (thr != NULL && thr->thread_fsm != NULL)
3957 should_notify_stop = thr->thread_fsm->should_notify_stop ();
3958
3959 if (should_notify_stop)
3960 {
3961 /* We may not find an inferior if this was a process exit. */
3962 if (inf == NULL || inf->control.stop_soon == NO_STOP_QUIETLY)
3963 proceeded = normal_stop ();
3964 }
3965
3966 if (!proceeded)
3967 {
3968 inferior_event_handler (INF_EXEC_COMPLETE);
3969 cmd_done = 1;
3970 }
3971
3972 /* If we got a TARGET_WAITKIND_NO_RESUMED event, then the
3973 previously selected thread is gone. We have two
3974 choices - switch to no thread selected, or restore the
3975 previously selected thread (now exited). We chose the
3976 later, just because that's what GDB used to do. After
3977 this, "info threads" says "The current thread <Thread
3978 ID 2> has terminated." instead of "No thread
3979 selected.". */
3980 if (!non_stop
3981 && cmd_done
3982 && ecs->ws.kind != TARGET_WAITKIND_NO_RESUMED)
3983 restore_thread.dont_restore ();
3984 }
3985 }
3986
3987 defer_delete_threads.release ();
3988 defer_bpstat_clear.release ();
3989
3990 /* No error, don't finish the thread states yet. */
3991 finish_state.release ();
3992
3993 /* This scope is used to ensure that readline callbacks are
3994 reinstalled here. */
3995 }
3996
3997 /* If a UI was in sync execution mode, and now isn't, restore its
3998 prompt (a synchronous execution command has finished, and we're
3999 ready for input). */
4000 all_uis_check_sync_execution_done ();
4001
4002 if (cmd_done
4003 && exec_done_display_p
4004 && (inferior_ptid == null_ptid
4005 || inferior_thread ()->state != THREAD_RUNNING))
4006 printf_unfiltered (_("completed.\n"));
4007 }
4008
4009 /* See infrun.h. */
4010
4011 void
4012 set_step_info (thread_info *tp, struct frame_info *frame,
4013 struct symtab_and_line sal)
4014 {
4015 /* This can be removed once this function no longer implicitly relies on the
4016 inferior_ptid value. */
4017 gdb_assert (inferior_ptid == tp->ptid);
4018
4019 tp->control.step_frame_id = get_frame_id (frame);
4020 tp->control.step_stack_frame_id = get_stack_frame_id (frame);
4021
4022 tp->current_symtab = sal.symtab;
4023 tp->current_line = sal.line;
4024 }
4025
4026 /* Clear context switchable stepping state. */
4027
4028 void
4029 init_thread_stepping_state (struct thread_info *tss)
4030 {
4031 tss->stepped_breakpoint = 0;
4032 tss->stepping_over_breakpoint = 0;
4033 tss->stepping_over_watchpoint = 0;
4034 tss->step_after_step_resume_breakpoint = 0;
4035 }
4036
4037 /* See infrun.h. */
4038
4039 void
4040 set_last_target_status (process_stratum_target *target, ptid_t ptid,
4041 target_waitstatus status)
4042 {
4043 target_last_proc_target = target;
4044 target_last_wait_ptid = ptid;
4045 target_last_waitstatus = status;
4046 }
4047
4048 /* See infrun.h. */
4049
4050 void
4051 get_last_target_status (process_stratum_target **target, ptid_t *ptid,
4052 target_waitstatus *status)
4053 {
4054 if (target != nullptr)
4055 *target = target_last_proc_target;
4056 if (ptid != nullptr)
4057 *ptid = target_last_wait_ptid;
4058 if (status != nullptr)
4059 *status = target_last_waitstatus;
4060 }
4061
4062 /* See infrun.h. */
4063
4064 void
4065 nullify_last_target_wait_ptid (void)
4066 {
4067 target_last_proc_target = nullptr;
4068 target_last_wait_ptid = minus_one_ptid;
4069 target_last_waitstatus = {};
4070 }
4071
4072 /* Switch thread contexts. */
4073
4074 static void
4075 context_switch (execution_control_state *ecs)
4076 {
4077 if (ecs->ptid != inferior_ptid
4078 && (inferior_ptid == null_ptid
4079 || ecs->event_thread != inferior_thread ()))
4080 {
4081 infrun_debug_printf ("Switching context from %s to %s",
4082 target_pid_to_str (inferior_ptid).c_str (),
4083 target_pid_to_str (ecs->ptid).c_str ());
4084 }
4085
4086 switch_to_thread (ecs->event_thread);
4087 }
4088
4089 /* If the target can't tell whether we've hit breakpoints
4090 (target_supports_stopped_by_sw_breakpoint), and we got a SIGTRAP,
4091 check whether that could have been caused by a breakpoint. If so,
4092 adjust the PC, per gdbarch_decr_pc_after_break. */
4093
4094 static void
4095 adjust_pc_after_break (struct thread_info *thread,
4096 struct target_waitstatus *ws)
4097 {
4098 struct regcache *regcache;
4099 struct gdbarch *gdbarch;
4100 CORE_ADDR breakpoint_pc, decr_pc;
4101
4102 /* If we've hit a breakpoint, we'll normally be stopped with SIGTRAP. If
4103 we aren't, just return.
4104
4105 We assume that waitkinds other than TARGET_WAITKIND_STOPPED are not
4106 affected by gdbarch_decr_pc_after_break. Other waitkinds which are
4107 implemented by software breakpoints should be handled through the normal
4108 breakpoint layer.
4109
4110 NOTE drow/2004-01-31: On some targets, breakpoints may generate
4111 different signals (SIGILL or SIGEMT for instance), but it is less
4112 clear where the PC is pointing afterwards. It may not match
4113 gdbarch_decr_pc_after_break. I don't know any specific target that
4114 generates these signals at breakpoints (the code has been in GDB since at
4115 least 1992) so I can not guess how to handle them here.
4116
4117 In earlier versions of GDB, a target with
4118 gdbarch_have_nonsteppable_watchpoint would have the PC after hitting a
4119 watchpoint affected by gdbarch_decr_pc_after_break. I haven't found any
4120 target with both of these set in GDB history, and it seems unlikely to be
4121 correct, so gdbarch_have_nonsteppable_watchpoint is not checked here. */
4122
4123 if (ws->kind != TARGET_WAITKIND_STOPPED)
4124 return;
4125
4126 if (ws->value.sig != GDB_SIGNAL_TRAP)
4127 return;
4128
4129 /* In reverse execution, when a breakpoint is hit, the instruction
4130 under it has already been de-executed. The reported PC always
4131 points at the breakpoint address, so adjusting it further would
4132 be wrong. E.g., consider this case on a decr_pc_after_break == 1
4133 architecture:
4134
4135 B1 0x08000000 : INSN1
4136 B2 0x08000001 : INSN2
4137 0x08000002 : INSN3
4138 PC -> 0x08000003 : INSN4
4139
4140 Say you're stopped at 0x08000003 as above. Reverse continuing
4141 from that point should hit B2 as below. Reading the PC when the
4142 SIGTRAP is reported should read 0x08000001 and INSN2 should have
4143 been de-executed already.
4144
4145 B1 0x08000000 : INSN1
4146 B2 PC -> 0x08000001 : INSN2
4147 0x08000002 : INSN3
4148 0x08000003 : INSN4
4149
4150 We can't apply the same logic as for forward execution, because
4151 we would wrongly adjust the PC to 0x08000000, since there's a
4152 breakpoint at PC - 1. We'd then report a hit on B1, although
4153 INSN1 hadn't been de-executed yet. Doing nothing is the correct
4154 behaviour. */
4155 if (execution_direction == EXEC_REVERSE)
4156 return;
4157
4158 /* If the target can tell whether the thread hit a SW breakpoint,
4159 trust it. Targets that can tell also adjust the PC
4160 themselves. */
4161 if (target_supports_stopped_by_sw_breakpoint ())
4162 return;
4163
4164 /* Note that relying on whether a breakpoint is planted in memory to
4165 determine this can fail. E.g,. the breakpoint could have been
4166 removed since. Or the thread could have been told to step an
4167 instruction the size of a breakpoint instruction, and only
4168 _after_ was a breakpoint inserted at its address. */
4169
4170 /* If this target does not decrement the PC after breakpoints, then
4171 we have nothing to do. */
4172 regcache = get_thread_regcache (thread);
4173 gdbarch = regcache->arch ();
4174
4175 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
4176 if (decr_pc == 0)
4177 return;
4178
4179 const address_space *aspace = regcache->aspace ();
4180
4181 /* Find the location where (if we've hit a breakpoint) the
4182 breakpoint would be. */
4183 breakpoint_pc = regcache_read_pc (regcache) - decr_pc;
4184
4185 /* If the target can't tell whether a software breakpoint triggered,
4186 fallback to figuring it out based on breakpoints we think were
4187 inserted in the target, and on whether the thread was stepped or
4188 continued. */
4189
4190 /* Check whether there actually is a software breakpoint inserted at
4191 that location.
4192
4193 If in non-stop mode, a race condition is possible where we've
4194 removed a breakpoint, but stop events for that breakpoint were
4195 already queued and arrive later. To suppress those spurious
4196 SIGTRAPs, we keep a list of such breakpoint locations for a bit,
4197 and retire them after a number of stop events are reported. Note
4198 this is an heuristic and can thus get confused. The real fix is
4199 to get the "stopped by SW BP and needs adjustment" info out of
4200 the target/kernel (and thus never reach here; see above). */
4201 if (software_breakpoint_inserted_here_p (aspace, breakpoint_pc)
4202 || (target_is_non_stop_p ()
4203 && moribund_breakpoint_here_p (aspace, breakpoint_pc)))
4204 {
4205 gdb::optional<scoped_restore_tmpl<int>> restore_operation_disable;
4206
4207 if (record_full_is_used ())
4208 restore_operation_disable.emplace
4209 (record_full_gdb_operation_disable_set ());
4210
4211 /* When using hardware single-step, a SIGTRAP is reported for both
4212 a completed single-step and a software breakpoint. Need to
4213 differentiate between the two, as the latter needs adjusting
4214 but the former does not.
4215
4216 The SIGTRAP can be due to a completed hardware single-step only if
4217 - we didn't insert software single-step breakpoints
4218 - this thread is currently being stepped
4219
4220 If any of these events did not occur, we must have stopped due
4221 to hitting a software breakpoint, and have to back up to the
4222 breakpoint address.
4223
4224 As a special case, we could have hardware single-stepped a
4225 software breakpoint. In this case (prev_pc == breakpoint_pc),
4226 we also need to back up to the breakpoint address. */
4227
4228 if (thread_has_single_step_breakpoints_set (thread)
4229 || !currently_stepping (thread)
4230 || (thread->stepped_breakpoint
4231 && thread->prev_pc == breakpoint_pc))
4232 regcache_write_pc (regcache, breakpoint_pc);
4233 }
4234 }
4235
4236 static bool
4237 stepped_in_from (struct frame_info *frame, struct frame_id step_frame_id)
4238 {
4239 for (frame = get_prev_frame (frame);
4240 frame != NULL;
4241 frame = get_prev_frame (frame))
4242 {
4243 if (frame_id_eq (get_frame_id (frame), step_frame_id))
4244 return true;
4245
4246 if (get_frame_type (frame) != INLINE_FRAME)
4247 break;
4248 }
4249
4250 return false;
4251 }
4252
4253 /* Look for an inline frame that is marked for skip.
4254 If PREV_FRAME is TRUE start at the previous frame,
4255 otherwise start at the current frame. Stop at the
4256 first non-inline frame, or at the frame where the
4257 step started. */
4258
4259 static bool
4260 inline_frame_is_marked_for_skip (bool prev_frame, struct thread_info *tp)
4261 {
4262 struct frame_info *frame = get_current_frame ();
4263
4264 if (prev_frame)
4265 frame = get_prev_frame (frame);
4266
4267 for (; frame != NULL; frame = get_prev_frame (frame))
4268 {
4269 const char *fn = NULL;
4270 symtab_and_line sal;
4271 struct symbol *sym;
4272
4273 if (frame_id_eq (get_frame_id (frame), tp->control.step_frame_id))
4274 break;
4275 if (get_frame_type (frame) != INLINE_FRAME)
4276 break;
4277
4278 sal = find_frame_sal (frame);
4279 sym = get_frame_function (frame);
4280
4281 if (sym != NULL)
4282 fn = sym->print_name ();
4283
4284 if (sal.line != 0
4285 && function_name_is_marked_for_skip (fn, sal))
4286 return true;
4287 }
4288
4289 return false;
4290 }
4291
4292 /* If the event thread has the stop requested flag set, pretend it
4293 stopped for a GDB_SIGNAL_0 (i.e., as if it stopped due to
4294 target_stop). */
4295
4296 static bool
4297 handle_stop_requested (struct execution_control_state *ecs)
4298 {
4299 if (ecs->event_thread->stop_requested)
4300 {
4301 ecs->ws.kind = TARGET_WAITKIND_STOPPED;
4302 ecs->ws.value.sig = GDB_SIGNAL_0;
4303 handle_signal_stop (ecs);
4304 return true;
4305 }
4306 return false;
4307 }
4308
4309 /* Auxiliary function that handles syscall entry/return events.
4310 It returns true if the inferior should keep going (and GDB
4311 should ignore the event), or false if the event deserves to be
4312 processed. */
4313
4314 static bool
4315 handle_syscall_event (struct execution_control_state *ecs)
4316 {
4317 struct regcache *regcache;
4318 int syscall_number;
4319
4320 context_switch (ecs);
4321
4322 regcache = get_thread_regcache (ecs->event_thread);
4323 syscall_number = ecs->ws.value.syscall_number;
4324 ecs->event_thread->suspend.stop_pc = regcache_read_pc (regcache);
4325
4326 if (catch_syscall_enabled () > 0
4327 && catching_syscall_number (syscall_number) > 0)
4328 {
4329 infrun_debug_printf ("syscall number=%d", syscall_number);
4330
4331 ecs->event_thread->control.stop_bpstat
4332 = bpstat_stop_status (regcache->aspace (),
4333 ecs->event_thread->suspend.stop_pc,
4334 ecs->event_thread, &ecs->ws);
4335
4336 if (handle_stop_requested (ecs))
4337 return false;
4338
4339 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
4340 {
4341 /* Catchpoint hit. */
4342 return false;
4343 }
4344 }
4345
4346 if (handle_stop_requested (ecs))
4347 return false;
4348
4349 /* If no catchpoint triggered for this, then keep going. */
4350 keep_going (ecs);
4351
4352 return true;
4353 }
4354
4355 /* Lazily fill in the execution_control_state's stop_func_* fields. */
4356
4357 static void
4358 fill_in_stop_func (struct gdbarch *gdbarch,
4359 struct execution_control_state *ecs)
4360 {
4361 if (!ecs->stop_func_filled_in)
4362 {
4363 const block *block;
4364 const general_symbol_info *gsi;
4365
4366 /* Don't care about return value; stop_func_start and stop_func_name
4367 will both be 0 if it doesn't work. */
4368 find_pc_partial_function_sym (ecs->event_thread->suspend.stop_pc,
4369 &gsi,
4370 &ecs->stop_func_start,
4371 &ecs->stop_func_end,
4372 &block);
4373 ecs->stop_func_name = gsi == nullptr ? nullptr : gsi->print_name ();
4374
4375 /* The call to find_pc_partial_function, above, will set
4376 stop_func_start and stop_func_end to the start and end
4377 of the range containing the stop pc. If this range
4378 contains the entry pc for the block (which is always the
4379 case for contiguous blocks), advance stop_func_start past
4380 the function's start offset and entrypoint. Note that
4381 stop_func_start is NOT advanced when in a range of a
4382 non-contiguous block that does not contain the entry pc. */
4383 if (block != nullptr
4384 && ecs->stop_func_start <= BLOCK_ENTRY_PC (block)
4385 && BLOCK_ENTRY_PC (block) < ecs->stop_func_end)
4386 {
4387 ecs->stop_func_start
4388 += gdbarch_deprecated_function_start_offset (gdbarch);
4389
4390 if (gdbarch_skip_entrypoint_p (gdbarch))
4391 ecs->stop_func_start
4392 = gdbarch_skip_entrypoint (gdbarch, ecs->stop_func_start);
4393 }
4394
4395 ecs->stop_func_filled_in = 1;
4396 }
4397 }
4398
4399
4400 /* Return the STOP_SOON field of the inferior pointed at by ECS. */
4401
4402 static enum stop_kind
4403 get_inferior_stop_soon (execution_control_state *ecs)
4404 {
4405 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
4406
4407 gdb_assert (inf != NULL);
4408 return inf->control.stop_soon;
4409 }
4410
4411 /* Poll for one event out of the current target. Store the resulting
4412 waitstatus in WS, and return the event ptid. Does not block. */
4413
4414 static ptid_t
4415 poll_one_curr_target (struct target_waitstatus *ws)
4416 {
4417 ptid_t event_ptid;
4418
4419 overlay_cache_invalid = 1;
4420
4421 /* Flush target cache before starting to handle each event.
4422 Target was running and cache could be stale. This is just a
4423 heuristic. Running threads may modify target memory, but we
4424 don't get any event. */
4425 target_dcache_invalidate ();
4426
4427 if (deprecated_target_wait_hook)
4428 event_ptid = deprecated_target_wait_hook (minus_one_ptid, ws, TARGET_WNOHANG);
4429 else
4430 event_ptid = target_wait (minus_one_ptid, ws, TARGET_WNOHANG);
4431
4432 if (debug_infrun)
4433 print_target_wait_results (minus_one_ptid, event_ptid, ws);
4434
4435 return event_ptid;
4436 }
4437
4438 /* An event reported by wait_one. */
4439
4440 struct wait_one_event
4441 {
4442 /* The target the event came out of. */
4443 process_stratum_target *target;
4444
4445 /* The PTID the event was for. */
4446 ptid_t ptid;
4447
4448 /* The waitstatus. */
4449 target_waitstatus ws;
4450 };
4451
4452 /* Wait for one event out of any target. */
4453
4454 static wait_one_event
4455 wait_one ()
4456 {
4457 while (1)
4458 {
4459 for (inferior *inf : all_inferiors ())
4460 {
4461 process_stratum_target *target = inf->process_target ();
4462 if (target == NULL
4463 || !target->is_async_p ()
4464 || !target->threads_executing)
4465 continue;
4466
4467 switch_to_inferior_no_thread (inf);
4468
4469 wait_one_event event;
4470 event.target = target;
4471 event.ptid = poll_one_curr_target (&event.ws);
4472
4473 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4474 {
4475 /* If nothing is resumed, remove the target from the
4476 event loop. */
4477 target_async (0);
4478 }
4479 else if (event.ws.kind != TARGET_WAITKIND_IGNORE)
4480 return event;
4481 }
4482
4483 /* Block waiting for some event. */
4484
4485 fd_set readfds;
4486 int nfds = 0;
4487
4488 FD_ZERO (&readfds);
4489
4490 for (inferior *inf : all_inferiors ())
4491 {
4492 process_stratum_target *target = inf->process_target ();
4493 if (target == NULL
4494 || !target->is_async_p ()
4495 || !target->threads_executing)
4496 continue;
4497
4498 int fd = target->async_wait_fd ();
4499 FD_SET (fd, &readfds);
4500 if (nfds <= fd)
4501 nfds = fd + 1;
4502 }
4503
4504 if (nfds == 0)
4505 {
4506 /* No waitable targets left. All must be stopped. */
4507 return {NULL, minus_one_ptid, {TARGET_WAITKIND_NO_RESUMED}};
4508 }
4509
4510 QUIT;
4511
4512 int numfds = interruptible_select (nfds, &readfds, 0, NULL, 0);
4513 if (numfds < 0)
4514 {
4515 if (errno == EINTR)
4516 continue;
4517 else
4518 perror_with_name ("interruptible_select");
4519 }
4520 }
4521 }
4522
4523 /* Save the thread's event and stop reason to process it later. */
4524
4525 static void
4526 save_waitstatus (struct thread_info *tp, const target_waitstatus *ws)
4527 {
4528 infrun_debug_printf ("saving status %s for %d.%ld.%ld",
4529 target_waitstatus_to_string (ws).c_str (),
4530 tp->ptid.pid (),
4531 tp->ptid.lwp (),
4532 tp->ptid.tid ());
4533
4534 /* Record for later. */
4535 tp->suspend.waitstatus = *ws;
4536 tp->suspend.waitstatus_pending_p = 1;
4537
4538 struct regcache *regcache = get_thread_regcache (tp);
4539 const address_space *aspace = regcache->aspace ();
4540
4541 if (ws->kind == TARGET_WAITKIND_STOPPED
4542 && ws->value.sig == GDB_SIGNAL_TRAP)
4543 {
4544 CORE_ADDR pc = regcache_read_pc (regcache);
4545
4546 adjust_pc_after_break (tp, &tp->suspend.waitstatus);
4547
4548 scoped_restore_current_thread restore_thread;
4549 switch_to_thread (tp);
4550
4551 if (target_stopped_by_watchpoint ())
4552 {
4553 tp->suspend.stop_reason
4554 = TARGET_STOPPED_BY_WATCHPOINT;
4555 }
4556 else if (target_supports_stopped_by_sw_breakpoint ()
4557 && target_stopped_by_sw_breakpoint ())
4558 {
4559 tp->suspend.stop_reason
4560 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4561 }
4562 else if (target_supports_stopped_by_hw_breakpoint ()
4563 && target_stopped_by_hw_breakpoint ())
4564 {
4565 tp->suspend.stop_reason
4566 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4567 }
4568 else if (!target_supports_stopped_by_hw_breakpoint ()
4569 && hardware_breakpoint_inserted_here_p (aspace,
4570 pc))
4571 {
4572 tp->suspend.stop_reason
4573 = TARGET_STOPPED_BY_HW_BREAKPOINT;
4574 }
4575 else if (!target_supports_stopped_by_sw_breakpoint ()
4576 && software_breakpoint_inserted_here_p (aspace,
4577 pc))
4578 {
4579 tp->suspend.stop_reason
4580 = TARGET_STOPPED_BY_SW_BREAKPOINT;
4581 }
4582 else if (!thread_has_single_step_breakpoints_set (tp)
4583 && currently_stepping (tp))
4584 {
4585 tp->suspend.stop_reason
4586 = TARGET_STOPPED_BY_SINGLE_STEP;
4587 }
4588 }
4589 }
4590
4591 /* Mark the non-executing threads accordingly. In all-stop, all
4592 threads of all processes are stopped when we get any event
4593 reported. In non-stop mode, only the event thread stops. */
4594
4595 static void
4596 mark_non_executing_threads (process_stratum_target *target,
4597 ptid_t event_ptid,
4598 struct target_waitstatus ws)
4599 {
4600 ptid_t mark_ptid;
4601
4602 if (!target_is_non_stop_p ())
4603 mark_ptid = minus_one_ptid;
4604 else if (ws.kind == TARGET_WAITKIND_SIGNALLED
4605 || ws.kind == TARGET_WAITKIND_EXITED)
4606 {
4607 /* If we're handling a process exit in non-stop mode, even
4608 though threads haven't been deleted yet, one would think
4609 that there is nothing to do, as threads of the dead process
4610 will be soon deleted, and threads of any other process were
4611 left running. However, on some targets, threads survive a
4612 process exit event. E.g., for the "checkpoint" command,
4613 when the current checkpoint/fork exits, linux-fork.c
4614 automatically switches to another fork from within
4615 target_mourn_inferior, by associating the same
4616 inferior/thread to another fork. We haven't mourned yet at
4617 this point, but we must mark any threads left in the
4618 process as not-executing so that finish_thread_state marks
4619 them stopped (in the user's perspective) if/when we present
4620 the stop to the user. */
4621 mark_ptid = ptid_t (event_ptid.pid ());
4622 }
4623 else
4624 mark_ptid = event_ptid;
4625
4626 set_executing (target, mark_ptid, false);
4627
4628 /* Likewise the resumed flag. */
4629 set_resumed (target, mark_ptid, false);
4630 }
4631
4632 /* See infrun.h. */
4633
4634 void
4635 stop_all_threads (void)
4636 {
4637 /* We may need multiple passes to discover all threads. */
4638 int pass;
4639 int iterations = 0;
4640
4641 gdb_assert (exists_non_stop_target ());
4642
4643 infrun_debug_printf ("starting");
4644
4645 scoped_restore_current_thread restore_thread;
4646
4647 /* Enable thread events of all targets. */
4648 for (auto *target : all_non_exited_process_targets ())
4649 {
4650 switch_to_target_no_thread (target);
4651 target_thread_events (true);
4652 }
4653
4654 SCOPE_EXIT
4655 {
4656 /* Disable thread events of all targets. */
4657 for (auto *target : all_non_exited_process_targets ())
4658 {
4659 switch_to_target_no_thread (target);
4660 target_thread_events (false);
4661 }
4662
4663 /* Use infrun_debug_printf_1 directly to get a meaningful function
4664 name. */
4665 if (debug_infrun)
4666 infrun_debug_printf_1 ("stop_all_threads", "done");
4667 };
4668
4669 /* Request threads to stop, and then wait for the stops. Because
4670 threads we already know about can spawn more threads while we're
4671 trying to stop them, and we only learn about new threads when we
4672 update the thread list, do this in a loop, and keep iterating
4673 until two passes find no threads that need to be stopped. */
4674 for (pass = 0; pass < 2; pass++, iterations++)
4675 {
4676 infrun_debug_printf ("pass=%d, iterations=%d", pass, iterations);
4677 while (1)
4678 {
4679 int waits_needed = 0;
4680
4681 for (auto *target : all_non_exited_process_targets ())
4682 {
4683 switch_to_target_no_thread (target);
4684 update_thread_list ();
4685 }
4686
4687 /* Go through all threads looking for threads that we need
4688 to tell the target to stop. */
4689 for (thread_info *t : all_non_exited_threads ())
4690 {
4691 /* For a single-target setting with an all-stop target,
4692 we would not even arrive here. For a multi-target
4693 setting, until GDB is able to handle a mixture of
4694 all-stop and non-stop targets, simply skip all-stop
4695 targets' threads. This should be fine due to the
4696 protection of 'check_multi_target_resumption'. */
4697
4698 switch_to_thread_no_regs (t);
4699 if (!target_is_non_stop_p ())
4700 continue;
4701
4702 if (t->executing)
4703 {
4704 /* If already stopping, don't request a stop again.
4705 We just haven't seen the notification yet. */
4706 if (!t->stop_requested)
4707 {
4708 infrun_debug_printf (" %s executing, need stop",
4709 target_pid_to_str (t->ptid).c_str ());
4710 target_stop (t->ptid);
4711 t->stop_requested = 1;
4712 }
4713 else
4714 {
4715 infrun_debug_printf (" %s executing, already stopping",
4716 target_pid_to_str (t->ptid).c_str ());
4717 }
4718
4719 if (t->stop_requested)
4720 waits_needed++;
4721 }
4722 else
4723 {
4724 infrun_debug_printf (" %s not executing",
4725 target_pid_to_str (t->ptid).c_str ());
4726
4727 /* The thread may be not executing, but still be
4728 resumed with a pending status to process. */
4729 t->resumed = false;
4730 }
4731 }
4732
4733 if (waits_needed == 0)
4734 break;
4735
4736 /* If we find new threads on the second iteration, restart
4737 over. We want to see two iterations in a row with all
4738 threads stopped. */
4739 if (pass > 0)
4740 pass = -1;
4741
4742 for (int i = 0; i < waits_needed; i++)
4743 {
4744 wait_one_event event = wait_one ();
4745
4746 infrun_debug_printf
4747 ("%s %s", target_waitstatus_to_string (&event.ws).c_str (),
4748 target_pid_to_str (event.ptid).c_str ());
4749
4750 if (event.ws.kind == TARGET_WAITKIND_NO_RESUMED)
4751 {
4752 /* All resumed threads exited. */
4753 break;
4754 }
4755 else if (event.ws.kind == TARGET_WAITKIND_THREAD_EXITED
4756 || event.ws.kind == TARGET_WAITKIND_EXITED
4757 || event.ws.kind == TARGET_WAITKIND_SIGNALLED)
4758 {
4759 /* One thread/process exited/signalled. */
4760
4761 thread_info *t = nullptr;
4762
4763 /* The target may have reported just a pid. If so, try
4764 the first non-exited thread. */
4765 if (event.ptid.is_pid ())
4766 {
4767 int pid = event.ptid.pid ();
4768 inferior *inf = find_inferior_pid (event.target, pid);
4769 for (thread_info *tp : inf->non_exited_threads ())
4770 {
4771 t = tp;
4772 break;
4773 }
4774
4775 /* If there is no available thread, the event would
4776 have to be appended to a per-inferior event list,
4777 which does not exist (and if it did, we'd have
4778 to adjust run control command to be able to
4779 resume such an inferior). We assert here instead
4780 of going into an infinite loop. */
4781 gdb_assert (t != nullptr);
4782
4783 infrun_debug_printf
4784 ("using %s", target_pid_to_str (t->ptid).c_str ());
4785 }
4786 else
4787 {
4788 t = find_thread_ptid (event.target, event.ptid);
4789 /* Check if this is the first time we see this thread.
4790 Don't bother adding if it individually exited. */
4791 if (t == nullptr
4792 && event.ws.kind != TARGET_WAITKIND_THREAD_EXITED)
4793 t = add_thread (event.target, event.ptid);
4794 }
4795
4796 if (t != nullptr)
4797 {
4798 /* Set the threads as non-executing to avoid
4799 another stop attempt on them. */
4800 switch_to_thread_no_regs (t);
4801 mark_non_executing_threads (event.target, event.ptid,
4802 event.ws);
4803 save_waitstatus (t, &event.ws);
4804 t->stop_requested = false;
4805 }
4806 }
4807 else
4808 {
4809 thread_info *t = find_thread_ptid (event.target, event.ptid);
4810 if (t == NULL)
4811 t = add_thread (event.target, event.ptid);
4812
4813 t->stop_requested = 0;
4814 t->executing = 0;
4815 t->resumed = false;
4816 t->control.may_range_step = 0;
4817
4818 /* This may be the first time we see the inferior report
4819 a stop. */
4820 inferior *inf = find_inferior_ptid (event.target, event.ptid);
4821 if (inf->needs_setup)
4822 {
4823 switch_to_thread_no_regs (t);
4824 setup_inferior (0);
4825 }
4826
4827 if (event.ws.kind == TARGET_WAITKIND_STOPPED
4828 && event.ws.value.sig == GDB_SIGNAL_0)
4829 {
4830 /* We caught the event that we intended to catch, so
4831 there's no event pending. */
4832 t->suspend.waitstatus.kind = TARGET_WAITKIND_IGNORE;
4833 t->suspend.waitstatus_pending_p = 0;
4834
4835 if (displaced_step_fixup (t, GDB_SIGNAL_0) < 0)
4836 {
4837 /* Add it back to the step-over queue. */
4838 infrun_debug_printf
4839 ("displaced-step of %s canceled: adding back to "
4840 "the step-over queue",
4841 target_pid_to_str (t->ptid).c_str ());
4842
4843 t->control.trap_expected = 0;
4844 thread_step_over_chain_enqueue (t);
4845 }
4846 }
4847 else
4848 {
4849 enum gdb_signal sig;
4850 struct regcache *regcache;
4851
4852 infrun_debug_printf
4853 ("target_wait %s, saving status for %d.%ld.%ld",
4854 target_waitstatus_to_string (&event.ws).c_str (),
4855 t->ptid.pid (), t->ptid.lwp (), t->ptid.tid ());
4856
4857 /* Record for later. */
4858 save_waitstatus (t, &event.ws);
4859
4860 sig = (event.ws.kind == TARGET_WAITKIND_STOPPED
4861 ? event.ws.value.sig : GDB_SIGNAL_0);
4862
4863 if (displaced_step_fixup (t, sig) < 0)
4864 {
4865 /* Add it back to the step-over queue. */
4866 t->control.trap_expected = 0;
4867 thread_step_over_chain_enqueue (t);
4868 }
4869
4870 regcache = get_thread_regcache (t);
4871 t->suspend.stop_pc = regcache_read_pc (regcache);
4872
4873 infrun_debug_printf ("saved stop_pc=%s for %s "
4874 "(currently_stepping=%d)",
4875 paddress (target_gdbarch (),
4876 t->suspend.stop_pc),
4877 target_pid_to_str (t->ptid).c_str (),
4878 currently_stepping (t));
4879 }
4880 }
4881 }
4882 }
4883 }
4884 }
4885
4886 /* Handle a TARGET_WAITKIND_NO_RESUMED event. */
4887
4888 static bool
4889 handle_no_resumed (struct execution_control_state *ecs)
4890 {
4891 if (target_can_async_p ())
4892 {
4893 bool any_sync = false;
4894
4895 for (ui *ui : all_uis ())
4896 {
4897 if (ui->prompt_state == PROMPT_BLOCKED)
4898 {
4899 any_sync = true;
4900 break;
4901 }
4902 }
4903 if (!any_sync)
4904 {
4905 /* There were no unwaited-for children left in the target, but,
4906 we're not synchronously waiting for events either. Just
4907 ignore. */
4908
4909 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED (ignoring: bg)");
4910 prepare_to_wait (ecs);
4911 return true;
4912 }
4913 }
4914
4915 /* Otherwise, if we were running a synchronous execution command, we
4916 may need to cancel it and give the user back the terminal.
4917
4918 In non-stop mode, the target can't tell whether we've already
4919 consumed previous stop events, so it can end up sending us a
4920 no-resumed event like so:
4921
4922 #0 - thread 1 is left stopped
4923
4924 #1 - thread 2 is resumed and hits breakpoint
4925 -> TARGET_WAITKIND_STOPPED
4926
4927 #2 - thread 3 is resumed and exits
4928 this is the last resumed thread, so
4929 -> TARGET_WAITKIND_NO_RESUMED
4930
4931 #3 - gdb processes stop for thread 2 and decides to re-resume
4932 it.
4933
4934 #4 - gdb processes the TARGET_WAITKIND_NO_RESUMED event.
4935 thread 2 is now resumed, so the event should be ignored.
4936
4937 IOW, if the stop for thread 2 doesn't end a foreground command,
4938 then we need to ignore the following TARGET_WAITKIND_NO_RESUMED
4939 event. But it could be that the event meant that thread 2 itself
4940 (or whatever other thread was the last resumed thread) exited.
4941
4942 To address this we refresh the thread list and check whether we
4943 have resumed threads _now_. In the example above, this removes
4944 thread 3 from the thread list. If thread 2 was re-resumed, we
4945 ignore this event. If we find no thread resumed, then we cancel
4946 the synchronous command and show "no unwaited-for " to the
4947 user. */
4948
4949 inferior *curr_inf = current_inferior ();
4950
4951 scoped_restore_current_thread restore_thread;
4952
4953 for (auto *target : all_non_exited_process_targets ())
4954 {
4955 switch_to_target_no_thread (target);
4956 update_thread_list ();
4957 }
4958
4959 /* If:
4960
4961 - the current target has no thread executing, and
4962 - the current inferior is native, and
4963 - the current inferior is the one which has the terminal, and
4964 - we did nothing,
4965
4966 then a Ctrl-C from this point on would remain stuck in the
4967 kernel, until a thread resumes and dequeues it. That would
4968 result in the GDB CLI not reacting to Ctrl-C, not able to
4969 interrupt the program. To address this, if the current inferior
4970 no longer has any thread executing, we give the terminal to some
4971 other inferior that has at least one thread executing. */
4972 bool swap_terminal = true;
4973
4974 /* Whether to ignore this TARGET_WAITKIND_NO_RESUMED event, or
4975 whether to report it to the user. */
4976 bool ignore_event = false;
4977
4978 for (thread_info *thread : all_non_exited_threads ())
4979 {
4980 if (swap_terminal && thread->executing)
4981 {
4982 if (thread->inf != curr_inf)
4983 {
4984 target_terminal::ours ();
4985
4986 switch_to_thread (thread);
4987 target_terminal::inferior ();
4988 }
4989 swap_terminal = false;
4990 }
4991
4992 if (!ignore_event
4993 && (thread->executing
4994 || thread->suspend.waitstatus_pending_p))
4995 {
4996 /* Either there were no unwaited-for children left in the
4997 target at some point, but there are now, or some target
4998 other than the eventing one has unwaited-for children
4999 left. Just ignore. */
5000 infrun_debug_printf ("TARGET_WAITKIND_NO_RESUMED "
5001 "(ignoring: found resumed)");
5002
5003 ignore_event = true;
5004 }
5005
5006 if (ignore_event && !swap_terminal)
5007 break;
5008 }
5009
5010 if (ignore_event)
5011 {
5012 switch_to_inferior_no_thread (curr_inf);
5013 prepare_to_wait (ecs);
5014 return true;
5015 }
5016
5017 /* Go ahead and report the event. */
5018 return false;
5019 }
5020
5021 /* Given an execution control state that has been freshly filled in by
5022 an event from the inferior, figure out what it means and take
5023 appropriate action.
5024
5025 The alternatives are:
5026
5027 1) stop_waiting and return; to really stop and return to the
5028 debugger.
5029
5030 2) keep_going and return; to wait for the next event (set
5031 ecs->event_thread->stepping_over_breakpoint to 1 to single step
5032 once). */
5033
5034 static void
5035 handle_inferior_event (struct execution_control_state *ecs)
5036 {
5037 /* Make sure that all temporary struct value objects that were
5038 created during the handling of the event get deleted at the
5039 end. */
5040 scoped_value_mark free_values;
5041
5042 enum stop_kind stop_soon;
5043
5044 infrun_debug_printf ("%s", target_waitstatus_to_string (&ecs->ws).c_str ());
5045
5046 if (ecs->ws.kind == TARGET_WAITKIND_IGNORE)
5047 {
5048 /* We had an event in the inferior, but we are not interested in
5049 handling it at this level. The lower layers have already
5050 done what needs to be done, if anything.
5051
5052 One of the possible circumstances for this is when the
5053 inferior produces output for the console. The inferior has
5054 not stopped, and we are ignoring the event. Another possible
5055 circumstance is any event which the lower level knows will be
5056 reported multiple times without an intervening resume. */
5057 prepare_to_wait (ecs);
5058 return;
5059 }
5060
5061 if (ecs->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
5062 {
5063 prepare_to_wait (ecs);
5064 return;
5065 }
5066
5067 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED
5068 && handle_no_resumed (ecs))
5069 return;
5070
5071 /* Cache the last target/ptid/waitstatus. */
5072 set_last_target_status (ecs->target, ecs->ptid, ecs->ws);
5073
5074 /* Always clear state belonging to the previous time we stopped. */
5075 stop_stack_dummy = STOP_NONE;
5076
5077 if (ecs->ws.kind == TARGET_WAITKIND_NO_RESUMED)
5078 {
5079 /* No unwaited-for children left. IOW, all resumed children
5080 have exited. */
5081 stop_print_frame = false;
5082 stop_waiting (ecs);
5083 return;
5084 }
5085
5086 if (ecs->ws.kind != TARGET_WAITKIND_EXITED
5087 && ecs->ws.kind != TARGET_WAITKIND_SIGNALLED)
5088 {
5089 ecs->event_thread = find_thread_ptid (ecs->target, ecs->ptid);
5090 /* If it's a new thread, add it to the thread database. */
5091 if (ecs->event_thread == NULL)
5092 ecs->event_thread = add_thread (ecs->target, ecs->ptid);
5093
5094 /* Disable range stepping. If the next step request could use a
5095 range, this will be end up re-enabled then. */
5096 ecs->event_thread->control.may_range_step = 0;
5097 }
5098
5099 /* Dependent on valid ECS->EVENT_THREAD. */
5100 adjust_pc_after_break (ecs->event_thread, &ecs->ws);
5101
5102 /* Dependent on the current PC value modified by adjust_pc_after_break. */
5103 reinit_frame_cache ();
5104
5105 breakpoint_retire_moribund ();
5106
5107 /* First, distinguish signals caused by the debugger from signals
5108 that have to do with the program's own actions. Note that
5109 breakpoint insns may cause SIGTRAP or SIGILL or SIGEMT, depending
5110 on the operating system version. Here we detect when a SIGILL or
5111 SIGEMT is really a breakpoint and change it to SIGTRAP. We do
5112 something similar for SIGSEGV, since a SIGSEGV will be generated
5113 when we're trying to execute a breakpoint instruction on a
5114 non-executable stack. This happens for call dummy breakpoints
5115 for architectures like SPARC that place call dummies on the
5116 stack. */
5117 if (ecs->ws.kind == TARGET_WAITKIND_STOPPED
5118 && (ecs->ws.value.sig == GDB_SIGNAL_ILL
5119 || ecs->ws.value.sig == GDB_SIGNAL_SEGV
5120 || ecs->ws.value.sig == GDB_SIGNAL_EMT))
5121 {
5122 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5123
5124 if (breakpoint_inserted_here_p (regcache->aspace (),
5125 regcache_read_pc (regcache)))
5126 {
5127 infrun_debug_printf ("Treating signal as SIGTRAP");
5128 ecs->ws.value.sig = GDB_SIGNAL_TRAP;
5129 }
5130 }
5131
5132 mark_non_executing_threads (ecs->target, ecs->ptid, ecs->ws);
5133
5134 switch (ecs->ws.kind)
5135 {
5136 case TARGET_WAITKIND_LOADED:
5137 context_switch (ecs);
5138 /* Ignore gracefully during startup of the inferior, as it might
5139 be the shell which has just loaded some objects, otherwise
5140 add the symbols for the newly loaded objects. Also ignore at
5141 the beginning of an attach or remote session; we will query
5142 the full list of libraries once the connection is
5143 established. */
5144
5145 stop_soon = get_inferior_stop_soon (ecs);
5146 if (stop_soon == NO_STOP_QUIETLY)
5147 {
5148 struct regcache *regcache;
5149
5150 regcache = get_thread_regcache (ecs->event_thread);
5151
5152 handle_solib_event ();
5153
5154 ecs->event_thread->control.stop_bpstat
5155 = bpstat_stop_status (regcache->aspace (),
5156 ecs->event_thread->suspend.stop_pc,
5157 ecs->event_thread, &ecs->ws);
5158
5159 if (handle_stop_requested (ecs))
5160 return;
5161
5162 if (bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5163 {
5164 /* A catchpoint triggered. */
5165 process_event_stop_test (ecs);
5166 return;
5167 }
5168
5169 /* If requested, stop when the dynamic linker notifies
5170 gdb of events. This allows the user to get control
5171 and place breakpoints in initializer routines for
5172 dynamically loaded objects (among other things). */
5173 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5174 if (stop_on_solib_events)
5175 {
5176 /* Make sure we print "Stopped due to solib-event" in
5177 normal_stop. */
5178 stop_print_frame = true;
5179
5180 stop_waiting (ecs);
5181 return;
5182 }
5183 }
5184
5185 /* If we are skipping through a shell, or through shared library
5186 loading that we aren't interested in, resume the program. If
5187 we're running the program normally, also resume. */
5188 if (stop_soon == STOP_QUIETLY || stop_soon == NO_STOP_QUIETLY)
5189 {
5190 /* Loading of shared libraries might have changed breakpoint
5191 addresses. Make sure new breakpoints are inserted. */
5192 if (stop_soon == NO_STOP_QUIETLY)
5193 insert_breakpoints ();
5194 resume (GDB_SIGNAL_0);
5195 prepare_to_wait (ecs);
5196 return;
5197 }
5198
5199 /* But stop if we're attaching or setting up a remote
5200 connection. */
5201 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5202 || stop_soon == STOP_QUIETLY_REMOTE)
5203 {
5204 infrun_debug_printf ("quietly stopped");
5205 stop_waiting (ecs);
5206 return;
5207 }
5208
5209 internal_error (__FILE__, __LINE__,
5210 _("unhandled stop_soon: %d"), (int) stop_soon);
5211
5212 case TARGET_WAITKIND_SPURIOUS:
5213 if (handle_stop_requested (ecs))
5214 return;
5215 context_switch (ecs);
5216 resume (GDB_SIGNAL_0);
5217 prepare_to_wait (ecs);
5218 return;
5219
5220 case TARGET_WAITKIND_THREAD_CREATED:
5221 if (handle_stop_requested (ecs))
5222 return;
5223 context_switch (ecs);
5224 if (!switch_back_to_stepped_thread (ecs))
5225 keep_going (ecs);
5226 return;
5227
5228 case TARGET_WAITKIND_EXITED:
5229 case TARGET_WAITKIND_SIGNALLED:
5230 {
5231 /* Depending on the system, ecs->ptid may point to a thread or
5232 to a process. On some targets, target_mourn_inferior may
5233 need to have access to the just-exited thread. That is the
5234 case of GNU/Linux's "checkpoint" support, for example.
5235 Call the switch_to_xxx routine as appropriate. */
5236 thread_info *thr = find_thread_ptid (ecs->target, ecs->ptid);
5237 if (thr != nullptr)
5238 switch_to_thread (thr);
5239 else
5240 {
5241 inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
5242 switch_to_inferior_no_thread (inf);
5243 }
5244 }
5245 handle_vfork_child_exec_or_exit (0);
5246 target_terminal::ours (); /* Must do this before mourn anyway. */
5247
5248 /* Clearing any previous state of convenience variables. */
5249 clear_exit_convenience_vars ();
5250
5251 if (ecs->ws.kind == TARGET_WAITKIND_EXITED)
5252 {
5253 /* Record the exit code in the convenience variable $_exitcode, so
5254 that the user can inspect this again later. */
5255 set_internalvar_integer (lookup_internalvar ("_exitcode"),
5256 (LONGEST) ecs->ws.value.integer);
5257
5258 /* Also record this in the inferior itself. */
5259 current_inferior ()->has_exit_code = 1;
5260 current_inferior ()->exit_code = (LONGEST) ecs->ws.value.integer;
5261
5262 /* Support the --return-child-result option. */
5263 return_child_result_value = ecs->ws.value.integer;
5264
5265 gdb::observers::exited.notify (ecs->ws.value.integer);
5266 }
5267 else
5268 {
5269 struct gdbarch *gdbarch = current_inferior ()->gdbarch;
5270
5271 if (gdbarch_gdb_signal_to_target_p (gdbarch))
5272 {
5273 /* Set the value of the internal variable $_exitsignal,
5274 which holds the signal uncaught by the inferior. */
5275 set_internalvar_integer (lookup_internalvar ("_exitsignal"),
5276 gdbarch_gdb_signal_to_target (gdbarch,
5277 ecs->ws.value.sig));
5278 }
5279 else
5280 {
5281 /* We don't have access to the target's method used for
5282 converting between signal numbers (GDB's internal
5283 representation <-> target's representation).
5284 Therefore, we cannot do a good job at displaying this
5285 information to the user. It's better to just warn
5286 her about it (if infrun debugging is enabled), and
5287 give up. */
5288 infrun_debug_printf ("Cannot fill $_exitsignal with the correct "
5289 "signal number.");
5290 }
5291
5292 gdb::observers::signal_exited.notify (ecs->ws.value.sig);
5293 }
5294
5295 gdb_flush (gdb_stdout);
5296 target_mourn_inferior (inferior_ptid);
5297 stop_print_frame = false;
5298 stop_waiting (ecs);
5299 return;
5300
5301 case TARGET_WAITKIND_FORKED:
5302 case TARGET_WAITKIND_VFORKED:
5303 /* Check whether the inferior is displaced stepping. */
5304 {
5305 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5306 struct gdbarch *gdbarch = regcache->arch ();
5307
5308 /* If checking displaced stepping is supported, and thread
5309 ecs->ptid is displaced stepping. */
5310 if (displaced_step_in_progress_thread (ecs->event_thread))
5311 {
5312 struct inferior *parent_inf
5313 = find_inferior_ptid (ecs->target, ecs->ptid);
5314 struct regcache *child_regcache;
5315 CORE_ADDR parent_pc;
5316
5317 if (ecs->ws.kind == TARGET_WAITKIND_FORKED)
5318 {
5319 struct displaced_step_inferior_state *displaced
5320 = get_displaced_stepping_state (parent_inf);
5321
5322 /* Restore scratch pad for child process. */
5323 displaced_step_restore (displaced, ecs->ws.value.related_pid);
5324 }
5325
5326 /* GDB has got TARGET_WAITKIND_FORKED or TARGET_WAITKIND_VFORKED,
5327 indicating that the displaced stepping of syscall instruction
5328 has been done. Perform cleanup for parent process here. Note
5329 that this operation also cleans up the child process for vfork,
5330 because their pages are shared. */
5331 displaced_step_fixup (ecs->event_thread, GDB_SIGNAL_TRAP);
5332 /* Start a new step-over in another thread if there's one
5333 that needs it. */
5334 start_step_over ();
5335
5336 /* Since the vfork/fork syscall instruction was executed in the scratchpad,
5337 the child's PC is also within the scratchpad. Set the child's PC
5338 to the parent's PC value, which has already been fixed up.
5339 FIXME: we use the parent's aspace here, although we're touching
5340 the child, because the child hasn't been added to the inferior
5341 list yet at this point. */
5342
5343 child_regcache
5344 = get_thread_arch_aspace_regcache (parent_inf->process_target (),
5345 ecs->ws.value.related_pid,
5346 gdbarch,
5347 parent_inf->aspace);
5348 /* Read PC value of parent process. */
5349 parent_pc = regcache_read_pc (regcache);
5350
5351 if (debug_displaced)
5352 fprintf_unfiltered (gdb_stdlog,
5353 "displaced: write child pc from %s to %s\n",
5354 paddress (gdbarch,
5355 regcache_read_pc (child_regcache)),
5356 paddress (gdbarch, parent_pc));
5357
5358 regcache_write_pc (child_regcache, parent_pc);
5359 }
5360 }
5361
5362 context_switch (ecs);
5363
5364 /* Immediately detach breakpoints from the child before there's
5365 any chance of letting the user delete breakpoints from the
5366 breakpoint lists. If we don't do this early, it's easy to
5367 leave left over traps in the child, vis: "break foo; catch
5368 fork; c; <fork>; del; c; <child calls foo>". We only follow
5369 the fork on the last `continue', and by that time the
5370 breakpoint at "foo" is long gone from the breakpoint table.
5371 If we vforked, then we don't need to unpatch here, since both
5372 parent and child are sharing the same memory pages; we'll
5373 need to unpatch at follow/detach time instead to be certain
5374 that new breakpoints added between catchpoint hit time and
5375 vfork follow are detached. */
5376 if (ecs->ws.kind != TARGET_WAITKIND_VFORKED)
5377 {
5378 /* This won't actually modify the breakpoint list, but will
5379 physically remove the breakpoints from the child. */
5380 detach_breakpoints (ecs->ws.value.related_pid);
5381 }
5382
5383 delete_just_stopped_threads_single_step_breakpoints ();
5384
5385 /* In case the event is caught by a catchpoint, remember that
5386 the event is to be followed at the next resume of the thread,
5387 and not immediately. */
5388 ecs->event_thread->pending_follow = ecs->ws;
5389
5390 ecs->event_thread->suspend.stop_pc
5391 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5392
5393 ecs->event_thread->control.stop_bpstat
5394 = bpstat_stop_status (get_current_regcache ()->aspace (),
5395 ecs->event_thread->suspend.stop_pc,
5396 ecs->event_thread, &ecs->ws);
5397
5398 if (handle_stop_requested (ecs))
5399 return;
5400
5401 /* If no catchpoint triggered for this, then keep going. Note
5402 that we're interested in knowing the bpstat actually causes a
5403 stop, not just if it may explain the signal. Software
5404 watchpoints, for example, always appear in the bpstat. */
5405 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5406 {
5407 bool follow_child
5408 = (follow_fork_mode_string == follow_fork_mode_child);
5409
5410 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5411
5412 process_stratum_target *targ
5413 = ecs->event_thread->inf->process_target ();
5414
5415 bool should_resume = follow_fork ();
5416
5417 /* Note that one of these may be an invalid pointer,
5418 depending on detach_fork. */
5419 thread_info *parent = ecs->event_thread;
5420 thread_info *child
5421 = find_thread_ptid (targ, ecs->ws.value.related_pid);
5422
5423 /* At this point, the parent is marked running, and the
5424 child is marked stopped. */
5425
5426 /* If not resuming the parent, mark it stopped. */
5427 if (follow_child && !detach_fork && !non_stop && !sched_multi)
5428 parent->set_running (false);
5429
5430 /* If resuming the child, mark it running. */
5431 if (follow_child || (!detach_fork && (non_stop || sched_multi)))
5432 child->set_running (true);
5433
5434 /* In non-stop mode, also resume the other branch. */
5435 if (!detach_fork && (non_stop
5436 || (sched_multi && target_is_non_stop_p ())))
5437 {
5438 if (follow_child)
5439 switch_to_thread (parent);
5440 else
5441 switch_to_thread (child);
5442
5443 ecs->event_thread = inferior_thread ();
5444 ecs->ptid = inferior_ptid;
5445 keep_going (ecs);
5446 }
5447
5448 if (follow_child)
5449 switch_to_thread (child);
5450 else
5451 switch_to_thread (parent);
5452
5453 ecs->event_thread = inferior_thread ();
5454 ecs->ptid = inferior_ptid;
5455
5456 if (should_resume)
5457 keep_going (ecs);
5458 else
5459 stop_waiting (ecs);
5460 return;
5461 }
5462 process_event_stop_test (ecs);
5463 return;
5464
5465 case TARGET_WAITKIND_VFORK_DONE:
5466 /* Done with the shared memory region. Re-insert breakpoints in
5467 the parent, and keep going. */
5468
5469 context_switch (ecs);
5470
5471 current_inferior ()->waiting_for_vfork_done = 0;
5472 current_inferior ()->pspace->breakpoints_not_allowed = 0;
5473
5474 if (handle_stop_requested (ecs))
5475 return;
5476
5477 /* This also takes care of reinserting breakpoints in the
5478 previously locked inferior. */
5479 keep_going (ecs);
5480 return;
5481
5482 case TARGET_WAITKIND_EXECD:
5483
5484 /* Note we can't read registers yet (the stop_pc), because we
5485 don't yet know the inferior's post-exec architecture.
5486 'stop_pc' is explicitly read below instead. */
5487 switch_to_thread_no_regs (ecs->event_thread);
5488
5489 /* Do whatever is necessary to the parent branch of the vfork. */
5490 handle_vfork_child_exec_or_exit (1);
5491
5492 /* This causes the eventpoints and symbol table to be reset.
5493 Must do this now, before trying to determine whether to
5494 stop. */
5495 follow_exec (inferior_ptid, ecs->ws.value.execd_pathname);
5496
5497 /* In follow_exec we may have deleted the original thread and
5498 created a new one. Make sure that the event thread is the
5499 execd thread for that case (this is a nop otherwise). */
5500 ecs->event_thread = inferior_thread ();
5501
5502 ecs->event_thread->suspend.stop_pc
5503 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5504
5505 ecs->event_thread->control.stop_bpstat
5506 = bpstat_stop_status (get_current_regcache ()->aspace (),
5507 ecs->event_thread->suspend.stop_pc,
5508 ecs->event_thread, &ecs->ws);
5509
5510 /* Note that this may be referenced from inside
5511 bpstat_stop_status above, through inferior_has_execd. */
5512 xfree (ecs->ws.value.execd_pathname);
5513 ecs->ws.value.execd_pathname = NULL;
5514
5515 if (handle_stop_requested (ecs))
5516 return;
5517
5518 /* If no catchpoint triggered for this, then keep going. */
5519 if (!bpstat_causes_stop (ecs->event_thread->control.stop_bpstat))
5520 {
5521 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5522 keep_going (ecs);
5523 return;
5524 }
5525 process_event_stop_test (ecs);
5526 return;
5527
5528 /* Be careful not to try to gather much state about a thread
5529 that's in a syscall. It's frequently a losing proposition. */
5530 case TARGET_WAITKIND_SYSCALL_ENTRY:
5531 /* Getting the current syscall number. */
5532 if (handle_syscall_event (ecs) == 0)
5533 process_event_stop_test (ecs);
5534 return;
5535
5536 /* Before examining the threads further, step this thread to
5537 get it entirely out of the syscall. (We get notice of the
5538 event when the thread is just on the verge of exiting a
5539 syscall. Stepping one instruction seems to get it back
5540 into user code.) */
5541 case TARGET_WAITKIND_SYSCALL_RETURN:
5542 if (handle_syscall_event (ecs) == 0)
5543 process_event_stop_test (ecs);
5544 return;
5545
5546 case TARGET_WAITKIND_STOPPED:
5547 handle_signal_stop (ecs);
5548 return;
5549
5550 case TARGET_WAITKIND_NO_HISTORY:
5551 /* Reverse execution: target ran out of history info. */
5552
5553 /* Switch to the stopped thread. */
5554 context_switch (ecs);
5555 infrun_debug_printf ("stopped");
5556
5557 delete_just_stopped_threads_single_step_breakpoints ();
5558 ecs->event_thread->suspend.stop_pc
5559 = regcache_read_pc (get_thread_regcache (inferior_thread ()));
5560
5561 if (handle_stop_requested (ecs))
5562 return;
5563
5564 gdb::observers::no_history.notify ();
5565 stop_waiting (ecs);
5566 return;
5567 }
5568 }
5569
5570 /* Restart threads back to what they were trying to do back when we
5571 paused them for an in-line step-over. The EVENT_THREAD thread is
5572 ignored. */
5573
5574 static void
5575 restart_threads (struct thread_info *event_thread)
5576 {
5577 /* In case the instruction just stepped spawned a new thread. */
5578 update_thread_list ();
5579
5580 for (thread_info *tp : all_non_exited_threads ())
5581 {
5582 switch_to_thread_no_regs (tp);
5583
5584 if (tp == event_thread)
5585 {
5586 infrun_debug_printf ("restart threads: [%s] is event thread",
5587 target_pid_to_str (tp->ptid).c_str ());
5588 continue;
5589 }
5590
5591 if (!(tp->state == THREAD_RUNNING || tp->control.in_infcall))
5592 {
5593 infrun_debug_printf ("restart threads: [%s] not meant to be running",
5594 target_pid_to_str (tp->ptid).c_str ());
5595 continue;
5596 }
5597
5598 if (tp->resumed)
5599 {
5600 infrun_debug_printf ("restart threads: [%s] resumed",
5601 target_pid_to_str (tp->ptid).c_str ());
5602 gdb_assert (tp->executing || tp->suspend.waitstatus_pending_p);
5603 continue;
5604 }
5605
5606 if (thread_is_in_step_over_chain (tp))
5607 {
5608 infrun_debug_printf ("restart threads: [%s] needs step-over",
5609 target_pid_to_str (tp->ptid).c_str ());
5610 gdb_assert (!tp->resumed);
5611 continue;
5612 }
5613
5614
5615 if (tp->suspend.waitstatus_pending_p)
5616 {
5617 infrun_debug_printf ("restart threads: [%s] has pending status",
5618 target_pid_to_str (tp->ptid).c_str ());
5619 tp->resumed = true;
5620 continue;
5621 }
5622
5623 gdb_assert (!tp->stop_requested);
5624
5625 /* If some thread needs to start a step-over at this point, it
5626 should still be in the step-over queue, and thus skipped
5627 above. */
5628 if (thread_still_needs_step_over (tp))
5629 {
5630 internal_error (__FILE__, __LINE__,
5631 "thread [%s] needs a step-over, but not in "
5632 "step-over queue\n",
5633 target_pid_to_str (tp->ptid).c_str ());
5634 }
5635
5636 if (currently_stepping (tp))
5637 {
5638 infrun_debug_printf ("restart threads: [%s] was stepping",
5639 target_pid_to_str (tp->ptid).c_str ());
5640 keep_going_stepped_thread (tp);
5641 }
5642 else
5643 {
5644 struct execution_control_state ecss;
5645 struct execution_control_state *ecs = &ecss;
5646
5647 infrun_debug_printf ("restart threads: [%s] continuing",
5648 target_pid_to_str (tp->ptid).c_str ());
5649 reset_ecs (ecs, tp);
5650 switch_to_thread (tp);
5651 keep_going_pass_signal (ecs);
5652 }
5653 }
5654 }
5655
5656 /* Callback for iterate_over_threads. Find a resumed thread that has
5657 a pending waitstatus. */
5658
5659 static int
5660 resumed_thread_with_pending_status (struct thread_info *tp,
5661 void *arg)
5662 {
5663 return (tp->resumed
5664 && tp->suspend.waitstatus_pending_p);
5665 }
5666
5667 /* Called when we get an event that may finish an in-line or
5668 out-of-line (displaced stepping) step-over started previously.
5669 Return true if the event is processed and we should go back to the
5670 event loop; false if the caller should continue processing the
5671 event. */
5672
5673 static int
5674 finish_step_over (struct execution_control_state *ecs)
5675 {
5676 displaced_step_fixup (ecs->event_thread,
5677 ecs->event_thread->suspend.stop_signal);
5678
5679 bool had_step_over_info = step_over_info_valid_p ();
5680
5681 if (had_step_over_info)
5682 {
5683 /* If we're stepping over a breakpoint with all threads locked,
5684 then only the thread that was stepped should be reporting
5685 back an event. */
5686 gdb_assert (ecs->event_thread->control.trap_expected);
5687
5688 clear_step_over_info ();
5689 }
5690
5691 if (!target_is_non_stop_p ())
5692 return 0;
5693
5694 /* Start a new step-over in another thread if there's one that
5695 needs it. */
5696 start_step_over ();
5697
5698 /* If we were stepping over a breakpoint before, and haven't started
5699 a new in-line step-over sequence, then restart all other threads
5700 (except the event thread). We can't do this in all-stop, as then
5701 e.g., we wouldn't be able to issue any other remote packet until
5702 these other threads stop. */
5703 if (had_step_over_info && !step_over_info_valid_p ())
5704 {
5705 struct thread_info *pending;
5706
5707 /* If we only have threads with pending statuses, the restart
5708 below won't restart any thread and so nothing re-inserts the
5709 breakpoint we just stepped over. But we need it inserted
5710 when we later process the pending events, otherwise if
5711 another thread has a pending event for this breakpoint too,
5712 we'd discard its event (because the breakpoint that
5713 originally caused the event was no longer inserted). */
5714 context_switch (ecs);
5715 insert_breakpoints ();
5716
5717 restart_threads (ecs->event_thread);
5718
5719 /* If we have events pending, go through handle_inferior_event
5720 again, picking up a pending event at random. This avoids
5721 thread starvation. */
5722
5723 /* But not if we just stepped over a watchpoint in order to let
5724 the instruction execute so we can evaluate its expression.
5725 The set of watchpoints that triggered is recorded in the
5726 breakpoint objects themselves (see bp->watchpoint_triggered).
5727 If we processed another event first, that other event could
5728 clobber this info. */
5729 if (ecs->event_thread->stepping_over_watchpoint)
5730 return 0;
5731
5732 pending = iterate_over_threads (resumed_thread_with_pending_status,
5733 NULL);
5734 if (pending != NULL)
5735 {
5736 struct thread_info *tp = ecs->event_thread;
5737 struct regcache *regcache;
5738
5739 infrun_debug_printf ("found resumed threads with "
5740 "pending events, saving status");
5741
5742 gdb_assert (pending != tp);
5743
5744 /* Record the event thread's event for later. */
5745 save_waitstatus (tp, &ecs->ws);
5746 /* This was cleared early, by handle_inferior_event. Set it
5747 so this pending event is considered by
5748 do_target_wait. */
5749 tp->resumed = true;
5750
5751 gdb_assert (!tp->executing);
5752
5753 regcache = get_thread_regcache (tp);
5754 tp->suspend.stop_pc = regcache_read_pc (regcache);
5755
5756 infrun_debug_printf ("saved stop_pc=%s for %s "
5757 "(currently_stepping=%d)",
5758 paddress (target_gdbarch (),
5759 tp->suspend.stop_pc),
5760 target_pid_to_str (tp->ptid).c_str (),
5761 currently_stepping (tp));
5762
5763 /* This in-line step-over finished; clear this so we won't
5764 start a new one. This is what handle_signal_stop would
5765 do, if we returned false. */
5766 tp->stepping_over_breakpoint = 0;
5767
5768 /* Wake up the event loop again. */
5769 mark_async_event_handler (infrun_async_inferior_event_token);
5770
5771 prepare_to_wait (ecs);
5772 return 1;
5773 }
5774 }
5775
5776 return 0;
5777 }
5778
5779 /* Come here when the program has stopped with a signal. */
5780
5781 static void
5782 handle_signal_stop (struct execution_control_state *ecs)
5783 {
5784 struct frame_info *frame;
5785 struct gdbarch *gdbarch;
5786 int stopped_by_watchpoint;
5787 enum stop_kind stop_soon;
5788 int random_signal;
5789
5790 gdb_assert (ecs->ws.kind == TARGET_WAITKIND_STOPPED);
5791
5792 ecs->event_thread->suspend.stop_signal = ecs->ws.value.sig;
5793
5794 /* Do we need to clean up the state of a thread that has
5795 completed a displaced single-step? (Doing so usually affects
5796 the PC, so do it here, before we set stop_pc.) */
5797 if (finish_step_over (ecs))
5798 return;
5799
5800 /* If we either finished a single-step or hit a breakpoint, but
5801 the user wanted this thread to be stopped, pretend we got a
5802 SIG0 (generic unsignaled stop). */
5803 if (ecs->event_thread->stop_requested
5804 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5805 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5806
5807 ecs->event_thread->suspend.stop_pc
5808 = regcache_read_pc (get_thread_regcache (ecs->event_thread));
5809
5810 if (debug_infrun)
5811 {
5812 struct regcache *regcache = get_thread_regcache (ecs->event_thread);
5813 struct gdbarch *reg_gdbarch = regcache->arch ();
5814
5815 switch_to_thread (ecs->event_thread);
5816
5817 infrun_debug_printf ("stop_pc=%s",
5818 paddress (reg_gdbarch,
5819 ecs->event_thread->suspend.stop_pc));
5820 if (target_stopped_by_watchpoint ())
5821 {
5822 CORE_ADDR addr;
5823
5824 infrun_debug_printf ("stopped by watchpoint");
5825
5826 if (target_stopped_data_address (current_top_target (), &addr))
5827 infrun_debug_printf ("stopped data address=%s",
5828 paddress (reg_gdbarch, addr));
5829 else
5830 infrun_debug_printf ("(no data address available)");
5831 }
5832 }
5833
5834 /* This is originated from start_remote(), start_inferior() and
5835 shared libraries hook functions. */
5836 stop_soon = get_inferior_stop_soon (ecs);
5837 if (stop_soon == STOP_QUIETLY || stop_soon == STOP_QUIETLY_REMOTE)
5838 {
5839 context_switch (ecs);
5840 infrun_debug_printf ("quietly stopped");
5841 stop_print_frame = true;
5842 stop_waiting (ecs);
5843 return;
5844 }
5845
5846 /* This originates from attach_command(). We need to overwrite
5847 the stop_signal here, because some kernels don't ignore a
5848 SIGSTOP in a subsequent ptrace(PTRACE_CONT,SIGSTOP) call.
5849 See more comments in inferior.h. On the other hand, if we
5850 get a non-SIGSTOP, report it to the user - assume the backend
5851 will handle the SIGSTOP if it should show up later.
5852
5853 Also consider that the attach is complete when we see a
5854 SIGTRAP. Some systems (e.g. Windows), and stubs supporting
5855 target extended-remote report it instead of a SIGSTOP
5856 (e.g. gdbserver). We already rely on SIGTRAP being our
5857 signal, so this is no exception.
5858
5859 Also consider that the attach is complete when we see a
5860 GDB_SIGNAL_0. In non-stop mode, GDB will explicitly tell
5861 the target to stop all threads of the inferior, in case the
5862 low level attach operation doesn't stop them implicitly. If
5863 they weren't stopped implicitly, then the stub will report a
5864 GDB_SIGNAL_0, meaning: stopped for no particular reason
5865 other than GDB's request. */
5866 if (stop_soon == STOP_QUIETLY_NO_SIGSTOP
5867 && (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_STOP
5868 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5869 || ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_0))
5870 {
5871 stop_print_frame = true;
5872 stop_waiting (ecs);
5873 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
5874 return;
5875 }
5876
5877 /* See if something interesting happened to the non-current thread. If
5878 so, then switch to that thread. */
5879 if (ecs->ptid != inferior_ptid)
5880 {
5881 infrun_debug_printf ("context switch");
5882
5883 context_switch (ecs);
5884
5885 if (deprecated_context_hook)
5886 deprecated_context_hook (ecs->event_thread->global_num);
5887 }
5888
5889 /* At this point, get hold of the now-current thread's frame. */
5890 frame = get_current_frame ();
5891 gdbarch = get_frame_arch (frame);
5892
5893 /* Pull the single step breakpoints out of the target. */
5894 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
5895 {
5896 struct regcache *regcache;
5897 CORE_ADDR pc;
5898
5899 regcache = get_thread_regcache (ecs->event_thread);
5900 const address_space *aspace = regcache->aspace ();
5901
5902 pc = regcache_read_pc (regcache);
5903
5904 /* However, before doing so, if this single-step breakpoint was
5905 actually for another thread, set this thread up for moving
5906 past it. */
5907 if (!thread_has_single_step_breakpoint_here (ecs->event_thread,
5908 aspace, pc))
5909 {
5910 if (single_step_breakpoint_inserted_here_p (aspace, pc))
5911 {
5912 infrun_debug_printf ("[%s] hit another thread's single-step "
5913 "breakpoint",
5914 target_pid_to_str (ecs->ptid).c_str ());
5915 ecs->hit_singlestep_breakpoint = 1;
5916 }
5917 }
5918 else
5919 {
5920 infrun_debug_printf ("[%s] hit its single-step breakpoint",
5921 target_pid_to_str (ecs->ptid).c_str ());
5922 }
5923 }
5924 delete_just_stopped_threads_single_step_breakpoints ();
5925
5926 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
5927 && ecs->event_thread->control.trap_expected
5928 && ecs->event_thread->stepping_over_watchpoint)
5929 stopped_by_watchpoint = 0;
5930 else
5931 stopped_by_watchpoint = watchpoints_triggered (&ecs->ws);
5932
5933 /* If necessary, step over this watchpoint. We'll be back to display
5934 it in a moment. */
5935 if (stopped_by_watchpoint
5936 && (target_have_steppable_watchpoint ()
5937 || gdbarch_have_nonsteppable_watchpoint (gdbarch)))
5938 {
5939 /* At this point, we are stopped at an instruction which has
5940 attempted to write to a piece of memory under control of
5941 a watchpoint. The instruction hasn't actually executed
5942 yet. If we were to evaluate the watchpoint expression
5943 now, we would get the old value, and therefore no change
5944 would seem to have occurred.
5945
5946 In order to make watchpoints work `right', we really need
5947 to complete the memory write, and then evaluate the
5948 watchpoint expression. We do this by single-stepping the
5949 target.
5950
5951 It may not be necessary to disable the watchpoint to step over
5952 it. For example, the PA can (with some kernel cooperation)
5953 single step over a watchpoint without disabling the watchpoint.
5954
5955 It is far more common to need to disable a watchpoint to step
5956 the inferior over it. If we have non-steppable watchpoints,
5957 we must disable the current watchpoint; it's simplest to
5958 disable all watchpoints.
5959
5960 Any breakpoint at PC must also be stepped over -- if there's
5961 one, it will have already triggered before the watchpoint
5962 triggered, and we either already reported it to the user, or
5963 it didn't cause a stop and we called keep_going. In either
5964 case, if there was a breakpoint at PC, we must be trying to
5965 step past it. */
5966 ecs->event_thread->stepping_over_watchpoint = 1;
5967 keep_going (ecs);
5968 return;
5969 }
5970
5971 ecs->event_thread->stepping_over_breakpoint = 0;
5972 ecs->event_thread->stepping_over_watchpoint = 0;
5973 bpstat_clear (&ecs->event_thread->control.stop_bpstat);
5974 ecs->event_thread->control.stop_step = 0;
5975 stop_print_frame = true;
5976 stopped_by_random_signal = 0;
5977 bpstat stop_chain = NULL;
5978
5979 /* Hide inlined functions starting here, unless we just performed stepi or
5980 nexti. After stepi and nexti, always show the innermost frame (not any
5981 inline function call sites). */
5982 if (ecs->event_thread->control.step_range_end != 1)
5983 {
5984 const address_space *aspace
5985 = get_thread_regcache (ecs->event_thread)->aspace ();
5986
5987 /* skip_inline_frames is expensive, so we avoid it if we can
5988 determine that the address is one where functions cannot have
5989 been inlined. This improves performance with inferiors that
5990 load a lot of shared libraries, because the solib event
5991 breakpoint is defined as the address of a function (i.e. not
5992 inline). Note that we have to check the previous PC as well
5993 as the current one to catch cases when we have just
5994 single-stepped off a breakpoint prior to reinstating it.
5995 Note that we're assuming that the code we single-step to is
5996 not inline, but that's not definitive: there's nothing
5997 preventing the event breakpoint function from containing
5998 inlined code, and the single-step ending up there. If the
5999 user had set a breakpoint on that inlined code, the missing
6000 skip_inline_frames call would break things. Fortunately
6001 that's an extremely unlikely scenario. */
6002 if (!pc_at_non_inline_function (aspace,
6003 ecs->event_thread->suspend.stop_pc,
6004 &ecs->ws)
6005 && !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6006 && ecs->event_thread->control.trap_expected
6007 && pc_at_non_inline_function (aspace,
6008 ecs->event_thread->prev_pc,
6009 &ecs->ws)))
6010 {
6011 stop_chain = build_bpstat_chain (aspace,
6012 ecs->event_thread->suspend.stop_pc,
6013 &ecs->ws);
6014 skip_inline_frames (ecs->event_thread, stop_chain);
6015
6016 /* Re-fetch current thread's frame in case that invalidated
6017 the frame cache. */
6018 frame = get_current_frame ();
6019 gdbarch = get_frame_arch (frame);
6020 }
6021 }
6022
6023 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6024 && ecs->event_thread->control.trap_expected
6025 && gdbarch_single_step_through_delay_p (gdbarch)
6026 && currently_stepping (ecs->event_thread))
6027 {
6028 /* We're trying to step off a breakpoint. Turns out that we're
6029 also on an instruction that needs to be stepped multiple
6030 times before it's been fully executing. E.g., architectures
6031 with a delay slot. It needs to be stepped twice, once for
6032 the instruction and once for the delay slot. */
6033 int step_through_delay
6034 = gdbarch_single_step_through_delay (gdbarch, frame);
6035
6036 if (step_through_delay)
6037 infrun_debug_printf ("step through delay");
6038
6039 if (ecs->event_thread->control.step_range_end == 0
6040 && step_through_delay)
6041 {
6042 /* The user issued a continue when stopped at a breakpoint.
6043 Set up for another trap and get out of here. */
6044 ecs->event_thread->stepping_over_breakpoint = 1;
6045 keep_going (ecs);
6046 return;
6047 }
6048 else if (step_through_delay)
6049 {
6050 /* The user issued a step when stopped at a breakpoint.
6051 Maybe we should stop, maybe we should not - the delay
6052 slot *might* correspond to a line of source. In any
6053 case, don't decide that here, just set
6054 ecs->stepping_over_breakpoint, making sure we
6055 single-step again before breakpoints are re-inserted. */
6056 ecs->event_thread->stepping_over_breakpoint = 1;
6057 }
6058 }
6059
6060 /* See if there is a breakpoint/watchpoint/catchpoint/etc. that
6061 handles this event. */
6062 ecs->event_thread->control.stop_bpstat
6063 = bpstat_stop_status (get_current_regcache ()->aspace (),
6064 ecs->event_thread->suspend.stop_pc,
6065 ecs->event_thread, &ecs->ws, stop_chain);
6066
6067 /* Following in case break condition called a
6068 function. */
6069 stop_print_frame = true;
6070
6071 /* This is where we handle "moribund" watchpoints. Unlike
6072 software breakpoints traps, hardware watchpoint traps are
6073 always distinguishable from random traps. If no high-level
6074 watchpoint is associated with the reported stop data address
6075 anymore, then the bpstat does not explain the signal ---
6076 simply make sure to ignore it if `stopped_by_watchpoint' is
6077 set. */
6078
6079 if (ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6080 && !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6081 GDB_SIGNAL_TRAP)
6082 && stopped_by_watchpoint)
6083 {
6084 infrun_debug_printf ("no user watchpoint explains watchpoint SIGTRAP, "
6085 "ignoring");
6086 }
6087
6088 /* NOTE: cagney/2003-03-29: These checks for a random signal
6089 at one stage in the past included checks for an inferior
6090 function call's call dummy's return breakpoint. The original
6091 comment, that went with the test, read:
6092
6093 ``End of a stack dummy. Some systems (e.g. Sony news) give
6094 another signal besides SIGTRAP, so check here as well as
6095 above.''
6096
6097 If someone ever tries to get call dummys on a
6098 non-executable stack to work (where the target would stop
6099 with something like a SIGSEGV), then those tests might need
6100 to be re-instated. Given, however, that the tests were only
6101 enabled when momentary breakpoints were not being used, I
6102 suspect that it won't be the case.
6103
6104 NOTE: kettenis/2004-02-05: Indeed such checks don't seem to
6105 be necessary for call dummies on a non-executable stack on
6106 SPARC. */
6107
6108 /* See if the breakpoints module can explain the signal. */
6109 random_signal
6110 = !bpstat_explains_signal (ecs->event_thread->control.stop_bpstat,
6111 ecs->event_thread->suspend.stop_signal);
6112
6113 /* Maybe this was a trap for a software breakpoint that has since
6114 been removed. */
6115 if (random_signal && target_stopped_by_sw_breakpoint ())
6116 {
6117 if (gdbarch_program_breakpoint_here_p (gdbarch,
6118 ecs->event_thread->suspend.stop_pc))
6119 {
6120 struct regcache *regcache;
6121 int decr_pc;
6122
6123 /* Re-adjust PC to what the program would see if GDB was not
6124 debugging it. */
6125 regcache = get_thread_regcache (ecs->event_thread);
6126 decr_pc = gdbarch_decr_pc_after_break (gdbarch);
6127 if (decr_pc != 0)
6128 {
6129 gdb::optional<scoped_restore_tmpl<int>>
6130 restore_operation_disable;
6131
6132 if (record_full_is_used ())
6133 restore_operation_disable.emplace
6134 (record_full_gdb_operation_disable_set ());
6135
6136 regcache_write_pc (regcache,
6137 ecs->event_thread->suspend.stop_pc + decr_pc);
6138 }
6139 }
6140 else
6141 {
6142 /* A delayed software breakpoint event. Ignore the trap. */
6143 infrun_debug_printf ("delayed software breakpoint trap, ignoring");
6144 random_signal = 0;
6145 }
6146 }
6147
6148 /* Maybe this was a trap for a hardware breakpoint/watchpoint that
6149 has since been removed. */
6150 if (random_signal && target_stopped_by_hw_breakpoint ())
6151 {
6152 /* A delayed hardware breakpoint event. Ignore the trap. */
6153 infrun_debug_printf ("delayed hardware breakpoint/watchpoint "
6154 "trap, ignoring");
6155 random_signal = 0;
6156 }
6157
6158 /* If not, perhaps stepping/nexting can. */
6159 if (random_signal)
6160 random_signal = !(ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP
6161 && currently_stepping (ecs->event_thread));
6162
6163 /* Perhaps the thread hit a single-step breakpoint of _another_
6164 thread. Single-step breakpoints are transparent to the
6165 breakpoints module. */
6166 if (random_signal)
6167 random_signal = !ecs->hit_singlestep_breakpoint;
6168
6169 /* No? Perhaps we got a moribund watchpoint. */
6170 if (random_signal)
6171 random_signal = !stopped_by_watchpoint;
6172
6173 /* Always stop if the user explicitly requested this thread to
6174 remain stopped. */
6175 if (ecs->event_thread->stop_requested)
6176 {
6177 random_signal = 1;
6178 infrun_debug_printf ("user-requested stop");
6179 }
6180
6181 /* For the program's own signals, act according to
6182 the signal handling tables. */
6183
6184 if (random_signal)
6185 {
6186 /* Signal not for debugging purposes. */
6187 struct inferior *inf = find_inferior_ptid (ecs->target, ecs->ptid);
6188 enum gdb_signal stop_signal = ecs->event_thread->suspend.stop_signal;
6189
6190 infrun_debug_printf ("random signal (%s)",
6191 gdb_signal_to_symbol_string (stop_signal));
6192
6193 stopped_by_random_signal = 1;
6194
6195 /* Always stop on signals if we're either just gaining control
6196 of the program, or the user explicitly requested this thread
6197 to remain stopped. */
6198 if (stop_soon != NO_STOP_QUIETLY
6199 || ecs->event_thread->stop_requested
6200 || (!inf->detaching
6201 && signal_stop_state (ecs->event_thread->suspend.stop_signal)))
6202 {
6203 stop_waiting (ecs);
6204 return;
6205 }
6206
6207 /* Notify observers the signal has "handle print" set. Note we
6208 returned early above if stopping; normal_stop handles the
6209 printing in that case. */
6210 if (signal_print[ecs->event_thread->suspend.stop_signal])
6211 {
6212 /* The signal table tells us to print about this signal. */
6213 target_terminal::ours_for_output ();
6214 gdb::observers::signal_received.notify (ecs->event_thread->suspend.stop_signal);
6215 target_terminal::inferior ();
6216 }
6217
6218 /* Clear the signal if it should not be passed. */
6219 if (signal_program[ecs->event_thread->suspend.stop_signal] == 0)
6220 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
6221
6222 if (ecs->event_thread->prev_pc == ecs->event_thread->suspend.stop_pc
6223 && ecs->event_thread->control.trap_expected
6224 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6225 {
6226 /* We were just starting a new sequence, attempting to
6227 single-step off of a breakpoint and expecting a SIGTRAP.
6228 Instead this signal arrives. This signal will take us out
6229 of the stepping range so GDB needs to remember to, when
6230 the signal handler returns, resume stepping off that
6231 breakpoint. */
6232 /* To simplify things, "continue" is forced to use the same
6233 code paths as single-step - set a breakpoint at the
6234 signal return address and then, once hit, step off that
6235 breakpoint. */
6236 infrun_debug_printf ("signal arrived while stepping over breakpoint");
6237
6238 insert_hp_step_resume_breakpoint_at_frame (frame);
6239 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6240 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6241 ecs->event_thread->control.trap_expected = 0;
6242
6243 /* If we were nexting/stepping some other thread, switch to
6244 it, so that we don't continue it, losing control. */
6245 if (!switch_back_to_stepped_thread (ecs))
6246 keep_going (ecs);
6247 return;
6248 }
6249
6250 if (ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_0
6251 && (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6252 ecs->event_thread)
6253 || ecs->event_thread->control.step_range_end == 1)
6254 && frame_id_eq (get_stack_frame_id (frame),
6255 ecs->event_thread->control.step_stack_frame_id)
6256 && ecs->event_thread->control.step_resume_breakpoint == NULL)
6257 {
6258 /* The inferior is about to take a signal that will take it
6259 out of the single step range. Set a breakpoint at the
6260 current PC (which is presumably where the signal handler
6261 will eventually return) and then allow the inferior to
6262 run free.
6263
6264 Note that this is only needed for a signal delivered
6265 while in the single-step range. Nested signals aren't a
6266 problem as they eventually all return. */
6267 infrun_debug_printf ("signal may take us out of single-step range");
6268
6269 clear_step_over_info ();
6270 insert_hp_step_resume_breakpoint_at_frame (frame);
6271 ecs->event_thread->step_after_step_resume_breakpoint = 1;
6272 /* Reset trap_expected to ensure breakpoints are re-inserted. */
6273 ecs->event_thread->control.trap_expected = 0;
6274 keep_going (ecs);
6275 return;
6276 }
6277
6278 /* Note: step_resume_breakpoint may be non-NULL. This occurs
6279 when either there's a nested signal, or when there's a
6280 pending signal enabled just as the signal handler returns
6281 (leaving the inferior at the step-resume-breakpoint without
6282 actually executing it). Either way continue until the
6283 breakpoint is really hit. */
6284
6285 if (!switch_back_to_stepped_thread (ecs))
6286 {
6287 infrun_debug_printf ("random signal, keep going");
6288
6289 keep_going (ecs);
6290 }
6291 return;
6292 }
6293
6294 process_event_stop_test (ecs);
6295 }
6296
6297 /* Come here when we've got some debug event / signal we can explain
6298 (IOW, not a random signal), and test whether it should cause a
6299 stop, or whether we should resume the inferior (transparently).
6300 E.g., could be a breakpoint whose condition evaluates false; we
6301 could be still stepping within the line; etc. */
6302
6303 static void
6304 process_event_stop_test (struct execution_control_state *ecs)
6305 {
6306 struct symtab_and_line stop_pc_sal;
6307 struct frame_info *frame;
6308 struct gdbarch *gdbarch;
6309 CORE_ADDR jmp_buf_pc;
6310 struct bpstat_what what;
6311
6312 /* Handle cases caused by hitting a breakpoint. */
6313
6314 frame = get_current_frame ();
6315 gdbarch = get_frame_arch (frame);
6316
6317 what = bpstat_what (ecs->event_thread->control.stop_bpstat);
6318
6319 if (what.call_dummy)
6320 {
6321 stop_stack_dummy = what.call_dummy;
6322 }
6323
6324 /* A few breakpoint types have callbacks associated (e.g.,
6325 bp_jit_event). Run them now. */
6326 bpstat_run_callbacks (ecs->event_thread->control.stop_bpstat);
6327
6328 /* If we hit an internal event that triggers symbol changes, the
6329 current frame will be invalidated within bpstat_what (e.g., if we
6330 hit an internal solib event). Re-fetch it. */
6331 frame = get_current_frame ();
6332 gdbarch = get_frame_arch (frame);
6333
6334 switch (what.main_action)
6335 {
6336 case BPSTAT_WHAT_SET_LONGJMP_RESUME:
6337 /* If we hit the breakpoint at longjmp while stepping, we
6338 install a momentary breakpoint at the target of the
6339 jmp_buf. */
6340
6341 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME");
6342
6343 ecs->event_thread->stepping_over_breakpoint = 1;
6344
6345 if (what.is_longjmp)
6346 {
6347 struct value *arg_value;
6348
6349 /* If we set the longjmp breakpoint via a SystemTap probe,
6350 then use it to extract the arguments. The destination PC
6351 is the third argument to the probe. */
6352 arg_value = probe_safe_evaluate_at_pc (frame, 2);
6353 if (arg_value)
6354 {
6355 jmp_buf_pc = value_as_address (arg_value);
6356 jmp_buf_pc = gdbarch_addr_bits_remove (gdbarch, jmp_buf_pc);
6357 }
6358 else if (!gdbarch_get_longjmp_target_p (gdbarch)
6359 || !gdbarch_get_longjmp_target (gdbarch,
6360 frame, &jmp_buf_pc))
6361 {
6362 infrun_debug_printf ("BPSTAT_WHAT_SET_LONGJMP_RESUME "
6363 "(!gdbarch_get_longjmp_target)");
6364 keep_going (ecs);
6365 return;
6366 }
6367
6368 /* Insert a breakpoint at resume address. */
6369 insert_longjmp_resume_breakpoint (gdbarch, jmp_buf_pc);
6370 }
6371 else
6372 check_exception_resume (ecs, frame);
6373 keep_going (ecs);
6374 return;
6375
6376 case BPSTAT_WHAT_CLEAR_LONGJMP_RESUME:
6377 {
6378 struct frame_info *init_frame;
6379
6380 /* There are several cases to consider.
6381
6382 1. The initiating frame no longer exists. In this case we
6383 must stop, because the exception or longjmp has gone too
6384 far.
6385
6386 2. The initiating frame exists, and is the same as the
6387 current frame. We stop, because the exception or longjmp
6388 has been caught.
6389
6390 3. The initiating frame exists and is different from the
6391 current frame. This means the exception or longjmp has
6392 been caught beneath the initiating frame, so keep going.
6393
6394 4. longjmp breakpoint has been placed just to protect
6395 against stale dummy frames and user is not interested in
6396 stopping around longjmps. */
6397
6398 infrun_debug_printf ("BPSTAT_WHAT_CLEAR_LONGJMP_RESUME");
6399
6400 gdb_assert (ecs->event_thread->control.exception_resume_breakpoint
6401 != NULL);
6402 delete_exception_resume_breakpoint (ecs->event_thread);
6403
6404 if (what.is_longjmp)
6405 {
6406 check_longjmp_breakpoint_for_call_dummy (ecs->event_thread);
6407
6408 if (!frame_id_p (ecs->event_thread->initiating_frame))
6409 {
6410 /* Case 4. */
6411 keep_going (ecs);
6412 return;
6413 }
6414 }
6415
6416 init_frame = frame_find_by_id (ecs->event_thread->initiating_frame);
6417
6418 if (init_frame)
6419 {
6420 struct frame_id current_id
6421 = get_frame_id (get_current_frame ());
6422 if (frame_id_eq (current_id,
6423 ecs->event_thread->initiating_frame))
6424 {
6425 /* Case 2. Fall through. */
6426 }
6427 else
6428 {
6429 /* Case 3. */
6430 keep_going (ecs);
6431 return;
6432 }
6433 }
6434
6435 /* For Cases 1 and 2, remove the step-resume breakpoint, if it
6436 exists. */
6437 delete_step_resume_breakpoint (ecs->event_thread);
6438
6439 end_stepping_range (ecs);
6440 }
6441 return;
6442
6443 case BPSTAT_WHAT_SINGLE:
6444 infrun_debug_printf ("BPSTAT_WHAT_SINGLE");
6445 ecs->event_thread->stepping_over_breakpoint = 1;
6446 /* Still need to check other stuff, at least the case where we
6447 are stepping and step out of the right range. */
6448 break;
6449
6450 case BPSTAT_WHAT_STEP_RESUME:
6451 infrun_debug_printf ("BPSTAT_WHAT_STEP_RESUME");
6452
6453 delete_step_resume_breakpoint (ecs->event_thread);
6454 if (ecs->event_thread->control.proceed_to_finish
6455 && execution_direction == EXEC_REVERSE)
6456 {
6457 struct thread_info *tp = ecs->event_thread;
6458
6459 /* We are finishing a function in reverse, and just hit the
6460 step-resume breakpoint at the start address of the
6461 function, and we're almost there -- just need to back up
6462 by one more single-step, which should take us back to the
6463 function call. */
6464 tp->control.step_range_start = tp->control.step_range_end = 1;
6465 keep_going (ecs);
6466 return;
6467 }
6468 fill_in_stop_func (gdbarch, ecs);
6469 if (ecs->event_thread->suspend.stop_pc == ecs->stop_func_start
6470 && execution_direction == EXEC_REVERSE)
6471 {
6472 /* We are stepping over a function call in reverse, and just
6473 hit the step-resume breakpoint at the start address of
6474 the function. Go back to single-stepping, which should
6475 take us back to the function call. */
6476 ecs->event_thread->stepping_over_breakpoint = 1;
6477 keep_going (ecs);
6478 return;
6479 }
6480 break;
6481
6482 case BPSTAT_WHAT_STOP_NOISY:
6483 infrun_debug_printf ("BPSTAT_WHAT_STOP_NOISY");
6484 stop_print_frame = true;
6485
6486 /* Assume the thread stopped for a breakpoint. We'll still check
6487 whether a/the breakpoint is there when the thread is next
6488 resumed. */
6489 ecs->event_thread->stepping_over_breakpoint = 1;
6490
6491 stop_waiting (ecs);
6492 return;
6493
6494 case BPSTAT_WHAT_STOP_SILENT:
6495 infrun_debug_printf ("BPSTAT_WHAT_STOP_SILENT");
6496 stop_print_frame = false;
6497
6498 /* Assume the thread stopped for a breakpoint. We'll still check
6499 whether a/the breakpoint is there when the thread is next
6500 resumed. */
6501 ecs->event_thread->stepping_over_breakpoint = 1;
6502 stop_waiting (ecs);
6503 return;
6504
6505 case BPSTAT_WHAT_HP_STEP_RESUME:
6506 infrun_debug_printf ("BPSTAT_WHAT_HP_STEP_RESUME");
6507
6508 delete_step_resume_breakpoint (ecs->event_thread);
6509 if (ecs->event_thread->step_after_step_resume_breakpoint)
6510 {
6511 /* Back when the step-resume breakpoint was inserted, we
6512 were trying to single-step off a breakpoint. Go back to
6513 doing that. */
6514 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6515 ecs->event_thread->stepping_over_breakpoint = 1;
6516 keep_going (ecs);
6517 return;
6518 }
6519 break;
6520
6521 case BPSTAT_WHAT_KEEP_CHECKING:
6522 break;
6523 }
6524
6525 /* If we stepped a permanent breakpoint and we had a high priority
6526 step-resume breakpoint for the address we stepped, but we didn't
6527 hit it, then we must have stepped into the signal handler. The
6528 step-resume was only necessary to catch the case of _not_
6529 stepping into the handler, so delete it, and fall through to
6530 checking whether the step finished. */
6531 if (ecs->event_thread->stepped_breakpoint)
6532 {
6533 struct breakpoint *sr_bp
6534 = ecs->event_thread->control.step_resume_breakpoint;
6535
6536 if (sr_bp != NULL
6537 && sr_bp->loc->permanent
6538 && sr_bp->type == bp_hp_step_resume
6539 && sr_bp->loc->address == ecs->event_thread->prev_pc)
6540 {
6541 infrun_debug_printf ("stepped permanent breakpoint, stopped in handler");
6542 delete_step_resume_breakpoint (ecs->event_thread);
6543 ecs->event_thread->step_after_step_resume_breakpoint = 0;
6544 }
6545 }
6546
6547 /* We come here if we hit a breakpoint but should not stop for it.
6548 Possibly we also were stepping and should stop for that. So fall
6549 through and test for stepping. But, if not stepping, do not
6550 stop. */
6551
6552 /* In all-stop mode, if we're currently stepping but have stopped in
6553 some other thread, we need to switch back to the stepped thread. */
6554 if (switch_back_to_stepped_thread (ecs))
6555 return;
6556
6557 if (ecs->event_thread->control.step_resume_breakpoint)
6558 {
6559 infrun_debug_printf ("step-resume breakpoint is inserted");
6560
6561 /* Having a step-resume breakpoint overrides anything
6562 else having to do with stepping commands until
6563 that breakpoint is reached. */
6564 keep_going (ecs);
6565 return;
6566 }
6567
6568 if (ecs->event_thread->control.step_range_end == 0)
6569 {
6570 infrun_debug_printf ("no stepping, continue");
6571 /* Likewise if we aren't even stepping. */
6572 keep_going (ecs);
6573 return;
6574 }
6575
6576 /* Re-fetch current thread's frame in case the code above caused
6577 the frame cache to be re-initialized, making our FRAME variable
6578 a dangling pointer. */
6579 frame = get_current_frame ();
6580 gdbarch = get_frame_arch (frame);
6581 fill_in_stop_func (gdbarch, ecs);
6582
6583 /* If stepping through a line, keep going if still within it.
6584
6585 Note that step_range_end is the address of the first instruction
6586 beyond the step range, and NOT the address of the last instruction
6587 within it!
6588
6589 Note also that during reverse execution, we may be stepping
6590 through a function epilogue and therefore must detect when
6591 the current-frame changes in the middle of a line. */
6592
6593 if (pc_in_thread_step_range (ecs->event_thread->suspend.stop_pc,
6594 ecs->event_thread)
6595 && (execution_direction != EXEC_REVERSE
6596 || frame_id_eq (get_frame_id (frame),
6597 ecs->event_thread->control.step_frame_id)))
6598 {
6599 infrun_debug_printf
6600 ("stepping inside range [%s-%s]",
6601 paddress (gdbarch, ecs->event_thread->control.step_range_start),
6602 paddress (gdbarch, ecs->event_thread->control.step_range_end));
6603
6604 /* Tentatively re-enable range stepping; `resume' disables it if
6605 necessary (e.g., if we're stepping over a breakpoint or we
6606 have software watchpoints). */
6607 ecs->event_thread->control.may_range_step = 1;
6608
6609 /* When stepping backward, stop at beginning of line range
6610 (unless it's the function entry point, in which case
6611 keep going back to the call point). */
6612 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6613 if (stop_pc == ecs->event_thread->control.step_range_start
6614 && stop_pc != ecs->stop_func_start
6615 && execution_direction == EXEC_REVERSE)
6616 end_stepping_range (ecs);
6617 else
6618 keep_going (ecs);
6619
6620 return;
6621 }
6622
6623 /* We stepped out of the stepping range. */
6624
6625 /* If we are stepping at the source level and entered the runtime
6626 loader dynamic symbol resolution code...
6627
6628 EXEC_FORWARD: we keep on single stepping until we exit the run
6629 time loader code and reach the callee's address.
6630
6631 EXEC_REVERSE: we've already executed the callee (backward), and
6632 the runtime loader code is handled just like any other
6633 undebuggable function call. Now we need only keep stepping
6634 backward through the trampoline code, and that's handled further
6635 down, so there is nothing for us to do here. */
6636
6637 if (execution_direction != EXEC_REVERSE
6638 && ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6639 && in_solib_dynsym_resolve_code (ecs->event_thread->suspend.stop_pc))
6640 {
6641 CORE_ADDR pc_after_resolver =
6642 gdbarch_skip_solib_resolver (gdbarch,
6643 ecs->event_thread->suspend.stop_pc);
6644
6645 infrun_debug_printf ("stepped into dynsym resolve code");
6646
6647 if (pc_after_resolver)
6648 {
6649 /* Set up a step-resume breakpoint at the address
6650 indicated by SKIP_SOLIB_RESOLVER. */
6651 symtab_and_line sr_sal;
6652 sr_sal.pc = pc_after_resolver;
6653 sr_sal.pspace = get_frame_program_space (frame);
6654
6655 insert_step_resume_breakpoint_at_sal (gdbarch,
6656 sr_sal, null_frame_id);
6657 }
6658
6659 keep_going (ecs);
6660 return;
6661 }
6662
6663 /* Step through an indirect branch thunk. */
6664 if (ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6665 && gdbarch_in_indirect_branch_thunk (gdbarch,
6666 ecs->event_thread->suspend.stop_pc))
6667 {
6668 infrun_debug_printf ("stepped into indirect branch thunk");
6669 keep_going (ecs);
6670 return;
6671 }
6672
6673 if (ecs->event_thread->control.step_range_end != 1
6674 && (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6675 || ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6676 && get_frame_type (frame) == SIGTRAMP_FRAME)
6677 {
6678 infrun_debug_printf ("stepped into signal trampoline");
6679 /* The inferior, while doing a "step" or "next", has ended up in
6680 a signal trampoline (either by a signal being delivered or by
6681 the signal handler returning). Just single-step until the
6682 inferior leaves the trampoline (either by calling the handler
6683 or returning). */
6684 keep_going (ecs);
6685 return;
6686 }
6687
6688 /* If we're in the return path from a shared library trampoline,
6689 we want to proceed through the trampoline when stepping. */
6690 /* macro/2012-04-25: This needs to come before the subroutine
6691 call check below as on some targets return trampolines look
6692 like subroutine calls (MIPS16 return thunks). */
6693 if (gdbarch_in_solib_return_trampoline (gdbarch,
6694 ecs->event_thread->suspend.stop_pc,
6695 ecs->stop_func_name)
6696 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6697 {
6698 /* Determine where this trampoline returns. */
6699 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6700 CORE_ADDR real_stop_pc
6701 = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6702
6703 infrun_debug_printf ("stepped into solib return tramp");
6704
6705 /* Only proceed through if we know where it's going. */
6706 if (real_stop_pc)
6707 {
6708 /* And put the step-breakpoint there and go until there. */
6709 symtab_and_line sr_sal;
6710 sr_sal.pc = real_stop_pc;
6711 sr_sal.section = find_pc_overlay (sr_sal.pc);
6712 sr_sal.pspace = get_frame_program_space (frame);
6713
6714 /* Do not specify what the fp should be when we stop since
6715 on some machines the prologue is where the new fp value
6716 is established. */
6717 insert_step_resume_breakpoint_at_sal (gdbarch,
6718 sr_sal, null_frame_id);
6719
6720 /* Restart without fiddling with the step ranges or
6721 other state. */
6722 keep_going (ecs);
6723 return;
6724 }
6725 }
6726
6727 /* Check for subroutine calls. The check for the current frame
6728 equalling the step ID is not necessary - the check of the
6729 previous frame's ID is sufficient - but it is a common case and
6730 cheaper than checking the previous frame's ID.
6731
6732 NOTE: frame_id_eq will never report two invalid frame IDs as
6733 being equal, so to get into this block, both the current and
6734 previous frame must have valid frame IDs. */
6735 /* The outer_frame_id check is a heuristic to detect stepping
6736 through startup code. If we step over an instruction which
6737 sets the stack pointer from an invalid value to a valid value,
6738 we may detect that as a subroutine call from the mythical
6739 "outermost" function. This could be fixed by marking
6740 outermost frames as !stack_p,code_p,special_p. Then the
6741 initial outermost frame, before sp was valid, would
6742 have code_addr == &_start. See the comment in frame_id_eq
6743 for more. */
6744 if (!frame_id_eq (get_stack_frame_id (frame),
6745 ecs->event_thread->control.step_stack_frame_id)
6746 && (frame_id_eq (frame_unwind_caller_id (get_current_frame ()),
6747 ecs->event_thread->control.step_stack_frame_id)
6748 && (!frame_id_eq (ecs->event_thread->control.step_stack_frame_id,
6749 outer_frame_id)
6750 || (ecs->event_thread->control.step_start_function
6751 != find_pc_function (ecs->event_thread->suspend.stop_pc)))))
6752 {
6753 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6754 CORE_ADDR real_stop_pc;
6755
6756 infrun_debug_printf ("stepped into subroutine");
6757
6758 if (ecs->event_thread->control.step_over_calls == STEP_OVER_NONE)
6759 {
6760 /* I presume that step_over_calls is only 0 when we're
6761 supposed to be stepping at the assembly language level
6762 ("stepi"). Just stop. */
6763 /* And this works the same backward as frontward. MVS */
6764 end_stepping_range (ecs);
6765 return;
6766 }
6767
6768 /* Reverse stepping through solib trampolines. */
6769
6770 if (execution_direction == EXEC_REVERSE
6771 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE
6772 && (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6773 || (ecs->stop_func_start == 0
6774 && in_solib_dynsym_resolve_code (stop_pc))))
6775 {
6776 /* Any solib trampoline code can be handled in reverse
6777 by simply continuing to single-step. We have already
6778 executed the solib function (backwards), and a few
6779 steps will take us back through the trampoline to the
6780 caller. */
6781 keep_going (ecs);
6782 return;
6783 }
6784
6785 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL)
6786 {
6787 /* We're doing a "next".
6788
6789 Normal (forward) execution: set a breakpoint at the
6790 callee's return address (the address at which the caller
6791 will resume).
6792
6793 Reverse (backward) execution. set the step-resume
6794 breakpoint at the start of the function that we just
6795 stepped into (backwards), and continue to there. When we
6796 get there, we'll need to single-step back to the caller. */
6797
6798 if (execution_direction == EXEC_REVERSE)
6799 {
6800 /* If we're already at the start of the function, we've either
6801 just stepped backward into a single instruction function,
6802 or stepped back out of a signal handler to the first instruction
6803 of the function. Just keep going, which will single-step back
6804 to the caller. */
6805 if (ecs->stop_func_start != stop_pc && ecs->stop_func_start != 0)
6806 {
6807 /* Normal function call return (static or dynamic). */
6808 symtab_and_line sr_sal;
6809 sr_sal.pc = ecs->stop_func_start;
6810 sr_sal.pspace = get_frame_program_space (frame);
6811 insert_step_resume_breakpoint_at_sal (gdbarch,
6812 sr_sal, null_frame_id);
6813 }
6814 }
6815 else
6816 insert_step_resume_breakpoint_at_caller (frame);
6817
6818 keep_going (ecs);
6819 return;
6820 }
6821
6822 /* If we are in a function call trampoline (a stub between the
6823 calling routine and the real function), locate the real
6824 function. That's what tells us (a) whether we want to step
6825 into it at all, and (b) what prologue we want to run to the
6826 end of, if we do step into it. */
6827 real_stop_pc = skip_language_trampoline (frame, stop_pc);
6828 if (real_stop_pc == 0)
6829 real_stop_pc = gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc);
6830 if (real_stop_pc != 0)
6831 ecs->stop_func_start = real_stop_pc;
6832
6833 if (real_stop_pc != 0 && in_solib_dynsym_resolve_code (real_stop_pc))
6834 {
6835 symtab_and_line sr_sal;
6836 sr_sal.pc = ecs->stop_func_start;
6837 sr_sal.pspace = get_frame_program_space (frame);
6838
6839 insert_step_resume_breakpoint_at_sal (gdbarch,
6840 sr_sal, null_frame_id);
6841 keep_going (ecs);
6842 return;
6843 }
6844
6845 /* If we have line number information for the function we are
6846 thinking of stepping into and the function isn't on the skip
6847 list, step into it.
6848
6849 If there are several symtabs at that PC (e.g. with include
6850 files), just want to know whether *any* of them have line
6851 numbers. find_pc_line handles this. */
6852 {
6853 struct symtab_and_line tmp_sal;
6854
6855 tmp_sal = find_pc_line (ecs->stop_func_start, 0);
6856 if (tmp_sal.line != 0
6857 && !function_name_is_marked_for_skip (ecs->stop_func_name,
6858 tmp_sal)
6859 && !inline_frame_is_marked_for_skip (true, ecs->event_thread))
6860 {
6861 if (execution_direction == EXEC_REVERSE)
6862 handle_step_into_function_backward (gdbarch, ecs);
6863 else
6864 handle_step_into_function (gdbarch, ecs);
6865 return;
6866 }
6867 }
6868
6869 /* If we have no line number and the step-stop-if-no-debug is
6870 set, we stop the step so that the user has a chance to switch
6871 in assembly mode. */
6872 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6873 && step_stop_if_no_debug)
6874 {
6875 end_stepping_range (ecs);
6876 return;
6877 }
6878
6879 if (execution_direction == EXEC_REVERSE)
6880 {
6881 /* If we're already at the start of the function, we've either just
6882 stepped backward into a single instruction function without line
6883 number info, or stepped back out of a signal handler to the first
6884 instruction of the function without line number info. Just keep
6885 going, which will single-step back to the caller. */
6886 if (ecs->stop_func_start != stop_pc)
6887 {
6888 /* Set a breakpoint at callee's start address.
6889 From there we can step once and be back in the caller. */
6890 symtab_and_line sr_sal;
6891 sr_sal.pc = ecs->stop_func_start;
6892 sr_sal.pspace = get_frame_program_space (frame);
6893 insert_step_resume_breakpoint_at_sal (gdbarch,
6894 sr_sal, null_frame_id);
6895 }
6896 }
6897 else
6898 /* Set a breakpoint at callee's return address (the address
6899 at which the caller will resume). */
6900 insert_step_resume_breakpoint_at_caller (frame);
6901
6902 keep_going (ecs);
6903 return;
6904 }
6905
6906 /* Reverse stepping through solib trampolines. */
6907
6908 if (execution_direction == EXEC_REVERSE
6909 && ecs->event_thread->control.step_over_calls != STEP_OVER_NONE)
6910 {
6911 CORE_ADDR stop_pc = ecs->event_thread->suspend.stop_pc;
6912
6913 if (gdbarch_skip_trampoline_code (gdbarch, frame, stop_pc)
6914 || (ecs->stop_func_start == 0
6915 && in_solib_dynsym_resolve_code (stop_pc)))
6916 {
6917 /* Any solib trampoline code can be handled in reverse
6918 by simply continuing to single-step. We have already
6919 executed the solib function (backwards), and a few
6920 steps will take us back through the trampoline to the
6921 caller. */
6922 keep_going (ecs);
6923 return;
6924 }
6925 else if (in_solib_dynsym_resolve_code (stop_pc))
6926 {
6927 /* Stepped backward into the solib dynsym resolver.
6928 Set a breakpoint at its start and continue, then
6929 one more step will take us out. */
6930 symtab_and_line sr_sal;
6931 sr_sal.pc = ecs->stop_func_start;
6932 sr_sal.pspace = get_frame_program_space (frame);
6933 insert_step_resume_breakpoint_at_sal (gdbarch,
6934 sr_sal, null_frame_id);
6935 keep_going (ecs);
6936 return;
6937 }
6938 }
6939
6940 /* This always returns the sal for the inner-most frame when we are in a
6941 stack of inlined frames, even if GDB actually believes that it is in a
6942 more outer frame. This is checked for below by calls to
6943 inline_skipped_frames. */
6944 stop_pc_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
6945
6946 /* NOTE: tausq/2004-05-24: This if block used to be done before all
6947 the trampoline processing logic, however, there are some trampolines
6948 that have no names, so we should do trampoline handling first. */
6949 if (ecs->event_thread->control.step_over_calls == STEP_OVER_UNDEBUGGABLE
6950 && ecs->stop_func_name == NULL
6951 && stop_pc_sal.line == 0)
6952 {
6953 infrun_debug_printf ("stepped into undebuggable function");
6954
6955 /* The inferior just stepped into, or returned to, an
6956 undebuggable function (where there is no debugging information
6957 and no line number corresponding to the address where the
6958 inferior stopped). Since we want to skip this kind of code,
6959 we keep going until the inferior returns from this
6960 function - unless the user has asked us not to (via
6961 set step-mode) or we no longer know how to get back
6962 to the call site. */
6963 if (step_stop_if_no_debug
6964 || !frame_id_p (frame_unwind_caller_id (frame)))
6965 {
6966 /* If we have no line number and the step-stop-if-no-debug
6967 is set, we stop the step so that the user has a chance to
6968 switch in assembly mode. */
6969 end_stepping_range (ecs);
6970 return;
6971 }
6972 else
6973 {
6974 /* Set a breakpoint at callee's return address (the address
6975 at which the caller will resume). */
6976 insert_step_resume_breakpoint_at_caller (frame);
6977 keep_going (ecs);
6978 return;
6979 }
6980 }
6981
6982 if (ecs->event_thread->control.step_range_end == 1)
6983 {
6984 /* It is stepi or nexti. We always want to stop stepping after
6985 one instruction. */
6986 infrun_debug_printf ("stepi/nexti");
6987 end_stepping_range (ecs);
6988 return;
6989 }
6990
6991 if (stop_pc_sal.line == 0)
6992 {
6993 /* We have no line number information. That means to stop
6994 stepping (does this always happen right after one instruction,
6995 when we do "s" in a function with no line numbers,
6996 or can this happen as a result of a return or longjmp?). */
6997 infrun_debug_printf ("line number info");
6998 end_stepping_range (ecs);
6999 return;
7000 }
7001
7002 /* Look for "calls" to inlined functions, part one. If the inline
7003 frame machinery detected some skipped call sites, we have entered
7004 a new inline function. */
7005
7006 if (frame_id_eq (get_frame_id (get_current_frame ()),
7007 ecs->event_thread->control.step_frame_id)
7008 && inline_skipped_frames (ecs->event_thread))
7009 {
7010 infrun_debug_printf ("stepped into inlined function");
7011
7012 symtab_and_line call_sal = find_frame_sal (get_current_frame ());
7013
7014 if (ecs->event_thread->control.step_over_calls != STEP_OVER_ALL)
7015 {
7016 /* For "step", we're going to stop. But if the call site
7017 for this inlined function is on the same source line as
7018 we were previously stepping, go down into the function
7019 first. Otherwise stop at the call site. */
7020
7021 if (call_sal.line == ecs->event_thread->current_line
7022 && call_sal.symtab == ecs->event_thread->current_symtab)
7023 {
7024 step_into_inline_frame (ecs->event_thread);
7025 if (inline_frame_is_marked_for_skip (false, ecs->event_thread))
7026 {
7027 keep_going (ecs);
7028 return;
7029 }
7030 }
7031
7032 end_stepping_range (ecs);
7033 return;
7034 }
7035 else
7036 {
7037 /* For "next", we should stop at the call site if it is on a
7038 different source line. Otherwise continue through the
7039 inlined function. */
7040 if (call_sal.line == ecs->event_thread->current_line
7041 && call_sal.symtab == ecs->event_thread->current_symtab)
7042 keep_going (ecs);
7043 else
7044 end_stepping_range (ecs);
7045 return;
7046 }
7047 }
7048
7049 /* Look for "calls" to inlined functions, part two. If we are still
7050 in the same real function we were stepping through, but we have
7051 to go further up to find the exact frame ID, we are stepping
7052 through a more inlined call beyond its call site. */
7053
7054 if (get_frame_type (get_current_frame ()) == INLINE_FRAME
7055 && !frame_id_eq (get_frame_id (get_current_frame ()),
7056 ecs->event_thread->control.step_frame_id)
7057 && stepped_in_from (get_current_frame (),
7058 ecs->event_thread->control.step_frame_id))
7059 {
7060 infrun_debug_printf ("stepping through inlined function");
7061
7062 if (ecs->event_thread->control.step_over_calls == STEP_OVER_ALL
7063 || inline_frame_is_marked_for_skip (false, ecs->event_thread))
7064 keep_going (ecs);
7065 else
7066 end_stepping_range (ecs);
7067 return;
7068 }
7069
7070 bool refresh_step_info = true;
7071 if ((ecs->event_thread->suspend.stop_pc == stop_pc_sal.pc)
7072 && (ecs->event_thread->current_line != stop_pc_sal.line
7073 || ecs->event_thread->current_symtab != stop_pc_sal.symtab))
7074 {
7075 if (stop_pc_sal.is_stmt)
7076 {
7077 /* We are at the start of a different line. So stop. Note that
7078 we don't stop if we step into the middle of a different line.
7079 That is said to make things like for (;;) statements work
7080 better. */
7081 infrun_debug_printf ("stepped to a different line");
7082 end_stepping_range (ecs);
7083 return;
7084 }
7085 else if (frame_id_eq (get_frame_id (get_current_frame ()),
7086 ecs->event_thread->control.step_frame_id))
7087 {
7088 /* We are at the start of a different line, however, this line is
7089 not marked as a statement, and we have not changed frame. We
7090 ignore this line table entry, and continue stepping forward,
7091 looking for a better place to stop. */
7092 refresh_step_info = false;
7093 infrun_debug_printf ("stepped to a different line, but "
7094 "it's not the start of a statement");
7095 }
7096 }
7097
7098 /* We aren't done stepping.
7099
7100 Optimize by setting the stepping range to the line.
7101 (We might not be in the original line, but if we entered a
7102 new line in mid-statement, we continue stepping. This makes
7103 things like for(;;) statements work better.)
7104
7105 If we entered a SAL that indicates a non-statement line table entry,
7106 then we update the stepping range, but we don't update the step info,
7107 which includes things like the line number we are stepping away from.
7108 This means we will stop when we find a line table entry that is marked
7109 as is-statement, even if it matches the non-statement one we just
7110 stepped into. */
7111
7112 ecs->event_thread->control.step_range_start = stop_pc_sal.pc;
7113 ecs->event_thread->control.step_range_end = stop_pc_sal.end;
7114 ecs->event_thread->control.may_range_step = 1;
7115 if (refresh_step_info)
7116 set_step_info (ecs->event_thread, frame, stop_pc_sal);
7117
7118 infrun_debug_printf ("keep going");
7119 keep_going (ecs);
7120 }
7121
7122 /* In all-stop mode, if we're currently stepping but have stopped in
7123 some other thread, we may need to switch back to the stepped
7124 thread. Returns true we set the inferior running, false if we left
7125 it stopped (and the event needs further processing). */
7126
7127 static bool
7128 switch_back_to_stepped_thread (struct execution_control_state *ecs)
7129 {
7130 if (!target_is_non_stop_p ())
7131 {
7132 struct thread_info *stepping_thread;
7133
7134 /* If any thread is blocked on some internal breakpoint, and we
7135 simply need to step over that breakpoint to get it going
7136 again, do that first. */
7137
7138 /* However, if we see an event for the stepping thread, then we
7139 know all other threads have been moved past their breakpoints
7140 already. Let the caller check whether the step is finished,
7141 etc., before deciding to move it past a breakpoint. */
7142 if (ecs->event_thread->control.step_range_end != 0)
7143 return false;
7144
7145 /* Check if the current thread is blocked on an incomplete
7146 step-over, interrupted by a random signal. */
7147 if (ecs->event_thread->control.trap_expected
7148 && ecs->event_thread->suspend.stop_signal != GDB_SIGNAL_TRAP)
7149 {
7150 infrun_debug_printf
7151 ("need to finish step-over of [%s]",
7152 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7153 keep_going (ecs);
7154 return true;
7155 }
7156
7157 /* Check if the current thread is blocked by a single-step
7158 breakpoint of another thread. */
7159 if (ecs->hit_singlestep_breakpoint)
7160 {
7161 infrun_debug_printf ("need to step [%s] over single-step breakpoint",
7162 target_pid_to_str (ecs->ptid).c_str ());
7163 keep_going (ecs);
7164 return true;
7165 }
7166
7167 /* If this thread needs yet another step-over (e.g., stepping
7168 through a delay slot), do it first before moving on to
7169 another thread. */
7170 if (thread_still_needs_step_over (ecs->event_thread))
7171 {
7172 infrun_debug_printf
7173 ("thread [%s] still needs step-over",
7174 target_pid_to_str (ecs->event_thread->ptid).c_str ());
7175 keep_going (ecs);
7176 return true;
7177 }
7178
7179 /* If scheduler locking applies even if not stepping, there's no
7180 need to walk over threads. Above we've checked whether the
7181 current thread is stepping. If some other thread not the
7182 event thread is stepping, then it must be that scheduler
7183 locking is not in effect. */
7184 if (schedlock_applies (ecs->event_thread))
7185 return false;
7186
7187 /* Otherwise, we no longer expect a trap in the current thread.
7188 Clear the trap_expected flag before switching back -- this is
7189 what keep_going does as well, if we call it. */
7190 ecs->event_thread->control.trap_expected = 0;
7191
7192 /* Likewise, clear the signal if it should not be passed. */
7193 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7194 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7195
7196 /* Do all pending step-overs before actually proceeding with
7197 step/next/etc. */
7198 if (start_step_over ())
7199 {
7200 prepare_to_wait (ecs);
7201 return true;
7202 }
7203
7204 /* Look for the stepping/nexting thread. */
7205 stepping_thread = NULL;
7206
7207 for (thread_info *tp : all_non_exited_threads ())
7208 {
7209 switch_to_thread_no_regs (tp);
7210
7211 /* Ignore threads of processes the caller is not
7212 resuming. */
7213 if (!sched_multi
7214 && (tp->inf->process_target () != ecs->target
7215 || tp->inf->pid != ecs->ptid.pid ()))
7216 continue;
7217
7218 /* When stepping over a breakpoint, we lock all threads
7219 except the one that needs to move past the breakpoint.
7220 If a non-event thread has this set, the "incomplete
7221 step-over" check above should have caught it earlier. */
7222 if (tp->control.trap_expected)
7223 {
7224 internal_error (__FILE__, __LINE__,
7225 "[%s] has inconsistent state: "
7226 "trap_expected=%d\n",
7227 target_pid_to_str (tp->ptid).c_str (),
7228 tp->control.trap_expected);
7229 }
7230
7231 /* Did we find the stepping thread? */
7232 if (tp->control.step_range_end)
7233 {
7234 /* Yep. There should only one though. */
7235 gdb_assert (stepping_thread == NULL);
7236
7237 /* The event thread is handled at the top, before we
7238 enter this loop. */
7239 gdb_assert (tp != ecs->event_thread);
7240
7241 /* If some thread other than the event thread is
7242 stepping, then scheduler locking can't be in effect,
7243 otherwise we wouldn't have resumed the current event
7244 thread in the first place. */
7245 gdb_assert (!schedlock_applies (tp));
7246
7247 stepping_thread = tp;
7248 }
7249 }
7250
7251 if (stepping_thread != NULL)
7252 {
7253 infrun_debug_printf ("switching back to stepped thread");
7254
7255 if (keep_going_stepped_thread (stepping_thread))
7256 {
7257 prepare_to_wait (ecs);
7258 return true;
7259 }
7260 }
7261
7262 switch_to_thread (ecs->event_thread);
7263 }
7264
7265 return false;
7266 }
7267
7268 /* Set a previously stepped thread back to stepping. Returns true on
7269 success, false if the resume is not possible (e.g., the thread
7270 vanished). */
7271
7272 static bool
7273 keep_going_stepped_thread (struct thread_info *tp)
7274 {
7275 struct frame_info *frame;
7276 struct execution_control_state ecss;
7277 struct execution_control_state *ecs = &ecss;
7278
7279 /* If the stepping thread exited, then don't try to switch back and
7280 resume it, which could fail in several different ways depending
7281 on the target. Instead, just keep going.
7282
7283 We can find a stepping dead thread in the thread list in two
7284 cases:
7285
7286 - The target supports thread exit events, and when the target
7287 tries to delete the thread from the thread list, inferior_ptid
7288 pointed at the exiting thread. In such case, calling
7289 delete_thread does not really remove the thread from the list;
7290 instead, the thread is left listed, with 'exited' state.
7291
7292 - The target's debug interface does not support thread exit
7293 events, and so we have no idea whatsoever if the previously
7294 stepping thread is still alive. For that reason, we need to
7295 synchronously query the target now. */
7296
7297 if (tp->state == THREAD_EXITED || !target_thread_alive (tp->ptid))
7298 {
7299 infrun_debug_printf ("not resuming previously stepped thread, it has "
7300 "vanished");
7301
7302 delete_thread (tp);
7303 return false;
7304 }
7305
7306 infrun_debug_printf ("resuming previously stepped thread");
7307
7308 reset_ecs (ecs, tp);
7309 switch_to_thread (tp);
7310
7311 tp->suspend.stop_pc = regcache_read_pc (get_thread_regcache (tp));
7312 frame = get_current_frame ();
7313
7314 /* If the PC of the thread we were trying to single-step has
7315 changed, then that thread has trapped or been signaled, but the
7316 event has not been reported to GDB yet. Re-poll the target
7317 looking for this particular thread's event (i.e. temporarily
7318 enable schedlock) by:
7319
7320 - setting a break at the current PC
7321 - resuming that particular thread, only (by setting trap
7322 expected)
7323
7324 This prevents us continuously moving the single-step breakpoint
7325 forward, one instruction at a time, overstepping. */
7326
7327 if (tp->suspend.stop_pc != tp->prev_pc)
7328 {
7329 ptid_t resume_ptid;
7330
7331 infrun_debug_printf ("expected thread advanced also (%s -> %s)",
7332 paddress (target_gdbarch (), tp->prev_pc),
7333 paddress (target_gdbarch (), tp->suspend.stop_pc));
7334
7335 /* Clear the info of the previous step-over, as it's no longer
7336 valid (if the thread was trying to step over a breakpoint, it
7337 has already succeeded). It's what keep_going would do too,
7338 if we called it. Do this before trying to insert the sss
7339 breakpoint, otherwise if we were previously trying to step
7340 over this exact address in another thread, the breakpoint is
7341 skipped. */
7342 clear_step_over_info ();
7343 tp->control.trap_expected = 0;
7344
7345 insert_single_step_breakpoint (get_frame_arch (frame),
7346 get_frame_address_space (frame),
7347 tp->suspend.stop_pc);
7348
7349 tp->resumed = true;
7350 resume_ptid = internal_resume_ptid (tp->control.stepping_command);
7351 do_target_resume (resume_ptid, false, GDB_SIGNAL_0);
7352 }
7353 else
7354 {
7355 infrun_debug_printf ("expected thread still hasn't advanced");
7356
7357 keep_going_pass_signal (ecs);
7358 }
7359
7360 return true;
7361 }
7362
7363 /* Is thread TP in the middle of (software or hardware)
7364 single-stepping? (Note the result of this function must never be
7365 passed directly as target_resume's STEP parameter.) */
7366
7367 static bool
7368 currently_stepping (struct thread_info *tp)
7369 {
7370 return ((tp->control.step_range_end
7371 && tp->control.step_resume_breakpoint == NULL)
7372 || tp->control.trap_expected
7373 || tp->stepped_breakpoint
7374 || bpstat_should_step ());
7375 }
7376
7377 /* Inferior has stepped into a subroutine call with source code that
7378 we should not step over. Do step to the first line of code in
7379 it. */
7380
7381 static void
7382 handle_step_into_function (struct gdbarch *gdbarch,
7383 struct execution_control_state *ecs)
7384 {
7385 fill_in_stop_func (gdbarch, ecs);
7386
7387 compunit_symtab *cust
7388 = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7389 if (cust != NULL && compunit_language (cust) != language_asm)
7390 ecs->stop_func_start
7391 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7392
7393 symtab_and_line stop_func_sal = find_pc_line (ecs->stop_func_start, 0);
7394 /* Use the step_resume_break to step until the end of the prologue,
7395 even if that involves jumps (as it seems to on the vax under
7396 4.2). */
7397 /* If the prologue ends in the middle of a source line, continue to
7398 the end of that source line (if it is still within the function).
7399 Otherwise, just go to end of prologue. */
7400 if (stop_func_sal.end
7401 && stop_func_sal.pc != ecs->stop_func_start
7402 && stop_func_sal.end < ecs->stop_func_end)
7403 ecs->stop_func_start = stop_func_sal.end;
7404
7405 /* Architectures which require breakpoint adjustment might not be able
7406 to place a breakpoint at the computed address. If so, the test
7407 ``ecs->stop_func_start == stop_pc'' will never succeed. Adjust
7408 ecs->stop_func_start to an address at which a breakpoint may be
7409 legitimately placed.
7410
7411 Note: kevinb/2004-01-19: On FR-V, if this adjustment is not
7412 made, GDB will enter an infinite loop when stepping through
7413 optimized code consisting of VLIW instructions which contain
7414 subinstructions corresponding to different source lines. On
7415 FR-V, it's not permitted to place a breakpoint on any but the
7416 first subinstruction of a VLIW instruction. When a breakpoint is
7417 set, GDB will adjust the breakpoint address to the beginning of
7418 the VLIW instruction. Thus, we need to make the corresponding
7419 adjustment here when computing the stop address. */
7420
7421 if (gdbarch_adjust_breakpoint_address_p (gdbarch))
7422 {
7423 ecs->stop_func_start
7424 = gdbarch_adjust_breakpoint_address (gdbarch,
7425 ecs->stop_func_start);
7426 }
7427
7428 if (ecs->stop_func_start == ecs->event_thread->suspend.stop_pc)
7429 {
7430 /* We are already there: stop now. */
7431 end_stepping_range (ecs);
7432 return;
7433 }
7434 else
7435 {
7436 /* Put the step-breakpoint there and go until there. */
7437 symtab_and_line sr_sal;
7438 sr_sal.pc = ecs->stop_func_start;
7439 sr_sal.section = find_pc_overlay (ecs->stop_func_start);
7440 sr_sal.pspace = get_frame_program_space (get_current_frame ());
7441
7442 /* Do not specify what the fp should be when we stop since on
7443 some machines the prologue is where the new fp value is
7444 established. */
7445 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal, null_frame_id);
7446
7447 /* And make sure stepping stops right away then. */
7448 ecs->event_thread->control.step_range_end
7449 = ecs->event_thread->control.step_range_start;
7450 }
7451 keep_going (ecs);
7452 }
7453
7454 /* Inferior has stepped backward into a subroutine call with source
7455 code that we should not step over. Do step to the beginning of the
7456 last line of code in it. */
7457
7458 static void
7459 handle_step_into_function_backward (struct gdbarch *gdbarch,
7460 struct execution_control_state *ecs)
7461 {
7462 struct compunit_symtab *cust;
7463 struct symtab_and_line stop_func_sal;
7464
7465 fill_in_stop_func (gdbarch, ecs);
7466
7467 cust = find_pc_compunit_symtab (ecs->event_thread->suspend.stop_pc);
7468 if (cust != NULL && compunit_language (cust) != language_asm)
7469 ecs->stop_func_start
7470 = gdbarch_skip_prologue_noexcept (gdbarch, ecs->stop_func_start);
7471
7472 stop_func_sal = find_pc_line (ecs->event_thread->suspend.stop_pc, 0);
7473
7474 /* OK, we're just going to keep stepping here. */
7475 if (stop_func_sal.pc == ecs->event_thread->suspend.stop_pc)
7476 {
7477 /* We're there already. Just stop stepping now. */
7478 end_stepping_range (ecs);
7479 }
7480 else
7481 {
7482 /* Else just reset the step range and keep going.
7483 No step-resume breakpoint, they don't work for
7484 epilogues, which can have multiple entry paths. */
7485 ecs->event_thread->control.step_range_start = stop_func_sal.pc;
7486 ecs->event_thread->control.step_range_end = stop_func_sal.end;
7487 keep_going (ecs);
7488 }
7489 return;
7490 }
7491
7492 /* Insert a "step-resume breakpoint" at SR_SAL with frame ID SR_ID.
7493 This is used to both functions and to skip over code. */
7494
7495 static void
7496 insert_step_resume_breakpoint_at_sal_1 (struct gdbarch *gdbarch,
7497 struct symtab_and_line sr_sal,
7498 struct frame_id sr_id,
7499 enum bptype sr_type)
7500 {
7501 /* There should never be more than one step-resume or longjmp-resume
7502 breakpoint per thread, so we should never be setting a new
7503 step_resume_breakpoint when one is already active. */
7504 gdb_assert (inferior_thread ()->control.step_resume_breakpoint == NULL);
7505 gdb_assert (sr_type == bp_step_resume || sr_type == bp_hp_step_resume);
7506
7507 infrun_debug_printf ("inserting step-resume breakpoint at %s",
7508 paddress (gdbarch, sr_sal.pc));
7509
7510 inferior_thread ()->control.step_resume_breakpoint
7511 = set_momentary_breakpoint (gdbarch, sr_sal, sr_id, sr_type).release ();
7512 }
7513
7514 void
7515 insert_step_resume_breakpoint_at_sal (struct gdbarch *gdbarch,
7516 struct symtab_and_line sr_sal,
7517 struct frame_id sr_id)
7518 {
7519 insert_step_resume_breakpoint_at_sal_1 (gdbarch,
7520 sr_sal, sr_id,
7521 bp_step_resume);
7522 }
7523
7524 /* Insert a "high-priority step-resume breakpoint" at RETURN_FRAME.pc.
7525 This is used to skip a potential signal handler.
7526
7527 This is called with the interrupted function's frame. The signal
7528 handler, when it returns, will resume the interrupted function at
7529 RETURN_FRAME.pc. */
7530
7531 static void
7532 insert_hp_step_resume_breakpoint_at_frame (struct frame_info *return_frame)
7533 {
7534 gdb_assert (return_frame != NULL);
7535
7536 struct gdbarch *gdbarch = get_frame_arch (return_frame);
7537
7538 symtab_and_line sr_sal;
7539 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch, get_frame_pc (return_frame));
7540 sr_sal.section = find_pc_overlay (sr_sal.pc);
7541 sr_sal.pspace = get_frame_program_space (return_frame);
7542
7543 insert_step_resume_breakpoint_at_sal_1 (gdbarch, sr_sal,
7544 get_stack_frame_id (return_frame),
7545 bp_hp_step_resume);
7546 }
7547
7548 /* Insert a "step-resume breakpoint" at the previous frame's PC. This
7549 is used to skip a function after stepping into it (for "next" or if
7550 the called function has no debugging information).
7551
7552 The current function has almost always been reached by single
7553 stepping a call or return instruction. NEXT_FRAME belongs to the
7554 current function, and the breakpoint will be set at the caller's
7555 resume address.
7556
7557 This is a separate function rather than reusing
7558 insert_hp_step_resume_breakpoint_at_frame in order to avoid
7559 get_prev_frame, which may stop prematurely (see the implementation
7560 of frame_unwind_caller_id for an example). */
7561
7562 static void
7563 insert_step_resume_breakpoint_at_caller (struct frame_info *next_frame)
7564 {
7565 /* We shouldn't have gotten here if we don't know where the call site
7566 is. */
7567 gdb_assert (frame_id_p (frame_unwind_caller_id (next_frame)));
7568
7569 struct gdbarch *gdbarch = frame_unwind_caller_arch (next_frame);
7570
7571 symtab_and_line sr_sal;
7572 sr_sal.pc = gdbarch_addr_bits_remove (gdbarch,
7573 frame_unwind_caller_pc (next_frame));
7574 sr_sal.section = find_pc_overlay (sr_sal.pc);
7575 sr_sal.pspace = frame_unwind_program_space (next_frame);
7576
7577 insert_step_resume_breakpoint_at_sal (gdbarch, sr_sal,
7578 frame_unwind_caller_id (next_frame));
7579 }
7580
7581 /* Insert a "longjmp-resume" breakpoint at PC. This is used to set a
7582 new breakpoint at the target of a jmp_buf. The handling of
7583 longjmp-resume uses the same mechanisms used for handling
7584 "step-resume" breakpoints. */
7585
7586 static void
7587 insert_longjmp_resume_breakpoint (struct gdbarch *gdbarch, CORE_ADDR pc)
7588 {
7589 /* There should never be more than one longjmp-resume breakpoint per
7590 thread, so we should never be setting a new
7591 longjmp_resume_breakpoint when one is already active. */
7592 gdb_assert (inferior_thread ()->control.exception_resume_breakpoint == NULL);
7593
7594 infrun_debug_printf ("inserting longjmp-resume breakpoint at %s",
7595 paddress (gdbarch, pc));
7596
7597 inferior_thread ()->control.exception_resume_breakpoint =
7598 set_momentary_breakpoint_at_pc (gdbarch, pc, bp_longjmp_resume).release ();
7599 }
7600
7601 /* Insert an exception resume breakpoint. TP is the thread throwing
7602 the exception. The block B is the block of the unwinder debug hook
7603 function. FRAME is the frame corresponding to the call to this
7604 function. SYM is the symbol of the function argument holding the
7605 target PC of the exception. */
7606
7607 static void
7608 insert_exception_resume_breakpoint (struct thread_info *tp,
7609 const struct block *b,
7610 struct frame_info *frame,
7611 struct symbol *sym)
7612 {
7613 try
7614 {
7615 struct block_symbol vsym;
7616 struct value *value;
7617 CORE_ADDR handler;
7618 struct breakpoint *bp;
7619
7620 vsym = lookup_symbol_search_name (sym->search_name (),
7621 b, VAR_DOMAIN);
7622 value = read_var_value (vsym.symbol, vsym.block, frame);
7623 /* If the value was optimized out, revert to the old behavior. */
7624 if (! value_optimized_out (value))
7625 {
7626 handler = value_as_address (value);
7627
7628 infrun_debug_printf ("exception resume at %lx",
7629 (unsigned long) handler);
7630
7631 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7632 handler,
7633 bp_exception_resume).release ();
7634
7635 /* set_momentary_breakpoint_at_pc invalidates FRAME. */
7636 frame = NULL;
7637
7638 bp->thread = tp->global_num;
7639 inferior_thread ()->control.exception_resume_breakpoint = bp;
7640 }
7641 }
7642 catch (const gdb_exception_error &e)
7643 {
7644 /* We want to ignore errors here. */
7645 }
7646 }
7647
7648 /* A helper for check_exception_resume that sets an
7649 exception-breakpoint based on a SystemTap probe. */
7650
7651 static void
7652 insert_exception_resume_from_probe (struct thread_info *tp,
7653 const struct bound_probe *probe,
7654 struct frame_info *frame)
7655 {
7656 struct value *arg_value;
7657 CORE_ADDR handler;
7658 struct breakpoint *bp;
7659
7660 arg_value = probe_safe_evaluate_at_pc (frame, 1);
7661 if (!arg_value)
7662 return;
7663
7664 handler = value_as_address (arg_value);
7665
7666 infrun_debug_printf ("exception resume at %s",
7667 paddress (probe->objfile->arch (), handler));
7668
7669 bp = set_momentary_breakpoint_at_pc (get_frame_arch (frame),
7670 handler, bp_exception_resume).release ();
7671 bp->thread = tp->global_num;
7672 inferior_thread ()->control.exception_resume_breakpoint = bp;
7673 }
7674
7675 /* This is called when an exception has been intercepted. Check to
7676 see whether the exception's destination is of interest, and if so,
7677 set an exception resume breakpoint there. */
7678
7679 static void
7680 check_exception_resume (struct execution_control_state *ecs,
7681 struct frame_info *frame)
7682 {
7683 struct bound_probe probe;
7684 struct symbol *func;
7685
7686 /* First see if this exception unwinding breakpoint was set via a
7687 SystemTap probe point. If so, the probe has two arguments: the
7688 CFA and the HANDLER. We ignore the CFA, extract the handler, and
7689 set a breakpoint there. */
7690 probe = find_probe_by_pc (get_frame_pc (frame));
7691 if (probe.prob)
7692 {
7693 insert_exception_resume_from_probe (ecs->event_thread, &probe, frame);
7694 return;
7695 }
7696
7697 func = get_frame_function (frame);
7698 if (!func)
7699 return;
7700
7701 try
7702 {
7703 const struct block *b;
7704 struct block_iterator iter;
7705 struct symbol *sym;
7706 int argno = 0;
7707
7708 /* The exception breakpoint is a thread-specific breakpoint on
7709 the unwinder's debug hook, declared as:
7710
7711 void _Unwind_DebugHook (void *cfa, void *handler);
7712
7713 The CFA argument indicates the frame to which control is
7714 about to be transferred. HANDLER is the destination PC.
7715
7716 We ignore the CFA and set a temporary breakpoint at HANDLER.
7717 This is not extremely efficient but it avoids issues in gdb
7718 with computing the DWARF CFA, and it also works even in weird
7719 cases such as throwing an exception from inside a signal
7720 handler. */
7721
7722 b = SYMBOL_BLOCK_VALUE (func);
7723 ALL_BLOCK_SYMBOLS (b, iter, sym)
7724 {
7725 if (!SYMBOL_IS_ARGUMENT (sym))
7726 continue;
7727
7728 if (argno == 0)
7729 ++argno;
7730 else
7731 {
7732 insert_exception_resume_breakpoint (ecs->event_thread,
7733 b, frame, sym);
7734 break;
7735 }
7736 }
7737 }
7738 catch (const gdb_exception_error &e)
7739 {
7740 }
7741 }
7742
7743 static void
7744 stop_waiting (struct execution_control_state *ecs)
7745 {
7746 infrun_debug_printf ("stop_waiting");
7747
7748 /* Let callers know we don't want to wait for the inferior anymore. */
7749 ecs->wait_some_more = 0;
7750
7751 /* If all-stop, but there exists a non-stop target, stop all
7752 threads now that we're presenting the stop to the user. */
7753 if (!non_stop && exists_non_stop_target ())
7754 stop_all_threads ();
7755 }
7756
7757 /* Like keep_going, but passes the signal to the inferior, even if the
7758 signal is set to nopass. */
7759
7760 static void
7761 keep_going_pass_signal (struct execution_control_state *ecs)
7762 {
7763 gdb_assert (ecs->event_thread->ptid == inferior_ptid);
7764 gdb_assert (!ecs->event_thread->resumed);
7765
7766 /* Save the pc before execution, to compare with pc after stop. */
7767 ecs->event_thread->prev_pc
7768 = regcache_read_pc_protected (get_thread_regcache (ecs->event_thread));
7769
7770 if (ecs->event_thread->control.trap_expected)
7771 {
7772 struct thread_info *tp = ecs->event_thread;
7773
7774 infrun_debug_printf ("%s has trap_expected set, "
7775 "resuming to collect trap",
7776 target_pid_to_str (tp->ptid).c_str ());
7777
7778 /* We haven't yet gotten our trap, and either: intercepted a
7779 non-signal event (e.g., a fork); or took a signal which we
7780 are supposed to pass through to the inferior. Simply
7781 continue. */
7782 resume (ecs->event_thread->suspend.stop_signal);
7783 }
7784 else if (step_over_info_valid_p ())
7785 {
7786 /* Another thread is stepping over a breakpoint in-line. If
7787 this thread needs a step-over too, queue the request. In
7788 either case, this resume must be deferred for later. */
7789 struct thread_info *tp = ecs->event_thread;
7790
7791 if (ecs->hit_singlestep_breakpoint
7792 || thread_still_needs_step_over (tp))
7793 {
7794 infrun_debug_printf ("step-over already in progress: "
7795 "step-over for %s deferred",
7796 target_pid_to_str (tp->ptid).c_str ());
7797 thread_step_over_chain_enqueue (tp);
7798 }
7799 else
7800 {
7801 infrun_debug_printf ("step-over in progress: resume of %s deferred",
7802 target_pid_to_str (tp->ptid).c_str ());
7803 }
7804 }
7805 else
7806 {
7807 struct regcache *regcache = get_current_regcache ();
7808 int remove_bp;
7809 int remove_wps;
7810 step_over_what step_what;
7811
7812 /* Either the trap was not expected, but we are continuing
7813 anyway (if we got a signal, the user asked it be passed to
7814 the child)
7815 -- or --
7816 We got our expected trap, but decided we should resume from
7817 it.
7818
7819 We're going to run this baby now!
7820
7821 Note that insert_breakpoints won't try to re-insert
7822 already inserted breakpoints. Therefore, we don't
7823 care if breakpoints were already inserted, or not. */
7824
7825 /* If we need to step over a breakpoint, and we're not using
7826 displaced stepping to do so, insert all breakpoints
7827 (watchpoints, etc.) but the one we're stepping over, step one
7828 instruction, and then re-insert the breakpoint when that step
7829 is finished. */
7830
7831 step_what = thread_still_needs_step_over (ecs->event_thread);
7832
7833 remove_bp = (ecs->hit_singlestep_breakpoint
7834 || (step_what & STEP_OVER_BREAKPOINT));
7835 remove_wps = (step_what & STEP_OVER_WATCHPOINT);
7836
7837 /* We can't use displaced stepping if we need to step past a
7838 watchpoint. The instruction copied to the scratch pad would
7839 still trigger the watchpoint. */
7840 if (remove_bp
7841 && (remove_wps || !use_displaced_stepping (ecs->event_thread)))
7842 {
7843 set_step_over_info (regcache->aspace (),
7844 regcache_read_pc (regcache), remove_wps,
7845 ecs->event_thread->global_num);
7846 }
7847 else if (remove_wps)
7848 set_step_over_info (NULL, 0, remove_wps, -1);
7849
7850 /* If we now need to do an in-line step-over, we need to stop
7851 all other threads. Note this must be done before
7852 insert_breakpoints below, because that removes the breakpoint
7853 we're about to step over, otherwise other threads could miss
7854 it. */
7855 if (step_over_info_valid_p () && target_is_non_stop_p ())
7856 stop_all_threads ();
7857
7858 /* Stop stepping if inserting breakpoints fails. */
7859 try
7860 {
7861 insert_breakpoints ();
7862 }
7863 catch (const gdb_exception_error &e)
7864 {
7865 exception_print (gdb_stderr, e);
7866 stop_waiting (ecs);
7867 clear_step_over_info ();
7868 return;
7869 }
7870
7871 ecs->event_thread->control.trap_expected = (remove_bp || remove_wps);
7872
7873 resume (ecs->event_thread->suspend.stop_signal);
7874 }
7875
7876 prepare_to_wait (ecs);
7877 }
7878
7879 /* Called when we should continue running the inferior, because the
7880 current event doesn't cause a user visible stop. This does the
7881 resuming part; waiting for the next event is done elsewhere. */
7882
7883 static void
7884 keep_going (struct execution_control_state *ecs)
7885 {
7886 if (ecs->event_thread->control.trap_expected
7887 && ecs->event_thread->suspend.stop_signal == GDB_SIGNAL_TRAP)
7888 ecs->event_thread->control.trap_expected = 0;
7889
7890 if (!signal_program[ecs->event_thread->suspend.stop_signal])
7891 ecs->event_thread->suspend.stop_signal = GDB_SIGNAL_0;
7892 keep_going_pass_signal (ecs);
7893 }
7894
7895 /* This function normally comes after a resume, before
7896 handle_inferior_event exits. It takes care of any last bits of
7897 housekeeping, and sets the all-important wait_some_more flag. */
7898
7899 static void
7900 prepare_to_wait (struct execution_control_state *ecs)
7901 {
7902 infrun_debug_printf ("prepare_to_wait");
7903
7904 ecs->wait_some_more = 1;
7905
7906 /* If the target can't async, emulate it by marking the infrun event
7907 handler such that as soon as we get back to the event-loop, we
7908 immediately end up in fetch_inferior_event again calling
7909 target_wait. */
7910 if (!target_can_async_p ())
7911 mark_infrun_async_event_handler ();
7912 }
7913
7914 /* We are done with the step range of a step/next/si/ni command.
7915 Called once for each n of a "step n" operation. */
7916
7917 static void
7918 end_stepping_range (struct execution_control_state *ecs)
7919 {
7920 ecs->event_thread->control.stop_step = 1;
7921 stop_waiting (ecs);
7922 }
7923
7924 /* Several print_*_reason functions to print why the inferior has stopped.
7925 We always print something when the inferior exits, or receives a signal.
7926 The rest of the cases are dealt with later on in normal_stop and
7927 print_it_typical. Ideally there should be a call to one of these
7928 print_*_reason functions functions from handle_inferior_event each time
7929 stop_waiting is called.
7930
7931 Note that we don't call these directly, instead we delegate that to
7932 the interpreters, through observers. Interpreters then call these
7933 with whatever uiout is right. */
7934
7935 void
7936 print_end_stepping_range_reason (struct ui_out *uiout)
7937 {
7938 /* For CLI-like interpreters, print nothing. */
7939
7940 if (uiout->is_mi_like_p ())
7941 {
7942 uiout->field_string ("reason",
7943 async_reason_lookup (EXEC_ASYNC_END_STEPPING_RANGE));
7944 }
7945 }
7946
7947 void
7948 print_signal_exited_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7949 {
7950 annotate_signalled ();
7951 if (uiout->is_mi_like_p ())
7952 uiout->field_string
7953 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_SIGNALLED));
7954 uiout->text ("\nProgram terminated with signal ");
7955 annotate_signal_name ();
7956 uiout->field_string ("signal-name",
7957 gdb_signal_to_name (siggnal));
7958 annotate_signal_name_end ();
7959 uiout->text (", ");
7960 annotate_signal_string ();
7961 uiout->field_string ("signal-meaning",
7962 gdb_signal_to_string (siggnal));
7963 annotate_signal_string_end ();
7964 uiout->text (".\n");
7965 uiout->text ("The program no longer exists.\n");
7966 }
7967
7968 void
7969 print_exited_reason (struct ui_out *uiout, int exitstatus)
7970 {
7971 struct inferior *inf = current_inferior ();
7972 std::string pidstr = target_pid_to_str (ptid_t (inf->pid));
7973
7974 annotate_exited (exitstatus);
7975 if (exitstatus)
7976 {
7977 if (uiout->is_mi_like_p ())
7978 uiout->field_string ("reason", async_reason_lookup (EXEC_ASYNC_EXITED));
7979 std::string exit_code_str
7980 = string_printf ("0%o", (unsigned int) exitstatus);
7981 uiout->message ("[Inferior %s (%s) exited with code %pF]\n",
7982 plongest (inf->num), pidstr.c_str (),
7983 string_field ("exit-code", exit_code_str.c_str ()));
7984 }
7985 else
7986 {
7987 if (uiout->is_mi_like_p ())
7988 uiout->field_string
7989 ("reason", async_reason_lookup (EXEC_ASYNC_EXITED_NORMALLY));
7990 uiout->message ("[Inferior %s (%s) exited normally]\n",
7991 plongest (inf->num), pidstr.c_str ());
7992 }
7993 }
7994
7995 void
7996 print_signal_received_reason (struct ui_out *uiout, enum gdb_signal siggnal)
7997 {
7998 struct thread_info *thr = inferior_thread ();
7999
8000 annotate_signal ();
8001
8002 if (uiout->is_mi_like_p ())
8003 ;
8004 else if (show_thread_that_caused_stop ())
8005 {
8006 const char *name;
8007
8008 uiout->text ("\nThread ");
8009 uiout->field_string ("thread-id", print_thread_id (thr));
8010
8011 name = thr->name != NULL ? thr->name : target_thread_name (thr);
8012 if (name != NULL)
8013 {
8014 uiout->text (" \"");
8015 uiout->field_string ("name", name);
8016 uiout->text ("\"");
8017 }
8018 }
8019 else
8020 uiout->text ("\nProgram");
8021
8022 if (siggnal == GDB_SIGNAL_0 && !uiout->is_mi_like_p ())
8023 uiout->text (" stopped");
8024 else
8025 {
8026 uiout->text (" received signal ");
8027 annotate_signal_name ();
8028 if (uiout->is_mi_like_p ())
8029 uiout->field_string
8030 ("reason", async_reason_lookup (EXEC_ASYNC_SIGNAL_RECEIVED));
8031 uiout->field_string ("signal-name", gdb_signal_to_name (siggnal));
8032 annotate_signal_name_end ();
8033 uiout->text (", ");
8034 annotate_signal_string ();
8035 uiout->field_string ("signal-meaning", gdb_signal_to_string (siggnal));
8036
8037 struct regcache *regcache = get_current_regcache ();
8038 struct gdbarch *gdbarch = regcache->arch ();
8039 if (gdbarch_report_signal_info_p (gdbarch))
8040 gdbarch_report_signal_info (gdbarch, uiout, siggnal);
8041
8042 annotate_signal_string_end ();
8043 }
8044 uiout->text (".\n");
8045 }
8046
8047 void
8048 print_no_history_reason (struct ui_out *uiout)
8049 {
8050 uiout->text ("\nNo more reverse-execution history.\n");
8051 }
8052
8053 /* Print current location without a level number, if we have changed
8054 functions or hit a breakpoint. Print source line if we have one.
8055 bpstat_print contains the logic deciding in detail what to print,
8056 based on the event(s) that just occurred. */
8057
8058 static void
8059 print_stop_location (struct target_waitstatus *ws)
8060 {
8061 int bpstat_ret;
8062 enum print_what source_flag;
8063 int do_frame_printing = 1;
8064 struct thread_info *tp = inferior_thread ();
8065
8066 bpstat_ret = bpstat_print (tp->control.stop_bpstat, ws->kind);
8067 switch (bpstat_ret)
8068 {
8069 case PRINT_UNKNOWN:
8070 /* FIXME: cagney/2002-12-01: Given that a frame ID does (or
8071 should) carry around the function and does (or should) use
8072 that when doing a frame comparison. */
8073 if (tp->control.stop_step
8074 && frame_id_eq (tp->control.step_frame_id,
8075 get_frame_id (get_current_frame ()))
8076 && (tp->control.step_start_function
8077 == find_pc_function (tp->suspend.stop_pc)))
8078 {
8079 /* Finished step, just print source line. */
8080 source_flag = SRC_LINE;
8081 }
8082 else
8083 {
8084 /* Print location and source line. */
8085 source_flag = SRC_AND_LOC;
8086 }
8087 break;
8088 case PRINT_SRC_AND_LOC:
8089 /* Print location and source line. */
8090 source_flag = SRC_AND_LOC;
8091 break;
8092 case PRINT_SRC_ONLY:
8093 source_flag = SRC_LINE;
8094 break;
8095 case PRINT_NOTHING:
8096 /* Something bogus. */
8097 source_flag = SRC_LINE;
8098 do_frame_printing = 0;
8099 break;
8100 default:
8101 internal_error (__FILE__, __LINE__, _("Unknown value."));
8102 }
8103
8104 /* The behavior of this routine with respect to the source
8105 flag is:
8106 SRC_LINE: Print only source line
8107 LOCATION: Print only location
8108 SRC_AND_LOC: Print location and source line. */
8109 if (do_frame_printing)
8110 print_stack_frame (get_selected_frame (NULL), 0, source_flag, 1);
8111 }
8112
8113 /* See infrun.h. */
8114
8115 void
8116 print_stop_event (struct ui_out *uiout, bool displays)
8117 {
8118 struct target_waitstatus last;
8119 struct thread_info *tp;
8120
8121 get_last_target_status (nullptr, nullptr, &last);
8122
8123 {
8124 scoped_restore save_uiout = make_scoped_restore (&current_uiout, uiout);
8125
8126 print_stop_location (&last);
8127
8128 /* Display the auto-display expressions. */
8129 if (displays)
8130 do_displays ();
8131 }
8132
8133 tp = inferior_thread ();
8134 if (tp->thread_fsm != NULL
8135 && tp->thread_fsm->finished_p ())
8136 {
8137 struct return_value_info *rv;
8138
8139 rv = tp->thread_fsm->return_value ();
8140 if (rv != NULL)
8141 print_return_value (uiout, rv);
8142 }
8143 }
8144
8145 /* See infrun.h. */
8146
8147 void
8148 maybe_remove_breakpoints (void)
8149 {
8150 if (!breakpoints_should_be_inserted_now () && target_has_execution ())
8151 {
8152 if (remove_breakpoints ())
8153 {
8154 target_terminal::ours_for_output ();
8155 printf_filtered (_("Cannot remove breakpoints because "
8156 "program is no longer writable.\nFurther "
8157 "execution is probably impossible.\n"));
8158 }
8159 }
8160 }
8161
8162 /* The execution context that just caused a normal stop. */
8163
8164 struct stop_context
8165 {
8166 stop_context ();
8167 ~stop_context ();
8168
8169 DISABLE_COPY_AND_ASSIGN (stop_context);
8170
8171 bool changed () const;
8172
8173 /* The stop ID. */
8174 ULONGEST stop_id;
8175
8176 /* The event PTID. */
8177
8178 ptid_t ptid;
8179
8180 /* If stopp for a thread event, this is the thread that caused the
8181 stop. */
8182 struct thread_info *thread;
8183
8184 /* The inferior that caused the stop. */
8185 int inf_num;
8186 };
8187
8188 /* Initializes a new stop context. If stopped for a thread event, this
8189 takes a strong reference to the thread. */
8190
8191 stop_context::stop_context ()
8192 {
8193 stop_id = get_stop_id ();
8194 ptid = inferior_ptid;
8195 inf_num = current_inferior ()->num;
8196
8197 if (inferior_ptid != null_ptid)
8198 {
8199 /* Take a strong reference so that the thread can't be deleted
8200 yet. */
8201 thread = inferior_thread ();
8202 thread->incref ();
8203 }
8204 else
8205 thread = NULL;
8206 }
8207
8208 /* Release a stop context previously created with save_stop_context.
8209 Releases the strong reference to the thread as well. */
8210
8211 stop_context::~stop_context ()
8212 {
8213 if (thread != NULL)
8214 thread->decref ();
8215 }
8216
8217 /* Return true if the current context no longer matches the saved stop
8218 context. */
8219
8220 bool
8221 stop_context::changed () const
8222 {
8223 if (ptid != inferior_ptid)
8224 return true;
8225 if (inf_num != current_inferior ()->num)
8226 return true;
8227 if (thread != NULL && thread->state != THREAD_STOPPED)
8228 return true;
8229 if (get_stop_id () != stop_id)
8230 return true;
8231 return false;
8232 }
8233
8234 /* See infrun.h. */
8235
8236 int
8237 normal_stop (void)
8238 {
8239 struct target_waitstatus last;
8240
8241 get_last_target_status (nullptr, nullptr, &last);
8242
8243 new_stop_id ();
8244
8245 /* If an exception is thrown from this point on, make sure to
8246 propagate GDB's knowledge of the executing state to the
8247 frontend/user running state. A QUIT is an easy exception to see
8248 here, so do this before any filtered output. */
8249
8250 ptid_t finish_ptid = null_ptid;
8251
8252 if (!non_stop)
8253 finish_ptid = minus_one_ptid;
8254 else if (last.kind == TARGET_WAITKIND_SIGNALLED
8255 || last.kind == TARGET_WAITKIND_EXITED)
8256 {
8257 /* On some targets, we may still have live threads in the
8258 inferior when we get a process exit event. E.g., for
8259 "checkpoint", when the current checkpoint/fork exits,
8260 linux-fork.c automatically switches to another fork from
8261 within target_mourn_inferior. */
8262 if (inferior_ptid != null_ptid)
8263 finish_ptid = ptid_t (inferior_ptid.pid ());
8264 }
8265 else if (last.kind != TARGET_WAITKIND_NO_RESUMED)
8266 finish_ptid = inferior_ptid;
8267
8268 gdb::optional<scoped_finish_thread_state> maybe_finish_thread_state;
8269 if (finish_ptid != null_ptid)
8270 {
8271 maybe_finish_thread_state.emplace
8272 (user_visible_resume_target (finish_ptid), finish_ptid);
8273 }
8274
8275 /* As we're presenting a stop, and potentially removing breakpoints,
8276 update the thread list so we can tell whether there are threads
8277 running on the target. With target remote, for example, we can
8278 only learn about new threads when we explicitly update the thread
8279 list. Do this before notifying the interpreters about signal
8280 stops, end of stepping ranges, etc., so that the "new thread"
8281 output is emitted before e.g., "Program received signal FOO",
8282 instead of after. */
8283 update_thread_list ();
8284
8285 if (last.kind == TARGET_WAITKIND_STOPPED && stopped_by_random_signal)
8286 gdb::observers::signal_received.notify (inferior_thread ()->suspend.stop_signal);
8287
8288 /* As with the notification of thread events, we want to delay
8289 notifying the user that we've switched thread context until
8290 the inferior actually stops.
8291
8292 There's no point in saying anything if the inferior has exited.
8293 Note that SIGNALLED here means "exited with a signal", not
8294 "received a signal".
8295
8296 Also skip saying anything in non-stop mode. In that mode, as we
8297 don't want GDB to switch threads behind the user's back, to avoid
8298 races where the user is typing a command to apply to thread x,
8299 but GDB switches to thread y before the user finishes entering
8300 the command, fetch_inferior_event installs a cleanup to restore
8301 the current thread back to the thread the user had selected right
8302 after this event is handled, so we're not really switching, only
8303 informing of a stop. */
8304 if (!non_stop
8305 && previous_inferior_ptid != inferior_ptid
8306 && target_has_execution ()
8307 && last.kind != TARGET_WAITKIND_SIGNALLED
8308 && last.kind != TARGET_WAITKIND_EXITED
8309 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8310 {
8311 SWITCH_THRU_ALL_UIS ()
8312 {
8313 target_terminal::ours_for_output ();
8314 printf_filtered (_("[Switching to %s]\n"),
8315 target_pid_to_str (inferior_ptid).c_str ());
8316 annotate_thread_changed ();
8317 }
8318 previous_inferior_ptid = inferior_ptid;
8319 }
8320
8321 if (last.kind == TARGET_WAITKIND_NO_RESUMED)
8322 {
8323 SWITCH_THRU_ALL_UIS ()
8324 if (current_ui->prompt_state == PROMPT_BLOCKED)
8325 {
8326 target_terminal::ours_for_output ();
8327 printf_filtered (_("No unwaited-for children left.\n"));
8328 }
8329 }
8330
8331 /* Note: this depends on the update_thread_list call above. */
8332 maybe_remove_breakpoints ();
8333
8334 /* If an auto-display called a function and that got a signal,
8335 delete that auto-display to avoid an infinite recursion. */
8336
8337 if (stopped_by_random_signal)
8338 disable_current_display ();
8339
8340 SWITCH_THRU_ALL_UIS ()
8341 {
8342 async_enable_stdin ();
8343 }
8344
8345 /* Let the user/frontend see the threads as stopped. */
8346 maybe_finish_thread_state.reset ();
8347
8348 /* Select innermost stack frame - i.e., current frame is frame 0,
8349 and current location is based on that. Handle the case where the
8350 dummy call is returning after being stopped. E.g. the dummy call
8351 previously hit a breakpoint. (If the dummy call returns
8352 normally, we won't reach here.) Do this before the stop hook is
8353 run, so that it doesn't get to see the temporary dummy frame,
8354 which is not where we'll present the stop. */
8355 if (has_stack_frames ())
8356 {
8357 if (stop_stack_dummy == STOP_STACK_DUMMY)
8358 {
8359 /* Pop the empty frame that contains the stack dummy. This
8360 also restores inferior state prior to the call (struct
8361 infcall_suspend_state). */
8362 struct frame_info *frame = get_current_frame ();
8363
8364 gdb_assert (get_frame_type (frame) == DUMMY_FRAME);
8365 frame_pop (frame);
8366 /* frame_pop calls reinit_frame_cache as the last thing it
8367 does which means there's now no selected frame. */
8368 }
8369
8370 select_frame (get_current_frame ());
8371
8372 /* Set the current source location. */
8373 set_current_sal_from_frame (get_current_frame ());
8374 }
8375
8376 /* Look up the hook_stop and run it (CLI internally handles problem
8377 of stop_command's pre-hook not existing). */
8378 if (stop_command != NULL)
8379 {
8380 stop_context saved_context;
8381
8382 try
8383 {
8384 execute_cmd_pre_hook (stop_command);
8385 }
8386 catch (const gdb_exception &ex)
8387 {
8388 exception_fprintf (gdb_stderr, ex,
8389 "Error while running hook_stop:\n");
8390 }
8391
8392 /* If the stop hook resumes the target, then there's no point in
8393 trying to notify about the previous stop; its context is
8394 gone. Likewise if the command switches thread or inferior --
8395 the observers would print a stop for the wrong
8396 thread/inferior. */
8397 if (saved_context.changed ())
8398 return 1;
8399 }
8400
8401 /* Notify observers about the stop. This is where the interpreters
8402 print the stop event. */
8403 if (inferior_ptid != null_ptid)
8404 gdb::observers::normal_stop.notify (inferior_thread ()->control.stop_bpstat,
8405 stop_print_frame);
8406 else
8407 gdb::observers::normal_stop.notify (NULL, stop_print_frame);
8408
8409 annotate_stopped ();
8410
8411 if (target_has_execution ())
8412 {
8413 if (last.kind != TARGET_WAITKIND_SIGNALLED
8414 && last.kind != TARGET_WAITKIND_EXITED
8415 && last.kind != TARGET_WAITKIND_NO_RESUMED)
8416 /* Delete the breakpoint we stopped at, if it wants to be deleted.
8417 Delete any breakpoint that is to be deleted at the next stop. */
8418 breakpoint_auto_delete (inferior_thread ()->control.stop_bpstat);
8419 }
8420
8421 /* Try to get rid of automatically added inferiors that are no
8422 longer needed. Keeping those around slows down things linearly.
8423 Note that this never removes the current inferior. */
8424 prune_inferiors ();
8425
8426 return 0;
8427 }
8428 \f
8429 int
8430 signal_stop_state (int signo)
8431 {
8432 return signal_stop[signo];
8433 }
8434
8435 int
8436 signal_print_state (int signo)
8437 {
8438 return signal_print[signo];
8439 }
8440
8441 int
8442 signal_pass_state (int signo)
8443 {
8444 return signal_program[signo];
8445 }
8446
8447 static void
8448 signal_cache_update (int signo)
8449 {
8450 if (signo == -1)
8451 {
8452 for (signo = 0; signo < (int) GDB_SIGNAL_LAST; signo++)
8453 signal_cache_update (signo);
8454
8455 return;
8456 }
8457
8458 signal_pass[signo] = (signal_stop[signo] == 0
8459 && signal_print[signo] == 0
8460 && signal_program[signo] == 1
8461 && signal_catch[signo] == 0);
8462 }
8463
8464 int
8465 signal_stop_update (int signo, int state)
8466 {
8467 int ret = signal_stop[signo];
8468
8469 signal_stop[signo] = state;
8470 signal_cache_update (signo);
8471 return ret;
8472 }
8473
8474 int
8475 signal_print_update (int signo, int state)
8476 {
8477 int ret = signal_print[signo];
8478
8479 signal_print[signo] = state;
8480 signal_cache_update (signo);
8481 return ret;
8482 }
8483
8484 int
8485 signal_pass_update (int signo, int state)
8486 {
8487 int ret = signal_program[signo];
8488
8489 signal_program[signo] = state;
8490 signal_cache_update (signo);
8491 return ret;
8492 }
8493
8494 /* Update the global 'signal_catch' from INFO and notify the
8495 target. */
8496
8497 void
8498 signal_catch_update (const unsigned int *info)
8499 {
8500 int i;
8501
8502 for (i = 0; i < GDB_SIGNAL_LAST; ++i)
8503 signal_catch[i] = info[i] > 0;
8504 signal_cache_update (-1);
8505 target_pass_signals (signal_pass);
8506 }
8507
8508 static void
8509 sig_print_header (void)
8510 {
8511 printf_filtered (_("Signal Stop\tPrint\tPass "
8512 "to program\tDescription\n"));
8513 }
8514
8515 static void
8516 sig_print_info (enum gdb_signal oursig)
8517 {
8518 const char *name = gdb_signal_to_name (oursig);
8519 int name_padding = 13 - strlen (name);
8520
8521 if (name_padding <= 0)
8522 name_padding = 0;
8523
8524 printf_filtered ("%s", name);
8525 printf_filtered ("%*.*s ", name_padding, name_padding, " ");
8526 printf_filtered ("%s\t", signal_stop[oursig] ? "Yes" : "No");
8527 printf_filtered ("%s\t", signal_print[oursig] ? "Yes" : "No");
8528 printf_filtered ("%s\t\t", signal_program[oursig] ? "Yes" : "No");
8529 printf_filtered ("%s\n", gdb_signal_to_string (oursig));
8530 }
8531
8532 /* Specify how various signals in the inferior should be handled. */
8533
8534 static void
8535 handle_command (const char *args, int from_tty)
8536 {
8537 int digits, wordlen;
8538 int sigfirst, siglast;
8539 enum gdb_signal oursig;
8540 int allsigs;
8541
8542 if (args == NULL)
8543 {
8544 error_no_arg (_("signal to handle"));
8545 }
8546
8547 /* Allocate and zero an array of flags for which signals to handle. */
8548
8549 const size_t nsigs = GDB_SIGNAL_LAST;
8550 unsigned char sigs[nsigs] {};
8551
8552 /* Break the command line up into args. */
8553
8554 gdb_argv built_argv (args);
8555
8556 /* Walk through the args, looking for signal oursigs, signal names, and
8557 actions. Signal numbers and signal names may be interspersed with
8558 actions, with the actions being performed for all signals cumulatively
8559 specified. Signal ranges can be specified as <LOW>-<HIGH>. */
8560
8561 for (char *arg : built_argv)
8562 {
8563 wordlen = strlen (arg);
8564 for (digits = 0; isdigit (arg[digits]); digits++)
8565 {;
8566 }
8567 allsigs = 0;
8568 sigfirst = siglast = -1;
8569
8570 if (wordlen >= 1 && !strncmp (arg, "all", wordlen))
8571 {
8572 /* Apply action to all signals except those used by the
8573 debugger. Silently skip those. */
8574 allsigs = 1;
8575 sigfirst = 0;
8576 siglast = nsigs - 1;
8577 }
8578 else if (wordlen >= 1 && !strncmp (arg, "stop", wordlen))
8579 {
8580 SET_SIGS (nsigs, sigs, signal_stop);
8581 SET_SIGS (nsigs, sigs, signal_print);
8582 }
8583 else if (wordlen >= 1 && !strncmp (arg, "ignore", wordlen))
8584 {
8585 UNSET_SIGS (nsigs, sigs, signal_program);
8586 }
8587 else if (wordlen >= 2 && !strncmp (arg, "print", wordlen))
8588 {
8589 SET_SIGS (nsigs, sigs, signal_print);
8590 }
8591 else if (wordlen >= 2 && !strncmp (arg, "pass", wordlen))
8592 {
8593 SET_SIGS (nsigs, sigs, signal_program);
8594 }
8595 else if (wordlen >= 3 && !strncmp (arg, "nostop", wordlen))
8596 {
8597 UNSET_SIGS (nsigs, sigs, signal_stop);
8598 }
8599 else if (wordlen >= 3 && !strncmp (arg, "noignore", wordlen))
8600 {
8601 SET_SIGS (nsigs, sigs, signal_program);
8602 }
8603 else if (wordlen >= 4 && !strncmp (arg, "noprint", wordlen))
8604 {
8605 UNSET_SIGS (nsigs, sigs, signal_print);
8606 UNSET_SIGS (nsigs, sigs, signal_stop);
8607 }
8608 else if (wordlen >= 4 && !strncmp (arg, "nopass", wordlen))
8609 {
8610 UNSET_SIGS (nsigs, sigs, signal_program);
8611 }
8612 else if (digits > 0)
8613 {
8614 /* It is numeric. The numeric signal refers to our own
8615 internal signal numbering from target.h, not to host/target
8616 signal number. This is a feature; users really should be
8617 using symbolic names anyway, and the common ones like
8618 SIGHUP, SIGINT, SIGALRM, etc. will work right anyway. */
8619
8620 sigfirst = siglast = (int)
8621 gdb_signal_from_command (atoi (arg));
8622 if (arg[digits] == '-')
8623 {
8624 siglast = (int)
8625 gdb_signal_from_command (atoi (arg + digits + 1));
8626 }
8627 if (sigfirst > siglast)
8628 {
8629 /* Bet he didn't figure we'd think of this case... */
8630 std::swap (sigfirst, siglast);
8631 }
8632 }
8633 else
8634 {
8635 oursig = gdb_signal_from_name (arg);
8636 if (oursig != GDB_SIGNAL_UNKNOWN)
8637 {
8638 sigfirst = siglast = (int) oursig;
8639 }
8640 else
8641 {
8642 /* Not a number and not a recognized flag word => complain. */
8643 error (_("Unrecognized or ambiguous flag word: \"%s\"."), arg);
8644 }
8645 }
8646
8647 /* If any signal numbers or symbol names were found, set flags for
8648 which signals to apply actions to. */
8649
8650 for (int signum = sigfirst; signum >= 0 && signum <= siglast; signum++)
8651 {
8652 switch ((enum gdb_signal) signum)
8653 {
8654 case GDB_SIGNAL_TRAP:
8655 case GDB_SIGNAL_INT:
8656 if (!allsigs && !sigs[signum])
8657 {
8658 if (query (_("%s is used by the debugger.\n\
8659 Are you sure you want to change it? "),
8660 gdb_signal_to_name ((enum gdb_signal) signum)))
8661 {
8662 sigs[signum] = 1;
8663 }
8664 else
8665 printf_unfiltered (_("Not confirmed, unchanged.\n"));
8666 }
8667 break;
8668 case GDB_SIGNAL_0:
8669 case GDB_SIGNAL_DEFAULT:
8670 case GDB_SIGNAL_UNKNOWN:
8671 /* Make sure that "all" doesn't print these. */
8672 break;
8673 default:
8674 sigs[signum] = 1;
8675 break;
8676 }
8677 }
8678 }
8679
8680 for (int signum = 0; signum < nsigs; signum++)
8681 if (sigs[signum])
8682 {
8683 signal_cache_update (-1);
8684 target_pass_signals (signal_pass);
8685 target_program_signals (signal_program);
8686
8687 if (from_tty)
8688 {
8689 /* Show the results. */
8690 sig_print_header ();
8691 for (; signum < nsigs; signum++)
8692 if (sigs[signum])
8693 sig_print_info ((enum gdb_signal) signum);
8694 }
8695
8696 break;
8697 }
8698 }
8699
8700 /* Complete the "handle" command. */
8701
8702 static void
8703 handle_completer (struct cmd_list_element *ignore,
8704 completion_tracker &tracker,
8705 const char *text, const char *word)
8706 {
8707 static const char * const keywords[] =
8708 {
8709 "all",
8710 "stop",
8711 "ignore",
8712 "print",
8713 "pass",
8714 "nostop",
8715 "noignore",
8716 "noprint",
8717 "nopass",
8718 NULL,
8719 };
8720
8721 signal_completer (ignore, tracker, text, word);
8722 complete_on_enum (tracker, keywords, word, word);
8723 }
8724
8725 enum gdb_signal
8726 gdb_signal_from_command (int num)
8727 {
8728 if (num >= 1 && num <= 15)
8729 return (enum gdb_signal) num;
8730 error (_("Only signals 1-15 are valid as numeric signals.\n\
8731 Use \"info signals\" for a list of symbolic signals."));
8732 }
8733
8734 /* Print current contents of the tables set by the handle command.
8735 It is possible we should just be printing signals actually used
8736 by the current target (but for things to work right when switching
8737 targets, all signals should be in the signal tables). */
8738
8739 static void
8740 info_signals_command (const char *signum_exp, int from_tty)
8741 {
8742 enum gdb_signal oursig;
8743
8744 sig_print_header ();
8745
8746 if (signum_exp)
8747 {
8748 /* First see if this is a symbol name. */
8749 oursig = gdb_signal_from_name (signum_exp);
8750 if (oursig == GDB_SIGNAL_UNKNOWN)
8751 {
8752 /* No, try numeric. */
8753 oursig =
8754 gdb_signal_from_command (parse_and_eval_long (signum_exp));
8755 }
8756 sig_print_info (oursig);
8757 return;
8758 }
8759
8760 printf_filtered ("\n");
8761 /* These ugly casts brought to you by the native VAX compiler. */
8762 for (oursig = GDB_SIGNAL_FIRST;
8763 (int) oursig < (int) GDB_SIGNAL_LAST;
8764 oursig = (enum gdb_signal) ((int) oursig + 1))
8765 {
8766 QUIT;
8767
8768 if (oursig != GDB_SIGNAL_UNKNOWN
8769 && oursig != GDB_SIGNAL_DEFAULT && oursig != GDB_SIGNAL_0)
8770 sig_print_info (oursig);
8771 }
8772
8773 printf_filtered (_("\nUse the \"handle\" command "
8774 "to change these tables.\n"));
8775 }
8776
8777 /* The $_siginfo convenience variable is a bit special. We don't know
8778 for sure the type of the value until we actually have a chance to
8779 fetch the data. The type can change depending on gdbarch, so it is
8780 also dependent on which thread you have selected.
8781
8782 1. making $_siginfo be an internalvar that creates a new value on
8783 access.
8784
8785 2. making the value of $_siginfo be an lval_computed value. */
8786
8787 /* This function implements the lval_computed support for reading a
8788 $_siginfo value. */
8789
8790 static void
8791 siginfo_value_read (struct value *v)
8792 {
8793 LONGEST transferred;
8794
8795 /* If we can access registers, so can we access $_siginfo. Likewise
8796 vice versa. */
8797 validate_registers_access ();
8798
8799 transferred =
8800 target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO,
8801 NULL,
8802 value_contents_all_raw (v),
8803 value_offset (v),
8804 TYPE_LENGTH (value_type (v)));
8805
8806 if (transferred != TYPE_LENGTH (value_type (v)))
8807 error (_("Unable to read siginfo"));
8808 }
8809
8810 /* This function implements the lval_computed support for writing a
8811 $_siginfo value. */
8812
8813 static void
8814 siginfo_value_write (struct value *v, struct value *fromval)
8815 {
8816 LONGEST transferred;
8817
8818 /* If we can access registers, so can we access $_siginfo. Likewise
8819 vice versa. */
8820 validate_registers_access ();
8821
8822 transferred = target_write (current_top_target (),
8823 TARGET_OBJECT_SIGNAL_INFO,
8824 NULL,
8825 value_contents_all_raw (fromval),
8826 value_offset (v),
8827 TYPE_LENGTH (value_type (fromval)));
8828
8829 if (transferred != TYPE_LENGTH (value_type (fromval)))
8830 error (_("Unable to write siginfo"));
8831 }
8832
8833 static const struct lval_funcs siginfo_value_funcs =
8834 {
8835 siginfo_value_read,
8836 siginfo_value_write
8837 };
8838
8839 /* Return a new value with the correct type for the siginfo object of
8840 the current thread using architecture GDBARCH. Return a void value
8841 if there's no object available. */
8842
8843 static struct value *
8844 siginfo_make_value (struct gdbarch *gdbarch, struct internalvar *var,
8845 void *ignore)
8846 {
8847 if (target_has_stack ()
8848 && inferior_ptid != null_ptid
8849 && gdbarch_get_siginfo_type_p (gdbarch))
8850 {
8851 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8852
8853 return allocate_computed_value (type, &siginfo_value_funcs, NULL);
8854 }
8855
8856 return allocate_value (builtin_type (gdbarch)->builtin_void);
8857 }
8858
8859 \f
8860 /* infcall_suspend_state contains state about the program itself like its
8861 registers and any signal it received when it last stopped.
8862 This state must be restored regardless of how the inferior function call
8863 ends (either successfully, or after it hits a breakpoint or signal)
8864 if the program is to properly continue where it left off. */
8865
8866 class infcall_suspend_state
8867 {
8868 public:
8869 /* Capture state from GDBARCH, TP, and REGCACHE that must be restored
8870 once the inferior function call has finished. */
8871 infcall_suspend_state (struct gdbarch *gdbarch,
8872 const struct thread_info *tp,
8873 struct regcache *regcache)
8874 : m_thread_suspend (tp->suspend),
8875 m_registers (new readonly_detached_regcache (*regcache))
8876 {
8877 gdb::unique_xmalloc_ptr<gdb_byte> siginfo_data;
8878
8879 if (gdbarch_get_siginfo_type_p (gdbarch))
8880 {
8881 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8882 size_t len = TYPE_LENGTH (type);
8883
8884 siginfo_data.reset ((gdb_byte *) xmalloc (len));
8885
8886 if (target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8887 siginfo_data.get (), 0, len) != len)
8888 {
8889 /* Errors ignored. */
8890 siginfo_data.reset (nullptr);
8891 }
8892 }
8893
8894 if (siginfo_data)
8895 {
8896 m_siginfo_gdbarch = gdbarch;
8897 m_siginfo_data = std::move (siginfo_data);
8898 }
8899 }
8900
8901 /* Return a pointer to the stored register state. */
8902
8903 readonly_detached_regcache *registers () const
8904 {
8905 return m_registers.get ();
8906 }
8907
8908 /* Restores the stored state into GDBARCH, TP, and REGCACHE. */
8909
8910 void restore (struct gdbarch *gdbarch,
8911 struct thread_info *tp,
8912 struct regcache *regcache) const
8913 {
8914 tp->suspend = m_thread_suspend;
8915
8916 if (m_siginfo_gdbarch == gdbarch)
8917 {
8918 struct type *type = gdbarch_get_siginfo_type (gdbarch);
8919
8920 /* Errors ignored. */
8921 target_write (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
8922 m_siginfo_data.get (), 0, TYPE_LENGTH (type));
8923 }
8924
8925 /* The inferior can be gone if the user types "print exit(0)"
8926 (and perhaps other times). */
8927 if (target_has_execution ())
8928 /* NB: The register write goes through to the target. */
8929 regcache->restore (registers ());
8930 }
8931
8932 private:
8933 /* How the current thread stopped before the inferior function call was
8934 executed. */
8935 struct thread_suspend_state m_thread_suspend;
8936
8937 /* The registers before the inferior function call was executed. */
8938 std::unique_ptr<readonly_detached_regcache> m_registers;
8939
8940 /* Format of SIGINFO_DATA or NULL if it is not present. */
8941 struct gdbarch *m_siginfo_gdbarch = nullptr;
8942
8943 /* The inferior format depends on SIGINFO_GDBARCH and it has a length of
8944 TYPE_LENGTH (gdbarch_get_siginfo_type ()). For different gdbarch the
8945 content would be invalid. */
8946 gdb::unique_xmalloc_ptr<gdb_byte> m_siginfo_data;
8947 };
8948
8949 infcall_suspend_state_up
8950 save_infcall_suspend_state ()
8951 {
8952 struct thread_info *tp = inferior_thread ();
8953 struct regcache *regcache = get_current_regcache ();
8954 struct gdbarch *gdbarch = regcache->arch ();
8955
8956 infcall_suspend_state_up inf_state
8957 (new struct infcall_suspend_state (gdbarch, tp, regcache));
8958
8959 /* Having saved the current state, adjust the thread state, discarding
8960 any stop signal information. The stop signal is not useful when
8961 starting an inferior function call, and run_inferior_call will not use
8962 the signal due to its `proceed' call with GDB_SIGNAL_0. */
8963 tp->suspend.stop_signal = GDB_SIGNAL_0;
8964
8965 return inf_state;
8966 }
8967
8968 /* Restore inferior session state to INF_STATE. */
8969
8970 void
8971 restore_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8972 {
8973 struct thread_info *tp = inferior_thread ();
8974 struct regcache *regcache = get_current_regcache ();
8975 struct gdbarch *gdbarch = regcache->arch ();
8976
8977 inf_state->restore (gdbarch, tp, regcache);
8978 discard_infcall_suspend_state (inf_state);
8979 }
8980
8981 void
8982 discard_infcall_suspend_state (struct infcall_suspend_state *inf_state)
8983 {
8984 delete inf_state;
8985 }
8986
8987 readonly_detached_regcache *
8988 get_infcall_suspend_state_regcache (struct infcall_suspend_state *inf_state)
8989 {
8990 return inf_state->registers ();
8991 }
8992
8993 /* infcall_control_state contains state regarding gdb's control of the
8994 inferior itself like stepping control. It also contains session state like
8995 the user's currently selected frame. */
8996
8997 struct infcall_control_state
8998 {
8999 struct thread_control_state thread_control;
9000 struct inferior_control_state inferior_control;
9001
9002 /* Other fields: */
9003 enum stop_stack_kind stop_stack_dummy = STOP_NONE;
9004 int stopped_by_random_signal = 0;
9005
9006 /* ID if the selected frame when the inferior function call was made. */
9007 struct frame_id selected_frame_id {};
9008 };
9009
9010 /* Save all of the information associated with the inferior<==>gdb
9011 connection. */
9012
9013 infcall_control_state_up
9014 save_infcall_control_state ()
9015 {
9016 infcall_control_state_up inf_status (new struct infcall_control_state);
9017 struct thread_info *tp = inferior_thread ();
9018 struct inferior *inf = current_inferior ();
9019
9020 inf_status->thread_control = tp->control;
9021 inf_status->inferior_control = inf->control;
9022
9023 tp->control.step_resume_breakpoint = NULL;
9024 tp->control.exception_resume_breakpoint = NULL;
9025
9026 /* Save original bpstat chain to INF_STATUS; replace it in TP with copy of
9027 chain. If caller's caller is walking the chain, they'll be happier if we
9028 hand them back the original chain when restore_infcall_control_state is
9029 called. */
9030 tp->control.stop_bpstat = bpstat_copy (tp->control.stop_bpstat);
9031
9032 /* Other fields: */
9033 inf_status->stop_stack_dummy = stop_stack_dummy;
9034 inf_status->stopped_by_random_signal = stopped_by_random_signal;
9035
9036 inf_status->selected_frame_id = get_frame_id (get_selected_frame (NULL));
9037
9038 return inf_status;
9039 }
9040
9041 static void
9042 restore_selected_frame (const frame_id &fid)
9043 {
9044 frame_info *frame = frame_find_by_id (fid);
9045
9046 /* If inf_status->selected_frame_id is NULL, there was no previously
9047 selected frame. */
9048 if (frame == NULL)
9049 {
9050 warning (_("Unable to restore previously selected frame."));
9051 return;
9052 }
9053
9054 select_frame (frame);
9055 }
9056
9057 /* Restore inferior session state to INF_STATUS. */
9058
9059 void
9060 restore_infcall_control_state (struct infcall_control_state *inf_status)
9061 {
9062 struct thread_info *tp = inferior_thread ();
9063 struct inferior *inf = current_inferior ();
9064
9065 if (tp->control.step_resume_breakpoint)
9066 tp->control.step_resume_breakpoint->disposition = disp_del_at_next_stop;
9067
9068 if (tp->control.exception_resume_breakpoint)
9069 tp->control.exception_resume_breakpoint->disposition
9070 = disp_del_at_next_stop;
9071
9072 /* Handle the bpstat_copy of the chain. */
9073 bpstat_clear (&tp->control.stop_bpstat);
9074
9075 tp->control = inf_status->thread_control;
9076 inf->control = inf_status->inferior_control;
9077
9078 /* Other fields: */
9079 stop_stack_dummy = inf_status->stop_stack_dummy;
9080 stopped_by_random_signal = inf_status->stopped_by_random_signal;
9081
9082 if (target_has_stack ())
9083 {
9084 /* The point of the try/catch is that if the stack is clobbered,
9085 walking the stack might encounter a garbage pointer and
9086 error() trying to dereference it. */
9087 try
9088 {
9089 restore_selected_frame (inf_status->selected_frame_id);
9090 }
9091 catch (const gdb_exception_error &ex)
9092 {
9093 exception_fprintf (gdb_stderr, ex,
9094 "Unable to restore previously selected frame:\n");
9095 /* Error in restoring the selected frame. Select the
9096 innermost frame. */
9097 select_frame (get_current_frame ());
9098 }
9099 }
9100
9101 delete inf_status;
9102 }
9103
9104 void
9105 discard_infcall_control_state (struct infcall_control_state *inf_status)
9106 {
9107 if (inf_status->thread_control.step_resume_breakpoint)
9108 inf_status->thread_control.step_resume_breakpoint->disposition
9109 = disp_del_at_next_stop;
9110
9111 if (inf_status->thread_control.exception_resume_breakpoint)
9112 inf_status->thread_control.exception_resume_breakpoint->disposition
9113 = disp_del_at_next_stop;
9114
9115 /* See save_infcall_control_state for info on stop_bpstat. */
9116 bpstat_clear (&inf_status->thread_control.stop_bpstat);
9117
9118 delete inf_status;
9119 }
9120 \f
9121 /* See infrun.h. */
9122
9123 void
9124 clear_exit_convenience_vars (void)
9125 {
9126 clear_internalvar (lookup_internalvar ("_exitsignal"));
9127 clear_internalvar (lookup_internalvar ("_exitcode"));
9128 }
9129 \f
9130
9131 /* User interface for reverse debugging:
9132 Set exec-direction / show exec-direction commands
9133 (returns error unless target implements to_set_exec_direction method). */
9134
9135 enum exec_direction_kind execution_direction = EXEC_FORWARD;
9136 static const char exec_forward[] = "forward";
9137 static const char exec_reverse[] = "reverse";
9138 static const char *exec_direction = exec_forward;
9139 static const char *const exec_direction_names[] = {
9140 exec_forward,
9141 exec_reverse,
9142 NULL
9143 };
9144
9145 static void
9146 set_exec_direction_func (const char *args, int from_tty,
9147 struct cmd_list_element *cmd)
9148 {
9149 if (target_can_execute_reverse ())
9150 {
9151 if (!strcmp (exec_direction, exec_forward))
9152 execution_direction = EXEC_FORWARD;
9153 else if (!strcmp (exec_direction, exec_reverse))
9154 execution_direction = EXEC_REVERSE;
9155 }
9156 else
9157 {
9158 exec_direction = exec_forward;
9159 error (_("Target does not support this operation."));
9160 }
9161 }
9162
9163 static void
9164 show_exec_direction_func (struct ui_file *out, int from_tty,
9165 struct cmd_list_element *cmd, const char *value)
9166 {
9167 switch (execution_direction) {
9168 case EXEC_FORWARD:
9169 fprintf_filtered (out, _("Forward.\n"));
9170 break;
9171 case EXEC_REVERSE:
9172 fprintf_filtered (out, _("Reverse.\n"));
9173 break;
9174 default:
9175 internal_error (__FILE__, __LINE__,
9176 _("bogus execution_direction value: %d"),
9177 (int) execution_direction);
9178 }
9179 }
9180
9181 static void
9182 show_schedule_multiple (struct ui_file *file, int from_tty,
9183 struct cmd_list_element *c, const char *value)
9184 {
9185 fprintf_filtered (file, _("Resuming the execution of threads "
9186 "of all processes is %s.\n"), value);
9187 }
9188
9189 /* Implementation of `siginfo' variable. */
9190
9191 static const struct internalvar_funcs siginfo_funcs =
9192 {
9193 siginfo_make_value,
9194 NULL,
9195 NULL
9196 };
9197
9198 /* Callback for infrun's target events source. This is marked when a
9199 thread has a pending status to process. */
9200
9201 static void
9202 infrun_async_inferior_event_handler (gdb_client_data data)
9203 {
9204 inferior_event_handler (INF_REG_EVENT);
9205 }
9206
9207 #if GDB_SELF_TEST
9208 namespace selftests
9209 {
9210
9211 /* Verify that when two threads with the same ptid exist (from two different
9212 targets) and one of them changes ptid, we only update inferior_ptid if
9213 it is appropriate. */
9214
9215 static void
9216 infrun_thread_ptid_changed ()
9217 {
9218 gdbarch *arch = current_inferior ()->gdbarch;
9219
9220 /* The thread which inferior_ptid represents changes ptid. */
9221 {
9222 scoped_restore_current_pspace_and_thread restore;
9223
9224 scoped_mock_context<test_target_ops> target1 (arch);
9225 scoped_mock_context<test_target_ops> target2 (arch);
9226 target2.mock_inferior.next = &target1.mock_inferior;
9227
9228 ptid_t old_ptid (111, 222);
9229 ptid_t new_ptid (111, 333);
9230
9231 target1.mock_inferior.pid = old_ptid.pid ();
9232 target1.mock_thread.ptid = old_ptid;
9233 target2.mock_inferior.pid = old_ptid.pid ();
9234 target2.mock_thread.ptid = old_ptid;
9235
9236 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9237 set_current_inferior (&target1.mock_inferior);
9238
9239 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9240
9241 gdb_assert (inferior_ptid == new_ptid);
9242 }
9243
9244 /* A thread with the same ptid as inferior_ptid, but from another target,
9245 changes ptid. */
9246 {
9247 scoped_restore_current_pspace_and_thread restore;
9248
9249 scoped_mock_context<test_target_ops> target1 (arch);
9250 scoped_mock_context<test_target_ops> target2 (arch);
9251 target2.mock_inferior.next = &target1.mock_inferior;
9252
9253 ptid_t old_ptid (111, 222);
9254 ptid_t new_ptid (111, 333);
9255
9256 target1.mock_inferior.pid = old_ptid.pid ();
9257 target1.mock_thread.ptid = old_ptid;
9258 target2.mock_inferior.pid = old_ptid.pid ();
9259 target2.mock_thread.ptid = old_ptid;
9260
9261 auto restore_inferior_ptid = make_scoped_restore (&inferior_ptid, old_ptid);
9262 set_current_inferior (&target2.mock_inferior);
9263
9264 thread_change_ptid (&target1.mock_target, old_ptid, new_ptid);
9265
9266 gdb_assert (inferior_ptid == old_ptid);
9267 }
9268 }
9269
9270 } /* namespace selftests */
9271
9272 #endif /* GDB_SELF_TEST */
9273
9274 void _initialize_infrun ();
9275 void
9276 _initialize_infrun ()
9277 {
9278 struct cmd_list_element *c;
9279
9280 /* Register extra event sources in the event loop. */
9281 infrun_async_inferior_event_token
9282 = create_async_event_handler (infrun_async_inferior_event_handler, NULL,
9283 "infrun");
9284
9285 add_info ("signals", info_signals_command, _("\
9286 What debugger does when program gets various signals.\n\
9287 Specify a signal as argument to print info on that signal only."));
9288 add_info_alias ("handle", "signals", 0);
9289
9290 c = add_com ("handle", class_run, handle_command, _("\
9291 Specify how to handle signals.\n\
9292 Usage: handle SIGNAL [ACTIONS]\n\
9293 Args are signals and actions to apply to those signals.\n\
9294 If no actions are specified, the current settings for the specified signals\n\
9295 will be displayed instead.\n\
9296 \n\
9297 Symbolic signals (e.g. SIGSEGV) are recommended but numeric signals\n\
9298 from 1-15 are allowed for compatibility with old versions of GDB.\n\
9299 Numeric ranges may be specified with the form LOW-HIGH (e.g. 1-5).\n\
9300 The special arg \"all\" is recognized to mean all signals except those\n\
9301 used by the debugger, typically SIGTRAP and SIGINT.\n\
9302 \n\
9303 Recognized actions include \"stop\", \"nostop\", \"print\", \"noprint\",\n\
9304 \"pass\", \"nopass\", \"ignore\", or \"noignore\".\n\
9305 Stop means reenter debugger if this signal happens (implies print).\n\
9306 Print means print a message if this signal happens.\n\
9307 Pass means let program see this signal; otherwise program doesn't know.\n\
9308 Ignore is a synonym for nopass and noignore is a synonym for pass.\n\
9309 Pass and Stop may be combined.\n\
9310 \n\
9311 Multiple signals may be specified. Signal numbers and signal names\n\
9312 may be interspersed with actions, with the actions being performed for\n\
9313 all signals cumulatively specified."));
9314 set_cmd_completer (c, handle_completer);
9315
9316 if (!dbx_commands)
9317 stop_command = add_cmd ("stop", class_obscure,
9318 not_just_help_class_command, _("\
9319 There is no `stop' command, but you can set a hook on `stop'.\n\
9320 This allows you to set a list of commands to be run each time execution\n\
9321 of the program stops."), &cmdlist);
9322
9323 add_setshow_zuinteger_cmd ("infrun", class_maintenance, &debug_infrun, _("\
9324 Set inferior debugging."), _("\
9325 Show inferior debugging."), _("\
9326 When non-zero, inferior specific debugging is enabled."),
9327 NULL,
9328 show_debug_infrun,
9329 &setdebuglist, &showdebuglist);
9330
9331 add_setshow_boolean_cmd ("displaced", class_maintenance,
9332 &debug_displaced, _("\
9333 Set displaced stepping debugging."), _("\
9334 Show displaced stepping debugging."), _("\
9335 When non-zero, displaced stepping specific debugging is enabled."),
9336 NULL,
9337 show_debug_displaced,
9338 &setdebuglist, &showdebuglist);
9339
9340 add_setshow_boolean_cmd ("non-stop", no_class,
9341 &non_stop_1, _("\
9342 Set whether gdb controls the inferior in non-stop mode."), _("\
9343 Show whether gdb controls the inferior in non-stop mode."), _("\
9344 When debugging a multi-threaded program and this setting is\n\
9345 off (the default, also called all-stop mode), when one thread stops\n\
9346 (for a breakpoint, watchpoint, exception, or similar events), GDB stops\n\
9347 all other threads in the program while you interact with the thread of\n\
9348 interest. When you continue or step a thread, you can allow the other\n\
9349 threads to run, or have them remain stopped, but while you inspect any\n\
9350 thread's state, all threads stop.\n\
9351 \n\
9352 In non-stop mode, when one thread stops, other threads can continue\n\
9353 to run freely. You'll be able to step each thread independently,\n\
9354 leave it stopped or free to run as needed."),
9355 set_non_stop,
9356 show_non_stop,
9357 &setlist,
9358 &showlist);
9359
9360 for (size_t i = 0; i < GDB_SIGNAL_LAST; i++)
9361 {
9362 signal_stop[i] = 1;
9363 signal_print[i] = 1;
9364 signal_program[i] = 1;
9365 signal_catch[i] = 0;
9366 }
9367
9368 /* Signals caused by debugger's own actions should not be given to
9369 the program afterwards.
9370
9371 Do not deliver GDB_SIGNAL_TRAP by default, except when the user
9372 explicitly specifies that it should be delivered to the target
9373 program. Typically, that would occur when a user is debugging a
9374 target monitor on a simulator: the target monitor sets a
9375 breakpoint; the simulator encounters this breakpoint and halts
9376 the simulation handing control to GDB; GDB, noting that the stop
9377 address doesn't map to any known breakpoint, returns control back
9378 to the simulator; the simulator then delivers the hardware
9379 equivalent of a GDB_SIGNAL_TRAP to the program being
9380 debugged. */
9381 signal_program[GDB_SIGNAL_TRAP] = 0;
9382 signal_program[GDB_SIGNAL_INT] = 0;
9383
9384 /* Signals that are not errors should not normally enter the debugger. */
9385 signal_stop[GDB_SIGNAL_ALRM] = 0;
9386 signal_print[GDB_SIGNAL_ALRM] = 0;
9387 signal_stop[GDB_SIGNAL_VTALRM] = 0;
9388 signal_print[GDB_SIGNAL_VTALRM] = 0;
9389 signal_stop[GDB_SIGNAL_PROF] = 0;
9390 signal_print[GDB_SIGNAL_PROF] = 0;
9391 signal_stop[GDB_SIGNAL_CHLD] = 0;
9392 signal_print[GDB_SIGNAL_CHLD] = 0;
9393 signal_stop[GDB_SIGNAL_IO] = 0;
9394 signal_print[GDB_SIGNAL_IO] = 0;
9395 signal_stop[GDB_SIGNAL_POLL] = 0;
9396 signal_print[GDB_SIGNAL_POLL] = 0;
9397 signal_stop[GDB_SIGNAL_URG] = 0;
9398 signal_print[GDB_SIGNAL_URG] = 0;
9399 signal_stop[GDB_SIGNAL_WINCH] = 0;
9400 signal_print[GDB_SIGNAL_WINCH] = 0;
9401 signal_stop[GDB_SIGNAL_PRIO] = 0;
9402 signal_print[GDB_SIGNAL_PRIO] = 0;
9403
9404 /* These signals are used internally by user-level thread
9405 implementations. (See signal(5) on Solaris.) Like the above
9406 signals, a healthy program receives and handles them as part of
9407 its normal operation. */
9408 signal_stop[GDB_SIGNAL_LWP] = 0;
9409 signal_print[GDB_SIGNAL_LWP] = 0;
9410 signal_stop[GDB_SIGNAL_WAITING] = 0;
9411 signal_print[GDB_SIGNAL_WAITING] = 0;
9412 signal_stop[GDB_SIGNAL_CANCEL] = 0;
9413 signal_print[GDB_SIGNAL_CANCEL] = 0;
9414 signal_stop[GDB_SIGNAL_LIBRT] = 0;
9415 signal_print[GDB_SIGNAL_LIBRT] = 0;
9416
9417 /* Update cached state. */
9418 signal_cache_update (-1);
9419
9420 add_setshow_zinteger_cmd ("stop-on-solib-events", class_support,
9421 &stop_on_solib_events, _("\
9422 Set stopping for shared library events."), _("\
9423 Show stopping for shared library events."), _("\
9424 If nonzero, gdb will give control to the user when the dynamic linker\n\
9425 notifies gdb of shared library events. The most common event of interest\n\
9426 to the user would be loading/unloading of a new library."),
9427 set_stop_on_solib_events,
9428 show_stop_on_solib_events,
9429 &setlist, &showlist);
9430
9431 add_setshow_enum_cmd ("follow-fork-mode", class_run,
9432 follow_fork_mode_kind_names,
9433 &follow_fork_mode_string, _("\
9434 Set debugger response to a program call of fork or vfork."), _("\
9435 Show debugger response to a program call of fork or vfork."), _("\
9436 A fork or vfork creates a new process. follow-fork-mode can be:\n\
9437 parent - the original process is debugged after a fork\n\
9438 child - the new process is debugged after a fork\n\
9439 The unfollowed process will continue to run.\n\
9440 By default, the debugger will follow the parent process."),
9441 NULL,
9442 show_follow_fork_mode_string,
9443 &setlist, &showlist);
9444
9445 add_setshow_enum_cmd ("follow-exec-mode", class_run,
9446 follow_exec_mode_names,
9447 &follow_exec_mode_string, _("\
9448 Set debugger response to a program call of exec."), _("\
9449 Show debugger response to a program call of exec."), _("\
9450 An exec call replaces the program image of a process.\n\
9451 \n\
9452 follow-exec-mode can be:\n\
9453 \n\
9454 new - the debugger creates a new inferior and rebinds the process\n\
9455 to this new inferior. The program the process was running before\n\
9456 the exec call can be restarted afterwards by restarting the original\n\
9457 inferior.\n\
9458 \n\
9459 same - the debugger keeps the process bound to the same inferior.\n\
9460 The new executable image replaces the previous executable loaded in\n\
9461 the inferior. Restarting the inferior after the exec call restarts\n\
9462 the executable the process was running after the exec call.\n\
9463 \n\
9464 By default, the debugger will use the same inferior."),
9465 NULL,
9466 show_follow_exec_mode_string,
9467 &setlist, &showlist);
9468
9469 add_setshow_enum_cmd ("scheduler-locking", class_run,
9470 scheduler_enums, &scheduler_mode, _("\
9471 Set mode for locking scheduler during execution."), _("\
9472 Show mode for locking scheduler during execution."), _("\
9473 off == no locking (threads may preempt at any time)\n\
9474 on == full locking (no thread except the current thread may run)\n\
9475 This applies to both normal execution and replay mode.\n\
9476 step == scheduler locked during stepping commands (step, next, stepi, nexti).\n\
9477 In this mode, other threads may run during other commands.\n\
9478 This applies to both normal execution and replay mode.\n\
9479 replay == scheduler locked in replay mode and unlocked during normal execution."),
9480 set_schedlock_func, /* traps on target vector */
9481 show_scheduler_mode,
9482 &setlist, &showlist);
9483
9484 add_setshow_boolean_cmd ("schedule-multiple", class_run, &sched_multi, _("\
9485 Set mode for resuming threads of all processes."), _("\
9486 Show mode for resuming threads of all processes."), _("\
9487 When on, execution commands (such as 'continue' or 'next') resume all\n\
9488 threads of all processes. When off (which is the default), execution\n\
9489 commands only resume the threads of the current process. The set of\n\
9490 threads that are resumed is further refined by the scheduler-locking\n\
9491 mode (see help set scheduler-locking)."),
9492 NULL,
9493 show_schedule_multiple,
9494 &setlist, &showlist);
9495
9496 add_setshow_boolean_cmd ("step-mode", class_run, &step_stop_if_no_debug, _("\
9497 Set mode of the step operation."), _("\
9498 Show mode of the step operation."), _("\
9499 When set, doing a step over a function without debug line information\n\
9500 will stop at the first instruction of that function. Otherwise, the\n\
9501 function is skipped and the step command stops at a different source line."),
9502 NULL,
9503 show_step_stop_if_no_debug,
9504 &setlist, &showlist);
9505
9506 add_setshow_auto_boolean_cmd ("displaced-stepping", class_run,
9507 &can_use_displaced_stepping, _("\
9508 Set debugger's willingness to use displaced stepping."), _("\
9509 Show debugger's willingness to use displaced stepping."), _("\
9510 If on, gdb will use displaced stepping to step over breakpoints if it is\n\
9511 supported by the target architecture. If off, gdb will not use displaced\n\
9512 stepping to step over breakpoints, even if such is supported by the target\n\
9513 architecture. If auto (which is the default), gdb will use displaced stepping\n\
9514 if the target architecture supports it and non-stop mode is active, but will not\n\
9515 use it in all-stop mode (see help set non-stop)."),
9516 NULL,
9517 show_can_use_displaced_stepping,
9518 &setlist, &showlist);
9519
9520 add_setshow_enum_cmd ("exec-direction", class_run, exec_direction_names,
9521 &exec_direction, _("Set direction of execution.\n\
9522 Options are 'forward' or 'reverse'."),
9523 _("Show direction of execution (forward/reverse)."),
9524 _("Tells gdb whether to execute forward or backward."),
9525 set_exec_direction_func, show_exec_direction_func,
9526 &setlist, &showlist);
9527
9528 /* Set/show detach-on-fork: user-settable mode. */
9529
9530 add_setshow_boolean_cmd ("detach-on-fork", class_run, &detach_fork, _("\
9531 Set whether gdb will detach the child of a fork."), _("\
9532 Show whether gdb will detach the child of a fork."), _("\
9533 Tells gdb whether to detach the child of a fork."),
9534 NULL, NULL, &setlist, &showlist);
9535
9536 /* Set/show disable address space randomization mode. */
9537
9538 add_setshow_boolean_cmd ("disable-randomization", class_support,
9539 &disable_randomization, _("\
9540 Set disabling of debuggee's virtual address space randomization."), _("\
9541 Show disabling of debuggee's virtual address space randomization."), _("\
9542 When this mode is on (which is the default), randomization of the virtual\n\
9543 address space is disabled. Standalone programs run with the randomization\n\
9544 enabled by default on some platforms."),
9545 &set_disable_randomization,
9546 &show_disable_randomization,
9547 &setlist, &showlist);
9548
9549 /* ptid initializations */
9550 inferior_ptid = null_ptid;
9551 target_last_wait_ptid = minus_one_ptid;
9552
9553 gdb::observers::thread_ptid_changed.attach (infrun_thread_ptid_changed);
9554 gdb::observers::thread_stop_requested.attach (infrun_thread_stop_requested);
9555 gdb::observers::thread_exit.attach (infrun_thread_thread_exit);
9556 gdb::observers::inferior_exit.attach (infrun_inferior_exit);
9557
9558 /* Explicitly create without lookup, since that tries to create a
9559 value with a void typed value, and when we get here, gdbarch
9560 isn't initialized yet. At this point, we're quite sure there
9561 isn't another convenience variable of the same name. */
9562 create_internalvar_type_lazy ("_siginfo", &siginfo_funcs, NULL);
9563
9564 add_setshow_boolean_cmd ("observer", no_class,
9565 &observer_mode_1, _("\
9566 Set whether gdb controls the inferior in observer mode."), _("\
9567 Show whether gdb controls the inferior in observer mode."), _("\
9568 In observer mode, GDB can get data from the inferior, but not\n\
9569 affect its execution. Registers and memory may not be changed,\n\
9570 breakpoints may not be set, and the program cannot be interrupted\n\
9571 or signalled."),
9572 set_observer_mode,
9573 show_observer_mode,
9574 &setlist,
9575 &showlist);
9576
9577 #if GDB_SELF_TEST
9578 selftests::register_test ("infrun_thread_ptid_changed",
9579 selftests::infrun_thread_ptid_changed);
9580 #endif
9581 }