]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/target.c
f7c43f69a288728750b5dc85626742bca013e694
[thirdparty/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2025 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "target.h"
23 #include "extract-store-integer.h"
24 #include "target-dcache.h"
25 #include "cli/cli-cmds.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "observable.h"
30 #include "bfd.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "dcache.h"
34 #include <signal.h>
35 #include "regcache.h"
36 #include "gdbcore.h"
37 #include "target-descriptions.h"
38 #include "gdbthread.h"
39 #include "solib.h"
40 #include "exec.h"
41 #include "inline-frame.h"
42 #include "tracepoint.h"
43 #include "gdbsupport/fileio.h"
44 #include "gdbsupport/agent.h"
45 #include "auxv.h"
46 #include "target-debug.h"
47 #include "ui.h"
48 #include "event-top.h"
49 #include <algorithm>
50 #include "gdbsupport/byte-vector.h"
51 #include "gdbsupport/search.h"
52 #include "terminal.h"
53 #include "gdbsupport/unordered_map.h"
54 #include "target-connection.h"
55 #include "valprint.h"
56 #include "cli/cli-decode.h"
57 #include "cli/cli-style.h"
58
59 [[noreturn]] static void generic_tls_error (void);
60
61 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
62
63 static int default_verify_memory (struct target_ops *self,
64 const gdb_byte *data,
65 CORE_ADDR memaddr, ULONGEST size);
66
67 [[noreturn]] static void tcomplain (void);
68
69 /* Mapping between target_info objects (which have address identity)
70 and corresponding open/factory function/callback. Each add_target
71 call adds one entry to this map, and registers a "target
72 TARGET_NAME" command that when invoked calls the factory registered
73 here. The target_info object is associated with the command via
74 the command's context. */
75 static gdb::unordered_map<const target_info *, target_open_ftype *>
76 target_factories;
77
78 /* The singleton debug target. */
79
80 static struct target_ops *the_debug_target;
81
82 /* Command list for target. */
83
84 static struct cmd_list_element *targetlist = NULL;
85
86 /* See target.h. */
87
88 bool trust_readonly = false;
89
90 /* Nonzero if we should show true memory content including
91 memory breakpoint inserted by gdb. */
92
93 static int show_memory_breakpoints = 0;
94
95 /* These globals control whether GDB attempts to perform these
96 operations; they are useful for targets that need to prevent
97 inadvertent disruption, such as in non-stop mode. */
98
99 bool may_write_registers = true;
100
101 bool may_write_memory = true;
102
103 bool may_insert_breakpoints = true;
104
105 bool may_insert_tracepoints = true;
106
107 bool may_insert_fast_tracepoints = true;
108
109 bool may_stop = true;
110
111 /* Non-zero if we want to see trace of target level stuff. */
112
113 static unsigned int targetdebug = 0;
114
115 /* Print a "target" debug statement with the function name prefix. */
116
117 #define target_debug_printf(fmt, ...) \
118 debug_prefixed_printf_cond (targetdebug > 0, "target", fmt, ##__VA_ARGS__)
119
120 /* Print a "target" debug statement without the function name prefix. */
121
122 #define target_debug_printf_nofunc(fmt, ...) \
123 debug_prefixed_printf_cond_nofunc (targetdebug > 0, "target", fmt, ##__VA_ARGS__)
124
125 static void
126 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
127 {
128 if (targetdebug)
129 current_inferior ()->push_target (the_debug_target);
130 else
131 current_inferior ()->unpush_target (the_debug_target);
132 }
133
134 static void
135 show_targetdebug (struct ui_file *file, int from_tty,
136 struct cmd_list_element *c, const char *value)
137 {
138 gdb_printf (file, _("Target debugging is %s.\n"), value);
139 }
140
141 int
142 target_has_memory ()
143 {
144 for (target_ops *t = current_inferior ()->top_target ();
145 t != NULL;
146 t = t->beneath ())
147 if (t->has_memory ())
148 return 1;
149
150 return 0;
151 }
152
153 int
154 target_has_stack ()
155 {
156 for (target_ops *t = current_inferior ()->top_target ();
157 t != NULL;
158 t = t->beneath ())
159 if (t->has_stack ())
160 return 1;
161
162 return 0;
163 }
164
165 int
166 target_has_registers ()
167 {
168 for (target_ops *t = current_inferior ()->top_target ();
169 t != NULL;
170 t = t->beneath ())
171 if (t->has_registers ())
172 return 1;
173
174 return 0;
175 }
176
177 bool
178 target_has_execution (inferior *inf)
179 {
180 if (inf == nullptr)
181 inf = current_inferior ();
182
183 for (target_ops *t = inf->top_target ();
184 t != nullptr;
185 t = inf->find_target_beneath (t))
186 if (t->has_execution (inf))
187 return true;
188
189 return false;
190 }
191
192 const char *
193 target_shortname ()
194 {
195 return current_inferior ()->top_target ()->shortname ();
196 }
197
198 /* See target.h. */
199
200 bool
201 target_attach_no_wait ()
202 {
203 return current_inferior ()->top_target ()->attach_no_wait ();
204 }
205
206 /* See target.h. */
207
208 void
209 target_post_attach (int pid)
210 {
211 return current_inferior ()->top_target ()->post_attach (pid);
212 }
213
214 /* See target.h. */
215
216 void
217 target_prepare_to_store (regcache *regcache)
218 {
219 return current_inferior ()->top_target ()->prepare_to_store (regcache);
220 }
221
222 /* See target.h. */
223
224 bool
225 target_supports_enable_disable_tracepoint ()
226 {
227 target_ops *target = current_inferior ()->top_target ();
228
229 return target->supports_enable_disable_tracepoint ();
230 }
231
232 bool
233 target_supports_string_tracing ()
234 {
235 return current_inferior ()->top_target ()->supports_string_tracing ();
236 }
237
238 /* See target.h. */
239
240 bool
241 target_supports_evaluation_of_breakpoint_conditions ()
242 {
243 target_ops *target = current_inferior ()->top_target ();
244
245 return target->supports_evaluation_of_breakpoint_conditions ();
246 }
247
248 /* See target.h. */
249
250 bool
251 target_supports_dumpcore ()
252 {
253 return current_inferior ()->top_target ()->supports_dumpcore ();
254 }
255
256 /* See target.h. */
257
258 void
259 target_dumpcore (const char *filename)
260 {
261 return current_inferior ()->top_target ()->dumpcore (filename);
262 }
263
264 /* See target.h. */
265
266 bool
267 target_can_run_breakpoint_commands ()
268 {
269 return current_inferior ()->top_target ()->can_run_breakpoint_commands ();
270 }
271
272 /* See target.h. */
273
274 void
275 target_files_info ()
276 {
277 return current_inferior ()->top_target ()->files_info ();
278 }
279
280 /* See target.h. */
281
282 int
283 target_insert_fork_catchpoint (int pid)
284 {
285 return current_inferior ()->top_target ()->insert_fork_catchpoint (pid);
286 }
287
288 /* See target.h. */
289
290 int
291 target_remove_fork_catchpoint (int pid)
292 {
293 return current_inferior ()->top_target ()->remove_fork_catchpoint (pid);
294 }
295
296 /* See target.h. */
297
298 int
299 target_insert_vfork_catchpoint (int pid)
300 {
301 return current_inferior ()->top_target ()->insert_vfork_catchpoint (pid);
302 }
303
304 /* See target.h. */
305
306 int
307 target_remove_vfork_catchpoint (int pid)
308 {
309 return current_inferior ()->top_target ()->remove_vfork_catchpoint (pid);
310 }
311
312 /* See target.h. */
313
314 int
315 target_insert_exec_catchpoint (int pid)
316 {
317 return current_inferior ()->top_target ()->insert_exec_catchpoint (pid);
318 }
319
320 /* See target.h. */
321
322 int
323 target_remove_exec_catchpoint (int pid)
324 {
325 return current_inferior ()->top_target ()->remove_exec_catchpoint (pid);
326 }
327
328 /* See target.h. */
329
330 int
331 target_set_syscall_catchpoint (int pid, bool needed, int any_count,
332 gdb::array_view<const int> syscall_counts)
333 {
334 target_ops *target = current_inferior ()->top_target ();
335
336 return target->set_syscall_catchpoint (pid, needed, any_count,
337 syscall_counts);
338 }
339
340 /* See target.h. */
341
342 void
343 target_rcmd (const char *command, struct ui_file *outbuf)
344 {
345 return current_inferior ()->top_target ()->rcmd (command, outbuf);
346 }
347
348 /* See target.h. */
349
350 bool
351 target_can_lock_scheduler ()
352 {
353 target_ops *target = current_inferior ()->top_target ();
354
355 return (target->get_thread_control_capabilities ()& tc_schedlock) != 0;
356 }
357
358 /* See target.h. */
359
360 bool
361 target_can_async_p ()
362 {
363 return target_can_async_p (current_inferior ()->top_target ());
364 }
365
366 /* See target.h. */
367
368 bool
369 target_can_async_p (struct target_ops *target)
370 {
371 if (!target_async_permitted)
372 return false;
373 return target->can_async_p ();
374 }
375
376 /* See target.h. */
377
378 bool
379 target_is_async_p ()
380 {
381 bool result = current_inferior ()->top_target ()->is_async_p ();
382 gdb_assert (target_async_permitted || !result);
383 return result;
384 }
385
386 exec_direction_kind
387 target_execution_direction ()
388 {
389 return current_inferior ()->top_target ()->execution_direction ();
390 }
391
392 /* See target.h. */
393
394 const char *
395 target_extra_thread_info (thread_info *tp)
396 {
397 return current_inferior ()->top_target ()->extra_thread_info (tp);
398 }
399
400 /* See target.h. */
401
402 const char *
403 target_pid_to_exec_file (int pid)
404 {
405 return current_inferior ()->top_target ()->pid_to_exec_file (pid);
406 }
407
408 /* See target.h. */
409
410 gdbarch *
411 target_thread_architecture (ptid_t ptid)
412 {
413 return current_inferior ()->top_target ()->thread_architecture (ptid);
414 }
415
416 /* See target.h. */
417
418 int
419 target_find_memory_regions (find_memory_region_ftype func, void *data)
420 {
421 return current_inferior ()->top_target ()->find_memory_regions (func, data);
422 }
423
424 /* See target.h. */
425
426 gdb::unique_xmalloc_ptr<char>
427 target_make_corefile_notes (bfd *bfd, int *size_p)
428 {
429 return current_inferior ()->top_target ()->make_corefile_notes (bfd, size_p);
430 }
431
432 gdb_byte *
433 target_get_bookmark (const char *args, int from_tty)
434 {
435 return current_inferior ()->top_target ()->get_bookmark (args, from_tty);
436 }
437
438 void
439 target_goto_bookmark (const gdb_byte *arg, int from_tty)
440 {
441 return current_inferior ()->top_target ()->goto_bookmark (arg, from_tty);
442 }
443
444 /* See target.h. */
445
446 bool
447 target_stopped_by_watchpoint ()
448 {
449 return current_inferior ()->top_target ()->stopped_by_watchpoint ();
450 }
451
452 /* See target.h. */
453
454 bool
455 target_stopped_by_sw_breakpoint ()
456 {
457 return current_inferior ()->top_target ()->stopped_by_sw_breakpoint ();
458 }
459
460 bool
461 target_supports_stopped_by_sw_breakpoint ()
462 {
463 target_ops *target = current_inferior ()->top_target ();
464
465 return target->supports_stopped_by_sw_breakpoint ();
466 }
467
468 bool
469 target_stopped_by_hw_breakpoint ()
470 {
471 return current_inferior ()->top_target ()->stopped_by_hw_breakpoint ();
472 }
473
474 bool
475 target_supports_stopped_by_hw_breakpoint ()
476 {
477 target_ops *target = current_inferior ()->top_target ();
478
479 return target->supports_stopped_by_hw_breakpoint ();
480 }
481
482 /* See target.h. */
483
484 bool
485 target_have_steppable_watchpoint ()
486 {
487 return current_inferior ()->top_target ()->have_steppable_watchpoint ();
488 }
489
490 /* See target.h. */
491
492 int
493 target_can_use_hardware_watchpoint (bptype type, int cnt, int othertype)
494 {
495 target_ops *target = current_inferior ()->top_target ();
496
497 return target->can_use_hw_breakpoint (type, cnt, othertype);
498 }
499
500 /* See target.h. */
501
502 int
503 target_region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
504 {
505 target_ops *target = current_inferior ()->top_target ();
506
507 return target->region_ok_for_hw_watchpoint (addr, len);
508 }
509
510
511 int
512 target_can_do_single_step ()
513 {
514 return current_inferior ()->top_target ()->can_do_single_step ();
515 }
516
517 /* See target.h. */
518
519 int
520 target_insert_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type,
521 expression *cond)
522 {
523 target_ops *target = current_inferior ()->top_target ();
524
525 return target->insert_watchpoint (addr, len, type, cond);
526 }
527
528 /* See target.h. */
529
530 int
531 target_remove_watchpoint (CORE_ADDR addr, int len, target_hw_bp_type type,
532 expression *cond)
533 {
534 target_ops *target = current_inferior ()->top_target ();
535
536 return target->remove_watchpoint (addr, len, type, cond);
537 }
538
539 /* See target.h. */
540
541 int
542 target_insert_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt)
543 {
544 target_ops *target = current_inferior ()->top_target ();
545
546 return target->insert_hw_breakpoint (gdbarch, bp_tgt);
547 }
548
549 /* See target.h. */
550
551 int
552 target_remove_hw_breakpoint (gdbarch *gdbarch, bp_target_info *bp_tgt)
553 {
554 target_ops *target = current_inferior ()->top_target ();
555
556 return target->remove_hw_breakpoint (gdbarch, bp_tgt);
557 }
558
559 /* See target.h. */
560
561 bool
562 target_can_accel_watchpoint_condition (CORE_ADDR addr, int len, int type,
563 expression *cond)
564 {
565 target_ops *target = current_inferior ()->top_target ();
566
567 return target->can_accel_watchpoint_condition (addr, len, type, cond);
568 }
569
570 /* See target.h. */
571
572 bool
573 target_can_execute_reverse ()
574 {
575 return current_inferior ()->top_target ()->can_execute_reverse ();
576 }
577
578 ptid_t
579 target_get_ada_task_ptid (long lwp, ULONGEST tid)
580 {
581 return current_inferior ()->top_target ()->get_ada_task_ptid (lwp, tid);
582 }
583
584 bool
585 target_filesystem_is_local ()
586 {
587 return current_inferior ()->top_target ()->filesystem_is_local ();
588 }
589
590 void
591 target_trace_init ()
592 {
593 return current_inferior ()->top_target ()->trace_init ();
594 }
595
596 void
597 target_download_tracepoint (bp_location *location)
598 {
599 return current_inferior ()->top_target ()->download_tracepoint (location);
600 }
601
602 bool
603 target_can_download_tracepoint ()
604 {
605 return current_inferior ()->top_target ()->can_download_tracepoint ();
606 }
607
608 void
609 target_download_trace_state_variable (const trace_state_variable &tsv)
610 {
611 target_ops *target = current_inferior ()->top_target ();
612
613 return target->download_trace_state_variable (tsv);
614 }
615
616 void
617 target_enable_tracepoint (bp_location *loc)
618 {
619 return current_inferior ()->top_target ()->enable_tracepoint (loc);
620 }
621
622 void
623 target_disable_tracepoint (bp_location *loc)
624 {
625 return current_inferior ()->top_target ()->disable_tracepoint (loc);
626 }
627
628 void
629 target_trace_start ()
630 {
631 return current_inferior ()->top_target ()->trace_start ();
632 }
633
634 void
635 target_trace_set_readonly_regions ()
636 {
637 return current_inferior ()->top_target ()->trace_set_readonly_regions ();
638 }
639
640 int
641 target_get_trace_status (trace_status *ts)
642 {
643 return current_inferior ()->top_target ()->get_trace_status (ts);
644 }
645
646 void
647 target_get_tracepoint_status (tracepoint *tp, uploaded_tp *utp)
648 {
649 return current_inferior ()->top_target ()->get_tracepoint_status (tp, utp);
650 }
651
652 void
653 target_trace_stop ()
654 {
655 return current_inferior ()->top_target ()->trace_stop ();
656 }
657
658 int
659 target_trace_find (trace_find_type type, int num,
660 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
661 {
662 target_ops *target = current_inferior ()->top_target ();
663
664 return target->trace_find (type, num, addr1, addr2, tpp);
665 }
666
667 bool
668 target_get_trace_state_variable_value (int tsv, LONGEST *val)
669 {
670 target_ops *target = current_inferior ()->top_target ();
671
672 return target->get_trace_state_variable_value (tsv, val);
673 }
674
675 int
676 target_save_trace_data (const char *filename)
677 {
678 return current_inferior ()->top_target ()->save_trace_data (filename);
679 }
680
681 int
682 target_upload_tracepoints (uploaded_tp **utpp)
683 {
684 return current_inferior ()->top_target ()->upload_tracepoints (utpp);
685 }
686
687 int
688 target_upload_trace_state_variables (uploaded_tsv **utsvp)
689 {
690 target_ops *target = current_inferior ()->top_target ();
691
692 return target->upload_trace_state_variables (utsvp);
693 }
694
695 LONGEST
696 target_get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
697 {
698 target_ops *target = current_inferior ()->top_target ();
699
700 return target->get_raw_trace_data (buf, offset, len);
701 }
702
703 int
704 target_get_min_fast_tracepoint_insn_len ()
705 {
706 target_ops *target = current_inferior ()->top_target ();
707
708 return target->get_min_fast_tracepoint_insn_len ();
709 }
710
711 void
712 target_set_disconnected_tracing (int val)
713 {
714 return current_inferior ()->top_target ()->set_disconnected_tracing (val);
715 }
716
717 void
718 target_set_circular_trace_buffer (int val)
719 {
720 return current_inferior ()->top_target ()->set_circular_trace_buffer (val);
721 }
722
723 void
724 target_set_trace_buffer_size (LONGEST val)
725 {
726 return current_inferior ()->top_target ()->set_trace_buffer_size (val);
727 }
728
729 bool
730 target_set_trace_notes (const char *user, const char *notes,
731 const char *stopnotes)
732 {
733 target_ops *target = current_inferior ()->top_target ();
734
735 return target->set_trace_notes (user, notes, stopnotes);
736 }
737
738 bool
739 target_get_tib_address (ptid_t ptid, CORE_ADDR *addr)
740 {
741 return current_inferior ()->top_target ()->get_tib_address (ptid, addr);
742 }
743
744 void
745 target_set_permissions ()
746 {
747 return current_inferior ()->top_target ()->set_permissions ();
748 }
749
750 bool
751 target_static_tracepoint_marker_at (CORE_ADDR addr,
752 static_tracepoint_marker *marker)
753 {
754 target_ops *target = current_inferior ()->top_target ();
755
756 return target->static_tracepoint_marker_at (addr, marker);
757 }
758
759 std::vector<static_tracepoint_marker>
760 target_static_tracepoint_markers_by_strid (const char *marker_id)
761 {
762 target_ops *target = current_inferior ()->top_target ();
763
764 return target->static_tracepoint_markers_by_strid (marker_id);
765 }
766
767 traceframe_info_up
768 target_traceframe_info ()
769 {
770 return current_inferior ()->top_target ()->traceframe_info ();
771 }
772
773 bool
774 target_use_agent (bool use)
775 {
776 return current_inferior ()->top_target ()->use_agent (use);
777 }
778
779 bool
780 target_can_use_agent ()
781 {
782 return current_inferior ()->top_target ()->can_use_agent ();
783 }
784
785 bool
786 target_augmented_libraries_svr4_read ()
787 {
788 return current_inferior ()->top_target ()->augmented_libraries_svr4_read ();
789 }
790
791 bool
792 target_supports_memory_tagging ()
793 {
794 return current_inferior ()->top_target ()->supports_memory_tagging ();
795 }
796
797 bool
798 target_fetch_memtags (CORE_ADDR address, size_t len, gdb::byte_vector &tags,
799 int type)
800 {
801 return current_inferior ()->top_target ()->fetch_memtags (address, len, tags, type);
802 }
803
804 bool
805 target_store_memtags (CORE_ADDR address, size_t len,
806 const gdb::byte_vector &tags, int type)
807 {
808 return current_inferior ()->top_target ()->store_memtags (address, len, tags, type);
809 }
810
811 bool
812 target_is_address_tagged (gdbarch *gdbarch, CORE_ADDR address)
813 {
814 return current_inferior ()->top_target ()->is_address_tagged (gdbarch, address);
815 }
816
817 x86_xsave_layout
818 target_fetch_x86_xsave_layout ()
819 {
820 return current_inferior ()->top_target ()->fetch_x86_xsave_layout ();
821 }
822
823 void
824 target_log_command (const char *p)
825 {
826 return current_inferior ()->top_target ()->log_command (p);
827 }
828
829 /* This is used to implement the various target commands. */
830
831 static void
832 open_target (const char *args, int from_tty, struct cmd_list_element *command)
833 {
834 auto *ti = static_cast<target_info *> (command->context ());
835 target_open_ftype *func = target_factories[ti];
836
837 target_debug_printf_nofunc ("-> %s->open (...)", ti->shortname);
838 func (args, from_tty);
839 target_debug_printf_nofunc ("<- %s->open (%s, %d)", ti->shortname, args, from_tty);
840 }
841
842 /* See target.h. */
843
844 void
845 add_target (const target_info &t, target_open_ftype *func,
846 completer_ftype *completer)
847 {
848 struct cmd_list_element *c;
849
850 auto &func_slot = target_factories[&t];
851 if (func_slot != nullptr)
852 internal_error (_("target already added (\"%s\")."), t.shortname);
853 func_slot = func;
854
855 if (targetlist == NULL)
856 add_basic_prefix_cmd ("target", class_run, _("\
857 Connect to a target machine or process.\n\
858 The first argument is the type or protocol of the target machine.\n\
859 Remaining arguments are interpreted by the target protocol. For more\n\
860 information on the arguments for a particular protocol, type\n\
861 `help target ' followed by the protocol name."),
862 &targetlist, 0, &cmdlist);
863 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
864 c->set_context ((void *) &t);
865 c->func = open_target;
866 if (completer != NULL)
867 set_cmd_completer (c, completer);
868 }
869
870 /* See target.h. */
871
872 void
873 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
874 {
875 struct cmd_list_element *c;
876
877 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
878 see PR cli/15104. */
879 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
880 c->func = open_target;
881 c->set_context ((void *) &tinfo);
882 gdb::unique_xmalloc_ptr<char> alt
883 = xstrprintf ("target %s", tinfo.shortname);
884 deprecate_cmd (c, alt.release ());
885 }
886
887 /* Stub functions */
888
889 void
890 target_kill (void)
891 {
892
893 /* If the commit_resume_state of the to-be-killed-inferior's process stratum
894 is true, and this inferior is the last live inferior with resumed threads
895 of that target, then we want to leave commit_resume_state to false, as the
896 target won't have any resumed threads anymore. We achieve this with
897 this scoped_disable_commit_resumed. On construction, it will set the flag
898 to false. On destruction, it will only set it to true if there are resumed
899 threads left. */
900 scoped_disable_commit_resumed disable ("killing");
901 current_inferior ()->top_target ()->kill ();
902 }
903
904 void
905 target_load (const char *arg, int from_tty)
906 {
907 target_dcache_invalidate (current_program_space->aspace);
908 current_inferior ()->top_target ()->load (arg, from_tty);
909 }
910
911 /* Define it. */
912
913 target_terminal_state target_terminal::m_terminal_state
914 = target_terminal_state::is_ours;
915
916 /* See target/target.h. */
917
918 void
919 target_terminal::init (void)
920 {
921 current_inferior ()->top_target ()->terminal_init ();
922
923 m_terminal_state = target_terminal_state::is_ours;
924 }
925
926 /* See target/target.h. */
927
928 void
929 target_terminal::inferior (void)
930 {
931 struct ui *ui = current_ui;
932
933 /* A background resume (``run&'') should leave GDB in control of the
934 terminal. */
935 if (ui->prompt_state != PROMPT_BLOCKED)
936 return;
937
938 /* Since we always run the inferior in the main console (unless "set
939 inferior-tty" is in effect), when some UI other than the main one
940 calls target_terminal::inferior, then we leave the main UI's
941 terminal settings as is. */
942 if (ui != main_ui)
943 return;
944
945 /* If GDB is resuming the inferior in the foreground, install
946 inferior's terminal modes. */
947
948 struct inferior *inf = current_inferior ();
949
950 if (inf->terminal_state != target_terminal_state::is_inferior)
951 {
952 current_inferior ()->top_target ()->terminal_inferior ();
953 inf->terminal_state = target_terminal_state::is_inferior;
954 }
955
956 m_terminal_state = target_terminal_state::is_inferior;
957
958 /* If the user hit C-c before, pretend that it was hit right
959 here. */
960 if (check_quit_flag ())
961 target_pass_ctrlc ();
962 }
963
964 /* See target/target.h. */
965
966 void
967 target_terminal::restore_inferior (void)
968 {
969 struct ui *ui = current_ui;
970
971 /* See target_terminal::inferior(). */
972 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
973 return;
974
975 /* Restore the terminal settings of inferiors that were in the
976 foreground but are now ours_for_output due to a temporary
977 target_target::ours_for_output() call. */
978
979 {
980 scoped_restore_current_inferior restore_inferior;
981
982 for (::inferior *inf : all_inferiors ())
983 {
984 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
985 {
986 set_current_inferior (inf);
987 current_inferior ()->top_target ()->terminal_inferior ();
988 inf->terminal_state = target_terminal_state::is_inferior;
989 }
990 }
991 }
992
993 m_terminal_state = target_terminal_state::is_inferior;
994
995 /* If the user hit C-c before, pretend that it was hit right
996 here. */
997 if (check_quit_flag ())
998 target_pass_ctrlc ();
999 }
1000
1001 /* Switch terminal state to DESIRED_STATE, either is_ours, or
1002 is_ours_for_output. */
1003
1004 static void
1005 target_terminal_is_ours_kind (target_terminal_state desired_state)
1006 {
1007 scoped_restore_current_inferior restore_inferior;
1008
1009 /* Must do this in two passes. First, have all inferiors save the
1010 current terminal settings. Then, after all inferiors have add a
1011 chance to safely save the terminal settings, restore GDB's
1012 terminal settings. */
1013
1014 for (inferior *inf : all_inferiors ())
1015 {
1016 if (inf->terminal_state == target_terminal_state::is_inferior)
1017 {
1018 set_current_inferior (inf);
1019 current_inferior ()->top_target ()->terminal_save_inferior ();
1020 }
1021 }
1022
1023 for (inferior *inf : all_inferiors ())
1024 {
1025 /* Note we don't check is_inferior here like above because we
1026 need to handle 'is_ours_for_output -> is_ours' too. Careful
1027 to never transition from 'is_ours' to 'is_ours_for_output',
1028 though. */
1029 if (inf->terminal_state != target_terminal_state::is_ours
1030 && inf->terminal_state != desired_state)
1031 {
1032 set_current_inferior (inf);
1033 if (desired_state == target_terminal_state::is_ours)
1034 current_inferior ()->top_target ()->terminal_ours ();
1035 else if (desired_state == target_terminal_state::is_ours_for_output)
1036 current_inferior ()->top_target ()->terminal_ours_for_output ();
1037 else
1038 gdb_assert_not_reached ("unhandled desired state");
1039 inf->terminal_state = desired_state;
1040 }
1041 }
1042 }
1043
1044 /* See target/target.h. */
1045
1046 void
1047 target_terminal::ours ()
1048 {
1049 struct ui *ui = current_ui;
1050
1051 /* See target_terminal::inferior. */
1052 if (ui != main_ui)
1053 return;
1054
1055 if (m_terminal_state == target_terminal_state::is_ours)
1056 return;
1057
1058 target_terminal_is_ours_kind (target_terminal_state::is_ours);
1059 m_terminal_state = target_terminal_state::is_ours;
1060 }
1061
1062 /* See target/target.h. */
1063
1064 void
1065 target_terminal::ours_for_output ()
1066 {
1067 struct ui *ui = current_ui;
1068
1069 /* See target_terminal::inferior. */
1070 if (ui != main_ui)
1071 return;
1072
1073 if (!target_terminal::is_inferior ())
1074 return;
1075
1076 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
1077 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
1078 }
1079
1080 /* See target/target.h. */
1081
1082 void
1083 target_terminal::info (const char *arg, int from_tty)
1084 {
1085 current_inferior ()->top_target ()->terminal_info (arg, from_tty);
1086 }
1087
1088 /* See target.h. */
1089
1090 bool
1091 target_supports_terminal_ours (void)
1092 {
1093 /* The current top target is the target at the top of the target
1094 stack of the current inferior. While normally there's always an
1095 inferior, we must check for nullptr here because we can get here
1096 very early during startup, before the initial inferior is first
1097 created. */
1098 inferior *inf = current_inferior ();
1099
1100 if (inf == nullptr)
1101 return false;
1102 return inf->top_target ()->supports_terminal_ours ();
1103 }
1104
1105 static void
1106 tcomplain (void)
1107 {
1108 error (_("You can't do that when your target is `%s'"),
1109 current_inferior ()->top_target ()->shortname ());
1110 }
1111
1112 void
1113 noprocess (void)
1114 {
1115 error (_("You can't do that without a process to debug."));
1116 }
1117
1118 static void
1119 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
1120 {
1121 gdb_printf (_("No saved terminal information.\n"));
1122 }
1123
1124 /* A default implementation for the to_get_ada_task_ptid target method.
1125
1126 This function builds the PTID by using both LWP and TID as part of
1127 the PTID lwp and tid elements. The pid used is the pid of the
1128 inferior_ptid. */
1129
1130 static ptid_t
1131 default_get_ada_task_ptid (struct target_ops *self, long lwp, ULONGEST tid)
1132 {
1133 return ptid_t (inferior_ptid.pid (), lwp, tid);
1134 }
1135
1136 static enum exec_direction_kind
1137 default_execution_direction (struct target_ops *self)
1138 {
1139 if (!target_can_execute_reverse ())
1140 return EXEC_FORWARD;
1141 else if (!target_can_async_p ())
1142 return EXEC_FORWARD;
1143 else
1144 gdb_assert_not_reached ("\
1145 to_execution_direction must be implemented for reverse async");
1146 }
1147
1148 /* See target.h. */
1149
1150 void
1151 target_ops_ref_policy::decref (target_ops *t)
1152 {
1153 t->decref ();
1154 if (t->refcount () == 0)
1155 {
1156 if (t->stratum () == process_stratum)
1157 connection_list_remove (as_process_stratum_target (t));
1158
1159 for (inferior *inf : all_inferiors ())
1160 gdb_assert (!inf->target_is_pushed (t));
1161
1162 fileio_handles_invalidate_target (t);
1163
1164 t->close ();
1165
1166 target_debug_printf_nofunc ("closing target");
1167 }
1168 }
1169
1170 /* See target.h. */
1171
1172 void
1173 target_stack::push (target_ops *t)
1174 {
1175 /* We must create a new reference first. It is possible that T is
1176 already pushed on this target stack, in which case we will first
1177 unpush it below, before re-pushing it. If we don't increment the
1178 reference count now, then when we unpush it, we might end up deleting
1179 T, which is not good. */
1180 auto ref = target_ops_ref::new_reference (t);
1181
1182 strata stratum = t->stratum ();
1183
1184 /* If there's already a target at this stratum, remove it. */
1185
1186 if (m_stack[stratum].get () != nullptr)
1187 unpush (m_stack[stratum].get ());
1188
1189 /* Now add the new one. */
1190 m_stack[stratum] = std::move (ref);
1191
1192 if (m_top < stratum)
1193 m_top = stratum;
1194
1195 if (stratum == process_stratum)
1196 connection_list_add (as_process_stratum_target (t));
1197 }
1198
1199 /* See target.h. */
1200
1201 bool
1202 target_stack::unpush (target_ops *t)
1203 {
1204 gdb_assert (t != NULL);
1205
1206 strata stratum = t->stratum ();
1207
1208 if (stratum == dummy_stratum)
1209 internal_error (_("Attempt to unpush the dummy target"));
1210
1211 /* Look for the specified target. Note that a target can only occur
1212 once in the target stack. */
1213
1214 if (m_stack[stratum] != t)
1215 {
1216 /* If T wasn't pushed, quit. Only open targets should be
1217 closed. */
1218 return false;
1219 }
1220
1221 if (m_top == stratum)
1222 m_top = this->find_beneath (t)->stratum ();
1223
1224 /* Move the target reference off the target stack, this sets the pointer
1225 held in m_stack to nullptr, and places the reference in ref. When
1226 ref goes out of scope its reference count will be decremented, which
1227 might cause the target to close.
1228
1229 We have to do it this way, and not just set the value in m_stack to
1230 nullptr directly, because doing so would decrement the reference
1231 count first, which might close the target, and closing the target
1232 does a check that the target is not on any inferiors target_stack. */
1233 auto ref = std::move (m_stack[stratum]);
1234
1235 return true;
1236 }
1237
1238 void
1239 target_unpusher::operator() (struct target_ops *ops) const
1240 {
1241 current_inferior ()->unpush_target (ops);
1242 }
1243
1244 /* Default implementation of to_get_thread_local_address. */
1245
1246 static void
1247 generic_tls_error (void)
1248 {
1249 throw_error (TLS_GENERIC_ERROR,
1250 _("Cannot find thread-local variables on this target"));
1251 }
1252
1253 /* See target.h. */
1254
1255 CORE_ADDR
1256 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset,
1257 const char *name)
1258 {
1259 if (!target_has_registers ())
1260 {
1261 if (name == nullptr)
1262 error (_("Cannot translate TLS address without registers"));
1263 else
1264 error (_("Cannot find address of TLS symbol `%s' without registers"),
1265 name);
1266 }
1267
1268 volatile CORE_ADDR addr = 0;
1269 struct target_ops *target = current_inferior ()->top_target ();
1270 gdbarch *gdbarch = current_inferior ()->arch ();
1271
1272 /* If OBJFILE is a separate debug object file, look for the
1273 original object file. */
1274 if (objfile->separate_debug_objfile_backlink != NULL)
1275 objfile = objfile->separate_debug_objfile_backlink;
1276
1277 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
1278 {
1279 ptid_t ptid = inferior_ptid;
1280
1281 try
1282 {
1283 CORE_ADDR lm_addr;
1284
1285 /* Fetch the load module address for this objfile. */
1286 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
1287 objfile);
1288
1289 if (gdbarch_get_thread_local_address_p (gdbarch))
1290 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
1291 offset);
1292 else
1293 addr = target->get_thread_local_address (ptid, lm_addr, offset);
1294 }
1295 /* If an error occurred, print TLS related messages here. Otherwise,
1296 throw the error to some higher catcher. */
1297 catch (const gdb_exception &ex)
1298 {
1299 int objfile_is_library = (objfile->flags & OBJF_SHARED);
1300
1301 switch (ex.error)
1302 {
1303 case TLS_NO_LIBRARY_SUPPORT_ERROR:
1304 error (_("Cannot find thread-local variables "
1305 "in this thread library."));
1306 break;
1307 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
1308 if (objfile_is_library)
1309 error (_("Cannot find shared library `%s' in dynamic"
1310 " linker's load module list"), objfile_name (objfile));
1311 else
1312 error (_("Cannot find executable file `%s' in dynamic"
1313 " linker's load module list"), objfile_name (objfile));
1314 break;
1315 case TLS_NOT_ALLOCATED_YET_ERROR:
1316 if (objfile_is_library)
1317 error (_("The inferior has not yet allocated storage for"
1318 " thread-local variables in\n"
1319 "the shared library `%s'\n"
1320 "for %s"),
1321 objfile_name (objfile),
1322 target_pid_to_str (ptid).c_str ());
1323 else
1324 error (_("The inferior has not yet allocated storage for"
1325 " thread-local variables in\n"
1326 "the executable `%s'\n"
1327 "for %s"),
1328 objfile_name (objfile),
1329 target_pid_to_str (ptid).c_str ());
1330 break;
1331 case TLS_GENERIC_ERROR:
1332 if (objfile_is_library)
1333 error (_("Cannot find thread-local storage for %s, "
1334 "shared library %s:\n%s"),
1335 target_pid_to_str (ptid).c_str (),
1336 objfile_name (objfile), ex.what ());
1337 else
1338 error (_("Cannot find thread-local storage for %s, "
1339 "executable file %s:\n%s"),
1340 target_pid_to_str (ptid).c_str (),
1341 objfile_name (objfile), ex.what ());
1342 break;
1343 default:
1344 throw;
1345 break;
1346 }
1347 }
1348 }
1349 else
1350 error (_("Cannot find thread-local variables on this target"));
1351
1352 return addr;
1353 }
1354
1355 const char *
1356 target_xfer_status_to_string (enum target_xfer_status status)
1357 {
1358 #define CASE(X) case X: return #X
1359 switch (status)
1360 {
1361 CASE(TARGET_XFER_E_IO);
1362 CASE(TARGET_XFER_UNAVAILABLE);
1363 default:
1364 return "<unknown>";
1365 }
1366 #undef CASE
1367 };
1368
1369
1370 const std::vector<target_section> *
1371 target_get_section_table (struct target_ops *target)
1372 {
1373 return target->get_section_table ();
1374 }
1375
1376 /* Find a section containing ADDR. */
1377
1378 const struct target_section *
1379 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
1380 {
1381 const std::vector<target_section> *table = target_get_section_table (target);
1382
1383 if (table == NULL)
1384 return NULL;
1385
1386 for (const target_section &secp : *table)
1387 {
1388 if (addr >= secp.addr && addr < secp.endaddr)
1389 return &secp;
1390 }
1391 return NULL;
1392 }
1393
1394 /* See target.h. */
1395
1396 const std::vector<target_section> *
1397 default_get_section_table ()
1398 {
1399 return &current_program_space->target_sections ();
1400 }
1401
1402 /* Helper for the memory xfer routines. Checks the attributes of the
1403 memory region of MEMADDR against the read or write being attempted.
1404 If the access is permitted returns true, otherwise returns false.
1405 REGION_P is an optional output parameter. If not-NULL, it is
1406 filled with a pointer to the memory region of MEMADDR. REG_LEN
1407 returns LEN trimmed to the end of the region. This is how much the
1408 caller can continue requesting, if the access is permitted. A
1409 single xfer request must not straddle memory region boundaries. */
1410
1411 static int
1412 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
1413 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
1414 struct mem_region **region_p)
1415 {
1416 struct mem_region *region;
1417
1418 region = lookup_mem_region (memaddr);
1419
1420 if (region_p != NULL)
1421 *region_p = region;
1422
1423 switch (region->attrib.mode)
1424 {
1425 case MEM_RO:
1426 if (writebuf != NULL)
1427 return 0;
1428 break;
1429
1430 case MEM_WO:
1431 if (readbuf != NULL)
1432 return 0;
1433 break;
1434
1435 case MEM_FLASH:
1436 /* We only support writing to flash during "load" for now. */
1437 if (writebuf != NULL)
1438 error (_("Writing to flash memory forbidden in this context"));
1439 break;
1440
1441 case MEM_NONE:
1442 return 0;
1443 }
1444
1445 /* region->hi == 0 means there's no upper bound. */
1446 if (memaddr + len < region->hi || region->hi == 0)
1447 *reg_len = len;
1448 else
1449 *reg_len = region->hi - memaddr;
1450
1451 return 1;
1452 }
1453
1454 /* Read memory from more than one valid target. A core file, for
1455 instance, could have some of memory but delegate other bits to
1456 the target below it. So, we must manually try all targets. */
1457
1458 enum target_xfer_status
1459 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
1460 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
1461 ULONGEST *xfered_len)
1462 {
1463 enum target_xfer_status res;
1464
1465 do
1466 {
1467 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
1468 readbuf, writebuf, memaddr, len,
1469 xfered_len);
1470 if (res == TARGET_XFER_OK)
1471 break;
1472
1473 /* Stop if the target reports that the memory is not available. */
1474 if (res == TARGET_XFER_UNAVAILABLE)
1475 break;
1476
1477 /* Don't continue past targets which have all the memory.
1478 At one time, this code was necessary to read data from
1479 executables / shared libraries when data for the requested
1480 addresses weren't available in the core file. But now the
1481 core target handles this case itself. */
1482 if (ops->has_all_memory ())
1483 break;
1484
1485 ops = ops->beneath ();
1486 }
1487 while (ops != NULL);
1488
1489 /* The cache works at the raw memory level. Make sure the cache
1490 gets updated with raw contents no matter what kind of memory
1491 object was originally being written. Note we do write-through
1492 first, so that if it fails, we don't write to the cache contents
1493 that never made it to the target. */
1494 if (writebuf != NULL
1495 && inferior_ptid != null_ptid
1496 && target_dcache_init_p (current_program_space->aspace)
1497 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1498 {
1499 DCACHE *dcache = target_dcache_get (current_program_space->aspace);
1500
1501 /* Note that writing to an area of memory which wasn't present
1502 in the cache doesn't cause it to be loaded in. */
1503 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1504 }
1505
1506 return res;
1507 }
1508
1509 /* Perform a partial memory transfer.
1510 For docs see target.h, to_xfer_partial. */
1511
1512 static enum target_xfer_status
1513 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1514 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1515 ULONGEST len, ULONGEST *xfered_len)
1516 {
1517 enum target_xfer_status res;
1518 ULONGEST reg_len;
1519 struct mem_region *region;
1520 struct inferior *inf;
1521
1522 /* For accesses to unmapped overlay sections, read directly from
1523 files. Must do this first, as MEMADDR may need adjustment. */
1524 if (readbuf != NULL && overlay_debugging)
1525 {
1526 struct obj_section *section = find_pc_overlay (memaddr);
1527
1528 if (pc_in_unmapped_range (memaddr, section))
1529 {
1530 const std::vector<target_section> *table = target_get_section_table (ops);
1531 const char *section_name = section->the_bfd_section->name;
1532
1533 memaddr = overlay_mapped_address (memaddr, section);
1534
1535 auto match_cb = [=] (const struct target_section *s)
1536 {
1537 return (strcmp (section_name, s->the_bfd_section->name) == 0);
1538 };
1539
1540 return section_table_xfer_memory_partial (readbuf, writebuf,
1541 memaddr, len, xfered_len,
1542 *table, match_cb);
1543 }
1544 }
1545
1546 /* Try the executable files, if "trust-readonly-sections" is set. */
1547 if (readbuf != NULL && trust_readonly)
1548 {
1549 const struct target_section *secp
1550 = target_section_by_addr (ops, memaddr);
1551 if (secp != NULL
1552 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1553 {
1554 const std::vector<target_section> *table = target_get_section_table (ops);
1555 return section_table_xfer_memory_partial (readbuf, writebuf,
1556 memaddr, len, xfered_len,
1557 *table);
1558 }
1559 }
1560
1561 /* Try GDB's internal data cache. */
1562
1563 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1564 &region))
1565 return TARGET_XFER_E_IO;
1566
1567 if (inferior_ptid != null_ptid)
1568 inf = current_inferior ();
1569 else
1570 inf = NULL;
1571
1572 if (inf != NULL
1573 && readbuf != NULL
1574 /* The dcache reads whole cache lines; that doesn't play well
1575 with reading from a trace buffer, because reading outside of
1576 the collected memory range fails. */
1577 && get_traceframe_number () == -1
1578 && (region->attrib.cache
1579 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1580 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1581 {
1582 DCACHE *dcache
1583 = target_dcache_get_or_init (current_program_space->aspace);
1584
1585 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1586 reg_len, xfered_len);
1587 }
1588
1589 /* If none of those methods found the memory we wanted, fall back
1590 to a target partial transfer. Normally a single call to
1591 to_xfer_partial is enough; if it doesn't recognize an object
1592 it will call the to_xfer_partial of the next target down.
1593 But for memory this won't do. Memory is the only target
1594 object which can be read from more than one valid target.
1595 A core file, for instance, could have some of memory but
1596 delegate other bits to the target below it. So, we must
1597 manually try all targets. */
1598
1599 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1600 xfered_len);
1601
1602 /* If we still haven't got anything, return the last error. We
1603 give up. */
1604 return res;
1605 }
1606
1607 /* Perform a partial memory transfer. For docs see target.h,
1608 to_xfer_partial. */
1609
1610 static enum target_xfer_status
1611 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1612 gdb_byte *readbuf, const gdb_byte *writebuf,
1613 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1614 {
1615 enum target_xfer_status res;
1616
1617 /* Zero length requests are ok and require no work. */
1618 if (len == 0)
1619 return TARGET_XFER_EOF;
1620
1621 memaddr
1622 = gdbarch_remove_non_address_bits_memory (current_inferior ()->arch (),
1623 memaddr);
1624
1625 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1626 breakpoint insns, thus hiding out from higher layers whether
1627 there are software breakpoints inserted in the code stream. */
1628 if (readbuf != NULL)
1629 {
1630 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1631 xfered_len);
1632
1633 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1634 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1635 }
1636 else
1637 {
1638 /* A large write request is likely to be partially satisfied
1639 by memory_xfer_partial_1. We will continually malloc
1640 and free a copy of the entire write request for breakpoint
1641 shadow handling even though we only end up writing a small
1642 subset of it. Cap writes to a limit specified by the target
1643 to mitigate this. */
1644 len = std::min (ops->get_memory_xfer_limit (), len);
1645
1646 gdb::byte_vector buf (writebuf, writebuf + len);
1647 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1648 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1649 xfered_len);
1650 }
1651
1652 return res;
1653 }
1654
1655 scoped_restore_tmpl<int>
1656 make_scoped_restore_show_memory_breakpoints (int show)
1657 {
1658 return make_scoped_restore (&show_memory_breakpoints, show);
1659 }
1660
1661 /* For docs see target.h, to_xfer_partial. */
1662
1663 enum target_xfer_status
1664 target_xfer_partial (struct target_ops *ops,
1665 enum target_object object, const char *annex,
1666 gdb_byte *readbuf, const gdb_byte *writebuf,
1667 ULONGEST offset, ULONGEST len,
1668 ULONGEST *xfered_len)
1669 {
1670 enum target_xfer_status retval;
1671
1672 /* Transfer is done when LEN is zero. */
1673 if (len == 0)
1674 return TARGET_XFER_EOF;
1675
1676 if (writebuf && !may_write_memory)
1677 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1678 core_addr_to_string_nz (offset), plongest (len));
1679
1680 *xfered_len = 0;
1681
1682 /* If this is a memory transfer, let the memory-specific code
1683 have a look at it instead. Memory transfers are more
1684 complicated. */
1685 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1686 || object == TARGET_OBJECT_CODE_MEMORY)
1687 retval = memory_xfer_partial (ops, object, readbuf,
1688 writebuf, offset, len, xfered_len);
1689 else if (object == TARGET_OBJECT_RAW_MEMORY)
1690 {
1691 /* Skip/avoid accessing the target if the memory region
1692 attributes block the access. Check this here instead of in
1693 raw_memory_xfer_partial as otherwise we'd end up checking
1694 this twice in the case of the memory_xfer_partial path is
1695 taken; once before checking the dcache, and another in the
1696 tail call to raw_memory_xfer_partial. */
1697 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1698 NULL))
1699 return TARGET_XFER_E_IO;
1700
1701 /* Request the normal memory object from other layers. */
1702 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1703 xfered_len);
1704 }
1705 else
1706 retval = ops->xfer_partial (object, annex, readbuf,
1707 writebuf, offset, len, xfered_len);
1708
1709 if (targetdebug)
1710 {
1711 const unsigned char *myaddr = NULL;
1712 std::string s
1713 = string_printf ("%s:target_xfer_partial "
1714 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1715 ops->shortname (), (int) object,
1716 (annex ? annex : "(null)"),
1717 host_address_to_string (readbuf),
1718 host_address_to_string (writebuf),
1719 core_addr_to_string_nz (offset), pulongest (len),
1720 retval, pulongest (*xfered_len));
1721
1722 if (readbuf)
1723 myaddr = readbuf;
1724 if (writebuf)
1725 myaddr = writebuf;
1726 if (retval == TARGET_XFER_OK && myaddr != NULL)
1727 {
1728 int i;
1729
1730 string_appendf (s, ", bytes =");
1731 for (i = 0; i < *xfered_len; i++)
1732 {
1733 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1734 {
1735 if (targetdebug < 2 && i > 0)
1736 {
1737 string_appendf (s, " ...");
1738 break;
1739 }
1740
1741 target_debug_printf_nofunc ("%s", s.c_str ());
1742 s.clear();
1743 }
1744
1745 string_appendf (s, " %02x", myaddr[i] & 0xff);
1746 }
1747 }
1748
1749 target_debug_printf_nofunc ("%s", s.c_str ());
1750 }
1751
1752 /* Check implementations of to_xfer_partial update *XFERED_LEN
1753 properly. Do assertion after printing debug messages, so that we
1754 can find more clues on assertion failure from debugging messages. */
1755 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1756 gdb_assert (*xfered_len > 0);
1757
1758 return retval;
1759 }
1760
1761 /* Read LEN bytes of target memory at address MEMADDR, placing the
1762 results in GDB's memory at MYADDR. Returns either 0 for success or
1763 -1 if any error occurs.
1764
1765 If an error occurs, no guarantee is made about the contents of the data at
1766 MYADDR. In particular, the caller should not depend upon partial reads
1767 filling the buffer with good data. There is no way for the caller to know
1768 how much good data might have been transferred anyway. Callers that can
1769 deal with partial reads should call target_read (which will retry until
1770 it makes no progress, and then return how much was transferred). */
1771
1772 int
1773 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1774 {
1775 if (target_read (current_inferior ()->top_target (),
1776 TARGET_OBJECT_MEMORY, NULL,
1777 myaddr, memaddr, len) == len)
1778 return 0;
1779 else
1780 return -1;
1781 }
1782
1783 /* See target/target.h. */
1784
1785 int
1786 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1787 {
1788 gdb_byte buf[4];
1789 int r;
1790
1791 r = target_read_memory (memaddr, buf, sizeof buf);
1792 if (r != 0)
1793 return r;
1794 *result = extract_unsigned_integer
1795 (buf, sizeof buf,
1796 gdbarch_byte_order (current_inferior ()->arch ()));
1797 return 0;
1798 }
1799
1800 /* Like target_read_memory, but specify explicitly that this is a read
1801 from the target's raw memory. That is, this read bypasses the
1802 dcache, breakpoint shadowing, etc. */
1803
1804 int
1805 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1806 {
1807 if (target_read (current_inferior ()->top_target (),
1808 TARGET_OBJECT_RAW_MEMORY, NULL,
1809 myaddr, memaddr, len) == len)
1810 return 0;
1811 else
1812 return -1;
1813 }
1814
1815 /* Like target_read_memory, but specify explicitly that this is a read from
1816 the target's stack. This may trigger different cache behavior. */
1817
1818 int
1819 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1820 {
1821 if (target_read (current_inferior ()->top_target (),
1822 TARGET_OBJECT_STACK_MEMORY, NULL,
1823 myaddr, memaddr, len) == len)
1824 return 0;
1825 else
1826 return -1;
1827 }
1828
1829 /* Like target_read_memory, but specify explicitly that this is a read from
1830 the target's code. This may trigger different cache behavior. */
1831
1832 int
1833 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1834 {
1835 if (target_read (current_inferior ()->top_target (),
1836 TARGET_OBJECT_CODE_MEMORY, NULL,
1837 myaddr, memaddr, len) == len)
1838 return 0;
1839 else
1840 return -1;
1841 }
1842
1843 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1844 Returns either 0 for success or -1 if any error occurs. If an
1845 error occurs, no guarantee is made about how much data got written.
1846 Callers that can deal with partial writes should call
1847 target_write. */
1848
1849 int
1850 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1851 {
1852 if (target_write (current_inferior ()->top_target (),
1853 TARGET_OBJECT_MEMORY, NULL,
1854 myaddr, memaddr, len) == len)
1855 return 0;
1856 else
1857 return -1;
1858 }
1859
1860 /* Write LEN bytes from MYADDR to target raw memory at address
1861 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1862 If an error occurs, no guarantee is made about how much data got
1863 written. Callers that can deal with partial writes should call
1864 target_write. */
1865
1866 int
1867 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1868 {
1869 if (target_write (current_inferior ()->top_target (),
1870 TARGET_OBJECT_RAW_MEMORY, NULL,
1871 myaddr, memaddr, len) == len)
1872 return 0;
1873 else
1874 return -1;
1875 }
1876
1877 /* Fetch the target's memory map. */
1878
1879 std::vector<mem_region>
1880 target_memory_map (void)
1881 {
1882 target_ops *target = current_inferior ()->top_target ();
1883 std::vector<mem_region> result = target->memory_map ();
1884 if (result.empty ())
1885 return result;
1886
1887 std::sort (result.begin (), result.end ());
1888
1889 /* Check that regions do not overlap. Simultaneously assign
1890 a numbering for the "mem" commands to use to refer to
1891 each region. */
1892 mem_region *last_one = NULL;
1893 for (size_t ix = 0; ix < result.size (); ix++)
1894 {
1895 mem_region *this_one = &result[ix];
1896 this_one->number = ix;
1897
1898 if (last_one != NULL && last_one->hi > this_one->lo)
1899 {
1900 warning (_("Overlapping regions in memory map: ignoring"));
1901 return std::vector<mem_region> ();
1902 }
1903
1904 last_one = this_one;
1905 }
1906
1907 return result;
1908 }
1909
1910 void
1911 target_flash_erase (ULONGEST address, LONGEST length)
1912 {
1913 current_inferior ()->top_target ()->flash_erase (address, length);
1914 }
1915
1916 void
1917 target_flash_done (void)
1918 {
1919 current_inferior ()->top_target ()->flash_done ();
1920 }
1921
1922 static void
1923 show_trust_readonly (struct ui_file *file, int from_tty,
1924 struct cmd_list_element *c, const char *value)
1925 {
1926 gdb_printf (file,
1927 _("Mode for reading from readonly sections is %s.\n"),
1928 value);
1929 }
1930
1931 /* Target vector read/write partial wrapper functions. */
1932
1933 static enum target_xfer_status
1934 target_read_partial (struct target_ops *ops,
1935 enum target_object object,
1936 const char *annex, gdb_byte *buf,
1937 ULONGEST offset, ULONGEST len,
1938 ULONGEST *xfered_len)
1939 {
1940 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1941 xfered_len);
1942 }
1943
1944 static enum target_xfer_status
1945 target_write_partial (struct target_ops *ops,
1946 enum target_object object,
1947 const char *annex, const gdb_byte *buf,
1948 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1949 {
1950 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1951 xfered_len);
1952 }
1953
1954 /* Wrappers to perform the full transfer. */
1955
1956 /* For docs on target_read see target.h. */
1957
1958 LONGEST
1959 target_read (struct target_ops *ops,
1960 enum target_object object,
1961 const char *annex, gdb_byte *buf,
1962 ULONGEST offset, LONGEST len)
1963 {
1964 LONGEST xfered_total = 0;
1965 int unit_size = 1;
1966
1967 /* If we are reading from a memory object, find the length of an addressable
1968 unit for that architecture. */
1969 if (object == TARGET_OBJECT_MEMORY
1970 || object == TARGET_OBJECT_STACK_MEMORY
1971 || object == TARGET_OBJECT_CODE_MEMORY
1972 || object == TARGET_OBJECT_RAW_MEMORY)
1973 unit_size = gdbarch_addressable_memory_unit_size
1974 (current_inferior ()->arch ());
1975
1976 while (xfered_total < len)
1977 {
1978 ULONGEST xfered_partial;
1979 enum target_xfer_status status;
1980
1981 status = target_read_partial (ops, object, annex,
1982 buf + xfered_total * unit_size,
1983 offset + xfered_total, len - xfered_total,
1984 &xfered_partial);
1985
1986 /* Call an observer, notifying them of the xfer progress? */
1987 if (status == TARGET_XFER_EOF)
1988 return xfered_total;
1989 else if (status == TARGET_XFER_OK)
1990 {
1991 xfered_total += xfered_partial;
1992 QUIT;
1993 }
1994 else
1995 return TARGET_XFER_E_IO;
1996
1997 }
1998 return len;
1999 }
2000
2001 /* Assuming that the entire [begin, end) range of memory cannot be
2002 read, try to read whatever subrange is possible to read.
2003
2004 The function returns, in RESULT, either zero or one memory block.
2005 If there's a readable subrange at the beginning, it is completely
2006 read and returned. Any further readable subrange will not be read.
2007 Otherwise, if there's a readable subrange at the end, it will be
2008 completely read and returned. Any readable subranges before it
2009 (obviously, not starting at the beginning), will be ignored. In
2010 other cases -- either no readable subrange, or readable subrange(s)
2011 that is neither at the beginning, or end, nothing is returned.
2012
2013 The purpose of this function is to handle a read across a boundary
2014 of accessible memory in a case when memory map is not available.
2015 The above restrictions are fine for this case, but will give
2016 incorrect results if the memory is 'patchy'. However, supporting
2017 'patchy' memory would require trying to read every single byte,
2018 and it seems unacceptable solution. Explicit memory map is
2019 recommended for this case -- and target_read_memory_robust will
2020 take care of reading multiple ranges then. */
2021
2022 static void
2023 read_whatever_is_readable (struct target_ops *ops,
2024 const ULONGEST begin, const ULONGEST end,
2025 int unit_size,
2026 std::vector<memory_read_result> *result)
2027 {
2028 ULONGEST current_begin = begin;
2029 ULONGEST current_end = end;
2030 int forward;
2031 ULONGEST xfered_len;
2032
2033 /* If we previously failed to read 1 byte, nothing can be done here. */
2034 if (end - begin <= 1)
2035 return;
2036
2037 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
2038
2039 /* Check that either first or the last byte is readable, and give up
2040 if not. This heuristic is meant to permit reading accessible memory
2041 at the boundary of accessible region. */
2042 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2043 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
2044 {
2045 forward = 1;
2046 ++current_begin;
2047 }
2048 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
2049 buf.get () + (end - begin) - 1, end - 1, 1,
2050 &xfered_len) == TARGET_XFER_OK)
2051 {
2052 forward = 0;
2053 --current_end;
2054 }
2055 else
2056 return;
2057
2058 /* Loop invariant is that the [current_begin, current_end) was previously
2059 found to be not readable as a whole.
2060
2061 Note loop condition -- if the range has 1 byte, we can't divide the range
2062 so there's no point trying further. */
2063 while (current_end - current_begin > 1)
2064 {
2065 ULONGEST first_half_begin, first_half_end;
2066 ULONGEST second_half_begin, second_half_end;
2067 LONGEST xfer;
2068 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
2069
2070 if (forward)
2071 {
2072 first_half_begin = current_begin;
2073 first_half_end = middle;
2074 second_half_begin = middle;
2075 second_half_end = current_end;
2076 }
2077 else
2078 {
2079 first_half_begin = middle;
2080 first_half_end = current_end;
2081 second_half_begin = current_begin;
2082 second_half_end = middle;
2083 }
2084
2085 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2086 buf.get () + (first_half_begin - begin) * unit_size,
2087 first_half_begin,
2088 first_half_end - first_half_begin);
2089
2090 if (xfer == first_half_end - first_half_begin)
2091 {
2092 /* This half reads up fine. So, the error must be in the
2093 other half. */
2094 current_begin = second_half_begin;
2095 current_end = second_half_end;
2096 }
2097 else
2098 {
2099 /* This half is not readable. Because we've tried one byte, we
2100 know some part of this half if actually readable. Go to the next
2101 iteration to divide again and try to read.
2102
2103 We don't handle the other half, because this function only tries
2104 to read a single readable subrange. */
2105 current_begin = first_half_begin;
2106 current_end = first_half_end;
2107 }
2108 }
2109
2110 if (forward)
2111 {
2112 /* The [begin, current_begin) range has been read. */
2113 result->emplace_back (begin, current_end, std::move (buf));
2114 }
2115 else
2116 {
2117 /* The [current_end, end) range has been read. */
2118 LONGEST region_len = end - current_end;
2119
2120 gdb::unique_xmalloc_ptr<gdb_byte> data
2121 ((gdb_byte *) xmalloc (region_len * unit_size));
2122 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
2123 region_len * unit_size);
2124 result->emplace_back (current_end, end, std::move (data));
2125 }
2126 }
2127
2128 std::vector<memory_read_result>
2129 read_memory_robust (struct target_ops *ops,
2130 const ULONGEST offset, const LONGEST len)
2131 {
2132 std::vector<memory_read_result> result;
2133 int unit_size
2134 = gdbarch_addressable_memory_unit_size (current_inferior ()->arch ());
2135
2136 LONGEST xfered_total = 0;
2137 while (xfered_total < len)
2138 {
2139 struct mem_region *region = lookup_mem_region (offset + xfered_total);
2140 LONGEST region_len;
2141
2142 /* If there is no explicit region, a fake one should be created. */
2143 gdb_assert (region);
2144
2145 if (region->hi == 0)
2146 region_len = len - xfered_total;
2147 else
2148 region_len = region->hi - offset;
2149
2150 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
2151 {
2152 /* Cannot read this region. Note that we can end up here only
2153 if the region is explicitly marked inaccessible, or
2154 'inaccessible-by-default' is in effect. */
2155 xfered_total += region_len;
2156 }
2157 else
2158 {
2159 LONGEST to_read = std::min (len - xfered_total, region_len);
2160 gdb::unique_xmalloc_ptr<gdb_byte> buffer
2161 ((gdb_byte *) xmalloc (to_read * unit_size));
2162
2163 LONGEST xfered_partial =
2164 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
2165 offset + xfered_total, to_read);
2166 /* Call an observer, notifying them of the xfer progress? */
2167 if (xfered_partial <= 0)
2168 {
2169 /* Got an error reading full chunk. See if maybe we can read
2170 some subrange. */
2171 read_whatever_is_readable (ops, offset + xfered_total,
2172 offset + xfered_total + to_read,
2173 unit_size, &result);
2174 xfered_total += to_read;
2175 }
2176 else
2177 {
2178 result.emplace_back (offset + xfered_total,
2179 offset + xfered_total + xfered_partial,
2180 std::move (buffer));
2181 xfered_total += xfered_partial;
2182 }
2183 QUIT;
2184 }
2185 }
2186
2187 return result;
2188 }
2189
2190
2191 /* An alternative to target_write with progress callbacks. */
2192
2193 LONGEST
2194 target_write_with_progress (struct target_ops *ops,
2195 enum target_object object,
2196 const char *annex, const gdb_byte *buf,
2197 ULONGEST offset, LONGEST len,
2198 void (*progress) (ULONGEST, void *), void *baton)
2199 {
2200 LONGEST xfered_total = 0;
2201 int unit_size = 1;
2202
2203 /* If we are writing to a memory object, find the length of an addressable
2204 unit for that architecture. */
2205 if (object == TARGET_OBJECT_MEMORY
2206 || object == TARGET_OBJECT_STACK_MEMORY
2207 || object == TARGET_OBJECT_CODE_MEMORY
2208 || object == TARGET_OBJECT_RAW_MEMORY)
2209 unit_size = gdbarch_addressable_memory_unit_size
2210 (current_inferior ()->arch ());
2211
2212 /* Give the progress callback a chance to set up. */
2213 if (progress)
2214 (*progress) (0, baton);
2215
2216 while (xfered_total < len)
2217 {
2218 ULONGEST xfered_partial;
2219 enum target_xfer_status status;
2220
2221 status = target_write_partial (ops, object, annex,
2222 buf + xfered_total * unit_size,
2223 offset + xfered_total, len - xfered_total,
2224 &xfered_partial);
2225
2226 if (status != TARGET_XFER_OK)
2227 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
2228
2229 if (progress)
2230 (*progress) (xfered_partial, baton);
2231
2232 xfered_total += xfered_partial;
2233 QUIT;
2234 }
2235 return len;
2236 }
2237
2238 /* For docs on target_write see target.h. */
2239
2240 LONGEST
2241 target_write (struct target_ops *ops,
2242 enum target_object object,
2243 const char *annex, const gdb_byte *buf,
2244 ULONGEST offset, LONGEST len)
2245 {
2246 return target_write_with_progress (ops, object, annex, buf, offset, len,
2247 NULL, NULL);
2248 }
2249
2250 /* Help for target_read_alloc and target_read_stralloc. See their comments
2251 for details. */
2252
2253 template <typename T>
2254 std::optional<gdb::def_vector<T>>
2255 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
2256 const char *annex)
2257 {
2258 gdb::def_vector<T> buf;
2259 size_t buf_pos = 0;
2260 const int chunk = 4096;
2261
2262 /* This function does not have a length parameter; it reads the
2263 entire OBJECT). Also, it doesn't support objects fetched partly
2264 from one target and partly from another (in a different stratum,
2265 e.g. a core file and an executable). Both reasons make it
2266 unsuitable for reading memory. */
2267 gdb_assert (object != TARGET_OBJECT_MEMORY);
2268
2269 /* Start by reading up to 4K at a time. The target will throttle
2270 this number down if necessary. */
2271 while (1)
2272 {
2273 ULONGEST xfered_len;
2274 enum target_xfer_status status;
2275
2276 buf.resize (buf_pos + chunk);
2277
2278 status = target_read_partial (ops, object, annex,
2279 (gdb_byte *) &buf[buf_pos],
2280 buf_pos, chunk,
2281 &xfered_len);
2282
2283 if (status == TARGET_XFER_EOF)
2284 {
2285 /* Read all there was. */
2286 buf.resize (buf_pos);
2287 return buf;
2288 }
2289 else if (status != TARGET_XFER_OK)
2290 {
2291 /* An error occurred. */
2292 return {};
2293 }
2294
2295 buf_pos += xfered_len;
2296
2297 QUIT;
2298 }
2299 }
2300
2301 /* See target.h */
2302
2303 std::optional<gdb::byte_vector>
2304 target_read_alloc (struct target_ops *ops, enum target_object object,
2305 const char *annex)
2306 {
2307 return target_read_alloc_1<gdb_byte> (ops, object, annex);
2308 }
2309
2310 /* See target.h. */
2311
2312 std::optional<gdb::char_vector>
2313 target_read_stralloc (struct target_ops *ops, enum target_object object,
2314 const char *annex)
2315 {
2316 std::optional<gdb::char_vector> buf
2317 = target_read_alloc_1<char> (ops, object, annex);
2318
2319 if (!buf)
2320 return {};
2321
2322 if (buf->empty () || buf->back () != '\0')
2323 buf->push_back ('\0');
2324
2325 /* Check for embedded NUL bytes; but allow trailing NULs. */
2326 for (auto it = std::find (buf->begin (), buf->end (), '\0');
2327 it != buf->end (); it++)
2328 if (*it != '\0')
2329 {
2330 warning (_("target object %d, annex %s, "
2331 "contained unexpected null characters"),
2332 (int) object, annex ? annex : "(none)");
2333 break;
2334 }
2335
2336 return buf;
2337 }
2338
2339 /* Memory transfer methods. */
2340
2341 void
2342 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
2343 LONGEST len)
2344 {
2345 /* This method is used to read from an alternate, non-current
2346 target. This read must bypass the overlay support (as symbols
2347 don't match this target), and GDB's internal cache (wrong cache
2348 for this target). */
2349 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
2350 != len)
2351 memory_error (TARGET_XFER_E_IO, addr);
2352 }
2353
2354 ULONGEST
2355 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
2356 int len, enum bfd_endian byte_order)
2357 {
2358 gdb_byte buf[sizeof (ULONGEST)];
2359
2360 gdb_assert (len <= sizeof (buf));
2361 get_target_memory (ops, addr, buf, len);
2362 return extract_unsigned_integer (buf, len, byte_order);
2363 }
2364
2365 /* See target.h. */
2366
2367 int
2368 target_insert_breakpoint (struct gdbarch *gdbarch,
2369 struct bp_target_info *bp_tgt)
2370 {
2371 if (!may_insert_breakpoints)
2372 {
2373 warning (_("May not insert breakpoints"));
2374 return 1;
2375 }
2376
2377 target_ops *target = current_inferior ()->top_target ();
2378
2379 return target->insert_breakpoint (gdbarch, bp_tgt);
2380 }
2381
2382 /* See target.h. */
2383
2384 int
2385 target_remove_breakpoint (struct gdbarch *gdbarch,
2386 struct bp_target_info *bp_tgt,
2387 enum remove_bp_reason reason)
2388 {
2389 /* This is kind of a weird case to handle, but the permission might
2390 have been changed after breakpoints were inserted - in which case
2391 we should just take the user literally and assume that any
2392 breakpoints should be left in place. */
2393 if (!may_insert_breakpoints)
2394 {
2395 warning (_("May not remove breakpoints"));
2396 return 1;
2397 }
2398
2399 target_ops *target = current_inferior ()->top_target ();
2400
2401 return target->remove_breakpoint (gdbarch, bp_tgt, reason);
2402 }
2403
2404 static void
2405 info_target_command (const char *args, int from_tty)
2406 {
2407 int has_all_mem = 0;
2408
2409 if (current_program_space->symfile_object_file != NULL)
2410 {
2411 objfile *objf = current_program_space->symfile_object_file;
2412 gdb_printf (_("Symbols from \"%ps\".\n"),
2413 styled_string (file_name_style.style (),
2414 objfile_name (objf)));
2415 }
2416
2417 for (target_ops *t = current_inferior ()->top_target ();
2418 t != NULL;
2419 t = t->beneath ())
2420 {
2421 if (!t->has_memory ())
2422 continue;
2423
2424 if ((int) (t->stratum ()) <= (int) dummy_stratum)
2425 continue;
2426 if (has_all_mem)
2427 gdb_printf (_("\tWhile running this, "
2428 "GDB does not access memory from...\n"));
2429 gdb_printf ("%s:\n", t->longname ());
2430 t->files_info ();
2431 has_all_mem = t->has_all_memory ();
2432 }
2433 }
2434
2435 /* This function is called before any new inferior is created, e.g.
2436 by running a program, attaching, or connecting to a target.
2437 It cleans up any state from previous invocations which might
2438 change between runs. This is a subset of what target_preopen
2439 resets (things which might change between targets). */
2440
2441 void
2442 target_pre_inferior ()
2443 {
2444 /* Clear out solib state. Otherwise the solib state of the previous
2445 inferior might have survived and is entirely wrong for the new
2446 target. This has been observed on GNU/Linux using glibc 2.3. How
2447 to reproduce:
2448
2449 bash$ ./foo&
2450 [1] 4711
2451 bash$ ./foo&
2452 [1] 4712
2453 bash$ gdb ./foo
2454 [...]
2455 (gdb) attach 4711
2456 (gdb) detach
2457 (gdb) attach 4712
2458 Cannot access memory at address 0xdeadbeef
2459 */
2460
2461 /* In some OSs, the shared library list is the same/global/shared
2462 across inferiors. If code is shared between processes, so are
2463 memory regions and features. */
2464 if (!gdbarch_has_global_solist (current_inferior ()->arch ()))
2465 {
2466 no_shared_libraries (current_program_space);
2467 current_program_space->unset_solib_ops ();
2468
2469 invalidate_target_mem_regions ();
2470
2471 target_clear_description ();
2472 }
2473
2474 /* attach_flag may be set if the previous process associated with
2475 the inferior was attached to. */
2476 current_inferior ()->attach_flag = false;
2477
2478 current_inferior ()->highest_thread_num = 0;
2479
2480 update_previous_thread ();
2481
2482 agent_capability_invalidate ();
2483 }
2484
2485 /* This is to be called by the open routine before it does
2486 anything. */
2487
2488 void
2489 target_preopen (int from_tty)
2490 {
2491 dont_repeat ();
2492
2493 if (current_inferior ()->pid != 0)
2494 {
2495 if (!from_tty
2496 || !target_has_execution ()
2497 || query (_("A program is being debugged already. Kill it? ")))
2498 {
2499 /* Core inferiors actually should be detached, not
2500 killed. */
2501 if (target_has_execution ())
2502 target_kill ();
2503 else
2504 target_detach (current_inferior (), 0);
2505 }
2506 else
2507 error (_("Program not killed."));
2508 }
2509
2510 /* Release reference to old previous thread. */
2511 update_previous_thread ();
2512
2513 /* Calling target_kill may remove the target from the stack. But if
2514 it doesn't (which seems like a win for UDI), remove it now. */
2515 /* Leave the exec target, though. The user may be switching from a
2516 live process to a core of the same program. */
2517 current_inferior ()->pop_all_targets_above (file_stratum);
2518
2519 target_pre_inferior ();
2520 }
2521
2522 /* See target.h. */
2523
2524 void
2525 target_detach (inferior *inf, int from_tty)
2526 {
2527 /* Thread's don't need to be resumed until the end of this function. */
2528 scoped_disable_commit_resumed disable_commit_resumed ("detaching");
2529
2530 /* After we have detached, we will clear the register cache for this inferior
2531 by calling registers_changed_ptid. We must save the pid_ptid before
2532 detaching, as the target detach method will clear inf->pid. */
2533 ptid_t save_pid_ptid = ptid_t (inf->pid);
2534
2535 /* As long as some to_detach implementations rely on the current_inferior
2536 (either directly, or indirectly, like through reading memory), INF needs
2537 to be the current inferior. When that requirement will become no longer
2538 true, then we can remove this assertion. */
2539 gdb_assert (inf == current_inferior ());
2540
2541 prepare_for_detach ();
2542
2543 gdb::observers::inferior_pre_detach.notify (inf);
2544
2545 /* Hold a strong reference because detaching may unpush the
2546 target. */
2547 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
2548
2549 current_inferior ()->top_target ()->detach (inf, from_tty);
2550
2551 process_stratum_target *proc_target
2552 = as_process_stratum_target (proc_target_ref.get ());
2553
2554 registers_changed_ptid (proc_target, save_pid_ptid);
2555
2556 /* We have to ensure we have no frame cache left. Normally,
2557 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2558 inferior_ptid matches save_pid_ptid, but in our case, it does not
2559 call it, as inferior_ptid has been reset. */
2560 reinit_frame_cache ();
2561
2562 disable_commit_resumed.reset_and_commit ();
2563 }
2564
2565 void
2566 target_disconnect (const char *args, int from_tty)
2567 {
2568 /* If we're in breakpoints-always-inserted mode or if breakpoints
2569 are global across processes, we have to remove them before
2570 disconnecting. */
2571 remove_breakpoints ();
2572
2573 current_inferior ()->top_target ()->disconnect (args, from_tty);
2574 }
2575
2576 /* See target/target.h. */
2577
2578 ptid_t
2579 target_wait (ptid_t ptid, struct target_waitstatus *status,
2580 target_wait_flags options)
2581 {
2582 target_ops *target = current_inferior ()->top_target ();
2583 process_stratum_target *proc_target = current_inferior ()->process_target ();
2584
2585 gdb_assert (!proc_target->commit_resumed_state);
2586
2587 if (!target_can_async_p (target))
2588 gdb_assert ((options & TARGET_WNOHANG) == 0);
2589
2590 ptid_t event_ptid = null_ptid;
2591 SCOPE_EXIT { gdb::observers::target_post_wait.notify (event_ptid); };
2592 gdb::observers::target_pre_wait.notify (ptid);
2593 event_ptid = target->wait (ptid, status, options);
2594
2595 return event_ptid;
2596 }
2597
2598 /* See target.h. */
2599
2600 ptid_t
2601 default_target_wait (struct target_ops *ops,
2602 ptid_t ptid, struct target_waitstatus *status,
2603 target_wait_flags options)
2604 {
2605 status->set_ignore ();
2606 return minus_one_ptid;
2607 }
2608
2609 std::string
2610 target_pid_to_str (ptid_t ptid)
2611 {
2612 return current_inferior ()->top_target ()->pid_to_str (ptid);
2613 }
2614
2615 const char *
2616 target_thread_name (struct thread_info *info)
2617 {
2618 gdb_assert (info->inf == current_inferior ());
2619
2620 return current_inferior ()->top_target ()->thread_name (info);
2621 }
2622
2623 struct thread_info *
2624 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2625 int handle_len,
2626 struct inferior *inf)
2627 {
2628 target_ops *target = current_inferior ()->top_target ();
2629
2630 return target->thread_handle_to_thread_info (thread_handle, handle_len, inf);
2631 }
2632
2633 /* See target.h. */
2634
2635 gdb::array_view<const gdb_byte>
2636 target_thread_info_to_thread_handle (struct thread_info *tip)
2637 {
2638 target_ops *target = current_inferior ()->top_target ();
2639
2640 return target->thread_info_to_thread_handle (tip);
2641 }
2642
2643 void
2644 target_resume (ptid_t scope_ptid, int step, enum gdb_signal signal)
2645 {
2646 process_stratum_target *curr_target = current_inferior ()->process_target ();
2647 gdb_assert (!curr_target->commit_resumed_state);
2648
2649 gdb_assert (inferior_ptid != null_ptid);
2650 gdb_assert (inferior_ptid.matches (scope_ptid));
2651
2652 target_dcache_invalidate (current_program_space->aspace);
2653
2654 current_inferior ()->top_target ()->resume (scope_ptid, step, signal);
2655
2656 registers_changed_ptid (curr_target, scope_ptid);
2657 /* We only set the internal executing state here. The user/frontend
2658 running state is set at a higher level. This also clears the
2659 thread's stop_pc as side effect. */
2660 set_executing (curr_target, scope_ptid, true);
2661 clear_inline_frame_state (curr_target, scope_ptid);
2662
2663 if (target_can_async_p ())
2664 target_async (true);
2665 }
2666
2667 /* See target.h. */
2668
2669 void
2670 target_commit_resumed ()
2671 {
2672 gdb_assert (current_inferior ()->process_target ()->commit_resumed_state);
2673 current_inferior ()->top_target ()->commit_resumed ();
2674 }
2675
2676 /* See target.h. */
2677
2678 bool
2679 target_has_pending_events ()
2680 {
2681 return current_inferior ()->top_target ()->has_pending_events ();
2682 }
2683
2684 void
2685 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2686 {
2687 current_inferior ()->top_target ()->pass_signals (pass_signals);
2688 }
2689
2690 void
2691 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2692 {
2693 current_inferior ()->top_target ()->program_signals (program_signals);
2694 }
2695
2696 static void
2697 default_follow_fork (struct target_ops *self, inferior *child_inf,
2698 ptid_t child_ptid, target_waitkind fork_kind,
2699 bool follow_child, bool detach_fork)
2700 {
2701 /* Some target returned a fork event, but did not know how to follow it. */
2702 internal_error (_("could not find a target to follow fork"));
2703 }
2704
2705 static void
2706 default_follow_clone (struct target_ops *self, ptid_t child_ptid)
2707 {
2708 /* Some target returned a clone event, but did not know how to follow it. */
2709 internal_error (_("could not find a target to follow clone"));
2710 }
2711
2712 /* See target.h. */
2713
2714 void
2715 target_follow_fork (inferior *child_inf, ptid_t child_ptid,
2716 target_waitkind fork_kind, bool follow_child,
2717 bool detach_fork)
2718 {
2719 target_ops *target = current_inferior ()->top_target ();
2720
2721 /* Check consistency between CHILD_INF, CHILD_PTID, FOLLOW_CHILD and
2722 DETACH_FORK. */
2723 if (child_inf != nullptr)
2724 {
2725 gdb_assert (follow_child || !detach_fork);
2726 gdb_assert (child_inf->pid == child_ptid.pid ());
2727 }
2728 else
2729 gdb_assert (!follow_child && detach_fork);
2730
2731 return target->follow_fork (child_inf, child_ptid, fork_kind, follow_child,
2732 detach_fork);
2733 }
2734
2735 /* See target.h. */
2736
2737 void
2738 target_follow_exec (inferior *follow_inf, ptid_t ptid,
2739 const char *execd_pathname)
2740 {
2741 current_inferior ()->top_target ()->follow_exec (follow_inf, ptid,
2742 execd_pathname);
2743 }
2744
2745 static void
2746 default_mourn_inferior (struct target_ops *self)
2747 {
2748 internal_error (_("could not find a target to follow mourn inferior"));
2749 }
2750
2751 void
2752 target_mourn_inferior (ptid_t ptid)
2753 {
2754 gdb_assert (ptid.pid () == inferior_ptid.pid ());
2755 current_inferior ()->top_target ()->mourn_inferior ();
2756 }
2757
2758 /* Look for a target which can describe architectural features, starting
2759 from TARGET. If we find one, return its description. */
2760
2761 const struct target_desc *
2762 target_read_description (struct target_ops *target)
2763 {
2764 return target->read_description ();
2765 }
2766
2767
2768 /* Default implementation of memory-searching. */
2769
2770 static int
2771 default_search_memory (struct target_ops *self,
2772 CORE_ADDR start_addr, ULONGEST search_space_len,
2773 const gdb_byte *pattern, ULONGEST pattern_len,
2774 CORE_ADDR *found_addrp)
2775 {
2776 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
2777 {
2778 return target_read (current_inferior ()->top_target (),
2779 TARGET_OBJECT_MEMORY, NULL,
2780 result, addr, len) == len;
2781 };
2782
2783 /* Start over from the top of the target stack. */
2784 return simple_search_memory (read_memory, start_addr, search_space_len,
2785 pattern, pattern_len, found_addrp);
2786 }
2787
2788 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2789 sequence of bytes in PATTERN with length PATTERN_LEN.
2790
2791 The result is 1 if found, 0 if not found, and -1 if there was an error
2792 requiring halting of the search (e.g. memory read error).
2793 If the pattern is found the address is recorded in FOUND_ADDRP. */
2794
2795 int
2796 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2797 const gdb_byte *pattern, ULONGEST pattern_len,
2798 CORE_ADDR *found_addrp)
2799 {
2800 target_ops *target = current_inferior ()->top_target ();
2801
2802 return target->search_memory (start_addr, search_space_len, pattern,
2803 pattern_len, found_addrp);
2804 }
2805
2806 /* Look through the currently pushed targets. If none of them will
2807 be able to restart the currently running process, issue an error
2808 message. */
2809
2810 void
2811 target_require_runnable (void)
2812 {
2813 for (target_ops *t = current_inferior ()->top_target ();
2814 t != NULL;
2815 t = t->beneath ())
2816 {
2817 /* If this target knows how to create a new program, then
2818 assume we will still be able to after killing the current
2819 one. Either killing and mourning will not pop T, or else
2820 find_default_run_target will find it again. */
2821 if (t->can_create_inferior ())
2822 return;
2823
2824 /* Do not worry about targets at certain strata that can not
2825 create inferiors. Assume they will be pushed again if
2826 necessary, and continue to the process_stratum. */
2827 if (t->stratum () > process_stratum)
2828 continue;
2829
2830 error (_("The \"%s\" target does not support \"run\". "
2831 "Try \"help target\" or \"continue\"."),
2832 t->shortname ());
2833 }
2834
2835 /* This function is only called if the target is running. In that
2836 case there should have been a process_stratum target and it
2837 should either know how to create inferiors, or not... */
2838 internal_error (_("No targets found"));
2839 }
2840
2841 /* Whether GDB is allowed to fall back to the default run target for
2842 "run", "attach", etc. when no target is connected yet. */
2843 static bool auto_connect_native_target = true;
2844
2845 static void
2846 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2847 struct cmd_list_element *c, const char *value)
2848 {
2849 gdb_printf (file,
2850 _("Whether GDB may automatically connect to the "
2851 "native target is %s.\n"),
2852 value);
2853 }
2854
2855 /* A pointer to the target that can respond to "run" or "attach".
2856 Native targets are always singletons and instantiated early at GDB
2857 startup. */
2858 static target_ops *the_native_target;
2859
2860 /* See target.h. */
2861
2862 void
2863 set_native_target (target_ops *target)
2864 {
2865 if (the_native_target != NULL)
2866 internal_error (_("native target already set (\"%s\")."),
2867 the_native_target->longname ());
2868
2869 the_native_target = target;
2870 }
2871
2872 /* See target.h. */
2873
2874 target_ops *
2875 get_native_target ()
2876 {
2877 return the_native_target;
2878 }
2879
2880 /* Look through the list of possible targets for a target that can
2881 execute a run or attach command without any other data. This is
2882 used to locate the default process stratum.
2883
2884 If DO_MESG is not NULL, the result is always valid (error() is
2885 called for errors); else, return NULL on error. */
2886
2887 static struct target_ops *
2888 find_default_run_target (const char *do_mesg)
2889 {
2890 if (auto_connect_native_target && the_native_target != NULL)
2891 return the_native_target;
2892
2893 if (do_mesg != NULL)
2894 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2895 return NULL;
2896 }
2897
2898 /* See target.h. */
2899
2900 struct target_ops *
2901 find_attach_target (void)
2902 {
2903 /* If a target on the current stack can attach, use it. */
2904 for (target_ops *t = current_inferior ()->top_target ();
2905 t != NULL;
2906 t = t->beneath ())
2907 {
2908 if (t->can_attach ())
2909 return t;
2910 }
2911
2912 /* Otherwise, use the default run target for attaching. */
2913 return find_default_run_target ("attach");
2914 }
2915
2916 /* See target.h. */
2917
2918 struct target_ops *
2919 find_run_target (void)
2920 {
2921 /* If a target on the current stack can run, use it. */
2922 for (target_ops *t = current_inferior ()->top_target ();
2923 t != NULL;
2924 t = t->beneath ())
2925 {
2926 if (t->can_create_inferior ())
2927 return t;
2928 }
2929
2930 /* Otherwise, use the default run target. */
2931 return find_default_run_target ("run");
2932 }
2933
2934 bool
2935 target_ops::info_proc (const char *args, enum info_proc_what what)
2936 {
2937 return false;
2938 }
2939
2940 /* Implement the "info proc" command. */
2941
2942 int
2943 target_info_proc (const char *args, enum info_proc_what what)
2944 {
2945 struct target_ops *t;
2946
2947 /* If we're already connected to something that can get us OS
2948 related data, use it. Otherwise, try using the native
2949 target. */
2950 t = find_target_at (process_stratum);
2951 if (t == NULL)
2952 t = find_default_run_target (NULL);
2953
2954 for (; t != NULL; t = t->beneath ())
2955 {
2956 if (t->info_proc (args, what))
2957 {
2958 target_debug_printf_nofunc ("target_info_proc (\"%s\", %d)", args, what);
2959 return 1;
2960 }
2961 }
2962
2963 return 0;
2964 }
2965
2966 static int
2967 find_default_supports_disable_randomization (struct target_ops *self)
2968 {
2969 struct target_ops *t;
2970
2971 t = find_default_run_target (NULL);
2972 if (t != NULL)
2973 return t->supports_disable_randomization ();
2974 return 0;
2975 }
2976
2977 int
2978 target_supports_disable_randomization (void)
2979 {
2980 return current_inferior ()->top_target ()->supports_disable_randomization ();
2981 }
2982
2983 /* See target/target.h. */
2984
2985 int
2986 target_supports_multi_process (void)
2987 {
2988 return current_inferior ()->top_target ()->supports_multi_process ();
2989 }
2990
2991 /* See target.h. */
2992
2993 std::optional<gdb::char_vector>
2994 target_get_osdata (const char *type)
2995 {
2996 struct target_ops *t;
2997
2998 /* If we're already connected to something that can get us OS
2999 related data, use it. Otherwise, try using the native
3000 target. */
3001 t = find_target_at (process_stratum);
3002 if (t == NULL)
3003 t = find_default_run_target ("get OS data");
3004
3005 if (!t)
3006 return {};
3007
3008 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
3009 }
3010
3011 /* See target.h. */
3012
3013 target_ops *
3014 target_ops::beneath () const
3015 {
3016 return current_inferior ()->find_target_beneath (this);
3017 }
3018
3019 void
3020 target_ops::close ()
3021 {
3022 }
3023
3024 bool
3025 target_ops::can_attach ()
3026 {
3027 return 0;
3028 }
3029
3030 void
3031 target_ops::attach (const char *, int)
3032 {
3033 gdb_assert_not_reached ("target_ops::attach called");
3034 }
3035
3036 bool
3037 target_ops::can_create_inferior ()
3038 {
3039 return 0;
3040 }
3041
3042 void
3043 target_ops::create_inferior (const char *, const std::string &,
3044 char **, int)
3045 {
3046 gdb_assert_not_reached ("target_ops::create_inferior called");
3047 }
3048
3049 bool
3050 target_ops::can_run ()
3051 {
3052 return false;
3053 }
3054
3055 int
3056 target_can_run ()
3057 {
3058 for (target_ops *t = current_inferior ()->top_target ();
3059 t != NULL;
3060 t = t->beneath ())
3061 {
3062 if (t->can_run ())
3063 return 1;
3064 }
3065
3066 return 0;
3067 }
3068
3069 /* Target file operations. */
3070
3071 static struct target_ops *
3072 default_fileio_target (void)
3073 {
3074 struct target_ops *t;
3075
3076 /* If we're already connected to something that can perform
3077 file I/O, use it. Otherwise, try using the native target. */
3078 t = find_target_at (process_stratum);
3079 if (t != NULL)
3080 return t;
3081 return find_default_run_target ("file I/O");
3082 }
3083
3084 /* File handle for target file operations. */
3085
3086 struct fileio_fh_t
3087 {
3088 /* The target on which this file is open. NULL if the target is
3089 meanwhile closed while the handle is open. */
3090 target_ops *target;
3091
3092 /* The file descriptor on the target. */
3093 int target_fd;
3094
3095 /* Check whether this fileio_fh_t represents a closed file. */
3096 bool is_closed ()
3097 {
3098 return target_fd < 0;
3099 }
3100 };
3101
3102 /* Vector of currently open file handles. The value returned by
3103 target_fileio_open and passed as the FD argument to other
3104 target_fileio_* functions is an index into this vector. This
3105 vector's entries are never freed; instead, files are marked as
3106 closed, and the handle becomes available for reuse. */
3107 static std::vector<fileio_fh_t> fileio_fhandles;
3108
3109 /* Index into fileio_fhandles of the lowest handle that might be
3110 closed. This permits handle reuse without searching the whole
3111 list each time a new file is opened. */
3112 static int lowest_closed_fd;
3113
3114 /* See target.h. */
3115
3116 void
3117 fileio_handles_invalidate_target (target_ops *targ)
3118 {
3119 for (fileio_fh_t &fh : fileio_fhandles)
3120 if (fh.target == targ)
3121 fh.target = NULL;
3122 }
3123
3124 /* Acquire a target fileio file descriptor. */
3125
3126 static int
3127 acquire_fileio_fd (target_ops *target, int target_fd)
3128 {
3129 /* Search for closed handles to reuse. */
3130 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
3131 {
3132 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
3133
3134 if (fh.is_closed ())
3135 break;
3136 }
3137
3138 /* Push a new handle if no closed handles were found. */
3139 if (lowest_closed_fd == fileio_fhandles.size ())
3140 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
3141 else
3142 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
3143
3144 /* Should no longer be marked closed. */
3145 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
3146
3147 /* Return its index, and start the next lookup at
3148 the next index. */
3149 return lowest_closed_fd++;
3150 }
3151
3152 /* Release a target fileio file descriptor. */
3153
3154 static void
3155 release_fileio_fd (int fd, fileio_fh_t *fh)
3156 {
3157 fh->target_fd = -1;
3158 lowest_closed_fd = std::min (lowest_closed_fd, fd);
3159 }
3160
3161 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
3162
3163 static fileio_fh_t *
3164 fileio_fd_to_fh (int fd)
3165 {
3166 return &fileio_fhandles[fd];
3167 }
3168
3169
3170 /* Default implementations of file i/o methods. We don't want these
3171 to delegate automatically, because we need to know which target
3172 supported the method, in order to call it directly from within
3173 pread/pwrite, etc. */
3174
3175 int
3176 target_ops::fileio_open (struct inferior *inf, const char *filename,
3177 int flags, int mode, int warn_if_slow,
3178 fileio_error *target_errno)
3179 {
3180 *target_errno = FILEIO_ENOSYS;
3181 return -1;
3182 }
3183
3184 int
3185 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3186 ULONGEST offset, fileio_error *target_errno)
3187 {
3188 *target_errno = FILEIO_ENOSYS;
3189 return -1;
3190 }
3191
3192 int
3193 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
3194 ULONGEST offset, fileio_error *target_errno)
3195 {
3196 *target_errno = FILEIO_ENOSYS;
3197 return -1;
3198 }
3199
3200 int
3201 target_ops::fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno)
3202 {
3203 *target_errno = FILEIO_ENOSYS;
3204 return -1;
3205 }
3206
3207 int
3208 target_ops::fileio_lstat (struct inferior *inf, const char *filename,
3209 struct stat *sb, fileio_error *target_errno)
3210 {
3211 *target_errno = FILEIO_ENOSYS;
3212 return -1;
3213 }
3214
3215 int
3216 target_ops::fileio_close (int fd, fileio_error *target_errno)
3217 {
3218 *target_errno = FILEIO_ENOSYS;
3219 return -1;
3220 }
3221
3222 int
3223 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
3224 fileio_error *target_errno)
3225 {
3226 *target_errno = FILEIO_ENOSYS;
3227 return -1;
3228 }
3229
3230 std::optional<std::string>
3231 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
3232 fileio_error *target_errno)
3233 {
3234 *target_errno = FILEIO_ENOSYS;
3235 return {};
3236 }
3237
3238 /* See target.h. */
3239
3240 int
3241 target_fileio_open (struct inferior *inf, const char *filename,
3242 int flags, int mode, bool warn_if_slow, fileio_error *target_errno)
3243 {
3244 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3245 {
3246 int fd = t->fileio_open (inf, filename, flags, mode,
3247 warn_if_slow, target_errno);
3248
3249 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
3250 continue;
3251
3252 if (fd < 0)
3253 fd = -1;
3254 else
3255 fd = acquire_fileio_fd (t, fd);
3256
3257 target_debug_printf_nofunc ("target_fileio_open (%d,%s,0x%x,0%o,%d) = %d (%d)",
3258 inf == NULL ? 0 : inf->num, filename, flags, mode,
3259 warn_if_slow, fd, fd != -1 ? 0 : *target_errno);
3260 return fd;
3261 }
3262
3263 *target_errno = FILEIO_ENOSYS;
3264 return -1;
3265 }
3266
3267 /* See target.h. */
3268
3269 int
3270 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
3271 ULONGEST offset, fileio_error *target_errno)
3272 {
3273 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3274 int ret = -1;
3275
3276 if (fh->is_closed ())
3277 *target_errno = FILEIO_EBADF;
3278 else if (fh->target == NULL)
3279 *target_errno = FILEIO_EIO;
3280 else
3281 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
3282 len, offset, target_errno);
3283
3284 target_debug_printf_nofunc ("target_fileio_pwrite (%d,...,%d,%s) = %d (%d)", fd,
3285 len, pulongest (offset), ret,
3286 ret != -1 ? 0 : *target_errno);
3287 return ret;
3288 }
3289
3290 /* See target.h. */
3291
3292 int
3293 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
3294 ULONGEST offset, fileio_error *target_errno)
3295 {
3296 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3297 int ret = -1;
3298
3299 if (fh->is_closed ())
3300 *target_errno = FILEIO_EBADF;
3301 else if (fh->target == NULL)
3302 *target_errno = FILEIO_EIO;
3303 else
3304 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
3305 len, offset, target_errno);
3306
3307 target_debug_printf_nofunc ("target_fileio_pread (%d,...,%d,%s) = %d (%d)", fd, len,
3308 pulongest (offset), ret, ret != -1 ? 0 : *target_errno);
3309 return ret;
3310 }
3311
3312 /* See target.h. */
3313
3314 int
3315 target_fileio_fstat (int fd, struct stat *sb, fileio_error *target_errno)
3316 {
3317 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3318 int ret = -1;
3319
3320 if (fh->is_closed ())
3321 *target_errno = FILEIO_EBADF;
3322 else if (fh->target == NULL)
3323 *target_errno = FILEIO_EIO;
3324 else
3325 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
3326
3327 target_debug_printf_nofunc ("target_fileio_fstat (%d) = %d (%d)", fd, ret,
3328 ret != -1 ? 0 : *target_errno);
3329 return ret;
3330 }
3331
3332 /* See target.h. */
3333
3334 int
3335 target_fileio_lstat (struct inferior *inf, const char *filename,
3336 struct stat *sb, fileio_error *target_errno)
3337 {
3338 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3339 {
3340 int ret = t->fileio_lstat (inf, filename, sb, target_errno);
3341
3342 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3343 continue;
3344
3345 target_debug_printf_nofunc ("target_fileio_lstat (%s) = %d (%d)",
3346 filename, ret,
3347 ret != -1 ? 0 : *target_errno);
3348 return ret;
3349 }
3350
3351 *target_errno = FILEIO_ENOSYS;
3352 return -1;
3353 }
3354
3355 /* See target.h. */
3356
3357 int
3358 target_fileio_close (int fd, fileio_error *target_errno)
3359 {
3360 fileio_fh_t *fh = fileio_fd_to_fh (fd);
3361 int ret = -1;
3362
3363 if (fh->is_closed ())
3364 *target_errno = FILEIO_EBADF;
3365 else
3366 {
3367 if (fh->target != NULL)
3368 ret = fh->target->fileio_close (fh->target_fd,
3369 target_errno);
3370 else
3371 ret = 0;
3372 release_fileio_fd (fd, fh);
3373 }
3374
3375 target_debug_printf_nofunc ("target_fileio_close (%d) = %d (%d)", fd, ret,
3376 ret != -1 ? 0 : *target_errno);
3377 return ret;
3378 }
3379
3380 /* See target.h. */
3381
3382 int
3383 target_fileio_unlink (struct inferior *inf, const char *filename,
3384 fileio_error *target_errno)
3385 {
3386 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3387 {
3388 int ret = t->fileio_unlink (inf, filename, target_errno);
3389
3390 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
3391 continue;
3392
3393 target_debug_printf_nofunc ("target_fileio_unlink (%d,%s) = %d (%d)",
3394 inf == NULL ? 0 : inf->num, filename, ret,
3395 ret != -1 ? 0 : *target_errno);
3396 return ret;
3397 }
3398
3399 *target_errno = FILEIO_ENOSYS;
3400 return -1;
3401 }
3402
3403 /* See target.h. */
3404
3405 std::optional<std::string>
3406 target_fileio_readlink (struct inferior *inf, const char *filename,
3407 fileio_error *target_errno)
3408 {
3409 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
3410 {
3411 std::optional<std::string> ret
3412 = t->fileio_readlink (inf, filename, target_errno);
3413
3414 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
3415 continue;
3416
3417 target_debug_printf_nofunc ("target_fileio_readlink (%d,%s) = %s (%d)",
3418 inf == NULL ? 0 : inf->num, filename,
3419 ret ? ret->c_str () : "(nil)",
3420 ret ? 0 : *target_errno);
3421 return ret;
3422 }
3423
3424 *target_errno = FILEIO_ENOSYS;
3425 return {};
3426 }
3427
3428 /* Like scoped_fd, but specific to target fileio. */
3429
3430 class scoped_target_fd
3431 {
3432 public:
3433 explicit scoped_target_fd (int fd) noexcept
3434 : m_fd (fd)
3435 {
3436 }
3437
3438 ~scoped_target_fd ()
3439 {
3440 if (m_fd >= 0)
3441 {
3442 fileio_error target_errno;
3443
3444 target_fileio_close (m_fd, &target_errno);
3445 }
3446 }
3447
3448 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3449
3450 int get () const noexcept
3451 {
3452 return m_fd;
3453 }
3454
3455 private:
3456 int m_fd;
3457 };
3458
3459 /* Read target file FILENAME, in the filesystem as seen by INF. If
3460 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3461 remote targets, the remote stub). Store the result in *BUF_P and
3462 return the size of the transferred data. PADDING additional bytes
3463 are available in *BUF_P. This is a helper function for
3464 target_fileio_read_alloc; see the declaration of that function for
3465 more information. */
3466
3467 static LONGEST
3468 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3469 gdb_byte **buf_p, int padding)
3470 {
3471 size_t buf_alloc, buf_pos;
3472 gdb_byte *buf;
3473 LONGEST n;
3474 fileio_error target_errno;
3475
3476 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3477 0700, false, &target_errno));
3478 if (fd.get () == -1)
3479 return -1;
3480
3481 /* Start by reading up to 4K at a time. The target will throttle
3482 this number down if necessary. */
3483 buf_alloc = 4096;
3484 buf = (gdb_byte *) xmalloc (buf_alloc);
3485 buf_pos = 0;
3486 while (1)
3487 {
3488 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3489 buf_alloc - buf_pos - padding, buf_pos,
3490 &target_errno);
3491 if (n < 0)
3492 {
3493 /* An error occurred. */
3494 xfree (buf);
3495 return -1;
3496 }
3497 else if (n == 0)
3498 {
3499 /* Read all there was. */
3500 if (buf_pos == 0)
3501 xfree (buf);
3502 else
3503 *buf_p = buf;
3504 return buf_pos;
3505 }
3506
3507 buf_pos += n;
3508
3509 /* If the buffer is filling up, expand it. */
3510 if (buf_alloc < buf_pos * 2)
3511 {
3512 buf_alloc *= 2;
3513 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3514 }
3515
3516 QUIT;
3517 }
3518 }
3519
3520 /* See target.h. */
3521
3522 LONGEST
3523 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3524 gdb_byte **buf_p)
3525 {
3526 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3527 }
3528
3529 /* See target.h. */
3530
3531 gdb::unique_xmalloc_ptr<char>
3532 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3533 {
3534 gdb_byte *buffer;
3535 char *bufstr;
3536 LONGEST i, transferred;
3537
3538 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3539 bufstr = (char *) buffer;
3540
3541 if (transferred < 0)
3542 return gdb::unique_xmalloc_ptr<char> (nullptr);
3543
3544 if (transferred == 0)
3545 return make_unique_xstrdup ("");
3546
3547 bufstr[transferred] = 0;
3548
3549 /* Check for embedded NUL bytes; but allow trailing NULs. */
3550 for (i = strlen (bufstr); i < transferred; i++)
3551 if (bufstr[i] != 0)
3552 {
3553 warning (_("target file %s "
3554 "contained unexpected null characters"),
3555 filename);
3556 break;
3557 }
3558
3559 return gdb::unique_xmalloc_ptr<char> (bufstr);
3560 }
3561
3562
3563 static int
3564 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3565 CORE_ADDR addr, int len)
3566 {
3567 gdbarch *arch = current_inferior ()->arch ();
3568 return (len <= gdbarch_ptr_bit (arch) / TARGET_CHAR_BIT);
3569 }
3570
3571 static int
3572 default_watchpoint_addr_within_range (struct target_ops *target,
3573 CORE_ADDR addr,
3574 CORE_ADDR start, int length)
3575 {
3576 return addr >= start && addr < start + length;
3577 }
3578
3579 /* See target.h. */
3580
3581 target_ops *
3582 target_stack::find_beneath (const target_ops *t) const
3583 {
3584 /* Look for a non-empty slot at stratum levels beneath T's. */
3585 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3586 if (m_stack[stratum].get () != NULL)
3587 return m_stack[stratum].get ();
3588
3589 return NULL;
3590 }
3591
3592 /* See target.h. */
3593
3594 struct target_ops *
3595 find_target_at (enum strata stratum)
3596 {
3597 return current_inferior ()->target_at (stratum);
3598 }
3599
3600 \f
3601
3602 /* See target.h */
3603
3604 void
3605 target_announce_detach (int from_tty)
3606 {
3607 pid_t pid;
3608 const char *exec_file;
3609
3610 if (!from_tty)
3611 return;
3612
3613 pid = inferior_ptid.pid ();
3614 exec_file = current_program_space->exec_filename ();
3615 if (exec_file == nullptr)
3616 gdb_printf ("Detaching from pid %s\n",
3617 target_pid_to_str (ptid_t (pid)).c_str ());
3618 else
3619 gdb_printf (_("Detaching from program: %ps, %s\n"),
3620 styled_string (file_name_style.style (), exec_file),
3621 target_pid_to_str (ptid_t (pid)).c_str ());
3622 }
3623
3624 /* See target.h */
3625
3626 void
3627 target_announce_attach (int from_tty, int pid)
3628 {
3629 if (!from_tty)
3630 return;
3631
3632 const char *exec_file = current_program_space->exec_filename ();
3633
3634 if (exec_file != nullptr)
3635 gdb_printf ("Attaching to program: %ps, %s\n",
3636 styled_string (file_name_style.style (), exec_file),
3637 target_pid_to_str (ptid_t (pid)).c_str ());
3638 else
3639 gdb_printf ("Attaching to %s\n",
3640 target_pid_to_str (ptid_t (pid)).c_str ());
3641 }
3642
3643 /* The inferior process has died. Long live the inferior! */
3644
3645 void
3646 generic_mourn_inferior (void)
3647 {
3648 inferior *inf = current_inferior ();
3649
3650 switch_to_no_thread ();
3651
3652 /* Mark breakpoints uninserted in case something tries to delete a
3653 breakpoint while we delete the inferior's threads (which would
3654 fail, since the inferior is long gone). */
3655 mark_breakpoints_out (inf->pspace);
3656
3657 if (inf->pid != 0)
3658 exit_inferior (inf);
3659
3660 /* Note this wipes step-resume breakpoints, so needs to be done
3661 after exit_inferior, which ends up referencing the step-resume
3662 breakpoints through clear_thread_inferior_resources. */
3663 breakpoint_init_inferior (inf, inf_exited);
3664
3665 registers_changed ();
3666
3667 reopen_exec_file ();
3668 reinit_frame_cache ();
3669
3670 if (deprecated_detach_hook)
3671 deprecated_detach_hook ();
3672 }
3673 \f
3674 /* Convert a normal process ID to a string. Returns the string in a
3675 static buffer. */
3676
3677 std::string
3678 normal_pid_to_str (ptid_t ptid)
3679 {
3680 return string_printf ("process %d", ptid.pid ());
3681 }
3682
3683 static std::string
3684 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3685 {
3686 return normal_pid_to_str (ptid);
3687 }
3688
3689 /* Error-catcher for target_find_memory_regions. */
3690 static int
3691 dummy_find_memory_regions (struct target_ops *self,
3692 find_memory_region_ftype ignore1, void *ignore2)
3693 {
3694 error (_("Command not implemented for this target."));
3695 return 0;
3696 }
3697
3698 /* Error-catcher for target_make_corefile_notes. */
3699 static gdb::unique_xmalloc_ptr<char>
3700 dummy_make_corefile_notes (struct target_ops *self,
3701 bfd *ignore1, int *ignore2)
3702 {
3703 error (_("Command not implemented for this target."));
3704 return NULL;
3705 }
3706
3707 #include "target-delegates-gen.c"
3708
3709 /* The initial current target, so that there is always a semi-valid
3710 current target. */
3711
3712 static dummy_target the_dummy_target;
3713
3714 /* See target.h. */
3715
3716 target_ops *
3717 get_dummy_target ()
3718 {
3719 return &the_dummy_target;
3720 }
3721
3722 static const target_info dummy_target_info = {
3723 "None",
3724 N_("None"),
3725 ""
3726 };
3727
3728 strata
3729 dummy_target::stratum () const
3730 {
3731 return dummy_stratum;
3732 }
3733
3734 strata
3735 debug_target::stratum () const
3736 {
3737 return debug_stratum;
3738 }
3739
3740 const target_info &
3741 dummy_target::info () const
3742 {
3743 return dummy_target_info;
3744 }
3745
3746 const target_info &
3747 debug_target::info () const
3748 {
3749 return beneath ()->info ();
3750 }
3751
3752 \f
3753
3754 int
3755 target_thread_alive (ptid_t ptid)
3756 {
3757 return current_inferior ()->top_target ()->thread_alive (ptid);
3758 }
3759
3760 void
3761 target_update_thread_list (void)
3762 {
3763 current_inferior ()->top_target ()->update_thread_list ();
3764 }
3765
3766 void
3767 target_stop (ptid_t ptid)
3768 {
3769 process_stratum_target *proc_target = current_inferior ()->process_target ();
3770
3771 gdb_assert (!proc_target->commit_resumed_state);
3772
3773 if (!may_stop)
3774 {
3775 warning (_("May not interrupt or stop the target, ignoring attempt"));
3776 return;
3777 }
3778
3779 current_inferior ()->top_target ()->stop (ptid);
3780 }
3781
3782 void
3783 target_interrupt ()
3784 {
3785 if (!may_stop)
3786 {
3787 warning (_("May not interrupt or stop the target, ignoring attempt"));
3788 return;
3789 }
3790
3791 current_inferior ()->top_target ()->interrupt ();
3792 }
3793
3794 /* See target.h. */
3795
3796 void
3797 target_pass_ctrlc (void)
3798 {
3799 /* Pass the Ctrl-C to the first target that has a thread
3800 running. */
3801 for (inferior *inf : all_inferiors ())
3802 {
3803 target_ops *proc_target = inf->process_target ();
3804 if (proc_target == NULL)
3805 continue;
3806
3807 for (thread_info *thr : inf->non_exited_threads ())
3808 {
3809 /* A thread can be THREAD_STOPPED and executing, while
3810 running an infcall. */
3811 if (thr->state == THREAD_RUNNING || thr->executing ())
3812 {
3813 /* We can get here quite deep in target layers. Avoid
3814 switching thread context or anything that would
3815 communicate with the target (e.g., to fetch
3816 registers), or flushing e.g., the frame cache. We
3817 just switch inferior in order to be able to call
3818 through the target_stack. */
3819 scoped_restore_current_inferior restore_inferior;
3820 set_current_inferior (inf);
3821 current_inferior ()->top_target ()->pass_ctrlc ();
3822 return;
3823 }
3824 }
3825 }
3826 }
3827
3828 /* See target.h. */
3829
3830 void
3831 default_target_pass_ctrlc (struct target_ops *ops)
3832 {
3833 target_interrupt ();
3834 }
3835
3836 /* See target/target.h. */
3837
3838 void
3839 target_stop_and_wait (ptid_t ptid)
3840 {
3841 struct target_waitstatus status;
3842 bool was_non_stop = non_stop;
3843
3844 non_stop = true;
3845 target_stop (ptid);
3846
3847 target_wait (ptid, &status, 0);
3848
3849 non_stop = was_non_stop;
3850 }
3851
3852 /* See target/target.h. */
3853
3854 void
3855 target_continue_no_signal (ptid_t ptid)
3856 {
3857 target_resume (ptid, 0, GDB_SIGNAL_0);
3858 }
3859
3860 /* See target/target.h. */
3861
3862 void
3863 target_continue (ptid_t ptid, enum gdb_signal signal)
3864 {
3865 target_resume (ptid, 0, signal);
3866 }
3867
3868 /* Concatenate ELEM to LIST, a comma-separated list. */
3869
3870 static void
3871 str_comma_list_concat_elem (std::string *list, const char *elem)
3872 {
3873 if (!list->empty ())
3874 list->append (", ");
3875
3876 list->append (elem);
3877 }
3878
3879 /* Helper for target_options_to_string. If OPT is present in
3880 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3881 OPT is removed from TARGET_OPTIONS. */
3882
3883 static void
3884 do_option (target_wait_flags *target_options, std::string *ret,
3885 target_wait_flag opt, const char *opt_str)
3886 {
3887 if ((*target_options & opt) != 0)
3888 {
3889 str_comma_list_concat_elem (ret, opt_str);
3890 *target_options &= ~opt;
3891 }
3892 }
3893
3894 /* See target.h. */
3895
3896 std::string
3897 target_options_to_string (target_wait_flags target_options)
3898 {
3899 std::string ret;
3900
3901 #define DO_TARG_OPTION(OPT) \
3902 do_option (&target_options, &ret, OPT, #OPT)
3903
3904 DO_TARG_OPTION (TARGET_WNOHANG);
3905
3906 if (target_options != 0)
3907 str_comma_list_concat_elem (&ret, "unknown???");
3908
3909 return ret;
3910 }
3911
3912 void
3913 target_fetch_registers (struct regcache *regcache, int regno)
3914 {
3915 current_inferior ()->top_target ()->fetch_registers (regcache, regno);
3916 target_debug_printf ("%s", regcache->register_debug_string (regno).c_str ());
3917 }
3918
3919 void
3920 target_store_registers (struct regcache *regcache, int regno)
3921 {
3922 if (!may_write_registers)
3923 error (_("Writing to registers is not allowed (regno %d)"), regno);
3924
3925 current_inferior ()->top_target ()->store_registers (regcache, regno);
3926 target_debug_printf ("%s", regcache->register_debug_string (regno).c_str ());
3927 }
3928
3929 int
3930 target_core_of_thread (ptid_t ptid)
3931 {
3932 return current_inferior ()->top_target ()->core_of_thread (ptid);
3933 }
3934
3935 int
3936 simple_verify_memory (struct target_ops *ops,
3937 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3938 {
3939 LONGEST total_xfered = 0;
3940
3941 while (total_xfered < size)
3942 {
3943 ULONGEST xfered_len;
3944 enum target_xfer_status status;
3945 gdb_byte buf[1024];
3946 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3947
3948 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3949 buf, NULL, lma + total_xfered, howmuch,
3950 &xfered_len);
3951 if (status == TARGET_XFER_OK
3952 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3953 {
3954 total_xfered += xfered_len;
3955 QUIT;
3956 }
3957 else
3958 return 0;
3959 }
3960 return 1;
3961 }
3962
3963 /* Default implementation of memory verification. */
3964
3965 static int
3966 default_verify_memory (struct target_ops *self,
3967 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3968 {
3969 /* Start over from the top of the target stack. */
3970 return simple_verify_memory (current_inferior ()->top_target (),
3971 data, memaddr, size);
3972 }
3973
3974 int
3975 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3976 {
3977 target_ops *target = current_inferior ()->top_target ();
3978
3979 return target->verify_memory (data, memaddr, size);
3980 }
3981
3982 /* The documentation for this function is in its prototype declaration in
3983 target.h. */
3984
3985 int
3986 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3987 enum target_hw_bp_type rw)
3988 {
3989 target_ops *target = current_inferior ()->top_target ();
3990
3991 return target->insert_mask_watchpoint (addr, mask, rw);
3992 }
3993
3994 /* The documentation for this function is in its prototype declaration in
3995 target.h. */
3996
3997 int
3998 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3999 enum target_hw_bp_type rw)
4000 {
4001 target_ops *target = current_inferior ()->top_target ();
4002
4003 return target->remove_mask_watchpoint (addr, mask, rw);
4004 }
4005
4006 /* The documentation for this function is in its prototype declaration
4007 in target.h. */
4008
4009 int
4010 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
4011 {
4012 target_ops *target = current_inferior ()->top_target ();
4013
4014 return target->masked_watch_num_registers (addr, mask);
4015 }
4016
4017 /* The documentation for this function is in its prototype declaration
4018 in target.h. */
4019
4020 int
4021 target_ranged_break_num_registers (void)
4022 {
4023 return current_inferior ()->top_target ()->ranged_break_num_registers ();
4024 }
4025
4026 /* See target.h. */
4027
4028 struct btrace_target_info *
4029 target_enable_btrace (thread_info *tp, const struct btrace_config *conf)
4030 {
4031 return current_inferior ()->top_target ()->enable_btrace (tp, conf);
4032 }
4033
4034 /* See target.h. */
4035
4036 void
4037 target_disable_btrace (struct btrace_target_info *btinfo)
4038 {
4039 current_inferior ()->top_target ()->disable_btrace (btinfo);
4040 }
4041
4042 /* See target.h. */
4043
4044 void
4045 target_teardown_btrace (struct btrace_target_info *btinfo)
4046 {
4047 current_inferior ()->top_target ()->teardown_btrace (btinfo);
4048 }
4049
4050 /* See target.h. */
4051
4052 enum btrace_error
4053 target_read_btrace (struct btrace_data *btrace,
4054 struct btrace_target_info *btinfo,
4055 enum btrace_read_type type)
4056 {
4057 target_ops *target = current_inferior ()->top_target ();
4058
4059 return target->read_btrace (btrace, btinfo, type);
4060 }
4061
4062 /* See target.h. */
4063
4064 const struct btrace_config *
4065 target_btrace_conf (const struct btrace_target_info *btinfo)
4066 {
4067 return current_inferior ()->top_target ()->btrace_conf (btinfo);
4068 }
4069
4070 /* See target.h. */
4071
4072 void
4073 target_stop_recording (void)
4074 {
4075 current_inferior ()->top_target ()->stop_recording ();
4076 }
4077
4078 /* See target.h. */
4079
4080 void
4081 target_save_record (const char *filename)
4082 {
4083 current_inferior ()->top_target ()->save_record (filename);
4084 }
4085
4086 /* See target.h. */
4087
4088 int
4089 target_supports_delete_record ()
4090 {
4091 return current_inferior ()->top_target ()->supports_delete_record ();
4092 }
4093
4094 /* See target.h. */
4095
4096 void
4097 target_delete_record (void)
4098 {
4099 current_inferior ()->top_target ()->delete_record ();
4100 }
4101
4102 /* See target.h. */
4103
4104 enum record_method
4105 target_record_method (ptid_t ptid)
4106 {
4107 return current_inferior ()->top_target ()->record_method (ptid);
4108 }
4109
4110 /* See target.h. */
4111
4112 int
4113 target_record_is_replaying (ptid_t ptid)
4114 {
4115 return current_inferior ()->top_target ()->record_is_replaying (ptid);
4116 }
4117
4118 /* See target.h. */
4119
4120 int
4121 target_record_will_replay (ptid_t ptid, int dir)
4122 {
4123 return current_inferior ()->top_target ()->record_will_replay (ptid, dir);
4124 }
4125
4126 /* See target.h. */
4127
4128 void
4129 target_record_stop_replaying (void)
4130 {
4131 current_inferior ()->top_target ()->record_stop_replaying ();
4132 }
4133
4134 /* See target.h. */
4135
4136 void
4137 target_goto_record_begin (void)
4138 {
4139 current_inferior ()->top_target ()->goto_record_begin ();
4140 }
4141
4142 /* See target.h. */
4143
4144 void
4145 target_goto_record_end (void)
4146 {
4147 current_inferior ()->top_target ()->goto_record_end ();
4148 }
4149
4150 /* See target.h. */
4151
4152 void
4153 target_goto_record (ULONGEST insn)
4154 {
4155 current_inferior ()->top_target ()->goto_record (insn);
4156 }
4157
4158 /* See target.h. */
4159
4160 void
4161 target_insn_history (int size, gdb_disassembly_flags flags)
4162 {
4163 current_inferior ()->top_target ()->insn_history (size, flags);
4164 }
4165
4166 /* See target.h. */
4167
4168 void
4169 target_insn_history_from (ULONGEST from, int size,
4170 gdb_disassembly_flags flags)
4171 {
4172 current_inferior ()->top_target ()->insn_history_from (from, size, flags);
4173 }
4174
4175 /* See target.h. */
4176
4177 void
4178 target_insn_history_range (ULONGEST begin, ULONGEST end,
4179 gdb_disassembly_flags flags)
4180 {
4181 current_inferior ()->top_target ()->insn_history_range (begin, end, flags);
4182 }
4183
4184 /* See target.h. */
4185
4186 void
4187 target_call_history (int size, record_print_flags flags)
4188 {
4189 current_inferior ()->top_target ()->call_history (size, flags);
4190 }
4191
4192 /* See target.h. */
4193
4194 void
4195 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
4196 {
4197 current_inferior ()->top_target ()->call_history_from (begin, size, flags);
4198 }
4199
4200 /* See target.h. */
4201
4202 void
4203 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
4204 {
4205 current_inferior ()->top_target ()->call_history_range (begin, end, flags);
4206 }
4207
4208 /* See target.h. */
4209
4210 const struct frame_unwind *
4211 target_get_unwinder (void)
4212 {
4213 return current_inferior ()->top_target ()->get_unwinder ();
4214 }
4215
4216 /* See target.h. */
4217
4218 const struct frame_unwind *
4219 target_get_tailcall_unwinder (void)
4220 {
4221 return current_inferior ()->top_target ()->get_tailcall_unwinder ();
4222 }
4223
4224 /* See target.h. */
4225
4226 void
4227 target_prepare_to_generate_core (void)
4228 {
4229 current_inferior ()->top_target ()->prepare_to_generate_core ();
4230 }
4231
4232 /* See target.h. */
4233
4234 void
4235 target_done_generating_core (void)
4236 {
4237 current_inferior ()->top_target ()->done_generating_core ();
4238 }
4239
4240 \f
4241
4242 static char targ_desc[] =
4243 "Names of targets and files being debugged.\nShows the entire \
4244 stack of targets currently in use (including the exec-file,\n\
4245 core-file, and process, if any), as well as the symbol file name.";
4246
4247 static void
4248 default_rcmd (struct target_ops *self, const char *command,
4249 struct ui_file *output)
4250 {
4251 error (_("\"monitor\" command not supported by this target."));
4252 }
4253
4254 static void
4255 do_monitor_command (const char *cmd, int from_tty)
4256 {
4257 target_rcmd (cmd, gdb_stdtarg);
4258 }
4259
4260 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
4261 ignored. */
4262
4263 void
4264 flash_erase_command (const char *cmd, int from_tty)
4265 {
4266 /* Used to communicate termination of flash operations to the target. */
4267 bool found_flash_region = false;
4268 gdbarch *gdbarch = current_inferior ()->arch ();
4269
4270 std::vector<mem_region> mem_regions = target_memory_map ();
4271
4272 /* Iterate over all memory regions. */
4273 for (const mem_region &m : mem_regions)
4274 {
4275 /* Is this a flash memory region? */
4276 if (m.attrib.mode == MEM_FLASH)
4277 {
4278 found_flash_region = true;
4279 target_flash_erase (m.lo, m.hi - m.lo);
4280
4281 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
4282
4283 current_uiout->message (_("Erasing flash memory region at address "));
4284 current_uiout->field_core_addr ("address", gdbarch, m.lo);
4285 current_uiout->message (", size = ");
4286 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
4287 current_uiout->message ("\n");
4288 }
4289 }
4290
4291 /* Did we do any flash operations? If so, we need to finalize them. */
4292 if (found_flash_region)
4293 target_flash_done ();
4294 else
4295 current_uiout->message (_("No flash memory regions found.\n"));
4296 }
4297
4298 /* Print the name of each layers of our target stack. */
4299
4300 static void
4301 maintenance_print_target_stack (const char *cmd, int from_tty)
4302 {
4303 gdb_printf (_("The current target stack is:\n"));
4304
4305 for (target_ops *t = current_inferior ()->top_target ();
4306 t != NULL;
4307 t = t->beneath ())
4308 {
4309 if (t->stratum () == debug_stratum)
4310 continue;
4311 gdb_printf (" - %s (%s)\n", t->shortname (), t->longname ());
4312 }
4313 }
4314
4315 /* See target.h. */
4316
4317 void
4318 target_async (bool enable)
4319 {
4320 /* If we are trying to enable async mode then it must be the case that
4321 async mode is possible for this target. */
4322 gdb_assert (!enable || target_can_async_p ());
4323 infrun_async (enable);
4324 current_inferior ()->top_target ()->async (enable);
4325 }
4326
4327 /* See target.h. */
4328
4329 void
4330 target_thread_events (bool enable)
4331 {
4332 current_inferior ()->top_target ()->thread_events (enable);
4333 }
4334
4335 /* See target.h. */
4336
4337 bool
4338 target_supports_set_thread_options (gdb_thread_options options)
4339 {
4340 inferior *inf = current_inferior ();
4341 return inf->top_target ()->supports_set_thread_options (options);
4342 }
4343
4344 /* Controls if targets can report that they can/are async. This is
4345 just for maintainers to use when debugging gdb. */
4346 bool target_async_permitted = true;
4347
4348 static void
4349 set_maint_target_async (bool permitted)
4350 {
4351 if (have_live_inferiors ())
4352 error (_("Cannot change this setting while the inferior is running."));
4353
4354 target_async_permitted = permitted;
4355 }
4356
4357 static bool
4358 get_maint_target_async ()
4359 {
4360 return target_async_permitted;
4361 }
4362
4363 static void
4364 show_maint_target_async (ui_file *file, int from_tty,
4365 cmd_list_element *c, const char *value)
4366 {
4367 gdb_printf (file,
4368 _("Controlling the inferior in "
4369 "asynchronous mode is %s.\n"), value);
4370 }
4371
4372 /* Return true if the target operates in non-stop mode even with "set
4373 non-stop off". */
4374
4375 static int
4376 target_always_non_stop_p (void)
4377 {
4378 return current_inferior ()->top_target ()->always_non_stop_p ();
4379 }
4380
4381 /* See target.h. */
4382
4383 bool
4384 target_is_non_stop_p ()
4385 {
4386 return ((non_stop
4387 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
4388 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
4389 && target_always_non_stop_p ()))
4390 && target_can_async_p ());
4391 }
4392
4393 /* See target.h. */
4394
4395 bool
4396 exists_non_stop_target ()
4397 {
4398 if (target_is_non_stop_p ())
4399 return true;
4400
4401 scoped_restore_current_thread restore_thread;
4402
4403 for (inferior *inf : all_inferiors ())
4404 {
4405 switch_to_inferior_no_thread (inf);
4406 if (target_is_non_stop_p ())
4407 return true;
4408 }
4409
4410 return false;
4411 }
4412
4413 /* Controls if targets can report that they always run in non-stop
4414 mode. This is just for maintainers to use when debugging gdb. */
4415 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
4416
4417 /* Set callback for maint target-non-stop setting. */
4418
4419 static void
4420 set_maint_target_non_stop (auto_boolean enabled)
4421 {
4422 if (have_live_inferiors ())
4423 error (_("Cannot change this setting while the inferior is running."));
4424
4425 target_non_stop_enabled = enabled;
4426 }
4427
4428 /* Get callback for maint target-non-stop setting. */
4429
4430 static auto_boolean
4431 get_maint_target_non_stop ()
4432 {
4433 return target_non_stop_enabled;
4434 }
4435
4436 static void
4437 show_maint_target_non_stop (ui_file *file, int from_tty,
4438 cmd_list_element *c, const char *value)
4439 {
4440 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
4441 gdb_printf (file,
4442 _("Whether the target is always in non-stop mode "
4443 "is %s (currently %s).\n"), value,
4444 target_always_non_stop_p () ? "on" : "off");
4445 else
4446 gdb_printf (file,
4447 _("Whether the target is always in non-stop mode "
4448 "is %s.\n"), value);
4449 }
4450
4451 /* Temporary copies of permission settings. */
4452
4453 static bool may_write_registers_1 = true;
4454 static bool may_write_memory_1 = true;
4455 static bool may_insert_breakpoints_1 = true;
4456 static bool may_insert_tracepoints_1 = true;
4457 static bool may_insert_fast_tracepoints_1 = true;
4458 static bool may_stop_1 = true;
4459
4460 /* Make the user-set values match the real values again. */
4461
4462 void
4463 update_target_permissions (void)
4464 {
4465 may_write_registers_1 = may_write_registers;
4466 may_write_memory_1 = may_write_memory;
4467 may_insert_breakpoints_1 = may_insert_breakpoints;
4468 may_insert_tracepoints_1 = may_insert_tracepoints;
4469 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
4470 may_stop_1 = may_stop;
4471 }
4472
4473 /* The one function handles (most of) the permission flags in the same
4474 way. */
4475
4476 static void
4477 set_target_permissions (const char *args, int from_tty,
4478 struct cmd_list_element *c)
4479 {
4480 if (target_has_execution ())
4481 {
4482 update_target_permissions ();
4483 error (_("Cannot change this setting while the inferior is running."));
4484 }
4485
4486 /* Make the real values match the user-changed values. */
4487 may_insert_breakpoints = may_insert_breakpoints_1;
4488 may_insert_tracepoints = may_insert_tracepoints_1;
4489 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4490 may_stop = may_stop_1;
4491 update_observer_mode ();
4492 }
4493
4494 /* Set some permissions independently of observer mode. */
4495
4496 static void
4497 set_write_memory_registers_permission (const char *args, int from_tty,
4498 struct cmd_list_element *c)
4499 {
4500 /* Make the real values match the user-changed values. */
4501 may_write_memory = may_write_memory_1;
4502 may_write_registers = may_write_registers_1;
4503 update_observer_mode ();
4504 }
4505
4506 INIT_GDB_FILE (target)
4507 {
4508 the_debug_target = new debug_target ();
4509
4510 add_info ("target", info_target_command, targ_desc);
4511 add_info ("files", info_target_command, targ_desc);
4512
4513 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4514 Set target debugging."), _("\
4515 Show target debugging."), _("\
4516 When non-zero, target debugging is enabled. Higher numbers are more\n\
4517 verbose."),
4518 set_targetdebug,
4519 show_targetdebug,
4520 &setdebuglist, &showdebuglist);
4521
4522 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4523 &trust_readonly, _("\
4524 Set mode for reading from readonly sections."), _("\
4525 Show mode for reading from readonly sections."), _("\
4526 When this mode is on, memory reads from readonly sections (such as .text)\n\
4527 will be read from the object file instead of from the target. This will\n\
4528 result in significant performance improvement for remote targets."),
4529 NULL,
4530 show_trust_readonly,
4531 &setlist, &showlist);
4532
4533 add_com ("monitor", class_obscure, do_monitor_command,
4534 _("Send a command to the remote monitor (remote targets only)."));
4535
4536 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4537 _("Print the name of each layer of the internal target stack."),
4538 &maintenanceprintlist);
4539
4540 add_setshow_boolean_cmd ("target-async", no_class,
4541 _("\
4542 Set whether gdb controls the inferior in asynchronous mode."), _("\
4543 Show whether gdb controls the inferior in asynchronous mode."), _("\
4544 Tells gdb whether to control the inferior in asynchronous mode."),
4545 set_maint_target_async,
4546 get_maint_target_async,
4547 show_maint_target_async,
4548 &maintenance_set_cmdlist,
4549 &maintenance_show_cmdlist);
4550
4551 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4552 _("\
4553 Set whether gdb always controls the inferior in non-stop mode."), _("\
4554 Show whether gdb always controls the inferior in non-stop mode."), _("\
4555 Tells gdb whether to control the inferior in non-stop mode."),
4556 set_maint_target_non_stop,
4557 get_maint_target_non_stop,
4558 show_maint_target_non_stop,
4559 &maintenance_set_cmdlist,
4560 &maintenance_show_cmdlist);
4561
4562 add_setshow_boolean_cmd ("may-write-registers", class_support,
4563 &may_write_registers_1, _("\
4564 Set permission to write into registers."), _("\
4565 Show permission to write into registers."), _("\
4566 When this permission is on, GDB may write into the target's registers.\n\
4567 Otherwise, any sort of write attempt will result in an error."),
4568 set_write_memory_registers_permission, NULL,
4569 &setlist, &showlist);
4570
4571 add_setshow_boolean_cmd ("may-write-memory", class_support,
4572 &may_write_memory_1, _("\
4573 Set permission to write into target memory."), _("\
4574 Show permission to write into target memory."), _("\
4575 When this permission is on, GDB may write into the target's memory.\n\
4576 Otherwise, any sort of write attempt will result in an error."),
4577 set_write_memory_registers_permission, NULL,
4578 &setlist, &showlist);
4579
4580 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4581 &may_insert_breakpoints_1, _("\
4582 Set permission to insert breakpoints in the target."), _("\
4583 Show permission to insert breakpoints in the target."), _("\
4584 When this permission is on, GDB may insert breakpoints in the program.\n\
4585 Otherwise, any sort of insertion attempt will result in an error."),
4586 set_target_permissions, NULL,
4587 &setlist, &showlist);
4588
4589 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4590 &may_insert_tracepoints_1, _("\
4591 Set permission to insert tracepoints in the target."), _("\
4592 Show permission to insert tracepoints in the target."), _("\
4593 When this permission is on, GDB may insert tracepoints in the program.\n\
4594 Otherwise, any sort of insertion attempt will result in an error."),
4595 set_target_permissions, NULL,
4596 &setlist, &showlist);
4597
4598 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4599 &may_insert_fast_tracepoints_1, _("\
4600 Set permission to insert fast tracepoints in the target."), _("\
4601 Show permission to insert fast tracepoints in the target."), _("\
4602 When this permission is on, GDB may insert fast tracepoints.\n\
4603 Otherwise, any sort of insertion attempt will result in an error."),
4604 set_target_permissions, NULL,
4605 &setlist, &showlist);
4606
4607 add_setshow_boolean_cmd ("may-interrupt", class_support,
4608 &may_stop_1, _("\
4609 Set permission to interrupt or signal the target."), _("\
4610 Show permission to interrupt or signal the target."), _("\
4611 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4612 Otherwise, any attempt to interrupt or stop will be ignored."),
4613 set_target_permissions, NULL,
4614 &setlist, &showlist);
4615
4616 add_com ("flash-erase", no_class, flash_erase_command,
4617 _("Erase all flash memory regions."));
4618
4619 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4620 &auto_connect_native_target, _("\
4621 Set whether GDB may automatically connect to the native target."), _("\
4622 Show whether GDB may automatically connect to the native target."), _("\
4623 When on, and GDB is not connected to a target yet, GDB\n\
4624 attempts \"run\" and other commands with the native target."),
4625 NULL, show_auto_connect_native_target,
4626 &setlist, &showlist);
4627 }