]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/sparc-tdep.c
634a9fb65572ba8602154d4a353ddedb55e0f43e
[thirdparty/binutils-gdb.git] / gdb / sparc-tdep.c
1 /* Target-dependent code for the SPARC for GDB, the GNU debugger.
2
3 Copyright 1986, 1987, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation,
5 Inc.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
23
24 /* ??? Support for calling functions from gdb in sparc64 is unfinished. */
25
26 #include "defs.h"
27 #include "arch-utils.h"
28 #include "frame.h"
29 #include "inferior.h"
30 #include "target.h"
31 #include "value.h"
32 #include "bfd.h"
33 #include "gdb_string.h"
34 #include "regcache.h"
35 #include "osabi.h"
36
37 #ifdef USE_PROC_FS
38 #include <sys/procfs.h>
39 /* Prototypes for supply_gregset etc. */
40 #include "gregset.h"
41 #endif
42
43 #include "gdbcore.h"
44
45 #include "symfile.h" /* for 'entry_point_address' */
46
47 /*
48 * Some local macros that have multi-arch and non-multi-arch versions:
49 */
50
51 #if (GDB_MULTI_ARCH > 0)
52
53 /* Does the target have Floating Point registers? */
54 #define SPARC_HAS_FPU (gdbarch_tdep (current_gdbarch)->has_fpu)
55 /* Number of bytes devoted to Floating Point registers: */
56 #define FP_REGISTER_BYTES (gdbarch_tdep (current_gdbarch)->fp_register_bytes)
57 /* Highest numbered Floating Point register. */
58 #define FP_MAX_REGNUM (gdbarch_tdep (current_gdbarch)->fp_max_regnum)
59 /* Size of a general (integer) register: */
60 #define SPARC_INTREG_SIZE (gdbarch_tdep (current_gdbarch)->intreg_size)
61 /* Offset within the call dummy stack of the saved registers. */
62 #define DUMMY_REG_SAVE_OFFSET (gdbarch_tdep (current_gdbarch)->reg_save_offset)
63
64 #else /* non-multi-arch */
65
66
67 /* Does the target have Floating Point registers? */
68 #if defined(TARGET_SPARCLET) || defined(TARGET_SPARCLITE)
69 #define SPARC_HAS_FPU 0
70 #else
71 #define SPARC_HAS_FPU 1
72 #endif
73
74 /* Number of bytes devoted to Floating Point registers: */
75 #if (GDB_TARGET_IS_SPARC64)
76 #define FP_REGISTER_BYTES (64 * 4)
77 #else
78 #if (SPARC_HAS_FPU)
79 #define FP_REGISTER_BYTES (32 * 4)
80 #else
81 #define FP_REGISTER_BYTES 0
82 #endif
83 #endif
84
85 /* Highest numbered Floating Point register. */
86 #if (GDB_TARGET_IS_SPARC64)
87 #define FP_MAX_REGNUM (FP0_REGNUM + 48)
88 #else
89 #define FP_MAX_REGNUM (FP0_REGNUM + 32)
90 #endif
91
92 /* Size of a general (integer) register: */
93 #define SPARC_INTREG_SIZE (REGISTER_RAW_SIZE (G0_REGNUM))
94
95 /* Offset within the call dummy stack of the saved registers. */
96 #if (GDB_TARGET_IS_SPARC64)
97 #define DUMMY_REG_SAVE_OFFSET (128 + 16)
98 #else
99 #define DUMMY_REG_SAVE_OFFSET 0x60
100 #endif
101
102 #endif /* GDB_MULTI_ARCH */
103
104 struct gdbarch_tdep
105 {
106 int has_fpu;
107 int fp_register_bytes;
108 int y_regnum;
109 int fp_max_regnum;
110 int intreg_size;
111 int reg_save_offset;
112 int call_dummy_call_offset;
113 int print_insn_mach;
114 };
115
116 /* Now make GDB_TARGET_IS_SPARC64 a runtime test. */
117 /* FIXME MVS: or try testing bfd_arch_info.arch and bfd_arch_info.mach ...
118 * define GDB_TARGET_IS_SPARC64 \
119 * (TARGET_ARCHITECTURE->arch == bfd_arch_sparc && \
120 * (TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9 || \
121 * TARGET_ARCHITECTURE->mach == bfd_mach_sparc_v9a))
122 */
123
124 /* From infrun.c */
125 extern int stop_after_trap;
126
127 /* We don't store all registers immediately when requested, since they
128 get sent over in large chunks anyway. Instead, we accumulate most
129 of the changes and send them over once. "deferred_stores" keeps
130 track of which sets of registers we have locally-changed copies of,
131 so we only need send the groups that have changed. */
132
133 int deferred_stores = 0; /* Accumulated stores we want to do eventually. */
134
135
136 /* Some machines, such as Fujitsu SPARClite 86x, have a bi-endian mode
137 where instructions are big-endian and data are little-endian.
138 This flag is set when we detect that the target is of this type. */
139
140 int bi_endian = 0;
141
142
143 /* Fetch a single instruction. Even on bi-endian machines
144 such as sparc86x, instructions are always big-endian. */
145
146 static unsigned long
147 fetch_instruction (CORE_ADDR pc)
148 {
149 unsigned long retval;
150 int i;
151 unsigned char buf[4];
152
153 read_memory (pc, buf, sizeof (buf));
154
155 /* Start at the most significant end of the integer, and work towards
156 the least significant. */
157 retval = 0;
158 for (i = 0; i < sizeof (buf); ++i)
159 retval = (retval << 8) | buf[i];
160 return retval;
161 }
162
163
164 /* Branches with prediction are treated like their non-predicting cousins. */
165 /* FIXME: What about floating point branches? */
166
167 /* Macros to extract fields from sparc instructions. */
168 #define X_OP(i) (((i) >> 30) & 0x3)
169 #define X_RD(i) (((i) >> 25) & 0x1f)
170 #define X_A(i) (((i) >> 29) & 1)
171 #define X_COND(i) (((i) >> 25) & 0xf)
172 #define X_OP2(i) (((i) >> 22) & 0x7)
173 #define X_IMM22(i) ((i) & 0x3fffff)
174 #define X_OP3(i) (((i) >> 19) & 0x3f)
175 #define X_RS1(i) (((i) >> 14) & 0x1f)
176 #define X_I(i) (((i) >> 13) & 1)
177 #define X_IMM13(i) ((i) & 0x1fff)
178 /* Sign extension macros. */
179 #define X_SIMM13(i) ((X_IMM13 (i) ^ 0x1000) - 0x1000)
180 #define X_DISP22(i) ((X_IMM22 (i) ^ 0x200000) - 0x200000)
181 #define X_CC(i) (((i) >> 20) & 3)
182 #define X_P(i) (((i) >> 19) & 1)
183 #define X_DISP19(i) ((((i) & 0x7ffff) ^ 0x40000) - 0x40000)
184 #define X_RCOND(i) (((i) >> 25) & 7)
185 #define X_DISP16(i) ((((((i) >> 6) && 0xc000) | ((i) & 0x3fff)) ^ 0x8000) - 0x8000)
186 #define X_FCN(i) (((i) >> 25) & 31)
187
188 typedef enum
189 {
190 Error, not_branch, bicc, bicca, ba, baa, ticc, ta, done_retry
191 } branch_type;
192
193 /* Simulate single-step ptrace call for sun4. Code written by Gary
194 Beihl (beihl@mcc.com). */
195
196 /* npc4 and next_pc describe the situation at the time that the
197 step-breakpoint was set, not necessary the current value of NPC_REGNUM. */
198 static CORE_ADDR next_pc, npc4, target;
199 static int brknpc4, brktrg;
200 typedef char binsn_quantum[BREAKPOINT_MAX];
201 static binsn_quantum break_mem[3];
202
203 static branch_type isbranch (long, CORE_ADDR, CORE_ADDR *);
204
205 /* single_step() is called just before we want to resume the inferior,
206 if we want to single-step it but there is no hardware or kernel single-step
207 support (as on all SPARCs). We find all the possible targets of the
208 coming instruction and breakpoint them.
209
210 single_step is also called just after the inferior stops. If we had
211 set up a simulated single-step, we undo our damage. */
212
213 void
214 sparc_software_single_step (enum target_signal ignore, /* pid, but we don't need it */
215 int insert_breakpoints_p)
216 {
217 branch_type br;
218 CORE_ADDR pc;
219 long pc_instruction;
220
221 if (insert_breakpoints_p)
222 {
223 /* Always set breakpoint for NPC. */
224 next_pc = read_register (NPC_REGNUM);
225 npc4 = next_pc + 4; /* branch not taken */
226
227 target_insert_breakpoint (next_pc, break_mem[0]);
228 /* printf_unfiltered ("set break at %x\n",next_pc); */
229
230 pc = read_register (PC_REGNUM);
231 pc_instruction = fetch_instruction (pc);
232 br = isbranch (pc_instruction, pc, &target);
233 brknpc4 = brktrg = 0;
234
235 if (br == bicca)
236 {
237 /* Conditional annulled branch will either end up at
238 npc (if taken) or at npc+4 (if not taken).
239 Trap npc+4. */
240 brknpc4 = 1;
241 target_insert_breakpoint (npc4, break_mem[1]);
242 }
243 else if (br == baa && target != next_pc)
244 {
245 /* Unconditional annulled branch will always end up at
246 the target. */
247 brktrg = 1;
248 target_insert_breakpoint (target, break_mem[2]);
249 }
250 else if (GDB_TARGET_IS_SPARC64 && br == done_retry)
251 {
252 brktrg = 1;
253 target_insert_breakpoint (target, break_mem[2]);
254 }
255 }
256 else
257 {
258 /* Remove breakpoints */
259 target_remove_breakpoint (next_pc, break_mem[0]);
260
261 if (brknpc4)
262 target_remove_breakpoint (npc4, break_mem[1]);
263
264 if (brktrg)
265 target_remove_breakpoint (target, break_mem[2]);
266 }
267 }
268 \f
269 struct frame_extra_info
270 {
271 CORE_ADDR bottom;
272 int in_prologue;
273 int flat;
274 /* Following fields only relevant for flat frames. */
275 CORE_ADDR pc_addr;
276 CORE_ADDR fp_addr;
277 /* Add this to ->frame to get the value of the stack pointer at the
278 time of the register saves. */
279 int sp_offset;
280 };
281
282 /* Call this for each newly created frame. For SPARC, we need to
283 calculate the bottom of the frame, and do some extra work if the
284 prologue has been generated via the -mflat option to GCC. In
285 particular, we need to know where the previous fp and the pc have
286 been stashed, since their exact position within the frame may vary. */
287
288 void
289 sparc_init_extra_frame_info (int fromleaf, struct frame_info *fi)
290 {
291 char *name;
292 CORE_ADDR prologue_start, prologue_end;
293 int insn;
294
295 frame_extra_info_zalloc (fi, sizeof (struct frame_extra_info));
296 frame_saved_regs_zalloc (fi);
297
298 get_frame_extra_info (fi)->bottom =
299 (get_next_frame (fi)
300 ? (get_frame_base (fi) == get_frame_base (get_next_frame (fi))
301 ? get_frame_extra_info (get_next_frame (fi))->bottom
302 : get_frame_base (get_next_frame (fi)))
303 : read_sp ());
304
305 /* If fi->next is NULL, then we already set ->frame by passing read_fp()
306 to create_new_frame. */
307 if (get_next_frame (fi))
308 {
309 char *buf;
310
311 buf = alloca (MAX_REGISTER_RAW_SIZE);
312
313 /* Compute ->frame as if not flat. If it is flat, we'll change
314 it later. */
315 if (get_next_frame (get_next_frame (fi)) != NULL
316 && ((get_frame_type (get_next_frame (get_next_frame (fi))) == SIGTRAMP_FRAME)
317 || deprecated_frame_in_dummy (get_next_frame (get_next_frame (fi))))
318 && frameless_look_for_prologue (get_next_frame (fi)))
319 {
320 /* A frameless function interrupted by a signal did not change
321 the frame pointer, fix up frame pointer accordingly. */
322 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
323 get_frame_extra_info (fi)->bottom =
324 get_frame_extra_info (get_next_frame (fi))->bottom;
325 }
326 else
327 {
328 /* Should we adjust for stack bias here? */
329 get_saved_register (buf, 0, 0, fi, FP_REGNUM, 0);
330 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (FP_REGNUM)));
331
332 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
333 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
334 }
335 }
336
337 /* Decide whether this is a function with a ``flat register window''
338 frame. For such functions, the frame pointer is actually in %i7. */
339 get_frame_extra_info (fi)->flat = 0;
340 get_frame_extra_info (fi)->in_prologue = 0;
341 if (find_pc_partial_function (get_frame_pc (fi), &name, &prologue_start, &prologue_end))
342 {
343 /* See if the function starts with an add (which will be of a
344 negative number if a flat frame) to the sp. FIXME: Does not
345 handle large frames which will need more than one instruction
346 to adjust the sp. */
347 insn = fetch_instruction (prologue_start);
348 if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0
349 && X_I (insn) && X_SIMM13 (insn) < 0)
350 {
351 int offset = X_SIMM13 (insn);
352
353 /* Then look for a save of %i7 into the frame. */
354 insn = fetch_instruction (prologue_start + 4);
355 if (X_OP (insn) == 3
356 && X_RD (insn) == 31
357 && X_OP3 (insn) == 4
358 && X_RS1 (insn) == 14)
359 {
360 char *buf;
361
362 buf = alloca (MAX_REGISTER_RAW_SIZE);
363
364 /* We definitely have a flat frame now. */
365 get_frame_extra_info (fi)->flat = 1;
366
367 get_frame_extra_info (fi)->sp_offset = offset;
368
369 /* Overwrite the frame's address with the value in %i7. */
370 get_saved_register (buf, 0, 0, fi, I7_REGNUM, 0);
371 deprecated_update_frame_base_hack (fi, extract_address (buf, REGISTER_RAW_SIZE (I7_REGNUM)));
372
373 if (GDB_TARGET_IS_SPARC64 && (get_frame_base (fi) & 1))
374 deprecated_update_frame_base_hack (fi, get_frame_base (fi) + 2047);
375
376 /* Record where the fp got saved. */
377 get_frame_extra_info (fi)->fp_addr =
378 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
379
380 /* Also try to collect where the pc got saved to. */
381 get_frame_extra_info (fi)->pc_addr = 0;
382 insn = fetch_instruction (prologue_start + 12);
383 if (X_OP (insn) == 3
384 && X_RD (insn) == 15
385 && X_OP3 (insn) == 4
386 && X_RS1 (insn) == 14)
387 get_frame_extra_info (fi)->pc_addr =
388 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
389 }
390 }
391 else
392 {
393 /* Check if the PC is in the function prologue before a SAVE
394 instruction has been executed yet. If so, set the frame
395 to the current value of the stack pointer and set
396 the in_prologue flag. */
397 CORE_ADDR addr;
398 struct symtab_and_line sal;
399
400 sal = find_pc_line (prologue_start, 0);
401 if (sal.line == 0) /* no line info, use PC */
402 prologue_end = get_frame_pc (fi);
403 else if (sal.end < prologue_end)
404 prologue_end = sal.end;
405 if (get_frame_pc (fi) < prologue_end)
406 {
407 for (addr = prologue_start; addr < get_frame_pc (fi); addr += 4)
408 {
409 insn = read_memory_integer (addr, 4);
410 if (X_OP (insn) == 2 && X_OP3 (insn) == 0x3c)
411 break; /* SAVE seen, stop searching */
412 }
413 if (addr >= get_frame_pc (fi))
414 {
415 get_frame_extra_info (fi)->in_prologue = 1;
416 deprecated_update_frame_base_hack (fi, read_register (SP_REGNUM));
417 }
418 }
419 }
420 }
421 if (get_next_frame (fi) && get_frame_base (fi) == 0)
422 {
423 /* Kludge to cause init_prev_frame_info to destroy the new frame. */
424 deprecated_update_frame_base_hack (fi, get_frame_base (get_next_frame (fi)));
425 deprecated_update_frame_pc_hack (fi, get_frame_pc (get_next_frame (fi)));
426 }
427 }
428
429 CORE_ADDR
430 sparc_frame_chain (struct frame_info *frame)
431 {
432 /* Value that will cause FRAME_CHAIN_VALID to not worry about the chain
433 value. If it really is zero, we detect it later in
434 sparc_init_prev_frame.
435
436 Note: kevinb/2003-02-18: The constant 1 used to be returned
437 here, but, after some recent changes to frame_chain_valid(),
438 this value is no longer suitable for causing frame_chain_valid()
439 to "not worry about the chain value." The constant ~0 (i.e,
440 0xfff...) causes the failing test in frame_chain_valid() to
441 succeed thus preserving the "not worry" property. I had considered
442 using something like ``get_frame_base (frame) + 1''. However, I think
443 a constant value is better, because when debugging this problem,
444 I knew that something funny was going on as soon as I saw the
445 constant 1 being used as the frame chain elsewhere in GDB. */
446
447 return ~ (CORE_ADDR) 0;
448 }
449
450 CORE_ADDR
451 sparc_extract_struct_value_address (char *regbuf)
452 {
453 return extract_address (regbuf + REGISTER_BYTE (O0_REGNUM),
454 REGISTER_RAW_SIZE (O0_REGNUM));
455 }
456
457 /* Find the pc saved in frame FRAME. */
458
459 CORE_ADDR
460 sparc_frame_saved_pc (struct frame_info *frame)
461 {
462 char *buf;
463 CORE_ADDR addr;
464
465 buf = alloca (MAX_REGISTER_RAW_SIZE);
466 if ((get_frame_type (frame) == SIGTRAMP_FRAME))
467 {
468 /* This is the signal trampoline frame.
469 Get the saved PC from the sigcontext structure. */
470
471 #ifndef SIGCONTEXT_PC_OFFSET
472 #define SIGCONTEXT_PC_OFFSET 12
473 #endif
474
475 CORE_ADDR sigcontext_addr;
476 char *scbuf;
477 int saved_pc_offset = SIGCONTEXT_PC_OFFSET;
478 char *name = NULL;
479
480 scbuf = alloca (TARGET_PTR_BIT / HOST_CHAR_BIT);
481
482 /* Solaris2 ucbsigvechandler passes a pointer to a sigcontext
483 as the third parameter. The offset to the saved pc is 12. */
484 find_pc_partial_function (get_frame_pc (frame), &name,
485 (CORE_ADDR *) NULL, (CORE_ADDR *) NULL);
486 if (name && STREQ (name, "ucbsigvechandler"))
487 saved_pc_offset = 12;
488
489 /* The sigcontext address is contained in register O2. */
490 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
491 frame, O0_REGNUM + 2, (enum lval_type *) NULL);
492 sigcontext_addr = extract_address (buf, REGISTER_RAW_SIZE (O0_REGNUM + 2));
493
494 /* Don't cause a memory_error when accessing sigcontext in case the
495 stack layout has changed or the stack is corrupt. */
496 target_read_memory (sigcontext_addr + saved_pc_offset,
497 scbuf, sizeof (scbuf));
498 return extract_address (scbuf, sizeof (scbuf));
499 }
500 else if (get_frame_extra_info (frame)->in_prologue ||
501 (get_next_frame (frame) != NULL &&
502 ((get_frame_type (get_next_frame (frame)) == SIGTRAMP_FRAME) ||
503 deprecated_frame_in_dummy (get_next_frame (frame))) &&
504 frameless_look_for_prologue (frame)))
505 {
506 /* A frameless function interrupted by a signal did not save
507 the PC, it is still in %o7. */
508 get_saved_register (buf, (int *) NULL, (CORE_ADDR *) NULL,
509 frame, O7_REGNUM, (enum lval_type *) NULL);
510 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
511 }
512 if (get_frame_extra_info (frame)->flat)
513 addr = get_frame_extra_info (frame)->pc_addr;
514 else
515 addr = get_frame_extra_info (frame)->bottom + FRAME_SAVED_I0 +
516 SPARC_INTREG_SIZE * (I7_REGNUM - I0_REGNUM);
517
518 if (addr == 0)
519 /* A flat frame leaf function might not save the PC anywhere,
520 just leave it in %o7. */
521 return PC_ADJUST (read_register (O7_REGNUM));
522
523 read_memory (addr, buf, SPARC_INTREG_SIZE);
524 return PC_ADJUST (extract_address (buf, SPARC_INTREG_SIZE));
525 }
526
527 /* Since an individual frame in the frame cache is defined by two
528 arguments (a frame pointer and a stack pointer), we need two
529 arguments to get info for an arbitrary stack frame. This routine
530 takes two arguments and makes the cached frames look as if these
531 two arguments defined a frame on the cache. This allows the rest
532 of info frame to extract the important arguments without
533 difficulty. */
534
535 struct frame_info *
536 setup_arbitrary_frame (int argc, CORE_ADDR *argv)
537 {
538 struct frame_info *frame;
539
540 if (argc != 2)
541 error ("Sparc frame specifications require two arguments: fp and sp");
542
543 frame = create_new_frame (argv[0], 0);
544
545 if (!frame)
546 internal_error (__FILE__, __LINE__,
547 "create_new_frame returned invalid frame");
548
549 get_frame_extra_info (frame)->bottom = argv[1];
550 deprecated_update_frame_pc_hack (frame, FRAME_SAVED_PC (frame));
551 return frame;
552 }
553
554 /* Given a pc value, skip it forward past the function prologue by
555 disassembling instructions that appear to be a prologue.
556
557 If FRAMELESS_P is set, we are only testing to see if the function
558 is frameless. This allows a quicker answer.
559
560 This routine should be more specific in its actions; making sure
561 that it uses the same register in the initial prologue section. */
562
563 static CORE_ADDR examine_prologue (CORE_ADDR, int, struct frame_info *,
564 CORE_ADDR *);
565
566 static CORE_ADDR
567 examine_prologue (CORE_ADDR start_pc, int frameless_p, struct frame_info *fi,
568 CORE_ADDR *saved_regs)
569 {
570 int insn;
571 int dest = -1;
572 CORE_ADDR pc = start_pc;
573 int is_flat = 0;
574
575 insn = fetch_instruction (pc);
576
577 /* Recognize the `sethi' insn and record its destination. */
578 if (X_OP (insn) == 0 && X_OP2 (insn) == 4)
579 {
580 dest = X_RD (insn);
581 pc += 4;
582 insn = fetch_instruction (pc);
583 }
584
585 /* Recognize an add immediate value to register to either %g1 or
586 the destination register recorded above. Actually, this might
587 well recognize several different arithmetic operations.
588 It doesn't check that rs1 == rd because in theory "sub %g0, 5, %g1"
589 followed by "save %sp, %g1, %sp" is a valid prologue (Not that
590 I imagine any compiler really does that, however). */
591 if (X_OP (insn) == 2
592 && X_I (insn)
593 && (X_RD (insn) == 1 || X_RD (insn) == dest))
594 {
595 pc += 4;
596 insn = fetch_instruction (pc);
597 }
598
599 /* Recognize any SAVE insn. */
600 if (X_OP (insn) == 2 && X_OP3 (insn) == 60)
601 {
602 pc += 4;
603 if (frameless_p) /* If the save is all we care about, */
604 return pc; /* return before doing more work */
605 insn = fetch_instruction (pc);
606 }
607 /* Recognize add to %sp. */
608 else if (X_OP (insn) == 2 && X_RD (insn) == 14 && X_OP3 (insn) == 0)
609 {
610 pc += 4;
611 if (frameless_p) /* If the add is all we care about, */
612 return pc; /* return before doing more work */
613 is_flat = 1;
614 insn = fetch_instruction (pc);
615 /* Recognize store of frame pointer (i7). */
616 if (X_OP (insn) == 3
617 && X_RD (insn) == 31
618 && X_OP3 (insn) == 4
619 && X_RS1 (insn) == 14)
620 {
621 pc += 4;
622 insn = fetch_instruction (pc);
623
624 /* Recognize sub %sp, <anything>, %i7. */
625 if (X_OP (insn) == 2
626 && X_OP3 (insn) == 4
627 && X_RS1 (insn) == 14
628 && X_RD (insn) == 31)
629 {
630 pc += 4;
631 insn = fetch_instruction (pc);
632 }
633 else
634 return pc;
635 }
636 else
637 return pc;
638 }
639 else
640 /* Without a save or add instruction, it's not a prologue. */
641 return start_pc;
642
643 while (1)
644 {
645 /* Recognize stores into the frame from the input registers.
646 This recognizes all non alternate stores of an input register,
647 into a location offset from the frame pointer between
648 +68 and +92. */
649
650 /* The above will fail for arguments that are promoted
651 (eg. shorts to ints or floats to doubles), because the compiler
652 will pass them in positive-offset frame space, but the prologue
653 will save them (after conversion) in negative frame space at an
654 unpredictable offset. Therefore I am going to remove the
655 restriction on the target-address of the save, on the theory
656 that any unbroken sequence of saves from input registers must
657 be part of the prologue. In un-optimized code (at least), I'm
658 fairly sure that the compiler would emit SOME other instruction
659 (eg. a move or add) before emitting another save that is actually
660 a part of the function body.
661
662 Besides, the reserved stack space is different for SPARC64 anyway.
663
664 MVS 4/23/2000 */
665
666 if (X_OP (insn) == 3
667 && (X_OP3 (insn) & 0x3c) == 4 /* Store, non-alternate. */
668 && (X_RD (insn) & 0x18) == 0x18 /* Input register. */
669 && X_I (insn) /* Immediate mode. */
670 && X_RS1 (insn) == 30) /* Off of frame pointer. */
671 ; /* empty statement -- fall thru to end of loop */
672 else if (GDB_TARGET_IS_SPARC64
673 && X_OP (insn) == 3
674 && (X_OP3 (insn) & 0x3c) == 12 /* store, extended (64-bit) */
675 && (X_RD (insn) & 0x18) == 0x18 /* input register */
676 && X_I (insn) /* immediate mode */
677 && X_RS1 (insn) == 30) /* off of frame pointer */
678 ; /* empty statement -- fall thru to end of loop */
679 else if (X_OP (insn) == 3
680 && (X_OP3 (insn) & 0x3c) == 36 /* store, floating-point */
681 && X_I (insn) /* immediate mode */
682 && X_RS1 (insn) == 30) /* off of frame pointer */
683 ; /* empty statement -- fall thru to end of loop */
684 else if (is_flat
685 && X_OP (insn) == 3
686 && X_OP3 (insn) == 4 /* store? */
687 && X_RS1 (insn) == 14) /* off of frame pointer */
688 {
689 if (saved_regs && X_I (insn))
690 saved_regs[X_RD (insn)] =
691 get_frame_base (fi) + get_frame_extra_info (fi)->sp_offset + X_SIMM13 (insn);
692 }
693 else
694 break;
695 pc += 4;
696 insn = fetch_instruction (pc);
697 }
698
699 return pc;
700 }
701
702 /* Advance PC across any function entry prologue instructions to reach
703 some "real" code. */
704
705 CORE_ADDR
706 sparc_skip_prologue (CORE_ADDR start_pc)
707 {
708 struct symtab_and_line sal;
709 CORE_ADDR func_start, func_end;
710
711 /* This is the preferred method, find the end of the prologue by
712 using the debugging information. */
713 if (find_pc_partial_function (start_pc, NULL, &func_start, &func_end))
714 {
715 sal = find_pc_line (func_start, 0);
716
717 if (sal.end < func_end
718 && start_pc <= sal.end)
719 return sal.end;
720 }
721
722 /* Oh well, examine the code by hand. */
723 return examine_prologue (start_pc, 0, NULL, NULL);
724 }
725
726 /* Is the prologue at IP frameless? */
727
728 int
729 sparc_prologue_frameless_p (CORE_ADDR ip)
730 {
731 return ip == examine_prologue (ip, 1, NULL, NULL);
732 }
733
734 /* Check instruction at ADDR to see if it is a branch.
735 All non-annulled instructions will go to NPC or will trap.
736 Set *TARGET if we find a candidate branch; set to zero if not.
737
738 This isn't static as it's used by remote-sa.sparc.c. */
739
740 static branch_type
741 isbranch (long instruction, CORE_ADDR addr, CORE_ADDR *target)
742 {
743 branch_type val = not_branch;
744 long int offset = 0; /* Must be signed for sign-extend. */
745
746 *target = 0;
747
748 if (X_OP (instruction) == 0
749 && (X_OP2 (instruction) == 2
750 || X_OP2 (instruction) == 6
751 || X_OP2 (instruction) == 1
752 || X_OP2 (instruction) == 3
753 || X_OP2 (instruction) == 5
754 || (GDB_TARGET_IS_SPARC64 && X_OP2 (instruction) == 7)))
755 {
756 if (X_COND (instruction) == 8)
757 val = X_A (instruction) ? baa : ba;
758 else
759 val = X_A (instruction) ? bicca : bicc;
760 switch (X_OP2 (instruction))
761 {
762 case 7:
763 if (!GDB_TARGET_IS_SPARC64)
764 break;
765 /* else fall thru */
766 case 2:
767 case 6:
768 offset = 4 * X_DISP22 (instruction);
769 break;
770 case 1:
771 case 5:
772 offset = 4 * X_DISP19 (instruction);
773 break;
774 case 3:
775 offset = 4 * X_DISP16 (instruction);
776 break;
777 }
778 *target = addr + offset;
779 }
780 else if (GDB_TARGET_IS_SPARC64
781 && X_OP (instruction) == 2
782 && X_OP3 (instruction) == 62)
783 {
784 if (X_FCN (instruction) == 0)
785 {
786 /* done */
787 *target = read_register (TNPC_REGNUM);
788 val = done_retry;
789 }
790 else if (X_FCN (instruction) == 1)
791 {
792 /* retry */
793 *target = read_register (TPC_REGNUM);
794 val = done_retry;
795 }
796 }
797
798 return val;
799 }
800 \f
801 /* Find register number REGNUM relative to FRAME and put its
802 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
803 was optimized out (and thus can't be fetched). If the variable
804 was fetched from memory, set *ADDRP to where it was fetched from,
805 otherwise it was fetched from a register.
806
807 The argument RAW_BUFFER must point to aligned memory. */
808
809 void
810 sparc_get_saved_register (char *raw_buffer, int *optimized, CORE_ADDR *addrp,
811 struct frame_info *frame, int regnum,
812 enum lval_type *lval)
813 {
814 struct frame_info *frame1;
815 CORE_ADDR addr;
816
817 if (!target_has_registers)
818 error ("No registers.");
819
820 if (optimized)
821 *optimized = 0;
822
823 addr = 0;
824
825 /* FIXME This code extracted from infcmd.c; should put elsewhere! */
826 if (frame == NULL)
827 {
828 /* error ("No selected frame."); */
829 if (!target_has_registers)
830 error ("The program has no registers now.");
831 if (deprecated_selected_frame == NULL)
832 error ("No selected frame.");
833 /* Try to use selected frame */
834 frame = get_prev_frame (deprecated_selected_frame);
835 if (frame == 0)
836 error ("Cmd not meaningful in the outermost frame.");
837 }
838
839
840 frame1 = get_next_frame (frame);
841
842 /* Get saved PC from the frame info if not in innermost frame. */
843 if (regnum == PC_REGNUM && frame1 != NULL)
844 {
845 if (lval != NULL)
846 *lval = not_lval;
847 if (raw_buffer != NULL)
848 {
849 /* Put it back in target format. */
850 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), get_frame_pc (frame));
851 }
852 if (addrp != NULL)
853 *addrp = 0;
854 return;
855 }
856
857 while (frame1 != NULL)
858 {
859 /* FIXME MVS: wrong test for dummy frame at entry. */
860
861 if (get_frame_pc (frame1) >= (get_frame_extra_info (frame1)->bottom
862 ? get_frame_extra_info (frame1)->bottom
863 : read_sp ())
864 && get_frame_pc (frame1) <= get_frame_base (frame1))
865 {
866 /* Dummy frame. All but the window regs are in there somewhere.
867 The window registers are saved on the stack, just like in a
868 normal frame. */
869 if (regnum >= G1_REGNUM && regnum < G1_REGNUM + 7)
870 addr = get_frame_base (frame1) + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
871 - (FP_REGISTER_BYTES + 8 * SPARC_INTREG_SIZE);
872 else if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
873 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
874 is safe/cheap - there will always be a prev frame.
875 This is because frame1 is initialized to frame->next
876 (frame1->prev == frame) and is then advanced towards
877 the innermost (next) frame. */
878 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
879 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
880 + FRAME_SAVED_I0);
881 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
882 /* NOTE: cagney/2002-05-04: The call to get_prev_frame()
883 is safe/cheap - there will always be a prev frame.
884 This is because frame1 is initialized to frame->next
885 (frame1->prev == frame) and is then advanced towards
886 the innermost (next) frame. */
887 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
888 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
889 + FRAME_SAVED_L0);
890 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
891 addr = get_frame_base (frame1) + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
892 - (FP_REGISTER_BYTES + 16 * SPARC_INTREG_SIZE);
893 else if (SPARC_HAS_FPU &&
894 regnum >= FP0_REGNUM && regnum < FP0_REGNUM + 32)
895 addr = get_frame_base (frame1) + (regnum - FP0_REGNUM) * 4
896 - (FP_REGISTER_BYTES);
897 else if (GDB_TARGET_IS_SPARC64 && SPARC_HAS_FPU &&
898 regnum >= FP0_REGNUM + 32 && regnum < FP_MAX_REGNUM)
899 addr = get_frame_base (frame1) + 32 * 4 + (regnum - FP0_REGNUM - 32) * 8
900 - (FP_REGISTER_BYTES);
901 else if (regnum >= Y_REGNUM && regnum < NUM_REGS)
902 addr = get_frame_base (frame1) + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
903 - (FP_REGISTER_BYTES + 24 * SPARC_INTREG_SIZE);
904 }
905 else if (get_frame_extra_info (frame1)->flat)
906 {
907
908 if (regnum == RP_REGNUM)
909 addr = get_frame_extra_info (frame1)->pc_addr;
910 else if (regnum == I7_REGNUM)
911 addr = get_frame_extra_info (frame1)->fp_addr;
912 else
913 {
914 CORE_ADDR func_start;
915 CORE_ADDR *regs;
916
917 regs = alloca (NUM_REGS * sizeof (CORE_ADDR));
918 memset (regs, 0, NUM_REGS * sizeof (CORE_ADDR));
919
920 find_pc_partial_function (get_frame_pc (frame1), NULL, &func_start, NULL);
921 examine_prologue (func_start, 0, frame1, regs);
922 addr = regs[regnum];
923 }
924 }
925 else
926 {
927 /* Normal frame. Local and In registers are saved on stack. */
928 if (regnum >= I0_REGNUM && regnum < I0_REGNUM + 8)
929 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
930 + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
931 + FRAME_SAVED_I0);
932 else if (regnum >= L0_REGNUM && regnum < L0_REGNUM + 8)
933 addr = (get_frame_extra_info (get_prev_frame (frame1))->bottom
934 + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
935 + FRAME_SAVED_L0);
936 else if (regnum >= O0_REGNUM && regnum < O0_REGNUM + 8)
937 {
938 /* Outs become ins. */
939 get_saved_register (raw_buffer, optimized, addrp, frame1,
940 (regnum - O0_REGNUM + I0_REGNUM), lval);
941 return;
942 }
943 }
944 if (addr != 0)
945 break;
946 frame1 = get_next_frame (frame1);
947 }
948 if (addr != 0)
949 {
950 if (lval != NULL)
951 *lval = lval_memory;
952 if (regnum == SP_REGNUM)
953 {
954 if (raw_buffer != NULL)
955 {
956 /* Put it back in target format. */
957 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), addr);
958 }
959 if (addrp != NULL)
960 *addrp = 0;
961 return;
962 }
963 if (raw_buffer != NULL)
964 read_memory (addr, raw_buffer, REGISTER_RAW_SIZE (regnum));
965 }
966 else
967 {
968 if (lval != NULL)
969 *lval = lval_register;
970 addr = REGISTER_BYTE (regnum);
971 if (raw_buffer != NULL)
972 deprecated_read_register_gen (regnum, raw_buffer);
973 }
974 if (addrp != NULL)
975 *addrp = addr;
976 }
977
978 /* Push an empty stack frame, and record in it the current PC, regs, etc.
979
980 We save the non-windowed registers and the ins. The locals and outs
981 are new; they don't need to be saved. The i's and l's of
982 the last frame were already saved on the stack. */
983
984 /* Definitely see tm-sparc.h for more doc of the frame format here. */
985
986 /* See tm-sparc.h for how this is calculated. */
987
988 #define DUMMY_STACK_REG_BUF_SIZE \
989 (((8+8+8) * SPARC_INTREG_SIZE) + FP_REGISTER_BYTES)
990 #define DUMMY_STACK_SIZE \
991 (DUMMY_STACK_REG_BUF_SIZE + DUMMY_REG_SAVE_OFFSET)
992
993 void
994 sparc_push_dummy_frame (void)
995 {
996 CORE_ADDR sp, old_sp;
997 char *register_temp;
998
999 register_temp = alloca (DUMMY_STACK_SIZE);
1000
1001 old_sp = sp = read_sp ();
1002
1003 if (GDB_TARGET_IS_SPARC64)
1004 {
1005 /* PC, NPC, CCR, FSR, FPRS, Y, ASI */
1006 deprecated_read_register_bytes (REGISTER_BYTE (PC_REGNUM),
1007 &register_temp[0],
1008 REGISTER_RAW_SIZE (PC_REGNUM) * 7);
1009 deprecated_read_register_bytes (REGISTER_BYTE (PSTATE_REGNUM),
1010 &register_temp[7 * SPARC_INTREG_SIZE],
1011 REGISTER_RAW_SIZE (PSTATE_REGNUM));
1012 /* FIXME: not sure what needs to be saved here. */
1013 }
1014 else
1015 {
1016 /* Y, PS, WIM, TBR, PC, NPC, FPS, CPS regs */
1017 deprecated_read_register_bytes (REGISTER_BYTE (Y_REGNUM),
1018 &register_temp[0],
1019 REGISTER_RAW_SIZE (Y_REGNUM) * 8);
1020 }
1021
1022 deprecated_read_register_bytes (REGISTER_BYTE (O0_REGNUM),
1023 &register_temp[8 * SPARC_INTREG_SIZE],
1024 SPARC_INTREG_SIZE * 8);
1025
1026 deprecated_read_register_bytes (REGISTER_BYTE (G0_REGNUM),
1027 &register_temp[16 * SPARC_INTREG_SIZE],
1028 SPARC_INTREG_SIZE * 8);
1029
1030 if (SPARC_HAS_FPU)
1031 deprecated_read_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1032 &register_temp[24 * SPARC_INTREG_SIZE],
1033 FP_REGISTER_BYTES);
1034
1035 sp -= DUMMY_STACK_SIZE;
1036
1037 write_sp (sp);
1038
1039 write_memory (sp + DUMMY_REG_SAVE_OFFSET, &register_temp[0],
1040 DUMMY_STACK_REG_BUF_SIZE);
1041
1042 if (strcmp (target_shortname, "sim") != 0)
1043 {
1044 /* NOTE: cagney/2002-04-04: The code below originally contained
1045 GDB's _only_ call to write_fp(). That call was eliminated by
1046 inlining the corresponding code. For the 64 bit case, the
1047 old function (sparc64_write_fp) did the below although I'm
1048 not clear why. The same goes for why this is only done when
1049 the underlying target is a simulator. */
1050 if (GDB_TARGET_IS_SPARC64)
1051 {
1052 /* Target is a 64 bit SPARC. */
1053 CORE_ADDR oldfp = read_register (FP_REGNUM);
1054 if (oldfp & 1)
1055 write_register (FP_REGNUM, old_sp - 2047);
1056 else
1057 write_register (FP_REGNUM, old_sp);
1058 }
1059 else
1060 {
1061 /* Target is a 32 bit SPARC. */
1062 write_register (FP_REGNUM, old_sp);
1063 }
1064 /* Set return address register for the call dummy to the current PC. */
1065 write_register (I7_REGNUM, read_pc () - 8);
1066 }
1067 else
1068 {
1069 /* The call dummy will write this value to FP before executing
1070 the 'save'. This ensures that register window flushes work
1071 correctly in the simulator. */
1072 write_register (G0_REGNUM + 1, read_register (FP_REGNUM));
1073
1074 /* The call dummy will write this value to FP after executing
1075 the 'save'. */
1076 write_register (G0_REGNUM + 2, old_sp);
1077
1078 /* The call dummy will write this value to the return address (%i7) after
1079 executing the 'save'. */
1080 write_register (G0_REGNUM + 3, read_pc () - 8);
1081
1082 /* Set the FP that the call dummy will be using after the 'save'.
1083 This makes backtraces from an inferior function call work properly. */
1084 write_register (FP_REGNUM, old_sp);
1085 }
1086 }
1087
1088 /* sparc_frame_find_saved_regs (). This function is here only because
1089 pop_frame uses it. Note there is an interesting corner case which
1090 I think few ports of GDB get right--if you are popping a frame
1091 which does not save some register that *is* saved by a more inner
1092 frame (such a frame will never be a dummy frame because dummy
1093 frames save all registers). Rewriting pop_frame to use
1094 get_saved_register would solve this problem and also get rid of the
1095 ugly duplication between sparc_frame_find_saved_regs and
1096 get_saved_register.
1097
1098 Stores, into an array of CORE_ADDR,
1099 the addresses of the saved registers of frame described by FRAME_INFO.
1100 This includes special registers such as pc and fp saved in special
1101 ways in the stack frame. sp is even more special:
1102 the address we return for it IS the sp for the next frame.
1103
1104 Note that on register window machines, we are currently making the
1105 assumption that window registers are being saved somewhere in the
1106 frame in which they are being used. If they are stored in an
1107 inferior frame, find_saved_register will break.
1108
1109 On the Sun 4, the only time all registers are saved is when
1110 a dummy frame is involved. Otherwise, the only saved registers
1111 are the LOCAL and IN registers which are saved as a result
1112 of the "save/restore" opcodes. This condition is determined
1113 by address rather than by value.
1114
1115 The "pc" is not stored in a frame on the SPARC. (What is stored
1116 is a return address minus 8.) sparc_pop_frame knows how to
1117 deal with that. Other routines might or might not.
1118
1119 See tm-sparc.h (PUSH_DUMMY_FRAME and friends) for CRITICAL information
1120 about how this works. */
1121
1122 static void sparc_frame_find_saved_regs (struct frame_info *, CORE_ADDR *);
1123
1124 static void
1125 sparc_frame_find_saved_regs (struct frame_info *fi, CORE_ADDR *saved_regs_addr)
1126 {
1127 register int regnum;
1128 CORE_ADDR frame_addr = get_frame_base (fi);
1129
1130 if (!fi)
1131 internal_error (__FILE__, __LINE__,
1132 "Bad frame info struct in FRAME_FIND_SAVED_REGS");
1133
1134 memset (saved_regs_addr, 0, NUM_REGS * sizeof (CORE_ADDR));
1135
1136 if (get_frame_pc (fi) >= (get_frame_extra_info (fi)->bottom
1137 ? get_frame_extra_info (fi)->bottom
1138 : read_sp ())
1139 && get_frame_pc (fi) <= get_frame_base (fi))
1140 {
1141 /* Dummy frame. All but the window regs are in there somewhere. */
1142 for (regnum = G1_REGNUM; regnum < G1_REGNUM + 7; regnum++)
1143 saved_regs_addr[regnum] =
1144 frame_addr + (regnum - G0_REGNUM) * SPARC_INTREG_SIZE
1145 - DUMMY_STACK_REG_BUF_SIZE + 16 * SPARC_INTREG_SIZE;
1146
1147 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1148 saved_regs_addr[regnum] =
1149 frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1150 - DUMMY_STACK_REG_BUF_SIZE + 8 * SPARC_INTREG_SIZE;
1151
1152 if (SPARC_HAS_FPU)
1153 for (regnum = FP0_REGNUM; regnum < FP_MAX_REGNUM; regnum++)
1154 saved_regs_addr[regnum] = frame_addr + (regnum - FP0_REGNUM) * 4
1155 - DUMMY_STACK_REG_BUF_SIZE + 24 * SPARC_INTREG_SIZE;
1156
1157 if (GDB_TARGET_IS_SPARC64)
1158 {
1159 for (regnum = PC_REGNUM; regnum < PC_REGNUM + 7; regnum++)
1160 {
1161 saved_regs_addr[regnum] =
1162 frame_addr + (regnum - PC_REGNUM) * SPARC_INTREG_SIZE
1163 - DUMMY_STACK_REG_BUF_SIZE;
1164 }
1165 saved_regs_addr[PSTATE_REGNUM] =
1166 frame_addr + 8 * SPARC_INTREG_SIZE - DUMMY_STACK_REG_BUF_SIZE;
1167 }
1168 else
1169 for (regnum = Y_REGNUM; regnum < NUM_REGS; regnum++)
1170 saved_regs_addr[regnum] =
1171 frame_addr + (regnum - Y_REGNUM) * SPARC_INTREG_SIZE
1172 - DUMMY_STACK_REG_BUF_SIZE;
1173
1174 frame_addr = (get_frame_extra_info (fi)->bottom
1175 ? get_frame_extra_info (fi)->bottom
1176 : read_sp ());
1177 }
1178 else if (get_frame_extra_info (fi)->flat)
1179 {
1180 CORE_ADDR func_start;
1181 find_pc_partial_function (get_frame_pc (fi), NULL, &func_start, NULL);
1182 examine_prologue (func_start, 0, fi, saved_regs_addr);
1183
1184 /* Flat register window frame. */
1185 saved_regs_addr[RP_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1186 saved_regs_addr[I7_REGNUM] = get_frame_extra_info (fi)->fp_addr;
1187 }
1188 else
1189 {
1190 /* Normal frame. Just Local and In registers */
1191 frame_addr = (get_frame_extra_info (fi)->bottom
1192 ? get_frame_extra_info (fi)->bottom
1193 : read_sp ());
1194 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; regnum++)
1195 saved_regs_addr[regnum] =
1196 (frame_addr + (regnum - L0_REGNUM) * SPARC_INTREG_SIZE
1197 + FRAME_SAVED_L0);
1198 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; regnum++)
1199 saved_regs_addr[regnum] =
1200 (frame_addr + (regnum - I0_REGNUM) * SPARC_INTREG_SIZE
1201 + FRAME_SAVED_I0);
1202 }
1203 if (get_next_frame (fi))
1204 {
1205 if (get_frame_extra_info (fi)->flat)
1206 {
1207 saved_regs_addr[O7_REGNUM] = get_frame_extra_info (fi)->pc_addr;
1208 }
1209 else
1210 {
1211 /* Pull off either the next frame pointer or the stack pointer */
1212 CORE_ADDR next_next_frame_addr =
1213 (get_frame_extra_info (get_next_frame (fi))->bottom
1214 ? get_frame_extra_info (get_next_frame (fi))->bottom
1215 : read_sp ());
1216 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 8; regnum++)
1217 saved_regs_addr[regnum] =
1218 (next_next_frame_addr
1219 + (regnum - O0_REGNUM) * SPARC_INTREG_SIZE
1220 + FRAME_SAVED_I0);
1221 }
1222 }
1223 /* Otherwise, whatever we would get from ptrace(GETREGS) is accurate */
1224 /* FIXME -- should this adjust for the sparc64 offset? */
1225 saved_regs_addr[SP_REGNUM] = get_frame_base (fi);
1226 }
1227
1228 /* Discard from the stack the innermost frame, restoring all saved registers.
1229
1230 Note that the values stored in fsr by
1231 deprecated_get_frame_saved_regs are *in the context of the called
1232 frame*. What this means is that the i regs of fsr must be restored
1233 into the o regs of the (calling) frame that we pop into. We don't
1234 care about the output regs of the calling frame, since unless it's
1235 a dummy frame, it won't have any output regs in it.
1236
1237 We never have to bother with %l (local) regs, since the called routine's
1238 locals get tossed, and the calling routine's locals are already saved
1239 on its stack. */
1240
1241 /* Definitely see tm-sparc.h for more doc of the frame format here. */
1242
1243 void
1244 sparc_pop_frame (void)
1245 {
1246 register struct frame_info *frame = get_current_frame ();
1247 register CORE_ADDR pc;
1248 CORE_ADDR *fsr;
1249 char *raw_buffer;
1250 int regnum;
1251
1252 fsr = alloca (NUM_REGS * sizeof (CORE_ADDR));
1253 raw_buffer = alloca (REGISTER_BYTES);
1254 sparc_frame_find_saved_regs (frame, &fsr[0]);
1255 if (SPARC_HAS_FPU)
1256 {
1257 if (fsr[FP0_REGNUM])
1258 {
1259 read_memory (fsr[FP0_REGNUM], raw_buffer, FP_REGISTER_BYTES);
1260 deprecated_write_register_bytes (REGISTER_BYTE (FP0_REGNUM),
1261 raw_buffer, FP_REGISTER_BYTES);
1262 }
1263 if (!(GDB_TARGET_IS_SPARC64))
1264 {
1265 if (fsr[FPS_REGNUM])
1266 {
1267 read_memory (fsr[FPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1268 deprecated_write_register_gen (FPS_REGNUM, raw_buffer);
1269 }
1270 if (fsr[CPS_REGNUM])
1271 {
1272 read_memory (fsr[CPS_REGNUM], raw_buffer, SPARC_INTREG_SIZE);
1273 deprecated_write_register_gen (CPS_REGNUM, raw_buffer);
1274 }
1275 }
1276 }
1277 if (fsr[G1_REGNUM])
1278 {
1279 read_memory (fsr[G1_REGNUM], raw_buffer, 7 * SPARC_INTREG_SIZE);
1280 deprecated_write_register_bytes (REGISTER_BYTE (G1_REGNUM), raw_buffer,
1281 7 * SPARC_INTREG_SIZE);
1282 }
1283
1284 if (get_frame_extra_info (frame)->flat)
1285 {
1286 /* Each register might or might not have been saved, need to test
1287 individually. */
1288 for (regnum = L0_REGNUM; regnum < L0_REGNUM + 8; ++regnum)
1289 if (fsr[regnum])
1290 write_register (regnum, read_memory_integer (fsr[regnum],
1291 SPARC_INTREG_SIZE));
1292 for (regnum = I0_REGNUM; regnum < I0_REGNUM + 8; ++regnum)
1293 if (fsr[regnum])
1294 write_register (regnum, read_memory_integer (fsr[regnum],
1295 SPARC_INTREG_SIZE));
1296
1297 /* Handle all outs except stack pointer (o0-o5; o7). */
1298 for (regnum = O0_REGNUM; regnum < O0_REGNUM + 6; ++regnum)
1299 if (fsr[regnum])
1300 write_register (regnum, read_memory_integer (fsr[regnum],
1301 SPARC_INTREG_SIZE));
1302 if (fsr[O0_REGNUM + 7])
1303 write_register (O0_REGNUM + 7,
1304 read_memory_integer (fsr[O0_REGNUM + 7],
1305 SPARC_INTREG_SIZE));
1306
1307 write_sp (get_frame_base (frame));
1308 }
1309 else if (fsr[I0_REGNUM])
1310 {
1311 CORE_ADDR sp;
1312
1313 char *reg_temp;
1314
1315 reg_temp = alloca (SPARC_INTREG_SIZE * 16);
1316
1317 read_memory (fsr[I0_REGNUM], raw_buffer, 8 * SPARC_INTREG_SIZE);
1318
1319 /* Get the ins and locals which we are about to restore. Just
1320 moving the stack pointer is all that is really needed, except
1321 store_inferior_registers is then going to write the ins and
1322 locals from the registers array, so we need to muck with the
1323 registers array. */
1324 sp = fsr[SP_REGNUM];
1325
1326 if (GDB_TARGET_IS_SPARC64 && (sp & 1))
1327 sp += 2047;
1328
1329 read_memory (sp, reg_temp, SPARC_INTREG_SIZE * 16);
1330
1331 /* Restore the out registers.
1332 Among other things this writes the new stack pointer. */
1333 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), raw_buffer,
1334 SPARC_INTREG_SIZE * 8);
1335
1336 deprecated_write_register_bytes (REGISTER_BYTE (L0_REGNUM), reg_temp,
1337 SPARC_INTREG_SIZE * 16);
1338 }
1339
1340 if (!(GDB_TARGET_IS_SPARC64))
1341 if (fsr[PS_REGNUM])
1342 write_register (PS_REGNUM,
1343 read_memory_integer (fsr[PS_REGNUM],
1344 REGISTER_RAW_SIZE (PS_REGNUM)));
1345
1346 if (fsr[Y_REGNUM])
1347 write_register (Y_REGNUM,
1348 read_memory_integer (fsr[Y_REGNUM],
1349 REGISTER_RAW_SIZE (Y_REGNUM)));
1350 if (fsr[PC_REGNUM])
1351 {
1352 /* Explicitly specified PC (and maybe NPC) -- just restore them. */
1353 write_register (PC_REGNUM,
1354 read_memory_integer (fsr[PC_REGNUM],
1355 REGISTER_RAW_SIZE (PC_REGNUM)));
1356 if (fsr[NPC_REGNUM])
1357 write_register (NPC_REGNUM,
1358 read_memory_integer (fsr[NPC_REGNUM],
1359 REGISTER_RAW_SIZE (NPC_REGNUM)));
1360 }
1361 else if (get_frame_extra_info (frame)->flat)
1362 {
1363 if (get_frame_extra_info (frame)->pc_addr)
1364 pc = PC_ADJUST ((CORE_ADDR)
1365 read_memory_integer (get_frame_extra_info (frame)->pc_addr,
1366 REGISTER_RAW_SIZE (PC_REGNUM)));
1367 else
1368 {
1369 /* I think this happens only in the innermost frame, if so then
1370 it is a complicated way of saying
1371 "pc = read_register (O7_REGNUM);". */
1372 char *buf;
1373
1374 buf = alloca (MAX_REGISTER_RAW_SIZE);
1375 get_saved_register (buf, 0, 0, frame, O7_REGNUM, 0);
1376 pc = PC_ADJUST (extract_address
1377 (buf, REGISTER_RAW_SIZE (O7_REGNUM)));
1378 }
1379
1380 write_register (PC_REGNUM, pc);
1381 write_register (NPC_REGNUM, pc + 4);
1382 }
1383 else if (fsr[I7_REGNUM])
1384 {
1385 /* Return address in %i7 -- adjust it, then restore PC and NPC from it */
1386 pc = PC_ADJUST ((CORE_ADDR) read_memory_integer (fsr[I7_REGNUM],
1387 SPARC_INTREG_SIZE));
1388 write_register (PC_REGNUM, pc);
1389 write_register (NPC_REGNUM, pc + 4);
1390 }
1391 flush_cached_frames ();
1392 }
1393
1394 /* On the Sun 4 under SunOS, the compile will leave a fake insn which
1395 encodes the structure size being returned. If we detect such
1396 a fake insn, step past it. */
1397
1398 CORE_ADDR
1399 sparc_pc_adjust (CORE_ADDR pc)
1400 {
1401 unsigned long insn;
1402 char buf[4];
1403 int err;
1404
1405 err = target_read_memory (pc + 8, buf, 4);
1406 insn = extract_unsigned_integer (buf, 4);
1407 if ((err == 0) && (insn & 0xffc00000) == 0)
1408 return pc + 12;
1409 else
1410 return pc + 8;
1411 }
1412
1413 /* If pc is in a shared library trampoline, return its target.
1414 The SunOs 4.x linker rewrites the jump table entries for PIC
1415 compiled modules in the main executable to bypass the dynamic linker
1416 with jumps of the form
1417 sethi %hi(addr),%g1
1418 jmp %g1+%lo(addr)
1419 and removes the corresponding jump table relocation entry in the
1420 dynamic relocations.
1421 find_solib_trampoline_target relies on the presence of the jump
1422 table relocation entry, so we have to detect these jump instructions
1423 by hand. */
1424
1425 CORE_ADDR
1426 sunos4_skip_trampoline_code (CORE_ADDR pc)
1427 {
1428 unsigned long insn1;
1429 char buf[4];
1430 int err;
1431
1432 err = target_read_memory (pc, buf, 4);
1433 insn1 = extract_unsigned_integer (buf, 4);
1434 if (err == 0 && (insn1 & 0xffc00000) == 0x03000000)
1435 {
1436 unsigned long insn2;
1437
1438 err = target_read_memory (pc + 4, buf, 4);
1439 insn2 = extract_unsigned_integer (buf, 4);
1440 if (err == 0 && (insn2 & 0xffffe000) == 0x81c06000)
1441 {
1442 CORE_ADDR target_pc = (insn1 & 0x3fffff) << 10;
1443 int delta = insn2 & 0x1fff;
1444
1445 /* Sign extend the displacement. */
1446 if (delta & 0x1000)
1447 delta |= ~0x1fff;
1448 return target_pc + delta;
1449 }
1450 }
1451 return find_solib_trampoline_target (pc);
1452 }
1453 \f
1454 #ifdef USE_PROC_FS /* Target dependent support for /proc */
1455 /* *INDENT-OFF* */
1456 /* The /proc interface divides the target machine's register set up into
1457 two different sets, the general register set (gregset) and the floating
1458 point register set (fpregset). For each set, there is an ioctl to get
1459 the current register set and another ioctl to set the current values.
1460
1461 The actual structure passed through the ioctl interface is, of course,
1462 naturally machine dependent, and is different for each set of registers.
1463 For the sparc for example, the general register set is typically defined
1464 by:
1465
1466 typedef int gregset_t[38];
1467
1468 #define R_G0 0
1469 ...
1470 #define R_TBR 37
1471
1472 and the floating point set by:
1473
1474 typedef struct prfpregset {
1475 union {
1476 u_long pr_regs[32];
1477 double pr_dregs[16];
1478 } pr_fr;
1479 void * pr_filler;
1480 u_long pr_fsr;
1481 u_char pr_qcnt;
1482 u_char pr_q_entrysize;
1483 u_char pr_en;
1484 u_long pr_q[64];
1485 } prfpregset_t;
1486
1487 These routines provide the packing and unpacking of gregset_t and
1488 fpregset_t formatted data.
1489
1490 */
1491 /* *INDENT-ON* */
1492
1493 /* Given a pointer to a general register set in /proc format (gregset_t *),
1494 unpack the register contents and supply them as gdb's idea of the current
1495 register values. */
1496
1497 void
1498 supply_gregset (gdb_gregset_t *gregsetp)
1499 {
1500 prgreg_t *regp = (prgreg_t *) gregsetp;
1501 int regi, offset = 0;
1502
1503 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1504 then the gregset may contain 64-bit ints while supply_register
1505 is expecting 32-bit ints. Compensate. */
1506 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1507 offset = 4;
1508
1509 /* GDB register numbers for Gn, On, Ln, In all match /proc reg numbers. */
1510 /* FIXME MVS: assumes the order of the first 32 elements... */
1511 for (regi = G0_REGNUM; regi <= I7_REGNUM; regi++)
1512 {
1513 supply_register (regi, ((char *) (regp + regi)) + offset);
1514 }
1515
1516 /* These require a bit more care. */
1517 supply_register (PC_REGNUM, ((char *) (regp + R_PC)) + offset);
1518 supply_register (NPC_REGNUM, ((char *) (regp + R_nPC)) + offset);
1519 supply_register (Y_REGNUM, ((char *) (regp + R_Y)) + offset);
1520
1521 if (GDB_TARGET_IS_SPARC64)
1522 {
1523 #ifdef R_CCR
1524 supply_register (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1525 #else
1526 supply_register (CCR_REGNUM, NULL);
1527 #endif
1528 #ifdef R_FPRS
1529 supply_register (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1530 #else
1531 supply_register (FPRS_REGNUM, NULL);
1532 #endif
1533 #ifdef R_ASI
1534 supply_register (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1535 #else
1536 supply_register (ASI_REGNUM, NULL);
1537 #endif
1538 }
1539 else /* sparc32 */
1540 {
1541 #ifdef R_PS
1542 supply_register (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1543 #else
1544 supply_register (PS_REGNUM, NULL);
1545 #endif
1546
1547 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1548 Steal R_ASI and R_FPRS, and hope for the best! */
1549
1550 #if !defined (R_WIM) && defined (R_ASI)
1551 #define R_WIM R_ASI
1552 #endif
1553
1554 #if !defined (R_TBR) && defined (R_FPRS)
1555 #define R_TBR R_FPRS
1556 #endif
1557
1558 #if defined (R_WIM)
1559 supply_register (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1560 #else
1561 supply_register (WIM_REGNUM, NULL);
1562 #endif
1563
1564 #if defined (R_TBR)
1565 supply_register (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1566 #else
1567 supply_register (TBR_REGNUM, NULL);
1568 #endif
1569 }
1570
1571 /* Fill inaccessible registers with zero. */
1572 if (GDB_TARGET_IS_SPARC64)
1573 {
1574 /*
1575 * don't know how to get value of any of the following:
1576 */
1577 supply_register (VER_REGNUM, NULL);
1578 supply_register (TICK_REGNUM, NULL);
1579 supply_register (PIL_REGNUM, NULL);
1580 supply_register (PSTATE_REGNUM, NULL);
1581 supply_register (TSTATE_REGNUM, NULL);
1582 supply_register (TBA_REGNUM, NULL);
1583 supply_register (TL_REGNUM, NULL);
1584 supply_register (TT_REGNUM, NULL);
1585 supply_register (TPC_REGNUM, NULL);
1586 supply_register (TNPC_REGNUM, NULL);
1587 supply_register (WSTATE_REGNUM, NULL);
1588 supply_register (CWP_REGNUM, NULL);
1589 supply_register (CANSAVE_REGNUM, NULL);
1590 supply_register (CANRESTORE_REGNUM, NULL);
1591 supply_register (CLEANWIN_REGNUM, NULL);
1592 supply_register (OTHERWIN_REGNUM, NULL);
1593 supply_register (ASR16_REGNUM, NULL);
1594 supply_register (ASR17_REGNUM, NULL);
1595 supply_register (ASR18_REGNUM, NULL);
1596 supply_register (ASR19_REGNUM, NULL);
1597 supply_register (ASR20_REGNUM, NULL);
1598 supply_register (ASR21_REGNUM, NULL);
1599 supply_register (ASR22_REGNUM, NULL);
1600 supply_register (ASR23_REGNUM, NULL);
1601 supply_register (ASR24_REGNUM, NULL);
1602 supply_register (ASR25_REGNUM, NULL);
1603 supply_register (ASR26_REGNUM, NULL);
1604 supply_register (ASR27_REGNUM, NULL);
1605 supply_register (ASR28_REGNUM, NULL);
1606 supply_register (ASR29_REGNUM, NULL);
1607 supply_register (ASR30_REGNUM, NULL);
1608 supply_register (ASR31_REGNUM, NULL);
1609 supply_register (ICC_REGNUM, NULL);
1610 supply_register (XCC_REGNUM, NULL);
1611 }
1612 else
1613 {
1614 supply_register (CPS_REGNUM, NULL);
1615 }
1616 }
1617
1618 void
1619 fill_gregset (gdb_gregset_t *gregsetp, int regno)
1620 {
1621 prgreg_t *regp = (prgreg_t *) gregsetp;
1622 int regi, offset = 0;
1623
1624 /* If the host is 64-bit sparc, but the target is 32-bit sparc,
1625 then the gregset may contain 64-bit ints while supply_register
1626 is expecting 32-bit ints. Compensate. */
1627 if (sizeof (regp[0]) == 8 && SPARC_INTREG_SIZE == 4)
1628 offset = 4;
1629
1630 for (regi = 0; regi <= R_I7; regi++)
1631 if ((regno == -1) || (regno == regi))
1632 deprecated_read_register_gen (regi, (char *) (regp + regi) + offset);
1633
1634 if ((regno == -1) || (regno == PC_REGNUM))
1635 deprecated_read_register_gen (PC_REGNUM, (char *) (regp + R_PC) + offset);
1636
1637 if ((regno == -1) || (regno == NPC_REGNUM))
1638 deprecated_read_register_gen (NPC_REGNUM, (char *) (regp + R_nPC) + offset);
1639
1640 if ((regno == -1) || (regno == Y_REGNUM))
1641 deprecated_read_register_gen (Y_REGNUM, (char *) (regp + R_Y) + offset);
1642
1643 if (GDB_TARGET_IS_SPARC64)
1644 {
1645 #ifdef R_CCR
1646 if (regno == -1 || regno == CCR_REGNUM)
1647 deprecated_read_register_gen (CCR_REGNUM, ((char *) (regp + R_CCR)) + offset);
1648 #endif
1649 #ifdef R_FPRS
1650 if (regno == -1 || regno == FPRS_REGNUM)
1651 deprecated_read_register_gen (FPRS_REGNUM, ((char *) (regp + R_FPRS)) + offset);
1652 #endif
1653 #ifdef R_ASI
1654 if (regno == -1 || regno == ASI_REGNUM)
1655 deprecated_read_register_gen (ASI_REGNUM, ((char *) (regp + R_ASI)) + offset);
1656 #endif
1657 }
1658 else /* sparc32 */
1659 {
1660 #ifdef R_PS
1661 if (regno == -1 || regno == PS_REGNUM)
1662 deprecated_read_register_gen (PS_REGNUM, ((char *) (regp + R_PS)) + offset);
1663 #endif
1664
1665 /* For 64-bit hosts, R_WIM and R_TBR may not be defined.
1666 Steal R_ASI and R_FPRS, and hope for the best! */
1667
1668 #if !defined (R_WIM) && defined (R_ASI)
1669 #define R_WIM R_ASI
1670 #endif
1671
1672 #if !defined (R_TBR) && defined (R_FPRS)
1673 #define R_TBR R_FPRS
1674 #endif
1675
1676 #if defined (R_WIM)
1677 if (regno == -1 || regno == WIM_REGNUM)
1678 deprecated_read_register_gen (WIM_REGNUM, ((char *) (regp + R_WIM)) + offset);
1679 #else
1680 if (regno == -1 || regno == WIM_REGNUM)
1681 deprecated_read_register_gen (WIM_REGNUM, NULL);
1682 #endif
1683
1684 #if defined (R_TBR)
1685 if (regno == -1 || regno == TBR_REGNUM)
1686 deprecated_read_register_gen (TBR_REGNUM, ((char *) (regp + R_TBR)) + offset);
1687 #else
1688 if (regno == -1 || regno == TBR_REGNUM)
1689 deprecated_read_register_gen (TBR_REGNUM, NULL);
1690 #endif
1691 }
1692 }
1693
1694 /* Given a pointer to a floating point register set in /proc format
1695 (fpregset_t *), unpack the register contents and supply them as gdb's
1696 idea of the current floating point register values. */
1697
1698 void
1699 supply_fpregset (gdb_fpregset_t *fpregsetp)
1700 {
1701 register int regi;
1702 char *from;
1703
1704 if (!SPARC_HAS_FPU)
1705 return;
1706
1707 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1708 {
1709 from = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1710 supply_register (regi, from);
1711 }
1712
1713 if (GDB_TARGET_IS_SPARC64)
1714 {
1715 /*
1716 * don't know how to get value of the following.
1717 */
1718 supply_register (FSR_REGNUM, NULL); /* zero it out for now */
1719 supply_register (FCC0_REGNUM, NULL);
1720 supply_register (FCC1_REGNUM, NULL); /* don't know how to get value */
1721 supply_register (FCC2_REGNUM, NULL); /* don't know how to get value */
1722 supply_register (FCC3_REGNUM, NULL); /* don't know how to get value */
1723 }
1724 else
1725 {
1726 supply_register (FPS_REGNUM, (char *) &(fpregsetp->pr_fsr));
1727 }
1728 }
1729
1730 /* Given a pointer to a floating point register set in /proc format
1731 (fpregset_t *), update the register specified by REGNO from gdb's idea
1732 of the current floating point register set. If REGNO is -1, update
1733 them all. */
1734 /* This will probably need some changes for sparc64. */
1735
1736 void
1737 fill_fpregset (gdb_fpregset_t *fpregsetp, int regno)
1738 {
1739 int regi;
1740 char *to;
1741 char *from;
1742
1743 if (!SPARC_HAS_FPU)
1744 return;
1745
1746 for (regi = FP0_REGNUM; regi < FP_MAX_REGNUM; regi++)
1747 {
1748 if ((regno == -1) || (regno == regi))
1749 {
1750 from = (char *) &deprecated_registers[REGISTER_BYTE (regi)];
1751 to = (char *) &fpregsetp->pr_fr.pr_regs[regi - FP0_REGNUM];
1752 memcpy (to, from, REGISTER_RAW_SIZE (regi));
1753 }
1754 }
1755
1756 if (!(GDB_TARGET_IS_SPARC64)) /* FIXME: does Sparc64 have this register? */
1757 if ((regno == -1) || (regno == FPS_REGNUM))
1758 {
1759 from = (char *)&deprecated_registers[REGISTER_BYTE (FPS_REGNUM)];
1760 to = (char *) &fpregsetp->pr_fsr;
1761 memcpy (to, from, REGISTER_RAW_SIZE (FPS_REGNUM));
1762 }
1763 }
1764
1765 #endif /* USE_PROC_FS */
1766
1767 /* Because of Multi-arch, GET_LONGJMP_TARGET is always defined. So test
1768 for a definition of JB_PC. */
1769 #ifdef JB_PC
1770
1771 /* Figure out where the longjmp will land. We expect that we have just entered
1772 longjmp and haven't yet setup the stack frame, so the args are still in the
1773 output regs. %o0 (O0_REGNUM) points at the jmp_buf structure from which we
1774 extract the pc (JB_PC) that we will land at. The pc is copied into ADDR.
1775 This routine returns true on success */
1776
1777 int
1778 get_longjmp_target (CORE_ADDR *pc)
1779 {
1780 CORE_ADDR jb_addr;
1781 #define LONGJMP_TARGET_SIZE 4
1782 char buf[LONGJMP_TARGET_SIZE];
1783
1784 jb_addr = read_register (O0_REGNUM);
1785
1786 if (target_read_memory (jb_addr + JB_PC * JB_ELEMENT_SIZE, buf,
1787 LONGJMP_TARGET_SIZE))
1788 return 0;
1789
1790 *pc = extract_address (buf, LONGJMP_TARGET_SIZE);
1791
1792 return 1;
1793 }
1794 #endif /* GET_LONGJMP_TARGET */
1795 \f
1796 #ifdef STATIC_TRANSFORM_NAME
1797 /* SunPRO (3.0 at least), encodes the static variables. This is not
1798 related to C++ mangling, it is done for C too. */
1799
1800 char *
1801 sunpro_static_transform_name (char *name)
1802 {
1803 char *p;
1804 if (name[0] == '$')
1805 {
1806 /* For file-local statics there will be a dollar sign, a bunch
1807 of junk (the contents of which match a string given in the
1808 N_OPT), a period and the name. For function-local statics
1809 there will be a bunch of junk (which seems to change the
1810 second character from 'A' to 'B'), a period, the name of the
1811 function, and the name. So just skip everything before the
1812 last period. */
1813 p = strrchr (name, '.');
1814 if (p != NULL)
1815 name = p + 1;
1816 }
1817 return name;
1818 }
1819 #endif /* STATIC_TRANSFORM_NAME */
1820 \f
1821
1822 /* Utilities for printing registers.
1823 Page numbers refer to the SPARC Architecture Manual. */
1824
1825 static void dump_ccreg (char *, int);
1826
1827 static void
1828 dump_ccreg (char *reg, int val)
1829 {
1830 /* page 41 */
1831 printf_unfiltered ("%s:%s,%s,%s,%s", reg,
1832 val & 8 ? "N" : "NN",
1833 val & 4 ? "Z" : "NZ",
1834 val & 2 ? "O" : "NO",
1835 val & 1 ? "C" : "NC");
1836 }
1837
1838 static char *
1839 decode_asi (int val)
1840 {
1841 /* page 72 */
1842 switch (val)
1843 {
1844 case 4:
1845 return "ASI_NUCLEUS";
1846 case 0x0c:
1847 return "ASI_NUCLEUS_LITTLE";
1848 case 0x10:
1849 return "ASI_AS_IF_USER_PRIMARY";
1850 case 0x11:
1851 return "ASI_AS_IF_USER_SECONDARY";
1852 case 0x18:
1853 return "ASI_AS_IF_USER_PRIMARY_LITTLE";
1854 case 0x19:
1855 return "ASI_AS_IF_USER_SECONDARY_LITTLE";
1856 case 0x80:
1857 return "ASI_PRIMARY";
1858 case 0x81:
1859 return "ASI_SECONDARY";
1860 case 0x82:
1861 return "ASI_PRIMARY_NOFAULT";
1862 case 0x83:
1863 return "ASI_SECONDARY_NOFAULT";
1864 case 0x88:
1865 return "ASI_PRIMARY_LITTLE";
1866 case 0x89:
1867 return "ASI_SECONDARY_LITTLE";
1868 case 0x8a:
1869 return "ASI_PRIMARY_NOFAULT_LITTLE";
1870 case 0x8b:
1871 return "ASI_SECONDARY_NOFAULT_LITTLE";
1872 default:
1873 return NULL;
1874 }
1875 }
1876
1877 /* Pretty print various registers. */
1878 /* FIXME: Would be nice if this did some fancy things for 32 bit sparc. */
1879
1880 static void
1881 sparc_print_register_hook (int regno)
1882 {
1883 ULONGEST val;
1884
1885 /* Handle double/quad versions of lower 32 fp regs. */
1886 if (regno >= FP0_REGNUM && regno < FP0_REGNUM + 32
1887 && (regno & 1) == 0)
1888 {
1889 char value[16];
1890
1891 if (frame_register_read (deprecated_selected_frame, regno, value)
1892 && frame_register_read (deprecated_selected_frame, regno + 1, value + 4))
1893 {
1894 printf_unfiltered ("\t");
1895 print_floating (value, builtin_type_double, gdb_stdout);
1896 }
1897 #if 0 /* FIXME: gdb doesn't handle long doubles */
1898 if ((regno & 3) == 0)
1899 {
1900 if (frame_register_read (deprecated_selected_frame, regno + 2, value + 8)
1901 && frame_register_read (deprecated_selected_frame, regno + 3, value + 12))
1902 {
1903 printf_unfiltered ("\t");
1904 print_floating (value, builtin_type_long_double, gdb_stdout);
1905 }
1906 }
1907 #endif
1908 return;
1909 }
1910
1911 #if 0 /* FIXME: gdb doesn't handle long doubles */
1912 /* Print upper fp regs as long double if appropriate. */
1913 if (regno >= FP0_REGNUM + 32 && regno < FP_MAX_REGNUM
1914 /* We test for even numbered regs and not a multiple of 4 because
1915 the upper fp regs are recorded as doubles. */
1916 && (regno & 1) == 0)
1917 {
1918 char value[16];
1919
1920 if (frame_register_read (deprecated_selected_frame, regno, value)
1921 && frame_register_read (deprecated_selected_frame, regno + 1, value + 8))
1922 {
1923 printf_unfiltered ("\t");
1924 print_floating (value, builtin_type_long_double, gdb_stdout);
1925 }
1926 return;
1927 }
1928 #endif
1929
1930 /* FIXME: Some of these are priviledged registers.
1931 Not sure how they should be handled. */
1932
1933 #define BITS(n, mask) ((int) (((val) >> (n)) & (mask)))
1934
1935 val = read_register (regno);
1936
1937 /* pages 40 - 60 */
1938 if (GDB_TARGET_IS_SPARC64)
1939 switch (regno)
1940 {
1941 case CCR_REGNUM:
1942 printf_unfiltered ("\t");
1943 dump_ccreg ("xcc", val >> 4);
1944 printf_unfiltered (", ");
1945 dump_ccreg ("icc", val & 15);
1946 break;
1947 case FPRS_REGNUM:
1948 printf ("\tfef:%d, du:%d, dl:%d",
1949 BITS (2, 1), BITS (1, 1), BITS (0, 1));
1950 break;
1951 case FSR_REGNUM:
1952 {
1953 static char *fcc[4] =
1954 {"=", "<", ">", "?"};
1955 static char *rd[4] =
1956 {"N", "0", "+", "-"};
1957 /* Long, but I'd rather leave it as is and use a wide screen. */
1958 printf_filtered ("\t0:%s, 1:%s, 2:%s, 3:%s, rd:%s, tem:%d, ",
1959 fcc[BITS (10, 3)], fcc[BITS (32, 3)],
1960 fcc[BITS (34, 3)], fcc[BITS (36, 3)],
1961 rd[BITS (30, 3)], BITS (23, 31));
1962 printf_filtered ("ns:%d, ver:%d, ftt:%d, qne:%d, aexc:%d, cexc:%d",
1963 BITS (22, 1), BITS (17, 7), BITS (14, 7),
1964 BITS (13, 1), BITS (5, 31), BITS (0, 31));
1965 break;
1966 }
1967 case ASI_REGNUM:
1968 {
1969 char *asi = decode_asi (val);
1970 if (asi != NULL)
1971 printf ("\t%s", asi);
1972 break;
1973 }
1974 case VER_REGNUM:
1975 printf ("\tmanuf:%d, impl:%d, mask:%d, maxtl:%d, maxwin:%d",
1976 BITS (48, 0xffff), BITS (32, 0xffff),
1977 BITS (24, 0xff), BITS (8, 0xff), BITS (0, 31));
1978 break;
1979 case PSTATE_REGNUM:
1980 {
1981 static char *mm[4] =
1982 {"tso", "pso", "rso", "?"};
1983 printf_filtered ("\tcle:%d, tle:%d, mm:%s, red:%d, ",
1984 BITS (9, 1), BITS (8, 1),
1985 mm[BITS (6, 3)], BITS (5, 1));
1986 printf_filtered ("pef:%d, am:%d, priv:%d, ie:%d, ag:%d",
1987 BITS (4, 1), BITS (3, 1), BITS (2, 1),
1988 BITS (1, 1), BITS (0, 1));
1989 break;
1990 }
1991 case TSTATE_REGNUM:
1992 /* FIXME: print all 4? */
1993 break;
1994 case TT_REGNUM:
1995 /* FIXME: print all 4? */
1996 break;
1997 case TPC_REGNUM:
1998 /* FIXME: print all 4? */
1999 break;
2000 case TNPC_REGNUM:
2001 /* FIXME: print all 4? */
2002 break;
2003 case WSTATE_REGNUM:
2004 printf ("\tother:%d, normal:%d", BITS (3, 7), BITS (0, 7));
2005 break;
2006 case CWP_REGNUM:
2007 printf ("\t%d", BITS (0, 31));
2008 break;
2009 case CANSAVE_REGNUM:
2010 printf ("\t%-2d before spill", BITS (0, 31));
2011 break;
2012 case CANRESTORE_REGNUM:
2013 printf ("\t%-2d before fill", BITS (0, 31));
2014 break;
2015 case CLEANWIN_REGNUM:
2016 printf ("\t%-2d before clean", BITS (0, 31));
2017 break;
2018 case OTHERWIN_REGNUM:
2019 printf ("\t%d", BITS (0, 31));
2020 break;
2021 }
2022 else /* Sparc32 */
2023 switch (regno)
2024 {
2025 case PS_REGNUM:
2026 printf ("\ticc:%c%c%c%c, pil:%d, s:%d, ps:%d, et:%d, cwp:%d",
2027 BITS (23, 1) ? 'N' : '-', BITS (22, 1) ? 'Z' : '-',
2028 BITS (21, 1) ? 'V' : '-', BITS (20, 1) ? 'C' : '-',
2029 BITS (8, 15), BITS (7, 1), BITS (6, 1), BITS (5, 1),
2030 BITS (0, 31));
2031 break;
2032 case FPS_REGNUM:
2033 {
2034 static char *fcc[4] =
2035 {"=", "<", ">", "?"};
2036 static char *rd[4] =
2037 {"N", "0", "+", "-"};
2038 /* Long, but I'd rather leave it as is and use a wide screen. */
2039 printf ("\trd:%s, tem:%d, ns:%d, ver:%d, ftt:%d, qne:%d, "
2040 "fcc:%s, aexc:%d, cexc:%d",
2041 rd[BITS (30, 3)], BITS (23, 31), BITS (22, 1), BITS (17, 7),
2042 BITS (14, 7), BITS (13, 1), fcc[BITS (10, 3)], BITS (5, 31),
2043 BITS (0, 31));
2044 break;
2045 }
2046 }
2047
2048 #undef BITS
2049 }
2050
2051 static void
2052 sparc_print_registers (struct gdbarch *gdbarch,
2053 struct ui_file *file,
2054 struct frame_info *frame,
2055 int regnum, int print_all,
2056 void (*print_register_hook) (int))
2057 {
2058 int i;
2059 const int numregs = NUM_REGS + NUM_PSEUDO_REGS;
2060 char *raw_buffer = alloca (MAX_REGISTER_RAW_SIZE);
2061 char *virtual_buffer = alloca (MAX_REGISTER_VIRTUAL_SIZE);
2062
2063 for (i = 0; i < numregs; i++)
2064 {
2065 /* Decide between printing all regs, non-float / vector regs, or
2066 specific reg. */
2067 if (regnum == -1)
2068 {
2069 if (!print_all)
2070 {
2071 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2072 continue;
2073 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)))
2074 continue;
2075 }
2076 }
2077 else
2078 {
2079 if (i != regnum)
2080 continue;
2081 }
2082
2083 /* If the register name is empty, it is undefined for this
2084 processor, so don't display anything. */
2085 if (REGISTER_NAME (i) == NULL || *(REGISTER_NAME (i)) == '\0')
2086 continue;
2087
2088 fputs_filtered (REGISTER_NAME (i), file);
2089 print_spaces_filtered (15 - strlen (REGISTER_NAME (i)), file);
2090
2091 /* Get the data in raw format. */
2092 if (! frame_register_read (frame, i, raw_buffer))
2093 {
2094 fprintf_filtered (file, "*value not available*\n");
2095 continue;
2096 }
2097
2098 /* FIXME: cagney/2002-08-03: This code shouldn't be necessary.
2099 The function frame_register_read() should have returned the
2100 pre-cooked register so no conversion is necessary. */
2101 /* Convert raw data to virtual format if necessary. */
2102 if (REGISTER_CONVERTIBLE (i))
2103 {
2104 REGISTER_CONVERT_TO_VIRTUAL (i, REGISTER_VIRTUAL_TYPE (i),
2105 raw_buffer, virtual_buffer);
2106 }
2107 else
2108 {
2109 memcpy (virtual_buffer, raw_buffer,
2110 REGISTER_VIRTUAL_SIZE (i));
2111 }
2112
2113 /* If virtual format is floating, print it that way, and in raw
2114 hex. */
2115 if (TYPE_CODE (REGISTER_VIRTUAL_TYPE (i)) == TYPE_CODE_FLT)
2116 {
2117 int j;
2118
2119 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2120 file, 0, 1, 0, Val_pretty_default);
2121
2122 fprintf_filtered (file, "\t(raw 0x");
2123 for (j = 0; j < REGISTER_RAW_SIZE (i); j++)
2124 {
2125 int idx;
2126 if (TARGET_BYTE_ORDER == BFD_ENDIAN_BIG)
2127 idx = j;
2128 else
2129 idx = REGISTER_RAW_SIZE (i) - 1 - j;
2130 fprintf_filtered (file, "%02x", (unsigned char) raw_buffer[idx]);
2131 }
2132 fprintf_filtered (file, ")");
2133 }
2134 else
2135 {
2136 /* Print the register in hex. */
2137 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2138 file, 'x', 1, 0, Val_pretty_default);
2139 /* If not a vector register, print it also according to its
2140 natural format. */
2141 if (TYPE_VECTOR (REGISTER_VIRTUAL_TYPE (i)) == 0)
2142 {
2143 fprintf_filtered (file, "\t");
2144 val_print (REGISTER_VIRTUAL_TYPE (i), virtual_buffer, 0, 0,
2145 file, 0, 1, 0, Val_pretty_default);
2146 }
2147 }
2148
2149 /* Some sparc specific info. */
2150 if (print_register_hook != NULL)
2151 print_register_hook (i);
2152
2153 fprintf_filtered (file, "\n");
2154 }
2155 }
2156
2157 static void
2158 sparc_print_registers_info (struct gdbarch *gdbarch,
2159 struct ui_file *file,
2160 struct frame_info *frame,
2161 int regnum, int print_all)
2162 {
2163 sparc_print_registers (gdbarch, file, frame, regnum, print_all,
2164 sparc_print_register_hook);
2165 }
2166
2167 void
2168 sparc_do_registers_info (int regnum, int all)
2169 {
2170 sparc_print_registers_info (current_gdbarch, gdb_stdout, deprecated_selected_frame,
2171 regnum, all);
2172 }
2173
2174 static void
2175 sparclet_print_registers_info (struct gdbarch *gdbarch,
2176 struct ui_file *file,
2177 struct frame_info *frame,
2178 int regnum, int print_all)
2179 {
2180 sparc_print_registers (gdbarch, file, frame, regnum, print_all, NULL);
2181 }
2182
2183 void
2184 sparclet_do_registers_info (int regnum, int all)
2185 {
2186 sparclet_print_registers_info (current_gdbarch, gdb_stdout,
2187 deprecated_selected_frame, regnum, all);
2188 }
2189
2190 \f
2191 int
2192 gdb_print_insn_sparc (bfd_vma memaddr, disassemble_info *info)
2193 {
2194 /* It's necessary to override mach again because print_insn messes it up. */
2195 info->mach = TARGET_ARCHITECTURE->mach;
2196 return print_insn_sparc (memaddr, info);
2197 }
2198 \f
2199 /* The SPARC passes the arguments on the stack; arguments smaller
2200 than an int are promoted to an int. The first 6 words worth of
2201 args are also passed in registers o0 - o5. */
2202
2203 CORE_ADDR
2204 sparc32_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2205 int struct_return, CORE_ADDR struct_addr)
2206 {
2207 int i, j, oregnum;
2208 int accumulate_size = 0;
2209 struct sparc_arg
2210 {
2211 char *contents;
2212 int len;
2213 int offset;
2214 };
2215 struct sparc_arg *sparc_args =
2216 (struct sparc_arg *) alloca (nargs * sizeof (struct sparc_arg));
2217 struct sparc_arg *m_arg;
2218
2219 /* Promote arguments if necessary, and calculate their stack offsets
2220 and sizes. */
2221 for (i = 0, m_arg = sparc_args; i < nargs; i++, m_arg++)
2222 {
2223 struct value *arg = args[i];
2224 struct type *arg_type = check_typedef (VALUE_TYPE (arg));
2225 /* Cast argument to long if necessary as the compiler does it too. */
2226 switch (TYPE_CODE (arg_type))
2227 {
2228 case TYPE_CODE_INT:
2229 case TYPE_CODE_BOOL:
2230 case TYPE_CODE_CHAR:
2231 case TYPE_CODE_RANGE:
2232 case TYPE_CODE_ENUM:
2233 if (TYPE_LENGTH (arg_type) < TYPE_LENGTH (builtin_type_long))
2234 {
2235 arg_type = builtin_type_long;
2236 arg = value_cast (arg_type, arg);
2237 }
2238 break;
2239 default:
2240 break;
2241 }
2242 m_arg->len = TYPE_LENGTH (arg_type);
2243 m_arg->offset = accumulate_size;
2244 accumulate_size = (accumulate_size + m_arg->len + 3) & ~3;
2245 m_arg->contents = VALUE_CONTENTS (arg);
2246 }
2247
2248 /* Make room for the arguments on the stack. */
2249 accumulate_size += CALL_DUMMY_STACK_ADJUST;
2250 sp = ((sp - accumulate_size) & ~7) + CALL_DUMMY_STACK_ADJUST;
2251
2252 /* `Push' arguments on the stack. */
2253 for (i = 0, oregnum = 0, m_arg = sparc_args;
2254 i < nargs;
2255 i++, m_arg++)
2256 {
2257 write_memory (sp + m_arg->offset, m_arg->contents, m_arg->len);
2258 for (j = 0;
2259 j < m_arg->len && oregnum < 6;
2260 j += SPARC_INTREG_SIZE, oregnum++)
2261 deprecated_write_register_gen (O0_REGNUM + oregnum, m_arg->contents + j);
2262 }
2263
2264 return sp;
2265 }
2266
2267
2268 /* Extract from an array REGBUF containing the (raw) register state
2269 a function return value of type TYPE, and copy that, in virtual format,
2270 into VALBUF. */
2271
2272 void
2273 sparc32_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2274 {
2275 int typelen = TYPE_LENGTH (type);
2276 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2277
2278 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2279 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2280 else
2281 memcpy (valbuf,
2282 &regbuf[O0_REGNUM * regsize +
2283 (typelen >= regsize
2284 || TARGET_BYTE_ORDER == BFD_ENDIAN_LITTLE ? 0
2285 : regsize - typelen)],
2286 typelen);
2287 }
2288
2289
2290 /* Write into appropriate registers a function return value
2291 of type TYPE, given in virtual format. On SPARCs with FPUs,
2292 float values are returned in %f0 (and %f1). In all other cases,
2293 values are returned in register %o0. */
2294
2295 void
2296 sparc_store_return_value (struct type *type, char *valbuf)
2297 {
2298 int regno;
2299 char *buffer;
2300
2301 buffer = alloca (MAX_REGISTER_RAW_SIZE);
2302
2303 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2304 /* Floating-point values are returned in the register pair */
2305 /* formed by %f0 and %f1 (doubles are, anyway). */
2306 regno = FP0_REGNUM;
2307 else
2308 /* Other values are returned in register %o0. */
2309 regno = O0_REGNUM;
2310
2311 /* Add leading zeros to the value. */
2312 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (regno))
2313 {
2314 memset (buffer, 0, REGISTER_RAW_SIZE (regno));
2315 memcpy (buffer + REGISTER_RAW_SIZE (regno) - TYPE_LENGTH (type), valbuf,
2316 TYPE_LENGTH (type));
2317 deprecated_write_register_gen (regno, buffer);
2318 }
2319 else
2320 deprecated_write_register_bytes (REGISTER_BYTE (regno), valbuf,
2321 TYPE_LENGTH (type));
2322 }
2323
2324 extern void
2325 sparclet_store_return_value (struct type *type, char *valbuf)
2326 {
2327 /* Other values are returned in register %o0. */
2328 deprecated_write_register_bytes (REGISTER_BYTE (O0_REGNUM), valbuf,
2329 TYPE_LENGTH (type));
2330 }
2331
2332
2333 #ifndef CALL_DUMMY_CALL_OFFSET
2334 #define CALL_DUMMY_CALL_OFFSET \
2335 (gdbarch_tdep (current_gdbarch)->call_dummy_call_offset)
2336 #endif /* CALL_DUMMY_CALL_OFFSET */
2337
2338 /* Insert the function address into a call dummy instruction sequence
2339 stored at DUMMY.
2340
2341 For structs and unions, if the function was compiled with Sun cc,
2342 it expects 'unimp' after the call. But gcc doesn't use that
2343 (twisted) convention. So leave a nop there for gcc (FIX_CALL_DUMMY
2344 can assume it is operating on a pristine CALL_DUMMY, not one that
2345 has already been customized for a different function). */
2346
2347 void
2348 sparc_fix_call_dummy (char *dummy, CORE_ADDR pc, CORE_ADDR fun,
2349 struct type *value_type, int using_gcc)
2350 {
2351 int i;
2352
2353 /* Store the relative adddress of the target function into the
2354 'call' instruction. */
2355 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET, 4,
2356 (0x40000000
2357 | (((fun - (pc + CALL_DUMMY_CALL_OFFSET)) >> 2)
2358 & 0x3fffffff)));
2359
2360 /* If the called function returns an aggregate value, fill in the UNIMP
2361 instruction containing the size of the returned aggregate return value,
2362 which follows the call instruction.
2363 For details see the SPARC Architecture Manual Version 8, Appendix D.3.
2364
2365 Adjust the call_dummy_breakpoint_offset for the bp_call_dummy breakpoint
2366 to the proper address in the call dummy, so that `finish' after a stop
2367 in a call dummy works.
2368 Tweeking current_gdbarch is not an optimal solution, but the call to
2369 sparc_fix_call_dummy is immediately followed by a call to run_stack_dummy,
2370 which is the only function where dummy_breakpoint_offset is actually
2371 used, if it is non-zero. */
2372 if (TYPE_CODE (value_type) == TYPE_CODE_STRUCT
2373 || TYPE_CODE (value_type) == TYPE_CODE_UNION)
2374 {
2375 store_unsigned_integer (dummy + CALL_DUMMY_CALL_OFFSET + 8, 4,
2376 TYPE_LENGTH (value_type) & 0x1fff);
2377 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x30);
2378 }
2379 else
2380 set_gdbarch_call_dummy_breakpoint_offset (current_gdbarch, 0x2c);
2381
2382 if (!(GDB_TARGET_IS_SPARC64))
2383 {
2384 /* If this is not a simulator target, change the first four
2385 instructions of the call dummy to NOPs. Those instructions
2386 include a 'save' instruction and are designed to work around
2387 problems with register window flushing in the simulator. */
2388
2389 if (strcmp (target_shortname, "sim") != 0)
2390 {
2391 for (i = 0; i < 4; i++)
2392 store_unsigned_integer (dummy + (i * 4), 4, 0x01000000);
2393 }
2394 }
2395
2396 /* If this is a bi-endian target, GDB has written the call dummy
2397 in little-endian order. We must byte-swap it back to big-endian. */
2398 if (bi_endian)
2399 {
2400 for (i = 0; i < CALL_DUMMY_LENGTH; i += 4)
2401 {
2402 char tmp = dummy[i];
2403 dummy[i] = dummy[i + 3];
2404 dummy[i + 3] = tmp;
2405 tmp = dummy[i + 1];
2406 dummy[i + 1] = dummy[i + 2];
2407 dummy[i + 2] = tmp;
2408 }
2409 }
2410 }
2411
2412
2413 /* Set target byte order based on machine type. */
2414
2415 static int
2416 sparc_target_architecture_hook (const bfd_arch_info_type *ap)
2417 {
2418 int i, j;
2419
2420 if (ap->mach == bfd_mach_sparc_sparclite_le)
2421 {
2422 target_byte_order = BFD_ENDIAN_LITTLE;
2423 bi_endian = 1;
2424 }
2425 else
2426 bi_endian = 0;
2427 return 1;
2428 }
2429 \f
2430
2431 /*
2432 * Module "constructor" function.
2433 */
2434
2435 static struct gdbarch * sparc_gdbarch_init (struct gdbarch_info info,
2436 struct gdbarch_list *arches);
2437 static void sparc_dump_tdep (struct gdbarch *, struct ui_file *);
2438
2439 void
2440 _initialize_sparc_tdep (void)
2441 {
2442 /* Hook us into the gdbarch mechanism. */
2443 gdbarch_register (bfd_arch_sparc, sparc_gdbarch_init, sparc_dump_tdep);
2444
2445 tm_print_insn = gdb_print_insn_sparc;
2446 tm_print_insn_info.mach = TM_PRINT_INSN_MACH; /* Selects sparc/sparclite */
2447 target_architecture_hook = sparc_target_architecture_hook;
2448 }
2449
2450 /* Compensate for stack bias. Note that we currently don't handle
2451 mixed 32/64 bit code. */
2452
2453 CORE_ADDR
2454 sparc64_read_sp (void)
2455 {
2456 CORE_ADDR sp = read_register (SP_REGNUM);
2457
2458 if (sp & 1)
2459 sp += 2047;
2460 return sp;
2461 }
2462
2463 CORE_ADDR
2464 sparc64_read_fp (void)
2465 {
2466 CORE_ADDR fp = read_register (FP_REGNUM);
2467
2468 if (fp & 1)
2469 fp += 2047;
2470 return fp;
2471 }
2472
2473 void
2474 sparc64_write_sp (CORE_ADDR val)
2475 {
2476 CORE_ADDR oldsp = read_register (SP_REGNUM);
2477 if (oldsp & 1)
2478 write_register (SP_REGNUM, val - 2047);
2479 else
2480 write_register (SP_REGNUM, val);
2481 }
2482
2483 /* The SPARC 64 ABI passes floating-point arguments in FP0 to FP31,
2484 and all other arguments in O0 to O5. They are also copied onto
2485 the stack in the correct places. Apparently (empirically),
2486 structs of less than 16 bytes are passed member-by-member in
2487 separate registers, but I am unable to figure out the algorithm.
2488 Some members go in floating point regs, but I don't know which.
2489
2490 FIXME: Handle small structs (less than 16 bytes containing floats).
2491
2492 The counting regimen for using both integer and FP registers
2493 for argument passing is rather odd -- a single counter is used
2494 for both; this means that if the arguments alternate between
2495 int and float, we will waste every other register of both types. */
2496
2497 CORE_ADDR
2498 sparc64_push_arguments (int nargs, struct value **args, CORE_ADDR sp,
2499 int struct_return, CORE_ADDR struct_retaddr)
2500 {
2501 int i, j, register_counter = 0;
2502 CORE_ADDR tempsp;
2503 struct type *sparc_intreg_type =
2504 TYPE_LENGTH (builtin_type_long) == SPARC_INTREG_SIZE ?
2505 builtin_type_long : builtin_type_long_long;
2506
2507 sp = (sp & ~(((unsigned long) SPARC_INTREG_SIZE) - 1UL));
2508
2509 /* Figure out how much space we'll need. */
2510 for (i = nargs - 1; i >= 0; i--)
2511 {
2512 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2513 struct value *copyarg = args[i];
2514 int copylen = len;
2515
2516 if (copylen < SPARC_INTREG_SIZE)
2517 {
2518 copyarg = value_cast (sparc_intreg_type, copyarg);
2519 copylen = SPARC_INTREG_SIZE;
2520 }
2521 sp -= copylen;
2522 }
2523
2524 /* Round down. */
2525 sp = sp & ~7;
2526 tempsp = sp;
2527
2528 /* if STRUCT_RETURN, then first argument is the struct return location. */
2529 if (struct_return)
2530 write_register (O0_REGNUM + register_counter++, struct_retaddr);
2531
2532 /* Now write the arguments onto the stack, while writing FP
2533 arguments into the FP registers, and other arguments into the
2534 first six 'O' registers. */
2535
2536 for (i = 0; i < nargs; i++)
2537 {
2538 int len = TYPE_LENGTH (check_typedef (VALUE_TYPE (args[i])));
2539 struct value *copyarg = args[i];
2540 enum type_code typecode = TYPE_CODE (VALUE_TYPE (args[i]));
2541 int copylen = len;
2542
2543 if (typecode == TYPE_CODE_INT ||
2544 typecode == TYPE_CODE_BOOL ||
2545 typecode == TYPE_CODE_CHAR ||
2546 typecode == TYPE_CODE_RANGE ||
2547 typecode == TYPE_CODE_ENUM)
2548 if (len < SPARC_INTREG_SIZE)
2549 {
2550 /* Small ints will all take up the size of one intreg on
2551 the stack. */
2552 copyarg = value_cast (sparc_intreg_type, copyarg);
2553 copylen = SPARC_INTREG_SIZE;
2554 }
2555
2556 write_memory (tempsp, VALUE_CONTENTS (copyarg), copylen);
2557 tempsp += copylen;
2558
2559 /* Corner case: Structs consisting of a single float member are floats.
2560 * FIXME! I don't know about structs containing multiple floats!
2561 * Structs containing mixed floats and ints are even more weird.
2562 */
2563
2564
2565
2566 /* Separate float args from all other args. */
2567 if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2568 {
2569 if (register_counter < 16)
2570 {
2571 /* This arg gets copied into a FP register. */
2572 int fpreg;
2573
2574 switch (len) {
2575 case 4: /* Single-precision (float) */
2576 fpreg = FP0_REGNUM + 2 * register_counter + 1;
2577 register_counter += 1;
2578 break;
2579 case 8: /* Double-precision (double) */
2580 fpreg = FP0_REGNUM + 2 * register_counter;
2581 register_counter += 1;
2582 break;
2583 case 16: /* Quad-precision (long double) */
2584 fpreg = FP0_REGNUM + 2 * register_counter;
2585 register_counter += 2;
2586 break;
2587 default:
2588 internal_error (__FILE__, __LINE__, "bad switch");
2589 }
2590 deprecated_write_register_bytes (REGISTER_BYTE (fpreg),
2591 VALUE_CONTENTS (args[i]),
2592 len);
2593 }
2594 }
2595 else /* all other args go into the first six 'o' registers */
2596 {
2597 for (j = 0;
2598 j < len && register_counter < 6;
2599 j += SPARC_INTREG_SIZE)
2600 {
2601 int oreg = O0_REGNUM + register_counter;
2602
2603 deprecated_write_register_gen (oreg, VALUE_CONTENTS (copyarg) + j);
2604 register_counter += 1;
2605 }
2606 }
2607 }
2608 return sp;
2609 }
2610
2611 /* Values <= 32 bytes are returned in o0-o3 (floating-point values are
2612 returned in f0-f3). */
2613
2614 void
2615 sp64_extract_return_value (struct type *type, char *regbuf, char *valbuf,
2616 int bitoffset)
2617 {
2618 int typelen = TYPE_LENGTH (type);
2619 int regsize = REGISTER_RAW_SIZE (O0_REGNUM);
2620
2621 if (TYPE_CODE (type) == TYPE_CODE_FLT && SPARC_HAS_FPU)
2622 {
2623 memcpy (valbuf, &regbuf[REGISTER_BYTE (FP0_REGNUM)], typelen);
2624 return;
2625 }
2626
2627 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
2628 || (TYPE_LENGTH (type) > 32))
2629 {
2630 memcpy (valbuf,
2631 &regbuf[O0_REGNUM * regsize +
2632 (typelen >= regsize ? 0 : regsize - typelen)],
2633 typelen);
2634 return;
2635 }
2636 else
2637 {
2638 char *o0 = &regbuf[O0_REGNUM * regsize];
2639 char *f0 = &regbuf[FP0_REGNUM * regsize];
2640 int x;
2641
2642 for (x = 0; x < TYPE_NFIELDS (type); x++)
2643 {
2644 struct field *f = &TYPE_FIELDS (type)[x];
2645 /* FIXME: We may need to handle static fields here. */
2646 int whichreg = (f->loc.bitpos + bitoffset) / 32;
2647 int remainder = ((f->loc.bitpos + bitoffset) % 32) / 8;
2648 int where = (f->loc.bitpos + bitoffset) / 8;
2649 int size = TYPE_LENGTH (f->type);
2650 int typecode = TYPE_CODE (f->type);
2651
2652 if (typecode == TYPE_CODE_STRUCT)
2653 {
2654 sp64_extract_return_value (f->type,
2655 regbuf,
2656 valbuf,
2657 bitoffset + f->loc.bitpos);
2658 }
2659 else if (typecode == TYPE_CODE_FLT && SPARC_HAS_FPU)
2660 {
2661 memcpy (valbuf + where, &f0[whichreg * 4] + remainder, size);
2662 }
2663 else
2664 {
2665 memcpy (valbuf + where, &o0[whichreg * 4] + remainder, size);
2666 }
2667 }
2668 }
2669 }
2670
2671 extern void
2672 sparc64_extract_return_value (struct type *type, char *regbuf, char *valbuf)
2673 {
2674 sp64_extract_return_value (type, regbuf, valbuf, 0);
2675 }
2676
2677 extern void
2678 sparclet_extract_return_value (struct type *type,
2679 char *regbuf,
2680 char *valbuf)
2681 {
2682 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) * 8;
2683 if (TYPE_LENGTH (type) < REGISTER_RAW_SIZE (O0_REGNUM))
2684 regbuf += REGISTER_RAW_SIZE (O0_REGNUM) - TYPE_LENGTH (type);
2685
2686 memcpy ((void *) valbuf, regbuf, TYPE_LENGTH (type));
2687 }
2688
2689
2690 extern CORE_ADDR
2691 sparc32_stack_align (CORE_ADDR addr)
2692 {
2693 return ((addr + 7) & -8);
2694 }
2695
2696 extern CORE_ADDR
2697 sparc64_stack_align (CORE_ADDR addr)
2698 {
2699 return ((addr + 15) & -16);
2700 }
2701
2702 extern void
2703 sparc_print_extra_frame_info (struct frame_info *fi)
2704 {
2705 if (fi && get_frame_extra_info (fi) && get_frame_extra_info (fi)->flat)
2706 printf_filtered (" flat, pc saved at 0x%s, fp saved at 0x%s\n",
2707 paddr_nz (get_frame_extra_info (fi)->pc_addr),
2708 paddr_nz (get_frame_extra_info (fi)->fp_addr));
2709 }
2710
2711 /* MULTI_ARCH support */
2712
2713 static const char *
2714 sparc32_register_name (int regno)
2715 {
2716 static char *register_names[] =
2717 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2718 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2719 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2720 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2721
2722 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2723 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2724 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2725 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2726
2727 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr"
2728 };
2729
2730 if (regno < 0 ||
2731 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2732 return NULL;
2733 else
2734 return register_names[regno];
2735 }
2736
2737 static const char *
2738 sparc64_register_name (int regno)
2739 {
2740 static char *register_names[] =
2741 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2742 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2743 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2744 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2745
2746 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2747 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2748 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2749 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2750 "f32", "f34", "f36", "f38", "f40", "f42", "f44", "f46",
2751 "f48", "f50", "f52", "f54", "f56", "f58", "f60", "f62",
2752
2753 "pc", "npc", "ccr", "fsr", "fprs", "y", "asi", "ver",
2754 "tick", "pil", "pstate", "tstate", "tba", "tl", "tt", "tpc",
2755 "tnpc", "wstate", "cwp", "cansave", "canrestore", "cleanwin", "otherwin",
2756 "asr16", "asr17", "asr18", "asr19", "asr20", "asr21", "asr22", "asr23",
2757 "asr24", "asr25", "asr26", "asr27", "asr28", "asr29", "asr30", "asr31",
2758 /* These are here at the end to simplify removing them if we have to. */
2759 "icc", "xcc", "fcc0", "fcc1", "fcc2", "fcc3"
2760 };
2761
2762 if (regno < 0 ||
2763 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2764 return NULL;
2765 else
2766 return register_names[regno];
2767 }
2768
2769 static const char *
2770 sparclite_register_name (int regno)
2771 {
2772 static char *register_names[] =
2773 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2774 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2775 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2776 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2777
2778 "f0", "f1", "f2", "f3", "f4", "f5", "f6", "f7",
2779 "f8", "f9", "f10", "f11", "f12", "f13", "f14", "f15",
2780 "f16", "f17", "f18", "f19", "f20", "f21", "f22", "f23",
2781 "f24", "f25", "f26", "f27", "f28", "f29", "f30", "f31",
2782
2783 "y", "psr", "wim", "tbr", "pc", "npc", "fpsr", "cpsr",
2784 "dia1", "dia2", "dda1", "dda2", "ddv1", "ddv2", "dcr", "dsr"
2785 };
2786
2787 if (regno < 0 ||
2788 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2789 return NULL;
2790 else
2791 return register_names[regno];
2792 }
2793
2794 static const char *
2795 sparclet_register_name (int regno)
2796 {
2797 static char *register_names[] =
2798 { "g0", "g1", "g2", "g3", "g4", "g5", "g6", "g7",
2799 "o0", "o1", "o2", "o3", "o4", "o5", "sp", "o7",
2800 "l0", "l1", "l2", "l3", "l4", "l5", "l6", "l7",
2801 "i0", "i1", "i2", "i3", "i4", "i5", "fp", "i7",
2802
2803 "", "", "", "", "", "", "", "", /* no floating point registers */
2804 "", "", "", "", "", "", "", "",
2805 "", "", "", "", "", "", "", "",
2806 "", "", "", "", "", "", "", "",
2807
2808 "y", "psr", "wim", "tbr", "pc", "npc", "", "", /* no FPSR or CPSR */
2809 "ccsr", "ccpr", "cccrcr", "ccor", "ccobr", "ccibr", "ccir", "",
2810
2811 /* ASR15 ASR19 (don't display them) */
2812 "asr1", "", "asr17", "asr18", "", "asr20", "asr21", "asr22"
2813 /* None of the rest get displayed */
2814 #if 0
2815 "awr0", "awr1", "awr2", "awr3", "awr4", "awr5", "awr6", "awr7",
2816 "awr8", "awr9", "awr10", "awr11", "awr12", "awr13", "awr14", "awr15",
2817 "awr16", "awr17", "awr18", "awr19", "awr20", "awr21", "awr22", "awr23",
2818 "awr24", "awr25", "awr26", "awr27", "awr28", "awr29", "awr30", "awr31",
2819 "apsr"
2820 #endif /* 0 */
2821 };
2822
2823 if (regno < 0 ||
2824 regno >= (sizeof (register_names) / sizeof (register_names[0])))
2825 return NULL;
2826 else
2827 return register_names[regno];
2828 }
2829
2830 CORE_ADDR
2831 sparc_push_return_address (CORE_ADDR pc_unused, CORE_ADDR sp)
2832 {
2833 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2834 {
2835 /* The return PC of the dummy_frame is the former 'current' PC
2836 (where we were before we made the target function call).
2837 This is saved in %i7 by push_dummy_frame.
2838
2839 We will save the 'call dummy location' (ie. the address
2840 to which the target function will return) in %o7.
2841 This address will actually be the program's entry point.
2842 There will be a special call_dummy breakpoint there. */
2843
2844 write_register (O7_REGNUM,
2845 CALL_DUMMY_ADDRESS () - 8);
2846 }
2847
2848 return sp;
2849 }
2850
2851 /* Should call_function allocate stack space for a struct return? */
2852
2853 static int
2854 sparc64_use_struct_convention (int gcc_p, struct type *type)
2855 {
2856 return (TYPE_LENGTH (type) > 32);
2857 }
2858
2859 /* Store the address of the place in which to copy the structure the
2860 subroutine will return. This is called from call_function_by_hand.
2861 The ultimate mystery is, tho, what is the value "16"?
2862
2863 MVS: That's the offset from where the sp is now, to where the
2864 subroutine is gonna expect to find the struct return address. */
2865
2866 static void
2867 sparc32_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2868 {
2869 char *val;
2870 CORE_ADDR o7;
2871
2872 val = alloca (SPARC_INTREG_SIZE);
2873 store_unsigned_integer (val, SPARC_INTREG_SIZE, addr);
2874 write_memory (sp + (16 * SPARC_INTREG_SIZE), val, SPARC_INTREG_SIZE);
2875
2876 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2877 {
2878 /* Now adjust the value of the link register, which was previously
2879 stored by push_return_address. Functions that return structs are
2880 peculiar in that they return to link register + 12, rather than
2881 link register + 8. */
2882
2883 o7 = read_register (O7_REGNUM);
2884 write_register (O7_REGNUM, o7 - 4);
2885 }
2886 }
2887
2888 static void
2889 sparc64_store_struct_return (CORE_ADDR addr, CORE_ADDR sp)
2890 {
2891 /* FIXME: V9 uses %o0 for this. */
2892 /* FIXME MVS: Only for small enough structs!!! */
2893
2894 target_write_memory (sp + (16 * SPARC_INTREG_SIZE),
2895 (char *) &addr, SPARC_INTREG_SIZE);
2896 #if 0
2897 if (CALL_DUMMY_LOCATION == AT_ENTRY_POINT)
2898 {
2899 /* Now adjust the value of the link register, which was previously
2900 stored by push_return_address. Functions that return structs are
2901 peculiar in that they return to link register + 12, rather than
2902 link register + 8. */
2903
2904 write_register (O7_REGNUM, read_register (O7_REGNUM) - 4);
2905 }
2906 #endif
2907 }
2908
2909 /* Default target data type for register REGNO. */
2910
2911 static struct type *
2912 sparc32_register_virtual_type (int regno)
2913 {
2914 if (regno == PC_REGNUM ||
2915 regno == FP_REGNUM ||
2916 regno == SP_REGNUM)
2917 return builtin_type_unsigned_int;
2918 if (regno < 32)
2919 return builtin_type_int;
2920 if (regno < 64)
2921 return builtin_type_float;
2922 return builtin_type_int;
2923 }
2924
2925 static struct type *
2926 sparc64_register_virtual_type (int regno)
2927 {
2928 if (regno == PC_REGNUM ||
2929 regno == FP_REGNUM ||
2930 regno == SP_REGNUM)
2931 return builtin_type_unsigned_long_long;
2932 if (regno < 32)
2933 return builtin_type_long_long;
2934 if (regno < 64)
2935 return builtin_type_float;
2936 if (regno < 80)
2937 return builtin_type_double;
2938 return builtin_type_long_long;
2939 }
2940
2941 /* Number of bytes of storage in the actual machine representation for
2942 register REGNO. */
2943
2944 static int
2945 sparc32_register_size (int regno)
2946 {
2947 return 4;
2948 }
2949
2950 static int
2951 sparc64_register_size (int regno)
2952 {
2953 return (regno < 32 ? 8 : regno < 64 ? 4 : 8);
2954 }
2955
2956 /* Index within the `registers' buffer of the first byte of the space
2957 for register REGNO. */
2958
2959 static int
2960 sparc32_register_byte (int regno)
2961 {
2962 return (regno * 4);
2963 }
2964
2965 static int
2966 sparc64_register_byte (int regno)
2967 {
2968 if (regno < 32)
2969 return regno * 8;
2970 else if (regno < 64)
2971 return 32 * 8 + (regno - 32) * 4;
2972 else if (regno < 80)
2973 return 32 * 8 + 32 * 4 + (regno - 64) * 8;
2974 else
2975 return 64 * 8 + (regno - 80) * 8;
2976 }
2977
2978 /* Immediately after a function call, return the saved pc.
2979 Can't go through the frames for this because on some machines
2980 the new frame is not set up until the new function executes
2981 some instructions. */
2982
2983 static CORE_ADDR
2984 sparc_saved_pc_after_call (struct frame_info *fi)
2985 {
2986 return sparc_pc_adjust (read_register (RP_REGNUM));
2987 }
2988
2989 /* Convert registers between 'raw' and 'virtual' formats.
2990 They are the same on sparc, so there's nothing to do. */
2991
2992 static void
2993 sparc_convert_to_virtual (int regnum, struct type *type, char *from, char *to)
2994 { /* do nothing (should never be called) */
2995 }
2996
2997 static void
2998 sparc_convert_to_raw (struct type *type, int regnum, char *from, char *to)
2999 { /* do nothing (should never be called) */
3000 }
3001
3002 /* Init saved regs: nothing to do, just a place-holder function. */
3003
3004 static void
3005 sparc_frame_init_saved_regs (struct frame_info *fi_ignored)
3006 { /* no-op */
3007 }
3008
3009 /* gdbarch fix call dummy:
3010 All this function does is rearrange the arguments before calling
3011 sparc_fix_call_dummy (which does the real work). */
3012
3013 static void
3014 sparc_gdbarch_fix_call_dummy (char *dummy,
3015 CORE_ADDR pc,
3016 CORE_ADDR fun,
3017 int nargs,
3018 struct value **args,
3019 struct type *type,
3020 int gcc_p)
3021 {
3022 if (CALL_DUMMY_LOCATION == ON_STACK)
3023 sparc_fix_call_dummy (dummy, pc, fun, type, gcc_p);
3024 }
3025
3026 /* CALL_DUMMY_ADDRESS: fetch the breakpoint address for a call dummy. */
3027
3028 static CORE_ADDR
3029 sparc_call_dummy_address (void)
3030 {
3031 return (CALL_DUMMY_START_OFFSET) + CALL_DUMMY_BREAKPOINT_OFFSET;
3032 }
3033
3034 /* Supply the Y register number to those that need it. */
3035
3036 int
3037 sparc_y_regnum (void)
3038 {
3039 return gdbarch_tdep (current_gdbarch)->y_regnum;
3040 }
3041
3042 int
3043 sparc_reg_struct_has_addr (int gcc_p, struct type *type)
3044 {
3045 if (GDB_TARGET_IS_SPARC64)
3046 return (TYPE_LENGTH (type) > 32);
3047 else
3048 return (gcc_p != 1);
3049 }
3050
3051 int
3052 sparc_intreg_size (void)
3053 {
3054 return SPARC_INTREG_SIZE;
3055 }
3056
3057 static int
3058 sparc_return_value_on_stack (struct type *type)
3059 {
3060 if (TYPE_CODE (type) == TYPE_CODE_FLT &&
3061 TYPE_LENGTH (type) > 8)
3062 return 1;
3063 else
3064 return 0;
3065 }
3066
3067 /*
3068 * Gdbarch "constructor" function.
3069 */
3070
3071 #define SPARC32_CALL_DUMMY_ON_STACK
3072
3073 #define SPARC_SP_REGNUM 14
3074 #define SPARC_FP_REGNUM 30
3075 #define SPARC_FP0_REGNUM 32
3076 #define SPARC32_NPC_REGNUM 69
3077 #define SPARC32_PC_REGNUM 68
3078 #define SPARC32_Y_REGNUM 64
3079 #define SPARC64_PC_REGNUM 80
3080 #define SPARC64_NPC_REGNUM 81
3081 #define SPARC64_Y_REGNUM 85
3082
3083 static struct gdbarch *
3084 sparc_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3085 {
3086 struct gdbarch *gdbarch;
3087 struct gdbarch_tdep *tdep;
3088
3089 static LONGEST call_dummy_32[] =
3090 { 0xbc100001, 0x9de38000, 0xbc100002, 0xbe100003,
3091 0xda03a058, 0xd803a054, 0xd603a050, 0xd403a04c,
3092 0xd203a048, 0x40000000, 0xd003a044, 0x01000000,
3093 0x91d02001, 0x01000000
3094 };
3095 static LONGEST call_dummy_64[] =
3096 { 0x9de3bec0fd3fa7f7LL, 0xf93fa7eff53fa7e7LL,
3097 0xf13fa7dfed3fa7d7LL, 0xe93fa7cfe53fa7c7LL,
3098 0xe13fa7bfdd3fa7b7LL, 0xd93fa7afd53fa7a7LL,
3099 0xd13fa79fcd3fa797LL, 0xc93fa78fc53fa787LL,
3100 0xc13fa77fcc3fa777LL, 0xc83fa76fc43fa767LL,
3101 0xc03fa75ffc3fa757LL, 0xf83fa74ff43fa747LL,
3102 0xf03fa73f01000000LL, 0x0100000001000000LL,
3103 0x0100000091580000LL, 0xd027a72b93500000LL,
3104 0xd027a72791480000LL, 0xd027a72391400000LL,
3105 0xd027a71fda5ba8a7LL, 0xd85ba89fd65ba897LL,
3106 0xd45ba88fd25ba887LL, 0x9fc02000d05ba87fLL,
3107 0x0100000091d02001LL, 0x0100000001000000LL
3108 };
3109 static LONGEST call_dummy_nil[] = {0};
3110
3111 /* Try to determine the OS ABI of the object we are loading. */
3112
3113 if (info.abfd != NULL
3114 && info.osabi == GDB_OSABI_UNKNOWN)
3115 {
3116 /* If it's an ELF file, assume it's Solaris. */
3117 if (bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
3118 info.osabi = GDB_OSABI_SOLARIS;
3119 }
3120
3121 /* First see if there is already a gdbarch that can satisfy the request. */
3122 arches = gdbarch_list_lookup_by_info (arches, &info);
3123 if (arches != NULL)
3124 return arches->gdbarch;
3125
3126 /* None found: is the request for a sparc architecture? */
3127 if (info.bfd_arch_info->arch != bfd_arch_sparc)
3128 return NULL; /* No; then it's not for us. */
3129
3130 /* Yes: create a new gdbarch for the specified machine type. */
3131 tdep = (struct gdbarch_tdep *) xmalloc (sizeof (struct gdbarch_tdep));
3132 gdbarch = gdbarch_alloc (&info, tdep);
3133
3134 /* First set settings that are common for all sparc architectures. */
3135 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
3136 set_gdbarch_breakpoint_from_pc (gdbarch, memory_breakpoint_from_pc);
3137 set_gdbarch_call_dummy_breakpoint_offset_p (gdbarch, 1);
3138 set_gdbarch_call_dummy_p (gdbarch, 1);
3139 set_gdbarch_call_dummy_stack_adjust_p (gdbarch, 1);
3140 set_gdbarch_decr_pc_after_break (gdbarch, 0);
3141 set_gdbarch_double_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3142 set_gdbarch_deprecated_extract_struct_value_address (gdbarch, sparc_extract_struct_value_address);
3143 set_gdbarch_fix_call_dummy (gdbarch, sparc_gdbarch_fix_call_dummy);
3144 set_gdbarch_float_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3145 set_gdbarch_fp_regnum (gdbarch, SPARC_FP_REGNUM);
3146 set_gdbarch_fp0_regnum (gdbarch, SPARC_FP0_REGNUM);
3147 set_gdbarch_frame_chain (gdbarch, sparc_frame_chain);
3148 set_gdbarch_frame_init_saved_regs (gdbarch, sparc_frame_init_saved_regs);
3149 set_gdbarch_frame_num_args (gdbarch, frame_num_args_unknown);
3150 set_gdbarch_frame_saved_pc (gdbarch, sparc_frame_saved_pc);
3151 set_gdbarch_frameless_function_invocation (gdbarch,
3152 frameless_look_for_prologue);
3153 set_gdbarch_get_saved_register (gdbarch, sparc_get_saved_register);
3154 set_gdbarch_deprecated_init_extra_frame_info (gdbarch, sparc_init_extra_frame_info);
3155 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3156 set_gdbarch_int_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3157 set_gdbarch_long_double_bit (gdbarch, 16 * TARGET_CHAR_BIT);
3158 set_gdbarch_long_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3159 set_gdbarch_max_register_raw_size (gdbarch, 8);
3160 set_gdbarch_max_register_virtual_size (gdbarch, 8);
3161 set_gdbarch_pop_frame (gdbarch, sparc_pop_frame);
3162 set_gdbarch_push_return_address (gdbarch, sparc_push_return_address);
3163 set_gdbarch_deprecated_push_dummy_frame (gdbarch, sparc_push_dummy_frame);
3164 set_gdbarch_read_pc (gdbarch, generic_target_read_pc);
3165 set_gdbarch_register_convert_to_raw (gdbarch, sparc_convert_to_raw);
3166 set_gdbarch_register_convert_to_virtual (gdbarch,
3167 sparc_convert_to_virtual);
3168 set_gdbarch_register_convertible (gdbarch,
3169 generic_register_convertible_not);
3170 set_gdbarch_reg_struct_has_addr (gdbarch, sparc_reg_struct_has_addr);
3171 set_gdbarch_return_value_on_stack (gdbarch, sparc_return_value_on_stack);
3172 set_gdbarch_saved_pc_after_call (gdbarch, sparc_saved_pc_after_call);
3173 set_gdbarch_prologue_frameless_p (gdbarch, sparc_prologue_frameless_p);
3174 set_gdbarch_short_bit (gdbarch, 2 * TARGET_CHAR_BIT);
3175 set_gdbarch_skip_prologue (gdbarch, sparc_skip_prologue);
3176 set_gdbarch_sp_regnum (gdbarch, SPARC_SP_REGNUM);
3177 set_gdbarch_deprecated_use_generic_dummy_frames (gdbarch, 0);
3178 set_gdbarch_write_pc (gdbarch, generic_target_write_pc);
3179
3180 /*
3181 * Settings that depend only on 32/64 bit word size
3182 */
3183
3184 switch (info.bfd_arch_info->mach)
3185 {
3186 case bfd_mach_sparc:
3187 case bfd_mach_sparc_sparclet:
3188 case bfd_mach_sparc_sparclite:
3189 case bfd_mach_sparc_v8plus:
3190 case bfd_mach_sparc_v8plusa:
3191 case bfd_mach_sparc_sparclite_le:
3192 /* 32-bit machine types: */
3193
3194 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3195 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3196 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3197 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0x30);
3198 set_gdbarch_call_dummy_length (gdbarch, 0x38);
3199
3200 /* NOTE: cagney/2002-04-26: Based from info posted by Peter
3201 Schauer around Oct '99. Briefly, due to aspects of the SPARC
3202 ABI, it isn't possible to use ON_STACK with a strictly
3203 compliant compiler.
3204
3205 Peter Schauer writes ...
3206
3207 No, any call from GDB to a user function returning a
3208 struct/union will fail miserably. Try this:
3209
3210 *NOINDENT*
3211 struct x
3212 {
3213 int a[4];
3214 };
3215
3216 struct x gx;
3217
3218 struct x
3219 sret ()
3220 {
3221 return gx;
3222 }
3223
3224 main ()
3225 {
3226 int i;
3227 for (i = 0; i < 4; i++)
3228 gx.a[i] = i + 1;
3229 gx = sret ();
3230 }
3231 *INDENT*
3232
3233 Set a breakpoint at the gx = sret () statement, run to it and
3234 issue a `print sret()'. It will not succed with your
3235 approach, and I doubt that continuing the program will work
3236 as well.
3237
3238 For details of the ABI see the Sparc Architecture Manual. I
3239 have Version 8 (Prentice Hall ISBN 0-13-825001-4) and the
3240 calling conventions for functions returning aggregate values
3241 are explained in Appendix D.3. */
3242
3243 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3244 set_gdbarch_call_dummy_words (gdbarch, call_dummy_32);
3245 #else
3246 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3247 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3248 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3249 set_gdbarch_call_dummy_length (gdbarch, 0);
3250 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3251 #endif
3252 set_gdbarch_call_dummy_stack_adjust (gdbarch, 68);
3253 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3254 set_gdbarch_frame_args_skip (gdbarch, 68);
3255 set_gdbarch_function_start_offset (gdbarch, 0);
3256 set_gdbarch_long_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3257 set_gdbarch_npc_regnum (gdbarch, SPARC32_NPC_REGNUM);
3258 set_gdbarch_pc_regnum (gdbarch, SPARC32_PC_REGNUM);
3259 set_gdbarch_ptr_bit (gdbarch, 4 * TARGET_CHAR_BIT);
3260 set_gdbarch_push_arguments (gdbarch, sparc32_push_arguments);
3261 set_gdbarch_read_fp (gdbarch, generic_target_read_fp);
3262 set_gdbarch_read_sp (gdbarch, generic_target_read_sp);
3263
3264 set_gdbarch_register_byte (gdbarch, sparc32_register_byte);
3265 set_gdbarch_register_raw_size (gdbarch, sparc32_register_size);
3266 set_gdbarch_register_size (gdbarch, 4);
3267 set_gdbarch_register_virtual_size (gdbarch, sparc32_register_size);
3268 set_gdbarch_register_virtual_type (gdbarch,
3269 sparc32_register_virtual_type);
3270 #ifdef SPARC32_CALL_DUMMY_ON_STACK
3271 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_32));
3272 #else
3273 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3274 #endif
3275 set_gdbarch_stack_align (gdbarch, sparc32_stack_align);
3276 set_gdbarch_store_struct_return (gdbarch, sparc32_store_struct_return);
3277 set_gdbarch_use_struct_convention (gdbarch,
3278 generic_use_struct_convention);
3279 set_gdbarch_write_sp (gdbarch, generic_target_write_sp);
3280 tdep->y_regnum = SPARC32_Y_REGNUM;
3281 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 32;
3282 tdep->intreg_size = 4;
3283 tdep->reg_save_offset = 0x60;
3284 tdep->call_dummy_call_offset = 0x24;
3285 break;
3286
3287 case bfd_mach_sparc_v9:
3288 case bfd_mach_sparc_v9a:
3289 /* 64-bit machine types: */
3290 default: /* Any new machine type is likely to be 64-bit. */
3291
3292 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3293 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_on_stack);
3294 set_gdbarch_call_dummy_address (gdbarch, sparc_call_dummy_address);
3295 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 8 * 4);
3296 set_gdbarch_call_dummy_length (gdbarch, 192);
3297 set_gdbarch_call_dummy_location (gdbarch, ON_STACK);
3298 set_gdbarch_call_dummy_start_offset (gdbarch, 148);
3299 set_gdbarch_call_dummy_words (gdbarch, call_dummy_64);
3300 #else
3301 set_gdbarch_deprecated_pc_in_call_dummy (gdbarch, deprecated_pc_in_call_dummy_at_entry_point);
3302 set_gdbarch_call_dummy_address (gdbarch, entry_point_address);
3303 set_gdbarch_call_dummy_breakpoint_offset (gdbarch, 0);
3304 set_gdbarch_call_dummy_length (gdbarch, 0);
3305 set_gdbarch_call_dummy_start_offset (gdbarch, 0);
3306 set_gdbarch_call_dummy_words (gdbarch, call_dummy_nil);
3307 #endif
3308 set_gdbarch_call_dummy_stack_adjust (gdbarch, 128);
3309 set_gdbarch_frame_args_skip (gdbarch, 136);
3310 set_gdbarch_function_start_offset (gdbarch, 0);
3311 set_gdbarch_long_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3312 set_gdbarch_npc_regnum (gdbarch, SPARC64_NPC_REGNUM);
3313 set_gdbarch_pc_regnum (gdbarch, SPARC64_PC_REGNUM);
3314 set_gdbarch_ptr_bit (gdbarch, 8 * TARGET_CHAR_BIT);
3315 set_gdbarch_push_arguments (gdbarch, sparc64_push_arguments);
3316 /* NOTE different for at_entry */
3317 set_gdbarch_read_fp (gdbarch, sparc64_read_fp);
3318 set_gdbarch_read_sp (gdbarch, sparc64_read_sp);
3319 /* Some of the registers aren't 64 bits, but it's a lot simpler just
3320 to assume they all are (since most of them are). */
3321 set_gdbarch_register_byte (gdbarch, sparc64_register_byte);
3322 set_gdbarch_register_raw_size (gdbarch, sparc64_register_size);
3323 set_gdbarch_register_size (gdbarch, 8);
3324 set_gdbarch_register_virtual_size (gdbarch, sparc64_register_size);
3325 set_gdbarch_register_virtual_type (gdbarch,
3326 sparc64_register_virtual_type);
3327 #ifdef SPARC64_CALL_DUMMY_ON_STACK
3328 set_gdbarch_sizeof_call_dummy_words (gdbarch, sizeof (call_dummy_64));
3329 #else
3330 set_gdbarch_sizeof_call_dummy_words (gdbarch, 0);
3331 #endif
3332 set_gdbarch_stack_align (gdbarch, sparc64_stack_align);
3333 set_gdbarch_store_struct_return (gdbarch, sparc64_store_struct_return);
3334 set_gdbarch_use_struct_convention (gdbarch,
3335 sparc64_use_struct_convention);
3336 set_gdbarch_write_sp (gdbarch, sparc64_write_sp);
3337 tdep->y_regnum = SPARC64_Y_REGNUM;
3338 tdep->fp_max_regnum = SPARC_FP0_REGNUM + 48;
3339 tdep->intreg_size = 8;
3340 tdep->reg_save_offset = 0x90;
3341 tdep->call_dummy_call_offset = 148 + 4 * 5;
3342 break;
3343 }
3344
3345 /*
3346 * Settings that vary per-architecture:
3347 */
3348
3349 switch (info.bfd_arch_info->mach)
3350 {
3351 case bfd_mach_sparc:
3352 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3353 set_gdbarch_num_regs (gdbarch, 72);
3354 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3355 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3356 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3357 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3358 tdep->fp_register_bytes = 32 * 4;
3359 tdep->print_insn_mach = bfd_mach_sparc;
3360 break;
3361 case bfd_mach_sparc_sparclet:
3362 set_gdbarch_deprecated_extract_return_value (gdbarch, sparclet_extract_return_value);
3363 set_gdbarch_num_regs (gdbarch, 32 + 32 + 8 + 8 + 8);
3364 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4 + 8*4);
3365 set_gdbarch_register_name (gdbarch, sparclet_register_name);
3366 set_gdbarch_deprecated_store_return_value (gdbarch, sparclet_store_return_value);
3367 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3368 tdep->fp_register_bytes = 0;
3369 tdep->print_insn_mach = bfd_mach_sparc_sparclet;
3370 break;
3371 case bfd_mach_sparc_sparclite:
3372 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3373 set_gdbarch_num_regs (gdbarch, 80);
3374 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3375 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3376 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3377 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3378 tdep->fp_register_bytes = 0;
3379 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3380 break;
3381 case bfd_mach_sparc_v8plus:
3382 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3383 set_gdbarch_num_regs (gdbarch, 72);
3384 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3385 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3386 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3387 tdep->print_insn_mach = bfd_mach_sparc;
3388 tdep->fp_register_bytes = 32 * 4;
3389 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3390 break;
3391 case bfd_mach_sparc_v8plusa:
3392 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3393 set_gdbarch_num_regs (gdbarch, 72);
3394 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4);
3395 set_gdbarch_register_name (gdbarch, sparc32_register_name);
3396 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3397 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3398 tdep->fp_register_bytes = 32 * 4;
3399 tdep->print_insn_mach = bfd_mach_sparc;
3400 break;
3401 case bfd_mach_sparc_sparclite_le:
3402 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc32_extract_return_value);
3403 set_gdbarch_num_regs (gdbarch, 80);
3404 set_gdbarch_register_bytes (gdbarch, 32*4 + 32*4 + 8*4 + 8*4);
3405 set_gdbarch_register_name (gdbarch, sparclite_register_name);
3406 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3407 tdep->has_fpu = 0; /* (all but sparclet and sparclite) */
3408 tdep->fp_register_bytes = 0;
3409 tdep->print_insn_mach = bfd_mach_sparc_sparclite;
3410 break;
3411 case bfd_mach_sparc_v9:
3412 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3413 set_gdbarch_num_regs (gdbarch, 125);
3414 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3415 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3416 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3417 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3418 tdep->fp_register_bytes = 64 * 4;
3419 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3420 break;
3421 case bfd_mach_sparc_v9a:
3422 set_gdbarch_deprecated_extract_return_value (gdbarch, sparc64_extract_return_value);
3423 set_gdbarch_num_regs (gdbarch, 125);
3424 set_gdbarch_register_bytes (gdbarch, 32*8 + 32*8 + 45*8);
3425 set_gdbarch_register_name (gdbarch, sparc64_register_name);
3426 set_gdbarch_deprecated_store_return_value (gdbarch, sparc_store_return_value);
3427 tdep->has_fpu = 1; /* (all but sparclet and sparclite) */
3428 tdep->fp_register_bytes = 64 * 4;
3429 tdep->print_insn_mach = bfd_mach_sparc_v9a;
3430 break;
3431 }
3432
3433 /* Hook in OS ABI-specific overrides, if they have been registered. */
3434 gdbarch_init_osabi (info, gdbarch);
3435
3436 return gdbarch;
3437 }
3438
3439 static void
3440 sparc_dump_tdep (struct gdbarch *current_gdbarch, struct ui_file *file)
3441 {
3442 struct gdbarch_tdep *tdep = gdbarch_tdep (current_gdbarch);
3443
3444 if (tdep == NULL)
3445 return;
3446
3447 fprintf_unfiltered (file, "sparc_dump_tdep: has_fpu = %d\n",
3448 tdep->has_fpu);
3449 fprintf_unfiltered (file, "sparc_dump_tdep: fp_register_bytes = %d\n",
3450 tdep->fp_register_bytes);
3451 fprintf_unfiltered (file, "sparc_dump_tdep: y_regnum = %d\n",
3452 tdep->y_regnum);
3453 fprintf_unfiltered (file, "sparc_dump_tdep: fp_max_regnum = %d\n",
3454 tdep->fp_max_regnum);
3455 fprintf_unfiltered (file, "sparc_dump_tdep: intreg_size = %d\n",
3456 tdep->intreg_size);
3457 fprintf_unfiltered (file, "sparc_dump_tdep: reg_save_offset = %d\n",
3458 tdep->reg_save_offset);
3459 fprintf_unfiltered (file, "sparc_dump_tdep: call_dummy_call_offset = %d\n",
3460 tdep->call_dummy_call_offset);
3461 fprintf_unfiltered (file, "sparc_dump_tdep: print_insn_match = %d\n",
3462 tdep->print_insn_mach);
3463 }