]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/m68hc11-tdep.c
a636b34c0e8268dd4b568b95b875629b38738183
[thirdparty/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2 Copyright 1999, 2000, 2001 Free Software Foundation, Inc.
3 Contributed by Stephane Carrez, stcarrez@worldnet.fr
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
20
21
22 #include "defs.h"
23 #include "frame.h"
24 #include "obstack.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcmd.h"
28 #include "gdbcore.h"
29 #include "gdb_string.h"
30 #include "value.h"
31 #include "inferior.h"
32 #include "dis-asm.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "arch-utils.h"
36 #include "regcache.h"
37
38 #include "target.h"
39 #include "opcode/m68hc11.h"
40
41 /* Register numbers of various important registers.
42 Note that some of these values are "real" register numbers,
43 and correspond to the general registers of the machine,
44 and some are "phony" register numbers which are too large
45 to be actual register numbers as far as the user is concerned
46 but do serve to get the desired values when passed to read_register. */
47
48 #define HARD_X_REGNUM 0
49 #define HARD_D_REGNUM 1
50 #define HARD_Y_REGNUM 2
51 #define HARD_SP_REGNUM 3
52 #define HARD_PC_REGNUM 4
53
54 #define HARD_A_REGNUM 5
55 #define HARD_B_REGNUM 6
56 #define HARD_CCR_REGNUM 7
57 #define M68HC11_LAST_HARD_REG (HARD_CCR_REGNUM)
58
59 /* Z is replaced by X or Y by gcc during machine reorg.
60 ??? There is no way to get it and even know whether
61 it's in X or Y or in ZS. */
62 #define SOFT_Z_REGNUM 8
63
64 /* Soft registers. These registers are special. There are treated
65 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
66 They are physically located in memory. */
67 #define SOFT_FP_REGNUM 9
68 #define SOFT_TMP_REGNUM 10
69 #define SOFT_ZS_REGNUM 11
70 #define SOFT_XY_REGNUM 12
71 #define SOFT_UNUSED_REGNUM 13
72 #define SOFT_D1_REGNUM 14
73 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
74 #define M68HC11_MAX_SOFT_REGS 32
75
76 #define M68HC11_NUM_REGS (8)
77 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
78 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
79
80 #define M68HC11_REG_SIZE (2)
81
82 struct insn_sequence;
83 struct gdbarch_tdep
84 {
85 /* Stack pointer correction value. For 68hc11, the stack pointer points
86 to the next push location. An offset of 1 must be applied to obtain
87 the address where the last value is saved. For 68hc12, the stack
88 pointer points to the last value pushed. No offset is necessary. */
89 int stack_correction;
90
91 /* Description of instructions in the prologue. */
92 struct insn_sequence *prologue;
93 };
94
95 #define M6811_TDEP gdbarch_tdep (current_gdbarch)
96 #define STACK_CORRECTION (M6811_TDEP->stack_correction)
97
98 struct frame_extra_info
99 {
100 int frame_reg;
101 CORE_ADDR return_pc;
102 CORE_ADDR dummy;
103 int frameless;
104 int size;
105 };
106
107 /* Table of registers for 68HC11. This includes the hard registers
108 and the soft registers used by GCC. */
109 static char *
110 m68hc11_register_names[] =
111 {
112 "x", "d", "y", "sp", "pc", "a", "b",
113 "ccr", "z", "frame","tmp", "zs", "xy", 0,
114 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
115 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
116 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
117 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
118 "d29", "d30", "d31", "d32"
119 };
120
121 struct m68hc11_soft_reg
122 {
123 const char *name;
124 CORE_ADDR addr;
125 };
126
127 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
128
129 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
130
131 static int soft_min_addr;
132 static int soft_max_addr;
133 static int soft_reg_initialized = 0;
134
135 /* Look in the symbol table for the address of a pseudo register
136 in memory. If we don't find it, pretend the register is not used
137 and not available. */
138 static void
139 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
140 {
141 struct minimal_symbol *msymbol;
142
143 msymbol = lookup_minimal_symbol (name, NULL, NULL);
144 if (msymbol)
145 {
146 reg->addr = SYMBOL_VALUE_ADDRESS (msymbol);
147 reg->name = xstrdup (name);
148
149 /* Keep track of the address range for soft registers. */
150 if (reg->addr < (CORE_ADDR) soft_min_addr)
151 soft_min_addr = reg->addr;
152 if (reg->addr > (CORE_ADDR) soft_max_addr)
153 soft_max_addr = reg->addr;
154 }
155 else
156 {
157 reg->name = 0;
158 reg->addr = 0;
159 }
160 }
161
162 /* Initialize the table of soft register addresses according
163 to the symbol table. */
164 static void
165 m68hc11_initialize_register_info (void)
166 {
167 int i;
168
169 if (soft_reg_initialized)
170 return;
171
172 soft_min_addr = INT_MAX;
173 soft_max_addr = 0;
174 for (i = 0; i < M68HC11_ALL_REGS; i++)
175 {
176 soft_regs[i].name = 0;
177 }
178
179 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
180 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
181 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
182 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
183 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
184
185 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
186 {
187 char buf[10];
188
189 sprintf (buf, "_.d%d", i - SOFT_D1_REGNUM + 1);
190 m68hc11_get_register_info (&soft_regs[i], buf);
191 }
192
193 if (soft_regs[SOFT_FP_REGNUM].name == 0)
194 {
195 warning ("No frame soft register found in the symbol table.\n");
196 warning ("Stack backtrace will not work.\n");
197 }
198 soft_reg_initialized = 1;
199 }
200
201 /* Given an address in memory, return the soft register number if
202 that address corresponds to a soft register. Returns -1 if not. */
203 static int
204 m68hc11_which_soft_register (CORE_ADDR addr)
205 {
206 int i;
207
208 if (addr < soft_min_addr || addr > soft_max_addr)
209 return -1;
210
211 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
212 {
213 if (soft_regs[i].name && soft_regs[i].addr == addr)
214 return i;
215 }
216 return -1;
217 }
218
219 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
220 pseudo registers. They are located in memory. Translate the register
221 fetch into a memory read. */
222 void
223 m68hc11_fetch_pseudo_register (int regno)
224 {
225 char buf[MAX_REGISTER_RAW_SIZE];
226
227 m68hc11_initialize_register_info ();
228
229 /* Fetch a soft register: translate into a memory read. */
230 if (soft_regs[regno].name)
231 {
232 target_read_memory (soft_regs[regno].addr, buf, 2);
233 }
234 else
235 {
236 memset (buf, 0, 2);
237 }
238 supply_register (regno, buf);
239 }
240
241 /* Store a pseudo register. Translate the register store
242 into a memory write. */
243 static void
244 m68hc11_store_pseudo_register (int regno)
245 {
246 m68hc11_initialize_register_info ();
247
248 /* Store a soft register: translate into a memory write. */
249 if (soft_regs[regno].name)
250 {
251 char buf[MAX_REGISTER_RAW_SIZE];
252
253 read_register_gen (regno, buf);
254 target_write_memory (soft_regs[regno].addr, buf, 2);
255 }
256 }
257
258 static char *
259 m68hc11_register_name (int reg_nr)
260 {
261 if (reg_nr < 0)
262 return NULL;
263 if (reg_nr >= M68HC11_ALL_REGS)
264 return NULL;
265
266 /* If we don't know the address of a soft register, pretend it
267 does not exist. */
268 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
269 return NULL;
270 return m68hc11_register_names[reg_nr];
271 }
272
273 static unsigned char *
274 m68hc11_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
275 {
276 static unsigned char breakpoint[] = {0x0};
277
278 *lenptr = sizeof (breakpoint);
279 return breakpoint;
280 }
281
282 /* Immediately after a function call, return the saved pc before the frame
283 is setup. */
284
285 static CORE_ADDR
286 m68hc11_saved_pc_after_call (struct frame_info *frame)
287 {
288 CORE_ADDR addr;
289
290 addr = read_register (HARD_SP_REGNUM) + STACK_CORRECTION;
291 addr &= 0x0ffff;
292 return read_memory_integer (addr, 2) & 0x0FFFF;
293 }
294
295 static CORE_ADDR
296 m68hc11_frame_saved_pc (struct frame_info *frame)
297 {
298 return frame->extra_info->return_pc;
299 }
300
301 static CORE_ADDR
302 m68hc11_frame_args_address (struct frame_info *frame)
303 {
304 return frame->frame + frame->extra_info->size + STACK_CORRECTION + 2;
305 }
306
307 static CORE_ADDR
308 m68hc11_frame_locals_address (struct frame_info *frame)
309 {
310 return frame->frame;
311 }
312
313 /* Discard from the stack the innermost frame, restoring all saved
314 registers. */
315
316 static void
317 m68hc11_pop_frame (void)
318 {
319 register struct frame_info *frame = get_current_frame ();
320 register CORE_ADDR fp, sp;
321 register int regnum;
322
323 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
324 generic_pop_dummy_frame ();
325 else
326 {
327 fp = FRAME_FP (frame);
328 FRAME_INIT_SAVED_REGS (frame);
329
330 /* Copy regs from where they were saved in the frame. */
331 for (regnum = 0; regnum < M68HC11_ALL_REGS; regnum++)
332 if (frame->saved_regs[regnum])
333 write_register (regnum,
334 read_memory_integer (frame->saved_regs[regnum], 2));
335
336 write_register (HARD_PC_REGNUM, frame->extra_info->return_pc);
337 sp = fp + frame->extra_info->size;
338 write_register (HARD_SP_REGNUM, sp);
339 }
340 flush_cached_frames ();
341 }
342
343 \f
344 /* 68HC11 & 68HC12 prologue analysis.
345
346 */
347 #define MAX_CODES 12
348
349 /* 68HC11 opcodes. */
350 #undef M6811_OP_PAGE2
351 #define M6811_OP_PAGE2 (0x18)
352 #define M6811_OP_LDX (0xde)
353 #define M6811_OP_PSHX (0x3c)
354 #define M6811_OP_STS (0x9f)
355 #define M6811_OP_TSX (0x30)
356 #define M6811_OP_XGDX (0x8f)
357 #define M6811_OP_ADDD (0xc3)
358 #define M6811_OP_TXS (0x35)
359 #define M6811_OP_DES (0x34)
360
361 /* 68HC12 opcodes. */
362 #define M6812_OP_PAGE2 (0x18)
363 #define M6812_OP_MOVW (0x01)
364 #define M6812_PB_PSHW (0xae)
365 #define M6812_OP_STS (0x7f)
366 #define M6812_OP_LEAS (0x1b)
367
368 /* Operand extraction. */
369 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
370 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
371 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
372 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
373
374 /* Identification of the sequence. */
375 enum m6811_seq_type
376 {
377 P_LAST = 0,
378 P_SAVE_REG, /* Save a register on the stack. */
379 P_SET_FRAME, /* Setup the frame pointer. */
380 P_LOCAL_1, /* Allocate 1 byte for locals. */
381 P_LOCAL_2, /* Allocate 2 bytes for locals. */
382 P_LOCAL_N /* Allocate N bytes for locals. */
383 };
384
385 struct insn_sequence {
386 enum m6811_seq_type type;
387 unsigned length;
388 unsigned short code[MAX_CODES];
389 };
390
391 /* Sequence of instructions in the 68HC11 function prologue. */
392 static struct insn_sequence m6811_prologue[] = {
393 /* Sequences to save a soft-register. */
394 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
395 M6811_OP_PSHX } },
396 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
397 M6811_OP_PAGE2, M6811_OP_PSHX } },
398
399 /* Sequences to allocate local variables. */
400 { P_LOCAL_N, 7, { M6811_OP_TSX,
401 M6811_OP_XGDX,
402 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
403 M6811_OP_XGDX,
404 M6811_OP_TXS } },
405 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
406 M6811_OP_PAGE2, M6811_OP_XGDX,
407 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
408 M6811_OP_PAGE2, M6811_OP_XGDX,
409 M6811_OP_PAGE2, M6811_OP_TXS } },
410 { P_LOCAL_1, 1, { M6811_OP_DES } },
411 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
412 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
413
414 /* Initialize the frame pointer. */
415 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
416 { P_LAST, 0, { 0 } }
417 };
418
419
420 /* Sequence of instructions in the 68HC12 function prologue. */
421 static struct insn_sequence m6812_prologue[] = {
422 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
423 OP_IMM_HIGH, OP_IMM_LOW } },
424 { P_SET_FRAME, 3, { M6812_OP_STS, OP_IMM_HIGH, OP_IMM_LOW } },
425 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
426 { P_LAST, 0 }
427 };
428
429
430 /* Analyze the sequence of instructions starting at the given address.
431 Returns a pointer to the sequence when it is recognized and
432 the optional value (constant/address) associated with it.
433 Advance the pc for the next sequence. */
434 static struct insn_sequence *
435 m68hc11_analyze_instruction (struct insn_sequence *seq, CORE_ADDR *pc,
436 CORE_ADDR *val)
437 {
438 unsigned char buffer[MAX_CODES];
439 unsigned bufsize;
440 unsigned j;
441 CORE_ADDR cur_val;
442 short v = 0;
443
444 bufsize = 0;
445 for (; seq->type != P_LAST; seq++)
446 {
447 cur_val = 0;
448 for (j = 0; j < seq->length; j++)
449 {
450 if (bufsize < j + 1)
451 {
452 buffer[bufsize] = read_memory_unsigned_integer (*pc + bufsize,
453 1);
454 bufsize++;
455 }
456 /* Continue while we match the opcode. */
457 if (seq->code[j] == buffer[j])
458 continue;
459
460 if ((seq->code[j] & 0xf00) == 0)
461 break;
462
463 /* Extract a sequence parameter (address or constant). */
464 switch (seq->code[j])
465 {
466 case OP_DIRECT:
467 cur_val = (CORE_ADDR) buffer[j];
468 break;
469
470 case OP_IMM_HIGH:
471 cur_val = cur_val & 0x0ff;
472 cur_val |= (buffer[j] << 8);
473 break;
474
475 case OP_IMM_LOW:
476 cur_val &= 0x0ff00;
477 cur_val |= buffer[j];
478 break;
479
480 case OP_PBYTE:
481 if ((buffer[j] & 0xE0) == 0x80)
482 {
483 v = buffer[j] & 0x1f;
484 if (v & 0x10)
485 v |= 0xfff0;
486 }
487 else if ((buffer[j] & 0xfe) == 0xf0)
488 {
489 v = read_memory_unsigned_integer (*pc + j + 1, 1);
490 if (buffer[j] & 1)
491 v |= 0xff00;
492 }
493 else if (buffer[j] == 0xf2)
494 {
495 v = read_memory_unsigned_integer (*pc + j + 1, 2);
496 }
497 cur_val = v;
498 break;
499 }
500 }
501
502 /* We have a full match. */
503 if (j == seq->length)
504 {
505 *val = cur_val;
506 *pc = *pc + j;
507 return seq;
508 }
509 }
510 return 0;
511 }
512
513 /* Analyze the function prologue to find some information
514 about the function:
515 - the PC of the first line (for m68hc11_skip_prologue)
516 - the offset of the previous frame saved address (from current frame)
517 - the soft registers which are pushed. */
518 static void
519 m68hc11_guess_from_prologue (CORE_ADDR pc, CORE_ADDR fp,
520 CORE_ADDR *first_line,
521 int *frame_offset, CORE_ADDR *pushed_regs)
522 {
523 CORE_ADDR save_addr;
524 CORE_ADDR func_end;
525 int size;
526 int found_frame_point;
527 int saved_reg;
528 CORE_ADDR first_pc;
529 int done = 0;
530 struct insn_sequence *seq_table;
531
532 first_pc = get_pc_function_start (pc);
533 size = 0;
534
535 m68hc11_initialize_register_info ();
536 if (first_pc == 0)
537 {
538 *frame_offset = 0;
539 *first_line = pc;
540 return;
541 }
542
543 seq_table = gdbarch_tdep (current_gdbarch)->prologue;
544
545 /* The 68hc11 stack is as follows:
546
547
548 | |
549 +-----------+
550 | |
551 | args |
552 | |
553 +-----------+
554 | PC-return |
555 +-----------+
556 | Old frame |
557 +-----------+
558 | |
559 | Locals |
560 | |
561 +-----------+ <--- current frame
562 | |
563
564 With most processors (like 68K) the previous frame can be computed
565 easily because it is always at a fixed offset (see link/unlink).
566 That is, locals are accessed with negative offsets, arguments are
567 accessed with positive ones. Since 68hc11 only supports offsets
568 in the range [0..255], the frame is defined at the bottom of
569 locals (see picture).
570
571 The purpose of the analysis made here is to find out the size
572 of locals in this function. An alternative to this is to use
573 DWARF2 info. This would be better but I don't know how to
574 access dwarf2 debug from this function.
575
576 Walk from the function entry point to the point where we save
577 the frame. While walking instructions, compute the size of bytes
578 which are pushed. This gives us the index to access the previous
579 frame.
580
581 We limit the search to 128 bytes so that the algorithm is bounded
582 in case of random and wrong code. We also stop and abort if
583 we find an instruction which is not supposed to appear in the
584 prologue (as generated by gcc 2.95, 2.96).
585 */
586 pc = first_pc;
587 func_end = pc + 128;
588 found_frame_point = 0;
589 *frame_offset = 0;
590 save_addr = fp;
591 while (!done && pc + 2 < func_end)
592 {
593 struct insn_sequence *seq;
594 CORE_ADDR val;
595
596 seq = m68hc11_analyze_instruction (seq_table, &pc, &val);
597 if (seq == 0)
598 break;
599
600 if (seq->type == P_SAVE_REG)
601 {
602 if (found_frame_point)
603 {
604 saved_reg = m68hc11_which_soft_register (val);
605 if (saved_reg < 0)
606 break;
607
608 save_addr -= 2;
609 if (pushed_regs)
610 pushed_regs[saved_reg] = save_addr;
611 }
612 else
613 {
614 size += 2;
615 }
616 }
617 else if (seq->type == P_SET_FRAME)
618 {
619 found_frame_point = 1;
620 *frame_offset = size;
621 }
622 else if (seq->type == P_LOCAL_1)
623 {
624 size += 1;
625 }
626 else if (seq->type == P_LOCAL_2)
627 {
628 size += 2;
629 }
630 else if (seq->type == P_LOCAL_N)
631 {
632 /* Stack pointer is decremented for the allocation. */
633 if (val & 0x8000)
634 size -= (int) (val) | 0xffff0000;
635 else
636 size -= val;
637 }
638 }
639 *first_line = pc;
640 }
641
642 static CORE_ADDR
643 m68hc11_skip_prologue (CORE_ADDR pc)
644 {
645 CORE_ADDR func_addr, func_end;
646 struct symtab_and_line sal;
647 int frame_offset;
648
649 /* If we have line debugging information, then the end of the
650 prologue should be the first assembly instruction of the
651 first source line. */
652 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
653 {
654 sal = find_pc_line (func_addr, 0);
655 if (sal.end && sal.end < func_end)
656 return sal.end;
657 }
658
659 m68hc11_guess_from_prologue (pc, 0, &pc, &frame_offset, 0);
660 return pc;
661 }
662
663 /* Given a GDB frame, determine the address of the calling function's frame.
664 This will be used to create a new GDB frame struct, and then
665 INIT_EXTRA_FRAME_INFO and INIT_FRAME_PC will be called for the new frame.
666 */
667
668 static CORE_ADDR
669 m68hc11_frame_chain (struct frame_info *frame)
670 {
671 CORE_ADDR addr;
672
673 if (PC_IN_CALL_DUMMY (frame->pc, frame->frame, frame->frame))
674 return frame->frame; /* dummy frame same as caller's frame */
675
676 if (frame->extra_info->return_pc == 0
677 || inside_entry_file (frame->extra_info->return_pc))
678 return (CORE_ADDR) 0;
679
680 if (frame->frame == 0)
681 {
682 return (CORE_ADDR) 0;
683 }
684
685 addr = frame->frame + frame->extra_info->size + STACK_CORRECTION - 2;
686 addr = read_memory_unsigned_integer (addr, 2) & 0x0FFFF;
687 if (addr == 0)
688 {
689 return (CORE_ADDR) 0;
690 }
691
692 return addr;
693 }
694
695 /* Put here the code to store, into a struct frame_saved_regs, the
696 addresses of the saved registers of frame described by FRAME_INFO.
697 This includes special registers such as pc and fp saved in special
698 ways in the stack frame. sp is even more special: the address we
699 return for it IS the sp for the next frame. */
700 static void
701 m68hc11_frame_init_saved_regs (struct frame_info *fi)
702 {
703 CORE_ADDR pc;
704 CORE_ADDR addr;
705
706 if (fi->saved_regs == NULL)
707 frame_saved_regs_zalloc (fi);
708 else
709 memset (fi->saved_regs, 0, sizeof (fi->saved_regs));
710
711 pc = fi->pc;
712 m68hc11_guess_from_prologue (pc, fi->frame, &pc, &fi->extra_info->size,
713 fi->saved_regs);
714
715 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
716 if (soft_regs[SOFT_FP_REGNUM].name)
717 fi->saved_regs[SOFT_FP_REGNUM] = addr - 2;
718 fi->saved_regs[HARD_SP_REGNUM] = addr;
719 fi->saved_regs[HARD_PC_REGNUM] = fi->saved_regs[HARD_SP_REGNUM];
720 }
721
722 static void
723 m68hc11_init_extra_frame_info (int fromleaf, struct frame_info *fi)
724 {
725 CORE_ADDR addr;
726
727 fi->extra_info = (struct frame_extra_info *)
728 frame_obstack_alloc (sizeof (struct frame_extra_info));
729
730 if (fi->next)
731 fi->pc = FRAME_SAVED_PC (fi->next);
732
733 m68hc11_frame_init_saved_regs (fi);
734
735 if (fromleaf)
736 {
737 fi->extra_info->return_pc = m68hc11_saved_pc_after_call (fi);
738 }
739 else
740 {
741 addr = fi->frame + fi->extra_info->size + STACK_CORRECTION;
742 addr = read_memory_unsigned_integer (addr, 2) & 0x0ffff;
743 fi->extra_info->return_pc = addr;
744 #if 0
745 printf ("Pc@0x%04x, FR 0x%04x, size %d, read ret @0x%04x -> 0x%04x\n",
746 fi->pc,
747 fi->frame, fi->size,
748 addr & 0x0ffff,
749 fi->return_pc);
750 #endif
751 }
752 }
753
754 /* Same as 'info reg' but prints the registers in a different way. */
755 static void
756 show_regs (char *args, int from_tty)
757 {
758 int ccr = read_register (HARD_CCR_REGNUM);
759 int i;
760 int nr;
761
762 printf_filtered ("PC=%04x SP=%04x FP=%04x CCR=%02x %c%c%c%c%c%c%c%c\n",
763 (int) read_register (HARD_PC_REGNUM),
764 (int) read_register (HARD_SP_REGNUM),
765 (int) read_register (SOFT_FP_REGNUM),
766 ccr,
767 ccr & M6811_S_BIT ? 'S' : '-',
768 ccr & M6811_X_BIT ? 'X' : '-',
769 ccr & M6811_H_BIT ? 'H' : '-',
770 ccr & M6811_I_BIT ? 'I' : '-',
771 ccr & M6811_N_BIT ? 'N' : '-',
772 ccr & M6811_Z_BIT ? 'Z' : '-',
773 ccr & M6811_V_BIT ? 'V' : '-',
774 ccr & M6811_C_BIT ? 'C' : '-');
775
776 printf_filtered ("D=%04x IX=%04x IY=%04x\n",
777 (int) read_register (HARD_D_REGNUM),
778 (int) read_register (HARD_X_REGNUM),
779 (int) read_register (HARD_Y_REGNUM));
780
781 nr = 0;
782 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
783 {
784 /* Skip registers which are not defined in the symbol table. */
785 if (soft_regs[i].name == 0)
786 continue;
787
788 printf_filtered ("D%d=%04x",
789 i - SOFT_D1_REGNUM + 1,
790 (int) read_register (i));
791 nr++;
792 if ((nr % 8) == 7)
793 printf_filtered ("\n");
794 else
795 printf_filtered (" ");
796 }
797 if (nr && (nr % 8) != 7)
798 printf_filtered ("\n");
799 }
800
801 static CORE_ADDR
802 m68hc11_stack_align (CORE_ADDR addr)
803 {
804 return ((addr + 1) & -2);
805 }
806
807 static CORE_ADDR
808 m68hc11_push_arguments (int nargs,
809 value_ptr *args,
810 CORE_ADDR sp,
811 int struct_return,
812 CORE_ADDR struct_addr)
813 {
814 int stack_alloc;
815 int argnum;
816 int first_stack_argnum;
817 int stack_offset;
818 struct type *type;
819 char *val;
820 int len;
821
822 stack_alloc = 0;
823 first_stack_argnum = 0;
824 if (struct_return)
825 {
826 /* The struct is allocated on the stack and gdb used the stack
827 pointer for the address of that struct. We must apply the
828 stack offset on the address. */
829 write_register (HARD_D_REGNUM, struct_addr + STACK_CORRECTION);
830 }
831 else if (nargs > 0)
832 {
833 type = VALUE_TYPE (args[0]);
834 len = TYPE_LENGTH (type);
835
836 /* First argument is passed in D and X registers. */
837 if (len <= 4)
838 {
839 LONGEST v = extract_unsigned_integer (VALUE_CONTENTS (args[0]), len);
840 first_stack_argnum = 1;
841 write_register (HARD_D_REGNUM, v);
842 if (len > 2)
843 {
844 v >>= 16;
845 write_register (HARD_X_REGNUM, v);
846 }
847 }
848 }
849 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
850 {
851 type = VALUE_TYPE (args[argnum]);
852 stack_alloc += (TYPE_LENGTH (type) + 1) & -2;
853 }
854 sp -= stack_alloc;
855
856 stack_offset = STACK_CORRECTION;
857 for (argnum = first_stack_argnum; argnum < nargs; argnum++)
858 {
859 type = VALUE_TYPE (args[argnum]);
860 len = TYPE_LENGTH (type);
861
862 val = (char*) VALUE_CONTENTS (args[argnum]);
863 write_memory (sp + stack_offset, val, len);
864 stack_offset += len;
865 if (len & 1)
866 {
867 static char zero = 0;
868
869 write_memory (sp + stack_offset, &zero, 1);
870 stack_offset++;
871 }
872 }
873 return sp;
874 }
875
876
877 /* Return a location where we can set a breakpoint that will be hit
878 when an inferior function call returns. */
879 CORE_ADDR
880 m68hc11_call_dummy_address (void)
881 {
882 return entry_point_address ();
883 }
884
885 static struct type *
886 m68hc11_register_virtual_type (int reg_nr)
887 {
888 return builtin_type_uint16;
889 }
890
891 static void
892 m68hc11_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
893 {
894 /* The struct address computed by gdb is on the stack.
895 It uses the stack pointer so we must apply the stack
896 correction offset. */
897 write_register (HARD_D_REGNUM, addr + STACK_CORRECTION);
898 }
899
900 static void
901 m68hc11_store_return_value (struct type *type, char *valbuf)
902 {
903 int len;
904
905 len = TYPE_LENGTH (type);
906
907 /* First argument is passed in D and X registers. */
908 if (len <= 4)
909 {
910 LONGEST v = extract_unsigned_integer (valbuf, len);
911
912 write_register (HARD_D_REGNUM, v);
913 if (len > 2)
914 {
915 v >>= 16;
916 write_register (HARD_X_REGNUM, v);
917 }
918 }
919 else
920 error ("return of value > 4 is not supported.");
921 }
922
923
924 /* Given a return value in `regbuf' with a type `type',
925 extract and copy its value into `valbuf'. */
926
927 static void
928 m68hc11_extract_return_value (struct type *type,
929 char *regbuf,
930 char *valbuf)
931 {
932 int len = TYPE_LENGTH (type);
933
934 switch (len)
935 {
936 case 1:
937 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2 + 1], len);
938 break;
939
940 case 2:
941 memcpy (valbuf, &regbuf[HARD_D_REGNUM * 2], len);
942 break;
943
944 case 3:
945 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2 + 1], 1);
946 memcpy (&valbuf[1], &regbuf[HARD_D_REGNUM * 2], 2);
947 break;
948
949 case 4:
950 memcpy (&valbuf[0], &regbuf[HARD_X_REGNUM * 2], 2);
951 memcpy (&valbuf[2], &regbuf[HARD_D_REGNUM * 2], 2);
952 break;
953
954 default:
955 error ("bad size for return value");
956 }
957 }
958
959 /* Should call_function allocate stack space for a struct return? */
960 static int
961 m68hc11_use_struct_convention (int gcc_p, struct type *type)
962 {
963 return (TYPE_CODE (type) == TYPE_CODE_STRUCT
964 || TYPE_CODE (type) == TYPE_CODE_UNION
965 || TYPE_LENGTH (type) > 4);
966 }
967
968 static int
969 m68hc11_return_value_on_stack (struct type *type)
970 {
971 return TYPE_LENGTH (type) > 4;
972 }
973
974 /* Extract from an array REGBUF containing the (raw) register state
975 the address in which a function should return its structure value,
976 as a CORE_ADDR (or an expression that can be used as one). */
977 static CORE_ADDR
978 m68hc11_extract_struct_value_address (char *regbuf)
979 {
980 return extract_address (&regbuf[HARD_D_REGNUM * 2],
981 REGISTER_RAW_SIZE (HARD_D_REGNUM));
982 }
983
984 /* Function: push_return_address (pc)
985 Set up the return address for the inferior function call.
986 Needed for targets where we don't actually execute a JSR/BSR instruction */
987
988 static CORE_ADDR
989 m68hc11_push_return_address (CORE_ADDR pc, CORE_ADDR sp)
990 {
991 char valbuf[2];
992
993 pc = CALL_DUMMY_ADDRESS ();
994 sp -= 2;
995 store_unsigned_integer (valbuf, 2, pc);
996 write_memory (sp + STACK_CORRECTION, valbuf, 2);
997 return sp;
998 }
999
1000 /* Index within `registers' of the first byte of the space for
1001 register N. */
1002 static int
1003 m68hc11_register_byte (int reg_nr)
1004 {
1005 return (reg_nr * M68HC11_REG_SIZE);
1006 }
1007
1008 static int
1009 m68hc11_register_raw_size (int reg_nr)
1010 {
1011 return M68HC11_REG_SIZE;
1012 }
1013
1014 static int
1015 gdb_print_insn_m68hc11 (bfd_vma memaddr, disassemble_info *info)
1016 {
1017 if (TARGET_ARCHITECTURE->arch == bfd_arch_m68hc11)
1018 return print_insn_m68hc11 (memaddr, info);
1019 else
1020 return print_insn_m68hc12 (memaddr, info);
1021 }
1022
1023 static struct gdbarch *
1024 m68hc11_gdbarch_init (struct gdbarch_info info,
1025 struct gdbarch_list *arches)
1026 {
1027 static LONGEST m68hc11_call_dummy_words[] =
1028 {0};
1029 struct gdbarch *gdbarch;
1030 struct gdbarch_tdep *tdep;
1031
1032 soft_reg_initialized = 0;
1033
1034 /* try to find a pre-existing architecture */
1035 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1036 arches != NULL;
1037 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1038 {
1039 return arches->gdbarch;
1040 }
1041
1042 /* Need a new architecture. Fill in a target specific vector. */
1043 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
1044 gdbarch = gdbarch_alloc (&info, tdep);
1045
1046 switch (info.bfd_arch_info->arch)
1047 {
1048 case bfd_arch_m68hc11:
1049 tdep->stack_correction = 1;
1050 tdep->prologue = m6811_prologue;
1051 break;
1052
1053 case bfd_arch_m68hc12:
1054 tdep->stack_correction = 0;
1055 tdep->prologue = m6812_prologue;
1056 break;
1057
1058 default:
1059 break;
1060 }
1061
1062 /* Initially set everything according to the ABI. */
1063 set_gdbarch_short_bit (gdbarch, 16);
1064 set_gdbarch_int_bit (gdbarch, 32);
1065 set_gdbarch_float_bit (gdbarch, 32);
1066 set_gdbarch_double_bit (gdbarch, 64);
1067 set_gdbarch_long_double_bit (gdbarch, 64);
1068 set_gdbarch_long_bit (gdbarch, 32);
1069 set_gdbarch_ptr_bit (gdbarch, 16);
1070 set_gdbarch_long_long_bit (gdbarch, 64);
1071
1072 /* Set register info. */
1073 set_gdbarch_fp0_regnum (gdbarch, -1);
1074 set_gdbarch_max_register_raw_size (gdbarch, 2);
1075 set_gdbarch_max_register_virtual_size (gdbarch, 2);
1076 set_gdbarch_register_raw_size (gdbarch, m68hc11_register_raw_size);
1077 set_gdbarch_register_virtual_size (gdbarch, m68hc11_register_raw_size);
1078 set_gdbarch_register_byte (gdbarch, m68hc11_register_byte);
1079 set_gdbarch_frame_init_saved_regs (gdbarch, m68hc11_frame_init_saved_regs);
1080 set_gdbarch_frame_args_skip (gdbarch, 0);
1081
1082 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
1083 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
1084 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
1085 set_gdbarch_write_fp (gdbarch, generic_target_write_fp);
1086 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
1087 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
1088
1089 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1090 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1091 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1092 set_gdbarch_fp_regnum (gdbarch, SOFT_FP_REGNUM);
1093 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1094 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1095 set_gdbarch_register_size (gdbarch, 2);
1096 set_gdbarch_register_bytes (gdbarch, M68HC11_ALL_REGS * 2);
1097 set_gdbarch_register_virtual_type (gdbarch, m68hc11_register_virtual_type);
1098 set_gdbarch_fetch_pseudo_register (gdbarch, m68hc11_fetch_pseudo_register);
1099 set_gdbarch_store_pseudo_register (gdbarch, m68hc11_store_pseudo_register);
1100
1101 set_gdbarch_use_generic_dummy_frames (gdbarch, 1);
1102 set_gdbarch_call_dummy_length (gdbarch, 0);
1103 set_gdbarch_call_dummy_location (gdbarch, AT_ENTRY_POINT);
1104 set_gdbarch_call_dummy_address (gdbarch, m68hc11_call_dummy_address);
1105 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1); /*???*/
1106 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
1107 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
1108 set_gdbarch_pc_in_call_dummy (gdbarch, generic_pc_in_call_dummy);
1109 set_gdbarch_call_dummy_words (gdbarch, m68hc11_call_dummy_words);
1110 set_gdbarch_sizeof_call_dummy_words (gdbarch,
1111 sizeof (m68hc11_call_dummy_words));
1112 set_gdbarch_call_dummy_p (gdbarch, 1);
1113 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 0);
1114 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1115 set_gdbarch_fix_call_dummy (gdbarch, generic_fix_call_dummy);
1116 set_gdbarch_extract_return_value (gdbarch, m68hc11_extract_return_value);
1117 set_gdbarch_push_arguments (gdbarch, m68hc11_push_arguments);
1118 set_gdbarch_push_dummy_frame (gdbarch, generic_push_dummy_frame);
1119 set_gdbarch_push_return_address (gdbarch, m68hc11_push_return_address);
1120 set_gdbarch_return_value_on_stack (gdbarch, m68hc11_return_value_on_stack);
1121
1122 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1123 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1124 set_gdbarch_extract_struct_value_address (gdbarch,
1125 m68hc11_extract_struct_value_address);
1126 set_gdbarch_register_convertible (gdbarch, generic_register_convertible_not);
1127
1128
1129 set_gdbarch_frame_chain (gdbarch, m68hc11_frame_chain);
1130 set_gdbarch_frame_chain_valid (gdbarch, generic_file_frame_chain_valid);
1131 set_gdbarch_frame_saved_pc (gdbarch, m68hc11_frame_saved_pc);
1132 set_gdbarch_frame_args_address (gdbarch, m68hc11_frame_args_address);
1133 set_gdbarch_frame_locals_address (gdbarch, m68hc11_frame_locals_address);
1134 set_gdbarch_saved_pc_after_call (gdbarch, m68hc11_saved_pc_after_call);
1135 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
1136
1137 set_gdbarch_frame_chain_valid (gdbarch, func_frame_chain_valid);
1138 set_gdbarch_get_saved_register (gdbarch, generic_get_saved_register);
1139
1140 set_gdbarch_store_struct_return (gdbarch, m68hc11_store_struct_return);
1141 set_gdbarch_store_return_value (gdbarch, m68hc11_store_return_value);
1142 set_gdbarch_extract_struct_value_address
1143 (gdbarch, m68hc11_extract_struct_value_address);
1144 set_gdbarch_use_struct_convention (gdbarch, m68hc11_use_struct_convention);
1145 set_gdbarch_init_extra_frame_info (gdbarch, m68hc11_init_extra_frame_info);
1146 set_gdbarch_pop_frame (gdbarch, m68hc11_pop_frame);
1147 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1148 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1149 set_gdbarch_decr_pc_after_break (gdbarch, 0);
1150 set_gdbarch_function_start_offset (gdbarch, 0);
1151 set_gdbarch_breakpoint_from_pc (gdbarch, m68hc11_breakpoint_from_pc);
1152 set_gdbarch_stack_align (gdbarch, m68hc11_stack_align);
1153
1154 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1155 set_gdbarch_ieee_float (gdbarch, 1);
1156
1157 return gdbarch;
1158 }
1159
1160 void
1161 _initialize_m68hc11_tdep (void)
1162 {
1163 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1164 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1165 if (!tm_print_insn) /* Someone may have already set it */
1166 tm_print_insn = gdb_print_insn_m68hc11;
1167
1168 add_com ("regs", class_vars, show_regs, "Print all registers");
1169 }
1170