]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/record-full.c
38e021529c7bea19a8bd90c6919476650f153d61
[thirdparty/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "gdbsupport/event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41 #include "async-event.h"
42
43 #include <signal.h>
44
45 /* This module implements "target record-full", also known as "process
46 record and replay". This target sits on top of a "normal" target
47 (a target that "has execution"), and provides a record and replay
48 functionality, including reverse debugging.
49
50 Target record has two modes: recording, and replaying.
51
52 In record mode, we intercept the resume and wait methods.
53 Whenever gdb resumes the target, we run the target in single step
54 mode, and we build up an execution log in which, for each executed
55 instruction, we record all changes in memory and register state.
56 This is invisible to the user, to whom it just looks like an
57 ordinary debugging session (except for performance degradation).
58
59 In replay mode, instead of actually letting the inferior run as a
60 process, we simulate its execution by playing back the recorded
61 execution log. For each instruction in the log, we simulate the
62 instruction's side effects by duplicating the changes that it would
63 have made on memory and registers. */
64
65 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
66
67 #define RECORD_FULL_IS_REPLAY \
68 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
69
70 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
71
72 /* These are the core structs of the process record functionality.
73
74 A record_full_entry is a record of the value change of a register
75 ("record_full_reg") or a part of memory ("record_full_mem"). And each
76 instruction must have a struct record_full_entry ("record_full_end")
77 that indicates that this is the last struct record_full_entry of this
78 instruction.
79
80 Each struct record_full_entry is linked to "record_full_list" by "prev"
81 and "next" pointers. */
82
83 struct record_full_mem_entry
84 {
85 CORE_ADDR addr;
86 int len;
87 /* Set this flag if target memory for this entry
88 can no longer be accessed. */
89 int mem_entry_not_accessible;
90 union
91 {
92 gdb_byte *ptr;
93 gdb_byte buf[sizeof (gdb_byte *)];
94 } u;
95 };
96
97 struct record_full_reg_entry
98 {
99 unsigned short num;
100 unsigned short len;
101 union
102 {
103 gdb_byte *ptr;
104 gdb_byte buf[2 * sizeof (gdb_byte *)];
105 } u;
106 };
107
108 struct record_full_end_entry
109 {
110 enum gdb_signal sigval;
111 ULONGEST insn_num;
112 };
113
114 enum record_full_type
115 {
116 record_full_end = 0,
117 record_full_reg,
118 record_full_mem
119 };
120
121 /* This is the data structure that makes up the execution log.
122
123 The execution log consists of a single linked list of entries
124 of type "struct record_full_entry". It is doubly linked so that it
125 can be traversed in either direction.
126
127 The start of the list is anchored by a struct called
128 "record_full_first". The pointer "record_full_list" either points
129 to the last entry that was added to the list (in record mode), or to
130 the next entry in the list that will be executed (in replay mode).
131
132 Each list element (struct record_full_entry), in addition to next
133 and prev pointers, consists of a union of three entry types: mem,
134 reg, and end. A field called "type" determines which entry type is
135 represented by a given list element.
136
137 Each instruction that is added to the execution log is represented
138 by a variable number of list elements ('entries'). The instruction
139 will have one "reg" entry for each register that is changed by
140 executing the instruction (including the PC in every case). It
141 will also have one "mem" entry for each memory change. Finally,
142 each instruction will have an "end" entry that separates it from
143 the changes associated with the next instruction. */
144
145 struct record_full_entry
146 {
147 struct record_full_entry *prev;
148 struct record_full_entry *next;
149 enum record_full_type type;
150 union
151 {
152 /* reg */
153 struct record_full_reg_entry reg;
154 /* mem */
155 struct record_full_mem_entry mem;
156 /* end */
157 struct record_full_end_entry end;
158 } u;
159 };
160
161 /* If true, query if PREC cannot record memory
162 change of next instruction. */
163 bool record_full_memory_query = false;
164
165 struct record_full_core_buf_entry
166 {
167 struct record_full_core_buf_entry *prev;
168 struct target_section *p;
169 bfd_byte *buf;
170 };
171
172 /* Record buf with core target. */
173 static detached_regcache *record_full_core_regbuf = NULL;
174 static target_section_table record_full_core_sections;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void resume (ptid_t, int, enum gdb_signal) override;
271 void disconnect (const char *, int) override;
272 void detach (inferior *, int) override;
273 void mourn_inferior () override;
274 void kill () override;
275 void store_registers (struct regcache *, int) override;
276 enum target_xfer_status xfer_partial (enum target_object object,
277 const char *annex,
278 gdb_byte *readbuf,
279 const gdb_byte *writebuf,
280 ULONGEST offset, ULONGEST len,
281 ULONGEST *xfered_len) override;
282 int insert_breakpoint (struct gdbarch *,
283 struct bp_target_info *) override;
284 int remove_breakpoint (struct gdbarch *,
285 struct bp_target_info *,
286 enum remove_bp_reason) override;
287 };
288
289 /* The "record-core" target. */
290
291 static const target_info record_full_core_target_info = {
292 "record-core",
293 record_longname,
294 record_doc,
295 };
296
297 class record_full_core_target final : public record_full_base_target
298 {
299 public:
300 const target_info &info () const override
301 { return record_full_core_target_info; }
302
303 void resume (ptid_t, int, enum gdb_signal) override;
304 void disconnect (const char *, int) override;
305 void kill () override;
306 void fetch_registers (struct regcache *regcache, int regno) override;
307 void prepare_to_store (struct regcache *regcache) override;
308 void store_registers (struct regcache *, int) override;
309 enum target_xfer_status xfer_partial (enum target_object object,
310 const char *annex,
311 gdb_byte *readbuf,
312 const gdb_byte *writebuf,
313 ULONGEST offset, ULONGEST len,
314 ULONGEST *xfered_len) override;
315 int insert_breakpoint (struct gdbarch *,
316 struct bp_target_info *) override;
317 int remove_breakpoint (struct gdbarch *,
318 struct bp_target_info *,
319 enum remove_bp_reason) override;
320
321 bool has_execution (inferior *inf) override;
322 };
323
324 static record_full_target record_full_ops;
325 static record_full_core_target record_full_core_ops;
326
327 void
328 record_full_target::detach (inferior *inf, int from_tty)
329 {
330 record_detach (this, inf, from_tty);
331 }
332
333 void
334 record_full_target::disconnect (const char *args, int from_tty)
335 {
336 record_disconnect (this, args, from_tty);
337 }
338
339 void
340 record_full_core_target::disconnect (const char *args, int from_tty)
341 {
342 record_disconnect (this, args, from_tty);
343 }
344
345 void
346 record_full_target::mourn_inferior ()
347 {
348 record_mourn_inferior (this);
349 }
350
351 void
352 record_full_target::kill ()
353 {
354 record_kill (this);
355 }
356
357 /* See record-full.h. */
358
359 int
360 record_full_is_used (void)
361 {
362 struct target_ops *t;
363
364 t = find_record_target ();
365 return (t == &record_full_ops
366 || t == &record_full_core_ops);
367 }
368
369
370 /* Command lists for "set/show record full". */
371 static struct cmd_list_element *set_record_full_cmdlist;
372 static struct cmd_list_element *show_record_full_cmdlist;
373
374 /* Command list for "record full". */
375 static struct cmd_list_element *record_full_cmdlist;
376
377 static void record_full_goto_insn (struct record_full_entry *entry,
378 enum exec_direction_kind dir);
379
380 /* Alloc and free functions for record_full_reg, record_full_mem, and
381 record_full_end entries. */
382
383 /* Alloc a record_full_reg record entry. */
384
385 static inline struct record_full_entry *
386 record_full_reg_alloc (struct regcache *regcache, int regnum)
387 {
388 struct record_full_entry *rec;
389 struct gdbarch *gdbarch = regcache->arch ();
390
391 rec = XCNEW (struct record_full_entry);
392 rec->type = record_full_reg;
393 rec->u.reg.num = regnum;
394 rec->u.reg.len = register_size (gdbarch, regnum);
395 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
396 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
397
398 return rec;
399 }
400
401 /* Free a record_full_reg record entry. */
402
403 static inline void
404 record_full_reg_release (struct record_full_entry *rec)
405 {
406 gdb_assert (rec->type == record_full_reg);
407 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
408 xfree (rec->u.reg.u.ptr);
409 xfree (rec);
410 }
411
412 /* Alloc a record_full_mem record entry. */
413
414 static inline struct record_full_entry *
415 record_full_mem_alloc (CORE_ADDR addr, int len)
416 {
417 struct record_full_entry *rec;
418
419 rec = XCNEW (struct record_full_entry);
420 rec->type = record_full_mem;
421 rec->u.mem.addr = addr;
422 rec->u.mem.len = len;
423 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
424 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
425
426 return rec;
427 }
428
429 /* Free a record_full_mem record entry. */
430
431 static inline void
432 record_full_mem_release (struct record_full_entry *rec)
433 {
434 gdb_assert (rec->type == record_full_mem);
435 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
436 xfree (rec->u.mem.u.ptr);
437 xfree (rec);
438 }
439
440 /* Alloc a record_full_end record entry. */
441
442 static inline struct record_full_entry *
443 record_full_end_alloc (void)
444 {
445 struct record_full_entry *rec;
446
447 rec = XCNEW (struct record_full_entry);
448 rec->type = record_full_end;
449
450 return rec;
451 }
452
453 /* Free a record_full_end record entry. */
454
455 static inline void
456 record_full_end_release (struct record_full_entry *rec)
457 {
458 xfree (rec);
459 }
460
461 /* Free one record entry, any type.
462 Return entry->type, in case caller wants to know. */
463
464 static inline enum record_full_type
465 record_full_entry_release (struct record_full_entry *rec)
466 {
467 enum record_full_type type = rec->type;
468
469 switch (type) {
470 case record_full_reg:
471 record_full_reg_release (rec);
472 break;
473 case record_full_mem:
474 record_full_mem_release (rec);
475 break;
476 case record_full_end:
477 record_full_end_release (rec);
478 break;
479 }
480 return type;
481 }
482
483 /* Free all record entries in list pointed to by REC. */
484
485 static void
486 record_full_list_release (struct record_full_entry *rec)
487 {
488 if (!rec)
489 return;
490
491 while (rec->next)
492 rec = rec->next;
493
494 while (rec->prev)
495 {
496 rec = rec->prev;
497 record_full_entry_release (rec->next);
498 }
499
500 if (rec == &record_full_first)
501 {
502 record_full_insn_num = 0;
503 record_full_first.next = NULL;
504 }
505 else
506 record_full_entry_release (rec);
507 }
508
509 /* Free all record entries forward of the given list position. */
510
511 static void
512 record_full_list_release_following (struct record_full_entry *rec)
513 {
514 struct record_full_entry *tmp = rec->next;
515
516 rec->next = NULL;
517 while (tmp)
518 {
519 rec = tmp->next;
520 if (record_full_entry_release (tmp) == record_full_end)
521 {
522 record_full_insn_num--;
523 record_full_insn_count--;
524 }
525 tmp = rec;
526 }
527 }
528
529 /* Delete the first instruction from the beginning of the log, to make
530 room for adding a new instruction at the end of the log.
531
532 Note -- this function does not modify record_full_insn_num. */
533
534 static void
535 record_full_list_release_first (void)
536 {
537 struct record_full_entry *tmp;
538
539 if (!record_full_first.next)
540 return;
541
542 /* Loop until a record_full_end. */
543 while (1)
544 {
545 /* Cut record_full_first.next out of the linked list. */
546 tmp = record_full_first.next;
547 record_full_first.next = tmp->next;
548 tmp->next->prev = &record_full_first;
549
550 /* tmp is now isolated, and can be deleted. */
551 if (record_full_entry_release (tmp) == record_full_end)
552 break; /* End loop at first record_full_end. */
553
554 if (!record_full_first.next)
555 {
556 gdb_assert (record_full_insn_num == 1);
557 break; /* End loop when list is empty. */
558 }
559 }
560 }
561
562 /* Add a struct record_full_entry to record_full_arch_list. */
563
564 static void
565 record_full_arch_list_add (struct record_full_entry *rec)
566 {
567 if (record_debug > 1)
568 gdb_printf (gdb_stdlog,
569 "Process record: record_full_arch_list_add %s.\n",
570 host_address_to_string (rec));
571
572 if (record_full_arch_list_tail)
573 {
574 record_full_arch_list_tail->next = rec;
575 rec->prev = record_full_arch_list_tail;
576 record_full_arch_list_tail = rec;
577 }
578 else
579 {
580 record_full_arch_list_head = rec;
581 record_full_arch_list_tail = rec;
582 }
583 }
584
585 /* Return the value storage location of a record entry. */
586 static inline gdb_byte *
587 record_full_get_loc (struct record_full_entry *rec)
588 {
589 switch (rec->type) {
590 case record_full_mem:
591 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
592 return rec->u.mem.u.ptr;
593 else
594 return rec->u.mem.u.buf;
595 case record_full_reg:
596 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
597 return rec->u.reg.u.ptr;
598 else
599 return rec->u.reg.u.buf;
600 case record_full_end:
601 default:
602 gdb_assert_not_reached ("unexpected record_full_entry type");
603 return NULL;
604 }
605 }
606
607 /* Record the value of a register NUM to record_full_arch_list. */
608
609 int
610 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
611 {
612 struct record_full_entry *rec;
613
614 if (record_debug > 1)
615 gdb_printf (gdb_stdlog,
616 "Process record: add register num = %d to "
617 "record list.\n",
618 regnum);
619
620 rec = record_full_reg_alloc (regcache, regnum);
621
622 regcache->raw_read (regnum, record_full_get_loc (rec));
623
624 record_full_arch_list_add (rec);
625
626 return 0;
627 }
628
629 /* Record the value of a region of memory whose address is ADDR and
630 length is LEN to record_full_arch_list. */
631
632 int
633 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
634 {
635 struct record_full_entry *rec;
636
637 if (record_debug > 1)
638 gdb_printf (gdb_stdlog,
639 "Process record: add mem addr = %s len = %d to "
640 "record list.\n",
641 paddress (target_gdbarch (), addr), len);
642
643 if (!addr) /* FIXME: Why? Some arch must permit it... */
644 return 0;
645
646 rec = record_full_mem_alloc (addr, len);
647
648 if (record_read_memory (target_gdbarch (), addr,
649 record_full_get_loc (rec), len))
650 {
651 record_full_mem_release (rec);
652 return -1;
653 }
654
655 record_full_arch_list_add (rec);
656
657 return 0;
658 }
659
660 /* Add a record_full_end type struct record_full_entry to
661 record_full_arch_list. */
662
663 int
664 record_full_arch_list_add_end (void)
665 {
666 struct record_full_entry *rec;
667
668 if (record_debug > 1)
669 gdb_printf (gdb_stdlog,
670 "Process record: add end to arch list.\n");
671
672 rec = record_full_end_alloc ();
673 rec->u.end.sigval = GDB_SIGNAL_0;
674 rec->u.end.insn_num = ++record_full_insn_count;
675
676 record_full_arch_list_add (rec);
677
678 return 0;
679 }
680
681 static void
682 record_full_check_insn_num (void)
683 {
684 if (record_full_insn_num == record_full_insn_max_num)
685 {
686 /* Ask user what to do. */
687 if (record_full_stop_at_limit)
688 {
689 if (!yquery (_("Do you want to auto delete previous execution "
690 "log entries when record/replay buffer becomes "
691 "full (record full stop-at-limit)?")))
692 error (_("Process record: stopped by user."));
693 record_full_stop_at_limit = 0;
694 }
695 }
696 }
697
698 /* Before inferior step (when GDB record the running message, inferior
699 only can step), GDB will call this function to record the values to
700 record_full_list. This function will call gdbarch_process_record to
701 record the running message of inferior and set them to
702 record_full_arch_list, and add it to record_full_list. */
703
704 static void
705 record_full_message (struct regcache *regcache, enum gdb_signal signal)
706 {
707 int ret;
708 struct gdbarch *gdbarch = regcache->arch ();
709
710 try
711 {
712 record_full_arch_list_head = NULL;
713 record_full_arch_list_tail = NULL;
714
715 /* Check record_full_insn_num. */
716 record_full_check_insn_num ();
717
718 /* If gdb sends a signal value to target_resume,
719 save it in the 'end' field of the previous instruction.
720
721 Maybe process record should record what really happened,
722 rather than what gdb pretends has happened.
723
724 So if Linux delivered the signal to the child process during
725 the record mode, we will record it and deliver it again in
726 the replay mode.
727
728 If user says "ignore this signal" during the record mode, then
729 it will be ignored again during the replay mode (no matter if
730 the user says something different, like "deliver this signal"
731 during the replay mode).
732
733 User should understand that nothing he does during the replay
734 mode will change the behavior of the child. If he tries,
735 then that is a user error.
736
737 But we should still deliver the signal to gdb during the replay,
738 if we delivered it during the recording. Therefore we should
739 record the signal during record_full_wait, not
740 record_full_resume. */
741 if (record_full_list != &record_full_first) /* FIXME better way
742 to check */
743 {
744 gdb_assert (record_full_list->type == record_full_end);
745 record_full_list->u.end.sigval = signal;
746 }
747
748 if (signal == GDB_SIGNAL_0
749 || !gdbarch_process_record_signal_p (gdbarch))
750 ret = gdbarch_process_record (gdbarch,
751 regcache,
752 regcache_read_pc (regcache));
753 else
754 ret = gdbarch_process_record_signal (gdbarch,
755 regcache,
756 signal);
757
758 if (ret > 0)
759 error (_("Process record: inferior program stopped."));
760 if (ret < 0)
761 error (_("Process record: failed to record execution log."));
762 }
763 catch (const gdb_exception &ex)
764 {
765 record_full_list_release (record_full_arch_list_tail);
766 throw;
767 }
768
769 record_full_list->next = record_full_arch_list_head;
770 record_full_arch_list_head->prev = record_full_list;
771 record_full_list = record_full_arch_list_tail;
772
773 if (record_full_insn_num == record_full_insn_max_num)
774 record_full_list_release_first ();
775 else
776 record_full_insn_num++;
777 }
778
779 static bool
780 record_full_message_wrapper_safe (struct regcache *regcache,
781 enum gdb_signal signal)
782 {
783 try
784 {
785 record_full_message (regcache, signal);
786 }
787 catch (const gdb_exception &ex)
788 {
789 exception_print (gdb_stderr, ex);
790 return false;
791 }
792
793 return true;
794 }
795
796 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
797 doesn't need record. */
798
799 static int record_full_gdb_operation_disable = 0;
800
801 scoped_restore_tmpl<int>
802 record_full_gdb_operation_disable_set (void)
803 {
804 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
805 }
806
807 /* Flag set to TRUE for target_stopped_by_watchpoint. */
808 static enum target_stop_reason record_full_stop_reason
809 = TARGET_STOPPED_BY_NO_REASON;
810
811 /* Execute one instruction from the record log. Each instruction in
812 the log will be represented by an arbitrary sequence of register
813 entries and memory entries, followed by an 'end' entry. */
814
815 static inline void
816 record_full_exec_insn (struct regcache *regcache,
817 struct gdbarch *gdbarch,
818 struct record_full_entry *entry)
819 {
820 switch (entry->type)
821 {
822 case record_full_reg: /* reg */
823 {
824 gdb::byte_vector reg (entry->u.reg.len);
825
826 if (record_debug > 1)
827 gdb_printf (gdb_stdlog,
828 "Process record: record_full_reg %s to "
829 "inferior num = %d.\n",
830 host_address_to_string (entry),
831 entry->u.reg.num);
832
833 regcache->cooked_read (entry->u.reg.num, reg.data ());
834 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
835 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
836 }
837 break;
838
839 case record_full_mem: /* mem */
840 {
841 /* Nothing to do if the entry is flagged not_accessible. */
842 if (!entry->u.mem.mem_entry_not_accessible)
843 {
844 gdb::byte_vector mem (entry->u.mem.len);
845
846 if (record_debug > 1)
847 gdb_printf (gdb_stdlog,
848 "Process record: record_full_mem %s to "
849 "inferior addr = %s len = %d.\n",
850 host_address_to_string (entry),
851 paddress (gdbarch, entry->u.mem.addr),
852 entry->u.mem.len);
853
854 if (record_read_memory (gdbarch,
855 entry->u.mem.addr, mem.data (),
856 entry->u.mem.len))
857 entry->u.mem.mem_entry_not_accessible = 1;
858 else
859 {
860 if (target_write_memory (entry->u.mem.addr,
861 record_full_get_loc (entry),
862 entry->u.mem.len))
863 {
864 entry->u.mem.mem_entry_not_accessible = 1;
865 if (record_debug)
866 warning (_("Process record: error writing memory at "
867 "addr = %s len = %d."),
868 paddress (gdbarch, entry->u.mem.addr),
869 entry->u.mem.len);
870 }
871 else
872 {
873 memcpy (record_full_get_loc (entry), mem.data (),
874 entry->u.mem.len);
875
876 /* We've changed memory --- check if a hardware
877 watchpoint should trap. Note that this
878 presently assumes the target beneath supports
879 continuable watchpoints. On non-continuable
880 watchpoints target, we'll want to check this
881 _before_ actually doing the memory change, and
882 not doing the change at all if the watchpoint
883 traps. */
884 if (hardware_watchpoint_inserted_in_range
885 (regcache->aspace (),
886 entry->u.mem.addr, entry->u.mem.len))
887 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
888 }
889 }
890 }
891 }
892 break;
893 }
894 }
895
896 static void record_full_restore (void);
897
898 /* Asynchronous signal handle registered as event loop source for when
899 we have pending events ready to be passed to the core. */
900
901 static struct async_event_handler *record_full_async_inferior_event_token;
902
903 static void
904 record_full_async_inferior_event_handler (gdb_client_data data)
905 {
906 inferior_event_handler (INF_REG_EVENT);
907 }
908
909 /* Open the process record target for 'core' files. */
910
911 static void
912 record_full_core_open_1 (const char *name, int from_tty)
913 {
914 struct regcache *regcache = get_current_regcache ();
915 int regnum = gdbarch_num_regs (regcache->arch ());
916 int i;
917
918 /* Get record_full_core_regbuf. */
919 target_fetch_registers (regcache, -1);
920 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
921
922 for (i = 0; i < regnum; i ++)
923 record_full_core_regbuf->raw_supply (i, *regcache);
924
925 record_full_core_sections = build_section_table (core_bfd);
926
927 current_inferior ()->push_target (&record_full_core_ops);
928 record_full_restore ();
929 }
930
931 /* Open the process record target for 'live' processes. */
932
933 static void
934 record_full_open_1 (const char *name, int from_tty)
935 {
936 if (record_debug)
937 gdb_printf (gdb_stdlog, "Process record: record_full_open_1\n");
938
939 /* check exec */
940 if (!target_has_execution ())
941 error (_("Process record: the program is not being run."));
942 if (non_stop)
943 error (_("Process record target can't debug inferior in non-stop mode "
944 "(non-stop)."));
945
946 if (!gdbarch_process_record_p (target_gdbarch ()))
947 error (_("Process record: the current architecture doesn't support "
948 "record function."));
949
950 current_inferior ()->push_target (&record_full_ops);
951 }
952
953 static void record_full_init_record_breakpoints (void);
954
955 /* Open the process record target. */
956
957 static void
958 record_full_open (const char *name, int from_tty)
959 {
960 if (record_debug)
961 gdb_printf (gdb_stdlog, "Process record: record_full_open\n");
962
963 record_preopen ();
964
965 /* Reset */
966 record_full_insn_num = 0;
967 record_full_insn_count = 0;
968 record_full_list = &record_full_first;
969 record_full_list->next = NULL;
970
971 if (core_bfd)
972 record_full_core_open_1 (name, from_tty);
973 else
974 record_full_open_1 (name, from_tty);
975
976 /* Register extra event sources in the event loop. */
977 record_full_async_inferior_event_token
978 = create_async_event_handler (record_full_async_inferior_event_handler,
979 NULL, "record-full");
980
981 record_full_init_record_breakpoints ();
982
983 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
984 }
985
986 /* "close" target method. Close the process record target. */
987
988 void
989 record_full_base_target::close ()
990 {
991 struct record_full_core_buf_entry *entry;
992
993 if (record_debug)
994 gdb_printf (gdb_stdlog, "Process record: record_full_close\n");
995
996 record_full_list_release (record_full_list);
997
998 /* Release record_full_core_regbuf. */
999 if (record_full_core_regbuf)
1000 {
1001 delete record_full_core_regbuf;
1002 record_full_core_regbuf = NULL;
1003 }
1004
1005 /* Release record_full_core_buf_list. */
1006 while (record_full_core_buf_list)
1007 {
1008 entry = record_full_core_buf_list;
1009 record_full_core_buf_list = record_full_core_buf_list->prev;
1010 xfree (entry);
1011 }
1012
1013 if (record_full_async_inferior_event_token)
1014 delete_async_event_handler (&record_full_async_inferior_event_token);
1015 }
1016
1017 /* "async" target method. */
1018
1019 void
1020 record_full_base_target::async (int enable)
1021 {
1022 if (enable)
1023 mark_async_event_handler (record_full_async_inferior_event_token);
1024 else
1025 clear_async_event_handler (record_full_async_inferior_event_token);
1026
1027 beneath ()->async (enable);
1028 }
1029
1030 /* The PTID and STEP arguments last passed to
1031 record_full_target::resume. */
1032 static ptid_t record_full_resume_ptid = null_ptid;
1033 static int record_full_resume_step = 0;
1034
1035 /* True if we've been resumed, and so each record_full_wait call should
1036 advance execution. If this is false, record_full_wait will return a
1037 TARGET_WAITKIND_IGNORE. */
1038 static int record_full_resumed = 0;
1039
1040 /* The execution direction of the last resume we got. This is
1041 necessary for async mode. Vis (order is not strictly accurate):
1042
1043 1. user has the global execution direction set to forward
1044 2. user does a reverse-step command
1045 3. record_full_resume is called with global execution direction
1046 temporarily switched to reverse
1047 4. GDB's execution direction is reverted back to forward
1048 5. target record notifies event loop there's an event to handle
1049 6. infrun asks the target which direction was it going, and switches
1050 the global execution direction accordingly (to reverse)
1051 7. infrun polls an event out of the record target, and handles it
1052 8. GDB goes back to the event loop, and goto #4.
1053 */
1054 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1055
1056 /* "resume" target method. Resume the process record target. */
1057
1058 void
1059 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1060 {
1061 record_full_resume_ptid = inferior_ptid;
1062 record_full_resume_step = step;
1063 record_full_resumed = 1;
1064 record_full_execution_dir = ::execution_direction;
1065
1066 if (!RECORD_FULL_IS_REPLAY)
1067 {
1068 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1069
1070 record_full_message (get_current_regcache (), signal);
1071
1072 if (!step)
1073 {
1074 /* This is not hard single step. */
1075 if (!gdbarch_software_single_step_p (gdbarch))
1076 {
1077 /* This is a normal continue. */
1078 step = 1;
1079 }
1080 else
1081 {
1082 /* This arch supports soft single step. */
1083 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1084 {
1085 /* This is a soft single step. */
1086 record_full_resume_step = 1;
1087 }
1088 else
1089 step = !insert_single_step_breakpoints (gdbarch);
1090 }
1091 }
1092
1093 /* Make sure the target beneath reports all signals. */
1094 target_pass_signals ({});
1095
1096 this->beneath ()->resume (ptid, step, signal);
1097 }
1098 }
1099
1100 static int record_full_get_sig = 0;
1101
1102 /* SIGINT signal handler, registered by "wait" method. */
1103
1104 static void
1105 record_full_sig_handler (int signo)
1106 {
1107 if (record_debug)
1108 gdb_printf (gdb_stdlog, "Process record: get a signal\n");
1109
1110 /* It will break the running inferior in replay mode. */
1111 record_full_resume_step = 1;
1112
1113 /* It will let record_full_wait set inferior status to get the signal
1114 SIGINT. */
1115 record_full_get_sig = 1;
1116 }
1117
1118 /* "wait" target method for process record target.
1119
1120 In record mode, the target is always run in singlestep mode
1121 (even when gdb says to continue). The wait method intercepts
1122 the stop events and determines which ones are to be passed on to
1123 gdb. Most stop events are just singlestep events that gdb is not
1124 to know about, so the wait method just records them and keeps
1125 singlestepping.
1126
1127 In replay mode, this function emulates the recorded execution log,
1128 one instruction at a time (forward or backward), and determines
1129 where to stop. */
1130
1131 static ptid_t
1132 record_full_wait_1 (struct target_ops *ops,
1133 ptid_t ptid, struct target_waitstatus *status,
1134 target_wait_flags options)
1135 {
1136 scoped_restore restore_operation_disable
1137 = record_full_gdb_operation_disable_set ();
1138
1139 if (record_debug)
1140 gdb_printf (gdb_stdlog,
1141 "Process record: record_full_wait "
1142 "record_full_resume_step = %d, "
1143 "record_full_resumed = %d, direction=%s\n",
1144 record_full_resume_step, record_full_resumed,
1145 record_full_execution_dir == EXEC_FORWARD
1146 ? "forward" : "reverse");
1147
1148 if (!record_full_resumed)
1149 {
1150 gdb_assert ((options & TARGET_WNOHANG) != 0);
1151
1152 /* No interesting event. */
1153 status->set_ignore ();
1154 return minus_one_ptid;
1155 }
1156
1157 record_full_get_sig = 0;
1158 signal (SIGINT, record_full_sig_handler);
1159
1160 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1161
1162 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1163 {
1164 if (record_full_resume_step)
1165 {
1166 /* This is a single step. */
1167 return ops->beneath ()->wait (ptid, status, options);
1168 }
1169 else
1170 {
1171 /* This is not a single step. */
1172 ptid_t ret;
1173 CORE_ADDR tmp_pc;
1174 struct gdbarch *gdbarch
1175 = target_thread_architecture (record_full_resume_ptid);
1176
1177 while (1)
1178 {
1179 ret = ops->beneath ()->wait (ptid, status, options);
1180 if (status->kind () == TARGET_WAITKIND_IGNORE)
1181 {
1182 if (record_debug)
1183 gdb_printf (gdb_stdlog,
1184 "Process record: record_full_wait "
1185 "target beneath not done yet\n");
1186 return ret;
1187 }
1188
1189 for (thread_info *tp : all_non_exited_threads ())
1190 delete_single_step_breakpoints (tp);
1191
1192 if (record_full_resume_step)
1193 return ret;
1194
1195 /* Is this a SIGTRAP? */
1196 if (status->kind () == TARGET_WAITKIND_STOPPED
1197 && status->sig () == GDB_SIGNAL_TRAP)
1198 {
1199 struct regcache *regcache;
1200 enum target_stop_reason *stop_reason_p
1201 = &record_full_stop_reason;
1202
1203 /* Yes -- this is likely our single-step finishing,
1204 but check if there's any reason the core would be
1205 interested in the event. */
1206
1207 registers_changed ();
1208 switch_to_thread (current_inferior ()->process_target (),
1209 ret);
1210 regcache = get_current_regcache ();
1211 tmp_pc = regcache_read_pc (regcache);
1212 const struct address_space *aspace = regcache->aspace ();
1213
1214 if (target_stopped_by_watchpoint ())
1215 {
1216 /* Always interested in watchpoints. */
1217 }
1218 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1219 stop_reason_p))
1220 {
1221 /* There is a breakpoint here. Let the core
1222 handle it. */
1223 }
1224 else
1225 {
1226 /* This is a single-step trap. Record the
1227 insn and issue another step.
1228 FIXME: this part can be a random SIGTRAP too.
1229 But GDB cannot handle it. */
1230 int step = 1;
1231
1232 if (!record_full_message_wrapper_safe (regcache,
1233 GDB_SIGNAL_0))
1234 {
1235 status->set_stopped (GDB_SIGNAL_0);
1236 break;
1237 }
1238
1239 process_stratum_target *proc_target
1240 = current_inferior ()->process_target ();
1241
1242 if (gdbarch_software_single_step_p (gdbarch))
1243 {
1244 /* Try to insert the software single step breakpoint.
1245 If insert success, set step to 0. */
1246 set_executing (proc_target, inferior_ptid, false);
1247 SCOPE_EXIT
1248 {
1249 set_executing (proc_target, inferior_ptid, true);
1250 };
1251
1252 reinit_frame_cache ();
1253 step = !insert_single_step_breakpoints (gdbarch);
1254 }
1255
1256 if (record_debug)
1257 gdb_printf (gdb_stdlog,
1258 "Process record: record_full_wait "
1259 "issuing one more step in the "
1260 "target beneath\n");
1261 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1262 proc_target->commit_resumed_state = true;
1263 proc_target->commit_resumed ();
1264 proc_target->commit_resumed_state = false;
1265 continue;
1266 }
1267 }
1268
1269 /* The inferior is broken by a breakpoint or a signal. */
1270 break;
1271 }
1272
1273 return ret;
1274 }
1275 }
1276 else
1277 {
1278 switch_to_thread (current_inferior ()->process_target (),
1279 record_full_resume_ptid);
1280 struct regcache *regcache = get_current_regcache ();
1281 struct gdbarch *gdbarch = regcache->arch ();
1282 const struct address_space *aspace = regcache->aspace ();
1283 int continue_flag = 1;
1284 int first_record_full_end = 1;
1285
1286 try
1287 {
1288 CORE_ADDR tmp_pc;
1289
1290 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1291 status->set_stopped (GDB_SIGNAL_0);
1292
1293 /* Check breakpoint when forward execute. */
1294 if (execution_direction == EXEC_FORWARD)
1295 {
1296 tmp_pc = regcache_read_pc (regcache);
1297 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1298 &record_full_stop_reason))
1299 {
1300 if (record_debug)
1301 gdb_printf (gdb_stdlog,
1302 "Process record: break at %s.\n",
1303 paddress (gdbarch, tmp_pc));
1304 goto replay_out;
1305 }
1306 }
1307
1308 /* If GDB is in terminal_inferior mode, it will not get the
1309 signal. And in GDB replay mode, GDB doesn't need to be
1310 in terminal_inferior mode, because inferior will not
1311 executed. Then set it to terminal_ours to make GDB get
1312 the signal. */
1313 target_terminal::ours ();
1314
1315 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1316 instruction. */
1317 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1318 record_full_list = record_full_list->next;
1319
1320 /* Loop over the record_full_list, looking for the next place to
1321 stop. */
1322 do
1323 {
1324 /* Check for beginning and end of log. */
1325 if (execution_direction == EXEC_REVERSE
1326 && record_full_list == &record_full_first)
1327 {
1328 /* Hit beginning of record log in reverse. */
1329 status->set_no_history ();
1330 break;
1331 }
1332 if (execution_direction != EXEC_REVERSE
1333 && !record_full_list->next)
1334 {
1335 /* Hit end of record log going forward. */
1336 status->set_no_history ();
1337 break;
1338 }
1339
1340 record_full_exec_insn (regcache, gdbarch, record_full_list);
1341
1342 if (record_full_list->type == record_full_end)
1343 {
1344 if (record_debug > 1)
1345 gdb_printf
1346 (gdb_stdlog,
1347 "Process record: record_full_end %s to "
1348 "inferior.\n",
1349 host_address_to_string (record_full_list));
1350
1351 if (first_record_full_end
1352 && execution_direction == EXEC_REVERSE)
1353 {
1354 /* When reverse execute, the first
1355 record_full_end is the part of current
1356 instruction. */
1357 first_record_full_end = 0;
1358 }
1359 else
1360 {
1361 /* In EXEC_REVERSE mode, this is the
1362 record_full_end of prev instruction. In
1363 EXEC_FORWARD mode, this is the
1364 record_full_end of current instruction. */
1365 /* step */
1366 if (record_full_resume_step)
1367 {
1368 if (record_debug > 1)
1369 gdb_printf (gdb_stdlog,
1370 "Process record: step.\n");
1371 continue_flag = 0;
1372 }
1373
1374 /* check breakpoint */
1375 tmp_pc = regcache_read_pc (regcache);
1376 if (record_check_stopped_by_breakpoint
1377 (aspace, tmp_pc, &record_full_stop_reason))
1378 {
1379 if (record_debug)
1380 gdb_printf (gdb_stdlog,
1381 "Process record: break "
1382 "at %s.\n",
1383 paddress (gdbarch, tmp_pc));
1384
1385 continue_flag = 0;
1386 }
1387
1388 if (record_full_stop_reason
1389 == TARGET_STOPPED_BY_WATCHPOINT)
1390 {
1391 if (record_debug)
1392 gdb_printf (gdb_stdlog,
1393 "Process record: hit hw "
1394 "watchpoint.\n");
1395 continue_flag = 0;
1396 }
1397 /* Check target signal */
1398 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1399 /* FIXME: better way to check */
1400 continue_flag = 0;
1401 }
1402 }
1403
1404 if (continue_flag)
1405 {
1406 if (execution_direction == EXEC_REVERSE)
1407 {
1408 if (record_full_list->prev)
1409 record_full_list = record_full_list->prev;
1410 }
1411 else
1412 {
1413 if (record_full_list->next)
1414 record_full_list = record_full_list->next;
1415 }
1416 }
1417 }
1418 while (continue_flag);
1419
1420 replay_out:
1421 if (status->kind () == TARGET_WAITKIND_STOPPED)
1422 {
1423 if (record_full_get_sig)
1424 status->set_stopped (GDB_SIGNAL_INT);
1425 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1426 /* FIXME: better way to check */
1427 status->set_stopped (record_full_list->u.end.sigval);
1428 else
1429 status->set_stopped (GDB_SIGNAL_TRAP);
1430 }
1431 }
1432 catch (const gdb_exception &ex)
1433 {
1434 if (execution_direction == EXEC_REVERSE)
1435 {
1436 if (record_full_list->next)
1437 record_full_list = record_full_list->next;
1438 }
1439 else
1440 record_full_list = record_full_list->prev;
1441
1442 throw;
1443 }
1444 }
1445
1446 signal (SIGINT, handle_sigint);
1447
1448 return inferior_ptid;
1449 }
1450
1451 ptid_t
1452 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1453 target_wait_flags options)
1454 {
1455 ptid_t return_ptid;
1456
1457 clear_async_event_handler (record_full_async_inferior_event_token);
1458
1459 return_ptid = record_full_wait_1 (this, ptid, status, options);
1460 if (status->kind () != TARGET_WAITKIND_IGNORE)
1461 {
1462 /* We're reporting a stop. Make sure any spurious
1463 target_wait(WNOHANG) doesn't advance the target until the
1464 core wants us resumed again. */
1465 record_full_resumed = 0;
1466 }
1467 return return_ptid;
1468 }
1469
1470 bool
1471 record_full_base_target::stopped_by_watchpoint ()
1472 {
1473 if (RECORD_FULL_IS_REPLAY)
1474 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1475 else
1476 return beneath ()->stopped_by_watchpoint ();
1477 }
1478
1479 bool
1480 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1481 {
1482 if (RECORD_FULL_IS_REPLAY)
1483 return false;
1484 else
1485 return this->beneath ()->stopped_data_address (addr_p);
1486 }
1487
1488 /* The stopped_by_sw_breakpoint method of target record-full. */
1489
1490 bool
1491 record_full_base_target::stopped_by_sw_breakpoint ()
1492 {
1493 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1494 }
1495
1496 /* The supports_stopped_by_sw_breakpoint method of target
1497 record-full. */
1498
1499 bool
1500 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1501 {
1502 return true;
1503 }
1504
1505 /* The stopped_by_hw_breakpoint method of target record-full. */
1506
1507 bool
1508 record_full_base_target::stopped_by_hw_breakpoint ()
1509 {
1510 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1511 }
1512
1513 /* The supports_stopped_by_sw_breakpoint method of target
1514 record-full. */
1515
1516 bool
1517 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1518 {
1519 return true;
1520 }
1521
1522 /* Record registers change (by user or by GDB) to list as an instruction. */
1523
1524 static void
1525 record_full_registers_change (struct regcache *regcache, int regnum)
1526 {
1527 /* Check record_full_insn_num. */
1528 record_full_check_insn_num ();
1529
1530 record_full_arch_list_head = NULL;
1531 record_full_arch_list_tail = NULL;
1532
1533 if (regnum < 0)
1534 {
1535 int i;
1536
1537 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1538 {
1539 if (record_full_arch_list_add_reg (regcache, i))
1540 {
1541 record_full_list_release (record_full_arch_list_tail);
1542 error (_("Process record: failed to record execution log."));
1543 }
1544 }
1545 }
1546 else
1547 {
1548 if (record_full_arch_list_add_reg (regcache, regnum))
1549 {
1550 record_full_list_release (record_full_arch_list_tail);
1551 error (_("Process record: failed to record execution log."));
1552 }
1553 }
1554 if (record_full_arch_list_add_end ())
1555 {
1556 record_full_list_release (record_full_arch_list_tail);
1557 error (_("Process record: failed to record execution log."));
1558 }
1559 record_full_list->next = record_full_arch_list_head;
1560 record_full_arch_list_head->prev = record_full_list;
1561 record_full_list = record_full_arch_list_tail;
1562
1563 if (record_full_insn_num == record_full_insn_max_num)
1564 record_full_list_release_first ();
1565 else
1566 record_full_insn_num++;
1567 }
1568
1569 /* "store_registers" method for process record target. */
1570
1571 void
1572 record_full_target::store_registers (struct regcache *regcache, int regno)
1573 {
1574 if (!record_full_gdb_operation_disable)
1575 {
1576 if (RECORD_FULL_IS_REPLAY)
1577 {
1578 int n;
1579
1580 /* Let user choose if he wants to write register or not. */
1581 if (regno < 0)
1582 n =
1583 query (_("Because GDB is in replay mode, changing the "
1584 "value of a register will make the execution "
1585 "log unusable from this point onward. "
1586 "Change all registers?"));
1587 else
1588 n =
1589 query (_("Because GDB is in replay mode, changing the value "
1590 "of a register will make the execution log unusable "
1591 "from this point onward. Change register %s?"),
1592 gdbarch_register_name (regcache->arch (),
1593 regno));
1594
1595 if (!n)
1596 {
1597 /* Invalidate the value of regcache that was set in function
1598 "regcache_raw_write". */
1599 if (regno < 0)
1600 {
1601 int i;
1602
1603 for (i = 0;
1604 i < gdbarch_num_regs (regcache->arch ());
1605 i++)
1606 regcache->invalidate (i);
1607 }
1608 else
1609 regcache->invalidate (regno);
1610
1611 error (_("Process record canceled the operation."));
1612 }
1613
1614 /* Destroy the record from here forward. */
1615 record_full_list_release_following (record_full_list);
1616 }
1617
1618 record_full_registers_change (regcache, regno);
1619 }
1620 this->beneath ()->store_registers (regcache, regno);
1621 }
1622
1623 /* "xfer_partial" method. Behavior is conditional on
1624 RECORD_FULL_IS_REPLAY.
1625 In replay mode, we cannot write memory unles we are willing to
1626 invalidate the record/replay log from this point forward. */
1627
1628 enum target_xfer_status
1629 record_full_target::xfer_partial (enum target_object object,
1630 const char *annex, gdb_byte *readbuf,
1631 const gdb_byte *writebuf, ULONGEST offset,
1632 ULONGEST len, ULONGEST *xfered_len)
1633 {
1634 if (!record_full_gdb_operation_disable
1635 && (object == TARGET_OBJECT_MEMORY
1636 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1637 {
1638 if (RECORD_FULL_IS_REPLAY)
1639 {
1640 /* Let user choose if he wants to write memory or not. */
1641 if (!query (_("Because GDB is in replay mode, writing to memory "
1642 "will make the execution log unusable from this "
1643 "point onward. Write memory at address %s?"),
1644 paddress (target_gdbarch (), offset)))
1645 error (_("Process record canceled the operation."));
1646
1647 /* Destroy the record from here forward. */
1648 record_full_list_release_following (record_full_list);
1649 }
1650
1651 /* Check record_full_insn_num */
1652 record_full_check_insn_num ();
1653
1654 /* Record registers change to list as an instruction. */
1655 record_full_arch_list_head = NULL;
1656 record_full_arch_list_tail = NULL;
1657 if (record_full_arch_list_add_mem (offset, len))
1658 {
1659 record_full_list_release (record_full_arch_list_tail);
1660 if (record_debug)
1661 gdb_printf (gdb_stdlog,
1662 "Process record: failed to record "
1663 "execution log.");
1664 return TARGET_XFER_E_IO;
1665 }
1666 if (record_full_arch_list_add_end ())
1667 {
1668 record_full_list_release (record_full_arch_list_tail);
1669 if (record_debug)
1670 gdb_printf (gdb_stdlog,
1671 "Process record: failed to record "
1672 "execution log.");
1673 return TARGET_XFER_E_IO;
1674 }
1675 record_full_list->next = record_full_arch_list_head;
1676 record_full_arch_list_head->prev = record_full_list;
1677 record_full_list = record_full_arch_list_tail;
1678
1679 if (record_full_insn_num == record_full_insn_max_num)
1680 record_full_list_release_first ();
1681 else
1682 record_full_insn_num++;
1683 }
1684
1685 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1686 offset, len, xfered_len);
1687 }
1688
1689 /* This structure represents a breakpoint inserted while the record
1690 target is active. We use this to know when to install/remove
1691 breakpoints in/from the target beneath. For example, a breakpoint
1692 may be inserted while recording, but removed when not replaying nor
1693 recording. In that case, the breakpoint had not been inserted on
1694 the target beneath, so we should not try to remove it there. */
1695
1696 struct record_full_breakpoint
1697 {
1698 record_full_breakpoint (struct address_space *address_space_,
1699 CORE_ADDR addr_,
1700 bool in_target_beneath_)
1701 : address_space (address_space_),
1702 addr (addr_),
1703 in_target_beneath (in_target_beneath_)
1704 {
1705 }
1706
1707 /* The address and address space the breakpoint was set at. */
1708 struct address_space *address_space;
1709 CORE_ADDR addr;
1710
1711 /* True when the breakpoint has been also installed in the target
1712 beneath. This will be false for breakpoints set during replay or
1713 when recording. */
1714 bool in_target_beneath;
1715 };
1716
1717 /* The list of breakpoints inserted while the record target is
1718 active. */
1719 static std::vector<record_full_breakpoint> record_full_breakpoints;
1720
1721 /* Sync existing breakpoints to record_full_breakpoints. */
1722
1723 static void
1724 record_full_init_record_breakpoints (void)
1725 {
1726 record_full_breakpoints.clear ();
1727
1728 for (bp_location *loc : all_bp_locations ())
1729 {
1730 if (loc->loc_type != bp_loc_software_breakpoint)
1731 continue;
1732
1733 if (loc->inserted)
1734 record_full_breakpoints.emplace_back
1735 (loc->target_info.placed_address_space,
1736 loc->target_info.placed_address, 1);
1737 }
1738 }
1739
1740 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1741 insert or remove breakpoints in the real target when replaying, nor
1742 when recording. */
1743
1744 int
1745 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1746 struct bp_target_info *bp_tgt)
1747 {
1748 bool in_target_beneath = false;
1749
1750 if (!RECORD_FULL_IS_REPLAY)
1751 {
1752 /* When recording, we currently always single-step, so we don't
1753 really need to install regular breakpoints in the inferior.
1754 However, we do have to insert software single-step
1755 breakpoints, in case the target can't hardware step. To keep
1756 things simple, we always insert. */
1757
1758 scoped_restore restore_operation_disable
1759 = record_full_gdb_operation_disable_set ();
1760
1761 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1762 if (ret != 0)
1763 return ret;
1764
1765 in_target_beneath = true;
1766 }
1767
1768 /* Use the existing entries if found in order to avoid duplication
1769 in record_full_breakpoints. */
1770
1771 for (const record_full_breakpoint &bp : record_full_breakpoints)
1772 {
1773 if (bp.addr == bp_tgt->placed_address
1774 && bp.address_space == bp_tgt->placed_address_space)
1775 {
1776 gdb_assert (bp.in_target_beneath == in_target_beneath);
1777 return 0;
1778 }
1779 }
1780
1781 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1782 bp_tgt->placed_address,
1783 in_target_beneath);
1784 return 0;
1785 }
1786
1787 /* "remove_breakpoint" method for process record target. */
1788
1789 int
1790 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1791 struct bp_target_info *bp_tgt,
1792 enum remove_bp_reason reason)
1793 {
1794 for (auto iter = record_full_breakpoints.begin ();
1795 iter != record_full_breakpoints.end ();
1796 ++iter)
1797 {
1798 struct record_full_breakpoint &bp = *iter;
1799
1800 if (bp.addr == bp_tgt->placed_address
1801 && bp.address_space == bp_tgt->placed_address_space)
1802 {
1803 if (bp.in_target_beneath)
1804 {
1805 scoped_restore restore_operation_disable
1806 = record_full_gdb_operation_disable_set ();
1807
1808 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1809 reason);
1810 if (ret != 0)
1811 return ret;
1812 }
1813
1814 if (reason == REMOVE_BREAKPOINT)
1815 unordered_remove (record_full_breakpoints, iter);
1816 return 0;
1817 }
1818 }
1819
1820 gdb_assert_not_reached ("removing unknown breakpoint");
1821 }
1822
1823 /* "can_execute_reverse" method for process record target. */
1824
1825 bool
1826 record_full_base_target::can_execute_reverse ()
1827 {
1828 return true;
1829 }
1830
1831 /* "get_bookmark" method for process record and prec over core. */
1832
1833 gdb_byte *
1834 record_full_base_target::get_bookmark (const char *args, int from_tty)
1835 {
1836 char *ret = NULL;
1837
1838 /* Return stringified form of instruction count. */
1839 if (record_full_list && record_full_list->type == record_full_end)
1840 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1841
1842 if (record_debug)
1843 {
1844 if (ret)
1845 gdb_printf (gdb_stdlog,
1846 "record_full_get_bookmark returns %s\n", ret);
1847 else
1848 gdb_printf (gdb_stdlog,
1849 "record_full_get_bookmark returns NULL\n");
1850 }
1851 return (gdb_byte *) ret;
1852 }
1853
1854 /* "goto_bookmark" method for process record and prec over core. */
1855
1856 void
1857 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1858 int from_tty)
1859 {
1860 const char *bookmark = (const char *) raw_bookmark;
1861
1862 if (record_debug)
1863 gdb_printf (gdb_stdlog,
1864 "record_full_goto_bookmark receives %s\n", bookmark);
1865
1866 std::string name_holder;
1867 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1868 {
1869 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1870 error (_("Unbalanced quotes: %s"), bookmark);
1871
1872 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1873 bookmark = name_holder.c_str ();
1874 }
1875
1876 record_goto (bookmark);
1877 }
1878
1879 enum exec_direction_kind
1880 record_full_base_target::execution_direction ()
1881 {
1882 return record_full_execution_dir;
1883 }
1884
1885 /* The record_method method of target record-full. */
1886
1887 enum record_method
1888 record_full_base_target::record_method (ptid_t ptid)
1889 {
1890 return RECORD_METHOD_FULL;
1891 }
1892
1893 void
1894 record_full_base_target::info_record ()
1895 {
1896 struct record_full_entry *p;
1897
1898 if (RECORD_FULL_IS_REPLAY)
1899 gdb_printf (_("Replay mode:\n"));
1900 else
1901 gdb_printf (_("Record mode:\n"));
1902
1903 /* Find entry for first actual instruction in the log. */
1904 for (p = record_full_first.next;
1905 p != NULL && p->type != record_full_end;
1906 p = p->next)
1907 ;
1908
1909 /* Do we have a log at all? */
1910 if (p != NULL && p->type == record_full_end)
1911 {
1912 /* Display instruction number for first instruction in the log. */
1913 gdb_printf (_("Lowest recorded instruction number is %s.\n"),
1914 pulongest (p->u.end.insn_num));
1915
1916 /* If in replay mode, display where we are in the log. */
1917 if (RECORD_FULL_IS_REPLAY)
1918 gdb_printf (_("Current instruction number is %s.\n"),
1919 pulongest (record_full_list->u.end.insn_num));
1920
1921 /* Display instruction number for last instruction in the log. */
1922 gdb_printf (_("Highest recorded instruction number is %s.\n"),
1923 pulongest (record_full_insn_count));
1924
1925 /* Display log count. */
1926 gdb_printf (_("Log contains %u instructions.\n"),
1927 record_full_insn_num);
1928 }
1929 else
1930 gdb_printf (_("No instructions have been logged.\n"));
1931
1932 /* Display max log size. */
1933 gdb_printf (_("Max logged instructions is %u.\n"),
1934 record_full_insn_max_num);
1935 }
1936
1937 bool
1938 record_full_base_target::supports_delete_record ()
1939 {
1940 return true;
1941 }
1942
1943 /* The "delete_record" target method. */
1944
1945 void
1946 record_full_base_target::delete_record ()
1947 {
1948 record_full_list_release_following (record_full_list);
1949 }
1950
1951 /* The "record_is_replaying" target method. */
1952
1953 bool
1954 record_full_base_target::record_is_replaying (ptid_t ptid)
1955 {
1956 return RECORD_FULL_IS_REPLAY;
1957 }
1958
1959 /* The "record_will_replay" target method. */
1960
1961 bool
1962 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1963 {
1964 /* We can currently only record when executing forwards. Should we be able
1965 to record when executing backwards on targets that support reverse
1966 execution, this needs to be changed. */
1967
1968 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1969 }
1970
1971 /* Go to a specific entry. */
1972
1973 static void
1974 record_full_goto_entry (struct record_full_entry *p)
1975 {
1976 if (p == NULL)
1977 error (_("Target insn not found."));
1978 else if (p == record_full_list)
1979 error (_("Already at target insn."));
1980 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1981 {
1982 gdb_printf (_("Go forward to insn number %s\n"),
1983 pulongest (p->u.end.insn_num));
1984 record_full_goto_insn (p, EXEC_FORWARD);
1985 }
1986 else
1987 {
1988 gdb_printf (_("Go backward to insn number %s\n"),
1989 pulongest (p->u.end.insn_num));
1990 record_full_goto_insn (p, EXEC_REVERSE);
1991 }
1992
1993 registers_changed ();
1994 reinit_frame_cache ();
1995 inferior_thread ()->set_stop_pc (regcache_read_pc (get_current_regcache ()));
1996 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
1997 }
1998
1999 /* The "goto_record_begin" target method. */
2000
2001 void
2002 record_full_base_target::goto_record_begin ()
2003 {
2004 struct record_full_entry *p = NULL;
2005
2006 for (p = &record_full_first; p != NULL; p = p->next)
2007 if (p->type == record_full_end)
2008 break;
2009
2010 record_full_goto_entry (p);
2011 }
2012
2013 /* The "goto_record_end" target method. */
2014
2015 void
2016 record_full_base_target::goto_record_end ()
2017 {
2018 struct record_full_entry *p = NULL;
2019
2020 for (p = record_full_list; p->next != NULL; p = p->next)
2021 ;
2022 for (; p!= NULL; p = p->prev)
2023 if (p->type == record_full_end)
2024 break;
2025
2026 record_full_goto_entry (p);
2027 }
2028
2029 /* The "goto_record" target method. */
2030
2031 void
2032 record_full_base_target::goto_record (ULONGEST target_insn)
2033 {
2034 struct record_full_entry *p = NULL;
2035
2036 for (p = &record_full_first; p != NULL; p = p->next)
2037 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2038 break;
2039
2040 record_full_goto_entry (p);
2041 }
2042
2043 /* The "record_stop_replaying" target method. */
2044
2045 void
2046 record_full_base_target::record_stop_replaying ()
2047 {
2048 goto_record_end ();
2049 }
2050
2051 /* "resume" method for prec over corefile. */
2052
2053 void
2054 record_full_core_target::resume (ptid_t ptid, int step,
2055 enum gdb_signal signal)
2056 {
2057 record_full_resume_step = step;
2058 record_full_resumed = 1;
2059 record_full_execution_dir = ::execution_direction;
2060 }
2061
2062 /* "kill" method for prec over corefile. */
2063
2064 void
2065 record_full_core_target::kill ()
2066 {
2067 if (record_debug)
2068 gdb_printf (gdb_stdlog, "Process record: record_full_core_kill\n");
2069
2070 current_inferior ()->unpush_target (this);
2071 }
2072
2073 /* "fetch_registers" method for prec over corefile. */
2074
2075 void
2076 record_full_core_target::fetch_registers (struct regcache *regcache,
2077 int regno)
2078 {
2079 if (regno < 0)
2080 {
2081 int num = gdbarch_num_regs (regcache->arch ());
2082 int i;
2083
2084 for (i = 0; i < num; i ++)
2085 regcache->raw_supply (i, *record_full_core_regbuf);
2086 }
2087 else
2088 regcache->raw_supply (regno, *record_full_core_regbuf);
2089 }
2090
2091 /* "prepare_to_store" method for prec over corefile. */
2092
2093 void
2094 record_full_core_target::prepare_to_store (struct regcache *regcache)
2095 {
2096 }
2097
2098 /* "store_registers" method for prec over corefile. */
2099
2100 void
2101 record_full_core_target::store_registers (struct regcache *regcache,
2102 int regno)
2103 {
2104 if (record_full_gdb_operation_disable)
2105 record_full_core_regbuf->raw_supply (regno, *regcache);
2106 else
2107 error (_("You can't do that without a process to debug."));
2108 }
2109
2110 /* "xfer_partial" method for prec over corefile. */
2111
2112 enum target_xfer_status
2113 record_full_core_target::xfer_partial (enum target_object object,
2114 const char *annex, gdb_byte *readbuf,
2115 const gdb_byte *writebuf, ULONGEST offset,
2116 ULONGEST len, ULONGEST *xfered_len)
2117 {
2118 if (object == TARGET_OBJECT_MEMORY)
2119 {
2120 if (record_full_gdb_operation_disable || !writebuf)
2121 {
2122 for (target_section &p : record_full_core_sections)
2123 {
2124 if (offset >= p.addr)
2125 {
2126 struct record_full_core_buf_entry *entry;
2127 ULONGEST sec_offset;
2128
2129 if (offset >= p.endaddr)
2130 continue;
2131
2132 if (offset + len > p.endaddr)
2133 len = p.endaddr - offset;
2134
2135 sec_offset = offset - p.addr;
2136
2137 /* Read readbuf or write writebuf p, offset, len. */
2138 /* Check flags. */
2139 if (p.the_bfd_section->flags & SEC_CONSTRUCTOR
2140 || (p.the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2141 {
2142 if (readbuf)
2143 memset (readbuf, 0, len);
2144
2145 *xfered_len = len;
2146 return TARGET_XFER_OK;
2147 }
2148 /* Get record_full_core_buf_entry. */
2149 for (entry = record_full_core_buf_list; entry;
2150 entry = entry->prev)
2151 if (entry->p == &p)
2152 break;
2153 if (writebuf)
2154 {
2155 if (!entry)
2156 {
2157 /* Add a new entry. */
2158 entry = XNEW (struct record_full_core_buf_entry);
2159 entry->p = &p;
2160 if (!bfd_malloc_and_get_section
2161 (p.the_bfd_section->owner,
2162 p.the_bfd_section,
2163 &entry->buf))
2164 {
2165 xfree (entry);
2166 return TARGET_XFER_EOF;
2167 }
2168 entry->prev = record_full_core_buf_list;
2169 record_full_core_buf_list = entry;
2170 }
2171
2172 memcpy (entry->buf + sec_offset, writebuf,
2173 (size_t) len);
2174 }
2175 else
2176 {
2177 if (!entry)
2178 return this->beneath ()->xfer_partial (object, annex,
2179 readbuf, writebuf,
2180 offset, len,
2181 xfered_len);
2182
2183 memcpy (readbuf, entry->buf + sec_offset,
2184 (size_t) len);
2185 }
2186
2187 *xfered_len = len;
2188 return TARGET_XFER_OK;
2189 }
2190 }
2191
2192 return TARGET_XFER_E_IO;
2193 }
2194 else
2195 error (_("You can't do that without a process to debug."));
2196 }
2197
2198 return this->beneath ()->xfer_partial (object, annex,
2199 readbuf, writebuf, offset, len,
2200 xfered_len);
2201 }
2202
2203 /* "insert_breakpoint" method for prec over corefile. */
2204
2205 int
2206 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2207 struct bp_target_info *bp_tgt)
2208 {
2209 return 0;
2210 }
2211
2212 /* "remove_breakpoint" method for prec over corefile. */
2213
2214 int
2215 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2216 struct bp_target_info *bp_tgt,
2217 enum remove_bp_reason reason)
2218 {
2219 return 0;
2220 }
2221
2222 /* "has_execution" method for prec over corefile. */
2223
2224 bool
2225 record_full_core_target::has_execution (inferior *inf)
2226 {
2227 return true;
2228 }
2229
2230 /* Record log save-file format
2231 Version 1 (never released)
2232
2233 Header:
2234 4 bytes: magic number htonl(0x20090829).
2235 NOTE: be sure to change whenever this file format changes!
2236
2237 Records:
2238 record_full_end:
2239 1 byte: record type (record_full_end, see enum record_full_type).
2240 record_full_reg:
2241 1 byte: record type (record_full_reg, see enum record_full_type).
2242 8 bytes: register id (network byte order).
2243 MAX_REGISTER_SIZE bytes: register value.
2244 record_full_mem:
2245 1 byte: record type (record_full_mem, see enum record_full_type).
2246 8 bytes: memory length (network byte order).
2247 8 bytes: memory address (network byte order).
2248 n bytes: memory value (n == memory length).
2249
2250 Version 2
2251 4 bytes: magic number netorder32(0x20091016).
2252 NOTE: be sure to change whenever this file format changes!
2253
2254 Records:
2255 record_full_end:
2256 1 byte: record type (record_full_end, see enum record_full_type).
2257 4 bytes: signal
2258 4 bytes: instruction count
2259 record_full_reg:
2260 1 byte: record type (record_full_reg, see enum record_full_type).
2261 4 bytes: register id (network byte order).
2262 n bytes: register value (n == actual register size).
2263 (eg. 4 bytes for x86 general registers).
2264 record_full_mem:
2265 1 byte: record type (record_full_mem, see enum record_full_type).
2266 4 bytes: memory length (network byte order).
2267 8 bytes: memory address (network byte order).
2268 n bytes: memory value (n == memory length).
2269
2270 */
2271
2272 /* bfdcore_read -- read bytes from a core file section. */
2273
2274 static inline void
2275 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2276 {
2277 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2278
2279 if (ret)
2280 *offset += len;
2281 else
2282 error (_("Failed to read %d bytes from core file %s ('%s')."),
2283 len, bfd_get_filename (obfd),
2284 bfd_errmsg (bfd_get_error ()));
2285 }
2286
2287 static inline uint64_t
2288 netorder64 (uint64_t input)
2289 {
2290 uint64_t ret;
2291
2292 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2293 BFD_ENDIAN_BIG, input);
2294 return ret;
2295 }
2296
2297 static inline uint32_t
2298 netorder32 (uint32_t input)
2299 {
2300 uint32_t ret;
2301
2302 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2303 BFD_ENDIAN_BIG, input);
2304 return ret;
2305 }
2306
2307 /* Restore the execution log from a core_bfd file. */
2308 static void
2309 record_full_restore (void)
2310 {
2311 uint32_t magic;
2312 struct record_full_entry *rec;
2313 asection *osec;
2314 uint32_t osec_size;
2315 int bfd_offset = 0;
2316 struct regcache *regcache;
2317
2318 /* We restore the execution log from the open core bfd,
2319 if there is one. */
2320 if (core_bfd == NULL)
2321 return;
2322
2323 /* "record_full_restore" can only be called when record list is empty. */
2324 gdb_assert (record_full_first.next == NULL);
2325
2326 if (record_debug)
2327 gdb_printf (gdb_stdlog, "Restoring recording from core file.\n");
2328
2329 /* Now need to find our special note section. */
2330 osec = bfd_get_section_by_name (core_bfd, "null0");
2331 if (record_debug)
2332 gdb_printf (gdb_stdlog, "Find precord section %s.\n",
2333 osec ? "succeeded" : "failed");
2334 if (osec == NULL)
2335 return;
2336 osec_size = bfd_section_size (osec);
2337 if (record_debug)
2338 gdb_printf (gdb_stdlog, "%s", bfd_section_name (osec));
2339
2340 /* Check the magic code. */
2341 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2342 if (magic != RECORD_FULL_FILE_MAGIC)
2343 error (_("Version mis-match or file format error in core file %s."),
2344 bfd_get_filename (core_bfd));
2345 if (record_debug)
2346 gdb_printf (gdb_stdlog,
2347 " Reading 4-byte magic cookie "
2348 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2349 phex_nz (netorder32 (magic), 4));
2350
2351 /* Restore the entries in recfd into record_full_arch_list_head and
2352 record_full_arch_list_tail. */
2353 record_full_arch_list_head = NULL;
2354 record_full_arch_list_tail = NULL;
2355 record_full_insn_num = 0;
2356
2357 try
2358 {
2359 regcache = get_current_regcache ();
2360
2361 while (1)
2362 {
2363 uint8_t rectype;
2364 uint32_t regnum, len, signal, count;
2365 uint64_t addr;
2366
2367 /* We are finished when offset reaches osec_size. */
2368 if (bfd_offset >= osec_size)
2369 break;
2370 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2371
2372 switch (rectype)
2373 {
2374 case record_full_reg: /* reg */
2375 /* Get register number to regnum. */
2376 bfdcore_read (core_bfd, osec, &regnum,
2377 sizeof (regnum), &bfd_offset);
2378 regnum = netorder32 (regnum);
2379
2380 rec = record_full_reg_alloc (regcache, regnum);
2381
2382 /* Get val. */
2383 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2384 rec->u.reg.len, &bfd_offset);
2385
2386 if (record_debug)
2387 gdb_printf (gdb_stdlog,
2388 " Reading register %d (1 "
2389 "plus %lu plus %d bytes)\n",
2390 rec->u.reg.num,
2391 (unsigned long) sizeof (regnum),
2392 rec->u.reg.len);
2393 break;
2394
2395 case record_full_mem: /* mem */
2396 /* Get len. */
2397 bfdcore_read (core_bfd, osec, &len,
2398 sizeof (len), &bfd_offset);
2399 len = netorder32 (len);
2400
2401 /* Get addr. */
2402 bfdcore_read (core_bfd, osec, &addr,
2403 sizeof (addr), &bfd_offset);
2404 addr = netorder64 (addr);
2405
2406 rec = record_full_mem_alloc (addr, len);
2407
2408 /* Get val. */
2409 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2410 rec->u.mem.len, &bfd_offset);
2411
2412 if (record_debug)
2413 gdb_printf (gdb_stdlog,
2414 " Reading memory %s (1 plus "
2415 "%lu plus %lu plus %d bytes)\n",
2416 paddress (get_current_arch (),
2417 rec->u.mem.addr),
2418 (unsigned long) sizeof (addr),
2419 (unsigned long) sizeof (len),
2420 rec->u.mem.len);
2421 break;
2422
2423 case record_full_end: /* end */
2424 rec = record_full_end_alloc ();
2425 record_full_insn_num ++;
2426
2427 /* Get signal value. */
2428 bfdcore_read (core_bfd, osec, &signal,
2429 sizeof (signal), &bfd_offset);
2430 signal = netorder32 (signal);
2431 rec->u.end.sigval = (enum gdb_signal) signal;
2432
2433 /* Get insn count. */
2434 bfdcore_read (core_bfd, osec, &count,
2435 sizeof (count), &bfd_offset);
2436 count = netorder32 (count);
2437 rec->u.end.insn_num = count;
2438 record_full_insn_count = count + 1;
2439 if (record_debug)
2440 gdb_printf (gdb_stdlog,
2441 " Reading record_full_end (1 + "
2442 "%lu + %lu bytes), offset == %s\n",
2443 (unsigned long) sizeof (signal),
2444 (unsigned long) sizeof (count),
2445 paddress (get_current_arch (),
2446 bfd_offset));
2447 break;
2448
2449 default:
2450 error (_("Bad entry type in core file %s."),
2451 bfd_get_filename (core_bfd));
2452 break;
2453 }
2454
2455 /* Add rec to record arch list. */
2456 record_full_arch_list_add (rec);
2457 }
2458 }
2459 catch (const gdb_exception &ex)
2460 {
2461 record_full_list_release (record_full_arch_list_tail);
2462 throw;
2463 }
2464
2465 /* Add record_full_arch_list_head to the end of record list. */
2466 record_full_first.next = record_full_arch_list_head;
2467 record_full_arch_list_head->prev = &record_full_first;
2468 record_full_arch_list_tail->next = NULL;
2469 record_full_list = &record_full_first;
2470
2471 /* Update record_full_insn_max_num. */
2472 if (record_full_insn_num > record_full_insn_max_num)
2473 {
2474 record_full_insn_max_num = record_full_insn_num;
2475 warning (_("Auto increase record/replay buffer limit to %u."),
2476 record_full_insn_max_num);
2477 }
2478
2479 /* Succeeded. */
2480 gdb_printf (_("Restored records from core file %s.\n"),
2481 bfd_get_filename (core_bfd));
2482
2483 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2484 }
2485
2486 /* bfdcore_write -- write bytes into a core file section. */
2487
2488 static inline void
2489 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2490 {
2491 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2492
2493 if (ret)
2494 *offset += len;
2495 else
2496 error (_("Failed to write %d bytes to core file %s ('%s')."),
2497 len, bfd_get_filename (obfd),
2498 bfd_errmsg (bfd_get_error ()));
2499 }
2500
2501 /* Restore the execution log from a file. We use a modified elf
2502 corefile format, with an extra section for our data. */
2503
2504 static void
2505 cmd_record_full_restore (const char *args, int from_tty)
2506 {
2507 core_file_command (args, from_tty);
2508 record_full_open (args, from_tty);
2509 }
2510
2511 /* Save the execution log to a file. We use a modified elf corefile
2512 format, with an extra section for our data. */
2513
2514 void
2515 record_full_base_target::save_record (const char *recfilename)
2516 {
2517 struct record_full_entry *cur_record_full_list;
2518 uint32_t magic;
2519 struct regcache *regcache;
2520 struct gdbarch *gdbarch;
2521 int save_size = 0;
2522 asection *osec = NULL;
2523 int bfd_offset = 0;
2524
2525 /* Open the save file. */
2526 if (record_debug)
2527 gdb_printf (gdb_stdlog, "Saving execution log to core file '%s'\n",
2528 recfilename);
2529
2530 /* Open the output file. */
2531 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2532
2533 /* Arrange to remove the output file on failure. */
2534 gdb::unlinker unlink_file (recfilename);
2535
2536 /* Save the current record entry to "cur_record_full_list". */
2537 cur_record_full_list = record_full_list;
2538
2539 /* Get the values of regcache and gdbarch. */
2540 regcache = get_current_regcache ();
2541 gdbarch = regcache->arch ();
2542
2543 /* Disable the GDB operation record. */
2544 scoped_restore restore_operation_disable
2545 = record_full_gdb_operation_disable_set ();
2546
2547 /* Reverse execute to the begin of record list. */
2548 while (1)
2549 {
2550 /* Check for beginning and end of log. */
2551 if (record_full_list == &record_full_first)
2552 break;
2553
2554 record_full_exec_insn (regcache, gdbarch, record_full_list);
2555
2556 if (record_full_list->prev)
2557 record_full_list = record_full_list->prev;
2558 }
2559
2560 /* Compute the size needed for the extra bfd section. */
2561 save_size = 4; /* magic cookie */
2562 for (record_full_list = record_full_first.next; record_full_list;
2563 record_full_list = record_full_list->next)
2564 switch (record_full_list->type)
2565 {
2566 case record_full_end:
2567 save_size += 1 + 4 + 4;
2568 break;
2569 case record_full_reg:
2570 save_size += 1 + 4 + record_full_list->u.reg.len;
2571 break;
2572 case record_full_mem:
2573 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2574 break;
2575 }
2576
2577 /* Make the new bfd section. */
2578 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2579 SEC_HAS_CONTENTS
2580 | SEC_READONLY);
2581 if (osec == NULL)
2582 error (_("Failed to create 'precord' section for corefile %s: %s"),
2583 recfilename,
2584 bfd_errmsg (bfd_get_error ()));
2585 bfd_set_section_size (osec, save_size);
2586 bfd_set_section_vma (osec, 0);
2587 bfd_set_section_alignment (osec, 0);
2588
2589 /* Save corefile state. */
2590 write_gcore_file (obfd.get ());
2591
2592 /* Write out the record log. */
2593 /* Write the magic code. */
2594 magic = RECORD_FULL_FILE_MAGIC;
2595 if (record_debug)
2596 gdb_printf (gdb_stdlog,
2597 " Writing 4-byte magic cookie "
2598 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2599 phex_nz (magic, 4));
2600 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2601
2602 /* Save the entries to recfd and forward execute to the end of
2603 record list. */
2604 record_full_list = &record_full_first;
2605 while (1)
2606 {
2607 /* Save entry. */
2608 if (record_full_list != &record_full_first)
2609 {
2610 uint8_t type;
2611 uint32_t regnum, len, signal, count;
2612 uint64_t addr;
2613
2614 type = record_full_list->type;
2615 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2616
2617 switch (record_full_list->type)
2618 {
2619 case record_full_reg: /* reg */
2620 if (record_debug)
2621 gdb_printf (gdb_stdlog,
2622 " Writing register %d (1 "
2623 "plus %lu plus %d bytes)\n",
2624 record_full_list->u.reg.num,
2625 (unsigned long) sizeof (regnum),
2626 record_full_list->u.reg.len);
2627
2628 /* Write regnum. */
2629 regnum = netorder32 (record_full_list->u.reg.num);
2630 bfdcore_write (obfd.get (), osec, &regnum,
2631 sizeof (regnum), &bfd_offset);
2632
2633 /* Write regval. */
2634 bfdcore_write (obfd.get (), osec,
2635 record_full_get_loc (record_full_list),
2636 record_full_list->u.reg.len, &bfd_offset);
2637 break;
2638
2639 case record_full_mem: /* mem */
2640 if (record_debug)
2641 gdb_printf (gdb_stdlog,
2642 " Writing memory %s (1 plus "
2643 "%lu plus %lu plus %d bytes)\n",
2644 paddress (gdbarch,
2645 record_full_list->u.mem.addr),
2646 (unsigned long) sizeof (addr),
2647 (unsigned long) sizeof (len),
2648 record_full_list->u.mem.len);
2649
2650 /* Write memlen. */
2651 len = netorder32 (record_full_list->u.mem.len);
2652 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2653 &bfd_offset);
2654
2655 /* Write memaddr. */
2656 addr = netorder64 (record_full_list->u.mem.addr);
2657 bfdcore_write (obfd.get (), osec, &addr,
2658 sizeof (addr), &bfd_offset);
2659
2660 /* Write memval. */
2661 bfdcore_write (obfd.get (), osec,
2662 record_full_get_loc (record_full_list),
2663 record_full_list->u.mem.len, &bfd_offset);
2664 break;
2665
2666 case record_full_end:
2667 if (record_debug)
2668 gdb_printf (gdb_stdlog,
2669 " Writing record_full_end (1 + "
2670 "%lu + %lu bytes)\n",
2671 (unsigned long) sizeof (signal),
2672 (unsigned long) sizeof (count));
2673 /* Write signal value. */
2674 signal = netorder32 (record_full_list->u.end.sigval);
2675 bfdcore_write (obfd.get (), osec, &signal,
2676 sizeof (signal), &bfd_offset);
2677
2678 /* Write insn count. */
2679 count = netorder32 (record_full_list->u.end.insn_num);
2680 bfdcore_write (obfd.get (), osec, &count,
2681 sizeof (count), &bfd_offset);
2682 break;
2683 }
2684 }
2685
2686 /* Execute entry. */
2687 record_full_exec_insn (regcache, gdbarch, record_full_list);
2688
2689 if (record_full_list->next)
2690 record_full_list = record_full_list->next;
2691 else
2692 break;
2693 }
2694
2695 /* Reverse execute to cur_record_full_list. */
2696 while (1)
2697 {
2698 /* Check for beginning and end of log. */
2699 if (record_full_list == cur_record_full_list)
2700 break;
2701
2702 record_full_exec_insn (regcache, gdbarch, record_full_list);
2703
2704 if (record_full_list->prev)
2705 record_full_list = record_full_list->prev;
2706 }
2707
2708 unlink_file.keep ();
2709
2710 /* Succeeded. */
2711 gdb_printf (_("Saved core file %s with execution log.\n"),
2712 recfilename);
2713 }
2714
2715 /* record_full_goto_insn -- rewind the record log (forward or backward,
2716 depending on DIR) to the given entry, changing the program state
2717 correspondingly. */
2718
2719 static void
2720 record_full_goto_insn (struct record_full_entry *entry,
2721 enum exec_direction_kind dir)
2722 {
2723 scoped_restore restore_operation_disable
2724 = record_full_gdb_operation_disable_set ();
2725 struct regcache *regcache = get_current_regcache ();
2726 struct gdbarch *gdbarch = regcache->arch ();
2727
2728 /* Assume everything is valid: we will hit the entry,
2729 and we will not hit the end of the recording. */
2730
2731 if (dir == EXEC_FORWARD)
2732 record_full_list = record_full_list->next;
2733
2734 do
2735 {
2736 record_full_exec_insn (regcache, gdbarch, record_full_list);
2737 if (dir == EXEC_REVERSE)
2738 record_full_list = record_full_list->prev;
2739 else
2740 record_full_list = record_full_list->next;
2741 } while (record_full_list != entry);
2742 }
2743
2744 /* Alias for "target record-full". */
2745
2746 static void
2747 cmd_record_full_start (const char *args, int from_tty)
2748 {
2749 execute_command ("target record-full", from_tty);
2750 }
2751
2752 static void
2753 set_record_full_insn_max_num (const char *args, int from_tty,
2754 struct cmd_list_element *c)
2755 {
2756 if (record_full_insn_num > record_full_insn_max_num)
2757 {
2758 /* Count down record_full_insn_num while releasing records from list. */
2759 while (record_full_insn_num > record_full_insn_max_num)
2760 {
2761 record_full_list_release_first ();
2762 record_full_insn_num--;
2763 }
2764 }
2765 }
2766
2767 void _initialize_record_full ();
2768 void
2769 _initialize_record_full ()
2770 {
2771 struct cmd_list_element *c;
2772
2773 /* Init record_full_first. */
2774 record_full_first.prev = NULL;
2775 record_full_first.next = NULL;
2776 record_full_first.type = record_full_end;
2777
2778 add_target (record_full_target_info, record_full_open);
2779 add_deprecated_target_alias (record_full_target_info, "record");
2780 add_target (record_full_core_target_info, record_full_open);
2781
2782 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2783 _("Start full execution recording."), &record_full_cmdlist,
2784 0, &record_cmdlist);
2785
2786 cmd_list_element *record_full_restore_cmd
2787 = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2788 _("Restore the execution log from a file.\n\
2789 Argument is filename. File must be created with 'record save'."),
2790 &record_full_cmdlist);
2791 set_cmd_completer (record_full_restore_cmd, filename_completer);
2792
2793 /* Deprecate the old version without "full" prefix. */
2794 c = add_alias_cmd ("restore", record_full_restore_cmd, class_obscure, 1,
2795 &record_cmdlist);
2796 set_cmd_completer (c, filename_completer);
2797 deprecate_cmd (c, "record full restore");
2798
2799 add_setshow_prefix_cmd ("full", class_support,
2800 _("Set record options."),
2801 _("Show record options."),
2802 &set_record_full_cmdlist,
2803 &show_record_full_cmdlist,
2804 &set_record_cmdlist,
2805 &show_record_cmdlist);
2806
2807 /* Record instructions number limit command. */
2808 set_show_commands set_record_full_stop_at_limit_cmds
2809 = add_setshow_boolean_cmd ("stop-at-limit", no_class,
2810 &record_full_stop_at_limit, _("\
2811 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2812 Show whether record/replay stops when record/replay buffer becomes full."),
2813 _("Default is ON.\n\
2814 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2815 When OFF, if the record/replay buffer becomes full,\n\
2816 delete the oldest recorded instruction to make room for each new one."),
2817 NULL, NULL,
2818 &set_record_full_cmdlist,
2819 &show_record_full_cmdlist);
2820
2821 c = add_alias_cmd ("stop-at-limit",
2822 set_record_full_stop_at_limit_cmds.set, no_class, 1,
2823 &set_record_cmdlist);
2824 deprecate_cmd (c, "set record full stop-at-limit");
2825
2826 c = add_alias_cmd ("stop-at-limit",
2827 set_record_full_stop_at_limit_cmds.show, no_class, 1,
2828 &show_record_cmdlist);
2829 deprecate_cmd (c, "show record full stop-at-limit");
2830
2831 set_show_commands record_full_insn_number_max_cmds
2832 = add_setshow_uinteger_cmd ("insn-number-max", no_class,
2833 &record_full_insn_max_num,
2834 _("Set record/replay buffer limit."),
2835 _("Show record/replay buffer limit."), _("\
2836 Set the maximum number of instructions to be stored in the\n\
2837 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2838 limit. Default is 200000."),
2839 set_record_full_insn_max_num,
2840 NULL, &set_record_full_cmdlist,
2841 &show_record_full_cmdlist);
2842
2843 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.set,
2844 no_class, 1, &set_record_cmdlist);
2845 deprecate_cmd (c, "set record full insn-number-max");
2846
2847 c = add_alias_cmd ("insn-number-max", record_full_insn_number_max_cmds.show,
2848 no_class, 1, &show_record_cmdlist);
2849 deprecate_cmd (c, "show record full insn-number-max");
2850
2851 set_show_commands record_full_memory_query_cmds
2852 = add_setshow_boolean_cmd ("memory-query", no_class,
2853 &record_full_memory_query, _("\
2854 Set whether query if PREC cannot record memory change of next instruction."),
2855 _("\
2856 Show whether query if PREC cannot record memory change of next instruction."),
2857 _("\
2858 Default is OFF.\n\
2859 When ON, query if PREC cannot record memory change of next instruction."),
2860 NULL, NULL,
2861 &set_record_full_cmdlist,
2862 &show_record_full_cmdlist);
2863
2864 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.set,
2865 no_class, 1, &set_record_cmdlist);
2866 deprecate_cmd (c, "set record full memory-query");
2867
2868 c = add_alias_cmd ("memory-query", record_full_memory_query_cmds.show,
2869 no_class, 1,&show_record_cmdlist);
2870 deprecate_cmd (c, "show record full memory-query");
2871 }