]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/testsuite/lib/mi-support.exp
20546f64bef844804246c24b8517fb21f5480571
[thirdparty/binutils-gdb.git] / gdb / testsuite / lib / mi-support.exp
1 # Copyright 1999-2015 Free Software Foundation, Inc.
2
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public License
14 # along with this program. If not, see <http://www.gnu.org/licenses/>.
15
16 # This file was based on a file written by Fred Fish. (fnf@cygnus.com)
17
18 # Test setup routines that work with the MI interpreter.
19
20 load_lib gdb-utils.exp
21
22 # The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt.
23 # Set it if it is not already set.
24 global mi_gdb_prompt
25 if ![info exists mi_gdb_prompt] then {
26 set mi_gdb_prompt "\[(\]gdb\[)\] \r\n"
27 }
28
29 global mi_inferior_spawn_id
30 global mi_inferior_tty_name
31
32 set MIFLAGS "-i=mi"
33
34 set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n"
35 set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?"
36 set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?"
37 set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n"
38
39 #
40 # mi_gdb_exit -- exit the GDB, killing the target program if necessary
41 #
42 proc mi_gdb_exit {} {
43 catch mi_uncatched_gdb_exit
44 }
45
46 proc mi_uncatched_gdb_exit {} {
47 global GDB
48 global INTERNAL_GDBFLAGS GDBFLAGS
49 global verbose
50 global gdb_spawn_id
51 global gdb_prompt
52 global mi_gdb_prompt
53 global MIFLAGS
54
55 gdb_stop_suppressing_tests
56
57 if { [info procs sid_exit] != "" } {
58 sid_exit
59 }
60
61 if ![info exists gdb_spawn_id] {
62 return
63 }
64
65 verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
66
67 if { [is_remote host] && [board_info host exists fileid] } {
68 send_gdb "999-gdb-exit\n"
69 gdb_expect 10 {
70 -re "y or n" {
71 send_gdb "y\n"
72 exp_continue
73 }
74 -re "Undefined command.*$gdb_prompt $" {
75 send_gdb "quit\n"
76 exp_continue
77 }
78 -re "DOSEXIT code" { }
79 default { }
80 }
81 }
82
83 if ![is_remote host] {
84 remote_close host
85 }
86 unset gdb_spawn_id
87 }
88
89 #
90 # default_mi_gdb_start [INFERIOR_PTY] -- start gdb running, default procedure
91 #
92 # INFERIOR_PTY should be set to separate-inferior-tty to have the inferior work
93 # with it's own PTY. If set to same-inferior-tty, the inferior shares GDB's PTY.
94 # The default value is same-inferior-tty.
95 #
96 # When running over NFS, particularly if running many simultaneous
97 # tests on different hosts all using the same server, things can
98 # get really slow. Give gdb at least 3 minutes to start up.
99 #
100 proc default_mi_gdb_start { args } {
101 global verbose use_gdb_stub
102 global GDB
103 global INTERNAL_GDBFLAGS GDBFLAGS
104 global gdb_prompt
105 global mi_gdb_prompt
106 global timeout
107 global gdb_spawn_id
108 global MIFLAGS
109
110 gdb_stop_suppressing_tests
111 set inferior_pty no-tty
112
113 # Set the default value, it may be overriden later by specific testfile.
114 set use_gdb_stub [target_info exists use_gdb_stub]
115
116 if { [llength $args] == 1} {
117 set inferior_pty [lindex $args 0]
118 }
119
120 set separate_inferior_pty [string match $inferior_pty separate-inferior-tty]
121
122 # Start SID.
123 if { [info procs sid_start] != "" } {
124 verbose "Spawning SID"
125 sid_start
126 }
127
128 verbose "Spawning $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
129
130 if [info exists gdb_spawn_id] {
131 return 0
132 }
133
134 if ![is_remote host] {
135 if { [which $GDB] == 0 } then {
136 perror "$GDB does not exist."
137 exit 1
138 }
139 }
140
141 # Create the new PTY for the inferior process.
142 if { $separate_inferior_pty } {
143 spawn -pty
144 global mi_inferior_spawn_id
145 global mi_inferior_tty_name
146 set mi_inferior_spawn_id $spawn_id
147 set mi_inferior_tty_name $spawn_out(slave,name)
148 }
149
150 set res [remote_spawn host "$GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS [host_info gdb_opts]"]
151 if { $res < 0 || $res == "" } {
152 perror "Spawning $GDB failed."
153 return 1
154 }
155 gdb_expect {
156 -re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" {
157 # We have a new format mi startup prompt. If we are
158 # running mi1, then this is an error as we should be
159 # using the old-style prompt.
160 if { $MIFLAGS == "-i=mi1" } {
161 perror "(mi startup) Got unexpected new mi prompt."
162 remote_close host
163 return -1
164 }
165 verbose "GDB initialized."
166 }
167 -re "\[^~\].*$mi_gdb_prompt$" {
168 # We have an old format mi startup prompt. If we are
169 # not running mi1, then this is an error as we should be
170 # using the new-style prompt.
171 if { $MIFLAGS != "-i=mi1" } {
172 perror "(mi startup) Got unexpected old mi prompt."
173 remote_close host
174 return -1
175 }
176 verbose "GDB initialized."
177 }
178 -re ".*unrecognized option.*for a complete list of options." {
179 untested "Skip mi tests (not compiled with mi support)."
180 remote_close host
181 return -1
182 }
183 -re ".*Interpreter `mi' unrecognized." {
184 untested "Skip mi tests (not compiled with mi support)."
185 remote_close host
186 return -1
187 }
188 timeout {
189 perror "(timeout) GDB never initialized after 10 seconds."
190 remote_close host
191 return -1
192 }
193 }
194 set gdb_spawn_id $res
195
196 # FIXME: mi output does not go through pagers, so these can be removed.
197 # force the height to "unlimited", so no pagers get used
198 send_gdb "100-gdb-set height 0\n"
199 gdb_expect 10 {
200 -re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" {
201 verbose "Setting height to 0." 2
202 }
203 timeout {
204 warning "Couldn't set the height to 0"
205 }
206 }
207 # force the width to "unlimited", so no wraparound occurs
208 send_gdb "101-gdb-set width 0\n"
209 gdb_expect 10 {
210 -re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" {
211 verbose "Setting width to 0." 2
212 }
213 timeout {
214 warning "Couldn't set the width to 0."
215 }
216 }
217 # If allowing the inferior to have its own PTY then assign the inferior
218 # its own terminal device here.
219 if { $separate_inferior_pty } {
220 send_gdb "102-inferior-tty-set $mi_inferior_tty_name\n"
221 gdb_expect 10 {
222 -re ".*102\\\^done\r\n$mi_gdb_prompt$" {
223 verbose "redirect inferior output to new terminal device."
224 }
225 timeout {
226 warning "Couldn't redirect inferior output." 2
227 }
228 }
229 }
230
231 mi_detect_async
232
233 return 0
234 }
235
236 #
237 # Overridable function. You can override this function in your
238 # baseboard file.
239 #
240 proc mi_gdb_start { args } {
241 return [default_mi_gdb_start $args]
242 }
243
244 # Many of the tests depend on setting breakpoints at various places and
245 # running until that breakpoint is reached. At times, we want to start
246 # with a clean-slate with respect to breakpoints, so this utility proc
247 # lets us do this without duplicating this code everywhere.
248 #
249
250 proc mi_delete_breakpoints {} {
251 global mi_gdb_prompt
252
253 # FIXME: The mi operation won't accept a prompt back and will use the 'all' arg
254 send_gdb "102-break-delete\n"
255 gdb_expect 30 {
256 -re "Delete all breakpoints.*y or n.*$" {
257 send_gdb "y\n"
258 exp_continue
259 }
260 -re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" {
261 # This happens if there were no breakpoints
262 }
263 timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return }
264 }
265
266 # The correct output is not "No breakpoints or watchpoints." but an
267 # empty BreakpointTable. Also, a query is not acceptable with mi.
268 send_gdb "103-break-list\n"
269 gdb_expect 30 {
270 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {}
271 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {}
272 -re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"}
273 -re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return }
274 -re "Delete all breakpoints.*or n.*$" {
275 warning "Unexpected prompt for breakpoints deletion"
276 send_gdb "y\n"
277 exp_continue
278 }
279 timeout { perror "-break-list (timeout)" ; return }
280 }
281 }
282
283 proc mi_gdb_reinitialize_dir { subdir } {
284 global mi_gdb_prompt
285 global MIFLAGS
286
287 global suppress_flag
288 if { $suppress_flag } {
289 return
290 }
291
292 if [is_remote host] {
293 return ""
294 }
295
296 if { $MIFLAGS == "-i=mi1" } {
297 send_gdb "104-environment-directory\n"
298 gdb_expect 60 {
299 -re ".*Reinitialize source path to empty.*y or n. " {
300 warning "Got confirmation prompt for dir reinitialization."
301 send_gdb "y\n"
302 gdb_expect 60 {
303 -re "$mi_gdb_prompt$" {}
304 timeout {error "Dir reinitialization failed (timeout)"}
305 }
306 }
307 -re "$mi_gdb_prompt$" {}
308 timeout {error "Dir reinitialization failed (timeout)"}
309 }
310 } else {
311 send_gdb "104-environment-directory -r\n"
312 gdb_expect 60 {
313 -re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {}
314 -re "$mi_gdb_prompt$" {}
315 timeout {error "Dir reinitialization failed (timeout)"}
316 }
317 }
318
319 send_gdb "105-environment-directory $subdir\n"
320 gdb_expect 60 {
321 -re "Source directories searched.*$mi_gdb_prompt$" {
322 verbose "Dir set to $subdir"
323 }
324 -re "105\\\^done.*\r\n$mi_gdb_prompt$" {
325 # FIXME: We return just the prompt for now.
326 verbose "Dir set to $subdir"
327 # perror "Dir \"$subdir\" failed."
328 }
329 }
330 }
331
332 # Send GDB the "target" command.
333 # FIXME: Some of these patterns are not appropriate for MI. Based on
334 # config/monitor.exp:gdb_target_command.
335 proc mi_gdb_target_cmd { targetname serialport } {
336 global mi_gdb_prompt
337
338 set serialport_re [string_to_regexp $serialport]
339 for {set i 1} {$i <= 3} {incr i} {
340 send_gdb "47-target-select $targetname $serialport\n"
341 gdb_expect 60 {
342 -re "47\\^connected.*$mi_gdb_prompt" {
343 verbose "Set target to $targetname"
344 return 0
345 }
346 -re "unknown host.*$mi_gdb_prompt" {
347 verbose "Couldn't look up $serialport"
348 }
349 -re "Couldn't establish connection to remote.*$mi_gdb_prompt$" {
350 verbose "Connection failed"
351 }
352 -re "Remote MIPS debugging.*$mi_gdb_prompt$" {
353 verbose "Set target to $targetname"
354 return 0
355 }
356 -re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" {
357 verbose "Set target to $targetname"
358 return 0
359 }
360 -re "Remote target $targetname connected to.*$mi_gdb_prompt$" {
361 verbose "Set target to $targetname"
362 return 0
363 }
364 -re "Connected to.*$mi_gdb_prompt$" {
365 verbose "Set target to $targetname"
366 return 0
367 }
368 -re "Ending remote.*$mi_gdb_prompt$" { }
369 -re "Connection refused.*$mi_gdb_prompt$" {
370 verbose "Connection refused by remote target. Pausing, and trying again."
371 sleep 5
372 continue
373 }
374 -re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" {
375 unsupported "Non-stop mode not supported"
376 return 1
377 }
378 -re "Timeout reading from remote system.*$mi_gdb_prompt$" {
379 verbose "Got timeout error from gdb."
380 }
381 timeout {
382 send_gdb "\ 3"
383 break
384 }
385 }
386 }
387 return 1
388 }
389
390 #
391 # load a file into the debugger (file command only).
392 # return a -1 if anything goes wrong.
393 #
394 proc mi_gdb_file_cmd { arg } {
395 global verbose
396 global loadpath
397 global loadfile
398 global GDB
399 global mi_gdb_prompt
400 global last_loaded_file
401 upvar timeout timeout
402
403 set last_loaded_file $arg
404
405 if [is_remote host] {
406 set arg [remote_download host $arg]
407 if { $arg == "" } {
408 error "download failed"
409 return -1
410 }
411 }
412
413 # FIXME: Several of these patterns are only acceptable for console
414 # output. Queries are an error for mi.
415 send_gdb "105-file-exec-and-symbols $arg\n"
416 gdb_expect 120 {
417 -re "Reading symbols from.*done.*$mi_gdb_prompt$" {
418 verbose "\t\tLoaded $arg into the $GDB"
419 return 0
420 }
421 -re "has no symbol-table.*$mi_gdb_prompt$" {
422 perror "$arg wasn't compiled with \"-g\""
423 return -1
424 }
425 -re "Load new symbol table from \".*\".*y or n. $" {
426 send_gdb "y\n"
427 gdb_expect 120 {
428 -re "Reading symbols from.*done.*$mi_gdb_prompt$" {
429 verbose "\t\tLoaded $arg with new symbol table into $GDB"
430 # All OK
431 }
432 timeout {
433 perror "(timeout) Couldn't load $arg, other program already loaded."
434 return -1
435 }
436 }
437 }
438 -re "No such file or directory.*$mi_gdb_prompt$" {
439 perror "($arg) No such file or directory\n"
440 return -1
441 }
442 -re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" {
443 # We (MI) are just giving the prompt back for now, instead of giving
444 # some acknowledgement.
445 return 0
446 }
447 timeout {
448 perror "couldn't load $arg into $GDB (timed out)."
449 return -1
450 }
451 eof {
452 # This is an attempt to detect a core dump, but seems not to
453 # work. Perhaps we need to match .* followed by eof, in which
454 # gdb_expect does not seem to have a way to do that.
455 perror "couldn't load $arg into $GDB (end of file)."
456 return -1
457 }
458 }
459 }
460
461 #
462 # connect to the target and download a file, if necessary.
463 # return a -1 if anything goes wrong.
464 #
465 proc mi_gdb_target_load { } {
466 global verbose
467 global loadpath
468 global loadfile
469 global GDB
470 global mi_gdb_prompt
471
472 if [target_info exists gdb_load_timeout] {
473 set loadtimeout [target_info gdb_load_timeout]
474 } else {
475 set loadtimeout 1600
476 }
477
478 if { [info procs gdbserver_gdb_load] != "" } {
479 mi_gdb_test "kill" ".*" ""
480 if { [catch gdbserver_gdb_load res] == 1 } {
481 perror $res
482 return -1
483 }
484 set protocol [lindex $res 0]
485 set gdbport [lindex $res 1]
486
487 if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } {
488 return -1
489 }
490 } elseif { [info procs send_target_sid] != "" } {
491 # For SID, things get complex
492 send_gdb "kill\n"
493 gdb_expect 10 {
494 -re ".*$mi_gdb_prompt$"
495 }
496 send_target_sid
497 gdb_expect $loadtimeout {
498 -re "\\^done.*$mi_gdb_prompt$" {
499 }
500 timeout {
501 perror "Unable to connect to SID target (timeout)"
502 return -1
503 }
504 }
505 send_gdb "48-target-download\n"
506 gdb_expect $loadtimeout {
507 -re "48\\^done.*$mi_gdb_prompt$" {
508 }
509 timeout {
510 perror "Unable to download to SID target (timeout)"
511 return -1
512 }
513 }
514 } elseif { [target_info protocol] == "sim" } {
515 # For the simulator, just connect to it directly.
516 send_gdb "47-target-select sim\n"
517 gdb_expect $loadtimeout {
518 -re "47\\^connected.*$mi_gdb_prompt$" {
519 }
520 timeout {
521 perror "Unable to select sim target (timeout)"
522 return -1
523 }
524 }
525 send_gdb "48-target-download\n"
526 gdb_expect $loadtimeout {
527 -re "48\\^done.*$mi_gdb_prompt$" {
528 }
529 timeout {
530 perror "Unable to download to sim target (timeout)"
531 return -1
532 }
533 }
534 } elseif { [target_info gdb_protocol] == "remote" } {
535 # remote targets
536 if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } {
537 perror "Unable to connect to remote target"
538 return -1
539 }
540 send_gdb "48-target-download\n"
541 gdb_expect $loadtimeout {
542 -re "48\\^done.*$mi_gdb_prompt$" {
543 }
544 timeout {
545 perror "Unable to download to remote target (timeout)"
546 return -1
547 }
548 }
549 }
550 return 0
551 }
552
553 #
554 # load a file into the debugger.
555 # return a -1 if anything goes wrong.
556 #
557 proc mi_gdb_load { arg } {
558 if { $arg != "" } {
559 return [mi_gdb_file_cmd $arg]
560 }
561 return 0
562 }
563
564 # mi_gdb_test COMMAND PATTERN MESSAGE [IPATTERN] -- send a command to gdb;
565 # test the result.
566 #
567 # COMMAND is the command to execute, send to GDB with send_gdb. If
568 # this is the null string no command is sent.
569 # PATTERN is the pattern to match for a PASS, and must NOT include
570 # the \r\n sequence immediately before the gdb prompt.
571 # MESSAGE is the message to be printed. (If this is the empty string,
572 # then sometimes we don't call pass or fail at all; I don't
573 # understand this at all.)
574 # IPATTERN is the pattern to match for the inferior's output. This parameter
575 # is optional. If present, it will produce a PASS if the match is
576 # successful, and a FAIL if unsuccessful.
577 #
578 # Returns:
579 # 1 if the test failed,
580 # 0 if the test passes,
581 # -1 if there was an internal error.
582 #
583 proc mi_gdb_test { args } {
584 global verbose
585 global mi_gdb_prompt
586 global GDB expect_out
587 global inferior_exited_re async
588 upvar timeout timeout
589
590 set command [lindex $args 0]
591 set pattern [lindex $args 1]
592 set message [lindex $args 2]
593
594 if [llength $args]==4 {
595 set ipattern [lindex $args 3]
596 }
597
598 if [llength $args]==5 {
599 set question_string [lindex $args 3]
600 set response_string [lindex $args 4]
601 } else {
602 set question_string "^FOOBAR$"
603 }
604
605 if $verbose>2 then {
606 send_user "Sending \"$command\" to gdb\n"
607 send_user "Looking to match \"$pattern\"\n"
608 send_user "Message is \"$message\"\n"
609 }
610
611 set result -1
612 set string "${command}\n"
613 set string_regex [string_to_regexp $command]
614
615 if { $command != "" } {
616 while { "$string" != "" } {
617 set foo [string first "\n" "$string"]
618 set len [string length "$string"]
619 if { $foo < [expr $len - 1] } {
620 set str [string range "$string" 0 $foo]
621 if { [send_gdb "$str"] != "" } {
622 global suppress_flag
623
624 if { ! $suppress_flag } {
625 perror "Couldn't send $command to GDB."
626 }
627 fail "$message"
628 return $result
629 }
630 gdb_expect 2 {
631 -re "\[\r\n\]" { }
632 timeout { }
633 }
634 set string [string range "$string" [expr $foo + 1] end]
635 } else {
636 break
637 }
638 }
639 if { "$string" != "" } {
640 if { [send_gdb "$string"] != "" } {
641 global suppress_flag
642
643 if { ! $suppress_flag } {
644 perror "Couldn't send $command to GDB."
645 }
646 fail "$message"
647 return $result
648 }
649 }
650 }
651
652 if [info exists timeout] {
653 set tmt $timeout
654 } else {
655 global timeout
656 if [info exists timeout] {
657 set tmt $timeout
658 } else {
659 set tmt 60
660 }
661 }
662 if {$async} {
663 # With $prompt_re "" there may come arbitrary asynchronous response
664 # from the previous command, before or after $string_regex.
665 set string_regex ".*"
666 }
667 verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)"
668 gdb_expect $tmt {
669 -re "\\*\\*\\* DOSEXIT code.*" {
670 if { $message != "" } {
671 fail "$message"
672 }
673 gdb_suppress_entire_file "GDB died"
674 return -1
675 }
676 -re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" {
677 if ![isnative] then {
678 warning "Can`t communicate to remote target."
679 }
680 gdb_exit
681 gdb_start
682 set result -1
683 }
684 -re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" {
685 # At this point, $expect_out(1,string) is the MI input command.
686 # and $expect_out(2,string) is the MI output command.
687 # If $expect_out(1,string) is "", then there was no MI input command here.
688
689 # NOTE, there is no trailing anchor because with GDB/MI,
690 # asynchronous responses can happen at any point, causing more
691 # data to be available. Normally an anchor is used to make
692 # sure the end of the output is matched, however, $mi_gdb_prompt
693 # is just as good of an anchor since mi_gdb_test is meant to
694 # match a single mi output command. If a second GDB/MI output
695 # response is sent, it will be in the buffer for the next
696 # time mi_gdb_test is called.
697 if ![string match "" $message] then {
698 pass "$message"
699 }
700 set result 0
701 }
702 -re "(${question_string})$" {
703 send_gdb "$response_string\n"
704 exp_continue
705 }
706 -re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" {
707 perror "Undefined command \"$command\"."
708 fail "$message"
709 set result 1
710 }
711 -re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" {
712 perror "\"$command\" is not a unique command name."
713 fail "$message"
714 set result 1
715 }
716 -re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" {
717 if ![string match "" $message] then {
718 set errmsg "$message (the program exited)"
719 } else {
720 set errmsg "$command (the program exited)"
721 }
722 fail "$errmsg"
723 return -1
724 }
725 -re "The program is not being run.*$mi_gdb_prompt\[ \]*$" {
726 if ![string match "" $message] then {
727 set errmsg "$message (the program is no longer running)"
728 } else {
729 set errmsg "$command (the program is no longer running)"
730 }
731 fail "$errmsg"
732 return -1
733 }
734 -re ".*$mi_gdb_prompt\[ \]*$" {
735 if ![string match "" $message] then {
736 fail "$message"
737 }
738 set result 1
739 }
740 "<return>" {
741 send_gdb "\n"
742 perror "Window too small."
743 fail "$message"
744 }
745 -re "\\(y or n\\) " {
746 send_gdb "n\n"
747 perror "Got interactive prompt."
748 fail "$message"
749 }
750 eof {
751 perror "Process no longer exists"
752 if { $message != "" } {
753 fail "$message"
754 }
755 return -1
756 }
757 full_buffer {
758 perror "internal buffer is full."
759 fail "$message"
760 }
761 timeout {
762 if ![string match "" $message] then {
763 fail "$message (timeout)"
764 }
765 set result 1
766 }
767 }
768
769 # If the GDB output matched, compare the inferior output.
770 if { $result == 0 } {
771 if [ info exists ipattern ] {
772 if { ![target_info exists gdb,noinferiorio] } {
773 if { [target_info gdb_protocol] == "remote"
774 || [target_info gdb_protocol] == "extended-remote"
775 || [target_info protocol] == "sim"} {
776
777 gdb_expect {
778 -re "$ipattern" {
779 pass "$message inferior output"
780 }
781 timeout {
782 fail "$message inferior output (timeout)"
783 set result 1
784 }
785 }
786 } else {
787 global mi_inferior_spawn_id
788 expect {
789 -i $mi_inferior_spawn_id -re "$ipattern" {
790 pass "$message inferior output"
791 }
792 timeout {
793 fail "$message inferior output (timeout)"
794 set result 1
795 }
796 }
797 }
798 } else {
799 unsupported "$message inferior output"
800 }
801 }
802 }
803
804 return $result
805 }
806
807 # Collect output sent to the console output stream until UNTIL is
808 # seen. UNTIL is a regular expression. MESSAGE is the message to be
809 # printed in case of timeout.
810
811 proc mi_gdb_expect_cli_output {until message} {
812
813 set output ""
814 gdb_expect {
815 -re "~\"(\[^\r\n\]+)\"\r\n" {
816 append output $expect_out(1,string)
817 exp_continue
818 }
819 -notransfer -re "$until" {
820 # Done
821 }
822 timeout {
823 fail "$message (timeout)"
824 return ""
825 }
826 }
827
828 return $output
829 }
830
831 #
832 # MI run command. (A modified version of gdb_run_cmd)
833 #
834
835 # In patterns, the newline sequence ``\r\n'' is matched explicitly as
836 # ``.*$'' could swallow up output that we attempt to match elsewhere.
837
838 # Send the command to run the test program.
839 #
840 # If USE_MI_COMMAND is true, the "-exec-run" command is used.
841 # Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is
842 # true, -exec-continue and continue are used instead of their run counterparts.
843 #
844 # ARGS is passed as argument to the command used to run the test program.
845 # Beware that arguments to "-exec-run" do not have the same semantics as
846 # arguments to the "run" command, so USE_MI_COMMAND influences the meaning
847 # of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run.
848 # If USE_MI_COMMAND is false, they are effectively arguments passed
849 # to the test program. If the global USE_GDB_STUB is true, ARGS is not used.
850 proc mi_run_cmd_full {use_mi_command args} {
851 global suppress_flag
852 if { $suppress_flag } {
853 return -1
854 }
855 global mi_gdb_prompt use_gdb_stub
856 global thread_selected_re
857 global library_loaded_re
858
859 if {$use_mi_command} {
860 set run_prefix "220-exec-"
861 set run_match "220"
862 } else {
863 set run_prefix ""
864 set run_match ""
865 }
866
867 foreach command [gdb_init_commands] {
868 send_gdb "$command\n"
869 gdb_expect 30 {
870 -re "$mi_gdb_prompt$" { }
871 default {
872 perror "gdb_init_command for target failed"
873 return -1
874 }
875 }
876 }
877
878 if { [mi_gdb_target_load] < 0 } {
879 return -1
880 }
881
882 if $use_gdb_stub {
883 if [target_info exists gdb,do_reload_on_run] {
884 send_gdb "${run_prefix}continue\n"
885 gdb_expect 60 {
886 -re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {}
887 -re "${run_match}\\^error.*$mi_gdb_prompt" {return -1}
888 default {}
889 }
890 return 0
891 }
892
893 if [target_info exists gdb,start_symbol] {
894 set start [target_info gdb,start_symbol]
895 } else {
896 set start "start"
897 }
898
899 # HACK: Should either use 000-jump or fix the target code
900 # to better handle RUN.
901 send_gdb "jump *$start\n"
902 warning "Using CLI jump command, expect run-to-main FAIL"
903 return 0
904 }
905
906 send_gdb "${run_prefix}run $args\n"
907 gdb_expect {
908 -re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" {
909 }
910 -re "\\^error,msg=\"The target does not support running in non-stop mode.\"" {
911 unsupported "Non-stop mode not supported"
912 return -1
913 }
914 timeout {
915 perror "Unable to start target"
916 return -1
917 }
918 }
919 # NOTE: Shortly after this there will be a ``000*stopped,...(gdb)''
920
921 return 0
922 }
923
924 # A wrapper for mi_run_cmd_full which uses -exec-run and
925 # -exec-continue, as appropriate. ARGS are passed verbatim to
926 # mi_run_cmd_full.
927 proc mi_run_cmd {args} {
928 return [eval mi_run_cmd_full 1 $args]
929 }
930
931 # A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and
932 # 'continue', as appropriate. ARGS are passed verbatim to
933 # mi_run_cmd_full.
934 proc mi_run_with_cli {args} {
935 return [eval mi_run_cmd_full 0 $args]
936 }
937
938 #
939 # Just like run-to-main but works with the MI interface
940 #
941
942 proc mi_run_to_main { } {
943 global suppress_flag
944 if { $suppress_flag } {
945 return -1
946 }
947
948 global srcdir
949 global subdir
950 global binfile
951 global srcfile
952
953 mi_delete_breakpoints
954 mi_gdb_reinitialize_dir $srcdir/$subdir
955 mi_gdb_load ${binfile}
956
957 mi_runto main
958 }
959
960
961 # Just like gdb's "runto" proc, it will run the target to a given
962 # function. The big difference here between mi_runto and mi_execute_to
963 # is that mi_execute_to must have the inferior running already. This
964 # proc will (like gdb's runto) (re)start the inferior, too.
965 #
966 # FUNC is the linespec of the place to stop (it inserts a breakpoint here).
967 # It returns:
968 # -1 if test suppressed, failed, timedout
969 # 0 if test passed
970
971 proc mi_runto_helper {func run_or_continue} {
972 global suppress_flag
973 if { $suppress_flag } {
974 return -1
975 }
976
977 global mi_gdb_prompt expect_out
978 global hex decimal fullname_syntax
979
980 set test "mi runto $func"
981 set bp [mi_make_breakpoint -type breakpoint -disp del \
982 -func $func\(\\\(.*\\\)\)?]
983 mi_gdb_test "200-break-insert -t $func" "200\\^done,$bp" \
984 "breakpoint at $func"
985
986 if {$run_or_continue == "run"} {
987 if { [mi_run_cmd] < 0 } {
988 return -1
989 }
990 } else {
991 mi_send_resuming_command "exec-continue" "$test"
992 }
993
994 mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test
995 }
996
997 proc mi_runto {func} {
998 return [mi_runto_helper $func "run"]
999 }
1000
1001 # Next to the next statement
1002 # For return values, see mi_execute_to_helper
1003
1004 proc mi_next { test } {
1005 return [mi_next_to {.*} {.*} {.*} {.*} $test]
1006 }
1007
1008
1009 # Step to the next statement
1010 # For return values, see mi_execute_to_helper
1011
1012 proc mi_step { test } {
1013 return [mi_step_to {.*} {.*} {.*} {.*} $test]
1014 }
1015
1016 set async "unknown"
1017
1018 proc mi_detect_async {} {
1019 global async
1020 global mi_gdb_prompt
1021
1022 send_gdb "show mi-async\n"
1023
1024 gdb_expect {
1025 -re "asynchronous mode is on...*$mi_gdb_prompt$" {
1026 set async 1
1027 }
1028 -re ".*$mi_gdb_prompt$" {
1029 set async 0
1030 }
1031 timeout {
1032 set async 0
1033 }
1034 }
1035 return $async
1036 }
1037
1038 # Wait for MI *stopped notification to appear.
1039 # The REASON, FUNC, ARGS, FILE and LINE are regular expressions
1040 # to match against whatever is output in *stopped. FILE may also match
1041 # filename of a file without debug info. ARGS should not include [] the
1042 # list of argument is enclosed in, and other regular expressions should
1043 # not include quotes.
1044 # If EXTRA is a list of one element, it's the regular expression
1045 # for output expected right after *stopped, and before GDB prompt.
1046 # If EXTRA is a list of two elements, the first element is for
1047 # output right after *stopped, and the second element is output
1048 # right after reason field. The regex after reason should not include
1049 # the comma separating it from the following fields.
1050 #
1051 # When we fail to match output at all, -1 is returned. If FILE does
1052 # match and the target system has no debug info for FILE return 0.
1053 # Otherwise, the line at which we stop is returned. This is useful when
1054 # exact line is not possible to specify for some reason -- one can pass
1055 # the .* or "\[0-9\]*" regexps for line, and then check the line
1056 # programmatically.
1057 #
1058 # Do not pass .* for any argument if you are expecting more than one stop.
1059 proc mi_expect_stop { reason func args file line extra test } {
1060
1061 global mi_gdb_prompt
1062 global hex
1063 global decimal
1064 global fullname_syntax
1065 global async
1066 global thread_selected_re
1067 global breakpoint_re
1068
1069 set any "\[^\n\]*"
1070
1071 set after_stopped ""
1072 set after_reason ""
1073 if { [llength $extra] == 2 } {
1074 set after_stopped [lindex $extra 0]
1075 set after_reason [lindex $extra 1]
1076 set after_reason "${after_reason},"
1077 } elseif { [llength $extra] == 1 } {
1078 set after_stopped [lindex $extra 0]
1079 }
1080
1081 if {$async} {
1082 set prompt_re ""
1083 } else {
1084 set prompt_re "$mi_gdb_prompt$"
1085 }
1086
1087 if { $reason == "really-no-reason" } {
1088 gdb_expect {
1089 -re "\\*stopped\r\n$prompt_re" {
1090 pass "$test"
1091 }
1092 timeout {
1093 fail "$test (timeout)"
1094 }
1095 }
1096 return
1097 }
1098
1099 if { $reason == "exited-normally" } {
1100
1101 gdb_expect {
1102 -re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" {
1103 pass "$test"
1104 }
1105 -re ".*$mi_gdb_prompt$" {fail "continue to end (2)"}
1106 timeout {
1107 fail "$test (timeout)"
1108 }
1109 }
1110 return
1111 }
1112 if { $reason == "exited" } {
1113 gdb_expect {
1114 -re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" {
1115 pass "$test"
1116 }
1117 -re ".*$mi_gdb_prompt$" {
1118 fail "$test (inferior not stopped)"
1119 }
1120 timeout {
1121 fail "$test (timeout)"
1122 }
1123 }
1124 return
1125 }
1126
1127 if { $reason == "solib-event" } {
1128 set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1129 verbose -log "mi_expect_stop: expecting: $pattern"
1130 gdb_expect {
1131 -re "$pattern" {
1132 pass "$test"
1133 }
1134 timeout {
1135 fail "$test (timeout)"
1136 }
1137 }
1138 return
1139 }
1140
1141 set args "\\\[$args\\\]"
1142
1143 set bn ""
1144 if { $reason == "breakpoint-hit" } {
1145 set bn {bkptno="[0-9]+",}
1146 } elseif { $reason == "solib-event" } {
1147 set bn ".*"
1148 }
1149
1150 set r ""
1151 if { $reason != "" } {
1152 set r "reason=\"$reason\","
1153 }
1154
1155
1156 set a $after_reason
1157
1158 verbose -log "mi_expect_stop: expecting: \\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1159 gdb_expect {
1160 -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1161 pass "$test"
1162 if {[array names expect_out "2,string"] != ""} {
1163 return $expect_out(2,string)
1164 }
1165 # No debug info available but $file does match.
1166 return 0
1167 }
1168 -re "\\*stopped,${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1169 verbose -log "got $expect_out(buffer)"
1170 fail "$test (stopped at wrong place)"
1171 return -1
1172 }
1173 -re ".*\r\n$mi_gdb_prompt$" {
1174 verbose -log "got $expect_out(buffer)"
1175 fail "$test (unknown output after running)"
1176 return -1
1177 }
1178 timeout {
1179 fail "$test (timeout)"
1180 return -1
1181 }
1182 }
1183 }
1184
1185 # Wait for MI *stopped notification related to an interrupt request to
1186 # appear.
1187 proc mi_expect_interrupt { test } {
1188 global mi_gdb_prompt
1189 global decimal
1190 global async
1191
1192 if {$async} {
1193 set prompt_re ""
1194 } else {
1195 set prompt_re "$mi_gdb_prompt$"
1196 }
1197
1198 set r "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\""
1199
1200 set any "\[^\n\]*"
1201
1202 # A signal can land anywhere, just ignore the location
1203 verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re"
1204 gdb_expect {
1205 -re "\\*stopped,${r}$any\r\n$prompt_re" {
1206 pass "$test"
1207 return 0
1208 }
1209 -re ".*\r\n$mi_gdb_prompt$" {
1210 verbose -log "got $expect_out(buffer)"
1211 fail "$test (unknown output after running)"
1212 return -1
1213 }
1214 timeout {
1215 fail "$test (timeout)"
1216 return -1
1217 }
1218 }
1219 }
1220
1221 # cmd should not include the number or newline (i.e. "exec-step 3", not
1222 # "220-exec-step 3\n"
1223
1224 # Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives
1225 # after the first prompt is printed.
1226
1227 proc mi_execute_to { cmd reason func args file line extra test } {
1228 global suppress_flag
1229 if { $suppress_flag } {
1230 return -1
1231 }
1232
1233 mi_send_resuming_command "$cmd" "$test"
1234 set r [mi_expect_stop $reason $func $args $file $line $extra $test]
1235 return $r
1236 }
1237
1238 proc mi_next_to { func args file line test } {
1239 mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1240 "$file" "$line" "" "$test"
1241 }
1242
1243 proc mi_step_to { func args file line test } {
1244 mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1245 "$file" "$line" "" "$test"
1246 }
1247
1248 proc mi_finish_to { func args file line result ret test } {
1249 mi_execute_to "exec-finish" "function-finished" "$func" "$args" \
1250 "$file" "$line" \
1251 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1252 "$test"
1253 }
1254
1255 proc mi_continue_to {func} {
1256 mi_runto_helper $func "continue"
1257 }
1258
1259 proc mi0_execute_to { cmd reason func args file line extra test } {
1260 mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \
1261 "$file" "$line" "$extra" "$test"
1262 }
1263
1264 proc mi0_next_to { func args file line test } {
1265 mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1266 "$file" "$line" "" "$test"
1267 }
1268
1269 proc mi0_step_to { func args file line test } {
1270 mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1271 "$file" "$line" "" "$test"
1272 }
1273
1274 proc mi0_finish_to { func args file line result ret test } {
1275 mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \
1276 "$file" "$line" \
1277 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1278 "$test"
1279 }
1280
1281 proc mi0_continue_to { bkptno func args file line test } {
1282 mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \
1283 "$func" "$args" "$file" "$line" "" "$test"
1284 }
1285
1286 # Creates a breakpoint and checks the reported fields are as expected.
1287 # This procedure takes the same options as mi_make_breakpoint and
1288 # returns the breakpoint regexp from that procedure.
1289
1290 proc mi_create_breakpoint {location test args} {
1291 set bp [eval mi_make_breakpoint $args]
1292 mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
1293 return $bp
1294 }
1295
1296 # Creates varobj named NAME for EXPRESSION.
1297 # Name cannot be "-".
1298 proc mi_create_varobj { name expression testname } {
1299 mi_gdb_test "-var-create $name * $expression" \
1300 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \
1301 $testname
1302 }
1303
1304 proc mi_create_floating_varobj { name expression testname } {
1305 mi_gdb_test "-var-create $name @ $expression" \
1306 "\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \
1307 $testname
1308 }
1309
1310
1311 # Same as mi_create_varobj, but also checks the reported type
1312 # of the varobj.
1313 proc mi_create_varobj_checked { name expression type testname } {
1314 mi_gdb_test "-var-create $name * $expression" \
1315 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \
1316 $testname
1317 }
1318
1319 # Same as mi_create_floating_varobj, but assumes the test is creating
1320 # a dynamic varobj that has children, so the value must be "{...}".
1321 # The "has_more" attribute is checked.
1322 proc mi_create_dynamic_varobj {name expression has_more testname} {
1323 mi_gdb_test "-var-create $name @ $expression" \
1324 "\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \
1325 $testname
1326 }
1327
1328 # Deletes the specified NAME.
1329 proc mi_delete_varobj { name testname } {
1330 mi_gdb_test "-var-delete $name" \
1331 "\\^done,ndeleted=.*" \
1332 $testname
1333 }
1334
1335 # Updates varobj named NAME and checks that all varobjs in EXPECTED
1336 # are reported as updated, and no other varobj is updated.
1337 # Assumes that no varobj is out of scope and that no varobj changes
1338 # types.
1339 proc mi_varobj_update { name expected testname } {
1340 set er "\\^done,changelist=\\\["
1341 set first 1
1342 foreach item $expected {
1343 set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}"
1344 if {$first == 1} {
1345 set er "$er$v"
1346 set first 0
1347 } else {
1348 set er "$er,$v"
1349 }
1350 }
1351 set er "$er\\\]"
1352
1353 verbose -log "Expecting: $er" 2
1354 mi_gdb_test "-var-update $name" $er $testname
1355 }
1356
1357 proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } {
1358 set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}"
1359 set er "\\^done,changelist=\\\[$v\\\]"
1360 verbose -log "Expecting: $er"
1361 mi_gdb_test "-var-update $name" $er $testname
1362 }
1363
1364 proc mi_varobj_update_with_type_change { name new_type new_children testname } {
1365 mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname
1366 }
1367
1368 # A helper that turns a key/value list into a regular expression
1369 # matching some MI output.
1370 proc mi_varobj_update_kv_helper {list} {
1371 set first 1
1372 set rx ""
1373 foreach {key value} $list {
1374 if {!$first} {
1375 append rx ,
1376 }
1377 set first 0
1378 if {$key == "new_children"} {
1379 append rx "$key=\\\[$value\\\]"
1380 } else {
1381 append rx "$key=\"$value\""
1382 }
1383 }
1384 return $rx
1385 }
1386
1387 # A helper for mi_varobj_update_dynamic that computes a match
1388 # expression given a child list.
1389 proc mi_varobj_update_dynamic_helper {children} {
1390 set crx ""
1391
1392 set first 1
1393 foreach child $children {
1394 if {!$first} {
1395 append crx ,
1396 }
1397 set first 0
1398 append crx "{"
1399 append crx [mi_varobj_update_kv_helper $child]
1400 append crx "}"
1401 }
1402
1403 return $crx
1404 }
1405
1406 # Update a dynamic varobj named NAME. CHILDREN is a list of children
1407 # that have been updated; NEW_CHILDREN is a list of children that were
1408 # added to the primary varobj. Each child is a list of key/value
1409 # pairs that are expected. SELF is a key/value list holding
1410 # information about the varobj itself. TESTNAME is the name of the
1411 # test.
1412 proc mi_varobj_update_dynamic {name testname self children new_children} {
1413 if {[llength $new_children]} {
1414 set newrx [mi_varobj_update_dynamic_helper $new_children]
1415 lappend self new_children $newrx
1416 }
1417 set selfrx [mi_varobj_update_kv_helper $self]
1418 set crx [mi_varobj_update_dynamic_helper $children]
1419
1420 set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\""
1421 append er ",$selfrx\}"
1422 if {"$crx" != ""} {
1423 append er ",$crx"
1424 }
1425 append er "\\\]"
1426
1427 verbose -log "Expecting: $er"
1428 mi_gdb_test "-var-update $name" $er $testname
1429 }
1430
1431 proc mi_check_varobj_value { name value testname } {
1432
1433 mi_gdb_test "-var-evaluate-expression $name" \
1434 "\\^done,value=\"$value\"" \
1435 $testname
1436 }
1437
1438 # Helper proc which constructs a child regexp for
1439 # mi_list_varobj_children and mi_varobj_update_dynamic.
1440 proc mi_child_regexp {children add_child} {
1441 set children_exp {}
1442
1443 if {$add_child} {
1444 set pre "child="
1445 } else {
1446 set pre ""
1447 }
1448
1449 foreach item $children {
1450
1451 set name [lindex $item 0]
1452 set exp [lindex $item 1]
1453 set numchild [lindex $item 2]
1454 if {[llength $item] == 5} {
1455 set type [lindex $item 3]
1456 set value [lindex $item 4]
1457
1458 lappend children_exp\
1459 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1460 } elseif {[llength $item] == 4} {
1461 set type [lindex $item 3]
1462
1463 lappend children_exp\
1464 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1465 } else {
1466 lappend children_exp\
1467 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}"
1468 }
1469 }
1470 return [join $children_exp ","]
1471 }
1472
1473 # Check the results of the:
1474 #
1475 # -var-list-children VARNAME
1476 #
1477 # command. The CHILDREN parement should be a list of lists.
1478 # Each inner list can have either 3 or 4 elements, describing
1479 # fields that gdb is expected to report for child variable object,
1480 # in the following order
1481 #
1482 # - Name
1483 # - Expression
1484 # - Number of children
1485 # - Type
1486 #
1487 # If inner list has 3 elements, the gdb is expected to output no
1488 # type for a child and no value.
1489 #
1490 # If the inner list has 4 elements, gdb output is expected to
1491 # have no value.
1492 #
1493 proc mi_list_varobj_children { varname children testname } {
1494 mi_list_varobj_children_range $varname "" "" [llength $children] $children \
1495 $testname
1496 }
1497
1498 # Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is
1499 # the total number of children.
1500 proc mi_list_varobj_children_range {varname from to numchildren children testname} {
1501 set options ""
1502 if {[llength $varname] == 2} {
1503 set options [lindex $varname 1]
1504 set varname [lindex $varname 0]
1505 }
1506
1507 set children_exp_j [mi_child_regexp $children 1]
1508 if {$numchildren} {
1509 set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]"
1510 } {
1511 set expected "\\^done,numchild=\"0\""
1512 }
1513
1514 if {"$to" == ""} {
1515 append expected ",has_more=\"0\""
1516 } elseif {$to >= 0 && $numchildren > $to} {
1517 append expected ",has_more=\"1\""
1518 } else {
1519 append expected ",has_more=\"0\""
1520 }
1521
1522 verbose -log "Expecting: $expected"
1523
1524 mi_gdb_test "-var-list-children $options $varname $from $to" \
1525 $expected $testname
1526 }
1527
1528 # Verifies that variable object VARNAME has NUMBER children,
1529 # where each one is named $VARNAME.<index-of-child> and has type TYPE.
1530 proc mi_list_array_varobj_children { varname number type testname } {
1531 mi_list_array_varobj_children_with_index $varname $number 0 $type $testname
1532 }
1533
1534 # Same as mi_list_array_varobj_children, but allowing to pass a start index
1535 # for an array.
1536 proc mi_list_array_varobj_children_with_index { varname number start_index \
1537 type testname } {
1538 set t {}
1539 set index $start_index
1540 for {set i 0} {$i < $number} {incr i} {
1541 lappend t [list $varname.$index $index 0 $type]
1542 incr index
1543 }
1544 mi_list_varobj_children $varname $t $testname
1545 }
1546
1547 # A list of two-element lists. First element of each list is
1548 # a Tcl statement, and the second element is the line
1549 # number of source C file where the statement originates.
1550 set mi_autotest_data ""
1551 # The name of the source file for autotesting.
1552 set mi_autotest_source ""
1553
1554 proc count_newlines { string } {
1555 return [regexp -all "\n" $string]
1556 }
1557
1558 # Prepares for running inline tests in FILENAME.
1559 # See comments for mi_run_inline_test for detailed
1560 # explanation of the idea and syntax.
1561 proc mi_prepare_inline_tests { filename } {
1562
1563 global srcdir
1564 global subdir
1565 global mi_autotest_source
1566 global mi_autotest_data
1567
1568 set mi_autotest_data {}
1569
1570 set mi_autotest_source $filename
1571
1572 if { ! [regexp "^/" "$filename"] } then {
1573 set filename "$srcdir/$subdir/$filename"
1574 }
1575
1576 set chan [open $filename]
1577 set content [read $chan]
1578 set line_number 1
1579 while {1} {
1580 set start [string first "/*:" $content]
1581 if {$start != -1} {
1582 set end [string first ":*/" $content]
1583 if {$end == -1} {
1584 error "Unterminated special comment in $filename"
1585 }
1586
1587 set prefix [string range $content 0 $start]
1588 set prefix_newlines [count_newlines $prefix]
1589
1590 set line_number [expr $line_number+$prefix_newlines]
1591 set comment_line $line_number
1592
1593 set comment [string range $content [expr $start+3] [expr $end-1]]
1594
1595 set comment_newlines [count_newlines $comment]
1596 set line_number [expr $line_number+$comment_newlines]
1597
1598 set comment [string trim $comment]
1599 set content [string range $content [expr $end+3] \
1600 [string length $content]]
1601 lappend mi_autotest_data [list $comment $comment_line]
1602 } else {
1603 break
1604 }
1605 }
1606 close $chan
1607 }
1608
1609 # Helper to mi_run_inline_test below.
1610 # Return the list of all (statement,line_number) lists
1611 # that comprise TESTCASE. The begin and end markers
1612 # are not included.
1613 proc mi_get_inline_test {testcase} {
1614
1615 global mi_gdb_prompt
1616 global mi_autotest_data
1617 global mi_autotest_source
1618
1619 set result {}
1620
1621 set seen_begin 0
1622 set seen_end 0
1623 foreach l $mi_autotest_data {
1624
1625 set comment [lindex $l 0]
1626
1627 if {$comment == "BEGIN: $testcase"} {
1628 set seen_begin 1
1629 } elseif {$comment == "END: $testcase"} {
1630 set seen_end 1
1631 break
1632 } elseif {$seen_begin==1} {
1633 lappend result $l
1634 }
1635 }
1636
1637 if {$seen_begin == 0} {
1638 error "Autotest $testcase not found"
1639 }
1640
1641 if {$seen_begin == 1 && $seen_end == 0} {
1642 error "Missing end marker for test $testcase"
1643 }
1644
1645 return $result
1646 }
1647
1648 # Sets temporary breakpoint at LOCATION.
1649 proc mi_tbreak {location} {
1650
1651 global mi_gdb_prompt
1652
1653 mi_gdb_test "-break-insert -t $location" \
1654 {\^done,bkpt=.*} \
1655 "run to $location (set breakpoint)"
1656 }
1657
1658 # Send COMMAND that must be a command that resumes
1659 # the inferior (run/continue/next/etc) and consumes
1660 # the "^running" output from it.
1661 proc mi_send_resuming_command_raw {command test} {
1662
1663 global mi_gdb_prompt
1664 global thread_selected_re
1665 global library_loaded_re
1666
1667 send_gdb "$command\n"
1668 gdb_expect {
1669 -re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" {
1670 # Note that lack of 'pass' call here -- this works around limitation
1671 # in DejaGNU xfail mechanism. mi-until.exp has this:
1672 #
1673 # setup_kfail gdb/2104 "*-*-*"
1674 # mi_execute_to ...
1675 #
1676 # and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here,
1677 # it will reset kfail, so when the actual test fails, it will be flagged
1678 # as real failure.
1679 return 0
1680 }
1681 -re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" {
1682 unsupported "$test (Thumb mode)"
1683 return -1
1684 }
1685 -re "\\^error,msg=.*" {
1686 fail "$test (MI error)"
1687 return -1
1688 }
1689 -re ".*${mi_gdb_prompt}" {
1690 fail "$test (failed to resume)"
1691 return -1
1692 }
1693 timeout {
1694 fail "$test"
1695 return -1
1696 }
1697 }
1698 }
1699
1700 proc mi_send_resuming_command {command test} {
1701 mi_send_resuming_command_raw -$command $test
1702 }
1703
1704 # Helper to mi_run_inline_test below.
1705 # Sets a temporary breakpoint at LOCATION and runs
1706 # the program using COMMAND. When the program is stopped
1707 # returns the line at which it. Returns -1 if line cannot
1708 # be determined.
1709 # Does not check that the line is the same as requested.
1710 # The caller can check itself if required.
1711 proc mi_continue_to_line {location test} {
1712
1713 mi_tbreak $location
1714 mi_send_resuming_command "exec-continue" "run to $location (exec-continue)"
1715 return [mi_get_stop_line $test]
1716 }
1717
1718 # Wait until gdb prints the current line.
1719 proc mi_get_stop_line {test} {
1720
1721 global mi_gdb_prompt
1722 global async
1723
1724 if {$async} {
1725 set prompt_re ""
1726 } else {
1727 set prompt_re "$mi_gdb_prompt$"
1728 }
1729
1730 gdb_expect {
1731 -re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" {
1732 return $expect_out(1,string)
1733 }
1734 -re ".*$mi_gdb_prompt" {
1735 fail "wait for stop ($test)"
1736 }
1737 timeout {
1738 fail "wait for stop ($test)"
1739 }
1740 }
1741 }
1742
1743 # Run a MI test embedded in comments in a C file.
1744 # The C file should contain special comments in the following
1745 # three forms:
1746 #
1747 # /*: BEGIN: testname :*/
1748 # /*: <Tcl statements> :*/
1749 # /*: END: testname :*/
1750 #
1751 # This procedure find the begin and end marker for the requested
1752 # test. Then, a temporary breakpoint is set at the begin
1753 # marker and the program is run (from start).
1754 #
1755 # After that, for each special comment between the begin and end
1756 # marker, the Tcl statements are executed. It is assumed that
1757 # for each comment, the immediately preceding line is executable
1758 # C statement. Then, gdb will be single-stepped until that
1759 # preceding C statement is executed, and after that the
1760 # Tcl statements in the comment will be executed.
1761 #
1762 # For example:
1763 #
1764 # /*: BEGIN: assignment-test :*/
1765 # v = 10;
1766 # /*: <Tcl code to check that 'v' is indeed 10 :*/
1767 # /*: END: assignment-test :*/
1768 #
1769 # The mi_prepare_inline_tests function should be called before
1770 # calling this function. A given C file can contain several
1771 # inline tests. The names of the tests must be unique within one
1772 # C file.
1773 #
1774 proc mi_run_inline_test { testcase } {
1775
1776 global mi_gdb_prompt
1777 global hex
1778 global decimal
1779 global fullname_syntax
1780 global mi_autotest_source
1781
1782 set commands [mi_get_inline_test $testcase]
1783
1784 set first 1
1785 set line_now 1
1786
1787 foreach c $commands {
1788 set statements [lindex $c 0]
1789 set line [lindex $c 1]
1790 set line [expr $line-1]
1791
1792 # We want gdb to be stopped at the expression immediately
1793 # before the comment. If this is the first comment, the
1794 # program is either not started yet or is in some random place,
1795 # so we run it. For further comments, we might be already
1796 # standing at the right line. If not continue till the
1797 # right line.
1798
1799 if {$first==1} {
1800 # Start the program afresh.
1801 mi_tbreak "$mi_autotest_source:$line"
1802 mi_run_cmd
1803 set line_now [mi_get_stop_line "$testcase: step to $line"]
1804 set first 0
1805 } elseif {$line_now!=$line} {
1806 set line_now [mi_continue_to_line "$mi_autotest_source:$line" "continue to $line"]
1807 }
1808
1809 if {$line_now!=$line} {
1810 fail "$testcase: go to line $line"
1811 }
1812
1813 # We're not at the statement right above the comment.
1814 # Execute that statement so that the comment can test
1815 # the state after the statement is executed.
1816
1817 # Single-step past the line.
1818 if { [mi_send_resuming_command "exec-next" "$testcase: step over $line"] != 0 } {
1819 return -1
1820 }
1821 set line_now [mi_get_stop_line "$testcase: step over $line"]
1822
1823 # We probably want to use 'uplevel' so that statements
1824 # have direct access to global variables that the
1825 # main 'exp' file has set up. But it's not yet clear,
1826 # will need more experience to be sure.
1827 eval $statements
1828 }
1829 }
1830
1831 proc get_mi_thread_list {name} {
1832 global expect_out
1833
1834 # MI will return a list of thread ids:
1835 #
1836 # -thread-list-ids
1837 # ^done,thread-ids=[thread-id="1",thread-id="2",...],number-of-threads="N"
1838 # (gdb)
1839 mi_gdb_test "-thread-list-ids" \
1840 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)?)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1841 "-thread_list_ids ($name)"
1842
1843 set output {}
1844 if {[info exists expect_out(buffer)]} {
1845 set output $expect_out(buffer)
1846 }
1847
1848 set thread_list {}
1849 if {![regexp {thread-ids=\{(thread-id="[0-9]+"(,)?)*\}} $output threads]} {
1850 fail "finding threads in MI output ($name)"
1851 } else {
1852 pass "finding threads in MI output ($name)"
1853
1854 # Make list of console threads
1855 set start [expr {[string first \{ $threads] + 1}]
1856 set end [expr {[string first \} $threads] - 1}]
1857 set threads [string range $threads $start $end]
1858 foreach thread [split $threads ,] {
1859 if {[scan $thread {thread-id="%d"} num]} {
1860 lappend thread_list $num
1861 }
1862 }
1863 }
1864
1865 return $thread_list
1866 }
1867
1868 # Check that MI and the console know of the same threads.
1869 # Appends NAME to all test names.
1870 proc check_mi_and_console_threads {name} {
1871 global expect_out
1872
1873 mi_gdb_test "-thread-list-ids" \
1874 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)*)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1875 "-thread-list-ids ($name)"
1876 set mi_output {}
1877 if {[info exists expect_out(buffer)]} {
1878 set mi_output $expect_out(buffer)
1879 }
1880
1881 # GDB will return a list of thread ids and some more info:
1882 #
1883 # (gdb)
1884 # -interpreter-exec console "info threads"
1885 # ~" 4 Thread 2051 (LWP 7734) 0x401166b1 in __libc_nanosleep () at __libc_nanosleep:-1"
1886 # ~" 3 Thread 1026 (LWP 7733) () at __libc_nanosleep:-1"
1887 # ~" 2 Thread 2049 (LWP 7732) 0x401411f8 in __poll (fds=0x804bb24, nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:63"
1888 # ~"* 1 Thread 1024 (LWP 7731) main (argc=1, argv=0xbfffdd94) at ../../../src/gdb/testsuite/gdb.mi/pthreads.c:160"
1889 # FIXME: kseitz/2002-09-05: Don't use the hack-cli method.
1890 mi_gdb_test "info threads" \
1891 {.*(~".*"[\r\n]*)+.*} \
1892 "info threads ($name)"
1893 set console_output {}
1894 if {[info exists expect_out(buffer)]} {
1895 set console_output $expect_out(buffer)
1896 }
1897
1898 # Make a list of all known threads to console (gdb's thread IDs)
1899 set console_thread_list {}
1900 foreach line [split $console_output \n] {
1901 if {[string index $line 0] == "~"} {
1902 # This is a line from the console; trim off "~", " ", "*", and "\""
1903 set line [string trim $line ~\ \"\*]
1904 if {[scan $line "%d" id] == 1} {
1905 lappend console_thread_list $id
1906 }
1907 }
1908 }
1909
1910 # Now find the result string from MI
1911 set mi_result ""
1912 foreach line [split $mi_output \n] {
1913 if {[string range $line 0 4] == "^done"} {
1914 set mi_result $line
1915 }
1916 }
1917 if {$mi_result == ""} {
1918 fail "finding MI result string ($name)"
1919 } else {
1920 pass "finding MI result string ($name)"
1921 }
1922
1923 # Finally, extract the thread ids and compare them to the console
1924 set num_mi_threads_str ""
1925 if {![regexp {number-of-threads="[0-9]+"} $mi_result num_mi_threads_str]} {
1926 fail "finding number of threads in MI output ($name)"
1927 } else {
1928 pass "finding number of threads in MI output ($name)"
1929
1930 # Extract the number of threads from the MI result
1931 if {![scan $num_mi_threads_str {number-of-threads="%d"} num_mi_threads]} {
1932 fail "got number of threads from MI ($name)"
1933 } else {
1934 pass "got number of threads from MI ($name)"
1935
1936 # Check if MI and console have same number of threads
1937 if {$num_mi_threads != [llength $console_thread_list]} {
1938 fail "console and MI have same number of threads ($name)"
1939 } else {
1940 pass "console and MI have same number of threads ($name)"
1941
1942 # Get MI thread list
1943 set mi_thread_list [get_mi_thread_list $name]
1944
1945 # Check if MI and console have the same threads
1946 set fails 0
1947 foreach ct [lsort $console_thread_list] mt [lsort $mi_thread_list] {
1948 if {$ct != $mt} {
1949 incr fails
1950 }
1951 }
1952 if {$fails > 0} {
1953 fail "MI and console have same threads ($name)"
1954
1955 # Send a list of failures to the log
1956 send_log "Console has thread ids: $console_thread_list\n"
1957 send_log "MI has thread ids: $mi_thread_list\n"
1958 } else {
1959 pass "MI and console have same threads ($name)"
1960 }
1961 }
1962 }
1963 }
1964 }
1965
1966 # Download shared libraries to the target.
1967 proc mi_load_shlibs { args } {
1968 if {![is_remote target]} {
1969 return
1970 }
1971
1972 foreach file $args {
1973 gdb_download [shlib_target_file $file]
1974 }
1975
1976 # Even if the target supplies full paths for shared libraries,
1977 # they may not be paths for this system.
1978 mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" ""
1979 }
1980
1981 proc mi_reverse_list { list } {
1982 if { [llength $list] <= 1 } {
1983 return $list
1984 }
1985 set tail [lrange $list 1 [llength $list]]
1986 set rtail [mi_reverse_list $tail]
1987 lappend rtail [lindex $list 0]
1988 return $rtail
1989 }
1990
1991 proc mi_check_thread_states { xstates test } {
1992 global expect_out
1993 set states [mi_reverse_list $xstates]
1994 set pattern ".*\\^done,threads=\\\["
1995 foreach s $states {
1996 set pattern "${pattern}(.*)state=\"$s\""
1997 }
1998 set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*"
1999
2000 verbose -log "expecting: $pattern"
2001 mi_gdb_test "-thread-info" $pattern $test
2002 }
2003
2004 # Return a list of MI features supported by this gdb.
2005 proc mi_get_features {} {
2006 global expect_out mi_gdb_prompt
2007
2008 send_gdb "-list-features\n"
2009
2010 gdb_expect {
2011 -re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" {
2012 regsub -all -- \" $expect_out(1,string) "" features
2013 return [split $features ,]
2014 }
2015 -re ".*\r\n$mi_gdb_prompt$" {
2016 verbose -log "got $expect_out(buffer)"
2017 return ""
2018 }
2019 timeout {
2020 verbose -log "timeout in mi_gdb_prompt"
2021 return ""
2022 }
2023 }
2024 }
2025
2026 # Variable Object Trees
2027 #
2028 # Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of
2029 # variables (not unlike the actual source code definition), and it will
2030 # automagically test the children for you (by default).
2031 #
2032 # Example:
2033 #
2034 # source code:
2035 # struct bar {
2036 # union {
2037 # int integer;
2038 # void *ptr;
2039 # };
2040 # const int *iPtr;
2041 # };
2042 #
2043 # class foo {
2044 # public:
2045 # int a;
2046 # struct {
2047 # int b;
2048 # struct bar *c;
2049 # };
2050 # };
2051 #
2052 # foo *f = new foo (); <-- break here
2053 #
2054 # We want to check all the children of "f".
2055 #
2056 # Translate the above structures into the following tree:
2057 #
2058 # set tree {
2059 # foo f {
2060 # {} public {
2061 # int a {}
2062 # anonymous struct {
2063 # {} public {
2064 # int b {}
2065 # {bar *} c {
2066 # {} public {
2067 # anonymous union {
2068 # {} public {
2069 # int integer {}
2070 # {void *} ptr {}
2071 # }
2072 # }
2073 # {const int *} iPtr {
2074 # {const int} {*iPtr} {}
2075 # }
2076 # }
2077 # }
2078 # }
2079 # }
2080 # }
2081 # }
2082 # }
2083 #
2084 # mi_walk_varobj_tree c++ $tree
2085 #
2086 # If you'd prefer to walk the tree using your own callback,
2087 # simply pass the name of the callback to mi_walk_varobj_tree.
2088 #
2089 # This callback should take one argument, the name of the variable
2090 # to process. This name is the name of a global array holding the
2091 # variable's properties (object name, type, etc).
2092 #
2093 # An example callback:
2094 #
2095 # proc my_callback {var} {
2096 # upvar #0 $var varobj
2097 #
2098 # puts "my_callback: called on varobj $varobj(obj_name)"
2099 # }
2100 #
2101 # The arrays created for each variable object contain the following
2102 # members:
2103 #
2104 # obj_name - the object name for accessing this variable via MI
2105 # display_name - the display name for this variable (exp="display_name" in
2106 # the output of -var-list-children)
2107 # type - the type of this variable (type="type" in the output
2108 # of -var-list-children, or the special tag "anonymous"
2109 # path_expr - the "-var-info-path-expression" for this variable
2110 # NOTE: This member cannot be used reliably with typedefs.
2111 # Use with caution!
2112 # See notes inside get_path_expr for more.
2113 # parent - the variable name of the parent varobj
2114 # children - a list of children variable names (which are the
2115 # names Tcl arrays, not object names)
2116 #
2117 # For each variable object, an array containing the above fields will
2118 # be created under the root node (conveniently called, "root"). For example,
2119 # a variable object with handle "OBJ.public.0_anonymous.a" will have
2120 # a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a".
2121 #
2122 # Note that right now, this mechanism cannot be used for recursive data
2123 # structures like linked lists.
2124
2125 namespace eval ::varobj_tree {
2126 # An index which is appended to root varobjs to ensure uniqueness.
2127 variable _root_idx 0
2128
2129 # A procedure to help with debuggging varobj trees.
2130 # VARIABLE_NAME is the name of the variable to dump.
2131 # CMD, if present, is the name of the callback to output the contstructed
2132 # strings. By default, it uses expect's "send_log" command.
2133 # TERM, if present, is a terminating character. By default it is the newline.
2134 #
2135 # To output to the terminal (not the expect log), use
2136 # mi_varobj_tree_dump_variable my_variable puts ""
2137
2138 proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} {
2139 upvar #0 $variable_name varobj
2140
2141 eval "$cmd \"VAR = $variable_name$term\""
2142
2143 # Explicitly encode the array indices, since outputting them
2144 # in some logical order is better than what "array names" might
2145 # return.
2146 foreach idx {obj_name parent display_name type path_expr} {
2147 eval "$cmd \"\t$idx = $varobj($idx)$term\""
2148 }
2149
2150 # Output children
2151 set num [llength $varobj(children)]
2152 eval "$cmd \"\tnum_children = $num$term\""
2153 if {$num > 0} {
2154 eval "$cmd \"\tchildren = $varobj(children)$term\""
2155 }
2156 }
2157
2158 # The default callback used by mi_walk_varobj_tree. This callback
2159 # simply checks all of VAR's children. It specifically does not test
2160 # path expressions, since that is very problematic.
2161 #
2162 # This procedure may be used in custom callbacks.
2163 proc test_children_callback {variable_name} {
2164 upvar #0 $variable_name varobj
2165
2166 if {[llength $varobj(children)] > 0} {
2167 # Construct the list of children the way mi_list_varobj_children
2168 # expects to get it:
2169 # { {obj_name display_name num_children type} ... }
2170 set children_list {}
2171 foreach child $varobj(children) {
2172 upvar #0 $child c
2173 set clist [list [string_to_regexp $c(obj_name)] \
2174 [string_to_regexp $c(display_name)] \
2175 [llength $c(children)]]
2176 if {[string length $c(type)] > 0} {
2177 lappend clist [string_to_regexp $c(type)]
2178 }
2179 lappend children_list $clist
2180 }
2181
2182 mi_list_varobj_children $varobj(obj_name) $children_list \
2183 "VT: list children of $varobj(obj_name)"
2184 }
2185 }
2186
2187 # Set the properties of the varobj represented by
2188 # PARENT_VARIABLE - the name of the parent's variable
2189 # OBJNAME - the MI object name of this variable
2190 # DISP_NAME - the display name of this variable
2191 # TYPE - the type of this variable
2192 # PATH - the path expression for this variable
2193 # CHILDREN - a list of the variable's children
2194 proc create_varobj {parent_variable objname disp_name \
2195 type path children} {
2196 upvar #0 $parent_variable parent
2197
2198 set var_name "root.$objname"
2199 global $var_name
2200 array set $var_name [list obj_name $objname]
2201 array set $var_name [list display_name $disp_name]
2202 array set $var_name [list type $type]
2203 array set $var_name [list path_expr $path]
2204 array set $var_name [list parent "$parent_variable"]
2205 array set $var_name [list children \
2206 [get_tree_children $var_name $children]]
2207 return $var_name
2208 }
2209
2210 # Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD
2211 # varobjs and anonymous structs/unions are not used for path expressions.
2212 proc is_path_expr_parent {variable} {
2213 upvar #0 $variable varobj
2214
2215 # If the varobj's type is "", it is a CPLUS_FAKE_CHILD.
2216 # If the tail of the varobj's object name is "%d_anonymous",
2217 # then it represents an anonymous struct or union.
2218 if {[string length $varobj(type)] == 0 \
2219 || [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} {
2220 return false
2221 }
2222
2223 return true
2224 }
2225
2226 # Return the path expression for the variable named NAME in
2227 # parent varobj whose variable name is given by PARENT_VARIABLE.
2228 proc get_path_expr {parent_variable name type} {
2229 upvar #0 $parent_variable parent
2230 upvar #0 $parent_variable path_parent
2231
2232 # If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs,
2233 # which has no path expression. Likewsise for anonymous structs
2234 # and unions.
2235 if {[string length $type] == 0 \
2236 || [string compare $type "anonymous"] == 0} {
2237 return ""
2238 }
2239
2240 # Find the path parent variable.
2241 while {![is_path_expr_parent $parent_variable]} {
2242 set parent_variable $path_parent(parent)
2243 upvar #0 $parent_variable path_parent
2244 }
2245
2246 # This is where things get difficult. We do not actually know
2247 # the real type for variables defined via typedefs, so we don't actually
2248 # know whether the parent is a structure/union or not.
2249 #
2250 # So we assume everything that isn't a simple type is a compound type.
2251 set stars ""
2252 regexp {\*+} $parent(type) stars
2253 set is_compound 1
2254 if {[string index $name 0] == "*"} {
2255 set is_compound 0
2256 }
2257
2258 if {[string index $parent(type) end] == "\]"} {
2259 # Parent is an array.
2260 return "($path_parent(path_expr))\[$name\]"
2261 } elseif {$is_compound} {
2262 # Parent is a structure or union or a pointer to one.
2263 if {[string length $stars]} {
2264 set join "->"
2265 } else {
2266 set join "."
2267 }
2268
2269 global root
2270
2271 # To make matters even more hideous, varobj.c has slightly different
2272 # path expressions for C and C++.
2273 set path_expr "($path_parent(path_expr))$join$name"
2274 if {[string compare -nocase $root(language) "c"] == 0} {
2275 return $path_expr
2276 } else {
2277 return "($path_expr)"
2278 }
2279 } else {
2280 # Parent is a pointer.
2281 return "*($path_parent(path_expr))"
2282 }
2283 }
2284
2285 # Process the CHILDREN (a list of varobj_tree elements) of the variable
2286 # given by PARENT_VARIABLE. Returns a list of children variables.
2287 proc get_tree_children {parent_variable children} {
2288 upvar #0 $parent_variable parent
2289
2290 set field_idx 0
2291 set children_list {}
2292 foreach {type name children} $children {
2293 if {[string compare $parent_variable "root"] == 0} {
2294 # Root variable
2295 variable _root_idx
2296 incr _root_idx
2297 set objname "$name$_root_idx"
2298 set disp_name "$name"
2299 set path_expr "$name"
2300 } elseif {[string compare $type "anonymous"] == 0} {
2301 # Special case: anonymous types. In this case, NAME will either be
2302 # "struct" or "union".
2303 set objname "$parent(obj_name).${field_idx}_anonymous"
2304 set disp_name "<anonymous $name>"
2305 set path_expr ""
2306 set type "$name {...}"
2307 } else {
2308 set objname "$parent(obj_name).$name"
2309 set disp_name $name
2310 set path_expr [get_path_expr $parent_variable $name $type]
2311 }
2312
2313 lappend children_list [create_varobj $parent_variable $objname \
2314 $disp_name $type $path_expr $children]
2315 incr field_idx
2316 }
2317
2318 return $children_list
2319 }
2320
2321 # The main procedure to call the given CALLBACK on the elements of the
2322 # given varobj TREE. See detailed explanation above.
2323 proc walk_tree {language tree callback} {
2324 global root
2325 variable _root_idx
2326
2327 if {[llength $tree] < 3} {
2328 error "tree does not contain enough elements"
2329 }
2330
2331 set _root_idx 0
2332
2333 # Create root node and process the tree.
2334 array set root [list language $language]
2335 array set root [list obj_name "root"]
2336 array set root [list display_name "root"]
2337 array set root [list type "root"]
2338 array set root [list path_expr "root"]
2339 array set root [list parent "root"]
2340 array set root [list children [get_tree_children root $tree]]
2341
2342 # Walk the tree
2343 set all_nodes $root(children); # a stack of nodes
2344 while {[llength $all_nodes] > 0} {
2345 # "Pop" the name of the global variable containing this varobj's
2346 # information from the stack of nodes.
2347 set var_name [lindex $all_nodes 0]
2348 set all_nodes [lreplace $all_nodes 0 0]
2349
2350 # Bring the global named in VAR_NAME into scope as the local variable
2351 # VAROBJ.
2352 upvar #0 $var_name varobj
2353
2354 # Append any children of VAROBJ to the list of nodes to walk.
2355 if {[llength $varobj(children)] > 0} {
2356 set all_nodes [concat $all_nodes $varobj(children)]
2357 }
2358
2359 # If this is a root variable, create the variable object for it.
2360 if {[string compare $varobj(parent) "root"] == 0} {
2361 mi_create_varobj $varobj(obj_name) $varobj(display_name) \
2362 "VT: create root varobj for $varobj(display_name)"
2363 }
2364
2365 # Now call the callback for VAROBJ.
2366 uplevel #0 $callback $var_name
2367 }
2368 }
2369 }
2370
2371 # The default varobj tree callback, which simply tests -var-list-children.
2372 proc mi_varobj_tree_test_children_callback {variable} {
2373 ::varobj_tree::test_children_callback $variable
2374 }
2375
2376 # Walk the variable object tree given by TREE, calling the specified
2377 # CALLBACK. By default this uses mi_varobj_tree_test_children_callback.
2378 proc mi_walk_varobj_tree {language tree \
2379 {callback \
2380 mi_varobj_tree_test_children_callback}} {
2381 ::varobj_tree::walk_tree $language $tree $callback
2382 }
2383
2384 # Build a list of key-value pairs given by the list ATTR_LIST. Flatten
2385 # this list using the optional JOINER, a comma by default.
2386 #
2387 # The list must contain an even number of elements, which are the key-value
2388 # pairs. Each value will be surrounded by quotes, according to the grammar,
2389 # except if the value starts with \[ or \{, when the quotes will be omitted.
2390 #
2391 # Example: mi_build_kv_pairs {a b c d e f g \[.*\]}
2392 # returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\]
2393 proc mi_build_kv_pairs {attr_list {joiner ,}} {
2394 set l {}
2395 foreach {var value} $attr_list {
2396 if {[string range $value 0 1] == "\\\["
2397 || [string range $value 0 1] == "\\\{"} {
2398 lappend l "$var=$value"
2399 } else {
2400 lappend l "$var=\"$value\""
2401 }
2402 }
2403 return "[join $l $joiner]"
2404 }
2405
2406 # Construct a breakpoint regexp. This may be used to test the output of
2407 # -break-insert, -dprintf-insert, or -break-info.
2408 #
2409 # All arguments for the breakpoint may be specified using the options
2410 # number, type, disp, enabled, addr, func, file, fullanme, line,
2411 # thread-groups, times, ignore, script, and original-location.
2412 #
2413 # Only if -script and -ignore are given will they appear in the output.
2414 # Otherwise, this procedure will skip them using ".*".
2415 #
2416 # Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3
2417 # will return the breakpoint:
2418 # bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*",
2419 # file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\],
2420 # times="0".*original-location=".*"}
2421
2422 proc mi_make_breakpoint {args} {
2423 parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*}
2424 {func .*} {file .*} {fullname .*} {line .*}
2425 {thread-groups \\\[.*\\\]} {times .*} {ignore 0}
2426 {script ""} {original-location .*}}
2427
2428 set attr_list {}
2429 foreach attr [list number type disp enabled addr func file \
2430 fullname line thread-groups times] {
2431 lappend attr_list $attr [set $attr]
2432 }
2433
2434 set result "bkpt={[mi_build_kv_pairs $attr_list]"
2435
2436 # There are always exceptions.
2437 # If SCRIPT and IGNORE are not present, do not output them.
2438 if {$ignore != 0} {
2439 append result ","
2440 append result [mi_build_kv_pairs [list "ignore" $ignore]]
2441 append result ","
2442 }
2443 if {[string length $script] > 0} {
2444 append result ","
2445 append result [mi_build_kv_pairs [list "script" $script]]
2446 append result ","
2447 } else {
2448 # Allow anything up until the next "official"/required attribute.
2449 # This pattern skips over script/ignore if matches on those
2450 # were not specifically required by the caller.
2451 append result ".*"
2452 }
2453 append result [mi_build_kv_pairs \
2454 [list "original-location" ${original-location}]]
2455 append result "}"
2456 return $result
2457 }
2458
2459 # Build a breakpoint table regexp given the list of breakpoints in `bp_list',
2460 # constructed by mi_make_breakpoint.
2461 #
2462 # Example: Construct a breakpoint table where the only attributes we
2463 # test for are the existence of three breakpoints numbered 1, 2, and 3.
2464 #
2465 # set bps {}
2466 # lappend bps [mi_make_breakpoint -number 1]
2467 # lappend bps [mi_make_breakpoint -number 2]
2468 # lappned bps [mi_make_breakpoint -number 3]
2469 # mi_make_breakpoint_table $bps
2470 # will return (abbreviated for clarity):
2471 # BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...],
2472 # body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]}
2473
2474 proc mi_make_breakpoint_table {bp_list} {
2475 # Build header -- assume a standard header for all breakpoint tables.
2476 set hl {}
2477 foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \
2478 addr Address what What] {
2479 # The elements here are the MI table headers, which have the
2480 # format:
2481 # {width="7",alignment="-1",col_name="number",colhdr="Num"}
2482 lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \
2483 col_name $nm colhdr $hdr]]}"
2484 }
2485 set header "hdr=\\\[[join $hl ,]\\\]"
2486
2487 # The caller has implicitly supplied the number of columns and rows.
2488 set nc [llength $hl]
2489 set nr [llength $bp_list]
2490
2491 # Build body -- mi_make_breakpoint has done most of the work.
2492 set body "body=\\\[[join $bp_list ,]\\\]"
2493
2494 # Assemble the final regexp.
2495 return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}"
2496 }