]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/symtab.h
41c8654a5eff9a96c82f37016555b2061b869e39
[thirdparty/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2022 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdbsupport/gdb_obstack.h"
30 #include "gdbsupport/gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "gdbsupport/iterator-range.h"
37 #include "completer.h"
38 #include "gdb-demangle.h"
39 #include "split-name.h"
40
41 /* Opaque declarations. */
42 struct ui_file;
43 struct frame_info;
44 struct symbol;
45 struct obstack;
46 struct objfile;
47 struct block;
48 struct blockvector;
49 struct axs_value;
50 struct agent_expr;
51 struct program_space;
52 struct language_defn;
53 struct common_block;
54 struct obj_section;
55 struct cmd_list_element;
56 class probe;
57 struct lookup_name_info;
58
59 /* How to match a lookup name against a symbol search name. */
60 enum class symbol_name_match_type
61 {
62 /* Wild matching. Matches unqualified symbol names in all
63 namespace/module/packages, etc. */
64 WILD,
65
66 /* Full matching. The lookup name indicates a fully-qualified name,
67 and only matches symbol search names in the specified
68 namespace/module/package. */
69 FULL,
70
71 /* Search name matching. This is like FULL, but the search name did
72 not come from the user; instead it is already a search name
73 retrieved from a search_name () call.
74 For Ada, this avoids re-encoding an already-encoded search name
75 (which would potentially incorrectly lowercase letters in the
76 linkage/search name that should remain uppercase). For C++, it
77 avoids trying to demangle a name we already know is
78 demangled. */
79 SEARCH_NAME,
80
81 /* Expression matching. The same as FULL matching in most
82 languages. The same as WILD matching in Ada. */
83 EXPRESSION,
84 };
85
86 /* Hash the given symbol search name according to LANGUAGE's
87 rules. */
88 extern unsigned int search_name_hash (enum language language,
89 const char *search_name);
90
91 /* Ada-specific bits of a lookup_name_info object. This is lazily
92 constructed on demand. */
93
94 class ada_lookup_name_info final
95 {
96 public:
97 /* Construct. */
98 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
99
100 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
101 as name match type. Returns true if there's a match, false
102 otherwise. If non-NULL, store the matching results in MATCH. */
103 bool matches (const char *symbol_search_name,
104 symbol_name_match_type match_type,
105 completion_match_result *comp_match_res) const;
106
107 /* The Ada-encoded lookup name. */
108 const std::string &lookup_name () const
109 { return m_encoded_name; }
110
111 /* Return true if we're supposed to be doing a wild match look
112 up. */
113 bool wild_match_p () const
114 { return m_wild_match_p; }
115
116 /* Return true if we're looking up a name inside package
117 Standard. */
118 bool standard_p () const
119 { return m_standard_p; }
120
121 /* Return true if doing a verbatim match. */
122 bool verbatim_p () const
123 { return m_verbatim_p; }
124
125 /* A wrapper for ::split_name that handles some Ada-specific
126 peculiarities. */
127 std::vector<gdb::string_view> split_name () const
128 {
129 if (m_verbatim_p || m_standard_p)
130 {
131 std::vector<gdb::string_view> result;
132 if (m_standard_p)
133 result.emplace_back ("standard");
134 result.emplace_back (m_encoded_name);
135 return result;
136 }
137 return ::split_name (m_encoded_name.c_str (), split_style::UNDERSCORE);
138 }
139
140 private:
141 /* The Ada-encoded lookup name. */
142 std::string m_encoded_name;
143
144 /* Whether the user-provided lookup name was Ada encoded. If so,
145 then return encoded names in the 'matches' method's 'completion
146 match result' output. */
147 bool m_encoded_p : 1;
148
149 /* True if really doing wild matching. Even if the user requests
150 wild matching, some cases require full matching. */
151 bool m_wild_match_p : 1;
152
153 /* True if doing a verbatim match. This is true if the decoded
154 version of the symbol name is wrapped in '<'/'>'. This is an
155 escape hatch users can use to look up symbols the Ada encoding
156 does not understand. */
157 bool m_verbatim_p : 1;
158
159 /* True if the user specified a symbol name that is inside package
160 Standard. Symbol names inside package Standard are handled
161 specially. We always do a non-wild match of the symbol name
162 without the "standard__" prefix, and only search static and
163 global symbols. This was primarily introduced in order to allow
164 the user to specifically access the standard exceptions using,
165 for instance, Standard.Constraint_Error when Constraint_Error is
166 ambiguous (due to the user defining its own Constraint_Error
167 entity inside its program). */
168 bool m_standard_p : 1;
169 };
170
171 /* Language-specific bits of a lookup_name_info object, for languages
172 that do name searching using demangled names (C++/D/Go). This is
173 lazily constructed on demand. */
174
175 struct demangle_for_lookup_info final
176 {
177 public:
178 demangle_for_lookup_info (const lookup_name_info &lookup_name,
179 language lang);
180
181 /* The demangled lookup name. */
182 const std::string &lookup_name () const
183 { return m_demangled_name; }
184
185 private:
186 /* The demangled lookup name. */
187 std::string m_demangled_name;
188 };
189
190 /* Object that aggregates all information related to a symbol lookup
191 name. I.e., the name that is matched against the symbol's search
192 name. Caches per-language information so that it doesn't require
193 recomputing it for every symbol comparison, like for example the
194 Ada encoded name and the symbol's name hash for a given language.
195 The object is conceptually immutable once constructed, and thus has
196 no setters. This is to prevent some code path from tweaking some
197 property of the lookup name for some local reason and accidentally
198 altering the results of any continuing search(es).
199 lookup_name_info objects are generally passed around as a const
200 reference to reinforce that. (They're not passed around by value
201 because they're not small.) */
202 class lookup_name_info final
203 {
204 public:
205 /* We delete this overload so that the callers are required to
206 explicitly handle the lifetime of the name. */
207 lookup_name_info (std::string &&name,
208 symbol_name_match_type match_type,
209 bool completion_mode = false,
210 bool ignore_parameters = false) = delete;
211
212 /* This overload requires that NAME have a lifetime at least as long
213 as the lifetime of this object. */
214 lookup_name_info (const std::string &name,
215 symbol_name_match_type match_type,
216 bool completion_mode = false,
217 bool ignore_parameters = false)
218 : m_match_type (match_type),
219 m_completion_mode (completion_mode),
220 m_ignore_parameters (ignore_parameters),
221 m_name (name)
222 {}
223
224 /* This overload requires that NAME have a lifetime at least as long
225 as the lifetime of this object. */
226 lookup_name_info (const char *name,
227 symbol_name_match_type match_type,
228 bool completion_mode = false,
229 bool ignore_parameters = false)
230 : m_match_type (match_type),
231 m_completion_mode (completion_mode),
232 m_ignore_parameters (ignore_parameters),
233 m_name (name)
234 {}
235
236 /* Getters. See description of each corresponding field. */
237 symbol_name_match_type match_type () const { return m_match_type; }
238 bool completion_mode () const { return m_completion_mode; }
239 gdb::string_view name () const { return m_name; }
240 const bool ignore_parameters () const { return m_ignore_parameters; }
241
242 /* Like the "name" method but guarantees that the returned string is
243 \0-terminated. */
244 const char *c_str () const
245 {
246 /* Actually this is always guaranteed due to how the class is
247 constructed. */
248 return m_name.data ();
249 }
250
251 /* Return a version of this lookup name that is usable with
252 comparisons against symbols have no parameter info, such as
253 psymbols and GDB index symbols. */
254 lookup_name_info make_ignore_params () const
255 {
256 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
257 true /* ignore params */);
258 }
259
260 /* Get the search name hash for searches in language LANG. */
261 unsigned int search_name_hash (language lang) const
262 {
263 /* Only compute each language's hash once. */
264 if (!m_demangled_hashes_p[lang])
265 {
266 m_demangled_hashes[lang]
267 = ::search_name_hash (lang, language_lookup_name (lang));
268 m_demangled_hashes_p[lang] = true;
269 }
270 return m_demangled_hashes[lang];
271 }
272
273 /* Get the search name for searches in language LANG. */
274 const char *language_lookup_name (language lang) const
275 {
276 switch (lang)
277 {
278 case language_ada:
279 return ada ().lookup_name ().c_str ();
280 case language_cplus:
281 return cplus ().lookup_name ().c_str ();
282 case language_d:
283 return d ().lookup_name ().c_str ();
284 case language_go:
285 return go ().lookup_name ().c_str ();
286 default:
287 return m_name.data ();
288 }
289 }
290
291 /* A wrapper for ::split_name (see split-name.h) that splits this
292 name, and that handles any language-specific peculiarities. */
293 std::vector<gdb::string_view> split_name (language lang) const
294 {
295 if (lang == language_ada)
296 return ada ().split_name ();
297 split_style style = split_style::NONE;
298 switch (lang)
299 {
300 case language_cplus:
301 case language_rust:
302 style = split_style::CXX;
303 break;
304 case language_d:
305 case language_go:
306 style = split_style::DOT;
307 break;
308 }
309 return ::split_name (language_lookup_name (lang), style);
310 }
311
312 /* Get the Ada-specific lookup info. */
313 const ada_lookup_name_info &ada () const
314 {
315 maybe_init (m_ada);
316 return *m_ada;
317 }
318
319 /* Get the C++-specific lookup info. */
320 const demangle_for_lookup_info &cplus () const
321 {
322 maybe_init (m_cplus, language_cplus);
323 return *m_cplus;
324 }
325
326 /* Get the D-specific lookup info. */
327 const demangle_for_lookup_info &d () const
328 {
329 maybe_init (m_d, language_d);
330 return *m_d;
331 }
332
333 /* Get the Go-specific lookup info. */
334 const demangle_for_lookup_info &go () const
335 {
336 maybe_init (m_go, language_go);
337 return *m_go;
338 }
339
340 /* Get a reference to a lookup_name_info object that matches any
341 symbol name. */
342 static const lookup_name_info &match_any ();
343
344 private:
345 /* Initialize FIELD, if not initialized yet. */
346 template<typename Field, typename... Args>
347 void maybe_init (Field &field, Args&&... args) const
348 {
349 if (!field)
350 field.emplace (*this, std::forward<Args> (args)...);
351 }
352
353 /* The lookup info as passed to the ctor. */
354 symbol_name_match_type m_match_type;
355 bool m_completion_mode;
356 bool m_ignore_parameters;
357 gdb::string_view m_name;
358
359 /* Language-specific info. These fields are filled lazily the first
360 time a lookup is done in the corresponding language. They're
361 mutable because lookup_name_info objects are typically passed
362 around by const reference (see intro), and they're conceptually
363 "cache" that can always be reconstructed from the non-mutable
364 fields. */
365 mutable gdb::optional<ada_lookup_name_info> m_ada;
366 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
367 mutable gdb::optional<demangle_for_lookup_info> m_d;
368 mutable gdb::optional<demangle_for_lookup_info> m_go;
369
370 /* The demangled hashes. Stored in an array with one entry for each
371 possible language. The second array records whether we've
372 already computed the each language's hash. (These are separate
373 arrays instead of a single array of optional<unsigned> to avoid
374 alignment padding). */
375 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
376 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
377 };
378
379 /* Comparison function for completion symbol lookup.
380
381 Returns true if the symbol name matches against LOOKUP_NAME.
382
383 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
384
385 On success and if non-NULL, COMP_MATCH_RES->match is set to point
386 to the symbol name as should be presented to the user as a
387 completion match list element. In most languages, this is the same
388 as the symbol's search name, but in some, like Ada, the display
389 name is dynamically computed within the comparison routine.
390
391 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
392 points the part of SYMBOL_SEARCH_NAME that was considered to match
393 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
394 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
395 points to "function()" inside SYMBOL_SEARCH_NAME. */
396 typedef bool (symbol_name_matcher_ftype)
397 (const char *symbol_search_name,
398 const lookup_name_info &lookup_name,
399 completion_match_result *comp_match_res);
400
401 /* Some of the structures in this file are space critical.
402 The space-critical structures are:
403
404 struct general_symbol_info
405 struct symbol
406 struct partial_symbol
407
408 These structures are laid out to encourage good packing.
409 They use ENUM_BITFIELD and short int fields, and they order the
410 structure members so that fields less than a word are next
411 to each other so they can be packed together. */
412
413 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
414 all the space critical structures (plus struct minimal_symbol).
415 Memory usage dropped from 99360768 bytes to 90001408 bytes.
416 I measured this with before-and-after tests of
417 "HEAD-old-gdb -readnow HEAD-old-gdb" and
418 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
419 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
420 typing "maint space 1" at the first command prompt.
421
422 Here is another measurement (from andrew c):
423 # no /usr/lib/debug, just plain glibc, like a normal user
424 gdb HEAD-old-gdb
425 (gdb) break internal_error
426 (gdb) run
427 (gdb) maint internal-error
428 (gdb) backtrace
429 (gdb) maint space 1
430
431 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
432 gdb HEAD 2003-08-19 space used: 8904704
433 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
434 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
435
436 The third line shows the savings from the optimizations in symtab.h.
437 The fourth line shows the savings from the optimizations in
438 gdbtypes.h. Both optimizations are in gdb HEAD now.
439
440 --chastain 2003-08-21 */
441
442 /* Define a structure for the information that is common to all symbol types,
443 including minimal symbols, partial symbols, and full symbols. In a
444 multilanguage environment, some language specific information may need to
445 be recorded along with each symbol. */
446
447 /* This structure is space critical. See space comments at the top. */
448
449 struct general_symbol_info
450 {
451 /* Short version as to when to use which name accessor:
452 Use natural_name () to refer to the name of the symbol in the original
453 source code. Use linkage_name () if you want to know what the linker
454 thinks the symbol's name is. Use print_name () for output. Use
455 demangled_name () if you specifically need to know whether natural_name ()
456 and linkage_name () are different. */
457
458 const char *linkage_name () const
459 { return m_name; }
460
461 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
462 the original source code. In languages like C++ where symbols may
463 be mangled for ease of manipulation by the linker, this is the
464 demangled name. */
465 const char *natural_name () const;
466
467 /* Returns a version of the name of a symbol that is
468 suitable for output. In C++ this is the "demangled" form of the
469 name if demangle is on and the "mangled" form of the name if
470 demangle is off. In other languages this is just the symbol name.
471 The result should never be NULL. Don't use this for internal
472 purposes (e.g. storing in a hashtable): it's only suitable for output. */
473 const char *print_name () const
474 { return demangle ? natural_name () : linkage_name (); }
475
476 /* Return the demangled name for a symbol based on the language for
477 that symbol. If no demangled name exists, return NULL. */
478 const char *demangled_name () const;
479
480 /* Returns the name to be used when sorting and searching symbols.
481 In C++, we search for the demangled form of a name,
482 and so sort symbols accordingly. In Ada, however, we search by mangled
483 name. If there is no distinct demangled name, then this
484 returns the same value (same pointer) as linkage_name (). */
485 const char *search_name () const;
486
487 /* Set just the linkage name of a symbol; do not try to demangle
488 it. Used for constructs which do not have a mangled name,
489 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
490 be terminated and either already on the objfile's obstack or
491 permanently allocated. */
492 void set_linkage_name (const char *linkage_name)
493 { m_name = linkage_name; }
494
495 /* Set the demangled name of this symbol to NAME. NAME must be
496 already correctly allocated. If the symbol's language is Ada,
497 then the name is ignored and the obstack is set. */
498 void set_demangled_name (const char *name, struct obstack *obstack);
499
500 enum language language () const
501 { return m_language; }
502
503 /* Initializes the language dependent portion of a symbol
504 depending upon the language for the symbol. */
505 void set_language (enum language language, struct obstack *obstack);
506
507 /* Set the linkage and natural names of a symbol, by demangling
508 the linkage name. If linkage_name may not be nullterminated,
509 copy_name must be set to true. */
510 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
511 struct objfile_per_bfd_storage *per_bfd,
512 gdb::optional<hashval_t> hash
513 = gdb::optional<hashval_t> ());
514
515 CORE_ADDR value_address () const
516 {
517 return m_value.address;
518 }
519
520 void set_value_address (CORE_ADDR address)
521 {
522 m_value.address = address;
523 }
524
525 /* Name of the symbol. This is a required field. Storage for the
526 name is allocated on the objfile_obstack for the associated
527 objfile. For languages like C++ that make a distinction between
528 the mangled name and demangled name, this is the mangled
529 name. */
530
531 const char *m_name;
532
533 /* Value of the symbol. Which member of this union to use, and what
534 it means, depends on what kind of symbol this is and its
535 SYMBOL_CLASS. See comments there for more details. All of these
536 are in host byte order (though what they point to might be in
537 target byte order, e.g. LOC_CONST_BYTES). */
538
539 union
540 {
541 LONGEST ivalue;
542
543 const struct block *block;
544
545 const gdb_byte *bytes;
546
547 CORE_ADDR address;
548
549 /* A common block. Used with LOC_COMMON_BLOCK. */
550
551 const struct common_block *common_block;
552
553 /* For opaque typedef struct chain. */
554
555 struct symbol *chain;
556 }
557 m_value;
558
559 /* Since one and only one language can apply, wrap the language specific
560 information inside a union. */
561
562 union
563 {
564 /* A pointer to an obstack that can be used for storage associated
565 with this symbol. This is only used by Ada, and only when the
566 'ada_mangled' field is zero. */
567 struct obstack *obstack;
568
569 /* This is used by languages which wish to store a demangled name.
570 currently used by Ada, C++, and Objective C. */
571 const char *demangled_name;
572 }
573 language_specific;
574
575 /* Record the source code language that applies to this symbol.
576 This is used to select one of the fields from the language specific
577 union above. */
578
579 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
580
581 /* This is only used by Ada. If set, then the 'demangled_name' field
582 of language_specific is valid. Otherwise, the 'obstack' field is
583 valid. */
584 unsigned int ada_mangled : 1;
585
586 /* Which section is this symbol in? This is an index into
587 section_offsets for this objfile. Negative means that the symbol
588 does not get relocated relative to a section. */
589
590 short m_section;
591
592 /* Set the index into the obj_section list (within the containing
593 objfile) for the section that contains this symbol. See M_SECTION
594 for more details. */
595
596 void set_section_index (short idx)
597 { m_section = idx; }
598
599 /* Return the index into the obj_section list (within the containing
600 objfile) for the section that contains this symbol. See M_SECTION
601 for more details. */
602
603 short section_index () const
604 { return m_section; }
605
606 /* Return the obj_section from OBJFILE for this symbol. The symbol
607 returned is based on the SECTION member variable, and can be nullptr
608 if SECTION is negative. */
609
610 struct obj_section *obj_section (const struct objfile *objfile) const;
611 };
612
613 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
614
615 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
616 SYM. If SYM appears in the main program's minimal symbols, then
617 that minsym's address is returned; otherwise, SYM's address is
618 returned. This should generally only be used via the
619 SYMBOL_VALUE_ADDRESS macro. */
620
621 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
622
623 /* Try to determine the demangled name for a symbol, based on the
624 language of that symbol. If the language is set to language_auto,
625 it will attempt to find any demangling algorithm that works and
626 then set the language appropriately. The returned name is allocated
627 by the demangler and should be xfree'd. */
628
629 extern gdb::unique_xmalloc_ptr<char> symbol_find_demangled_name
630 (struct general_symbol_info *gsymbol, const char *mangled);
631
632 /* Return true if NAME matches the "search" name of GSYMBOL, according
633 to the symbol's language. */
634 extern bool symbol_matches_search_name
635 (const struct general_symbol_info *gsymbol,
636 const lookup_name_info &name);
637
638 /* Compute the hash of the given symbol search name of a symbol of
639 language LANGUAGE. */
640 extern unsigned int search_name_hash (enum language language,
641 const char *search_name);
642
643 /* Classification types for a minimal symbol. These should be taken as
644 "advisory only", since if gdb can't easily figure out a
645 classification it simply selects mst_unknown. It may also have to
646 guess when it can't figure out which is a better match between two
647 types (mst_data versus mst_bss) for example. Since the minimal
648 symbol info is sometimes derived from the BFD library's view of a
649 file, we need to live with what information bfd supplies. */
650
651 enum minimal_symbol_type
652 {
653 mst_unknown = 0, /* Unknown type, the default */
654 mst_text, /* Generally executable instructions */
655
656 /* A GNU ifunc symbol, in the .text section. GDB uses to know
657 whether the user is setting a breakpoint on a GNU ifunc function,
658 and thus GDB needs to actually set the breakpoint on the target
659 function. It is also used to know whether the program stepped
660 into an ifunc resolver -- the resolver may get a separate
661 symbol/alias under a different name, but it'll have the same
662 address as the ifunc symbol. */
663 mst_text_gnu_ifunc, /* Executable code returning address
664 of executable code */
665
666 /* A GNU ifunc function descriptor symbol, in a data section
667 (typically ".opd"). Seen on architectures that use function
668 descriptors, like PPC64/ELFv1. In this case, this symbol's value
669 is the address of the descriptor. There'll be a corresponding
670 mst_text_gnu_ifunc synthetic symbol for the text/entry
671 address. */
672 mst_data_gnu_ifunc, /* Executable code returning address
673 of executable code */
674
675 mst_slot_got_plt, /* GOT entries for .plt sections */
676 mst_data, /* Generally initialized data */
677 mst_bss, /* Generally uninitialized data */
678 mst_abs, /* Generally absolute (nonrelocatable) */
679 /* GDB uses mst_solib_trampoline for the start address of a shared
680 library trampoline entry. Breakpoints for shared library functions
681 are put there if the shared library is not yet loaded.
682 After the shared library is loaded, lookup_minimal_symbol will
683 prefer the minimal symbol from the shared library (usually
684 a mst_text symbol) over the mst_solib_trampoline symbol, and the
685 breakpoints will be moved to their true address in the shared
686 library via breakpoint_re_set. */
687 mst_solib_trampoline, /* Shared library trampoline code */
688 /* For the mst_file* types, the names are only guaranteed to be unique
689 within a given .o file. */
690 mst_file_text, /* Static version of mst_text */
691 mst_file_data, /* Static version of mst_data */
692 mst_file_bss, /* Static version of mst_bss */
693 nr_minsym_types
694 };
695
696 /* The number of enum minimal_symbol_type values, with some padding for
697 reasonable growth. */
698 #define MINSYM_TYPE_BITS 4
699 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
700
701 /* Return the address of MINSYM, which comes from OBJF. The
702 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
703 main program's minimal symbols, then that minsym's address is
704 returned; otherwise, MINSYM's address is returned. This should
705 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
706
707 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
708 const struct minimal_symbol *minsym);
709
710 /* Define a simple structure used to hold some very basic information about
711 all defined global symbols (text, data, bss, abs, etc). The only required
712 information is the general_symbol_info.
713
714 In many cases, even if a file was compiled with no special options for
715 debugging at all, as long as was not stripped it will contain sufficient
716 information to build a useful minimal symbol table using this structure.
717 Even when a file contains enough debugging information to build a full
718 symbol table, these minimal symbols are still useful for quickly mapping
719 between names and addresses, and vice versa. They are also sometimes
720 used to figure out what full symbol table entries need to be read in. */
721
722 struct minimal_symbol : public general_symbol_info
723 {
724 LONGEST value_longest () const
725 {
726 return m_value.ivalue;
727 }
728
729 /* The relocated address of the minimal symbol, using the section
730 offsets from OBJFILE. */
731 CORE_ADDR value_address (objfile *objfile) const;
732
733 /* The unrelocated address of the minimal symbol. */
734 CORE_ADDR value_raw_address () const
735 {
736 return m_value.address;
737 }
738
739 /* Return this minimal symbol's type. */
740
741 minimal_symbol_type type () const
742 {
743 return m_type;
744 }
745
746 /* Set this minimal symbol's type. */
747
748 void set_type (minimal_symbol_type type)
749 {
750 m_type = type;
751 }
752
753 /* Return this minimal symbol's size. */
754
755 unsigned long size () const
756 {
757 return m_size;
758 }
759
760 /* Set this minimal symbol's size. */
761
762 void set_size (unsigned long size)
763 {
764 m_size = size;
765 m_has_size = 1;
766 }
767
768 /* Return true if this minimal symbol's size is known. */
769
770 bool has_size () const
771 {
772 return m_has_size;
773 }
774
775 /* Return this minimal symbol's first target-specific flag. */
776
777 bool target_flag_1 () const
778 {
779 return m_target_flag_1;
780 }
781
782 /* Set this minimal symbol's first target-specific flag. */
783
784 void set_target_flag_1 (bool target_flag_1)
785 {
786 m_target_flag_1 = target_flag_1;
787 }
788
789 /* Return this minimal symbol's second target-specific flag. */
790
791 bool target_flag_2 () const
792 {
793 return m_target_flag_2;
794 }
795
796 /* Set this minimal symbol's second target-specific flag. */
797
798 void set_target_flag_2 (bool target_flag_2)
799 {
800 m_target_flag_2 = target_flag_2;
801 }
802
803 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
804 information to calculate the end of the partial symtab based on the
805 address of the last symbol plus the size of the last symbol. */
806
807 unsigned long m_size;
808
809 /* Which source file is this symbol in? Only relevant for mst_file_*. */
810 const char *filename;
811
812 /* Classification type for this minimal symbol. */
813
814 ENUM_BITFIELD(minimal_symbol_type) m_type : MINSYM_TYPE_BITS;
815
816 /* Non-zero if this symbol was created by gdb.
817 Such symbols do not appear in the output of "info var|fun". */
818 unsigned int created_by_gdb : 1;
819
820 /* Two flag bits provided for the use of the target. */
821 unsigned int m_target_flag_1 : 1;
822 unsigned int m_target_flag_2 : 1;
823
824 /* Nonzero iff the size of the minimal symbol has been set.
825 Symbol size information can sometimes not be determined, because
826 the object file format may not carry that piece of information. */
827 unsigned int m_has_size : 1;
828
829 /* For data symbols only, if this is set, then the symbol might be
830 subject to copy relocation. In this case, a minimal symbol
831 matching the symbol's linkage name is first looked for in the
832 main objfile. If found, then that address is used; otherwise the
833 address in this symbol is used. */
834
835 unsigned maybe_copied : 1;
836
837 /* Non-zero if this symbol ever had its demangled name set (even if
838 it was set to NULL). */
839 unsigned int name_set : 1;
840
841 /* Minimal symbols with the same hash key are kept on a linked
842 list. This is the link. */
843
844 struct minimal_symbol *hash_next;
845
846 /* Minimal symbols are stored in two different hash tables. This is
847 the `next' pointer for the demangled hash table. */
848
849 struct minimal_symbol *demangled_hash_next;
850
851 /* True if this symbol is of some data type. */
852
853 bool data_p () const;
854
855 /* True if MSYMBOL is of some text type. */
856
857 bool text_p () const;
858 };
859
860 #include "minsyms.h"
861
862 \f
863
864 /* Represent one symbol name; a variable, constant, function or typedef. */
865
866 /* Different name domains for symbols. Looking up a symbol specifies a
867 domain and ignores symbol definitions in other name domains. */
868
869 typedef enum domain_enum_tag
870 {
871 /* UNDEF_DOMAIN is used when a domain has not been discovered or
872 none of the following apply. This usually indicates an error either
873 in the symbol information or in gdb's handling of symbols. */
874
875 UNDEF_DOMAIN,
876
877 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
878 function names, typedef names and enum type values. */
879
880 VAR_DOMAIN,
881
882 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
883 Thus, if `struct foo' is used in a C program, it produces a symbol named
884 `foo' in the STRUCT_DOMAIN. */
885
886 STRUCT_DOMAIN,
887
888 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
889
890 MODULE_DOMAIN,
891
892 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
893
894 LABEL_DOMAIN,
895
896 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
897 They also always use LOC_COMMON_BLOCK. */
898 COMMON_BLOCK_DOMAIN,
899
900 /* This must remain last. */
901 NR_DOMAINS
902 } domain_enum;
903
904 /* The number of bits in a symbol used to represent the domain. */
905
906 #define SYMBOL_DOMAIN_BITS 3
907 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
908
909 extern const char *domain_name (domain_enum);
910
911 /* Searching domains, used when searching for symbols. Element numbers are
912 hardcoded in GDB, check all enum uses before changing it. */
913
914 enum search_domain
915 {
916 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
917 TYPES_DOMAIN. */
918 VARIABLES_DOMAIN = 0,
919
920 /* All functions -- for some reason not methods, though. */
921 FUNCTIONS_DOMAIN = 1,
922
923 /* All defined types */
924 TYPES_DOMAIN = 2,
925
926 /* All modules. */
927 MODULES_DOMAIN = 3,
928
929 /* Any type. */
930 ALL_DOMAIN = 4
931 };
932
933 extern const char *search_domain_name (enum search_domain);
934
935 /* An address-class says where to find the value of a symbol. */
936
937 enum address_class
938 {
939 /* Not used; catches errors. */
940
941 LOC_UNDEF,
942
943 /* Value is constant int SYMBOL_VALUE, host byteorder. */
944
945 LOC_CONST,
946
947 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
948
949 LOC_STATIC,
950
951 /* Value is in register. SYMBOL_VALUE is the register number
952 in the original debug format. SYMBOL_REGISTER_OPS holds a
953 function that can be called to transform this into the
954 actual register number this represents in a specific target
955 architecture (gdbarch).
956
957 For some symbol formats (stabs, for some compilers at least),
958 the compiler generates two symbols, an argument and a register.
959 In some cases we combine them to a single LOC_REGISTER in symbol
960 reading, but currently not for all cases (e.g. it's passed on the
961 stack and then loaded into a register). */
962
963 LOC_REGISTER,
964
965 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
966
967 LOC_ARG,
968
969 /* Value address is at SYMBOL_VALUE offset in arglist. */
970
971 LOC_REF_ARG,
972
973 /* Value is in specified register. Just like LOC_REGISTER except the
974 register holds the address of the argument instead of the argument
975 itself. This is currently used for the passing of structs and unions
976 on sparc and hppa. It is also used for call by reference where the
977 address is in a register, at least by mipsread.c. */
978
979 LOC_REGPARM_ADDR,
980
981 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
982
983 LOC_LOCAL,
984
985 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
986 STRUCT_DOMAIN all have this class. */
987
988 LOC_TYPEDEF,
989
990 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
991
992 LOC_LABEL,
993
994 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
995 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
996 of the block. Function names have this class. */
997
998 LOC_BLOCK,
999
1000 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
1001 target byte order. */
1002
1003 LOC_CONST_BYTES,
1004
1005 /* Value is at fixed address, but the address of the variable has
1006 to be determined from the minimal symbol table whenever the
1007 variable is referenced.
1008 This happens if debugging information for a global symbol is
1009 emitted and the corresponding minimal symbol is defined
1010 in another object file or runtime common storage.
1011 The linker might even remove the minimal symbol if the global
1012 symbol is never referenced, in which case the symbol remains
1013 unresolved.
1014
1015 GDB would normally find the symbol in the minimal symbol table if it will
1016 not find it in the full symbol table. But a reference to an external
1017 symbol in a local block shadowing other definition requires full symbol
1018 without possibly having its address available for LOC_STATIC. Testcase
1019 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
1020
1021 This is also used for thread local storage (TLS) variables. In this case,
1022 the address of the TLS variable must be determined when the variable is
1023 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
1024 of the TLS variable in the thread local storage of the shared
1025 library/object. */
1026
1027 LOC_UNRESOLVED,
1028
1029 /* The variable does not actually exist in the program.
1030 The value is ignored. */
1031
1032 LOC_OPTIMIZED_OUT,
1033
1034 /* The variable's address is computed by a set of location
1035 functions (see "struct symbol_computed_ops" below). */
1036 LOC_COMPUTED,
1037
1038 /* The variable uses general_symbol_info->value->common_block field.
1039 It also always uses COMMON_BLOCK_DOMAIN. */
1040 LOC_COMMON_BLOCK,
1041
1042 /* Not used, just notes the boundary of the enum. */
1043 LOC_FINAL_VALUE
1044 };
1045
1046 /* The number of bits needed for values in enum address_class, with some
1047 padding for reasonable growth, and room for run-time registered address
1048 classes. See symtab.c:MAX_SYMBOL_IMPLS.
1049 This is a #define so that we can have a assertion elsewhere to
1050 verify that we have reserved enough space for synthetic address
1051 classes. */
1052 #define SYMBOL_ACLASS_BITS 5
1053 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
1054
1055 /* The methods needed to implement LOC_COMPUTED. These methods can
1056 use the symbol's .aux_value for additional per-symbol information.
1057
1058 At present this is only used to implement location expressions. */
1059
1060 struct symbol_computed_ops
1061 {
1062
1063 /* Return the value of the variable SYMBOL, relative to the stack
1064 frame FRAME. If the variable has been optimized out, return
1065 zero.
1066
1067 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
1068 FRAME may be zero. */
1069
1070 struct value *(*read_variable) (struct symbol * symbol,
1071 struct frame_info * frame);
1072
1073 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
1074 entry. SYMBOL should be a function parameter, otherwise
1075 NO_ENTRY_VALUE_ERROR will be thrown. */
1076 struct value *(*read_variable_at_entry) (struct symbol *symbol,
1077 struct frame_info *frame);
1078
1079 /* Find the "symbol_needs_kind" value for the given symbol. This
1080 value determines whether reading the symbol needs memory (e.g., a
1081 global variable), just registers (a thread-local), or a frame (a
1082 local variable). */
1083 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
1084
1085 /* Write to STREAM a natural-language description of the location of
1086 SYMBOL, in the context of ADDR. */
1087 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
1088 struct ui_file * stream);
1089
1090 /* Non-zero if this symbol's address computation is dependent on PC. */
1091 unsigned char location_has_loclist;
1092
1093 /* Tracepoint support. Append bytecodes to the tracepoint agent
1094 expression AX that push the address of the object SYMBOL. Set
1095 VALUE appropriately. Note --- for objects in registers, this
1096 needn't emit any code; as long as it sets VALUE properly, then
1097 the caller will generate the right code in the process of
1098 treating this as an lvalue or rvalue. */
1099
1100 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1101 struct axs_value *value);
1102
1103 /* Generate C code to compute the location of SYMBOL. The C code is
1104 emitted to STREAM. GDBARCH is the current architecture and PC is
1105 the PC at which SYMBOL's location should be evaluated.
1106 REGISTERS_USED is a vector indexed by register number; the
1107 generator function should set an element in this vector if the
1108 corresponding register is needed by the location computation.
1109 The generated C code must assign the location to a local
1110 variable; this variable's name is RESULT_NAME. */
1111
1112 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1113 struct gdbarch *gdbarch,
1114 std::vector<bool> &registers_used,
1115 CORE_ADDR pc, const char *result_name);
1116
1117 };
1118
1119 /* The methods needed to implement LOC_BLOCK for inferior functions.
1120 These methods can use the symbol's .aux_value for additional
1121 per-symbol information. */
1122
1123 struct symbol_block_ops
1124 {
1125 /* Fill in *START and *LENGTH with DWARF block data of function
1126 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1127 zero if such location is not valid for PC; *START is left
1128 uninitialized in such case. */
1129 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1130 const gdb_byte **start, size_t *length);
1131
1132 /* Return the frame base address. FRAME is the frame for which we want to
1133 compute the base address while FRAMEFUNC is the symbol for the
1134 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1135 information we need).
1136
1137 This method is designed to work with static links (nested functions
1138 handling). Static links are function properties whose evaluation returns
1139 the frame base address for the enclosing frame. However, there are
1140 multiple definitions for "frame base": the content of the frame base
1141 register, the CFA as defined by DWARF unwinding information, ...
1142
1143 So this specific method is supposed to compute the frame base address such
1144 as for nested functions, the static link computes the same address. For
1145 instance, considering DWARF debugging information, the static link is
1146 computed with DW_AT_static_link and this method must be used to compute
1147 the corresponding DW_AT_frame_base attribute. */
1148 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1149 struct frame_info *frame);
1150 };
1151
1152 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1153
1154 struct symbol_register_ops
1155 {
1156 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1157 };
1158
1159 /* Objects of this type are used to find the address class and the
1160 various computed ops vectors of a symbol. */
1161
1162 struct symbol_impl
1163 {
1164 enum address_class aclass;
1165
1166 /* Used with LOC_COMPUTED. */
1167 const struct symbol_computed_ops *ops_computed;
1168
1169 /* Used with LOC_BLOCK. */
1170 const struct symbol_block_ops *ops_block;
1171
1172 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1173 const struct symbol_register_ops *ops_register;
1174 };
1175
1176 /* struct symbol has some subclasses. This enum is used to
1177 differentiate between them. */
1178
1179 enum symbol_subclass_kind
1180 {
1181 /* Plain struct symbol. */
1182 SYMBOL_NONE,
1183
1184 /* struct template_symbol. */
1185 SYMBOL_TEMPLATE,
1186
1187 /* struct rust_vtable_symbol. */
1188 SYMBOL_RUST_VTABLE
1189 };
1190
1191 extern const struct symbol_impl *symbol_impls;
1192
1193 /* This structure is space critical. See space comments at the top. */
1194
1195 struct symbol : public general_symbol_info, public allocate_on_obstack
1196 {
1197 symbol ()
1198 /* Class-initialization of bitfields is only allowed in C++20. */
1199 : m_domain (UNDEF_DOMAIN),
1200 m_aclass_index (0),
1201 m_is_objfile_owned (1),
1202 m_is_argument (0),
1203 m_is_inlined (0),
1204 maybe_copied (0),
1205 subclass (SYMBOL_NONE),
1206 m_artificial (false)
1207 {
1208 /* We can't use an initializer list for members of a base class, and
1209 general_symbol_info needs to stay a POD type. */
1210 m_name = nullptr;
1211 m_value.ivalue = 0;
1212 language_specific.obstack = nullptr;
1213 m_language = language_unknown;
1214 ada_mangled = 0;
1215 m_section = -1;
1216 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1217 initialization of unions, so we initialize it manually here. */
1218 owner.symtab = nullptr;
1219 }
1220
1221 symbol (const symbol &) = default;
1222 symbol &operator= (const symbol &) = default;
1223
1224 unsigned int aclass_index () const
1225 {
1226 return m_aclass_index;
1227 }
1228
1229 void set_aclass_index (unsigned int aclass_index)
1230 {
1231 m_aclass_index = aclass_index;
1232 }
1233
1234 const symbol_impl &impl () const
1235 {
1236 return symbol_impls[this->aclass_index ()];
1237 }
1238
1239 address_class aclass () const
1240 {
1241 return this->impl ().aclass;
1242 }
1243
1244 domain_enum domain () const
1245 {
1246 return m_domain;
1247 }
1248
1249 void set_domain (domain_enum domain)
1250 {
1251 m_domain = domain;
1252 }
1253
1254 bool is_objfile_owned () const
1255 {
1256 return m_is_objfile_owned;
1257 }
1258
1259 void set_is_objfile_owned (bool is_objfile_owned)
1260 {
1261 m_is_objfile_owned = is_objfile_owned;
1262 }
1263
1264 bool is_argument () const
1265 {
1266 return m_is_argument;
1267 }
1268
1269 void set_is_argument (bool is_argument)
1270 {
1271 m_is_argument = is_argument;
1272 }
1273
1274 bool is_inlined () const
1275 {
1276 return m_is_inlined;
1277 }
1278
1279 void set_is_inlined (bool is_inlined)
1280 {
1281 m_is_inlined = is_inlined;
1282 }
1283
1284 bool is_cplus_template_function () const
1285 {
1286 return this->subclass == SYMBOL_TEMPLATE;
1287 }
1288
1289 struct type *type () const
1290 {
1291 return m_type;
1292 }
1293
1294 void set_type (struct type *type)
1295 {
1296 m_type = type;
1297 }
1298
1299 unsigned short line () const
1300 {
1301 return m_line;
1302 }
1303
1304 void set_line (unsigned short line)
1305 {
1306 m_line = line;
1307 }
1308
1309 LONGEST value_longest () const
1310 {
1311 return m_value.ivalue;
1312 }
1313
1314 void set_value_longest (LONGEST value)
1315 {
1316 m_value.ivalue = value;
1317 }
1318
1319 CORE_ADDR value_address () const
1320 {
1321 if (this->maybe_copied)
1322 return get_symbol_address (this);
1323 else
1324 return m_value.address;
1325 }
1326
1327 void set_value_address (CORE_ADDR address)
1328 {
1329 m_value.address = address;
1330 }
1331
1332 const gdb_byte *value_bytes () const
1333 {
1334 return m_value.bytes;
1335 }
1336
1337 void set_value_bytes (const gdb_byte *bytes)
1338 {
1339 m_value.bytes = bytes;
1340 }
1341
1342 const common_block *value_common_block () const
1343 {
1344 return m_value.common_block;
1345 }
1346
1347 void set_value_common_block (const common_block *common_block)
1348 {
1349 m_value.common_block = common_block;
1350 }
1351
1352 const block *value_block () const
1353 {
1354 return m_value.block;
1355 }
1356
1357 void set_value_block (const block *block)
1358 {
1359 m_value.block = block;
1360 }
1361
1362 symbol *value_chain () const
1363 {
1364 return m_value.chain;
1365 }
1366
1367 void set_value_chain (symbol *sym)
1368 {
1369 m_value.chain = sym;
1370 }
1371
1372 /* Return true if this symbol was marked as artificial. */
1373 bool is_artificial () const
1374 {
1375 return m_artificial;
1376 }
1377
1378 /* Set the 'artificial' flag on this symbol. */
1379 void set_is_artificial (bool artificial)
1380 {
1381 m_artificial = artificial;
1382 }
1383
1384 /* Data type of value */
1385
1386 struct type *m_type = nullptr;
1387
1388 /* The owner of this symbol.
1389 Which one to use is defined by symbol.is_objfile_owned. */
1390
1391 union
1392 {
1393 /* The symbol table containing this symbol. This is the file associated
1394 with LINE. It can be NULL during symbols read-in but it is never NULL
1395 during normal operation. */
1396 struct symtab *symtab;
1397
1398 /* For types defined by the architecture. */
1399 struct gdbarch *arch;
1400 } owner;
1401
1402 /* Domain code. */
1403
1404 ENUM_BITFIELD(domain_enum_tag) m_domain : SYMBOL_DOMAIN_BITS;
1405
1406 /* Address class. This holds an index into the 'symbol_impls'
1407 table. The actual enum address_class value is stored there,
1408 alongside any per-class ops vectors. */
1409
1410 unsigned int m_aclass_index : SYMBOL_ACLASS_BITS;
1411
1412 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1413 Otherwise symbol is arch-owned, use owner.arch. */
1414
1415 unsigned int m_is_objfile_owned : 1;
1416
1417 /* Whether this is an argument. */
1418
1419 unsigned m_is_argument : 1;
1420
1421 /* Whether this is an inlined function (class LOC_BLOCK only). */
1422 unsigned m_is_inlined : 1;
1423
1424 /* For LOC_STATIC only, if this is set, then the symbol might be
1425 subject to copy relocation. In this case, a minimal symbol
1426 matching the symbol's linkage name is first looked for in the
1427 main objfile. If found, then that address is used; otherwise the
1428 address in this symbol is used. */
1429
1430 unsigned maybe_copied : 1;
1431
1432 /* The concrete type of this symbol. */
1433
1434 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1435
1436 /* Whether this symbol is artificial. */
1437
1438 bool m_artificial : 1;
1439
1440 /* Line number of this symbol's definition, except for inlined
1441 functions. For an inlined function (class LOC_BLOCK and
1442 SYMBOL_INLINED set) this is the line number of the function's call
1443 site. Inlined function symbols are not definitions, and they are
1444 never found by symbol table lookup.
1445 If this symbol is arch-owned, LINE shall be zero.
1446
1447 FIXME: Should we really make the assumption that nobody will try
1448 to debug files longer than 64K lines? What about machine
1449 generated programs? */
1450
1451 unsigned short m_line = 0;
1452
1453 /* An arbitrary data pointer, allowing symbol readers to record
1454 additional information on a per-symbol basis. Note that this data
1455 must be allocated using the same obstack as the symbol itself. */
1456 /* So far it is only used by:
1457 LOC_COMPUTED: to find the location information
1458 LOC_BLOCK (DWARF2 function): information used internally by the
1459 DWARF 2 code --- specifically, the location expression for the frame
1460 base for this function. */
1461 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1462 to add a magic symbol to the block containing this information,
1463 or to have a generic debug info annotation slot for symbols. */
1464
1465 void *aux_value = nullptr;
1466
1467 struct symbol *hash_next = nullptr;
1468 };
1469
1470 /* Several lookup functions return both a symbol and the block in which the
1471 symbol is found. This structure is used in these cases. */
1472
1473 struct block_symbol
1474 {
1475 /* The symbol that was found, or NULL if no symbol was found. */
1476 struct symbol *symbol;
1477
1478 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1479 defined. */
1480 const struct block *block;
1481 };
1482
1483 /* Note: There is no accessor macro for symbol.owner because it is
1484 "private". */
1485
1486 #define SYMBOL_COMPUTED_OPS(symbol) ((symbol)->impl ().ops_computed)
1487 #define SYMBOL_BLOCK_OPS(symbol) ((symbol)->impl ().ops_block)
1488 #define SYMBOL_REGISTER_OPS(symbol) ((symbol)->impl ().ops_register)
1489 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1490
1491 extern int register_symbol_computed_impl (enum address_class,
1492 const struct symbol_computed_ops *);
1493
1494 extern int register_symbol_block_impl (enum address_class aclass,
1495 const struct symbol_block_ops *ops);
1496
1497 extern int register_symbol_register_impl (enum address_class,
1498 const struct symbol_register_ops *);
1499
1500 /* Return the OBJFILE of SYMBOL.
1501 It is an error to call this if symbol.is_objfile_owned is false, which
1502 only happens for architecture-provided types. */
1503
1504 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1505
1506 /* Return the ARCH of SYMBOL. */
1507
1508 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1509
1510 /* Return the SYMTAB of SYMBOL.
1511 It is an error to call this if symbol.is_objfile_owned is false, which
1512 only happens for architecture-provided types. */
1513
1514 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1515
1516 /* Set the symtab of SYMBOL to SYMTAB.
1517 It is an error to call this if symbol.is_objfile_owned is false, which
1518 only happens for architecture-provided types. */
1519
1520 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1521
1522 /* An instance of this type is used to represent a C++ template
1523 function. A symbol is really of this type iff
1524 symbol::is_cplus_template_function is true. */
1525
1526 struct template_symbol : public symbol
1527 {
1528 /* The number of template arguments. */
1529 int n_template_arguments = 0;
1530
1531 /* The template arguments. This is an array with
1532 N_TEMPLATE_ARGUMENTS elements. */
1533 struct symbol **template_arguments = nullptr;
1534 };
1535
1536 /* A symbol that represents a Rust virtual table object. */
1537
1538 struct rust_vtable_symbol : public symbol
1539 {
1540 /* The concrete type for which this vtable was created; that is, in
1541 "impl Trait for Type", this is "Type". */
1542 struct type *concrete_type = nullptr;
1543 };
1544
1545 \f
1546 /* Each item represents a line-->pc (or the reverse) mapping. This is
1547 somewhat more wasteful of space than one might wish, but since only
1548 the files which are actually debugged are read in to core, we don't
1549 waste much space. */
1550
1551 struct linetable_entry
1552 {
1553 /* The line number for this entry. */
1554 int line;
1555
1556 /* True if this PC is a good location to place a breakpoint for LINE. */
1557 unsigned is_stmt : 1;
1558
1559 /* True if this location is a good location to place a breakpoint after a
1560 function prologue. */
1561 bool prologue_end : 1;
1562
1563 /* The address for this entry. */
1564 CORE_ADDR pc;
1565 };
1566
1567 /* The order of entries in the linetable is significant. They should
1568 be sorted by increasing values of the pc field. If there is more than
1569 one entry for a given pc, then I'm not sure what should happen (and
1570 I not sure whether we currently handle it the best way).
1571
1572 Example: a C for statement generally looks like this
1573
1574 10 0x100 - for the init/test part of a for stmt.
1575 20 0x200
1576 30 0x300
1577 10 0x400 - for the increment part of a for stmt.
1578
1579 If an entry has a line number of zero, it marks the start of a PC
1580 range for which no line number information is available. It is
1581 acceptable, though wasteful of table space, for such a range to be
1582 zero length. */
1583
1584 struct linetable
1585 {
1586 int nitems;
1587
1588 /* Actually NITEMS elements. If you don't like this use of the
1589 `struct hack', you can shove it up your ANSI (seriously, if the
1590 committee tells us how to do it, we can probably go along). */
1591 struct linetable_entry item[1];
1592 };
1593
1594 /* How to relocate the symbols from each section in a symbol file.
1595 The ordering and meaning of the offsets is file-type-dependent;
1596 typically it is indexed by section numbers or symbol types or
1597 something like that. */
1598
1599 typedef std::vector<CORE_ADDR> section_offsets;
1600
1601 /* Each source file or header is represented by a struct symtab.
1602 The name "symtab" is historical, another name for it is "filetab".
1603 These objects are chained through the `next' field. */
1604
1605 struct symtab
1606 {
1607 struct compunit_symtab *compunit () const
1608 {
1609 return m_compunit;
1610 }
1611
1612 void set_compunit (struct compunit_symtab *compunit)
1613 {
1614 m_compunit = compunit;
1615 }
1616
1617 struct linetable *linetable () const
1618 {
1619 return m_linetable;
1620 }
1621
1622 void set_linetable (struct linetable *linetable)
1623 {
1624 m_linetable = linetable;
1625 }
1626
1627 enum language language () const
1628 {
1629 return m_language;
1630 }
1631
1632 void set_language (enum language language)
1633 {
1634 m_language = language;
1635 }
1636
1637 /* Unordered chain of all filetabs in the compunit, with the exception
1638 that the "main" source file is the first entry in the list. */
1639
1640 struct symtab *next;
1641
1642 /* Backlink to containing compunit symtab. */
1643
1644 struct compunit_symtab *m_compunit;
1645
1646 /* Table mapping core addresses to line numbers for this file.
1647 Can be NULL if none. Never shared between different symtabs. */
1648
1649 struct linetable *m_linetable;
1650
1651 /* Name of this source file. This pointer is never NULL. */
1652
1653 const char *filename;
1654
1655 /* Language of this source file. */
1656
1657 enum language m_language;
1658
1659 /* Full name of file as found by searching the source path.
1660 NULL if not yet known. */
1661
1662 char *fullname;
1663 };
1664
1665 /* A range adapter to allowing iterating over all the file tables in a list. */
1666
1667 using symtab_range = next_range<symtab>;
1668
1669 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1670 as the list of all source files (what gdb has historically associated with
1671 the term "symtab").
1672 Additional information is recorded here that is common to all symtabs in a
1673 compilation unit (DWARF or otherwise).
1674
1675 Example:
1676 For the case of a program built out of these files:
1677
1678 foo.c
1679 foo1.h
1680 foo2.h
1681 bar.c
1682 foo1.h
1683 bar.h
1684
1685 This is recorded as:
1686
1687 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1688 | |
1689 v v
1690 foo.c bar.c
1691 | |
1692 v v
1693 foo1.h foo1.h
1694 | |
1695 v v
1696 foo2.h bar.h
1697 | |
1698 v v
1699 NULL NULL
1700
1701 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1702 and the files foo.c, etc. are struct symtab objects. */
1703
1704 struct compunit_symtab
1705 {
1706 struct objfile *objfile () const
1707 {
1708 return m_objfile;
1709 }
1710
1711 void set_objfile (struct objfile *objfile)
1712 {
1713 m_objfile = objfile;
1714 }
1715
1716 symtab_range filetabs () const
1717 {
1718 return symtab_range (m_filetabs);
1719 }
1720
1721 void add_filetab (symtab *filetab)
1722 {
1723 if (m_filetabs == nullptr)
1724 {
1725 m_filetabs = filetab;
1726 m_last_filetab = filetab;
1727 }
1728 else
1729 {
1730 m_last_filetab->next = filetab;
1731 m_last_filetab = filetab;
1732 }
1733 }
1734
1735 const char *debugformat () const
1736 {
1737 return m_debugformat;
1738 }
1739
1740 void set_debugformat (const char *debugformat)
1741 {
1742 m_debugformat = debugformat;
1743 }
1744
1745 const char *producer () const
1746 {
1747 return m_producer;
1748 }
1749
1750 void set_producer (const char *producer)
1751 {
1752 m_producer = producer;
1753 }
1754
1755 const char *dirname () const
1756 {
1757 return m_dirname;
1758 }
1759
1760 void set_dirname (const char *dirname)
1761 {
1762 m_dirname = dirname;
1763 }
1764
1765 const struct blockvector *blockvector () const
1766 {
1767 return m_blockvector;
1768 }
1769
1770 void set_blockvector (const struct blockvector *blockvector)
1771 {
1772 m_blockvector = blockvector;
1773 }
1774
1775 int block_line_section () const
1776 {
1777 return m_block_line_section;
1778 }
1779
1780 void set_block_line_section (int block_line_section)
1781 {
1782 m_block_line_section = block_line_section;
1783 }
1784
1785 bool locations_valid () const
1786 {
1787 return m_locations_valid;
1788 }
1789
1790 void set_locations_valid (bool locations_valid)
1791 {
1792 m_locations_valid = locations_valid;
1793 }
1794
1795 bool epilogue_unwind_valid () const
1796 {
1797 return m_epilogue_unwind_valid;
1798 }
1799
1800 void set_epilogue_unwind_valid (bool epilogue_unwind_valid)
1801 {
1802 m_epilogue_unwind_valid = epilogue_unwind_valid;
1803 }
1804
1805 struct macro_table *macro_table () const
1806 {
1807 return m_macro_table;
1808 }
1809
1810 void set_macro_table (struct macro_table *macro_table)
1811 {
1812 m_macro_table = macro_table;
1813 }
1814
1815 /* Make PRIMARY_FILETAB the primary filetab of this compunit symtab.
1816
1817 PRIMARY_FILETAB must already be a filetab of this compunit symtab. */
1818
1819 void set_primary_filetab (symtab *primary_filetab);
1820
1821 /* Return the primary filetab of the compunit. */
1822 symtab *primary_filetab () const;
1823
1824 /* Set m_call_site_htab. */
1825 void set_call_site_htab (htab_t call_site_htab);
1826
1827 /* Find call_site info for PC. */
1828 call_site *find_call_site (CORE_ADDR pc) const;
1829
1830 /* Unordered chain of all compunit symtabs of this objfile. */
1831 struct compunit_symtab *next;
1832
1833 /* Object file from which this symtab information was read. */
1834 struct objfile *m_objfile;
1835
1836 /* Name of the symtab.
1837 This is *not* intended to be a usable filename, and is
1838 for debugging purposes only. */
1839 const char *name;
1840
1841 /* Unordered list of file symtabs, except that by convention the "main"
1842 source file (e.g., .c, .cc) is guaranteed to be first.
1843 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1844 or header (e.g., .h). */
1845 symtab *m_filetabs;
1846
1847 /* Last entry in FILETABS list.
1848 Subfiles are added to the end of the list so they accumulate in order,
1849 with the main source subfile living at the front.
1850 The main reason is so that the main source file symtab is at the head
1851 of the list, and the rest appear in order for debugging convenience. */
1852 symtab *m_last_filetab;
1853
1854 /* Non-NULL string that identifies the format of the debugging information,
1855 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1856 for automated testing of gdb but may also be information that is
1857 useful to the user. */
1858 const char *m_debugformat;
1859
1860 /* String of producer version information, or NULL if we don't know. */
1861 const char *m_producer;
1862
1863 /* Directory in which it was compiled, or NULL if we don't know. */
1864 const char *m_dirname;
1865
1866 /* List of all symbol scope blocks for this symtab. It is shared among
1867 all symtabs in a given compilation unit. */
1868 const struct blockvector *m_blockvector;
1869
1870 /* Section in objfile->section_offsets for the blockvector and
1871 the linetable. Probably always SECT_OFF_TEXT. */
1872 int m_block_line_section;
1873
1874 /* Symtab has been compiled with both optimizations and debug info so that
1875 GDB may stop skipping prologues as variables locations are valid already
1876 at function entry points. */
1877 unsigned int m_locations_valid : 1;
1878
1879 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1880 instruction). This is supported by GCC since 4.5.0. */
1881 unsigned int m_epilogue_unwind_valid : 1;
1882
1883 /* struct call_site entries for this compilation unit or NULL. */
1884 htab_t m_call_site_htab;
1885
1886 /* The macro table for this symtab. Like the blockvector, this
1887 is shared between different symtabs in a given compilation unit.
1888 It's debatable whether it *should* be shared among all the symtabs in
1889 the given compilation unit, but it currently is. */
1890 struct macro_table *m_macro_table;
1891
1892 /* If non-NULL, then this points to a NULL-terminated vector of
1893 included compunits. When searching the static or global
1894 block of this compunit, the corresponding block of all
1895 included compunits will also be searched. Note that this
1896 list must be flattened -- the symbol reader is responsible for
1897 ensuring that this vector contains the transitive closure of all
1898 included compunits. */
1899 struct compunit_symtab **includes;
1900
1901 /* If this is an included compunit, this points to one includer
1902 of the table. This user is considered the canonical compunit
1903 containing this one. An included compunit may itself be
1904 included by another. */
1905 struct compunit_symtab *user;
1906 };
1907
1908 using compunit_symtab_range = next_range<compunit_symtab>;
1909
1910 /* Return the language of CUST. */
1911
1912 extern enum language compunit_language (const struct compunit_symtab *cust);
1913
1914 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1915
1916 static inline bool
1917 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1918 {
1919 return symtab == symtab->compunit ()->primary_filetab ();
1920 }
1921 \f
1922
1923 /* The virtual function table is now an array of structures which have the
1924 form { int16 offset, delta; void *pfn; }.
1925
1926 In normal virtual function tables, OFFSET is unused.
1927 DELTA is the amount which is added to the apparent object's base
1928 address in order to point to the actual object to which the
1929 virtual function should be applied.
1930 PFN is a pointer to the virtual function.
1931
1932 Note that this macro is g++ specific (FIXME). */
1933
1934 #define VTBL_FNADDR_OFFSET 2
1935
1936 /* External variables and functions for the objects described above. */
1937
1938 /* True if we are nested inside psymtab_to_symtab. */
1939
1940 extern int currently_reading_symtab;
1941
1942 /* symtab.c lookup functions */
1943
1944 extern const char multiple_symbols_ask[];
1945 extern const char multiple_symbols_all[];
1946 extern const char multiple_symbols_cancel[];
1947
1948 const char *multiple_symbols_select_mode (void);
1949
1950 bool symbol_matches_domain (enum language symbol_language,
1951 domain_enum symbol_domain,
1952 domain_enum domain);
1953
1954 /* lookup a symbol table by source file name. */
1955
1956 extern struct symtab *lookup_symtab (const char *);
1957
1958 /* An object of this type is passed as the 'is_a_field_of_this'
1959 argument to lookup_symbol and lookup_symbol_in_language. */
1960
1961 struct field_of_this_result
1962 {
1963 /* The type in which the field was found. If this is NULL then the
1964 symbol was not found in 'this'. If non-NULL, then one of the
1965 other fields will be non-NULL as well. */
1966
1967 struct type *type;
1968
1969 /* If the symbol was found as an ordinary field of 'this', then this
1970 is non-NULL and points to the particular field. */
1971
1972 struct field *field;
1973
1974 /* If the symbol was found as a function field of 'this', then this
1975 is non-NULL and points to the particular field. */
1976
1977 struct fn_fieldlist *fn_field;
1978 };
1979
1980 /* Find the definition for a specified symbol name NAME
1981 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1982 if non-NULL or from global/static blocks if BLOCK is NULL.
1983 Returns the struct symbol pointer, or NULL if no symbol is found.
1984 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1985 NAME is a field of the current implied argument `this'. If so fill in the
1986 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1987 The symbol's section is fixed up if necessary. */
1988
1989 extern struct block_symbol
1990 lookup_symbol_in_language (const char *,
1991 const struct block *,
1992 const domain_enum,
1993 enum language,
1994 struct field_of_this_result *);
1995
1996 /* Same as lookup_symbol_in_language, but using the current language. */
1997
1998 extern struct block_symbol lookup_symbol (const char *,
1999 const struct block *,
2000 const domain_enum,
2001 struct field_of_this_result *);
2002
2003 /* Find the definition for a specified symbol search name in domain
2004 DOMAIN, visible from lexical block BLOCK if non-NULL or from
2005 global/static blocks if BLOCK is NULL. The passed-in search name
2006 should not come from the user; instead it should already be a
2007 search name as retrieved from a search_name () call. See definition of
2008 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
2009 pointer, or NULL if no symbol is found. The symbol's section is
2010 fixed up if necessary. */
2011
2012 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
2013 const struct block *block,
2014 domain_enum domain);
2015
2016 /* Some helper functions for languages that need to write their own
2017 lookup_symbol_nonlocal functions. */
2018
2019 /* Lookup a symbol in the static block associated to BLOCK, if there
2020 is one; do nothing if BLOCK is NULL or a global block.
2021 Upon success fixes up the symbol's section if necessary. */
2022
2023 extern struct block_symbol
2024 lookup_symbol_in_static_block (const char *name,
2025 const struct block *block,
2026 const domain_enum domain);
2027
2028 /* Search all static file-level symbols for NAME from DOMAIN.
2029 Upon success fixes up the symbol's section if necessary. */
2030
2031 extern struct block_symbol lookup_static_symbol (const char *name,
2032 const domain_enum domain);
2033
2034 /* Lookup a symbol in all files' global blocks.
2035
2036 If BLOCK is non-NULL then it is used for two things:
2037 1) If a target-specific lookup routine for libraries exists, then use the
2038 routine for the objfile of BLOCK, and
2039 2) The objfile of BLOCK is used to assist in determining the search order
2040 if the target requires it.
2041 See gdbarch_iterate_over_objfiles_in_search_order.
2042
2043 Upon success fixes up the symbol's section if necessary. */
2044
2045 extern struct block_symbol
2046 lookup_global_symbol (const char *name,
2047 const struct block *block,
2048 const domain_enum domain);
2049
2050 /* Lookup a symbol in block BLOCK.
2051 Upon success fixes up the symbol's section if necessary. */
2052
2053 extern struct symbol *
2054 lookup_symbol_in_block (const char *name,
2055 symbol_name_match_type match_type,
2056 const struct block *block,
2057 const domain_enum domain);
2058
2059 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
2060 found, or NULL if not found. */
2061
2062 extern struct block_symbol
2063 lookup_language_this (const struct language_defn *lang,
2064 const struct block *block);
2065
2066 /* Lookup a [struct, union, enum] by name, within a specified block. */
2067
2068 extern struct type *lookup_struct (const char *, const struct block *);
2069
2070 extern struct type *lookup_union (const char *, const struct block *);
2071
2072 extern struct type *lookup_enum (const char *, const struct block *);
2073
2074 /* from blockframe.c: */
2075
2076 /* lookup the function symbol corresponding to the address. The
2077 return value will not be an inlined function; the containing
2078 function will be returned instead. */
2079
2080 extern struct symbol *find_pc_function (CORE_ADDR);
2081
2082 /* lookup the function corresponding to the address and section. The
2083 return value will not be an inlined function; the containing
2084 function will be returned instead. */
2085
2086 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
2087
2088 /* lookup the function symbol corresponding to the address and
2089 section. The return value will be the closest enclosing function,
2090 which might be an inline function. */
2091
2092 extern struct symbol *find_pc_sect_containing_function
2093 (CORE_ADDR pc, struct obj_section *section);
2094
2095 /* Find the symbol at the given address. Returns NULL if no symbol
2096 found. Only exact matches for ADDRESS are considered. */
2097
2098 extern struct symbol *find_symbol_at_address (CORE_ADDR);
2099
2100 /* Finds the "function" (text symbol) that is smaller than PC but
2101 greatest of all of the potential text symbols in SECTION. Sets
2102 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
2103 If ENDADDR is non-null, then set *ENDADDR to be the end of the
2104 function (exclusive). If the optional parameter BLOCK is non-null,
2105 then set *BLOCK to the address of the block corresponding to the
2106 function symbol, if such a symbol could be found during the lookup;
2107 nullptr is used as a return value for *BLOCK if no block is found.
2108 This function either succeeds or fails (not halfway succeeds). If
2109 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
2110 information and returns true. If it fails, it sets *NAME, *ADDRESS
2111 and *ENDADDR to zero and returns false.
2112
2113 If the function in question occupies non-contiguous ranges,
2114 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
2115 to the start and end of the range in which PC is found. Thus
2116 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
2117 from other functions might be found).
2118
2119 This property allows find_pc_partial_function to be used (as it had
2120 been prior to the introduction of non-contiguous range support) by
2121 various tdep files for finding a start address and limit address
2122 for prologue analysis. This still isn't ideal, however, because we
2123 probably shouldn't be doing prologue analysis (in which
2124 instructions are scanned to determine frame size and stack layout)
2125 for any range that doesn't contain the entry pc. Moreover, a good
2126 argument can be made that prologue analysis ought to be performed
2127 starting from the entry pc even when PC is within some other range.
2128 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
2129 limits of the entry pc range, but that will cause the
2130 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
2131 callers of find_pc_partial_function expect this condition to hold.
2132
2133 Callers which require the start and/or end addresses for the range
2134 containing the entry pc should instead call
2135 find_function_entry_range_from_pc. */
2136
2137 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
2138 CORE_ADDR *address, CORE_ADDR *endaddr,
2139 const struct block **block = nullptr);
2140
2141 /* Like find_pc_partial_function, above, but returns the underlying
2142 general_symbol_info (rather than the name) as an out parameter. */
2143
2144 extern bool find_pc_partial_function_sym
2145 (CORE_ADDR pc, const general_symbol_info **sym,
2146 CORE_ADDR *address, CORE_ADDR *endaddr,
2147 const struct block **block = nullptr);
2148
2149 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
2150 set to start and end addresses of the range containing the entry pc.
2151
2152 Note that it is not necessarily the case that (for non-NULL ADDRESS
2153 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
2154 hold.
2155
2156 See comment for find_pc_partial_function, above, for further
2157 explanation. */
2158
2159 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
2160 const char **name,
2161 CORE_ADDR *address,
2162 CORE_ADDR *endaddr);
2163
2164 /* Return the type of a function with its first instruction exactly at
2165 the PC address. Return NULL otherwise. */
2166
2167 extern struct type *find_function_type (CORE_ADDR pc);
2168
2169 /* See if we can figure out the function's actual type from the type
2170 that the resolver returns. RESOLVER_FUNADDR is the address of the
2171 ifunc resolver. */
2172
2173 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
2174
2175 /* Find the GNU ifunc minimal symbol that matches SYM. */
2176 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
2177
2178 extern void clear_pc_function_cache (void);
2179
2180 /* Expand symtab containing PC, SECTION if not already expanded. */
2181
2182 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
2183
2184 /* lookup full symbol table by address. */
2185
2186 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
2187
2188 /* lookup full symbol table by address and section. */
2189
2190 extern struct compunit_symtab *
2191 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
2192
2193 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
2194
2195 extern void reread_symbols (int from_tty);
2196
2197 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
2198 The type returned must not be opaque -- i.e., must have at least one field
2199 defined. */
2200
2201 extern struct type *lookup_transparent_type (const char *);
2202
2203 extern struct type *basic_lookup_transparent_type (const char *);
2204
2205 /* Macro for name of symbol to indicate a file compiled with gcc. */
2206 #ifndef GCC_COMPILED_FLAG_SYMBOL
2207 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
2208 #endif
2209
2210 /* Macro for name of symbol to indicate a file compiled with gcc2. */
2211 #ifndef GCC2_COMPILED_FLAG_SYMBOL
2212 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
2213 #endif
2214
2215 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
2216
2217 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
2218 for ELF symbol files. */
2219
2220 struct gnu_ifunc_fns
2221 {
2222 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
2223 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
2224
2225 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
2226 bool (*gnu_ifunc_resolve_name) (const char *function_name,
2227 CORE_ADDR *function_address_p);
2228
2229 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
2230 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
2231
2232 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
2233 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
2234 };
2235
2236 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
2237 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
2238 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
2239 #define gnu_ifunc_resolver_return_stop \
2240 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
2241
2242 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
2243
2244 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
2245
2246 struct symtab_and_line
2247 {
2248 /* The program space of this sal. */
2249 struct program_space *pspace = NULL;
2250
2251 struct symtab *symtab = NULL;
2252 struct symbol *symbol = NULL;
2253 struct obj_section *section = NULL;
2254 struct minimal_symbol *msymbol = NULL;
2255 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
2256 0 is never a valid line number; it is used to indicate that line number
2257 information is not available. */
2258 int line = 0;
2259
2260 CORE_ADDR pc = 0;
2261 CORE_ADDR end = 0;
2262 bool explicit_pc = false;
2263 bool explicit_line = false;
2264
2265 /* If the line number information is valid, then this indicates if this
2266 line table entry had the is-stmt flag set or not. */
2267 bool is_stmt = false;
2268
2269 /* The probe associated with this symtab_and_line. */
2270 probe *prob = NULL;
2271 /* If PROBE is not NULL, then this is the objfile in which the probe
2272 originated. */
2273 struct objfile *objfile = NULL;
2274 };
2275
2276 \f
2277
2278 /* Given a pc value, return line number it is in. Second arg nonzero means
2279 if pc is on the boundary use the previous statement's line number. */
2280
2281 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
2282
2283 /* Same function, but specify a section as well as an address. */
2284
2285 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
2286 struct obj_section *, int);
2287
2288 /* Wrapper around find_pc_line to just return the symtab. */
2289
2290 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
2291
2292 /* Given a symtab and line number, return the pc there. */
2293
2294 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
2295
2296 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
2297 CORE_ADDR *);
2298
2299 extern void resolve_sal_pc (struct symtab_and_line *);
2300
2301 /* solib.c */
2302
2303 extern void clear_solib (void);
2304
2305 /* The reason we're calling into a completion match list collector
2306 function. */
2307 enum class complete_symbol_mode
2308 {
2309 /* Completing an expression. */
2310 EXPRESSION,
2311
2312 /* Completing a linespec. */
2313 LINESPEC,
2314 };
2315
2316 extern void default_collect_symbol_completion_matches_break_on
2317 (completion_tracker &tracker,
2318 complete_symbol_mode mode,
2319 symbol_name_match_type name_match_type,
2320 const char *text, const char *word, const char *break_on,
2321 enum type_code code);
2322 extern void collect_symbol_completion_matches
2323 (completion_tracker &tracker,
2324 complete_symbol_mode mode,
2325 symbol_name_match_type name_match_type,
2326 const char *, const char *);
2327 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
2328 const char *, const char *,
2329 enum type_code);
2330
2331 extern void collect_file_symbol_completion_matches
2332 (completion_tracker &tracker,
2333 complete_symbol_mode,
2334 symbol_name_match_type name_match_type,
2335 const char *, const char *, const char *);
2336
2337 extern completion_list
2338 make_source_files_completion_list (const char *, const char *);
2339
2340 /* Return whether SYM is a function/method, as opposed to a data symbol. */
2341
2342 extern bool symbol_is_function_or_method (symbol *sym);
2343
2344 /* Return whether MSYMBOL is a function/method, as opposed to a data
2345 symbol */
2346
2347 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
2348
2349 /* Return whether SYM should be skipped in completion mode MODE. In
2350 linespec mode, we're only interested in functions/methods. */
2351
2352 template<typename Symbol>
2353 static bool
2354 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
2355 {
2356 return (mode == complete_symbol_mode::LINESPEC
2357 && !symbol_is_function_or_method (sym));
2358 }
2359
2360 /* symtab.c */
2361
2362 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2363
2364 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2365
2366 /* Given a function symbol SYM, find the symtab and line for the start
2367 of the function. If FUNFIRSTLINE is true, we want the first line
2368 of real code inside the function. */
2369 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2370 funfirstline);
2371
2372 /* Same, but start with a function address/section instead of a
2373 symbol. */
2374 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2375 obj_section *section,
2376 bool funfirstline);
2377
2378 extern void skip_prologue_sal (struct symtab_and_line *);
2379
2380 /* symtab.c */
2381
2382 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2383 CORE_ADDR func_addr);
2384
2385 extern struct symbol *fixup_symbol_section (struct symbol *,
2386 struct objfile *);
2387
2388 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2389 the same address. Returns NULL if not found. This is necessary in
2390 case a function is an alias to some other function, because debug
2391 information is only emitted for the alias target function's
2392 definition, not for the alias. */
2393 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2394
2395 /* Symbol searching */
2396
2397 /* When using the symbol_searcher struct to search for symbols, a vector of
2398 the following structs is returned. */
2399 struct symbol_search
2400 {
2401 symbol_search (int block_, struct symbol *symbol_)
2402 : block (block_),
2403 symbol (symbol_)
2404 {
2405 msymbol.minsym = nullptr;
2406 msymbol.objfile = nullptr;
2407 }
2408
2409 symbol_search (int block_, struct minimal_symbol *minsym,
2410 struct objfile *objfile)
2411 : block (block_),
2412 symbol (nullptr)
2413 {
2414 msymbol.minsym = minsym;
2415 msymbol.objfile = objfile;
2416 }
2417
2418 bool operator< (const symbol_search &other) const
2419 {
2420 return compare_search_syms (*this, other) < 0;
2421 }
2422
2423 bool operator== (const symbol_search &other) const
2424 {
2425 return compare_search_syms (*this, other) == 0;
2426 }
2427
2428 /* The block in which the match was found. Could be, for example,
2429 STATIC_BLOCK or GLOBAL_BLOCK. */
2430 int block;
2431
2432 /* Information describing what was found.
2433
2434 If symbol is NOT NULL, then information was found for this match. */
2435 struct symbol *symbol;
2436
2437 /* If msymbol is non-null, then a match was made on something for
2438 which only minimal_symbols exist. */
2439 struct bound_minimal_symbol msymbol;
2440
2441 private:
2442
2443 static int compare_search_syms (const symbol_search &sym_a,
2444 const symbol_search &sym_b);
2445 };
2446
2447 /* In order to search for global symbols of a particular kind matching
2448 particular regular expressions, create an instance of this structure and
2449 call the SEARCH member function. */
2450 class global_symbol_searcher
2451 {
2452 public:
2453
2454 /* Constructor. */
2455 global_symbol_searcher (enum search_domain kind,
2456 const char *symbol_name_regexp)
2457 : m_kind (kind),
2458 m_symbol_name_regexp (symbol_name_regexp)
2459 {
2460 /* The symbol searching is designed to only find one kind of thing. */
2461 gdb_assert (m_kind != ALL_DOMAIN);
2462 }
2463
2464 /* Set the optional regexp that matches against the symbol type. */
2465 void set_symbol_type_regexp (const char *regexp)
2466 {
2467 m_symbol_type_regexp = regexp;
2468 }
2469
2470 /* Set the flag to exclude minsyms from the search results. */
2471 void set_exclude_minsyms (bool exclude_minsyms)
2472 {
2473 m_exclude_minsyms = exclude_minsyms;
2474 }
2475
2476 /* Set the maximum number of search results to be returned. */
2477 void set_max_search_results (size_t max_search_results)
2478 {
2479 m_max_search_results = max_search_results;
2480 }
2481
2482 /* Search the symbols from all objfiles in the current program space
2483 looking for matches as defined by the current state of this object.
2484
2485 Within each file the results are sorted locally; each symtab's global
2486 and static blocks are separately alphabetized. Duplicate entries are
2487 removed. */
2488 std::vector<symbol_search> search () const;
2489
2490 /* The set of source files to search in for matching symbols. This is
2491 currently public so that it can be populated after this object has
2492 been constructed. */
2493 std::vector<const char *> filenames;
2494
2495 private:
2496 /* The kind of symbols are we searching for.
2497 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2498 names, and constants (enums).
2499 FUNCTIONS_DOMAIN - Search all functions..
2500 TYPES_DOMAIN - Search all type names.
2501 MODULES_DOMAIN - Search all Fortran modules.
2502 ALL_DOMAIN - Not valid for this function. */
2503 enum search_domain m_kind;
2504
2505 /* Regular expression to match against the symbol name. */
2506 const char *m_symbol_name_regexp = nullptr;
2507
2508 /* Regular expression to match against the symbol type. */
2509 const char *m_symbol_type_regexp = nullptr;
2510
2511 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2512 be included in the results, otherwise they are excluded. */
2513 bool m_exclude_minsyms = false;
2514
2515 /* Maximum number of search results. We currently impose a hard limit
2516 of SIZE_MAX, there is no "unlimited". */
2517 size_t m_max_search_results = SIZE_MAX;
2518
2519 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2520 true if any msymbols were seen that we should later consider adding to
2521 the results list. */
2522 bool expand_symtabs (objfile *objfile,
2523 const gdb::optional<compiled_regex> &preg) const;
2524
2525 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2526 of type M_KIND, to the results set RESULTS_SET. Return false if we
2527 stop adding results early due to having already found too many results
2528 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2529 Returning true does not indicate that any results were added, just
2530 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2531 bool add_matching_symbols (objfile *objfile,
2532 const gdb::optional<compiled_regex> &preg,
2533 const gdb::optional<compiled_regex> &treg,
2534 std::set<symbol_search> *result_set) const;
2535
2536 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2537 vector RESULTS. Return false if we stop adding results early due to
2538 having already found too many results (based on max search results
2539 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2540 does not indicate that any results were added, just that we didn't
2541 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2542 bool add_matching_msymbols (objfile *objfile,
2543 const gdb::optional<compiled_regex> &preg,
2544 std::vector<symbol_search> *results) const;
2545
2546 /* Return true if MSYMBOL is of type KIND. */
2547 static bool is_suitable_msymbol (const enum search_domain kind,
2548 const minimal_symbol *msymbol);
2549 };
2550
2551 /* When searching for Fortran symbols within modules (functions/variables)
2552 we return a vector of this type. The first item in the pair is the
2553 module symbol, and the second item is the symbol for the function or
2554 variable we found. */
2555 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2556
2557 /* Searches the symbols to find function and variables symbols (depending
2558 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2559 name of the module, REGEXP matches against the name of the symbol within
2560 the module, and TYPE_REGEXP matches against the type of the symbol
2561 within the module. */
2562 extern std::vector<module_symbol_search> search_module_symbols
2563 (const char *module_regexp, const char *regexp,
2564 const char *type_regexp, search_domain kind);
2565
2566 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2567 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2568 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2569 the type of symbol that was searched for which gave us SYM. */
2570
2571 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2572 enum search_domain kind);
2573
2574 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2575 const struct symbol *sym);
2576
2577 /* The name of the ``main'' function. */
2578 extern const char *main_name ();
2579 extern enum language main_language (void);
2580
2581 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2582 as specified by BLOCK_INDEX.
2583 This searches MAIN_OBJFILE as well as any associated separate debug info
2584 objfiles of MAIN_OBJFILE.
2585 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2586 Upon success fixes up the symbol's section if necessary. */
2587
2588 extern struct block_symbol
2589 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2590 enum block_enum block_index,
2591 const char *name,
2592 const domain_enum domain);
2593
2594 /* Return 1 if the supplied producer string matches the ARM RealView
2595 compiler (armcc). */
2596 bool producer_is_realview (const char *producer);
2597
2598 void fixup_section (struct general_symbol_info *ginfo,
2599 CORE_ADDR addr, struct objfile *objfile);
2600
2601 extern unsigned int symtab_create_debug;
2602
2603 extern unsigned int symbol_lookup_debug;
2604
2605 extern bool basenames_may_differ;
2606
2607 bool compare_filenames_for_search (const char *filename,
2608 const char *search_name);
2609
2610 bool compare_glob_filenames_for_search (const char *filename,
2611 const char *search_name);
2612
2613 bool iterate_over_some_symtabs (const char *name,
2614 const char *real_path,
2615 struct compunit_symtab *first,
2616 struct compunit_symtab *after_last,
2617 gdb::function_view<bool (symtab *)> callback);
2618
2619 void iterate_over_symtabs (const char *name,
2620 gdb::function_view<bool (symtab *)> callback);
2621
2622
2623 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2624 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2625
2626 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2627 is called once per matching symbol SYM. The callback should return
2628 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2629 iterating, or false to indicate that the iteration should end. */
2630
2631 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2632
2633 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2634
2635 For each symbol that matches, CALLBACK is called. The symbol is
2636 passed to the callback.
2637
2638 If CALLBACK returns false, the iteration ends and this function
2639 returns false. Otherwise, the search continues, and the function
2640 eventually returns true. */
2641
2642 bool iterate_over_symbols (const struct block *block,
2643 const lookup_name_info &name,
2644 const domain_enum domain,
2645 gdb::function_view<symbol_found_callback_ftype> callback);
2646
2647 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2648 true, then calls CALLBACK one additional time with a block_symbol
2649 that has a valid block but a NULL symbol. */
2650
2651 bool iterate_over_symbols_terminated
2652 (const struct block *block,
2653 const lookup_name_info &name,
2654 const domain_enum domain,
2655 gdb::function_view<symbol_found_callback_ftype> callback);
2656
2657 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2658 either returns a const char * pointer that points to either of the
2659 fields of this type, or a pointer to the input NAME. This is done
2660 this way to avoid depending on the precise details of the storage
2661 for the string. */
2662 class demangle_result_storage
2663 {
2664 public:
2665
2666 /* Swap the malloc storage to STR, and return a pointer to the
2667 beginning of the new string. */
2668 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2669 {
2670 m_malloc = std::move (str);
2671 return m_malloc.get ();
2672 }
2673
2674 /* Set the malloc storage to now point at PTR. Any previous malloc
2675 storage is released. */
2676 const char *set_malloc_ptr (char *ptr)
2677 {
2678 m_malloc.reset (ptr);
2679 return ptr;
2680 }
2681
2682 private:
2683
2684 /* The storage. */
2685 gdb::unique_xmalloc_ptr<char> m_malloc;
2686 };
2687
2688 const char *
2689 demangle_for_lookup (const char *name, enum language lang,
2690 demangle_result_storage &storage);
2691
2692 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2693 SYMNAME (which is already demangled for C++ symbols) matches
2694 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2695 the current completion list and return true. Otherwise, return
2696 false. */
2697 bool completion_list_add_name (completion_tracker &tracker,
2698 language symbol_language,
2699 const char *symname,
2700 const lookup_name_info &lookup_name,
2701 const char *text, const char *word);
2702
2703 /* A simple symbol searching class. */
2704
2705 class symbol_searcher
2706 {
2707 public:
2708 /* Returns the symbols found for the search. */
2709 const std::vector<block_symbol> &
2710 matching_symbols () const
2711 {
2712 return m_symbols;
2713 }
2714
2715 /* Returns the minimal symbols found for the search. */
2716 const std::vector<bound_minimal_symbol> &
2717 matching_msymbols () const
2718 {
2719 return m_minimal_symbols;
2720 }
2721
2722 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2723 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2724 to search all symtabs and program spaces. */
2725 void find_all_symbols (const std::string &name,
2726 const struct language_defn *language,
2727 enum search_domain search_domain,
2728 std::vector<symtab *> *search_symtabs,
2729 struct program_space *search_pspace);
2730
2731 /* Reset this object to perform another search. */
2732 void reset ()
2733 {
2734 m_symbols.clear ();
2735 m_minimal_symbols.clear ();
2736 }
2737
2738 private:
2739 /* Matching debug symbols. */
2740 std::vector<block_symbol> m_symbols;
2741
2742 /* Matching non-debug symbols. */
2743 std::vector<bound_minimal_symbol> m_minimal_symbols;
2744 };
2745
2746 /* Class used to encapsulate the filename filtering for the "info sources"
2747 command. */
2748
2749 struct info_sources_filter
2750 {
2751 /* If filename filtering is being used (see M_C_REGEXP) then which part
2752 of the filename is being filtered against? */
2753 enum class match_on
2754 {
2755 /* Match against the full filename. */
2756 FULLNAME,
2757
2758 /* Match only against the directory part of the full filename. */
2759 DIRNAME,
2760
2761 /* Match only against the basename part of the full filename. */
2762 BASENAME
2763 };
2764
2765 /* Create a filter of MATCH_TYPE using regular expression REGEXP. If
2766 REGEXP is nullptr then all files will match the filter and MATCH_TYPE
2767 is ignored.
2768
2769 The string pointed too by REGEXP must remain live and unchanged for
2770 this lifetime of this object as the object only retains a copy of the
2771 pointer. */
2772 info_sources_filter (match_on match_type, const char *regexp);
2773
2774 DISABLE_COPY_AND_ASSIGN (info_sources_filter);
2775
2776 /* Does FULLNAME match the filter defined by this object, return true if
2777 it does, otherwise, return false. If there is no filtering defined
2778 then this function will always return true. */
2779 bool matches (const char *fullname) const;
2780
2781 private:
2782
2783 /* The type of filtering in place. */
2784 match_on m_match_type;
2785
2786 /* Points to the original regexp used to create this filter. */
2787 const char *m_regexp;
2788
2789 /* A compiled version of M_REGEXP. This object is only given a value if
2790 M_REGEXP is not nullptr and is not the empty string. */
2791 gdb::optional<compiled_regex> m_c_regexp;
2792 };
2793
2794 /* Perform the core of the 'info sources' command.
2795
2796 FILTER is used to perform regular expression based filtering on the
2797 source files that will be displayed.
2798
2799 Output is written to UIOUT in CLI or MI style as appropriate. */
2800
2801 extern void info_sources_worker (struct ui_out *uiout,
2802 bool group_by_objfile,
2803 const info_sources_filter &filter);
2804
2805 #endif /* !defined(SYMTAB_H) */