]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
925ca7b9c41b239bb794c953d854da31acb8b77d
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/readline.h"
48 #include "gdb_assert.h"
49 #include "block.h"
50 #include "observer.h"
51 #include "exec.h"
52 #include "parser-defs.h"
53 #include "varobj.h"
54 #include "elf-bfd.h"
55 #include "solib.h"
56 #include "remote.h"
57 #include "stack.h"
58 #include "gdb_bfd.h"
59 #include "cli/cli-utils.h"
60
61 #include <sys/types.h>
62 #include <fcntl.h>
63 #include "gdb_string.h"
64 #include "gdb_stat.h"
65 #include <ctype.h>
66 #include <time.h>
67 #include <sys/time.h>
68
69 #include "psymtab.h"
70
71 int (*deprecated_ui_load_progress_hook) (const char *section,
72 unsigned long num);
73 void (*deprecated_show_load_progress) (const char *section,
74 unsigned long section_sent,
75 unsigned long section_size,
76 unsigned long total_sent,
77 unsigned long total_size);
78 void (*deprecated_pre_add_symbol_hook) (const char *);
79 void (*deprecated_post_add_symbol_hook) (void);
80
81 static void clear_symtab_users_cleanup (void *ignore);
82
83 /* Global variables owned by this file. */
84 int readnow_symbol_files; /* Read full symbols immediately. */
85
86 /* Functions this file defines. */
87
88 static void load_command (char *, int);
89
90 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
91
92 static void add_symbol_file_command (char *, int);
93
94 bfd *symfile_bfd_open (char *);
95
96 int get_section_index (struct objfile *, char *);
97
98 static const struct sym_fns *find_sym_fns (bfd *);
99
100 static void decrement_reading_symtab (void *);
101
102 static void overlay_invalidate_all (void);
103
104 static void overlay_auto_command (char *, int);
105
106 static void overlay_manual_command (char *, int);
107
108 static void overlay_off_command (char *, int);
109
110 static void overlay_load_command (char *, int);
111
112 static void overlay_command (char *, int);
113
114 static void simple_free_overlay_table (void);
115
116 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
117 enum bfd_endian);
118
119 static int simple_read_overlay_table (void);
120
121 static int simple_overlay_update_1 (struct obj_section *);
122
123 static void add_filename_language (char *ext, enum language lang);
124
125 static void info_ext_lang_command (char *args, int from_tty);
126
127 static void init_filename_language_table (void);
128
129 static void symfile_find_segment_sections (struct objfile *objfile);
130
131 void _initialize_symfile (void);
132
133 /* List of all available sym_fns. On gdb startup, each object file reader
134 calls add_symtab_fns() to register information on each format it is
135 prepared to read. */
136
137 typedef const struct sym_fns *sym_fns_ptr;
138 DEF_VEC_P (sym_fns_ptr);
139
140 static VEC (sym_fns_ptr) *symtab_fns = NULL;
141
142 /* If non-zero, shared library symbols will be added automatically
143 when the inferior is created, new libraries are loaded, or when
144 attaching to the inferior. This is almost always what users will
145 want to have happen; but for very large programs, the startup time
146 will be excessive, and so if this is a problem, the user can clear
147 this flag and then add the shared library symbols as needed. Note
148 that there is a potential for confusion, since if the shared
149 library symbols are not loaded, commands like "info fun" will *not*
150 report all the functions that are actually present. */
151
152 int auto_solib_add = 1;
153 \f
154
155 /* True if we are reading a symbol table. */
156
157 int currently_reading_symtab = 0;
158
159 static void
160 decrement_reading_symtab (void *dummy)
161 {
162 currently_reading_symtab--;
163 }
164
165 /* Increment currently_reading_symtab and return a cleanup that can be
166 used to decrement it. */
167 struct cleanup *
168 increment_reading_symtab (void)
169 {
170 ++currently_reading_symtab;
171 return make_cleanup (decrement_reading_symtab, NULL);
172 }
173
174 /* Remember the lowest-addressed loadable section we've seen.
175 This function is called via bfd_map_over_sections.
176
177 In case of equal vmas, the section with the largest size becomes the
178 lowest-addressed loadable section.
179
180 If the vmas and sizes are equal, the last section is considered the
181 lowest-addressed loadable section. */
182
183 void
184 find_lowest_section (bfd *abfd, asection *sect, void *obj)
185 {
186 asection **lowest = (asection **) obj;
187
188 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
189 return;
190 if (!*lowest)
191 *lowest = sect; /* First loadable section */
192 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
193 *lowest = sect; /* A lower loadable section */
194 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
195 && (bfd_section_size (abfd, (*lowest))
196 <= bfd_section_size (abfd, sect)))
197 *lowest = sect;
198 }
199
200 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
201
202 struct section_addr_info *
203 alloc_section_addr_info (size_t num_sections)
204 {
205 struct section_addr_info *sap;
206 size_t size;
207
208 size = (sizeof (struct section_addr_info)
209 + sizeof (struct other_sections) * (num_sections - 1));
210 sap = (struct section_addr_info *) xmalloc (size);
211 memset (sap, 0, size);
212 sap->num_sections = num_sections;
213
214 return sap;
215 }
216
217 /* Build (allocate and populate) a section_addr_info struct from
218 an existing section table. */
219
220 extern struct section_addr_info *
221 build_section_addr_info_from_section_table (const struct target_section *start,
222 const struct target_section *end)
223 {
224 struct section_addr_info *sap;
225 const struct target_section *stp;
226 int oidx;
227
228 sap = alloc_section_addr_info (end - start);
229
230 for (stp = start, oidx = 0; stp != end; stp++)
231 {
232 if (bfd_get_section_flags (stp->bfd,
233 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
234 && oidx < end - start)
235 {
236 sap->other[oidx].addr = stp->addr;
237 sap->other[oidx].name
238 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
239 sap->other[oidx].sectindex = stp->the_bfd_section->index;
240 oidx++;
241 }
242 }
243
244 return sap;
245 }
246
247 /* Create a section_addr_info from section offsets in ABFD. */
248
249 static struct section_addr_info *
250 build_section_addr_info_from_bfd (bfd *abfd)
251 {
252 struct section_addr_info *sap;
253 int i;
254 struct bfd_section *sec;
255
256 sap = alloc_section_addr_info (bfd_count_sections (abfd));
257 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
258 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
259 {
260 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
261 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
262 sap->other[i].sectindex = sec->index;
263 i++;
264 }
265 return sap;
266 }
267
268 /* Create a section_addr_info from section offsets in OBJFILE. */
269
270 struct section_addr_info *
271 build_section_addr_info_from_objfile (const struct objfile *objfile)
272 {
273 struct section_addr_info *sap;
274 int i;
275
276 /* Before reread_symbols gets rewritten it is not safe to call:
277 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
278 */
279 sap = build_section_addr_info_from_bfd (objfile->obfd);
280 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
281 {
282 int sectindex = sap->other[i].sectindex;
283
284 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
285 }
286 return sap;
287 }
288
289 /* Free all memory allocated by build_section_addr_info_from_section_table. */
290
291 extern void
292 free_section_addr_info (struct section_addr_info *sap)
293 {
294 int idx;
295
296 for (idx = 0; idx < sap->num_sections; idx++)
297 if (sap->other[idx].name)
298 xfree (sap->other[idx].name);
299 xfree (sap);
300 }
301
302
303 /* Initialize OBJFILE's sect_index_* members. */
304 static void
305 init_objfile_sect_indices (struct objfile *objfile)
306 {
307 asection *sect;
308 int i;
309
310 sect = bfd_get_section_by_name (objfile->obfd, ".text");
311 if (sect)
312 objfile->sect_index_text = sect->index;
313
314 sect = bfd_get_section_by_name (objfile->obfd, ".data");
315 if (sect)
316 objfile->sect_index_data = sect->index;
317
318 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
319 if (sect)
320 objfile->sect_index_bss = sect->index;
321
322 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
323 if (sect)
324 objfile->sect_index_rodata = sect->index;
325
326 /* This is where things get really weird... We MUST have valid
327 indices for the various sect_index_* members or gdb will abort.
328 So if for example, there is no ".text" section, we have to
329 accomodate that. First, check for a file with the standard
330 one or two segments. */
331
332 symfile_find_segment_sections (objfile);
333
334 /* Except when explicitly adding symbol files at some address,
335 section_offsets contains nothing but zeros, so it doesn't matter
336 which slot in section_offsets the individual sect_index_* members
337 index into. So if they are all zero, it is safe to just point
338 all the currently uninitialized indices to the first slot. But
339 beware: if this is the main executable, it may be relocated
340 later, e.g. by the remote qOffsets packet, and then this will
341 be wrong! That's why we try segments first. */
342
343 for (i = 0; i < objfile->num_sections; i++)
344 {
345 if (ANOFFSET (objfile->section_offsets, i) != 0)
346 {
347 break;
348 }
349 }
350 if (i == objfile->num_sections)
351 {
352 if (objfile->sect_index_text == -1)
353 objfile->sect_index_text = 0;
354 if (objfile->sect_index_data == -1)
355 objfile->sect_index_data = 0;
356 if (objfile->sect_index_bss == -1)
357 objfile->sect_index_bss = 0;
358 if (objfile->sect_index_rodata == -1)
359 objfile->sect_index_rodata = 0;
360 }
361 }
362
363 /* The arguments to place_section. */
364
365 struct place_section_arg
366 {
367 struct section_offsets *offsets;
368 CORE_ADDR lowest;
369 };
370
371 /* Find a unique offset to use for loadable section SECT if
372 the user did not provide an offset. */
373
374 static void
375 place_section (bfd *abfd, asection *sect, void *obj)
376 {
377 struct place_section_arg *arg = obj;
378 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
379 int done;
380 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
381
382 /* We are only interested in allocated sections. */
383 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
384 return;
385
386 /* If the user specified an offset, honor it. */
387 if (offsets[sect->index] != 0)
388 return;
389
390 /* Otherwise, let's try to find a place for the section. */
391 start_addr = (arg->lowest + align - 1) & -align;
392
393 do {
394 asection *cur_sec;
395
396 done = 1;
397
398 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
399 {
400 int indx = cur_sec->index;
401
402 /* We don't need to compare against ourself. */
403 if (cur_sec == sect)
404 continue;
405
406 /* We can only conflict with allocated sections. */
407 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
408 continue;
409
410 /* If the section offset is 0, either the section has not been placed
411 yet, or it was the lowest section placed (in which case LOWEST
412 will be past its end). */
413 if (offsets[indx] == 0)
414 continue;
415
416 /* If this section would overlap us, then we must move up. */
417 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
418 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
419 {
420 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
421 start_addr = (start_addr + align - 1) & -align;
422 done = 0;
423 break;
424 }
425
426 /* Otherwise, we appear to be OK. So far. */
427 }
428 }
429 while (!done);
430
431 offsets[sect->index] = start_addr;
432 arg->lowest = start_addr + bfd_get_section_size (sect);
433 }
434
435 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
436 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
437 entries. */
438
439 void
440 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
441 int num_sections,
442 struct section_addr_info *addrs)
443 {
444 int i;
445
446 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
447
448 /* Now calculate offsets for section that were specified by the caller. */
449 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
450 {
451 struct other_sections *osp;
452
453 osp = &addrs->other[i];
454 if (osp->sectindex == -1)
455 continue;
456
457 /* Record all sections in offsets. */
458 /* The section_offsets in the objfile are here filled in using
459 the BFD index. */
460 section_offsets->offsets[osp->sectindex] = osp->addr;
461 }
462 }
463
464 /* Transform section name S for a name comparison. prelink can split section
465 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
466 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
467 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
468 (`.sbss') section has invalid (increased) virtual address. */
469
470 static const char *
471 addr_section_name (const char *s)
472 {
473 if (strcmp (s, ".dynbss") == 0)
474 return ".bss";
475 if (strcmp (s, ".sdynbss") == 0)
476 return ".sbss";
477
478 return s;
479 }
480
481 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
482 their (name, sectindex) pair. sectindex makes the sort by name stable. */
483
484 static int
485 addrs_section_compar (const void *ap, const void *bp)
486 {
487 const struct other_sections *a = *((struct other_sections **) ap);
488 const struct other_sections *b = *((struct other_sections **) bp);
489 int retval;
490
491 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
492 if (retval)
493 return retval;
494
495 return a->sectindex - b->sectindex;
496 }
497
498 /* Provide sorted array of pointers to sections of ADDRS. The array is
499 terminated by NULL. Caller is responsible to call xfree for it. */
500
501 static struct other_sections **
502 addrs_section_sort (struct section_addr_info *addrs)
503 {
504 struct other_sections **array;
505 int i;
506
507 /* `+ 1' for the NULL terminator. */
508 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
509 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
510 array[i] = &addrs->other[i];
511 array[i] = NULL;
512
513 qsort (array, i, sizeof (*array), addrs_section_compar);
514
515 return array;
516 }
517
518 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
519 also SECTINDEXes specific to ABFD there. This function can be used to
520 rebase ADDRS to start referencing different BFD than before. */
521
522 void
523 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
524 {
525 asection *lower_sect;
526 CORE_ADDR lower_offset;
527 int i;
528 struct cleanup *my_cleanup;
529 struct section_addr_info *abfd_addrs;
530 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
531 struct other_sections **addrs_to_abfd_addrs;
532
533 /* Find lowest loadable section to be used as starting point for
534 continguous sections. */
535 lower_sect = NULL;
536 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
537 if (lower_sect == NULL)
538 {
539 warning (_("no loadable sections found in added symbol-file %s"),
540 bfd_get_filename (abfd));
541 lower_offset = 0;
542 }
543 else
544 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
545
546 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
547 in ABFD. Section names are not unique - there can be multiple sections of
548 the same name. Also the sections of the same name do not have to be
549 adjacent to each other. Some sections may be present only in one of the
550 files. Even sections present in both files do not have to be in the same
551 order.
552
553 Use stable sort by name for the sections in both files. Then linearly
554 scan both lists matching as most of the entries as possible. */
555
556 addrs_sorted = addrs_section_sort (addrs);
557 my_cleanup = make_cleanup (xfree, addrs_sorted);
558
559 abfd_addrs = build_section_addr_info_from_bfd (abfd);
560 make_cleanup_free_section_addr_info (abfd_addrs);
561 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
562 make_cleanup (xfree, abfd_addrs_sorted);
563
564 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
565 ABFD_ADDRS_SORTED. */
566
567 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
568 * addrs->num_sections);
569 make_cleanup (xfree, addrs_to_abfd_addrs);
570
571 while (*addrs_sorted)
572 {
573 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
574
575 while (*abfd_addrs_sorted
576 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
577 sect_name) < 0)
578 abfd_addrs_sorted++;
579
580 if (*abfd_addrs_sorted
581 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
582 sect_name) == 0)
583 {
584 int index_in_addrs;
585
586 /* Make the found item directly addressable from ADDRS. */
587 index_in_addrs = *addrs_sorted - addrs->other;
588 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
589 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
590
591 /* Never use the same ABFD entry twice. */
592 abfd_addrs_sorted++;
593 }
594
595 addrs_sorted++;
596 }
597
598 /* Calculate offsets for the loadable sections.
599 FIXME! Sections must be in order of increasing loadable section
600 so that contiguous sections can use the lower-offset!!!
601
602 Adjust offsets if the segments are not contiguous.
603 If the section is contiguous, its offset should be set to
604 the offset of the highest loadable section lower than it
605 (the loadable section directly below it in memory).
606 this_offset = lower_offset = lower_addr - lower_orig_addr */
607
608 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
609 {
610 struct other_sections *sect = addrs_to_abfd_addrs[i];
611
612 if (sect)
613 {
614 /* This is the index used by BFD. */
615 addrs->other[i].sectindex = sect->sectindex;
616
617 if (addrs->other[i].addr != 0)
618 {
619 addrs->other[i].addr -= sect->addr;
620 lower_offset = addrs->other[i].addr;
621 }
622 else
623 addrs->other[i].addr = lower_offset;
624 }
625 else
626 {
627 /* addr_section_name transformation is not used for SECT_NAME. */
628 const char *sect_name = addrs->other[i].name;
629
630 /* This section does not exist in ABFD, which is normally
631 unexpected and we want to issue a warning.
632
633 However, the ELF prelinker does create a few sections which are
634 marked in the main executable as loadable (they are loaded in
635 memory from the DYNAMIC segment) and yet are not present in
636 separate debug info files. This is fine, and should not cause
637 a warning. Shared libraries contain just the section
638 ".gnu.liblist" but it is not marked as loadable there. There is
639 no other way to identify them than by their name as the sections
640 created by prelink have no special flags.
641
642 For the sections `.bss' and `.sbss' see addr_section_name. */
643
644 if (!(strcmp (sect_name, ".gnu.liblist") == 0
645 || strcmp (sect_name, ".gnu.conflict") == 0
646 || (strcmp (sect_name, ".bss") == 0
647 && i > 0
648 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
649 && addrs_to_abfd_addrs[i - 1] != NULL)
650 || (strcmp (sect_name, ".sbss") == 0
651 && i > 0
652 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
653 && addrs_to_abfd_addrs[i - 1] != NULL)))
654 warning (_("section %s not found in %s"), sect_name,
655 bfd_get_filename (abfd));
656
657 addrs->other[i].addr = 0;
658 addrs->other[i].sectindex = -1;
659 }
660 }
661
662 do_cleanups (my_cleanup);
663 }
664
665 /* Parse the user's idea of an offset for dynamic linking, into our idea
666 of how to represent it for fast symbol reading. This is the default
667 version of the sym_fns.sym_offsets function for symbol readers that
668 don't need to do anything special. It allocates a section_offsets table
669 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
670
671 void
672 default_symfile_offsets (struct objfile *objfile,
673 struct section_addr_info *addrs)
674 {
675 objfile->num_sections = bfd_count_sections (objfile->obfd);
676 objfile->section_offsets = (struct section_offsets *)
677 obstack_alloc (&objfile->objfile_obstack,
678 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
679 relative_addr_info_to_section_offsets (objfile->section_offsets,
680 objfile->num_sections, addrs);
681
682 /* For relocatable files, all loadable sections will start at zero.
683 The zero is meaningless, so try to pick arbitrary addresses such
684 that no loadable sections overlap. This algorithm is quadratic,
685 but the number of sections in a single object file is generally
686 small. */
687 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
688 {
689 struct place_section_arg arg;
690 bfd *abfd = objfile->obfd;
691 asection *cur_sec;
692
693 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
694 /* We do not expect this to happen; just skip this step if the
695 relocatable file has a section with an assigned VMA. */
696 if (bfd_section_vma (abfd, cur_sec) != 0)
697 break;
698
699 if (cur_sec == NULL)
700 {
701 CORE_ADDR *offsets = objfile->section_offsets->offsets;
702
703 /* Pick non-overlapping offsets for sections the user did not
704 place explicitly. */
705 arg.offsets = objfile->section_offsets;
706 arg.lowest = 0;
707 bfd_map_over_sections (objfile->obfd, place_section, &arg);
708
709 /* Correctly filling in the section offsets is not quite
710 enough. Relocatable files have two properties that
711 (most) shared objects do not:
712
713 - Their debug information will contain relocations. Some
714 shared libraries do also, but many do not, so this can not
715 be assumed.
716
717 - If there are multiple code sections they will be loaded
718 at different relative addresses in memory than they are
719 in the objfile, since all sections in the file will start
720 at address zero.
721
722 Because GDB has very limited ability to map from an
723 address in debug info to the correct code section,
724 it relies on adding SECT_OFF_TEXT to things which might be
725 code. If we clear all the section offsets, and set the
726 section VMAs instead, then symfile_relocate_debug_section
727 will return meaningful debug information pointing at the
728 correct sections.
729
730 GDB has too many different data structures for section
731 addresses - a bfd, objfile, and so_list all have section
732 tables, as does exec_ops. Some of these could probably
733 be eliminated. */
734
735 for (cur_sec = abfd->sections; cur_sec != NULL;
736 cur_sec = cur_sec->next)
737 {
738 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
739 continue;
740
741 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
742 exec_set_section_address (bfd_get_filename (abfd),
743 cur_sec->index,
744 offsets[cur_sec->index]);
745 offsets[cur_sec->index] = 0;
746 }
747 }
748 }
749
750 /* Remember the bfd indexes for the .text, .data, .bss and
751 .rodata sections. */
752 init_objfile_sect_indices (objfile);
753 }
754
755
756 /* Divide the file into segments, which are individual relocatable units.
757 This is the default version of the sym_fns.sym_segments function for
758 symbol readers that do not have an explicit representation of segments.
759 It assumes that object files do not have segments, and fully linked
760 files have a single segment. */
761
762 struct symfile_segment_data *
763 default_symfile_segments (bfd *abfd)
764 {
765 int num_sections, i;
766 asection *sect;
767 struct symfile_segment_data *data;
768 CORE_ADDR low, high;
769
770 /* Relocatable files contain enough information to position each
771 loadable section independently; they should not be relocated
772 in segments. */
773 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
774 return NULL;
775
776 /* Make sure there is at least one loadable section in the file. */
777 for (sect = abfd->sections; sect != NULL; sect = sect->next)
778 {
779 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
780 continue;
781
782 break;
783 }
784 if (sect == NULL)
785 return NULL;
786
787 low = bfd_get_section_vma (abfd, sect);
788 high = low + bfd_get_section_size (sect);
789
790 data = XZALLOC (struct symfile_segment_data);
791 data->num_segments = 1;
792 data->segment_bases = XCALLOC (1, CORE_ADDR);
793 data->segment_sizes = XCALLOC (1, CORE_ADDR);
794
795 num_sections = bfd_count_sections (abfd);
796 data->segment_info = XCALLOC (num_sections, int);
797
798 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
799 {
800 CORE_ADDR vma;
801
802 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
803 continue;
804
805 vma = bfd_get_section_vma (abfd, sect);
806 if (vma < low)
807 low = vma;
808 if (vma + bfd_get_section_size (sect) > high)
809 high = vma + bfd_get_section_size (sect);
810
811 data->segment_info[i] = 1;
812 }
813
814 data->segment_bases[0] = low;
815 data->segment_sizes[0] = high - low;
816
817 return data;
818 }
819
820 /* This is a convenience function to call sym_read for OBJFILE and
821 possibly force the partial symbols to be read. */
822
823 static void
824 read_symbols (struct objfile *objfile, int add_flags)
825 {
826 (*objfile->sf->sym_read) (objfile, add_flags);
827
828 /* find_separate_debug_file_in_section should be called only if there is
829 single binary with no existing separate debug info file. */
830 if (!objfile_has_partial_symbols (objfile)
831 && objfile->separate_debug_objfile == NULL
832 && objfile->separate_debug_objfile_backlink == NULL)
833 {
834 bfd *abfd = find_separate_debug_file_in_section (objfile);
835 struct cleanup *cleanup = make_cleanup_bfd_unref (abfd);
836
837 if (abfd != NULL)
838 symbol_file_add_separate (abfd, add_flags, objfile);
839
840 do_cleanups (cleanup);
841 }
842 if ((add_flags & SYMFILE_NO_READ) == 0)
843 require_partial_symbols (objfile, 0);
844 }
845
846 /* Initialize entry point information for this objfile. */
847
848 static void
849 init_entry_point_info (struct objfile *objfile)
850 {
851 /* Save startup file's range of PC addresses to help blockframe.c
852 decide where the bottom of the stack is. */
853
854 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
855 {
856 /* Executable file -- record its entry point so we'll recognize
857 the startup file because it contains the entry point. */
858 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
859 objfile->ei.entry_point_p = 1;
860 }
861 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
862 && bfd_get_start_address (objfile->obfd) != 0)
863 {
864 /* Some shared libraries may have entry points set and be
865 runnable. There's no clear way to indicate this, so just check
866 for values other than zero. */
867 objfile->ei.entry_point = bfd_get_start_address (objfile->obfd);
868 objfile->ei.entry_point_p = 1;
869 }
870 else
871 {
872 /* Examination of non-executable.o files. Short-circuit this stuff. */
873 objfile->ei.entry_point_p = 0;
874 }
875
876 if (objfile->ei.entry_point_p)
877 {
878 CORE_ADDR entry_point = objfile->ei.entry_point;
879
880 /* Make certain that the address points at real code, and not a
881 function descriptor. */
882 entry_point
883 = gdbarch_convert_from_func_ptr_addr (objfile->gdbarch,
884 entry_point,
885 &current_target);
886
887 /* Remove any ISA markers, so that this matches entries in the
888 symbol table. */
889 objfile->ei.entry_point
890 = gdbarch_addr_bits_remove (objfile->gdbarch, entry_point);
891 }
892 }
893
894 /* Process a symbol file, as either the main file or as a dynamically
895 loaded file.
896
897 This function does not set the OBJFILE's entry-point info.
898
899 OBJFILE is where the symbols are to be read from.
900
901 ADDRS is the list of section load addresses. If the user has given
902 an 'add-symbol-file' command, then this is the list of offsets and
903 addresses he or she provided as arguments to the command; or, if
904 we're handling a shared library, these are the actual addresses the
905 sections are loaded at, according to the inferior's dynamic linker
906 (as gleaned by GDB's shared library code). We convert each address
907 into an offset from the section VMA's as it appears in the object
908 file, and then call the file's sym_offsets function to convert this
909 into a format-specific offset table --- a `struct section_offsets'.
910 If ADDRS is non-zero, OFFSETS must be zero.
911
912 OFFSETS is a table of section offsets already in the right
913 format-specific representation. NUM_OFFSETS is the number of
914 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
915 assume this is the proper table the call to sym_offsets described
916 above would produce. Instead of calling sym_offsets, we just dump
917 it right into objfile->section_offsets. (When we're re-reading
918 symbols from an objfile, we don't have the original load address
919 list any more; all we have is the section offset table.) If
920 OFFSETS is non-zero, ADDRS must be zero.
921
922 ADD_FLAGS encodes verbosity level, whether this is main symbol or
923 an extra symbol file such as dynamically loaded code, and wether
924 breakpoint reset should be deferred. */
925
926 static void
927 syms_from_objfile_1 (struct objfile *objfile,
928 struct section_addr_info *addrs,
929 struct section_offsets *offsets,
930 int num_offsets,
931 int add_flags)
932 {
933 struct section_addr_info *local_addr = NULL;
934 struct cleanup *old_chain;
935 const int mainline = add_flags & SYMFILE_MAINLINE;
936
937 gdb_assert (! (addrs && offsets));
938
939 objfile->sf = find_sym_fns (objfile->obfd);
940
941 if (objfile->sf == NULL)
942 {
943 /* No symbols to load, but we still need to make sure
944 that the section_offsets table is allocated. */
945 int num_sections = bfd_count_sections (objfile->obfd);
946 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
947
948 objfile->num_sections = num_sections;
949 objfile->section_offsets
950 = obstack_alloc (&objfile->objfile_obstack, size);
951 memset (objfile->section_offsets, 0, size);
952 return;
953 }
954
955 /* Make sure that partially constructed symbol tables will be cleaned up
956 if an error occurs during symbol reading. */
957 old_chain = make_cleanup_free_objfile (objfile);
958
959 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
960 list. We now establish the convention that an addr of zero means
961 no load address was specified. */
962 if (! addrs && ! offsets)
963 {
964 local_addr
965 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
966 make_cleanup (xfree, local_addr);
967 addrs = local_addr;
968 }
969
970 /* Now either addrs or offsets is non-zero. */
971
972 if (mainline)
973 {
974 /* We will modify the main symbol table, make sure that all its users
975 will be cleaned up if an error occurs during symbol reading. */
976 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
977
978 /* Since no error yet, throw away the old symbol table. */
979
980 if (symfile_objfile != NULL)
981 {
982 free_objfile (symfile_objfile);
983 gdb_assert (symfile_objfile == NULL);
984 }
985
986 /* Currently we keep symbols from the add-symbol-file command.
987 If the user wants to get rid of them, they should do "symbol-file"
988 without arguments first. Not sure this is the best behavior
989 (PR 2207). */
990
991 (*objfile->sf->sym_new_init) (objfile);
992 }
993
994 /* Convert addr into an offset rather than an absolute address.
995 We find the lowest address of a loaded segment in the objfile,
996 and assume that <addr> is where that got loaded.
997
998 We no longer warn if the lowest section is not a text segment (as
999 happens for the PA64 port. */
1000 if (addrs && addrs->other[0].name)
1001 addr_info_make_relative (addrs, objfile->obfd);
1002
1003 /* Initialize symbol reading routines for this objfile, allow complaints to
1004 appear for this new file, and record how verbose to be, then do the
1005 initial symbol reading for this file. */
1006
1007 (*objfile->sf->sym_init) (objfile);
1008 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1009
1010 if (addrs)
1011 (*objfile->sf->sym_offsets) (objfile, addrs);
1012 else
1013 {
1014 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1015
1016 /* Just copy in the offset table directly as given to us. */
1017 objfile->num_sections = num_offsets;
1018 objfile->section_offsets
1019 = ((struct section_offsets *)
1020 obstack_alloc (&objfile->objfile_obstack, size));
1021 memcpy (objfile->section_offsets, offsets, size);
1022
1023 init_objfile_sect_indices (objfile);
1024 }
1025
1026 read_symbols (objfile, add_flags);
1027
1028 /* Discard cleanups as symbol reading was successful. */
1029
1030 discard_cleanups (old_chain);
1031 xfree (local_addr);
1032 }
1033
1034 /* Same as syms_from_objfile_1, but also initializes the objfile
1035 entry-point info. */
1036
1037 void
1038 syms_from_objfile (struct objfile *objfile,
1039 struct section_addr_info *addrs,
1040 struct section_offsets *offsets,
1041 int num_offsets,
1042 int add_flags)
1043 {
1044 syms_from_objfile_1 (objfile, addrs, offsets, num_offsets, add_flags);
1045 init_entry_point_info (objfile);
1046 }
1047
1048 /* Perform required actions after either reading in the initial
1049 symbols for a new objfile, or mapping in the symbols from a reusable
1050 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1051
1052 void
1053 new_symfile_objfile (struct objfile *objfile, int add_flags)
1054 {
1055 /* If this is the main symbol file we have to clean up all users of the
1056 old main symbol file. Otherwise it is sufficient to fixup all the
1057 breakpoints that may have been redefined by this symbol file. */
1058 if (add_flags & SYMFILE_MAINLINE)
1059 {
1060 /* OK, make it the "real" symbol file. */
1061 symfile_objfile = objfile;
1062
1063 clear_symtab_users (add_flags);
1064 }
1065 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1066 {
1067 breakpoint_re_set ();
1068 }
1069
1070 /* We're done reading the symbol file; finish off complaints. */
1071 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1072 }
1073
1074 /* Process a symbol file, as either the main file or as a dynamically
1075 loaded file.
1076
1077 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1078 A new reference is acquired by this function.
1079
1080 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1081 extra, such as dynamically loaded code, and what to do with breakpoins.
1082
1083 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1084 syms_from_objfile, above.
1085 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1086
1087 PARENT is the original objfile if ABFD is a separate debug info file.
1088 Otherwise PARENT is NULL.
1089
1090 Upon success, returns a pointer to the objfile that was added.
1091 Upon failure, jumps back to command level (never returns). */
1092
1093 static struct objfile *
1094 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1095 int add_flags,
1096 struct section_addr_info *addrs,
1097 struct section_offsets *offsets,
1098 int num_offsets,
1099 int flags, struct objfile *parent)
1100 {
1101 struct objfile *objfile;
1102 const char *name = bfd_get_filename (abfd);
1103 const int from_tty = add_flags & SYMFILE_VERBOSE;
1104 const int mainline = add_flags & SYMFILE_MAINLINE;
1105 const int should_print = ((from_tty || info_verbose)
1106 && (readnow_symbol_files
1107 || (add_flags & SYMFILE_NO_READ) == 0));
1108
1109 if (readnow_symbol_files)
1110 {
1111 flags |= OBJF_READNOW;
1112 add_flags &= ~SYMFILE_NO_READ;
1113 }
1114
1115 /* Give user a chance to burp if we'd be
1116 interactively wiping out any existing symbols. */
1117
1118 if ((have_full_symbols () || have_partial_symbols ())
1119 && mainline
1120 && from_tty
1121 && !query (_("Load new symbol table from \"%s\"? "), name))
1122 error (_("Not confirmed."));
1123
1124 objfile = allocate_objfile (abfd, flags | (mainline ? OBJF_MAINLINE : 0));
1125
1126 if (parent)
1127 add_separate_debug_objfile (objfile, parent);
1128
1129 /* We either created a new mapped symbol table, mapped an existing
1130 symbol table file which has not had initial symbol reading
1131 performed, or need to read an unmapped symbol table. */
1132 if (should_print)
1133 {
1134 if (deprecated_pre_add_symbol_hook)
1135 deprecated_pre_add_symbol_hook (name);
1136 else
1137 {
1138 printf_unfiltered (_("Reading symbols from %s..."), name);
1139 wrap_here ("");
1140 gdb_flush (gdb_stdout);
1141 }
1142 }
1143 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1144 add_flags);
1145
1146 /* We now have at least a partial symbol table. Check to see if the
1147 user requested that all symbols be read on initial access via either
1148 the gdb startup command line or on a per symbol file basis. Expand
1149 all partial symbol tables for this objfile if so. */
1150
1151 if ((flags & OBJF_READNOW))
1152 {
1153 if (should_print)
1154 {
1155 printf_unfiltered (_("expanding to full symbols..."));
1156 wrap_here ("");
1157 gdb_flush (gdb_stdout);
1158 }
1159
1160 if (objfile->sf)
1161 objfile->sf->qf->expand_all_symtabs (objfile);
1162 }
1163
1164 if (should_print && !objfile_has_symbols (objfile))
1165 {
1166 wrap_here ("");
1167 printf_unfiltered (_("(no debugging symbols found)..."));
1168 wrap_here ("");
1169 }
1170
1171 if (should_print)
1172 {
1173 if (deprecated_post_add_symbol_hook)
1174 deprecated_post_add_symbol_hook ();
1175 else
1176 printf_unfiltered (_("done.\n"));
1177 }
1178
1179 /* We print some messages regardless of whether 'from_tty ||
1180 info_verbose' is true, so make sure they go out at the right
1181 time. */
1182 gdb_flush (gdb_stdout);
1183
1184 if (objfile->sf == NULL)
1185 {
1186 observer_notify_new_objfile (objfile);
1187 return objfile; /* No symbols. */
1188 }
1189
1190 new_symfile_objfile (objfile, add_flags);
1191
1192 observer_notify_new_objfile (objfile);
1193
1194 bfd_cache_close_all ();
1195 return (objfile);
1196 }
1197
1198 /* Add BFD as a separate debug file for OBJFILE. */
1199
1200 void
1201 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1202 {
1203 struct objfile *new_objfile;
1204 struct section_addr_info *sap;
1205 struct cleanup *my_cleanup;
1206
1207 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1208 because sections of BFD may not match sections of OBJFILE and because
1209 vma may have been modified by tools such as prelink. */
1210 sap = build_section_addr_info_from_objfile (objfile);
1211 my_cleanup = make_cleanup_free_section_addr_info (sap);
1212
1213 new_objfile = symbol_file_add_with_addrs_or_offsets
1214 (bfd, symfile_flags,
1215 sap, NULL, 0,
1216 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1217 | OBJF_USERLOADED),
1218 objfile);
1219
1220 do_cleanups (my_cleanup);
1221 }
1222
1223 /* Process the symbol file ABFD, as either the main file or as a
1224 dynamically loaded file.
1225
1226 See symbol_file_add_with_addrs_or_offsets's comments for
1227 details. */
1228 struct objfile *
1229 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1230 struct section_addr_info *addrs,
1231 int flags, struct objfile *parent)
1232 {
1233 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1234 flags, parent);
1235 }
1236
1237
1238 /* Process a symbol file, as either the main file or as a dynamically
1239 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1240 for details. */
1241 struct objfile *
1242 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1243 int flags)
1244 {
1245 bfd *bfd = symfile_bfd_open (name);
1246 struct cleanup *cleanup = make_cleanup_bfd_unref (bfd);
1247 struct objfile *objf;
1248
1249 objf = symbol_file_add_from_bfd (bfd, add_flags, addrs, flags, NULL);
1250 do_cleanups (cleanup);
1251 return objf;
1252 }
1253
1254
1255 /* Call symbol_file_add() with default values and update whatever is
1256 affected by the loading of a new main().
1257 Used when the file is supplied in the gdb command line
1258 and by some targets with special loading requirements.
1259 The auxiliary function, symbol_file_add_main_1(), has the flags
1260 argument for the switches that can only be specified in the symbol_file
1261 command itself. */
1262
1263 void
1264 symbol_file_add_main (char *args, int from_tty)
1265 {
1266 symbol_file_add_main_1 (args, from_tty, 0);
1267 }
1268
1269 static void
1270 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1271 {
1272 const int add_flags = (current_inferior ()->symfile_flags
1273 | SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0));
1274
1275 symbol_file_add (args, add_flags, NULL, flags);
1276
1277 /* Getting new symbols may change our opinion about
1278 what is frameless. */
1279 reinit_frame_cache ();
1280
1281 if ((flags & SYMFILE_NO_READ) == 0)
1282 set_initial_language ();
1283 }
1284
1285 void
1286 symbol_file_clear (int from_tty)
1287 {
1288 if ((have_full_symbols () || have_partial_symbols ())
1289 && from_tty
1290 && (symfile_objfile
1291 ? !query (_("Discard symbol table from `%s'? "),
1292 symfile_objfile->name)
1293 : !query (_("Discard symbol table? "))))
1294 error (_("Not confirmed."));
1295
1296 /* solib descriptors may have handles to objfiles. Wipe them before their
1297 objfiles get stale by free_all_objfiles. */
1298 no_shared_libraries (NULL, from_tty);
1299
1300 free_all_objfiles ();
1301
1302 gdb_assert (symfile_objfile == NULL);
1303 if (from_tty)
1304 printf_unfiltered (_("No symbol file now.\n"));
1305 }
1306
1307 /* Return 32-bit CRC for ABFD. If successful store it to *FILE_CRC_RETURN and
1308 return 1. Otherwise print a warning and return 0. ABFD seek position is
1309 not preserved. */
1310
1311 static int
1312 get_file_crc (bfd *abfd, unsigned long *file_crc_return)
1313 {
1314 unsigned long file_crc = 0;
1315
1316 if (bfd_seek (abfd, 0, SEEK_SET) != 0)
1317 {
1318 warning (_("Problem reading \"%s\" for CRC: %s"),
1319 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1320 return 0;
1321 }
1322
1323 for (;;)
1324 {
1325 gdb_byte buffer[8 * 1024];
1326 bfd_size_type count;
1327
1328 count = bfd_bread (buffer, sizeof (buffer), abfd);
1329 if (count == (bfd_size_type) -1)
1330 {
1331 warning (_("Problem reading \"%s\" for CRC: %s"),
1332 bfd_get_filename (abfd), bfd_errmsg (bfd_get_error ()));
1333 return 0;
1334 }
1335 if (count == 0)
1336 break;
1337 file_crc = bfd_calc_gnu_debuglink_crc32 (file_crc, buffer, count);
1338 }
1339
1340 *file_crc_return = file_crc;
1341 return 1;
1342 }
1343
1344 static int
1345 separate_debug_file_exists (const char *name, unsigned long crc,
1346 struct objfile *parent_objfile)
1347 {
1348 unsigned long file_crc;
1349 int file_crc_p;
1350 bfd *abfd;
1351 struct stat parent_stat, abfd_stat;
1352 int verified_as_different;
1353
1354 /* Find a separate debug info file as if symbols would be present in
1355 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1356 section can contain just the basename of PARENT_OBJFILE without any
1357 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1358 the separate debug infos with the same basename can exist. */
1359
1360 if (filename_cmp (name, parent_objfile->name) == 0)
1361 return 0;
1362
1363 abfd = gdb_bfd_open_maybe_remote (name);
1364
1365 if (!abfd)
1366 return 0;
1367
1368 /* Verify symlinks were not the cause of filename_cmp name difference above.
1369
1370 Some operating systems, e.g. Windows, do not provide a meaningful
1371 st_ino; they always set it to zero. (Windows does provide a
1372 meaningful st_dev.) Do not indicate a duplicate library in that
1373 case. While there is no guarantee that a system that provides
1374 meaningful inode numbers will never set st_ino to zero, this is
1375 merely an optimization, so we do not need to worry about false
1376 negatives. */
1377
1378 if (bfd_stat (abfd, &abfd_stat) == 0
1379 && abfd_stat.st_ino != 0
1380 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1381 {
1382 if (abfd_stat.st_dev == parent_stat.st_dev
1383 && abfd_stat.st_ino == parent_stat.st_ino)
1384 {
1385 gdb_bfd_unref (abfd);
1386 return 0;
1387 }
1388 verified_as_different = 1;
1389 }
1390 else
1391 verified_as_different = 0;
1392
1393 file_crc_p = get_file_crc (abfd, &file_crc);
1394
1395 gdb_bfd_unref (abfd);
1396
1397 if (!file_crc_p)
1398 return 0;
1399
1400 if (crc != file_crc)
1401 {
1402 /* If one (or both) the files are accessed for example the via "remote:"
1403 gdbserver way it does not support the bfd_stat operation. Verify
1404 whether those two files are not the same manually. */
1405
1406 if (!verified_as_different && !parent_objfile->crc32_p)
1407 {
1408 parent_objfile->crc32_p = get_file_crc (parent_objfile->obfd,
1409 &parent_objfile->crc32);
1410 if (!parent_objfile->crc32_p)
1411 return 0;
1412 }
1413
1414 if (verified_as_different || parent_objfile->crc32 != file_crc)
1415 warning (_("the debug information found in \"%s\""
1416 " does not match \"%s\" (CRC mismatch).\n"),
1417 name, parent_objfile->name);
1418
1419 return 0;
1420 }
1421
1422 return 1;
1423 }
1424
1425 char *debug_file_directory = NULL;
1426 static void
1427 show_debug_file_directory (struct ui_file *file, int from_tty,
1428 struct cmd_list_element *c, const char *value)
1429 {
1430 fprintf_filtered (file,
1431 _("The directory where separate debug "
1432 "symbols are searched for is \"%s\".\n"),
1433 value);
1434 }
1435
1436 #if ! defined (DEBUG_SUBDIRECTORY)
1437 #define DEBUG_SUBDIRECTORY ".debug"
1438 #endif
1439
1440 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1441 where the original file resides (may not be the same as
1442 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1443 looking for. Returns the name of the debuginfo, of NULL. */
1444
1445 static char *
1446 find_separate_debug_file (const char *dir,
1447 const char *canon_dir,
1448 const char *debuglink,
1449 unsigned long crc32, struct objfile *objfile)
1450 {
1451 char *debugdir;
1452 char *debugfile;
1453 int i;
1454 VEC (char_ptr) *debugdir_vec;
1455 struct cleanup *back_to;
1456 int ix;
1457
1458 /* Set I to max (strlen (canon_dir), strlen (dir)). */
1459 i = strlen (dir);
1460 if (canon_dir != NULL && strlen (canon_dir) > i)
1461 i = strlen (canon_dir);
1462
1463 debugfile = xmalloc (strlen (debug_file_directory) + 1
1464 + i
1465 + strlen (DEBUG_SUBDIRECTORY)
1466 + strlen ("/")
1467 + strlen (debuglink)
1468 + 1);
1469
1470 /* First try in the same directory as the original file. */
1471 strcpy (debugfile, dir);
1472 strcat (debugfile, debuglink);
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1478 strcpy (debugfile, dir);
1479 strcat (debugfile, DEBUG_SUBDIRECTORY);
1480 strcat (debugfile, "/");
1481 strcat (debugfile, debuglink);
1482
1483 if (separate_debug_file_exists (debugfile, crc32, objfile))
1484 return debugfile;
1485
1486 /* Then try in the global debugfile directories.
1487
1488 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1489 cause "/..." lookups. */
1490
1491 debugdir_vec = dirnames_to_char_ptr_vec (debug_file_directory);
1492 back_to = make_cleanup_free_char_ptr_vec (debugdir_vec);
1493
1494 for (ix = 0; VEC_iterate (char_ptr, debugdir_vec, ix, debugdir); ++ix)
1495 {
1496 strcpy (debugfile, debugdir);
1497 strcat (debugfile, "/");
1498 strcat (debugfile, dir);
1499 strcat (debugfile, debuglink);
1500
1501 if (separate_debug_file_exists (debugfile, crc32, objfile))
1502 return debugfile;
1503
1504 /* If the file is in the sysroot, try using its base path in the
1505 global debugfile directory. */
1506 if (canon_dir != NULL
1507 && filename_ncmp (canon_dir, gdb_sysroot,
1508 strlen (gdb_sysroot)) == 0
1509 && IS_DIR_SEPARATOR (canon_dir[strlen (gdb_sysroot)]))
1510 {
1511 strcpy (debugfile, debugdir);
1512 strcat (debugfile, canon_dir + strlen (gdb_sysroot));
1513 strcat (debugfile, "/");
1514 strcat (debugfile, debuglink);
1515
1516 if (separate_debug_file_exists (debugfile, crc32, objfile))
1517 return debugfile;
1518 }
1519 }
1520
1521 do_cleanups (back_to);
1522 xfree (debugfile);
1523 return NULL;
1524 }
1525
1526 /* Modify PATH to contain only "directory/" part of PATH.
1527 If there were no directory separators in PATH, PATH will be empty
1528 string on return. */
1529
1530 static void
1531 terminate_after_last_dir_separator (char *path)
1532 {
1533 int i;
1534
1535 /* Strip off the final filename part, leaving the directory name,
1536 followed by a slash. The directory can be relative or absolute. */
1537 for (i = strlen(path) - 1; i >= 0; i--)
1538 if (IS_DIR_SEPARATOR (path[i]))
1539 break;
1540
1541 /* If I is -1 then no directory is present there and DIR will be "". */
1542 path[i + 1] = '\0';
1543 }
1544
1545 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1546 Returns pathname, or NULL. */
1547
1548 char *
1549 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1550 {
1551 char *debuglink;
1552 char *dir, *canon_dir;
1553 char *debugfile;
1554 unsigned long crc32;
1555 struct cleanup *cleanups;
1556
1557 debuglink = bfd_get_debug_link_info (objfile->obfd, &crc32);
1558
1559 if (debuglink == NULL)
1560 {
1561 /* There's no separate debug info, hence there's no way we could
1562 load it => no warning. */
1563 return NULL;
1564 }
1565
1566 cleanups = make_cleanup (xfree, debuglink);
1567 dir = xstrdup (objfile->name);
1568 make_cleanup (xfree, dir);
1569 terminate_after_last_dir_separator (dir);
1570 canon_dir = lrealpath (dir);
1571
1572 debugfile = find_separate_debug_file (dir, canon_dir, debuglink,
1573 crc32, objfile);
1574 xfree (canon_dir);
1575
1576 if (debugfile == NULL)
1577 {
1578 #ifdef HAVE_LSTAT
1579 /* For PR gdb/9538, try again with realpath (if different from the
1580 original). */
1581
1582 struct stat st_buf;
1583
1584 if (lstat (objfile->name, &st_buf) == 0 && S_ISLNK(st_buf.st_mode))
1585 {
1586 char *symlink_dir;
1587
1588 symlink_dir = lrealpath (objfile->name);
1589 if (symlink_dir != NULL)
1590 {
1591 make_cleanup (xfree, symlink_dir);
1592 terminate_after_last_dir_separator (symlink_dir);
1593 if (strcmp (dir, symlink_dir) != 0)
1594 {
1595 /* Different directory, so try using it. */
1596 debugfile = find_separate_debug_file (symlink_dir,
1597 symlink_dir,
1598 debuglink,
1599 crc32,
1600 objfile);
1601 }
1602 }
1603 }
1604 #endif /* HAVE_LSTAT */
1605 }
1606
1607 do_cleanups (cleanups);
1608 return debugfile;
1609 }
1610
1611
1612 /* This is the symbol-file command. Read the file, analyze its
1613 symbols, and add a struct symtab to a symtab list. The syntax of
1614 the command is rather bizarre:
1615
1616 1. The function buildargv implements various quoting conventions
1617 which are undocumented and have little or nothing in common with
1618 the way things are quoted (or not quoted) elsewhere in GDB.
1619
1620 2. Options are used, which are not generally used in GDB (perhaps
1621 "set mapped on", "set readnow on" would be better)
1622
1623 3. The order of options matters, which is contrary to GNU
1624 conventions (because it is confusing and inconvenient). */
1625
1626 void
1627 symbol_file_command (char *args, int from_tty)
1628 {
1629 dont_repeat ();
1630
1631 if (args == NULL)
1632 {
1633 symbol_file_clear (from_tty);
1634 }
1635 else
1636 {
1637 char **argv = gdb_buildargv (args);
1638 int flags = OBJF_USERLOADED;
1639 struct cleanup *cleanups;
1640 char *name = NULL;
1641
1642 cleanups = make_cleanup_freeargv (argv);
1643 while (*argv != NULL)
1644 {
1645 if (strcmp (*argv, "-readnow") == 0)
1646 flags |= OBJF_READNOW;
1647 else if (**argv == '-')
1648 error (_("unknown option `%s'"), *argv);
1649 else
1650 {
1651 symbol_file_add_main_1 (*argv, from_tty, flags);
1652 name = *argv;
1653 }
1654
1655 argv++;
1656 }
1657
1658 if (name == NULL)
1659 error (_("no symbol file name was specified"));
1660
1661 do_cleanups (cleanups);
1662 }
1663 }
1664
1665 /* Set the initial language.
1666
1667 FIXME: A better solution would be to record the language in the
1668 psymtab when reading partial symbols, and then use it (if known) to
1669 set the language. This would be a win for formats that encode the
1670 language in an easily discoverable place, such as DWARF. For
1671 stabs, we can jump through hoops looking for specially named
1672 symbols or try to intuit the language from the specific type of
1673 stabs we find, but we can't do that until later when we read in
1674 full symbols. */
1675
1676 void
1677 set_initial_language (void)
1678 {
1679 enum language lang = language_unknown;
1680
1681 if (language_of_main != language_unknown)
1682 lang = language_of_main;
1683 else
1684 {
1685 const char *filename;
1686
1687 filename = find_main_filename ();
1688 if (filename != NULL)
1689 lang = deduce_language_from_filename (filename);
1690 }
1691
1692 if (lang == language_unknown)
1693 {
1694 /* Make C the default language */
1695 lang = language_c;
1696 }
1697
1698 set_language (lang);
1699 expected_language = current_language; /* Don't warn the user. */
1700 }
1701
1702 /* If NAME is a remote name open the file using remote protocol, otherwise
1703 open it normally. Returns a new reference to the BFD. On error,
1704 returns NULL with the BFD error set. */
1705
1706 bfd *
1707 gdb_bfd_open_maybe_remote (const char *name)
1708 {
1709 bfd *result;
1710
1711 if (remote_filename_p (name))
1712 result = remote_bfd_open (name, gnutarget);
1713 else
1714 result = gdb_bfd_open (name, gnutarget, -1);
1715
1716 return result;
1717 }
1718
1719
1720 /* Open the file specified by NAME and hand it off to BFD for
1721 preliminary analysis. Return a newly initialized bfd *, which
1722 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1723 absolute). In case of trouble, error() is called. */
1724
1725 bfd *
1726 symfile_bfd_open (char *name)
1727 {
1728 bfd *sym_bfd;
1729 int desc;
1730 char *absolute_name;
1731
1732 if (remote_filename_p (name))
1733 {
1734 sym_bfd = remote_bfd_open (name, gnutarget);
1735 if (!sym_bfd)
1736 error (_("`%s': can't open to read symbols: %s."), name,
1737 bfd_errmsg (bfd_get_error ()));
1738
1739 if (!bfd_check_format (sym_bfd, bfd_object))
1740 {
1741 make_cleanup_bfd_unref (sym_bfd);
1742 error (_("`%s': can't read symbols: %s."), name,
1743 bfd_errmsg (bfd_get_error ()));
1744 }
1745
1746 return sym_bfd;
1747 }
1748
1749 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1750
1751 /* Look down path for it, allocate 2nd new malloc'd copy. */
1752 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1753 O_RDONLY | O_BINARY, &absolute_name);
1754 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1755 if (desc < 0)
1756 {
1757 char *exename = alloca (strlen (name) + 5);
1758
1759 strcat (strcpy (exename, name), ".exe");
1760 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1761 O_RDONLY | O_BINARY, &absolute_name);
1762 }
1763 #endif
1764 if (desc < 0)
1765 {
1766 make_cleanup (xfree, name);
1767 perror_with_name (name);
1768 }
1769
1770 xfree (name);
1771 name = absolute_name;
1772 make_cleanup (xfree, name);
1773
1774 sym_bfd = gdb_bfd_open (name, gnutarget, desc);
1775 if (!sym_bfd)
1776 {
1777 make_cleanup (xfree, name);
1778 error (_("`%s': can't open to read symbols: %s."), name,
1779 bfd_errmsg (bfd_get_error ()));
1780 }
1781 bfd_set_cacheable (sym_bfd, 1);
1782
1783 if (!bfd_check_format (sym_bfd, bfd_object))
1784 {
1785 make_cleanup_bfd_unref (sym_bfd);
1786 error (_("`%s': can't read symbols: %s."), name,
1787 bfd_errmsg (bfd_get_error ()));
1788 }
1789
1790 return sym_bfd;
1791 }
1792
1793 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1794 the section was not found. */
1795
1796 int
1797 get_section_index (struct objfile *objfile, char *section_name)
1798 {
1799 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1800
1801 if (sect)
1802 return sect->index;
1803 else
1804 return -1;
1805 }
1806
1807 /* Link SF into the global symtab_fns list. Called on startup by the
1808 _initialize routine in each object file format reader, to register
1809 information about each format the reader is prepared to handle. */
1810
1811 void
1812 add_symtab_fns (const struct sym_fns *sf)
1813 {
1814 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1815 }
1816
1817 /* Initialize OBJFILE to read symbols from its associated BFD. It
1818 either returns or calls error(). The result is an initialized
1819 struct sym_fns in the objfile structure, that contains cached
1820 information about the symbol file. */
1821
1822 static const struct sym_fns *
1823 find_sym_fns (bfd *abfd)
1824 {
1825 const struct sym_fns *sf;
1826 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1827 int i;
1828
1829 if (our_flavour == bfd_target_srec_flavour
1830 || our_flavour == bfd_target_ihex_flavour
1831 || our_flavour == bfd_target_tekhex_flavour)
1832 return NULL; /* No symbols. */
1833
1834 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1835 if (our_flavour == sf->sym_flavour)
1836 return sf;
1837
1838 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1839 bfd_get_target (abfd));
1840 }
1841 \f
1842
1843 /* This function runs the load command of our current target. */
1844
1845 static void
1846 load_command (char *arg, int from_tty)
1847 {
1848 dont_repeat ();
1849
1850 /* The user might be reloading because the binary has changed. Take
1851 this opportunity to check. */
1852 reopen_exec_file ();
1853 reread_symbols ();
1854
1855 if (arg == NULL)
1856 {
1857 char *parg;
1858 int count = 0;
1859
1860 parg = arg = get_exec_file (1);
1861
1862 /* Count how many \ " ' tab space there are in the name. */
1863 while ((parg = strpbrk (parg, "\\\"'\t ")))
1864 {
1865 parg++;
1866 count++;
1867 }
1868
1869 if (count)
1870 {
1871 /* We need to quote this string so buildargv can pull it apart. */
1872 char *temp = xmalloc (strlen (arg) + count + 1 );
1873 char *ptemp = temp;
1874 char *prev;
1875
1876 make_cleanup (xfree, temp);
1877
1878 prev = parg = arg;
1879 while ((parg = strpbrk (parg, "\\\"'\t ")))
1880 {
1881 strncpy (ptemp, prev, parg - prev);
1882 ptemp += parg - prev;
1883 prev = parg++;
1884 *ptemp++ = '\\';
1885 }
1886 strcpy (ptemp, prev);
1887
1888 arg = temp;
1889 }
1890 }
1891
1892 target_load (arg, from_tty);
1893
1894 /* After re-loading the executable, we don't really know which
1895 overlays are mapped any more. */
1896 overlay_cache_invalid = 1;
1897 }
1898
1899 /* This version of "load" should be usable for any target. Currently
1900 it is just used for remote targets, not inftarg.c or core files,
1901 on the theory that only in that case is it useful.
1902
1903 Avoiding xmodem and the like seems like a win (a) because we don't have
1904 to worry about finding it, and (b) On VMS, fork() is very slow and so
1905 we don't want to run a subprocess. On the other hand, I'm not sure how
1906 performance compares. */
1907
1908 static int validate_download = 0;
1909
1910 /* Callback service function for generic_load (bfd_map_over_sections). */
1911
1912 static void
1913 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1914 {
1915 bfd_size_type *sum = data;
1916
1917 *sum += bfd_get_section_size (asec);
1918 }
1919
1920 /* Opaque data for load_section_callback. */
1921 struct load_section_data {
1922 CORE_ADDR load_offset;
1923 struct load_progress_data *progress_data;
1924 VEC(memory_write_request_s) *requests;
1925 };
1926
1927 /* Opaque data for load_progress. */
1928 struct load_progress_data {
1929 /* Cumulative data. */
1930 unsigned long write_count;
1931 unsigned long data_count;
1932 bfd_size_type total_size;
1933 };
1934
1935 /* Opaque data for load_progress for a single section. */
1936 struct load_progress_section_data {
1937 struct load_progress_data *cumulative;
1938
1939 /* Per-section data. */
1940 const char *section_name;
1941 ULONGEST section_sent;
1942 ULONGEST section_size;
1943 CORE_ADDR lma;
1944 gdb_byte *buffer;
1945 };
1946
1947 /* Target write callback routine for progress reporting. */
1948
1949 static void
1950 load_progress (ULONGEST bytes, void *untyped_arg)
1951 {
1952 struct load_progress_section_data *args = untyped_arg;
1953 struct load_progress_data *totals;
1954
1955 if (args == NULL)
1956 /* Writing padding data. No easy way to get at the cumulative
1957 stats, so just ignore this. */
1958 return;
1959
1960 totals = args->cumulative;
1961
1962 if (bytes == 0 && args->section_sent == 0)
1963 {
1964 /* The write is just starting. Let the user know we've started
1965 this section. */
1966 ui_out_message (current_uiout, 0, "Loading section %s, size %s lma %s\n",
1967 args->section_name, hex_string (args->section_size),
1968 paddress (target_gdbarch (), args->lma));
1969 return;
1970 }
1971
1972 if (validate_download)
1973 {
1974 /* Broken memories and broken monitors manifest themselves here
1975 when bring new computers to life. This doubles already slow
1976 downloads. */
1977 /* NOTE: cagney/1999-10-18: A more efficient implementation
1978 might add a verify_memory() method to the target vector and
1979 then use that. remote.c could implement that method using
1980 the ``qCRC'' packet. */
1981 gdb_byte *check = xmalloc (bytes);
1982 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1983
1984 if (target_read_memory (args->lma, check, bytes) != 0)
1985 error (_("Download verify read failed at %s"),
1986 paddress (target_gdbarch (), args->lma));
1987 if (memcmp (args->buffer, check, bytes) != 0)
1988 error (_("Download verify compare failed at %s"),
1989 paddress (target_gdbarch (), args->lma));
1990 do_cleanups (verify_cleanups);
1991 }
1992 totals->data_count += bytes;
1993 args->lma += bytes;
1994 args->buffer += bytes;
1995 totals->write_count += 1;
1996 args->section_sent += bytes;
1997 if (check_quit_flag ()
1998 || (deprecated_ui_load_progress_hook != NULL
1999 && deprecated_ui_load_progress_hook (args->section_name,
2000 args->section_sent)))
2001 error (_("Canceled the download"));
2002
2003 if (deprecated_show_load_progress != NULL)
2004 deprecated_show_load_progress (args->section_name,
2005 args->section_sent,
2006 args->section_size,
2007 totals->data_count,
2008 totals->total_size);
2009 }
2010
2011 /* Callback service function for generic_load (bfd_map_over_sections). */
2012
2013 static void
2014 load_section_callback (bfd *abfd, asection *asec, void *data)
2015 {
2016 struct memory_write_request *new_request;
2017 struct load_section_data *args = data;
2018 struct load_progress_section_data *section_data;
2019 bfd_size_type size = bfd_get_section_size (asec);
2020 gdb_byte *buffer;
2021 const char *sect_name = bfd_get_section_name (abfd, asec);
2022
2023 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
2024 return;
2025
2026 if (size == 0)
2027 return;
2028
2029 new_request = VEC_safe_push (memory_write_request_s,
2030 args->requests, NULL);
2031 memset (new_request, 0, sizeof (struct memory_write_request));
2032 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
2033 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
2034 new_request->end = new_request->begin + size; /* FIXME Should size
2035 be in instead? */
2036 new_request->data = xmalloc (size);
2037 new_request->baton = section_data;
2038
2039 buffer = new_request->data;
2040
2041 section_data->cumulative = args->progress_data;
2042 section_data->section_name = sect_name;
2043 section_data->section_size = size;
2044 section_data->lma = new_request->begin;
2045 section_data->buffer = buffer;
2046
2047 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2048 }
2049
2050 /* Clean up an entire memory request vector, including load
2051 data and progress records. */
2052
2053 static void
2054 clear_memory_write_data (void *arg)
2055 {
2056 VEC(memory_write_request_s) **vec_p = arg;
2057 VEC(memory_write_request_s) *vec = *vec_p;
2058 int i;
2059 struct memory_write_request *mr;
2060
2061 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
2062 {
2063 xfree (mr->data);
2064 xfree (mr->baton);
2065 }
2066 VEC_free (memory_write_request_s, vec);
2067 }
2068
2069 void
2070 generic_load (char *args, int from_tty)
2071 {
2072 bfd *loadfile_bfd;
2073 struct timeval start_time, end_time;
2074 char *filename;
2075 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
2076 struct load_section_data cbdata;
2077 struct load_progress_data total_progress;
2078 struct ui_out *uiout = current_uiout;
2079
2080 CORE_ADDR entry;
2081 char **argv;
2082
2083 memset (&cbdata, 0, sizeof (cbdata));
2084 memset (&total_progress, 0, sizeof (total_progress));
2085 cbdata.progress_data = &total_progress;
2086
2087 make_cleanup (clear_memory_write_data, &cbdata.requests);
2088
2089 if (args == NULL)
2090 error_no_arg (_("file to load"));
2091
2092 argv = gdb_buildargv (args);
2093 make_cleanup_freeargv (argv);
2094
2095 filename = tilde_expand (argv[0]);
2096 make_cleanup (xfree, filename);
2097
2098 if (argv[1] != NULL)
2099 {
2100 const char *endptr;
2101
2102 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2103
2104 /* If the last word was not a valid number then
2105 treat it as a file name with spaces in. */
2106 if (argv[1] == endptr)
2107 error (_("Invalid download offset:%s."), argv[1]);
2108
2109 if (argv[2] != NULL)
2110 error (_("Too many parameters."));
2111 }
2112
2113 /* Open the file for loading. */
2114 loadfile_bfd = gdb_bfd_open (filename, gnutarget, -1);
2115 if (loadfile_bfd == NULL)
2116 {
2117 perror_with_name (filename);
2118 return;
2119 }
2120
2121 make_cleanup_bfd_unref (loadfile_bfd);
2122
2123 if (!bfd_check_format (loadfile_bfd, bfd_object))
2124 {
2125 error (_("\"%s\" is not an object file: %s"), filename,
2126 bfd_errmsg (bfd_get_error ()));
2127 }
2128
2129 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2130 (void *) &total_progress.total_size);
2131
2132 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2133
2134 gettimeofday (&start_time, NULL);
2135
2136 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2137 load_progress) != 0)
2138 error (_("Load failed"));
2139
2140 gettimeofday (&end_time, NULL);
2141
2142 entry = bfd_get_start_address (loadfile_bfd);
2143 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2144 ui_out_text (uiout, "Start address ");
2145 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch (), entry));
2146 ui_out_text (uiout, ", load size ");
2147 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2148 ui_out_text (uiout, "\n");
2149 /* We were doing this in remote-mips.c, I suspect it is right
2150 for other targets too. */
2151 regcache_write_pc (get_current_regcache (), entry);
2152
2153 /* Reset breakpoints, now that we have changed the load image. For
2154 instance, breakpoints may have been set (or reset, by
2155 post_create_inferior) while connected to the target but before we
2156 loaded the program. In that case, the prologue analyzer could
2157 have read instructions from the target to find the right
2158 breakpoint locations. Loading has changed the contents of that
2159 memory. */
2160
2161 breakpoint_re_set ();
2162
2163 /* FIXME: are we supposed to call symbol_file_add or not? According
2164 to a comment from remote-mips.c (where a call to symbol_file_add
2165 was commented out), making the call confuses GDB if more than one
2166 file is loaded in. Some targets do (e.g., remote-vx.c) but
2167 others don't (or didn't - perhaps they have all been deleted). */
2168
2169 print_transfer_performance (gdb_stdout, total_progress.data_count,
2170 total_progress.write_count,
2171 &start_time, &end_time);
2172
2173 do_cleanups (old_cleanups);
2174 }
2175
2176 /* Report how fast the transfer went. */
2177
2178 void
2179 print_transfer_performance (struct ui_file *stream,
2180 unsigned long data_count,
2181 unsigned long write_count,
2182 const struct timeval *start_time,
2183 const struct timeval *end_time)
2184 {
2185 ULONGEST time_count;
2186 struct ui_out *uiout = current_uiout;
2187
2188 /* Compute the elapsed time in milliseconds, as a tradeoff between
2189 accuracy and overflow. */
2190 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2191 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2192
2193 ui_out_text (uiout, "Transfer rate: ");
2194 if (time_count > 0)
2195 {
2196 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2197
2198 if (ui_out_is_mi_like_p (uiout))
2199 {
2200 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2201 ui_out_text (uiout, " bits/sec");
2202 }
2203 else if (rate < 1024)
2204 {
2205 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2206 ui_out_text (uiout, " bytes/sec");
2207 }
2208 else
2209 {
2210 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2211 ui_out_text (uiout, " KB/sec");
2212 }
2213 }
2214 else
2215 {
2216 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2217 ui_out_text (uiout, " bits in <1 sec");
2218 }
2219 if (write_count > 0)
2220 {
2221 ui_out_text (uiout, ", ");
2222 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2223 ui_out_text (uiout, " bytes/write");
2224 }
2225 ui_out_text (uiout, ".\n");
2226 }
2227
2228 /* This function allows the addition of incrementally linked object files.
2229 It does not modify any state in the target, only in the debugger. */
2230 /* Note: ezannoni 2000-04-13 This function/command used to have a
2231 special case syntax for the rombug target (Rombug is the boot
2232 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2233 rombug case, the user doesn't need to supply a text address,
2234 instead a call to target_link() (in target.c) would supply the
2235 value to use. We are now discontinuing this type of ad hoc syntax. */
2236
2237 static void
2238 add_symbol_file_command (char *args, int from_tty)
2239 {
2240 struct gdbarch *gdbarch = get_current_arch ();
2241 char *filename = NULL;
2242 int flags = OBJF_USERLOADED;
2243 char *arg;
2244 int section_index = 0;
2245 int argcnt = 0;
2246 int sec_num = 0;
2247 int i;
2248 int expecting_sec_name = 0;
2249 int expecting_sec_addr = 0;
2250 char **argv;
2251
2252 struct sect_opt
2253 {
2254 char *name;
2255 char *value;
2256 };
2257
2258 struct section_addr_info *section_addrs;
2259 struct sect_opt *sect_opts = NULL;
2260 size_t num_sect_opts = 0;
2261 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2262
2263 num_sect_opts = 16;
2264 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2265 * sizeof (struct sect_opt));
2266
2267 dont_repeat ();
2268
2269 if (args == NULL)
2270 error (_("add-symbol-file takes a file name and an address"));
2271
2272 argv = gdb_buildargv (args);
2273 make_cleanup_freeargv (argv);
2274
2275 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2276 {
2277 /* Process the argument. */
2278 if (argcnt == 0)
2279 {
2280 /* The first argument is the file name. */
2281 filename = tilde_expand (arg);
2282 make_cleanup (xfree, filename);
2283 }
2284 else
2285 if (argcnt == 1)
2286 {
2287 /* The second argument is always the text address at which
2288 to load the program. */
2289 sect_opts[section_index].name = ".text";
2290 sect_opts[section_index].value = arg;
2291 if (++section_index >= num_sect_opts)
2292 {
2293 num_sect_opts *= 2;
2294 sect_opts = ((struct sect_opt *)
2295 xrealloc (sect_opts,
2296 num_sect_opts
2297 * sizeof (struct sect_opt)));
2298 }
2299 }
2300 else
2301 {
2302 /* It's an option (starting with '-') or it's an argument
2303 to an option. */
2304
2305 if (*arg == '-')
2306 {
2307 if (strcmp (arg, "-readnow") == 0)
2308 flags |= OBJF_READNOW;
2309 else if (strcmp (arg, "-s") == 0)
2310 {
2311 expecting_sec_name = 1;
2312 expecting_sec_addr = 1;
2313 }
2314 }
2315 else
2316 {
2317 if (expecting_sec_name)
2318 {
2319 sect_opts[section_index].name = arg;
2320 expecting_sec_name = 0;
2321 }
2322 else
2323 if (expecting_sec_addr)
2324 {
2325 sect_opts[section_index].value = arg;
2326 expecting_sec_addr = 0;
2327 if (++section_index >= num_sect_opts)
2328 {
2329 num_sect_opts *= 2;
2330 sect_opts = ((struct sect_opt *)
2331 xrealloc (sect_opts,
2332 num_sect_opts
2333 * sizeof (struct sect_opt)));
2334 }
2335 }
2336 else
2337 error (_("USAGE: add-symbol-file <filename> <textaddress>"
2338 " [-readnow] [-s <secname> <addr>]*"));
2339 }
2340 }
2341 }
2342
2343 /* This command takes at least two arguments. The first one is a
2344 filename, and the second is the address where this file has been
2345 loaded. Abort now if this address hasn't been provided by the
2346 user. */
2347 if (section_index < 1)
2348 error (_("The address where %s has been loaded is missing"), filename);
2349
2350 /* Print the prompt for the query below. And save the arguments into
2351 a sect_addr_info structure to be passed around to other
2352 functions. We have to split this up into separate print
2353 statements because hex_string returns a local static
2354 string. */
2355
2356 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2357 section_addrs = alloc_section_addr_info (section_index);
2358 make_cleanup (xfree, section_addrs);
2359 for (i = 0; i < section_index; i++)
2360 {
2361 CORE_ADDR addr;
2362 char *val = sect_opts[i].value;
2363 char *sec = sect_opts[i].name;
2364
2365 addr = parse_and_eval_address (val);
2366
2367 /* Here we store the section offsets in the order they were
2368 entered on the command line. */
2369 section_addrs->other[sec_num].name = sec;
2370 section_addrs->other[sec_num].addr = addr;
2371 printf_unfiltered ("\t%s_addr = %s\n", sec,
2372 paddress (gdbarch, addr));
2373 sec_num++;
2374
2375 /* The object's sections are initialized when a
2376 call is made to build_objfile_section_table (objfile).
2377 This happens in reread_symbols.
2378 At this point, we don't know what file type this is,
2379 so we can't determine what section names are valid. */
2380 }
2381
2382 if (from_tty && (!query ("%s", "")))
2383 error (_("Not confirmed."));
2384
2385 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2386 section_addrs, flags);
2387
2388 /* Getting new symbols may change our opinion about what is
2389 frameless. */
2390 reinit_frame_cache ();
2391 do_cleanups (my_cleanups);
2392 }
2393 \f
2394
2395 typedef struct objfile *objfilep;
2396
2397 DEF_VEC_P (objfilep);
2398
2399 /* Re-read symbols if a symbol-file has changed. */
2400 void
2401 reread_symbols (void)
2402 {
2403 struct objfile *objfile;
2404 long new_modtime;
2405 struct stat new_statbuf;
2406 int res;
2407 VEC (objfilep) *new_objfiles = NULL;
2408 struct cleanup *all_cleanups;
2409
2410 all_cleanups = make_cleanup (VEC_cleanup (objfilep), &new_objfiles);
2411
2412 /* With the addition of shared libraries, this should be modified,
2413 the load time should be saved in the partial symbol tables, since
2414 different tables may come from different source files. FIXME.
2415 This routine should then walk down each partial symbol table
2416 and see if the symbol table that it originates from has been changed. */
2417
2418 for (objfile = object_files; objfile; objfile = objfile->next)
2419 {
2420 /* solib-sunos.c creates one objfile with obfd. */
2421 if (objfile->obfd == NULL)
2422 continue;
2423
2424 /* Separate debug objfiles are handled in the main objfile. */
2425 if (objfile->separate_debug_objfile_backlink)
2426 continue;
2427
2428 /* If this object is from an archive (what you usually create with
2429 `ar', often called a `static library' on most systems, though
2430 a `shared library' on AIX is also an archive), then you should
2431 stat on the archive name, not member name. */
2432 if (objfile->obfd->my_archive)
2433 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2434 else
2435 res = stat (objfile->name, &new_statbuf);
2436 if (res != 0)
2437 {
2438 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2439 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2440 objfile->name);
2441 continue;
2442 }
2443 new_modtime = new_statbuf.st_mtime;
2444 if (new_modtime != objfile->mtime)
2445 {
2446 struct cleanup *old_cleanups;
2447 struct section_offsets *offsets;
2448 int num_offsets;
2449 char *obfd_filename;
2450
2451 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2452 objfile->name);
2453
2454 /* There are various functions like symbol_file_add,
2455 symfile_bfd_open, syms_from_objfile, etc., which might
2456 appear to do what we want. But they have various other
2457 effects which we *don't* want. So we just do stuff
2458 ourselves. We don't worry about mapped files (for one thing,
2459 any mapped file will be out of date). */
2460
2461 /* If we get an error, blow away this objfile (not sure if
2462 that is the correct response for things like shared
2463 libraries). */
2464 old_cleanups = make_cleanup_free_objfile (objfile);
2465 /* We need to do this whenever any symbols go away. */
2466 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2467
2468 if (exec_bfd != NULL
2469 && filename_cmp (bfd_get_filename (objfile->obfd),
2470 bfd_get_filename (exec_bfd)) == 0)
2471 {
2472 /* Reload EXEC_BFD without asking anything. */
2473
2474 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2475 }
2476
2477 /* Keep the calls order approx. the same as in free_objfile. */
2478
2479 /* Free the separate debug objfiles. It will be
2480 automatically recreated by sym_read. */
2481 free_objfile_separate_debug (objfile);
2482
2483 /* Remove any references to this objfile in the global
2484 value lists. */
2485 preserve_values (objfile);
2486
2487 /* Nuke all the state that we will re-read. Much of the following
2488 code which sets things to NULL really is necessary to tell
2489 other parts of GDB that there is nothing currently there.
2490
2491 Try to keep the freeing order compatible with free_objfile. */
2492
2493 if (objfile->sf != NULL)
2494 {
2495 (*objfile->sf->sym_finish) (objfile);
2496 }
2497
2498 clear_objfile_data (objfile);
2499
2500 /* Clean up any state BFD has sitting around. */
2501 {
2502 struct bfd *obfd = objfile->obfd;
2503
2504 obfd_filename = bfd_get_filename (objfile->obfd);
2505 /* Open the new BFD before freeing the old one, so that
2506 the filename remains live. */
2507 objfile->obfd = gdb_bfd_open_maybe_remote (obfd_filename);
2508 if (objfile->obfd == NULL)
2509 {
2510 /* We have to make a cleanup and error here, rather
2511 than erroring later, because once we unref OBFD,
2512 OBFD_FILENAME will be freed. */
2513 make_cleanup_bfd_unref (obfd);
2514 error (_("Can't open %s to read symbols."), obfd_filename);
2515 }
2516 gdb_bfd_unref (obfd);
2517 }
2518
2519 objfile->name = bfd_get_filename (objfile->obfd);
2520 /* bfd_openr sets cacheable to true, which is what we want. */
2521 if (!bfd_check_format (objfile->obfd, bfd_object))
2522 error (_("Can't read symbols from %s: %s."), objfile->name,
2523 bfd_errmsg (bfd_get_error ()));
2524
2525 /* Save the offsets, we will nuke them with the rest of the
2526 objfile_obstack. */
2527 num_offsets = objfile->num_sections;
2528 offsets = ((struct section_offsets *)
2529 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2530 memcpy (offsets, objfile->section_offsets,
2531 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2532
2533 /* FIXME: Do we have to free a whole linked list, or is this
2534 enough? */
2535 if (objfile->global_psymbols.list)
2536 xfree (objfile->global_psymbols.list);
2537 memset (&objfile->global_psymbols, 0,
2538 sizeof (objfile->global_psymbols));
2539 if (objfile->static_psymbols.list)
2540 xfree (objfile->static_psymbols.list);
2541 memset (&objfile->static_psymbols, 0,
2542 sizeof (objfile->static_psymbols));
2543
2544 /* Free the obstacks for non-reusable objfiles. */
2545 psymbol_bcache_free (objfile->psymbol_cache);
2546 objfile->psymbol_cache = psymbol_bcache_init ();
2547 if (objfile->demangled_names_hash != NULL)
2548 {
2549 htab_delete (objfile->demangled_names_hash);
2550 objfile->demangled_names_hash = NULL;
2551 }
2552 obstack_free (&objfile->objfile_obstack, 0);
2553 objfile->sections = NULL;
2554 objfile->symtabs = NULL;
2555 objfile->psymtabs = NULL;
2556 objfile->psymtabs_addrmap = NULL;
2557 objfile->free_psymtabs = NULL;
2558 objfile->template_symbols = NULL;
2559 objfile->msymbols = NULL;
2560 objfile->minimal_symbol_count = 0;
2561 memset (&objfile->msymbol_hash, 0,
2562 sizeof (objfile->msymbol_hash));
2563 memset (&objfile->msymbol_demangled_hash, 0,
2564 sizeof (objfile->msymbol_demangled_hash));
2565
2566 set_objfile_per_bfd (objfile);
2567
2568 /* obstack_init also initializes the obstack so it is
2569 empty. We could use obstack_specify_allocation but
2570 gdb_obstack.h specifies the alloc/dealloc functions. */
2571 obstack_init (&objfile->objfile_obstack);
2572 build_objfile_section_table (objfile);
2573 terminate_minimal_symbol_table (objfile);
2574
2575 /* We use the same section offsets as from last time. I'm not
2576 sure whether that is always correct for shared libraries. */
2577 objfile->section_offsets = (struct section_offsets *)
2578 obstack_alloc (&objfile->objfile_obstack,
2579 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2580 memcpy (objfile->section_offsets, offsets,
2581 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2582 objfile->num_sections = num_offsets;
2583
2584 /* What the hell is sym_new_init for, anyway? The concept of
2585 distinguishing between the main file and additional files
2586 in this way seems rather dubious. */
2587 if (objfile == symfile_objfile)
2588 {
2589 (*objfile->sf->sym_new_init) (objfile);
2590 }
2591
2592 (*objfile->sf->sym_init) (objfile);
2593 clear_complaints (&symfile_complaints, 1, 1);
2594
2595 objfile->flags &= ~OBJF_PSYMTABS_READ;
2596 read_symbols (objfile, 0);
2597
2598 if (!objfile_has_symbols (objfile))
2599 {
2600 wrap_here ("");
2601 printf_unfiltered (_("(no debugging symbols found)\n"));
2602 wrap_here ("");
2603 }
2604
2605 /* We're done reading the symbol file; finish off complaints. */
2606 clear_complaints (&symfile_complaints, 0, 1);
2607
2608 /* Getting new symbols may change our opinion about what is
2609 frameless. */
2610
2611 reinit_frame_cache ();
2612
2613 /* Discard cleanups as symbol reading was successful. */
2614 discard_cleanups (old_cleanups);
2615
2616 /* If the mtime has changed between the time we set new_modtime
2617 and now, we *want* this to be out of date, so don't call stat
2618 again now. */
2619 objfile->mtime = new_modtime;
2620 init_entry_point_info (objfile);
2621
2622 VEC_safe_push (objfilep, new_objfiles, objfile);
2623 }
2624 }
2625
2626 if (new_objfiles)
2627 {
2628 int ix;
2629
2630 /* Notify objfiles that we've modified objfile sections. */
2631 objfiles_changed ();
2632
2633 clear_symtab_users (0);
2634
2635 /* clear_objfile_data for each objfile was called before freeing it and
2636 observer_notify_new_objfile (NULL) has been called by
2637 clear_symtab_users above. Notify the new files now. */
2638 for (ix = 0; VEC_iterate (objfilep, new_objfiles, ix, objfile); ix++)
2639 observer_notify_new_objfile (objfile);
2640
2641 /* At least one objfile has changed, so we can consider that
2642 the executable we're debugging has changed too. */
2643 observer_notify_executable_changed ();
2644 }
2645
2646 do_cleanups (all_cleanups);
2647 }
2648 \f
2649
2650
2651 typedef struct
2652 {
2653 char *ext;
2654 enum language lang;
2655 }
2656 filename_language;
2657
2658 static filename_language *filename_language_table;
2659 static int fl_table_size, fl_table_next;
2660
2661 static void
2662 add_filename_language (char *ext, enum language lang)
2663 {
2664 if (fl_table_next >= fl_table_size)
2665 {
2666 fl_table_size += 10;
2667 filename_language_table =
2668 xrealloc (filename_language_table,
2669 fl_table_size * sizeof (*filename_language_table));
2670 }
2671
2672 filename_language_table[fl_table_next].ext = xstrdup (ext);
2673 filename_language_table[fl_table_next].lang = lang;
2674 fl_table_next++;
2675 }
2676
2677 static char *ext_args;
2678 static void
2679 show_ext_args (struct ui_file *file, int from_tty,
2680 struct cmd_list_element *c, const char *value)
2681 {
2682 fprintf_filtered (file,
2683 _("Mapping between filename extension "
2684 "and source language is \"%s\".\n"),
2685 value);
2686 }
2687
2688 static void
2689 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2690 {
2691 int i;
2692 char *cp = ext_args;
2693 enum language lang;
2694
2695 /* First arg is filename extension, starting with '.' */
2696 if (*cp != '.')
2697 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2698
2699 /* Find end of first arg. */
2700 while (*cp && !isspace (*cp))
2701 cp++;
2702
2703 if (*cp == '\0')
2704 error (_("'%s': two arguments required -- "
2705 "filename extension and language"),
2706 ext_args);
2707
2708 /* Null-terminate first arg. */
2709 *cp++ = '\0';
2710
2711 /* Find beginning of second arg, which should be a source language. */
2712 cp = skip_spaces (cp);
2713
2714 if (*cp == '\0')
2715 error (_("'%s': two arguments required -- "
2716 "filename extension and language"),
2717 ext_args);
2718
2719 /* Lookup the language from among those we know. */
2720 lang = language_enum (cp);
2721
2722 /* Now lookup the filename extension: do we already know it? */
2723 for (i = 0; i < fl_table_next; i++)
2724 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2725 break;
2726
2727 if (i >= fl_table_next)
2728 {
2729 /* New file extension. */
2730 add_filename_language (ext_args, lang);
2731 }
2732 else
2733 {
2734 /* Redefining a previously known filename extension. */
2735
2736 /* if (from_tty) */
2737 /* query ("Really make files of type %s '%s'?", */
2738 /* ext_args, language_str (lang)); */
2739
2740 xfree (filename_language_table[i].ext);
2741 filename_language_table[i].ext = xstrdup (ext_args);
2742 filename_language_table[i].lang = lang;
2743 }
2744 }
2745
2746 static void
2747 info_ext_lang_command (char *args, int from_tty)
2748 {
2749 int i;
2750
2751 printf_filtered (_("Filename extensions and the languages they represent:"));
2752 printf_filtered ("\n\n");
2753 for (i = 0; i < fl_table_next; i++)
2754 printf_filtered ("\t%s\t- %s\n",
2755 filename_language_table[i].ext,
2756 language_str (filename_language_table[i].lang));
2757 }
2758
2759 static void
2760 init_filename_language_table (void)
2761 {
2762 if (fl_table_size == 0) /* Protect against repetition. */
2763 {
2764 fl_table_size = 20;
2765 fl_table_next = 0;
2766 filename_language_table =
2767 xmalloc (fl_table_size * sizeof (*filename_language_table));
2768 add_filename_language (".c", language_c);
2769 add_filename_language (".d", language_d);
2770 add_filename_language (".C", language_cplus);
2771 add_filename_language (".cc", language_cplus);
2772 add_filename_language (".cp", language_cplus);
2773 add_filename_language (".cpp", language_cplus);
2774 add_filename_language (".cxx", language_cplus);
2775 add_filename_language (".c++", language_cplus);
2776 add_filename_language (".java", language_java);
2777 add_filename_language (".class", language_java);
2778 add_filename_language (".m", language_objc);
2779 add_filename_language (".f", language_fortran);
2780 add_filename_language (".F", language_fortran);
2781 add_filename_language (".for", language_fortran);
2782 add_filename_language (".FOR", language_fortran);
2783 add_filename_language (".ftn", language_fortran);
2784 add_filename_language (".FTN", language_fortran);
2785 add_filename_language (".fpp", language_fortran);
2786 add_filename_language (".FPP", language_fortran);
2787 add_filename_language (".f90", language_fortran);
2788 add_filename_language (".F90", language_fortran);
2789 add_filename_language (".f95", language_fortran);
2790 add_filename_language (".F95", language_fortran);
2791 add_filename_language (".f03", language_fortran);
2792 add_filename_language (".F03", language_fortran);
2793 add_filename_language (".f08", language_fortran);
2794 add_filename_language (".F08", language_fortran);
2795 add_filename_language (".s", language_asm);
2796 add_filename_language (".sx", language_asm);
2797 add_filename_language (".S", language_asm);
2798 add_filename_language (".pas", language_pascal);
2799 add_filename_language (".p", language_pascal);
2800 add_filename_language (".pp", language_pascal);
2801 add_filename_language (".adb", language_ada);
2802 add_filename_language (".ads", language_ada);
2803 add_filename_language (".a", language_ada);
2804 add_filename_language (".ada", language_ada);
2805 add_filename_language (".dg", language_ada);
2806 }
2807 }
2808
2809 enum language
2810 deduce_language_from_filename (const char *filename)
2811 {
2812 int i;
2813 char *cp;
2814
2815 if (filename != NULL)
2816 if ((cp = strrchr (filename, '.')) != NULL)
2817 for (i = 0; i < fl_table_next; i++)
2818 if (strcmp (cp, filename_language_table[i].ext) == 0)
2819 return filename_language_table[i].lang;
2820
2821 return language_unknown;
2822 }
2823 \f
2824 /* allocate_symtab:
2825
2826 Allocate and partly initialize a new symbol table. Return a pointer
2827 to it. error() if no space.
2828
2829 Caller must set these fields:
2830 LINETABLE(symtab)
2831 symtab->blockvector
2832 symtab->dirname
2833 symtab->free_code
2834 symtab->free_ptr
2835 */
2836
2837 struct symtab *
2838 allocate_symtab (const char *filename, struct objfile *objfile)
2839 {
2840 struct symtab *symtab;
2841
2842 symtab = (struct symtab *)
2843 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2844 memset (symtab, 0, sizeof (*symtab));
2845 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2846 objfile->per_bfd->filename_cache);
2847 symtab->fullname = NULL;
2848 symtab->language = deduce_language_from_filename (filename);
2849 symtab->debugformat = "unknown";
2850
2851 /* Hook it to the objfile it comes from. */
2852
2853 symtab->objfile = objfile;
2854 symtab->next = objfile->symtabs;
2855 objfile->symtabs = symtab;
2856
2857 if (symtab_create_debug)
2858 {
2859 /* Be a bit clever with debugging messages, and don't print objfile
2860 every time, only when it changes. */
2861 static char *last_objfile_name = NULL;
2862
2863 if (last_objfile_name == NULL
2864 || strcmp (last_objfile_name, objfile->name) != 0)
2865 {
2866 xfree (last_objfile_name);
2867 last_objfile_name = xstrdup (objfile->name);
2868 fprintf_unfiltered (gdb_stdlog,
2869 "Creating one or more symtabs for objfile %s ...\n",
2870 last_objfile_name);
2871 }
2872 fprintf_unfiltered (gdb_stdlog,
2873 "Created symtab %s for module %s.\n",
2874 host_address_to_string (symtab), filename);
2875 }
2876
2877 return (symtab);
2878 }
2879 \f
2880
2881 /* Reset all data structures in gdb which may contain references to symbol
2882 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2883
2884 void
2885 clear_symtab_users (int add_flags)
2886 {
2887 /* Someday, we should do better than this, by only blowing away
2888 the things that really need to be blown. */
2889
2890 /* Clear the "current" symtab first, because it is no longer valid.
2891 breakpoint_re_set may try to access the current symtab. */
2892 clear_current_source_symtab_and_line ();
2893
2894 clear_displays ();
2895 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2896 breakpoint_re_set ();
2897 clear_last_displayed_sal ();
2898 clear_pc_function_cache ();
2899 observer_notify_new_objfile (NULL);
2900
2901 /* Clear globals which might have pointed into a removed objfile.
2902 FIXME: It's not clear which of these are supposed to persist
2903 between expressions and which ought to be reset each time. */
2904 expression_context_block = NULL;
2905 innermost_block = NULL;
2906
2907 /* Varobj may refer to old symbols, perform a cleanup. */
2908 varobj_invalidate ();
2909
2910 }
2911
2912 static void
2913 clear_symtab_users_cleanup (void *ignore)
2914 {
2915 clear_symtab_users (0);
2916 }
2917 \f
2918 /* OVERLAYS:
2919 The following code implements an abstraction for debugging overlay sections.
2920
2921 The target model is as follows:
2922 1) The gnu linker will permit multiple sections to be mapped into the
2923 same VMA, each with its own unique LMA (or load address).
2924 2) It is assumed that some runtime mechanism exists for mapping the
2925 sections, one by one, from the load address into the VMA address.
2926 3) This code provides a mechanism for gdb to keep track of which
2927 sections should be considered to be mapped from the VMA to the LMA.
2928 This information is used for symbol lookup, and memory read/write.
2929 For instance, if a section has been mapped then its contents
2930 should be read from the VMA, otherwise from the LMA.
2931
2932 Two levels of debugger support for overlays are available. One is
2933 "manual", in which the debugger relies on the user to tell it which
2934 overlays are currently mapped. This level of support is
2935 implemented entirely in the core debugger, and the information about
2936 whether a section is mapped is kept in the objfile->obj_section table.
2937
2938 The second level of support is "automatic", and is only available if
2939 the target-specific code provides functionality to read the target's
2940 overlay mapping table, and translate its contents for the debugger
2941 (by updating the mapped state information in the obj_section tables).
2942
2943 The interface is as follows:
2944 User commands:
2945 overlay map <name> -- tell gdb to consider this section mapped
2946 overlay unmap <name> -- tell gdb to consider this section unmapped
2947 overlay list -- list the sections that GDB thinks are mapped
2948 overlay read-target -- get the target's state of what's mapped
2949 overlay off/manual/auto -- set overlay debugging state
2950 Functional interface:
2951 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2952 section, return that section.
2953 find_pc_overlay(pc): find any overlay section that contains
2954 the pc, either in its VMA or its LMA
2955 section_is_mapped(sect): true if overlay is marked as mapped
2956 section_is_overlay(sect): true if section's VMA != LMA
2957 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2958 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2959 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2960 overlay_mapped_address(...): map an address from section's LMA to VMA
2961 overlay_unmapped_address(...): map an address from section's VMA to LMA
2962 symbol_overlayed_address(...): Return a "current" address for symbol:
2963 either in VMA or LMA depending on whether
2964 the symbol's section is currently mapped. */
2965
2966 /* Overlay debugging state: */
2967
2968 enum overlay_debugging_state overlay_debugging = ovly_off;
2969 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2970
2971 /* Function: section_is_overlay (SECTION)
2972 Returns true if SECTION has VMA not equal to LMA, ie.
2973 SECTION is loaded at an address different from where it will "run". */
2974
2975 int
2976 section_is_overlay (struct obj_section *section)
2977 {
2978 if (overlay_debugging && section)
2979 {
2980 bfd *abfd = section->objfile->obfd;
2981 asection *bfd_section = section->the_bfd_section;
2982
2983 if (bfd_section_lma (abfd, bfd_section) != 0
2984 && bfd_section_lma (abfd, bfd_section)
2985 != bfd_section_vma (abfd, bfd_section))
2986 return 1;
2987 }
2988
2989 return 0;
2990 }
2991
2992 /* Function: overlay_invalidate_all (void)
2993 Invalidate the mapped state of all overlay sections (mark it as stale). */
2994
2995 static void
2996 overlay_invalidate_all (void)
2997 {
2998 struct objfile *objfile;
2999 struct obj_section *sect;
3000
3001 ALL_OBJSECTIONS (objfile, sect)
3002 if (section_is_overlay (sect))
3003 sect->ovly_mapped = -1;
3004 }
3005
3006 /* Function: section_is_mapped (SECTION)
3007 Returns true if section is an overlay, and is currently mapped.
3008
3009 Access to the ovly_mapped flag is restricted to this function, so
3010 that we can do automatic update. If the global flag
3011 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
3012 overlay_invalidate_all. If the mapped state of the particular
3013 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
3014
3015 int
3016 section_is_mapped (struct obj_section *osect)
3017 {
3018 struct gdbarch *gdbarch;
3019
3020 if (osect == 0 || !section_is_overlay (osect))
3021 return 0;
3022
3023 switch (overlay_debugging)
3024 {
3025 default:
3026 case ovly_off:
3027 return 0; /* overlay debugging off */
3028 case ovly_auto: /* overlay debugging automatic */
3029 /* Unles there is a gdbarch_overlay_update function,
3030 there's really nothing useful to do here (can't really go auto). */
3031 gdbarch = get_objfile_arch (osect->objfile);
3032 if (gdbarch_overlay_update_p (gdbarch))
3033 {
3034 if (overlay_cache_invalid)
3035 {
3036 overlay_invalidate_all ();
3037 overlay_cache_invalid = 0;
3038 }
3039 if (osect->ovly_mapped == -1)
3040 gdbarch_overlay_update (gdbarch, osect);
3041 }
3042 /* fall thru to manual case */
3043 case ovly_on: /* overlay debugging manual */
3044 return osect->ovly_mapped == 1;
3045 }
3046 }
3047
3048 /* Function: pc_in_unmapped_range
3049 If PC falls into the lma range of SECTION, return true, else false. */
3050
3051 CORE_ADDR
3052 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3053 {
3054 if (section_is_overlay (section))
3055 {
3056 bfd *abfd = section->objfile->obfd;
3057 asection *bfd_section = section->the_bfd_section;
3058
3059 /* We assume the LMA is relocated by the same offset as the VMA. */
3060 bfd_vma size = bfd_get_section_size (bfd_section);
3061 CORE_ADDR offset = obj_section_offset (section);
3062
3063 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
3064 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
3065 return 1;
3066 }
3067
3068 return 0;
3069 }
3070
3071 /* Function: pc_in_mapped_range
3072 If PC falls into the vma range of SECTION, return true, else false. */
3073
3074 CORE_ADDR
3075 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3076 {
3077 if (section_is_overlay (section))
3078 {
3079 if (obj_section_addr (section) <= pc
3080 && pc < obj_section_endaddr (section))
3081 return 1;
3082 }
3083
3084 return 0;
3085 }
3086
3087
3088 /* Return true if the mapped ranges of sections A and B overlap, false
3089 otherwise. */
3090 static int
3091 sections_overlap (struct obj_section *a, struct obj_section *b)
3092 {
3093 CORE_ADDR a_start = obj_section_addr (a);
3094 CORE_ADDR a_end = obj_section_endaddr (a);
3095 CORE_ADDR b_start = obj_section_addr (b);
3096 CORE_ADDR b_end = obj_section_endaddr (b);
3097
3098 return (a_start < b_end && b_start < a_end);
3099 }
3100
3101 /* Function: overlay_unmapped_address (PC, SECTION)
3102 Returns the address corresponding to PC in the unmapped (load) range.
3103 May be the same as PC. */
3104
3105 CORE_ADDR
3106 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3107 {
3108 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3109 {
3110 bfd *abfd = section->objfile->obfd;
3111 asection *bfd_section = section->the_bfd_section;
3112
3113 return pc + bfd_section_lma (abfd, bfd_section)
3114 - bfd_section_vma (abfd, bfd_section);
3115 }
3116
3117 return pc;
3118 }
3119
3120 /* Function: overlay_mapped_address (PC, SECTION)
3121 Returns the address corresponding to PC in the mapped (runtime) range.
3122 May be the same as PC. */
3123
3124 CORE_ADDR
3125 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3126 {
3127 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3128 {
3129 bfd *abfd = section->objfile->obfd;
3130 asection *bfd_section = section->the_bfd_section;
3131
3132 return pc + bfd_section_vma (abfd, bfd_section)
3133 - bfd_section_lma (abfd, bfd_section);
3134 }
3135
3136 return pc;
3137 }
3138
3139
3140 /* Function: symbol_overlayed_address
3141 Return one of two addresses (relative to the VMA or to the LMA),
3142 depending on whether the section is mapped or not. */
3143
3144 CORE_ADDR
3145 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3146 {
3147 if (overlay_debugging)
3148 {
3149 /* If the symbol has no section, just return its regular address. */
3150 if (section == 0)
3151 return address;
3152 /* If the symbol's section is not an overlay, just return its
3153 address. */
3154 if (!section_is_overlay (section))
3155 return address;
3156 /* If the symbol's section is mapped, just return its address. */
3157 if (section_is_mapped (section))
3158 return address;
3159 /*
3160 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3161 * then return its LOADED address rather than its vma address!!
3162 */
3163 return overlay_unmapped_address (address, section);
3164 }
3165 return address;
3166 }
3167
3168 /* Function: find_pc_overlay (PC)
3169 Return the best-match overlay section for PC:
3170 If PC matches a mapped overlay section's VMA, return that section.
3171 Else if PC matches an unmapped section's VMA, return that section.
3172 Else if PC matches an unmapped section's LMA, return that section. */
3173
3174 struct obj_section *
3175 find_pc_overlay (CORE_ADDR pc)
3176 {
3177 struct objfile *objfile;
3178 struct obj_section *osect, *best_match = NULL;
3179
3180 if (overlay_debugging)
3181 ALL_OBJSECTIONS (objfile, osect)
3182 if (section_is_overlay (osect))
3183 {
3184 if (pc_in_mapped_range (pc, osect))
3185 {
3186 if (section_is_mapped (osect))
3187 return osect;
3188 else
3189 best_match = osect;
3190 }
3191 else if (pc_in_unmapped_range (pc, osect))
3192 best_match = osect;
3193 }
3194 return best_match;
3195 }
3196
3197 /* Function: find_pc_mapped_section (PC)
3198 If PC falls into the VMA address range of an overlay section that is
3199 currently marked as MAPPED, return that section. Else return NULL. */
3200
3201 struct obj_section *
3202 find_pc_mapped_section (CORE_ADDR pc)
3203 {
3204 struct objfile *objfile;
3205 struct obj_section *osect;
3206
3207 if (overlay_debugging)
3208 ALL_OBJSECTIONS (objfile, osect)
3209 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3210 return osect;
3211
3212 return NULL;
3213 }
3214
3215 /* Function: list_overlays_command
3216 Print a list of mapped sections and their PC ranges. */
3217
3218 static void
3219 list_overlays_command (char *args, int from_tty)
3220 {
3221 int nmapped = 0;
3222 struct objfile *objfile;
3223 struct obj_section *osect;
3224
3225 if (overlay_debugging)
3226 ALL_OBJSECTIONS (objfile, osect)
3227 if (section_is_mapped (osect))
3228 {
3229 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3230 const char *name;
3231 bfd_vma lma, vma;
3232 int size;
3233
3234 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3235 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3236 size = bfd_get_section_size (osect->the_bfd_section);
3237 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3238
3239 printf_filtered ("Section %s, loaded at ", name);
3240 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3241 puts_filtered (" - ");
3242 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3243 printf_filtered (", mapped at ");
3244 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3245 puts_filtered (" - ");
3246 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3247 puts_filtered ("\n");
3248
3249 nmapped++;
3250 }
3251 if (nmapped == 0)
3252 printf_filtered (_("No sections are mapped.\n"));
3253 }
3254
3255 /* Function: map_overlay_command
3256 Mark the named section as mapped (ie. residing at its VMA address). */
3257
3258 static void
3259 map_overlay_command (char *args, int from_tty)
3260 {
3261 struct objfile *objfile, *objfile2;
3262 struct obj_section *sec, *sec2;
3263
3264 if (!overlay_debugging)
3265 error (_("Overlay debugging not enabled. Use "
3266 "either the 'overlay auto' or\n"
3267 "the 'overlay manual' command."));
3268
3269 if (args == 0 || *args == 0)
3270 error (_("Argument required: name of an overlay section"));
3271
3272 /* First, find a section matching the user supplied argument. */
3273 ALL_OBJSECTIONS (objfile, sec)
3274 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3275 {
3276 /* Now, check to see if the section is an overlay. */
3277 if (!section_is_overlay (sec))
3278 continue; /* not an overlay section */
3279
3280 /* Mark the overlay as "mapped". */
3281 sec->ovly_mapped = 1;
3282
3283 /* Next, make a pass and unmap any sections that are
3284 overlapped by this new section: */
3285 ALL_OBJSECTIONS (objfile2, sec2)
3286 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3287 {
3288 if (info_verbose)
3289 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3290 bfd_section_name (objfile->obfd,
3291 sec2->the_bfd_section));
3292 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3293 }
3294 return;
3295 }
3296 error (_("No overlay section called %s"), args);
3297 }
3298
3299 /* Function: unmap_overlay_command
3300 Mark the overlay section as unmapped
3301 (ie. resident in its LMA address range, rather than the VMA range). */
3302
3303 static void
3304 unmap_overlay_command (char *args, int from_tty)
3305 {
3306 struct objfile *objfile;
3307 struct obj_section *sec;
3308
3309 if (!overlay_debugging)
3310 error (_("Overlay debugging not enabled. "
3311 "Use either the 'overlay auto' or\n"
3312 "the 'overlay manual' command."));
3313
3314 if (args == 0 || *args == 0)
3315 error (_("Argument required: name of an overlay section"));
3316
3317 /* First, find a section matching the user supplied argument. */
3318 ALL_OBJSECTIONS (objfile, sec)
3319 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3320 {
3321 if (!sec->ovly_mapped)
3322 error (_("Section %s is not mapped"), args);
3323 sec->ovly_mapped = 0;
3324 return;
3325 }
3326 error (_("No overlay section called %s"), args);
3327 }
3328
3329 /* Function: overlay_auto_command
3330 A utility command to turn on overlay debugging.
3331 Possibly this should be done via a set/show command. */
3332
3333 static void
3334 overlay_auto_command (char *args, int from_tty)
3335 {
3336 overlay_debugging = ovly_auto;
3337 enable_overlay_breakpoints ();
3338 if (info_verbose)
3339 printf_unfiltered (_("Automatic overlay debugging enabled."));
3340 }
3341
3342 /* Function: overlay_manual_command
3343 A utility command to turn on overlay debugging.
3344 Possibly this should be done via a set/show command. */
3345
3346 static void
3347 overlay_manual_command (char *args, int from_tty)
3348 {
3349 overlay_debugging = ovly_on;
3350 disable_overlay_breakpoints ();
3351 if (info_verbose)
3352 printf_unfiltered (_("Overlay debugging enabled."));
3353 }
3354
3355 /* Function: overlay_off_command
3356 A utility command to turn on overlay debugging.
3357 Possibly this should be done via a set/show command. */
3358
3359 static void
3360 overlay_off_command (char *args, int from_tty)
3361 {
3362 overlay_debugging = ovly_off;
3363 disable_overlay_breakpoints ();
3364 if (info_verbose)
3365 printf_unfiltered (_("Overlay debugging disabled."));
3366 }
3367
3368 static void
3369 overlay_load_command (char *args, int from_tty)
3370 {
3371 struct gdbarch *gdbarch = get_current_arch ();
3372
3373 if (gdbarch_overlay_update_p (gdbarch))
3374 gdbarch_overlay_update (gdbarch, NULL);
3375 else
3376 error (_("This target does not know how to read its overlay state."));
3377 }
3378
3379 /* Function: overlay_command
3380 A place-holder for a mis-typed command. */
3381
3382 /* Command list chain containing all defined "overlay" subcommands. */
3383 static struct cmd_list_element *overlaylist;
3384
3385 static void
3386 overlay_command (char *args, int from_tty)
3387 {
3388 printf_unfiltered
3389 ("\"overlay\" must be followed by the name of an overlay command.\n");
3390 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3391 }
3392
3393
3394 /* Target Overlays for the "Simplest" overlay manager:
3395
3396 This is GDB's default target overlay layer. It works with the
3397 minimal overlay manager supplied as an example by Cygnus. The
3398 entry point is via a function pointer "gdbarch_overlay_update",
3399 so targets that use a different runtime overlay manager can
3400 substitute their own overlay_update function and take over the
3401 function pointer.
3402
3403 The overlay_update function pokes around in the target's data structures
3404 to see what overlays are mapped, and updates GDB's overlay mapping with
3405 this information.
3406
3407 In this simple implementation, the target data structures are as follows:
3408 unsigned _novlys; /# number of overlay sections #/
3409 unsigned _ovly_table[_novlys][4] = {
3410 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3411 {..., ..., ..., ...},
3412 }
3413 unsigned _novly_regions; /# number of overlay regions #/
3414 unsigned _ovly_region_table[_novly_regions][3] = {
3415 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3416 {..., ..., ...},
3417 }
3418 These functions will attempt to update GDB's mappedness state in the
3419 symbol section table, based on the target's mappedness state.
3420
3421 To do this, we keep a cached copy of the target's _ovly_table, and
3422 attempt to detect when the cached copy is invalidated. The main
3423 entry point is "simple_overlay_update(SECT), which looks up SECT in
3424 the cached table and re-reads only the entry for that section from
3425 the target (whenever possible). */
3426
3427 /* Cached, dynamically allocated copies of the target data structures: */
3428 static unsigned (*cache_ovly_table)[4] = 0;
3429 static unsigned cache_novlys = 0;
3430 static CORE_ADDR cache_ovly_table_base = 0;
3431 enum ovly_index
3432 {
3433 VMA, SIZE, LMA, MAPPED
3434 };
3435
3436 /* Throw away the cached copy of _ovly_table. */
3437 static void
3438 simple_free_overlay_table (void)
3439 {
3440 if (cache_ovly_table)
3441 xfree (cache_ovly_table);
3442 cache_novlys = 0;
3443 cache_ovly_table = NULL;
3444 cache_ovly_table_base = 0;
3445 }
3446
3447 /* Read an array of ints of size SIZE from the target into a local buffer.
3448 Convert to host order. int LEN is number of ints. */
3449 static void
3450 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3451 int len, int size, enum bfd_endian byte_order)
3452 {
3453 /* FIXME (alloca): Not safe if array is very large. */
3454 gdb_byte *buf = alloca (len * size);
3455 int i;
3456
3457 read_memory (memaddr, buf, len * size);
3458 for (i = 0; i < len; i++)
3459 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3460 }
3461
3462 /* Find and grab a copy of the target _ovly_table
3463 (and _novlys, which is needed for the table's size). */
3464 static int
3465 simple_read_overlay_table (void)
3466 {
3467 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3468 struct gdbarch *gdbarch;
3469 int word_size;
3470 enum bfd_endian byte_order;
3471
3472 simple_free_overlay_table ();
3473 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3474 if (! novlys_msym)
3475 {
3476 error (_("Error reading inferior's overlay table: "
3477 "couldn't find `_novlys' variable\n"
3478 "in inferior. Use `overlay manual' mode."));
3479 return 0;
3480 }
3481
3482 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3483 if (! ovly_table_msym)
3484 {
3485 error (_("Error reading inferior's overlay table: couldn't find "
3486 "`_ovly_table' array\n"
3487 "in inferior. Use `overlay manual' mode."));
3488 return 0;
3489 }
3490
3491 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3492 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3493 byte_order = gdbarch_byte_order (gdbarch);
3494
3495 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3496 4, byte_order);
3497 cache_ovly_table
3498 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3499 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3500 read_target_long_array (cache_ovly_table_base,
3501 (unsigned int *) cache_ovly_table,
3502 cache_novlys * 4, word_size, byte_order);
3503
3504 return 1; /* SUCCESS */
3505 }
3506
3507 /* Function: simple_overlay_update_1
3508 A helper function for simple_overlay_update. Assuming a cached copy
3509 of _ovly_table exists, look through it to find an entry whose vma,
3510 lma and size match those of OSECT. Re-read the entry and make sure
3511 it still matches OSECT (else the table may no longer be valid).
3512 Set OSECT's mapped state to match the entry. Return: 1 for
3513 success, 0 for failure. */
3514
3515 static int
3516 simple_overlay_update_1 (struct obj_section *osect)
3517 {
3518 int i, size;
3519 bfd *obfd = osect->objfile->obfd;
3520 asection *bsect = osect->the_bfd_section;
3521 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3522 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3523 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3524
3525 size = bfd_get_section_size (osect->the_bfd_section);
3526 for (i = 0; i < cache_novlys; i++)
3527 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3528 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3529 /* && cache_ovly_table[i][SIZE] == size */ )
3530 {
3531 read_target_long_array (cache_ovly_table_base + i * word_size,
3532 (unsigned int *) cache_ovly_table[i],
3533 4, word_size, byte_order);
3534 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3535 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3536 /* && cache_ovly_table[i][SIZE] == size */ )
3537 {
3538 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3539 return 1;
3540 }
3541 else /* Warning! Warning! Target's ovly table has changed! */
3542 return 0;
3543 }
3544 return 0;
3545 }
3546
3547 /* Function: simple_overlay_update
3548 If OSECT is NULL, then update all sections' mapped state
3549 (after re-reading the entire target _ovly_table).
3550 If OSECT is non-NULL, then try to find a matching entry in the
3551 cached ovly_table and update only OSECT's mapped state.
3552 If a cached entry can't be found or the cache isn't valid, then
3553 re-read the entire cache, and go ahead and update all sections. */
3554
3555 void
3556 simple_overlay_update (struct obj_section *osect)
3557 {
3558 struct objfile *objfile;
3559
3560 /* Were we given an osect to look up? NULL means do all of them. */
3561 if (osect)
3562 /* Have we got a cached copy of the target's overlay table? */
3563 if (cache_ovly_table != NULL)
3564 {
3565 /* Does its cached location match what's currently in the
3566 symtab? */
3567 struct minimal_symbol *minsym
3568 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3569
3570 if (minsym == NULL)
3571 error (_("Error reading inferior's overlay table: couldn't "
3572 "find `_ovly_table' array\n"
3573 "in inferior. Use `overlay manual' mode."));
3574
3575 if (cache_ovly_table_base == SYMBOL_VALUE_ADDRESS (minsym))
3576 /* Then go ahead and try to look up this single section in
3577 the cache. */
3578 if (simple_overlay_update_1 (osect))
3579 /* Found it! We're done. */
3580 return;
3581 }
3582
3583 /* Cached table no good: need to read the entire table anew.
3584 Or else we want all the sections, in which case it's actually
3585 more efficient to read the whole table in one block anyway. */
3586
3587 if (! simple_read_overlay_table ())
3588 return;
3589
3590 /* Now may as well update all sections, even if only one was requested. */
3591 ALL_OBJSECTIONS (objfile, osect)
3592 if (section_is_overlay (osect))
3593 {
3594 int i, size;
3595 bfd *obfd = osect->objfile->obfd;
3596 asection *bsect = osect->the_bfd_section;
3597
3598 size = bfd_get_section_size (bsect);
3599 for (i = 0; i < cache_novlys; i++)
3600 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3601 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3602 /* && cache_ovly_table[i][SIZE] == size */ )
3603 { /* obj_section matches i'th entry in ovly_table. */
3604 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3605 break; /* finished with inner for loop: break out. */
3606 }
3607 }
3608 }
3609
3610 /* Set the output sections and output offsets for section SECTP in
3611 ABFD. The relocation code in BFD will read these offsets, so we
3612 need to be sure they're initialized. We map each section to itself,
3613 with no offset; this means that SECTP->vma will be honored. */
3614
3615 static void
3616 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3617 {
3618 sectp->output_section = sectp;
3619 sectp->output_offset = 0;
3620 }
3621
3622 /* Default implementation for sym_relocate. */
3623
3624
3625 bfd_byte *
3626 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3627 bfd_byte *buf)
3628 {
3629 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3630 DWO file. */
3631 bfd *abfd = sectp->owner;
3632
3633 /* We're only interested in sections with relocation
3634 information. */
3635 if ((sectp->flags & SEC_RELOC) == 0)
3636 return NULL;
3637
3638 /* We will handle section offsets properly elsewhere, so relocate as if
3639 all sections begin at 0. */
3640 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3641
3642 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3643 }
3644
3645 /* Relocate the contents of a debug section SECTP in ABFD. The
3646 contents are stored in BUF if it is non-NULL, or returned in a
3647 malloc'd buffer otherwise.
3648
3649 For some platforms and debug info formats, shared libraries contain
3650 relocations against the debug sections (particularly for DWARF-2;
3651 one affected platform is PowerPC GNU/Linux, although it depends on
3652 the version of the linker in use). Also, ELF object files naturally
3653 have unresolved relocations for their debug sections. We need to apply
3654 the relocations in order to get the locations of symbols correct.
3655 Another example that may require relocation processing, is the
3656 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3657 debug section. */
3658
3659 bfd_byte *
3660 symfile_relocate_debug_section (struct objfile *objfile,
3661 asection *sectp, bfd_byte *buf)
3662 {
3663 gdb_assert (objfile->sf->sym_relocate);
3664
3665 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3666 }
3667
3668 struct symfile_segment_data *
3669 get_symfile_segment_data (bfd *abfd)
3670 {
3671 const struct sym_fns *sf = find_sym_fns (abfd);
3672
3673 if (sf == NULL)
3674 return NULL;
3675
3676 return sf->sym_segments (abfd);
3677 }
3678
3679 void
3680 free_symfile_segment_data (struct symfile_segment_data *data)
3681 {
3682 xfree (data->segment_bases);
3683 xfree (data->segment_sizes);
3684 xfree (data->segment_info);
3685 xfree (data);
3686 }
3687
3688
3689 /* Given:
3690 - DATA, containing segment addresses from the object file ABFD, and
3691 the mapping from ABFD's sections onto the segments that own them,
3692 and
3693 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3694 segment addresses reported by the target,
3695 store the appropriate offsets for each section in OFFSETS.
3696
3697 If there are fewer entries in SEGMENT_BASES than there are segments
3698 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3699
3700 If there are more entries, then ignore the extra. The target may
3701 not be able to distinguish between an empty data segment and a
3702 missing data segment; a missing text segment is less plausible. */
3703 int
3704 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3705 struct section_offsets *offsets,
3706 int num_segment_bases,
3707 const CORE_ADDR *segment_bases)
3708 {
3709 int i;
3710 asection *sect;
3711
3712 /* It doesn't make sense to call this function unless you have some
3713 segment base addresses. */
3714 gdb_assert (num_segment_bases > 0);
3715
3716 /* If we do not have segment mappings for the object file, we
3717 can not relocate it by segments. */
3718 gdb_assert (data != NULL);
3719 gdb_assert (data->num_segments > 0);
3720
3721 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3722 {
3723 int which = data->segment_info[i];
3724
3725 gdb_assert (0 <= which && which <= data->num_segments);
3726
3727 /* Don't bother computing offsets for sections that aren't
3728 loaded as part of any segment. */
3729 if (! which)
3730 continue;
3731
3732 /* Use the last SEGMENT_BASES entry as the address of any extra
3733 segments mentioned in DATA->segment_info. */
3734 if (which > num_segment_bases)
3735 which = num_segment_bases;
3736
3737 offsets->offsets[i] = (segment_bases[which - 1]
3738 - data->segment_bases[which - 1]);
3739 }
3740
3741 return 1;
3742 }
3743
3744 static void
3745 symfile_find_segment_sections (struct objfile *objfile)
3746 {
3747 bfd *abfd = objfile->obfd;
3748 int i;
3749 asection *sect;
3750 struct symfile_segment_data *data;
3751
3752 data = get_symfile_segment_data (objfile->obfd);
3753 if (data == NULL)
3754 return;
3755
3756 if (data->num_segments != 1 && data->num_segments != 2)
3757 {
3758 free_symfile_segment_data (data);
3759 return;
3760 }
3761
3762 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3763 {
3764 int which = data->segment_info[i];
3765
3766 if (which == 1)
3767 {
3768 if (objfile->sect_index_text == -1)
3769 objfile->sect_index_text = sect->index;
3770
3771 if (objfile->sect_index_rodata == -1)
3772 objfile->sect_index_rodata = sect->index;
3773 }
3774 else if (which == 2)
3775 {
3776 if (objfile->sect_index_data == -1)
3777 objfile->sect_index_data = sect->index;
3778
3779 if (objfile->sect_index_bss == -1)
3780 objfile->sect_index_bss = sect->index;
3781 }
3782 }
3783
3784 free_symfile_segment_data (data);
3785 }
3786
3787 void
3788 _initialize_symfile (void)
3789 {
3790 struct cmd_list_element *c;
3791
3792 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3793 Load symbol table from executable file FILE.\n\
3794 The `file' command can also load symbol tables, as well as setting the file\n\
3795 to execute."), &cmdlist);
3796 set_cmd_completer (c, filename_completer);
3797
3798 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3799 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3800 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR>\
3801 ...]\nADDR is the starting address of the file's text.\n\
3802 The optional arguments are section-name section-address pairs and\n\
3803 should be specified if the data and bss segments are not contiguous\n\
3804 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3805 &cmdlist);
3806 set_cmd_completer (c, filename_completer);
3807
3808 c = add_cmd ("load", class_files, load_command, _("\
3809 Dynamically load FILE into the running program, and record its symbols\n\
3810 for access from GDB.\n\
3811 A load OFFSET may also be given."), &cmdlist);
3812 set_cmd_completer (c, filename_completer);
3813
3814 add_prefix_cmd ("overlay", class_support, overlay_command,
3815 _("Commands for debugging overlays."), &overlaylist,
3816 "overlay ", 0, &cmdlist);
3817
3818 add_com_alias ("ovly", "overlay", class_alias, 1);
3819 add_com_alias ("ov", "overlay", class_alias, 1);
3820
3821 add_cmd ("map-overlay", class_support, map_overlay_command,
3822 _("Assert that an overlay section is mapped."), &overlaylist);
3823
3824 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3825 _("Assert that an overlay section is unmapped."), &overlaylist);
3826
3827 add_cmd ("list-overlays", class_support, list_overlays_command,
3828 _("List mappings of overlay sections."), &overlaylist);
3829
3830 add_cmd ("manual", class_support, overlay_manual_command,
3831 _("Enable overlay debugging."), &overlaylist);
3832 add_cmd ("off", class_support, overlay_off_command,
3833 _("Disable overlay debugging."), &overlaylist);
3834 add_cmd ("auto", class_support, overlay_auto_command,
3835 _("Enable automatic overlay debugging."), &overlaylist);
3836 add_cmd ("load-target", class_support, overlay_load_command,
3837 _("Read the overlay mapping state from the target."), &overlaylist);
3838
3839 /* Filename extension to source language lookup table: */
3840 init_filename_language_table ();
3841 add_setshow_string_noescape_cmd ("extension-language", class_files,
3842 &ext_args, _("\
3843 Set mapping between filename extension and source language."), _("\
3844 Show mapping between filename extension and source language."), _("\
3845 Usage: set extension-language .foo bar"),
3846 set_ext_lang_command,
3847 show_ext_args,
3848 &setlist, &showlist);
3849
3850 add_info ("extensions", info_ext_lang_command,
3851 _("All filename extensions associated with a source language."));
3852
3853 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3854 &debug_file_directory, _("\
3855 Set the directories where separate debug symbols are searched for."), _("\
3856 Show the directories where separate debug symbols are searched for."), _("\
3857 Separate debug symbols are first searched for in the same\n\
3858 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3859 and lastly at the path of the directory of the binary with\n\
3860 each global debug-file-directory component prepended."),
3861 NULL,
3862 show_debug_file_directory,
3863 &setlist, &showlist);
3864 }