]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/monitor.c
cd4f045375ebbb44c54b1f59207d9bd265beaa09
[thirdparty/binutils-gdb.git] / gdb / monitor.c
1 /* Remote debugging interface for boot monitors, for GDB.
2
3 Copyright 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
4 1999, 2000, 2001, 2002 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support. Written by Rob Savoye for Cygnus.
7 Resurrected from the ashes by Stu Grossman.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 2 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program; if not, write to the Free Software
23 Foundation, Inc., 59 Temple Place - Suite 330,
24 Boston, MA 02111-1307, USA. */
25
26 /* This file was derived from various remote-* modules. It is a collection
27 of generic support functions so GDB can talk directly to a ROM based
28 monitor. This saves use from having to hack an exception based handler
29 into existence, and makes for quick porting.
30
31 This module talks to a debug monitor called 'MONITOR', which
32 We communicate with MONITOR via either a direct serial line, or a TCP
33 (or possibly TELNET) stream to a terminal multiplexor,
34 which in turn talks to the target board. */
35
36 /* FIXME 32x64: This code assumes that registers and addresses are at
37 most 32 bits long. If they can be larger, you will need to declare
38 values as LONGEST and use %llx or some such to print values when
39 building commands to send to the monitor. Since we don't know of
40 any actual 64-bit targets with ROM monitors that use this code,
41 it's not an issue right now. -sts 4/18/96 */
42
43 #include "defs.h"
44 #include "gdbcore.h"
45 #include "target.h"
46 #include <signal.h>
47 #include <ctype.h>
48 #include "gdb_string.h"
49 #include <sys/types.h>
50 #include "command.h"
51 #include "serial.h"
52 #include "monitor.h"
53 #include "gdbcmd.h"
54 #include "inferior.h"
55 #include "gdb_regex.h"
56 #include "srec.h"
57 #include "regcache.h"
58
59 static char *dev_name;
60 static struct target_ops *targ_ops;
61
62 static void monitor_vsprintf (char *sndbuf, char *pattern, va_list args);
63
64 static int readchar (int timeout);
65
66 static void monitor_fetch_register (int regno);
67 static void monitor_store_register (int regno);
68
69 static void monitor_printable_string (char *newstr, char *oldstr, int len);
70 static void monitor_error (char *function, char *message, CORE_ADDR memaddr, int len, char *string, int final_char);
71 static void monitor_detach (char *args, int from_tty);
72 static void monitor_resume (ptid_t ptid, int step, enum target_signal sig);
73 static void monitor_interrupt (int signo);
74 static void monitor_interrupt_twice (int signo);
75 static void monitor_interrupt_query (void);
76 static void monitor_wait_cleanup (void *old_timeout);
77
78 static ptid_t monitor_wait (ptid_t ptid, struct target_waitstatus *status);
79 static void monitor_fetch_registers (int regno);
80 static void monitor_store_registers (int regno);
81 static void monitor_prepare_to_store (void);
82 static int monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len,
83 int write,
84 struct mem_attrib *attrib,
85 struct target_ops *target);
86 static void monitor_files_info (struct target_ops *ops);
87 static int monitor_insert_breakpoint (CORE_ADDR addr, char *shadow);
88 static int monitor_remove_breakpoint (CORE_ADDR addr, char *shadow);
89 static void monitor_kill (void);
90 static void monitor_load (char *file, int from_tty);
91 static void monitor_mourn_inferior (void);
92 static void monitor_stop (void);
93
94 static int monitor_read_memory (CORE_ADDR addr, char *myaddr, int len);
95 static int monitor_write_memory (CORE_ADDR addr, char *myaddr, int len);
96 static int monitor_write_memory_bytes (CORE_ADDR addr, char *myaddr, int len);
97 static int monitor_write_memory_block (CORE_ADDR memaddr,
98 char *myaddr, int len);
99 static int monitor_expect_regexp (struct re_pattern_buffer *pat,
100 char *buf, int buflen);
101 static void monitor_dump_regs (void);
102 #if 0
103 static int from_hex (int a);
104 static unsigned long get_hex_word (void);
105 #endif
106 static void parse_register_dump (char *, int);
107
108 static struct monitor_ops *current_monitor;
109
110 static int hashmark; /* flag set by "set hash" */
111
112 static int timeout = 30;
113
114 static int in_monitor_wait = 0; /* Non-zero means we are in monitor_wait() */
115
116 static void (*ofunc) (); /* Old SIGINT signal handler */
117
118 static CORE_ADDR *breakaddr;
119
120 /* Descriptor for I/O to remote machine. Initialize it to NULL so
121 that monitor_open knows that we don't have a file open when the
122 program starts. */
123
124 static struct serial *monitor_desc = NULL;
125
126 /* Pointer to regexp pattern matching data */
127
128 static struct re_pattern_buffer register_pattern;
129 static char register_fastmap[256];
130
131 static struct re_pattern_buffer getmem_resp_delim_pattern;
132 static char getmem_resp_delim_fastmap[256];
133
134 static struct re_pattern_buffer setmem_resp_delim_pattern;
135 static char setmem_resp_delim_fastmap[256];
136
137 static struct re_pattern_buffer setreg_resp_delim_pattern;
138 static char setreg_resp_delim_fastmap[256];
139
140 static int dump_reg_flag; /* Non-zero means do a dump_registers cmd when
141 monitor_wait wakes up. */
142
143 static int first_time = 0; /* is this the first time we're executing after
144 gaving created the child proccess? */
145
146 #define TARGET_BUF_SIZE 2048
147
148 /* Monitor specific debugging information. Typically only useful to
149 the developer of a new monitor interface. */
150
151 static void monitor_debug (const char *fmt, ...) ATTR_FORMAT(printf, 1, 2);
152
153 static int monitor_debug_p = 0;
154
155 /* NOTE: This file alternates between monitor_debug_p and remote_debug
156 when determining if debug information is printed. Perhaphs this
157 could be simplified. */
158
159 static void
160 monitor_debug (const char *fmt, ...)
161 {
162 if (monitor_debug_p)
163 {
164 va_list args;
165 va_start (args, fmt);
166 vfprintf_filtered (gdb_stdlog, fmt, args);
167 va_end (args);
168 }
169 }
170
171
172 /* Convert a string into a printable representation, Return # byte in
173 the new string. When LEN is >0 it specifies the size of the
174 string. Otherwize strlen(oldstr) is used. */
175
176 static void
177 monitor_printable_string (char *newstr, char *oldstr, int len)
178 {
179 int ch;
180 int i;
181
182 if (len <= 0)
183 len = strlen (oldstr);
184
185 for (i = 0; i < len; i++)
186 {
187 ch = oldstr[i];
188 switch (ch)
189 {
190 default:
191 if (isprint (ch))
192 *newstr++ = ch;
193
194 else
195 {
196 sprintf (newstr, "\\x%02x", ch & 0xff);
197 newstr += 4;
198 }
199 break;
200
201 case '\\':
202 *newstr++ = '\\';
203 *newstr++ = '\\';
204 break;
205 case '\b':
206 *newstr++ = '\\';
207 *newstr++ = 'b';
208 break;
209 case '\f':
210 *newstr++ = '\\';
211 *newstr++ = 't';
212 break;
213 case '\n':
214 *newstr++ = '\\';
215 *newstr++ = 'n';
216 break;
217 case '\r':
218 *newstr++ = '\\';
219 *newstr++ = 'r';
220 break;
221 case '\t':
222 *newstr++ = '\\';
223 *newstr++ = 't';
224 break;
225 case '\v':
226 *newstr++ = '\\';
227 *newstr++ = 'v';
228 break;
229 }
230 }
231
232 *newstr++ = '\0';
233 }
234
235 /* Print monitor errors with a string, converting the string to printable
236 representation. */
237
238 static void
239 monitor_error (char *function, char *message,
240 CORE_ADDR memaddr, int len, char *string, int final_char)
241 {
242 int real_len = (len == 0 && string != (char *) 0) ? strlen (string) : len;
243 char *safe_string = alloca ((real_len * 4) + 1);
244 monitor_printable_string (safe_string, string, real_len);
245
246 if (final_char)
247 error ("%s (0x%s): %s: %s%c", function, paddr_nz (memaddr), message, safe_string, final_char);
248 else
249 error ("%s (0x%s): %s: %s", function, paddr_nz (memaddr), message, safe_string);
250 }
251
252 /* Convert hex digit A to a number. */
253
254 static int
255 fromhex (int a)
256 {
257 if (a >= '0' && a <= '9')
258 return a - '0';
259 else if (a >= 'a' && a <= 'f')
260 return a - 'a' + 10;
261 else if (a >= 'A' && a <= 'F')
262 return a - 'A' + 10;
263 else
264 error ("Invalid hex digit %d", a);
265 }
266
267 /* monitor_vsprintf - similar to vsprintf but handles 64-bit addresses
268
269 This function exists to get around the problem that many host platforms
270 don't have a printf that can print 64-bit addresses. The %A format
271 specification is recognized as a special case, and causes the argument
272 to be printed as a 64-bit hexadecimal address.
273
274 Only format specifiers of the form "[0-9]*[a-z]" are recognized.
275 If it is a '%s' format, the argument is a string; otherwise the
276 argument is assumed to be a long integer.
277
278 %% is also turned into a single %.
279 */
280
281 static void
282 monitor_vsprintf (char *sndbuf, char *pattern, va_list args)
283 {
284 char format[10];
285 char fmt;
286 char *p;
287 int i;
288 long arg_int;
289 CORE_ADDR arg_addr;
290 char *arg_string;
291
292 for (p = pattern; *p; p++)
293 {
294 if (*p == '%')
295 {
296 /* Copy the format specifier to a separate buffer. */
297 format[0] = *p++;
298 for (i = 1; *p >= '0' && *p <= '9' && i < (int) sizeof (format) - 2;
299 i++, p++)
300 format[i] = *p;
301 format[i] = fmt = *p;
302 format[i + 1] = '\0';
303
304 /* Fetch the next argument and print it. */
305 switch (fmt)
306 {
307 case '%':
308 strcpy (sndbuf, "%");
309 break;
310 case 'A':
311 arg_addr = va_arg (args, CORE_ADDR);
312 strcpy (sndbuf, paddr_nz (arg_addr));
313 break;
314 case 's':
315 arg_string = va_arg (args, char *);
316 sprintf (sndbuf, format, arg_string);
317 break;
318 default:
319 arg_int = va_arg (args, long);
320 sprintf (sndbuf, format, arg_int);
321 break;
322 }
323 sndbuf += strlen (sndbuf);
324 }
325 else
326 *sndbuf++ = *p;
327 }
328 *sndbuf = '\0';
329 }
330
331
332 /* monitor_printf_noecho -- Send data to monitor, but don't expect an echo.
333 Works just like printf. */
334
335 void
336 monitor_printf_noecho (char *pattern,...)
337 {
338 va_list args;
339 char sndbuf[2000];
340 int len;
341
342 va_start (args, pattern);
343
344 monitor_vsprintf (sndbuf, pattern, args);
345
346 len = strlen (sndbuf);
347 if (len + 1 > sizeof sndbuf)
348 internal_error (__FILE__, __LINE__, "failed internal consistency check");
349
350 if (monitor_debug_p)
351 {
352 char *safe_string = (char *) alloca ((strlen (sndbuf) * 4) + 1);
353 monitor_printable_string (safe_string, sndbuf, 0);
354 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
355 }
356
357 monitor_write (sndbuf, len);
358 }
359
360 /* monitor_printf -- Send data to monitor and check the echo. Works just like
361 printf. */
362
363 void
364 monitor_printf (char *pattern,...)
365 {
366 va_list args;
367 char sndbuf[2000];
368 int len;
369
370 va_start (args, pattern);
371
372 monitor_vsprintf (sndbuf, pattern, args);
373
374 len = strlen (sndbuf);
375 if (len + 1 > sizeof sndbuf)
376 internal_error (__FILE__, __LINE__, "failed internal consistency check");
377
378 if (monitor_debug_p)
379 {
380 char *safe_string = (char *) alloca ((len * 4) + 1);
381 monitor_printable_string (safe_string, sndbuf, 0);
382 fprintf_unfiltered (gdb_stdlog, "sent[%s]\n", safe_string);
383 }
384
385 monitor_write (sndbuf, len);
386
387 /* We used to expect that the next immediate output was the characters we
388 just output, but sometimes some extra junk appeared before the characters
389 we expected, like an extra prompt, or a portmaster sending telnet negotiations.
390 So, just start searching for what we sent, and skip anything unknown. */
391 monitor_debug ("ExpectEcho\n");
392 monitor_expect (sndbuf, (char *) 0, 0);
393 }
394
395
396 /* Write characters to the remote system. */
397
398 void
399 monitor_write (char *buf, int buflen)
400 {
401 if (serial_write (monitor_desc, buf, buflen))
402 fprintf_unfiltered (gdb_stderr, "serial_write failed: %s\n",
403 safe_strerror (errno));
404 }
405
406
407 /* Read a binary character from the remote system, doing all the fancy
408 timeout stuff, but without interpreting the character in any way,
409 and without printing remote debug information. */
410
411 int
412 monitor_readchar (void)
413 {
414 int c;
415 int looping;
416
417 do
418 {
419 looping = 0;
420 c = serial_readchar (monitor_desc, timeout);
421
422 if (c >= 0)
423 c &= 0xff; /* don't lose bit 7 */
424 }
425 while (looping);
426
427 if (c >= 0)
428 return c;
429
430 if (c == SERIAL_TIMEOUT)
431 error ("Timeout reading from remote system.");
432
433 perror_with_name ("remote-monitor");
434 }
435
436
437 /* Read a character from the remote system, doing all the fancy
438 timeout stuff. */
439
440 static int
441 readchar (int timeout)
442 {
443 int c;
444 static enum
445 {
446 last_random, last_nl, last_cr, last_crnl
447 }
448 state = last_random;
449 int looping;
450
451 do
452 {
453 looping = 0;
454 c = serial_readchar (monitor_desc, timeout);
455
456 if (c >= 0)
457 {
458 c &= 0x7f;
459 /* This seems to interfere with proper function of the
460 input stream */
461 if (monitor_debug_p || remote_debug)
462 {
463 char buf[2];
464 buf[0] = c;
465 buf[1] = '\0';
466 puts_debug ("read -->", buf, "<--");
467 }
468
469 }
470
471 /* Canonicialize \n\r combinations into one \r */
472 if ((current_monitor->flags & MO_HANDLE_NL) != 0)
473 {
474 if ((c == '\r' && state == last_nl)
475 || (c == '\n' && state == last_cr))
476 {
477 state = last_crnl;
478 looping = 1;
479 }
480 else if (c == '\r')
481 state = last_cr;
482 else if (c != '\n')
483 state = last_random;
484 else
485 {
486 state = last_nl;
487 c = '\r';
488 }
489 }
490 }
491 while (looping);
492
493 if (c >= 0)
494 return c;
495
496 if (c == SERIAL_TIMEOUT)
497 #if 0
498 /* I fail to see how detaching here can be useful */
499 if (in_monitor_wait) /* Watchdog went off */
500 {
501 target_mourn_inferior ();
502 error ("GDB serial timeout has expired. Target detached.\n");
503 }
504 else
505 #endif
506 error ("Timeout reading from remote system.");
507
508 perror_with_name ("remote-monitor");
509 }
510
511 /* Scan input from the remote system, until STRING is found. If BUF is non-
512 zero, then collect input until we have collected either STRING or BUFLEN-1
513 chars. In either case we terminate BUF with a 0. If input overflows BUF
514 because STRING can't be found, return -1, else return number of chars in BUF
515 (minus the terminating NUL). Note that in the non-overflow case, STRING
516 will be at the end of BUF. */
517
518 int
519 monitor_expect (char *string, char *buf, int buflen)
520 {
521 char *p = string;
522 int obuflen = buflen;
523 int c;
524
525 if (monitor_debug_p)
526 {
527 char *safe_string = (char *) alloca ((strlen (string) * 4) + 1);
528 monitor_printable_string (safe_string, string, 0);
529 fprintf_unfiltered (gdb_stdlog, "MON Expecting '%s'\n", safe_string);
530 }
531
532 immediate_quit++;
533 while (1)
534 {
535 if (buf)
536 {
537 if (buflen < 2)
538 {
539 *buf = '\000';
540 immediate_quit--;
541 return -1;
542 }
543
544 c = readchar (timeout);
545 if (c == '\000')
546 continue;
547 *buf++ = c;
548 buflen--;
549 }
550 else
551 c = readchar (timeout);
552
553 /* Don't expect any ^C sent to be echoed */
554
555 if (*p == '\003' || c == *p)
556 {
557 p++;
558 if (*p == '\0')
559 {
560 immediate_quit--;
561
562 if (buf)
563 {
564 *buf++ = '\000';
565 return obuflen - buflen;
566 }
567 else
568 return 0;
569 }
570 }
571 else
572 {
573 /* We got a character that doesn't match the string. We need to
574 back up p, but how far? If we're looking for "..howdy" and the
575 monitor sends "...howdy"? There's certainly a match in there,
576 but when we receive the third ".", we won't find it if we just
577 restart the matching at the beginning of the string.
578
579 This is a Boyer-Moore kind of situation. We want to reset P to
580 the end of the longest prefix of STRING that is a suffix of
581 what we've read so far. In the example above, that would be
582 ".." --- the longest prefix of "..howdy" that is a suffix of
583 "...". This longest prefix could be the empty string, if C
584 is nowhere to be found in STRING.
585
586 If this longest prefix is not the empty string, it must contain
587 C, so let's search from the end of STRING for instances of C,
588 and see if the portion of STRING before that is a suffix of
589 what we read before C. Actually, we can search backwards from
590 p, since we know no prefix can be longer than that.
591
592 Note that we can use STRING itself, along with C, as a record
593 of what we've received so far. :) */
594 int i;
595
596 for (i = (p - string) - 1; i >= 0; i--)
597 if (string[i] == c)
598 {
599 /* Is this prefix a suffix of what we've read so far?
600 In other words, does
601 string[0 .. i-1] == string[p - i, p - 1]? */
602 if (! memcmp (string, p - i, i))
603 {
604 p = string + i + 1;
605 break;
606 }
607 }
608 if (i < 0)
609 p = string;
610 }
611 }
612 }
613
614 /* Search for a regexp. */
615
616 static int
617 monitor_expect_regexp (struct re_pattern_buffer *pat, char *buf, int buflen)
618 {
619 char *mybuf;
620 char *p;
621 monitor_debug ("MON Expecting regexp\n");
622 if (buf)
623 mybuf = buf;
624 else
625 {
626 mybuf = alloca (TARGET_BUF_SIZE);
627 buflen = TARGET_BUF_SIZE;
628 }
629
630 p = mybuf;
631 while (1)
632 {
633 int retval;
634
635 if (p - mybuf >= buflen)
636 { /* Buffer about to overflow */
637
638 /* On overflow, we copy the upper half of the buffer to the lower half. Not
639 great, but it usually works... */
640
641 memcpy (mybuf, mybuf + buflen / 2, buflen / 2);
642 p = mybuf + buflen / 2;
643 }
644
645 *p++ = readchar (timeout);
646
647 retval = re_search (pat, mybuf, p - mybuf, 0, p - mybuf, NULL);
648 if (retval >= 0)
649 return 1;
650 }
651 }
652
653 /* Keep discarding input until we see the MONITOR prompt.
654
655 The convention for dealing with the prompt is that you
656 o give your command
657 o *then* wait for the prompt.
658
659 Thus the last thing that a procedure does with the serial line will
660 be an monitor_expect_prompt(). Exception: monitor_resume does not
661 wait for the prompt, because the terminal is being handed over to
662 the inferior. However, the next thing which happens after that is
663 a monitor_wait which does wait for the prompt. Note that this
664 includes abnormal exit, e.g. error(). This is necessary to prevent
665 getting into states from which we can't recover. */
666
667 int
668 monitor_expect_prompt (char *buf, int buflen)
669 {
670 monitor_debug ("MON Expecting prompt\n");
671 return monitor_expect (current_monitor->prompt, buf, buflen);
672 }
673
674 /* Get N 32-bit words from remote, each preceded by a space, and put
675 them in registers starting at REGNO. */
676
677 #if 0
678 static unsigned long
679 get_hex_word (void)
680 {
681 unsigned long val;
682 int i;
683 int ch;
684
685 do
686 ch = readchar (timeout);
687 while (isspace (ch));
688
689 val = from_hex (ch);
690
691 for (i = 7; i >= 1; i--)
692 {
693 ch = readchar (timeout);
694 if (!isxdigit (ch))
695 break;
696 val = (val << 4) | from_hex (ch);
697 }
698
699 return val;
700 }
701 #endif
702
703 static void
704 compile_pattern (char *pattern, struct re_pattern_buffer *compiled_pattern,
705 char *fastmap)
706 {
707 int tmp;
708 const char *val;
709
710 compiled_pattern->fastmap = fastmap;
711
712 tmp = re_set_syntax (RE_SYNTAX_EMACS);
713 val = re_compile_pattern (pattern,
714 strlen (pattern),
715 compiled_pattern);
716 re_set_syntax (tmp);
717
718 if (val)
719 error ("compile_pattern: Can't compile pattern string `%s': %s!", pattern, val);
720
721 if (fastmap)
722 re_compile_fastmap (compiled_pattern);
723 }
724
725 /* Open a connection to a remote debugger. NAME is the filename used
726 for communication. */
727
728 void
729 monitor_open (char *args, struct monitor_ops *mon_ops, int from_tty)
730 {
731 char *name;
732 char **p;
733
734 if (mon_ops->magic != MONITOR_OPS_MAGIC)
735 error ("Magic number of monitor_ops struct wrong.");
736
737 targ_ops = mon_ops->target;
738 name = targ_ops->to_shortname;
739
740 if (!args)
741 error ("Use `target %s DEVICE-NAME' to use a serial port, or \n\
742 `target %s HOST-NAME:PORT-NUMBER' to use a network connection.", name, name);
743
744 target_preopen (from_tty);
745
746 /* Setup pattern for register dump */
747
748 if (mon_ops->register_pattern)
749 compile_pattern (mon_ops->register_pattern, &register_pattern,
750 register_fastmap);
751
752 if (mon_ops->getmem.resp_delim)
753 compile_pattern (mon_ops->getmem.resp_delim, &getmem_resp_delim_pattern,
754 getmem_resp_delim_fastmap);
755
756 if (mon_ops->setmem.resp_delim)
757 compile_pattern (mon_ops->setmem.resp_delim, &setmem_resp_delim_pattern,
758 setmem_resp_delim_fastmap);
759
760 if (mon_ops->setreg.resp_delim)
761 compile_pattern (mon_ops->setreg.resp_delim, &setreg_resp_delim_pattern,
762 setreg_resp_delim_fastmap);
763
764 unpush_target (targ_ops);
765
766 if (dev_name)
767 xfree (dev_name);
768 dev_name = xstrdup (args);
769
770 monitor_desc = serial_open (dev_name);
771
772 if (!monitor_desc)
773 perror_with_name (dev_name);
774
775 if (baud_rate != -1)
776 {
777 if (serial_setbaudrate (monitor_desc, baud_rate))
778 {
779 serial_close (monitor_desc);
780 perror_with_name (dev_name);
781 }
782 }
783
784 serial_raw (monitor_desc);
785
786 serial_flush_input (monitor_desc);
787
788 /* some systems only work with 2 stop bits */
789
790 serial_setstopbits (monitor_desc, mon_ops->stopbits);
791
792 current_monitor = mon_ops;
793
794 /* See if we can wake up the monitor. First, try sending a stop sequence,
795 then send the init strings. Last, remove all breakpoints. */
796
797 if (current_monitor->stop)
798 {
799 monitor_stop ();
800 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
801 {
802 monitor_debug ("EXP Open echo\n");
803 monitor_expect_prompt (NULL, 0);
804 }
805 }
806
807 /* wake up the monitor and see if it's alive */
808 for (p = mon_ops->init; *p != NULL; p++)
809 {
810 /* Some of the characters we send may not be echoed,
811 but we hope to get a prompt at the end of it all. */
812
813 if ((current_monitor->flags & MO_NO_ECHO_ON_OPEN) == 0)
814 monitor_printf (*p);
815 else
816 monitor_printf_noecho (*p);
817 monitor_expect_prompt (NULL, 0);
818 }
819
820 serial_flush_input (monitor_desc);
821
822 /* Alloc breakpoints */
823 if (mon_ops->set_break != NULL)
824 {
825 if (mon_ops->num_breakpoints == 0)
826 mon_ops->num_breakpoints = 8;
827
828 breakaddr = (CORE_ADDR *) xmalloc (mon_ops->num_breakpoints * sizeof (CORE_ADDR));
829 memset (breakaddr, 0, mon_ops->num_breakpoints * sizeof (CORE_ADDR));
830 }
831
832 /* Remove all breakpoints */
833
834 if (mon_ops->clr_all_break)
835 {
836 monitor_printf (mon_ops->clr_all_break);
837 monitor_expect_prompt (NULL, 0);
838 }
839
840 if (from_tty)
841 printf_unfiltered ("Remote target %s connected to %s\n", name, dev_name);
842
843 push_target (targ_ops);
844
845 inferior_ptid = pid_to_ptid (42000); /* Make run command think we are busy... */
846
847 /* Give monitor_wait something to read */
848
849 monitor_printf (current_monitor->line_term);
850
851 start_remote ();
852 }
853
854 /* Close out all files and local state before this target loses
855 control. */
856
857 void
858 monitor_close (int quitting)
859 {
860 if (monitor_desc)
861 serial_close (monitor_desc);
862
863 /* Free breakpoint memory */
864 if (breakaddr != NULL)
865 {
866 xfree (breakaddr);
867 breakaddr = NULL;
868 }
869
870 monitor_desc = NULL;
871 }
872
873 /* Terminate the open connection to the remote debugger. Use this
874 when you want to detach and do something else with your gdb. */
875
876 static void
877 monitor_detach (char *args, int from_tty)
878 {
879 pop_target (); /* calls monitor_close to do the real work */
880 if (from_tty)
881 printf_unfiltered ("Ending remote %s debugging\n", target_shortname);
882 }
883
884 /* Convert VALSTR into the target byte-ordered value of REGNO and store it. */
885
886 char *
887 monitor_supply_register (int regno, char *valstr)
888 {
889 ULONGEST val;
890 unsigned char regbuf[MAX_REGISTER_SIZE];
891 char *p;
892
893 val = 0;
894 p = valstr;
895 while (p && *p != '\0')
896 {
897 if (*p == '\r' || *p == '\n')
898 {
899 while (*p != '\0')
900 p++;
901 break;
902 }
903 if (isspace (*p))
904 {
905 p++;
906 continue;
907 }
908 if (!isxdigit (*p) && *p != 'x')
909 {
910 break;
911 }
912
913 val <<= 4;
914 val += fromhex (*p++);
915 }
916 monitor_debug ("Supplying Register %d %s\n", regno, valstr);
917
918 if (val == 0 && valstr == p)
919 error ("monitor_supply_register (%d): bad value from monitor: %s.",
920 regno, valstr);
921
922 /* supply register stores in target byte order, so swap here */
923
924 store_unsigned_integer (regbuf, DEPRECATED_REGISTER_RAW_SIZE (regno), val);
925
926 supply_register (regno, regbuf);
927
928 return p;
929 }
930
931 /* Tell the remote machine to resume. */
932
933 static void
934 monitor_resume (ptid_t ptid, int step, enum target_signal sig)
935 {
936 /* Some monitors require a different command when starting a program */
937 monitor_debug ("MON resume\n");
938 if (current_monitor->flags & MO_RUN_FIRST_TIME && first_time == 1)
939 {
940 first_time = 0;
941 monitor_printf ("run\r");
942 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
943 dump_reg_flag = 1;
944 return;
945 }
946 if (step)
947 monitor_printf (current_monitor->step);
948 else
949 {
950 if (current_monitor->continue_hook)
951 (*current_monitor->continue_hook) ();
952 else
953 monitor_printf (current_monitor->cont);
954 if (current_monitor->flags & MO_NEED_REGDUMP_AFTER_CONT)
955 dump_reg_flag = 1;
956 }
957 }
958
959 /* Parse the output of a register dump command. A monitor specific
960 regexp is used to extract individual register descriptions of the
961 form REG=VAL. Each description is split up into a name and a value
962 string which are passed down to monitor specific code. */
963
964 static void
965 parse_register_dump (char *buf, int len)
966 {
967 monitor_debug ("MON Parsing register dump\n");
968 while (1)
969 {
970 int regnamelen, vallen;
971 char *regname, *val;
972 /* Element 0 points to start of register name, and element 1
973 points to the start of the register value. */
974 struct re_registers register_strings;
975
976 memset (&register_strings, 0, sizeof (struct re_registers));
977
978 if (re_search (&register_pattern, buf, len, 0, len,
979 &register_strings) == -1)
980 break;
981
982 regnamelen = register_strings.end[1] - register_strings.start[1];
983 regname = buf + register_strings.start[1];
984 vallen = register_strings.end[2] - register_strings.start[2];
985 val = buf + register_strings.start[2];
986
987 current_monitor->supply_register (regname, regnamelen, val, vallen);
988
989 buf += register_strings.end[0];
990 len -= register_strings.end[0];
991 }
992 }
993
994 /* Send ^C to target to halt it. Target will respond, and send us a
995 packet. */
996
997 static void
998 monitor_interrupt (int signo)
999 {
1000 /* If this doesn't work, try more severe steps. */
1001 signal (signo, monitor_interrupt_twice);
1002
1003 if (monitor_debug_p || remote_debug)
1004 fprintf_unfiltered (gdb_stdlog, "monitor_interrupt called\n");
1005
1006 target_stop ();
1007 }
1008
1009 /* The user typed ^C twice. */
1010
1011 static void
1012 monitor_interrupt_twice (int signo)
1013 {
1014 signal (signo, ofunc);
1015
1016 monitor_interrupt_query ();
1017
1018 signal (signo, monitor_interrupt);
1019 }
1020
1021 /* Ask the user what to do when an interrupt is received. */
1022
1023 static void
1024 monitor_interrupt_query (void)
1025 {
1026 target_terminal_ours ();
1027
1028 if (query ("Interrupted while waiting for the program.\n\
1029 Give up (and stop debugging it)? "))
1030 {
1031 target_mourn_inferior ();
1032 throw_exception (RETURN_QUIT);
1033 }
1034
1035 target_terminal_inferior ();
1036 }
1037
1038 static void
1039 monitor_wait_cleanup (void *old_timeout)
1040 {
1041 timeout = *(int *) old_timeout;
1042 signal (SIGINT, ofunc);
1043 in_monitor_wait = 0;
1044 }
1045
1046
1047
1048 static void
1049 monitor_wait_filter (char *buf,
1050 int bufmax,
1051 int *ext_resp_len,
1052 struct target_waitstatus *status)
1053 {
1054 int resp_len;
1055 do
1056 {
1057 resp_len = monitor_expect_prompt (buf, bufmax);
1058 *ext_resp_len = resp_len;
1059
1060 if (resp_len <= 0)
1061 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1062 }
1063 while (resp_len < 0);
1064
1065 /* Print any output characters that were preceded by ^O. */
1066 /* FIXME - This would be great as a user settabgle flag */
1067 if (monitor_debug_p || remote_debug
1068 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1069 {
1070 int i;
1071
1072 for (i = 0; i < resp_len - 1; i++)
1073 if (buf[i] == 0x0f)
1074 putchar_unfiltered (buf[++i]);
1075 }
1076 }
1077
1078
1079
1080 /* Wait until the remote machine stops, then return, storing status in
1081 status just as `wait' would. */
1082
1083 static ptid_t
1084 monitor_wait (ptid_t ptid, struct target_waitstatus *status)
1085 {
1086 int old_timeout = timeout;
1087 char buf[TARGET_BUF_SIZE];
1088 int resp_len;
1089 struct cleanup *old_chain;
1090
1091 status->kind = TARGET_WAITKIND_EXITED;
1092 status->value.integer = 0;
1093
1094 old_chain = make_cleanup (monitor_wait_cleanup, &old_timeout);
1095 monitor_debug ("MON wait\n");
1096
1097 #if 0
1098 /* This is somthing other than a maintenance command */
1099 in_monitor_wait = 1;
1100 timeout = watchdog > 0 ? watchdog : -1;
1101 #else
1102 timeout = -1; /* Don't time out -- user program is running. */
1103 #endif
1104
1105 ofunc = (void (*)()) signal (SIGINT, monitor_interrupt);
1106
1107 if (current_monitor->wait_filter)
1108 (*current_monitor->wait_filter) (buf, sizeof (buf), &resp_len, status);
1109 else
1110 monitor_wait_filter (buf, sizeof (buf), &resp_len, status);
1111
1112 #if 0 /* Transferred to monitor wait filter */
1113 do
1114 {
1115 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1116
1117 if (resp_len <= 0)
1118 fprintf_unfiltered (gdb_stderr, "monitor_wait: excessive response from monitor: %s.", buf);
1119 }
1120 while (resp_len < 0);
1121
1122 /* Print any output characters that were preceded by ^O. */
1123 /* FIXME - This would be great as a user settabgle flag */
1124 if (monitor_debug_p || remote_debug
1125 || current_monitor->flags & MO_PRINT_PROGRAM_OUTPUT)
1126 {
1127 int i;
1128
1129 for (i = 0; i < resp_len - 1; i++)
1130 if (buf[i] == 0x0f)
1131 putchar_unfiltered (buf[++i]);
1132 }
1133 #endif
1134
1135 signal (SIGINT, ofunc);
1136
1137 timeout = old_timeout;
1138 #if 0
1139 if (dump_reg_flag && current_monitor->dump_registers)
1140 {
1141 dump_reg_flag = 0;
1142 monitor_printf (current_monitor->dump_registers);
1143 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1144 }
1145
1146 if (current_monitor->register_pattern)
1147 parse_register_dump (buf, resp_len);
1148 #else
1149 monitor_debug ("Wait fetching registers after stop\n");
1150 monitor_dump_regs ();
1151 #endif
1152
1153 status->kind = TARGET_WAITKIND_STOPPED;
1154 status->value.sig = TARGET_SIGNAL_TRAP;
1155
1156 discard_cleanups (old_chain);
1157
1158 in_monitor_wait = 0;
1159
1160 return inferior_ptid;
1161 }
1162
1163 /* Fetch register REGNO, or all registers if REGNO is -1. Returns
1164 errno value. */
1165
1166 static void
1167 monitor_fetch_register (int regno)
1168 {
1169 const char *name;
1170 char *zerobuf;
1171 char *regbuf;
1172 int i;
1173
1174 regbuf = alloca (MAX_REGISTER_SIZE * 2 + 1);
1175 zerobuf = alloca (MAX_REGISTER_SIZE);
1176 memset (zerobuf, 0, MAX_REGISTER_SIZE);
1177
1178 if (current_monitor->regname != NULL)
1179 name = current_monitor->regname (regno);
1180 else
1181 name = current_monitor->regnames[regno];
1182 monitor_debug ("MON fetchreg %d '%s'\n", regno, name ? name : "(null name)");
1183
1184 if (!name || (*name == '\0'))
1185 {
1186 monitor_debug ("No register known for %d\n", regno);
1187 supply_register (regno, zerobuf);
1188 return;
1189 }
1190
1191 /* send the register examine command */
1192
1193 monitor_printf (current_monitor->getreg.cmd, name);
1194
1195 /* If RESP_DELIM is specified, we search for that as a leading
1196 delimiter for the register value. Otherwise, we just start
1197 searching from the start of the buf. */
1198
1199 if (current_monitor->getreg.resp_delim)
1200 {
1201 monitor_debug ("EXP getreg.resp_delim\n");
1202 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1203 /* Handle case of first 32 registers listed in pairs. */
1204 if (current_monitor->flags & MO_32_REGS_PAIRED
1205 && (regno & 1) != 0 && regno < 32)
1206 {
1207 monitor_debug ("EXP getreg.resp_delim\n");
1208 monitor_expect (current_monitor->getreg.resp_delim, NULL, 0);
1209 }
1210 }
1211
1212 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set */
1213 if (current_monitor->flags & MO_HEX_PREFIX)
1214 {
1215 int c;
1216 c = readchar (timeout);
1217 while (c == ' ')
1218 c = readchar (timeout);
1219 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1220 ;
1221 else
1222 error ("Bad value returned from monitor while fetching register %x.",
1223 regno);
1224 }
1225
1226 /* Read upto the maximum number of hex digits for this register, skipping
1227 spaces, but stop reading if something else is seen. Some monitors
1228 like to drop leading zeros. */
1229
1230 for (i = 0; i < DEPRECATED_REGISTER_RAW_SIZE (regno) * 2; i++)
1231 {
1232 int c;
1233 c = readchar (timeout);
1234 while (c == ' ')
1235 c = readchar (timeout);
1236
1237 if (!isxdigit (c))
1238 break;
1239
1240 regbuf[i] = c;
1241 }
1242
1243 regbuf[i] = '\000'; /* terminate the number */
1244 monitor_debug ("REGVAL '%s'\n", regbuf);
1245
1246 /* If TERM is present, we wait for that to show up. Also, (if TERM
1247 is present), we will send TERM_CMD if that is present. In any
1248 case, we collect all of the output into buf, and then wait for
1249 the normal prompt. */
1250
1251 if (current_monitor->getreg.term)
1252 {
1253 monitor_debug ("EXP getreg.term\n");
1254 monitor_expect (current_monitor->getreg.term, NULL, 0); /* get response */
1255 }
1256
1257 if (current_monitor->getreg.term_cmd)
1258 {
1259 monitor_debug ("EMIT getreg.term.cmd\n");
1260 monitor_printf (current_monitor->getreg.term_cmd);
1261 }
1262 if (!current_monitor->getreg.term || /* Already expected or */
1263 current_monitor->getreg.term_cmd) /* ack expected */
1264 monitor_expect_prompt (NULL, 0); /* get response */
1265
1266 monitor_supply_register (regno, regbuf);
1267 }
1268
1269 /* Sometimes, it takes several commands to dump the registers */
1270 /* This is a primitive for use by variations of monitor interfaces in
1271 case they need to compose the operation.
1272 */
1273 int
1274 monitor_dump_reg_block (char *block_cmd)
1275 {
1276 char buf[TARGET_BUF_SIZE];
1277 int resp_len;
1278 monitor_printf (block_cmd);
1279 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1280 parse_register_dump (buf, resp_len);
1281 return 1;
1282 }
1283
1284
1285 /* Read the remote registers into the block regs. */
1286 /* Call the specific function if it has been provided */
1287
1288 static void
1289 monitor_dump_regs (void)
1290 {
1291 char buf[TARGET_BUF_SIZE];
1292 int resp_len;
1293 if (current_monitor->dumpregs)
1294 (*(current_monitor->dumpregs)) (); /* call supplied function */
1295 else if (current_monitor->dump_registers) /* default version */
1296 {
1297 monitor_printf (current_monitor->dump_registers);
1298 resp_len = monitor_expect_prompt (buf, sizeof (buf));
1299 parse_register_dump (buf, resp_len);
1300 }
1301 else
1302 internal_error (__FILE__, __LINE__, "failed internal consistency check"); /* Need some way to read registers */
1303 }
1304
1305 static void
1306 monitor_fetch_registers (int regno)
1307 {
1308 monitor_debug ("MON fetchregs\n");
1309 if (current_monitor->getreg.cmd)
1310 {
1311 if (regno >= 0)
1312 {
1313 monitor_fetch_register (regno);
1314 return;
1315 }
1316
1317 for (regno = 0; regno < NUM_REGS; regno++)
1318 monitor_fetch_register (regno);
1319 }
1320 else
1321 {
1322 monitor_dump_regs ();
1323 }
1324 }
1325
1326 /* Store register REGNO, or all if REGNO == 0. Return errno value. */
1327
1328 static void
1329 monitor_store_register (int regno)
1330 {
1331 const char *name;
1332 ULONGEST val;
1333
1334 if (current_monitor->regname != NULL)
1335 name = current_monitor->regname (regno);
1336 else
1337 name = current_monitor->regnames[regno];
1338
1339 if (!name || (*name == '\0'))
1340 {
1341 monitor_debug ("MON Cannot store unknown register\n");
1342 return;
1343 }
1344
1345 val = read_register (regno);
1346 monitor_debug ("MON storeg %d %s\n", regno,
1347 phex (val, DEPRECATED_REGISTER_RAW_SIZE (regno)));
1348
1349 /* send the register deposit command */
1350
1351 if (current_monitor->flags & MO_REGISTER_VALUE_FIRST)
1352 monitor_printf (current_monitor->setreg.cmd, val, name);
1353 else if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1354 monitor_printf (current_monitor->setreg.cmd, name);
1355 else
1356 monitor_printf (current_monitor->setreg.cmd, name, val);
1357
1358 if (current_monitor->setreg.resp_delim)
1359 {
1360 monitor_debug ("EXP setreg.resp_delim\n");
1361 monitor_expect_regexp (&setreg_resp_delim_pattern, NULL, 0);
1362 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1363 monitor_printf ("%s\r", paddr_nz (val));
1364 }
1365 if (current_monitor->setreg.term)
1366 {
1367 monitor_debug ("EXP setreg.term\n");
1368 monitor_expect (current_monitor->setreg.term, NULL, 0);
1369 if (current_monitor->flags & MO_SETREG_INTERACTIVE)
1370 monitor_printf ("%s\r", paddr_nz (val));
1371 monitor_expect_prompt (NULL, 0);
1372 }
1373 else
1374 monitor_expect_prompt (NULL, 0);
1375 if (current_monitor->setreg.term_cmd) /* Mode exit required */
1376 {
1377 monitor_debug ("EXP setreg_termcmd\n");
1378 monitor_printf ("%s", current_monitor->setreg.term_cmd);
1379 monitor_expect_prompt (NULL, 0);
1380 }
1381 } /* monitor_store_register */
1382
1383 /* Store the remote registers. */
1384
1385 static void
1386 monitor_store_registers (int regno)
1387 {
1388 if (regno >= 0)
1389 {
1390 monitor_store_register (regno);
1391 return;
1392 }
1393
1394 for (regno = 0; regno < NUM_REGS; regno++)
1395 monitor_store_register (regno);
1396 }
1397
1398 /* Get ready to modify the registers array. On machines which store
1399 individual registers, this doesn't need to do anything. On machines
1400 which store all the registers in one fell swoop, this makes sure
1401 that registers contains all the registers from the program being
1402 debugged. */
1403
1404 static void
1405 monitor_prepare_to_store (void)
1406 {
1407 /* Do nothing, since we can store individual regs */
1408 }
1409
1410 static void
1411 monitor_files_info (struct target_ops *ops)
1412 {
1413 printf_unfiltered ("\tAttached to %s at %d baud.\n", dev_name, baud_rate);
1414 }
1415
1416 static int
1417 monitor_write_memory (CORE_ADDR memaddr, char *myaddr, int len)
1418 {
1419 unsigned int val, hostval;
1420 char *cmd;
1421 int i;
1422
1423 monitor_debug ("MON write %d %s\n", len, paddr (memaddr));
1424
1425 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1426 memaddr = ADDR_BITS_REMOVE (memaddr);
1427
1428 /* Use memory fill command for leading 0 bytes. */
1429
1430 if (current_monitor->fill)
1431 {
1432 for (i = 0; i < len; i++)
1433 if (myaddr[i] != 0)
1434 break;
1435
1436 if (i > 4) /* More than 4 zeros is worth doing */
1437 {
1438 monitor_debug ("MON FILL %d\n", i);
1439 if (current_monitor->flags & MO_FILL_USES_ADDR)
1440 monitor_printf (current_monitor->fill, memaddr, (memaddr + i) - 1, 0);
1441 else
1442 monitor_printf (current_monitor->fill, memaddr, i, 0);
1443
1444 monitor_expect_prompt (NULL, 0);
1445
1446 return i;
1447 }
1448 }
1449
1450 #if 0
1451 /* Can't actually use long longs if VAL is an int (nice idea, though). */
1452 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->setmem.cmdll)
1453 {
1454 len = 8;
1455 cmd = current_monitor->setmem.cmdll;
1456 }
1457 else
1458 #endif
1459 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->setmem.cmdl)
1460 {
1461 len = 4;
1462 cmd = current_monitor->setmem.cmdl;
1463 }
1464 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->setmem.cmdw)
1465 {
1466 len = 2;
1467 cmd = current_monitor->setmem.cmdw;
1468 }
1469 else
1470 {
1471 len = 1;
1472 cmd = current_monitor->setmem.cmdb;
1473 }
1474
1475 val = extract_unsigned_integer (myaddr, len);
1476
1477 if (len == 4)
1478 {
1479 hostval = *(unsigned int *) myaddr;
1480 monitor_debug ("Hostval(%08x) val(%08x)\n", hostval, val);
1481 }
1482
1483
1484 if (current_monitor->flags & MO_NO_ECHO_ON_SETMEM)
1485 monitor_printf_noecho (cmd, memaddr, val);
1486 else if (current_monitor->flags & MO_SETMEM_INTERACTIVE)
1487 {
1488
1489 monitor_printf_noecho (cmd, memaddr);
1490
1491 if (current_monitor->setmem.resp_delim)
1492 {
1493 monitor_debug ("EXP setmem.resp_delim");
1494 monitor_expect_regexp (&setmem_resp_delim_pattern, NULL, 0);
1495 monitor_printf ("%x\r", val);
1496 }
1497 if (current_monitor->setmem.term)
1498 {
1499 monitor_debug ("EXP setmem.term");
1500 monitor_expect (current_monitor->setmem.term, NULL, 0);
1501 monitor_printf ("%x\r", val);
1502 }
1503 if (current_monitor->setmem.term_cmd)
1504 { /* Emit this to get out of the memory editing state */
1505 monitor_printf ("%s", current_monitor->setmem.term_cmd);
1506 /* Drop through to expecting a prompt */
1507 }
1508 }
1509 else
1510 monitor_printf (cmd, memaddr, val);
1511
1512 monitor_expect_prompt (NULL, 0);
1513
1514 return len;
1515 }
1516
1517
1518 static int
1519 monitor_write_memory_bytes (CORE_ADDR memaddr, char *myaddr, int len)
1520 {
1521 unsigned char val;
1522 int written = 0;
1523 if (len == 0)
1524 return 0;
1525 /* Enter the sub mode */
1526 monitor_printf (current_monitor->setmem.cmdb, memaddr);
1527 monitor_expect_prompt (NULL, 0);
1528 while (len)
1529 {
1530 val = *myaddr;
1531 monitor_printf ("%x\r", val);
1532 myaddr++;
1533 memaddr++;
1534 written++;
1535 /* If we wanted to, here we could validate the address */
1536 monitor_expect_prompt (NULL, 0);
1537 len--;
1538 }
1539 /* Now exit the sub mode */
1540 monitor_printf (current_monitor->getreg.term_cmd);
1541 monitor_expect_prompt (NULL, 0);
1542 return written;
1543 }
1544
1545
1546 static void
1547 longlongendswap (unsigned char *a)
1548 {
1549 int i, j;
1550 unsigned char x;
1551 i = 0;
1552 j = 7;
1553 while (i < 4)
1554 {
1555 x = *(a + i);
1556 *(a + i) = *(a + j);
1557 *(a + j) = x;
1558 i++, j--;
1559 }
1560 }
1561 /* Format 32 chars of long long value, advance the pointer */
1562 static char *hexlate = "0123456789abcdef";
1563 static char *
1564 longlong_hexchars (unsigned long long value,
1565 char *outbuff)
1566 {
1567 if (value == 0)
1568 {
1569 *outbuff++ = '0';
1570 return outbuff;
1571 }
1572 else
1573 {
1574 static unsigned char disbuf[8]; /* disassembly buffer */
1575 unsigned char *scan, *limit; /* loop controls */
1576 unsigned char c, nib;
1577 int leadzero = 1;
1578 scan = disbuf;
1579 limit = scan + 8;
1580 {
1581 unsigned long long *dp;
1582 dp = (unsigned long long *) scan;
1583 *dp = value;
1584 }
1585 longlongendswap (disbuf); /* FIXME: ONly on big endian hosts */
1586 while (scan < limit)
1587 {
1588 c = *scan++; /* a byte of our long long value */
1589 if (leadzero)
1590 {
1591 if (c == 0)
1592 continue;
1593 else
1594 leadzero = 0; /* henceforth we print even zeroes */
1595 }
1596 nib = c >> 4; /* high nibble bits */
1597 *outbuff++ = hexlate[nib];
1598 nib = c & 0x0f; /* low nibble bits */
1599 *outbuff++ = hexlate[nib];
1600 }
1601 return outbuff;
1602 }
1603 } /* longlong_hexchars */
1604
1605
1606
1607 /* I am only going to call this when writing virtual byte streams.
1608 Which possably entails endian conversions
1609 */
1610 static int
1611 monitor_write_memory_longlongs (CORE_ADDR memaddr, char *myaddr, int len)
1612 {
1613 static char hexstage[20]; /* At least 16 digits required, plus null */
1614 char *endstring;
1615 long long *llptr;
1616 long long value;
1617 int written = 0;
1618 llptr = (unsigned long long *) myaddr;
1619 if (len == 0)
1620 return 0;
1621 monitor_printf (current_monitor->setmem.cmdll, memaddr);
1622 monitor_expect_prompt (NULL, 0);
1623 while (len >= 8)
1624 {
1625 value = *llptr;
1626 endstring = longlong_hexchars (*llptr, hexstage);
1627 *endstring = '\0'; /* NUll terminate for printf */
1628 monitor_printf ("%s\r", hexstage);
1629 llptr++;
1630 memaddr += 8;
1631 written += 8;
1632 /* If we wanted to, here we could validate the address */
1633 monitor_expect_prompt (NULL, 0);
1634 len -= 8;
1635 }
1636 /* Now exit the sub mode */
1637 monitor_printf (current_monitor->getreg.term_cmd);
1638 monitor_expect_prompt (NULL, 0);
1639 return written;
1640 } /* */
1641
1642
1643
1644 /* ----- MONITOR_WRITE_MEMORY_BLOCK ---------------------------- */
1645 /* This is for the large blocks of memory which may occur in downloading.
1646 And for monitors which use interactive entry,
1647 And for monitors which do not have other downloading methods.
1648 Without this, we will end up calling monitor_write_memory many times
1649 and do the entry and exit of the sub mode many times
1650 This currently assumes...
1651 MO_SETMEM_INTERACTIVE
1652 ! MO_NO_ECHO_ON_SETMEM
1653 To use this, the you have to patch the monitor_cmds block with
1654 this function. Otherwise, its not tuned up for use by all
1655 monitor variations.
1656 */
1657
1658 static int
1659 monitor_write_memory_block (CORE_ADDR memaddr, char *myaddr, int len)
1660 {
1661 int written;
1662 written = 0;
1663 /* FIXME: This would be a good place to put the zero test */
1664 #if 1
1665 if ((len > 8) && (((len & 0x07)) == 0) && current_monitor->setmem.cmdll)
1666 {
1667 return monitor_write_memory_longlongs (memaddr, myaddr, len);
1668 }
1669 #endif
1670 written = monitor_write_memory_bytes (memaddr, myaddr, len);
1671 return written;
1672 }
1673
1674 /* This is an alternate form of monitor_read_memory which is used for monitors
1675 which can only read a single byte/word/etc. at a time. */
1676
1677 static int
1678 monitor_read_memory_single (CORE_ADDR memaddr, char *myaddr, int len)
1679 {
1680 unsigned int val;
1681 char membuf[sizeof (int) * 2 + 1];
1682 char *p;
1683 char *cmd;
1684
1685 monitor_debug ("MON read single\n");
1686 #if 0
1687 /* Can't actually use long longs (nice idea, though). In fact, the
1688 call to strtoul below will fail if it tries to convert a value
1689 that's too big to fit in a long. */
1690 if ((memaddr & 0x7) == 0 && len >= 8 && current_monitor->getmem.cmdll)
1691 {
1692 len = 8;
1693 cmd = current_monitor->getmem.cmdll;
1694 }
1695 else
1696 #endif
1697 if ((memaddr & 0x3) == 0 && len >= 4 && current_monitor->getmem.cmdl)
1698 {
1699 len = 4;
1700 cmd = current_monitor->getmem.cmdl;
1701 }
1702 else if ((memaddr & 0x1) == 0 && len >= 2 && current_monitor->getmem.cmdw)
1703 {
1704 len = 2;
1705 cmd = current_monitor->getmem.cmdw;
1706 }
1707 else
1708 {
1709 len = 1;
1710 cmd = current_monitor->getmem.cmdb;
1711 }
1712
1713 /* Send the examine command. */
1714
1715 monitor_printf (cmd, memaddr);
1716
1717 /* If RESP_DELIM is specified, we search for that as a leading
1718 delimiter for the memory value. Otherwise, we just start
1719 searching from the start of the buf. */
1720
1721 if (current_monitor->getmem.resp_delim)
1722 {
1723 monitor_debug ("EXP getmem.resp_delim\n");
1724 monitor_expect_regexp (&getmem_resp_delim_pattern, NULL, 0);
1725 }
1726
1727 /* Now, read the appropriate number of hex digits for this loc,
1728 skipping spaces. */
1729
1730 /* Skip leading spaces and "0x" if MO_HEX_PREFIX flag is set. */
1731 if (current_monitor->flags & MO_HEX_PREFIX)
1732 {
1733 int c;
1734
1735 c = readchar (timeout);
1736 while (c == ' ')
1737 c = readchar (timeout);
1738 if ((c == '0') && ((c = readchar (timeout)) == 'x'))
1739 ;
1740 else
1741 monitor_error ("monitor_read_memory_single",
1742 "bad response from monitor",
1743 memaddr, 0, NULL, 0);
1744 }
1745
1746 {
1747 int i;
1748 for (i = 0; i < len * 2; i++)
1749 {
1750 int c;
1751
1752 while (1)
1753 {
1754 c = readchar (timeout);
1755 if (isxdigit (c))
1756 break;
1757 if (c == ' ')
1758 continue;
1759
1760 monitor_error ("monitor_read_memory_single",
1761 "bad response from monitor",
1762 memaddr, i, membuf, 0);
1763 }
1764 membuf[i] = c;
1765 }
1766 membuf[i] = '\000'; /* terminate the number */
1767 }
1768
1769 /* If TERM is present, we wait for that to show up. Also, (if TERM is
1770 present), we will send TERM_CMD if that is present. In any case, we collect
1771 all of the output into buf, and then wait for the normal prompt. */
1772
1773 if (current_monitor->getmem.term)
1774 {
1775 monitor_expect (current_monitor->getmem.term, NULL, 0); /* get response */
1776
1777 if (current_monitor->getmem.term_cmd)
1778 {
1779 monitor_printf (current_monitor->getmem.term_cmd);
1780 monitor_expect_prompt (NULL, 0);
1781 }
1782 }
1783 else
1784 monitor_expect_prompt (NULL, 0); /* get response */
1785
1786 p = membuf;
1787 val = strtoul (membuf, &p, 16);
1788
1789 if (val == 0 && membuf == p)
1790 monitor_error ("monitor_read_memory_single",
1791 "bad value from monitor",
1792 memaddr, 0, membuf, 0);
1793
1794 /* supply register stores in target byte order, so swap here */
1795
1796 store_unsigned_integer (myaddr, len, val);
1797
1798 return len;
1799 }
1800
1801 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
1802 memory at MEMADDR. Returns length moved. Currently, we do no more
1803 than 16 bytes at a time. */
1804
1805 static int
1806 monitor_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1807 {
1808 unsigned int val;
1809 char buf[512];
1810 char *p, *p1;
1811 int resp_len;
1812 int i;
1813 CORE_ADDR dumpaddr;
1814
1815 if (len <= 0)
1816 {
1817 monitor_debug ("Zero length call to monitor_read_memory\n");
1818 return 0;
1819 }
1820
1821 monitor_debug ("MON read block ta(%s) ha(%lx) %d\n",
1822 paddr_nz (memaddr), (long) myaddr, len);
1823
1824 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
1825 memaddr = ADDR_BITS_REMOVE (memaddr);
1826
1827 if (current_monitor->flags & MO_GETMEM_READ_SINGLE)
1828 return monitor_read_memory_single (memaddr, myaddr, len);
1829
1830 len = min (len, 16);
1831
1832 /* Some dumpers align the first data with the preceeding 16
1833 byte boundary. Some print blanks and start at the
1834 requested boundary. EXACT_DUMPADDR
1835 */
1836
1837 dumpaddr = (current_monitor->flags & MO_EXACT_DUMPADDR)
1838 ? memaddr : memaddr & ~0x0f;
1839
1840 /* See if xfer would cross a 16 byte boundary. If so, clip it. */
1841 if (((memaddr ^ (memaddr + len - 1)) & ~0xf) != 0)
1842 len = ((memaddr + len) & ~0xf) - memaddr;
1843
1844 /* send the memory examine command */
1845
1846 if (current_monitor->flags & MO_GETMEM_NEEDS_RANGE)
1847 monitor_printf (current_monitor->getmem.cmdb, memaddr, memaddr + len);
1848 else if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1849 monitor_printf (current_monitor->getmem.cmdb, dumpaddr);
1850 else
1851 monitor_printf (current_monitor->getmem.cmdb, memaddr, len);
1852
1853 /* If TERM is present, we wait for that to show up. Also, (if TERM
1854 is present), we will send TERM_CMD if that is present. In any
1855 case, we collect all of the output into buf, and then wait for
1856 the normal prompt. */
1857
1858 if (current_monitor->getmem.term)
1859 {
1860 resp_len = monitor_expect (current_monitor->getmem.term, buf, sizeof buf); /* get response */
1861
1862 if (resp_len <= 0)
1863 monitor_error ("monitor_read_memory",
1864 "excessive response from monitor",
1865 memaddr, resp_len, buf, 0);
1866
1867 if (current_monitor->getmem.term_cmd)
1868 {
1869 serial_write (monitor_desc, current_monitor->getmem.term_cmd,
1870 strlen (current_monitor->getmem.term_cmd));
1871 monitor_expect_prompt (NULL, 0);
1872 }
1873 }
1874 else
1875 resp_len = monitor_expect_prompt (buf, sizeof buf); /* get response */
1876
1877 p = buf;
1878
1879 /* If RESP_DELIM is specified, we search for that as a leading
1880 delimiter for the values. Otherwise, we just start searching
1881 from the start of the buf. */
1882
1883 if (current_monitor->getmem.resp_delim)
1884 {
1885 int retval, tmp;
1886 struct re_registers resp_strings;
1887 monitor_debug ("MON getmem.resp_delim %s\n", current_monitor->getmem.resp_delim);
1888
1889 memset (&resp_strings, 0, sizeof (struct re_registers));
1890 tmp = strlen (p);
1891 retval = re_search (&getmem_resp_delim_pattern, p, tmp, 0, tmp,
1892 &resp_strings);
1893
1894 if (retval < 0)
1895 monitor_error ("monitor_read_memory",
1896 "bad response from monitor",
1897 memaddr, resp_len, buf, 0);
1898
1899 p += resp_strings.end[0];
1900 #if 0
1901 p = strstr (p, current_monitor->getmem.resp_delim);
1902 if (!p)
1903 monitor_error ("monitor_read_memory",
1904 "bad response from monitor",
1905 memaddr, resp_len, buf, 0);
1906 p += strlen (current_monitor->getmem.resp_delim);
1907 #endif
1908 }
1909 monitor_debug ("MON scanning %d ,%lx '%s'\n", len, (long) p, p);
1910 if (current_monitor->flags & MO_GETMEM_16_BOUNDARY)
1911 {
1912 char c;
1913 int fetched = 0;
1914 i = len;
1915 c = *p;
1916
1917
1918 while (!(c == '\000' || c == '\n' || c == '\r') && i > 0)
1919 {
1920 if (isxdigit (c))
1921 {
1922 if ((dumpaddr >= memaddr) && (i > 0))
1923 {
1924 val = fromhex (c) * 16 + fromhex (*(p + 1));
1925 *myaddr++ = val;
1926 if (monitor_debug_p || remote_debug)
1927 fprintf_unfiltered (gdb_stdlog, "[%02x]", val);
1928 --i;
1929 fetched++;
1930 }
1931 ++dumpaddr;
1932 ++p;
1933 }
1934 ++p; /* skip a blank or other non hex char */
1935 c = *p;
1936 }
1937 if (fetched == 0)
1938 error ("Failed to read via monitor");
1939 if (monitor_debug_p || remote_debug)
1940 fprintf_unfiltered (gdb_stdlog, "\n");
1941 return fetched; /* Return the number of bytes actually read */
1942 }
1943 monitor_debug ("MON scanning bytes\n");
1944
1945 for (i = len; i > 0; i--)
1946 {
1947 /* Skip non-hex chars, but bomb on end of string and newlines */
1948
1949 while (1)
1950 {
1951 if (isxdigit (*p))
1952 break;
1953
1954 if (*p == '\000' || *p == '\n' || *p == '\r')
1955 monitor_error ("monitor_read_memory",
1956 "badly terminated response from monitor",
1957 memaddr, resp_len, buf, 0);
1958 p++;
1959 }
1960
1961 val = strtoul (p, &p1, 16);
1962
1963 if (val == 0 && p == p1)
1964 monitor_error ("monitor_read_memory",
1965 "bad value from monitor",
1966 memaddr, resp_len, buf, 0);
1967
1968 *myaddr++ = val;
1969
1970 if (i == 1)
1971 break;
1972
1973 p = p1;
1974 }
1975
1976 return len;
1977 }
1978
1979 /* Transfer LEN bytes between target address MEMADDR and GDB address
1980 MYADDR. Returns 0 for success, errno code for failure. TARGET is
1981 unused. */
1982
1983 static int
1984 monitor_xfer_memory (CORE_ADDR memaddr, char *myaddr, int len, int write,
1985 struct mem_attrib *attrib, struct target_ops *target)
1986 {
1987 int res;
1988
1989 if (write)
1990 {
1991 if (current_monitor->flags & MO_HAS_BLOCKWRITES)
1992 res = monitor_write_memory_block(memaddr, myaddr, len);
1993 else
1994 res = monitor_write_memory(memaddr, myaddr, len);
1995 }
1996 else
1997 {
1998 res = monitor_read_memory(memaddr, myaddr, len);
1999 }
2000
2001 return res;
2002 }
2003
2004 static void
2005 monitor_kill (void)
2006 {
2007 return; /* ignore attempts to kill target system */
2008 }
2009
2010 /* All we actually do is set the PC to the start address of exec_bfd, and start
2011 the program at that point. */
2012
2013 static void
2014 monitor_create_inferior (char *exec_file, char *args, char **env)
2015 {
2016 if (args && (*args != '\000'))
2017 error ("Args are not supported by the monitor.");
2018
2019 first_time = 1;
2020 clear_proceed_status ();
2021 proceed (bfd_get_start_address (exec_bfd), TARGET_SIGNAL_0, 0);
2022 }
2023
2024 /* Clean up when a program exits.
2025 The program actually lives on in the remote processor's RAM, and may be
2026 run again without a download. Don't leave it full of breakpoint
2027 instructions. */
2028
2029 static void
2030 monitor_mourn_inferior (void)
2031 {
2032 unpush_target (targ_ops);
2033 generic_mourn_inferior (); /* Do all the proper things now */
2034 }
2035
2036 /* Tell the monitor to add a breakpoint. */
2037
2038 static int
2039 monitor_insert_breakpoint (CORE_ADDR addr, char *shadow)
2040 {
2041 int i;
2042 const unsigned char *bp;
2043 int bplen;
2044
2045 monitor_debug ("MON inst bkpt %s\n", paddr (addr));
2046 if (current_monitor->set_break == NULL)
2047 error ("No set_break defined for this monitor");
2048
2049 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2050 addr = ADDR_BITS_REMOVE (addr);
2051
2052 /* Determine appropriate breakpoint size for this address. */
2053 bp = gdbarch_breakpoint_from_pc (current_gdbarch, &addr, &bplen);
2054
2055 for (i = 0; i < current_monitor->num_breakpoints; i++)
2056 {
2057 if (breakaddr[i] == 0)
2058 {
2059 breakaddr[i] = addr;
2060 monitor_read_memory (addr, shadow, bplen);
2061 monitor_printf (current_monitor->set_break, addr);
2062 monitor_expect_prompt (NULL, 0);
2063 return 0;
2064 }
2065 }
2066
2067 error ("Too many breakpoints (> %d) for monitor.", current_monitor->num_breakpoints);
2068 }
2069
2070 /* Tell the monitor to remove a breakpoint. */
2071
2072 static int
2073 monitor_remove_breakpoint (CORE_ADDR addr, char *shadow)
2074 {
2075 int i;
2076
2077 monitor_debug ("MON rmbkpt %s\n", paddr (addr));
2078 if (current_monitor->clr_break == NULL)
2079 error ("No clr_break defined for this monitor");
2080
2081 if (current_monitor->flags & MO_ADDR_BITS_REMOVE)
2082 addr = ADDR_BITS_REMOVE (addr);
2083
2084 for (i = 0; i < current_monitor->num_breakpoints; i++)
2085 {
2086 if (breakaddr[i] == addr)
2087 {
2088 breakaddr[i] = 0;
2089 /* some monitors remove breakpoints based on the address */
2090 if (current_monitor->flags & MO_CLR_BREAK_USES_ADDR)
2091 monitor_printf (current_monitor->clr_break, addr);
2092 else if (current_monitor->flags & MO_CLR_BREAK_1_BASED)
2093 monitor_printf (current_monitor->clr_break, i + 1);
2094 else
2095 monitor_printf (current_monitor->clr_break, i);
2096 monitor_expect_prompt (NULL, 0);
2097 return 0;
2098 }
2099 }
2100 fprintf_unfiltered (gdb_stderr,
2101 "Can't find breakpoint associated with 0x%s\n",
2102 paddr_nz (addr));
2103 return 1;
2104 }
2105
2106 /* monitor_wait_srec_ack -- wait for the target to send an acknowledgement for
2107 an S-record. Return non-zero if the ACK is received properly. */
2108
2109 static int
2110 monitor_wait_srec_ack (void)
2111 {
2112 int ch;
2113
2114 if (current_monitor->flags & MO_SREC_ACK_PLUS)
2115 {
2116 return (readchar (timeout) == '+');
2117 }
2118 else if (current_monitor->flags & MO_SREC_ACK_ROTATE)
2119 {
2120 /* Eat two backspaces, a "rotating" char (|/-\), and a space. */
2121 if ((ch = readchar (1)) < 0)
2122 return 0;
2123 if ((ch = readchar (1)) < 0)
2124 return 0;
2125 if ((ch = readchar (1)) < 0)
2126 return 0;
2127 if ((ch = readchar (1)) < 0)
2128 return 0;
2129 }
2130 return 1;
2131 }
2132
2133 /* monitor_load -- download a file. */
2134
2135 static void
2136 monitor_load (char *file, int from_tty)
2137 {
2138 monitor_debug ("MON load\n");
2139
2140 if (current_monitor->load_routine)
2141 current_monitor->load_routine (monitor_desc, file, hashmark);
2142 else
2143 { /* The default is ascii S-records */
2144 int n;
2145 unsigned long load_offset;
2146 char buf[128];
2147
2148 /* enable user to specify address for downloading as 2nd arg to load */
2149 n = sscanf (file, "%s 0x%lx", buf, &load_offset);
2150 if (n > 1)
2151 file = buf;
2152 else
2153 load_offset = 0;
2154
2155 monitor_printf (current_monitor->load);
2156 if (current_monitor->loadresp)
2157 monitor_expect (current_monitor->loadresp, NULL, 0);
2158
2159 load_srec (monitor_desc, file, (bfd_vma) load_offset,
2160 32, SREC_ALL, hashmark,
2161 current_monitor->flags & MO_SREC_ACK ?
2162 monitor_wait_srec_ack : NULL);
2163
2164 monitor_expect_prompt (NULL, 0);
2165 }
2166
2167 /* Finally, make the PC point at the start address */
2168 if (exec_bfd)
2169 write_pc (bfd_get_start_address (exec_bfd));
2170
2171 /* There used to be code here which would clear inferior_ptid and
2172 call clear_symtab_users. None of that should be necessary:
2173 monitor targets should behave like remote protocol targets, and
2174 since generic_load does none of those things, this function
2175 shouldn't either.
2176
2177 Furthermore, clearing inferior_ptid is *incorrect*. After doing
2178 a load, we still have a valid connection to the monitor, with a
2179 live processor state to fiddle with. The user can type
2180 `continue' or `jump *start' and make the program run. If they do
2181 these things, however, GDB will be talking to a running program
2182 while inferior_ptid is null_ptid; this makes things like
2183 reinit_frame_cache very confused. */
2184 }
2185
2186 static void
2187 monitor_stop (void)
2188 {
2189 monitor_debug ("MON stop\n");
2190 if ((current_monitor->flags & MO_SEND_BREAK_ON_STOP) != 0)
2191 serial_send_break (monitor_desc);
2192 if (current_monitor->stop)
2193 monitor_printf_noecho (current_monitor->stop);
2194 }
2195
2196 /* Put a COMMAND string out to MONITOR. Output from MONITOR is placed
2197 in OUTPUT until the prompt is seen. FIXME: We read the characters
2198 ourseleves here cause of a nasty echo. */
2199
2200 static void
2201 monitor_rcmd (char *command,
2202 struct ui_file *outbuf)
2203 {
2204 char *p;
2205 int resp_len;
2206 char buf[1000];
2207
2208 if (monitor_desc == NULL)
2209 error ("monitor target not open.");
2210
2211 p = current_monitor->prompt;
2212
2213 /* Send the command. Note that if no args were supplied, then we're
2214 just sending the monitor a newline, which is sometimes useful. */
2215
2216 monitor_printf ("%s\r", (command ? command : ""));
2217
2218 resp_len = monitor_expect_prompt (buf, sizeof buf);
2219
2220 fputs_unfiltered (buf, outbuf); /* Output the response */
2221 }
2222
2223 /* Convert hex digit A to a number. */
2224
2225 #if 0
2226 static int
2227 from_hex (int a)
2228 {
2229 if (a >= '0' && a <= '9')
2230 return a - '0';
2231 if (a >= 'a' && a <= 'f')
2232 return a - 'a' + 10;
2233 if (a >= 'A' && a <= 'F')
2234 return a - 'A' + 10;
2235
2236 error ("Reply contains invalid hex digit 0x%x", a);
2237 }
2238 #endif
2239
2240 char *
2241 monitor_get_dev_name (void)
2242 {
2243 return dev_name;
2244 }
2245
2246 static struct target_ops monitor_ops;
2247
2248 static void
2249 init_base_monitor_ops (void)
2250 {
2251 monitor_ops.to_close = monitor_close;
2252 monitor_ops.to_detach = monitor_detach;
2253 monitor_ops.to_resume = monitor_resume;
2254 monitor_ops.to_wait = monitor_wait;
2255 monitor_ops.to_fetch_registers = monitor_fetch_registers;
2256 monitor_ops.to_store_registers = monitor_store_registers;
2257 monitor_ops.to_prepare_to_store = monitor_prepare_to_store;
2258 monitor_ops.to_xfer_memory = monitor_xfer_memory;
2259 monitor_ops.to_files_info = monitor_files_info;
2260 monitor_ops.to_insert_breakpoint = monitor_insert_breakpoint;
2261 monitor_ops.to_remove_breakpoint = monitor_remove_breakpoint;
2262 monitor_ops.to_kill = monitor_kill;
2263 monitor_ops.to_load = monitor_load;
2264 monitor_ops.to_create_inferior = monitor_create_inferior;
2265 monitor_ops.to_mourn_inferior = monitor_mourn_inferior;
2266 monitor_ops.to_stop = monitor_stop;
2267 monitor_ops.to_rcmd = monitor_rcmd;
2268 monitor_ops.to_stratum = process_stratum;
2269 monitor_ops.to_has_all_memory = 1;
2270 monitor_ops.to_has_memory = 1;
2271 monitor_ops.to_has_stack = 1;
2272 monitor_ops.to_has_registers = 1;
2273 monitor_ops.to_has_execution = 1;
2274 monitor_ops.to_magic = OPS_MAGIC;
2275 } /* init_base_monitor_ops */
2276
2277 /* Init the target_ops structure pointed at by OPS */
2278
2279 void
2280 init_monitor_ops (struct target_ops *ops)
2281 {
2282 if (monitor_ops.to_magic != OPS_MAGIC)
2283 init_base_monitor_ops ();
2284
2285 memcpy (ops, &monitor_ops, sizeof monitor_ops);
2286 }
2287
2288 /* Define additional commands that are usually only used by monitors. */
2289
2290 extern initialize_file_ftype _initialize_remote_monitors; /* -Wmissing-prototypes */
2291
2292 void
2293 _initialize_remote_monitors (void)
2294 {
2295 init_base_monitor_ops ();
2296 add_show_from_set (add_set_cmd ("hash", no_class, var_boolean,
2297 (char *) &hashmark,
2298 "Set display of activity while downloading a file.\n\
2299 When enabled, a hashmark \'#\' is displayed.",
2300 &setlist),
2301 &showlist);
2302
2303 add_show_from_set
2304 (add_set_cmd ("monitor", no_class, var_zinteger,
2305 (char *) &monitor_debug_p,
2306 "Set debugging of remote monitor communication.\n\
2307 When enabled, communication between GDB and the remote monitor\n\
2308 is displayed.", &setdebuglist),
2309 &showdebuglist);
2310 }