1 /* Select target systems and architectures at runtime for GDB.
3 Copyright (C) 1990-2025 Free Software Foundation, Inc.
5 Contributed by Cygnus Support.
7 This file is part of GDB.
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23 #include "extract-store-integer.h"
24 #include "target-dcache.h"
25 #include "cli/cli-cmds.h"
29 #include "observable.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdbsupport/fileio.h"
44 #include "gdbsupport/agent.h"
46 #include "target-debug.h"
48 #include "event-top.h"
50 #include "gdbsupport/byte-vector.h"
51 #include "gdbsupport/search.h"
53 #include "gdbsupport/unordered_map.h"
54 #include "target-connection.h"
56 #include "cli/cli-decode.h"
57 #include "cli/cli-style.h"
59 [[noreturn
]] static void generic_tls_error (void);
61 static void default_rcmd (struct target_ops
*, const char *, struct ui_file
*);
63 static int default_verify_memory (struct target_ops
*self
,
65 CORE_ADDR memaddr
, ULONGEST size
);
67 [[noreturn
]] static void tcomplain (void);
69 /* Mapping between target_info objects (which have address identity)
70 and corresponding open/factory function/callback. Each add_target
71 call adds one entry to this map, and registers a "target
72 TARGET_NAME" command that when invoked calls the factory registered
73 here. The target_info object is associated with the command via
74 the command's context. */
75 static gdb::unordered_map
<const target_info
*, target_open_ftype
*>
78 /* The singleton debug target. */
80 static struct target_ops
*the_debug_target
;
82 /* Command list for target. */
84 static struct cmd_list_element
*targetlist
= NULL
;
88 bool trust_readonly
= false;
90 /* Nonzero if we should show true memory content including
91 memory breakpoint inserted by gdb. */
93 static int show_memory_breakpoints
= 0;
95 /* These globals control whether GDB attempts to perform these
96 operations; they are useful for targets that need to prevent
97 inadvertent disruption, such as in non-stop mode. */
99 bool may_write_registers
= true;
101 bool may_write_memory
= true;
103 bool may_insert_breakpoints
= true;
105 bool may_insert_tracepoints
= true;
107 bool may_insert_fast_tracepoints
= true;
109 bool may_stop
= true;
111 /* Non-zero if we want to see trace of target level stuff. */
113 static unsigned int targetdebug
= 0;
115 /* Print a "target" debug statement with the function name prefix. */
117 #define target_debug_printf(fmt, ...) \
118 debug_prefixed_printf_cond (targetdebug > 0, "target", fmt, ##__VA_ARGS__)
120 /* Print a "target" debug statement without the function name prefix. */
122 #define target_debug_printf_nofunc(fmt, ...) \
123 debug_prefixed_printf_cond_nofunc (targetdebug > 0, "target", fmt, ##__VA_ARGS__)
126 set_targetdebug (const char *args
, int from_tty
, struct cmd_list_element
*c
)
129 current_inferior ()->push_target (the_debug_target
);
131 current_inferior ()->unpush_target (the_debug_target
);
135 show_targetdebug (struct ui_file
*file
, int from_tty
,
136 struct cmd_list_element
*c
, const char *value
)
138 gdb_printf (file
, _("Target debugging is %s.\n"), value
);
144 for (target_ops
*t
= current_inferior ()->top_target ();
147 if (t
->has_memory ())
156 for (target_ops
*t
= current_inferior ()->top_target ();
166 target_has_registers ()
168 for (target_ops
*t
= current_inferior ()->top_target ();
171 if (t
->has_registers ())
178 target_has_execution (inferior
*inf
)
181 inf
= current_inferior ();
183 for (target_ops
*t
= inf
->top_target ();
185 t
= inf
->find_target_beneath (t
))
186 if (t
->has_execution (inf
))
195 return current_inferior ()->top_target ()->shortname ();
201 target_attach_no_wait ()
203 return current_inferior ()->top_target ()->attach_no_wait ();
209 target_post_attach (int pid
)
211 return current_inferior ()->top_target ()->post_attach (pid
);
217 target_prepare_to_store (regcache
*regcache
)
219 return current_inferior ()->top_target ()->prepare_to_store (regcache
);
225 target_supports_enable_disable_tracepoint ()
227 target_ops
*target
= current_inferior ()->top_target ();
229 return target
->supports_enable_disable_tracepoint ();
233 target_supports_string_tracing ()
235 return current_inferior ()->top_target ()->supports_string_tracing ();
241 target_supports_evaluation_of_breakpoint_conditions ()
243 target_ops
*target
= current_inferior ()->top_target ();
245 return target
->supports_evaluation_of_breakpoint_conditions ();
251 target_supports_dumpcore ()
253 return current_inferior ()->top_target ()->supports_dumpcore ();
259 target_dumpcore (const char *filename
)
261 return current_inferior ()->top_target ()->dumpcore (filename
);
267 target_can_run_breakpoint_commands ()
269 return current_inferior ()->top_target ()->can_run_breakpoint_commands ();
277 return current_inferior ()->top_target ()->files_info ();
283 target_insert_fork_catchpoint (int pid
)
285 return current_inferior ()->top_target ()->insert_fork_catchpoint (pid
);
291 target_remove_fork_catchpoint (int pid
)
293 return current_inferior ()->top_target ()->remove_fork_catchpoint (pid
);
299 target_insert_vfork_catchpoint (int pid
)
301 return current_inferior ()->top_target ()->insert_vfork_catchpoint (pid
);
307 target_remove_vfork_catchpoint (int pid
)
309 return current_inferior ()->top_target ()->remove_vfork_catchpoint (pid
);
315 target_insert_exec_catchpoint (int pid
)
317 return current_inferior ()->top_target ()->insert_exec_catchpoint (pid
);
323 target_remove_exec_catchpoint (int pid
)
325 return current_inferior ()->top_target ()->remove_exec_catchpoint (pid
);
331 target_set_syscall_catchpoint (int pid
, bool needed
, int any_count
,
332 gdb::array_view
<const int> syscall_counts
)
334 target_ops
*target
= current_inferior ()->top_target ();
336 return target
->set_syscall_catchpoint (pid
, needed
, any_count
,
343 target_rcmd (const char *command
, struct ui_file
*outbuf
)
345 return current_inferior ()->top_target ()->rcmd (command
, outbuf
);
351 target_can_lock_scheduler ()
353 target_ops
*target
= current_inferior ()->top_target ();
355 return (target
->get_thread_control_capabilities ()& tc_schedlock
) != 0;
361 target_can_async_p ()
363 return target_can_async_p (current_inferior ()->top_target ());
369 target_can_async_p (struct target_ops
*target
)
371 if (!target_async_permitted
)
373 return target
->can_async_p ();
381 bool result
= current_inferior ()->top_target ()->is_async_p ();
382 gdb_assert (target_async_permitted
|| !result
);
387 target_execution_direction ()
389 return current_inferior ()->top_target ()->execution_direction ();
395 target_extra_thread_info (thread_info
*tp
)
397 return current_inferior ()->top_target ()->extra_thread_info (tp
);
403 target_pid_to_exec_file (int pid
)
405 return current_inferior ()->top_target ()->pid_to_exec_file (pid
);
411 target_thread_architecture (ptid_t ptid
)
413 return current_inferior ()->top_target ()->thread_architecture (ptid
);
419 target_find_memory_regions (find_memory_region_ftype func
, void *data
)
421 return current_inferior ()->top_target ()->find_memory_regions (func
, data
);
426 gdb::unique_xmalloc_ptr
<char>
427 target_make_corefile_notes (bfd
*bfd
, int *size_p
)
429 return current_inferior ()->top_target ()->make_corefile_notes (bfd
, size_p
);
433 target_get_bookmark (const char *args
, int from_tty
)
435 return current_inferior ()->top_target ()->get_bookmark (args
, from_tty
);
439 target_goto_bookmark (const gdb_byte
*arg
, int from_tty
)
441 return current_inferior ()->top_target ()->goto_bookmark (arg
, from_tty
);
447 target_stopped_by_watchpoint ()
449 return current_inferior ()->top_target ()->stopped_by_watchpoint ();
455 target_stopped_by_sw_breakpoint ()
457 return current_inferior ()->top_target ()->stopped_by_sw_breakpoint ();
461 target_supports_stopped_by_sw_breakpoint ()
463 target_ops
*target
= current_inferior ()->top_target ();
465 return target
->supports_stopped_by_sw_breakpoint ();
469 target_stopped_by_hw_breakpoint ()
471 return current_inferior ()->top_target ()->stopped_by_hw_breakpoint ();
475 target_supports_stopped_by_hw_breakpoint ()
477 target_ops
*target
= current_inferior ()->top_target ();
479 return target
->supports_stopped_by_hw_breakpoint ();
485 target_have_steppable_watchpoint ()
487 return current_inferior ()->top_target ()->have_steppable_watchpoint ();
493 target_can_use_hardware_watchpoint (bptype type
, int cnt
, int othertype
)
495 target_ops
*target
= current_inferior ()->top_target ();
497 return target
->can_use_hw_breakpoint (type
, cnt
, othertype
);
503 target_region_ok_for_hw_watchpoint (CORE_ADDR addr
, int len
)
505 target_ops
*target
= current_inferior ()->top_target ();
507 return target
->region_ok_for_hw_watchpoint (addr
, len
);
512 target_can_do_single_step ()
514 return current_inferior ()->top_target ()->can_do_single_step ();
520 target_insert_watchpoint (CORE_ADDR addr
, int len
, target_hw_bp_type type
,
523 target_ops
*target
= current_inferior ()->top_target ();
525 return target
->insert_watchpoint (addr
, len
, type
, cond
);
531 target_remove_watchpoint (CORE_ADDR addr
, int len
, target_hw_bp_type type
,
534 target_ops
*target
= current_inferior ()->top_target ();
536 return target
->remove_watchpoint (addr
, len
, type
, cond
);
542 target_insert_hw_breakpoint (gdbarch
*gdbarch
, bp_target_info
*bp_tgt
)
544 target_ops
*target
= current_inferior ()->top_target ();
546 return target
->insert_hw_breakpoint (gdbarch
, bp_tgt
);
552 target_remove_hw_breakpoint (gdbarch
*gdbarch
, bp_target_info
*bp_tgt
)
554 target_ops
*target
= current_inferior ()->top_target ();
556 return target
->remove_hw_breakpoint (gdbarch
, bp_tgt
);
562 target_can_accel_watchpoint_condition (CORE_ADDR addr
, int len
, int type
,
565 target_ops
*target
= current_inferior ()->top_target ();
567 return target
->can_accel_watchpoint_condition (addr
, len
, type
, cond
);
573 target_can_execute_reverse ()
575 return current_inferior ()->top_target ()->can_execute_reverse ();
579 target_get_ada_task_ptid (long lwp
, ULONGEST tid
)
581 return current_inferior ()->top_target ()->get_ada_task_ptid (lwp
, tid
);
585 target_filesystem_is_local ()
587 return current_inferior ()->top_target ()->filesystem_is_local ();
593 return current_inferior ()->top_target ()->trace_init ();
597 target_download_tracepoint (bp_location
*location
)
599 return current_inferior ()->top_target ()->download_tracepoint (location
);
603 target_can_download_tracepoint ()
605 return current_inferior ()->top_target ()->can_download_tracepoint ();
609 target_download_trace_state_variable (const trace_state_variable
&tsv
)
611 target_ops
*target
= current_inferior ()->top_target ();
613 return target
->download_trace_state_variable (tsv
);
617 target_enable_tracepoint (bp_location
*loc
)
619 return current_inferior ()->top_target ()->enable_tracepoint (loc
);
623 target_disable_tracepoint (bp_location
*loc
)
625 return current_inferior ()->top_target ()->disable_tracepoint (loc
);
629 target_trace_start ()
631 return current_inferior ()->top_target ()->trace_start ();
635 target_trace_set_readonly_regions ()
637 return current_inferior ()->top_target ()->trace_set_readonly_regions ();
641 target_get_trace_status (trace_status
*ts
)
643 return current_inferior ()->top_target ()->get_trace_status (ts
);
647 target_get_tracepoint_status (tracepoint
*tp
, uploaded_tp
*utp
)
649 return current_inferior ()->top_target ()->get_tracepoint_status (tp
, utp
);
655 return current_inferior ()->top_target ()->trace_stop ();
659 target_trace_find (trace_find_type type
, int num
,
660 CORE_ADDR addr1
, CORE_ADDR addr2
, int *tpp
)
662 target_ops
*target
= current_inferior ()->top_target ();
664 return target
->trace_find (type
, num
, addr1
, addr2
, tpp
);
668 target_get_trace_state_variable_value (int tsv
, LONGEST
*val
)
670 target_ops
*target
= current_inferior ()->top_target ();
672 return target
->get_trace_state_variable_value (tsv
, val
);
676 target_save_trace_data (const char *filename
)
678 return current_inferior ()->top_target ()->save_trace_data (filename
);
682 target_upload_tracepoints (uploaded_tp
**utpp
)
684 return current_inferior ()->top_target ()->upload_tracepoints (utpp
);
688 target_upload_trace_state_variables (uploaded_tsv
**utsvp
)
690 target_ops
*target
= current_inferior ()->top_target ();
692 return target
->upload_trace_state_variables (utsvp
);
696 target_get_raw_trace_data (gdb_byte
*buf
, ULONGEST offset
, LONGEST len
)
698 target_ops
*target
= current_inferior ()->top_target ();
700 return target
->get_raw_trace_data (buf
, offset
, len
);
704 target_get_min_fast_tracepoint_insn_len ()
706 target_ops
*target
= current_inferior ()->top_target ();
708 return target
->get_min_fast_tracepoint_insn_len ();
712 target_set_disconnected_tracing (int val
)
714 return current_inferior ()->top_target ()->set_disconnected_tracing (val
);
718 target_set_circular_trace_buffer (int val
)
720 return current_inferior ()->top_target ()->set_circular_trace_buffer (val
);
724 target_set_trace_buffer_size (LONGEST val
)
726 return current_inferior ()->top_target ()->set_trace_buffer_size (val
);
730 target_set_trace_notes (const char *user
, const char *notes
,
731 const char *stopnotes
)
733 target_ops
*target
= current_inferior ()->top_target ();
735 return target
->set_trace_notes (user
, notes
, stopnotes
);
739 target_get_tib_address (ptid_t ptid
, CORE_ADDR
*addr
)
741 return current_inferior ()->top_target ()->get_tib_address (ptid
, addr
);
745 target_set_permissions ()
747 return current_inferior ()->top_target ()->set_permissions ();
751 target_static_tracepoint_marker_at (CORE_ADDR addr
,
752 static_tracepoint_marker
*marker
)
754 target_ops
*target
= current_inferior ()->top_target ();
756 return target
->static_tracepoint_marker_at (addr
, marker
);
759 std::vector
<static_tracepoint_marker
>
760 target_static_tracepoint_markers_by_strid (const char *marker_id
)
762 target_ops
*target
= current_inferior ()->top_target ();
764 return target
->static_tracepoint_markers_by_strid (marker_id
);
768 target_traceframe_info ()
770 return current_inferior ()->top_target ()->traceframe_info ();
774 target_use_agent (bool use
)
776 return current_inferior ()->top_target ()->use_agent (use
);
780 target_can_use_agent ()
782 return current_inferior ()->top_target ()->can_use_agent ();
786 target_augmented_libraries_svr4_read ()
788 return current_inferior ()->top_target ()->augmented_libraries_svr4_read ();
792 target_supports_memory_tagging ()
794 return current_inferior ()->top_target ()->supports_memory_tagging ();
798 target_fetch_memtags (CORE_ADDR address
, size_t len
, gdb::byte_vector
&tags
,
801 return current_inferior ()->top_target ()->fetch_memtags (address
, len
, tags
, type
);
805 target_store_memtags (CORE_ADDR address
, size_t len
,
806 const gdb::byte_vector
&tags
, int type
)
808 return current_inferior ()->top_target ()->store_memtags (address
, len
, tags
, type
);
812 target_is_address_tagged (gdbarch
*gdbarch
, CORE_ADDR address
)
814 return current_inferior ()->top_target ()->is_address_tagged (gdbarch
, address
);
818 target_fetch_x86_xsave_layout ()
820 return current_inferior ()->top_target ()->fetch_x86_xsave_layout ();
824 target_log_command (const char *p
)
826 return current_inferior ()->top_target ()->log_command (p
);
829 /* This is used to implement the various target commands. */
832 open_target (const char *args
, int from_tty
, struct cmd_list_element
*command
)
834 auto *ti
= static_cast<target_info
*> (command
->context ());
835 target_open_ftype
*func
= target_factories
[ti
];
837 target_debug_printf_nofunc ("-> %s->open (...)", ti
->shortname
);
838 func (args
, from_tty
);
839 target_debug_printf_nofunc ("<- %s->open (%s, %d)", ti
->shortname
, args
, from_tty
);
845 add_target (const target_info
&t
, target_open_ftype
*func
,
846 completer_ftype
*completer
)
848 struct cmd_list_element
*c
;
850 auto &func_slot
= target_factories
[&t
];
851 if (func_slot
!= nullptr)
852 internal_error (_("target already added (\"%s\")."), t
.shortname
);
855 if (targetlist
== NULL
)
856 add_basic_prefix_cmd ("target", class_run
, _("\
857 Connect to a target machine or process.\n\
858 The first argument is the type or protocol of the target machine.\n\
859 Remaining arguments are interpreted by the target protocol. For more\n\
860 information on the arguments for a particular protocol, type\n\
861 `help target ' followed by the protocol name."),
862 &targetlist
, 0, &cmdlist
);
863 c
= add_cmd (t
.shortname
, no_class
, t
.doc
, &targetlist
);
864 c
->set_context ((void *) &t
);
865 c
->func
= open_target
;
866 if (completer
!= NULL
)
867 set_cmd_completer (c
, completer
);
873 add_deprecated_target_alias (const target_info
&tinfo
, const char *alias
)
875 struct cmd_list_element
*c
;
877 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
879 c
= add_cmd (alias
, no_class
, tinfo
.doc
, &targetlist
);
880 c
->func
= open_target
;
881 c
->set_context ((void *) &tinfo
);
882 gdb::unique_xmalloc_ptr
<char> alt
883 = xstrprintf ("target %s", tinfo
.shortname
);
884 deprecate_cmd (c
, alt
.release ());
893 /* If the commit_resume_state of the to-be-killed-inferior's process stratum
894 is true, and this inferior is the last live inferior with resumed threads
895 of that target, then we want to leave commit_resume_state to false, as the
896 target won't have any resumed threads anymore. We achieve this with
897 this scoped_disable_commit_resumed. On construction, it will set the flag
898 to false. On destruction, it will only set it to true if there are resumed
900 scoped_disable_commit_resumed
disable ("killing");
901 current_inferior ()->top_target ()->kill ();
905 target_load (const char *arg
, int from_tty
)
907 target_dcache_invalidate (current_program_space
->aspace
);
908 current_inferior ()->top_target ()->load (arg
, from_tty
);
913 target_terminal_state
target_terminal::m_terminal_state
914 = target_terminal_state::is_ours
;
916 /* See target/target.h. */
919 target_terminal::init (void)
921 current_inferior ()->top_target ()->terminal_init ();
923 m_terminal_state
= target_terminal_state::is_ours
;
926 /* See target/target.h. */
929 target_terminal::inferior (void)
931 struct ui
*ui
= current_ui
;
933 /* A background resume (``run&'') should leave GDB in control of the
935 if (ui
->prompt_state
!= PROMPT_BLOCKED
)
938 /* Since we always run the inferior in the main console (unless "set
939 inferior-tty" is in effect), when some UI other than the main one
940 calls target_terminal::inferior, then we leave the main UI's
941 terminal settings as is. */
945 /* If GDB is resuming the inferior in the foreground, install
946 inferior's terminal modes. */
948 struct inferior
*inf
= current_inferior ();
950 if (inf
->terminal_state
!= target_terminal_state::is_inferior
)
952 current_inferior ()->top_target ()->terminal_inferior ();
953 inf
->terminal_state
= target_terminal_state::is_inferior
;
956 m_terminal_state
= target_terminal_state::is_inferior
;
958 /* If the user hit C-c before, pretend that it was hit right
960 if (check_quit_flag ())
961 target_pass_ctrlc ();
964 /* See target/target.h. */
967 target_terminal::restore_inferior (void)
969 struct ui
*ui
= current_ui
;
971 /* See target_terminal::inferior(). */
972 if (ui
->prompt_state
!= PROMPT_BLOCKED
|| ui
!= main_ui
)
975 /* Restore the terminal settings of inferiors that were in the
976 foreground but are now ours_for_output due to a temporary
977 target_target::ours_for_output() call. */
980 scoped_restore_current_inferior restore_inferior
;
982 for (::inferior
*inf
: all_inferiors ())
984 if (inf
->terminal_state
== target_terminal_state::is_ours_for_output
)
986 set_current_inferior (inf
);
987 current_inferior ()->top_target ()->terminal_inferior ();
988 inf
->terminal_state
= target_terminal_state::is_inferior
;
993 m_terminal_state
= target_terminal_state::is_inferior
;
995 /* If the user hit C-c before, pretend that it was hit right
997 if (check_quit_flag ())
998 target_pass_ctrlc ();
1001 /* Switch terminal state to DESIRED_STATE, either is_ours, or
1002 is_ours_for_output. */
1005 target_terminal_is_ours_kind (target_terminal_state desired_state
)
1007 scoped_restore_current_inferior restore_inferior
;
1009 /* Must do this in two passes. First, have all inferiors save the
1010 current terminal settings. Then, after all inferiors have add a
1011 chance to safely save the terminal settings, restore GDB's
1012 terminal settings. */
1014 for (inferior
*inf
: all_inferiors ())
1016 if (inf
->terminal_state
== target_terminal_state::is_inferior
)
1018 set_current_inferior (inf
);
1019 current_inferior ()->top_target ()->terminal_save_inferior ();
1023 for (inferior
*inf
: all_inferiors ())
1025 /* Note we don't check is_inferior here like above because we
1026 need to handle 'is_ours_for_output -> is_ours' too. Careful
1027 to never transition from 'is_ours' to 'is_ours_for_output',
1029 if (inf
->terminal_state
!= target_terminal_state::is_ours
1030 && inf
->terminal_state
!= desired_state
)
1032 set_current_inferior (inf
);
1033 if (desired_state
== target_terminal_state::is_ours
)
1034 current_inferior ()->top_target ()->terminal_ours ();
1035 else if (desired_state
== target_terminal_state::is_ours_for_output
)
1036 current_inferior ()->top_target ()->terminal_ours_for_output ();
1038 gdb_assert_not_reached ("unhandled desired state");
1039 inf
->terminal_state
= desired_state
;
1044 /* See target/target.h. */
1047 target_terminal::ours ()
1049 struct ui
*ui
= current_ui
;
1051 /* See target_terminal::inferior. */
1055 if (m_terminal_state
== target_terminal_state::is_ours
)
1058 target_terminal_is_ours_kind (target_terminal_state::is_ours
);
1059 m_terminal_state
= target_terminal_state::is_ours
;
1062 /* See target/target.h. */
1065 target_terminal::ours_for_output ()
1067 struct ui
*ui
= current_ui
;
1069 /* See target_terminal::inferior. */
1073 if (!target_terminal::is_inferior ())
1076 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output
);
1077 target_terminal::m_terminal_state
= target_terminal_state::is_ours_for_output
;
1080 /* See target/target.h. */
1083 target_terminal::info (const char *arg
, int from_tty
)
1085 current_inferior ()->top_target ()->terminal_info (arg
, from_tty
);
1091 target_supports_terminal_ours (void)
1093 /* The current top target is the target at the top of the target
1094 stack of the current inferior. While normally there's always an
1095 inferior, we must check for nullptr here because we can get here
1096 very early during startup, before the initial inferior is first
1098 inferior
*inf
= current_inferior ();
1102 return inf
->top_target ()->supports_terminal_ours ();
1108 error (_("You can't do that when your target is `%s'"),
1109 current_inferior ()->top_target ()->shortname ());
1115 error (_("You can't do that without a process to debug."));
1119 default_terminal_info (struct target_ops
*self
, const char *args
, int from_tty
)
1121 gdb_printf (_("No saved terminal information.\n"));
1124 /* A default implementation for the to_get_ada_task_ptid target method.
1126 This function builds the PTID by using both LWP and TID as part of
1127 the PTID lwp and tid elements. The pid used is the pid of the
1131 default_get_ada_task_ptid (struct target_ops
*self
, long lwp
, ULONGEST tid
)
1133 return ptid_t (inferior_ptid
.pid (), lwp
, tid
);
1136 static enum exec_direction_kind
1137 default_execution_direction (struct target_ops
*self
)
1139 if (!target_can_execute_reverse ())
1140 return EXEC_FORWARD
;
1141 else if (!target_can_async_p ())
1142 return EXEC_FORWARD
;
1144 gdb_assert_not_reached ("\
1145 to_execution_direction must be implemented for reverse async");
1151 target_ops_ref_policy::decref (target_ops
*t
)
1154 if (t
->refcount () == 0)
1156 if (t
->stratum () == process_stratum
)
1157 connection_list_remove (as_process_stratum_target (t
));
1159 for (inferior
*inf
: all_inferiors ())
1160 gdb_assert (!inf
->target_is_pushed (t
));
1162 fileio_handles_invalidate_target (t
);
1166 target_debug_printf_nofunc ("closing target");
1173 target_stack::push (target_ops
*t
)
1175 /* We must create a new reference first. It is possible that T is
1176 already pushed on this target stack, in which case we will first
1177 unpush it below, before re-pushing it. If we don't increment the
1178 reference count now, then when we unpush it, we might end up deleting
1179 T, which is not good. */
1180 auto ref
= target_ops_ref::new_reference (t
);
1182 strata stratum
= t
->stratum ();
1184 /* If there's already a target at this stratum, remove it. */
1186 if (m_stack
[stratum
].get () != nullptr)
1187 unpush (m_stack
[stratum
].get ());
1189 /* Now add the new one. */
1190 m_stack
[stratum
] = std::move (ref
);
1192 if (m_top
< stratum
)
1195 if (stratum
== process_stratum
)
1196 connection_list_add (as_process_stratum_target (t
));
1202 target_stack::unpush (target_ops
*t
)
1204 gdb_assert (t
!= NULL
);
1206 strata stratum
= t
->stratum ();
1208 if (stratum
== dummy_stratum
)
1209 internal_error (_("Attempt to unpush the dummy target"));
1211 /* Look for the specified target. Note that a target can only occur
1212 once in the target stack. */
1214 if (m_stack
[stratum
] != t
)
1216 /* If T wasn't pushed, quit. Only open targets should be
1221 if (m_top
== stratum
)
1222 m_top
= this->find_beneath (t
)->stratum ();
1224 /* Move the target reference off the target stack, this sets the pointer
1225 held in m_stack to nullptr, and places the reference in ref. When
1226 ref goes out of scope its reference count will be decremented, which
1227 might cause the target to close.
1229 We have to do it this way, and not just set the value in m_stack to
1230 nullptr directly, because doing so would decrement the reference
1231 count first, which might close the target, and closing the target
1232 does a check that the target is not on any inferiors target_stack. */
1233 auto ref
= std::move (m_stack
[stratum
]);
1239 target_unpusher::operator() (struct target_ops
*ops
) const
1241 current_inferior ()->unpush_target (ops
);
1244 /* Default implementation of to_get_thread_local_address. */
1247 generic_tls_error (void)
1249 throw_error (TLS_GENERIC_ERROR
,
1250 _("Cannot find thread-local variables on this target"));
1256 target_translate_tls_address (struct objfile
*objfile
, CORE_ADDR offset
,
1259 if (!target_has_registers ())
1261 if (name
== nullptr)
1262 error (_("Cannot translate TLS address without registers"));
1264 error (_("Cannot find address of TLS symbol `%s' without registers"),
1268 volatile CORE_ADDR addr
= 0;
1269 struct target_ops
*target
= current_inferior ()->top_target ();
1270 gdbarch
*gdbarch
= current_inferior ()->arch ();
1272 /* If OBJFILE is a separate debug object file, look for the
1273 original object file. */
1274 if (objfile
->separate_debug_objfile_backlink
!= NULL
)
1275 objfile
= objfile
->separate_debug_objfile_backlink
;
1277 if (gdbarch_fetch_tls_load_module_address_p (gdbarch
))
1279 ptid_t ptid
= inferior_ptid
;
1285 /* Fetch the load module address for this objfile. */
1286 lm_addr
= gdbarch_fetch_tls_load_module_address (gdbarch
,
1289 if (gdbarch_get_thread_local_address_p (gdbarch
))
1290 addr
= gdbarch_get_thread_local_address (gdbarch
, ptid
, lm_addr
,
1293 addr
= target
->get_thread_local_address (ptid
, lm_addr
, offset
);
1295 /* If an error occurred, print TLS related messages here. Otherwise,
1296 throw the error to some higher catcher. */
1297 catch (const gdb_exception
&ex
)
1299 int objfile_is_library
= (objfile
->flags
& OBJF_SHARED
);
1303 case TLS_NO_LIBRARY_SUPPORT_ERROR
:
1304 error (_("Cannot find thread-local variables "
1305 "in this thread library."));
1307 case TLS_LOAD_MODULE_NOT_FOUND_ERROR
:
1308 if (objfile_is_library
)
1309 error (_("Cannot find shared library `%s' in dynamic"
1310 " linker's load module list"), objfile_name (objfile
));
1312 error (_("Cannot find executable file `%s' in dynamic"
1313 " linker's load module list"), objfile_name (objfile
));
1315 case TLS_NOT_ALLOCATED_YET_ERROR
:
1316 if (objfile_is_library
)
1317 error (_("The inferior has not yet allocated storage for"
1318 " thread-local variables in\n"
1319 "the shared library `%s'\n"
1321 objfile_name (objfile
),
1322 target_pid_to_str (ptid
).c_str ());
1324 error (_("The inferior has not yet allocated storage for"
1325 " thread-local variables in\n"
1326 "the executable `%s'\n"
1328 objfile_name (objfile
),
1329 target_pid_to_str (ptid
).c_str ());
1331 case TLS_GENERIC_ERROR
:
1332 if (objfile_is_library
)
1333 error (_("Cannot find thread-local storage for %s, "
1334 "shared library %s:\n%s"),
1335 target_pid_to_str (ptid
).c_str (),
1336 objfile_name (objfile
), ex
.what ());
1338 error (_("Cannot find thread-local storage for %s, "
1339 "executable file %s:\n%s"),
1340 target_pid_to_str (ptid
).c_str (),
1341 objfile_name (objfile
), ex
.what ());
1350 error (_("Cannot find thread-local variables on this target"));
1356 target_xfer_status_to_string (enum target_xfer_status status
)
1358 #define CASE(X) case X: return #X
1361 CASE(TARGET_XFER_E_IO
);
1362 CASE(TARGET_XFER_UNAVAILABLE
);
1370 const std::vector
<target_section
> *
1371 target_get_section_table (struct target_ops
*target
)
1373 return target
->get_section_table ();
1376 /* Find a section containing ADDR. */
1378 const struct target_section
*
1379 target_section_by_addr (struct target_ops
*target
, CORE_ADDR addr
)
1381 const std::vector
<target_section
> *table
= target_get_section_table (target
);
1386 for (const target_section
&secp
: *table
)
1388 if (addr
>= secp
.addr
&& addr
< secp
.endaddr
)
1396 const std::vector
<target_section
> *
1397 default_get_section_table ()
1399 return ¤t_program_space
->target_sections ();
1402 /* Helper for the memory xfer routines. Checks the attributes of the
1403 memory region of MEMADDR against the read or write being attempted.
1404 If the access is permitted returns true, otherwise returns false.
1405 REGION_P is an optional output parameter. If not-NULL, it is
1406 filled with a pointer to the memory region of MEMADDR. REG_LEN
1407 returns LEN trimmed to the end of the region. This is how much the
1408 caller can continue requesting, if the access is permitted. A
1409 single xfer request must not straddle memory region boundaries. */
1412 memory_xfer_check_region (gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1413 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*reg_len
,
1414 struct mem_region
**region_p
)
1416 struct mem_region
*region
;
1418 region
= lookup_mem_region (memaddr
);
1420 if (region_p
!= NULL
)
1423 switch (region
->attrib
.mode
)
1426 if (writebuf
!= NULL
)
1431 if (readbuf
!= NULL
)
1436 /* We only support writing to flash during "load" for now. */
1437 if (writebuf
!= NULL
)
1438 error (_("Writing to flash memory forbidden in this context"));
1445 /* region->hi == 0 means there's no upper bound. */
1446 if (memaddr
+ len
< region
->hi
|| region
->hi
== 0)
1449 *reg_len
= region
->hi
- memaddr
;
1454 /* Read memory from more than one valid target. A core file, for
1455 instance, could have some of memory but delegate other bits to
1456 the target below it. So, we must manually try all targets. */
1458 enum target_xfer_status
1459 raw_memory_xfer_partial (struct target_ops
*ops
, gdb_byte
*readbuf
,
1460 const gdb_byte
*writebuf
, ULONGEST memaddr
, LONGEST len
,
1461 ULONGEST
*xfered_len
)
1463 enum target_xfer_status res
;
1467 res
= ops
->xfer_partial (TARGET_OBJECT_MEMORY
, NULL
,
1468 readbuf
, writebuf
, memaddr
, len
,
1470 if (res
== TARGET_XFER_OK
)
1473 /* Stop if the target reports that the memory is not available. */
1474 if (res
== TARGET_XFER_UNAVAILABLE
)
1477 /* Don't continue past targets which have all the memory.
1478 At one time, this code was necessary to read data from
1479 executables / shared libraries when data for the requested
1480 addresses weren't available in the core file. But now the
1481 core target handles this case itself. */
1482 if (ops
->has_all_memory ())
1485 ops
= ops
->beneath ();
1487 while (ops
!= NULL
);
1489 /* The cache works at the raw memory level. Make sure the cache
1490 gets updated with raw contents no matter what kind of memory
1491 object was originally being written. Note we do write-through
1492 first, so that if it fails, we don't write to the cache contents
1493 that never made it to the target. */
1494 if (writebuf
!= NULL
1495 && inferior_ptid
!= null_ptid
1496 && target_dcache_init_p (current_program_space
->aspace
)
1497 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1499 DCACHE
*dcache
= target_dcache_get (current_program_space
->aspace
);
1501 /* Note that writing to an area of memory which wasn't present
1502 in the cache doesn't cause it to be loaded in. */
1503 dcache_update (dcache
, res
, memaddr
, writebuf
, *xfered_len
);
1509 /* Perform a partial memory transfer.
1510 For docs see target.h, to_xfer_partial. */
1512 static enum target_xfer_status
1513 memory_xfer_partial_1 (struct target_ops
*ops
, enum target_object object
,
1514 gdb_byte
*readbuf
, const gdb_byte
*writebuf
, ULONGEST memaddr
,
1515 ULONGEST len
, ULONGEST
*xfered_len
)
1517 enum target_xfer_status res
;
1519 struct mem_region
*region
;
1520 struct inferior
*inf
;
1522 /* For accesses to unmapped overlay sections, read directly from
1523 files. Must do this first, as MEMADDR may need adjustment. */
1524 if (readbuf
!= NULL
&& overlay_debugging
)
1526 struct obj_section
*section
= find_pc_overlay (memaddr
);
1528 if (pc_in_unmapped_range (memaddr
, section
))
1530 const std::vector
<target_section
> *table
= target_get_section_table (ops
);
1531 const char *section_name
= section
->the_bfd_section
->name
;
1533 memaddr
= overlay_mapped_address (memaddr
, section
);
1535 auto match_cb
= [=] (const struct target_section
*s
)
1537 return (strcmp (section_name
, s
->the_bfd_section
->name
) == 0);
1540 return section_table_xfer_memory_partial (readbuf
, writebuf
,
1541 memaddr
, len
, xfered_len
,
1546 /* Try the executable files, if "trust-readonly-sections" is set. */
1547 if (readbuf
!= NULL
&& trust_readonly
)
1549 const struct target_section
*secp
1550 = target_section_by_addr (ops
, memaddr
);
1552 && (bfd_section_flags (secp
->the_bfd_section
) & SEC_READONLY
))
1554 const std::vector
<target_section
> *table
= target_get_section_table (ops
);
1555 return section_table_xfer_memory_partial (readbuf
, writebuf
,
1556 memaddr
, len
, xfered_len
,
1561 /* Try GDB's internal data cache. */
1563 if (!memory_xfer_check_region (readbuf
, writebuf
, memaddr
, len
, ®_len
,
1565 return TARGET_XFER_E_IO
;
1567 if (inferior_ptid
!= null_ptid
)
1568 inf
= current_inferior ();
1574 /* The dcache reads whole cache lines; that doesn't play well
1575 with reading from a trace buffer, because reading outside of
1576 the collected memory range fails. */
1577 && get_traceframe_number () == -1
1578 && (region
->attrib
.cache
1579 || (stack_cache_enabled_p () && object
== TARGET_OBJECT_STACK_MEMORY
)
1580 || (code_cache_enabled_p () && object
== TARGET_OBJECT_CODE_MEMORY
)))
1583 = target_dcache_get_or_init (current_program_space
->aspace
);
1585 return dcache_read_memory_partial (ops
, dcache
, memaddr
, readbuf
,
1586 reg_len
, xfered_len
);
1589 /* If none of those methods found the memory we wanted, fall back
1590 to a target partial transfer. Normally a single call to
1591 to_xfer_partial is enough; if it doesn't recognize an object
1592 it will call the to_xfer_partial of the next target down.
1593 But for memory this won't do. Memory is the only target
1594 object which can be read from more than one valid target.
1595 A core file, for instance, could have some of memory but
1596 delegate other bits to the target below it. So, we must
1597 manually try all targets. */
1599 res
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, memaddr
, reg_len
,
1602 /* If we still haven't got anything, return the last error. We
1607 /* Perform a partial memory transfer. For docs see target.h,
1610 static enum target_xfer_status
1611 memory_xfer_partial (struct target_ops
*ops
, enum target_object object
,
1612 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1613 ULONGEST memaddr
, ULONGEST len
, ULONGEST
*xfered_len
)
1615 enum target_xfer_status res
;
1617 /* Zero length requests are ok and require no work. */
1619 return TARGET_XFER_EOF
;
1622 = gdbarch_remove_non_address_bits_memory (current_inferior ()->arch (),
1625 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1626 breakpoint insns, thus hiding out from higher layers whether
1627 there are software breakpoints inserted in the code stream. */
1628 if (readbuf
!= NULL
)
1630 res
= memory_xfer_partial_1 (ops
, object
, readbuf
, NULL
, memaddr
, len
,
1633 if (res
== TARGET_XFER_OK
&& !show_memory_breakpoints
)
1634 breakpoint_xfer_memory (readbuf
, NULL
, NULL
, memaddr
, *xfered_len
);
1638 /* A large write request is likely to be partially satisfied
1639 by memory_xfer_partial_1. We will continually malloc
1640 and free a copy of the entire write request for breakpoint
1641 shadow handling even though we only end up writing a small
1642 subset of it. Cap writes to a limit specified by the target
1643 to mitigate this. */
1644 len
= std::min (ops
->get_memory_xfer_limit (), len
);
1646 gdb::byte_vector
buf (writebuf
, writebuf
+ len
);
1647 breakpoint_xfer_memory (NULL
, buf
.data (), writebuf
, memaddr
, len
);
1648 res
= memory_xfer_partial_1 (ops
, object
, NULL
, buf
.data (), memaddr
, len
,
1655 scoped_restore_tmpl
<int>
1656 make_scoped_restore_show_memory_breakpoints (int show
)
1658 return make_scoped_restore (&show_memory_breakpoints
, show
);
1661 /* For docs see target.h, to_xfer_partial. */
1663 enum target_xfer_status
1664 target_xfer_partial (struct target_ops
*ops
,
1665 enum target_object object
, const char *annex
,
1666 gdb_byte
*readbuf
, const gdb_byte
*writebuf
,
1667 ULONGEST offset
, ULONGEST len
,
1668 ULONGEST
*xfered_len
)
1670 enum target_xfer_status retval
;
1672 /* Transfer is done when LEN is zero. */
1674 return TARGET_XFER_EOF
;
1676 if (writebuf
&& !may_write_memory
)
1677 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1678 core_addr_to_string_nz (offset
), plongest (len
));
1682 /* If this is a memory transfer, let the memory-specific code
1683 have a look at it instead. Memory transfers are more
1685 if (object
== TARGET_OBJECT_MEMORY
|| object
== TARGET_OBJECT_STACK_MEMORY
1686 || object
== TARGET_OBJECT_CODE_MEMORY
)
1687 retval
= memory_xfer_partial (ops
, object
, readbuf
,
1688 writebuf
, offset
, len
, xfered_len
);
1689 else if (object
== TARGET_OBJECT_RAW_MEMORY
)
1691 /* Skip/avoid accessing the target if the memory region
1692 attributes block the access. Check this here instead of in
1693 raw_memory_xfer_partial as otherwise we'd end up checking
1694 this twice in the case of the memory_xfer_partial path is
1695 taken; once before checking the dcache, and another in the
1696 tail call to raw_memory_xfer_partial. */
1697 if (!memory_xfer_check_region (readbuf
, writebuf
, offset
, len
, &len
,
1699 return TARGET_XFER_E_IO
;
1701 /* Request the normal memory object from other layers. */
1702 retval
= raw_memory_xfer_partial (ops
, readbuf
, writebuf
, offset
, len
,
1706 retval
= ops
->xfer_partial (object
, annex
, readbuf
,
1707 writebuf
, offset
, len
, xfered_len
);
1711 const unsigned char *myaddr
= NULL
;
1713 = string_printf ("%s:target_xfer_partial "
1714 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1715 ops
->shortname (), (int) object
,
1716 (annex
? annex
: "(null)"),
1717 host_address_to_string (readbuf
),
1718 host_address_to_string (writebuf
),
1719 core_addr_to_string_nz (offset
), pulongest (len
),
1720 retval
, pulongest (*xfered_len
));
1726 if (retval
== TARGET_XFER_OK
&& myaddr
!= NULL
)
1730 string_appendf (s
, ", bytes =");
1731 for (i
= 0; i
< *xfered_len
; i
++)
1733 if ((((intptr_t) &(myaddr
[i
])) & 0xf) == 0)
1735 if (targetdebug
< 2 && i
> 0)
1737 string_appendf (s
, " ...");
1741 target_debug_printf_nofunc ("%s", s
.c_str ());
1745 string_appendf (s
, " %02x", myaddr
[i
] & 0xff);
1749 target_debug_printf_nofunc ("%s", s
.c_str ());
1752 /* Check implementations of to_xfer_partial update *XFERED_LEN
1753 properly. Do assertion after printing debug messages, so that we
1754 can find more clues on assertion failure from debugging messages. */
1755 if (retval
== TARGET_XFER_OK
|| retval
== TARGET_XFER_UNAVAILABLE
)
1756 gdb_assert (*xfered_len
> 0);
1761 /* Read LEN bytes of target memory at address MEMADDR, placing the
1762 results in GDB's memory at MYADDR. Returns either 0 for success or
1763 -1 if any error occurs.
1765 If an error occurs, no guarantee is made about the contents of the data at
1766 MYADDR. In particular, the caller should not depend upon partial reads
1767 filling the buffer with good data. There is no way for the caller to know
1768 how much good data might have been transferred anyway. Callers that can
1769 deal with partial reads should call target_read (which will retry until
1770 it makes no progress, and then return how much was transferred). */
1773 target_read_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1775 if (target_read (current_inferior ()->top_target (),
1776 TARGET_OBJECT_MEMORY
, NULL
,
1777 myaddr
, memaddr
, len
) == len
)
1783 /* See target/target.h. */
1786 target_read_uint32 (CORE_ADDR memaddr
, uint32_t *result
)
1791 r
= target_read_memory (memaddr
, buf
, sizeof buf
);
1794 *result
= extract_unsigned_integer
1796 gdbarch_byte_order (current_inferior ()->arch ()));
1800 /* Like target_read_memory, but specify explicitly that this is a read
1801 from the target's raw memory. That is, this read bypasses the
1802 dcache, breakpoint shadowing, etc. */
1805 target_read_raw_memory (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1807 if (target_read (current_inferior ()->top_target (),
1808 TARGET_OBJECT_RAW_MEMORY
, NULL
,
1809 myaddr
, memaddr
, len
) == len
)
1815 /* Like target_read_memory, but specify explicitly that this is a read from
1816 the target's stack. This may trigger different cache behavior. */
1819 target_read_stack (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1821 if (target_read (current_inferior ()->top_target (),
1822 TARGET_OBJECT_STACK_MEMORY
, NULL
,
1823 myaddr
, memaddr
, len
) == len
)
1829 /* Like target_read_memory, but specify explicitly that this is a read from
1830 the target's code. This may trigger different cache behavior. */
1833 target_read_code (CORE_ADDR memaddr
, gdb_byte
*myaddr
, ssize_t len
)
1835 if (target_read (current_inferior ()->top_target (),
1836 TARGET_OBJECT_CODE_MEMORY
, NULL
,
1837 myaddr
, memaddr
, len
) == len
)
1843 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1844 Returns either 0 for success or -1 if any error occurs. If an
1845 error occurs, no guarantee is made about how much data got written.
1846 Callers that can deal with partial writes should call
1850 target_write_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1852 if (target_write (current_inferior ()->top_target (),
1853 TARGET_OBJECT_MEMORY
, NULL
,
1854 myaddr
, memaddr
, len
) == len
)
1860 /* Write LEN bytes from MYADDR to target raw memory at address
1861 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1862 If an error occurs, no guarantee is made about how much data got
1863 written. Callers that can deal with partial writes should call
1867 target_write_raw_memory (CORE_ADDR memaddr
, const gdb_byte
*myaddr
, ssize_t len
)
1869 if (target_write (current_inferior ()->top_target (),
1870 TARGET_OBJECT_RAW_MEMORY
, NULL
,
1871 myaddr
, memaddr
, len
) == len
)
1877 /* Fetch the target's memory map. */
1879 std::vector
<mem_region
>
1880 target_memory_map (void)
1882 target_ops
*target
= current_inferior ()->top_target ();
1883 std::vector
<mem_region
> result
= target
->memory_map ();
1884 if (result
.empty ())
1887 std::sort (result
.begin (), result
.end ());
1889 /* Check that regions do not overlap. Simultaneously assign
1890 a numbering for the "mem" commands to use to refer to
1892 mem_region
*last_one
= NULL
;
1893 for (size_t ix
= 0; ix
< result
.size (); ix
++)
1895 mem_region
*this_one
= &result
[ix
];
1896 this_one
->number
= ix
;
1898 if (last_one
!= NULL
&& last_one
->hi
> this_one
->lo
)
1900 warning (_("Overlapping regions in memory map: ignoring"));
1901 return std::vector
<mem_region
> ();
1904 last_one
= this_one
;
1911 target_flash_erase (ULONGEST address
, LONGEST length
)
1913 current_inferior ()->top_target ()->flash_erase (address
, length
);
1917 target_flash_done (void)
1919 current_inferior ()->top_target ()->flash_done ();
1923 show_trust_readonly (struct ui_file
*file
, int from_tty
,
1924 struct cmd_list_element
*c
, const char *value
)
1927 _("Mode for reading from readonly sections is %s.\n"),
1931 /* Target vector read/write partial wrapper functions. */
1933 static enum target_xfer_status
1934 target_read_partial (struct target_ops
*ops
,
1935 enum target_object object
,
1936 const char *annex
, gdb_byte
*buf
,
1937 ULONGEST offset
, ULONGEST len
,
1938 ULONGEST
*xfered_len
)
1940 return target_xfer_partial (ops
, object
, annex
, buf
, NULL
, offset
, len
,
1944 static enum target_xfer_status
1945 target_write_partial (struct target_ops
*ops
,
1946 enum target_object object
,
1947 const char *annex
, const gdb_byte
*buf
,
1948 ULONGEST offset
, LONGEST len
, ULONGEST
*xfered_len
)
1950 return target_xfer_partial (ops
, object
, annex
, NULL
, buf
, offset
, len
,
1954 /* Wrappers to perform the full transfer. */
1956 /* For docs on target_read see target.h. */
1959 target_read (struct target_ops
*ops
,
1960 enum target_object object
,
1961 const char *annex
, gdb_byte
*buf
,
1962 ULONGEST offset
, LONGEST len
)
1964 LONGEST xfered_total
= 0;
1967 /* If we are reading from a memory object, find the length of an addressable
1968 unit for that architecture. */
1969 if (object
== TARGET_OBJECT_MEMORY
1970 || object
== TARGET_OBJECT_STACK_MEMORY
1971 || object
== TARGET_OBJECT_CODE_MEMORY
1972 || object
== TARGET_OBJECT_RAW_MEMORY
)
1973 unit_size
= gdbarch_addressable_memory_unit_size
1974 (current_inferior ()->arch ());
1976 while (xfered_total
< len
)
1978 ULONGEST xfered_partial
;
1979 enum target_xfer_status status
;
1981 status
= target_read_partial (ops
, object
, annex
,
1982 buf
+ xfered_total
* unit_size
,
1983 offset
+ xfered_total
, len
- xfered_total
,
1986 /* Call an observer, notifying them of the xfer progress? */
1987 if (status
== TARGET_XFER_EOF
)
1988 return xfered_total
;
1989 else if (status
== TARGET_XFER_OK
)
1991 xfered_total
+= xfered_partial
;
1995 return TARGET_XFER_E_IO
;
2001 /* Assuming that the entire [begin, end) range of memory cannot be
2002 read, try to read whatever subrange is possible to read.
2004 The function returns, in RESULT, either zero or one memory block.
2005 If there's a readable subrange at the beginning, it is completely
2006 read and returned. Any further readable subrange will not be read.
2007 Otherwise, if there's a readable subrange at the end, it will be
2008 completely read and returned. Any readable subranges before it
2009 (obviously, not starting at the beginning), will be ignored. In
2010 other cases -- either no readable subrange, or readable subrange(s)
2011 that is neither at the beginning, or end, nothing is returned.
2013 The purpose of this function is to handle a read across a boundary
2014 of accessible memory in a case when memory map is not available.
2015 The above restrictions are fine for this case, but will give
2016 incorrect results if the memory is 'patchy'. However, supporting
2017 'patchy' memory would require trying to read every single byte,
2018 and it seems unacceptable solution. Explicit memory map is
2019 recommended for this case -- and target_read_memory_robust will
2020 take care of reading multiple ranges then. */
2023 read_whatever_is_readable (struct target_ops
*ops
,
2024 const ULONGEST begin
, const ULONGEST end
,
2026 std::vector
<memory_read_result
> *result
)
2028 ULONGEST current_begin
= begin
;
2029 ULONGEST current_end
= end
;
2031 ULONGEST xfered_len
;
2033 /* If we previously failed to read 1 byte, nothing can be done here. */
2034 if (end
- begin
<= 1)
2037 gdb::unique_xmalloc_ptr
<gdb_byte
> buf ((gdb_byte
*) xmalloc (end
- begin
));
2039 /* Check that either first or the last byte is readable, and give up
2040 if not. This heuristic is meant to permit reading accessible memory
2041 at the boundary of accessible region. */
2042 if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2043 buf
.get (), begin
, 1, &xfered_len
) == TARGET_XFER_OK
)
2048 else if (target_read_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2049 buf
.get () + (end
- begin
) - 1, end
- 1, 1,
2050 &xfered_len
) == TARGET_XFER_OK
)
2058 /* Loop invariant is that the [current_begin, current_end) was previously
2059 found to be not readable as a whole.
2061 Note loop condition -- if the range has 1 byte, we can't divide the range
2062 so there's no point trying further. */
2063 while (current_end
- current_begin
> 1)
2065 ULONGEST first_half_begin
, first_half_end
;
2066 ULONGEST second_half_begin
, second_half_end
;
2068 ULONGEST middle
= current_begin
+ (current_end
- current_begin
) / 2;
2072 first_half_begin
= current_begin
;
2073 first_half_end
= middle
;
2074 second_half_begin
= middle
;
2075 second_half_end
= current_end
;
2079 first_half_begin
= middle
;
2080 first_half_end
= current_end
;
2081 second_half_begin
= current_begin
;
2082 second_half_end
= middle
;
2085 xfer
= target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
,
2086 buf
.get () + (first_half_begin
- begin
) * unit_size
,
2088 first_half_end
- first_half_begin
);
2090 if (xfer
== first_half_end
- first_half_begin
)
2092 /* This half reads up fine. So, the error must be in the
2094 current_begin
= second_half_begin
;
2095 current_end
= second_half_end
;
2099 /* This half is not readable. Because we've tried one byte, we
2100 know some part of this half if actually readable. Go to the next
2101 iteration to divide again and try to read.
2103 We don't handle the other half, because this function only tries
2104 to read a single readable subrange. */
2105 current_begin
= first_half_begin
;
2106 current_end
= first_half_end
;
2112 /* The [begin, current_begin) range has been read. */
2113 result
->emplace_back (begin
, current_end
, std::move (buf
));
2117 /* The [current_end, end) range has been read. */
2118 LONGEST region_len
= end
- current_end
;
2120 gdb::unique_xmalloc_ptr
<gdb_byte
> data
2121 ((gdb_byte
*) xmalloc (region_len
* unit_size
));
2122 memcpy (data
.get (), buf
.get () + (current_end
- begin
) * unit_size
,
2123 region_len
* unit_size
);
2124 result
->emplace_back (current_end
, end
, std::move (data
));
2128 std::vector
<memory_read_result
>
2129 read_memory_robust (struct target_ops
*ops
,
2130 const ULONGEST offset
, const LONGEST len
)
2132 std::vector
<memory_read_result
> result
;
2134 = gdbarch_addressable_memory_unit_size (current_inferior ()->arch ());
2136 LONGEST xfered_total
= 0;
2137 while (xfered_total
< len
)
2139 struct mem_region
*region
= lookup_mem_region (offset
+ xfered_total
);
2142 /* If there is no explicit region, a fake one should be created. */
2143 gdb_assert (region
);
2145 if (region
->hi
== 0)
2146 region_len
= len
- xfered_total
;
2148 region_len
= region
->hi
- offset
;
2150 if (region
->attrib
.mode
== MEM_NONE
|| region
->attrib
.mode
== MEM_WO
)
2152 /* Cannot read this region. Note that we can end up here only
2153 if the region is explicitly marked inaccessible, or
2154 'inaccessible-by-default' is in effect. */
2155 xfered_total
+= region_len
;
2159 LONGEST to_read
= std::min (len
- xfered_total
, region_len
);
2160 gdb::unique_xmalloc_ptr
<gdb_byte
> buffer
2161 ((gdb_byte
*) xmalloc (to_read
* unit_size
));
2163 LONGEST xfered_partial
=
2164 target_read (ops
, TARGET_OBJECT_MEMORY
, NULL
, buffer
.get (),
2165 offset
+ xfered_total
, to_read
);
2166 /* Call an observer, notifying them of the xfer progress? */
2167 if (xfered_partial
<= 0)
2169 /* Got an error reading full chunk. See if maybe we can read
2171 read_whatever_is_readable (ops
, offset
+ xfered_total
,
2172 offset
+ xfered_total
+ to_read
,
2173 unit_size
, &result
);
2174 xfered_total
+= to_read
;
2178 result
.emplace_back (offset
+ xfered_total
,
2179 offset
+ xfered_total
+ xfered_partial
,
2180 std::move (buffer
));
2181 xfered_total
+= xfered_partial
;
2191 /* An alternative to target_write with progress callbacks. */
2194 target_write_with_progress (struct target_ops
*ops
,
2195 enum target_object object
,
2196 const char *annex
, const gdb_byte
*buf
,
2197 ULONGEST offset
, LONGEST len
,
2198 void (*progress
) (ULONGEST
, void *), void *baton
)
2200 LONGEST xfered_total
= 0;
2203 /* If we are writing to a memory object, find the length of an addressable
2204 unit for that architecture. */
2205 if (object
== TARGET_OBJECT_MEMORY
2206 || object
== TARGET_OBJECT_STACK_MEMORY
2207 || object
== TARGET_OBJECT_CODE_MEMORY
2208 || object
== TARGET_OBJECT_RAW_MEMORY
)
2209 unit_size
= gdbarch_addressable_memory_unit_size
2210 (current_inferior ()->arch ());
2212 /* Give the progress callback a chance to set up. */
2214 (*progress
) (0, baton
);
2216 while (xfered_total
< len
)
2218 ULONGEST xfered_partial
;
2219 enum target_xfer_status status
;
2221 status
= target_write_partial (ops
, object
, annex
,
2222 buf
+ xfered_total
* unit_size
,
2223 offset
+ xfered_total
, len
- xfered_total
,
2226 if (status
!= TARGET_XFER_OK
)
2227 return status
== TARGET_XFER_EOF
? xfered_total
: TARGET_XFER_E_IO
;
2230 (*progress
) (xfered_partial
, baton
);
2232 xfered_total
+= xfered_partial
;
2238 /* For docs on target_write see target.h. */
2241 target_write (struct target_ops
*ops
,
2242 enum target_object object
,
2243 const char *annex
, const gdb_byte
*buf
,
2244 ULONGEST offset
, LONGEST len
)
2246 return target_write_with_progress (ops
, object
, annex
, buf
, offset
, len
,
2250 /* Help for target_read_alloc and target_read_stralloc. See their comments
2253 template <typename T
>
2254 std::optional
<gdb::def_vector
<T
>>
2255 target_read_alloc_1 (struct target_ops
*ops
, enum target_object object
,
2258 gdb::def_vector
<T
> buf
;
2260 const int chunk
= 4096;
2262 /* This function does not have a length parameter; it reads the
2263 entire OBJECT). Also, it doesn't support objects fetched partly
2264 from one target and partly from another (in a different stratum,
2265 e.g. a core file and an executable). Both reasons make it
2266 unsuitable for reading memory. */
2267 gdb_assert (object
!= TARGET_OBJECT_MEMORY
);
2269 /* Start by reading up to 4K at a time. The target will throttle
2270 this number down if necessary. */
2273 ULONGEST xfered_len
;
2274 enum target_xfer_status status
;
2276 buf
.resize (buf_pos
+ chunk
);
2278 status
= target_read_partial (ops
, object
, annex
,
2279 (gdb_byte
*) &buf
[buf_pos
],
2283 if (status
== TARGET_XFER_EOF
)
2285 /* Read all there was. */
2286 buf
.resize (buf_pos
);
2289 else if (status
!= TARGET_XFER_OK
)
2291 /* An error occurred. */
2295 buf_pos
+= xfered_len
;
2303 std::optional
<gdb::byte_vector
>
2304 target_read_alloc (struct target_ops
*ops
, enum target_object object
,
2307 return target_read_alloc_1
<gdb_byte
> (ops
, object
, annex
);
2312 std::optional
<gdb::char_vector
>
2313 target_read_stralloc (struct target_ops
*ops
, enum target_object object
,
2316 std::optional
<gdb::char_vector
> buf
2317 = target_read_alloc_1
<char> (ops
, object
, annex
);
2322 if (buf
->empty () || buf
->back () != '\0')
2323 buf
->push_back ('\0');
2325 /* Check for embedded NUL bytes; but allow trailing NULs. */
2326 for (auto it
= std::find (buf
->begin (), buf
->end (), '\0');
2327 it
!= buf
->end (); it
++)
2330 warning (_("target object %d, annex %s, "
2331 "contained unexpected null characters"),
2332 (int) object
, annex
? annex
: "(none)");
2339 /* Memory transfer methods. */
2342 get_target_memory (struct target_ops
*ops
, CORE_ADDR addr
, gdb_byte
*buf
,
2345 /* This method is used to read from an alternate, non-current
2346 target. This read must bypass the overlay support (as symbols
2347 don't match this target), and GDB's internal cache (wrong cache
2348 for this target). */
2349 if (target_read (ops
, TARGET_OBJECT_RAW_MEMORY
, NULL
, buf
, addr
, len
)
2351 memory_error (TARGET_XFER_E_IO
, addr
);
2355 get_target_memory_unsigned (struct target_ops
*ops
, CORE_ADDR addr
,
2356 int len
, enum bfd_endian byte_order
)
2358 gdb_byte buf
[sizeof (ULONGEST
)];
2360 gdb_assert (len
<= sizeof (buf
));
2361 get_target_memory (ops
, addr
, buf
, len
);
2362 return extract_unsigned_integer (buf
, len
, byte_order
);
2368 target_insert_breakpoint (struct gdbarch
*gdbarch
,
2369 struct bp_target_info
*bp_tgt
)
2371 if (!may_insert_breakpoints
)
2373 warning (_("May not insert breakpoints"));
2377 target_ops
*target
= current_inferior ()->top_target ();
2379 return target
->insert_breakpoint (gdbarch
, bp_tgt
);
2385 target_remove_breakpoint (struct gdbarch
*gdbarch
,
2386 struct bp_target_info
*bp_tgt
,
2387 enum remove_bp_reason reason
)
2389 /* This is kind of a weird case to handle, but the permission might
2390 have been changed after breakpoints were inserted - in which case
2391 we should just take the user literally and assume that any
2392 breakpoints should be left in place. */
2393 if (!may_insert_breakpoints
)
2395 warning (_("May not remove breakpoints"));
2399 target_ops
*target
= current_inferior ()->top_target ();
2401 return target
->remove_breakpoint (gdbarch
, bp_tgt
, reason
);
2405 info_target_command (const char *args
, int from_tty
)
2407 int has_all_mem
= 0;
2409 if (current_program_space
->symfile_object_file
!= NULL
)
2411 objfile
*objf
= current_program_space
->symfile_object_file
;
2412 gdb_printf (_("Symbols from \"%ps\".\n"),
2413 styled_string (file_name_style
.style (),
2414 objfile_name (objf
)));
2417 for (target_ops
*t
= current_inferior ()->top_target ();
2421 if (!t
->has_memory ())
2424 if ((int) (t
->stratum ()) <= (int) dummy_stratum
)
2427 gdb_printf (_("\tWhile running this, "
2428 "GDB does not access memory from...\n"));
2429 gdb_printf ("%s:\n", t
->longname ());
2431 has_all_mem
= t
->has_all_memory ();
2435 /* This function is called before any new inferior is created, e.g.
2436 by running a program, attaching, or connecting to a target.
2437 It cleans up any state from previous invocations which might
2438 change between runs. This is a subset of what target_preopen
2439 resets (things which might change between targets). */
2442 target_pre_inferior ()
2444 /* Clear out solib state. Otherwise the solib state of the previous
2445 inferior might have survived and is entirely wrong for the new
2446 target. This has been observed on GNU/Linux using glibc 2.3. How
2458 Cannot access memory at address 0xdeadbeef
2461 /* In some OSs, the shared library list is the same/global/shared
2462 across inferiors. If code is shared between processes, so are
2463 memory regions and features. */
2464 if (!gdbarch_has_global_solist (current_inferior ()->arch ()))
2466 no_shared_libraries (current_program_space
);
2467 current_program_space
->unset_solib_ops ();
2469 invalidate_target_mem_regions ();
2471 target_clear_description ();
2474 /* attach_flag may be set if the previous process associated with
2475 the inferior was attached to. */
2476 current_inferior ()->attach_flag
= false;
2478 current_inferior ()->highest_thread_num
= 0;
2480 update_previous_thread ();
2482 agent_capability_invalidate ();
2485 /* This is to be called by the open routine before it does
2489 target_preopen (int from_tty
)
2493 if (current_inferior ()->pid
!= 0)
2496 || !target_has_execution ()
2497 || query (_("A program is being debugged already. Kill it? ")))
2499 /* Core inferiors actually should be detached, not
2501 if (target_has_execution ())
2504 target_detach (current_inferior (), 0);
2507 error (_("Program not killed."));
2510 /* Release reference to old previous thread. */
2511 update_previous_thread ();
2513 /* Calling target_kill may remove the target from the stack. But if
2514 it doesn't (which seems like a win for UDI), remove it now. */
2515 /* Leave the exec target, though. The user may be switching from a
2516 live process to a core of the same program. */
2517 current_inferior ()->pop_all_targets_above (file_stratum
);
2519 target_pre_inferior ();
2525 target_detach (inferior
*inf
, int from_tty
)
2527 /* Thread's don't need to be resumed until the end of this function. */
2528 scoped_disable_commit_resumed
disable_commit_resumed ("detaching");
2530 /* After we have detached, we will clear the register cache for this inferior
2531 by calling registers_changed_ptid. We must save the pid_ptid before
2532 detaching, as the target detach method will clear inf->pid. */
2533 ptid_t save_pid_ptid
= ptid_t (inf
->pid
);
2535 /* As long as some to_detach implementations rely on the current_inferior
2536 (either directly, or indirectly, like through reading memory), INF needs
2537 to be the current inferior. When that requirement will become no longer
2538 true, then we can remove this assertion. */
2539 gdb_assert (inf
== current_inferior ());
2541 prepare_for_detach ();
2543 gdb::observers::inferior_pre_detach
.notify (inf
);
2545 /* Hold a strong reference because detaching may unpush the
2547 auto proc_target_ref
= target_ops_ref::new_reference (inf
->process_target ());
2549 current_inferior ()->top_target ()->detach (inf
, from_tty
);
2551 process_stratum_target
*proc_target
2552 = as_process_stratum_target (proc_target_ref
.get ());
2554 registers_changed_ptid (proc_target
, save_pid_ptid
);
2556 /* We have to ensure we have no frame cache left. Normally,
2557 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2558 inferior_ptid matches save_pid_ptid, but in our case, it does not
2559 call it, as inferior_ptid has been reset. */
2560 reinit_frame_cache ();
2562 disable_commit_resumed
.reset_and_commit ();
2566 target_disconnect (const char *args
, int from_tty
)
2568 /* If we're in breakpoints-always-inserted mode or if breakpoints
2569 are global across processes, we have to remove them before
2571 remove_breakpoints ();
2573 current_inferior ()->top_target ()->disconnect (args
, from_tty
);
2576 /* See target/target.h. */
2579 target_wait (ptid_t ptid
, struct target_waitstatus
*status
,
2580 target_wait_flags options
)
2582 target_ops
*target
= current_inferior ()->top_target ();
2583 process_stratum_target
*proc_target
= current_inferior ()->process_target ();
2585 gdb_assert (!proc_target
->commit_resumed_state
);
2587 if (!target_can_async_p (target
))
2588 gdb_assert ((options
& TARGET_WNOHANG
) == 0);
2590 ptid_t event_ptid
= null_ptid
;
2591 SCOPE_EXIT
{ gdb::observers::target_post_wait
.notify (event_ptid
); };
2592 gdb::observers::target_pre_wait
.notify (ptid
);
2593 event_ptid
= target
->wait (ptid
, status
, options
);
2601 default_target_wait (struct target_ops
*ops
,
2602 ptid_t ptid
, struct target_waitstatus
*status
,
2603 target_wait_flags options
)
2605 status
->set_ignore ();
2606 return minus_one_ptid
;
2610 target_pid_to_str (ptid_t ptid
)
2612 return current_inferior ()->top_target ()->pid_to_str (ptid
);
2616 target_thread_name (struct thread_info
*info
)
2618 gdb_assert (info
->inf
== current_inferior ());
2620 return current_inferior ()->top_target ()->thread_name (info
);
2623 struct thread_info
*
2624 target_thread_handle_to_thread_info (const gdb_byte
*thread_handle
,
2626 struct inferior
*inf
)
2628 target_ops
*target
= current_inferior ()->top_target ();
2630 return target
->thread_handle_to_thread_info (thread_handle
, handle_len
, inf
);
2635 gdb::array_view
<const gdb_byte
>
2636 target_thread_info_to_thread_handle (struct thread_info
*tip
)
2638 target_ops
*target
= current_inferior ()->top_target ();
2640 return target
->thread_info_to_thread_handle (tip
);
2644 target_resume (ptid_t scope_ptid
, int step
, enum gdb_signal signal
)
2646 process_stratum_target
*curr_target
= current_inferior ()->process_target ();
2647 gdb_assert (!curr_target
->commit_resumed_state
);
2649 gdb_assert (inferior_ptid
!= null_ptid
);
2650 gdb_assert (inferior_ptid
.matches (scope_ptid
));
2652 target_dcache_invalidate (current_program_space
->aspace
);
2654 current_inferior ()->top_target ()->resume (scope_ptid
, step
, signal
);
2656 registers_changed_ptid (curr_target
, scope_ptid
);
2657 /* We only set the internal executing state here. The user/frontend
2658 running state is set at a higher level. This also clears the
2659 thread's stop_pc as side effect. */
2660 set_executing (curr_target
, scope_ptid
, true);
2661 clear_inline_frame_state (curr_target
, scope_ptid
);
2663 if (target_can_async_p ())
2664 target_async (true);
2670 target_commit_resumed ()
2672 gdb_assert (current_inferior ()->process_target ()->commit_resumed_state
);
2673 current_inferior ()->top_target ()->commit_resumed ();
2679 target_has_pending_events ()
2681 return current_inferior ()->top_target ()->has_pending_events ();
2685 target_pass_signals (gdb::array_view
<const unsigned char> pass_signals
)
2687 current_inferior ()->top_target ()->pass_signals (pass_signals
);
2691 target_program_signals (gdb::array_view
<const unsigned char> program_signals
)
2693 current_inferior ()->top_target ()->program_signals (program_signals
);
2697 default_follow_fork (struct target_ops
*self
, inferior
*child_inf
,
2698 ptid_t child_ptid
, target_waitkind fork_kind
,
2699 bool follow_child
, bool detach_fork
)
2701 /* Some target returned a fork event, but did not know how to follow it. */
2702 internal_error (_("could not find a target to follow fork"));
2706 default_follow_clone (struct target_ops
*self
, ptid_t child_ptid
)
2708 /* Some target returned a clone event, but did not know how to follow it. */
2709 internal_error (_("could not find a target to follow clone"));
2715 target_follow_fork (inferior
*child_inf
, ptid_t child_ptid
,
2716 target_waitkind fork_kind
, bool follow_child
,
2719 target_ops
*target
= current_inferior ()->top_target ();
2721 /* Check consistency between CHILD_INF, CHILD_PTID, FOLLOW_CHILD and
2723 if (child_inf
!= nullptr)
2725 gdb_assert (follow_child
|| !detach_fork
);
2726 gdb_assert (child_inf
->pid
== child_ptid
.pid ());
2729 gdb_assert (!follow_child
&& detach_fork
);
2731 return target
->follow_fork (child_inf
, child_ptid
, fork_kind
, follow_child
,
2738 target_follow_exec (inferior
*follow_inf
, ptid_t ptid
,
2739 const char *execd_pathname
)
2741 current_inferior ()->top_target ()->follow_exec (follow_inf
, ptid
,
2746 default_mourn_inferior (struct target_ops
*self
)
2748 internal_error (_("could not find a target to follow mourn inferior"));
2752 target_mourn_inferior (ptid_t ptid
)
2754 gdb_assert (ptid
.pid () == inferior_ptid
.pid ());
2755 current_inferior ()->top_target ()->mourn_inferior ();
2758 /* Look for a target which can describe architectural features, starting
2759 from TARGET. If we find one, return its description. */
2761 const struct target_desc
*
2762 target_read_description (struct target_ops
*target
)
2764 return target
->read_description ();
2768 /* Default implementation of memory-searching. */
2771 default_search_memory (struct target_ops
*self
,
2772 CORE_ADDR start_addr
, ULONGEST search_space_len
,
2773 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2774 CORE_ADDR
*found_addrp
)
2776 auto read_memory
= [=] (CORE_ADDR addr
, gdb_byte
*result
, size_t len
)
2778 return target_read (current_inferior ()->top_target (),
2779 TARGET_OBJECT_MEMORY
, NULL
,
2780 result
, addr
, len
) == len
;
2783 /* Start over from the top of the target stack. */
2784 return simple_search_memory (read_memory
, start_addr
, search_space_len
,
2785 pattern
, pattern_len
, found_addrp
);
2788 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2789 sequence of bytes in PATTERN with length PATTERN_LEN.
2791 The result is 1 if found, 0 if not found, and -1 if there was an error
2792 requiring halting of the search (e.g. memory read error).
2793 If the pattern is found the address is recorded in FOUND_ADDRP. */
2796 target_search_memory (CORE_ADDR start_addr
, ULONGEST search_space_len
,
2797 const gdb_byte
*pattern
, ULONGEST pattern_len
,
2798 CORE_ADDR
*found_addrp
)
2800 target_ops
*target
= current_inferior ()->top_target ();
2802 return target
->search_memory (start_addr
, search_space_len
, pattern
,
2803 pattern_len
, found_addrp
);
2806 /* Look through the currently pushed targets. If none of them will
2807 be able to restart the currently running process, issue an error
2811 target_require_runnable (void)
2813 for (target_ops
*t
= current_inferior ()->top_target ();
2817 /* If this target knows how to create a new program, then
2818 assume we will still be able to after killing the current
2819 one. Either killing and mourning will not pop T, or else
2820 find_default_run_target will find it again. */
2821 if (t
->can_create_inferior ())
2824 /* Do not worry about targets at certain strata that can not
2825 create inferiors. Assume they will be pushed again if
2826 necessary, and continue to the process_stratum. */
2827 if (t
->stratum () > process_stratum
)
2830 error (_("The \"%s\" target does not support \"run\". "
2831 "Try \"help target\" or \"continue\"."),
2835 /* This function is only called if the target is running. In that
2836 case there should have been a process_stratum target and it
2837 should either know how to create inferiors, or not... */
2838 internal_error (_("No targets found"));
2841 /* Whether GDB is allowed to fall back to the default run target for
2842 "run", "attach", etc. when no target is connected yet. */
2843 static bool auto_connect_native_target
= true;
2846 show_auto_connect_native_target (struct ui_file
*file
, int from_tty
,
2847 struct cmd_list_element
*c
, const char *value
)
2850 _("Whether GDB may automatically connect to the "
2851 "native target is %s.\n"),
2855 /* A pointer to the target that can respond to "run" or "attach".
2856 Native targets are always singletons and instantiated early at GDB
2858 static target_ops
*the_native_target
;
2863 set_native_target (target_ops
*target
)
2865 if (the_native_target
!= NULL
)
2866 internal_error (_("native target already set (\"%s\")."),
2867 the_native_target
->longname ());
2869 the_native_target
= target
;
2875 get_native_target ()
2877 return the_native_target
;
2880 /* Look through the list of possible targets for a target that can
2881 execute a run or attach command without any other data. This is
2882 used to locate the default process stratum.
2884 If DO_MESG is not NULL, the result is always valid (error() is
2885 called for errors); else, return NULL on error. */
2887 static struct target_ops
*
2888 find_default_run_target (const char *do_mesg
)
2890 if (auto_connect_native_target
&& the_native_target
!= NULL
)
2891 return the_native_target
;
2893 if (do_mesg
!= NULL
)
2894 error (_("Don't know how to %s. Try \"help target\"."), do_mesg
);
2901 find_attach_target (void)
2903 /* If a target on the current stack can attach, use it. */
2904 for (target_ops
*t
= current_inferior ()->top_target ();
2908 if (t
->can_attach ())
2912 /* Otherwise, use the default run target for attaching. */
2913 return find_default_run_target ("attach");
2919 find_run_target (void)
2921 /* If a target on the current stack can run, use it. */
2922 for (target_ops
*t
= current_inferior ()->top_target ();
2926 if (t
->can_create_inferior ())
2930 /* Otherwise, use the default run target. */
2931 return find_default_run_target ("run");
2935 target_ops::info_proc (const char *args
, enum info_proc_what what
)
2940 /* Implement the "info proc" command. */
2943 target_info_proc (const char *args
, enum info_proc_what what
)
2945 struct target_ops
*t
;
2947 /* If we're already connected to something that can get us OS
2948 related data, use it. Otherwise, try using the native
2950 t
= find_target_at (process_stratum
);
2952 t
= find_default_run_target (NULL
);
2954 for (; t
!= NULL
; t
= t
->beneath ())
2956 if (t
->info_proc (args
, what
))
2958 target_debug_printf_nofunc ("target_info_proc (\"%s\", %d)", args
, what
);
2967 find_default_supports_disable_randomization (struct target_ops
*self
)
2969 struct target_ops
*t
;
2971 t
= find_default_run_target (NULL
);
2973 return t
->supports_disable_randomization ();
2978 target_supports_disable_randomization (void)
2980 return current_inferior ()->top_target ()->supports_disable_randomization ();
2983 /* See target/target.h. */
2986 target_supports_multi_process (void)
2988 return current_inferior ()->top_target ()->supports_multi_process ();
2993 std::optional
<gdb::char_vector
>
2994 target_get_osdata (const char *type
)
2996 struct target_ops
*t
;
2998 /* If we're already connected to something that can get us OS
2999 related data, use it. Otherwise, try using the native
3001 t
= find_target_at (process_stratum
);
3003 t
= find_default_run_target ("get OS data");
3008 return target_read_stralloc (t
, TARGET_OBJECT_OSDATA
, type
);
3014 target_ops::beneath () const
3016 return current_inferior ()->find_target_beneath (this);
3020 target_ops::close ()
3025 target_ops::can_attach ()
3031 target_ops::attach (const char *, int)
3033 gdb_assert_not_reached ("target_ops::attach called");
3037 target_ops::can_create_inferior ()
3043 target_ops::create_inferior (const char *, const std::string
&,
3046 gdb_assert_not_reached ("target_ops::create_inferior called");
3050 target_ops::can_run ()
3058 for (target_ops
*t
= current_inferior ()->top_target ();
3069 /* Target file operations. */
3071 static struct target_ops
*
3072 default_fileio_target (void)
3074 struct target_ops
*t
;
3076 /* If we're already connected to something that can perform
3077 file I/O, use it. Otherwise, try using the native target. */
3078 t
= find_target_at (process_stratum
);
3081 return find_default_run_target ("file I/O");
3084 /* File handle for target file operations. */
3088 /* The target on which this file is open. NULL if the target is
3089 meanwhile closed while the handle is open. */
3092 /* The file descriptor on the target. */
3095 /* Check whether this fileio_fh_t represents a closed file. */
3098 return target_fd
< 0;
3102 /* Vector of currently open file handles. The value returned by
3103 target_fileio_open and passed as the FD argument to other
3104 target_fileio_* functions is an index into this vector. This
3105 vector's entries are never freed; instead, files are marked as
3106 closed, and the handle becomes available for reuse. */
3107 static std::vector
<fileio_fh_t
> fileio_fhandles
;
3109 /* Index into fileio_fhandles of the lowest handle that might be
3110 closed. This permits handle reuse without searching the whole
3111 list each time a new file is opened. */
3112 static int lowest_closed_fd
;
3117 fileio_handles_invalidate_target (target_ops
*targ
)
3119 for (fileio_fh_t
&fh
: fileio_fhandles
)
3120 if (fh
.target
== targ
)
3124 /* Acquire a target fileio file descriptor. */
3127 acquire_fileio_fd (target_ops
*target
, int target_fd
)
3129 /* Search for closed handles to reuse. */
3130 for (; lowest_closed_fd
< fileio_fhandles
.size (); lowest_closed_fd
++)
3132 fileio_fh_t
&fh
= fileio_fhandles
[lowest_closed_fd
];
3134 if (fh
.is_closed ())
3138 /* Push a new handle if no closed handles were found. */
3139 if (lowest_closed_fd
== fileio_fhandles
.size ())
3140 fileio_fhandles
.push_back (fileio_fh_t
{target
, target_fd
});
3142 fileio_fhandles
[lowest_closed_fd
] = {target
, target_fd
};
3144 /* Should no longer be marked closed. */
3145 gdb_assert (!fileio_fhandles
[lowest_closed_fd
].is_closed ());
3147 /* Return its index, and start the next lookup at
3149 return lowest_closed_fd
++;
3152 /* Release a target fileio file descriptor. */
3155 release_fileio_fd (int fd
, fileio_fh_t
*fh
)
3158 lowest_closed_fd
= std::min (lowest_closed_fd
, fd
);
3161 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
3163 static fileio_fh_t
*
3164 fileio_fd_to_fh (int fd
)
3166 return &fileio_fhandles
[fd
];
3170 /* Default implementations of file i/o methods. We don't want these
3171 to delegate automatically, because we need to know which target
3172 supported the method, in order to call it directly from within
3173 pread/pwrite, etc. */
3176 target_ops::fileio_open (struct inferior
*inf
, const char *filename
,
3177 int flags
, int mode
, int warn_if_slow
,
3178 fileio_error
*target_errno
)
3180 *target_errno
= FILEIO_ENOSYS
;
3185 target_ops::fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
3186 ULONGEST offset
, fileio_error
*target_errno
)
3188 *target_errno
= FILEIO_ENOSYS
;
3193 target_ops::fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
3194 ULONGEST offset
, fileio_error
*target_errno
)
3196 *target_errno
= FILEIO_ENOSYS
;
3201 target_ops::fileio_fstat (int fd
, struct stat
*sb
, fileio_error
*target_errno
)
3203 *target_errno
= FILEIO_ENOSYS
;
3208 target_ops::fileio_lstat (struct inferior
*inf
, const char *filename
,
3209 struct stat
*sb
, fileio_error
*target_errno
)
3211 *target_errno
= FILEIO_ENOSYS
;
3216 target_ops::fileio_close (int fd
, fileio_error
*target_errno
)
3218 *target_errno
= FILEIO_ENOSYS
;
3223 target_ops::fileio_unlink (struct inferior
*inf
, const char *filename
,
3224 fileio_error
*target_errno
)
3226 *target_errno
= FILEIO_ENOSYS
;
3230 std::optional
<std::string
>
3231 target_ops::fileio_readlink (struct inferior
*inf
, const char *filename
,
3232 fileio_error
*target_errno
)
3234 *target_errno
= FILEIO_ENOSYS
;
3241 target_fileio_open (struct inferior
*inf
, const char *filename
,
3242 int flags
, int mode
, bool warn_if_slow
, fileio_error
*target_errno
)
3244 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3246 int fd
= t
->fileio_open (inf
, filename
, flags
, mode
,
3247 warn_if_slow
, target_errno
);
3249 if (fd
== -1 && *target_errno
== FILEIO_ENOSYS
)
3255 fd
= acquire_fileio_fd (t
, fd
);
3257 target_debug_printf_nofunc ("target_fileio_open (%d,%s,0x%x,0%o,%d) = %d (%d)",
3258 inf
== NULL
? 0 : inf
->num
, filename
, flags
, mode
,
3259 warn_if_slow
, fd
, fd
!= -1 ? 0 : *target_errno
);
3263 *target_errno
= FILEIO_ENOSYS
;
3270 target_fileio_pwrite (int fd
, const gdb_byte
*write_buf
, int len
,
3271 ULONGEST offset
, fileio_error
*target_errno
)
3273 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3276 if (fh
->is_closed ())
3277 *target_errno
= FILEIO_EBADF
;
3278 else if (fh
->target
== NULL
)
3279 *target_errno
= FILEIO_EIO
;
3281 ret
= fh
->target
->fileio_pwrite (fh
->target_fd
, write_buf
,
3282 len
, offset
, target_errno
);
3284 target_debug_printf_nofunc ("target_fileio_pwrite (%d,...,%d,%s) = %d (%d)", fd
,
3285 len
, pulongest (offset
), ret
,
3286 ret
!= -1 ? 0 : *target_errno
);
3293 target_fileio_pread (int fd
, gdb_byte
*read_buf
, int len
,
3294 ULONGEST offset
, fileio_error
*target_errno
)
3296 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3299 if (fh
->is_closed ())
3300 *target_errno
= FILEIO_EBADF
;
3301 else if (fh
->target
== NULL
)
3302 *target_errno
= FILEIO_EIO
;
3304 ret
= fh
->target
->fileio_pread (fh
->target_fd
, read_buf
,
3305 len
, offset
, target_errno
);
3307 target_debug_printf_nofunc ("target_fileio_pread (%d,...,%d,%s) = %d (%d)", fd
, len
,
3308 pulongest (offset
), ret
, ret
!= -1 ? 0 : *target_errno
);
3315 target_fileio_fstat (int fd
, struct stat
*sb
, fileio_error
*target_errno
)
3317 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3320 if (fh
->is_closed ())
3321 *target_errno
= FILEIO_EBADF
;
3322 else if (fh
->target
== NULL
)
3323 *target_errno
= FILEIO_EIO
;
3325 ret
= fh
->target
->fileio_fstat (fh
->target_fd
, sb
, target_errno
);
3327 target_debug_printf_nofunc ("target_fileio_fstat (%d) = %d (%d)", fd
, ret
,
3328 ret
!= -1 ? 0 : *target_errno
);
3335 target_fileio_lstat (struct inferior
*inf
, const char *filename
,
3336 struct stat
*sb
, fileio_error
*target_errno
)
3338 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3340 int ret
= t
->fileio_lstat (inf
, filename
, sb
, target_errno
);
3342 if (ret
== -1 && *target_errno
== FILEIO_ENOSYS
)
3345 target_debug_printf_nofunc ("target_fileio_lstat (%s) = %d (%d)",
3347 ret
!= -1 ? 0 : *target_errno
);
3351 *target_errno
= FILEIO_ENOSYS
;
3358 target_fileio_close (int fd
, fileio_error
*target_errno
)
3360 fileio_fh_t
*fh
= fileio_fd_to_fh (fd
);
3363 if (fh
->is_closed ())
3364 *target_errno
= FILEIO_EBADF
;
3367 if (fh
->target
!= NULL
)
3368 ret
= fh
->target
->fileio_close (fh
->target_fd
,
3372 release_fileio_fd (fd
, fh
);
3375 target_debug_printf_nofunc ("target_fileio_close (%d) = %d (%d)", fd
, ret
,
3376 ret
!= -1 ? 0 : *target_errno
);
3383 target_fileio_unlink (struct inferior
*inf
, const char *filename
,
3384 fileio_error
*target_errno
)
3386 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3388 int ret
= t
->fileio_unlink (inf
, filename
, target_errno
);
3390 if (ret
== -1 && *target_errno
== FILEIO_ENOSYS
)
3393 target_debug_printf_nofunc ("target_fileio_unlink (%d,%s) = %d (%d)",
3394 inf
== NULL
? 0 : inf
->num
, filename
, ret
,
3395 ret
!= -1 ? 0 : *target_errno
);
3399 *target_errno
= FILEIO_ENOSYS
;
3405 std::optional
<std::string
>
3406 target_fileio_readlink (struct inferior
*inf
, const char *filename
,
3407 fileio_error
*target_errno
)
3409 for (target_ops
*t
= default_fileio_target (); t
!= NULL
; t
= t
->beneath ())
3411 std::optional
<std::string
> ret
3412 = t
->fileio_readlink (inf
, filename
, target_errno
);
3414 if (!ret
.has_value () && *target_errno
== FILEIO_ENOSYS
)
3417 target_debug_printf_nofunc ("target_fileio_readlink (%d,%s) = %s (%d)",
3418 inf
== NULL
? 0 : inf
->num
, filename
,
3419 ret
? ret
->c_str () : "(nil)",
3420 ret
? 0 : *target_errno
);
3424 *target_errno
= FILEIO_ENOSYS
;
3428 /* Like scoped_fd, but specific to target fileio. */
3430 class scoped_target_fd
3433 explicit scoped_target_fd (int fd
) noexcept
3438 ~scoped_target_fd ()
3442 fileio_error target_errno
;
3444 target_fileio_close (m_fd
, &target_errno
);
3448 DISABLE_COPY_AND_ASSIGN (scoped_target_fd
);
3450 int get () const noexcept
3459 /* Read target file FILENAME, in the filesystem as seen by INF. If
3460 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3461 remote targets, the remote stub). Store the result in *BUF_P and
3462 return the size of the transferred data. PADDING additional bytes
3463 are available in *BUF_P. This is a helper function for
3464 target_fileio_read_alloc; see the declaration of that function for
3465 more information. */
3468 target_fileio_read_alloc_1 (struct inferior
*inf
, const char *filename
,
3469 gdb_byte
**buf_p
, int padding
)
3471 size_t buf_alloc
, buf_pos
;
3474 fileio_error target_errno
;
3476 scoped_target_fd
fd (target_fileio_open (inf
, filename
, FILEIO_O_RDONLY
,
3477 0700, false, &target_errno
));
3478 if (fd
.get () == -1)
3481 /* Start by reading up to 4K at a time. The target will throttle
3482 this number down if necessary. */
3484 buf
= (gdb_byte
*) xmalloc (buf_alloc
);
3488 n
= target_fileio_pread (fd
.get (), &buf
[buf_pos
],
3489 buf_alloc
- buf_pos
- padding
, buf_pos
,
3493 /* An error occurred. */
3499 /* Read all there was. */
3509 /* If the buffer is filling up, expand it. */
3510 if (buf_alloc
< buf_pos
* 2)
3513 buf
= (gdb_byte
*) xrealloc (buf
, buf_alloc
);
3523 target_fileio_read_alloc (struct inferior
*inf
, const char *filename
,
3526 return target_fileio_read_alloc_1 (inf
, filename
, buf_p
, 0);
3531 gdb::unique_xmalloc_ptr
<char>
3532 target_fileio_read_stralloc (struct inferior
*inf
, const char *filename
)
3536 LONGEST i
, transferred
;
3538 transferred
= target_fileio_read_alloc_1 (inf
, filename
, &buffer
, 1);
3539 bufstr
= (char *) buffer
;
3541 if (transferred
< 0)
3542 return gdb::unique_xmalloc_ptr
<char> (nullptr);
3544 if (transferred
== 0)
3545 return make_unique_xstrdup ("");
3547 bufstr
[transferred
] = 0;
3549 /* Check for embedded NUL bytes; but allow trailing NULs. */
3550 for (i
= strlen (bufstr
); i
< transferred
; i
++)
3553 warning (_("target file %s "
3554 "contained unexpected null characters"),
3559 return gdb::unique_xmalloc_ptr
<char> (bufstr
);
3564 default_region_ok_for_hw_watchpoint (struct target_ops
*self
,
3565 CORE_ADDR addr
, int len
)
3567 gdbarch
*arch
= current_inferior ()->arch ();
3568 return (len
<= gdbarch_ptr_bit (arch
) / TARGET_CHAR_BIT
);
3572 default_watchpoint_addr_within_range (struct target_ops
*target
,
3574 CORE_ADDR start
, int length
)
3576 return addr
>= start
&& addr
< start
+ length
;
3582 target_stack::find_beneath (const target_ops
*t
) const
3584 /* Look for a non-empty slot at stratum levels beneath T's. */
3585 for (int stratum
= t
->stratum () - 1; stratum
>= 0; --stratum
)
3586 if (m_stack
[stratum
].get () != NULL
)
3587 return m_stack
[stratum
].get ();
3595 find_target_at (enum strata stratum
)
3597 return current_inferior ()->target_at (stratum
);
3605 target_announce_detach (int from_tty
)
3608 const char *exec_file
;
3613 pid
= inferior_ptid
.pid ();
3614 exec_file
= current_program_space
->exec_filename ();
3615 if (exec_file
== nullptr)
3616 gdb_printf ("Detaching from pid %s\n",
3617 target_pid_to_str (ptid_t (pid
)).c_str ());
3619 gdb_printf (_("Detaching from program: %ps, %s\n"),
3620 styled_string (file_name_style
.style (), exec_file
),
3621 target_pid_to_str (ptid_t (pid
)).c_str ());
3627 target_announce_attach (int from_tty
, int pid
)
3632 const char *exec_file
= current_program_space
->exec_filename ();
3634 if (exec_file
!= nullptr)
3635 gdb_printf ("Attaching to program: %ps, %s\n",
3636 styled_string (file_name_style
.style (), exec_file
),
3637 target_pid_to_str (ptid_t (pid
)).c_str ());
3639 gdb_printf ("Attaching to %s\n",
3640 target_pid_to_str (ptid_t (pid
)).c_str ());
3643 /* The inferior process has died. Long live the inferior! */
3646 generic_mourn_inferior (void)
3648 inferior
*inf
= current_inferior ();
3650 switch_to_no_thread ();
3652 /* Mark breakpoints uninserted in case something tries to delete a
3653 breakpoint while we delete the inferior's threads (which would
3654 fail, since the inferior is long gone). */
3655 mark_breakpoints_out (inf
->pspace
);
3658 exit_inferior (inf
);
3660 /* Note this wipes step-resume breakpoints, so needs to be done
3661 after exit_inferior, which ends up referencing the step-resume
3662 breakpoints through clear_thread_inferior_resources. */
3663 breakpoint_init_inferior (inf
, inf_exited
);
3665 registers_changed ();
3667 reopen_exec_file ();
3668 reinit_frame_cache ();
3670 if (deprecated_detach_hook
)
3671 deprecated_detach_hook ();
3674 /* Convert a normal process ID to a string. Returns the string in a
3678 normal_pid_to_str (ptid_t ptid
)
3680 return string_printf ("process %d", ptid
.pid ());
3684 default_pid_to_str (struct target_ops
*ops
, ptid_t ptid
)
3686 return normal_pid_to_str (ptid
);
3689 /* Error-catcher for target_find_memory_regions. */
3691 dummy_find_memory_regions (struct target_ops
*self
,
3692 find_memory_region_ftype ignore1
, void *ignore2
)
3694 error (_("Command not implemented for this target."));
3698 /* Error-catcher for target_make_corefile_notes. */
3699 static gdb::unique_xmalloc_ptr
<char>
3700 dummy_make_corefile_notes (struct target_ops
*self
,
3701 bfd
*ignore1
, int *ignore2
)
3703 error (_("Command not implemented for this target."));
3707 #include "target-delegates-gen.c"
3709 /* The initial current target, so that there is always a semi-valid
3712 static dummy_target the_dummy_target
;
3719 return &the_dummy_target
;
3722 static const target_info dummy_target_info
= {
3729 dummy_target::stratum () const
3731 return dummy_stratum
;
3735 debug_target::stratum () const
3737 return debug_stratum
;
3741 dummy_target::info () const
3743 return dummy_target_info
;
3747 debug_target::info () const
3749 return beneath ()->info ();
3755 target_thread_alive (ptid_t ptid
)
3757 return current_inferior ()->top_target ()->thread_alive (ptid
);
3761 target_update_thread_list (void)
3763 current_inferior ()->top_target ()->update_thread_list ();
3767 target_stop (ptid_t ptid
)
3769 process_stratum_target
*proc_target
= current_inferior ()->process_target ();
3771 gdb_assert (!proc_target
->commit_resumed_state
);
3775 warning (_("May not interrupt or stop the target, ignoring attempt"));
3779 current_inferior ()->top_target ()->stop (ptid
);
3787 warning (_("May not interrupt or stop the target, ignoring attempt"));
3791 current_inferior ()->top_target ()->interrupt ();
3797 target_pass_ctrlc (void)
3799 /* Pass the Ctrl-C to the first target that has a thread
3801 for (inferior
*inf
: all_inferiors ())
3803 target_ops
*proc_target
= inf
->process_target ();
3804 if (proc_target
== NULL
)
3807 for (thread_info
*thr
: inf
->non_exited_threads ())
3809 /* A thread can be THREAD_STOPPED and executing, while
3810 running an infcall. */
3811 if (thr
->state
== THREAD_RUNNING
|| thr
->executing ())
3813 /* We can get here quite deep in target layers. Avoid
3814 switching thread context or anything that would
3815 communicate with the target (e.g., to fetch
3816 registers), or flushing e.g., the frame cache. We
3817 just switch inferior in order to be able to call
3818 through the target_stack. */
3819 scoped_restore_current_inferior restore_inferior
;
3820 set_current_inferior (inf
);
3821 current_inferior ()->top_target ()->pass_ctrlc ();
3831 default_target_pass_ctrlc (struct target_ops
*ops
)
3833 target_interrupt ();
3836 /* See target/target.h. */
3839 target_stop_and_wait (ptid_t ptid
)
3841 struct target_waitstatus status
;
3842 bool was_non_stop
= non_stop
;
3847 target_wait (ptid
, &status
, 0);
3849 non_stop
= was_non_stop
;
3852 /* See target/target.h. */
3855 target_continue_no_signal (ptid_t ptid
)
3857 target_resume (ptid
, 0, GDB_SIGNAL_0
);
3860 /* See target/target.h. */
3863 target_continue (ptid_t ptid
, enum gdb_signal signal
)
3865 target_resume (ptid
, 0, signal
);
3868 /* Concatenate ELEM to LIST, a comma-separated list. */
3871 str_comma_list_concat_elem (std::string
*list
, const char *elem
)
3873 if (!list
->empty ())
3874 list
->append (", ");
3876 list
->append (elem
);
3879 /* Helper for target_options_to_string. If OPT is present in
3880 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3881 OPT is removed from TARGET_OPTIONS. */
3884 do_option (target_wait_flags
*target_options
, std::string
*ret
,
3885 target_wait_flag opt
, const char *opt_str
)
3887 if ((*target_options
& opt
) != 0)
3889 str_comma_list_concat_elem (ret
, opt_str
);
3890 *target_options
&= ~opt
;
3897 target_options_to_string (target_wait_flags target_options
)
3901 #define DO_TARG_OPTION(OPT) \
3902 do_option (&target_options, &ret, OPT, #OPT)
3904 DO_TARG_OPTION (TARGET_WNOHANG
);
3906 if (target_options
!= 0)
3907 str_comma_list_concat_elem (&ret
, "unknown???");
3913 target_fetch_registers (struct regcache
*regcache
, int regno
)
3915 current_inferior ()->top_target ()->fetch_registers (regcache
, regno
);
3916 target_debug_printf ("%s", regcache
->register_debug_string (regno
).c_str ());
3920 target_store_registers (struct regcache
*regcache
, int regno
)
3922 if (!may_write_registers
)
3923 error (_("Writing to registers is not allowed (regno %d)"), regno
);
3925 current_inferior ()->top_target ()->store_registers (regcache
, regno
);
3926 target_debug_printf ("%s", regcache
->register_debug_string (regno
).c_str ());
3930 target_core_of_thread (ptid_t ptid
)
3932 return current_inferior ()->top_target ()->core_of_thread (ptid
);
3936 simple_verify_memory (struct target_ops
*ops
,
3937 const gdb_byte
*data
, CORE_ADDR lma
, ULONGEST size
)
3939 LONGEST total_xfered
= 0;
3941 while (total_xfered
< size
)
3943 ULONGEST xfered_len
;
3944 enum target_xfer_status status
;
3946 ULONGEST howmuch
= std::min
<ULONGEST
> (sizeof (buf
), size
- total_xfered
);
3948 status
= target_xfer_partial (ops
, TARGET_OBJECT_MEMORY
, NULL
,
3949 buf
, NULL
, lma
+ total_xfered
, howmuch
,
3951 if (status
== TARGET_XFER_OK
3952 && memcmp (data
+ total_xfered
, buf
, xfered_len
) == 0)
3954 total_xfered
+= xfered_len
;
3963 /* Default implementation of memory verification. */
3966 default_verify_memory (struct target_ops
*self
,
3967 const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
3969 /* Start over from the top of the target stack. */
3970 return simple_verify_memory (current_inferior ()->top_target (),
3971 data
, memaddr
, size
);
3975 target_verify_memory (const gdb_byte
*data
, CORE_ADDR memaddr
, ULONGEST size
)
3977 target_ops
*target
= current_inferior ()->top_target ();
3979 return target
->verify_memory (data
, memaddr
, size
);
3982 /* The documentation for this function is in its prototype declaration in
3986 target_insert_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
3987 enum target_hw_bp_type rw
)
3989 target_ops
*target
= current_inferior ()->top_target ();
3991 return target
->insert_mask_watchpoint (addr
, mask
, rw
);
3994 /* The documentation for this function is in its prototype declaration in
3998 target_remove_mask_watchpoint (CORE_ADDR addr
, CORE_ADDR mask
,
3999 enum target_hw_bp_type rw
)
4001 target_ops
*target
= current_inferior ()->top_target ();
4003 return target
->remove_mask_watchpoint (addr
, mask
, rw
);
4006 /* The documentation for this function is in its prototype declaration
4010 target_masked_watch_num_registers (CORE_ADDR addr
, CORE_ADDR mask
)
4012 target_ops
*target
= current_inferior ()->top_target ();
4014 return target
->masked_watch_num_registers (addr
, mask
);
4017 /* The documentation for this function is in its prototype declaration
4021 target_ranged_break_num_registers (void)
4023 return current_inferior ()->top_target ()->ranged_break_num_registers ();
4028 struct btrace_target_info
*
4029 target_enable_btrace (thread_info
*tp
, const struct btrace_config
*conf
)
4031 return current_inferior ()->top_target ()->enable_btrace (tp
, conf
);
4037 target_disable_btrace (struct btrace_target_info
*btinfo
)
4039 current_inferior ()->top_target ()->disable_btrace (btinfo
);
4045 target_teardown_btrace (struct btrace_target_info
*btinfo
)
4047 current_inferior ()->top_target ()->teardown_btrace (btinfo
);
4053 target_read_btrace (struct btrace_data
*btrace
,
4054 struct btrace_target_info
*btinfo
,
4055 enum btrace_read_type type
)
4057 target_ops
*target
= current_inferior ()->top_target ();
4059 return target
->read_btrace (btrace
, btinfo
, type
);
4064 const struct btrace_config
*
4065 target_btrace_conf (const struct btrace_target_info
*btinfo
)
4067 return current_inferior ()->top_target ()->btrace_conf (btinfo
);
4073 target_stop_recording (void)
4075 current_inferior ()->top_target ()->stop_recording ();
4081 target_save_record (const char *filename
)
4083 current_inferior ()->top_target ()->save_record (filename
);
4089 target_supports_delete_record ()
4091 return current_inferior ()->top_target ()->supports_delete_record ();
4097 target_delete_record (void)
4099 current_inferior ()->top_target ()->delete_record ();
4105 target_record_method (ptid_t ptid
)
4107 return current_inferior ()->top_target ()->record_method (ptid
);
4113 target_record_is_replaying (ptid_t ptid
)
4115 return current_inferior ()->top_target ()->record_is_replaying (ptid
);
4121 target_record_will_replay (ptid_t ptid
, int dir
)
4123 return current_inferior ()->top_target ()->record_will_replay (ptid
, dir
);
4129 target_record_stop_replaying (void)
4131 current_inferior ()->top_target ()->record_stop_replaying ();
4137 target_goto_record_begin (void)
4139 current_inferior ()->top_target ()->goto_record_begin ();
4145 target_goto_record_end (void)
4147 current_inferior ()->top_target ()->goto_record_end ();
4153 target_goto_record (ULONGEST insn
)
4155 current_inferior ()->top_target ()->goto_record (insn
);
4161 target_insn_history (int size
, gdb_disassembly_flags flags
)
4163 current_inferior ()->top_target ()->insn_history (size
, flags
);
4169 target_insn_history_from (ULONGEST from
, int size
,
4170 gdb_disassembly_flags flags
)
4172 current_inferior ()->top_target ()->insn_history_from (from
, size
, flags
);
4178 target_insn_history_range (ULONGEST begin
, ULONGEST end
,
4179 gdb_disassembly_flags flags
)
4181 current_inferior ()->top_target ()->insn_history_range (begin
, end
, flags
);
4187 target_call_history (int size
, record_print_flags flags
)
4189 current_inferior ()->top_target ()->call_history (size
, flags
);
4195 target_call_history_from (ULONGEST begin
, int size
, record_print_flags flags
)
4197 current_inferior ()->top_target ()->call_history_from (begin
, size
, flags
);
4203 target_call_history_range (ULONGEST begin
, ULONGEST end
, record_print_flags flags
)
4205 current_inferior ()->top_target ()->call_history_range (begin
, end
, flags
);
4210 const struct frame_unwind
*
4211 target_get_unwinder (void)
4213 return current_inferior ()->top_target ()->get_unwinder ();
4218 const struct frame_unwind
*
4219 target_get_tailcall_unwinder (void)
4221 return current_inferior ()->top_target ()->get_tailcall_unwinder ();
4227 target_prepare_to_generate_core (void)
4229 current_inferior ()->top_target ()->prepare_to_generate_core ();
4235 target_done_generating_core (void)
4237 current_inferior ()->top_target ()->done_generating_core ();
4242 static char targ_desc
[] =
4243 "Names of targets and files being debugged.\nShows the entire \
4244 stack of targets currently in use (including the exec-file,\n\
4245 core-file, and process, if any), as well as the symbol file name.";
4248 default_rcmd (struct target_ops
*self
, const char *command
,
4249 struct ui_file
*output
)
4251 error (_("\"monitor\" command not supported by this target."));
4255 do_monitor_command (const char *cmd
, int from_tty
)
4257 target_rcmd (cmd
, gdb_stdtarg
);
4260 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
4264 flash_erase_command (const char *cmd
, int from_tty
)
4266 /* Used to communicate termination of flash operations to the target. */
4267 bool found_flash_region
= false;
4268 gdbarch
*gdbarch
= current_inferior ()->arch ();
4270 std::vector
<mem_region
> mem_regions
= target_memory_map ();
4272 /* Iterate over all memory regions. */
4273 for (const mem_region
&m
: mem_regions
)
4275 /* Is this a flash memory region? */
4276 if (m
.attrib
.mode
== MEM_FLASH
)
4278 found_flash_region
= true;
4279 target_flash_erase (m
.lo
, m
.hi
- m
.lo
);
4281 ui_out_emit_tuple
tuple_emitter (current_uiout
, "erased-regions");
4283 current_uiout
->message (_("Erasing flash memory region at address "));
4284 current_uiout
->field_core_addr ("address", gdbarch
, m
.lo
);
4285 current_uiout
->message (", size = ");
4286 current_uiout
->field_string ("size", hex_string (m
.hi
- m
.lo
));
4287 current_uiout
->message ("\n");
4291 /* Did we do any flash operations? If so, we need to finalize them. */
4292 if (found_flash_region
)
4293 target_flash_done ();
4295 current_uiout
->message (_("No flash memory regions found.\n"));
4298 /* Print the name of each layers of our target stack. */
4301 maintenance_print_target_stack (const char *cmd
, int from_tty
)
4303 gdb_printf (_("The current target stack is:\n"));
4305 for (target_ops
*t
= current_inferior ()->top_target ();
4309 if (t
->stratum () == debug_stratum
)
4311 gdb_printf (" - %s (%s)\n", t
->shortname (), t
->longname ());
4318 target_async (bool enable
)
4320 /* If we are trying to enable async mode then it must be the case that
4321 async mode is possible for this target. */
4322 gdb_assert (!enable
|| target_can_async_p ());
4323 infrun_async (enable
);
4324 current_inferior ()->top_target ()->async (enable
);
4330 target_thread_events (bool enable
)
4332 current_inferior ()->top_target ()->thread_events (enable
);
4338 target_supports_set_thread_options (gdb_thread_options options
)
4340 inferior
*inf
= current_inferior ();
4341 return inf
->top_target ()->supports_set_thread_options (options
);
4344 /* Controls if targets can report that they can/are async. This is
4345 just for maintainers to use when debugging gdb. */
4346 bool target_async_permitted
= true;
4349 set_maint_target_async (bool permitted
)
4351 if (have_live_inferiors ())
4352 error (_("Cannot change this setting while the inferior is running."));
4354 target_async_permitted
= permitted
;
4358 get_maint_target_async ()
4360 return target_async_permitted
;
4364 show_maint_target_async (ui_file
*file
, int from_tty
,
4365 cmd_list_element
*c
, const char *value
)
4368 _("Controlling the inferior in "
4369 "asynchronous mode is %s.\n"), value
);
4372 /* Return true if the target operates in non-stop mode even with "set
4376 target_always_non_stop_p (void)
4378 return current_inferior ()->top_target ()->always_non_stop_p ();
4384 target_is_non_stop_p ()
4387 || target_non_stop_enabled
== AUTO_BOOLEAN_TRUE
4388 || (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
4389 && target_always_non_stop_p ()))
4390 && target_can_async_p ());
4396 exists_non_stop_target ()
4398 if (target_is_non_stop_p ())
4401 scoped_restore_current_thread restore_thread
;
4403 for (inferior
*inf
: all_inferiors ())
4405 switch_to_inferior_no_thread (inf
);
4406 if (target_is_non_stop_p ())
4413 /* Controls if targets can report that they always run in non-stop
4414 mode. This is just for maintainers to use when debugging gdb. */
4415 enum auto_boolean target_non_stop_enabled
= AUTO_BOOLEAN_AUTO
;
4417 /* Set callback for maint target-non-stop setting. */
4420 set_maint_target_non_stop (auto_boolean enabled
)
4422 if (have_live_inferiors ())
4423 error (_("Cannot change this setting while the inferior is running."));
4425 target_non_stop_enabled
= enabled
;
4428 /* Get callback for maint target-non-stop setting. */
4431 get_maint_target_non_stop ()
4433 return target_non_stop_enabled
;
4437 show_maint_target_non_stop (ui_file
*file
, int from_tty
,
4438 cmd_list_element
*c
, const char *value
)
4440 if (target_non_stop_enabled
== AUTO_BOOLEAN_AUTO
)
4442 _("Whether the target is always in non-stop mode "
4443 "is %s (currently %s).\n"), value
,
4444 target_always_non_stop_p () ? "on" : "off");
4447 _("Whether the target is always in non-stop mode "
4448 "is %s.\n"), value
);
4451 /* Temporary copies of permission settings. */
4453 static bool may_write_registers_1
= true;
4454 static bool may_write_memory_1
= true;
4455 static bool may_insert_breakpoints_1
= true;
4456 static bool may_insert_tracepoints_1
= true;
4457 static bool may_insert_fast_tracepoints_1
= true;
4458 static bool may_stop_1
= true;
4460 /* Make the user-set values match the real values again. */
4463 update_target_permissions (void)
4465 may_write_registers_1
= may_write_registers
;
4466 may_write_memory_1
= may_write_memory
;
4467 may_insert_breakpoints_1
= may_insert_breakpoints
;
4468 may_insert_tracepoints_1
= may_insert_tracepoints
;
4469 may_insert_fast_tracepoints_1
= may_insert_fast_tracepoints
;
4470 may_stop_1
= may_stop
;
4473 /* The one function handles (most of) the permission flags in the same
4477 set_target_permissions (const char *args
, int from_tty
,
4478 struct cmd_list_element
*c
)
4480 if (target_has_execution ())
4482 update_target_permissions ();
4483 error (_("Cannot change this setting while the inferior is running."));
4486 /* Make the real values match the user-changed values. */
4487 may_insert_breakpoints
= may_insert_breakpoints_1
;
4488 may_insert_tracepoints
= may_insert_tracepoints_1
;
4489 may_insert_fast_tracepoints
= may_insert_fast_tracepoints_1
;
4490 may_stop
= may_stop_1
;
4491 update_observer_mode ();
4494 /* Set some permissions independently of observer mode. */
4497 set_write_memory_registers_permission (const char *args
, int from_tty
,
4498 struct cmd_list_element
*c
)
4500 /* Make the real values match the user-changed values. */
4501 may_write_memory
= may_write_memory_1
;
4502 may_write_registers
= may_write_registers_1
;
4503 update_observer_mode ();
4506 INIT_GDB_FILE (target
)
4508 the_debug_target
= new debug_target ();
4510 add_info ("target", info_target_command
, targ_desc
);
4511 add_info ("files", info_target_command
, targ_desc
);
4513 add_setshow_zuinteger_cmd ("target", class_maintenance
, &targetdebug
, _("\
4514 Set target debugging."), _("\
4515 Show target debugging."), _("\
4516 When non-zero, target debugging is enabled. Higher numbers are more\n\
4520 &setdebuglist
, &showdebuglist
);
4522 add_setshow_boolean_cmd ("trust-readonly-sections", class_support
,
4523 &trust_readonly
, _("\
4524 Set mode for reading from readonly sections."), _("\
4525 Show mode for reading from readonly sections."), _("\
4526 When this mode is on, memory reads from readonly sections (such as .text)\n\
4527 will be read from the object file instead of from the target. This will\n\
4528 result in significant performance improvement for remote targets."),
4530 show_trust_readonly
,
4531 &setlist
, &showlist
);
4533 add_com ("monitor", class_obscure
, do_monitor_command
,
4534 _("Send a command to the remote monitor (remote targets only)."));
4536 add_cmd ("target-stack", class_maintenance
, maintenance_print_target_stack
,
4537 _("Print the name of each layer of the internal target stack."),
4538 &maintenanceprintlist
);
4540 add_setshow_boolean_cmd ("target-async", no_class
,
4542 Set whether gdb controls the inferior in asynchronous mode."), _("\
4543 Show whether gdb controls the inferior in asynchronous mode."), _("\
4544 Tells gdb whether to control the inferior in asynchronous mode."),
4545 set_maint_target_async
,
4546 get_maint_target_async
,
4547 show_maint_target_async
,
4548 &maintenance_set_cmdlist
,
4549 &maintenance_show_cmdlist
);
4551 add_setshow_auto_boolean_cmd ("target-non-stop", no_class
,
4553 Set whether gdb always controls the inferior in non-stop mode."), _("\
4554 Show whether gdb always controls the inferior in non-stop mode."), _("\
4555 Tells gdb whether to control the inferior in non-stop mode."),
4556 set_maint_target_non_stop
,
4557 get_maint_target_non_stop
,
4558 show_maint_target_non_stop
,
4559 &maintenance_set_cmdlist
,
4560 &maintenance_show_cmdlist
);
4562 add_setshow_boolean_cmd ("may-write-registers", class_support
,
4563 &may_write_registers_1
, _("\
4564 Set permission to write into registers."), _("\
4565 Show permission to write into registers."), _("\
4566 When this permission is on, GDB may write into the target's registers.\n\
4567 Otherwise, any sort of write attempt will result in an error."),
4568 set_write_memory_registers_permission
, NULL
,
4569 &setlist
, &showlist
);
4571 add_setshow_boolean_cmd ("may-write-memory", class_support
,
4572 &may_write_memory_1
, _("\
4573 Set permission to write into target memory."), _("\
4574 Show permission to write into target memory."), _("\
4575 When this permission is on, GDB may write into the target's memory.\n\
4576 Otherwise, any sort of write attempt will result in an error."),
4577 set_write_memory_registers_permission
, NULL
,
4578 &setlist
, &showlist
);
4580 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support
,
4581 &may_insert_breakpoints_1
, _("\
4582 Set permission to insert breakpoints in the target."), _("\
4583 Show permission to insert breakpoints in the target."), _("\
4584 When this permission is on, GDB may insert breakpoints in the program.\n\
4585 Otherwise, any sort of insertion attempt will result in an error."),
4586 set_target_permissions
, NULL
,
4587 &setlist
, &showlist
);
4589 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support
,
4590 &may_insert_tracepoints_1
, _("\
4591 Set permission to insert tracepoints in the target."), _("\
4592 Show permission to insert tracepoints in the target."), _("\
4593 When this permission is on, GDB may insert tracepoints in the program.\n\
4594 Otherwise, any sort of insertion attempt will result in an error."),
4595 set_target_permissions
, NULL
,
4596 &setlist
, &showlist
);
4598 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support
,
4599 &may_insert_fast_tracepoints_1
, _("\
4600 Set permission to insert fast tracepoints in the target."), _("\
4601 Show permission to insert fast tracepoints in the target."), _("\
4602 When this permission is on, GDB may insert fast tracepoints.\n\
4603 Otherwise, any sort of insertion attempt will result in an error."),
4604 set_target_permissions
, NULL
,
4605 &setlist
, &showlist
);
4607 add_setshow_boolean_cmd ("may-interrupt", class_support
,
4609 Set permission to interrupt or signal the target."), _("\
4610 Show permission to interrupt or signal the target."), _("\
4611 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4612 Otherwise, any attempt to interrupt or stop will be ignored."),
4613 set_target_permissions
, NULL
,
4614 &setlist
, &showlist
);
4616 add_com ("flash-erase", no_class
, flash_erase_command
,
4617 _("Erase all flash memory regions."));
4619 add_setshow_boolean_cmd ("auto-connect-native-target", class_support
,
4620 &auto_connect_native_target
, _("\
4621 Set whether GDB may automatically connect to the native target."), _("\
4622 Show whether GDB may automatically connect to the native target."), _("\
4623 When on, and GDB is not connected to a target yet, GDB\n\
4624 attempts \"run\" and other commands with the native target."),
4625 NULL
, show_auto_connect_native_target
,
4626 &setlist
, &showlist
);