]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/minsyms.c
ee9575c8fa527a6daf41e09563feecc04a4260db
[thirdparty/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2014 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include <string.h>
42 #include "symtab.h"
43 #include "bfd.h"
44 #include "filenames.h"
45 #include "symfile.h"
46 #include "objfiles.h"
47 #include "demangle.h"
48 #include "value.h"
49 #include "cp-abi.h"
50 #include "target.h"
51 #include "cp-support.h"
52 #include "language.h"
53 #include "cli/cli-utils.h"
54
55 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
56 At the end, copy them all into one newly allocated location on an objfile's
57 symbol obstack. */
58
59 #define BUNCH_SIZE 127
60
61 struct msym_bunch
62 {
63 struct msym_bunch *next;
64 struct minimal_symbol contents[BUNCH_SIZE];
65 };
66
67 /* Bunch currently being filled up.
68 The next field points to chain of filled bunches. */
69
70 static struct msym_bunch *msym_bunch;
71
72 /* Number of slots filled in current bunch. */
73
74 static int msym_bunch_index;
75
76 /* Total number of minimal symbols recorded so far for the objfile. */
77
78 static int msym_count;
79
80 /* See minsyms.h. */
81
82 unsigned int
83 msymbol_hash_iw (const char *string)
84 {
85 unsigned int hash = 0;
86
87 while (*string && *string != '(')
88 {
89 string = skip_spaces_const (string);
90 if (*string && *string != '(')
91 {
92 hash = SYMBOL_HASH_NEXT (hash, *string);
93 ++string;
94 }
95 }
96 return hash;
97 }
98
99 /* See minsyms.h. */
100
101 unsigned int
102 msymbol_hash (const char *string)
103 {
104 unsigned int hash = 0;
105
106 for (; *string; ++string)
107 hash = SYMBOL_HASH_NEXT (hash, *string);
108 return hash;
109 }
110
111 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
112 static void
113 add_minsym_to_hash_table (struct minimal_symbol *sym,
114 struct minimal_symbol **table)
115 {
116 if (sym->hash_next == NULL)
117 {
118 unsigned int hash
119 = msymbol_hash (SYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
120
121 sym->hash_next = table[hash];
122 table[hash] = sym;
123 }
124 }
125
126 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
127 TABLE. */
128 static void
129 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
130 struct minimal_symbol **table)
131 {
132 if (sym->demangled_hash_next == NULL)
133 {
134 unsigned int hash = msymbol_hash_iw (SYMBOL_SEARCH_NAME (sym))
135 % MINIMAL_SYMBOL_HASH_SIZE;
136
137 sym->demangled_hash_next = table[hash];
138 table[hash] = sym;
139 }
140 }
141
142 /* Look through all the current minimal symbol tables and find the
143 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
144 the search to that objfile. If SFILE is non-NULL, the only file-scope
145 symbols considered will be from that source file (global symbols are
146 still preferred). Returns a pointer to the minimal symbol that
147 matches, or NULL if no match is found.
148
149 Note: One instance where there may be duplicate minimal symbols with
150 the same name is when the symbol tables for a shared library and the
151 symbol tables for an executable contain global symbols with the same
152 names (the dynamic linker deals with the duplication).
153
154 It's also possible to have minimal symbols with different mangled
155 names, but identical demangled names. For example, the GNU C++ v3
156 ABI requires the generation of two (or perhaps three) copies of
157 constructor functions --- "in-charge", "not-in-charge", and
158 "allocate" copies; destructors may be duplicated as well.
159 Obviously, there must be distinct mangled names for each of these,
160 but the demangled names are all the same: S::S or S::~S. */
161
162 static struct bound_minimal_symbol
163 lookup_minimal_symbol_internal (const char *name, const char *sfile,
164 struct objfile *objf)
165 {
166 struct objfile *objfile;
167 struct bound_minimal_symbol found_symbol = { NULL, NULL };
168 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
169 struct bound_minimal_symbol trampoline_symbol = { NULL, NULL };
170
171 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
172 unsigned int dem_hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
173
174 int needtofreename = 0;
175 const char *modified_name;
176
177 if (sfile != NULL)
178 sfile = lbasename (sfile);
179
180 /* For C++, canonicalize the input name. */
181 modified_name = name;
182 if (current_language->la_language == language_cplus)
183 {
184 char *cname = cp_canonicalize_string (name);
185
186 if (cname)
187 {
188 modified_name = cname;
189 needtofreename = 1;
190 }
191 }
192
193 for (objfile = object_files;
194 objfile != NULL && found_symbol.minsym == NULL;
195 objfile = objfile->next)
196 {
197 struct minimal_symbol *msymbol;
198
199 if (objf == NULL || objf == objfile
200 || objf == objfile->separate_debug_objfile_backlink)
201 {
202 /* Do two passes: the first over the ordinary hash table,
203 and the second over the demangled hash table. */
204 int pass;
205
206 for (pass = 1; pass <= 2 && found_symbol.minsym == NULL; pass++)
207 {
208 /* Select hash list according to pass. */
209 if (pass == 1)
210 msymbol = objfile->msymbol_hash[hash];
211 else
212 msymbol = objfile->msymbol_demangled_hash[dem_hash];
213
214 while (msymbol != NULL && found_symbol.minsym == NULL)
215 {
216 int match;
217
218 if (pass == 1)
219 {
220 int (*cmp) (const char *, const char *);
221
222 cmp = (case_sensitivity == case_sensitive_on
223 ? strcmp : strcasecmp);
224 match = cmp (SYMBOL_LINKAGE_NAME (msymbol),
225 modified_name) == 0;
226 }
227 else
228 {
229 /* The function respects CASE_SENSITIVITY. */
230 match = SYMBOL_MATCHES_SEARCH_NAME (msymbol,
231 modified_name);
232 }
233
234 if (match)
235 {
236 switch (MSYMBOL_TYPE (msymbol))
237 {
238 case mst_file_text:
239 case mst_file_data:
240 case mst_file_bss:
241 if (sfile == NULL
242 || filename_cmp (msymbol->filename, sfile) == 0)
243 {
244 found_file_symbol.minsym = msymbol;
245 found_file_symbol.objfile = objfile;
246 }
247 break;
248
249 case mst_solib_trampoline:
250
251 /* If a trampoline symbol is found, we prefer to
252 keep looking for the *real* symbol. If the
253 actual symbol is not found, then we'll use the
254 trampoline entry. */
255 if (trampoline_symbol.minsym == NULL)
256 {
257 trampoline_symbol.minsym = msymbol;
258 trampoline_symbol.objfile = objfile;
259 }
260 break;
261
262 case mst_unknown:
263 default:
264 found_symbol.minsym = msymbol;
265 found_symbol.objfile = objfile;
266 break;
267 }
268 }
269
270 /* Find the next symbol on the hash chain. */
271 if (pass == 1)
272 msymbol = msymbol->hash_next;
273 else
274 msymbol = msymbol->demangled_hash_next;
275 }
276 }
277 }
278 }
279
280 if (needtofreename)
281 xfree ((void *) modified_name);
282
283 /* External symbols are best. */
284 if (found_symbol.minsym != NULL)
285 return found_symbol;
286
287 /* File-local symbols are next best. */
288 if (found_file_symbol.minsym != NULL)
289 return found_file_symbol;
290
291 /* Symbols for shared library trampolines are next best. */
292 return trampoline_symbol;
293 }
294
295 /* See minsyms.h. */
296
297 struct minimal_symbol *
298 lookup_minimal_symbol (const char *name, const char *sfile,
299 struct objfile *objf)
300 {
301 struct bound_minimal_symbol bms = lookup_minimal_symbol_internal (name,
302 sfile,
303 objf);
304
305 return bms.minsym;
306 }
307
308 /* See minsyms.h. */
309
310 struct bound_minimal_symbol
311 lookup_bound_minimal_symbol (const char *name)
312 {
313 return lookup_minimal_symbol_internal (name, NULL, NULL);
314 }
315
316 /* See minsyms.h. */
317
318 void
319 iterate_over_minimal_symbols (struct objfile *objf, const char *name,
320 void (*callback) (struct minimal_symbol *,
321 void *),
322 void *user_data)
323 {
324 unsigned int hash;
325 struct minimal_symbol *iter;
326 int (*cmp) (const char *, const char *);
327
328 /* The first pass is over the ordinary hash table. */
329 hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
330 iter = objf->msymbol_hash[hash];
331 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
332 while (iter)
333 {
334 if (cmp (SYMBOL_LINKAGE_NAME (iter), name) == 0)
335 (*callback) (iter, user_data);
336 iter = iter->hash_next;
337 }
338
339 /* The second pass is over the demangled table. */
340 hash = msymbol_hash_iw (name) % MINIMAL_SYMBOL_HASH_SIZE;
341 iter = objf->msymbol_demangled_hash[hash];
342 while (iter)
343 {
344 if (SYMBOL_MATCHES_SEARCH_NAME (iter, name))
345 (*callback) (iter, user_data);
346 iter = iter->demangled_hash_next;
347 }
348 }
349
350 /* See minsyms.h. */
351
352 struct minimal_symbol *
353 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
354 {
355 struct objfile *objfile;
356 struct minimal_symbol *msymbol;
357 struct minimal_symbol *found_symbol = NULL;
358 struct minimal_symbol *found_file_symbol = NULL;
359
360 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
361
362 for (objfile = object_files;
363 objfile != NULL && found_symbol == NULL;
364 objfile = objfile->next)
365 {
366 if (objf == NULL || objf == objfile
367 || objf == objfile->separate_debug_objfile_backlink)
368 {
369 for (msymbol = objfile->msymbol_hash[hash];
370 msymbol != NULL && found_symbol == NULL;
371 msymbol = msymbol->hash_next)
372 {
373 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
374 (MSYMBOL_TYPE (msymbol) == mst_text
375 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
376 || MSYMBOL_TYPE (msymbol) == mst_file_text))
377 {
378 switch (MSYMBOL_TYPE (msymbol))
379 {
380 case mst_file_text:
381 found_file_symbol = msymbol;
382 break;
383 default:
384 found_symbol = msymbol;
385 break;
386 }
387 }
388 }
389 }
390 }
391 /* External symbols are best. */
392 if (found_symbol)
393 return found_symbol;
394
395 /* File-local symbols are next best. */
396 if (found_file_symbol)
397 return found_file_symbol;
398
399 return NULL;
400 }
401
402 /* See minsyms.h. */
403
404 struct minimal_symbol *
405 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
406 struct objfile *objf)
407 {
408 struct objfile *objfile;
409 struct minimal_symbol *msymbol;
410
411 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
412
413 for (objfile = object_files;
414 objfile != NULL;
415 objfile = objfile->next)
416 {
417 if (objf == NULL || objf == objfile
418 || objf == objfile->separate_debug_objfile_backlink)
419 {
420 for (msymbol = objfile->msymbol_hash[hash];
421 msymbol != NULL;
422 msymbol = msymbol->hash_next)
423 {
424 if (SYMBOL_VALUE_ADDRESS (msymbol) == pc
425 && strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0)
426 return msymbol;
427 }
428 }
429 }
430
431 return NULL;
432 }
433
434 /* See minsyms.h. */
435
436 struct minimal_symbol *
437 lookup_minimal_symbol_solib_trampoline (const char *name,
438 struct objfile *objf)
439 {
440 struct objfile *objfile;
441 struct minimal_symbol *msymbol;
442 struct minimal_symbol *found_symbol = NULL;
443
444 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
445
446 for (objfile = object_files;
447 objfile != NULL && found_symbol == NULL;
448 objfile = objfile->next)
449 {
450 if (objf == NULL || objf == objfile
451 || objf == objfile->separate_debug_objfile_backlink)
452 {
453 for (msymbol = objfile->msymbol_hash[hash];
454 msymbol != NULL && found_symbol == NULL;
455 msymbol = msymbol->hash_next)
456 {
457 if (strcmp (SYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
458 MSYMBOL_TYPE (msymbol) == mst_solib_trampoline)
459 return msymbol;
460 }
461 }
462 }
463
464 return NULL;
465 }
466
467 /* Search through the minimal symbol table for each objfile and find
468 the symbol whose address is the largest address that is still less
469 than or equal to PC, and matches SECTION (which is not NULL).
470 Returns a pointer to the minimal symbol if such a symbol is found,
471 or NULL if PC is not in a suitable range.
472 Note that we need to look through ALL the minimal symbol tables
473 before deciding on the symbol that comes closest to the specified PC.
474 This is because objfiles can overlap, for example objfile A has .text
475 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
476 .data at 0x40048.
477
478 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
479 there are text and trampoline symbols at the same address.
480 Otherwise prefer mst_text symbols. */
481
482 static struct bound_minimal_symbol
483 lookup_minimal_symbol_by_pc_section_1 (CORE_ADDR pc,
484 struct obj_section *section,
485 int want_trampoline)
486 {
487 int lo;
488 int hi;
489 int new;
490 struct objfile *objfile;
491 struct minimal_symbol *msymbol;
492 struct minimal_symbol *best_symbol = NULL;
493 struct objfile *best_objfile = NULL;
494 struct bound_minimal_symbol result;
495 enum minimal_symbol_type want_type, other_type;
496
497 want_type = want_trampoline ? mst_solib_trampoline : mst_text;
498 other_type = want_trampoline ? mst_text : mst_solib_trampoline;
499
500 /* We can not require the symbol found to be in section, because
501 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
502 symbol - but find_pc_section won't return an absolute section and
503 hence the code below would skip over absolute symbols. We can
504 still take advantage of the call to find_pc_section, though - the
505 object file still must match. In case we have separate debug
506 files, search both the file and its separate debug file. There's
507 no telling which one will have the minimal symbols. */
508
509 gdb_assert (section != NULL);
510
511 for (objfile = section->objfile;
512 objfile != NULL;
513 objfile = objfile_separate_debug_iterate (section->objfile, objfile))
514 {
515 /* If this objfile has a minimal symbol table, go search it using
516 a binary search. Note that a minimal symbol table always consists
517 of at least two symbols, a "real" symbol and the terminating
518 "null symbol". If there are no real symbols, then there is no
519 minimal symbol table at all. */
520
521 if (objfile->minimal_symbol_count > 0)
522 {
523 int best_zero_sized = -1;
524
525 msymbol = objfile->msymbols;
526 lo = 0;
527 hi = objfile->minimal_symbol_count - 1;
528
529 /* This code assumes that the minimal symbols are sorted by
530 ascending address values. If the pc value is greater than or
531 equal to the first symbol's address, then some symbol in this
532 minimal symbol table is a suitable candidate for being the
533 "best" symbol. This includes the last real symbol, for cases
534 where the pc value is larger than any address in this vector.
535
536 By iterating until the address associated with the current
537 hi index (the endpoint of the test interval) is less than
538 or equal to the desired pc value, we accomplish two things:
539 (1) the case where the pc value is larger than any minimal
540 symbol address is trivially solved, (2) the address associated
541 with the hi index is always the one we want when the interation
542 terminates. In essence, we are iterating the test interval
543 down until the pc value is pushed out of it from the high end.
544
545 Warning: this code is trickier than it would appear at first. */
546
547 /* Should also require that pc is <= end of objfile. FIXME! */
548 if (pc >= SYMBOL_VALUE_ADDRESS (&msymbol[lo]))
549 {
550 while (SYMBOL_VALUE_ADDRESS (&msymbol[hi]) > pc)
551 {
552 /* pc is still strictly less than highest address. */
553 /* Note "new" will always be >= lo. */
554 new = (lo + hi) / 2;
555 if ((SYMBOL_VALUE_ADDRESS (&msymbol[new]) >= pc) ||
556 (lo == new))
557 {
558 hi = new;
559 }
560 else
561 {
562 lo = new;
563 }
564 }
565
566 /* If we have multiple symbols at the same address, we want
567 hi to point to the last one. That way we can find the
568 right symbol if it has an index greater than hi. */
569 while (hi < objfile->minimal_symbol_count - 1
570 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
571 == SYMBOL_VALUE_ADDRESS (&msymbol[hi + 1])))
572 hi++;
573
574 /* Skip various undesirable symbols. */
575 while (hi >= 0)
576 {
577 /* Skip any absolute symbols. This is apparently
578 what adb and dbx do, and is needed for the CM-5.
579 There are two known possible problems: (1) on
580 ELF, apparently end, edata, etc. are absolute.
581 Not sure ignoring them here is a big deal, but if
582 we want to use them, the fix would go in
583 elfread.c. (2) I think shared library entry
584 points on the NeXT are absolute. If we want
585 special handling for this it probably should be
586 triggered by a special mst_abs_or_lib or some
587 such. */
588
589 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
590 {
591 hi--;
592 continue;
593 }
594
595 /* If SECTION was specified, skip any symbol from
596 wrong section. */
597 if (section
598 /* Some types of debug info, such as COFF,
599 don't fill the bfd_section member, so don't
600 throw away symbols on those platforms. */
601 && SYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
602 && (!matching_obj_sections
603 (SYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
604 section)))
605 {
606 hi--;
607 continue;
608 }
609
610 /* If we are looking for a trampoline and this is a
611 text symbol, or the other way around, check the
612 preceding symbol too. If they are otherwise
613 identical prefer that one. */
614 if (hi > 0
615 && MSYMBOL_TYPE (&msymbol[hi]) == other_type
616 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
617 && (MSYMBOL_SIZE (&msymbol[hi])
618 == MSYMBOL_SIZE (&msymbol[hi - 1]))
619 && (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
620 == SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1]))
621 && (SYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
622 == SYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
623 {
624 hi--;
625 continue;
626 }
627
628 /* If the minimal symbol has a zero size, save it
629 but keep scanning backwards looking for one with
630 a non-zero size. A zero size may mean that the
631 symbol isn't an object or function (e.g. a
632 label), or it may just mean that the size was not
633 specified. */
634 if (MSYMBOL_SIZE (&msymbol[hi]) == 0
635 && best_zero_sized == -1)
636 {
637 best_zero_sized = hi;
638 hi--;
639 continue;
640 }
641
642 /* If we are past the end of the current symbol, try
643 the previous symbol if it has a larger overlapping
644 size. This happens on i686-pc-linux-gnu with glibc;
645 the nocancel variants of system calls are inside
646 the cancellable variants, but both have sizes. */
647 if (hi > 0
648 && MSYMBOL_SIZE (&msymbol[hi]) != 0
649 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
650 + MSYMBOL_SIZE (&msymbol[hi]))
651 && pc < (SYMBOL_VALUE_ADDRESS (&msymbol[hi - 1])
652 + MSYMBOL_SIZE (&msymbol[hi - 1])))
653 {
654 hi--;
655 continue;
656 }
657
658 /* Otherwise, this symbol must be as good as we're going
659 to get. */
660 break;
661 }
662
663 /* If HI has a zero size, and best_zero_sized is set,
664 then we had two or more zero-sized symbols; prefer
665 the first one we found (which may have a higher
666 address). Also, if we ran off the end, be sure
667 to back up. */
668 if (best_zero_sized != -1
669 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
670 hi = best_zero_sized;
671
672 /* If the minimal symbol has a non-zero size, and this
673 PC appears to be outside the symbol's contents, then
674 refuse to use this symbol. If we found a zero-sized
675 symbol with an address greater than this symbol's,
676 use that instead. We assume that if symbols have
677 specified sizes, they do not overlap. */
678
679 if (hi >= 0
680 && MSYMBOL_SIZE (&msymbol[hi]) != 0
681 && pc >= (SYMBOL_VALUE_ADDRESS (&msymbol[hi])
682 + MSYMBOL_SIZE (&msymbol[hi])))
683 {
684 if (best_zero_sized != -1)
685 hi = best_zero_sized;
686 else
687 /* Go on to the next object file. */
688 continue;
689 }
690
691 /* The minimal symbol indexed by hi now is the best one in this
692 objfile's minimal symbol table. See if it is the best one
693 overall. */
694
695 if (hi >= 0
696 && ((best_symbol == NULL) ||
697 (SYMBOL_VALUE_ADDRESS (best_symbol) <
698 SYMBOL_VALUE_ADDRESS (&msymbol[hi]))))
699 {
700 best_symbol = &msymbol[hi];
701 best_objfile = objfile;
702 }
703 }
704 }
705 }
706
707 result.minsym = best_symbol;
708 result.objfile = best_objfile;
709 return result;
710 }
711
712 struct bound_minimal_symbol
713 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc, struct obj_section *section)
714 {
715 if (section == NULL)
716 {
717 /* NOTE: cagney/2004-01-27: This was using find_pc_mapped_section to
718 force the section but that (well unless you're doing overlay
719 debugging) always returns NULL making the call somewhat useless. */
720 section = find_pc_section (pc);
721 if (section == NULL)
722 {
723 struct bound_minimal_symbol result;
724
725 memset (&result, 0, sizeof (result));
726 return result;
727 }
728 }
729 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
730 }
731
732 /* See minsyms.h. */
733
734 struct bound_minimal_symbol
735 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
736 {
737 struct obj_section *section = find_pc_section (pc);
738
739 if (section == NULL)
740 {
741 struct bound_minimal_symbol result;
742
743 memset (&result, 0, sizeof (result));
744 return result;
745 }
746 return lookup_minimal_symbol_by_pc_section_1 (pc, section, 0);
747 }
748
749 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
750
751 int
752 in_gnu_ifunc_stub (CORE_ADDR pc)
753 {
754 struct bound_minimal_symbol msymbol = lookup_minimal_symbol_by_pc (pc);
755
756 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
757 }
758
759 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
760
761 static CORE_ADDR
762 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
763 {
764 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
765 "the ELF support compiled in."),
766 paddress (gdbarch, pc));
767 }
768
769 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
770
771 static int
772 stub_gnu_ifunc_resolve_name (const char *function_name,
773 CORE_ADDR *function_address_p)
774 {
775 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
776 "the ELF support compiled in."),
777 function_name);
778 }
779
780 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
781
782 static void
783 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
784 {
785 internal_error (__FILE__, __LINE__,
786 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
787 }
788
789 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
790
791 static void
792 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
793 {
794 internal_error (__FILE__, __LINE__,
795 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
796 }
797
798 /* See elf_gnu_ifunc_fns for its real implementation. */
799
800 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
801 {
802 stub_gnu_ifunc_resolve_addr,
803 stub_gnu_ifunc_resolve_name,
804 stub_gnu_ifunc_resolver_stop,
805 stub_gnu_ifunc_resolver_return_stop,
806 };
807
808 /* A placeholder for &elf_gnu_ifunc_fns. */
809
810 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
811
812 /* See minsyms.h. */
813
814 struct bound_minimal_symbol
815 lookup_minimal_symbol_and_objfile (const char *name)
816 {
817 struct bound_minimal_symbol result;
818 struct objfile *objfile;
819 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
820
821 ALL_OBJFILES (objfile)
822 {
823 struct minimal_symbol *msym;
824
825 for (msym = objfile->msymbol_hash[hash];
826 msym != NULL;
827 msym = msym->hash_next)
828 {
829 if (strcmp (SYMBOL_LINKAGE_NAME (msym), name) == 0)
830 {
831 result.minsym = msym;
832 result.objfile = objfile;
833 return result;
834 }
835 }
836 }
837
838 memset (&result, 0, sizeof (result));
839 return result;
840 }
841 \f
842
843 /* Return leading symbol character for a BFD. If BFD is NULL,
844 return the leading symbol character from the main objfile. */
845
846 static int
847 get_symbol_leading_char (bfd *abfd)
848 {
849 if (abfd != NULL)
850 return bfd_get_symbol_leading_char (abfd);
851 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
852 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
853 return 0;
854 }
855
856 /* See minsyms.h. */
857
858 void
859 init_minimal_symbol_collection (void)
860 {
861 msym_count = 0;
862 msym_bunch = NULL;
863 /* Note that presetting msym_bunch_index to BUNCH_SIZE causes the
864 first call to save a minimal symbol to allocate the memory for
865 the first bunch. */
866 msym_bunch_index = BUNCH_SIZE;
867 }
868
869 /* See minsyms.h. */
870
871 void
872 prim_record_minimal_symbol (const char *name, CORE_ADDR address,
873 enum minimal_symbol_type ms_type,
874 struct objfile *objfile)
875 {
876 int section;
877
878 switch (ms_type)
879 {
880 case mst_text:
881 case mst_text_gnu_ifunc:
882 case mst_file_text:
883 case mst_solib_trampoline:
884 section = SECT_OFF_TEXT (objfile);
885 break;
886 case mst_data:
887 case mst_file_data:
888 section = SECT_OFF_DATA (objfile);
889 break;
890 case mst_bss:
891 case mst_file_bss:
892 section = SECT_OFF_BSS (objfile);
893 break;
894 default:
895 section = -1;
896 }
897
898 prim_record_minimal_symbol_and_info (name, address, ms_type,
899 section, objfile);
900 }
901
902 /* See minsyms.h. */
903
904 struct minimal_symbol *
905 prim_record_minimal_symbol_full (const char *name, int name_len, int copy_name,
906 CORE_ADDR address,
907 enum minimal_symbol_type ms_type,
908 int section,
909 struct objfile *objfile)
910 {
911 struct obj_section *obj_section;
912 struct msym_bunch *new;
913 struct minimal_symbol *msymbol;
914
915 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
916 the minimal symbols, because if there is also another symbol
917 at the same address (e.g. the first function of the file),
918 lookup_minimal_symbol_by_pc would have no way of getting the
919 right one. */
920 if (ms_type == mst_file_text && name[0] == 'g'
921 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
922 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
923 return (NULL);
924
925 /* It's safe to strip the leading char here once, since the name
926 is also stored stripped in the minimal symbol table. */
927 if (name[0] == get_symbol_leading_char (objfile->obfd))
928 {
929 ++name;
930 --name_len;
931 }
932
933 if (ms_type == mst_file_text && strncmp (name, "__gnu_compiled", 14) == 0)
934 return (NULL);
935
936 if (msym_bunch_index == BUNCH_SIZE)
937 {
938 new = XCALLOC (1, struct msym_bunch);
939 msym_bunch_index = 0;
940 new->next = msym_bunch;
941 msym_bunch = new;
942 }
943 msymbol = &msym_bunch->contents[msym_bunch_index];
944 SYMBOL_SET_LANGUAGE (msymbol, language_auto, &objfile->objfile_obstack);
945 SYMBOL_SET_NAMES (msymbol, name, name_len, copy_name, objfile);
946
947 SYMBOL_VALUE_ADDRESS (msymbol) = address;
948 SYMBOL_SECTION (msymbol) = section;
949
950 MSYMBOL_TYPE (msymbol) = ms_type;
951 MSYMBOL_TARGET_FLAG_1 (msymbol) = 0;
952 MSYMBOL_TARGET_FLAG_2 (msymbol) = 0;
953 /* Do not use the SET_MSYMBOL_SIZE macro to initialize the size,
954 as it would also set the has_size flag. */
955 msymbol->size = 0;
956
957 /* The hash pointers must be cleared! If they're not,
958 add_minsym_to_hash_table will NOT add this msymbol to the hash table. */
959 msymbol->hash_next = NULL;
960 msymbol->demangled_hash_next = NULL;
961
962 msym_bunch_index++;
963 msym_count++;
964 OBJSTAT (objfile, n_minsyms++);
965 return msymbol;
966 }
967
968 /* See minsyms.h. */
969
970 struct minimal_symbol *
971 prim_record_minimal_symbol_and_info (const char *name, CORE_ADDR address,
972 enum minimal_symbol_type ms_type,
973 int section,
974 struct objfile *objfile)
975 {
976 return prim_record_minimal_symbol_full (name, strlen (name), 1,
977 address, ms_type,
978 section, objfile);
979 }
980
981 /* Compare two minimal symbols by address and return a signed result based
982 on unsigned comparisons, so that we sort into unsigned numeric order.
983 Within groups with the same address, sort by name. */
984
985 static int
986 compare_minimal_symbols (const void *fn1p, const void *fn2p)
987 {
988 const struct minimal_symbol *fn1;
989 const struct minimal_symbol *fn2;
990
991 fn1 = (const struct minimal_symbol *) fn1p;
992 fn2 = (const struct minimal_symbol *) fn2p;
993
994 if (SYMBOL_VALUE_ADDRESS (fn1) < SYMBOL_VALUE_ADDRESS (fn2))
995 {
996 return (-1); /* addr 1 is less than addr 2. */
997 }
998 else if (SYMBOL_VALUE_ADDRESS (fn1) > SYMBOL_VALUE_ADDRESS (fn2))
999 {
1000 return (1); /* addr 1 is greater than addr 2. */
1001 }
1002 else
1003 /* addrs are equal: sort by name */
1004 {
1005 const char *name1 = SYMBOL_LINKAGE_NAME (fn1);
1006 const char *name2 = SYMBOL_LINKAGE_NAME (fn2);
1007
1008 if (name1 && name2) /* both have names */
1009 return strcmp (name1, name2);
1010 else if (name2)
1011 return 1; /* fn1 has no name, so it is "less". */
1012 else if (name1) /* fn2 has no name, so it is "less". */
1013 return -1;
1014 else
1015 return (0); /* Neither has a name, so they're equal. */
1016 }
1017 }
1018
1019 /* Discard the currently collected minimal symbols, if any. If we wish
1020 to save them for later use, we must have already copied them somewhere
1021 else before calling this function.
1022
1023 FIXME: We could allocate the minimal symbol bunches on their own
1024 obstack and then simply blow the obstack away when we are done with
1025 it. Is it worth the extra trouble though? */
1026
1027 static void
1028 do_discard_minimal_symbols_cleanup (void *arg)
1029 {
1030 struct msym_bunch *next;
1031
1032 while (msym_bunch != NULL)
1033 {
1034 next = msym_bunch->next;
1035 xfree (msym_bunch);
1036 msym_bunch = next;
1037 }
1038 }
1039
1040 /* See minsyms.h. */
1041
1042 struct cleanup *
1043 make_cleanup_discard_minimal_symbols (void)
1044 {
1045 return make_cleanup (do_discard_minimal_symbols_cleanup, 0);
1046 }
1047
1048
1049
1050 /* Compact duplicate entries out of a minimal symbol table by walking
1051 through the table and compacting out entries with duplicate addresses
1052 and matching names. Return the number of entries remaining.
1053
1054 On entry, the table resides between msymbol[0] and msymbol[mcount].
1055 On exit, it resides between msymbol[0] and msymbol[result_count].
1056
1057 When files contain multiple sources of symbol information, it is
1058 possible for the minimal symbol table to contain many duplicate entries.
1059 As an example, SVR4 systems use ELF formatted object files, which
1060 usually contain at least two different types of symbol tables (a
1061 standard ELF one and a smaller dynamic linking table), as well as
1062 DWARF debugging information for files compiled with -g.
1063
1064 Without compacting, the minimal symbol table for gdb itself contains
1065 over a 1000 duplicates, about a third of the total table size. Aside
1066 from the potential trap of not noticing that two successive entries
1067 identify the same location, this duplication impacts the time required
1068 to linearly scan the table, which is done in a number of places. So we
1069 just do one linear scan here and toss out the duplicates.
1070
1071 Note that we are not concerned here about recovering the space that
1072 is potentially freed up, because the strings themselves are allocated
1073 on the objfile_obstack, and will get automatically freed when the symbol
1074 table is freed. The caller can free up the unused minimal symbols at
1075 the end of the compacted region if their allocation strategy allows it.
1076
1077 Also note we only go up to the next to last entry within the loop
1078 and then copy the last entry explicitly after the loop terminates.
1079
1080 Since the different sources of information for each symbol may
1081 have different levels of "completeness", we may have duplicates
1082 that have one entry with type "mst_unknown" and the other with a
1083 known type. So if the one we are leaving alone has type mst_unknown,
1084 overwrite its type with the type from the one we are compacting out. */
1085
1086 static int
1087 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1088 struct objfile *objfile)
1089 {
1090 struct minimal_symbol *copyfrom;
1091 struct minimal_symbol *copyto;
1092
1093 if (mcount > 0)
1094 {
1095 copyfrom = copyto = msymbol;
1096 while (copyfrom < msymbol + mcount - 1)
1097 {
1098 if (SYMBOL_VALUE_ADDRESS (copyfrom)
1099 == SYMBOL_VALUE_ADDRESS ((copyfrom + 1))
1100 && strcmp (SYMBOL_LINKAGE_NAME (copyfrom),
1101 SYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1102 {
1103 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1104 {
1105 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1106 }
1107 copyfrom++;
1108 }
1109 else
1110 *copyto++ = *copyfrom++;
1111 }
1112 *copyto++ = *copyfrom++;
1113 mcount = copyto - msymbol;
1114 }
1115 return (mcount);
1116 }
1117
1118 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1119 after compacting or sorting the table since the entries move around
1120 thus causing the internal minimal_symbol pointers to become jumbled. */
1121
1122 static void
1123 build_minimal_symbol_hash_tables (struct objfile *objfile)
1124 {
1125 int i;
1126 struct minimal_symbol *msym;
1127
1128 /* Clear the hash tables. */
1129 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1130 {
1131 objfile->msymbol_hash[i] = 0;
1132 objfile->msymbol_demangled_hash[i] = 0;
1133 }
1134
1135 /* Now, (re)insert the actual entries. */
1136 for (i = objfile->minimal_symbol_count, msym = objfile->msymbols;
1137 i > 0;
1138 i--, msym++)
1139 {
1140 msym->hash_next = 0;
1141 add_minsym_to_hash_table (msym, objfile->msymbol_hash);
1142
1143 msym->demangled_hash_next = 0;
1144 if (SYMBOL_SEARCH_NAME (msym) != SYMBOL_LINKAGE_NAME (msym))
1145 add_minsym_to_demangled_hash_table (msym,
1146 objfile->msymbol_demangled_hash);
1147 }
1148 }
1149
1150 /* Add the minimal symbols in the existing bunches to the objfile's official
1151 minimal symbol table. In most cases there is no minimal symbol table yet
1152 for this objfile, and the existing bunches are used to create one. Once
1153 in a while (for shared libraries for example), we add symbols (e.g. common
1154 symbols) to an existing objfile.
1155
1156 Because of the way minimal symbols are collected, we generally have no way
1157 of knowing what source language applies to any particular minimal symbol.
1158 Specifically, we have no way of knowing if the minimal symbol comes from a
1159 C++ compilation unit or not. So for the sake of supporting cached
1160 demangled C++ names, we have no choice but to try and demangle each new one
1161 that comes in. If the demangling succeeds, then we assume it is a C++
1162 symbol and set the symbol's language and demangled name fields
1163 appropriately. Note that in order to avoid unnecessary demanglings, and
1164 allocating obstack space that subsequently can't be freed for the demangled
1165 names, we mark all newly added symbols with language_auto. After
1166 compaction of the minimal symbols, we go back and scan the entire minimal
1167 symbol table looking for these new symbols. For each new symbol we attempt
1168 to demangle it, and if successful, record it as a language_cplus symbol
1169 and cache the demangled form on the symbol obstack. Symbols which don't
1170 demangle are marked as language_unknown symbols, which inhibits future
1171 attempts to demangle them if we later add more minimal symbols. */
1172
1173 void
1174 install_minimal_symbols (struct objfile *objfile)
1175 {
1176 int bindex;
1177 int mcount;
1178 struct msym_bunch *bunch;
1179 struct minimal_symbol *msymbols;
1180 int alloc_count;
1181
1182 if (msym_count > 0)
1183 {
1184 if (symtab_create_debug)
1185 {
1186 fprintf_unfiltered (gdb_stdlog,
1187 "Installing %d minimal symbols of objfile %s.\n",
1188 msym_count, objfile_name (objfile));
1189 }
1190
1191 /* Allocate enough space in the obstack, into which we will gather the
1192 bunches of new and existing minimal symbols, sort them, and then
1193 compact out the duplicate entries. Once we have a final table,
1194 we will give back the excess space. */
1195
1196 alloc_count = msym_count + objfile->minimal_symbol_count + 1;
1197 obstack_blank (&objfile->objfile_obstack,
1198 alloc_count * sizeof (struct minimal_symbol));
1199 msymbols = (struct minimal_symbol *)
1200 obstack_base (&objfile->objfile_obstack);
1201
1202 /* Copy in the existing minimal symbols, if there are any. */
1203
1204 if (objfile->minimal_symbol_count)
1205 memcpy ((char *) msymbols, (char *) objfile->msymbols,
1206 objfile->minimal_symbol_count * sizeof (struct minimal_symbol));
1207
1208 /* Walk through the list of minimal symbol bunches, adding each symbol
1209 to the new contiguous array of symbols. Note that we start with the
1210 current, possibly partially filled bunch (thus we use the current
1211 msym_bunch_index for the first bunch we copy over), and thereafter
1212 each bunch is full. */
1213
1214 mcount = objfile->minimal_symbol_count;
1215
1216 for (bunch = msym_bunch; bunch != NULL; bunch = bunch->next)
1217 {
1218 for (bindex = 0; bindex < msym_bunch_index; bindex++, mcount++)
1219 msymbols[mcount] = bunch->contents[bindex];
1220 msym_bunch_index = BUNCH_SIZE;
1221 }
1222
1223 /* Sort the minimal symbols by address. */
1224
1225 qsort (msymbols, mcount, sizeof (struct minimal_symbol),
1226 compare_minimal_symbols);
1227
1228 /* Compact out any duplicates, and free up whatever space we are
1229 no longer using. */
1230
1231 mcount = compact_minimal_symbols (msymbols, mcount, objfile);
1232
1233 obstack_blank (&objfile->objfile_obstack,
1234 (mcount + 1 - alloc_count) * sizeof (struct minimal_symbol));
1235 msymbols = (struct minimal_symbol *)
1236 obstack_finish (&objfile->objfile_obstack);
1237
1238 /* We also terminate the minimal symbol table with a "null symbol",
1239 which is *not* included in the size of the table. This makes it
1240 easier to find the end of the table when we are handed a pointer
1241 to some symbol in the middle of it. Zero out the fields in the
1242 "null symbol" allocated at the end of the array. Note that the
1243 symbol count does *not* include this null symbol, which is why it
1244 is indexed by mcount and not mcount-1. */
1245
1246 memset (&msymbols[mcount], 0, sizeof (struct minimal_symbol));
1247
1248 /* Attach the minimal symbol table to the specified objfile.
1249 The strings themselves are also located in the objfile_obstack
1250 of this objfile. */
1251
1252 objfile->minimal_symbol_count = mcount;
1253 objfile->msymbols = msymbols;
1254
1255 /* Now build the hash tables; we can't do this incrementally
1256 at an earlier point since we weren't finished with the obstack
1257 yet. (And if the msymbol obstack gets moved, all the internal
1258 pointers to other msymbols need to be adjusted.) */
1259 build_minimal_symbol_hash_tables (objfile);
1260 }
1261 }
1262
1263 /* See minsyms.h. */
1264
1265 void
1266 terminate_minimal_symbol_table (struct objfile *objfile)
1267 {
1268 if (! objfile->msymbols)
1269 objfile->msymbols = ((struct minimal_symbol *)
1270 obstack_alloc (&objfile->objfile_obstack,
1271 sizeof (objfile->msymbols[0])));
1272
1273 {
1274 struct minimal_symbol *m
1275 = &objfile->msymbols[objfile->minimal_symbol_count];
1276
1277 memset (m, 0, sizeof (*m));
1278 /* Don't rely on these enumeration values being 0's. */
1279 MSYMBOL_TYPE (m) = mst_unknown;
1280 SYMBOL_SET_LANGUAGE (m, language_unknown, &objfile->objfile_obstack);
1281 }
1282 }
1283
1284 /* Sort all the minimal symbols in OBJFILE. */
1285
1286 void
1287 msymbols_sort (struct objfile *objfile)
1288 {
1289 qsort (objfile->msymbols, objfile->minimal_symbol_count,
1290 sizeof (struct minimal_symbol), compare_minimal_symbols);
1291 build_minimal_symbol_hash_tables (objfile);
1292 }
1293
1294 /* Check if PC is in a shared library trampoline code stub.
1295 Return minimal symbol for the trampoline entry or NULL if PC is not
1296 in a trampoline code stub. */
1297
1298 static struct minimal_symbol *
1299 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1300 {
1301 struct obj_section *section = find_pc_section (pc);
1302 struct bound_minimal_symbol msymbol;
1303
1304 if (section == NULL)
1305 return NULL;
1306 msymbol = lookup_minimal_symbol_by_pc_section_1 (pc, section, 1);
1307
1308 if (msymbol.minsym != NULL
1309 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1310 return msymbol.minsym;
1311 return NULL;
1312 }
1313
1314 /* If PC is in a shared library trampoline code stub, return the
1315 address of the `real' function belonging to the stub.
1316 Return 0 if PC is not in a trampoline code stub or if the real
1317 function is not found in the minimal symbol table.
1318
1319 We may fail to find the right function if a function with the
1320 same name is defined in more than one shared library, but this
1321 is considered bad programming style. We could return 0 if we find
1322 a duplicate function in case this matters someday. */
1323
1324 CORE_ADDR
1325 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1326 {
1327 struct objfile *objfile;
1328 struct minimal_symbol *msymbol;
1329 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1330
1331 if (tsymbol != NULL)
1332 {
1333 ALL_MSYMBOLS (objfile, msymbol)
1334 {
1335 if ((MSYMBOL_TYPE (msymbol) == mst_text
1336 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc)
1337 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1338 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1339 return SYMBOL_VALUE_ADDRESS (msymbol);
1340
1341 /* Also handle minimal symbols pointing to function descriptors. */
1342 if (MSYMBOL_TYPE (msymbol) == mst_data
1343 && strcmp (SYMBOL_LINKAGE_NAME (msymbol),
1344 SYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1345 {
1346 CORE_ADDR func;
1347
1348 func = gdbarch_convert_from_func_ptr_addr
1349 (get_objfile_arch (objfile),
1350 SYMBOL_VALUE_ADDRESS (msymbol),
1351 &current_target);
1352
1353 /* Ignore data symbols that are not function descriptors. */
1354 if (func != SYMBOL_VALUE_ADDRESS (msymbol))
1355 return func;
1356 }
1357 }
1358 }
1359 return 0;
1360 }