]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symfile.c
cfbfd55e3ff48e8da47e17a927afe5ce82673eaf
[thirdparty/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999,
4 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "arch-utils.h"
26 #include "bfdlink.h"
27 #include "symtab.h"
28 #include "gdbtypes.h"
29 #include "gdbcore.h"
30 #include "frame.h"
31 #include "target.h"
32 #include "value.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "source.h"
36 #include "gdbcmd.h"
37 #include "breakpoint.h"
38 #include "language.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "inferior.h"
42 #include "regcache.h"
43 #include "filenames.h" /* for DOSish file names */
44 #include "gdb-stabs.h"
45 #include "gdb_obstack.h"
46 #include "completer.h"
47 #include "bcache.h"
48 #include "hashtab.h"
49 #include "readline/readline.h"
50 #include "gdb_assert.h"
51 #include "block.h"
52 #include "observer.h"
53 #include "exec.h"
54 #include "parser-defs.h"
55 #include "varobj.h"
56 #include "elf-bfd.h"
57 #include "solib.h"
58 #include "remote.h"
59
60 #include <sys/types.h>
61 #include <fcntl.h>
62 #include "gdb_string.h"
63 #include "gdb_stat.h"
64 #include <ctype.h>
65 #include <time.h>
66 #include <sys/time.h>
67
68 #include "psymtab.h"
69
70 int (*deprecated_ui_load_progress_hook) (const char *section, unsigned long num);
71 void (*deprecated_show_load_progress) (const char *section,
72 unsigned long section_sent,
73 unsigned long section_size,
74 unsigned long total_sent,
75 unsigned long total_size);
76 void (*deprecated_pre_add_symbol_hook) (const char *);
77 void (*deprecated_post_add_symbol_hook) (void);
78
79 static void clear_symtab_users_cleanup (void *ignore);
80
81 /* Global variables owned by this file */
82 int readnow_symbol_files; /* Read full symbols immediately */
83
84 /* External variables and functions referenced. */
85
86 extern void report_transfer_performance (unsigned long, time_t, time_t);
87
88 /* Functions this file defines */
89
90 #if 0
91 static int simple_read_overlay_region_table (void);
92 static void simple_free_overlay_region_table (void);
93 #endif
94
95 static void load_command (char *, int);
96
97 static void symbol_file_add_main_1 (char *args, int from_tty, int flags);
98
99 static void add_symbol_file_command (char *, int);
100
101 bfd *symfile_bfd_open (char *);
102
103 int get_section_index (struct objfile *, char *);
104
105 static const struct sym_fns *find_sym_fns (bfd *);
106
107 static void decrement_reading_symtab (void *);
108
109 static void overlay_invalidate_all (void);
110
111 void list_overlays_command (char *, int);
112
113 void map_overlay_command (char *, int);
114
115 void unmap_overlay_command (char *, int);
116
117 static void overlay_auto_command (char *, int);
118
119 static void overlay_manual_command (char *, int);
120
121 static void overlay_off_command (char *, int);
122
123 static void overlay_load_command (char *, int);
124
125 static void overlay_command (char *, int);
126
127 static void simple_free_overlay_table (void);
128
129 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
130 enum bfd_endian);
131
132 static int simple_read_overlay_table (void);
133
134 static int simple_overlay_update_1 (struct obj_section *);
135
136 static void add_filename_language (char *ext, enum language lang);
137
138 static void info_ext_lang_command (char *args, int from_tty);
139
140 static void init_filename_language_table (void);
141
142 static void symfile_find_segment_sections (struct objfile *objfile);
143
144 void _initialize_symfile (void);
145
146 /* List of all available sym_fns. On gdb startup, each object file reader
147 calls add_symtab_fns() to register information on each format it is
148 prepared to read. */
149
150 typedef const struct sym_fns *sym_fns_ptr;
151 DEF_VEC_P (sym_fns_ptr);
152
153 static VEC (sym_fns_ptr) *symtab_fns = NULL;
154
155 /* Flag for whether user will be reloading symbols multiple times.
156 Defaults to ON for VxWorks, otherwise OFF. */
157
158 #ifdef SYMBOL_RELOADING_DEFAULT
159 int symbol_reloading = SYMBOL_RELOADING_DEFAULT;
160 #else
161 int symbol_reloading = 0;
162 #endif
163 static void
164 show_symbol_reloading (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file, _("\
168 Dynamic symbol table reloading multiple times in one run is %s.\n"),
169 value);
170 }
171
172 /* If non-zero, shared library symbols will be added automatically
173 when the inferior is created, new libraries are loaded, or when
174 attaching to the inferior. This is almost always what users will
175 want to have happen; but for very large programs, the startup time
176 will be excessive, and so if this is a problem, the user can clear
177 this flag and then add the shared library symbols as needed. Note
178 that there is a potential for confusion, since if the shared
179 library symbols are not loaded, commands like "info fun" will *not*
180 report all the functions that are actually present. */
181
182 int auto_solib_add = 1;
183
184 /* For systems that support it, a threshold size in megabytes. If
185 automatically adding a new library's symbol table to those already
186 known to the debugger would cause the total shared library symbol
187 size to exceed this threshhold, then the shlib's symbols are not
188 added. The threshold is ignored if the user explicitly asks for a
189 shlib to be added, such as when using the "sharedlibrary"
190 command. */
191
192 int auto_solib_limit;
193 \f
194
195 /* Make a null terminated copy of the string at PTR with SIZE characters in
196 the obstack pointed to by OBSTACKP . Returns the address of the copy.
197 Note that the string at PTR does not have to be null terminated, I.E. it
198 may be part of a larger string and we are only saving a substring. */
199
200 char *
201 obsavestring (const char *ptr, int size, struct obstack *obstackp)
202 {
203 char *p = (char *) obstack_alloc (obstackp, size + 1);
204 /* Open-coded memcpy--saves function call time. These strings are usually
205 short. FIXME: Is this really still true with a compiler that can
206 inline memcpy? */
207 {
208 const char *p1 = ptr;
209 char *p2 = p;
210 const char *end = ptr + size;
211
212 while (p1 != end)
213 *p2++ = *p1++;
214 }
215 p[size] = 0;
216 return p;
217 }
218
219 /* Concatenate NULL terminated variable argument list of `const char *' strings;
220 return the new string. Space is found in the OBSTACKP. Argument list must
221 be terminated by a sentinel expression `(char *) NULL'. */
222
223 char *
224 obconcat (struct obstack *obstackp, ...)
225 {
226 va_list ap;
227
228 va_start (ap, obstackp);
229 for (;;)
230 {
231 const char *s = va_arg (ap, const char *);
232
233 if (s == NULL)
234 break;
235
236 obstack_grow_str (obstackp, s);
237 }
238 va_end (ap);
239 obstack_1grow (obstackp, 0);
240
241 return obstack_finish (obstackp);
242 }
243
244 /* True if we are reading a symbol table. */
245
246 int currently_reading_symtab = 0;
247
248 static void
249 decrement_reading_symtab (void *dummy)
250 {
251 currently_reading_symtab--;
252 }
253
254 /* Increment currently_reading_symtab and return a cleanup that can be
255 used to decrement it. */
256 struct cleanup *
257 increment_reading_symtab (void)
258 {
259 ++currently_reading_symtab;
260 return make_cleanup (decrement_reading_symtab, NULL);
261 }
262
263 /* Remember the lowest-addressed loadable section we've seen.
264 This function is called via bfd_map_over_sections.
265
266 In case of equal vmas, the section with the largest size becomes the
267 lowest-addressed loadable section.
268
269 If the vmas and sizes are equal, the last section is considered the
270 lowest-addressed loadable section. */
271
272 void
273 find_lowest_section (bfd *abfd, asection *sect, void *obj)
274 {
275 asection **lowest = (asection **) obj;
276
277 if (0 == (bfd_get_section_flags (abfd, sect) & (SEC_ALLOC | SEC_LOAD)))
278 return;
279 if (!*lowest)
280 *lowest = sect; /* First loadable section */
281 else if (bfd_section_vma (abfd, *lowest) > bfd_section_vma (abfd, sect))
282 *lowest = sect; /* A lower loadable section */
283 else if (bfd_section_vma (abfd, *lowest) == bfd_section_vma (abfd, sect)
284 && (bfd_section_size (abfd, (*lowest))
285 <= bfd_section_size (abfd, sect)))
286 *lowest = sect;
287 }
288
289 /* Create a new section_addr_info, with room for NUM_SECTIONS. */
290
291 struct section_addr_info *
292 alloc_section_addr_info (size_t num_sections)
293 {
294 struct section_addr_info *sap;
295 size_t size;
296
297 size = (sizeof (struct section_addr_info)
298 + sizeof (struct other_sections) * (num_sections - 1));
299 sap = (struct section_addr_info *) xmalloc (size);
300 memset (sap, 0, size);
301 sap->num_sections = num_sections;
302
303 return sap;
304 }
305
306 /* Build (allocate and populate) a section_addr_info struct from
307 an existing section table. */
308
309 extern struct section_addr_info *
310 build_section_addr_info_from_section_table (const struct target_section *start,
311 const struct target_section *end)
312 {
313 struct section_addr_info *sap;
314 const struct target_section *stp;
315 int oidx;
316
317 sap = alloc_section_addr_info (end - start);
318
319 for (stp = start, oidx = 0; stp != end; stp++)
320 {
321 if (bfd_get_section_flags (stp->bfd,
322 stp->the_bfd_section) & (SEC_ALLOC | SEC_LOAD)
323 && oidx < end - start)
324 {
325 sap->other[oidx].addr = stp->addr;
326 sap->other[oidx].name
327 = xstrdup (bfd_section_name (stp->bfd, stp->the_bfd_section));
328 sap->other[oidx].sectindex = stp->the_bfd_section->index;
329 oidx++;
330 }
331 }
332
333 return sap;
334 }
335
336 /* Create a section_addr_info from section offsets in ABFD. */
337
338 static struct section_addr_info *
339 build_section_addr_info_from_bfd (bfd *abfd)
340 {
341 struct section_addr_info *sap;
342 int i;
343 struct bfd_section *sec;
344
345 sap = alloc_section_addr_info (bfd_count_sections (abfd));
346 for (i = 0, sec = abfd->sections; sec != NULL; sec = sec->next)
347 if (bfd_get_section_flags (abfd, sec) & (SEC_ALLOC | SEC_LOAD))
348 {
349 sap->other[i].addr = bfd_get_section_vma (abfd, sec);
350 sap->other[i].name = xstrdup (bfd_get_section_name (abfd, sec));
351 sap->other[i].sectindex = sec->index;
352 i++;
353 }
354 return sap;
355 }
356
357 /* Create a section_addr_info from section offsets in OBJFILE. */
358
359 struct section_addr_info *
360 build_section_addr_info_from_objfile (const struct objfile *objfile)
361 {
362 struct section_addr_info *sap;
363 int i;
364
365 /* Before reread_symbols gets rewritten it is not safe to call:
366 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
367 */
368 sap = build_section_addr_info_from_bfd (objfile->obfd);
369 for (i = 0; i < sap->num_sections && sap->other[i].name; i++)
370 {
371 int sectindex = sap->other[i].sectindex;
372
373 sap->other[i].addr += objfile->section_offsets->offsets[sectindex];
374 }
375 return sap;
376 }
377
378 /* Free all memory allocated by build_section_addr_info_from_section_table. */
379
380 extern void
381 free_section_addr_info (struct section_addr_info *sap)
382 {
383 int idx;
384
385 for (idx = 0; idx < sap->num_sections; idx++)
386 if (sap->other[idx].name)
387 xfree (sap->other[idx].name);
388 xfree (sap);
389 }
390
391
392 /* Initialize OBJFILE's sect_index_* members. */
393 static void
394 init_objfile_sect_indices (struct objfile *objfile)
395 {
396 asection *sect;
397 int i;
398
399 sect = bfd_get_section_by_name (objfile->obfd, ".text");
400 if (sect)
401 objfile->sect_index_text = sect->index;
402
403 sect = bfd_get_section_by_name (objfile->obfd, ".data");
404 if (sect)
405 objfile->sect_index_data = sect->index;
406
407 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
408 if (sect)
409 objfile->sect_index_bss = sect->index;
410
411 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
412 if (sect)
413 objfile->sect_index_rodata = sect->index;
414
415 /* This is where things get really weird... We MUST have valid
416 indices for the various sect_index_* members or gdb will abort.
417 So if for example, there is no ".text" section, we have to
418 accomodate that. First, check for a file with the standard
419 one or two segments. */
420
421 symfile_find_segment_sections (objfile);
422
423 /* Except when explicitly adding symbol files at some address,
424 section_offsets contains nothing but zeros, so it doesn't matter
425 which slot in section_offsets the individual sect_index_* members
426 index into. So if they are all zero, it is safe to just point
427 all the currently uninitialized indices to the first slot. But
428 beware: if this is the main executable, it may be relocated
429 later, e.g. by the remote qOffsets packet, and then this will
430 be wrong! That's why we try segments first. */
431
432 for (i = 0; i < objfile->num_sections; i++)
433 {
434 if (ANOFFSET (objfile->section_offsets, i) != 0)
435 {
436 break;
437 }
438 }
439 if (i == objfile->num_sections)
440 {
441 if (objfile->sect_index_text == -1)
442 objfile->sect_index_text = 0;
443 if (objfile->sect_index_data == -1)
444 objfile->sect_index_data = 0;
445 if (objfile->sect_index_bss == -1)
446 objfile->sect_index_bss = 0;
447 if (objfile->sect_index_rodata == -1)
448 objfile->sect_index_rodata = 0;
449 }
450 }
451
452 /* The arguments to place_section. */
453
454 struct place_section_arg
455 {
456 struct section_offsets *offsets;
457 CORE_ADDR lowest;
458 };
459
460 /* Find a unique offset to use for loadable section SECT if
461 the user did not provide an offset. */
462
463 static void
464 place_section (bfd *abfd, asection *sect, void *obj)
465 {
466 struct place_section_arg *arg = obj;
467 CORE_ADDR *offsets = arg->offsets->offsets, start_addr;
468 int done;
469 ULONGEST align = ((ULONGEST) 1) << bfd_get_section_alignment (abfd, sect);
470
471 /* We are only interested in allocated sections. */
472 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
473 return;
474
475 /* If the user specified an offset, honor it. */
476 if (offsets[sect->index] != 0)
477 return;
478
479 /* Otherwise, let's try to find a place for the section. */
480 start_addr = (arg->lowest + align - 1) & -align;
481
482 do {
483 asection *cur_sec;
484
485 done = 1;
486
487 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
488 {
489 int indx = cur_sec->index;
490
491 /* We don't need to compare against ourself. */
492 if (cur_sec == sect)
493 continue;
494
495 /* We can only conflict with allocated sections. */
496 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
497 continue;
498
499 /* If the section offset is 0, either the section has not been placed
500 yet, or it was the lowest section placed (in which case LOWEST
501 will be past its end). */
502 if (offsets[indx] == 0)
503 continue;
504
505 /* If this section would overlap us, then we must move up. */
506 if (start_addr + bfd_get_section_size (sect) > offsets[indx]
507 && start_addr < offsets[indx] + bfd_get_section_size (cur_sec))
508 {
509 start_addr = offsets[indx] + bfd_get_section_size (cur_sec);
510 start_addr = (start_addr + align - 1) & -align;
511 done = 0;
512 break;
513 }
514
515 /* Otherwise, we appear to be OK. So far. */
516 }
517 }
518 while (!done);
519
520 offsets[sect->index] = start_addr;
521 arg->lowest = start_addr + bfd_get_section_size (sect);
522 }
523
524 /* Store struct section_addr_info as prepared (made relative and with SECTINDEX
525 filled-in) by addr_info_make_relative into SECTION_OFFSETS of NUM_SECTIONS
526 entries. */
527
528 void
529 relative_addr_info_to_section_offsets (struct section_offsets *section_offsets,
530 int num_sections,
531 struct section_addr_info *addrs)
532 {
533 int i;
534
535 memset (section_offsets, 0, SIZEOF_N_SECTION_OFFSETS (num_sections));
536
537 /* Now calculate offsets for section that were specified by the caller. */
538 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
539 {
540 struct other_sections *osp;
541
542 osp = &addrs->other[i];
543 if (osp->addr == 0)
544 continue;
545
546 /* Record all sections in offsets */
547 /* The section_offsets in the objfile are here filled in using
548 the BFD index. */
549 section_offsets->offsets[osp->sectindex] = osp->addr;
550 }
551 }
552
553 /* Transform section name S for a name comparison. prelink can split section
554 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
555 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
556 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
557 (`.sbss') section has invalid (increased) virtual address. */
558
559 static const char *
560 addr_section_name (const char *s)
561 {
562 if (strcmp (s, ".dynbss") == 0)
563 return ".bss";
564 if (strcmp (s, ".sdynbss") == 0)
565 return ".sbss";
566
567 return s;
568 }
569
570 /* qsort comparator for addrs_section_sort. Sort entries in ascending order by
571 their (name, sectindex) pair. sectindex makes the sort by name stable. */
572
573 static int
574 addrs_section_compar (const void *ap, const void *bp)
575 {
576 const struct other_sections *a = *((struct other_sections **) ap);
577 const struct other_sections *b = *((struct other_sections **) bp);
578 int retval, a_idx, b_idx;
579
580 retval = strcmp (addr_section_name (a->name), addr_section_name (b->name));
581 if (retval)
582 return retval;
583
584 /* SECTINDEX is undefined iff ADDR is zero. */
585 a_idx = a->addr == 0 ? 0 : a->sectindex;
586 b_idx = b->addr == 0 ? 0 : b->sectindex;
587 return a_idx - b_idx;
588 }
589
590 /* Provide sorted array of pointers to sections of ADDRS. The array is
591 terminated by NULL. Caller is responsible to call xfree for it. */
592
593 static struct other_sections **
594 addrs_section_sort (struct section_addr_info *addrs)
595 {
596 struct other_sections **array;
597 int i;
598
599 /* `+ 1' for the NULL terminator. */
600 array = xmalloc (sizeof (*array) * (addrs->num_sections + 1));
601 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
602 array[i] = &addrs->other[i];
603 array[i] = NULL;
604
605 qsort (array, i, sizeof (*array), addrs_section_compar);
606
607 return array;
608 }
609
610 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
611 also SECTINDEXes specific to ABFD there. This function can be used to
612 rebase ADDRS to start referencing different BFD than before. */
613
614 void
615 addr_info_make_relative (struct section_addr_info *addrs, bfd *abfd)
616 {
617 asection *lower_sect;
618 CORE_ADDR lower_offset;
619 int i;
620 struct cleanup *my_cleanup;
621 struct section_addr_info *abfd_addrs;
622 struct other_sections **addrs_sorted, **abfd_addrs_sorted;
623 struct other_sections **addrs_to_abfd_addrs;
624
625 /* Find lowest loadable section to be used as starting point for
626 continguous sections. */
627 lower_sect = NULL;
628 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
629 if (lower_sect == NULL)
630 {
631 warning (_("no loadable sections found in added symbol-file %s"),
632 bfd_get_filename (abfd));
633 lower_offset = 0;
634 }
635 else
636 lower_offset = bfd_section_vma (bfd_get_filename (abfd), lower_sect);
637
638 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
639 in ABFD. Section names are not unique - there can be multiple sections of
640 the same name. Also the sections of the same name do not have to be
641 adjacent to each other. Some sections may be present only in one of the
642 files. Even sections present in both files do not have to be in the same
643 order.
644
645 Use stable sort by name for the sections in both files. Then linearly
646 scan both lists matching as most of the entries as possible. */
647
648 addrs_sorted = addrs_section_sort (addrs);
649 my_cleanup = make_cleanup (xfree, addrs_sorted);
650
651 abfd_addrs = build_section_addr_info_from_bfd (abfd);
652 make_cleanup_free_section_addr_info (abfd_addrs);
653 abfd_addrs_sorted = addrs_section_sort (abfd_addrs);
654 make_cleanup (xfree, abfd_addrs_sorted);
655
656 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and ABFD_ADDRS_SORTED. */
657
658 addrs_to_abfd_addrs = xzalloc (sizeof (*addrs_to_abfd_addrs)
659 * addrs->num_sections);
660 make_cleanup (xfree, addrs_to_abfd_addrs);
661
662 while (*addrs_sorted)
663 {
664 const char *sect_name = addr_section_name ((*addrs_sorted)->name);
665
666 while (*abfd_addrs_sorted
667 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
668 sect_name) < 0)
669 abfd_addrs_sorted++;
670
671 if (*abfd_addrs_sorted
672 && strcmp (addr_section_name ((*abfd_addrs_sorted)->name),
673 sect_name) == 0)
674 {
675 int index_in_addrs;
676
677 /* Make the found item directly addressable from ADDRS. */
678 index_in_addrs = *addrs_sorted - addrs->other;
679 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
680 addrs_to_abfd_addrs[index_in_addrs] = *abfd_addrs_sorted;
681
682 /* Never use the same ABFD entry twice. */
683 abfd_addrs_sorted++;
684 }
685
686 addrs_sorted++;
687 }
688
689 /* Calculate offsets for the loadable sections.
690 FIXME! Sections must be in order of increasing loadable section
691 so that contiguous sections can use the lower-offset!!!
692
693 Adjust offsets if the segments are not contiguous.
694 If the section is contiguous, its offset should be set to
695 the offset of the highest loadable section lower than it
696 (the loadable section directly below it in memory).
697 this_offset = lower_offset = lower_addr - lower_orig_addr */
698
699 for (i = 0; i < addrs->num_sections && addrs->other[i].name; i++)
700 {
701 struct other_sections *sect = addrs_to_abfd_addrs[i];
702
703 if (sect)
704 {
705 /* This is the index used by BFD. */
706 addrs->other[i].sectindex = sect->sectindex;
707
708 if (addrs->other[i].addr != 0)
709 {
710 addrs->other[i].addr -= sect->addr;
711 lower_offset = addrs->other[i].addr;
712 }
713 else
714 addrs->other[i].addr = lower_offset;
715 }
716 else
717 {
718 /* addr_section_name transformation is not used for SECT_NAME. */
719 const char *sect_name = addrs->other[i].name;
720
721 /* This section does not exist in ABFD, which is normally
722 unexpected and we want to issue a warning.
723
724 However, the ELF prelinker does create a few sections which are
725 marked in the main executable as loadable (they are loaded in
726 memory from the DYNAMIC segment) and yet are not present in
727 separate debug info files. This is fine, and should not cause
728 a warning. Shared libraries contain just the section
729 ".gnu.liblist" but it is not marked as loadable there. There is
730 no other way to identify them than by their name as the sections
731 created by prelink have no special flags.
732
733 For the sections `.bss' and `.sbss' see addr_section_name. */
734
735 if (!(strcmp (sect_name, ".gnu.liblist") == 0
736 || strcmp (sect_name, ".gnu.conflict") == 0
737 || (strcmp (sect_name, ".bss") == 0
738 && i > 0
739 && strcmp (addrs->other[i - 1].name, ".dynbss") == 0
740 && addrs_to_abfd_addrs[i - 1] != NULL)
741 || (strcmp (sect_name, ".sbss") == 0
742 && i > 0
743 && strcmp (addrs->other[i - 1].name, ".sdynbss") == 0
744 && addrs_to_abfd_addrs[i - 1] != NULL)))
745 warning (_("section %s not found in %s"), sect_name,
746 bfd_get_filename (abfd));
747
748 addrs->other[i].addr = 0;
749
750 /* SECTINDEX is invalid if ADDR is zero. */
751 }
752 }
753
754 do_cleanups (my_cleanup);
755 }
756
757 /* Parse the user's idea of an offset for dynamic linking, into our idea
758 of how to represent it for fast symbol reading. This is the default
759 version of the sym_fns.sym_offsets function for symbol readers that
760 don't need to do anything special. It allocates a section_offsets table
761 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
762
763 void
764 default_symfile_offsets (struct objfile *objfile,
765 struct section_addr_info *addrs)
766 {
767 objfile->num_sections = bfd_count_sections (objfile->obfd);
768 objfile->section_offsets = (struct section_offsets *)
769 obstack_alloc (&objfile->objfile_obstack,
770 SIZEOF_N_SECTION_OFFSETS (objfile->num_sections));
771 relative_addr_info_to_section_offsets (objfile->section_offsets,
772 objfile->num_sections, addrs);
773
774 /* For relocatable files, all loadable sections will start at zero.
775 The zero is meaningless, so try to pick arbitrary addresses such
776 that no loadable sections overlap. This algorithm is quadratic,
777 but the number of sections in a single object file is generally
778 small. */
779 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
780 {
781 struct place_section_arg arg;
782 bfd *abfd = objfile->obfd;
783 asection *cur_sec;
784
785 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
786 /* We do not expect this to happen; just skip this step if the
787 relocatable file has a section with an assigned VMA. */
788 if (bfd_section_vma (abfd, cur_sec) != 0)
789 break;
790
791 if (cur_sec == NULL)
792 {
793 CORE_ADDR *offsets = objfile->section_offsets->offsets;
794
795 /* Pick non-overlapping offsets for sections the user did not
796 place explicitly. */
797 arg.offsets = objfile->section_offsets;
798 arg.lowest = 0;
799 bfd_map_over_sections (objfile->obfd, place_section, &arg);
800
801 /* Correctly filling in the section offsets is not quite
802 enough. Relocatable files have two properties that
803 (most) shared objects do not:
804
805 - Their debug information will contain relocations. Some
806 shared libraries do also, but many do not, so this can not
807 be assumed.
808
809 - If there are multiple code sections they will be loaded
810 at different relative addresses in memory than they are
811 in the objfile, since all sections in the file will start
812 at address zero.
813
814 Because GDB has very limited ability to map from an
815 address in debug info to the correct code section,
816 it relies on adding SECT_OFF_TEXT to things which might be
817 code. If we clear all the section offsets, and set the
818 section VMAs instead, then symfile_relocate_debug_section
819 will return meaningful debug information pointing at the
820 correct sections.
821
822 GDB has too many different data structures for section
823 addresses - a bfd, objfile, and so_list all have section
824 tables, as does exec_ops. Some of these could probably
825 be eliminated. */
826
827 for (cur_sec = abfd->sections; cur_sec != NULL;
828 cur_sec = cur_sec->next)
829 {
830 if ((bfd_get_section_flags (abfd, cur_sec) & SEC_ALLOC) == 0)
831 continue;
832
833 bfd_set_section_vma (abfd, cur_sec, offsets[cur_sec->index]);
834 exec_set_section_address (bfd_get_filename (abfd), cur_sec->index,
835 offsets[cur_sec->index]);
836 offsets[cur_sec->index] = 0;
837 }
838 }
839 }
840
841 /* Remember the bfd indexes for the .text, .data, .bss and
842 .rodata sections. */
843 init_objfile_sect_indices (objfile);
844 }
845
846
847 /* Divide the file into segments, which are individual relocatable units.
848 This is the default version of the sym_fns.sym_segments function for
849 symbol readers that do not have an explicit representation of segments.
850 It assumes that object files do not have segments, and fully linked
851 files have a single segment. */
852
853 struct symfile_segment_data *
854 default_symfile_segments (bfd *abfd)
855 {
856 int num_sections, i;
857 asection *sect;
858 struct symfile_segment_data *data;
859 CORE_ADDR low, high;
860
861 /* Relocatable files contain enough information to position each
862 loadable section independently; they should not be relocated
863 in segments. */
864 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
865 return NULL;
866
867 /* Make sure there is at least one loadable section in the file. */
868 for (sect = abfd->sections; sect != NULL; sect = sect->next)
869 {
870 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
871 continue;
872
873 break;
874 }
875 if (sect == NULL)
876 return NULL;
877
878 low = bfd_get_section_vma (abfd, sect);
879 high = low + bfd_get_section_size (sect);
880
881 data = XZALLOC (struct symfile_segment_data);
882 data->num_segments = 1;
883 data->segment_bases = XCALLOC (1, CORE_ADDR);
884 data->segment_sizes = XCALLOC (1, CORE_ADDR);
885
886 num_sections = bfd_count_sections (abfd);
887 data->segment_info = XCALLOC (num_sections, int);
888
889 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
890 {
891 CORE_ADDR vma;
892
893 if ((bfd_get_section_flags (abfd, sect) & SEC_ALLOC) == 0)
894 continue;
895
896 vma = bfd_get_section_vma (abfd, sect);
897 if (vma < low)
898 low = vma;
899 if (vma + bfd_get_section_size (sect) > high)
900 high = vma + bfd_get_section_size (sect);
901
902 data->segment_info[i] = 1;
903 }
904
905 data->segment_bases[0] = low;
906 data->segment_sizes[0] = high - low;
907
908 return data;
909 }
910
911 /* Process a symbol file, as either the main file or as a dynamically
912 loaded file.
913
914 OBJFILE is where the symbols are to be read from.
915
916 ADDRS is the list of section load addresses. If the user has given
917 an 'add-symbol-file' command, then this is the list of offsets and
918 addresses he or she provided as arguments to the command; or, if
919 we're handling a shared library, these are the actual addresses the
920 sections are loaded at, according to the inferior's dynamic linker
921 (as gleaned by GDB's shared library code). We convert each address
922 into an offset from the section VMA's as it appears in the object
923 file, and then call the file's sym_offsets function to convert this
924 into a format-specific offset table --- a `struct section_offsets'.
925 If ADDRS is non-zero, OFFSETS must be zero.
926
927 OFFSETS is a table of section offsets already in the right
928 format-specific representation. NUM_OFFSETS is the number of
929 elements present in OFFSETS->offsets. If OFFSETS is non-zero, we
930 assume this is the proper table the call to sym_offsets described
931 above would produce. Instead of calling sym_offsets, we just dump
932 it right into objfile->section_offsets. (When we're re-reading
933 symbols from an objfile, we don't have the original load address
934 list any more; all we have is the section offset table.) If
935 OFFSETS is non-zero, ADDRS must be zero.
936
937 ADD_FLAGS encodes verbosity level, whether this is main symbol or
938 an extra symbol file such as dynamically loaded code, and wether
939 breakpoint reset should be deferred. */
940
941 void
942 syms_from_objfile (struct objfile *objfile,
943 struct section_addr_info *addrs,
944 struct section_offsets *offsets,
945 int num_offsets,
946 int add_flags)
947 {
948 struct section_addr_info *local_addr = NULL;
949 struct cleanup *old_chain;
950 const int mainline = add_flags & SYMFILE_MAINLINE;
951
952 gdb_assert (! (addrs && offsets));
953
954 init_entry_point_info (objfile);
955 objfile->sf = find_sym_fns (objfile->obfd);
956
957 if (objfile->sf == NULL)
958 return; /* No symbols. */
959
960 /* Make sure that partially constructed symbol tables will be cleaned up
961 if an error occurs during symbol reading. */
962 old_chain = make_cleanup_free_objfile (objfile);
963
964 /* If ADDRS and OFFSETS are both NULL, put together a dummy address
965 list. We now establish the convention that an addr of zero means
966 no load address was specified. */
967 if (! addrs && ! offsets)
968 {
969 local_addr
970 = alloc_section_addr_info (bfd_count_sections (objfile->obfd));
971 make_cleanup (xfree, local_addr);
972 addrs = local_addr;
973 }
974
975 /* Now either addrs or offsets is non-zero. */
976
977 if (mainline)
978 {
979 /* We will modify the main symbol table, make sure that all its users
980 will be cleaned up if an error occurs during symbol reading. */
981 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
982
983 /* Since no error yet, throw away the old symbol table. */
984
985 if (symfile_objfile != NULL)
986 {
987 free_objfile (symfile_objfile);
988 gdb_assert (symfile_objfile == NULL);
989 }
990
991 /* Currently we keep symbols from the add-symbol-file command.
992 If the user wants to get rid of them, they should do "symbol-file"
993 without arguments first. Not sure this is the best behavior
994 (PR 2207). */
995
996 (*objfile->sf->sym_new_init) (objfile);
997 }
998
999 /* Convert addr into an offset rather than an absolute address.
1000 We find the lowest address of a loaded segment in the objfile,
1001 and assume that <addr> is where that got loaded.
1002
1003 We no longer warn if the lowest section is not a text segment (as
1004 happens for the PA64 port. */
1005 if (addrs && addrs->other[0].name)
1006 addr_info_make_relative (addrs, objfile->obfd);
1007
1008 /* Initialize symbol reading routines for this objfile, allow complaints to
1009 appear for this new file, and record how verbose to be, then do the
1010 initial symbol reading for this file. */
1011
1012 (*objfile->sf->sym_init) (objfile);
1013 clear_complaints (&symfile_complaints, 1, add_flags & SYMFILE_VERBOSE);
1014
1015 if (addrs)
1016 (*objfile->sf->sym_offsets) (objfile, addrs);
1017 else
1018 {
1019 size_t size = SIZEOF_N_SECTION_OFFSETS (num_offsets);
1020
1021 /* Just copy in the offset table directly as given to us. */
1022 objfile->num_sections = num_offsets;
1023 objfile->section_offsets
1024 = ((struct section_offsets *)
1025 obstack_alloc (&objfile->objfile_obstack, size));
1026 memcpy (objfile->section_offsets, offsets, size);
1027
1028 init_objfile_sect_indices (objfile);
1029 }
1030
1031 (*objfile->sf->sym_read) (objfile, add_flags);
1032
1033 /* Discard cleanups as symbol reading was successful. */
1034
1035 discard_cleanups (old_chain);
1036 xfree (local_addr);
1037 }
1038
1039 /* Perform required actions after either reading in the initial
1040 symbols for a new objfile, or mapping in the symbols from a reusable
1041 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1042
1043 void
1044 new_symfile_objfile (struct objfile *objfile, int add_flags)
1045 {
1046 /* If this is the main symbol file we have to clean up all users of the
1047 old main symbol file. Otherwise it is sufficient to fixup all the
1048 breakpoints that may have been redefined by this symbol file. */
1049 if (add_flags & SYMFILE_MAINLINE)
1050 {
1051 /* OK, make it the "real" symbol file. */
1052 symfile_objfile = objfile;
1053
1054 clear_symtab_users (add_flags);
1055 }
1056 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1057 {
1058 breakpoint_re_set ();
1059 }
1060
1061 /* We're done reading the symbol file; finish off complaints. */
1062 clear_complaints (&symfile_complaints, 0, add_flags & SYMFILE_VERBOSE);
1063 }
1064
1065 /* Process a symbol file, as either the main file or as a dynamically
1066 loaded file.
1067
1068 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1069 This BFD will be closed on error, and is always consumed by this function.
1070
1071 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1072 extra, such as dynamically loaded code, and what to do with breakpoins.
1073
1074 ADDRS, OFFSETS, and NUM_OFFSETS are as described for
1075 syms_from_objfile, above.
1076 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1077
1078 Upon success, returns a pointer to the objfile that was added.
1079 Upon failure, jumps back to command level (never returns). */
1080
1081 static struct objfile *
1082 symbol_file_add_with_addrs_or_offsets (bfd *abfd,
1083 int add_flags,
1084 struct section_addr_info *addrs,
1085 struct section_offsets *offsets,
1086 int num_offsets,
1087 int flags)
1088 {
1089 struct objfile *objfile;
1090 struct cleanup *my_cleanups;
1091 const char *name = bfd_get_filename (abfd);
1092 const int from_tty = add_flags & SYMFILE_VERBOSE;
1093
1094 if (readnow_symbol_files)
1095 flags |= OBJF_READNOW;
1096
1097 my_cleanups = make_cleanup_bfd_close (abfd);
1098
1099 /* Give user a chance to burp if we'd be
1100 interactively wiping out any existing symbols. */
1101
1102 if ((have_full_symbols () || have_partial_symbols ())
1103 && (add_flags & SYMFILE_MAINLINE)
1104 && from_tty
1105 && !query (_("Load new symbol table from \"%s\"? "), name))
1106 error (_("Not confirmed."));
1107
1108 objfile = allocate_objfile (abfd, flags);
1109 discard_cleanups (my_cleanups);
1110
1111 /* We either created a new mapped symbol table, mapped an existing
1112 symbol table file which has not had initial symbol reading
1113 performed, or need to read an unmapped symbol table. */
1114 if (from_tty || info_verbose)
1115 {
1116 if (deprecated_pre_add_symbol_hook)
1117 deprecated_pre_add_symbol_hook (name);
1118 else
1119 {
1120 printf_unfiltered (_("Reading symbols from %s..."), name);
1121 wrap_here ("");
1122 gdb_flush (gdb_stdout);
1123 }
1124 }
1125 syms_from_objfile (objfile, addrs, offsets, num_offsets,
1126 add_flags);
1127
1128 /* We now have at least a partial symbol table. Check to see if the
1129 user requested that all symbols be read on initial access via either
1130 the gdb startup command line or on a per symbol file basis. Expand
1131 all partial symbol tables for this objfile if so. */
1132
1133 if ((flags & OBJF_READNOW))
1134 {
1135 if (from_tty || info_verbose)
1136 {
1137 printf_unfiltered (_("expanding to full symbols..."));
1138 wrap_here ("");
1139 gdb_flush (gdb_stdout);
1140 }
1141
1142 if (objfile->sf)
1143 objfile->sf->qf->expand_all_symtabs (objfile);
1144 }
1145
1146 if ((from_tty || info_verbose)
1147 && !objfile_has_symbols (objfile))
1148 {
1149 wrap_here ("");
1150 printf_unfiltered (_("(no debugging symbols found)..."));
1151 wrap_here ("");
1152 }
1153
1154 if (from_tty || info_verbose)
1155 {
1156 if (deprecated_post_add_symbol_hook)
1157 deprecated_post_add_symbol_hook ();
1158 else
1159 printf_unfiltered (_("done.\n"));
1160 }
1161
1162 /* We print some messages regardless of whether 'from_tty ||
1163 info_verbose' is true, so make sure they go out at the right
1164 time. */
1165 gdb_flush (gdb_stdout);
1166
1167 do_cleanups (my_cleanups);
1168
1169 if (objfile->sf == NULL)
1170 {
1171 observer_notify_new_objfile (objfile);
1172 return objfile; /* No symbols. */
1173 }
1174
1175 new_symfile_objfile (objfile, add_flags);
1176
1177 observer_notify_new_objfile (objfile);
1178
1179 bfd_cache_close_all ();
1180 return (objfile);
1181 }
1182
1183 /* Add BFD as a separate debug file for OBJFILE. */
1184
1185 void
1186 symbol_file_add_separate (bfd *bfd, int symfile_flags, struct objfile *objfile)
1187 {
1188 struct objfile *new_objfile;
1189 struct section_addr_info *sap;
1190 struct cleanup *my_cleanup;
1191
1192 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1193 because sections of BFD may not match sections of OBJFILE and because
1194 vma may have been modified by tools such as prelink. */
1195 sap = build_section_addr_info_from_objfile (objfile);
1196 my_cleanup = make_cleanup_free_section_addr_info (sap);
1197
1198 new_objfile = symbol_file_add_with_addrs_or_offsets
1199 (bfd, symfile_flags,
1200 sap, NULL, 0,
1201 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1202 | OBJF_USERLOADED));
1203
1204 do_cleanups (my_cleanup);
1205
1206 add_separate_debug_objfile (new_objfile, objfile);
1207 }
1208
1209 /* Process the symbol file ABFD, as either the main file or as a
1210 dynamically loaded file.
1211
1212 See symbol_file_add_with_addrs_or_offsets's comments for
1213 details. */
1214 struct objfile *
1215 symbol_file_add_from_bfd (bfd *abfd, int add_flags,
1216 struct section_addr_info *addrs,
1217 int flags)
1218 {
1219 return symbol_file_add_with_addrs_or_offsets (abfd, add_flags, addrs, 0, 0,
1220 flags);
1221 }
1222
1223
1224 /* Process a symbol file, as either the main file or as a dynamically
1225 loaded file. See symbol_file_add_with_addrs_or_offsets's comments
1226 for details. */
1227 struct objfile *
1228 symbol_file_add (char *name, int add_flags, struct section_addr_info *addrs,
1229 int flags)
1230 {
1231 return symbol_file_add_from_bfd (symfile_bfd_open (name), add_flags, addrs,
1232 flags);
1233 }
1234
1235
1236 /* Call symbol_file_add() with default values and update whatever is
1237 affected by the loading of a new main().
1238 Used when the file is supplied in the gdb command line
1239 and by some targets with special loading requirements.
1240 The auxiliary function, symbol_file_add_main_1(), has the flags
1241 argument for the switches that can only be specified in the symbol_file
1242 command itself. */
1243
1244 void
1245 symbol_file_add_main (char *args, int from_tty)
1246 {
1247 symbol_file_add_main_1 (args, from_tty, 0);
1248 }
1249
1250 static void
1251 symbol_file_add_main_1 (char *args, int from_tty, int flags)
1252 {
1253 const int add_flags = SYMFILE_MAINLINE | (from_tty ? SYMFILE_VERBOSE : 0);
1254 symbol_file_add (args, add_flags, NULL, flags);
1255
1256 /* Getting new symbols may change our opinion about
1257 what is frameless. */
1258 reinit_frame_cache ();
1259
1260 set_initial_language ();
1261 }
1262
1263 void
1264 symbol_file_clear (int from_tty)
1265 {
1266 if ((have_full_symbols () || have_partial_symbols ())
1267 && from_tty
1268 && (symfile_objfile
1269 ? !query (_("Discard symbol table from `%s'? "),
1270 symfile_objfile->name)
1271 : !query (_("Discard symbol table? "))))
1272 error (_("Not confirmed."));
1273
1274 /* solib descriptors may have handles to objfiles. Wipe them before their
1275 objfiles get stale by free_all_objfiles. */
1276 no_shared_libraries (NULL, from_tty);
1277
1278 free_all_objfiles ();
1279
1280 gdb_assert (symfile_objfile == NULL);
1281 if (from_tty)
1282 printf_unfiltered (_("No symbol file now.\n"));
1283 }
1284
1285 static char *
1286 get_debug_link_info (struct objfile *objfile, unsigned long *crc32_out)
1287 {
1288 asection *sect;
1289 bfd_size_type debuglink_size;
1290 unsigned long crc32;
1291 char *contents;
1292 int crc_offset;
1293
1294 sect = bfd_get_section_by_name (objfile->obfd, ".gnu_debuglink");
1295
1296 if (sect == NULL)
1297 return NULL;
1298
1299 debuglink_size = bfd_section_size (objfile->obfd, sect);
1300
1301 contents = xmalloc (debuglink_size);
1302 bfd_get_section_contents (objfile->obfd, sect, contents,
1303 (file_ptr)0, (bfd_size_type)debuglink_size);
1304
1305 /* Crc value is stored after the filename, aligned up to 4 bytes. */
1306 crc_offset = strlen (contents) + 1;
1307 crc_offset = (crc_offset + 3) & ~3;
1308
1309 crc32 = bfd_get_32 (objfile->obfd, (bfd_byte *) (contents + crc_offset));
1310
1311 *crc32_out = crc32;
1312 return contents;
1313 }
1314
1315 static int
1316 separate_debug_file_exists (const char *name, unsigned long crc,
1317 struct objfile *parent_objfile)
1318 {
1319 unsigned long file_crc = 0;
1320 bfd *abfd;
1321 gdb_byte buffer[8*1024];
1322 int count;
1323 struct stat parent_stat, abfd_stat;
1324
1325 /* Find a separate debug info file as if symbols would be present in
1326 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1327 section can contain just the basename of PARENT_OBJFILE without any
1328 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1329 the separate debug infos with the same basename can exist. */
1330
1331 if (strcmp (name, parent_objfile->name) == 0)
1332 return 0;
1333
1334 abfd = bfd_open_maybe_remote (name);
1335
1336 if (!abfd)
1337 return 0;
1338
1339 /* Verify symlinks were not the cause of strcmp name difference above.
1340
1341 Some operating systems, e.g. Windows, do not provide a meaningful
1342 st_ino; they always set it to zero. (Windows does provide a
1343 meaningful st_dev.) Do not indicate a duplicate library in that
1344 case. While there is no guarantee that a system that provides
1345 meaningful inode numbers will never set st_ino to zero, this is
1346 merely an optimization, so we do not need to worry about false
1347 negatives. */
1348
1349 if (bfd_stat (abfd, &abfd_stat) == 0
1350 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0
1351 && abfd_stat.st_dev == parent_stat.st_dev
1352 && abfd_stat.st_ino == parent_stat.st_ino
1353 && abfd_stat.st_ino != 0)
1354 {
1355 bfd_close (abfd);
1356 return 0;
1357 }
1358
1359 while ((count = bfd_bread (buffer, sizeof (buffer), abfd)) > 0)
1360 file_crc = gnu_debuglink_crc32 (file_crc, buffer, count);
1361
1362 bfd_close (abfd);
1363
1364 if (crc != file_crc)
1365 {
1366 warning (_("the debug information found in \"%s\""
1367 " does not match \"%s\" (CRC mismatch).\n"),
1368 name, parent_objfile->name);
1369 return 0;
1370 }
1371
1372 return 1;
1373 }
1374
1375 char *debug_file_directory = NULL;
1376 static void
1377 show_debug_file_directory (struct ui_file *file, int from_tty,
1378 struct cmd_list_element *c, const char *value)
1379 {
1380 fprintf_filtered (file, _("\
1381 The directory where separate debug symbols are searched for is \"%s\".\n"),
1382 value);
1383 }
1384
1385 #if ! defined (DEBUG_SUBDIRECTORY)
1386 #define DEBUG_SUBDIRECTORY ".debug"
1387 #endif
1388
1389 char *
1390 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1391 {
1392 char *basename, *debugdir;
1393 char *dir = NULL;
1394 char *debugfile = NULL;
1395 char *canon_name = NULL;
1396 unsigned long crc32;
1397 int i;
1398
1399 basename = get_debug_link_info (objfile, &crc32);
1400
1401 if (basename == NULL)
1402 /* There's no separate debug info, hence there's no way we could
1403 load it => no warning. */
1404 goto cleanup_return_debugfile;
1405
1406 dir = xstrdup (objfile->name);
1407
1408 /* Strip off the final filename part, leaving the directory name,
1409 followed by a slash. The directory can be relative or absolute. */
1410 for (i = strlen(dir) - 1; i >= 0; i--)
1411 {
1412 if (IS_DIR_SEPARATOR (dir[i]))
1413 break;
1414 }
1415 /* If I is -1 then no directory is present there and DIR will be "". */
1416 dir[i+1] = '\0';
1417
1418 /* Set I to max (strlen (canon_name), strlen (dir)). */
1419 canon_name = lrealpath (dir);
1420 i = strlen (dir);
1421 if (canon_name && strlen (canon_name) > i)
1422 i = strlen (canon_name);
1423
1424 debugfile = xmalloc (strlen (debug_file_directory) + 1
1425 + i
1426 + strlen (DEBUG_SUBDIRECTORY)
1427 + strlen ("/")
1428 + strlen (basename)
1429 + 1);
1430
1431 /* First try in the same directory as the original file. */
1432 strcpy (debugfile, dir);
1433 strcat (debugfile, basename);
1434
1435 if (separate_debug_file_exists (debugfile, crc32, objfile))
1436 goto cleanup_return_debugfile;
1437
1438 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1439 strcpy (debugfile, dir);
1440 strcat (debugfile, DEBUG_SUBDIRECTORY);
1441 strcat (debugfile, "/");
1442 strcat (debugfile, basename);
1443
1444 if (separate_debug_file_exists (debugfile, crc32, objfile))
1445 goto cleanup_return_debugfile;
1446
1447 /* Then try in the global debugfile directories.
1448
1449 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1450 cause "/..." lookups. */
1451
1452 debugdir = debug_file_directory;
1453 do
1454 {
1455 char *debugdir_end;
1456
1457 while (*debugdir == DIRNAME_SEPARATOR)
1458 debugdir++;
1459
1460 debugdir_end = strchr (debugdir, DIRNAME_SEPARATOR);
1461 if (debugdir_end == NULL)
1462 debugdir_end = &debugdir[strlen (debugdir)];
1463
1464 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1465 debugfile[debugdir_end - debugdir] = 0;
1466 strcat (debugfile, "/");
1467 strcat (debugfile, dir);
1468 strcat (debugfile, basename);
1469
1470 if (separate_debug_file_exists (debugfile, crc32, objfile))
1471 goto cleanup_return_debugfile;
1472
1473 /* If the file is in the sysroot, try using its base path in the
1474 global debugfile directory. */
1475 if (canon_name
1476 && strncmp (canon_name, gdb_sysroot, strlen (gdb_sysroot)) == 0
1477 && IS_DIR_SEPARATOR (canon_name[strlen (gdb_sysroot)]))
1478 {
1479 memcpy (debugfile, debugdir, debugdir_end - debugdir);
1480 debugfile[debugdir_end - debugdir] = 0;
1481 strcat (debugfile, canon_name + strlen (gdb_sysroot));
1482 strcat (debugfile, "/");
1483 strcat (debugfile, basename);
1484
1485 if (separate_debug_file_exists (debugfile, crc32, objfile))
1486 goto cleanup_return_debugfile;
1487 }
1488
1489 debugdir = debugdir_end;
1490 }
1491 while (*debugdir != 0);
1492
1493 xfree (debugfile);
1494 debugfile = NULL;
1495
1496 cleanup_return_debugfile:
1497 xfree (canon_name);
1498 xfree (basename);
1499 xfree (dir);
1500 return debugfile;
1501 }
1502
1503
1504 /* This is the symbol-file command. Read the file, analyze its
1505 symbols, and add a struct symtab to a symtab list. The syntax of
1506 the command is rather bizarre:
1507
1508 1. The function buildargv implements various quoting conventions
1509 which are undocumented and have little or nothing in common with
1510 the way things are quoted (or not quoted) elsewhere in GDB.
1511
1512 2. Options are used, which are not generally used in GDB (perhaps
1513 "set mapped on", "set readnow on" would be better)
1514
1515 3. The order of options matters, which is contrary to GNU
1516 conventions (because it is confusing and inconvenient). */
1517
1518 void
1519 symbol_file_command (char *args, int from_tty)
1520 {
1521 dont_repeat ();
1522
1523 if (args == NULL)
1524 {
1525 symbol_file_clear (from_tty);
1526 }
1527 else
1528 {
1529 char **argv = gdb_buildargv (args);
1530 int flags = OBJF_USERLOADED;
1531 struct cleanup *cleanups;
1532 char *name = NULL;
1533
1534 cleanups = make_cleanup_freeargv (argv);
1535 while (*argv != NULL)
1536 {
1537 if (strcmp (*argv, "-readnow") == 0)
1538 flags |= OBJF_READNOW;
1539 else if (**argv == '-')
1540 error (_("unknown option `%s'"), *argv);
1541 else
1542 {
1543 symbol_file_add_main_1 (*argv, from_tty, flags);
1544 name = *argv;
1545 }
1546
1547 argv++;
1548 }
1549
1550 if (name == NULL)
1551 error (_("no symbol file name was specified"));
1552
1553 do_cleanups (cleanups);
1554 }
1555 }
1556
1557 /* Set the initial language.
1558
1559 FIXME: A better solution would be to record the language in the
1560 psymtab when reading partial symbols, and then use it (if known) to
1561 set the language. This would be a win for formats that encode the
1562 language in an easily discoverable place, such as DWARF. For
1563 stabs, we can jump through hoops looking for specially named
1564 symbols or try to intuit the language from the specific type of
1565 stabs we find, but we can't do that until later when we read in
1566 full symbols. */
1567
1568 void
1569 set_initial_language (void)
1570 {
1571 const char *filename;
1572 enum language lang = language_unknown;
1573
1574 filename = find_main_filename ();
1575 if (filename != NULL)
1576 lang = deduce_language_from_filename (filename);
1577
1578 if (lang == language_unknown)
1579 {
1580 /* Make C the default language */
1581 lang = language_c;
1582 }
1583
1584 set_language (lang);
1585 expected_language = current_language; /* Don't warn the user. */
1586 }
1587
1588 /* If NAME is a remote name open the file using remote protocol, otherwise
1589 open it normally. */
1590
1591 bfd *
1592 bfd_open_maybe_remote (const char *name)
1593 {
1594 if (remote_filename_p (name))
1595 return remote_bfd_open (name, gnutarget);
1596 else
1597 return bfd_openr (name, gnutarget);
1598 }
1599
1600
1601 /* Open the file specified by NAME and hand it off to BFD for
1602 preliminary analysis. Return a newly initialized bfd *, which
1603 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1604 absolute). In case of trouble, error() is called. */
1605
1606 bfd *
1607 symfile_bfd_open (char *name)
1608 {
1609 bfd *sym_bfd;
1610 int desc;
1611 char *absolute_name;
1612
1613 if (remote_filename_p (name))
1614 {
1615 name = xstrdup (name);
1616 sym_bfd = remote_bfd_open (name, gnutarget);
1617 if (!sym_bfd)
1618 {
1619 make_cleanup (xfree, name);
1620 error (_("`%s': can't open to read symbols: %s."), name,
1621 bfd_errmsg (bfd_get_error ()));
1622 }
1623
1624 if (!bfd_check_format (sym_bfd, bfd_object))
1625 {
1626 bfd_close (sym_bfd);
1627 make_cleanup (xfree, name);
1628 error (_("`%s': can't read symbols: %s."), name,
1629 bfd_errmsg (bfd_get_error ()));
1630 }
1631
1632 return sym_bfd;
1633 }
1634
1635 name = tilde_expand (name); /* Returns 1st new malloc'd copy. */
1636
1637 /* Look down path for it, allocate 2nd new malloc'd copy. */
1638 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, name,
1639 O_RDONLY | O_BINARY, &absolute_name);
1640 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1641 if (desc < 0)
1642 {
1643 char *exename = alloca (strlen (name) + 5);
1644
1645 strcat (strcpy (exename, name), ".exe");
1646 desc = openp (getenv ("PATH"), OPF_TRY_CWD_FIRST, exename,
1647 O_RDONLY | O_BINARY, &absolute_name);
1648 }
1649 #endif
1650 if (desc < 0)
1651 {
1652 make_cleanup (xfree, name);
1653 perror_with_name (name);
1654 }
1655
1656 /* Free 1st new malloc'd copy, but keep the 2nd malloc'd copy in
1657 bfd. It'll be freed in free_objfile(). */
1658 xfree (name);
1659 name = absolute_name;
1660
1661 sym_bfd = bfd_fopen (name, gnutarget, FOPEN_RB, desc);
1662 if (!sym_bfd)
1663 {
1664 close (desc);
1665 make_cleanup (xfree, name);
1666 error (_("`%s': can't open to read symbols: %s."), name,
1667 bfd_errmsg (bfd_get_error ()));
1668 }
1669 bfd_set_cacheable (sym_bfd, 1);
1670
1671 if (!bfd_check_format (sym_bfd, bfd_object))
1672 {
1673 /* FIXME: should be checking for errors from bfd_close (for one
1674 thing, on error it does not free all the storage associated
1675 with the bfd). */
1676 bfd_close (sym_bfd); /* This also closes desc. */
1677 make_cleanup (xfree, name);
1678 error (_("`%s': can't read symbols: %s."), name,
1679 bfd_errmsg (bfd_get_error ()));
1680 }
1681
1682 /* bfd_usrdata exists for applications and libbfd must not touch it. */
1683 gdb_assert (bfd_usrdata (sym_bfd) == NULL);
1684
1685 return sym_bfd;
1686 }
1687
1688 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1689 the section was not found. */
1690
1691 int
1692 get_section_index (struct objfile *objfile, char *section_name)
1693 {
1694 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1695
1696 if (sect)
1697 return sect->index;
1698 else
1699 return -1;
1700 }
1701
1702 /* Link SF into the global symtab_fns list. Called on startup by the
1703 _initialize routine in each object file format reader, to register
1704 information about each format the the reader is prepared to
1705 handle. */
1706
1707 void
1708 add_symtab_fns (const struct sym_fns *sf)
1709 {
1710 VEC_safe_push (sym_fns_ptr, symtab_fns, sf);
1711 }
1712
1713 /* Initialize OBJFILE to read symbols from its associated BFD. It
1714 either returns or calls error(). The result is an initialized
1715 struct sym_fns in the objfile structure, that contains cached
1716 information about the symbol file. */
1717
1718 static const struct sym_fns *
1719 find_sym_fns (bfd *abfd)
1720 {
1721 const struct sym_fns *sf;
1722 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1723 int i;
1724
1725 if (our_flavour == bfd_target_srec_flavour
1726 || our_flavour == bfd_target_ihex_flavour
1727 || our_flavour == bfd_target_tekhex_flavour)
1728 return NULL; /* No symbols. */
1729
1730 for (i = 0; VEC_iterate (sym_fns_ptr, symtab_fns, i, sf); ++i)
1731 if (our_flavour == sf->sym_flavour)
1732 return sf;
1733
1734 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1735 bfd_get_target (abfd));
1736 }
1737 \f
1738
1739 /* This function runs the load command of our current target. */
1740
1741 static void
1742 load_command (char *arg, int from_tty)
1743 {
1744 /* The user might be reloading because the binary has changed. Take
1745 this opportunity to check. */
1746 reopen_exec_file ();
1747 reread_symbols ();
1748
1749 if (arg == NULL)
1750 {
1751 char *parg;
1752 int count = 0;
1753
1754 parg = arg = get_exec_file (1);
1755
1756 /* Count how many \ " ' tab space there are in the name. */
1757 while ((parg = strpbrk (parg, "\\\"'\t ")))
1758 {
1759 parg++;
1760 count++;
1761 }
1762
1763 if (count)
1764 {
1765 /* We need to quote this string so buildargv can pull it apart. */
1766 char *temp = xmalloc (strlen (arg) + count + 1 );
1767 char *ptemp = temp;
1768 char *prev;
1769
1770 make_cleanup (xfree, temp);
1771
1772 prev = parg = arg;
1773 while ((parg = strpbrk (parg, "\\\"'\t ")))
1774 {
1775 strncpy (ptemp, prev, parg - prev);
1776 ptemp += parg - prev;
1777 prev = parg++;
1778 *ptemp++ = '\\';
1779 }
1780 strcpy (ptemp, prev);
1781
1782 arg = temp;
1783 }
1784 }
1785
1786 target_load (arg, from_tty);
1787
1788 /* After re-loading the executable, we don't really know which
1789 overlays are mapped any more. */
1790 overlay_cache_invalid = 1;
1791 }
1792
1793 /* This version of "load" should be usable for any target. Currently
1794 it is just used for remote targets, not inftarg.c or core files,
1795 on the theory that only in that case is it useful.
1796
1797 Avoiding xmodem and the like seems like a win (a) because we don't have
1798 to worry about finding it, and (b) On VMS, fork() is very slow and so
1799 we don't want to run a subprocess. On the other hand, I'm not sure how
1800 performance compares. */
1801
1802 static int validate_download = 0;
1803
1804 /* Callback service function for generic_load (bfd_map_over_sections). */
1805
1806 static void
1807 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1808 {
1809 bfd_size_type *sum = data;
1810
1811 *sum += bfd_get_section_size (asec);
1812 }
1813
1814 /* Opaque data for load_section_callback. */
1815 struct load_section_data {
1816 unsigned long load_offset;
1817 struct load_progress_data *progress_data;
1818 VEC(memory_write_request_s) *requests;
1819 };
1820
1821 /* Opaque data for load_progress. */
1822 struct load_progress_data {
1823 /* Cumulative data. */
1824 unsigned long write_count;
1825 unsigned long data_count;
1826 bfd_size_type total_size;
1827 };
1828
1829 /* Opaque data for load_progress for a single section. */
1830 struct load_progress_section_data {
1831 struct load_progress_data *cumulative;
1832
1833 /* Per-section data. */
1834 const char *section_name;
1835 ULONGEST section_sent;
1836 ULONGEST section_size;
1837 CORE_ADDR lma;
1838 gdb_byte *buffer;
1839 };
1840
1841 /* Target write callback routine for progress reporting. */
1842
1843 static void
1844 load_progress (ULONGEST bytes, void *untyped_arg)
1845 {
1846 struct load_progress_section_data *args = untyped_arg;
1847 struct load_progress_data *totals;
1848
1849 if (args == NULL)
1850 /* Writing padding data. No easy way to get at the cumulative
1851 stats, so just ignore this. */
1852 return;
1853
1854 totals = args->cumulative;
1855
1856 if (bytes == 0 && args->section_sent == 0)
1857 {
1858 /* The write is just starting. Let the user know we've started
1859 this section. */
1860 ui_out_message (uiout, 0, "Loading section %s, size %s lma %s\n",
1861 args->section_name, hex_string (args->section_size),
1862 paddress (target_gdbarch, args->lma));
1863 return;
1864 }
1865
1866 if (validate_download)
1867 {
1868 /* Broken memories and broken monitors manifest themselves here
1869 when bring new computers to life. This doubles already slow
1870 downloads. */
1871 /* NOTE: cagney/1999-10-18: A more efficient implementation
1872 might add a verify_memory() method to the target vector and
1873 then use that. remote.c could implement that method using
1874 the ``qCRC'' packet. */
1875 gdb_byte *check = xmalloc (bytes);
1876 struct cleanup *verify_cleanups = make_cleanup (xfree, check);
1877
1878 if (target_read_memory (args->lma, check, bytes) != 0)
1879 error (_("Download verify read failed at %s"),
1880 paddress (target_gdbarch, args->lma));
1881 if (memcmp (args->buffer, check, bytes) != 0)
1882 error (_("Download verify compare failed at %s"),
1883 paddress (target_gdbarch, args->lma));
1884 do_cleanups (verify_cleanups);
1885 }
1886 totals->data_count += bytes;
1887 args->lma += bytes;
1888 args->buffer += bytes;
1889 totals->write_count += 1;
1890 args->section_sent += bytes;
1891 if (quit_flag
1892 || (deprecated_ui_load_progress_hook != NULL
1893 && deprecated_ui_load_progress_hook (args->section_name,
1894 args->section_sent)))
1895 error (_("Canceled the download"));
1896
1897 if (deprecated_show_load_progress != NULL)
1898 deprecated_show_load_progress (args->section_name,
1899 args->section_sent,
1900 args->section_size,
1901 totals->data_count,
1902 totals->total_size);
1903 }
1904
1905 /* Callback service function for generic_load (bfd_map_over_sections). */
1906
1907 static void
1908 load_section_callback (bfd *abfd, asection *asec, void *data)
1909 {
1910 struct memory_write_request *new_request;
1911 struct load_section_data *args = data;
1912 struct load_progress_section_data *section_data;
1913 bfd_size_type size = bfd_get_section_size (asec);
1914 gdb_byte *buffer;
1915 const char *sect_name = bfd_get_section_name (abfd, asec);
1916
1917 if ((bfd_get_section_flags (abfd, asec) & SEC_LOAD) == 0)
1918 return;
1919
1920 if (size == 0)
1921 return;
1922
1923 new_request = VEC_safe_push (memory_write_request_s,
1924 args->requests, NULL);
1925 memset (new_request, 0, sizeof (struct memory_write_request));
1926 section_data = xcalloc (1, sizeof (struct load_progress_section_data));
1927 new_request->begin = bfd_section_lma (abfd, asec) + args->load_offset;
1928 new_request->end = new_request->begin + size; /* FIXME Should size be in instead? */
1929 new_request->data = xmalloc (size);
1930 new_request->baton = section_data;
1931
1932 buffer = new_request->data;
1933
1934 section_data->cumulative = args->progress_data;
1935 section_data->section_name = sect_name;
1936 section_data->section_size = size;
1937 section_data->lma = new_request->begin;
1938 section_data->buffer = buffer;
1939
1940 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1941 }
1942
1943 /* Clean up an entire memory request vector, including load
1944 data and progress records. */
1945
1946 static void
1947 clear_memory_write_data (void *arg)
1948 {
1949 VEC(memory_write_request_s) **vec_p = arg;
1950 VEC(memory_write_request_s) *vec = *vec_p;
1951 int i;
1952 struct memory_write_request *mr;
1953
1954 for (i = 0; VEC_iterate (memory_write_request_s, vec, i, mr); ++i)
1955 {
1956 xfree (mr->data);
1957 xfree (mr->baton);
1958 }
1959 VEC_free (memory_write_request_s, vec);
1960 }
1961
1962 void
1963 generic_load (char *args, int from_tty)
1964 {
1965 bfd *loadfile_bfd;
1966 struct timeval start_time, end_time;
1967 char *filename;
1968 struct cleanup *old_cleanups = make_cleanup (null_cleanup, 0);
1969 struct load_section_data cbdata;
1970 struct load_progress_data total_progress;
1971
1972 CORE_ADDR entry;
1973 char **argv;
1974
1975 memset (&cbdata, 0, sizeof (cbdata));
1976 memset (&total_progress, 0, sizeof (total_progress));
1977 cbdata.progress_data = &total_progress;
1978
1979 make_cleanup (clear_memory_write_data, &cbdata.requests);
1980
1981 if (args == NULL)
1982 error_no_arg (_("file to load"));
1983
1984 argv = gdb_buildargv (args);
1985 make_cleanup_freeargv (argv);
1986
1987 filename = tilde_expand (argv[0]);
1988 make_cleanup (xfree, filename);
1989
1990 if (argv[1] != NULL)
1991 {
1992 char *endptr;
1993
1994 cbdata.load_offset = strtoul (argv[1], &endptr, 0);
1995
1996 /* If the last word was not a valid number then
1997 treat it as a file name with spaces in. */
1998 if (argv[1] == endptr)
1999 error (_("Invalid download offset:%s."), argv[1]);
2000
2001 if (argv[2] != NULL)
2002 error (_("Too many parameters."));
2003 }
2004
2005 /* Open the file for loading. */
2006 loadfile_bfd = bfd_openr (filename, gnutarget);
2007 if (loadfile_bfd == NULL)
2008 {
2009 perror_with_name (filename);
2010 return;
2011 }
2012
2013 /* FIXME: should be checking for errors from bfd_close (for one thing,
2014 on error it does not free all the storage associated with the
2015 bfd). */
2016 make_cleanup_bfd_close (loadfile_bfd);
2017
2018 if (!bfd_check_format (loadfile_bfd, bfd_object))
2019 {
2020 error (_("\"%s\" is not an object file: %s"), filename,
2021 bfd_errmsg (bfd_get_error ()));
2022 }
2023
2024 bfd_map_over_sections (loadfile_bfd, add_section_size_callback,
2025 (void *) &total_progress.total_size);
2026
2027 bfd_map_over_sections (loadfile_bfd, load_section_callback, &cbdata);
2028
2029 gettimeofday (&start_time, NULL);
2030
2031 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2032 load_progress) != 0)
2033 error (_("Load failed"));
2034
2035 gettimeofday (&end_time, NULL);
2036
2037 entry = bfd_get_start_address (loadfile_bfd);
2038 ui_out_text (uiout, "Start address ");
2039 ui_out_field_fmt (uiout, "address", "%s", paddress (target_gdbarch, entry));
2040 ui_out_text (uiout, ", load size ");
2041 ui_out_field_fmt (uiout, "load-size", "%lu", total_progress.data_count);
2042 ui_out_text (uiout, "\n");
2043 /* We were doing this in remote-mips.c, I suspect it is right
2044 for other targets too. */
2045 regcache_write_pc (get_current_regcache (), entry);
2046
2047 /* Reset breakpoints, now that we have changed the load image. For
2048 instance, breakpoints may have been set (or reset, by
2049 post_create_inferior) while connected to the target but before we
2050 loaded the program. In that case, the prologue analyzer could
2051 have read instructions from the target to find the right
2052 breakpoint locations. Loading has changed the contents of that
2053 memory. */
2054
2055 breakpoint_re_set ();
2056
2057 /* FIXME: are we supposed to call symbol_file_add or not? According
2058 to a comment from remote-mips.c (where a call to symbol_file_add
2059 was commented out), making the call confuses GDB if more than one
2060 file is loaded in. Some targets do (e.g., remote-vx.c) but
2061 others don't (or didn't - perhaps they have all been deleted). */
2062
2063 print_transfer_performance (gdb_stdout, total_progress.data_count,
2064 total_progress.write_count,
2065 &start_time, &end_time);
2066
2067 do_cleanups (old_cleanups);
2068 }
2069
2070 /* Report how fast the transfer went. */
2071
2072 /* DEPRECATED: cagney/1999-10-18: report_transfer_performance is being
2073 replaced by print_transfer_performance (with a very different
2074 function signature). */
2075
2076 void
2077 report_transfer_performance (unsigned long data_count, time_t start_time,
2078 time_t end_time)
2079 {
2080 struct timeval start, end;
2081
2082 start.tv_sec = start_time;
2083 start.tv_usec = 0;
2084 end.tv_sec = end_time;
2085 end.tv_usec = 0;
2086
2087 print_transfer_performance (gdb_stdout, data_count, 0, &start, &end);
2088 }
2089
2090 void
2091 print_transfer_performance (struct ui_file *stream,
2092 unsigned long data_count,
2093 unsigned long write_count,
2094 const struct timeval *start_time,
2095 const struct timeval *end_time)
2096 {
2097 ULONGEST time_count;
2098
2099 /* Compute the elapsed time in milliseconds, as a tradeoff between
2100 accuracy and overflow. */
2101 time_count = (end_time->tv_sec - start_time->tv_sec) * 1000;
2102 time_count += (end_time->tv_usec - start_time->tv_usec) / 1000;
2103
2104 ui_out_text (uiout, "Transfer rate: ");
2105 if (time_count > 0)
2106 {
2107 unsigned long rate = ((ULONGEST) data_count * 1000) / time_count;
2108
2109 if (ui_out_is_mi_like_p (uiout))
2110 {
2111 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate * 8);
2112 ui_out_text (uiout, " bits/sec");
2113 }
2114 else if (rate < 1024)
2115 {
2116 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate);
2117 ui_out_text (uiout, " bytes/sec");
2118 }
2119 else
2120 {
2121 ui_out_field_fmt (uiout, "transfer-rate", "%lu", rate / 1024);
2122 ui_out_text (uiout, " KB/sec");
2123 }
2124 }
2125 else
2126 {
2127 ui_out_field_fmt (uiout, "transferred-bits", "%lu", (data_count * 8));
2128 ui_out_text (uiout, " bits in <1 sec");
2129 }
2130 if (write_count > 0)
2131 {
2132 ui_out_text (uiout, ", ");
2133 ui_out_field_fmt (uiout, "write-rate", "%lu", data_count / write_count);
2134 ui_out_text (uiout, " bytes/write");
2135 }
2136 ui_out_text (uiout, ".\n");
2137 }
2138
2139 /* This function allows the addition of incrementally linked object files.
2140 It does not modify any state in the target, only in the debugger. */
2141 /* Note: ezannoni 2000-04-13 This function/command used to have a
2142 special case syntax for the rombug target (Rombug is the boot
2143 monitor for Microware's OS-9 / OS-9000, see remote-os9k.c). In the
2144 rombug case, the user doesn't need to supply a text address,
2145 instead a call to target_link() (in target.c) would supply the
2146 value to use. We are now discontinuing this type of ad hoc syntax. */
2147
2148 static void
2149 add_symbol_file_command (char *args, int from_tty)
2150 {
2151 struct gdbarch *gdbarch = get_current_arch ();
2152 char *filename = NULL;
2153 int flags = OBJF_USERLOADED;
2154 char *arg;
2155 int section_index = 0;
2156 int argcnt = 0;
2157 int sec_num = 0;
2158 int i;
2159 int expecting_sec_name = 0;
2160 int expecting_sec_addr = 0;
2161 char **argv;
2162
2163 struct sect_opt
2164 {
2165 char *name;
2166 char *value;
2167 };
2168
2169 struct section_addr_info *section_addrs;
2170 struct sect_opt *sect_opts = NULL;
2171 size_t num_sect_opts = 0;
2172 struct cleanup *my_cleanups = make_cleanup (null_cleanup, NULL);
2173
2174 num_sect_opts = 16;
2175 sect_opts = (struct sect_opt *) xmalloc (num_sect_opts
2176 * sizeof (struct sect_opt));
2177
2178 dont_repeat ();
2179
2180 if (args == NULL)
2181 error (_("add-symbol-file takes a file name and an address"));
2182
2183 argv = gdb_buildargv (args);
2184 make_cleanup_freeargv (argv);
2185
2186 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2187 {
2188 /* Process the argument. */
2189 if (argcnt == 0)
2190 {
2191 /* The first argument is the file name. */
2192 filename = tilde_expand (arg);
2193 make_cleanup (xfree, filename);
2194 }
2195 else
2196 if (argcnt == 1)
2197 {
2198 /* The second argument is always the text address at which
2199 to load the program. */
2200 sect_opts[section_index].name = ".text";
2201 sect_opts[section_index].value = arg;
2202 if (++section_index >= num_sect_opts)
2203 {
2204 num_sect_opts *= 2;
2205 sect_opts = ((struct sect_opt *)
2206 xrealloc (sect_opts,
2207 num_sect_opts
2208 * sizeof (struct sect_opt)));
2209 }
2210 }
2211 else
2212 {
2213 /* It's an option (starting with '-') or it's an argument
2214 to an option */
2215
2216 if (*arg == '-')
2217 {
2218 if (strcmp (arg, "-readnow") == 0)
2219 flags |= OBJF_READNOW;
2220 else if (strcmp (arg, "-s") == 0)
2221 {
2222 expecting_sec_name = 1;
2223 expecting_sec_addr = 1;
2224 }
2225 }
2226 else
2227 {
2228 if (expecting_sec_name)
2229 {
2230 sect_opts[section_index].name = arg;
2231 expecting_sec_name = 0;
2232 }
2233 else
2234 if (expecting_sec_addr)
2235 {
2236 sect_opts[section_index].value = arg;
2237 expecting_sec_addr = 0;
2238 if (++section_index >= num_sect_opts)
2239 {
2240 num_sect_opts *= 2;
2241 sect_opts = ((struct sect_opt *)
2242 xrealloc (sect_opts,
2243 num_sect_opts
2244 * sizeof (struct sect_opt)));
2245 }
2246 }
2247 else
2248 error (_("USAGE: add-symbol-file <filename> <textaddress> [-mapped] [-readnow] [-s <secname> <addr>]*"));
2249 }
2250 }
2251 }
2252
2253 /* This command takes at least two arguments. The first one is a
2254 filename, and the second is the address where this file has been
2255 loaded. Abort now if this address hasn't been provided by the
2256 user. */
2257 if (section_index < 1)
2258 error (_("The address where %s has been loaded is missing"), filename);
2259
2260 /* Print the prompt for the query below. And save the arguments into
2261 a sect_addr_info structure to be passed around to other
2262 functions. We have to split this up into separate print
2263 statements because hex_string returns a local static
2264 string. */
2265
2266 printf_unfiltered (_("add symbol table from file \"%s\" at\n"), filename);
2267 section_addrs = alloc_section_addr_info (section_index);
2268 make_cleanup (xfree, section_addrs);
2269 for (i = 0; i < section_index; i++)
2270 {
2271 CORE_ADDR addr;
2272 char *val = sect_opts[i].value;
2273 char *sec = sect_opts[i].name;
2274
2275 addr = parse_and_eval_address (val);
2276
2277 /* Here we store the section offsets in the order they were
2278 entered on the command line. */
2279 section_addrs->other[sec_num].name = sec;
2280 section_addrs->other[sec_num].addr = addr;
2281 printf_unfiltered ("\t%s_addr = %s\n", sec,
2282 paddress (gdbarch, addr));
2283 sec_num++;
2284
2285 /* The object's sections are initialized when a
2286 call is made to build_objfile_section_table (objfile).
2287 This happens in reread_symbols.
2288 At this point, we don't know what file type this is,
2289 so we can't determine what section names are valid. */
2290 }
2291
2292 if (from_tty && (!query ("%s", "")))
2293 error (_("Not confirmed."));
2294
2295 symbol_file_add (filename, from_tty ? SYMFILE_VERBOSE : 0,
2296 section_addrs, flags);
2297
2298 /* Getting new symbols may change our opinion about what is
2299 frameless. */
2300 reinit_frame_cache ();
2301 do_cleanups (my_cleanups);
2302 }
2303 \f
2304
2305 /* Re-read symbols if a symbol-file has changed. */
2306 void
2307 reread_symbols (void)
2308 {
2309 struct objfile *objfile;
2310 long new_modtime;
2311 int reread_one = 0;
2312 struct stat new_statbuf;
2313 int res;
2314
2315 /* With the addition of shared libraries, this should be modified,
2316 the load time should be saved in the partial symbol tables, since
2317 different tables may come from different source files. FIXME.
2318 This routine should then walk down each partial symbol table
2319 and see if the symbol table that it originates from has been changed */
2320
2321 for (objfile = object_files; objfile; objfile = objfile->next)
2322 {
2323 /* solib-sunos.c creates one objfile with obfd. */
2324 if (objfile->obfd == NULL)
2325 continue;
2326
2327 /* Separate debug objfiles are handled in the main objfile. */
2328 if (objfile->separate_debug_objfile_backlink)
2329 continue;
2330
2331 /* If this object is from an archive (what you usually create with
2332 `ar', often called a `static library' on most systems, though
2333 a `shared library' on AIX is also an archive), then you should
2334 stat on the archive name, not member name. */
2335 if (objfile->obfd->my_archive)
2336 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2337 else
2338 res = stat (objfile->name, &new_statbuf);
2339 if (res != 0)
2340 {
2341 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2342 printf_unfiltered (_("`%s' has disappeared; keeping its symbols.\n"),
2343 objfile->name);
2344 continue;
2345 }
2346 new_modtime = new_statbuf.st_mtime;
2347 if (new_modtime != objfile->mtime)
2348 {
2349 struct cleanup *old_cleanups;
2350 struct section_offsets *offsets;
2351 int num_offsets;
2352 char *obfd_filename;
2353
2354 printf_unfiltered (_("`%s' has changed; re-reading symbols.\n"),
2355 objfile->name);
2356
2357 /* There are various functions like symbol_file_add,
2358 symfile_bfd_open, syms_from_objfile, etc., which might
2359 appear to do what we want. But they have various other
2360 effects which we *don't* want. So we just do stuff
2361 ourselves. We don't worry about mapped files (for one thing,
2362 any mapped file will be out of date). */
2363
2364 /* If we get an error, blow away this objfile (not sure if
2365 that is the correct response for things like shared
2366 libraries). */
2367 old_cleanups = make_cleanup_free_objfile (objfile);
2368 /* We need to do this whenever any symbols go away. */
2369 make_cleanup (clear_symtab_users_cleanup, 0 /*ignore*/);
2370
2371 if (exec_bfd != NULL && strcmp (bfd_get_filename (objfile->obfd),
2372 bfd_get_filename (exec_bfd)) == 0)
2373 {
2374 /* Reload EXEC_BFD without asking anything. */
2375
2376 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2377 }
2378
2379 /* Clean up any state BFD has sitting around. We don't need
2380 to close the descriptor but BFD lacks a way of closing the
2381 BFD without closing the descriptor. */
2382 obfd_filename = bfd_get_filename (objfile->obfd);
2383 if (!bfd_close (objfile->obfd))
2384 error (_("Can't close BFD for %s: %s"), objfile->name,
2385 bfd_errmsg (bfd_get_error ()));
2386 objfile->obfd = bfd_open_maybe_remote (obfd_filename);
2387 if (objfile->obfd == NULL)
2388 error (_("Can't open %s to read symbols."), objfile->name);
2389 else
2390 objfile->obfd = gdb_bfd_ref (objfile->obfd);
2391 /* bfd_openr sets cacheable to true, which is what we want. */
2392 if (!bfd_check_format (objfile->obfd, bfd_object))
2393 error (_("Can't read symbols from %s: %s."), objfile->name,
2394 bfd_errmsg (bfd_get_error ()));
2395
2396 /* Save the offsets, we will nuke them with the rest of the
2397 objfile_obstack. */
2398 num_offsets = objfile->num_sections;
2399 offsets = ((struct section_offsets *)
2400 alloca (SIZEOF_N_SECTION_OFFSETS (num_offsets)));
2401 memcpy (offsets, objfile->section_offsets,
2402 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2403
2404 /* Remove any references to this objfile in the global
2405 value lists. */
2406 preserve_values (objfile);
2407
2408 /* Nuke all the state that we will re-read. Much of the following
2409 code which sets things to NULL really is necessary to tell
2410 other parts of GDB that there is nothing currently there.
2411
2412 Try to keep the freeing order compatible with free_objfile. */
2413
2414 if (objfile->sf != NULL)
2415 {
2416 (*objfile->sf->sym_finish) (objfile);
2417 }
2418
2419 clear_objfile_data (objfile);
2420
2421 /* Free the separate debug objfiles. It will be
2422 automatically recreated by sym_read. */
2423 free_objfile_separate_debug (objfile);
2424
2425 /* FIXME: Do we have to free a whole linked list, or is this
2426 enough? */
2427 if (objfile->global_psymbols.list)
2428 xfree (objfile->global_psymbols.list);
2429 memset (&objfile->global_psymbols, 0,
2430 sizeof (objfile->global_psymbols));
2431 if (objfile->static_psymbols.list)
2432 xfree (objfile->static_psymbols.list);
2433 memset (&objfile->static_psymbols, 0,
2434 sizeof (objfile->static_psymbols));
2435
2436 /* Free the obstacks for non-reusable objfiles */
2437 psymbol_bcache_free (objfile->psymbol_cache);
2438 objfile->psymbol_cache = psymbol_bcache_init ();
2439 bcache_xfree (objfile->macro_cache);
2440 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2441 bcache_xfree (objfile->filename_cache);
2442 objfile->filename_cache = bcache_xmalloc (NULL,NULL);
2443 if (objfile->demangled_names_hash != NULL)
2444 {
2445 htab_delete (objfile->demangled_names_hash);
2446 objfile->demangled_names_hash = NULL;
2447 }
2448 obstack_free (&objfile->objfile_obstack, 0);
2449 objfile->sections = NULL;
2450 objfile->symtabs = NULL;
2451 objfile->psymtabs = NULL;
2452 objfile->psymtabs_addrmap = NULL;
2453 objfile->free_psymtabs = NULL;
2454 objfile->cp_namespace_symtab = NULL;
2455 objfile->template_symbols = NULL;
2456 objfile->msymbols = NULL;
2457 objfile->deprecated_sym_private = NULL;
2458 objfile->minimal_symbol_count = 0;
2459 memset (&objfile->msymbol_hash, 0,
2460 sizeof (objfile->msymbol_hash));
2461 memset (&objfile->msymbol_demangled_hash, 0,
2462 sizeof (objfile->msymbol_demangled_hash));
2463
2464 objfile->psymbol_cache = psymbol_bcache_init ();
2465 objfile->macro_cache = bcache_xmalloc (NULL, NULL);
2466 objfile->filename_cache = bcache_xmalloc (NULL, NULL);
2467 /* obstack_init also initializes the obstack so it is
2468 empty. We could use obstack_specify_allocation but
2469 gdb_obstack.h specifies the alloc/dealloc
2470 functions. */
2471 obstack_init (&objfile->objfile_obstack);
2472 if (build_objfile_section_table (objfile))
2473 {
2474 error (_("Can't find the file sections in `%s': %s"),
2475 objfile->name, bfd_errmsg (bfd_get_error ()));
2476 }
2477 terminate_minimal_symbol_table (objfile);
2478
2479 /* We use the same section offsets as from last time. I'm not
2480 sure whether that is always correct for shared libraries. */
2481 objfile->section_offsets = (struct section_offsets *)
2482 obstack_alloc (&objfile->objfile_obstack,
2483 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2484 memcpy (objfile->section_offsets, offsets,
2485 SIZEOF_N_SECTION_OFFSETS (num_offsets));
2486 objfile->num_sections = num_offsets;
2487
2488 /* What the hell is sym_new_init for, anyway? The concept of
2489 distinguishing between the main file and additional files
2490 in this way seems rather dubious. */
2491 if (objfile == symfile_objfile)
2492 {
2493 (*objfile->sf->sym_new_init) (objfile);
2494 }
2495
2496 (*objfile->sf->sym_init) (objfile);
2497 clear_complaints (&symfile_complaints, 1, 1);
2498 /* Do not set flags as this is safe and we don't want to be
2499 verbose. */
2500 (*objfile->sf->sym_read) (objfile, 0);
2501 if (!objfile_has_symbols (objfile))
2502 {
2503 wrap_here ("");
2504 printf_unfiltered (_("(no debugging symbols found)\n"));
2505 wrap_here ("");
2506 }
2507
2508 /* We're done reading the symbol file; finish off complaints. */
2509 clear_complaints (&symfile_complaints, 0, 1);
2510
2511 /* Getting new symbols may change our opinion about what is
2512 frameless. */
2513
2514 reinit_frame_cache ();
2515
2516 /* Discard cleanups as symbol reading was successful. */
2517 discard_cleanups (old_cleanups);
2518
2519 /* If the mtime has changed between the time we set new_modtime
2520 and now, we *want* this to be out of date, so don't call stat
2521 again now. */
2522 objfile->mtime = new_modtime;
2523 reread_one = 1;
2524 init_entry_point_info (objfile);
2525 }
2526 }
2527
2528 if (reread_one)
2529 {
2530 /* Notify objfiles that we've modified objfile sections. */
2531 objfiles_changed ();
2532
2533 clear_symtab_users (0);
2534 /* At least one objfile has changed, so we can consider that
2535 the executable we're debugging has changed too. */
2536 observer_notify_executable_changed ();
2537 }
2538 }
2539 \f
2540
2541
2542 typedef struct
2543 {
2544 char *ext;
2545 enum language lang;
2546 }
2547 filename_language;
2548
2549 static filename_language *filename_language_table;
2550 static int fl_table_size, fl_table_next;
2551
2552 static void
2553 add_filename_language (char *ext, enum language lang)
2554 {
2555 if (fl_table_next >= fl_table_size)
2556 {
2557 fl_table_size += 10;
2558 filename_language_table =
2559 xrealloc (filename_language_table,
2560 fl_table_size * sizeof (*filename_language_table));
2561 }
2562
2563 filename_language_table[fl_table_next].ext = xstrdup (ext);
2564 filename_language_table[fl_table_next].lang = lang;
2565 fl_table_next++;
2566 }
2567
2568 static char *ext_args;
2569 static void
2570 show_ext_args (struct ui_file *file, int from_tty,
2571 struct cmd_list_element *c, const char *value)
2572 {
2573 fprintf_filtered (file, _("\
2574 Mapping between filename extension and source language is \"%s\".\n"),
2575 value);
2576 }
2577
2578 static void
2579 set_ext_lang_command (char *args, int from_tty, struct cmd_list_element *e)
2580 {
2581 int i;
2582 char *cp = ext_args;
2583 enum language lang;
2584
2585 /* First arg is filename extension, starting with '.' */
2586 if (*cp != '.')
2587 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2588
2589 /* Find end of first arg. */
2590 while (*cp && !isspace (*cp))
2591 cp++;
2592
2593 if (*cp == '\0')
2594 error (_("'%s': two arguments required -- filename extension and language"),
2595 ext_args);
2596
2597 /* Null-terminate first arg */
2598 *cp++ = '\0';
2599
2600 /* Find beginning of second arg, which should be a source language. */
2601 while (*cp && isspace (*cp))
2602 cp++;
2603
2604 if (*cp == '\0')
2605 error (_("'%s': two arguments required -- filename extension and language"),
2606 ext_args);
2607
2608 /* Lookup the language from among those we know. */
2609 lang = language_enum (cp);
2610
2611 /* Now lookup the filename extension: do we already know it? */
2612 for (i = 0; i < fl_table_next; i++)
2613 if (0 == strcmp (ext_args, filename_language_table[i].ext))
2614 break;
2615
2616 if (i >= fl_table_next)
2617 {
2618 /* new file extension */
2619 add_filename_language (ext_args, lang);
2620 }
2621 else
2622 {
2623 /* redefining a previously known filename extension */
2624
2625 /* if (from_tty) */
2626 /* query ("Really make files of type %s '%s'?", */
2627 /* ext_args, language_str (lang)); */
2628
2629 xfree (filename_language_table[i].ext);
2630 filename_language_table[i].ext = xstrdup (ext_args);
2631 filename_language_table[i].lang = lang;
2632 }
2633 }
2634
2635 static void
2636 info_ext_lang_command (char *args, int from_tty)
2637 {
2638 int i;
2639
2640 printf_filtered (_("Filename extensions and the languages they represent:"));
2641 printf_filtered ("\n\n");
2642 for (i = 0; i < fl_table_next; i++)
2643 printf_filtered ("\t%s\t- %s\n",
2644 filename_language_table[i].ext,
2645 language_str (filename_language_table[i].lang));
2646 }
2647
2648 static void
2649 init_filename_language_table (void)
2650 {
2651 if (fl_table_size == 0) /* protect against repetition */
2652 {
2653 fl_table_size = 20;
2654 fl_table_next = 0;
2655 filename_language_table =
2656 xmalloc (fl_table_size * sizeof (*filename_language_table));
2657 add_filename_language (".c", language_c);
2658 add_filename_language (".d", language_d);
2659 add_filename_language (".C", language_cplus);
2660 add_filename_language (".cc", language_cplus);
2661 add_filename_language (".cp", language_cplus);
2662 add_filename_language (".cpp", language_cplus);
2663 add_filename_language (".cxx", language_cplus);
2664 add_filename_language (".c++", language_cplus);
2665 add_filename_language (".java", language_java);
2666 add_filename_language (".class", language_java);
2667 add_filename_language (".m", language_objc);
2668 add_filename_language (".f", language_fortran);
2669 add_filename_language (".F", language_fortran);
2670 add_filename_language (".for", language_fortran);
2671 add_filename_language (".FOR", language_fortran);
2672 add_filename_language (".ftn", language_fortran);
2673 add_filename_language (".FTN", language_fortran);
2674 add_filename_language (".fpp", language_fortran);
2675 add_filename_language (".FPP", language_fortran);
2676 add_filename_language (".f90", language_fortran);
2677 add_filename_language (".F90", language_fortran);
2678 add_filename_language (".f95", language_fortran);
2679 add_filename_language (".F95", language_fortran);
2680 add_filename_language (".f03", language_fortran);
2681 add_filename_language (".F03", language_fortran);
2682 add_filename_language (".f08", language_fortran);
2683 add_filename_language (".F08", language_fortran);
2684 add_filename_language (".s", language_asm);
2685 add_filename_language (".sx", language_asm);
2686 add_filename_language (".S", language_asm);
2687 add_filename_language (".pas", language_pascal);
2688 add_filename_language (".p", language_pascal);
2689 add_filename_language (".pp", language_pascal);
2690 add_filename_language (".adb", language_ada);
2691 add_filename_language (".ads", language_ada);
2692 add_filename_language (".a", language_ada);
2693 add_filename_language (".ada", language_ada);
2694 add_filename_language (".dg", language_ada);
2695 }
2696 }
2697
2698 enum language
2699 deduce_language_from_filename (const char *filename)
2700 {
2701 int i;
2702 char *cp;
2703
2704 if (filename != NULL)
2705 if ((cp = strrchr (filename, '.')) != NULL)
2706 for (i = 0; i < fl_table_next; i++)
2707 if (strcmp (cp, filename_language_table[i].ext) == 0)
2708 return filename_language_table[i].lang;
2709
2710 return language_unknown;
2711 }
2712 \f
2713 /* allocate_symtab:
2714
2715 Allocate and partly initialize a new symbol table. Return a pointer
2716 to it. error() if no space.
2717
2718 Caller must set these fields:
2719 LINETABLE(symtab)
2720 symtab->blockvector
2721 symtab->dirname
2722 symtab->free_code
2723 symtab->free_ptr
2724 */
2725
2726 struct symtab *
2727 allocate_symtab (const char *filename, struct objfile *objfile)
2728 {
2729 struct symtab *symtab;
2730
2731 symtab = (struct symtab *)
2732 obstack_alloc (&objfile->objfile_obstack, sizeof (struct symtab));
2733 memset (symtab, 0, sizeof (*symtab));
2734 symtab->filename = (char *) bcache (filename, strlen (filename) + 1,
2735 objfile->filename_cache);
2736 symtab->fullname = NULL;
2737 symtab->language = deduce_language_from_filename (filename);
2738 symtab->debugformat = "unknown";
2739
2740 /* Hook it to the objfile it comes from */
2741
2742 symtab->objfile = objfile;
2743 symtab->next = objfile->symtabs;
2744 objfile->symtabs = symtab;
2745
2746 return (symtab);
2747 }
2748 \f
2749
2750 /* Reset all data structures in gdb which may contain references to symbol
2751 table data. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
2752
2753 void
2754 clear_symtab_users (int add_flags)
2755 {
2756 /* Someday, we should do better than this, by only blowing away
2757 the things that really need to be blown. */
2758
2759 /* Clear the "current" symtab first, because it is no longer valid.
2760 breakpoint_re_set may try to access the current symtab. */
2761 clear_current_source_symtab_and_line ();
2762
2763 clear_displays ();
2764 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2765 breakpoint_re_set ();
2766 set_default_breakpoint (0, NULL, 0, 0, 0);
2767 clear_pc_function_cache ();
2768 observer_notify_new_objfile (NULL);
2769
2770 /* Clear globals which might have pointed into a removed objfile.
2771 FIXME: It's not clear which of these are supposed to persist
2772 between expressions and which ought to be reset each time. */
2773 expression_context_block = NULL;
2774 innermost_block = NULL;
2775
2776 /* Varobj may refer to old symbols, perform a cleanup. */
2777 varobj_invalidate ();
2778
2779 }
2780
2781 static void
2782 clear_symtab_users_cleanup (void *ignore)
2783 {
2784 clear_symtab_users (0);
2785 }
2786 \f
2787 /* OVERLAYS:
2788 The following code implements an abstraction for debugging overlay sections.
2789
2790 The target model is as follows:
2791 1) The gnu linker will permit multiple sections to be mapped into the
2792 same VMA, each with its own unique LMA (or load address).
2793 2) It is assumed that some runtime mechanism exists for mapping the
2794 sections, one by one, from the load address into the VMA address.
2795 3) This code provides a mechanism for gdb to keep track of which
2796 sections should be considered to be mapped from the VMA to the LMA.
2797 This information is used for symbol lookup, and memory read/write.
2798 For instance, if a section has been mapped then its contents
2799 should be read from the VMA, otherwise from the LMA.
2800
2801 Two levels of debugger support for overlays are available. One is
2802 "manual", in which the debugger relies on the user to tell it which
2803 overlays are currently mapped. This level of support is
2804 implemented entirely in the core debugger, and the information about
2805 whether a section is mapped is kept in the objfile->obj_section table.
2806
2807 The second level of support is "automatic", and is only available if
2808 the target-specific code provides functionality to read the target's
2809 overlay mapping table, and translate its contents for the debugger
2810 (by updating the mapped state information in the obj_section tables).
2811
2812 The interface is as follows:
2813 User commands:
2814 overlay map <name> -- tell gdb to consider this section mapped
2815 overlay unmap <name> -- tell gdb to consider this section unmapped
2816 overlay list -- list the sections that GDB thinks are mapped
2817 overlay read-target -- get the target's state of what's mapped
2818 overlay off/manual/auto -- set overlay debugging state
2819 Functional interface:
2820 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2821 section, return that section.
2822 find_pc_overlay(pc): find any overlay section that contains
2823 the pc, either in its VMA or its LMA
2824 section_is_mapped(sect): true if overlay is marked as mapped
2825 section_is_overlay(sect): true if section's VMA != LMA
2826 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2827 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2828 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2829 overlay_mapped_address(...): map an address from section's LMA to VMA
2830 overlay_unmapped_address(...): map an address from section's VMA to LMA
2831 symbol_overlayed_address(...): Return a "current" address for symbol:
2832 either in VMA or LMA depending on whether
2833 the symbol's section is currently mapped
2834 */
2835
2836 /* Overlay debugging state: */
2837
2838 enum overlay_debugging_state overlay_debugging = ovly_off;
2839 int overlay_cache_invalid = 0; /* True if need to refresh mapped state */
2840
2841 /* Function: section_is_overlay (SECTION)
2842 Returns true if SECTION has VMA not equal to LMA, ie.
2843 SECTION is loaded at an address different from where it will "run". */
2844
2845 int
2846 section_is_overlay (struct obj_section *section)
2847 {
2848 if (overlay_debugging && section)
2849 {
2850 bfd *abfd = section->objfile->obfd;
2851 asection *bfd_section = section->the_bfd_section;
2852
2853 if (bfd_section_lma (abfd, bfd_section) != 0
2854 && bfd_section_lma (abfd, bfd_section)
2855 != bfd_section_vma (abfd, bfd_section))
2856 return 1;
2857 }
2858
2859 return 0;
2860 }
2861
2862 /* Function: overlay_invalidate_all (void)
2863 Invalidate the mapped state of all overlay sections (mark it as stale). */
2864
2865 static void
2866 overlay_invalidate_all (void)
2867 {
2868 struct objfile *objfile;
2869 struct obj_section *sect;
2870
2871 ALL_OBJSECTIONS (objfile, sect)
2872 if (section_is_overlay (sect))
2873 sect->ovly_mapped = -1;
2874 }
2875
2876 /* Function: section_is_mapped (SECTION)
2877 Returns true if section is an overlay, and is currently mapped.
2878
2879 Access to the ovly_mapped flag is restricted to this function, so
2880 that we can do automatic update. If the global flag
2881 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2882 overlay_invalidate_all. If the mapped state of the particular
2883 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2884
2885 int
2886 section_is_mapped (struct obj_section *osect)
2887 {
2888 struct gdbarch *gdbarch;
2889
2890 if (osect == 0 || !section_is_overlay (osect))
2891 return 0;
2892
2893 switch (overlay_debugging)
2894 {
2895 default:
2896 case ovly_off:
2897 return 0; /* overlay debugging off */
2898 case ovly_auto: /* overlay debugging automatic */
2899 /* Unles there is a gdbarch_overlay_update function,
2900 there's really nothing useful to do here (can't really go auto) */
2901 gdbarch = get_objfile_arch (osect->objfile);
2902 if (gdbarch_overlay_update_p (gdbarch))
2903 {
2904 if (overlay_cache_invalid)
2905 {
2906 overlay_invalidate_all ();
2907 overlay_cache_invalid = 0;
2908 }
2909 if (osect->ovly_mapped == -1)
2910 gdbarch_overlay_update (gdbarch, osect);
2911 }
2912 /* fall thru to manual case */
2913 case ovly_on: /* overlay debugging manual */
2914 return osect->ovly_mapped == 1;
2915 }
2916 }
2917
2918 /* Function: pc_in_unmapped_range
2919 If PC falls into the lma range of SECTION, return true, else false. */
2920
2921 CORE_ADDR
2922 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
2923 {
2924 if (section_is_overlay (section))
2925 {
2926 bfd *abfd = section->objfile->obfd;
2927 asection *bfd_section = section->the_bfd_section;
2928
2929 /* We assume the LMA is relocated by the same offset as the VMA. */
2930 bfd_vma size = bfd_get_section_size (bfd_section);
2931 CORE_ADDR offset = obj_section_offset (section);
2932
2933 if (bfd_get_section_lma (abfd, bfd_section) + offset <= pc
2934 && pc < bfd_get_section_lma (abfd, bfd_section) + offset + size)
2935 return 1;
2936 }
2937
2938 return 0;
2939 }
2940
2941 /* Function: pc_in_mapped_range
2942 If PC falls into the vma range of SECTION, return true, else false. */
2943
2944 CORE_ADDR
2945 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
2946 {
2947 if (section_is_overlay (section))
2948 {
2949 if (obj_section_addr (section) <= pc
2950 && pc < obj_section_endaddr (section))
2951 return 1;
2952 }
2953
2954 return 0;
2955 }
2956
2957
2958 /* Return true if the mapped ranges of sections A and B overlap, false
2959 otherwise. */
2960 static int
2961 sections_overlap (struct obj_section *a, struct obj_section *b)
2962 {
2963 CORE_ADDR a_start = obj_section_addr (a);
2964 CORE_ADDR a_end = obj_section_endaddr (a);
2965 CORE_ADDR b_start = obj_section_addr (b);
2966 CORE_ADDR b_end = obj_section_endaddr (b);
2967
2968 return (a_start < b_end && b_start < a_end);
2969 }
2970
2971 /* Function: overlay_unmapped_address (PC, SECTION)
2972 Returns the address corresponding to PC in the unmapped (load) range.
2973 May be the same as PC. */
2974
2975 CORE_ADDR
2976 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
2977 {
2978 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
2979 {
2980 bfd *abfd = section->objfile->obfd;
2981 asection *bfd_section = section->the_bfd_section;
2982
2983 return pc + bfd_section_lma (abfd, bfd_section)
2984 - bfd_section_vma (abfd, bfd_section);
2985 }
2986
2987 return pc;
2988 }
2989
2990 /* Function: overlay_mapped_address (PC, SECTION)
2991 Returns the address corresponding to PC in the mapped (runtime) range.
2992 May be the same as PC. */
2993
2994 CORE_ADDR
2995 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
2996 {
2997 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
2998 {
2999 bfd *abfd = section->objfile->obfd;
3000 asection *bfd_section = section->the_bfd_section;
3001
3002 return pc + bfd_section_vma (abfd, bfd_section)
3003 - bfd_section_lma (abfd, bfd_section);
3004 }
3005
3006 return pc;
3007 }
3008
3009
3010 /* Function: symbol_overlayed_address
3011 Return one of two addresses (relative to the VMA or to the LMA),
3012 depending on whether the section is mapped or not. */
3013
3014 CORE_ADDR
3015 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3016 {
3017 if (overlay_debugging)
3018 {
3019 /* If the symbol has no section, just return its regular address. */
3020 if (section == 0)
3021 return address;
3022 /* If the symbol's section is not an overlay, just return its address */
3023 if (!section_is_overlay (section))
3024 return address;
3025 /* If the symbol's section is mapped, just return its address */
3026 if (section_is_mapped (section))
3027 return address;
3028 /*
3029 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3030 * then return its LOADED address rather than its vma address!!
3031 */
3032 return overlay_unmapped_address (address, section);
3033 }
3034 return address;
3035 }
3036
3037 /* Function: find_pc_overlay (PC)
3038 Return the best-match overlay section for PC:
3039 If PC matches a mapped overlay section's VMA, return that section.
3040 Else if PC matches an unmapped section's VMA, return that section.
3041 Else if PC matches an unmapped section's LMA, return that section. */
3042
3043 struct obj_section *
3044 find_pc_overlay (CORE_ADDR pc)
3045 {
3046 struct objfile *objfile;
3047 struct obj_section *osect, *best_match = NULL;
3048
3049 if (overlay_debugging)
3050 ALL_OBJSECTIONS (objfile, osect)
3051 if (section_is_overlay (osect))
3052 {
3053 if (pc_in_mapped_range (pc, osect))
3054 {
3055 if (section_is_mapped (osect))
3056 return osect;
3057 else
3058 best_match = osect;
3059 }
3060 else if (pc_in_unmapped_range (pc, osect))
3061 best_match = osect;
3062 }
3063 return best_match;
3064 }
3065
3066 /* Function: find_pc_mapped_section (PC)
3067 If PC falls into the VMA address range of an overlay section that is
3068 currently marked as MAPPED, return that section. Else return NULL. */
3069
3070 struct obj_section *
3071 find_pc_mapped_section (CORE_ADDR pc)
3072 {
3073 struct objfile *objfile;
3074 struct obj_section *osect;
3075
3076 if (overlay_debugging)
3077 ALL_OBJSECTIONS (objfile, osect)
3078 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3079 return osect;
3080
3081 return NULL;
3082 }
3083
3084 /* Function: list_overlays_command
3085 Print a list of mapped sections and their PC ranges */
3086
3087 void
3088 list_overlays_command (char *args, int from_tty)
3089 {
3090 int nmapped = 0;
3091 struct objfile *objfile;
3092 struct obj_section *osect;
3093
3094 if (overlay_debugging)
3095 ALL_OBJSECTIONS (objfile, osect)
3096 if (section_is_mapped (osect))
3097 {
3098 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3099 const char *name;
3100 bfd_vma lma, vma;
3101 int size;
3102
3103 vma = bfd_section_vma (objfile->obfd, osect->the_bfd_section);
3104 lma = bfd_section_lma (objfile->obfd, osect->the_bfd_section);
3105 size = bfd_get_section_size (osect->the_bfd_section);
3106 name = bfd_section_name (objfile->obfd, osect->the_bfd_section);
3107
3108 printf_filtered ("Section %s, loaded at ", name);
3109 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3110 puts_filtered (" - ");
3111 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3112 printf_filtered (", mapped at ");
3113 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3114 puts_filtered (" - ");
3115 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3116 puts_filtered ("\n");
3117
3118 nmapped++;
3119 }
3120 if (nmapped == 0)
3121 printf_filtered (_("No sections are mapped.\n"));
3122 }
3123
3124 /* Function: map_overlay_command
3125 Mark the named section as mapped (ie. residing at its VMA address). */
3126
3127 void
3128 map_overlay_command (char *args, int from_tty)
3129 {
3130 struct objfile *objfile, *objfile2;
3131 struct obj_section *sec, *sec2;
3132
3133 if (!overlay_debugging)
3134 error (_("\
3135 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3136 the 'overlay manual' command."));
3137
3138 if (args == 0 || *args == 0)
3139 error (_("Argument required: name of an overlay section"));
3140
3141 /* First, find a section matching the user supplied argument */
3142 ALL_OBJSECTIONS (objfile, sec)
3143 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3144 {
3145 /* Now, check to see if the section is an overlay. */
3146 if (!section_is_overlay (sec))
3147 continue; /* not an overlay section */
3148
3149 /* Mark the overlay as "mapped" */
3150 sec->ovly_mapped = 1;
3151
3152 /* Next, make a pass and unmap any sections that are
3153 overlapped by this new section: */
3154 ALL_OBJSECTIONS (objfile2, sec2)
3155 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec, sec2))
3156 {
3157 if (info_verbose)
3158 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3159 bfd_section_name (objfile->obfd,
3160 sec2->the_bfd_section));
3161 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2 */
3162 }
3163 return;
3164 }
3165 error (_("No overlay section called %s"), args);
3166 }
3167
3168 /* Function: unmap_overlay_command
3169 Mark the overlay section as unmapped
3170 (ie. resident in its LMA address range, rather than the VMA range). */
3171
3172 void
3173 unmap_overlay_command (char *args, int from_tty)
3174 {
3175 struct objfile *objfile;
3176 struct obj_section *sec;
3177
3178 if (!overlay_debugging)
3179 error (_("\
3180 Overlay debugging not enabled. Use either the 'overlay auto' or\n\
3181 the 'overlay manual' command."));
3182
3183 if (args == 0 || *args == 0)
3184 error (_("Argument required: name of an overlay section"));
3185
3186 /* First, find a section matching the user supplied argument */
3187 ALL_OBJSECTIONS (objfile, sec)
3188 if (!strcmp (bfd_section_name (objfile->obfd, sec->the_bfd_section), args))
3189 {
3190 if (!sec->ovly_mapped)
3191 error (_("Section %s is not mapped"), args);
3192 sec->ovly_mapped = 0;
3193 return;
3194 }
3195 error (_("No overlay section called %s"), args);
3196 }
3197
3198 /* Function: overlay_auto_command
3199 A utility command to turn on overlay debugging.
3200 Possibly this should be done via a set/show command. */
3201
3202 static void
3203 overlay_auto_command (char *args, int from_tty)
3204 {
3205 overlay_debugging = ovly_auto;
3206 enable_overlay_breakpoints ();
3207 if (info_verbose)
3208 printf_unfiltered (_("Automatic overlay debugging enabled."));
3209 }
3210
3211 /* Function: overlay_manual_command
3212 A utility command to turn on overlay debugging.
3213 Possibly this should be done via a set/show command. */
3214
3215 static void
3216 overlay_manual_command (char *args, int from_tty)
3217 {
3218 overlay_debugging = ovly_on;
3219 disable_overlay_breakpoints ();
3220 if (info_verbose)
3221 printf_unfiltered (_("Overlay debugging enabled."));
3222 }
3223
3224 /* Function: overlay_off_command
3225 A utility command to turn on overlay debugging.
3226 Possibly this should be done via a set/show command. */
3227
3228 static void
3229 overlay_off_command (char *args, int from_tty)
3230 {
3231 overlay_debugging = ovly_off;
3232 disable_overlay_breakpoints ();
3233 if (info_verbose)
3234 printf_unfiltered (_("Overlay debugging disabled."));
3235 }
3236
3237 static void
3238 overlay_load_command (char *args, int from_tty)
3239 {
3240 struct gdbarch *gdbarch = get_current_arch ();
3241
3242 if (gdbarch_overlay_update_p (gdbarch))
3243 gdbarch_overlay_update (gdbarch, NULL);
3244 else
3245 error (_("This target does not know how to read its overlay state."));
3246 }
3247
3248 /* Function: overlay_command
3249 A place-holder for a mis-typed command */
3250
3251 /* Command list chain containing all defined "overlay" subcommands. */
3252 struct cmd_list_element *overlaylist;
3253
3254 static void
3255 overlay_command (char *args, int from_tty)
3256 {
3257 printf_unfiltered
3258 ("\"overlay\" must be followed by the name of an overlay command.\n");
3259 help_list (overlaylist, "overlay ", -1, gdb_stdout);
3260 }
3261
3262
3263 /* Target Overlays for the "Simplest" overlay manager:
3264
3265 This is GDB's default target overlay layer. It works with the
3266 minimal overlay manager supplied as an example by Cygnus. The
3267 entry point is via a function pointer "gdbarch_overlay_update",
3268 so targets that use a different runtime overlay manager can
3269 substitute their own overlay_update function and take over the
3270 function pointer.
3271
3272 The overlay_update function pokes around in the target's data structures
3273 to see what overlays are mapped, and updates GDB's overlay mapping with
3274 this information.
3275
3276 In this simple implementation, the target data structures are as follows:
3277 unsigned _novlys; /# number of overlay sections #/
3278 unsigned _ovly_table[_novlys][4] = {
3279 {VMA, SIZE, LMA, MAPPED}, /# one entry per overlay section #/
3280 {..., ..., ..., ...},
3281 }
3282 unsigned _novly_regions; /# number of overlay regions #/
3283 unsigned _ovly_region_table[_novly_regions][3] = {
3284 {VMA, SIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3285 {..., ..., ...},
3286 }
3287 These functions will attempt to update GDB's mappedness state in the
3288 symbol section table, based on the target's mappedness state.
3289
3290 To do this, we keep a cached copy of the target's _ovly_table, and
3291 attempt to detect when the cached copy is invalidated. The main
3292 entry point is "simple_overlay_update(SECT), which looks up SECT in
3293 the cached table and re-reads only the entry for that section from
3294 the target (whenever possible).
3295 */
3296
3297 /* Cached, dynamically allocated copies of the target data structures: */
3298 static unsigned (*cache_ovly_table)[4] = 0;
3299 #if 0
3300 static unsigned (*cache_ovly_region_table)[3] = 0;
3301 #endif
3302 static unsigned cache_novlys = 0;
3303 #if 0
3304 static unsigned cache_novly_regions = 0;
3305 #endif
3306 static CORE_ADDR cache_ovly_table_base = 0;
3307 #if 0
3308 static CORE_ADDR cache_ovly_region_table_base = 0;
3309 #endif
3310 enum ovly_index
3311 {
3312 VMA, SIZE, LMA, MAPPED
3313 };
3314
3315 /* Throw away the cached copy of _ovly_table */
3316 static void
3317 simple_free_overlay_table (void)
3318 {
3319 if (cache_ovly_table)
3320 xfree (cache_ovly_table);
3321 cache_novlys = 0;
3322 cache_ovly_table = NULL;
3323 cache_ovly_table_base = 0;
3324 }
3325
3326 #if 0
3327 /* Throw away the cached copy of _ovly_region_table */
3328 static void
3329 simple_free_overlay_region_table (void)
3330 {
3331 if (cache_ovly_region_table)
3332 xfree (cache_ovly_region_table);
3333 cache_novly_regions = 0;
3334 cache_ovly_region_table = NULL;
3335 cache_ovly_region_table_base = 0;
3336 }
3337 #endif
3338
3339 /* Read an array of ints of size SIZE from the target into a local buffer.
3340 Convert to host order. int LEN is number of ints */
3341 static void
3342 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3343 int len, int size, enum bfd_endian byte_order)
3344 {
3345 /* FIXME (alloca): Not safe if array is very large. */
3346 gdb_byte *buf = alloca (len * size);
3347 int i;
3348
3349 read_memory (memaddr, buf, len * size);
3350 for (i = 0; i < len; i++)
3351 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3352 }
3353
3354 /* Find and grab a copy of the target _ovly_table
3355 (and _novlys, which is needed for the table's size) */
3356 static int
3357 simple_read_overlay_table (void)
3358 {
3359 struct minimal_symbol *novlys_msym, *ovly_table_msym;
3360 struct gdbarch *gdbarch;
3361 int word_size;
3362 enum bfd_endian byte_order;
3363
3364 simple_free_overlay_table ();
3365 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3366 if (! novlys_msym)
3367 {
3368 error (_("Error reading inferior's overlay table: "
3369 "couldn't find `_novlys' variable\n"
3370 "in inferior. Use `overlay manual' mode."));
3371 return 0;
3372 }
3373
3374 ovly_table_msym = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3375 if (! ovly_table_msym)
3376 {
3377 error (_("Error reading inferior's overlay table: couldn't find "
3378 "`_ovly_table' array\n"
3379 "in inferior. Use `overlay manual' mode."));
3380 return 0;
3381 }
3382
3383 gdbarch = get_objfile_arch (msymbol_objfile (ovly_table_msym));
3384 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3385 byte_order = gdbarch_byte_order (gdbarch);
3386
3387 cache_novlys = read_memory_integer (SYMBOL_VALUE_ADDRESS (novlys_msym),
3388 4, byte_order);
3389 cache_ovly_table
3390 = (void *) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3391 cache_ovly_table_base = SYMBOL_VALUE_ADDRESS (ovly_table_msym);
3392 read_target_long_array (cache_ovly_table_base,
3393 (unsigned int *) cache_ovly_table,
3394 cache_novlys * 4, word_size, byte_order);
3395
3396 return 1; /* SUCCESS */
3397 }
3398
3399 #if 0
3400 /* Find and grab a copy of the target _ovly_region_table
3401 (and _novly_regions, which is needed for the table's size) */
3402 static int
3403 simple_read_overlay_region_table (void)
3404 {
3405 struct minimal_symbol *msym;
3406 struct gdbarch *gdbarch;
3407 int word_size;
3408 enum bfd_endian byte_order;
3409
3410 simple_free_overlay_region_table ();
3411 msym = lookup_minimal_symbol ("_novly_regions", NULL, NULL);
3412 if (msym == NULL)
3413 return 0; /* failure */
3414
3415 gdbarch = get_objfile_arch (msymbol_objfile (msym));
3416 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3417 byte_order = gdbarch_byte_order (gdbarch);
3418
3419 cache_novly_regions = read_memory_integer (SYMBOL_VALUE_ADDRESS (msym),
3420 4, byte_order);
3421
3422 cache_ovly_region_table = (void *) xmalloc (cache_novly_regions * 12);
3423 if (cache_ovly_region_table != NULL)
3424 {
3425 msym = lookup_minimal_symbol ("_ovly_region_table", NULL, NULL);
3426 if (msym != NULL)
3427 {
3428 cache_ovly_region_table_base = SYMBOL_VALUE_ADDRESS (msym);
3429 read_target_long_array (cache_ovly_region_table_base,
3430 (unsigned int *) cache_ovly_region_table,
3431 cache_novly_regions * 3,
3432 word_size, byte_order);
3433 }
3434 else
3435 return 0; /* failure */
3436 }
3437 else
3438 return 0; /* failure */
3439 return 1; /* SUCCESS */
3440 }
3441 #endif
3442
3443 /* Function: simple_overlay_update_1
3444 A helper function for simple_overlay_update. Assuming a cached copy
3445 of _ovly_table exists, look through it to find an entry whose vma,
3446 lma and size match those of OSECT. Re-read the entry and make sure
3447 it still matches OSECT (else the table may no longer be valid).
3448 Set OSECT's mapped state to match the entry. Return: 1 for
3449 success, 0 for failure. */
3450
3451 static int
3452 simple_overlay_update_1 (struct obj_section *osect)
3453 {
3454 int i, size;
3455 bfd *obfd = osect->objfile->obfd;
3456 asection *bsect = osect->the_bfd_section;
3457 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3458 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3459 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3460
3461 size = bfd_get_section_size (osect->the_bfd_section);
3462 for (i = 0; i < cache_novlys; i++)
3463 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3464 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3465 /* && cache_ovly_table[i][SIZE] == size */ )
3466 {
3467 read_target_long_array (cache_ovly_table_base + i * word_size,
3468 (unsigned int *) cache_ovly_table[i],
3469 4, word_size, byte_order);
3470 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3471 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3472 /* && cache_ovly_table[i][SIZE] == size */ )
3473 {
3474 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3475 return 1;
3476 }
3477 else /* Warning! Warning! Target's ovly table has changed! */
3478 return 0;
3479 }
3480 return 0;
3481 }
3482
3483 /* Function: simple_overlay_update
3484 If OSECT is NULL, then update all sections' mapped state
3485 (after re-reading the entire target _ovly_table).
3486 If OSECT is non-NULL, then try to find a matching entry in the
3487 cached ovly_table and update only OSECT's mapped state.
3488 If a cached entry can't be found or the cache isn't valid, then
3489 re-read the entire cache, and go ahead and update all sections. */
3490
3491 void
3492 simple_overlay_update (struct obj_section *osect)
3493 {
3494 struct objfile *objfile;
3495
3496 /* Were we given an osect to look up? NULL means do all of them. */
3497 if (osect)
3498 /* Have we got a cached copy of the target's overlay table? */
3499 if (cache_ovly_table != NULL)
3500 /* Does its cached location match what's currently in the symtab? */
3501 if (cache_ovly_table_base ==
3502 SYMBOL_VALUE_ADDRESS (lookup_minimal_symbol ("_ovly_table", NULL, NULL)))
3503 /* Then go ahead and try to look up this single section in the cache */
3504 if (simple_overlay_update_1 (osect))
3505 /* Found it! We're done. */
3506 return;
3507
3508 /* Cached table no good: need to read the entire table anew.
3509 Or else we want all the sections, in which case it's actually
3510 more efficient to read the whole table in one block anyway. */
3511
3512 if (! simple_read_overlay_table ())
3513 return;
3514
3515 /* Now may as well update all sections, even if only one was requested. */
3516 ALL_OBJSECTIONS (objfile, osect)
3517 if (section_is_overlay (osect))
3518 {
3519 int i, size;
3520 bfd *obfd = osect->objfile->obfd;
3521 asection *bsect = osect->the_bfd_section;
3522
3523 size = bfd_get_section_size (bsect);
3524 for (i = 0; i < cache_novlys; i++)
3525 if (cache_ovly_table[i][VMA] == bfd_section_vma (obfd, bsect)
3526 && cache_ovly_table[i][LMA] == bfd_section_lma (obfd, bsect)
3527 /* && cache_ovly_table[i][SIZE] == size */ )
3528 { /* obj_section matches i'th entry in ovly_table */
3529 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3530 break; /* finished with inner for loop: break out */
3531 }
3532 }
3533 }
3534
3535 /* Set the output sections and output offsets for section SECTP in
3536 ABFD. The relocation code in BFD will read these offsets, so we
3537 need to be sure they're initialized. We map each section to itself,
3538 with no offset; this means that SECTP->vma will be honored. */
3539
3540 static void
3541 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3542 {
3543 sectp->output_section = sectp;
3544 sectp->output_offset = 0;
3545 }
3546
3547 /* Default implementation for sym_relocate. */
3548
3549
3550 bfd_byte *
3551 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3552 bfd_byte *buf)
3553 {
3554 bfd *abfd = objfile->obfd;
3555
3556 /* We're only interested in sections with relocation
3557 information. */
3558 if ((sectp->flags & SEC_RELOC) == 0)
3559 return NULL;
3560
3561 /* We will handle section offsets properly elsewhere, so relocate as if
3562 all sections begin at 0. */
3563 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3564
3565 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3566 }
3567
3568 /* Relocate the contents of a debug section SECTP in ABFD. The
3569 contents are stored in BUF if it is non-NULL, or returned in a
3570 malloc'd buffer otherwise.
3571
3572 For some platforms and debug info formats, shared libraries contain
3573 relocations against the debug sections (particularly for DWARF-2;
3574 one affected platform is PowerPC GNU/Linux, although it depends on
3575 the version of the linker in use). Also, ELF object files naturally
3576 have unresolved relocations for their debug sections. We need to apply
3577 the relocations in order to get the locations of symbols correct.
3578 Another example that may require relocation processing, is the
3579 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3580 debug section. */
3581
3582 bfd_byte *
3583 symfile_relocate_debug_section (struct objfile *objfile,
3584 asection *sectp, bfd_byte *buf)
3585 {
3586 gdb_assert (objfile->sf->sym_relocate);
3587
3588 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3589 }
3590
3591 struct symfile_segment_data *
3592 get_symfile_segment_data (bfd *abfd)
3593 {
3594 const struct sym_fns *sf = find_sym_fns (abfd);
3595
3596 if (sf == NULL)
3597 return NULL;
3598
3599 return sf->sym_segments (abfd);
3600 }
3601
3602 void
3603 free_symfile_segment_data (struct symfile_segment_data *data)
3604 {
3605 xfree (data->segment_bases);
3606 xfree (data->segment_sizes);
3607 xfree (data->segment_info);
3608 xfree (data);
3609 }
3610
3611
3612 /* Given:
3613 - DATA, containing segment addresses from the object file ABFD, and
3614 the mapping from ABFD's sections onto the segments that own them,
3615 and
3616 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3617 segment addresses reported by the target,
3618 store the appropriate offsets for each section in OFFSETS.
3619
3620 If there are fewer entries in SEGMENT_BASES than there are segments
3621 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3622
3623 If there are more entries, then ignore the extra. The target may
3624 not be able to distinguish between an empty data segment and a
3625 missing data segment; a missing text segment is less plausible. */
3626 int
3627 symfile_map_offsets_to_segments (bfd *abfd, struct symfile_segment_data *data,
3628 struct section_offsets *offsets,
3629 int num_segment_bases,
3630 const CORE_ADDR *segment_bases)
3631 {
3632 int i;
3633 asection *sect;
3634
3635 /* It doesn't make sense to call this function unless you have some
3636 segment base addresses. */
3637 gdb_assert (num_segment_bases > 0);
3638
3639 /* If we do not have segment mappings for the object file, we
3640 can not relocate it by segments. */
3641 gdb_assert (data != NULL);
3642 gdb_assert (data->num_segments > 0);
3643
3644 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3645 {
3646 int which = data->segment_info[i];
3647
3648 gdb_assert (0 <= which && which <= data->num_segments);
3649
3650 /* Don't bother computing offsets for sections that aren't
3651 loaded as part of any segment. */
3652 if (! which)
3653 continue;
3654
3655 /* Use the last SEGMENT_BASES entry as the address of any extra
3656 segments mentioned in DATA->segment_info. */
3657 if (which > num_segment_bases)
3658 which = num_segment_bases;
3659
3660 offsets->offsets[i] = (segment_bases[which - 1]
3661 - data->segment_bases[which - 1]);
3662 }
3663
3664 return 1;
3665 }
3666
3667 static void
3668 symfile_find_segment_sections (struct objfile *objfile)
3669 {
3670 bfd *abfd = objfile->obfd;
3671 int i;
3672 asection *sect;
3673 struct symfile_segment_data *data;
3674
3675 data = get_symfile_segment_data (objfile->obfd);
3676 if (data == NULL)
3677 return;
3678
3679 if (data->num_segments != 1 && data->num_segments != 2)
3680 {
3681 free_symfile_segment_data (data);
3682 return;
3683 }
3684
3685 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3686 {
3687 int which = data->segment_info[i];
3688
3689 if (which == 1)
3690 {
3691 if (objfile->sect_index_text == -1)
3692 objfile->sect_index_text = sect->index;
3693
3694 if (objfile->sect_index_rodata == -1)
3695 objfile->sect_index_rodata = sect->index;
3696 }
3697 else if (which == 2)
3698 {
3699 if (objfile->sect_index_data == -1)
3700 objfile->sect_index_data = sect->index;
3701
3702 if (objfile->sect_index_bss == -1)
3703 objfile->sect_index_bss = sect->index;
3704 }
3705 }
3706
3707 free_symfile_segment_data (data);
3708 }
3709
3710 void
3711 _initialize_symfile (void)
3712 {
3713 struct cmd_list_element *c;
3714
3715 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3716 Load symbol table from executable file FILE.\n\
3717 The `file' command can also load symbol tables, as well as setting the file\n\
3718 to execute."), &cmdlist);
3719 set_cmd_completer (c, filename_completer);
3720
3721 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3722 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3723 Usage: add-symbol-file FILE ADDR [-s <SECT> <SECT_ADDR> -s <SECT> <SECT_ADDR> ...]\n\
3724 ADDR is the starting address of the file's text.\n\
3725 The optional arguments are section-name section-address pairs and\n\
3726 should be specified if the data and bss segments are not contiguous\n\
3727 with the text. SECT is a section name to be loaded at SECT_ADDR."),
3728 &cmdlist);
3729 set_cmd_completer (c, filename_completer);
3730
3731 c = add_cmd ("load", class_files, load_command, _("\
3732 Dynamically load FILE into the running program, and record its symbols\n\
3733 for access from GDB.\n\
3734 A load OFFSET may also be given."), &cmdlist);
3735 set_cmd_completer (c, filename_completer);
3736
3737 add_setshow_boolean_cmd ("symbol-reloading", class_support,
3738 &symbol_reloading, _("\
3739 Set dynamic symbol table reloading multiple times in one run."), _("\
3740 Show dynamic symbol table reloading multiple times in one run."), NULL,
3741 NULL,
3742 show_symbol_reloading,
3743 &setlist, &showlist);
3744
3745 add_prefix_cmd ("overlay", class_support, overlay_command,
3746 _("Commands for debugging overlays."), &overlaylist,
3747 "overlay ", 0, &cmdlist);
3748
3749 add_com_alias ("ovly", "overlay", class_alias, 1);
3750 add_com_alias ("ov", "overlay", class_alias, 1);
3751
3752 add_cmd ("map-overlay", class_support, map_overlay_command,
3753 _("Assert that an overlay section is mapped."), &overlaylist);
3754
3755 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3756 _("Assert that an overlay section is unmapped."), &overlaylist);
3757
3758 add_cmd ("list-overlays", class_support, list_overlays_command,
3759 _("List mappings of overlay sections."), &overlaylist);
3760
3761 add_cmd ("manual", class_support, overlay_manual_command,
3762 _("Enable overlay debugging."), &overlaylist);
3763 add_cmd ("off", class_support, overlay_off_command,
3764 _("Disable overlay debugging."), &overlaylist);
3765 add_cmd ("auto", class_support, overlay_auto_command,
3766 _("Enable automatic overlay debugging."), &overlaylist);
3767 add_cmd ("load-target", class_support, overlay_load_command,
3768 _("Read the overlay mapping state from the target."), &overlaylist);
3769
3770 /* Filename extension to source language lookup table: */
3771 init_filename_language_table ();
3772 add_setshow_string_noescape_cmd ("extension-language", class_files,
3773 &ext_args, _("\
3774 Set mapping between filename extension and source language."), _("\
3775 Show mapping between filename extension and source language."), _("\
3776 Usage: set extension-language .foo bar"),
3777 set_ext_lang_command,
3778 show_ext_args,
3779 &setlist, &showlist);
3780
3781 add_info ("extensions", info_ext_lang_command,
3782 _("All filename extensions associated with a source language."));
3783
3784 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3785 &debug_file_directory, _("\
3786 Set the directories where separate debug symbols are searched for."), _("\
3787 Show the directories where separate debug symbols are searched for."), _("\
3788 Separate debug symbols are first searched for in the same\n\
3789 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3790 and lastly at the path of the directory of the binary with\n\
3791 each global debug-file-directory component prepended."),
3792 NULL,
3793 show_debug_file_directory,
3794 &setlist, &showlist);
3795 }