]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/stabsread.c
03c9eb1364699e3b0d6896e62d293427cf6d2b1e
[thirdparty/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 struct nextfield
57 {
58 struct nextfield *next;
59
60 /* This is the raw visibility from the stab. It is not checked
61 for being one of the visibilities we recognize, so code which
62 examines this field better be able to deal. */
63 int visibility;
64
65 struct field field;
66 };
67
68 struct next_fnfieldlist
69 {
70 struct next_fnfieldlist *next;
71 struct fn_fieldlist fn_fieldlist;
72 };
73
74 /* The routines that read and process a complete stabs for a C struct or
75 C++ class pass lists of data member fields and lists of member function
76 fields in an instance of a field_info structure, as defined below.
77 This is part of some reorganization of low level C++ support and is
78 expected to eventually go away... (FIXME) */
79
80 struct field_info
81 {
82 struct nextfield *list;
83 struct next_fnfieldlist *fnlist;
84 };
85
86 static void
87 read_one_struct_field (struct field_info *, char **, char *,
88 struct type *, struct objfile *);
89
90 static struct type *dbx_alloc_type (int[2], struct objfile *);
91
92 static long read_huge_number (char **, int, int *, int);
93
94 static struct type *error_type (char **, struct objfile *);
95
96 static void
97 patch_block_stabs (struct pending *, struct pending_stabs *,
98 struct objfile *);
99
100 static void fix_common_block (struct symbol *, CORE_ADDR);
101
102 static int read_type_number (char **, int *);
103
104 static struct type *read_type (char **, struct objfile *);
105
106 static struct type *read_range_type (char **, int[2], int, struct objfile *);
107
108 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
109
110 static struct type *read_sun_floating_type (char **, int[2],
111 struct objfile *);
112
113 static struct type *read_enum_type (char **, struct type *, struct objfile *);
114
115 static struct type *rs6000_builtin_type (int, struct objfile *);
116
117 static int
118 read_member_functions (struct field_info *, char **, struct type *,
119 struct objfile *);
120
121 static int
122 read_struct_fields (struct field_info *, char **, struct type *,
123 struct objfile *);
124
125 static int
126 read_baseclasses (struct field_info *, char **, struct type *,
127 struct objfile *);
128
129 static int
130 read_tilde_fields (struct field_info *, char **, struct type *,
131 struct objfile *);
132
133 static int attach_fn_fields_to_type (struct field_info *, struct type *);
134
135 static int attach_fields_to_type (struct field_info *, struct type *,
136 struct objfile *);
137
138 static struct type *read_struct_type (char **, struct type *,
139 enum type_code,
140 struct objfile *);
141
142 static struct type *read_array_type (char **, struct type *,
143 struct objfile *);
144
145 static struct field *read_args (char **, int, struct objfile *, int *, int *);
146
147 static void add_undefined_type (struct type *, int[2]);
148
149 static int
150 read_cpp_abbrev (struct field_info *, char **, struct type *,
151 struct objfile *);
152
153 static char *find_name_end (char *name);
154
155 static int process_reference (char **string);
156
157 void stabsread_clear_cache (void);
158
159 static const char vptr_name[] = "_vptr$";
160 static const char vb_name[] = "_vb$";
161
162 static void
163 invalid_cpp_abbrev_complaint (const char *arg1)
164 {
165 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
166 }
167
168 static void
169 reg_value_complaint (int regnum, int num_regs, const char *sym)
170 {
171 complaint (&symfile_complaints,
172 _("register number %d too large (max %d) in symbol %s"),
173 regnum, num_regs - 1, sym);
174 }
175
176 static void
177 stabs_general_complaint (const char *arg1)
178 {
179 complaint (&symfile_complaints, "%s", arg1);
180 }
181
182 /* Make a list of forward references which haven't been defined. */
183
184 static struct type **undef_types;
185 static int undef_types_allocated;
186 static int undef_types_length;
187 static struct symbol *current_symbol = NULL;
188
189 /* Make a list of nameless types that are undefined.
190 This happens when another type is referenced by its number
191 before this type is actually defined. For instance "t(0,1)=k(0,2)"
192 and type (0,2) is defined only later. */
193
194 struct nat
195 {
196 int typenums[2];
197 struct type *type;
198 };
199 static struct nat *noname_undefs;
200 static int noname_undefs_allocated;
201 static int noname_undefs_length;
202
203 /* Check for and handle cretinous stabs symbol name continuation! */
204 #define STABS_CONTINUE(pp,objfile) \
205 do { \
206 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
207 *(pp) = next_symbol_text (objfile); \
208 } while (0)
209
210 /* Vector of types defined so far, indexed by their type numbers.
211 (In newer sun systems, dbx uses a pair of numbers in parens,
212 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
213 Then these numbers must be translated through the type_translations
214 hash table to get the index into the type vector.) */
215
216 static struct type **type_vector;
217
218 /* Number of elements allocated for type_vector currently. */
219
220 static int type_vector_length;
221
222 /* Initial size of type vector. Is realloc'd larger if needed, and
223 realloc'd down to the size actually used, when completed. */
224
225 #define INITIAL_TYPE_VECTOR_LENGTH 160
226 \f
227
228 /* Look up a dbx type-number pair. Return the address of the slot
229 where the type for that number-pair is stored.
230 The number-pair is in TYPENUMS.
231
232 This can be used for finding the type associated with that pair
233 or for associating a new type with the pair. */
234
235 static struct type **
236 dbx_lookup_type (int typenums[2], struct objfile *objfile)
237 {
238 int filenum = typenums[0];
239 int index = typenums[1];
240 unsigned old_len;
241 int real_filenum;
242 struct header_file *f;
243 int f_orig_length;
244
245 if (filenum == -1) /* -1,-1 is for temporary types. */
246 return 0;
247
248 if (filenum < 0 || filenum >= n_this_object_header_files)
249 {
250 complaint (&symfile_complaints,
251 _("Invalid symbol data: type number "
252 "(%d,%d) out of range at symtab pos %d."),
253 filenum, index, symnum);
254 goto error_return;
255 }
256
257 if (filenum == 0)
258 {
259 if (index < 0)
260 {
261 /* Caller wants address of address of type. We think
262 that negative (rs6k builtin) types will never appear as
263 "lvalues", (nor should they), so we stuff the real type
264 pointer into a temp, and return its address. If referenced,
265 this will do the right thing. */
266 static struct type *temp_type;
267
268 temp_type = rs6000_builtin_type (index, objfile);
269 return &temp_type;
270 }
271
272 /* Type is defined outside of header files.
273 Find it in this object file's type vector. */
274 if (index >= type_vector_length)
275 {
276 old_len = type_vector_length;
277 if (old_len == 0)
278 {
279 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
280 type_vector = (struct type **)
281 xmalloc (type_vector_length * sizeof (struct type *));
282 }
283 while (index >= type_vector_length)
284 {
285 type_vector_length *= 2;
286 }
287 type_vector = (struct type **)
288 xrealloc ((char *) type_vector,
289 (type_vector_length * sizeof (struct type *)));
290 memset (&type_vector[old_len], 0,
291 (type_vector_length - old_len) * sizeof (struct type *));
292 }
293 return (&type_vector[index]);
294 }
295 else
296 {
297 real_filenum = this_object_header_files[filenum];
298
299 if (real_filenum >= N_HEADER_FILES (objfile))
300 {
301 static struct type *temp_type;
302
303 warning (_("GDB internal error: bad real_filenum"));
304
305 error_return:
306 temp_type = objfile_type (objfile)->builtin_error;
307 return &temp_type;
308 }
309
310 f = HEADER_FILES (objfile) + real_filenum;
311
312 f_orig_length = f->length;
313 if (index >= f_orig_length)
314 {
315 while (index >= f->length)
316 {
317 f->length *= 2;
318 }
319 f->vector = (struct type **)
320 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
321 memset (&f->vector[f_orig_length], 0,
322 (f->length - f_orig_length) * sizeof (struct type *));
323 }
324 return (&f->vector[index]);
325 }
326 }
327
328 /* Make sure there is a type allocated for type numbers TYPENUMS
329 and return the type object.
330 This can create an empty (zeroed) type object.
331 TYPENUMS may be (-1, -1) to return a new type object that is not
332 put into the type vector, and so may not be referred to by number. */
333
334 static struct type *
335 dbx_alloc_type (int typenums[2], struct objfile *objfile)
336 {
337 struct type **type_addr;
338
339 if (typenums[0] == -1)
340 {
341 return (alloc_type (objfile));
342 }
343
344 type_addr = dbx_lookup_type (typenums, objfile);
345
346 /* If we are referring to a type not known at all yet,
347 allocate an empty type for it.
348 We will fill it in later if we find out how. */
349 if (*type_addr == 0)
350 {
351 *type_addr = alloc_type (objfile);
352 }
353
354 return (*type_addr);
355 }
356
357 /* for all the stabs in a given stab vector, build appropriate types
358 and fix their symbols in given symbol vector. */
359
360 static void
361 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
362 struct objfile *objfile)
363 {
364 int ii;
365 char *name;
366 char *pp;
367 struct symbol *sym;
368
369 if (stabs)
370 {
371 /* for all the stab entries, find their corresponding symbols and
372 patch their types! */
373
374 for (ii = 0; ii < stabs->count; ++ii)
375 {
376 name = stabs->stab[ii];
377 pp = (char *) strchr (name, ':');
378 gdb_assert (pp); /* Must find a ':' or game's over. */
379 while (pp[1] == ':')
380 {
381 pp += 2;
382 pp = (char *) strchr (pp, ':');
383 }
384 sym = find_symbol_in_list (symbols, name, pp - name);
385 if (!sym)
386 {
387 /* FIXME-maybe: it would be nice if we noticed whether
388 the variable was defined *anywhere*, not just whether
389 it is defined in this compilation unit. But neither
390 xlc or GCC seem to need such a definition, and until
391 we do psymtabs (so that the minimal symbols from all
392 compilation units are available now), I'm not sure
393 how to get the information. */
394
395 /* On xcoff, if a global is defined and never referenced,
396 ld will remove it from the executable. There is then
397 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
398 sym = allocate_symbol (objfile);
399 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
400 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
401 SYMBOL_SET_LINKAGE_NAME
402 (sym, obstack_copy0 (&objfile->objfile_obstack,
403 name, pp - name));
404 pp += 2;
405 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
406 {
407 /* I don't think the linker does this with functions,
408 so as far as I know this is never executed.
409 But it doesn't hurt to check. */
410 SYMBOL_TYPE (sym) =
411 lookup_function_type (read_type (&pp, objfile));
412 }
413 else
414 {
415 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
416 }
417 add_symbol_to_list (sym, &global_symbols);
418 }
419 else
420 {
421 pp += 2;
422 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
423 {
424 SYMBOL_TYPE (sym) =
425 lookup_function_type (read_type (&pp, objfile));
426 }
427 else
428 {
429 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
430 }
431 }
432 }
433 }
434 }
435 \f
436
437 /* Read a number by which a type is referred to in dbx data,
438 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
439 Just a single number N is equivalent to (0,N).
440 Return the two numbers by storing them in the vector TYPENUMS.
441 TYPENUMS will then be used as an argument to dbx_lookup_type.
442
443 Returns 0 for success, -1 for error. */
444
445 static int
446 read_type_number (char **pp, int *typenums)
447 {
448 int nbits;
449
450 if (**pp == '(')
451 {
452 (*pp)++;
453 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
454 if (nbits != 0)
455 return -1;
456 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
457 if (nbits != 0)
458 return -1;
459 }
460 else
461 {
462 typenums[0] = 0;
463 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
464 if (nbits != 0)
465 return -1;
466 }
467 return 0;
468 }
469 \f
470
471 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
472 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
473 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
474 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
475
476 /* Structure for storing pointers to reference definitions for fast lookup
477 during "process_later". */
478
479 struct ref_map
480 {
481 char *stabs;
482 CORE_ADDR value;
483 struct symbol *sym;
484 };
485
486 #define MAX_CHUNK_REFS 100
487 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
488 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
489
490 static struct ref_map *ref_map;
491
492 /* Ptr to free cell in chunk's linked list. */
493 static int ref_count = 0;
494
495 /* Number of chunks malloced. */
496 static int ref_chunk = 0;
497
498 /* This file maintains a cache of stabs aliases found in the symbol
499 table. If the symbol table changes, this cache must be cleared
500 or we are left holding onto data in invalid obstacks. */
501 void
502 stabsread_clear_cache (void)
503 {
504 ref_count = 0;
505 ref_chunk = 0;
506 }
507
508 /* Create array of pointers mapping refids to symbols and stab strings.
509 Add pointers to reference definition symbols and/or their values as we
510 find them, using their reference numbers as our index.
511 These will be used later when we resolve references. */
512 void
513 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
514 {
515 if (ref_count == 0)
516 ref_chunk = 0;
517 if (refnum >= ref_count)
518 ref_count = refnum + 1;
519 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
520 {
521 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
522 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
523
524 ref_map = (struct ref_map *)
525 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
526 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
527 new_chunks * REF_CHUNK_SIZE);
528 ref_chunk += new_chunks;
529 }
530 ref_map[refnum].stabs = stabs;
531 ref_map[refnum].sym = sym;
532 ref_map[refnum].value = value;
533 }
534
535 /* Return defined sym for the reference REFNUM. */
536 struct symbol *
537 ref_search (int refnum)
538 {
539 if (refnum < 0 || refnum > ref_count)
540 return 0;
541 return ref_map[refnum].sym;
542 }
543
544 /* Parse a reference id in STRING and return the resulting
545 reference number. Move STRING beyond the reference id. */
546
547 static int
548 process_reference (char **string)
549 {
550 char *p;
551 int refnum = 0;
552
553 if (**string != '#')
554 return 0;
555
556 /* Advance beyond the initial '#'. */
557 p = *string + 1;
558
559 /* Read number as reference id. */
560 while (*p && isdigit (*p))
561 {
562 refnum = refnum * 10 + *p - '0';
563 p++;
564 }
565 *string = p;
566 return refnum;
567 }
568
569 /* If STRING defines a reference, store away a pointer to the reference
570 definition for later use. Return the reference number. */
571
572 int
573 symbol_reference_defined (char **string)
574 {
575 char *p = *string;
576 int refnum = 0;
577
578 refnum = process_reference (&p);
579
580 /* Defining symbols end in '='. */
581 if (*p == '=')
582 {
583 /* Symbol is being defined here. */
584 *string = p + 1;
585 return refnum;
586 }
587 else
588 {
589 /* Must be a reference. Either the symbol has already been defined,
590 or this is a forward reference to it. */
591 *string = p;
592 return -1;
593 }
594 }
595
596 static int
597 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
598 {
599 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
600
601 if (regno >= gdbarch_num_regs (gdbarch)
602 + gdbarch_num_pseudo_regs (gdbarch))
603 {
604 reg_value_complaint (regno,
605 gdbarch_num_regs (gdbarch)
606 + gdbarch_num_pseudo_regs (gdbarch),
607 SYMBOL_PRINT_NAME (sym));
608
609 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
610 }
611
612 return regno;
613 }
614
615 static const struct symbol_register_ops stab_register_funcs = {
616 stab_reg_to_regnum
617 };
618
619 /* The "aclass" indices for computed symbols. */
620
621 static int stab_register_index;
622 static int stab_regparm_index;
623
624 struct symbol *
625 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
626 struct objfile *objfile)
627 {
628 struct gdbarch *gdbarch = get_objfile_arch (objfile);
629 struct symbol *sym;
630 char *p = (char *) find_name_end (string);
631 int deftype;
632 int synonym = 0;
633 int i;
634 char *new_name = NULL;
635
636 /* We would like to eliminate nameless symbols, but keep their types.
637 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
638 to type 2, but, should not create a symbol to address that type. Since
639 the symbol will be nameless, there is no way any user can refer to it. */
640
641 int nameless;
642
643 /* Ignore syms with empty names. */
644 if (string[0] == 0)
645 return 0;
646
647 /* Ignore old-style symbols from cc -go. */
648 if (p == 0)
649 return 0;
650
651 while (p[1] == ':')
652 {
653 p += 2;
654 p = strchr (p, ':');
655 if (p == NULL)
656 {
657 complaint (&symfile_complaints,
658 _("Bad stabs string '%s'"), string);
659 return NULL;
660 }
661 }
662
663 /* If a nameless stab entry, all we need is the type, not the symbol.
664 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
665 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
666
667 current_symbol = sym = allocate_symbol (objfile);
668
669 if (processing_gcc_compilation)
670 {
671 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
672 number of bytes occupied by a type or object, which we ignore. */
673 SYMBOL_LINE (sym) = desc;
674 }
675 else
676 {
677 SYMBOL_LINE (sym) = 0; /* unknown */
678 }
679
680 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
681 &objfile->objfile_obstack);
682
683 if (is_cplus_marker (string[0]))
684 {
685 /* Special GNU C++ names. */
686 switch (string[1])
687 {
688 case 't':
689 SYMBOL_SET_LINKAGE_NAME (sym, "this");
690 break;
691
692 case 'v': /* $vtbl_ptr_type */
693 goto normal;
694
695 case 'e':
696 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
697 break;
698
699 case '_':
700 /* This was an anonymous type that was never fixed up. */
701 goto normal;
702
703 case 'X':
704 /* SunPRO (3.0 at least) static variable encoding. */
705 if (gdbarch_static_transform_name_p (gdbarch))
706 goto normal;
707 /* ... fall through ... */
708
709 default:
710 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
711 string);
712 goto normal; /* Do *something* with it. */
713 }
714 }
715 else
716 {
717 normal:
718 if (SYMBOL_LANGUAGE (sym) == language_cplus)
719 {
720 char *name = alloca (p - string + 1);
721
722 memcpy (name, string, p - string);
723 name[p - string] = '\0';
724 new_name = cp_canonicalize_string (name);
725 }
726 if (new_name != NULL)
727 {
728 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
729 xfree (new_name);
730 }
731 else
732 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
733
734 if (SYMBOL_LANGUAGE (sym) == language_cplus)
735 cp_scan_for_anonymous_namespaces (sym, objfile);
736
737 }
738 p++;
739
740 /* Determine the type of name being defined. */
741 #if 0
742 /* Getting GDB to correctly skip the symbol on an undefined symbol
743 descriptor and not ever dump core is a very dodgy proposition if
744 we do things this way. I say the acorn RISC machine can just
745 fix their compiler. */
746 /* The Acorn RISC machine's compiler can put out locals that don't
747 start with "234=" or "(3,4)=", so assume anything other than the
748 deftypes we know how to handle is a local. */
749 if (!strchr ("cfFGpPrStTvVXCR", *p))
750 #else
751 if (isdigit (*p) || *p == '(' || *p == '-')
752 #endif
753 deftype = 'l';
754 else
755 deftype = *p++;
756
757 switch (deftype)
758 {
759 case 'c':
760 /* c is a special case, not followed by a type-number.
761 SYMBOL:c=iVALUE for an integer constant symbol.
762 SYMBOL:c=rVALUE for a floating constant symbol.
763 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
764 e.g. "b:c=e6,0" for "const b = blob1"
765 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
766 if (*p != '=')
767 {
768 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
769 SYMBOL_TYPE (sym) = error_type (&p, objfile);
770 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
771 add_symbol_to_list (sym, &file_symbols);
772 return sym;
773 }
774 ++p;
775 switch (*p++)
776 {
777 case 'r':
778 {
779 double d = atof (p);
780 gdb_byte *dbl_valu;
781 struct type *dbl_type;
782
783 /* FIXME-if-picky-about-floating-accuracy: Should be using
784 target arithmetic to get the value. real.c in GCC
785 probably has the necessary code. */
786
787 dbl_type = objfile_type (objfile)->builtin_double;
788 dbl_valu =
789 obstack_alloc (&objfile->objfile_obstack,
790 TYPE_LENGTH (dbl_type));
791 store_typed_floating (dbl_valu, dbl_type, d);
792
793 SYMBOL_TYPE (sym) = dbl_type;
794 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
795 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
796 }
797 break;
798 case 'i':
799 {
800 /* Defining integer constants this way is kind of silly,
801 since 'e' constants allows the compiler to give not
802 only the value, but the type as well. C has at least
803 int, long, unsigned int, and long long as constant
804 types; other languages probably should have at least
805 unsigned as well as signed constants. */
806
807 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
808 SYMBOL_VALUE (sym) = atoi (p);
809 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
810 }
811 break;
812
813 case 'c':
814 {
815 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
816 SYMBOL_VALUE (sym) = atoi (p);
817 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
818 }
819 break;
820
821 case 's':
822 {
823 struct type *range_type;
824 int ind = 0;
825 char quote = *p++;
826 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
827 gdb_byte *string_value;
828
829 if (quote != '\'' && quote != '"')
830 {
831 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
832 SYMBOL_TYPE (sym) = error_type (&p, objfile);
833 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
834 add_symbol_to_list (sym, &file_symbols);
835 return sym;
836 }
837
838 /* Find matching quote, rejecting escaped quotes. */
839 while (*p && *p != quote)
840 {
841 if (*p == '\\' && p[1] == quote)
842 {
843 string_local[ind] = (gdb_byte) quote;
844 ind++;
845 p += 2;
846 }
847 else if (*p)
848 {
849 string_local[ind] = (gdb_byte) (*p);
850 ind++;
851 p++;
852 }
853 }
854 if (*p != quote)
855 {
856 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
857 SYMBOL_TYPE (sym) = error_type (&p, objfile);
858 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
859 add_symbol_to_list (sym, &file_symbols);
860 return sym;
861 }
862
863 /* NULL terminate the string. */
864 string_local[ind] = 0;
865 range_type
866 = create_static_range_type (NULL,
867 objfile_type (objfile)->builtin_int,
868 0, ind);
869 SYMBOL_TYPE (sym) = create_array_type (NULL,
870 objfile_type (objfile)->builtin_char,
871 range_type);
872 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
873 memcpy (string_value, string_local, ind + 1);
874 p++;
875
876 SYMBOL_VALUE_BYTES (sym) = string_value;
877 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
878 }
879 break;
880
881 case 'e':
882 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
883 can be represented as integral.
884 e.g. "b:c=e6,0" for "const b = blob1"
885 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
886 {
887 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
888 SYMBOL_TYPE (sym) = read_type (&p, objfile);
889
890 if (*p != ',')
891 {
892 SYMBOL_TYPE (sym) = error_type (&p, objfile);
893 break;
894 }
895 ++p;
896
897 /* If the value is too big to fit in an int (perhaps because
898 it is unsigned), or something like that, we silently get
899 a bogus value. The type and everything else about it is
900 correct. Ideally, we should be using whatever we have
901 available for parsing unsigned and long long values,
902 however. */
903 SYMBOL_VALUE (sym) = atoi (p);
904 }
905 break;
906 default:
907 {
908 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
909 SYMBOL_TYPE (sym) = error_type (&p, objfile);
910 }
911 }
912 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
913 add_symbol_to_list (sym, &file_symbols);
914 return sym;
915
916 case 'C':
917 /* The name of a caught exception. */
918 SYMBOL_TYPE (sym) = read_type (&p, objfile);
919 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
920 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
921 SYMBOL_VALUE_ADDRESS (sym) = valu;
922 add_symbol_to_list (sym, &local_symbols);
923 break;
924
925 case 'f':
926 /* A static function definition. */
927 SYMBOL_TYPE (sym) = read_type (&p, objfile);
928 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
929 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
930 add_symbol_to_list (sym, &file_symbols);
931 /* fall into process_function_types. */
932
933 process_function_types:
934 /* Function result types are described as the result type in stabs.
935 We need to convert this to the function-returning-type-X type
936 in GDB. E.g. "int" is converted to "function returning int". */
937 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
938 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
939
940 /* All functions in C++ have prototypes. Stabs does not offer an
941 explicit way to identify prototyped or unprototyped functions,
942 but both GCC and Sun CC emit stabs for the "call-as" type rather
943 than the "declared-as" type for unprototyped functions, so
944 we treat all functions as if they were prototyped. This is used
945 primarily for promotion when calling the function from GDB. */
946 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
947
948 /* fall into process_prototype_types. */
949
950 process_prototype_types:
951 /* Sun acc puts declared types of arguments here. */
952 if (*p == ';')
953 {
954 struct type *ftype = SYMBOL_TYPE (sym);
955 int nsemi = 0;
956 int nparams = 0;
957 char *p1 = p;
958
959 /* Obtain a worst case guess for the number of arguments
960 by counting the semicolons. */
961 while (*p1)
962 {
963 if (*p1++ == ';')
964 nsemi++;
965 }
966
967 /* Allocate parameter information fields and fill them in. */
968 TYPE_FIELDS (ftype) = (struct field *)
969 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
970 while (*p++ == ';')
971 {
972 struct type *ptype;
973
974 /* A type number of zero indicates the start of varargs.
975 FIXME: GDB currently ignores vararg functions. */
976 if (p[0] == '0' && p[1] == '\0')
977 break;
978 ptype = read_type (&p, objfile);
979
980 /* The Sun compilers mark integer arguments, which should
981 be promoted to the width of the calling conventions, with
982 a type which references itself. This type is turned into
983 a TYPE_CODE_VOID type by read_type, and we have to turn
984 it back into builtin_int here.
985 FIXME: Do we need a new builtin_promoted_int_arg ? */
986 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
987 ptype = objfile_type (objfile)->builtin_int;
988 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
989 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
990 }
991 TYPE_NFIELDS (ftype) = nparams;
992 TYPE_PROTOTYPED (ftype) = 1;
993 }
994 break;
995
996 case 'F':
997 /* A global function definition. */
998 SYMBOL_TYPE (sym) = read_type (&p, objfile);
999 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1000 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1001 add_symbol_to_list (sym, &global_symbols);
1002 goto process_function_types;
1003
1004 case 'G':
1005 /* For a class G (global) symbol, it appears that the
1006 value is not correct. It is necessary to search for the
1007 corresponding linker definition to find the value.
1008 These definitions appear at the end of the namelist. */
1009 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1010 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1011 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1012 /* Don't add symbol references to global_sym_chain.
1013 Symbol references don't have valid names and wont't match up with
1014 minimal symbols when the global_sym_chain is relocated.
1015 We'll fixup symbol references when we fixup the defining symbol. */
1016 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1017 {
1018 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1019 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1020 global_sym_chain[i] = sym;
1021 }
1022 add_symbol_to_list (sym, &global_symbols);
1023 break;
1024
1025 /* This case is faked by a conditional above,
1026 when there is no code letter in the dbx data.
1027 Dbx data never actually contains 'l'. */
1028 case 's':
1029 case 'l':
1030 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1031 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1032 SYMBOL_VALUE (sym) = valu;
1033 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1034 add_symbol_to_list (sym, &local_symbols);
1035 break;
1036
1037 case 'p':
1038 if (*p == 'F')
1039 /* pF is a two-letter code that means a function parameter in Fortran.
1040 The type-number specifies the type of the return value.
1041 Translate it into a pointer-to-function type. */
1042 {
1043 p++;
1044 SYMBOL_TYPE (sym)
1045 = lookup_pointer_type
1046 (lookup_function_type (read_type (&p, objfile)));
1047 }
1048 else
1049 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1050
1051 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1052 SYMBOL_VALUE (sym) = valu;
1053 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1054 SYMBOL_IS_ARGUMENT (sym) = 1;
1055 add_symbol_to_list (sym, &local_symbols);
1056
1057 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1058 {
1059 /* On little-endian machines, this crud is never necessary,
1060 and, if the extra bytes contain garbage, is harmful. */
1061 break;
1062 }
1063
1064 /* If it's gcc-compiled, if it says `short', believe it. */
1065 if (processing_gcc_compilation
1066 || gdbarch_believe_pcc_promotion (gdbarch))
1067 break;
1068
1069 if (!gdbarch_believe_pcc_promotion (gdbarch))
1070 {
1071 /* If PCC says a parameter is a short or a char, it is
1072 really an int. */
1073 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1074 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1075 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1076 {
1077 SYMBOL_TYPE (sym) =
1078 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1079 ? objfile_type (objfile)->builtin_unsigned_int
1080 : objfile_type (objfile)->builtin_int;
1081 }
1082 break;
1083 }
1084
1085 case 'P':
1086 /* acc seems to use P to declare the prototypes of functions that
1087 are referenced by this file. gdb is not prepared to deal
1088 with this extra information. FIXME, it ought to. */
1089 if (type == N_FUN)
1090 {
1091 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1092 goto process_prototype_types;
1093 }
1094 /*FALLTHROUGH */
1095
1096 case 'R':
1097 /* Parameter which is in a register. */
1098 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1099 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1100 SYMBOL_IS_ARGUMENT (sym) = 1;
1101 SYMBOL_VALUE (sym) = valu;
1102 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1103 add_symbol_to_list (sym, &local_symbols);
1104 break;
1105
1106 case 'r':
1107 /* Register variable (either global or local). */
1108 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1109 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1110 SYMBOL_VALUE (sym) = valu;
1111 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1112 if (within_function)
1113 {
1114 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1115 the same name to represent an argument passed in a
1116 register. GCC uses 'P' for the same case. So if we find
1117 such a symbol pair we combine it into one 'P' symbol.
1118 For Sun cc we need to do this regardless of
1119 stabs_argument_has_addr, because the compiler puts out
1120 the 'p' symbol even if it never saves the argument onto
1121 the stack.
1122
1123 On most machines, we want to preserve both symbols, so
1124 that we can still get information about what is going on
1125 with the stack (VAX for computing args_printed, using
1126 stack slots instead of saved registers in backtraces,
1127 etc.).
1128
1129 Note that this code illegally combines
1130 main(argc) struct foo argc; { register struct foo argc; }
1131 but this case is considered pathological and causes a warning
1132 from a decent compiler. */
1133
1134 if (local_symbols
1135 && local_symbols->nsyms > 0
1136 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1137 {
1138 struct symbol *prev_sym;
1139
1140 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1141 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1142 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1143 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1144 SYMBOL_LINKAGE_NAME (sym)) == 0)
1145 {
1146 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1147 /* Use the type from the LOC_REGISTER; that is the type
1148 that is actually in that register. */
1149 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1150 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1151 sym = prev_sym;
1152 break;
1153 }
1154 }
1155 add_symbol_to_list (sym, &local_symbols);
1156 }
1157 else
1158 add_symbol_to_list (sym, &file_symbols);
1159 break;
1160
1161 case 'S':
1162 /* Static symbol at top level of file. */
1163 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1164 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1165 SYMBOL_VALUE_ADDRESS (sym) = valu;
1166 if (gdbarch_static_transform_name_p (gdbarch)
1167 && gdbarch_static_transform_name (gdbarch,
1168 SYMBOL_LINKAGE_NAME (sym))
1169 != SYMBOL_LINKAGE_NAME (sym))
1170 {
1171 struct bound_minimal_symbol msym;
1172
1173 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1174 NULL, objfile);
1175 if (msym.minsym != NULL)
1176 {
1177 const char *new_name = gdbarch_static_transform_name
1178 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1179
1180 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1181 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1182 }
1183 }
1184 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1185 add_symbol_to_list (sym, &file_symbols);
1186 break;
1187
1188 case 't':
1189 /* In Ada, there is no distinction between typedef and non-typedef;
1190 any type declaration implicitly has the equivalent of a typedef,
1191 and thus 't' is in fact equivalent to 'Tt'.
1192
1193 Therefore, for Ada units, we check the character immediately
1194 before the 't', and if we do not find a 'T', then make sure to
1195 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1196 will be stored in the VAR_DOMAIN). If the symbol was indeed
1197 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1198 elsewhere, so we don't need to take care of that.
1199
1200 This is important to do, because of forward references:
1201 The cleanup of undefined types stored in undef_types only uses
1202 STRUCT_DOMAIN symbols to perform the replacement. */
1203 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1204
1205 /* Typedef */
1206 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1207
1208 /* For a nameless type, we don't want a create a symbol, thus we
1209 did not use `sym'. Return without further processing. */
1210 if (nameless)
1211 return NULL;
1212
1213 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1214 SYMBOL_VALUE (sym) = valu;
1215 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1216 /* C++ vagaries: we may have a type which is derived from
1217 a base type which did not have its name defined when the
1218 derived class was output. We fill in the derived class's
1219 base part member's name here in that case. */
1220 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1221 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1222 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1223 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1224 {
1225 int j;
1226
1227 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1228 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1229 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1230 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1231 }
1232
1233 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1234 {
1235 /* gcc-2.6 or later (when using -fvtable-thunks)
1236 emits a unique named type for a vtable entry.
1237 Some gdb code depends on that specific name. */
1238 extern const char vtbl_ptr_name[];
1239
1240 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1241 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1242 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1243 {
1244 /* If we are giving a name to a type such as "pointer to
1245 foo" or "function returning foo", we better not set
1246 the TYPE_NAME. If the program contains "typedef char
1247 *caddr_t;", we don't want all variables of type char
1248 * to print as caddr_t. This is not just a
1249 consequence of GDB's type management; PCC and GCC (at
1250 least through version 2.4) both output variables of
1251 either type char * or caddr_t with the type number
1252 defined in the 't' symbol for caddr_t. If a future
1253 compiler cleans this up it GDB is not ready for it
1254 yet, but if it becomes ready we somehow need to
1255 disable this check (without breaking the PCC/GCC2.4
1256 case).
1257
1258 Sigh.
1259
1260 Fortunately, this check seems not to be necessary
1261 for anything except pointers or functions. */
1262 /* ezannoni: 2000-10-26. This seems to apply for
1263 versions of gcc older than 2.8. This was the original
1264 problem: with the following code gdb would tell that
1265 the type for name1 is caddr_t, and func is char().
1266
1267 typedef char *caddr_t;
1268 char *name2;
1269 struct x
1270 {
1271 char *name1;
1272 } xx;
1273 char *func()
1274 {
1275 }
1276 main () {}
1277 */
1278
1279 /* Pascal accepts names for pointer types. */
1280 if (current_subfile->language == language_pascal)
1281 {
1282 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1283 }
1284 }
1285 else
1286 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1287 }
1288
1289 add_symbol_to_list (sym, &file_symbols);
1290
1291 if (synonym)
1292 {
1293 /* Create the STRUCT_DOMAIN clone. */
1294 struct symbol *struct_sym = allocate_symbol (objfile);
1295
1296 *struct_sym = *sym;
1297 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1298 SYMBOL_VALUE (struct_sym) = valu;
1299 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1300 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1301 TYPE_NAME (SYMBOL_TYPE (sym))
1302 = obconcat (&objfile->objfile_obstack,
1303 SYMBOL_LINKAGE_NAME (sym),
1304 (char *) NULL);
1305 add_symbol_to_list (struct_sym, &file_symbols);
1306 }
1307
1308 break;
1309
1310 case 'T':
1311 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1312 by 't' which means we are typedef'ing it as well. */
1313 synonym = *p == 't';
1314
1315 if (synonym)
1316 p++;
1317
1318 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1319
1320 /* For a nameless type, we don't want a create a symbol, thus we
1321 did not use `sym'. Return without further processing. */
1322 if (nameless)
1323 return NULL;
1324
1325 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1326 SYMBOL_VALUE (sym) = valu;
1327 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1328 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1329 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1330 = obconcat (&objfile->objfile_obstack,
1331 SYMBOL_LINKAGE_NAME (sym),
1332 (char *) NULL);
1333 add_symbol_to_list (sym, &file_symbols);
1334
1335 if (synonym)
1336 {
1337 /* Clone the sym and then modify it. */
1338 struct symbol *typedef_sym = allocate_symbol (objfile);
1339
1340 *typedef_sym = *sym;
1341 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1342 SYMBOL_VALUE (typedef_sym) = valu;
1343 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1344 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1345 TYPE_NAME (SYMBOL_TYPE (sym))
1346 = obconcat (&objfile->objfile_obstack,
1347 SYMBOL_LINKAGE_NAME (sym),
1348 (char *) NULL);
1349 add_symbol_to_list (typedef_sym, &file_symbols);
1350 }
1351 break;
1352
1353 case 'V':
1354 /* Static symbol of local scope. */
1355 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1356 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1357 SYMBOL_VALUE_ADDRESS (sym) = valu;
1358 if (gdbarch_static_transform_name_p (gdbarch)
1359 && gdbarch_static_transform_name (gdbarch,
1360 SYMBOL_LINKAGE_NAME (sym))
1361 != SYMBOL_LINKAGE_NAME (sym))
1362 {
1363 struct bound_minimal_symbol msym;
1364
1365 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1366 NULL, objfile);
1367 if (msym.minsym != NULL)
1368 {
1369 const char *new_name = gdbarch_static_transform_name
1370 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1371
1372 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1373 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1374 }
1375 }
1376 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1377 add_symbol_to_list (sym, &local_symbols);
1378 break;
1379
1380 case 'v':
1381 /* Reference parameter */
1382 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1383 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1384 SYMBOL_IS_ARGUMENT (sym) = 1;
1385 SYMBOL_VALUE (sym) = valu;
1386 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1387 add_symbol_to_list (sym, &local_symbols);
1388 break;
1389
1390 case 'a':
1391 /* Reference parameter which is in a register. */
1392 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1393 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1394 SYMBOL_IS_ARGUMENT (sym) = 1;
1395 SYMBOL_VALUE (sym) = valu;
1396 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1397 add_symbol_to_list (sym, &local_symbols);
1398 break;
1399
1400 case 'X':
1401 /* This is used by Sun FORTRAN for "function result value".
1402 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1403 that Pascal uses it too, but when I tried it Pascal used
1404 "x:3" (local symbol) instead. */
1405 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1406 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1407 SYMBOL_VALUE (sym) = valu;
1408 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1409 add_symbol_to_list (sym, &local_symbols);
1410 break;
1411
1412 default:
1413 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1414 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1415 SYMBOL_VALUE (sym) = 0;
1416 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1417 add_symbol_to_list (sym, &file_symbols);
1418 break;
1419 }
1420
1421 /* Some systems pass variables of certain types by reference instead
1422 of by value, i.e. they will pass the address of a structure (in a
1423 register or on the stack) instead of the structure itself. */
1424
1425 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1426 && SYMBOL_IS_ARGUMENT (sym))
1427 {
1428 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1429 variables passed in a register). */
1430 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1431 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1432 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1433 and subsequent arguments on SPARC, for example). */
1434 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1435 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1436 }
1437
1438 return sym;
1439 }
1440
1441 /* Skip rest of this symbol and return an error type.
1442
1443 General notes on error recovery: error_type always skips to the
1444 end of the symbol (modulo cretinous dbx symbol name continuation).
1445 Thus code like this:
1446
1447 if (*(*pp)++ != ';')
1448 return error_type (pp, objfile);
1449
1450 is wrong because if *pp starts out pointing at '\0' (typically as the
1451 result of an earlier error), it will be incremented to point to the
1452 start of the next symbol, which might produce strange results, at least
1453 if you run off the end of the string table. Instead use
1454
1455 if (**pp != ';')
1456 return error_type (pp, objfile);
1457 ++*pp;
1458
1459 or
1460
1461 if (**pp != ';')
1462 foo = error_type (pp, objfile);
1463 else
1464 ++*pp;
1465
1466 And in case it isn't obvious, the point of all this hair is so the compiler
1467 can define new types and new syntaxes, and old versions of the
1468 debugger will be able to read the new symbol tables. */
1469
1470 static struct type *
1471 error_type (char **pp, struct objfile *objfile)
1472 {
1473 complaint (&symfile_complaints,
1474 _("couldn't parse type; debugger out of date?"));
1475 while (1)
1476 {
1477 /* Skip to end of symbol. */
1478 while (**pp != '\0')
1479 {
1480 (*pp)++;
1481 }
1482
1483 /* Check for and handle cretinous dbx symbol name continuation! */
1484 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1485 {
1486 *pp = next_symbol_text (objfile);
1487 }
1488 else
1489 {
1490 break;
1491 }
1492 }
1493 return objfile_type (objfile)->builtin_error;
1494 }
1495 \f
1496
1497 /* Read type information or a type definition; return the type. Even
1498 though this routine accepts either type information or a type
1499 definition, the distinction is relevant--some parts of stabsread.c
1500 assume that type information starts with a digit, '-', or '(' in
1501 deciding whether to call read_type. */
1502
1503 static struct type *
1504 read_type (char **pp, struct objfile *objfile)
1505 {
1506 struct type *type = 0;
1507 struct type *type1;
1508 int typenums[2];
1509 char type_descriptor;
1510
1511 /* Size in bits of type if specified by a type attribute, or -1 if
1512 there is no size attribute. */
1513 int type_size = -1;
1514
1515 /* Used to distinguish string and bitstring from char-array and set. */
1516 int is_string = 0;
1517
1518 /* Used to distinguish vector from array. */
1519 int is_vector = 0;
1520
1521 /* Read type number if present. The type number may be omitted.
1522 for instance in a two-dimensional array declared with type
1523 "ar1;1;10;ar1;1;10;4". */
1524 if ((**pp >= '0' && **pp <= '9')
1525 || **pp == '('
1526 || **pp == '-')
1527 {
1528 if (read_type_number (pp, typenums) != 0)
1529 return error_type (pp, objfile);
1530
1531 if (**pp != '=')
1532 {
1533 /* Type is not being defined here. Either it already
1534 exists, or this is a forward reference to it.
1535 dbx_alloc_type handles both cases. */
1536 type = dbx_alloc_type (typenums, objfile);
1537
1538 /* If this is a forward reference, arrange to complain if it
1539 doesn't get patched up by the time we're done
1540 reading. */
1541 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1542 add_undefined_type (type, typenums);
1543
1544 return type;
1545 }
1546
1547 /* Type is being defined here. */
1548 /* Skip the '='.
1549 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1550 (*pp) += 2;
1551 }
1552 else
1553 {
1554 /* 'typenums=' not present, type is anonymous. Read and return
1555 the definition, but don't put it in the type vector. */
1556 typenums[0] = typenums[1] = -1;
1557 (*pp)++;
1558 }
1559
1560 again:
1561 type_descriptor = (*pp)[-1];
1562 switch (type_descriptor)
1563 {
1564 case 'x':
1565 {
1566 enum type_code code;
1567
1568 /* Used to index through file_symbols. */
1569 struct pending *ppt;
1570 int i;
1571
1572 /* Name including "struct", etc. */
1573 char *type_name;
1574
1575 {
1576 char *from, *to, *p, *q1, *q2;
1577
1578 /* Set the type code according to the following letter. */
1579 switch ((*pp)[0])
1580 {
1581 case 's':
1582 code = TYPE_CODE_STRUCT;
1583 break;
1584 case 'u':
1585 code = TYPE_CODE_UNION;
1586 break;
1587 case 'e':
1588 code = TYPE_CODE_ENUM;
1589 break;
1590 default:
1591 {
1592 /* Complain and keep going, so compilers can invent new
1593 cross-reference types. */
1594 complaint (&symfile_complaints,
1595 _("Unrecognized cross-reference type `%c'"),
1596 (*pp)[0]);
1597 code = TYPE_CODE_STRUCT;
1598 break;
1599 }
1600 }
1601
1602 q1 = strchr (*pp, '<');
1603 p = strchr (*pp, ':');
1604 if (p == NULL)
1605 return error_type (pp, objfile);
1606 if (q1 && p > q1 && p[1] == ':')
1607 {
1608 int nesting_level = 0;
1609
1610 for (q2 = q1; *q2; q2++)
1611 {
1612 if (*q2 == '<')
1613 nesting_level++;
1614 else if (*q2 == '>')
1615 nesting_level--;
1616 else if (*q2 == ':' && nesting_level == 0)
1617 break;
1618 }
1619 p = q2;
1620 if (*p != ':')
1621 return error_type (pp, objfile);
1622 }
1623 type_name = NULL;
1624 if (current_subfile->language == language_cplus)
1625 {
1626 char *new_name, *name = alloca (p - *pp + 1);
1627
1628 memcpy (name, *pp, p - *pp);
1629 name[p - *pp] = '\0';
1630 new_name = cp_canonicalize_string (name);
1631 if (new_name != NULL)
1632 {
1633 type_name = obstack_copy0 (&objfile->objfile_obstack,
1634 new_name, strlen (new_name));
1635 xfree (new_name);
1636 }
1637 }
1638 if (type_name == NULL)
1639 {
1640 to = type_name = (char *)
1641 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1642
1643 /* Copy the name. */
1644 from = *pp + 1;
1645 while (from < p)
1646 *to++ = *from++;
1647 *to = '\0';
1648 }
1649
1650 /* Set the pointer ahead of the name which we just read, and
1651 the colon. */
1652 *pp = p + 1;
1653 }
1654
1655 /* If this type has already been declared, then reuse the same
1656 type, rather than allocating a new one. This saves some
1657 memory. */
1658
1659 for (ppt = file_symbols; ppt; ppt = ppt->next)
1660 for (i = 0; i < ppt->nsyms; i++)
1661 {
1662 struct symbol *sym = ppt->symbol[i];
1663
1664 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1665 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1666 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1667 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1668 {
1669 obstack_free (&objfile->objfile_obstack, type_name);
1670 type = SYMBOL_TYPE (sym);
1671 if (typenums[0] != -1)
1672 *dbx_lookup_type (typenums, objfile) = type;
1673 return type;
1674 }
1675 }
1676
1677 /* Didn't find the type to which this refers, so we must
1678 be dealing with a forward reference. Allocate a type
1679 structure for it, and keep track of it so we can
1680 fill in the rest of the fields when we get the full
1681 type. */
1682 type = dbx_alloc_type (typenums, objfile);
1683 TYPE_CODE (type) = code;
1684 TYPE_TAG_NAME (type) = type_name;
1685 INIT_CPLUS_SPECIFIC (type);
1686 TYPE_STUB (type) = 1;
1687
1688 add_undefined_type (type, typenums);
1689 return type;
1690 }
1691
1692 case '-': /* RS/6000 built-in type */
1693 case '0':
1694 case '1':
1695 case '2':
1696 case '3':
1697 case '4':
1698 case '5':
1699 case '6':
1700 case '7':
1701 case '8':
1702 case '9':
1703 case '(':
1704 (*pp)--;
1705
1706 /* We deal with something like t(1,2)=(3,4)=... which
1707 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1708
1709 /* Allocate and enter the typedef type first.
1710 This handles recursive types. */
1711 type = dbx_alloc_type (typenums, objfile);
1712 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1713 {
1714 struct type *xtype = read_type (pp, objfile);
1715
1716 if (type == xtype)
1717 {
1718 /* It's being defined as itself. That means it is "void". */
1719 TYPE_CODE (type) = TYPE_CODE_VOID;
1720 TYPE_LENGTH (type) = 1;
1721 }
1722 else if (type_size >= 0 || is_string)
1723 {
1724 /* This is the absolute wrong way to construct types. Every
1725 other debug format has found a way around this problem and
1726 the related problems with unnecessarily stubbed types;
1727 someone motivated should attempt to clean up the issue
1728 here as well. Once a type pointed to has been created it
1729 should not be modified.
1730
1731 Well, it's not *absolutely* wrong. Constructing recursive
1732 types (trees, linked lists) necessarily entails modifying
1733 types after creating them. Constructing any loop structure
1734 entails side effects. The Dwarf 2 reader does handle this
1735 more gracefully (it never constructs more than once
1736 instance of a type object, so it doesn't have to copy type
1737 objects wholesale), but it still mutates type objects after
1738 other folks have references to them.
1739
1740 Keep in mind that this circularity/mutation issue shows up
1741 at the source language level, too: C's "incomplete types",
1742 for example. So the proper cleanup, I think, would be to
1743 limit GDB's type smashing to match exactly those required
1744 by the source language. So GDB could have a
1745 "complete_this_type" function, but never create unnecessary
1746 copies of a type otherwise. */
1747 replace_type (type, xtype);
1748 TYPE_NAME (type) = NULL;
1749 TYPE_TAG_NAME (type) = NULL;
1750 }
1751 else
1752 {
1753 TYPE_TARGET_STUB (type) = 1;
1754 TYPE_TARGET_TYPE (type) = xtype;
1755 }
1756 }
1757 break;
1758
1759 /* In the following types, we must be sure to overwrite any existing
1760 type that the typenums refer to, rather than allocating a new one
1761 and making the typenums point to the new one. This is because there
1762 may already be pointers to the existing type (if it had been
1763 forward-referenced), and we must change it to a pointer, function,
1764 reference, or whatever, *in-place*. */
1765
1766 case '*': /* Pointer to another type */
1767 type1 = read_type (pp, objfile);
1768 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1769 break;
1770
1771 case '&': /* Reference to another type */
1772 type1 = read_type (pp, objfile);
1773 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1774 break;
1775
1776 case 'f': /* Function returning another type */
1777 type1 = read_type (pp, objfile);
1778 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1779 break;
1780
1781 case 'g': /* Prototyped function. (Sun) */
1782 {
1783 /* Unresolved questions:
1784
1785 - According to Sun's ``STABS Interface Manual'', for 'f'
1786 and 'F' symbol descriptors, a `0' in the argument type list
1787 indicates a varargs function. But it doesn't say how 'g'
1788 type descriptors represent that info. Someone with access
1789 to Sun's toolchain should try it out.
1790
1791 - According to the comment in define_symbol (search for
1792 `process_prototype_types:'), Sun emits integer arguments as
1793 types which ref themselves --- like `void' types. Do we
1794 have to deal with that here, too? Again, someone with
1795 access to Sun's toolchain should try it out and let us
1796 know. */
1797
1798 const char *type_start = (*pp) - 1;
1799 struct type *return_type = read_type (pp, objfile);
1800 struct type *func_type
1801 = make_function_type (return_type,
1802 dbx_lookup_type (typenums, objfile));
1803 struct type_list {
1804 struct type *type;
1805 struct type_list *next;
1806 } *arg_types = 0;
1807 int num_args = 0;
1808
1809 while (**pp && **pp != '#')
1810 {
1811 struct type *arg_type = read_type (pp, objfile);
1812 struct type_list *newobj = alloca (sizeof (*newobj));
1813 newobj->type = arg_type;
1814 newobj->next = arg_types;
1815 arg_types = newobj;
1816 num_args++;
1817 }
1818 if (**pp == '#')
1819 ++*pp;
1820 else
1821 {
1822 complaint (&symfile_complaints,
1823 _("Prototyped function type didn't "
1824 "end arguments with `#':\n%s"),
1825 type_start);
1826 }
1827
1828 /* If there is just one argument whose type is `void', then
1829 that's just an empty argument list. */
1830 if (arg_types
1831 && ! arg_types->next
1832 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1833 num_args = 0;
1834
1835 TYPE_FIELDS (func_type)
1836 = (struct field *) TYPE_ALLOC (func_type,
1837 num_args * sizeof (struct field));
1838 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1839 {
1840 int i;
1841 struct type_list *t;
1842
1843 /* We stuck each argument type onto the front of the list
1844 when we read it, so the list is reversed. Build the
1845 fields array right-to-left. */
1846 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1847 TYPE_FIELD_TYPE (func_type, i) = t->type;
1848 }
1849 TYPE_NFIELDS (func_type) = num_args;
1850 TYPE_PROTOTYPED (func_type) = 1;
1851
1852 type = func_type;
1853 break;
1854 }
1855
1856 case 'k': /* Const qualifier on some type (Sun) */
1857 type = read_type (pp, objfile);
1858 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1859 dbx_lookup_type (typenums, objfile));
1860 break;
1861
1862 case 'B': /* Volatile qual on some type (Sun) */
1863 type = read_type (pp, objfile);
1864 type = make_cv_type (TYPE_CONST (type), 1, type,
1865 dbx_lookup_type (typenums, objfile));
1866 break;
1867
1868 case '@':
1869 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1870 { /* Member (class & variable) type */
1871 /* FIXME -- we should be doing smash_to_XXX types here. */
1872
1873 struct type *domain = read_type (pp, objfile);
1874 struct type *memtype;
1875
1876 if (**pp != ',')
1877 /* Invalid member type data format. */
1878 return error_type (pp, objfile);
1879 ++*pp;
1880
1881 memtype = read_type (pp, objfile);
1882 type = dbx_alloc_type (typenums, objfile);
1883 smash_to_memberptr_type (type, domain, memtype);
1884 }
1885 else
1886 /* type attribute */
1887 {
1888 char *attr = *pp;
1889
1890 /* Skip to the semicolon. */
1891 while (**pp != ';' && **pp != '\0')
1892 ++(*pp);
1893 if (**pp == '\0')
1894 return error_type (pp, objfile);
1895 else
1896 ++ * pp; /* Skip the semicolon. */
1897
1898 switch (*attr)
1899 {
1900 case 's': /* Size attribute */
1901 type_size = atoi (attr + 1);
1902 if (type_size <= 0)
1903 type_size = -1;
1904 break;
1905
1906 case 'S': /* String attribute */
1907 /* FIXME: check to see if following type is array? */
1908 is_string = 1;
1909 break;
1910
1911 case 'V': /* Vector attribute */
1912 /* FIXME: check to see if following type is array? */
1913 is_vector = 1;
1914 break;
1915
1916 default:
1917 /* Ignore unrecognized type attributes, so future compilers
1918 can invent new ones. */
1919 break;
1920 }
1921 ++*pp;
1922 goto again;
1923 }
1924 break;
1925
1926 case '#': /* Method (class & fn) type */
1927 if ((*pp)[0] == '#')
1928 {
1929 /* We'll get the parameter types from the name. */
1930 struct type *return_type;
1931
1932 (*pp)++;
1933 return_type = read_type (pp, objfile);
1934 if (*(*pp)++ != ';')
1935 complaint (&symfile_complaints,
1936 _("invalid (minimal) member type "
1937 "data format at symtab pos %d."),
1938 symnum);
1939 type = allocate_stub_method (return_type);
1940 if (typenums[0] != -1)
1941 *dbx_lookup_type (typenums, objfile) = type;
1942 }
1943 else
1944 {
1945 struct type *domain = read_type (pp, objfile);
1946 struct type *return_type;
1947 struct field *args;
1948 int nargs, varargs;
1949
1950 if (**pp != ',')
1951 /* Invalid member type data format. */
1952 return error_type (pp, objfile);
1953 else
1954 ++(*pp);
1955
1956 return_type = read_type (pp, objfile);
1957 args = read_args (pp, ';', objfile, &nargs, &varargs);
1958 if (args == NULL)
1959 return error_type (pp, objfile);
1960 type = dbx_alloc_type (typenums, objfile);
1961 smash_to_method_type (type, domain, return_type, args,
1962 nargs, varargs);
1963 }
1964 break;
1965
1966 case 'r': /* Range type */
1967 type = read_range_type (pp, typenums, type_size, objfile);
1968 if (typenums[0] != -1)
1969 *dbx_lookup_type (typenums, objfile) = type;
1970 break;
1971
1972 case 'b':
1973 {
1974 /* Sun ACC builtin int type */
1975 type = read_sun_builtin_type (pp, typenums, objfile);
1976 if (typenums[0] != -1)
1977 *dbx_lookup_type (typenums, objfile) = type;
1978 }
1979 break;
1980
1981 case 'R': /* Sun ACC builtin float type */
1982 type = read_sun_floating_type (pp, typenums, objfile);
1983 if (typenums[0] != -1)
1984 *dbx_lookup_type (typenums, objfile) = type;
1985 break;
1986
1987 case 'e': /* Enumeration type */
1988 type = dbx_alloc_type (typenums, objfile);
1989 type = read_enum_type (pp, type, objfile);
1990 if (typenums[0] != -1)
1991 *dbx_lookup_type (typenums, objfile) = type;
1992 break;
1993
1994 case 's': /* Struct type */
1995 case 'u': /* Union type */
1996 {
1997 enum type_code type_code = TYPE_CODE_UNDEF;
1998 type = dbx_alloc_type (typenums, objfile);
1999 switch (type_descriptor)
2000 {
2001 case 's':
2002 type_code = TYPE_CODE_STRUCT;
2003 break;
2004 case 'u':
2005 type_code = TYPE_CODE_UNION;
2006 break;
2007 }
2008 type = read_struct_type (pp, type, type_code, objfile);
2009 break;
2010 }
2011
2012 case 'a': /* Array type */
2013 if (**pp != 'r')
2014 return error_type (pp, objfile);
2015 ++*pp;
2016
2017 type = dbx_alloc_type (typenums, objfile);
2018 type = read_array_type (pp, type, objfile);
2019 if (is_string)
2020 TYPE_CODE (type) = TYPE_CODE_STRING;
2021 if (is_vector)
2022 make_vector_type (type);
2023 break;
2024
2025 case 'S': /* Set type */
2026 type1 = read_type (pp, objfile);
2027 type = create_set_type ((struct type *) NULL, type1);
2028 if (typenums[0] != -1)
2029 *dbx_lookup_type (typenums, objfile) = type;
2030 break;
2031
2032 default:
2033 --*pp; /* Go back to the symbol in error. */
2034 /* Particularly important if it was \0! */
2035 return error_type (pp, objfile);
2036 }
2037
2038 if (type == 0)
2039 {
2040 warning (_("GDB internal error, type is NULL in stabsread.c."));
2041 return error_type (pp, objfile);
2042 }
2043
2044 /* Size specified in a type attribute overrides any other size. */
2045 if (type_size != -1)
2046 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2047
2048 return type;
2049 }
2050 \f
2051 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2052 Return the proper type node for a given builtin type number. */
2053
2054 static const struct objfile_data *rs6000_builtin_type_data;
2055
2056 static struct type *
2057 rs6000_builtin_type (int typenum, struct objfile *objfile)
2058 {
2059 struct type **negative_types = objfile_data (objfile,
2060 rs6000_builtin_type_data);
2061
2062 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2063 #define NUMBER_RECOGNIZED 34
2064 struct type *rettype = NULL;
2065
2066 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2067 {
2068 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2069 return objfile_type (objfile)->builtin_error;
2070 }
2071
2072 if (!negative_types)
2073 {
2074 /* This includes an empty slot for type number -0. */
2075 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2076 NUMBER_RECOGNIZED + 1, struct type *);
2077 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2078 }
2079
2080 if (negative_types[-typenum] != NULL)
2081 return negative_types[-typenum];
2082
2083 #if TARGET_CHAR_BIT != 8
2084 #error This code wrong for TARGET_CHAR_BIT not 8
2085 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2086 that if that ever becomes not true, the correct fix will be to
2087 make the size in the struct type to be in bits, not in units of
2088 TARGET_CHAR_BIT. */
2089 #endif
2090
2091 switch (-typenum)
2092 {
2093 case 1:
2094 /* The size of this and all the other types are fixed, defined
2095 by the debugging format. If there is a type called "int" which
2096 is other than 32 bits, then it should use a new negative type
2097 number (or avoid negative type numbers for that case).
2098 See stabs.texinfo. */
2099 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2100 break;
2101 case 2:
2102 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2103 break;
2104 case 3:
2105 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2106 break;
2107 case 4:
2108 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2109 break;
2110 case 5:
2111 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2112 "unsigned char", objfile);
2113 break;
2114 case 6:
2115 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2116 break;
2117 case 7:
2118 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2119 "unsigned short", objfile);
2120 break;
2121 case 8:
2122 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2123 "unsigned int", objfile);
2124 break;
2125 case 9:
2126 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2127 "unsigned", objfile);
2128 break;
2129 case 10:
2130 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2131 "unsigned long", objfile);
2132 break;
2133 case 11:
2134 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2135 break;
2136 case 12:
2137 /* IEEE single precision (32 bit). */
2138 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2139 break;
2140 case 13:
2141 /* IEEE double precision (64 bit). */
2142 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2143 break;
2144 case 14:
2145 /* This is an IEEE double on the RS/6000, and different machines with
2146 different sizes for "long double" should use different negative
2147 type numbers. See stabs.texinfo. */
2148 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2149 break;
2150 case 15:
2151 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2152 break;
2153 case 16:
2154 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2155 "boolean", objfile);
2156 break;
2157 case 17:
2158 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2159 break;
2160 case 18:
2161 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2162 break;
2163 case 19:
2164 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2165 break;
2166 case 20:
2167 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2168 "character", objfile);
2169 break;
2170 case 21:
2171 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2172 "logical*1", objfile);
2173 break;
2174 case 22:
2175 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2176 "logical*2", objfile);
2177 break;
2178 case 23:
2179 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2180 "logical*4", objfile);
2181 break;
2182 case 24:
2183 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2184 "logical", objfile);
2185 break;
2186 case 25:
2187 /* Complex type consisting of two IEEE single precision values. */
2188 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2189 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2190 objfile);
2191 break;
2192 case 26:
2193 /* Complex type consisting of two IEEE double precision values. */
2194 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2195 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2196 objfile);
2197 break;
2198 case 27:
2199 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2200 break;
2201 case 28:
2202 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2203 break;
2204 case 29:
2205 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2206 break;
2207 case 30:
2208 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2209 break;
2210 case 31:
2211 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2212 break;
2213 case 32:
2214 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2215 "unsigned long long", objfile);
2216 break;
2217 case 33:
2218 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2219 "logical*8", objfile);
2220 break;
2221 case 34:
2222 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2223 break;
2224 }
2225 negative_types[-typenum] = rettype;
2226 return rettype;
2227 }
2228 \f
2229 /* This page contains subroutines of read_type. */
2230
2231 /* Wrapper around method_name_from_physname to flag a complaint
2232 if there is an error. */
2233
2234 static char *
2235 stabs_method_name_from_physname (const char *physname)
2236 {
2237 char *method_name;
2238
2239 method_name = method_name_from_physname (physname);
2240
2241 if (method_name == NULL)
2242 {
2243 complaint (&symfile_complaints,
2244 _("Method has bad physname %s\n"), physname);
2245 return NULL;
2246 }
2247
2248 return method_name;
2249 }
2250
2251 /* Read member function stabs info for C++ classes. The form of each member
2252 function data is:
2253
2254 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2255
2256 An example with two member functions is:
2257
2258 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2259
2260 For the case of overloaded operators, the format is op$::*.funcs, where
2261 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2262 name (such as `+=') and `.' marks the end of the operator name.
2263
2264 Returns 1 for success, 0 for failure. */
2265
2266 static int
2267 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2268 struct objfile *objfile)
2269 {
2270 int nfn_fields = 0;
2271 int length = 0;
2272 int i;
2273 struct next_fnfield
2274 {
2275 struct next_fnfield *next;
2276 struct fn_field fn_field;
2277 }
2278 *sublist;
2279 struct type *look_ahead_type;
2280 struct next_fnfieldlist *new_fnlist;
2281 struct next_fnfield *new_sublist;
2282 char *main_fn_name;
2283 char *p;
2284
2285 /* Process each list until we find something that is not a member function
2286 or find the end of the functions. */
2287
2288 while (**pp != ';')
2289 {
2290 /* We should be positioned at the start of the function name.
2291 Scan forward to find the first ':' and if it is not the
2292 first of a "::" delimiter, then this is not a member function. */
2293 p = *pp;
2294 while (*p != ':')
2295 {
2296 p++;
2297 }
2298 if (p[1] != ':')
2299 {
2300 break;
2301 }
2302
2303 sublist = NULL;
2304 look_ahead_type = NULL;
2305 length = 0;
2306
2307 new_fnlist = (struct next_fnfieldlist *)
2308 xmalloc (sizeof (struct next_fnfieldlist));
2309 make_cleanup (xfree, new_fnlist);
2310 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2311
2312 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2313 {
2314 /* This is a completely wierd case. In order to stuff in the
2315 names that might contain colons (the usual name delimiter),
2316 Mike Tiemann defined a different name format which is
2317 signalled if the identifier is "op$". In that case, the
2318 format is "op$::XXXX." where XXXX is the name. This is
2319 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2320 /* This lets the user type "break operator+".
2321 We could just put in "+" as the name, but that wouldn't
2322 work for "*". */
2323 static char opname[32] = "op$";
2324 char *o = opname + 3;
2325
2326 /* Skip past '::'. */
2327 *pp = p + 2;
2328
2329 STABS_CONTINUE (pp, objfile);
2330 p = *pp;
2331 while (*p != '.')
2332 {
2333 *o++ = *p++;
2334 }
2335 main_fn_name = savestring (opname, o - opname);
2336 /* Skip past '.' */
2337 *pp = p + 1;
2338 }
2339 else
2340 {
2341 main_fn_name = savestring (*pp, p - *pp);
2342 /* Skip past '::'. */
2343 *pp = p + 2;
2344 }
2345 new_fnlist->fn_fieldlist.name = main_fn_name;
2346
2347 do
2348 {
2349 new_sublist =
2350 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2351 make_cleanup (xfree, new_sublist);
2352 memset (new_sublist, 0, sizeof (struct next_fnfield));
2353
2354 /* Check for and handle cretinous dbx symbol name continuation! */
2355 if (look_ahead_type == NULL)
2356 {
2357 /* Normal case. */
2358 STABS_CONTINUE (pp, objfile);
2359
2360 new_sublist->fn_field.type = read_type (pp, objfile);
2361 if (**pp != ':')
2362 {
2363 /* Invalid symtab info for member function. */
2364 return 0;
2365 }
2366 }
2367 else
2368 {
2369 /* g++ version 1 kludge */
2370 new_sublist->fn_field.type = look_ahead_type;
2371 look_ahead_type = NULL;
2372 }
2373
2374 (*pp)++;
2375 p = *pp;
2376 while (*p != ';')
2377 {
2378 p++;
2379 }
2380
2381 /* These are methods, not functions. */
2382 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2383 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2384 else
2385 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2386 == TYPE_CODE_METHOD);
2387
2388 /* If this is just a stub, then we don't have the real name here. */
2389 if (TYPE_STUB (new_sublist->fn_field.type))
2390 {
2391 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2392 set_type_self_type (new_sublist->fn_field.type, type);
2393 new_sublist->fn_field.is_stub = 1;
2394 }
2395
2396 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2397 *pp = p + 1;
2398
2399 /* Set this member function's visibility fields. */
2400 switch (*(*pp)++)
2401 {
2402 case VISIBILITY_PRIVATE:
2403 new_sublist->fn_field.is_private = 1;
2404 break;
2405 case VISIBILITY_PROTECTED:
2406 new_sublist->fn_field.is_protected = 1;
2407 break;
2408 }
2409
2410 STABS_CONTINUE (pp, objfile);
2411 switch (**pp)
2412 {
2413 case 'A': /* Normal functions. */
2414 new_sublist->fn_field.is_const = 0;
2415 new_sublist->fn_field.is_volatile = 0;
2416 (*pp)++;
2417 break;
2418 case 'B': /* `const' member functions. */
2419 new_sublist->fn_field.is_const = 1;
2420 new_sublist->fn_field.is_volatile = 0;
2421 (*pp)++;
2422 break;
2423 case 'C': /* `volatile' member function. */
2424 new_sublist->fn_field.is_const = 0;
2425 new_sublist->fn_field.is_volatile = 1;
2426 (*pp)++;
2427 break;
2428 case 'D': /* `const volatile' member function. */
2429 new_sublist->fn_field.is_const = 1;
2430 new_sublist->fn_field.is_volatile = 1;
2431 (*pp)++;
2432 break;
2433 case '*': /* File compiled with g++ version 1 --
2434 no info. */
2435 case '?':
2436 case '.':
2437 break;
2438 default:
2439 complaint (&symfile_complaints,
2440 _("const/volatile indicator missing, got '%c'"),
2441 **pp);
2442 break;
2443 }
2444
2445 switch (*(*pp)++)
2446 {
2447 case '*':
2448 {
2449 int nbits;
2450 /* virtual member function, followed by index.
2451 The sign bit is set to distinguish pointers-to-methods
2452 from virtual function indicies. Since the array is
2453 in words, the quantity must be shifted left by 1
2454 on 16 bit machine, and by 2 on 32 bit machine, forcing
2455 the sign bit out, and usable as a valid index into
2456 the array. Remove the sign bit here. */
2457 new_sublist->fn_field.voffset =
2458 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2459 if (nbits != 0)
2460 return 0;
2461
2462 STABS_CONTINUE (pp, objfile);
2463 if (**pp == ';' || **pp == '\0')
2464 {
2465 /* Must be g++ version 1. */
2466 new_sublist->fn_field.fcontext = 0;
2467 }
2468 else
2469 {
2470 /* Figure out from whence this virtual function came.
2471 It may belong to virtual function table of
2472 one of its baseclasses. */
2473 look_ahead_type = read_type (pp, objfile);
2474 if (**pp == ':')
2475 {
2476 /* g++ version 1 overloaded methods. */
2477 }
2478 else
2479 {
2480 new_sublist->fn_field.fcontext = look_ahead_type;
2481 if (**pp != ';')
2482 {
2483 return 0;
2484 }
2485 else
2486 {
2487 ++*pp;
2488 }
2489 look_ahead_type = NULL;
2490 }
2491 }
2492 break;
2493 }
2494 case '?':
2495 /* static member function. */
2496 {
2497 int slen = strlen (main_fn_name);
2498
2499 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2500
2501 /* For static member functions, we can't tell if they
2502 are stubbed, as they are put out as functions, and not as
2503 methods.
2504 GCC v2 emits the fully mangled name if
2505 dbxout.c:flag_minimal_debug is not set, so we have to
2506 detect a fully mangled physname here and set is_stub
2507 accordingly. Fully mangled physnames in v2 start with
2508 the member function name, followed by two underscores.
2509 GCC v3 currently always emits stubbed member functions,
2510 but with fully mangled physnames, which start with _Z. */
2511 if (!(strncmp (new_sublist->fn_field.physname,
2512 main_fn_name, slen) == 0
2513 && new_sublist->fn_field.physname[slen] == '_'
2514 && new_sublist->fn_field.physname[slen + 1] == '_'))
2515 {
2516 new_sublist->fn_field.is_stub = 1;
2517 }
2518 break;
2519 }
2520
2521 default:
2522 /* error */
2523 complaint (&symfile_complaints,
2524 _("member function type missing, got '%c'"),
2525 (*pp)[-1]);
2526 /* Fall through into normal member function. */
2527
2528 case '.':
2529 /* normal member function. */
2530 new_sublist->fn_field.voffset = 0;
2531 new_sublist->fn_field.fcontext = 0;
2532 break;
2533 }
2534
2535 new_sublist->next = sublist;
2536 sublist = new_sublist;
2537 length++;
2538 STABS_CONTINUE (pp, objfile);
2539 }
2540 while (**pp != ';' && **pp != '\0');
2541
2542 (*pp)++;
2543 STABS_CONTINUE (pp, objfile);
2544
2545 /* Skip GCC 3.X member functions which are duplicates of the callable
2546 constructor/destructor. */
2547 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2548 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2549 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2550 {
2551 xfree (main_fn_name);
2552 }
2553 else
2554 {
2555 int has_stub = 0;
2556 int has_destructor = 0, has_other = 0;
2557 int is_v3 = 0;
2558 struct next_fnfield *tmp_sublist;
2559
2560 /* Various versions of GCC emit various mostly-useless
2561 strings in the name field for special member functions.
2562
2563 For stub methods, we need to defer correcting the name
2564 until we are ready to unstub the method, because the current
2565 name string is used by gdb_mangle_name. The only stub methods
2566 of concern here are GNU v2 operators; other methods have their
2567 names correct (see caveat below).
2568
2569 For non-stub methods, in GNU v3, we have a complete physname.
2570 Therefore we can safely correct the name now. This primarily
2571 affects constructors and destructors, whose name will be
2572 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2573 operators will also have incorrect names; for instance,
2574 "operator int" will be named "operator i" (i.e. the type is
2575 mangled).
2576
2577 For non-stub methods in GNU v2, we have no easy way to
2578 know if we have a complete physname or not. For most
2579 methods the result depends on the platform (if CPLUS_MARKER
2580 can be `$' or `.', it will use minimal debug information, or
2581 otherwise the full physname will be included).
2582
2583 Rather than dealing with this, we take a different approach.
2584 For v3 mangled names, we can use the full physname; for v2,
2585 we use cplus_demangle_opname (which is actually v2 specific),
2586 because the only interesting names are all operators - once again
2587 barring the caveat below. Skip this process if any method in the
2588 group is a stub, to prevent our fouling up the workings of
2589 gdb_mangle_name.
2590
2591 The caveat: GCC 2.95.x (and earlier?) put constructors and
2592 destructors in the same method group. We need to split this
2593 into two groups, because they should have different names.
2594 So for each method group we check whether it contains both
2595 routines whose physname appears to be a destructor (the physnames
2596 for and destructors are always provided, due to quirks in v2
2597 mangling) and routines whose physname does not appear to be a
2598 destructor. If so then we break up the list into two halves.
2599 Even if the constructors and destructors aren't in the same group
2600 the destructor will still lack the leading tilde, so that also
2601 needs to be fixed.
2602
2603 So, to summarize what we expect and handle here:
2604
2605 Given Given Real Real Action
2606 method name physname physname method name
2607
2608 __opi [none] __opi__3Foo operator int opname
2609 [now or later]
2610 Foo _._3Foo _._3Foo ~Foo separate and
2611 rename
2612 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2613 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2614 */
2615
2616 tmp_sublist = sublist;
2617 while (tmp_sublist != NULL)
2618 {
2619 if (tmp_sublist->fn_field.is_stub)
2620 has_stub = 1;
2621 if (tmp_sublist->fn_field.physname[0] == '_'
2622 && tmp_sublist->fn_field.physname[1] == 'Z')
2623 is_v3 = 1;
2624
2625 if (is_destructor_name (tmp_sublist->fn_field.physname))
2626 has_destructor++;
2627 else
2628 has_other++;
2629
2630 tmp_sublist = tmp_sublist->next;
2631 }
2632
2633 if (has_destructor && has_other)
2634 {
2635 struct next_fnfieldlist *destr_fnlist;
2636 struct next_fnfield *last_sublist;
2637
2638 /* Create a new fn_fieldlist for the destructors. */
2639
2640 destr_fnlist = (struct next_fnfieldlist *)
2641 xmalloc (sizeof (struct next_fnfieldlist));
2642 make_cleanup (xfree, destr_fnlist);
2643 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2644 destr_fnlist->fn_fieldlist.name
2645 = obconcat (&objfile->objfile_obstack, "~",
2646 new_fnlist->fn_fieldlist.name, (char *) NULL);
2647
2648 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2649 obstack_alloc (&objfile->objfile_obstack,
2650 sizeof (struct fn_field) * has_destructor);
2651 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2652 sizeof (struct fn_field) * has_destructor);
2653 tmp_sublist = sublist;
2654 last_sublist = NULL;
2655 i = 0;
2656 while (tmp_sublist != NULL)
2657 {
2658 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2659 {
2660 tmp_sublist = tmp_sublist->next;
2661 continue;
2662 }
2663
2664 destr_fnlist->fn_fieldlist.fn_fields[i++]
2665 = tmp_sublist->fn_field;
2666 if (last_sublist)
2667 last_sublist->next = tmp_sublist->next;
2668 else
2669 sublist = tmp_sublist->next;
2670 last_sublist = tmp_sublist;
2671 tmp_sublist = tmp_sublist->next;
2672 }
2673
2674 destr_fnlist->fn_fieldlist.length = has_destructor;
2675 destr_fnlist->next = fip->fnlist;
2676 fip->fnlist = destr_fnlist;
2677 nfn_fields++;
2678 length -= has_destructor;
2679 }
2680 else if (is_v3)
2681 {
2682 /* v3 mangling prevents the use of abbreviated physnames,
2683 so we can do this here. There are stubbed methods in v3
2684 only:
2685 - in -gstabs instead of -gstabs+
2686 - or for static methods, which are output as a function type
2687 instead of a method type. */
2688 char *new_method_name =
2689 stabs_method_name_from_physname (sublist->fn_field.physname);
2690
2691 if (new_method_name != NULL
2692 && strcmp (new_method_name,
2693 new_fnlist->fn_fieldlist.name) != 0)
2694 {
2695 new_fnlist->fn_fieldlist.name = new_method_name;
2696 xfree (main_fn_name);
2697 }
2698 else
2699 xfree (new_method_name);
2700 }
2701 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2702 {
2703 new_fnlist->fn_fieldlist.name =
2704 obconcat (&objfile->objfile_obstack,
2705 "~", main_fn_name, (char *)NULL);
2706 xfree (main_fn_name);
2707 }
2708 else if (!has_stub)
2709 {
2710 char dem_opname[256];
2711 int ret;
2712
2713 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2714 dem_opname, DMGL_ANSI);
2715 if (!ret)
2716 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2717 dem_opname, 0);
2718 if (ret)
2719 new_fnlist->fn_fieldlist.name
2720 = obstack_copy0 (&objfile->objfile_obstack,
2721 dem_opname, strlen (dem_opname));
2722 xfree (main_fn_name);
2723 }
2724
2725 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2726 obstack_alloc (&objfile->objfile_obstack,
2727 sizeof (struct fn_field) * length);
2728 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2729 sizeof (struct fn_field) * length);
2730 for (i = length; (i--, sublist); sublist = sublist->next)
2731 {
2732 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2733 }
2734
2735 new_fnlist->fn_fieldlist.length = length;
2736 new_fnlist->next = fip->fnlist;
2737 fip->fnlist = new_fnlist;
2738 nfn_fields++;
2739 }
2740 }
2741
2742 if (nfn_fields)
2743 {
2744 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2745 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2746 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2747 memset (TYPE_FN_FIELDLISTS (type), 0,
2748 sizeof (struct fn_fieldlist) * nfn_fields);
2749 TYPE_NFN_FIELDS (type) = nfn_fields;
2750 }
2751
2752 return 1;
2753 }
2754
2755 /* Special GNU C++ name.
2756
2757 Returns 1 for success, 0 for failure. "failure" means that we can't
2758 keep parsing and it's time for error_type(). */
2759
2760 static int
2761 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2762 struct objfile *objfile)
2763 {
2764 char *p;
2765 const char *name;
2766 char cpp_abbrev;
2767 struct type *context;
2768
2769 p = *pp;
2770 if (*++p == 'v')
2771 {
2772 name = NULL;
2773 cpp_abbrev = *++p;
2774
2775 *pp = p + 1;
2776
2777 /* At this point, *pp points to something like "22:23=*22...",
2778 where the type number before the ':' is the "context" and
2779 everything after is a regular type definition. Lookup the
2780 type, find it's name, and construct the field name. */
2781
2782 context = read_type (pp, objfile);
2783
2784 switch (cpp_abbrev)
2785 {
2786 case 'f': /* $vf -- a virtual function table pointer */
2787 name = type_name_no_tag (context);
2788 if (name == NULL)
2789 {
2790 name = "";
2791 }
2792 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2793 vptr_name, name, (char *) NULL);
2794 break;
2795
2796 case 'b': /* $vb -- a virtual bsomethingorother */
2797 name = type_name_no_tag (context);
2798 if (name == NULL)
2799 {
2800 complaint (&symfile_complaints,
2801 _("C++ abbreviated type name "
2802 "unknown at symtab pos %d"),
2803 symnum);
2804 name = "FOO";
2805 }
2806 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2807 name, (char *) NULL);
2808 break;
2809
2810 default:
2811 invalid_cpp_abbrev_complaint (*pp);
2812 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2813 "INVALID_CPLUSPLUS_ABBREV",
2814 (char *) NULL);
2815 break;
2816 }
2817
2818 /* At this point, *pp points to the ':'. Skip it and read the
2819 field type. */
2820
2821 p = ++(*pp);
2822 if (p[-1] != ':')
2823 {
2824 invalid_cpp_abbrev_complaint (*pp);
2825 return 0;
2826 }
2827 fip->list->field.type = read_type (pp, objfile);
2828 if (**pp == ',')
2829 (*pp)++; /* Skip the comma. */
2830 else
2831 return 0;
2832
2833 {
2834 int nbits;
2835
2836 SET_FIELD_BITPOS (fip->list->field,
2837 read_huge_number (pp, ';', &nbits, 0));
2838 if (nbits != 0)
2839 return 0;
2840 }
2841 /* This field is unpacked. */
2842 FIELD_BITSIZE (fip->list->field) = 0;
2843 fip->list->visibility = VISIBILITY_PRIVATE;
2844 }
2845 else
2846 {
2847 invalid_cpp_abbrev_complaint (*pp);
2848 /* We have no idea what syntax an unrecognized abbrev would have, so
2849 better return 0. If we returned 1, we would need to at least advance
2850 *pp to avoid an infinite loop. */
2851 return 0;
2852 }
2853 return 1;
2854 }
2855
2856 static void
2857 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2858 struct type *type, struct objfile *objfile)
2859 {
2860 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2861
2862 fip->list->field.name =
2863 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2864 *pp = p + 1;
2865
2866 /* This means we have a visibility for a field coming. */
2867 if (**pp == '/')
2868 {
2869 (*pp)++;
2870 fip->list->visibility = *(*pp)++;
2871 }
2872 else
2873 {
2874 /* normal dbx-style format, no explicit visibility */
2875 fip->list->visibility = VISIBILITY_PUBLIC;
2876 }
2877
2878 fip->list->field.type = read_type (pp, objfile);
2879 if (**pp == ':')
2880 {
2881 p = ++(*pp);
2882 #if 0
2883 /* Possible future hook for nested types. */
2884 if (**pp == '!')
2885 {
2886 fip->list->field.bitpos = (long) -2; /* nested type */
2887 p = ++(*pp);
2888 }
2889 else
2890 ...;
2891 #endif
2892 while (*p != ';')
2893 {
2894 p++;
2895 }
2896 /* Static class member. */
2897 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2898 *pp = p + 1;
2899 return;
2900 }
2901 else if (**pp != ',')
2902 {
2903 /* Bad structure-type format. */
2904 stabs_general_complaint ("bad structure-type format");
2905 return;
2906 }
2907
2908 (*pp)++; /* Skip the comma. */
2909
2910 {
2911 int nbits;
2912
2913 SET_FIELD_BITPOS (fip->list->field,
2914 read_huge_number (pp, ',', &nbits, 0));
2915 if (nbits != 0)
2916 {
2917 stabs_general_complaint ("bad structure-type format");
2918 return;
2919 }
2920 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2921 if (nbits != 0)
2922 {
2923 stabs_general_complaint ("bad structure-type format");
2924 return;
2925 }
2926 }
2927
2928 if (FIELD_BITPOS (fip->list->field) == 0
2929 && FIELD_BITSIZE (fip->list->field) == 0)
2930 {
2931 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2932 it is a field which has been optimized out. The correct stab for
2933 this case is to use VISIBILITY_IGNORE, but that is a recent
2934 invention. (2) It is a 0-size array. For example
2935 union { int num; char str[0]; } foo. Printing _("<no value>" for
2936 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2937 will continue to work, and a 0-size array as a whole doesn't
2938 have any contents to print.
2939
2940 I suspect this probably could also happen with gcc -gstabs (not
2941 -gstabs+) for static fields, and perhaps other C++ extensions.
2942 Hopefully few people use -gstabs with gdb, since it is intended
2943 for dbx compatibility. */
2944
2945 /* Ignore this field. */
2946 fip->list->visibility = VISIBILITY_IGNORE;
2947 }
2948 else
2949 {
2950 /* Detect an unpacked field and mark it as such.
2951 dbx gives a bit size for all fields.
2952 Note that forward refs cannot be packed,
2953 and treat enums as if they had the width of ints. */
2954
2955 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2956
2957 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2958 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2959 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2960 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2961 {
2962 FIELD_BITSIZE (fip->list->field) = 0;
2963 }
2964 if ((FIELD_BITSIZE (fip->list->field)
2965 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2966 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2967 && FIELD_BITSIZE (fip->list->field)
2968 == gdbarch_int_bit (gdbarch))
2969 )
2970 &&
2971 FIELD_BITPOS (fip->list->field) % 8 == 0)
2972 {
2973 FIELD_BITSIZE (fip->list->field) = 0;
2974 }
2975 }
2976 }
2977
2978
2979 /* Read struct or class data fields. They have the form:
2980
2981 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2982
2983 At the end, we see a semicolon instead of a field.
2984
2985 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2986 a static field.
2987
2988 The optional VISIBILITY is one of:
2989
2990 '/0' (VISIBILITY_PRIVATE)
2991 '/1' (VISIBILITY_PROTECTED)
2992 '/2' (VISIBILITY_PUBLIC)
2993 '/9' (VISIBILITY_IGNORE)
2994
2995 or nothing, for C style fields with public visibility.
2996
2997 Returns 1 for success, 0 for failure. */
2998
2999 static int
3000 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
3001 struct objfile *objfile)
3002 {
3003 char *p;
3004 struct nextfield *newobj;
3005
3006 /* We better set p right now, in case there are no fields at all... */
3007
3008 p = *pp;
3009
3010 /* Read each data member type until we find the terminating ';' at the end of
3011 the data member list, or break for some other reason such as finding the
3012 start of the member function list. */
3013 /* Stab string for structure/union does not end with two ';' in
3014 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3015
3016 while (**pp != ';' && **pp != '\0')
3017 {
3018 STABS_CONTINUE (pp, objfile);
3019 /* Get space to record the next field's data. */
3020 newobj = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3021 make_cleanup (xfree, newobj);
3022 memset (newobj, 0, sizeof (struct nextfield));
3023 newobj->next = fip->list;
3024 fip->list = newobj;
3025
3026 /* Get the field name. */
3027 p = *pp;
3028
3029 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3030 unless the CPLUS_MARKER is followed by an underscore, in
3031 which case it is just the name of an anonymous type, which we
3032 should handle like any other type name. */
3033
3034 if (is_cplus_marker (p[0]) && p[1] != '_')
3035 {
3036 if (!read_cpp_abbrev (fip, pp, type, objfile))
3037 return 0;
3038 continue;
3039 }
3040
3041 /* Look for the ':' that separates the field name from the field
3042 values. Data members are delimited by a single ':', while member
3043 functions are delimited by a pair of ':'s. When we hit the member
3044 functions (if any), terminate scan loop and return. */
3045
3046 while (*p != ':' && *p != '\0')
3047 {
3048 p++;
3049 }
3050 if (*p == '\0')
3051 return 0;
3052
3053 /* Check to see if we have hit the member functions yet. */
3054 if (p[1] == ':')
3055 {
3056 break;
3057 }
3058 read_one_struct_field (fip, pp, p, type, objfile);
3059 }
3060 if (p[0] == ':' && p[1] == ':')
3061 {
3062 /* (the deleted) chill the list of fields: the last entry (at
3063 the head) is a partially constructed entry which we now
3064 scrub. */
3065 fip->list = fip->list->next;
3066 }
3067 return 1;
3068 }
3069 /* *INDENT-OFF* */
3070 /* The stabs for C++ derived classes contain baseclass information which
3071 is marked by a '!' character after the total size. This function is
3072 called when we encounter the baseclass marker, and slurps up all the
3073 baseclass information.
3074
3075 Immediately following the '!' marker is the number of base classes that
3076 the class is derived from, followed by information for each base class.
3077 For each base class, there are two visibility specifiers, a bit offset
3078 to the base class information within the derived class, a reference to
3079 the type for the base class, and a terminating semicolon.
3080
3081 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3082 ^^ ^ ^ ^ ^ ^ ^
3083 Baseclass information marker __________________|| | | | | | |
3084 Number of baseclasses __________________________| | | | | | |
3085 Visibility specifiers (2) ________________________| | | | | |
3086 Offset in bits from start of class _________________| | | | |
3087 Type number for base class ___________________________| | | |
3088 Visibility specifiers (2) _______________________________| | |
3089 Offset in bits from start of class ________________________| |
3090 Type number of base class ____________________________________|
3091
3092 Return 1 for success, 0 for (error-type-inducing) failure. */
3093 /* *INDENT-ON* */
3094
3095
3096
3097 static int
3098 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3099 struct objfile *objfile)
3100 {
3101 int i;
3102 struct nextfield *newobj;
3103
3104 if (**pp != '!')
3105 {
3106 return 1;
3107 }
3108 else
3109 {
3110 /* Skip the '!' baseclass information marker. */
3111 (*pp)++;
3112 }
3113
3114 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3115 {
3116 int nbits;
3117
3118 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3119 if (nbits != 0)
3120 return 0;
3121 }
3122
3123 #if 0
3124 /* Some stupid compilers have trouble with the following, so break
3125 it up into simpler expressions. */
3126 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3127 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3128 #else
3129 {
3130 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3131 char *pointer;
3132
3133 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3134 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3135 }
3136 #endif /* 0 */
3137
3138 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3139
3140 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3141 {
3142 newobj = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3143 make_cleanup (xfree, newobj);
3144 memset (newobj, 0, sizeof (struct nextfield));
3145 newobj->next = fip->list;
3146 fip->list = newobj;
3147 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3148 field! */
3149
3150 STABS_CONTINUE (pp, objfile);
3151 switch (**pp)
3152 {
3153 case '0':
3154 /* Nothing to do. */
3155 break;
3156 case '1':
3157 SET_TYPE_FIELD_VIRTUAL (type, i);
3158 break;
3159 default:
3160 /* Unknown character. Complain and treat it as non-virtual. */
3161 {
3162 complaint (&symfile_complaints,
3163 _("Unknown virtual character `%c' for baseclass"),
3164 **pp);
3165 }
3166 }
3167 ++(*pp);
3168
3169 newobj->visibility = *(*pp)++;
3170 switch (newobj->visibility)
3171 {
3172 case VISIBILITY_PRIVATE:
3173 case VISIBILITY_PROTECTED:
3174 case VISIBILITY_PUBLIC:
3175 break;
3176 default:
3177 /* Bad visibility format. Complain and treat it as
3178 public. */
3179 {
3180 complaint (&symfile_complaints,
3181 _("Unknown visibility `%c' for baseclass"),
3182 newobj->visibility);
3183 newobj->visibility = VISIBILITY_PUBLIC;
3184 }
3185 }
3186
3187 {
3188 int nbits;
3189
3190 /* The remaining value is the bit offset of the portion of the object
3191 corresponding to this baseclass. Always zero in the absence of
3192 multiple inheritance. */
3193
3194 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3195 if (nbits != 0)
3196 return 0;
3197 }
3198
3199 /* The last piece of baseclass information is the type of the
3200 base class. Read it, and remember it's type name as this
3201 field's name. */
3202
3203 newobj->field.type = read_type (pp, objfile);
3204 newobj->field.name = type_name_no_tag (newobj->field.type);
3205
3206 /* Skip trailing ';' and bump count of number of fields seen. */
3207 if (**pp == ';')
3208 (*pp)++;
3209 else
3210 return 0;
3211 }
3212 return 1;
3213 }
3214
3215 /* The tail end of stabs for C++ classes that contain a virtual function
3216 pointer contains a tilde, a %, and a type number.
3217 The type number refers to the base class (possibly this class itself) which
3218 contains the vtable pointer for the current class.
3219
3220 This function is called when we have parsed all the method declarations,
3221 so we can look for the vptr base class info. */
3222
3223 static int
3224 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3225 struct objfile *objfile)
3226 {
3227 char *p;
3228
3229 STABS_CONTINUE (pp, objfile);
3230
3231 /* If we are positioned at a ';', then skip it. */
3232 if (**pp == ';')
3233 {
3234 (*pp)++;
3235 }
3236
3237 if (**pp == '~')
3238 {
3239 (*pp)++;
3240
3241 if (**pp == '=' || **pp == '+' || **pp == '-')
3242 {
3243 /* Obsolete flags that used to indicate the presence
3244 of constructors and/or destructors. */
3245 (*pp)++;
3246 }
3247
3248 /* Read either a '%' or the final ';'. */
3249 if (*(*pp)++ == '%')
3250 {
3251 /* The next number is the type number of the base class
3252 (possibly our own class) which supplies the vtable for
3253 this class. Parse it out, and search that class to find
3254 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3255 and TYPE_VPTR_FIELDNO. */
3256
3257 struct type *t;
3258 int i;
3259
3260 t = read_type (pp, objfile);
3261 p = (*pp)++;
3262 while (*p != '\0' && *p != ';')
3263 {
3264 p++;
3265 }
3266 if (*p == '\0')
3267 {
3268 /* Premature end of symbol. */
3269 return 0;
3270 }
3271
3272 set_type_vptr_basetype (type, t);
3273 if (type == t) /* Our own class provides vtbl ptr. */
3274 {
3275 for (i = TYPE_NFIELDS (t) - 1;
3276 i >= TYPE_N_BASECLASSES (t);
3277 --i)
3278 {
3279 const char *name = TYPE_FIELD_NAME (t, i);
3280
3281 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3282 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3283 {
3284 set_type_vptr_fieldno (type, i);
3285 goto gotit;
3286 }
3287 }
3288 /* Virtual function table field not found. */
3289 complaint (&symfile_complaints,
3290 _("virtual function table pointer "
3291 "not found when defining class `%s'"),
3292 TYPE_NAME (type));
3293 return 0;
3294 }
3295 else
3296 {
3297 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3298 }
3299
3300 gotit:
3301 *pp = p + 1;
3302 }
3303 }
3304 return 1;
3305 }
3306
3307 static int
3308 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3309 {
3310 int n;
3311
3312 for (n = TYPE_NFN_FIELDS (type);
3313 fip->fnlist != NULL;
3314 fip->fnlist = fip->fnlist->next)
3315 {
3316 --n; /* Circumvent Sun3 compiler bug. */
3317 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3318 }
3319 return 1;
3320 }
3321
3322 /* Create the vector of fields, and record how big it is.
3323 We need this info to record proper virtual function table information
3324 for this class's virtual functions. */
3325
3326 static int
3327 attach_fields_to_type (struct field_info *fip, struct type *type,
3328 struct objfile *objfile)
3329 {
3330 int nfields = 0;
3331 int non_public_fields = 0;
3332 struct nextfield *scan;
3333
3334 /* Count up the number of fields that we have, as well as taking note of
3335 whether or not there are any non-public fields, which requires us to
3336 allocate and build the private_field_bits and protected_field_bits
3337 bitfields. */
3338
3339 for (scan = fip->list; scan != NULL; scan = scan->next)
3340 {
3341 nfields++;
3342 if (scan->visibility != VISIBILITY_PUBLIC)
3343 {
3344 non_public_fields++;
3345 }
3346 }
3347
3348 /* Now we know how many fields there are, and whether or not there are any
3349 non-public fields. Record the field count, allocate space for the
3350 array of fields, and create blank visibility bitfields if necessary. */
3351
3352 TYPE_NFIELDS (type) = nfields;
3353 TYPE_FIELDS (type) = (struct field *)
3354 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3355 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3356
3357 if (non_public_fields)
3358 {
3359 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3360
3361 TYPE_FIELD_PRIVATE_BITS (type) =
3362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3363 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3364
3365 TYPE_FIELD_PROTECTED_BITS (type) =
3366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3367 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3368
3369 TYPE_FIELD_IGNORE_BITS (type) =
3370 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3371 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3372 }
3373
3374 /* Copy the saved-up fields into the field vector. Start from the
3375 head of the list, adding to the tail of the field array, so that
3376 they end up in the same order in the array in which they were
3377 added to the list. */
3378
3379 while (nfields-- > 0)
3380 {
3381 TYPE_FIELD (type, nfields) = fip->list->field;
3382 switch (fip->list->visibility)
3383 {
3384 case VISIBILITY_PRIVATE:
3385 SET_TYPE_FIELD_PRIVATE (type, nfields);
3386 break;
3387
3388 case VISIBILITY_PROTECTED:
3389 SET_TYPE_FIELD_PROTECTED (type, nfields);
3390 break;
3391
3392 case VISIBILITY_IGNORE:
3393 SET_TYPE_FIELD_IGNORE (type, nfields);
3394 break;
3395
3396 case VISIBILITY_PUBLIC:
3397 break;
3398
3399 default:
3400 /* Unknown visibility. Complain and treat it as public. */
3401 {
3402 complaint (&symfile_complaints,
3403 _("Unknown visibility `%c' for field"),
3404 fip->list->visibility);
3405 }
3406 break;
3407 }
3408 fip->list = fip->list->next;
3409 }
3410 return 1;
3411 }
3412
3413
3414 /* Complain that the compiler has emitted more than one definition for the
3415 structure type TYPE. */
3416 static void
3417 complain_about_struct_wipeout (struct type *type)
3418 {
3419 const char *name = "";
3420 const char *kind = "";
3421
3422 if (TYPE_TAG_NAME (type))
3423 {
3424 name = TYPE_TAG_NAME (type);
3425 switch (TYPE_CODE (type))
3426 {
3427 case TYPE_CODE_STRUCT: kind = "struct "; break;
3428 case TYPE_CODE_UNION: kind = "union "; break;
3429 case TYPE_CODE_ENUM: kind = "enum "; break;
3430 default: kind = "";
3431 }
3432 }
3433 else if (TYPE_NAME (type))
3434 {
3435 name = TYPE_NAME (type);
3436 kind = "";
3437 }
3438 else
3439 {
3440 name = "<unknown>";
3441 kind = "";
3442 }
3443
3444 complaint (&symfile_complaints,
3445 _("struct/union type gets multiply defined: %s%s"), kind, name);
3446 }
3447
3448 /* Set the length for all variants of a same main_type, which are
3449 connected in the closed chain.
3450
3451 This is something that needs to be done when a type is defined *after*
3452 some cross references to this type have already been read. Consider
3453 for instance the following scenario where we have the following two
3454 stabs entries:
3455
3456 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3457 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3458
3459 A stubbed version of type dummy is created while processing the first
3460 stabs entry. The length of that type is initially set to zero, since
3461 it is unknown at this point. Also, a "constant" variation of type
3462 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3463 the stabs line).
3464
3465 The second stabs entry allows us to replace the stubbed definition
3466 with the real definition. However, we still need to adjust the length
3467 of the "constant" variation of that type, as its length was left
3468 untouched during the main type replacement... */
3469
3470 static void
3471 set_length_in_type_chain (struct type *type)
3472 {
3473 struct type *ntype = TYPE_CHAIN (type);
3474
3475 while (ntype != type)
3476 {
3477 if (TYPE_LENGTH(ntype) == 0)
3478 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3479 else
3480 complain_about_struct_wipeout (ntype);
3481 ntype = TYPE_CHAIN (ntype);
3482 }
3483 }
3484
3485 /* Read the description of a structure (or union type) and return an object
3486 describing the type.
3487
3488 PP points to a character pointer that points to the next unconsumed token
3489 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3490 *PP will point to "4a:1,0,32;;".
3491
3492 TYPE points to an incomplete type that needs to be filled in.
3493
3494 OBJFILE points to the current objfile from which the stabs information is
3495 being read. (Note that it is redundant in that TYPE also contains a pointer
3496 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3497 */
3498
3499 static struct type *
3500 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3501 struct objfile *objfile)
3502 {
3503 struct cleanup *back_to;
3504 struct field_info fi;
3505
3506 fi.list = NULL;
3507 fi.fnlist = NULL;
3508
3509 /* When describing struct/union/class types in stabs, G++ always drops
3510 all qualifications from the name. So if you've got:
3511 struct A { ... struct B { ... }; ... };
3512 then G++ will emit stabs for `struct A::B' that call it simply
3513 `struct B'. Obviously, if you've got a real top-level definition for
3514 `struct B', or other nested definitions, this is going to cause
3515 problems.
3516
3517 Obviously, GDB can't fix this by itself, but it can at least avoid
3518 scribbling on existing structure type objects when new definitions
3519 appear. */
3520 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3521 || TYPE_STUB (type)))
3522 {
3523 complain_about_struct_wipeout (type);
3524
3525 /* It's probably best to return the type unchanged. */
3526 return type;
3527 }
3528
3529 back_to = make_cleanup (null_cleanup, 0);
3530
3531 INIT_CPLUS_SPECIFIC (type);
3532 TYPE_CODE (type) = type_code;
3533 TYPE_STUB (type) = 0;
3534
3535 /* First comes the total size in bytes. */
3536
3537 {
3538 int nbits;
3539
3540 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3541 if (nbits != 0)
3542 {
3543 do_cleanups (back_to);
3544 return error_type (pp, objfile);
3545 }
3546 set_length_in_type_chain (type);
3547 }
3548
3549 /* Now read the baseclasses, if any, read the regular C struct or C++
3550 class member fields, attach the fields to the type, read the C++
3551 member functions, attach them to the type, and then read any tilde
3552 field (baseclass specifier for the class holding the main vtable). */
3553
3554 if (!read_baseclasses (&fi, pp, type, objfile)
3555 || !read_struct_fields (&fi, pp, type, objfile)
3556 || !attach_fields_to_type (&fi, type, objfile)
3557 || !read_member_functions (&fi, pp, type, objfile)
3558 || !attach_fn_fields_to_type (&fi, type)
3559 || !read_tilde_fields (&fi, pp, type, objfile))
3560 {
3561 type = error_type (pp, objfile);
3562 }
3563
3564 do_cleanups (back_to);
3565 return (type);
3566 }
3567
3568 /* Read a definition of an array type,
3569 and create and return a suitable type object.
3570 Also creates a range type which represents the bounds of that
3571 array. */
3572
3573 static struct type *
3574 read_array_type (char **pp, struct type *type,
3575 struct objfile *objfile)
3576 {
3577 struct type *index_type, *element_type, *range_type;
3578 int lower, upper;
3579 int adjustable = 0;
3580 int nbits;
3581
3582 /* Format of an array type:
3583 "ar<index type>;lower;upper;<array_contents_type>".
3584 OS9000: "arlower,upper;<array_contents_type>".
3585
3586 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3587 for these, produce a type like float[][]. */
3588
3589 {
3590 index_type = read_type (pp, objfile);
3591 if (**pp != ';')
3592 /* Improper format of array type decl. */
3593 return error_type (pp, objfile);
3594 ++*pp;
3595 }
3596
3597 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3598 {
3599 (*pp)++;
3600 adjustable = 1;
3601 }
3602 lower = read_huge_number (pp, ';', &nbits, 0);
3603
3604 if (nbits != 0)
3605 return error_type (pp, objfile);
3606
3607 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3608 {
3609 (*pp)++;
3610 adjustable = 1;
3611 }
3612 upper = read_huge_number (pp, ';', &nbits, 0);
3613 if (nbits != 0)
3614 return error_type (pp, objfile);
3615
3616 element_type = read_type (pp, objfile);
3617
3618 if (adjustable)
3619 {
3620 lower = 0;
3621 upper = -1;
3622 }
3623
3624 range_type =
3625 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3626 type = create_array_type (type, element_type, range_type);
3627
3628 return type;
3629 }
3630
3631
3632 /* Read a definition of an enumeration type,
3633 and create and return a suitable type object.
3634 Also defines the symbols that represent the values of the type. */
3635
3636 static struct type *
3637 read_enum_type (char **pp, struct type *type,
3638 struct objfile *objfile)
3639 {
3640 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3641 char *p;
3642 char *name;
3643 long n;
3644 struct symbol *sym;
3645 int nsyms = 0;
3646 struct pending **symlist;
3647 struct pending *osyms, *syms;
3648 int o_nsyms;
3649 int nbits;
3650 int unsigned_enum = 1;
3651
3652 #if 0
3653 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3654 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3655 to do? For now, force all enum values to file scope. */
3656 if (within_function)
3657 symlist = &local_symbols;
3658 else
3659 #endif
3660 symlist = &file_symbols;
3661 osyms = *symlist;
3662 o_nsyms = osyms ? osyms->nsyms : 0;
3663
3664 /* The aix4 compiler emits an extra field before the enum members;
3665 my guess is it's a type of some sort. Just ignore it. */
3666 if (**pp == '-')
3667 {
3668 /* Skip over the type. */
3669 while (**pp != ':')
3670 (*pp)++;
3671
3672 /* Skip over the colon. */
3673 (*pp)++;
3674 }
3675
3676 /* Read the value-names and their values.
3677 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3678 A semicolon or comma instead of a NAME means the end. */
3679 while (**pp && **pp != ';' && **pp != ',')
3680 {
3681 STABS_CONTINUE (pp, objfile);
3682 p = *pp;
3683 while (*p != ':')
3684 p++;
3685 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3686 *pp = p + 1;
3687 n = read_huge_number (pp, ',', &nbits, 0);
3688 if (nbits != 0)
3689 return error_type (pp, objfile);
3690
3691 sym = allocate_symbol (objfile);
3692 SYMBOL_SET_LINKAGE_NAME (sym, name);
3693 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3694 &objfile->objfile_obstack);
3695 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3696 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3697 SYMBOL_VALUE (sym) = n;
3698 if (n < 0)
3699 unsigned_enum = 0;
3700 add_symbol_to_list (sym, symlist);
3701 nsyms++;
3702 }
3703
3704 if (**pp == ';')
3705 (*pp)++; /* Skip the semicolon. */
3706
3707 /* Now fill in the fields of the type-structure. */
3708
3709 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3710 set_length_in_type_chain (type);
3711 TYPE_CODE (type) = TYPE_CODE_ENUM;
3712 TYPE_STUB (type) = 0;
3713 if (unsigned_enum)
3714 TYPE_UNSIGNED (type) = 1;
3715 TYPE_NFIELDS (type) = nsyms;
3716 TYPE_FIELDS (type) = (struct field *)
3717 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3718 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3719
3720 /* Find the symbols for the values and put them into the type.
3721 The symbols can be found in the symlist that we put them on
3722 to cause them to be defined. osyms contains the old value
3723 of that symlist; everything up to there was defined by us. */
3724 /* Note that we preserve the order of the enum constants, so
3725 that in something like "enum {FOO, LAST_THING=FOO}" we print
3726 FOO, not LAST_THING. */
3727
3728 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3729 {
3730 int last = syms == osyms ? o_nsyms : 0;
3731 int j = syms->nsyms;
3732
3733 for (; --j >= last; --n)
3734 {
3735 struct symbol *xsym = syms->symbol[j];
3736
3737 SYMBOL_TYPE (xsym) = type;
3738 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3739 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3740 TYPE_FIELD_BITSIZE (type, n) = 0;
3741 }
3742 if (syms == osyms)
3743 break;
3744 }
3745
3746 return type;
3747 }
3748
3749 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3750 typedefs in every file (for int, long, etc):
3751
3752 type = b <signed> <width> <format type>; <offset>; <nbits>
3753 signed = u or s.
3754 optional format type = c or b for char or boolean.
3755 offset = offset from high order bit to start bit of type.
3756 width is # bytes in object of this type, nbits is # bits in type.
3757
3758 The width/offset stuff appears to be for small objects stored in
3759 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3760 FIXME. */
3761
3762 static struct type *
3763 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3764 {
3765 int type_bits;
3766 int nbits;
3767 int signed_type;
3768 enum type_code code = TYPE_CODE_INT;
3769
3770 switch (**pp)
3771 {
3772 case 's':
3773 signed_type = 1;
3774 break;
3775 case 'u':
3776 signed_type = 0;
3777 break;
3778 default:
3779 return error_type (pp, objfile);
3780 }
3781 (*pp)++;
3782
3783 /* For some odd reason, all forms of char put a c here. This is strange
3784 because no other type has this honor. We can safely ignore this because
3785 we actually determine 'char'acterness by the number of bits specified in
3786 the descriptor.
3787 Boolean forms, e.g Fortran logical*X, put a b here. */
3788
3789 if (**pp == 'c')
3790 (*pp)++;
3791 else if (**pp == 'b')
3792 {
3793 code = TYPE_CODE_BOOL;
3794 (*pp)++;
3795 }
3796
3797 /* The first number appears to be the number of bytes occupied
3798 by this type, except that unsigned short is 4 instead of 2.
3799 Since this information is redundant with the third number,
3800 we will ignore it. */
3801 read_huge_number (pp, ';', &nbits, 0);
3802 if (nbits != 0)
3803 return error_type (pp, objfile);
3804
3805 /* The second number is always 0, so ignore it too. */
3806 read_huge_number (pp, ';', &nbits, 0);
3807 if (nbits != 0)
3808 return error_type (pp, objfile);
3809
3810 /* The third number is the number of bits for this type. */
3811 type_bits = read_huge_number (pp, 0, &nbits, 0);
3812 if (nbits != 0)
3813 return error_type (pp, objfile);
3814 /* The type *should* end with a semicolon. If it are embedded
3815 in a larger type the semicolon may be the only way to know where
3816 the type ends. If this type is at the end of the stabstring we
3817 can deal with the omitted semicolon (but we don't have to like
3818 it). Don't bother to complain(), Sun's compiler omits the semicolon
3819 for "void". */
3820 if (**pp == ';')
3821 ++(*pp);
3822
3823 if (type_bits == 0)
3824 return init_type (TYPE_CODE_VOID, 1,
3825 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3826 objfile);
3827 else
3828 return init_type (code,
3829 type_bits / TARGET_CHAR_BIT,
3830 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3831 objfile);
3832 }
3833
3834 static struct type *
3835 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3836 {
3837 int nbits;
3838 int details;
3839 int nbytes;
3840 struct type *rettype;
3841
3842 /* The first number has more details about the type, for example
3843 FN_COMPLEX. */
3844 details = read_huge_number (pp, ';', &nbits, 0);
3845 if (nbits != 0)
3846 return error_type (pp, objfile);
3847
3848 /* The second number is the number of bytes occupied by this type. */
3849 nbytes = read_huge_number (pp, ';', &nbits, 0);
3850 if (nbits != 0)
3851 return error_type (pp, objfile);
3852
3853 if (details == NF_COMPLEX || details == NF_COMPLEX16
3854 || details == NF_COMPLEX32)
3855 {
3856 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3857 TYPE_TARGET_TYPE (rettype)
3858 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3859 return rettype;
3860 }
3861
3862 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3863 }
3864
3865 /* Read a number from the string pointed to by *PP.
3866 The value of *PP is advanced over the number.
3867 If END is nonzero, the character that ends the
3868 number must match END, or an error happens;
3869 and that character is skipped if it does match.
3870 If END is zero, *PP is left pointing to that character.
3871
3872 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3873 the number is represented in an octal representation, assume that
3874 it is represented in a 2's complement representation with a size of
3875 TWOS_COMPLEMENT_BITS.
3876
3877 If the number fits in a long, set *BITS to 0 and return the value.
3878 If not, set *BITS to be the number of bits in the number and return 0.
3879
3880 If encounter garbage, set *BITS to -1 and return 0. */
3881
3882 static long
3883 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3884 {
3885 char *p = *pp;
3886 int sign = 1;
3887 int sign_bit = 0;
3888 long n = 0;
3889 int radix = 10;
3890 char overflow = 0;
3891 int nbits = 0;
3892 int c;
3893 long upper_limit;
3894 int twos_complement_representation = 0;
3895
3896 if (*p == '-')
3897 {
3898 sign = -1;
3899 p++;
3900 }
3901
3902 /* Leading zero means octal. GCC uses this to output values larger
3903 than an int (because that would be hard in decimal). */
3904 if (*p == '0')
3905 {
3906 radix = 8;
3907 p++;
3908 }
3909
3910 /* Skip extra zeros. */
3911 while (*p == '0')
3912 p++;
3913
3914 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3915 {
3916 /* Octal, possibly signed. Check if we have enough chars for a
3917 negative number. */
3918
3919 size_t len;
3920 char *p1 = p;
3921
3922 while ((c = *p1) >= '0' && c < '8')
3923 p1++;
3924
3925 len = p1 - p;
3926 if (len > twos_complement_bits / 3
3927 || (twos_complement_bits % 3 == 0
3928 && len == twos_complement_bits / 3))
3929 {
3930 /* Ok, we have enough characters for a signed value, check
3931 for signness by testing if the sign bit is set. */
3932 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3933 c = *p - '0';
3934 if (c & (1 << sign_bit))
3935 {
3936 /* Definitely signed. */
3937 twos_complement_representation = 1;
3938 sign = -1;
3939 }
3940 }
3941 }
3942
3943 upper_limit = LONG_MAX / radix;
3944
3945 while ((c = *p++) >= '0' && c < ('0' + radix))
3946 {
3947 if (n <= upper_limit)
3948 {
3949 if (twos_complement_representation)
3950 {
3951 /* Octal, signed, twos complement representation. In
3952 this case, n is the corresponding absolute value. */
3953 if (n == 0)
3954 {
3955 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3956
3957 n = -sn;
3958 }
3959 else
3960 {
3961 n *= radix;
3962 n -= c - '0';
3963 }
3964 }
3965 else
3966 {
3967 /* unsigned representation */
3968 n *= radix;
3969 n += c - '0'; /* FIXME this overflows anyway. */
3970 }
3971 }
3972 else
3973 overflow = 1;
3974
3975 /* This depends on large values being output in octal, which is
3976 what GCC does. */
3977 if (radix == 8)
3978 {
3979 if (nbits == 0)
3980 {
3981 if (c == '0')
3982 /* Ignore leading zeroes. */
3983 ;
3984 else if (c == '1')
3985 nbits = 1;
3986 else if (c == '2' || c == '3')
3987 nbits = 2;
3988 else
3989 nbits = 3;
3990 }
3991 else
3992 nbits += 3;
3993 }
3994 }
3995 if (end)
3996 {
3997 if (c && c != end)
3998 {
3999 if (bits != NULL)
4000 *bits = -1;
4001 return 0;
4002 }
4003 }
4004 else
4005 --p;
4006
4007 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4008 {
4009 /* We were supposed to parse a number with maximum
4010 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4011 if (bits != NULL)
4012 *bits = -1;
4013 return 0;
4014 }
4015
4016 *pp = p;
4017 if (overflow)
4018 {
4019 if (nbits == 0)
4020 {
4021 /* Large decimal constants are an error (because it is hard to
4022 count how many bits are in them). */
4023 if (bits != NULL)
4024 *bits = -1;
4025 return 0;
4026 }
4027
4028 /* -0x7f is the same as 0x80. So deal with it by adding one to
4029 the number of bits. Two's complement represention octals
4030 can't have a '-' in front. */
4031 if (sign == -1 && !twos_complement_representation)
4032 ++nbits;
4033 if (bits)
4034 *bits = nbits;
4035 }
4036 else
4037 {
4038 if (bits)
4039 *bits = 0;
4040 return n * sign;
4041 }
4042 /* It's *BITS which has the interesting information. */
4043 return 0;
4044 }
4045
4046 static struct type *
4047 read_range_type (char **pp, int typenums[2], int type_size,
4048 struct objfile *objfile)
4049 {
4050 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4051 char *orig_pp = *pp;
4052 int rangenums[2];
4053 long n2, n3;
4054 int n2bits, n3bits;
4055 int self_subrange;
4056 struct type *result_type;
4057 struct type *index_type = NULL;
4058
4059 /* First comes a type we are a subrange of.
4060 In C it is usually 0, 1 or the type being defined. */
4061 if (read_type_number (pp, rangenums) != 0)
4062 return error_type (pp, objfile);
4063 self_subrange = (rangenums[0] == typenums[0] &&
4064 rangenums[1] == typenums[1]);
4065
4066 if (**pp == '=')
4067 {
4068 *pp = orig_pp;
4069 index_type = read_type (pp, objfile);
4070 }
4071
4072 /* A semicolon should now follow; skip it. */
4073 if (**pp == ';')
4074 (*pp)++;
4075
4076 /* The remaining two operands are usually lower and upper bounds
4077 of the range. But in some special cases they mean something else. */
4078 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4079 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4080
4081 if (n2bits == -1 || n3bits == -1)
4082 return error_type (pp, objfile);
4083
4084 if (index_type)
4085 goto handle_true_range;
4086
4087 /* If limits are huge, must be large integral type. */
4088 if (n2bits != 0 || n3bits != 0)
4089 {
4090 char got_signed = 0;
4091 char got_unsigned = 0;
4092 /* Number of bits in the type. */
4093 int nbits = 0;
4094
4095 /* If a type size attribute has been specified, the bounds of
4096 the range should fit in this size. If the lower bounds needs
4097 more bits than the upper bound, then the type is signed. */
4098 if (n2bits <= type_size && n3bits <= type_size)
4099 {
4100 if (n2bits == type_size && n2bits > n3bits)
4101 got_signed = 1;
4102 else
4103 got_unsigned = 1;
4104 nbits = type_size;
4105 }
4106 /* Range from 0 to <large number> is an unsigned large integral type. */
4107 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4108 {
4109 got_unsigned = 1;
4110 nbits = n3bits;
4111 }
4112 /* Range from <large number> to <large number>-1 is a large signed
4113 integral type. Take care of the case where <large number> doesn't
4114 fit in a long but <large number>-1 does. */
4115 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4116 || (n2bits != 0 && n3bits == 0
4117 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4118 && n3 == LONG_MAX))
4119 {
4120 got_signed = 1;
4121 nbits = n2bits;
4122 }
4123
4124 if (got_signed || got_unsigned)
4125 {
4126 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4127 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4128 objfile);
4129 }
4130 else
4131 return error_type (pp, objfile);
4132 }
4133
4134 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4135 if (self_subrange && n2 == 0 && n3 == 0)
4136 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4137
4138 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4139 is the width in bytes.
4140
4141 Fortran programs appear to use this for complex types also. To
4142 distinguish between floats and complex, g77 (and others?) seem
4143 to use self-subranges for the complexes, and subranges of int for
4144 the floats.
4145
4146 Also note that for complexes, g77 sets n2 to the size of one of
4147 the member floats, not the whole complex beast. My guess is that
4148 this was to work well with pre-COMPLEX versions of gdb. */
4149
4150 if (n3 == 0 && n2 > 0)
4151 {
4152 struct type *float_type
4153 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4154
4155 if (self_subrange)
4156 {
4157 struct type *complex_type =
4158 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4159
4160 TYPE_TARGET_TYPE (complex_type) = float_type;
4161 return complex_type;
4162 }
4163 else
4164 return float_type;
4165 }
4166
4167 /* If the upper bound is -1, it must really be an unsigned integral. */
4168
4169 else if (n2 == 0 && n3 == -1)
4170 {
4171 int bits = type_size;
4172
4173 if (bits <= 0)
4174 {
4175 /* We don't know its size. It is unsigned int or unsigned
4176 long. GCC 2.3.3 uses this for long long too, but that is
4177 just a GDB 3.5 compatibility hack. */
4178 bits = gdbarch_int_bit (gdbarch);
4179 }
4180
4181 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4182 TYPE_FLAG_UNSIGNED, NULL, objfile);
4183 }
4184
4185 /* Special case: char is defined (Who knows why) as a subrange of
4186 itself with range 0-127. */
4187 else if (self_subrange && n2 == 0 && n3 == 127)
4188 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4189
4190 /* We used to do this only for subrange of self or subrange of int. */
4191 else if (n2 == 0)
4192 {
4193 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4194 "unsigned long", and we already checked for that,
4195 so don't need to test for it here. */
4196
4197 if (n3 < 0)
4198 /* n3 actually gives the size. */
4199 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4200 NULL, objfile);
4201
4202 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4203 unsigned n-byte integer. But do require n to be a power of
4204 two; we don't want 3- and 5-byte integers flying around. */
4205 {
4206 int bytes;
4207 unsigned long bits;
4208
4209 bits = n3;
4210 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4211 bits >>= 8;
4212 if (bits == 0
4213 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4214 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4215 objfile);
4216 }
4217 }
4218 /* I think this is for Convex "long long". Since I don't know whether
4219 Convex sets self_subrange, I also accept that particular size regardless
4220 of self_subrange. */
4221 else if (n3 == 0 && n2 < 0
4222 && (self_subrange
4223 || n2 == -gdbarch_long_long_bit
4224 (gdbarch) / TARGET_CHAR_BIT))
4225 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4226 else if (n2 == -n3 - 1)
4227 {
4228 if (n3 == 0x7f)
4229 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4230 if (n3 == 0x7fff)
4231 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4232 if (n3 == 0x7fffffff)
4233 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4234 }
4235
4236 /* We have a real range type on our hands. Allocate space and
4237 return a real pointer. */
4238 handle_true_range:
4239
4240 if (self_subrange)
4241 index_type = objfile_type (objfile)->builtin_int;
4242 else
4243 index_type = *dbx_lookup_type (rangenums, objfile);
4244 if (index_type == NULL)
4245 {
4246 /* Does this actually ever happen? Is that why we are worrying
4247 about dealing with it rather than just calling error_type? */
4248
4249 complaint (&symfile_complaints,
4250 _("base type %d of range type is not defined"), rangenums[1]);
4251
4252 index_type = objfile_type (objfile)->builtin_int;
4253 }
4254
4255 result_type
4256 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4257 return (result_type);
4258 }
4259
4260 /* Read in an argument list. This is a list of types, separated by commas
4261 and terminated with END. Return the list of types read in, or NULL
4262 if there is an error. */
4263
4264 static struct field *
4265 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4266 int *varargsp)
4267 {
4268 /* FIXME! Remove this arbitrary limit! */
4269 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4270 int n = 0, i;
4271 struct field *rval;
4272
4273 while (**pp != end)
4274 {
4275 if (**pp != ',')
4276 /* Invalid argument list: no ','. */
4277 return NULL;
4278 (*pp)++;
4279 STABS_CONTINUE (pp, objfile);
4280 types[n++] = read_type (pp, objfile);
4281 }
4282 (*pp)++; /* get past `end' (the ':' character). */
4283
4284 if (n == 0)
4285 {
4286 /* We should read at least the THIS parameter here. Some broken stabs
4287 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4288 have been present ";-16,(0,43)" reference instead. This way the
4289 excessive ";" marker prematurely stops the parameters parsing. */
4290
4291 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4292 *varargsp = 0;
4293 }
4294 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4295 *varargsp = 1;
4296 else
4297 {
4298 n--;
4299 *varargsp = 0;
4300 }
4301
4302 rval = (struct field *) xmalloc (n * sizeof (struct field));
4303 memset (rval, 0, n * sizeof (struct field));
4304 for (i = 0; i < n; i++)
4305 rval[i].type = types[i];
4306 *nargsp = n;
4307 return rval;
4308 }
4309 \f
4310 /* Common block handling. */
4311
4312 /* List of symbols declared since the last BCOMM. This list is a tail
4313 of local_symbols. When ECOMM is seen, the symbols on the list
4314 are noted so their proper addresses can be filled in later,
4315 using the common block base address gotten from the assembler
4316 stabs. */
4317
4318 static struct pending *common_block;
4319 static int common_block_i;
4320
4321 /* Name of the current common block. We get it from the BCOMM instead of the
4322 ECOMM to match IBM documentation (even though IBM puts the name both places
4323 like everyone else). */
4324 static char *common_block_name;
4325
4326 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4327 to remain after this function returns. */
4328
4329 void
4330 common_block_start (char *name, struct objfile *objfile)
4331 {
4332 if (common_block_name != NULL)
4333 {
4334 complaint (&symfile_complaints,
4335 _("Invalid symbol data: common block within common block"));
4336 }
4337 common_block = local_symbols;
4338 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4339 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4340 name, strlen (name));
4341 }
4342
4343 /* Process a N_ECOMM symbol. */
4344
4345 void
4346 common_block_end (struct objfile *objfile)
4347 {
4348 /* Symbols declared since the BCOMM are to have the common block
4349 start address added in when we know it. common_block and
4350 common_block_i point to the first symbol after the BCOMM in
4351 the local_symbols list; copy the list and hang it off the
4352 symbol for the common block name for later fixup. */
4353 int i;
4354 struct symbol *sym;
4355 struct pending *newobj = 0;
4356 struct pending *next;
4357 int j;
4358
4359 if (common_block_name == NULL)
4360 {
4361 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4362 return;
4363 }
4364
4365 sym = allocate_symbol (objfile);
4366 /* Note: common_block_name already saved on objfile_obstack. */
4367 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4368 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4369
4370 /* Now we copy all the symbols which have been defined since the BCOMM. */
4371
4372 /* Copy all the struct pendings before common_block. */
4373 for (next = local_symbols;
4374 next != NULL && next != common_block;
4375 next = next->next)
4376 {
4377 for (j = 0; j < next->nsyms; j++)
4378 add_symbol_to_list (next->symbol[j], &newobj);
4379 }
4380
4381 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4382 NULL, it means copy all the local symbols (which we already did
4383 above). */
4384
4385 if (common_block != NULL)
4386 for (j = common_block_i; j < common_block->nsyms; j++)
4387 add_symbol_to_list (common_block->symbol[j], &newobj);
4388
4389 SYMBOL_TYPE (sym) = (struct type *) newobj;
4390
4391 /* Should we be putting local_symbols back to what it was?
4392 Does it matter? */
4393
4394 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4395 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4396 global_sym_chain[i] = sym;
4397 common_block_name = NULL;
4398 }
4399
4400 /* Add a common block's start address to the offset of each symbol
4401 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4402 the common block name). */
4403
4404 static void
4405 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4406 {
4407 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4408
4409 for (; next; next = next->next)
4410 {
4411 int j;
4412
4413 for (j = next->nsyms - 1; j >= 0; j--)
4414 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4415 }
4416 }
4417 \f
4418
4419
4420 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4421 See add_undefined_type for more details. */
4422
4423 static void
4424 add_undefined_type_noname (struct type *type, int typenums[2])
4425 {
4426 struct nat nat;
4427
4428 nat.typenums[0] = typenums [0];
4429 nat.typenums[1] = typenums [1];
4430 nat.type = type;
4431
4432 if (noname_undefs_length == noname_undefs_allocated)
4433 {
4434 noname_undefs_allocated *= 2;
4435 noname_undefs = (struct nat *)
4436 xrealloc ((char *) noname_undefs,
4437 noname_undefs_allocated * sizeof (struct nat));
4438 }
4439 noname_undefs[noname_undefs_length++] = nat;
4440 }
4441
4442 /* Add TYPE to the UNDEF_TYPES vector.
4443 See add_undefined_type for more details. */
4444
4445 static void
4446 add_undefined_type_1 (struct type *type)
4447 {
4448 if (undef_types_length == undef_types_allocated)
4449 {
4450 undef_types_allocated *= 2;
4451 undef_types = (struct type **)
4452 xrealloc ((char *) undef_types,
4453 undef_types_allocated * sizeof (struct type *));
4454 }
4455 undef_types[undef_types_length++] = type;
4456 }
4457
4458 /* What about types defined as forward references inside of a small lexical
4459 scope? */
4460 /* Add a type to the list of undefined types to be checked through
4461 once this file has been read in.
4462
4463 In practice, we actually maintain two such lists: The first list
4464 (UNDEF_TYPES) is used for types whose name has been provided, and
4465 concerns forward references (eg 'xs' or 'xu' forward references);
4466 the second list (NONAME_UNDEFS) is used for types whose name is
4467 unknown at creation time, because they were referenced through
4468 their type number before the actual type was declared.
4469 This function actually adds the given type to the proper list. */
4470
4471 static void
4472 add_undefined_type (struct type *type, int typenums[2])
4473 {
4474 if (TYPE_TAG_NAME (type) == NULL)
4475 add_undefined_type_noname (type, typenums);
4476 else
4477 add_undefined_type_1 (type);
4478 }
4479
4480 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4481
4482 static void
4483 cleanup_undefined_types_noname (struct objfile *objfile)
4484 {
4485 int i;
4486
4487 for (i = 0; i < noname_undefs_length; i++)
4488 {
4489 struct nat nat = noname_undefs[i];
4490 struct type **type;
4491
4492 type = dbx_lookup_type (nat.typenums, objfile);
4493 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4494 {
4495 /* The instance flags of the undefined type are still unset,
4496 and needs to be copied over from the reference type.
4497 Since replace_type expects them to be identical, we need
4498 to set these flags manually before hand. */
4499 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4500 replace_type (nat.type, *type);
4501 }
4502 }
4503
4504 noname_undefs_length = 0;
4505 }
4506
4507 /* Go through each undefined type, see if it's still undefined, and fix it
4508 up if possible. We have two kinds of undefined types:
4509
4510 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4511 Fix: update array length using the element bounds
4512 and the target type's length.
4513 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4514 yet defined at the time a pointer to it was made.
4515 Fix: Do a full lookup on the struct/union tag. */
4516
4517 static void
4518 cleanup_undefined_types_1 (void)
4519 {
4520 struct type **type;
4521
4522 /* Iterate over every undefined type, and look for a symbol whose type
4523 matches our undefined type. The symbol matches if:
4524 1. It is a typedef in the STRUCT domain;
4525 2. It has the same name, and same type code;
4526 3. The instance flags are identical.
4527
4528 It is important to check the instance flags, because we have seen
4529 examples where the debug info contained definitions such as:
4530
4531 "foo_t:t30=B31=xefoo_t:"
4532
4533 In this case, we have created an undefined type named "foo_t" whose
4534 instance flags is null (when processing "xefoo_t"), and then created
4535 another type with the same name, but with different instance flags
4536 ('B' means volatile). I think that the definition above is wrong,
4537 since the same type cannot be volatile and non-volatile at the same
4538 time, but we need to be able to cope with it when it happens. The
4539 approach taken here is to treat these two types as different. */
4540
4541 for (type = undef_types; type < undef_types + undef_types_length; type++)
4542 {
4543 switch (TYPE_CODE (*type))
4544 {
4545
4546 case TYPE_CODE_STRUCT:
4547 case TYPE_CODE_UNION:
4548 case TYPE_CODE_ENUM:
4549 {
4550 /* Check if it has been defined since. Need to do this here
4551 as well as in check_typedef to deal with the (legitimate in
4552 C though not C++) case of several types with the same name
4553 in different source files. */
4554 if (TYPE_STUB (*type))
4555 {
4556 struct pending *ppt;
4557 int i;
4558 /* Name of the type, without "struct" or "union". */
4559 const char *type_name = TYPE_TAG_NAME (*type);
4560
4561 if (type_name == NULL)
4562 {
4563 complaint (&symfile_complaints, _("need a type name"));
4564 break;
4565 }
4566 for (ppt = file_symbols; ppt; ppt = ppt->next)
4567 {
4568 for (i = 0; i < ppt->nsyms; i++)
4569 {
4570 struct symbol *sym = ppt->symbol[i];
4571
4572 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4573 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4574 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4575 TYPE_CODE (*type))
4576 && (TYPE_INSTANCE_FLAGS (*type) ==
4577 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4578 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4579 type_name) == 0)
4580 replace_type (*type, SYMBOL_TYPE (sym));
4581 }
4582 }
4583 }
4584 }
4585 break;
4586
4587 default:
4588 {
4589 complaint (&symfile_complaints,
4590 _("forward-referenced types left unresolved, "
4591 "type code %d."),
4592 TYPE_CODE (*type));
4593 }
4594 break;
4595 }
4596 }
4597
4598 undef_types_length = 0;
4599 }
4600
4601 /* Try to fix all the undefined types we ecountered while processing
4602 this unit. */
4603
4604 void
4605 cleanup_undefined_stabs_types (struct objfile *objfile)
4606 {
4607 cleanup_undefined_types_1 ();
4608 cleanup_undefined_types_noname (objfile);
4609 }
4610
4611 /* Scan through all of the global symbols defined in the object file,
4612 assigning values to the debugging symbols that need to be assigned
4613 to. Get these symbols from the minimal symbol table. */
4614
4615 void
4616 scan_file_globals (struct objfile *objfile)
4617 {
4618 int hash;
4619 struct minimal_symbol *msymbol;
4620 struct symbol *sym, *prev;
4621 struct objfile *resolve_objfile;
4622
4623 /* SVR4 based linkers copy referenced global symbols from shared
4624 libraries to the main executable.
4625 If we are scanning the symbols for a shared library, try to resolve
4626 them from the minimal symbols of the main executable first. */
4627
4628 if (symfile_objfile && objfile != symfile_objfile)
4629 resolve_objfile = symfile_objfile;
4630 else
4631 resolve_objfile = objfile;
4632
4633 while (1)
4634 {
4635 /* Avoid expensive loop through all minimal symbols if there are
4636 no unresolved symbols. */
4637 for (hash = 0; hash < HASHSIZE; hash++)
4638 {
4639 if (global_sym_chain[hash])
4640 break;
4641 }
4642 if (hash >= HASHSIZE)
4643 return;
4644
4645 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4646 {
4647 QUIT;
4648
4649 /* Skip static symbols. */
4650 switch (MSYMBOL_TYPE (msymbol))
4651 {
4652 case mst_file_text:
4653 case mst_file_data:
4654 case mst_file_bss:
4655 continue;
4656 default:
4657 break;
4658 }
4659
4660 prev = NULL;
4661
4662 /* Get the hash index and check all the symbols
4663 under that hash index. */
4664
4665 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4666
4667 for (sym = global_sym_chain[hash]; sym;)
4668 {
4669 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4670 SYMBOL_LINKAGE_NAME (sym)) == 0)
4671 {
4672 /* Splice this symbol out of the hash chain and
4673 assign the value we have to it. */
4674 if (prev)
4675 {
4676 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4677 }
4678 else
4679 {
4680 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4681 }
4682
4683 /* Check to see whether we need to fix up a common block. */
4684 /* Note: this code might be executed several times for
4685 the same symbol if there are multiple references. */
4686 if (sym)
4687 {
4688 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4689 {
4690 fix_common_block (sym,
4691 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4692 msymbol));
4693 }
4694 else
4695 {
4696 SYMBOL_VALUE_ADDRESS (sym)
4697 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4698 }
4699 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4700 }
4701
4702 if (prev)
4703 {
4704 sym = SYMBOL_VALUE_CHAIN (prev);
4705 }
4706 else
4707 {
4708 sym = global_sym_chain[hash];
4709 }
4710 }
4711 else
4712 {
4713 prev = sym;
4714 sym = SYMBOL_VALUE_CHAIN (sym);
4715 }
4716 }
4717 }
4718 if (resolve_objfile == objfile)
4719 break;
4720 resolve_objfile = objfile;
4721 }
4722
4723 /* Change the storage class of any remaining unresolved globals to
4724 LOC_UNRESOLVED and remove them from the chain. */
4725 for (hash = 0; hash < HASHSIZE; hash++)
4726 {
4727 sym = global_sym_chain[hash];
4728 while (sym)
4729 {
4730 prev = sym;
4731 sym = SYMBOL_VALUE_CHAIN (sym);
4732
4733 /* Change the symbol address from the misleading chain value
4734 to address zero. */
4735 SYMBOL_VALUE_ADDRESS (prev) = 0;
4736
4737 /* Complain about unresolved common block symbols. */
4738 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4739 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4740 else
4741 complaint (&symfile_complaints,
4742 _("%s: common block `%s' from "
4743 "global_sym_chain unresolved"),
4744 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4745 }
4746 }
4747 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4748 }
4749
4750 /* Initialize anything that needs initializing when starting to read
4751 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4752 to a psymtab. */
4753
4754 void
4755 stabsread_init (void)
4756 {
4757 }
4758
4759 /* Initialize anything that needs initializing when a completely new
4760 symbol file is specified (not just adding some symbols from another
4761 file, e.g. a shared library). */
4762
4763 void
4764 stabsread_new_init (void)
4765 {
4766 /* Empty the hash table of global syms looking for values. */
4767 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4768 }
4769
4770 /* Initialize anything that needs initializing at the same time as
4771 start_symtab() is called. */
4772
4773 void
4774 start_stabs (void)
4775 {
4776 global_stabs = NULL; /* AIX COFF */
4777 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4778 n_this_object_header_files = 1;
4779 type_vector_length = 0;
4780 type_vector = (struct type **) 0;
4781
4782 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4783 common_block_name = NULL;
4784 }
4785
4786 /* Call after end_symtab(). */
4787
4788 void
4789 end_stabs (void)
4790 {
4791 if (type_vector)
4792 {
4793 xfree (type_vector);
4794 }
4795 type_vector = 0;
4796 type_vector_length = 0;
4797 previous_stab_code = 0;
4798 }
4799
4800 void
4801 finish_global_stabs (struct objfile *objfile)
4802 {
4803 if (global_stabs)
4804 {
4805 patch_block_stabs (global_symbols, global_stabs, objfile);
4806 xfree (global_stabs);
4807 global_stabs = NULL;
4808 }
4809 }
4810
4811 /* Find the end of the name, delimited by a ':', but don't match
4812 ObjC symbols which look like -[Foo bar::]:bla. */
4813 static char *
4814 find_name_end (char *name)
4815 {
4816 char *s = name;
4817
4818 if (s[0] == '-' || *s == '+')
4819 {
4820 /* Must be an ObjC method symbol. */
4821 if (s[1] != '[')
4822 {
4823 error (_("invalid symbol name \"%s\""), name);
4824 }
4825 s = strchr (s, ']');
4826 if (s == NULL)
4827 {
4828 error (_("invalid symbol name \"%s\""), name);
4829 }
4830 return strchr (s, ':');
4831 }
4832 else
4833 {
4834 return strchr (s, ':');
4835 }
4836 }
4837
4838 /* Initializer for this module. */
4839
4840 void
4841 _initialize_stabsread (void)
4842 {
4843 rs6000_builtin_type_data = register_objfile_data ();
4844
4845 undef_types_allocated = 20;
4846 undef_types_length = 0;
4847 undef_types = (struct type **)
4848 xmalloc (undef_types_allocated * sizeof (struct type *));
4849
4850 noname_undefs_allocated = 20;
4851 noname_undefs_length = 0;
4852 noname_undefs = (struct nat *)
4853 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4854
4855 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4856 &stab_register_funcs);
4857 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4858 &stab_register_funcs);
4859 }