]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/mips-tdep.c
d6560604304de0a3d378a7ed335d16882b9579cd
[thirdparty/binutils-gdb.git] / gdb / mips-tdep.c
1 /* Target-dependent code for the MIPS architecture, for GDB, the GNU Debugger.
2
3 Copyright 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, 1996,
4 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software
5 Foundation, Inc.
6
7 Contributed by Alessandro Forin(af@cs.cmu.edu) at CMU
8 and by Per Bothner(bothner@cs.wisc.edu) at U.Wisconsin.
9
10 This file is part of GDB.
11
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
16
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
21
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the Free Software
24 Foundation, Inc., 59 Temple Place - Suite 330,
25 Boston, MA 02111-1307, USA. */
26
27 #include "defs.h"
28 #include "gdb_string.h"
29 #include "gdb_assert.h"
30 #include "frame.h"
31 #include "inferior.h"
32 #include "symtab.h"
33 #include "value.h"
34 #include "gdbcmd.h"
35 #include "language.h"
36 #include "gdbcore.h"
37 #include "symfile.h"
38 #include "objfiles.h"
39 #include "gdbtypes.h"
40 #include "target.h"
41 #include "arch-utils.h"
42 #include "regcache.h"
43 #include "osabi.h"
44 #include "mips-tdep.h"
45 #include "block.h"
46 #include "reggroups.h"
47 #include "opcode/mips.h"
48 #include "elf/mips.h"
49 #include "elf-bfd.h"
50 #include "symcat.h"
51 #include "sim-regno.h"
52 #include "dis-asm.h"
53 #include "frame-unwind.h"
54 #include "frame-base.h"
55 #include "trad-frame.h"
56 #include "infcall.h"
57 #include "floatformat.h"
58
59 static const struct objfile_data *mips_pdr_data;
60
61 static struct type *mips_register_type (struct gdbarch *gdbarch, int regnum);
62
63 /* A useful bit in the CP0 status register (MIPS_PS_REGNUM). */
64 /* This bit is set if we are emulating 32-bit FPRs on a 64-bit chip. */
65 #define ST0_FR (1 << 26)
66
67 /* The sizes of floating point registers. */
68
69 enum
70 {
71 MIPS_FPU_SINGLE_REGSIZE = 4,
72 MIPS_FPU_DOUBLE_REGSIZE = 8
73 };
74
75
76 static const char *mips_abi_string;
77
78 static const char *mips_abi_strings[] = {
79 "auto",
80 "n32",
81 "o32",
82 "n64",
83 "o64",
84 "eabi32",
85 "eabi64",
86 NULL
87 };
88
89 /* Various MIPS ISA options (related to stack analysis) can be
90 overridden dynamically. Establish an enum/array for managing
91 them. */
92
93 static const char size_auto[] = "auto";
94 static const char size_32[] = "32";
95 static const char size_64[] = "64";
96
97 static const char *size_enums[] = {
98 size_auto,
99 size_32,
100 size_64,
101 0
102 };
103
104 /* Some MIPS boards don't support floating point while others only
105 support single-precision floating-point operations. */
106
107 enum mips_fpu_type
108 {
109 MIPS_FPU_DOUBLE, /* Full double precision floating point. */
110 MIPS_FPU_SINGLE, /* Single precision floating point (R4650). */
111 MIPS_FPU_NONE /* No floating point. */
112 };
113
114 #ifndef MIPS_DEFAULT_FPU_TYPE
115 #define MIPS_DEFAULT_FPU_TYPE MIPS_FPU_DOUBLE
116 #endif
117 static int mips_fpu_type_auto = 1;
118 static enum mips_fpu_type mips_fpu_type = MIPS_DEFAULT_FPU_TYPE;
119
120 static int mips_debug = 0;
121
122 /* MIPS specific per-architecture information */
123 struct gdbarch_tdep
124 {
125 /* from the elf header */
126 int elf_flags;
127
128 /* mips options */
129 enum mips_abi mips_abi;
130 enum mips_abi found_abi;
131 enum mips_fpu_type mips_fpu_type;
132 int mips_last_arg_regnum;
133 int mips_last_fp_arg_regnum;
134 int default_mask_address_p;
135 /* Is the target using 64-bit raw integer registers but only
136 storing a left-aligned 32-bit value in each? */
137 int mips64_transfers_32bit_regs_p;
138 /* Indexes for various registers. IRIX and embedded have
139 different values. This contains the "public" fields. Don't
140 add any that do not need to be public. */
141 const struct mips_regnum *regnum;
142 /* Register names table for the current register set. */
143 const char **mips_processor_reg_names;
144 };
145
146 static int
147 n32n64_floatformat_always_valid (const struct floatformat *fmt,
148 const char *from)
149 {
150 return 1;
151 }
152
153 /* FIXME: brobecker/2004-08-08: Long Double values are 128 bit long.
154 They are implemented as a pair of 64bit doubles where the high
155 part holds the result of the operation rounded to double, and
156 the low double holds the difference between the exact result and
157 the rounded result. So "high" + "low" contains the result with
158 added precision. Unfortunately, the floatformat structure used
159 by GDB is not powerful enough to describe this format. As a temporary
160 measure, we define a 128bit floatformat that only uses the high part.
161 We lose a bit of precision but that's probably the best we can do
162 for now with the current infrastructure. */
163
164 static const struct floatformat floatformat_n32n64_long_double_big =
165 {
166 floatformat_big, 128, 0, 1, 11, 1023, 2047, 12, 52,
167 floatformat_intbit_no,
168 "floatformat_ieee_double_big",
169 n32n64_floatformat_always_valid
170 };
171
172 const struct mips_regnum *
173 mips_regnum (struct gdbarch *gdbarch)
174 {
175 return gdbarch_tdep (gdbarch)->regnum;
176 }
177
178 static int
179 mips_fpa0_regnum (struct gdbarch *gdbarch)
180 {
181 return mips_regnum (gdbarch)->fp0 + 12;
182 }
183
184 #define MIPS_EABI (gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI32 \
185 || gdbarch_tdep (current_gdbarch)->mips_abi == MIPS_ABI_EABI64)
186
187 #define MIPS_LAST_FP_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_fp_arg_regnum)
188
189 #define MIPS_LAST_ARG_REGNUM (gdbarch_tdep (current_gdbarch)->mips_last_arg_regnum)
190
191 #define MIPS_FPU_TYPE (gdbarch_tdep (current_gdbarch)->mips_fpu_type)
192
193 /* MIPS16 function addresses are odd (bit 0 is set). Here are some
194 functions to test, set, or clear bit 0 of addresses. */
195
196 static CORE_ADDR
197 is_mips16_addr (CORE_ADDR addr)
198 {
199 return ((addr) & 1);
200 }
201
202 static CORE_ADDR
203 unmake_mips16_addr (CORE_ADDR addr)
204 {
205 return ((addr) & ~1);
206 }
207
208 /* Return the contents of register REGNUM as a signed integer. */
209
210 static LONGEST
211 read_signed_register (int regnum)
212 {
213 LONGEST val;
214 regcache_cooked_read_signed (current_regcache, regnum, &val);
215 return val;
216 }
217
218 static LONGEST
219 read_signed_register_pid (int regnum, ptid_t ptid)
220 {
221 ptid_t save_ptid;
222 LONGEST retval;
223
224 if (ptid_equal (ptid, inferior_ptid))
225 return read_signed_register (regnum);
226
227 save_ptid = inferior_ptid;
228
229 inferior_ptid = ptid;
230
231 retval = read_signed_register (regnum);
232
233 inferior_ptid = save_ptid;
234
235 return retval;
236 }
237
238 /* Return the MIPS ABI associated with GDBARCH. */
239 enum mips_abi
240 mips_abi (struct gdbarch *gdbarch)
241 {
242 return gdbarch_tdep (gdbarch)->mips_abi;
243 }
244
245 int
246 mips_isa_regsize (struct gdbarch *gdbarch)
247 {
248 return (gdbarch_bfd_arch_info (gdbarch)->bits_per_word
249 / gdbarch_bfd_arch_info (gdbarch)->bits_per_byte);
250 }
251
252 /* Return the currently configured (or set) saved register size. */
253
254 static const char *mips_abi_regsize_string = size_auto;
255
256 unsigned int
257 mips_abi_regsize (struct gdbarch *gdbarch)
258 {
259 if (mips_abi_regsize_string == size_auto)
260 switch (mips_abi (gdbarch))
261 {
262 case MIPS_ABI_EABI32:
263 case MIPS_ABI_O32:
264 return 4;
265 case MIPS_ABI_N32:
266 case MIPS_ABI_N64:
267 case MIPS_ABI_O64:
268 case MIPS_ABI_EABI64:
269 return 8;
270 case MIPS_ABI_UNKNOWN:
271 case MIPS_ABI_LAST:
272 default:
273 internal_error (__FILE__, __LINE__, "bad switch");
274 }
275 else if (mips_abi_regsize_string == size_64)
276 return 8;
277 else /* if (mips_abi_regsize_string == size_32) */
278 return 4;
279 }
280
281 /* Functions for setting and testing a bit in a minimal symbol that
282 marks it as 16-bit function. The MSB of the minimal symbol's
283 "info" field is used for this purpose.
284
285 ELF_MAKE_MSYMBOL_SPECIAL tests whether an ELF symbol is "special",
286 i.e. refers to a 16-bit function, and sets a "special" bit in a
287 minimal symbol to mark it as a 16-bit function
288
289 MSYMBOL_IS_SPECIAL tests the "special" bit in a minimal symbol */
290
291 static void
292 mips_elf_make_msymbol_special (asymbol * sym, struct minimal_symbol *msym)
293 {
294 if (((elf_symbol_type *) (sym))->internal_elf_sym.st_other == STO_MIPS16)
295 {
296 MSYMBOL_INFO (msym) = (char *)
297 (((long) MSYMBOL_INFO (msym)) | 0x80000000);
298 SYMBOL_VALUE_ADDRESS (msym) |= 1;
299 }
300 }
301
302 static int
303 msymbol_is_special (struct minimal_symbol *msym)
304 {
305 return (((long) MSYMBOL_INFO (msym) & 0x80000000) != 0);
306 }
307
308 /* XFER a value from the big/little/left end of the register.
309 Depending on the size of the value it might occupy the entire
310 register or just part of it. Make an allowance for this, aligning
311 things accordingly. */
312
313 static void
314 mips_xfer_register (struct regcache *regcache, int reg_num, int length,
315 enum bfd_endian endian, bfd_byte * in,
316 const bfd_byte * out, int buf_offset)
317 {
318 int reg_offset = 0;
319 gdb_assert (reg_num >= NUM_REGS);
320 /* Need to transfer the left or right part of the register, based on
321 the targets byte order. */
322 switch (endian)
323 {
324 case BFD_ENDIAN_BIG:
325 reg_offset = register_size (current_gdbarch, reg_num) - length;
326 break;
327 case BFD_ENDIAN_LITTLE:
328 reg_offset = 0;
329 break;
330 case BFD_ENDIAN_UNKNOWN: /* Indicates no alignment. */
331 reg_offset = 0;
332 break;
333 default:
334 internal_error (__FILE__, __LINE__, "bad switch");
335 }
336 if (mips_debug)
337 fprintf_unfiltered (gdb_stderr,
338 "xfer $%d, reg offset %d, buf offset %d, length %d, ",
339 reg_num, reg_offset, buf_offset, length);
340 if (mips_debug && out != NULL)
341 {
342 int i;
343 fprintf_unfiltered (gdb_stdlog, "out ");
344 for (i = 0; i < length; i++)
345 fprintf_unfiltered (gdb_stdlog, "%02x", out[buf_offset + i]);
346 }
347 if (in != NULL)
348 regcache_cooked_read_part (regcache, reg_num, reg_offset, length,
349 in + buf_offset);
350 if (out != NULL)
351 regcache_cooked_write_part (regcache, reg_num, reg_offset, length,
352 out + buf_offset);
353 if (mips_debug && in != NULL)
354 {
355 int i;
356 fprintf_unfiltered (gdb_stdlog, "in ");
357 for (i = 0; i < length; i++)
358 fprintf_unfiltered (gdb_stdlog, "%02x", in[buf_offset + i]);
359 }
360 if (mips_debug)
361 fprintf_unfiltered (gdb_stdlog, "\n");
362 }
363
364 /* Determine if a MIPS3 or later cpu is operating in MIPS{1,2} FPU
365 compatiblity mode. A return value of 1 means that we have
366 physical 64-bit registers, but should treat them as 32-bit registers. */
367
368 static int
369 mips2_fp_compat (void)
370 {
371 /* MIPS1 and MIPS2 have only 32 bit FPRs, and the FR bit is not
372 meaningful. */
373 if (register_size (current_gdbarch, mips_regnum (current_gdbarch)->fp0) ==
374 4)
375 return 0;
376
377 #if 0
378 /* FIXME drow 2002-03-10: This is disabled until we can do it consistently,
379 in all the places we deal with FP registers. PR gdb/413. */
380 /* Otherwise check the FR bit in the status register - it controls
381 the FP compatiblity mode. If it is clear we are in compatibility
382 mode. */
383 if ((read_register (MIPS_PS_REGNUM) & ST0_FR) == 0)
384 return 1;
385 #endif
386
387 return 0;
388 }
389
390 /* The amount of space reserved on the stack for registers. This is
391 different to MIPS_ABI_REGSIZE as it determines the alignment of
392 data allocated after the registers have run out. */
393
394 static const char *mips_stack_argsize_string = size_auto;
395
396 static unsigned int
397 mips_stack_argsize (struct gdbarch *gdbarch)
398 {
399 if (mips_stack_argsize_string == size_auto)
400 return mips_abi_regsize (gdbarch);
401 else if (mips_stack_argsize_string == size_64)
402 return 8;
403 else /* if (mips_stack_argsize_string == size_32) */
404 return 4;
405 }
406
407 #define VM_MIN_ADDRESS (CORE_ADDR)0x400000
408
409 static CORE_ADDR heuristic_proc_start (CORE_ADDR);
410
411 static CORE_ADDR read_next_frame_reg (struct frame_info *, int);
412
413 static void reinit_frame_cache_sfunc (char *, int, struct cmd_list_element *);
414
415 static struct type *mips_float_register_type (void);
416 static struct type *mips_double_register_type (void);
417
418 /* The list of available "set mips " and "show mips " commands */
419
420 static struct cmd_list_element *setmipscmdlist = NULL;
421 static struct cmd_list_element *showmipscmdlist = NULL;
422
423 /* Integer registers 0 thru 31 are handled explicitly by
424 mips_register_name(). Processor specific registers 32 and above
425 are listed in the followign tables. */
426
427 enum
428 { NUM_MIPS_PROCESSOR_REGS = (90 - 32) };
429
430 /* Generic MIPS. */
431
432 static const char *mips_generic_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
433 "sr", "lo", "hi", "bad", "cause", "pc",
434 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
435 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
436 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
437 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
438 "fsr", "fir", "" /*"fp" */ , "",
439 "", "", "", "", "", "", "", "",
440 "", "", "", "", "", "", "", "",
441 };
442
443 /* Names of IDT R3041 registers. */
444
445 static const char *mips_r3041_reg_names[] = {
446 "sr", "lo", "hi", "bad", "cause", "pc",
447 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
448 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
449 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
450 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
451 "fsr", "fir", "", /*"fp" */ "",
452 "", "", "bus", "ccfg", "", "", "", "",
453 "", "", "port", "cmp", "", "", "epc", "prid",
454 };
455
456 /* Names of tx39 registers. */
457
458 static const char *mips_tx39_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
459 "sr", "lo", "hi", "bad", "cause", "pc",
460 "", "", "", "", "", "", "", "",
461 "", "", "", "", "", "", "", "",
462 "", "", "", "", "", "", "", "",
463 "", "", "", "", "", "", "", "",
464 "", "", "", "",
465 "", "", "", "", "", "", "", "",
466 "", "", "config", "cache", "debug", "depc", "epc", ""
467 };
468
469 /* Names of IRIX registers. */
470 static const char *mips_irix_reg_names[NUM_MIPS_PROCESSOR_REGS] = {
471 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
472 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
473 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
474 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
475 "pc", "cause", "bad", "hi", "lo", "fsr", "fir"
476 };
477
478
479 /* Return the name of the register corresponding to REGNO. */
480 static const char *
481 mips_register_name (int regno)
482 {
483 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
484 /* GPR names for all ABIs other than n32/n64. */
485 static char *mips_gpr_names[] = {
486 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
487 "t0", "t1", "t2", "t3", "t4", "t5", "t6", "t7",
488 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
489 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra",
490 };
491
492 /* GPR names for n32 and n64 ABIs. */
493 static char *mips_n32_n64_gpr_names[] = {
494 "zero", "at", "v0", "v1", "a0", "a1", "a2", "a3",
495 "a4", "a5", "a6", "a7", "t0", "t1", "t2", "t3",
496 "s0", "s1", "s2", "s3", "s4", "s5", "s6", "s7",
497 "t8", "t9", "k0", "k1", "gp", "sp", "s8", "ra"
498 };
499
500 enum mips_abi abi = mips_abi (current_gdbarch);
501
502 /* Map [NUM_REGS .. 2*NUM_REGS) onto the raw registers, but then
503 don't make the raw register names visible. */
504 int rawnum = regno % NUM_REGS;
505 if (regno < NUM_REGS)
506 return "";
507
508 /* The MIPS integer registers are always mapped from 0 to 31. The
509 names of the registers (which reflects the conventions regarding
510 register use) vary depending on the ABI. */
511 if (0 <= rawnum && rawnum < 32)
512 {
513 if (abi == MIPS_ABI_N32 || abi == MIPS_ABI_N64)
514 return mips_n32_n64_gpr_names[rawnum];
515 else
516 return mips_gpr_names[rawnum];
517 }
518 else if (32 <= rawnum && rawnum < NUM_REGS)
519 {
520 gdb_assert (rawnum - 32 < NUM_MIPS_PROCESSOR_REGS);
521 return tdep->mips_processor_reg_names[rawnum - 32];
522 }
523 else
524 internal_error (__FILE__, __LINE__,
525 "mips_register_name: bad register number %d", rawnum);
526 }
527
528 /* Return the groups that a MIPS register can be categorised into. */
529
530 static int
531 mips_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
532 struct reggroup *reggroup)
533 {
534 int vector_p;
535 int float_p;
536 int raw_p;
537 int rawnum = regnum % NUM_REGS;
538 int pseudo = regnum / NUM_REGS;
539 if (reggroup == all_reggroup)
540 return pseudo;
541 vector_p = TYPE_VECTOR (register_type (gdbarch, regnum));
542 float_p = TYPE_CODE (register_type (gdbarch, regnum)) == TYPE_CODE_FLT;
543 /* FIXME: cagney/2003-04-13: Can't yet use gdbarch_num_regs
544 (gdbarch), as not all architectures are multi-arch. */
545 raw_p = rawnum < NUM_REGS;
546 if (REGISTER_NAME (regnum) == NULL || REGISTER_NAME (regnum)[0] == '\0')
547 return 0;
548 if (reggroup == float_reggroup)
549 return float_p && pseudo;
550 if (reggroup == vector_reggroup)
551 return vector_p && pseudo;
552 if (reggroup == general_reggroup)
553 return (!vector_p && !float_p) && pseudo;
554 /* Save the pseudo registers. Need to make certain that any code
555 extracting register values from a saved register cache also uses
556 pseudo registers. */
557 if (reggroup == save_reggroup)
558 return raw_p && pseudo;
559 /* Restore the same pseudo register. */
560 if (reggroup == restore_reggroup)
561 return raw_p && pseudo;
562 return 0;
563 }
564
565 /* Map the symbol table registers which live in the range [1 *
566 NUM_REGS .. 2 * NUM_REGS) back onto the corresponding raw
567 registers. Take care of alignment and size problems. */
568
569 static void
570 mips_pseudo_register_read (struct gdbarch *gdbarch, struct regcache *regcache,
571 int cookednum, void *buf)
572 {
573 int rawnum = cookednum % NUM_REGS;
574 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
575 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
576 regcache_raw_read (regcache, rawnum, buf);
577 else if (register_size (gdbarch, rawnum) >
578 register_size (gdbarch, cookednum))
579 {
580 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
581 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
582 regcache_raw_read_part (regcache, rawnum, 0, 4, buf);
583 else
584 regcache_raw_read_part (regcache, rawnum, 4, 4, buf);
585 }
586 else
587 internal_error (__FILE__, __LINE__, "bad register size");
588 }
589
590 static void
591 mips_pseudo_register_write (struct gdbarch *gdbarch,
592 struct regcache *regcache, int cookednum,
593 const void *buf)
594 {
595 int rawnum = cookednum % NUM_REGS;
596 gdb_assert (cookednum >= NUM_REGS && cookednum < 2 * NUM_REGS);
597 if (register_size (gdbarch, rawnum) == register_size (gdbarch, cookednum))
598 regcache_raw_write (regcache, rawnum, buf);
599 else if (register_size (gdbarch, rawnum) >
600 register_size (gdbarch, cookednum))
601 {
602 if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p
603 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE)
604 regcache_raw_write_part (regcache, rawnum, 0, 4, buf);
605 else
606 regcache_raw_write_part (regcache, rawnum, 4, 4, buf);
607 }
608 else
609 internal_error (__FILE__, __LINE__, "bad register size");
610 }
611
612 /* Table to translate MIPS16 register field to actual register number. */
613 static int mips16_to_32_reg[8] = { 16, 17, 2, 3, 4, 5, 6, 7 };
614
615 /* Heuristic_proc_start may hunt through the text section for a long
616 time across a 2400 baud serial line. Allows the user to limit this
617 search. */
618
619 static unsigned int heuristic_fence_post = 0;
620
621 /* Number of bytes of storage in the actual machine representation for
622 register N. NOTE: This defines the pseudo register type so need to
623 rebuild the architecture vector. */
624
625 static int mips64_transfers_32bit_regs_p = 0;
626
627 static void
628 set_mips64_transfers_32bit_regs (char *args, int from_tty,
629 struct cmd_list_element *c)
630 {
631 struct gdbarch_info info;
632 gdbarch_info_init (&info);
633 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
634 instead of relying on globals. Doing that would let generic code
635 handle the search for this specific architecture. */
636 if (!gdbarch_update_p (info))
637 {
638 mips64_transfers_32bit_regs_p = 0;
639 error ("32-bit compatibility mode not supported");
640 }
641 }
642
643 /* Convert to/from a register and the corresponding memory value. */
644
645 static int
646 mips_convert_register_p (int regnum, struct type *type)
647 {
648 return (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
649 && register_size (current_gdbarch, regnum) == 4
650 && (regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
651 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32
652 && TYPE_CODE (type) == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8);
653 }
654
655 static void
656 mips_register_to_value (struct frame_info *frame, int regnum,
657 struct type *type, void *to)
658 {
659 get_frame_register (frame, regnum + 0, (char *) to + 4);
660 get_frame_register (frame, regnum + 1, (char *) to + 0);
661 }
662
663 static void
664 mips_value_to_register (struct frame_info *frame, int regnum,
665 struct type *type, const void *from)
666 {
667 put_frame_register (frame, regnum + 0, (const char *) from + 4);
668 put_frame_register (frame, regnum + 1, (const char *) from + 0);
669 }
670
671 /* Return the GDB type object for the "standard" data type of data in
672 register REG. */
673
674 static struct type *
675 mips_register_type (struct gdbarch *gdbarch, int regnum)
676 {
677 gdb_assert (regnum >= 0 && regnum < 2 * NUM_REGS);
678 if ((regnum % NUM_REGS) >= mips_regnum (current_gdbarch)->fp0
679 && (regnum % NUM_REGS) < mips_regnum (current_gdbarch)->fp0 + 32)
680 {
681 /* The floating-point registers raw, or cooked, always match
682 mips_isa_regsize(), and also map 1:1, byte for byte. */
683 switch (gdbarch_byte_order (gdbarch))
684 {
685 case BFD_ENDIAN_BIG:
686 if (mips_isa_regsize (gdbarch) == 4)
687 return builtin_type_ieee_single_big;
688 else
689 return builtin_type_ieee_double_big;
690 case BFD_ENDIAN_LITTLE:
691 if (mips_isa_regsize (gdbarch) == 4)
692 return builtin_type_ieee_single_little;
693 else
694 return builtin_type_ieee_double_little;
695 case BFD_ENDIAN_UNKNOWN:
696 default:
697 internal_error (__FILE__, __LINE__, "bad switch");
698 }
699 }
700 else if (regnum < NUM_REGS)
701 {
702 /* The raw or ISA registers. These are all sized according to
703 the ISA regsize. */
704 if (mips_isa_regsize (gdbarch) == 4)
705 return builtin_type_int32;
706 else
707 return builtin_type_int64;
708 }
709 else
710 {
711 /* The cooked or ABI registers. These are sized according to
712 the ABI (with a few complications). */
713 if (regnum >= (NUM_REGS
714 + mips_regnum (current_gdbarch)->fp_control_status)
715 && regnum <= NUM_REGS + MIPS_LAST_EMBED_REGNUM)
716 /* The pseudo/cooked view of the embedded registers is always
717 32-bit. The raw view is handled below. */
718 return builtin_type_int32;
719 else if (gdbarch_tdep (gdbarch)->mips64_transfers_32bit_regs_p)
720 /* The target, while possibly using a 64-bit register buffer,
721 is only transfering 32-bits of each integer register.
722 Reflect this in the cooked/pseudo (ABI) register value. */
723 return builtin_type_int32;
724 else if (mips_abi_regsize (gdbarch) == 4)
725 /* The ABI is restricted to 32-bit registers (the ISA could be
726 32- or 64-bit). */
727 return builtin_type_int32;
728 else
729 /* 64-bit ABI. */
730 return builtin_type_int64;
731 }
732 }
733
734 /* TARGET_READ_SP -- Remove useless bits from the stack pointer. */
735
736 static CORE_ADDR
737 mips_read_sp (void)
738 {
739 return read_signed_register (MIPS_SP_REGNUM);
740 }
741
742 /* Should the upper word of 64-bit addresses be zeroed? */
743 enum auto_boolean mask_address_var = AUTO_BOOLEAN_AUTO;
744
745 static int
746 mips_mask_address_p (struct gdbarch_tdep *tdep)
747 {
748 switch (mask_address_var)
749 {
750 case AUTO_BOOLEAN_TRUE:
751 return 1;
752 case AUTO_BOOLEAN_FALSE:
753 return 0;
754 break;
755 case AUTO_BOOLEAN_AUTO:
756 return tdep->default_mask_address_p;
757 default:
758 internal_error (__FILE__, __LINE__, "mips_mask_address_p: bad switch");
759 return -1;
760 }
761 }
762
763 static void
764 show_mask_address (char *cmd, int from_tty, struct cmd_list_element *c)
765 {
766 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
767 switch (mask_address_var)
768 {
769 case AUTO_BOOLEAN_TRUE:
770 printf_filtered ("The 32 bit mips address mask is enabled\n");
771 break;
772 case AUTO_BOOLEAN_FALSE:
773 printf_filtered ("The 32 bit mips address mask is disabled\n");
774 break;
775 case AUTO_BOOLEAN_AUTO:
776 printf_filtered
777 ("The 32 bit address mask is set automatically. Currently %s\n",
778 mips_mask_address_p (tdep) ? "enabled" : "disabled");
779 break;
780 default:
781 internal_error (__FILE__, __LINE__, "show_mask_address: bad switch");
782 break;
783 }
784 }
785
786 /* Tell if the program counter value in MEMADDR is in a MIPS16 function. */
787
788 int
789 mips_pc_is_mips16 (CORE_ADDR memaddr)
790 {
791 struct minimal_symbol *sym;
792
793 /* If bit 0 of the address is set, assume this is a MIPS16 address. */
794 if (is_mips16_addr (memaddr))
795 return 1;
796
797 /* A flag indicating that this is a MIPS16 function is stored by elfread.c in
798 the high bit of the info field. Use this to decide if the function is
799 MIPS16 or normal MIPS. */
800 sym = lookup_minimal_symbol_by_pc (memaddr);
801 if (sym)
802 return msymbol_is_special (sym);
803 else
804 return 0;
805 }
806
807 /* MIPS believes that the PC has a sign extended value. Perhaps the
808 all registers should be sign extended for simplicity? */
809
810 static CORE_ADDR
811 mips_read_pc (ptid_t ptid)
812 {
813 return read_signed_register_pid (mips_regnum (current_gdbarch)->pc, ptid);
814 }
815
816 static CORE_ADDR
817 mips_unwind_pc (struct gdbarch *gdbarch, struct frame_info *next_frame)
818 {
819 return frame_unwind_register_signed (next_frame,
820 NUM_REGS + mips_regnum (gdbarch)->pc);
821 }
822
823 /* Assuming NEXT_FRAME->prev is a dummy, return the frame ID of that
824 dummy frame. The frame ID's base needs to match the TOS value
825 saved by save_dummy_frame_tos(), and the PC match the dummy frame's
826 breakpoint. */
827
828 static struct frame_id
829 mips_unwind_dummy_id (struct gdbarch *gdbarch, struct frame_info *next_frame)
830 {
831 return frame_id_build (frame_unwind_register_signed (next_frame, NUM_REGS + MIPS_SP_REGNUM),
832 frame_pc_unwind (next_frame));
833 }
834
835 static void
836 mips_write_pc (CORE_ADDR pc, ptid_t ptid)
837 {
838 write_register_pid (mips_regnum (current_gdbarch)->pc, pc, ptid);
839 }
840
841 /* Fetch and return instruction from the specified location. If the PC
842 is odd, assume it's a MIPS16 instruction; otherwise MIPS32. */
843
844 static ULONGEST
845 mips_fetch_instruction (CORE_ADDR addr)
846 {
847 char buf[MIPS_INSN32_SIZE];
848 int instlen;
849 int status;
850
851 if (mips_pc_is_mips16 (addr))
852 {
853 instlen = MIPS_INSN16_SIZE;
854 addr = unmake_mips16_addr (addr);
855 }
856 else
857 instlen = MIPS_INSN32_SIZE;
858 status = deprecated_read_memory_nobpt (addr, buf, instlen);
859 if (status)
860 memory_error (status, addr);
861 return extract_unsigned_integer (buf, instlen);
862 }
863
864 /* These the fields of 32 bit mips instructions */
865 #define mips32_op(x) (x >> 26)
866 #define itype_op(x) (x >> 26)
867 #define itype_rs(x) ((x >> 21) & 0x1f)
868 #define itype_rt(x) ((x >> 16) & 0x1f)
869 #define itype_immediate(x) (x & 0xffff)
870
871 #define jtype_op(x) (x >> 26)
872 #define jtype_target(x) (x & 0x03ffffff)
873
874 #define rtype_op(x) (x >> 26)
875 #define rtype_rs(x) ((x >> 21) & 0x1f)
876 #define rtype_rt(x) ((x >> 16) & 0x1f)
877 #define rtype_rd(x) ((x >> 11) & 0x1f)
878 #define rtype_shamt(x) ((x >> 6) & 0x1f)
879 #define rtype_funct(x) (x & 0x3f)
880
881 static CORE_ADDR
882 mips32_relative_offset (unsigned long inst)
883 {
884 long x;
885 x = itype_immediate (inst);
886 if (x & 0x8000) /* sign bit set */
887 {
888 x |= 0xffff0000; /* sign extension */
889 }
890 x = x << 2;
891 return x;
892 }
893
894 /* Determine whate to set a single step breakpoint while considering
895 branch prediction */
896 static CORE_ADDR
897 mips32_next_pc (CORE_ADDR pc)
898 {
899 unsigned long inst;
900 int op;
901 inst = mips_fetch_instruction (pc);
902 if ((inst & 0xe0000000) != 0) /* Not a special, jump or branch instruction */
903 {
904 if (itype_op (inst) >> 2 == 5)
905 /* BEQL, BNEL, BLEZL, BGTZL: bits 0101xx */
906 {
907 op = (itype_op (inst) & 0x03);
908 switch (op)
909 {
910 case 0: /* BEQL */
911 goto equal_branch;
912 case 1: /* BNEL */
913 goto neq_branch;
914 case 2: /* BLEZL */
915 goto less_branch;
916 case 3: /* BGTZ */
917 goto greater_branch;
918 default:
919 pc += 4;
920 }
921 }
922 else if (itype_op (inst) == 17 && itype_rs (inst) == 8)
923 /* BC1F, BC1FL, BC1T, BC1TL: 010001 01000 */
924 {
925 int tf = itype_rt (inst) & 0x01;
926 int cnum = itype_rt (inst) >> 2;
927 int fcrcs =
928 read_signed_register (mips_regnum (current_gdbarch)->
929 fp_control_status);
930 int cond = ((fcrcs >> 24) & 0x0e) | ((fcrcs >> 23) & 0x01);
931
932 if (((cond >> cnum) & 0x01) == tf)
933 pc += mips32_relative_offset (inst) + 4;
934 else
935 pc += 8;
936 }
937 else
938 pc += 4; /* Not a branch, next instruction is easy */
939 }
940 else
941 { /* This gets way messy */
942
943 /* Further subdivide into SPECIAL, REGIMM and other */
944 switch (op = itype_op (inst) & 0x07) /* extract bits 28,27,26 */
945 {
946 case 0: /* SPECIAL */
947 op = rtype_funct (inst);
948 switch (op)
949 {
950 case 8: /* JR */
951 case 9: /* JALR */
952 /* Set PC to that address */
953 pc = read_signed_register (rtype_rs (inst));
954 break;
955 default:
956 pc += 4;
957 }
958
959 break; /* end SPECIAL */
960 case 1: /* REGIMM */
961 {
962 op = itype_rt (inst); /* branch condition */
963 switch (op)
964 {
965 case 0: /* BLTZ */
966 case 2: /* BLTZL */
967 case 16: /* BLTZAL */
968 case 18: /* BLTZALL */
969 less_branch:
970 if (read_signed_register (itype_rs (inst)) < 0)
971 pc += mips32_relative_offset (inst) + 4;
972 else
973 pc += 8; /* after the delay slot */
974 break;
975 case 1: /* BGEZ */
976 case 3: /* BGEZL */
977 case 17: /* BGEZAL */
978 case 19: /* BGEZALL */
979 if (read_signed_register (itype_rs (inst)) >= 0)
980 pc += mips32_relative_offset (inst) + 4;
981 else
982 pc += 8; /* after the delay slot */
983 break;
984 /* All of the other instructions in the REGIMM category */
985 default:
986 pc += 4;
987 }
988 }
989 break; /* end REGIMM */
990 case 2: /* J */
991 case 3: /* JAL */
992 {
993 unsigned long reg;
994 reg = jtype_target (inst) << 2;
995 /* Upper four bits get never changed... */
996 pc = reg + ((pc + 4) & 0xf0000000);
997 }
998 break;
999 /* FIXME case JALX : */
1000 {
1001 unsigned long reg;
1002 reg = jtype_target (inst) << 2;
1003 pc = reg + ((pc + 4) & 0xf0000000) + 1; /* yes, +1 */
1004 /* Add 1 to indicate 16 bit mode - Invert ISA mode */
1005 }
1006 break; /* The new PC will be alternate mode */
1007 case 4: /* BEQ, BEQL */
1008 equal_branch:
1009 if (read_signed_register (itype_rs (inst)) ==
1010 read_signed_register (itype_rt (inst)))
1011 pc += mips32_relative_offset (inst) + 4;
1012 else
1013 pc += 8;
1014 break;
1015 case 5: /* BNE, BNEL */
1016 neq_branch:
1017 if (read_signed_register (itype_rs (inst)) !=
1018 read_signed_register (itype_rt (inst)))
1019 pc += mips32_relative_offset (inst) + 4;
1020 else
1021 pc += 8;
1022 break;
1023 case 6: /* BLEZ, BLEZL */
1024 if (read_signed_register (itype_rs (inst)) <= 0)
1025 pc += mips32_relative_offset (inst) + 4;
1026 else
1027 pc += 8;
1028 break;
1029 case 7:
1030 default:
1031 greater_branch: /* BGTZ, BGTZL */
1032 if (read_signed_register (itype_rs (inst)) > 0)
1033 pc += mips32_relative_offset (inst) + 4;
1034 else
1035 pc += 8;
1036 break;
1037 } /* switch */
1038 } /* else */
1039 return pc;
1040 } /* mips32_next_pc */
1041
1042 /* Decoding the next place to set a breakpoint is irregular for the
1043 mips 16 variant, but fortunately, there fewer instructions. We have to cope
1044 ith extensions for 16 bit instructions and a pair of actual 32 bit instructions.
1045 We dont want to set a single step instruction on the extend instruction
1046 either.
1047 */
1048
1049 /* Lots of mips16 instruction formats */
1050 /* Predicting jumps requires itype,ritype,i8type
1051 and their extensions extItype,extritype,extI8type
1052 */
1053 enum mips16_inst_fmts
1054 {
1055 itype, /* 0 immediate 5,10 */
1056 ritype, /* 1 5,3,8 */
1057 rrtype, /* 2 5,3,3,5 */
1058 rritype, /* 3 5,3,3,5 */
1059 rrrtype, /* 4 5,3,3,3,2 */
1060 rriatype, /* 5 5,3,3,1,4 */
1061 shifttype, /* 6 5,3,3,3,2 */
1062 i8type, /* 7 5,3,8 */
1063 i8movtype, /* 8 5,3,3,5 */
1064 i8mov32rtype, /* 9 5,3,5,3 */
1065 i64type, /* 10 5,3,8 */
1066 ri64type, /* 11 5,3,3,5 */
1067 jalxtype, /* 12 5,1,5,5,16 - a 32 bit instruction */
1068 exiItype, /* 13 5,6,5,5,1,1,1,1,1,1,5 */
1069 extRitype, /* 14 5,6,5,5,3,1,1,1,5 */
1070 extRRItype, /* 15 5,5,5,5,3,3,5 */
1071 extRRIAtype, /* 16 5,7,4,5,3,3,1,4 */
1072 EXTshifttype, /* 17 5,5,1,1,1,1,1,1,5,3,3,1,1,1,2 */
1073 extI8type, /* 18 5,6,5,5,3,1,1,1,5 */
1074 extI64type, /* 19 5,6,5,5,3,1,1,1,5 */
1075 extRi64type, /* 20 5,6,5,5,3,3,5 */
1076 extshift64type /* 21 5,5,1,1,1,1,1,1,5,1,1,1,3,5 */
1077 };
1078 /* I am heaping all the fields of the formats into one structure and
1079 then, only the fields which are involved in instruction extension */
1080 struct upk_mips16
1081 {
1082 CORE_ADDR offset;
1083 unsigned int regx; /* Function in i8 type */
1084 unsigned int regy;
1085 };
1086
1087
1088 /* The EXT-I, EXT-ri nad EXT-I8 instructions all have the same format
1089 for the bits which make up the immediatate extension. */
1090
1091 static CORE_ADDR
1092 extended_offset (unsigned int extension)
1093 {
1094 CORE_ADDR value;
1095 value = (extension >> 21) & 0x3f; /* * extract 15:11 */
1096 value = value << 6;
1097 value |= (extension >> 16) & 0x1f; /* extrace 10:5 */
1098 value = value << 5;
1099 value |= extension & 0x01f; /* extract 4:0 */
1100 return value;
1101 }
1102
1103 /* Only call this function if you know that this is an extendable
1104 instruction, It wont malfunction, but why make excess remote memory references?
1105 If the immediate operands get sign extended or somthing, do it after
1106 the extension is performed.
1107 */
1108 /* FIXME: Every one of these cases needs to worry about sign extension
1109 when the offset is to be used in relative addressing */
1110
1111
1112 static unsigned int
1113 fetch_mips_16 (CORE_ADDR pc)
1114 {
1115 char buf[8];
1116 pc &= 0xfffffffe; /* clear the low order bit */
1117 target_read_memory (pc, buf, 2);
1118 return extract_unsigned_integer (buf, 2);
1119 }
1120
1121 static void
1122 unpack_mips16 (CORE_ADDR pc,
1123 unsigned int extension,
1124 unsigned int inst,
1125 enum mips16_inst_fmts insn_format, struct upk_mips16 *upk)
1126 {
1127 CORE_ADDR offset;
1128 int regx;
1129 int regy;
1130 switch (insn_format)
1131 {
1132 case itype:
1133 {
1134 CORE_ADDR value;
1135 if (extension)
1136 {
1137 value = extended_offset (extension);
1138 value = value << 11; /* rom for the original value */
1139 value |= inst & 0x7ff; /* eleven bits from instruction */
1140 }
1141 else
1142 {
1143 value = inst & 0x7ff;
1144 /* FIXME : Consider sign extension */
1145 }
1146 offset = value;
1147 regx = -1;
1148 regy = -1;
1149 }
1150 break;
1151 case ritype:
1152 case i8type:
1153 { /* A register identifier and an offset */
1154 /* Most of the fields are the same as I type but the
1155 immediate value is of a different length */
1156 CORE_ADDR value;
1157 if (extension)
1158 {
1159 value = extended_offset (extension);
1160 value = value << 8; /* from the original instruction */
1161 value |= inst & 0xff; /* eleven bits from instruction */
1162 regx = (extension >> 8) & 0x07; /* or i8 funct */
1163 if (value & 0x4000) /* test the sign bit , bit 26 */
1164 {
1165 value &= ~0x3fff; /* remove the sign bit */
1166 value = -value;
1167 }
1168 }
1169 else
1170 {
1171 value = inst & 0xff; /* 8 bits */
1172 regx = (inst >> 8) & 0x07; /* or i8 funct */
1173 /* FIXME: Do sign extension , this format needs it */
1174 if (value & 0x80) /* THIS CONFUSES ME */
1175 {
1176 value &= 0xef; /* remove the sign bit */
1177 value = -value;
1178 }
1179 }
1180 offset = value;
1181 regy = -1;
1182 break;
1183 }
1184 case jalxtype:
1185 {
1186 unsigned long value;
1187 unsigned int nexthalf;
1188 value = ((inst & 0x1f) << 5) | ((inst >> 5) & 0x1f);
1189 value = value << 16;
1190 nexthalf = mips_fetch_instruction (pc + 2); /* low bit still set */
1191 value |= nexthalf;
1192 offset = value;
1193 regx = -1;
1194 regy = -1;
1195 break;
1196 }
1197 default:
1198 internal_error (__FILE__, __LINE__, "bad switch");
1199 }
1200 upk->offset = offset;
1201 upk->regx = regx;
1202 upk->regy = regy;
1203 }
1204
1205
1206 static CORE_ADDR
1207 add_offset_16 (CORE_ADDR pc, int offset)
1208 {
1209 return ((offset << 2) | ((pc + 2) & (0xf0000000)));
1210 }
1211
1212 static CORE_ADDR
1213 extended_mips16_next_pc (CORE_ADDR pc,
1214 unsigned int extension, unsigned int insn)
1215 {
1216 int op = (insn >> 11);
1217 switch (op)
1218 {
1219 case 2: /* Branch */
1220 {
1221 CORE_ADDR offset;
1222 struct upk_mips16 upk;
1223 unpack_mips16 (pc, extension, insn, itype, &upk);
1224 offset = upk.offset;
1225 if (offset & 0x800)
1226 {
1227 offset &= 0xeff;
1228 offset = -offset;
1229 }
1230 pc += (offset << 1) + 2;
1231 break;
1232 }
1233 case 3: /* JAL , JALX - Watch out, these are 32 bit instruction */
1234 {
1235 struct upk_mips16 upk;
1236 unpack_mips16 (pc, extension, insn, jalxtype, &upk);
1237 pc = add_offset_16 (pc, upk.offset);
1238 if ((insn >> 10) & 0x01) /* Exchange mode */
1239 pc = pc & ~0x01; /* Clear low bit, indicate 32 bit mode */
1240 else
1241 pc |= 0x01;
1242 break;
1243 }
1244 case 4: /* beqz */
1245 {
1246 struct upk_mips16 upk;
1247 int reg;
1248 unpack_mips16 (pc, extension, insn, ritype, &upk);
1249 reg = read_signed_register (upk.regx);
1250 if (reg == 0)
1251 pc += (upk.offset << 1) + 2;
1252 else
1253 pc += 2;
1254 break;
1255 }
1256 case 5: /* bnez */
1257 {
1258 struct upk_mips16 upk;
1259 int reg;
1260 unpack_mips16 (pc, extension, insn, ritype, &upk);
1261 reg = read_signed_register (upk.regx);
1262 if (reg != 0)
1263 pc += (upk.offset << 1) + 2;
1264 else
1265 pc += 2;
1266 break;
1267 }
1268 case 12: /* I8 Formats btez btnez */
1269 {
1270 struct upk_mips16 upk;
1271 int reg;
1272 unpack_mips16 (pc, extension, insn, i8type, &upk);
1273 /* upk.regx contains the opcode */
1274 reg = read_signed_register (24); /* Test register is 24 */
1275 if (((upk.regx == 0) && (reg == 0)) /* BTEZ */
1276 || ((upk.regx == 1) && (reg != 0))) /* BTNEZ */
1277 /* pc = add_offset_16(pc,upk.offset) ; */
1278 pc += (upk.offset << 1) + 2;
1279 else
1280 pc += 2;
1281 break;
1282 }
1283 case 29: /* RR Formats JR, JALR, JALR-RA */
1284 {
1285 struct upk_mips16 upk;
1286 /* upk.fmt = rrtype; */
1287 op = insn & 0x1f;
1288 if (op == 0)
1289 {
1290 int reg;
1291 upk.regx = (insn >> 8) & 0x07;
1292 upk.regy = (insn >> 5) & 0x07;
1293 switch (upk.regy)
1294 {
1295 case 0:
1296 reg = upk.regx;
1297 break;
1298 case 1:
1299 reg = 31;
1300 break; /* Function return instruction */
1301 case 2:
1302 reg = upk.regx;
1303 break;
1304 default:
1305 reg = 31;
1306 break; /* BOGUS Guess */
1307 }
1308 pc = read_signed_register (reg);
1309 }
1310 else
1311 pc += 2;
1312 break;
1313 }
1314 case 30:
1315 /* This is an instruction extension. Fetch the real instruction
1316 (which follows the extension) and decode things based on
1317 that. */
1318 {
1319 pc += 2;
1320 pc = extended_mips16_next_pc (pc, insn, fetch_mips_16 (pc));
1321 break;
1322 }
1323 default:
1324 {
1325 pc += 2;
1326 break;
1327 }
1328 }
1329 return pc;
1330 }
1331
1332 static CORE_ADDR
1333 mips16_next_pc (CORE_ADDR pc)
1334 {
1335 unsigned int insn = fetch_mips_16 (pc);
1336 return extended_mips16_next_pc (pc, 0, insn);
1337 }
1338
1339 /* The mips_next_pc function supports single_step when the remote
1340 target monitor or stub is not developed enough to do a single_step.
1341 It works by decoding the current instruction and predicting where a
1342 branch will go. This isnt hard because all the data is available.
1343 The MIPS32 and MIPS16 variants are quite different */
1344 CORE_ADDR
1345 mips_next_pc (CORE_ADDR pc)
1346 {
1347 if (pc & 0x01)
1348 return mips16_next_pc (pc);
1349 else
1350 return mips32_next_pc (pc);
1351 }
1352
1353 struct mips_frame_cache
1354 {
1355 CORE_ADDR base;
1356 struct trad_frame_saved_reg *saved_regs;
1357 };
1358
1359 /* Set a register's saved stack address in temp_saved_regs. If an
1360 address has already been set for this register, do nothing; this
1361 way we will only recognize the first save of a given register in a
1362 function prologue.
1363
1364 For simplicity, save the address in both [0 .. NUM_REGS) and
1365 [NUM_REGS .. 2*NUM_REGS). Strictly speaking, only the second range
1366 is used as it is only second range (the ABI instead of ISA
1367 registers) that comes into play when finding saved registers in a
1368 frame. */
1369
1370 static void
1371 set_reg_offset (struct mips_frame_cache *this_cache, int regnum,
1372 CORE_ADDR offset)
1373 {
1374 if (this_cache != NULL
1375 && this_cache->saved_regs[regnum].addr == -1)
1376 {
1377 this_cache->saved_regs[regnum + 0 * NUM_REGS].addr = offset;
1378 this_cache->saved_regs[regnum + 1 * NUM_REGS].addr = offset;
1379 }
1380 }
1381
1382
1383 /* Fetch the immediate value from a MIPS16 instruction.
1384 If the previous instruction was an EXTEND, use it to extend
1385 the upper bits of the immediate value. This is a helper function
1386 for mips16_scan_prologue. */
1387
1388 static int
1389 mips16_get_imm (unsigned short prev_inst, /* previous instruction */
1390 unsigned short inst, /* current instruction */
1391 int nbits, /* number of bits in imm field */
1392 int scale, /* scale factor to be applied to imm */
1393 int is_signed) /* is the imm field signed? */
1394 {
1395 int offset;
1396
1397 if ((prev_inst & 0xf800) == 0xf000) /* prev instruction was EXTEND? */
1398 {
1399 offset = ((prev_inst & 0x1f) << 11) | (prev_inst & 0x7e0);
1400 if (offset & 0x8000) /* check for negative extend */
1401 offset = 0 - (0x10000 - (offset & 0xffff));
1402 return offset | (inst & 0x1f);
1403 }
1404 else
1405 {
1406 int max_imm = 1 << nbits;
1407 int mask = max_imm - 1;
1408 int sign_bit = max_imm >> 1;
1409
1410 offset = inst & mask;
1411 if (is_signed && (offset & sign_bit))
1412 offset = 0 - (max_imm - offset);
1413 return offset * scale;
1414 }
1415 }
1416
1417
1418 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1419 the associated FRAME_CACHE if not null.
1420 Return the address of the first instruction past the prologue. */
1421
1422 static CORE_ADDR
1423 mips16_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1424 struct frame_info *next_frame,
1425 struct mips_frame_cache *this_cache)
1426 {
1427 CORE_ADDR cur_pc;
1428 CORE_ADDR frame_addr = 0; /* Value of $r17, used as frame pointer */
1429 CORE_ADDR sp;
1430 long frame_offset = 0; /* Size of stack frame. */
1431 long frame_adjust = 0; /* Offset of FP from SP. */
1432 int frame_reg = MIPS_SP_REGNUM;
1433 unsigned short prev_inst = 0; /* saved copy of previous instruction */
1434 unsigned inst = 0; /* current instruction */
1435 unsigned entry_inst = 0; /* the entry instruction */
1436 int reg, offset;
1437
1438 int extend_bytes = 0;
1439 int prev_extend_bytes;
1440 CORE_ADDR end_prologue_addr = 0;
1441
1442 /* Can be called when there's no process, and hence when there's no
1443 NEXT_FRAME. */
1444 if (next_frame != NULL)
1445 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1446 else
1447 sp = 0;
1448
1449 if (limit_pc > start_pc + 200)
1450 limit_pc = start_pc + 200;
1451
1452 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN16_SIZE)
1453 {
1454 /* Save the previous instruction. If it's an EXTEND, we'll extract
1455 the immediate offset extension from it in mips16_get_imm. */
1456 prev_inst = inst;
1457
1458 /* Fetch and decode the instruction. */
1459 inst = (unsigned short) mips_fetch_instruction (cur_pc);
1460
1461 /* Normally we ignore extend instructions. However, if it is
1462 not followed by a valid prologue instruction, then this
1463 instruction is not part of the prologue either. We must
1464 remember in this case to adjust the end_prologue_addr back
1465 over the extend. */
1466 if ((inst & 0xf800) == 0xf000) /* extend */
1467 {
1468 extend_bytes = MIPS_INSN16_SIZE;
1469 continue;
1470 }
1471
1472 prev_extend_bytes = extend_bytes;
1473 extend_bytes = 0;
1474
1475 if ((inst & 0xff00) == 0x6300 /* addiu sp */
1476 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
1477 {
1478 offset = mips16_get_imm (prev_inst, inst, 8, 8, 1);
1479 if (offset < 0) /* negative stack adjustment? */
1480 frame_offset -= offset;
1481 else
1482 /* Exit loop if a positive stack adjustment is found, which
1483 usually means that the stack cleanup code in the function
1484 epilogue is reached. */
1485 break;
1486 }
1487 else if ((inst & 0xf800) == 0xd000) /* sw reg,n($sp) */
1488 {
1489 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1490 reg = mips16_to_32_reg[(inst & 0x700) >> 8];
1491 set_reg_offset (this_cache, reg, sp + offset);
1492 }
1493 else if ((inst & 0xff00) == 0xf900) /* sd reg,n($sp) */
1494 {
1495 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1496 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1497 set_reg_offset (this_cache, reg, sp + offset);
1498 }
1499 else if ((inst & 0xff00) == 0x6200) /* sw $ra,n($sp) */
1500 {
1501 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1502 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1503 }
1504 else if ((inst & 0xff00) == 0xfa00) /* sd $ra,n($sp) */
1505 {
1506 offset = mips16_get_imm (prev_inst, inst, 8, 8, 0);
1507 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1508 }
1509 else if (inst == 0x673d) /* move $s1, $sp */
1510 {
1511 frame_addr = sp;
1512 frame_reg = 17;
1513 }
1514 else if ((inst & 0xff00) == 0x0100) /* addiu $s1,sp,n */
1515 {
1516 offset = mips16_get_imm (prev_inst, inst, 8, 4, 0);
1517 frame_addr = sp + offset;
1518 frame_reg = 17;
1519 frame_adjust = offset;
1520 }
1521 else if ((inst & 0xFF00) == 0xd900) /* sw reg,offset($s1) */
1522 {
1523 offset = mips16_get_imm (prev_inst, inst, 5, 4, 0);
1524 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1525 set_reg_offset (this_cache, reg, frame_addr + offset);
1526 }
1527 else if ((inst & 0xFF00) == 0x7900) /* sd reg,offset($s1) */
1528 {
1529 offset = mips16_get_imm (prev_inst, inst, 5, 8, 0);
1530 reg = mips16_to_32_reg[(inst & 0xe0) >> 5];
1531 set_reg_offset (this_cache, reg, frame_addr + offset);
1532 }
1533 else if ((inst & 0xf81f) == 0xe809
1534 && (inst & 0x700) != 0x700) /* entry */
1535 entry_inst = inst; /* save for later processing */
1536 else if ((inst & 0xf800) == 0x1800) /* jal(x) */
1537 cur_pc += MIPS_INSN16_SIZE; /* 32-bit instruction */
1538 else if ((inst & 0xff1c) == 0x6704) /* move reg,$a0-$a3 */
1539 {
1540 /* This instruction is part of the prologue, but we don't
1541 need to do anything special to handle it. */
1542 }
1543 else
1544 {
1545 /* This instruction is not an instruction typically found
1546 in a prologue, so we must have reached the end of the
1547 prologue. */
1548 if (end_prologue_addr == 0)
1549 end_prologue_addr = cur_pc - prev_extend_bytes;
1550 }
1551 }
1552
1553 /* The entry instruction is typically the first instruction in a function,
1554 and it stores registers at offsets relative to the value of the old SP
1555 (before the prologue). But the value of the sp parameter to this
1556 function is the new SP (after the prologue has been executed). So we
1557 can't calculate those offsets until we've seen the entire prologue,
1558 and can calculate what the old SP must have been. */
1559 if (entry_inst != 0)
1560 {
1561 int areg_count = (entry_inst >> 8) & 7;
1562 int sreg_count = (entry_inst >> 6) & 3;
1563
1564 /* The entry instruction always subtracts 32 from the SP. */
1565 frame_offset += 32;
1566
1567 /* Now we can calculate what the SP must have been at the
1568 start of the function prologue. */
1569 sp += frame_offset;
1570
1571 /* Check if a0-a3 were saved in the caller's argument save area. */
1572 for (reg = 4, offset = 0; reg < areg_count + 4; reg++)
1573 {
1574 set_reg_offset (this_cache, reg, sp + offset);
1575 offset += mips_abi_regsize (current_gdbarch);
1576 }
1577
1578 /* Check if the ra register was pushed on the stack. */
1579 offset = -4;
1580 if (entry_inst & 0x20)
1581 {
1582 set_reg_offset (this_cache, MIPS_RA_REGNUM, sp + offset);
1583 offset -= mips_abi_regsize (current_gdbarch);
1584 }
1585
1586 /* Check if the s0 and s1 registers were pushed on the stack. */
1587 for (reg = 16; reg < sreg_count + 16; reg++)
1588 {
1589 set_reg_offset (this_cache, reg, sp + offset);
1590 offset -= mips_abi_regsize (current_gdbarch);
1591 }
1592 }
1593
1594 if (this_cache != NULL)
1595 {
1596 this_cache->base =
1597 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1598 + frame_offset - frame_adjust);
1599 /* FIXME: brobecker/2004-10-10: Just as in the mips32 case, we should
1600 be able to get rid of the assignment below, evetually. But it's
1601 still needed for now. */
1602 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1603 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1604 }
1605
1606 /* If we didn't reach the end of the prologue when scanning the function
1607 instructions, then set end_prologue_addr to the address of the
1608 instruction immediately after the last one we scanned. */
1609 if (end_prologue_addr == 0)
1610 end_prologue_addr = cur_pc;
1611
1612 return end_prologue_addr;
1613 }
1614
1615 /* Heuristic unwinder for 16-bit MIPS instruction set (aka MIPS16).
1616 Procedures that use the 32-bit instruction set are handled by the
1617 mips_insn32 unwinder. */
1618
1619 static struct mips_frame_cache *
1620 mips_insn16_frame_cache (struct frame_info *next_frame, void **this_cache)
1621 {
1622 struct mips_frame_cache *cache;
1623
1624 if ((*this_cache) != NULL)
1625 return (*this_cache);
1626 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1627 (*this_cache) = cache;
1628 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1629
1630 /* Analyze the function prologue. */
1631 {
1632 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1633 CORE_ADDR start_addr;
1634
1635 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1636 if (start_addr == 0)
1637 start_addr = heuristic_proc_start (pc);
1638 /* We can't analyze the prologue if we couldn't find the begining
1639 of the function. */
1640 if (start_addr == 0)
1641 return cache;
1642
1643 mips16_scan_prologue (start_addr, pc, next_frame, *this_cache);
1644 }
1645
1646 /* SP_REGNUM, contains the value and not the address. */
1647 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1648
1649 return (*this_cache);
1650 }
1651
1652 static void
1653 mips_insn16_frame_this_id (struct frame_info *next_frame, void **this_cache,
1654 struct frame_id *this_id)
1655 {
1656 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1657 this_cache);
1658 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1659 }
1660
1661 static void
1662 mips_insn16_frame_prev_register (struct frame_info *next_frame,
1663 void **this_cache,
1664 int regnum, int *optimizedp,
1665 enum lval_type *lvalp, CORE_ADDR *addrp,
1666 int *realnump, void *valuep)
1667 {
1668 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1669 this_cache);
1670 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1671 optimizedp, lvalp, addrp, realnump, valuep);
1672 }
1673
1674 static const struct frame_unwind mips_insn16_frame_unwind =
1675 {
1676 NORMAL_FRAME,
1677 mips_insn16_frame_this_id,
1678 mips_insn16_frame_prev_register
1679 };
1680
1681 static const struct frame_unwind *
1682 mips_insn16_frame_sniffer (struct frame_info *next_frame)
1683 {
1684 CORE_ADDR pc = frame_pc_unwind (next_frame);
1685 if (mips_pc_is_mips16 (pc))
1686 return &mips_insn16_frame_unwind;
1687 return NULL;
1688 }
1689
1690 static CORE_ADDR
1691 mips_insn16_frame_base_address (struct frame_info *next_frame,
1692 void **this_cache)
1693 {
1694 struct mips_frame_cache *info = mips_insn16_frame_cache (next_frame,
1695 this_cache);
1696 return info->base;
1697 }
1698
1699 static const struct frame_base mips_insn16_frame_base =
1700 {
1701 &mips_insn16_frame_unwind,
1702 mips_insn16_frame_base_address,
1703 mips_insn16_frame_base_address,
1704 mips_insn16_frame_base_address
1705 };
1706
1707 static const struct frame_base *
1708 mips_insn16_frame_base_sniffer (struct frame_info *next_frame)
1709 {
1710 if (mips_insn16_frame_sniffer (next_frame) != NULL)
1711 return &mips_insn16_frame_base;
1712 else
1713 return NULL;
1714 }
1715
1716 /* Mark all the registers as unset in the saved_regs array
1717 of THIS_CACHE. Do nothing if THIS_CACHE is null. */
1718
1719 void
1720 reset_saved_regs (struct mips_frame_cache *this_cache)
1721 {
1722 if (this_cache == NULL || this_cache->saved_regs == NULL)
1723 return;
1724
1725 {
1726 const int num_regs = NUM_REGS;
1727 int i;
1728
1729 for (i = 0; i < num_regs; i++)
1730 {
1731 this_cache->saved_regs[i].addr = -1;
1732 }
1733 }
1734 }
1735
1736 /* Analyze the function prologue from START_PC to LIMIT_PC. Builds
1737 the associated FRAME_CACHE if not null.
1738 Return the address of the first instruction past the prologue. */
1739
1740 static CORE_ADDR
1741 mips32_scan_prologue (CORE_ADDR start_pc, CORE_ADDR limit_pc,
1742 struct frame_info *next_frame,
1743 struct mips_frame_cache *this_cache)
1744 {
1745 CORE_ADDR cur_pc;
1746 CORE_ADDR frame_addr = 0; /* Value of $r30. Used by gcc for frame-pointer */
1747 CORE_ADDR sp;
1748 long frame_offset;
1749 int frame_reg = MIPS_SP_REGNUM;
1750
1751 CORE_ADDR end_prologue_addr = 0;
1752 int seen_sp_adjust = 0;
1753 int load_immediate_bytes = 0;
1754
1755 /* Can be called when there's no process, and hence when there's no
1756 NEXT_FRAME. */
1757 if (next_frame != NULL)
1758 sp = read_next_frame_reg (next_frame, NUM_REGS + MIPS_SP_REGNUM);
1759 else
1760 sp = 0;
1761
1762 if (limit_pc > start_pc + 200)
1763 limit_pc = start_pc + 200;
1764
1765 restart:
1766
1767 frame_offset = 0;
1768 for (cur_pc = start_pc; cur_pc < limit_pc; cur_pc += MIPS_INSN32_SIZE)
1769 {
1770 unsigned long inst, high_word, low_word;
1771 int reg;
1772
1773 /* Fetch the instruction. */
1774 inst = (unsigned long) mips_fetch_instruction (cur_pc);
1775
1776 /* Save some code by pre-extracting some useful fields. */
1777 high_word = (inst >> 16) & 0xffff;
1778 low_word = inst & 0xffff;
1779 reg = high_word & 0x1f;
1780
1781 if (high_word == 0x27bd /* addiu $sp,$sp,-i */
1782 || high_word == 0x23bd /* addi $sp,$sp,-i */
1783 || high_word == 0x67bd) /* daddiu $sp,$sp,-i */
1784 {
1785 if (low_word & 0x8000) /* negative stack adjustment? */
1786 frame_offset += 0x10000 - low_word;
1787 else
1788 /* Exit loop if a positive stack adjustment is found, which
1789 usually means that the stack cleanup code in the function
1790 epilogue is reached. */
1791 break;
1792 seen_sp_adjust = 1;
1793 }
1794 else if ((high_word & 0xFFE0) == 0xafa0) /* sw reg,offset($sp) */
1795 {
1796 set_reg_offset (this_cache, reg, sp + low_word);
1797 }
1798 else if ((high_word & 0xFFE0) == 0xffa0) /* sd reg,offset($sp) */
1799 {
1800 /* Irix 6.2 N32 ABI uses sd instructions for saving $gp and $ra. */
1801 set_reg_offset (this_cache, reg, sp + low_word);
1802 }
1803 else if (high_word == 0x27be) /* addiu $30,$sp,size */
1804 {
1805 /* Old gcc frame, r30 is virtual frame pointer. */
1806 if ((long) low_word != frame_offset)
1807 frame_addr = sp + low_word;
1808 else if (frame_reg == MIPS_SP_REGNUM)
1809 {
1810 unsigned alloca_adjust;
1811
1812 frame_reg = 30;
1813 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1814 alloca_adjust = (unsigned) (frame_addr - (sp + low_word));
1815 if (alloca_adjust > 0)
1816 {
1817 /* FP > SP + frame_size. This may be because of
1818 an alloca or somethings similar. Fix sp to
1819 "pre-alloca" value, and try again. */
1820 sp += alloca_adjust;
1821 /* Need to reset the status of all registers. Otherwise,
1822 we will hit a guard that prevents the new address
1823 for each register to be recomputed during the second
1824 pass. */
1825 reset_saved_regs (this_cache);
1826 goto restart;
1827 }
1828 }
1829 }
1830 /* move $30,$sp. With different versions of gas this will be either
1831 `addu $30,$sp,$zero' or `or $30,$sp,$zero' or `daddu 30,sp,$0'.
1832 Accept any one of these. */
1833 else if (inst == 0x03A0F021 || inst == 0x03a0f025 || inst == 0x03a0f02d)
1834 {
1835 /* New gcc frame, virtual frame pointer is at r30 + frame_size. */
1836 if (frame_reg == MIPS_SP_REGNUM)
1837 {
1838 unsigned alloca_adjust;
1839
1840 frame_reg = 30;
1841 frame_addr = read_next_frame_reg (next_frame, NUM_REGS + 30);
1842 alloca_adjust = (unsigned) (frame_addr - sp);
1843 if (alloca_adjust > 0)
1844 {
1845 /* FP > SP + frame_size. This may be because of
1846 an alloca or somethings similar. Fix sp to
1847 "pre-alloca" value, and try again. */
1848 sp = frame_addr;
1849 /* Need to reset the status of all registers. Otherwise,
1850 we will hit a guard that prevents the new address
1851 for each register to be recomputed during the second
1852 pass. */
1853 reset_saved_regs (this_cache);
1854 goto restart;
1855 }
1856 }
1857 }
1858 else if ((high_word & 0xFFE0) == 0xafc0) /* sw reg,offset($30) */
1859 {
1860 set_reg_offset (this_cache, reg, frame_addr + low_word);
1861 }
1862 else if ((high_word & 0xFFE0) == 0xE7A0 /* swc1 freg,n($sp) */
1863 || (high_word & 0xF3E0) == 0xA3C0 /* sx reg,n($s8) */
1864 || (inst & 0xFF9F07FF) == 0x00800021 /* move reg,$a0-$a3 */
1865 || high_word == 0x3c1c /* lui $gp,n */
1866 || high_word == 0x279c /* addiu $gp,$gp,n */
1867 || inst == 0x0399e021 /* addu $gp,$gp,$t9 */
1868 || inst == 0x033ce021 /* addu $gp,$t9,$gp */
1869 )
1870 {
1871 /* These instructions are part of the prologue, but we don't
1872 need to do anything special to handle them. */
1873 }
1874 /* The instructions below load $at or $t0 with an immediate
1875 value in preparation for a stack adjustment via
1876 subu $sp,$sp,[$at,$t0]. These instructions could also
1877 initialize a local variable, so we accept them only before
1878 a stack adjustment instruction was seen. */
1879 else if (!seen_sp_adjust
1880 && (high_word == 0x3c01 /* lui $at,n */
1881 || high_word == 0x3c08 /* lui $t0,n */
1882 || high_word == 0x3421 /* ori $at,$at,n */
1883 || high_word == 0x3508 /* ori $t0,$t0,n */
1884 || high_word == 0x3401 /* ori $at,$zero,n */
1885 || high_word == 0x3408 /* ori $t0,$zero,n */
1886 ))
1887 {
1888 load_immediate_bytes += MIPS_INSN32_SIZE; /* FIXME! */
1889 }
1890 else
1891 {
1892 /* This instruction is not an instruction typically found
1893 in a prologue, so we must have reached the end of the
1894 prologue. */
1895 /* FIXME: brobecker/2004-10-10: Can't we just break out of this
1896 loop now? Why would we need to continue scanning the function
1897 instructions? */
1898 if (end_prologue_addr == 0)
1899 end_prologue_addr = cur_pc;
1900 }
1901 }
1902
1903 if (this_cache != NULL)
1904 {
1905 this_cache->base =
1906 (frame_unwind_register_signed (next_frame, NUM_REGS + frame_reg)
1907 + frame_offset);
1908 /* FIXME: brobecker/2004-09-15: We should be able to get rid of
1909 this assignment below, eventually. But it's still needed
1910 for now. */
1911 this_cache->saved_regs[NUM_REGS + mips_regnum (current_gdbarch)->pc]
1912 = this_cache->saved_regs[NUM_REGS + MIPS_RA_REGNUM];
1913 }
1914
1915 /* If we didn't reach the end of the prologue when scanning the function
1916 instructions, then set end_prologue_addr to the address of the
1917 instruction immediately after the last one we scanned. */
1918 /* brobecker/2004-10-10: I don't think this would ever happen, but
1919 we may as well be careful and do our best if we have a null
1920 end_prologue_addr. */
1921 if (end_prologue_addr == 0)
1922 end_prologue_addr = cur_pc;
1923
1924 /* In a frameless function, we might have incorrectly
1925 skipped some load immediate instructions. Undo the skipping
1926 if the load immediate was not followed by a stack adjustment. */
1927 if (load_immediate_bytes && !seen_sp_adjust)
1928 end_prologue_addr -= load_immediate_bytes;
1929
1930 return end_prologue_addr;
1931 }
1932
1933 /* Heuristic unwinder for procedures using 32-bit instructions (covers
1934 both 32-bit and 64-bit MIPS ISAs). Procedures using 16-bit
1935 instructions (a.k.a. MIPS16) are handled by the mips_insn16
1936 unwinder. */
1937
1938 static struct mips_frame_cache *
1939 mips_insn32_frame_cache (struct frame_info *next_frame, void **this_cache)
1940 {
1941 struct mips_frame_cache *cache;
1942
1943 if ((*this_cache) != NULL)
1944 return (*this_cache);
1945
1946 cache = FRAME_OBSTACK_ZALLOC (struct mips_frame_cache);
1947 (*this_cache) = cache;
1948 cache->saved_regs = trad_frame_alloc_saved_regs (next_frame);
1949
1950 /* Analyze the function prologue. */
1951 {
1952 const CORE_ADDR pc = frame_pc_unwind (next_frame);
1953 CORE_ADDR start_addr;
1954
1955 find_pc_partial_function (pc, NULL, &start_addr, NULL);
1956 if (start_addr == 0)
1957 start_addr = heuristic_proc_start (pc);
1958 /* We can't analyze the prologue if we couldn't find the begining
1959 of the function. */
1960 if (start_addr == 0)
1961 return cache;
1962
1963 mips32_scan_prologue (start_addr, pc, next_frame, *this_cache);
1964 }
1965
1966 /* SP_REGNUM, contains the value and not the address. */
1967 trad_frame_set_value (cache->saved_regs, NUM_REGS + MIPS_SP_REGNUM, cache->base);
1968
1969 return (*this_cache);
1970 }
1971
1972 static void
1973 mips_insn32_frame_this_id (struct frame_info *next_frame, void **this_cache,
1974 struct frame_id *this_id)
1975 {
1976 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1977 this_cache);
1978 (*this_id) = frame_id_build (info->base, frame_func_unwind (next_frame));
1979 }
1980
1981 static void
1982 mips_insn32_frame_prev_register (struct frame_info *next_frame,
1983 void **this_cache,
1984 int regnum, int *optimizedp,
1985 enum lval_type *lvalp, CORE_ADDR *addrp,
1986 int *realnump, void *valuep)
1987 {
1988 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
1989 this_cache);
1990 trad_frame_get_prev_register (next_frame, info->saved_regs, regnum,
1991 optimizedp, lvalp, addrp, realnump, valuep);
1992 }
1993
1994 static const struct frame_unwind mips_insn32_frame_unwind =
1995 {
1996 NORMAL_FRAME,
1997 mips_insn32_frame_this_id,
1998 mips_insn32_frame_prev_register
1999 };
2000
2001 static const struct frame_unwind *
2002 mips_insn32_frame_sniffer (struct frame_info *next_frame)
2003 {
2004 CORE_ADDR pc = frame_pc_unwind (next_frame);
2005 if (! mips_pc_is_mips16 (pc))
2006 return &mips_insn32_frame_unwind;
2007 return NULL;
2008 }
2009
2010 static CORE_ADDR
2011 mips_insn32_frame_base_address (struct frame_info *next_frame,
2012 void **this_cache)
2013 {
2014 struct mips_frame_cache *info = mips_insn32_frame_cache (next_frame,
2015 this_cache);
2016 return info->base;
2017 }
2018
2019 static const struct frame_base mips_insn32_frame_base =
2020 {
2021 &mips_insn32_frame_unwind,
2022 mips_insn32_frame_base_address,
2023 mips_insn32_frame_base_address,
2024 mips_insn32_frame_base_address
2025 };
2026
2027 static const struct frame_base *
2028 mips_insn32_frame_base_sniffer (struct frame_info *next_frame)
2029 {
2030 if (mips_insn32_frame_sniffer (next_frame) != NULL)
2031 return &mips_insn32_frame_base;
2032 else
2033 return NULL;
2034 }
2035
2036 static struct trad_frame_cache *
2037 mips_stub_frame_cache (struct frame_info *next_frame, void **this_cache)
2038 {
2039 CORE_ADDR pc;
2040 CORE_ADDR start_addr;
2041 CORE_ADDR stack_addr;
2042 struct trad_frame_cache *this_trad_cache;
2043
2044 if ((*this_cache) != NULL)
2045 return (*this_cache);
2046 this_trad_cache = trad_frame_cache_zalloc (next_frame);
2047 (*this_cache) = this_trad_cache;
2048
2049 /* The return address is in the link register. */
2050 trad_frame_set_reg_realreg (this_trad_cache, PC_REGNUM, MIPS_RA_REGNUM);
2051
2052 /* Frame ID, since it's a frameless / stackless function, no stack
2053 space is allocated and SP on entry is the current SP. */
2054 pc = frame_pc_unwind (next_frame);
2055 find_pc_partial_function (pc, NULL, &start_addr, NULL);
2056 stack_addr = frame_unwind_register_signed (next_frame, MIPS_SP_REGNUM);
2057 trad_frame_set_id (this_trad_cache, frame_id_build (start_addr, stack_addr));
2058
2059 /* Assume that the frame's base is the same as the
2060 stack-pointer. */
2061 trad_frame_set_this_base (this_trad_cache, stack_addr);
2062
2063 return this_trad_cache;
2064 }
2065
2066 static void
2067 mips_stub_frame_this_id (struct frame_info *next_frame, void **this_cache,
2068 struct frame_id *this_id)
2069 {
2070 struct trad_frame_cache *this_trad_cache
2071 = mips_stub_frame_cache (next_frame, this_cache);
2072 trad_frame_get_id (this_trad_cache, this_id);
2073 }
2074
2075 static void
2076 mips_stub_frame_prev_register (struct frame_info *next_frame,
2077 void **this_cache,
2078 int regnum, int *optimizedp,
2079 enum lval_type *lvalp, CORE_ADDR *addrp,
2080 int *realnump, void *valuep)
2081 {
2082 struct trad_frame_cache *this_trad_cache
2083 = mips_stub_frame_cache (next_frame, this_cache);
2084 trad_frame_get_register (this_trad_cache, next_frame, regnum, optimizedp,
2085 lvalp, addrp, realnump, valuep);
2086 }
2087
2088 static const struct frame_unwind mips_stub_frame_unwind =
2089 {
2090 NORMAL_FRAME,
2091 mips_stub_frame_this_id,
2092 mips_stub_frame_prev_register
2093 };
2094
2095 static const struct frame_unwind *
2096 mips_stub_frame_sniffer (struct frame_info *next_frame)
2097 {
2098 CORE_ADDR pc = frame_pc_unwind (next_frame);
2099 if (in_plt_section (pc, NULL))
2100 return &mips_stub_frame_unwind;
2101 else
2102 return NULL;
2103 }
2104
2105 static CORE_ADDR
2106 mips_stub_frame_base_address (struct frame_info *next_frame,
2107 void **this_cache)
2108 {
2109 struct trad_frame_cache *this_trad_cache
2110 = mips_stub_frame_cache (next_frame, this_cache);
2111 return trad_frame_get_this_base (this_trad_cache);
2112 }
2113
2114 static const struct frame_base mips_stub_frame_base =
2115 {
2116 &mips_stub_frame_unwind,
2117 mips_stub_frame_base_address,
2118 mips_stub_frame_base_address,
2119 mips_stub_frame_base_address
2120 };
2121
2122 static const struct frame_base *
2123 mips_stub_frame_base_sniffer (struct frame_info *next_frame)
2124 {
2125 if (mips_stub_frame_sniffer (next_frame) != NULL)
2126 return &mips_stub_frame_base;
2127 else
2128 return NULL;
2129 }
2130
2131 static CORE_ADDR
2132 read_next_frame_reg (struct frame_info *fi, int regno)
2133 {
2134 /* Always a pseudo. */
2135 gdb_assert (regno >= NUM_REGS);
2136 if (fi == NULL)
2137 {
2138 LONGEST val;
2139 regcache_cooked_read_signed (current_regcache, regno, &val);
2140 return val;
2141 }
2142 else
2143 return frame_unwind_register_signed (fi, regno);
2144
2145 }
2146
2147 /* mips_addr_bits_remove - remove useless address bits */
2148
2149 static CORE_ADDR
2150 mips_addr_bits_remove (CORE_ADDR addr)
2151 {
2152 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2153 if (mips_mask_address_p (tdep) && (((ULONGEST) addr) >> 32 == 0xffffffffUL))
2154 /* This hack is a work-around for existing boards using PMON, the
2155 simulator, and any other 64-bit targets that doesn't have true
2156 64-bit addressing. On these targets, the upper 32 bits of
2157 addresses are ignored by the hardware. Thus, the PC or SP are
2158 likely to have been sign extended to all 1s by instruction
2159 sequences that load 32-bit addresses. For example, a typical
2160 piece of code that loads an address is this:
2161
2162 lui $r2, <upper 16 bits>
2163 ori $r2, <lower 16 bits>
2164
2165 But the lui sign-extends the value such that the upper 32 bits
2166 may be all 1s. The workaround is simply to mask off these
2167 bits. In the future, gcc may be changed to support true 64-bit
2168 addressing, and this masking will have to be disabled. */
2169 return addr &= 0xffffffffUL;
2170 else
2171 return addr;
2172 }
2173
2174 /* mips_software_single_step() is called just before we want to resume
2175 the inferior, if we want to single-step it but there is no hardware
2176 or kernel single-step support (MIPS on GNU/Linux for example). We find
2177 the target of the coming instruction and breakpoint it.
2178
2179 single_step is also called just after the inferior stops. If we had
2180 set up a simulated single-step, we undo our damage. */
2181
2182 void
2183 mips_software_single_step (enum target_signal sig, int insert_breakpoints_p)
2184 {
2185 static CORE_ADDR next_pc;
2186 typedef char binsn_quantum[BREAKPOINT_MAX];
2187 static binsn_quantum break_mem;
2188 CORE_ADDR pc;
2189
2190 if (insert_breakpoints_p)
2191 {
2192 pc = read_register (mips_regnum (current_gdbarch)->pc);
2193 next_pc = mips_next_pc (pc);
2194
2195 target_insert_breakpoint (next_pc, break_mem);
2196 }
2197 else
2198 target_remove_breakpoint (next_pc, break_mem);
2199 }
2200
2201 /* Test whether the PC points to the return instruction at the
2202 end of a function. */
2203
2204 static int
2205 mips_about_to_return (CORE_ADDR pc)
2206 {
2207 if (mips_pc_is_mips16 (pc))
2208 /* This mips16 case isn't necessarily reliable. Sometimes the compiler
2209 generates a "jr $ra"; other times it generates code to load
2210 the return address from the stack to an accessible register (such
2211 as $a3), then a "jr" using that register. This second case
2212 is almost impossible to distinguish from an indirect jump
2213 used for switch statements, so we don't even try. */
2214 return mips_fetch_instruction (pc) == 0xe820; /* jr $ra */
2215 else
2216 return mips_fetch_instruction (pc) == 0x3e00008; /* jr $ra */
2217 }
2218
2219
2220 /* This fencepost looks highly suspicious to me. Removing it also
2221 seems suspicious as it could affect remote debugging across serial
2222 lines. */
2223
2224 static CORE_ADDR
2225 heuristic_proc_start (CORE_ADDR pc)
2226 {
2227 CORE_ADDR start_pc;
2228 CORE_ADDR fence;
2229 int instlen;
2230 int seen_adjsp = 0;
2231
2232 pc = ADDR_BITS_REMOVE (pc);
2233 start_pc = pc;
2234 fence = start_pc - heuristic_fence_post;
2235 if (start_pc == 0)
2236 return 0;
2237
2238 if (heuristic_fence_post == UINT_MAX || fence < VM_MIN_ADDRESS)
2239 fence = VM_MIN_ADDRESS;
2240
2241 instlen = mips_pc_is_mips16 (pc) ? MIPS_INSN16_SIZE : MIPS_INSN32_SIZE;
2242
2243 /* search back for previous return */
2244 for (start_pc -= instlen;; start_pc -= instlen)
2245 if (start_pc < fence)
2246 {
2247 /* It's not clear to me why we reach this point when
2248 stop_soon, but with this test, at least we
2249 don't print out warnings for every child forked (eg, on
2250 decstation). 22apr93 rich@cygnus.com. */
2251 if (stop_soon == NO_STOP_QUIETLY)
2252 {
2253 static int blurb_printed = 0;
2254
2255 warning ("GDB can't find the start of the function at 0x%s.",
2256 paddr_nz (pc));
2257
2258 if (!blurb_printed)
2259 {
2260 /* This actually happens frequently in embedded
2261 development, when you first connect to a board
2262 and your stack pointer and pc are nowhere in
2263 particular. This message needs to give people
2264 in that situation enough information to
2265 determine that it's no big deal. */
2266 printf_filtered ("\n\
2267 GDB is unable to find the start of the function at 0x%s\n\
2268 and thus can't determine the size of that function's stack frame.\n\
2269 This means that GDB may be unable to access that stack frame, or\n\
2270 the frames below it.\n\
2271 This problem is most likely caused by an invalid program counter or\n\
2272 stack pointer.\n\
2273 However, if you think GDB should simply search farther back\n\
2274 from 0x%s for code which looks like the beginning of a\n\
2275 function, you can increase the range of the search using the `set\n\
2276 heuristic-fence-post' command.\n", paddr_nz (pc), paddr_nz (pc));
2277 blurb_printed = 1;
2278 }
2279 }
2280
2281 return 0;
2282 }
2283 else if (mips_pc_is_mips16 (start_pc))
2284 {
2285 unsigned short inst;
2286
2287 /* On MIPS16, any one of the following is likely to be the
2288 start of a function:
2289 entry
2290 addiu sp,-n
2291 daddiu sp,-n
2292 extend -n followed by 'addiu sp,+n' or 'daddiu sp,+n' */
2293 inst = mips_fetch_instruction (start_pc);
2294 if (((inst & 0xf81f) == 0xe809 && (inst & 0x700) != 0x700) /* entry */
2295 || (inst & 0xff80) == 0x6380 /* addiu sp,-n */
2296 || (inst & 0xff80) == 0xfb80 /* daddiu sp,-n */
2297 || ((inst & 0xf810) == 0xf010 && seen_adjsp)) /* extend -n */
2298 break;
2299 else if ((inst & 0xff00) == 0x6300 /* addiu sp */
2300 || (inst & 0xff00) == 0xfb00) /* daddiu sp */
2301 seen_adjsp = 1;
2302 else
2303 seen_adjsp = 0;
2304 }
2305 else if (mips_about_to_return (start_pc))
2306 {
2307 /* Skip return and its delay slot. */
2308 start_pc += 2 * MIPS_INSN32_SIZE;
2309 break;
2310 }
2311
2312 return start_pc;
2313 }
2314
2315 struct mips_objfile_private
2316 {
2317 bfd_size_type size;
2318 char *contents;
2319 };
2320
2321 /* According to the current ABI, should the type be passed in a
2322 floating-point register (assuming that there is space)? When there
2323 is no FPU, FP are not even considered as possibile candidates for
2324 FP registers and, consequently this returns false - forces FP
2325 arguments into integer registers. */
2326
2327 static int
2328 fp_register_arg_p (enum type_code typecode, struct type *arg_type)
2329 {
2330 return ((typecode == TYPE_CODE_FLT
2331 || (MIPS_EABI
2332 && (typecode == TYPE_CODE_STRUCT
2333 || typecode == TYPE_CODE_UNION)
2334 && TYPE_NFIELDS (arg_type) == 1
2335 && TYPE_CODE (TYPE_FIELD_TYPE (arg_type, 0)) == TYPE_CODE_FLT))
2336 && MIPS_FPU_TYPE != MIPS_FPU_NONE);
2337 }
2338
2339 /* On o32, argument passing in GPRs depends on the alignment of the type being
2340 passed. Return 1 if this type must be aligned to a doubleword boundary. */
2341
2342 static int
2343 mips_type_needs_double_align (struct type *type)
2344 {
2345 enum type_code typecode = TYPE_CODE (type);
2346
2347 if (typecode == TYPE_CODE_FLT && TYPE_LENGTH (type) == 8)
2348 return 1;
2349 else if (typecode == TYPE_CODE_STRUCT)
2350 {
2351 if (TYPE_NFIELDS (type) < 1)
2352 return 0;
2353 return mips_type_needs_double_align (TYPE_FIELD_TYPE (type, 0));
2354 }
2355 else if (typecode == TYPE_CODE_UNION)
2356 {
2357 int i, n;
2358
2359 n = TYPE_NFIELDS (type);
2360 for (i = 0; i < n; i++)
2361 if (mips_type_needs_double_align (TYPE_FIELD_TYPE (type, i)))
2362 return 1;
2363 return 0;
2364 }
2365 return 0;
2366 }
2367
2368 /* Adjust the address downward (direction of stack growth) so that it
2369 is correctly aligned for a new stack frame. */
2370 static CORE_ADDR
2371 mips_frame_align (struct gdbarch *gdbarch, CORE_ADDR addr)
2372 {
2373 return align_down (addr, 16);
2374 }
2375
2376 static CORE_ADDR
2377 mips_eabi_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2378 struct regcache *regcache, CORE_ADDR bp_addr,
2379 int nargs, struct value **args, CORE_ADDR sp,
2380 int struct_return, CORE_ADDR struct_addr)
2381 {
2382 int argreg;
2383 int float_argreg;
2384 int argnum;
2385 int len = 0;
2386 int stack_offset = 0;
2387 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2388 CORE_ADDR func_addr = find_function_addr (function, NULL);
2389
2390 /* For shared libraries, "t9" needs to point at the function
2391 address. */
2392 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2393
2394 /* Set the return address register to point to the entry point of
2395 the program, where a breakpoint lies in wait. */
2396 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2397
2398 /* First ensure that the stack and structure return address (if any)
2399 are properly aligned. The stack has to be at least 64-bit
2400 aligned even on 32-bit machines, because doubles must be 64-bit
2401 aligned. For n32 and n64, stack frames need to be 128-bit
2402 aligned, so we round to this widest known alignment. */
2403
2404 sp = align_down (sp, 16);
2405 struct_addr = align_down (struct_addr, 16);
2406
2407 /* Now make space on the stack for the args. We allocate more
2408 than necessary for EABI, because the first few arguments are
2409 passed in registers, but that's OK. */
2410 for (argnum = 0; argnum < nargs; argnum++)
2411 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2412 mips_stack_argsize (gdbarch));
2413 sp -= align_up (len, 16);
2414
2415 if (mips_debug)
2416 fprintf_unfiltered (gdb_stdlog,
2417 "mips_eabi_push_dummy_call: sp=0x%s allocated %ld\n",
2418 paddr_nz (sp), (long) align_up (len, 16));
2419
2420 /* Initialize the integer and float register pointers. */
2421 argreg = MIPS_A0_REGNUM;
2422 float_argreg = mips_fpa0_regnum (current_gdbarch);
2423
2424 /* The struct_return pointer occupies the first parameter-passing reg. */
2425 if (struct_return)
2426 {
2427 if (mips_debug)
2428 fprintf_unfiltered (gdb_stdlog,
2429 "mips_eabi_push_dummy_call: struct_return reg=%d 0x%s\n",
2430 argreg, paddr_nz (struct_addr));
2431 write_register (argreg++, struct_addr);
2432 }
2433
2434 /* Now load as many as possible of the first arguments into
2435 registers, and push the rest onto the stack. Loop thru args
2436 from first to last. */
2437 for (argnum = 0; argnum < nargs; argnum++)
2438 {
2439 char *val;
2440 char valbuf[MAX_REGISTER_SIZE];
2441 struct value *arg = args[argnum];
2442 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2443 int len = TYPE_LENGTH (arg_type);
2444 enum type_code typecode = TYPE_CODE (arg_type);
2445
2446 if (mips_debug)
2447 fprintf_unfiltered (gdb_stdlog,
2448 "mips_eabi_push_dummy_call: %d len=%d type=%d",
2449 argnum + 1, len, (int) typecode);
2450
2451 /* The EABI passes structures that do not fit in a register by
2452 reference. */
2453 if (len > mips_abi_regsize (gdbarch)
2454 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
2455 {
2456 store_unsigned_integer (valbuf, mips_abi_regsize (gdbarch),
2457 VALUE_ADDRESS (arg));
2458 typecode = TYPE_CODE_PTR;
2459 len = mips_abi_regsize (gdbarch);
2460 val = valbuf;
2461 if (mips_debug)
2462 fprintf_unfiltered (gdb_stdlog, " push");
2463 }
2464 else
2465 val = (char *) VALUE_CONTENTS (arg);
2466
2467 /* 32-bit ABIs always start floating point arguments in an
2468 even-numbered floating point register. Round the FP register
2469 up before the check to see if there are any FP registers
2470 left. Non MIPS_EABI targets also pass the FP in the integer
2471 registers so also round up normal registers. */
2472 if (mips_abi_regsize (gdbarch) < 8
2473 && fp_register_arg_p (typecode, arg_type))
2474 {
2475 if ((float_argreg & 1))
2476 float_argreg++;
2477 }
2478
2479 /* Floating point arguments passed in registers have to be
2480 treated specially. On 32-bit architectures, doubles
2481 are passed in register pairs; the even register gets
2482 the low word, and the odd register gets the high word.
2483 On non-EABI processors, the first two floating point arguments are
2484 also copied to general registers, because MIPS16 functions
2485 don't use float registers for arguments. This duplication of
2486 arguments in general registers can't hurt non-MIPS16 functions
2487 because those registers are normally skipped. */
2488 /* MIPS_EABI squeezes a struct that contains a single floating
2489 point value into an FP register instead of pushing it onto the
2490 stack. */
2491 if (fp_register_arg_p (typecode, arg_type)
2492 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2493 {
2494 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
2495 {
2496 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
2497 unsigned long regval;
2498
2499 /* Write the low word of the double to the even register(s). */
2500 regval = extract_unsigned_integer (val + low_offset, 4);
2501 if (mips_debug)
2502 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2503 float_argreg, phex (regval, 4));
2504 write_register (float_argreg++, regval);
2505
2506 /* Write the high word of the double to the odd register(s). */
2507 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
2508 if (mips_debug)
2509 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2510 float_argreg, phex (regval, 4));
2511 write_register (float_argreg++, regval);
2512 }
2513 else
2514 {
2515 /* This is a floating point value that fits entirely
2516 in a single register. */
2517 /* On 32 bit ABI's the float_argreg is further adjusted
2518 above to ensure that it is even register aligned. */
2519 LONGEST regval = extract_unsigned_integer (val, len);
2520 if (mips_debug)
2521 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2522 float_argreg, phex (regval, len));
2523 write_register (float_argreg++, regval);
2524 }
2525 }
2526 else
2527 {
2528 /* Copy the argument to general registers or the stack in
2529 register-sized pieces. Large arguments are split between
2530 registers and stack. */
2531 /* Note: structs whose size is not a multiple of
2532 mips_abi_regsize() are treated specially: Irix cc passes
2533 them in registers where gcc sometimes puts them on the
2534 stack. For maximum compatibility, we will put them in
2535 both places. */
2536 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2537 && (len % mips_abi_regsize (gdbarch) != 0));
2538
2539 /* Note: Floating-point values that didn't fit into an FP
2540 register are only written to memory. */
2541 while (len > 0)
2542 {
2543 /* Remember if the argument was written to the stack. */
2544 int stack_used_p = 0;
2545 int partial_len = (len < mips_abi_regsize (gdbarch)
2546 ? len : mips_abi_regsize (gdbarch));
2547
2548 if (mips_debug)
2549 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2550 partial_len);
2551
2552 /* Write this portion of the argument to the stack. */
2553 if (argreg > MIPS_LAST_ARG_REGNUM
2554 || odd_sized_struct
2555 || fp_register_arg_p (typecode, arg_type))
2556 {
2557 /* Should shorter than int integer values be
2558 promoted to int before being stored? */
2559 int longword_offset = 0;
2560 CORE_ADDR addr;
2561 stack_used_p = 1;
2562 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2563 {
2564 if (mips_stack_argsize (gdbarch) == 8
2565 && (typecode == TYPE_CODE_INT
2566 || typecode == TYPE_CODE_PTR
2567 || typecode == TYPE_CODE_FLT) && len <= 4)
2568 longword_offset = mips_stack_argsize (gdbarch) - len;
2569 else if ((typecode == TYPE_CODE_STRUCT
2570 || typecode == TYPE_CODE_UNION)
2571 && (TYPE_LENGTH (arg_type)
2572 < mips_stack_argsize (gdbarch)))
2573 longword_offset = mips_stack_argsize (gdbarch) - len;
2574 }
2575
2576 if (mips_debug)
2577 {
2578 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2579 paddr_nz (stack_offset));
2580 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2581 paddr_nz (longword_offset));
2582 }
2583
2584 addr = sp + stack_offset + longword_offset;
2585
2586 if (mips_debug)
2587 {
2588 int i;
2589 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2590 paddr_nz (addr));
2591 for (i = 0; i < partial_len; i++)
2592 {
2593 fprintf_unfiltered (gdb_stdlog, "%02x",
2594 val[i] & 0xff);
2595 }
2596 }
2597 write_memory (addr, val, partial_len);
2598 }
2599
2600 /* Note!!! This is NOT an else clause. Odd sized
2601 structs may go thru BOTH paths. Floating point
2602 arguments will not. */
2603 /* Write this portion of the argument to a general
2604 purpose register. */
2605 if (argreg <= MIPS_LAST_ARG_REGNUM
2606 && !fp_register_arg_p (typecode, arg_type))
2607 {
2608 LONGEST regval =
2609 extract_unsigned_integer (val, partial_len);
2610
2611 if (mips_debug)
2612 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2613 argreg,
2614 phex (regval,
2615 mips_abi_regsize (gdbarch)));
2616 write_register (argreg, regval);
2617 argreg++;
2618 }
2619
2620 len -= partial_len;
2621 val += partial_len;
2622
2623 /* Compute the the offset into the stack at which we
2624 will copy the next parameter.
2625
2626 In the new EABI (and the NABI32), the stack_offset
2627 only needs to be adjusted when it has been used. */
2628
2629 if (stack_used_p)
2630 stack_offset += align_up (partial_len,
2631 mips_stack_argsize (gdbarch));
2632 }
2633 }
2634 if (mips_debug)
2635 fprintf_unfiltered (gdb_stdlog, "\n");
2636 }
2637
2638 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2639
2640 /* Return adjusted stack pointer. */
2641 return sp;
2642 }
2643
2644 /* Determin the return value convention being used. */
2645
2646 static enum return_value_convention
2647 mips_eabi_return_value (struct gdbarch *gdbarch,
2648 struct type *type, struct regcache *regcache,
2649 void *readbuf, const void *writebuf)
2650 {
2651 if (TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2652 return RETURN_VALUE_STRUCT_CONVENTION;
2653 if (readbuf)
2654 memset (readbuf, 0, TYPE_LENGTH (type));
2655 return RETURN_VALUE_REGISTER_CONVENTION;
2656 }
2657
2658
2659 /* N32/N64 ABI stuff. */
2660
2661 static CORE_ADDR
2662 mips_n32n64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
2663 struct regcache *regcache, CORE_ADDR bp_addr,
2664 int nargs, struct value **args, CORE_ADDR sp,
2665 int struct_return, CORE_ADDR struct_addr)
2666 {
2667 int argreg;
2668 int float_argreg;
2669 int argnum;
2670 int len = 0;
2671 int stack_offset = 0;
2672 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2673 CORE_ADDR func_addr = find_function_addr (function, NULL);
2674
2675 /* For shared libraries, "t9" needs to point at the function
2676 address. */
2677 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
2678
2679 /* Set the return address register to point to the entry point of
2680 the program, where a breakpoint lies in wait. */
2681 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
2682
2683 /* First ensure that the stack and structure return address (if any)
2684 are properly aligned. The stack has to be at least 64-bit
2685 aligned even on 32-bit machines, because doubles must be 64-bit
2686 aligned. For n32 and n64, stack frames need to be 128-bit
2687 aligned, so we round to this widest known alignment. */
2688
2689 sp = align_down (sp, 16);
2690 struct_addr = align_down (struct_addr, 16);
2691
2692 /* Now make space on the stack for the args. */
2693 for (argnum = 0; argnum < nargs; argnum++)
2694 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
2695 mips_stack_argsize (gdbarch));
2696 sp -= align_up (len, 16);
2697
2698 if (mips_debug)
2699 fprintf_unfiltered (gdb_stdlog,
2700 "mips_n32n64_push_dummy_call: sp=0x%s allocated %ld\n",
2701 paddr_nz (sp), (long) align_up (len, 16));
2702
2703 /* Initialize the integer and float register pointers. */
2704 argreg = MIPS_A0_REGNUM;
2705 float_argreg = mips_fpa0_regnum (current_gdbarch);
2706
2707 /* The struct_return pointer occupies the first parameter-passing reg. */
2708 if (struct_return)
2709 {
2710 if (mips_debug)
2711 fprintf_unfiltered (gdb_stdlog,
2712 "mips_n32n64_push_dummy_call: struct_return reg=%d 0x%s\n",
2713 argreg, paddr_nz (struct_addr));
2714 write_register (argreg++, struct_addr);
2715 }
2716
2717 /* Now load as many as possible of the first arguments into
2718 registers, and push the rest onto the stack. Loop thru args
2719 from first to last. */
2720 for (argnum = 0; argnum < nargs; argnum++)
2721 {
2722 char *val;
2723 struct value *arg = args[argnum];
2724 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2725 int len = TYPE_LENGTH (arg_type);
2726 enum type_code typecode = TYPE_CODE (arg_type);
2727
2728 if (mips_debug)
2729 fprintf_unfiltered (gdb_stdlog,
2730 "mips_n32n64_push_dummy_call: %d len=%d type=%d",
2731 argnum + 1, len, (int) typecode);
2732
2733 val = (char *) VALUE_CONTENTS (arg);
2734
2735 if (fp_register_arg_p (typecode, arg_type)
2736 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
2737 {
2738 /* This is a floating point value that fits entirely
2739 in a single register. */
2740 /* On 32 bit ABI's the float_argreg is further adjusted
2741 above to ensure that it is even register aligned. */
2742 LONGEST regval = extract_unsigned_integer (val, len);
2743 if (mips_debug)
2744 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
2745 float_argreg, phex (regval, len));
2746 write_register (float_argreg++, regval);
2747
2748 if (mips_debug)
2749 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
2750 argreg, phex (regval, len));
2751 write_register (argreg, regval);
2752 argreg += 1;
2753 }
2754 else
2755 {
2756 /* Copy the argument to general registers or the stack in
2757 register-sized pieces. Large arguments are split between
2758 registers and stack. */
2759 /* Note: structs whose size is not a multiple of
2760 mips_abi_regsize() are treated specially: Irix cc passes
2761 them in registers where gcc sometimes puts them on the
2762 stack. For maximum compatibility, we will put them in
2763 both places. */
2764 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
2765 && (len % mips_abi_regsize (gdbarch) != 0));
2766 /* Note: Floating-point values that didn't fit into an FP
2767 register are only written to memory. */
2768 while (len > 0)
2769 {
2770 /* Rememer if the argument was written to the stack. */
2771 int stack_used_p = 0;
2772 int partial_len = (len < mips_abi_regsize (gdbarch)
2773 ? len : mips_abi_regsize (gdbarch));
2774
2775 if (mips_debug)
2776 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
2777 partial_len);
2778
2779 /* Write this portion of the argument to the stack. */
2780 if (argreg > MIPS_LAST_ARG_REGNUM
2781 || odd_sized_struct
2782 || fp_register_arg_p (typecode, arg_type))
2783 {
2784 /* Should shorter than int integer values be
2785 promoted to int before being stored? */
2786 int longword_offset = 0;
2787 CORE_ADDR addr;
2788 stack_used_p = 1;
2789 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2790 {
2791 if (mips_stack_argsize (gdbarch) == 8
2792 && (typecode == TYPE_CODE_INT
2793 || typecode == TYPE_CODE_PTR
2794 || typecode == TYPE_CODE_FLT) && len <= 4)
2795 longword_offset = mips_stack_argsize (gdbarch) - len;
2796 }
2797
2798 if (mips_debug)
2799 {
2800 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
2801 paddr_nz (stack_offset));
2802 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
2803 paddr_nz (longword_offset));
2804 }
2805
2806 addr = sp + stack_offset + longword_offset;
2807
2808 if (mips_debug)
2809 {
2810 int i;
2811 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
2812 paddr_nz (addr));
2813 for (i = 0; i < partial_len; i++)
2814 {
2815 fprintf_unfiltered (gdb_stdlog, "%02x",
2816 val[i] & 0xff);
2817 }
2818 }
2819 write_memory (addr, val, partial_len);
2820 }
2821
2822 /* Note!!! This is NOT an else clause. Odd sized
2823 structs may go thru BOTH paths. Floating point
2824 arguments will not. */
2825 /* Write this portion of the argument to a general
2826 purpose register. */
2827 if (argreg <= MIPS_LAST_ARG_REGNUM
2828 && !fp_register_arg_p (typecode, arg_type))
2829 {
2830 LONGEST regval =
2831 extract_unsigned_integer (val, partial_len);
2832
2833 /* A non-floating-point argument being passed in a
2834 general register. If a struct or union, and if
2835 the remaining length is smaller than the register
2836 size, we have to adjust the register value on
2837 big endian targets.
2838
2839 It does not seem to be necessary to do the
2840 same for integral types.
2841
2842 cagney/2001-07-23: gdb/179: Also, GCC, when
2843 outputting LE O32 with sizeof (struct) <
2844 mips_abi_regsize(), generates a left shift as
2845 part of storing the argument in a register a
2846 register (the left shift isn't generated when
2847 sizeof (struct) >= mips_abi_regsize()). Since
2848 it is quite possible that this is GCC
2849 contradicting the LE/O32 ABI, GDB has not been
2850 adjusted to accommodate this. Either someone
2851 needs to demonstrate that the LE/O32 ABI
2852 specifies such a left shift OR this new ABI gets
2853 identified as such and GDB gets tweaked
2854 accordingly. */
2855
2856 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
2857 && partial_len < mips_abi_regsize (gdbarch)
2858 && (typecode == TYPE_CODE_STRUCT ||
2859 typecode == TYPE_CODE_UNION))
2860 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
2861 TARGET_CHAR_BIT);
2862
2863 if (mips_debug)
2864 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
2865 argreg,
2866 phex (regval,
2867 mips_abi_regsize (gdbarch)));
2868 write_register (argreg, regval);
2869 argreg++;
2870 }
2871
2872 len -= partial_len;
2873 val += partial_len;
2874
2875 /* Compute the the offset into the stack at which we
2876 will copy the next parameter.
2877
2878 In N32 (N64?), the stack_offset only needs to be
2879 adjusted when it has been used. */
2880
2881 if (stack_used_p)
2882 stack_offset += align_up (partial_len,
2883 mips_stack_argsize (gdbarch));
2884 }
2885 }
2886 if (mips_debug)
2887 fprintf_unfiltered (gdb_stdlog, "\n");
2888 }
2889
2890 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
2891
2892 /* Return adjusted stack pointer. */
2893 return sp;
2894 }
2895
2896 static enum return_value_convention
2897 mips_n32n64_return_value (struct gdbarch *gdbarch,
2898 struct type *type, struct regcache *regcache,
2899 void *readbuf, const void *writebuf)
2900 {
2901 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
2902 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2903 || TYPE_CODE (type) == TYPE_CODE_UNION
2904 || TYPE_CODE (type) == TYPE_CODE_ARRAY
2905 || TYPE_LENGTH (type) > 2 * mips_abi_regsize (gdbarch))
2906 return RETURN_VALUE_STRUCT_CONVENTION;
2907 else if (TYPE_CODE (type) == TYPE_CODE_FLT
2908 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2909 {
2910 /* A floating-point value belongs in the least significant part
2911 of FP0. */
2912 if (mips_debug)
2913 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
2914 mips_xfer_register (regcache,
2915 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
2916 TYPE_LENGTH (type),
2917 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
2918 return RETURN_VALUE_REGISTER_CONVENTION;
2919 }
2920 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2921 && TYPE_NFIELDS (type) <= 2
2922 && TYPE_NFIELDS (type) >= 1
2923 && ((TYPE_NFIELDS (type) == 1
2924 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2925 == TYPE_CODE_FLT))
2926 || (TYPE_NFIELDS (type) == 2
2927 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
2928 == TYPE_CODE_FLT)
2929 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
2930 == TYPE_CODE_FLT)))
2931 && tdep->mips_fpu_type != MIPS_FPU_NONE)
2932 {
2933 /* A struct that contains one or two floats. Each value is part
2934 in the least significant part of their floating point
2935 register.. */
2936 int regnum;
2937 int field;
2938 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
2939 field < TYPE_NFIELDS (type); field++, regnum += 2)
2940 {
2941 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
2942 / TARGET_CHAR_BIT);
2943 if (mips_debug)
2944 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
2945 offset);
2946 mips_xfer_register (regcache, NUM_REGS + regnum,
2947 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
2948 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2949 }
2950 return RETURN_VALUE_REGISTER_CONVENTION;
2951 }
2952 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
2953 || TYPE_CODE (type) == TYPE_CODE_UNION)
2954 {
2955 /* A structure or union. Extract the left justified value,
2956 regardless of the byte order. I.e. DO NOT USE
2957 mips_xfer_lower. */
2958 int offset;
2959 int regnum;
2960 for (offset = 0, regnum = MIPS_V0_REGNUM;
2961 offset < TYPE_LENGTH (type);
2962 offset += register_size (current_gdbarch, regnum), regnum++)
2963 {
2964 int xfer = register_size (current_gdbarch, regnum);
2965 if (offset + xfer > TYPE_LENGTH (type))
2966 xfer = TYPE_LENGTH (type) - offset;
2967 if (mips_debug)
2968 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
2969 offset, xfer, regnum);
2970 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2971 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
2972 }
2973 return RETURN_VALUE_REGISTER_CONVENTION;
2974 }
2975 else
2976 {
2977 /* A scalar extract each part but least-significant-byte
2978 justified. */
2979 int offset;
2980 int regnum;
2981 for (offset = 0, regnum = MIPS_V0_REGNUM;
2982 offset < TYPE_LENGTH (type);
2983 offset += register_size (current_gdbarch, regnum), regnum++)
2984 {
2985 int xfer = register_size (current_gdbarch, regnum);
2986 if (offset + xfer > TYPE_LENGTH (type))
2987 xfer = TYPE_LENGTH (type) - offset;
2988 if (mips_debug)
2989 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
2990 offset, xfer, regnum);
2991 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
2992 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
2993 }
2994 return RETURN_VALUE_REGISTER_CONVENTION;
2995 }
2996 }
2997
2998 /* O32 ABI stuff. */
2999
3000 static CORE_ADDR
3001 mips_o32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3002 struct regcache *regcache, CORE_ADDR bp_addr,
3003 int nargs, struct value **args, CORE_ADDR sp,
3004 int struct_return, CORE_ADDR struct_addr)
3005 {
3006 int argreg;
3007 int float_argreg;
3008 int argnum;
3009 int len = 0;
3010 int stack_offset = 0;
3011 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3012 CORE_ADDR func_addr = find_function_addr (function, NULL);
3013
3014 /* For shared libraries, "t9" needs to point at the function
3015 address. */
3016 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3017
3018 /* Set the return address register to point to the entry point of
3019 the program, where a breakpoint lies in wait. */
3020 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3021
3022 /* First ensure that the stack and structure return address (if any)
3023 are properly aligned. The stack has to be at least 64-bit
3024 aligned even on 32-bit machines, because doubles must be 64-bit
3025 aligned. For n32 and n64, stack frames need to be 128-bit
3026 aligned, so we round to this widest known alignment. */
3027
3028 sp = align_down (sp, 16);
3029 struct_addr = align_down (struct_addr, 16);
3030
3031 /* Now make space on the stack for the args. */
3032 for (argnum = 0; argnum < nargs; argnum++)
3033 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3034 mips_stack_argsize (gdbarch));
3035 sp -= align_up (len, 16);
3036
3037 if (mips_debug)
3038 fprintf_unfiltered (gdb_stdlog,
3039 "mips_o32_push_dummy_call: sp=0x%s allocated %ld\n",
3040 paddr_nz (sp), (long) align_up (len, 16));
3041
3042 /* Initialize the integer and float register pointers. */
3043 argreg = MIPS_A0_REGNUM;
3044 float_argreg = mips_fpa0_regnum (current_gdbarch);
3045
3046 /* The struct_return pointer occupies the first parameter-passing reg. */
3047 if (struct_return)
3048 {
3049 if (mips_debug)
3050 fprintf_unfiltered (gdb_stdlog,
3051 "mips_o32_push_dummy_call: struct_return reg=%d 0x%s\n",
3052 argreg, paddr_nz (struct_addr));
3053 write_register (argreg++, struct_addr);
3054 stack_offset += mips_stack_argsize (gdbarch);
3055 }
3056
3057 /* Now load as many as possible of the first arguments into
3058 registers, and push the rest onto the stack. Loop thru args
3059 from first to last. */
3060 for (argnum = 0; argnum < nargs; argnum++)
3061 {
3062 char *val;
3063 struct value *arg = args[argnum];
3064 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3065 int len = TYPE_LENGTH (arg_type);
3066 enum type_code typecode = TYPE_CODE (arg_type);
3067
3068 if (mips_debug)
3069 fprintf_unfiltered (gdb_stdlog,
3070 "mips_o32_push_dummy_call: %d len=%d type=%d",
3071 argnum + 1, len, (int) typecode);
3072
3073 val = (char *) VALUE_CONTENTS (arg);
3074
3075 /* 32-bit ABIs always start floating point arguments in an
3076 even-numbered floating point register. Round the FP register
3077 up before the check to see if there are any FP registers
3078 left. O32/O64 targets also pass the FP in the integer
3079 registers so also round up normal registers. */
3080 if (mips_abi_regsize (gdbarch) < 8
3081 && fp_register_arg_p (typecode, arg_type))
3082 {
3083 if ((float_argreg & 1))
3084 float_argreg++;
3085 }
3086
3087 /* Floating point arguments passed in registers have to be
3088 treated specially. On 32-bit architectures, doubles
3089 are passed in register pairs; the even register gets
3090 the low word, and the odd register gets the high word.
3091 On O32/O64, the first two floating point arguments are
3092 also copied to general registers, because MIPS16 functions
3093 don't use float registers for arguments. This duplication of
3094 arguments in general registers can't hurt non-MIPS16 functions
3095 because those registers are normally skipped. */
3096
3097 if (fp_register_arg_p (typecode, arg_type)
3098 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3099 {
3100 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3101 {
3102 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3103 unsigned long regval;
3104
3105 /* Write the low word of the double to the even register(s). */
3106 regval = extract_unsigned_integer (val + low_offset, 4);
3107 if (mips_debug)
3108 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3109 float_argreg, phex (regval, 4));
3110 write_register (float_argreg++, regval);
3111 if (mips_debug)
3112 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3113 argreg, phex (regval, 4));
3114 write_register (argreg++, regval);
3115
3116 /* Write the high word of the double to the odd register(s). */
3117 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3118 if (mips_debug)
3119 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3120 float_argreg, phex (regval, 4));
3121 write_register (float_argreg++, regval);
3122
3123 if (mips_debug)
3124 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3125 argreg, phex (regval, 4));
3126 write_register (argreg++, regval);
3127 }
3128 else
3129 {
3130 /* This is a floating point value that fits entirely
3131 in a single register. */
3132 /* On 32 bit ABI's the float_argreg is further adjusted
3133 above to ensure that it is even register aligned. */
3134 LONGEST regval = extract_unsigned_integer (val, len);
3135 if (mips_debug)
3136 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3137 float_argreg, phex (regval, len));
3138 write_register (float_argreg++, regval);
3139 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3140 registers for each argument. The below is (my
3141 guess) to ensure that the corresponding integer
3142 register has reserved the same space. */
3143 if (mips_debug)
3144 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3145 argreg, phex (regval, len));
3146 write_register (argreg, regval);
3147 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3148 }
3149 /* Reserve space for the FP register. */
3150 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3151 }
3152 else
3153 {
3154 /* Copy the argument to general registers or the stack in
3155 register-sized pieces. Large arguments are split between
3156 registers and stack. */
3157 /* Note: structs whose size is not a multiple of
3158 mips_abi_regsize() are treated specially: Irix cc passes
3159 them in registers where gcc sometimes puts them on the
3160 stack. For maximum compatibility, we will put them in
3161 both places. */
3162 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3163 && (len % mips_abi_regsize (gdbarch) != 0));
3164 /* Structures should be aligned to eight bytes (even arg registers)
3165 on MIPS_ABI_O32, if their first member has double precision. */
3166 if (mips_abi_regsize (gdbarch) < 8
3167 && mips_type_needs_double_align (arg_type))
3168 {
3169 if ((argreg & 1))
3170 argreg++;
3171 }
3172 /* Note: Floating-point values that didn't fit into an FP
3173 register are only written to memory. */
3174 while (len > 0)
3175 {
3176 /* Remember if the argument was written to the stack. */
3177 int stack_used_p = 0;
3178 int partial_len = (len < mips_abi_regsize (gdbarch)
3179 ? len : mips_abi_regsize (gdbarch));
3180
3181 if (mips_debug)
3182 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3183 partial_len);
3184
3185 /* Write this portion of the argument to the stack. */
3186 if (argreg > MIPS_LAST_ARG_REGNUM
3187 || odd_sized_struct
3188 || fp_register_arg_p (typecode, arg_type))
3189 {
3190 /* Should shorter than int integer values be
3191 promoted to int before being stored? */
3192 int longword_offset = 0;
3193 CORE_ADDR addr;
3194 stack_used_p = 1;
3195 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3196 {
3197 if (mips_stack_argsize (gdbarch) == 8
3198 && (typecode == TYPE_CODE_INT
3199 || typecode == TYPE_CODE_PTR
3200 || typecode == TYPE_CODE_FLT) && len <= 4)
3201 longword_offset = mips_stack_argsize (gdbarch) - len;
3202 }
3203
3204 if (mips_debug)
3205 {
3206 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3207 paddr_nz (stack_offset));
3208 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3209 paddr_nz (longword_offset));
3210 }
3211
3212 addr = sp + stack_offset + longword_offset;
3213
3214 if (mips_debug)
3215 {
3216 int i;
3217 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3218 paddr_nz (addr));
3219 for (i = 0; i < partial_len; i++)
3220 {
3221 fprintf_unfiltered (gdb_stdlog, "%02x",
3222 val[i] & 0xff);
3223 }
3224 }
3225 write_memory (addr, val, partial_len);
3226 }
3227
3228 /* Note!!! This is NOT an else clause. Odd sized
3229 structs may go thru BOTH paths. Floating point
3230 arguments will not. */
3231 /* Write this portion of the argument to a general
3232 purpose register. */
3233 if (argreg <= MIPS_LAST_ARG_REGNUM
3234 && !fp_register_arg_p (typecode, arg_type))
3235 {
3236 LONGEST regval = extract_signed_integer (val, partial_len);
3237 /* Value may need to be sign extended, because
3238 mips_isa_regsize() != mips_abi_regsize(). */
3239
3240 /* A non-floating-point argument being passed in a
3241 general register. If a struct or union, and if
3242 the remaining length is smaller than the register
3243 size, we have to adjust the register value on
3244 big endian targets.
3245
3246 It does not seem to be necessary to do the
3247 same for integral types.
3248
3249 Also don't do this adjustment on O64 binaries.
3250
3251 cagney/2001-07-23: gdb/179: Also, GCC, when
3252 outputting LE O32 with sizeof (struct) <
3253 mips_abi_regsize(), generates a left shift as
3254 part of storing the argument in a register a
3255 register (the left shift isn't generated when
3256 sizeof (struct) >= mips_abi_regsize()). Since
3257 it is quite possible that this is GCC
3258 contradicting the LE/O32 ABI, GDB has not been
3259 adjusted to accommodate this. Either someone
3260 needs to demonstrate that the LE/O32 ABI
3261 specifies such a left shift OR this new ABI gets
3262 identified as such and GDB gets tweaked
3263 accordingly. */
3264
3265 if (mips_abi_regsize (gdbarch) < 8
3266 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3267 && partial_len < mips_abi_regsize (gdbarch)
3268 && (typecode == TYPE_CODE_STRUCT ||
3269 typecode == TYPE_CODE_UNION))
3270 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3271 TARGET_CHAR_BIT);
3272
3273 if (mips_debug)
3274 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3275 argreg,
3276 phex (regval,
3277 mips_abi_regsize (gdbarch)));
3278 write_register (argreg, regval);
3279 argreg++;
3280
3281 /* Prevent subsequent floating point arguments from
3282 being passed in floating point registers. */
3283 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3284 }
3285
3286 len -= partial_len;
3287 val += partial_len;
3288
3289 /* Compute the the offset into the stack at which we
3290 will copy the next parameter.
3291
3292 In older ABIs, the caller reserved space for
3293 registers that contained arguments. This was loosely
3294 refered to as their "home". Consequently, space is
3295 always allocated. */
3296
3297 stack_offset += align_up (partial_len,
3298 mips_stack_argsize (gdbarch));
3299 }
3300 }
3301 if (mips_debug)
3302 fprintf_unfiltered (gdb_stdlog, "\n");
3303 }
3304
3305 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3306
3307 /* Return adjusted stack pointer. */
3308 return sp;
3309 }
3310
3311 static enum return_value_convention
3312 mips_o32_return_value (struct gdbarch *gdbarch, struct type *type,
3313 struct regcache *regcache,
3314 void *readbuf, const void *writebuf)
3315 {
3316 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3317
3318 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3319 || TYPE_CODE (type) == TYPE_CODE_UNION
3320 || TYPE_CODE (type) == TYPE_CODE_ARRAY)
3321 return RETURN_VALUE_STRUCT_CONVENTION;
3322 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3323 && TYPE_LENGTH (type) == 4 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3324 {
3325 /* A single-precision floating-point value. It fits in the
3326 least significant part of FP0. */
3327 if (mips_debug)
3328 fprintf_unfiltered (gdb_stderr, "Return float in $fp0\n");
3329 mips_xfer_register (regcache,
3330 NUM_REGS + mips_regnum (current_gdbarch)->fp0,
3331 TYPE_LENGTH (type),
3332 TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3333 return RETURN_VALUE_REGISTER_CONVENTION;
3334 }
3335 else if (TYPE_CODE (type) == TYPE_CODE_FLT
3336 && TYPE_LENGTH (type) == 8 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3337 {
3338 /* A double-precision floating-point value. The most
3339 significant part goes in FP1, and the least significant in
3340 FP0. */
3341 if (mips_debug)
3342 fprintf_unfiltered (gdb_stderr, "Return float in $fp1/$fp0\n");
3343 switch (TARGET_BYTE_ORDER)
3344 {
3345 case BFD_ENDIAN_LITTLE:
3346 mips_xfer_register (regcache,
3347 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3348 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3349 mips_xfer_register (regcache,
3350 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3351 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3352 break;
3353 case BFD_ENDIAN_BIG:
3354 mips_xfer_register (regcache,
3355 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3356 1, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 0);
3357 mips_xfer_register (regcache,
3358 NUM_REGS + mips_regnum (current_gdbarch)->fp0 +
3359 0, 4, TARGET_BYTE_ORDER, readbuf, writebuf, 4);
3360 break;
3361 default:
3362 internal_error (__FILE__, __LINE__, "bad switch");
3363 }
3364 return RETURN_VALUE_REGISTER_CONVENTION;
3365 }
3366 #if 0
3367 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3368 && TYPE_NFIELDS (type) <= 2
3369 && TYPE_NFIELDS (type) >= 1
3370 && ((TYPE_NFIELDS (type) == 1
3371 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3372 == TYPE_CODE_FLT))
3373 || (TYPE_NFIELDS (type) == 2
3374 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 0))
3375 == TYPE_CODE_FLT)
3376 && (TYPE_CODE (TYPE_FIELD_TYPE (type, 1))
3377 == TYPE_CODE_FLT)))
3378 && tdep->mips_fpu_type != MIPS_FPU_NONE)
3379 {
3380 /* A struct that contains one or two floats. Each value is part
3381 in the least significant part of their floating point
3382 register.. */
3383 bfd_byte reg[MAX_REGISTER_SIZE];
3384 int regnum;
3385 int field;
3386 for (field = 0, regnum = mips_regnum (current_gdbarch)->fp0;
3387 field < TYPE_NFIELDS (type); field++, regnum += 2)
3388 {
3389 int offset = (FIELD_BITPOS (TYPE_FIELDS (type)[field])
3390 / TARGET_CHAR_BIT);
3391 if (mips_debug)
3392 fprintf_unfiltered (gdb_stderr, "Return float struct+%d\n",
3393 offset);
3394 mips_xfer_register (regcache, NUM_REGS + regnum,
3395 TYPE_LENGTH (TYPE_FIELD_TYPE (type, field)),
3396 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3397 }
3398 return RETURN_VALUE_REGISTER_CONVENTION;
3399 }
3400 #endif
3401 #if 0
3402 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3403 || TYPE_CODE (type) == TYPE_CODE_UNION)
3404 {
3405 /* A structure or union. Extract the left justified value,
3406 regardless of the byte order. I.e. DO NOT USE
3407 mips_xfer_lower. */
3408 int offset;
3409 int regnum;
3410 for (offset = 0, regnum = MIPS_V0_REGNUM;
3411 offset < TYPE_LENGTH (type);
3412 offset += register_size (current_gdbarch, regnum), regnum++)
3413 {
3414 int xfer = register_size (current_gdbarch, regnum);
3415 if (offset + xfer > TYPE_LENGTH (type))
3416 xfer = TYPE_LENGTH (type) - offset;
3417 if (mips_debug)
3418 fprintf_unfiltered (gdb_stderr, "Return struct+%d:%d in $%d\n",
3419 offset, xfer, regnum);
3420 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3421 BFD_ENDIAN_UNKNOWN, readbuf, writebuf, offset);
3422 }
3423 return RETURN_VALUE_REGISTER_CONVENTION;
3424 }
3425 #endif
3426 else
3427 {
3428 /* A scalar extract each part but least-significant-byte
3429 justified. o32 thinks registers are 4 byte, regardless of
3430 the ISA. mips_stack_argsize controls this. */
3431 int offset;
3432 int regnum;
3433 for (offset = 0, regnum = MIPS_V0_REGNUM;
3434 offset < TYPE_LENGTH (type);
3435 offset += mips_stack_argsize (gdbarch), regnum++)
3436 {
3437 int xfer = mips_stack_argsize (gdbarch);
3438 if (offset + xfer > TYPE_LENGTH (type))
3439 xfer = TYPE_LENGTH (type) - offset;
3440 if (mips_debug)
3441 fprintf_unfiltered (gdb_stderr, "Return scalar+%d:%d in $%d\n",
3442 offset, xfer, regnum);
3443 mips_xfer_register (regcache, NUM_REGS + regnum, xfer,
3444 TARGET_BYTE_ORDER, readbuf, writebuf, offset);
3445 }
3446 return RETURN_VALUE_REGISTER_CONVENTION;
3447 }
3448 }
3449
3450 /* O64 ABI. This is a hacked up kind of 64-bit version of the o32
3451 ABI. */
3452
3453 static CORE_ADDR
3454 mips_o64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
3455 struct regcache *regcache, CORE_ADDR bp_addr,
3456 int nargs,
3457 struct value **args, CORE_ADDR sp,
3458 int struct_return, CORE_ADDR struct_addr)
3459 {
3460 int argreg;
3461 int float_argreg;
3462 int argnum;
3463 int len = 0;
3464 int stack_offset = 0;
3465 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3466 CORE_ADDR func_addr = find_function_addr (function, NULL);
3467
3468 /* For shared libraries, "t9" needs to point at the function
3469 address. */
3470 regcache_cooked_write_signed (regcache, MIPS_T9_REGNUM, func_addr);
3471
3472 /* Set the return address register to point to the entry point of
3473 the program, where a breakpoint lies in wait. */
3474 regcache_cooked_write_signed (regcache, MIPS_RA_REGNUM, bp_addr);
3475
3476 /* First ensure that the stack and structure return address (if any)
3477 are properly aligned. The stack has to be at least 64-bit
3478 aligned even on 32-bit machines, because doubles must be 64-bit
3479 aligned. For n32 and n64, stack frames need to be 128-bit
3480 aligned, so we round to this widest known alignment. */
3481
3482 sp = align_down (sp, 16);
3483 struct_addr = align_down (struct_addr, 16);
3484
3485 /* Now make space on the stack for the args. */
3486 for (argnum = 0; argnum < nargs; argnum++)
3487 len += align_up (TYPE_LENGTH (VALUE_TYPE (args[argnum])),
3488 mips_stack_argsize (gdbarch));
3489 sp -= align_up (len, 16);
3490
3491 if (mips_debug)
3492 fprintf_unfiltered (gdb_stdlog,
3493 "mips_o64_push_dummy_call: sp=0x%s allocated %ld\n",
3494 paddr_nz (sp), (long) align_up (len, 16));
3495
3496 /* Initialize the integer and float register pointers. */
3497 argreg = MIPS_A0_REGNUM;
3498 float_argreg = mips_fpa0_regnum (current_gdbarch);
3499
3500 /* The struct_return pointer occupies the first parameter-passing reg. */
3501 if (struct_return)
3502 {
3503 if (mips_debug)
3504 fprintf_unfiltered (gdb_stdlog,
3505 "mips_o64_push_dummy_call: struct_return reg=%d 0x%s\n",
3506 argreg, paddr_nz (struct_addr));
3507 write_register (argreg++, struct_addr);
3508 stack_offset += mips_stack_argsize (gdbarch);
3509 }
3510
3511 /* Now load as many as possible of the first arguments into
3512 registers, and push the rest onto the stack. Loop thru args
3513 from first to last. */
3514 for (argnum = 0; argnum < nargs; argnum++)
3515 {
3516 char *val;
3517 struct value *arg = args[argnum];
3518 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
3519 int len = TYPE_LENGTH (arg_type);
3520 enum type_code typecode = TYPE_CODE (arg_type);
3521
3522 if (mips_debug)
3523 fprintf_unfiltered (gdb_stdlog,
3524 "mips_o64_push_dummy_call: %d len=%d type=%d",
3525 argnum + 1, len, (int) typecode);
3526
3527 val = (char *) VALUE_CONTENTS (arg);
3528
3529 /* 32-bit ABIs always start floating point arguments in an
3530 even-numbered floating point register. Round the FP register
3531 up before the check to see if there are any FP registers
3532 left. O32/O64 targets also pass the FP in the integer
3533 registers so also round up normal registers. */
3534 if (mips_abi_regsize (gdbarch) < 8
3535 && fp_register_arg_p (typecode, arg_type))
3536 {
3537 if ((float_argreg & 1))
3538 float_argreg++;
3539 }
3540
3541 /* Floating point arguments passed in registers have to be
3542 treated specially. On 32-bit architectures, doubles
3543 are passed in register pairs; the even register gets
3544 the low word, and the odd register gets the high word.
3545 On O32/O64, the first two floating point arguments are
3546 also copied to general registers, because MIPS16 functions
3547 don't use float registers for arguments. This duplication of
3548 arguments in general registers can't hurt non-MIPS16 functions
3549 because those registers are normally skipped. */
3550
3551 if (fp_register_arg_p (typecode, arg_type)
3552 && float_argreg <= MIPS_LAST_FP_ARG_REGNUM)
3553 {
3554 if (mips_abi_regsize (gdbarch) < 8 && len == 8)
3555 {
3556 int low_offset = TARGET_BYTE_ORDER == BFD_ENDIAN_BIG ? 4 : 0;
3557 unsigned long regval;
3558
3559 /* Write the low word of the double to the even register(s). */
3560 regval = extract_unsigned_integer (val + low_offset, 4);
3561 if (mips_debug)
3562 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3563 float_argreg, phex (regval, 4));
3564 write_register (float_argreg++, regval);
3565 if (mips_debug)
3566 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3567 argreg, phex (regval, 4));
3568 write_register (argreg++, regval);
3569
3570 /* Write the high word of the double to the odd register(s). */
3571 regval = extract_unsigned_integer (val + 4 - low_offset, 4);
3572 if (mips_debug)
3573 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3574 float_argreg, phex (regval, 4));
3575 write_register (float_argreg++, regval);
3576
3577 if (mips_debug)
3578 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3579 argreg, phex (regval, 4));
3580 write_register (argreg++, regval);
3581 }
3582 else
3583 {
3584 /* This is a floating point value that fits entirely
3585 in a single register. */
3586 /* On 32 bit ABI's the float_argreg is further adjusted
3587 above to ensure that it is even register aligned. */
3588 LONGEST regval = extract_unsigned_integer (val, len);
3589 if (mips_debug)
3590 fprintf_unfiltered (gdb_stdlog, " - fpreg=%d val=%s",
3591 float_argreg, phex (regval, len));
3592 write_register (float_argreg++, regval);
3593 /* CAGNEY: 32 bit MIPS ABI's always reserve two FP
3594 registers for each argument. The below is (my
3595 guess) to ensure that the corresponding integer
3596 register has reserved the same space. */
3597 if (mips_debug)
3598 fprintf_unfiltered (gdb_stdlog, " - reg=%d val=%s",
3599 argreg, phex (regval, len));
3600 write_register (argreg, regval);
3601 argreg += (mips_abi_regsize (gdbarch) == 8) ? 1 : 2;
3602 }
3603 /* Reserve space for the FP register. */
3604 stack_offset += align_up (len, mips_stack_argsize (gdbarch));
3605 }
3606 else
3607 {
3608 /* Copy the argument to general registers or the stack in
3609 register-sized pieces. Large arguments are split between
3610 registers and stack. */
3611 /* Note: structs whose size is not a multiple of
3612 mips_abi_regsize() are treated specially: Irix cc passes
3613 them in registers where gcc sometimes puts them on the
3614 stack. For maximum compatibility, we will put them in
3615 both places. */
3616 int odd_sized_struct = ((len > mips_abi_regsize (gdbarch))
3617 && (len % mips_abi_regsize (gdbarch) != 0));
3618 /* Structures should be aligned to eight bytes (even arg registers)
3619 on MIPS_ABI_O32, if their first member has double precision. */
3620 if (mips_abi_regsize (gdbarch) < 8
3621 && mips_type_needs_double_align (arg_type))
3622 {
3623 if ((argreg & 1))
3624 argreg++;
3625 }
3626 /* Note: Floating-point values that didn't fit into an FP
3627 register are only written to memory. */
3628 while (len > 0)
3629 {
3630 /* Remember if the argument was written to the stack. */
3631 int stack_used_p = 0;
3632 int partial_len = (len < mips_abi_regsize (gdbarch)
3633 ? len : mips_abi_regsize (gdbarch));
3634
3635 if (mips_debug)
3636 fprintf_unfiltered (gdb_stdlog, " -- partial=%d",
3637 partial_len);
3638
3639 /* Write this portion of the argument to the stack. */
3640 if (argreg > MIPS_LAST_ARG_REGNUM
3641 || odd_sized_struct
3642 || fp_register_arg_p (typecode, arg_type))
3643 {
3644 /* Should shorter than int integer values be
3645 promoted to int before being stored? */
3646 int longword_offset = 0;
3647 CORE_ADDR addr;
3648 stack_used_p = 1;
3649 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3650 {
3651 if (mips_stack_argsize (gdbarch) == 8
3652 && (typecode == TYPE_CODE_INT
3653 || typecode == TYPE_CODE_PTR
3654 || typecode == TYPE_CODE_FLT) && len <= 4)
3655 longword_offset = mips_stack_argsize (gdbarch) - len;
3656 }
3657
3658 if (mips_debug)
3659 {
3660 fprintf_unfiltered (gdb_stdlog, " - stack_offset=0x%s",
3661 paddr_nz (stack_offset));
3662 fprintf_unfiltered (gdb_stdlog, " longword_offset=0x%s",
3663 paddr_nz (longword_offset));
3664 }
3665
3666 addr = sp + stack_offset + longword_offset;
3667
3668 if (mips_debug)
3669 {
3670 int i;
3671 fprintf_unfiltered (gdb_stdlog, " @0x%s ",
3672 paddr_nz (addr));
3673 for (i = 0; i < partial_len; i++)
3674 {
3675 fprintf_unfiltered (gdb_stdlog, "%02x",
3676 val[i] & 0xff);
3677 }
3678 }
3679 write_memory (addr, val, partial_len);
3680 }
3681
3682 /* Note!!! This is NOT an else clause. Odd sized
3683 structs may go thru BOTH paths. Floating point
3684 arguments will not. */
3685 /* Write this portion of the argument to a general
3686 purpose register. */
3687 if (argreg <= MIPS_LAST_ARG_REGNUM
3688 && !fp_register_arg_p (typecode, arg_type))
3689 {
3690 LONGEST regval = extract_signed_integer (val, partial_len);
3691 /* Value may need to be sign extended, because
3692 mips_isa_regsize() != mips_abi_regsize(). */
3693
3694 /* A non-floating-point argument being passed in a
3695 general register. If a struct or union, and if
3696 the remaining length is smaller than the register
3697 size, we have to adjust the register value on
3698 big endian targets.
3699
3700 It does not seem to be necessary to do the
3701 same for integral types.
3702
3703 Also don't do this adjustment on O64 binaries.
3704
3705 cagney/2001-07-23: gdb/179: Also, GCC, when
3706 outputting LE O32 with sizeof (struct) <
3707 mips_abi_regsize(), generates a left shift as
3708 part of storing the argument in a register a
3709 register (the left shift isn't generated when
3710 sizeof (struct) >= mips_abi_regsize()). Since
3711 it is quite possible that this is GCC
3712 contradicting the LE/O32 ABI, GDB has not been
3713 adjusted to accommodate this. Either someone
3714 needs to demonstrate that the LE/O32 ABI
3715 specifies such a left shift OR this new ABI gets
3716 identified as such and GDB gets tweaked
3717 accordingly. */
3718
3719 if (mips_abi_regsize (gdbarch) < 8
3720 && TARGET_BYTE_ORDER == BFD_ENDIAN_BIG
3721 && partial_len < mips_abi_regsize (gdbarch)
3722 && (typecode == TYPE_CODE_STRUCT ||
3723 typecode == TYPE_CODE_UNION))
3724 regval <<= ((mips_abi_regsize (gdbarch) - partial_len) *
3725 TARGET_CHAR_BIT);
3726
3727 if (mips_debug)
3728 fprintf_filtered (gdb_stdlog, " - reg=%d val=%s",
3729 argreg,
3730 phex (regval,
3731 mips_abi_regsize (gdbarch)));
3732 write_register (argreg, regval);
3733 argreg++;
3734
3735 /* Prevent subsequent floating point arguments from
3736 being passed in floating point registers. */
3737 float_argreg = MIPS_LAST_FP_ARG_REGNUM + 1;
3738 }
3739
3740 len -= partial_len;
3741 val += partial_len;
3742
3743 /* Compute the the offset into the stack at which we
3744 will copy the next parameter.
3745
3746 In older ABIs, the caller reserved space for
3747 registers that contained arguments. This was loosely
3748 refered to as their "home". Consequently, space is
3749 always allocated. */
3750
3751 stack_offset += align_up (partial_len,
3752 mips_stack_argsize (gdbarch));
3753 }
3754 }
3755 if (mips_debug)
3756 fprintf_unfiltered (gdb_stdlog, "\n");
3757 }
3758
3759 regcache_cooked_write_signed (regcache, MIPS_SP_REGNUM, sp);
3760
3761 /* Return adjusted stack pointer. */
3762 return sp;
3763 }
3764
3765 static enum return_value_convention
3766 mips_o64_return_value (struct gdbarch *gdbarch,
3767 struct type *type, struct regcache *regcache,
3768 void *readbuf, const void *writebuf)
3769 {
3770 return RETURN_VALUE_STRUCT_CONVENTION;
3771 }
3772
3773 /* Floating point register management.
3774
3775 Background: MIPS1 & 2 fp registers are 32 bits wide. To support
3776 64bit operations, these early MIPS cpus treat fp register pairs
3777 (f0,f1) as a single register (d0). Later MIPS cpu's have 64 bit fp
3778 registers and offer a compatibility mode that emulates the MIPS2 fp
3779 model. When operating in MIPS2 fp compat mode, later cpu's split
3780 double precision floats into two 32-bit chunks and store them in
3781 consecutive fp regs. To display 64-bit floats stored in this
3782 fashion, we have to combine 32 bits from f0 and 32 bits from f1.
3783 Throw in user-configurable endianness and you have a real mess.
3784
3785 The way this works is:
3786 - If we are in 32-bit mode or on a 32-bit processor, then a 64-bit
3787 double-precision value will be split across two logical registers.
3788 The lower-numbered logical register will hold the low-order bits,
3789 regardless of the processor's endianness.
3790 - If we are on a 64-bit processor, and we are looking for a
3791 single-precision value, it will be in the low ordered bits
3792 of a 64-bit GPR (after mfc1, for example) or a 64-bit register
3793 save slot in memory.
3794 - If we are in 64-bit mode, everything is straightforward.
3795
3796 Note that this code only deals with "live" registers at the top of the
3797 stack. We will attempt to deal with saved registers later, when
3798 the raw/cooked register interface is in place. (We need a general
3799 interface that can deal with dynamic saved register sizes -- fp
3800 regs could be 32 bits wide in one frame and 64 on the frame above
3801 and below). */
3802
3803 static struct type *
3804 mips_float_register_type (void)
3805 {
3806 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3807 return builtin_type_ieee_single_big;
3808 else
3809 return builtin_type_ieee_single_little;
3810 }
3811
3812 static struct type *
3813 mips_double_register_type (void)
3814 {
3815 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3816 return builtin_type_ieee_double_big;
3817 else
3818 return builtin_type_ieee_double_little;
3819 }
3820
3821 /* Copy a 32-bit single-precision value from the current frame
3822 into rare_buffer. */
3823
3824 static void
3825 mips_read_fp_register_single (struct frame_info *frame, int regno,
3826 char *rare_buffer)
3827 {
3828 int raw_size = register_size (current_gdbarch, regno);
3829 char *raw_buffer = alloca (raw_size);
3830
3831 if (!frame_register_read (frame, regno, raw_buffer))
3832 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3833 if (raw_size == 8)
3834 {
3835 /* We have a 64-bit value for this register. Find the low-order
3836 32 bits. */
3837 int offset;
3838
3839 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3840 offset = 4;
3841 else
3842 offset = 0;
3843
3844 memcpy (rare_buffer, raw_buffer + offset, 4);
3845 }
3846 else
3847 {
3848 memcpy (rare_buffer, raw_buffer, 4);
3849 }
3850 }
3851
3852 /* Copy a 64-bit double-precision value from the current frame into
3853 rare_buffer. This may include getting half of it from the next
3854 register. */
3855
3856 static void
3857 mips_read_fp_register_double (struct frame_info *frame, int regno,
3858 char *rare_buffer)
3859 {
3860 int raw_size = register_size (current_gdbarch, regno);
3861
3862 if (raw_size == 8 && !mips2_fp_compat ())
3863 {
3864 /* We have a 64-bit value for this register, and we should use
3865 all 64 bits. */
3866 if (!frame_register_read (frame, regno, rare_buffer))
3867 error ("can't read register %d (%s)", regno, REGISTER_NAME (regno));
3868 }
3869 else
3870 {
3871 if ((regno - mips_regnum (current_gdbarch)->fp0) & 1)
3872 internal_error (__FILE__, __LINE__,
3873 "mips_read_fp_register_double: bad access to "
3874 "odd-numbered FP register");
3875
3876 /* mips_read_fp_register_single will find the correct 32 bits from
3877 each register. */
3878 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3879 {
3880 mips_read_fp_register_single (frame, regno, rare_buffer + 4);
3881 mips_read_fp_register_single (frame, regno + 1, rare_buffer);
3882 }
3883 else
3884 {
3885 mips_read_fp_register_single (frame, regno, rare_buffer);
3886 mips_read_fp_register_single (frame, regno + 1, rare_buffer + 4);
3887 }
3888 }
3889 }
3890
3891 static void
3892 mips_print_fp_register (struct ui_file *file, struct frame_info *frame,
3893 int regnum)
3894 { /* do values for FP (float) regs */
3895 char *raw_buffer;
3896 double doub, flt1; /* doubles extracted from raw hex data */
3897 int inv1, inv2;
3898
3899 raw_buffer =
3900 (char *) alloca (2 *
3901 register_size (current_gdbarch,
3902 mips_regnum (current_gdbarch)->fp0));
3903
3904 fprintf_filtered (file, "%s:", REGISTER_NAME (regnum));
3905 fprintf_filtered (file, "%*s", 4 - (int) strlen (REGISTER_NAME (regnum)),
3906 "");
3907
3908 if (register_size (current_gdbarch, regnum) == 4 || mips2_fp_compat ())
3909 {
3910 /* 4-byte registers: Print hex and floating. Also print even
3911 numbered registers as doubles. */
3912 mips_read_fp_register_single (frame, regnum, raw_buffer);
3913 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3914
3915 print_scalar_formatted (raw_buffer, builtin_type_uint32, 'x', 'w',
3916 file);
3917
3918 fprintf_filtered (file, " flt: ");
3919 if (inv1)
3920 fprintf_filtered (file, " <invalid float> ");
3921 else
3922 fprintf_filtered (file, "%-17.9g", flt1);
3923
3924 if (regnum % 2 == 0)
3925 {
3926 mips_read_fp_register_double (frame, regnum, raw_buffer);
3927 doub = unpack_double (mips_double_register_type (), raw_buffer,
3928 &inv2);
3929
3930 fprintf_filtered (file, " dbl: ");
3931 if (inv2)
3932 fprintf_filtered (file, "<invalid double>");
3933 else
3934 fprintf_filtered (file, "%-24.17g", doub);
3935 }
3936 }
3937 else
3938 {
3939 /* Eight byte registers: print each one as hex, float and double. */
3940 mips_read_fp_register_single (frame, regnum, raw_buffer);
3941 flt1 = unpack_double (mips_float_register_type (), raw_buffer, &inv1);
3942
3943 mips_read_fp_register_double (frame, regnum, raw_buffer);
3944 doub = unpack_double (mips_double_register_type (), raw_buffer, &inv2);
3945
3946
3947 print_scalar_formatted (raw_buffer, builtin_type_uint64, 'x', 'g',
3948 file);
3949
3950 fprintf_filtered (file, " flt: ");
3951 if (inv1)
3952 fprintf_filtered (file, "<invalid float>");
3953 else
3954 fprintf_filtered (file, "%-17.9g", flt1);
3955
3956 fprintf_filtered (file, " dbl: ");
3957 if (inv2)
3958 fprintf_filtered (file, "<invalid double>");
3959 else
3960 fprintf_filtered (file, "%-24.17g", doub);
3961 }
3962 }
3963
3964 static void
3965 mips_print_register (struct ui_file *file, struct frame_info *frame,
3966 int regnum, int all)
3967 {
3968 struct gdbarch *gdbarch = get_frame_arch (frame);
3969 char raw_buffer[MAX_REGISTER_SIZE];
3970 int offset;
3971
3972 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) == TYPE_CODE_FLT)
3973 {
3974 mips_print_fp_register (file, frame, regnum);
3975 return;
3976 }
3977
3978 /* Get the data in raw format. */
3979 if (!frame_register_read (frame, regnum, raw_buffer))
3980 {
3981 fprintf_filtered (file, "%s: [Invalid]", REGISTER_NAME (regnum));
3982 return;
3983 }
3984
3985 fputs_filtered (REGISTER_NAME (regnum), file);
3986
3987 /* The problem with printing numeric register names (r26, etc.) is that
3988 the user can't use them on input. Probably the best solution is to
3989 fix it so that either the numeric or the funky (a2, etc.) names
3990 are accepted on input. */
3991 if (regnum < MIPS_NUMREGS)
3992 fprintf_filtered (file, "(r%d): ", regnum);
3993 else
3994 fprintf_filtered (file, ": ");
3995
3996 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
3997 offset =
3998 register_size (current_gdbarch,
3999 regnum) - register_size (current_gdbarch, regnum);
4000 else
4001 offset = 0;
4002
4003 print_scalar_formatted (raw_buffer + offset,
4004 gdbarch_register_type (gdbarch, regnum), 'x', 0,
4005 file);
4006 }
4007
4008 /* Replacement for generic do_registers_info.
4009 Print regs in pretty columns. */
4010
4011 static int
4012 print_fp_register_row (struct ui_file *file, struct frame_info *frame,
4013 int regnum)
4014 {
4015 fprintf_filtered (file, " ");
4016 mips_print_fp_register (file, frame, regnum);
4017 fprintf_filtered (file, "\n");
4018 return regnum + 1;
4019 }
4020
4021
4022 /* Print a row's worth of GP (int) registers, with name labels above */
4023
4024 static int
4025 print_gp_register_row (struct ui_file *file, struct frame_info *frame,
4026 int start_regnum)
4027 {
4028 struct gdbarch *gdbarch = get_frame_arch (frame);
4029 /* do values for GP (int) regs */
4030 char raw_buffer[MAX_REGISTER_SIZE];
4031 int ncols = (mips_abi_regsize (gdbarch) == 8 ? 4 : 8); /* display cols per row */
4032 int col, byte;
4033 int regnum;
4034
4035 /* For GP registers, we print a separate row of names above the vals */
4036 fprintf_filtered (file, " ");
4037 for (col = 0, regnum = start_regnum;
4038 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4039 {
4040 if (*REGISTER_NAME (regnum) == '\0')
4041 continue; /* unused register */
4042 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4043 TYPE_CODE_FLT)
4044 break; /* end the row: reached FP register */
4045 fprintf_filtered (file,
4046 mips_abi_regsize (current_gdbarch) == 8 ? "%17s" : "%9s",
4047 REGISTER_NAME (regnum));
4048 col++;
4049 }
4050 /* print the R0 to R31 names */
4051 if ((start_regnum % NUM_REGS) < MIPS_NUMREGS)
4052 fprintf_filtered (file, "\n R%-4d", start_regnum % NUM_REGS);
4053 else
4054 fprintf_filtered (file, "\n ");
4055
4056 /* now print the values in hex, 4 or 8 to the row */
4057 for (col = 0, regnum = start_regnum;
4058 col < ncols && regnum < NUM_REGS + NUM_PSEUDO_REGS; regnum++)
4059 {
4060 if (*REGISTER_NAME (regnum) == '\0')
4061 continue; /* unused register */
4062 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4063 TYPE_CODE_FLT)
4064 break; /* end row: reached FP register */
4065 /* OK: get the data in raw format. */
4066 if (!frame_register_read (frame, regnum, raw_buffer))
4067 error ("can't read register %d (%s)", regnum, REGISTER_NAME (regnum));
4068 /* pad small registers */
4069 for (byte = 0;
4070 byte < (mips_abi_regsize (current_gdbarch)
4071 - register_size (current_gdbarch, regnum)); byte++)
4072 printf_filtered (" ");
4073 /* Now print the register value in hex, endian order. */
4074 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4075 for (byte =
4076 register_size (current_gdbarch,
4077 regnum) - register_size (current_gdbarch, regnum);
4078 byte < register_size (current_gdbarch, regnum); byte++)
4079 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4080 else
4081 for (byte = register_size (current_gdbarch, regnum) - 1;
4082 byte >= 0; byte--)
4083 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[byte]);
4084 fprintf_filtered (file, " ");
4085 col++;
4086 }
4087 if (col > 0) /* ie. if we actually printed anything... */
4088 fprintf_filtered (file, "\n");
4089
4090 return regnum;
4091 }
4092
4093 /* MIPS_DO_REGISTERS_INFO(): called by "info register" command */
4094
4095 static void
4096 mips_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
4097 struct frame_info *frame, int regnum, int all)
4098 {
4099 if (regnum != -1) /* do one specified register */
4100 {
4101 gdb_assert (regnum >= NUM_REGS);
4102 if (*(REGISTER_NAME (regnum)) == '\0')
4103 error ("Not a valid register for the current processor type");
4104
4105 mips_print_register (file, frame, regnum, 0);
4106 fprintf_filtered (file, "\n");
4107 }
4108 else
4109 /* do all (or most) registers */
4110 {
4111 regnum = NUM_REGS;
4112 while (regnum < NUM_REGS + NUM_PSEUDO_REGS)
4113 {
4114 if (TYPE_CODE (gdbarch_register_type (gdbarch, regnum)) ==
4115 TYPE_CODE_FLT)
4116 {
4117 if (all) /* true for "INFO ALL-REGISTERS" command */
4118 regnum = print_fp_register_row (file, frame, regnum);
4119 else
4120 regnum += MIPS_NUMREGS; /* skip floating point regs */
4121 }
4122 else
4123 regnum = print_gp_register_row (file, frame, regnum);
4124 }
4125 }
4126 }
4127
4128 /* Is this a branch with a delay slot? */
4129
4130 static int
4131 is_delayed (unsigned long insn)
4132 {
4133 int i;
4134 for (i = 0; i < NUMOPCODES; ++i)
4135 if (mips_opcodes[i].pinfo != INSN_MACRO
4136 && (insn & mips_opcodes[i].mask) == mips_opcodes[i].match)
4137 break;
4138 return (i < NUMOPCODES
4139 && (mips_opcodes[i].pinfo & (INSN_UNCOND_BRANCH_DELAY
4140 | INSN_COND_BRANCH_DELAY
4141 | INSN_COND_BRANCH_LIKELY)));
4142 }
4143
4144 int
4145 mips_step_skips_delay (CORE_ADDR pc)
4146 {
4147 char buf[MIPS_INSN32_SIZE];
4148
4149 /* There is no branch delay slot on MIPS16. */
4150 if (mips_pc_is_mips16 (pc))
4151 return 0;
4152
4153 if (target_read_memory (pc, buf, sizeof buf) != 0)
4154 /* If error reading memory, guess that it is not a delayed branch. */
4155 return 0;
4156 return is_delayed (extract_unsigned_integer (buf, sizeof buf));
4157 }
4158
4159 /* To skip prologues, I use this predicate. Returns either PC itself
4160 if the code at PC does not look like a function prologue; otherwise
4161 returns an address that (if we're lucky) follows the prologue. If
4162 LENIENT, then we must skip everything which is involved in setting
4163 up the frame (it's OK to skip more, just so long as we don't skip
4164 anything which might clobber the registers which are being saved.
4165 We must skip more in the case where part of the prologue is in the
4166 delay slot of a non-prologue instruction). */
4167
4168 static CORE_ADDR
4169 mips_skip_prologue (CORE_ADDR pc)
4170 {
4171 CORE_ADDR limit_pc;
4172 CORE_ADDR func_addr;
4173
4174 /* See if we can determine the end of the prologue via the symbol table.
4175 If so, then return either PC, or the PC after the prologue, whichever
4176 is greater. */
4177 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
4178 {
4179 CORE_ADDR post_prologue_pc = skip_prologue_using_sal (func_addr);
4180 if (post_prologue_pc != 0)
4181 return max (pc, post_prologue_pc);
4182 }
4183
4184 /* Can't determine prologue from the symbol table, need to examine
4185 instructions. */
4186
4187 /* Find an upper limit on the function prologue using the debug
4188 information. If the debug information could not be used to provide
4189 that bound, then use an arbitrary large number as the upper bound. */
4190 limit_pc = skip_prologue_using_sal (pc);
4191 if (limit_pc == 0)
4192 limit_pc = pc + 100; /* Magic. */
4193
4194 if (mips_pc_is_mips16 (pc))
4195 return mips16_scan_prologue (pc, limit_pc, NULL, NULL);
4196 else
4197 return mips32_scan_prologue (pc, limit_pc, NULL, NULL);
4198 }
4199
4200 /* Root of all "set mips "/"show mips " commands. This will eventually be
4201 used for all MIPS-specific commands. */
4202
4203 static void
4204 show_mips_command (char *args, int from_tty)
4205 {
4206 help_list (showmipscmdlist, "show mips ", all_commands, gdb_stdout);
4207 }
4208
4209 static void
4210 set_mips_command (char *args, int from_tty)
4211 {
4212 printf_unfiltered
4213 ("\"set mips\" must be followed by an appropriate subcommand.\n");
4214 help_list (setmipscmdlist, "set mips ", all_commands, gdb_stdout);
4215 }
4216
4217 /* Commands to show/set the MIPS FPU type. */
4218
4219 static void
4220 show_mipsfpu_command (char *args, int from_tty)
4221 {
4222 char *fpu;
4223 switch (MIPS_FPU_TYPE)
4224 {
4225 case MIPS_FPU_SINGLE:
4226 fpu = "single-precision";
4227 break;
4228 case MIPS_FPU_DOUBLE:
4229 fpu = "double-precision";
4230 break;
4231 case MIPS_FPU_NONE:
4232 fpu = "absent (none)";
4233 break;
4234 default:
4235 internal_error (__FILE__, __LINE__, "bad switch");
4236 }
4237 if (mips_fpu_type_auto)
4238 printf_unfiltered
4239 ("The MIPS floating-point coprocessor is set automatically (currently %s)\n",
4240 fpu);
4241 else
4242 printf_unfiltered
4243 ("The MIPS floating-point coprocessor is assumed to be %s\n", fpu);
4244 }
4245
4246
4247 static void
4248 set_mipsfpu_command (char *args, int from_tty)
4249 {
4250 printf_unfiltered
4251 ("\"set mipsfpu\" must be followed by \"double\", \"single\",\"none\" or \"auto\".\n");
4252 show_mipsfpu_command (args, from_tty);
4253 }
4254
4255 static void
4256 set_mipsfpu_single_command (char *args, int from_tty)
4257 {
4258 struct gdbarch_info info;
4259 gdbarch_info_init (&info);
4260 mips_fpu_type = MIPS_FPU_SINGLE;
4261 mips_fpu_type_auto = 0;
4262 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4263 instead of relying on globals. Doing that would let generic code
4264 handle the search for this specific architecture. */
4265 if (!gdbarch_update_p (info))
4266 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4267 }
4268
4269 static void
4270 set_mipsfpu_double_command (char *args, int from_tty)
4271 {
4272 struct gdbarch_info info;
4273 gdbarch_info_init (&info);
4274 mips_fpu_type = MIPS_FPU_DOUBLE;
4275 mips_fpu_type_auto = 0;
4276 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4277 instead of relying on globals. Doing that would let generic code
4278 handle the search for this specific architecture. */
4279 if (!gdbarch_update_p (info))
4280 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4281 }
4282
4283 static void
4284 set_mipsfpu_none_command (char *args, int from_tty)
4285 {
4286 struct gdbarch_info info;
4287 gdbarch_info_init (&info);
4288 mips_fpu_type = MIPS_FPU_NONE;
4289 mips_fpu_type_auto = 0;
4290 /* FIXME: cagney/2003-11-15: Should be setting a field in "info"
4291 instead of relying on globals. Doing that would let generic code
4292 handle the search for this specific architecture. */
4293 if (!gdbarch_update_p (info))
4294 internal_error (__FILE__, __LINE__, "set mipsfpu failed");
4295 }
4296
4297 static void
4298 set_mipsfpu_auto_command (char *args, int from_tty)
4299 {
4300 mips_fpu_type_auto = 1;
4301 }
4302
4303 /* Attempt to identify the particular processor model by reading the
4304 processor id. NOTE: cagney/2003-11-15: Firstly it isn't clear that
4305 the relevant processor still exists (it dates back to '94) and
4306 secondly this is not the way to do this. The processor type should
4307 be set by forcing an architecture change. */
4308
4309 void
4310 deprecated_mips_set_processor_regs_hack (void)
4311 {
4312 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4313 CORE_ADDR prid;
4314
4315 prid = read_register (MIPS_PRID_REGNUM);
4316
4317 if ((prid & ~0xf) == 0x700)
4318 tdep->mips_processor_reg_names = mips_r3041_reg_names;
4319 }
4320
4321 /* Just like reinit_frame_cache, but with the right arguments to be
4322 callable as an sfunc. */
4323
4324 static void
4325 reinit_frame_cache_sfunc (char *args, int from_tty,
4326 struct cmd_list_element *c)
4327 {
4328 reinit_frame_cache ();
4329 }
4330
4331 static int
4332 gdb_print_insn_mips (bfd_vma memaddr, struct disassemble_info *info)
4333 {
4334 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
4335
4336 /* FIXME: cagney/2003-06-26: Is this even necessary? The
4337 disassembler needs to be able to locally determine the ISA, and
4338 not rely on GDB. Otherwize the stand-alone 'objdump -d' will not
4339 work. */
4340 if (mips_pc_is_mips16 (memaddr))
4341 info->mach = bfd_mach_mips16;
4342
4343 /* Round down the instruction address to the appropriate boundary. */
4344 memaddr &= (info->mach == bfd_mach_mips16 ? ~1 : ~3);
4345
4346 /* Set the disassembler options. */
4347 if (tdep->mips_abi == MIPS_ABI_N32 || tdep->mips_abi == MIPS_ABI_N64)
4348 {
4349 /* Set up the disassembler info, so that we get the right
4350 register names from libopcodes. */
4351 if (tdep->mips_abi == MIPS_ABI_N32)
4352 info->disassembler_options = "gpr-names=n32";
4353 else
4354 info->disassembler_options = "gpr-names=64";
4355 info->flavour = bfd_target_elf_flavour;
4356 }
4357 else
4358 /* This string is not recognized explicitly by the disassembler,
4359 but it tells the disassembler to not try to guess the ABI from
4360 the bfd elf headers, such that, if the user overrides the ABI
4361 of a program linked as NewABI, the disassembly will follow the
4362 register naming conventions specified by the user. */
4363 info->disassembler_options = "gpr-names=32";
4364
4365 /* Call the appropriate disassembler based on the target endian-ness. */
4366 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4367 return print_insn_big_mips (memaddr, info);
4368 else
4369 return print_insn_little_mips (memaddr, info);
4370 }
4371
4372 /* This function implements the BREAKPOINT_FROM_PC macro. It uses the program
4373 counter value to determine whether a 16- or 32-bit breakpoint should be
4374 used. It returns a pointer to a string of bytes that encode a breakpoint
4375 instruction, stores the length of the string to *lenptr, and adjusts pc
4376 (if necessary) to point to the actual memory location where the
4377 breakpoint should be inserted. */
4378
4379 static const unsigned char *
4380 mips_breakpoint_from_pc (CORE_ADDR *pcptr, int *lenptr)
4381 {
4382 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
4383 {
4384 if (mips_pc_is_mips16 (*pcptr))
4385 {
4386 static unsigned char mips16_big_breakpoint[] = { 0xe8, 0xa5 };
4387 *pcptr = unmake_mips16_addr (*pcptr);
4388 *lenptr = sizeof (mips16_big_breakpoint);
4389 return mips16_big_breakpoint;
4390 }
4391 else
4392 {
4393 /* The IDT board uses an unusual breakpoint value, and
4394 sometimes gets confused when it sees the usual MIPS
4395 breakpoint instruction. */
4396 static unsigned char big_breakpoint[] = { 0, 0x5, 0, 0xd };
4397 static unsigned char pmon_big_breakpoint[] = { 0, 0, 0, 0xd };
4398 static unsigned char idt_big_breakpoint[] = { 0, 0, 0x0a, 0xd };
4399
4400 *lenptr = sizeof (big_breakpoint);
4401
4402 if (strcmp (target_shortname, "mips") == 0)
4403 return idt_big_breakpoint;
4404 else if (strcmp (target_shortname, "ddb") == 0
4405 || strcmp (target_shortname, "pmon") == 0
4406 || strcmp (target_shortname, "lsi") == 0)
4407 return pmon_big_breakpoint;
4408 else
4409 return big_breakpoint;
4410 }
4411 }
4412 else
4413 {
4414 if (mips_pc_is_mips16 (*pcptr))
4415 {
4416 static unsigned char mips16_little_breakpoint[] = { 0xa5, 0xe8 };
4417 *pcptr = unmake_mips16_addr (*pcptr);
4418 *lenptr = sizeof (mips16_little_breakpoint);
4419 return mips16_little_breakpoint;
4420 }
4421 else
4422 {
4423 static unsigned char little_breakpoint[] = { 0xd, 0, 0x5, 0 };
4424 static unsigned char pmon_little_breakpoint[] = { 0xd, 0, 0, 0 };
4425 static unsigned char idt_little_breakpoint[] = { 0xd, 0x0a, 0, 0 };
4426
4427 *lenptr = sizeof (little_breakpoint);
4428
4429 if (strcmp (target_shortname, "mips") == 0)
4430 return idt_little_breakpoint;
4431 else if (strcmp (target_shortname, "ddb") == 0
4432 || strcmp (target_shortname, "pmon") == 0
4433 || strcmp (target_shortname, "lsi") == 0)
4434 return pmon_little_breakpoint;
4435 else
4436 return little_breakpoint;
4437 }
4438 }
4439 }
4440
4441 /* If PC is in a mips16 call or return stub, return the address of the target
4442 PC, which is either the callee or the caller. There are several
4443 cases which must be handled:
4444
4445 * If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4446 target PC is in $31 ($ra).
4447 * If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4448 and the target PC is in $2.
4449 * If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4450 before the jal instruction, this is effectively a call stub
4451 and the the target PC is in $2. Otherwise this is effectively
4452 a return stub and the target PC is in $18.
4453
4454 See the source code for the stubs in gcc/config/mips/mips16.S for
4455 gory details. */
4456
4457 static CORE_ADDR
4458 mips_skip_trampoline_code (CORE_ADDR pc)
4459 {
4460 char *name;
4461 CORE_ADDR start_addr;
4462
4463 /* Find the starting address and name of the function containing the PC. */
4464 if (find_pc_partial_function (pc, &name, &start_addr, NULL) == 0)
4465 return 0;
4466
4467 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub and the
4468 target PC is in $31 ($ra). */
4469 if (strcmp (name, "__mips16_ret_sf") == 0
4470 || strcmp (name, "__mips16_ret_df") == 0)
4471 return read_signed_register (MIPS_RA_REGNUM);
4472
4473 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4474 {
4475 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub
4476 and the target PC is in $2. */
4477 if (name[19] >= '0' && name[19] <= '9')
4478 return read_signed_register (2);
4479
4480 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4481 before the jal instruction, this is effectively a call stub
4482 and the the target PC is in $2. Otherwise this is effectively
4483 a return stub and the target PC is in $18. */
4484 else if (name[19] == 's' || name[19] == 'd')
4485 {
4486 if (pc == start_addr)
4487 {
4488 /* Check if the target of the stub is a compiler-generated
4489 stub. Such a stub for a function bar might have a name
4490 like __fn_stub_bar, and might look like this:
4491 mfc1 $4,$f13
4492 mfc1 $5,$f12
4493 mfc1 $6,$f15
4494 mfc1 $7,$f14
4495 la $1,bar (becomes a lui/addiu pair)
4496 jr $1
4497 So scan down to the lui/addi and extract the target
4498 address from those two instructions. */
4499
4500 CORE_ADDR target_pc = read_signed_register (2);
4501 ULONGEST inst;
4502 int i;
4503
4504 /* See if the name of the target function is __fn_stub_*. */
4505 if (find_pc_partial_function (target_pc, &name, NULL, NULL) ==
4506 0)
4507 return target_pc;
4508 if (strncmp (name, "__fn_stub_", 10) != 0
4509 && strcmp (name, "etext") != 0
4510 && strcmp (name, "_etext") != 0)
4511 return target_pc;
4512
4513 /* Scan through this _fn_stub_ code for the lui/addiu pair.
4514 The limit on the search is arbitrarily set to 20
4515 instructions. FIXME. */
4516 for (i = 0, pc = 0; i < 20; i++, target_pc += MIPS_INSN32_SIZE)
4517 {
4518 inst = mips_fetch_instruction (target_pc);
4519 if ((inst & 0xffff0000) == 0x3c010000) /* lui $at */
4520 pc = (inst << 16) & 0xffff0000; /* high word */
4521 else if ((inst & 0xffff0000) == 0x24210000) /* addiu $at */
4522 return pc | (inst & 0xffff); /* low word */
4523 }
4524
4525 /* Couldn't find the lui/addui pair, so return stub address. */
4526 return target_pc;
4527 }
4528 else
4529 /* This is the 'return' part of a call stub. The return
4530 address is in $r18. */
4531 return read_signed_register (18);
4532 }
4533 }
4534 return 0; /* not a stub */
4535 }
4536
4537
4538 /* Return non-zero if the PC is inside a call thunk (aka stub or trampoline).
4539 This implements the IN_SOLIB_CALL_TRAMPOLINE macro. */
4540
4541 static int
4542 mips_in_call_stub (CORE_ADDR pc, char *name)
4543 {
4544 CORE_ADDR start_addr;
4545
4546 /* Find the starting address of the function containing the PC. If the
4547 caller didn't give us a name, look it up at the same time. */
4548 if (find_pc_partial_function (pc, name ? NULL : &name, &start_addr, NULL) ==
4549 0)
4550 return 0;
4551
4552 if (strncmp (name, "__mips16_call_stub_", 19) == 0)
4553 {
4554 /* If the PC is in __mips16_call_stub_{1..10}, this is a call stub. */
4555 if (name[19] >= '0' && name[19] <= '9')
4556 return 1;
4557 /* If the PC at the start of __mips16_call_stub_{s,d}f_{0..10}, i.e.
4558 before the jal instruction, this is effectively a call stub. */
4559 else if (name[19] == 's' || name[19] == 'd')
4560 return pc == start_addr;
4561 }
4562
4563 return 0; /* not a stub */
4564 }
4565
4566
4567 /* Return non-zero if the PC is inside a return thunk (aka stub or
4568 trampoline). */
4569
4570 static int
4571 mips_in_solib_return_trampoline (CORE_ADDR pc, char *name)
4572 {
4573 CORE_ADDR start_addr;
4574
4575 /* Find the starting address of the function containing the PC. */
4576 if (find_pc_partial_function (pc, NULL, &start_addr, NULL) == 0)
4577 return 0;
4578
4579 /* If the PC is in __mips16_ret_{d,s}f, this is a return stub. */
4580 if (strcmp (name, "__mips16_ret_sf") == 0
4581 || strcmp (name, "__mips16_ret_df") == 0)
4582 return 1;
4583
4584 /* If the PC is in __mips16_call_stub_{s,d}f_{0..10} but not at the start,
4585 i.e. after the jal instruction, this is effectively a return stub. */
4586 if (strncmp (name, "__mips16_call_stub_", 19) == 0
4587 && (name[19] == 's' || name[19] == 'd') && pc != start_addr)
4588 return 1;
4589
4590 return 0; /* not a stub */
4591 }
4592
4593
4594 /* Return non-zero if the PC is in a library helper function that
4595 should be ignored. This implements the
4596 DEPRECATED_IGNORE_HELPER_CALL macro. */
4597
4598 int
4599 mips_ignore_helper (CORE_ADDR pc)
4600 {
4601 char *name;
4602
4603 /* Find the starting address and name of the function containing the PC. */
4604 if (find_pc_partial_function (pc, &name, NULL, NULL) == 0)
4605 return 0;
4606
4607 /* If the PC is in __mips16_ret_{d,s}f, this is a library helper function
4608 that we want to ignore. */
4609 return (strcmp (name, "__mips16_ret_sf") == 0
4610 || strcmp (name, "__mips16_ret_df") == 0);
4611 }
4612
4613
4614 /* Convert a dbx stab register number (from `r' declaration) to a GDB
4615 [1 * NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4616
4617 static int
4618 mips_stab_reg_to_regnum (int num)
4619 {
4620 int regnum;
4621 if (num >= 0 && num < 32)
4622 regnum = num;
4623 else if (num >= 38 && num < 70)
4624 regnum = num + mips_regnum (current_gdbarch)->fp0 - 38;
4625 else if (num == 70)
4626 regnum = mips_regnum (current_gdbarch)->hi;
4627 else if (num == 71)
4628 regnum = mips_regnum (current_gdbarch)->lo;
4629 else
4630 /* This will hopefully (eventually) provoke a warning. Should
4631 we be calling complaint() here? */
4632 return NUM_REGS + NUM_PSEUDO_REGS;
4633 return NUM_REGS + regnum;
4634 }
4635
4636
4637 /* Convert a dwarf, dwarf2, or ecoff register number to a GDB [1 *
4638 NUM_REGS .. 2 * NUM_REGS) REGNUM. */
4639
4640 static int
4641 mips_dwarf_dwarf2_ecoff_reg_to_regnum (int num)
4642 {
4643 int regnum;
4644 if (num >= 0 && num < 32)
4645 regnum = num;
4646 else if (num >= 32 && num < 64)
4647 regnum = num + mips_regnum (current_gdbarch)->fp0 - 32;
4648 else if (num == 64)
4649 regnum = mips_regnum (current_gdbarch)->hi;
4650 else if (num == 65)
4651 regnum = mips_regnum (current_gdbarch)->lo;
4652 else
4653 /* This will hopefully (eventually) provoke a warning. Should we
4654 be calling complaint() here? */
4655 return NUM_REGS + NUM_PSEUDO_REGS;
4656 return NUM_REGS + regnum;
4657 }
4658
4659 static int
4660 mips_register_sim_regno (int regnum)
4661 {
4662 /* Only makes sense to supply raw registers. */
4663 gdb_assert (regnum >= 0 && regnum < NUM_REGS);
4664 /* FIXME: cagney/2002-05-13: Need to look at the pseudo register to
4665 decide if it is valid. Should instead define a standard sim/gdb
4666 register numbering scheme. */
4667 if (REGISTER_NAME (NUM_REGS + regnum) != NULL
4668 && REGISTER_NAME (NUM_REGS + regnum)[0] != '\0')
4669 return regnum;
4670 else
4671 return LEGACY_SIM_REGNO_IGNORE;
4672 }
4673
4674
4675 /* Convert an integer into an address. By first converting the value
4676 into a pointer and then extracting it signed, the address is
4677 guarenteed to be correctly sign extended. */
4678
4679 static CORE_ADDR
4680 mips_integer_to_address (struct type *type, void *buf)
4681 {
4682 char *tmp = alloca (TYPE_LENGTH (builtin_type_void_data_ptr));
4683 LONGEST val = unpack_long (type, buf);
4684 store_signed_integer (tmp, TYPE_LENGTH (builtin_type_void_data_ptr), val);
4685 return extract_signed_integer (tmp,
4686 TYPE_LENGTH (builtin_type_void_data_ptr));
4687 }
4688
4689 static void
4690 mips_find_abi_section (bfd *abfd, asection *sect, void *obj)
4691 {
4692 enum mips_abi *abip = (enum mips_abi *) obj;
4693 const char *name = bfd_get_section_name (abfd, sect);
4694
4695 if (*abip != MIPS_ABI_UNKNOWN)
4696 return;
4697
4698 if (strncmp (name, ".mdebug.", 8) != 0)
4699 return;
4700
4701 if (strcmp (name, ".mdebug.abi32") == 0)
4702 *abip = MIPS_ABI_O32;
4703 else if (strcmp (name, ".mdebug.abiN32") == 0)
4704 *abip = MIPS_ABI_N32;
4705 else if (strcmp (name, ".mdebug.abi64") == 0)
4706 *abip = MIPS_ABI_N64;
4707 else if (strcmp (name, ".mdebug.abiO64") == 0)
4708 *abip = MIPS_ABI_O64;
4709 else if (strcmp (name, ".mdebug.eabi32") == 0)
4710 *abip = MIPS_ABI_EABI32;
4711 else if (strcmp (name, ".mdebug.eabi64") == 0)
4712 *abip = MIPS_ABI_EABI64;
4713 else
4714 warning ("unsupported ABI %s.", name + 8);
4715 }
4716
4717 static enum mips_abi
4718 global_mips_abi (void)
4719 {
4720 int i;
4721
4722 for (i = 0; mips_abi_strings[i] != NULL; i++)
4723 if (mips_abi_strings[i] == mips_abi_string)
4724 return (enum mips_abi) i;
4725
4726 internal_error (__FILE__, __LINE__, "unknown ABI string");
4727 }
4728
4729 static struct gdbarch *
4730 mips_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
4731 {
4732 struct gdbarch *gdbarch;
4733 struct gdbarch_tdep *tdep;
4734 int elf_flags;
4735 enum mips_abi mips_abi, found_abi, wanted_abi;
4736 int num_regs;
4737 enum mips_fpu_type fpu_type;
4738
4739 /* First of all, extract the elf_flags, if available. */
4740 if (info.abfd && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
4741 elf_flags = elf_elfheader (info.abfd)->e_flags;
4742 else if (arches != NULL)
4743 elf_flags = gdbarch_tdep (arches->gdbarch)->elf_flags;
4744 else
4745 elf_flags = 0;
4746 if (gdbarch_debug)
4747 fprintf_unfiltered (gdb_stdlog,
4748 "mips_gdbarch_init: elf_flags = 0x%08x\n", elf_flags);
4749
4750 /* Check ELF_FLAGS to see if it specifies the ABI being used. */
4751 switch ((elf_flags & EF_MIPS_ABI))
4752 {
4753 case E_MIPS_ABI_O32:
4754 found_abi = MIPS_ABI_O32;
4755 break;
4756 case E_MIPS_ABI_O64:
4757 found_abi = MIPS_ABI_O64;
4758 break;
4759 case E_MIPS_ABI_EABI32:
4760 found_abi = MIPS_ABI_EABI32;
4761 break;
4762 case E_MIPS_ABI_EABI64:
4763 found_abi = MIPS_ABI_EABI64;
4764 break;
4765 default:
4766 if ((elf_flags & EF_MIPS_ABI2))
4767 found_abi = MIPS_ABI_N32;
4768 else
4769 found_abi = MIPS_ABI_UNKNOWN;
4770 break;
4771 }
4772
4773 /* GCC creates a pseudo-section whose name describes the ABI. */
4774 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd != NULL)
4775 bfd_map_over_sections (info.abfd, mips_find_abi_section, &found_abi);
4776
4777 /* If we have no useful BFD information, use the ABI from the last
4778 MIPS architecture (if there is one). */
4779 if (found_abi == MIPS_ABI_UNKNOWN && info.abfd == NULL && arches != NULL)
4780 found_abi = gdbarch_tdep (arches->gdbarch)->found_abi;
4781
4782 /* Try the architecture for any hint of the correct ABI. */
4783 if (found_abi == MIPS_ABI_UNKNOWN
4784 && info.bfd_arch_info != NULL
4785 && info.bfd_arch_info->arch == bfd_arch_mips)
4786 {
4787 switch (info.bfd_arch_info->mach)
4788 {
4789 case bfd_mach_mips3900:
4790 found_abi = MIPS_ABI_EABI32;
4791 break;
4792 case bfd_mach_mips4100:
4793 case bfd_mach_mips5000:
4794 found_abi = MIPS_ABI_EABI64;
4795 break;
4796 case bfd_mach_mips8000:
4797 case bfd_mach_mips10000:
4798 /* On Irix, ELF64 executables use the N64 ABI. The
4799 pseudo-sections which describe the ABI aren't present
4800 on IRIX. (Even for executables created by gcc.) */
4801 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour
4802 && elf_elfheader (info.abfd)->e_ident[EI_CLASS] == ELFCLASS64)
4803 found_abi = MIPS_ABI_N64;
4804 else
4805 found_abi = MIPS_ABI_N32;
4806 break;
4807 }
4808 }
4809
4810 if (gdbarch_debug)
4811 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: found_abi = %d\n",
4812 found_abi);
4813
4814 /* What has the user specified from the command line? */
4815 wanted_abi = global_mips_abi ();
4816 if (gdbarch_debug)
4817 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: wanted_abi = %d\n",
4818 wanted_abi);
4819
4820 /* Now that we have found what the ABI for this binary would be,
4821 check whether the user is overriding it. */
4822 if (wanted_abi != MIPS_ABI_UNKNOWN)
4823 mips_abi = wanted_abi;
4824 else if (found_abi != MIPS_ABI_UNKNOWN)
4825 mips_abi = found_abi;
4826 else
4827 mips_abi = MIPS_ABI_O32;
4828 if (gdbarch_debug)
4829 fprintf_unfiltered (gdb_stdlog, "mips_gdbarch_init: mips_abi = %d\n",
4830 mips_abi);
4831
4832 /* Also used when doing an architecture lookup. */
4833 if (gdbarch_debug)
4834 fprintf_unfiltered (gdb_stdlog,
4835 "mips_gdbarch_init: mips64_transfers_32bit_regs_p = %d\n",
4836 mips64_transfers_32bit_regs_p);
4837
4838 /* Determine the MIPS FPU type. */
4839 if (!mips_fpu_type_auto)
4840 fpu_type = mips_fpu_type;
4841 else if (info.bfd_arch_info != NULL
4842 && info.bfd_arch_info->arch == bfd_arch_mips)
4843 switch (info.bfd_arch_info->mach)
4844 {
4845 case bfd_mach_mips3900:
4846 case bfd_mach_mips4100:
4847 case bfd_mach_mips4111:
4848 case bfd_mach_mips4120:
4849 fpu_type = MIPS_FPU_NONE;
4850 break;
4851 case bfd_mach_mips4650:
4852 fpu_type = MIPS_FPU_SINGLE;
4853 break;
4854 default:
4855 fpu_type = MIPS_FPU_DOUBLE;
4856 break;
4857 }
4858 else if (arches != NULL)
4859 fpu_type = gdbarch_tdep (arches->gdbarch)->mips_fpu_type;
4860 else
4861 fpu_type = MIPS_FPU_DOUBLE;
4862 if (gdbarch_debug)
4863 fprintf_unfiltered (gdb_stdlog,
4864 "mips_gdbarch_init: fpu_type = %d\n", fpu_type);
4865
4866 /* try to find a pre-existing architecture */
4867 for (arches = gdbarch_list_lookup_by_info (arches, &info);
4868 arches != NULL;
4869 arches = gdbarch_list_lookup_by_info (arches->next, &info))
4870 {
4871 /* MIPS needs to be pedantic about which ABI the object is
4872 using. */
4873 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
4874 continue;
4875 if (gdbarch_tdep (arches->gdbarch)->mips_abi != mips_abi)
4876 continue;
4877 /* Need to be pedantic about which register virtual size is
4878 used. */
4879 if (gdbarch_tdep (arches->gdbarch)->mips64_transfers_32bit_regs_p
4880 != mips64_transfers_32bit_regs_p)
4881 continue;
4882 /* Be pedantic about which FPU is selected. */
4883 if (gdbarch_tdep (arches->gdbarch)->mips_fpu_type != fpu_type)
4884 continue;
4885 return arches->gdbarch;
4886 }
4887
4888 /* Need a new architecture. Fill in a target specific vector. */
4889 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
4890 gdbarch = gdbarch_alloc (&info, tdep);
4891 tdep->elf_flags = elf_flags;
4892 tdep->mips64_transfers_32bit_regs_p = mips64_transfers_32bit_regs_p;
4893 tdep->found_abi = found_abi;
4894 tdep->mips_abi = mips_abi;
4895 tdep->mips_fpu_type = fpu_type;
4896
4897 /* Initially set everything according to the default ABI/ISA. */
4898 set_gdbarch_short_bit (gdbarch, 16);
4899 set_gdbarch_int_bit (gdbarch, 32);
4900 set_gdbarch_float_bit (gdbarch, 32);
4901 set_gdbarch_double_bit (gdbarch, 64);
4902 set_gdbarch_long_double_bit (gdbarch, 64);
4903 set_gdbarch_register_reggroup_p (gdbarch, mips_register_reggroup_p);
4904 set_gdbarch_pseudo_register_read (gdbarch, mips_pseudo_register_read);
4905 set_gdbarch_pseudo_register_write (gdbarch, mips_pseudo_register_write);
4906
4907 set_gdbarch_elf_make_msymbol_special (gdbarch,
4908 mips_elf_make_msymbol_special);
4909
4910 /* Fill in the OS dependant register numbers and names. */
4911 {
4912 const char **reg_names;
4913 struct mips_regnum *regnum = GDBARCH_OBSTACK_ZALLOC (gdbarch,
4914 struct mips_regnum);
4915 if (info.osabi == GDB_OSABI_IRIX)
4916 {
4917 regnum->fp0 = 32;
4918 regnum->pc = 64;
4919 regnum->cause = 65;
4920 regnum->badvaddr = 66;
4921 regnum->hi = 67;
4922 regnum->lo = 68;
4923 regnum->fp_control_status = 69;
4924 regnum->fp_implementation_revision = 70;
4925 num_regs = 71;
4926 reg_names = mips_irix_reg_names;
4927 }
4928 else
4929 {
4930 regnum->lo = MIPS_EMBED_LO_REGNUM;
4931 regnum->hi = MIPS_EMBED_HI_REGNUM;
4932 regnum->badvaddr = MIPS_EMBED_BADVADDR_REGNUM;
4933 regnum->cause = MIPS_EMBED_CAUSE_REGNUM;
4934 regnum->pc = MIPS_EMBED_PC_REGNUM;
4935 regnum->fp0 = MIPS_EMBED_FP0_REGNUM;
4936 regnum->fp_control_status = 70;
4937 regnum->fp_implementation_revision = 71;
4938 num_regs = 90;
4939 if (info.bfd_arch_info != NULL
4940 && info.bfd_arch_info->mach == bfd_mach_mips3900)
4941 reg_names = mips_tx39_reg_names;
4942 else
4943 reg_names = mips_generic_reg_names;
4944 }
4945 /* FIXME: cagney/2003-11-15: For MIPS, hasn't PC_REGNUM been
4946 replaced by read_pc? */
4947 set_gdbarch_pc_regnum (gdbarch, regnum->pc + num_regs);
4948 set_gdbarch_sp_regnum (gdbarch, MIPS_SP_REGNUM + num_regs);
4949 set_gdbarch_fp0_regnum (gdbarch, regnum->fp0);
4950 set_gdbarch_num_regs (gdbarch, num_regs);
4951 set_gdbarch_num_pseudo_regs (gdbarch, num_regs);
4952 set_gdbarch_register_name (gdbarch, mips_register_name);
4953 tdep->mips_processor_reg_names = reg_names;
4954 tdep->regnum = regnum;
4955 }
4956
4957 switch (mips_abi)
4958 {
4959 case MIPS_ABI_O32:
4960 set_gdbarch_push_dummy_call (gdbarch, mips_o32_push_dummy_call);
4961 set_gdbarch_return_value (gdbarch, mips_o32_return_value);
4962 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4963 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4964 tdep->default_mask_address_p = 0;
4965 set_gdbarch_long_bit (gdbarch, 32);
4966 set_gdbarch_ptr_bit (gdbarch, 32);
4967 set_gdbarch_long_long_bit (gdbarch, 64);
4968 break;
4969 case MIPS_ABI_O64:
4970 set_gdbarch_push_dummy_call (gdbarch, mips_o64_push_dummy_call);
4971 set_gdbarch_return_value (gdbarch, mips_o64_return_value);
4972 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 4 - 1;
4973 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 4 - 1;
4974 tdep->default_mask_address_p = 0;
4975 set_gdbarch_long_bit (gdbarch, 32);
4976 set_gdbarch_ptr_bit (gdbarch, 32);
4977 set_gdbarch_long_long_bit (gdbarch, 64);
4978 break;
4979 case MIPS_ABI_EABI32:
4980 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4981 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4982 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4983 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4984 tdep->default_mask_address_p = 0;
4985 set_gdbarch_long_bit (gdbarch, 32);
4986 set_gdbarch_ptr_bit (gdbarch, 32);
4987 set_gdbarch_long_long_bit (gdbarch, 64);
4988 break;
4989 case MIPS_ABI_EABI64:
4990 set_gdbarch_push_dummy_call (gdbarch, mips_eabi_push_dummy_call);
4991 set_gdbarch_return_value (gdbarch, mips_eabi_return_value);
4992 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
4993 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
4994 tdep->default_mask_address_p = 0;
4995 set_gdbarch_long_bit (gdbarch, 64);
4996 set_gdbarch_ptr_bit (gdbarch, 64);
4997 set_gdbarch_long_long_bit (gdbarch, 64);
4998 break;
4999 case MIPS_ABI_N32:
5000 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5001 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5002 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5003 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5004 tdep->default_mask_address_p = 0;
5005 set_gdbarch_long_bit (gdbarch, 32);
5006 set_gdbarch_ptr_bit (gdbarch, 32);
5007 set_gdbarch_long_long_bit (gdbarch, 64);
5008 set_gdbarch_long_double_bit (gdbarch, 128);
5009 set_gdbarch_long_double_format (gdbarch,
5010 &floatformat_n32n64_long_double_big);
5011 break;
5012 case MIPS_ABI_N64:
5013 set_gdbarch_push_dummy_call (gdbarch, mips_n32n64_push_dummy_call);
5014 set_gdbarch_return_value (gdbarch, mips_n32n64_return_value);
5015 tdep->mips_last_arg_regnum = MIPS_A0_REGNUM + 8 - 1;
5016 tdep->mips_last_fp_arg_regnum = tdep->regnum->fp0 + 12 + 8 - 1;
5017 tdep->default_mask_address_p = 0;
5018 set_gdbarch_long_bit (gdbarch, 64);
5019 set_gdbarch_ptr_bit (gdbarch, 64);
5020 set_gdbarch_long_long_bit (gdbarch, 64);
5021 set_gdbarch_long_double_bit (gdbarch, 128);
5022 set_gdbarch_long_double_format (gdbarch,
5023 &floatformat_n32n64_long_double_big);
5024 break;
5025 default:
5026 internal_error (__FILE__, __LINE__, "unknown ABI in switch");
5027 }
5028
5029 /* FIXME: jlarmour/2000-04-07: There *is* a flag EF_MIPS_32BIT_MODE
5030 that could indicate -gp32 BUT gas/config/tc-mips.c contains the
5031 comment:
5032
5033 ``We deliberately don't allow "-gp32" to set the MIPS_32BITMODE
5034 flag in object files because to do so would make it impossible to
5035 link with libraries compiled without "-gp32". This is
5036 unnecessarily restrictive.
5037
5038 We could solve this problem by adding "-gp32" multilibs to gcc,
5039 but to set this flag before gcc is built with such multilibs will
5040 break too many systems.''
5041
5042 But even more unhelpfully, the default linker output target for
5043 mips64-elf is elf32-bigmips, and has EF_MIPS_32BIT_MODE set, even
5044 for 64-bit programs - you need to change the ABI to change this,
5045 and not all gcc targets support that currently. Therefore using
5046 this flag to detect 32-bit mode would do the wrong thing given
5047 the current gcc - it would make GDB treat these 64-bit programs
5048 as 32-bit programs by default. */
5049
5050 set_gdbarch_read_pc (gdbarch, mips_read_pc);
5051 set_gdbarch_write_pc (gdbarch, mips_write_pc);
5052 set_gdbarch_read_sp (gdbarch, mips_read_sp);
5053
5054 /* Add/remove bits from an address. The MIPS needs be careful to
5055 ensure that all 32 bit addresses are sign extended to 64 bits. */
5056 set_gdbarch_addr_bits_remove (gdbarch, mips_addr_bits_remove);
5057
5058 /* Unwind the frame. */
5059 set_gdbarch_unwind_pc (gdbarch, mips_unwind_pc);
5060 set_gdbarch_unwind_dummy_id (gdbarch, mips_unwind_dummy_id);
5061
5062 /* Map debug register numbers onto internal register numbers. */
5063 set_gdbarch_stab_reg_to_regnum (gdbarch, mips_stab_reg_to_regnum);
5064 set_gdbarch_ecoff_reg_to_regnum (gdbarch,
5065 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5066 set_gdbarch_dwarf_reg_to_regnum (gdbarch,
5067 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5068 set_gdbarch_dwarf2_reg_to_regnum (gdbarch,
5069 mips_dwarf_dwarf2_ecoff_reg_to_regnum);
5070 set_gdbarch_register_sim_regno (gdbarch, mips_register_sim_regno);
5071
5072 /* MIPS version of CALL_DUMMY */
5073
5074 /* NOTE: cagney/2003-08-05: Eventually call dummy location will be
5075 replaced by a command, and all targets will default to on stack
5076 (regardless of the stack's execute status). */
5077 set_gdbarch_call_dummy_location (gdbarch, AT_SYMBOL);
5078 set_gdbarch_frame_align (gdbarch, mips_frame_align);
5079
5080 set_gdbarch_convert_register_p (gdbarch, mips_convert_register_p);
5081 set_gdbarch_register_to_value (gdbarch, mips_register_to_value);
5082 set_gdbarch_value_to_register (gdbarch, mips_value_to_register);
5083
5084 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
5085 set_gdbarch_breakpoint_from_pc (gdbarch, mips_breakpoint_from_pc);
5086
5087 set_gdbarch_skip_prologue (gdbarch, mips_skip_prologue);
5088
5089 set_gdbarch_pointer_to_address (gdbarch, signed_pointer_to_address);
5090 set_gdbarch_address_to_pointer (gdbarch, address_to_signed_pointer);
5091 set_gdbarch_integer_to_address (gdbarch, mips_integer_to_address);
5092
5093 set_gdbarch_register_type (gdbarch, mips_register_type);
5094
5095 set_gdbarch_print_registers_info (gdbarch, mips_print_registers_info);
5096
5097 set_gdbarch_print_insn (gdbarch, gdb_print_insn_mips);
5098
5099 /* FIXME: cagney/2003-08-29: The macros HAVE_STEPPABLE_WATCHPOINT,
5100 HAVE_NONSTEPPABLE_WATCHPOINT, and HAVE_CONTINUABLE_WATCHPOINT
5101 need to all be folded into the target vector. Since they are
5102 being used as guards for STOPPED_BY_WATCHPOINT, why not have
5103 STOPPED_BY_WATCHPOINT return the type of watchpoint that the code
5104 is sitting on? */
5105 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
5106
5107 set_gdbarch_skip_trampoline_code (gdbarch, mips_skip_trampoline_code);
5108
5109 /* NOTE drow/2004-02-11: We overload the core solib trampoline code
5110 to support MIPS16. This is a bad thing. Make sure not to do it
5111 if we have an OS ABI that actually supports shared libraries, since
5112 shared library support is more important. If we have an OS someday
5113 that supports both shared libraries and MIPS16, we'll have to find
5114 a better place for these. */
5115 if (info.osabi == GDB_OSABI_UNKNOWN)
5116 {
5117 set_gdbarch_in_solib_call_trampoline (gdbarch, mips_in_call_stub);
5118 set_gdbarch_in_solib_return_trampoline (gdbarch, mips_in_solib_return_trampoline);
5119 }
5120
5121 /* Hook in OS ABI-specific overrides, if they have been registered. */
5122 gdbarch_init_osabi (info, gdbarch);
5123
5124 /* Unwind the frame. */
5125 frame_unwind_append_sniffer (gdbarch, mips_stub_frame_sniffer);
5126 frame_unwind_append_sniffer (gdbarch, mips_insn16_frame_sniffer);
5127 frame_unwind_append_sniffer (gdbarch, mips_insn32_frame_sniffer);
5128 frame_base_append_sniffer (gdbarch, mips_stub_frame_base_sniffer);
5129 frame_base_append_sniffer (gdbarch, mips_insn16_frame_base_sniffer);
5130 frame_base_append_sniffer (gdbarch, mips_insn32_frame_base_sniffer);
5131
5132 return gdbarch;
5133 }
5134
5135 static void
5136 mips_abi_update (char *ignore_args, int from_tty, struct cmd_list_element *c)
5137 {
5138 struct gdbarch_info info;
5139
5140 /* Force the architecture to update, and (if it's a MIPS architecture)
5141 mips_gdbarch_init will take care of the rest. */
5142 gdbarch_info_init (&info);
5143 gdbarch_update_p (info);
5144 }
5145
5146 /* Print out which MIPS ABI is in use. */
5147
5148 static void
5149 show_mips_abi (char *ignore_args, int from_tty)
5150 {
5151 if (gdbarch_bfd_arch_info (current_gdbarch)->arch != bfd_arch_mips)
5152 printf_filtered
5153 ("The MIPS ABI is unknown because the current architecture is not MIPS.\n");
5154 else
5155 {
5156 enum mips_abi global_abi = global_mips_abi ();
5157 enum mips_abi actual_abi = mips_abi (current_gdbarch);
5158 const char *actual_abi_str = mips_abi_strings[actual_abi];
5159
5160 if (global_abi == MIPS_ABI_UNKNOWN)
5161 printf_filtered
5162 ("The MIPS ABI is set automatically (currently \"%s\").\n",
5163 actual_abi_str);
5164 else if (global_abi == actual_abi)
5165 printf_filtered
5166 ("The MIPS ABI is assumed to be \"%s\" (due to user setting).\n",
5167 actual_abi_str);
5168 else
5169 {
5170 /* Probably shouldn't happen... */
5171 printf_filtered
5172 ("The (auto detected) MIPS ABI \"%s\" is in use even though the user setting was \"%s\".\n",
5173 actual_abi_str, mips_abi_strings[global_abi]);
5174 }
5175 }
5176 }
5177
5178 static void
5179 mips_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
5180 {
5181 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
5182 if (tdep != NULL)
5183 {
5184 int ef_mips_arch;
5185 int ef_mips_32bitmode;
5186 /* determine the ISA */
5187 switch (tdep->elf_flags & EF_MIPS_ARCH)
5188 {
5189 case E_MIPS_ARCH_1:
5190 ef_mips_arch = 1;
5191 break;
5192 case E_MIPS_ARCH_2:
5193 ef_mips_arch = 2;
5194 break;
5195 case E_MIPS_ARCH_3:
5196 ef_mips_arch = 3;
5197 break;
5198 case E_MIPS_ARCH_4:
5199 ef_mips_arch = 4;
5200 break;
5201 default:
5202 ef_mips_arch = 0;
5203 break;
5204 }
5205 /* determine the size of a pointer */
5206 ef_mips_32bitmode = (tdep->elf_flags & EF_MIPS_32BITMODE);
5207 fprintf_unfiltered (file,
5208 "mips_dump_tdep: tdep->elf_flags = 0x%x\n",
5209 tdep->elf_flags);
5210 fprintf_unfiltered (file,
5211 "mips_dump_tdep: ef_mips_32bitmode = %d\n",
5212 ef_mips_32bitmode);
5213 fprintf_unfiltered (file,
5214 "mips_dump_tdep: ef_mips_arch = %d\n",
5215 ef_mips_arch);
5216 fprintf_unfiltered (file,
5217 "mips_dump_tdep: tdep->mips_abi = %d (%s)\n",
5218 tdep->mips_abi, mips_abi_strings[tdep->mips_abi]);
5219 fprintf_unfiltered (file,
5220 "mips_dump_tdep: mips_mask_address_p() %d (default %d)\n",
5221 mips_mask_address_p (tdep),
5222 tdep->default_mask_address_p);
5223 }
5224 fprintf_unfiltered (file,
5225 "mips_dump_tdep: MIPS_DEFAULT_FPU_TYPE = %d (%s)\n",
5226 MIPS_DEFAULT_FPU_TYPE,
5227 (MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_NONE ? "none"
5228 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5229 : MIPS_DEFAULT_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5230 : "???"));
5231 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_EABI = %d\n", MIPS_EABI);
5232 fprintf_unfiltered (file,
5233 "mips_dump_tdep: MIPS_FPU_TYPE = %d (%s)\n",
5234 MIPS_FPU_TYPE,
5235 (MIPS_FPU_TYPE == MIPS_FPU_NONE ? "none"
5236 : MIPS_FPU_TYPE == MIPS_FPU_SINGLE ? "single"
5237 : MIPS_FPU_TYPE == MIPS_FPU_DOUBLE ? "double"
5238 : "???"));
5239 fprintf_unfiltered (file,
5240 "mips_dump_tdep: mips_stack_argsize() = %d\n",
5241 mips_stack_argsize (current_gdbarch));
5242 fprintf_unfiltered (file,
5243 "mips_dump_tdep: ADDR_BITS_REMOVE # %s\n",
5244 XSTRING (ADDR_BITS_REMOVE (ADDR)));
5245 fprintf_unfiltered (file,
5246 "mips_dump_tdep: ATTACH_DETACH # %s\n",
5247 XSTRING (ATTACH_DETACH));
5248 fprintf_unfiltered (file,
5249 "mips_dump_tdep: DWARF_REG_TO_REGNUM # %s\n",
5250 XSTRING (DWARF_REG_TO_REGNUM (REGNUM)));
5251 fprintf_unfiltered (file,
5252 "mips_dump_tdep: ECOFF_REG_TO_REGNUM # %s\n",
5253 XSTRING (ECOFF_REG_TO_REGNUM (REGNUM)));
5254 fprintf_unfiltered (file,
5255 "mips_dump_tdep: DEPRECATED_IGNORE_HELPER_CALL # %s\n",
5256 XSTRING (DEPRECATED_IGNORE_HELPER_CALL (PC)));
5257 fprintf_unfiltered (file,
5258 "mips_dump_tdep: IN_SOLIB_CALL_TRAMPOLINE # %s\n",
5259 XSTRING (IN_SOLIB_CALL_TRAMPOLINE (PC, NAME)));
5260 #ifdef MACHINE_CPROC_FP_OFFSET
5261 fprintf_unfiltered (file,
5262 "mips_dump_tdep: MACHINE_CPROC_FP_OFFSET = %d\n",
5263 MACHINE_CPROC_FP_OFFSET);
5264 #endif
5265 #ifdef MACHINE_CPROC_PC_OFFSET
5266 fprintf_unfiltered (file,
5267 "mips_dump_tdep: MACHINE_CPROC_PC_OFFSET = %d\n",
5268 MACHINE_CPROC_PC_OFFSET);
5269 #endif
5270 #ifdef MACHINE_CPROC_SP_OFFSET
5271 fprintf_unfiltered (file,
5272 "mips_dump_tdep: MACHINE_CPROC_SP_OFFSET = %d\n",
5273 MACHINE_CPROC_SP_OFFSET);
5274 #endif
5275 fprintf_unfiltered (file, "mips_dump_tdep: MIPS_DEFAULT_ABI = FIXME!\n");
5276 fprintf_unfiltered (file,
5277 "mips_dump_tdep: MIPS_LAST_ARG_REGNUM = %d (%d regs)\n",
5278 MIPS_LAST_ARG_REGNUM,
5279 MIPS_LAST_ARG_REGNUM - MIPS_A0_REGNUM + 1);
5280 fprintf_unfiltered (file,
5281 "mips_dump_tdep: MIPS_NUMREGS = %d\n", MIPS_NUMREGS);
5282 fprintf_unfiltered (file,
5283 "mips_dump_tdep: mips_abi_regsize() = %d\n",
5284 mips_abi_regsize (current_gdbarch));
5285 fprintf_unfiltered (file,
5286 "mips_dump_tdep: PROC_FRAME_ADJUST = function?\n");
5287 fprintf_unfiltered (file,
5288 "mips_dump_tdep: PROC_FRAME_OFFSET = function?\n");
5289 fprintf_unfiltered (file, "mips_dump_tdep: PROC_FRAME_REG = function?\n");
5290 fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_MASK = function?\n");
5291 fprintf_unfiltered (file, "mips_dump_tdep: PROC_FREG_OFFSET = function?\n");
5292 fprintf_unfiltered (file, "mips_dump_tdep: PROC_HIGH_ADDR = function?\n");
5293 fprintf_unfiltered (file, "mips_dump_tdep: PROC_LOW_ADDR = function?\n");
5294 fprintf_unfiltered (file, "mips_dump_tdep: PROC_PC_REG = function?\n");
5295 fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_MASK = function?\n");
5296 fprintf_unfiltered (file, "mips_dump_tdep: PROC_REG_OFFSET = function?\n");
5297 fprintf_unfiltered (file, "mips_dump_tdep: PROC_SYMBOL = function?\n");
5298 #ifdef SAVED_BYTES
5299 fprintf_unfiltered (file,
5300 "mips_dump_tdep: SAVED_BYTES = %d\n", SAVED_BYTES);
5301 #endif
5302 #ifdef SAVED_FP
5303 fprintf_unfiltered (file, "mips_dump_tdep: SAVED_FP = %d\n", SAVED_FP);
5304 #endif
5305 #ifdef SAVED_PC
5306 fprintf_unfiltered (file, "mips_dump_tdep: SAVED_PC = %d\n", SAVED_PC);
5307 #endif
5308 fprintf_unfiltered (file,
5309 "mips_dump_tdep: SETUP_ARBITRARY_FRAME # %s\n",
5310 XSTRING (SETUP_ARBITRARY_FRAME (NUMARGS, ARGS)));
5311 fprintf_unfiltered (file,
5312 "mips_dump_tdep: SOFTWARE_SINGLE_STEP # %s\n",
5313 XSTRING (SOFTWARE_SINGLE_STEP (SIG, BP_P)));
5314 fprintf_unfiltered (file,
5315 "mips_dump_tdep: SOFTWARE_SINGLE_STEP_P () = %d\n",
5316 SOFTWARE_SINGLE_STEP_P ());
5317 fprintf_unfiltered (file,
5318 "mips_dump_tdep: STAB_REG_TO_REGNUM # %s\n",
5319 XSTRING (STAB_REG_TO_REGNUM (REGNUM)));
5320 #ifdef STACK_END_ADDR
5321 fprintf_unfiltered (file,
5322 "mips_dump_tdep: STACK_END_ADDR = %d\n",
5323 STACK_END_ADDR);
5324 #endif
5325 fprintf_unfiltered (file,
5326 "mips_dump_tdep: STEP_SKIPS_DELAY # %s\n",
5327 XSTRING (STEP_SKIPS_DELAY (PC)));
5328 fprintf_unfiltered (file,
5329 "mips_dump_tdep: STEP_SKIPS_DELAY_P = %d\n",
5330 STEP_SKIPS_DELAY_P);
5331 fprintf_unfiltered (file,
5332 "mips_dump_tdep: STOPPED_BY_WATCHPOINT # %s\n",
5333 XSTRING (STOPPED_BY_WATCHPOINT (WS)));
5334 fprintf_unfiltered (file,
5335 "mips_dump_tdep: TABULAR_REGISTER_OUTPUT = used?\n");
5336 fprintf_unfiltered (file,
5337 "mips_dump_tdep: TARGET_CAN_USE_HARDWARE_WATCHPOINT # %s\n",
5338 XSTRING (TARGET_CAN_USE_HARDWARE_WATCHPOINT
5339 (TYPE, CNT, OTHERTYPE)));
5340 #ifdef TRACE_CLEAR
5341 fprintf_unfiltered (file,
5342 "mips_dump_tdep: TRACE_CLEAR # %s\n",
5343 XSTRING (TRACE_CLEAR (THREAD, STATE)));
5344 #endif
5345 #ifdef TRACE_FLAVOR
5346 fprintf_unfiltered (file,
5347 "mips_dump_tdep: TRACE_FLAVOR = %d\n", TRACE_FLAVOR);
5348 #endif
5349 #ifdef TRACE_FLAVOR_SIZE
5350 fprintf_unfiltered (file,
5351 "mips_dump_tdep: TRACE_FLAVOR_SIZE = %d\n",
5352 TRACE_FLAVOR_SIZE);
5353 #endif
5354 #ifdef TRACE_SET
5355 fprintf_unfiltered (file,
5356 "mips_dump_tdep: TRACE_SET # %s\n",
5357 XSTRING (TRACE_SET (X, STATE)));
5358 #endif
5359 fprintf_unfiltered (file,
5360 "mips_dump_tdep: VM_MIN_ADDRESS = %ld\n",
5361 (long) VM_MIN_ADDRESS);
5362 }
5363
5364 extern initialize_file_ftype _initialize_mips_tdep; /* -Wmissing-prototypes */
5365
5366 void
5367 _initialize_mips_tdep (void)
5368 {
5369 static struct cmd_list_element *mipsfpulist = NULL;
5370 struct cmd_list_element *c;
5371
5372 mips_abi_string = mips_abi_strings[MIPS_ABI_UNKNOWN];
5373 if (MIPS_ABI_LAST + 1
5374 != sizeof (mips_abi_strings) / sizeof (mips_abi_strings[0]))
5375 internal_error (__FILE__, __LINE__, "mips_abi_strings out of sync");
5376
5377 gdbarch_register (bfd_arch_mips, mips_gdbarch_init, mips_dump_tdep);
5378
5379 mips_pdr_data = register_objfile_data ();
5380
5381 /* Add root prefix command for all "set mips"/"show mips" commands */
5382 add_prefix_cmd ("mips", no_class, set_mips_command,
5383 "Various MIPS specific commands.",
5384 &setmipscmdlist, "set mips ", 0, &setlist);
5385
5386 add_prefix_cmd ("mips", no_class, show_mips_command,
5387 "Various MIPS specific commands.",
5388 &showmipscmdlist, "show mips ", 0, &showlist);
5389
5390 /* Allow the user to override the saved register size. */
5391 add_setshow_enum_cmd ("saved-gpreg-size", class_obscure,
5392 size_enums, &mips_abi_regsize_string, "\
5393 Set size of general purpose registers saved on the stack.\n", "\
5394 Show size of general purpose registers saved on the stack.\n", "\
5395 This option can be set to one of:\n\
5396 32 - Force GDB to treat saved GP registers as 32-bit\n\
5397 64 - Force GDB to treat saved GP registers as 64-bit\n\
5398 auto - Allow GDB to use the target's default setting or autodetect the\n\
5399 saved GP register size from information contained in the executable.\n\
5400 (default: auto)", "\
5401 Size of general purpose registers saved on the stack is %s.\n",
5402 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5403
5404 /* Allow the user to override the argument stack size. */
5405 add_setshow_enum_cmd ("stack-arg-size", class_obscure,
5406 size_enums, &mips_stack_argsize_string, "\
5407 Set the amount of stack space reserved for each argument.\n", "\
5408 Show the amount of stack space reserved for each argument.\n", "\
5409 This option can be set to one of:\n\
5410 32 - Force GDB to allocate 32-bit chunks per argument\n\
5411 64 - Force GDB to allocate 64-bit chunks per argument\n\
5412 auto - Allow GDB to determine the correct setting from the current\n\
5413 target and executable (default)", "\
5414 The amount of stack space reserved for each argument is %s.\n",
5415 NULL, NULL, &setmipscmdlist, &showmipscmdlist);
5416
5417 /* Allow the user to override the ABI. */
5418 c = add_set_enum_cmd
5419 ("abi", class_obscure, mips_abi_strings, &mips_abi_string,
5420 "Set the ABI used by this program.\n"
5421 "This option can be set to one of:\n"
5422 " auto - the default ABI associated with the current binary\n"
5423 " o32\n"
5424 " o64\n" " n32\n" " n64\n" " eabi32\n" " eabi64", &setmipscmdlist);
5425 set_cmd_sfunc (c, mips_abi_update);
5426 add_cmd ("abi", class_obscure, show_mips_abi,
5427 "Show ABI in use by MIPS target", &showmipscmdlist);
5428
5429 /* Let the user turn off floating point and set the fence post for
5430 heuristic_proc_start. */
5431
5432 add_prefix_cmd ("mipsfpu", class_support, set_mipsfpu_command,
5433 "Set use of MIPS floating-point coprocessor.",
5434 &mipsfpulist, "set mipsfpu ", 0, &setlist);
5435 add_cmd ("single", class_support, set_mipsfpu_single_command,
5436 "Select single-precision MIPS floating-point coprocessor.",
5437 &mipsfpulist);
5438 add_cmd ("double", class_support, set_mipsfpu_double_command,
5439 "Select double-precision MIPS floating-point coprocessor.",
5440 &mipsfpulist);
5441 add_alias_cmd ("on", "double", class_support, 1, &mipsfpulist);
5442 add_alias_cmd ("yes", "double", class_support, 1, &mipsfpulist);
5443 add_alias_cmd ("1", "double", class_support, 1, &mipsfpulist);
5444 add_cmd ("none", class_support, set_mipsfpu_none_command,
5445 "Select no MIPS floating-point coprocessor.", &mipsfpulist);
5446 add_alias_cmd ("off", "none", class_support, 1, &mipsfpulist);
5447 add_alias_cmd ("no", "none", class_support, 1, &mipsfpulist);
5448 add_alias_cmd ("0", "none", class_support, 1, &mipsfpulist);
5449 add_cmd ("auto", class_support, set_mipsfpu_auto_command,
5450 "Select MIPS floating-point coprocessor automatically.",
5451 &mipsfpulist);
5452 add_cmd ("mipsfpu", class_support, show_mipsfpu_command,
5453 "Show current use of MIPS floating-point coprocessor target.",
5454 &showlist);
5455
5456 /* We really would like to have both "0" and "unlimited" work, but
5457 command.c doesn't deal with that. So make it a var_zinteger
5458 because the user can always use "999999" or some such for unlimited. */
5459 add_setshow_zinteger_cmd ("heuristic-fence-post", class_support,
5460 &heuristic_fence_post, "\
5461 Set the distance searched for the start of a function.\n", "\
5462 Show the distance searched for the start of a function.\n", "\
5463 If you are debugging a stripped executable, GDB needs to search through the\n\
5464 program for the start of a function. This command sets the distance of the\n\
5465 search. The only need to set it is when debugging a stripped executable.", "\
5466 The distance searched for the start of a function is %s.\n",
5467 reinit_frame_cache_sfunc, NULL,
5468 &setlist, &showlist);
5469
5470 /* Allow the user to control whether the upper bits of 64-bit
5471 addresses should be zeroed. */
5472 add_setshow_auto_boolean_cmd ("mask-address", no_class, &mask_address_var, "\
5473 Set zeroing of upper 32 bits of 64-bit addresses.", "\
5474 Show zeroing of upper 32 bits of 64-bit addresses.", "\
5475 Use \"on\" to enable the masking, \"off\" to disable it and \"auto\" to \n\
5476 allow GDB to determine the correct value.\n", "\
5477 Zerroing of upper 32 bits of 64-bit address is %s.",
5478 NULL, show_mask_address, &setmipscmdlist, &showmipscmdlist);
5479
5480 /* Allow the user to control the size of 32 bit registers within the
5481 raw remote packet. */
5482 add_setshow_boolean_cmd ("remote-mips64-transfers-32bit-regs", class_obscure,
5483 &mips64_transfers_32bit_regs_p, "\
5484 Set compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5485 Show compatibility with 64-bit MIPS target that transfers 32-bit quantities.", "\
5486 Use \"on\" to enable backward compatibility with older MIPS 64 GDB+target\n\
5487 that would transfer 32 bits for some registers (e.g. SR, FSR) and\n\
5488 64 bits for others. Use \"off\" to disable compatibility mode", "\
5489 Compatibility with 64-bit MIPS target that transfers 32-bit quantities is %s.",
5490 set_mips64_transfers_32bit_regs, NULL, &setlist, &showlist);
5491
5492 /* Debug this files internals. */
5493 add_setshow_zinteger_cmd ("mips", class_maintenance,
5494 &mips_debug, "\
5495 Set mips debugging.\n", "\
5496 Show mips debugging.\n", "\
5497 When non-zero, mips specific debugging is enabled.\n", "\
5498 Mips debugging is currently %s.\n",
5499 NULL, NULL,
5500 &setdebuglist, &showdebuglist);
5501 }