]> git.ipfire.org Git - thirdparty/binutils-gdb.git/blob - gdb/valops.c
3a5ac0fe8b003f24aa881dff6f1ae5ad01cbf41b
[thirdparty/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2012 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "dfp.h"
38 #include "user-regs.h"
39 #include "tracepoint.h"
40 #include <errno.h>
41 #include "gdb_string.h"
42 #include "gdb_assert.h"
43 #include "cp-support.h"
44 #include "observer.h"
45 #include "objfiles.h"
46 #include "symtab.h"
47 #include "exceptions.h"
48
49 extern unsigned int overload_debug;
50 /* Local functions. */
51
52 static int typecmp (int staticp, int varargs, int nargs,
53 struct field t1[], struct value *t2[]);
54
55 static struct value *search_struct_field (const char *, struct value *,
56 int, struct type *, int);
57
58 static struct value *search_struct_method (const char *, struct value **,
59 struct value **,
60 int, int *, struct type *);
61
62 static int find_oload_champ_namespace (struct value **, int,
63 const char *, const char *,
64 struct symbol ***,
65 struct badness_vector **,
66 const int no_adl);
67
68 static
69 int find_oload_champ_namespace_loop (struct value **, int,
70 const char *, const char *,
71 int, struct symbol ***,
72 struct badness_vector **, int *,
73 const int no_adl);
74
75 static int find_oload_champ (struct value **, int, int, int,
76 struct fn_field *, struct symbol **,
77 struct badness_vector **);
78
79 static int oload_method_static (int, struct fn_field *, int);
80
81 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
82
83 static enum
84 oload_classification classify_oload_match (struct badness_vector *,
85 int, int);
86
87 static struct value *value_struct_elt_for_reference (struct type *,
88 int, struct type *,
89 char *,
90 struct type *,
91 int, enum noside);
92
93 static struct value *value_namespace_elt (const struct type *,
94 char *, int , enum noside);
95
96 static struct value *value_maybe_namespace_elt (const struct type *,
97 char *, int,
98 enum noside);
99
100 static CORE_ADDR allocate_space_in_inferior (int);
101
102 static struct value *cast_into_complex (struct type *, struct value *);
103
104 static struct fn_field *find_method_list (struct value **, const char *,
105 int, struct type *, int *,
106 struct type **, int *);
107
108 void _initialize_valops (void);
109
110 #if 0
111 /* Flag for whether we want to abandon failed expression evals by
112 default. */
113
114 static int auto_abandon = 0;
115 #endif
116
117 int overload_resolution = 0;
118 static void
119 show_overload_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Overload resolution in evaluating "
124 "C++ functions is %s.\n"),
125 value);
126 }
127
128 /* Find the address of function name NAME in the inferior. If OBJF_P
129 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
130 is defined. */
131
132 struct value *
133 find_function_in_inferior (const char *name, struct objfile **objf_p)
134 {
135 struct symbol *sym;
136
137 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
138 if (sym != NULL)
139 {
140 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
141 {
142 error (_("\"%s\" exists in this program but is not a function."),
143 name);
144 }
145
146 if (objf_p)
147 *objf_p = SYMBOL_SYMTAB (sym)->objfile;
148
149 return value_of_variable (sym, NULL);
150 }
151 else
152 {
153 struct minimal_symbol *msymbol =
154 lookup_minimal_symbol (name, NULL, NULL);
155
156 if (msymbol != NULL)
157 {
158 struct objfile *objfile = msymbol_objfile (msymbol);
159 struct gdbarch *gdbarch = get_objfile_arch (objfile);
160
161 struct type *type;
162 CORE_ADDR maddr;
163 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
164 type = lookup_function_type (type);
165 type = lookup_pointer_type (type);
166 maddr = SYMBOL_VALUE_ADDRESS (msymbol);
167
168 if (objf_p)
169 *objf_p = objfile;
170
171 return value_from_pointer (type, maddr);
172 }
173 else
174 {
175 if (!target_has_execution)
176 error (_("evaluation of this expression "
177 "requires the target program to be active"));
178 else
179 error (_("evaluation of this expression requires the "
180 "program to have a function \"%s\"."),
181 name);
182 }
183 }
184 }
185
186 /* Allocate NBYTES of space in the inferior using the inferior's
187 malloc and return a value that is a pointer to the allocated
188 space. */
189
190 struct value *
191 value_allocate_space_in_inferior (int len)
192 {
193 struct objfile *objf;
194 struct value *val = find_function_in_inferior ("malloc", &objf);
195 struct gdbarch *gdbarch = get_objfile_arch (objf);
196 struct value *blocklen;
197
198 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
199 val = call_function_by_hand (val, 1, &blocklen);
200 if (value_logical_not (val))
201 {
202 if (!target_has_execution)
203 error (_("No memory available to program now: "
204 "you need to start the target first"));
205 else
206 error (_("No memory available to program: call to malloc failed"));
207 }
208 return val;
209 }
210
211 static CORE_ADDR
212 allocate_space_in_inferior (int len)
213 {
214 return value_as_long (value_allocate_space_in_inferior (len));
215 }
216
217 /* Cast struct value VAL to type TYPE and return as a value.
218 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
219 for this to work. Typedef to one of the codes is permitted.
220 Returns NULL if the cast is neither an upcast nor a downcast. */
221
222 static struct value *
223 value_cast_structs (struct type *type, struct value *v2)
224 {
225 struct type *t1;
226 struct type *t2;
227 struct value *v;
228
229 gdb_assert (type != NULL && v2 != NULL);
230
231 t1 = check_typedef (type);
232 t2 = check_typedef (value_type (v2));
233
234 /* Check preconditions. */
235 gdb_assert ((TYPE_CODE (t1) == TYPE_CODE_STRUCT
236 || TYPE_CODE (t1) == TYPE_CODE_UNION)
237 && !!"Precondition is that type is of STRUCT or UNION kind.");
238 gdb_assert ((TYPE_CODE (t2) == TYPE_CODE_STRUCT
239 || TYPE_CODE (t2) == TYPE_CODE_UNION)
240 && !!"Precondition is that value is of STRUCT or UNION kind");
241
242 if (TYPE_NAME (t1) != NULL
243 && TYPE_NAME (t2) != NULL
244 && !strcmp (TYPE_NAME (t1), TYPE_NAME (t2)))
245 return NULL;
246
247 /* Upcasting: look in the type of the source to see if it contains the
248 type of the target as a superclass. If so, we'll need to
249 offset the pointer rather than just change its type. */
250 if (TYPE_NAME (t1) != NULL)
251 {
252 v = search_struct_field (type_name_no_tag (t1),
253 v2, 0, t2, 1);
254 if (v)
255 return v;
256 }
257
258 /* Downcasting: look in the type of the target to see if it contains the
259 type of the source as a superclass. If so, we'll need to
260 offset the pointer rather than just change its type. */
261 if (TYPE_NAME (t2) != NULL)
262 {
263 /* Try downcasting using the run-time type of the value. */
264 int full, top, using_enc;
265 struct type *real_type;
266
267 real_type = value_rtti_type (v2, &full, &top, &using_enc);
268 if (real_type)
269 {
270 v = value_full_object (v2, real_type, full, top, using_enc);
271 v = value_at_lazy (real_type, value_address (v));
272
273 /* We might be trying to cast to the outermost enclosing
274 type, in which case search_struct_field won't work. */
275 if (TYPE_NAME (real_type) != NULL
276 && !strcmp (TYPE_NAME (real_type), TYPE_NAME (t1)))
277 return v;
278
279 v = search_struct_field (type_name_no_tag (t2), v, 0, real_type, 1);
280 if (v)
281 return v;
282 }
283
284 /* Try downcasting using information from the destination type
285 T2. This wouldn't work properly for classes with virtual
286 bases, but those were handled above. */
287 v = search_struct_field (type_name_no_tag (t2),
288 value_zero (t1, not_lval), 0, t1, 1);
289 if (v)
290 {
291 /* Downcasting is possible (t1 is superclass of v2). */
292 CORE_ADDR addr2 = value_address (v2);
293
294 addr2 -= value_address (v) + value_embedded_offset (v);
295 return value_at (type, addr2);
296 }
297 }
298
299 return NULL;
300 }
301
302 /* Cast one pointer or reference type to another. Both TYPE and
303 the type of ARG2 should be pointer types, or else both should be
304 reference types. If SUBCLASS_CHECK is non-zero, this will force a
305 check to see whether TYPE is a superclass of ARG2's type. If
306 SUBCLASS_CHECK is zero, then the subclass check is done only when
307 ARG2 is itself non-zero. Returns the new pointer or reference. */
308
309 struct value *
310 value_cast_pointers (struct type *type, struct value *arg2,
311 int subclass_check)
312 {
313 struct type *type1 = check_typedef (type);
314 struct type *type2 = check_typedef (value_type (arg2));
315 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
316 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
317
318 if (TYPE_CODE (t1) == TYPE_CODE_STRUCT
319 && TYPE_CODE (t2) == TYPE_CODE_STRUCT
320 && (subclass_check || !value_logical_not (arg2)))
321 {
322 struct value *v2;
323
324 if (TYPE_CODE (type2) == TYPE_CODE_REF)
325 v2 = coerce_ref (arg2);
326 else
327 v2 = value_ind (arg2);
328 gdb_assert (TYPE_CODE (check_typedef (value_type (v2)))
329 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
330 v2 = value_cast_structs (t1, v2);
331 /* At this point we have what we can have, un-dereference if needed. */
332 if (v2)
333 {
334 struct value *v = value_addr (v2);
335
336 deprecated_set_value_type (v, type);
337 return v;
338 }
339 }
340
341 /* No superclass found, just change the pointer type. */
342 arg2 = value_copy (arg2);
343 deprecated_set_value_type (arg2, type);
344 set_value_enclosing_type (arg2, type);
345 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
346 return arg2;
347 }
348
349 /* Cast value ARG2 to type TYPE and return as a value.
350 More general than a C cast: accepts any two types of the same length,
351 and if ARG2 is an lvalue it can be cast into anything at all. */
352 /* In C++, casts may change pointer or object representations. */
353
354 struct value *
355 value_cast (struct type *type, struct value *arg2)
356 {
357 enum type_code code1;
358 enum type_code code2;
359 int scalar;
360 struct type *type2;
361
362 int convert_to_boolean = 0;
363
364 if (value_type (arg2) == type)
365 return arg2;
366
367 code1 = TYPE_CODE (check_typedef (type));
368
369 /* Check if we are casting struct reference to struct reference. */
370 if (code1 == TYPE_CODE_REF)
371 {
372 /* We dereference type; then we recurse and finally
373 we generate value of the given reference. Nothing wrong with
374 that. */
375 struct type *t1 = check_typedef (type);
376 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
377 struct value *val = value_cast (dereftype, arg2);
378
379 return value_ref (val);
380 }
381
382 code2 = TYPE_CODE (check_typedef (value_type (arg2)));
383
384 if (code2 == TYPE_CODE_REF)
385 /* We deref the value and then do the cast. */
386 return value_cast (type, coerce_ref (arg2));
387
388 CHECK_TYPEDEF (type);
389 code1 = TYPE_CODE (type);
390 arg2 = coerce_ref (arg2);
391 type2 = check_typedef (value_type (arg2));
392
393 /* You can't cast to a reference type. See value_cast_pointers
394 instead. */
395 gdb_assert (code1 != TYPE_CODE_REF);
396
397 /* A cast to an undetermined-length array_type, such as
398 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
399 where N is sizeof(OBJECT)/sizeof(TYPE). */
400 if (code1 == TYPE_CODE_ARRAY)
401 {
402 struct type *element_type = TYPE_TARGET_TYPE (type);
403 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
404
405 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
406 {
407 struct type *range_type = TYPE_INDEX_TYPE (type);
408 int val_length = TYPE_LENGTH (type2);
409 LONGEST low_bound, high_bound, new_length;
410
411 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
412 low_bound = 0, high_bound = 0;
413 new_length = val_length / element_length;
414 if (val_length % element_length != 0)
415 warning (_("array element type size does not "
416 "divide object size in cast"));
417 /* FIXME-type-allocation: need a way to free this type when
418 we are done with it. */
419 range_type = create_range_type ((struct type *) NULL,
420 TYPE_TARGET_TYPE (range_type),
421 low_bound,
422 new_length + low_bound - 1);
423 deprecated_set_value_type (arg2,
424 create_array_type ((struct type *) NULL,
425 element_type,
426 range_type));
427 return arg2;
428 }
429 }
430
431 if (current_language->c_style_arrays
432 && TYPE_CODE (type2) == TYPE_CODE_ARRAY
433 && !TYPE_VECTOR (type2))
434 arg2 = value_coerce_array (arg2);
435
436 if (TYPE_CODE (type2) == TYPE_CODE_FUNC)
437 arg2 = value_coerce_function (arg2);
438
439 type2 = check_typedef (value_type (arg2));
440 code2 = TYPE_CODE (type2);
441
442 if (code1 == TYPE_CODE_COMPLEX)
443 return cast_into_complex (type, arg2);
444 if (code1 == TYPE_CODE_BOOL)
445 {
446 code1 = TYPE_CODE_INT;
447 convert_to_boolean = 1;
448 }
449 if (code1 == TYPE_CODE_CHAR)
450 code1 = TYPE_CODE_INT;
451 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
452 code2 = TYPE_CODE_INT;
453
454 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
455 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
456 || code2 == TYPE_CODE_RANGE);
457
458 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
459 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
460 && TYPE_NAME (type) != 0)
461 {
462 struct value *v = value_cast_structs (type, arg2);
463
464 if (v)
465 return v;
466 }
467
468 if (code1 == TYPE_CODE_FLT && scalar)
469 return value_from_double (type, value_as_double (arg2));
470 else if (code1 == TYPE_CODE_DECFLOAT && scalar)
471 {
472 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
473 int dec_len = TYPE_LENGTH (type);
474 gdb_byte dec[16];
475
476 if (code2 == TYPE_CODE_FLT)
477 decimal_from_floating (arg2, dec, dec_len, byte_order);
478 else if (code2 == TYPE_CODE_DECFLOAT)
479 decimal_convert (value_contents (arg2), TYPE_LENGTH (type2),
480 byte_order, dec, dec_len, byte_order);
481 else
482 /* The only option left is an integral type. */
483 decimal_from_integral (arg2, dec, dec_len, byte_order);
484
485 return value_from_decfloat (type, dec);
486 }
487 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
488 || code1 == TYPE_CODE_RANGE)
489 && (scalar || code2 == TYPE_CODE_PTR
490 || code2 == TYPE_CODE_MEMBERPTR))
491 {
492 LONGEST longest;
493
494 /* When we cast pointers to integers, we mustn't use
495 gdbarch_pointer_to_address to find the address the pointer
496 represents, as value_as_long would. GDB should evaluate
497 expressions just as the compiler would --- and the compiler
498 sees a cast as a simple reinterpretation of the pointer's
499 bits. */
500 if (code2 == TYPE_CODE_PTR)
501 longest = extract_unsigned_integer
502 (value_contents (arg2), TYPE_LENGTH (type2),
503 gdbarch_byte_order (get_type_arch (type2)));
504 else
505 longest = value_as_long (arg2);
506 return value_from_longest (type, convert_to_boolean ?
507 (LONGEST) (longest ? 1 : 0) : longest);
508 }
509 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
510 || code2 == TYPE_CODE_ENUM
511 || code2 == TYPE_CODE_RANGE))
512 {
513 /* TYPE_LENGTH (type) is the length of a pointer, but we really
514 want the length of an address! -- we are really dealing with
515 addresses (i.e., gdb representations) not pointers (i.e.,
516 target representations) here.
517
518 This allows things like "print *(int *)0x01000234" to work
519 without printing a misleading message -- which would
520 otherwise occur when dealing with a target having two byte
521 pointers and four byte addresses. */
522
523 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
524 LONGEST longest = value_as_long (arg2);
525
526 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
527 {
528 if (longest >= ((LONGEST) 1 << addr_bit)
529 || longest <= -((LONGEST) 1 << addr_bit))
530 warning (_("value truncated"));
531 }
532 return value_from_longest (type, longest);
533 }
534 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
535 && value_as_long (arg2) == 0)
536 {
537 struct value *result = allocate_value (type);
538
539 cplus_make_method_ptr (type, value_contents_writeable (result), 0, 0);
540 return result;
541 }
542 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
543 && value_as_long (arg2) == 0)
544 {
545 /* The Itanium C++ ABI represents NULL pointers to members as
546 minus one, instead of biasing the normal case. */
547 return value_from_longest (type, -1);
548 }
549 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar)
550 {
551 /* Widen the scalar to a vector. */
552 struct type *eltype;
553 struct value *val;
554 LONGEST low_bound, high_bound;
555 int i;
556
557 if (!get_array_bounds (type, &low_bound, &high_bound))
558 error (_("Could not determine the vector bounds"));
559
560 eltype = check_typedef (TYPE_TARGET_TYPE (type));
561 arg2 = value_cast (eltype, arg2);
562 val = allocate_value (type);
563
564 for (i = 0; i < high_bound - low_bound + 1; i++)
565 {
566 /* Duplicate the contents of arg2 into the destination vector. */
567 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
568 value_contents_all (arg2), TYPE_LENGTH (eltype));
569 }
570 return val;
571 }
572 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
573 {
574 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
575 return value_cast_pointers (type, arg2, 0);
576
577 arg2 = value_copy (arg2);
578 deprecated_set_value_type (arg2, type);
579 set_value_enclosing_type (arg2, type);
580 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
581 return arg2;
582 }
583 else if (VALUE_LVAL (arg2) == lval_memory)
584 return value_at_lazy (type, value_address (arg2));
585 else if (code1 == TYPE_CODE_VOID)
586 {
587 return value_zero (type, not_lval);
588 }
589 else
590 {
591 error (_("Invalid cast."));
592 return 0;
593 }
594 }
595
596 /* The C++ reinterpret_cast operator. */
597
598 struct value *
599 value_reinterpret_cast (struct type *type, struct value *arg)
600 {
601 struct value *result;
602 struct type *real_type = check_typedef (type);
603 struct type *arg_type, *dest_type;
604 int is_ref = 0;
605 enum type_code dest_code, arg_code;
606
607 /* Do reference, function, and array conversion. */
608 arg = coerce_array (arg);
609
610 /* Attempt to preserve the type the user asked for. */
611 dest_type = type;
612
613 /* If we are casting to a reference type, transform
614 reinterpret_cast<T&>(V) to *reinterpret_cast<T*>(&V). */
615 if (TYPE_CODE (real_type) == TYPE_CODE_REF)
616 {
617 is_ref = 1;
618 arg = value_addr (arg);
619 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
620 real_type = lookup_pointer_type (real_type);
621 }
622
623 arg_type = value_type (arg);
624
625 dest_code = TYPE_CODE (real_type);
626 arg_code = TYPE_CODE (arg_type);
627
628 /* We can convert pointer types, or any pointer type to int, or int
629 type to pointer. */
630 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
631 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
632 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
633 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
634 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
635 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
636 || (dest_code == arg_code
637 && (dest_code == TYPE_CODE_PTR
638 || dest_code == TYPE_CODE_METHODPTR
639 || dest_code == TYPE_CODE_MEMBERPTR)))
640 result = value_cast (dest_type, arg);
641 else
642 error (_("Invalid reinterpret_cast"));
643
644 if (is_ref)
645 result = value_cast (type, value_ref (value_ind (result)));
646
647 return result;
648 }
649
650 /* A helper for value_dynamic_cast. This implements the first of two
651 runtime checks: we iterate over all the base classes of the value's
652 class which are equal to the desired class; if only one of these
653 holds the value, then it is the answer. */
654
655 static int
656 dynamic_cast_check_1 (struct type *desired_type,
657 const gdb_byte *valaddr,
658 int embedded_offset,
659 CORE_ADDR address,
660 struct value *val,
661 struct type *search_type,
662 CORE_ADDR arg_addr,
663 struct type *arg_type,
664 struct value **result)
665 {
666 int i, result_count = 0;
667
668 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
669 {
670 int offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
671 address, val);
672
673 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
674 {
675 if (address + embedded_offset + offset >= arg_addr
676 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
677 {
678 ++result_count;
679 if (!*result)
680 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
681 address + embedded_offset + offset);
682 }
683 }
684 else
685 result_count += dynamic_cast_check_1 (desired_type,
686 valaddr,
687 embedded_offset + offset,
688 address, val,
689 TYPE_BASECLASS (search_type, i),
690 arg_addr,
691 arg_type,
692 result);
693 }
694
695 return result_count;
696 }
697
698 /* A helper for value_dynamic_cast. This implements the second of two
699 runtime checks: we look for a unique public sibling class of the
700 argument's declared class. */
701
702 static int
703 dynamic_cast_check_2 (struct type *desired_type,
704 const gdb_byte *valaddr,
705 int embedded_offset,
706 CORE_ADDR address,
707 struct value *val,
708 struct type *search_type,
709 struct value **result)
710 {
711 int i, result_count = 0;
712
713 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
714 {
715 int offset;
716
717 if (! BASETYPE_VIA_PUBLIC (search_type, i))
718 continue;
719
720 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
721 address, val);
722 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
723 {
724 ++result_count;
725 if (*result == NULL)
726 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
727 address + embedded_offset + offset);
728 }
729 else
730 result_count += dynamic_cast_check_2 (desired_type,
731 valaddr,
732 embedded_offset + offset,
733 address, val,
734 TYPE_BASECLASS (search_type, i),
735 result);
736 }
737
738 return result_count;
739 }
740
741 /* The C++ dynamic_cast operator. */
742
743 struct value *
744 value_dynamic_cast (struct type *type, struct value *arg)
745 {
746 int full, top, using_enc;
747 struct type *resolved_type = check_typedef (type);
748 struct type *arg_type = check_typedef (value_type (arg));
749 struct type *class_type, *rtti_type;
750 struct value *result, *tem, *original_arg = arg;
751 CORE_ADDR addr;
752 int is_ref = TYPE_CODE (resolved_type) == TYPE_CODE_REF;
753
754 if (TYPE_CODE (resolved_type) != TYPE_CODE_PTR
755 && TYPE_CODE (resolved_type) != TYPE_CODE_REF)
756 error (_("Argument to dynamic_cast must be a pointer or reference type"));
757 if (TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_VOID
758 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) != TYPE_CODE_CLASS)
759 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
760
761 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
762 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
763 {
764 if (TYPE_CODE (arg_type) != TYPE_CODE_PTR
765 && ! (TYPE_CODE (arg_type) == TYPE_CODE_INT
766 && value_as_long (arg) == 0))
767 error (_("Argument to dynamic_cast does not have pointer type"));
768 if (TYPE_CODE (arg_type) == TYPE_CODE_PTR)
769 {
770 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
771 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
772 error (_("Argument to dynamic_cast does "
773 "not have pointer to class type"));
774 }
775
776 /* Handle NULL pointers. */
777 if (value_as_long (arg) == 0)
778 return value_zero (type, not_lval);
779
780 arg = value_ind (arg);
781 }
782 else
783 {
784 if (TYPE_CODE (arg_type) != TYPE_CODE_CLASS)
785 error (_("Argument to dynamic_cast does not have class type"));
786 }
787
788 /* If the classes are the same, just return the argument. */
789 if (class_types_same_p (class_type, arg_type))
790 return value_cast (type, arg);
791
792 /* If the target type is a unique base class of the argument's
793 declared type, just cast it. */
794 if (is_ancestor (class_type, arg_type))
795 {
796 if (is_unique_ancestor (class_type, arg))
797 return value_cast (type, original_arg);
798 error (_("Ambiguous dynamic_cast"));
799 }
800
801 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
802 if (! rtti_type)
803 error (_("Couldn't determine value's most derived type for dynamic_cast"));
804
805 /* Compute the most derived object's address. */
806 addr = value_address (arg);
807 if (full)
808 {
809 /* Done. */
810 }
811 else if (using_enc)
812 addr += top;
813 else
814 addr += top + value_embedded_offset (arg);
815
816 /* dynamic_cast<void *> means to return a pointer to the
817 most-derived object. */
818 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR
819 && TYPE_CODE (TYPE_TARGET_TYPE (resolved_type)) == TYPE_CODE_VOID)
820 return value_at_lazy (type, addr);
821
822 tem = value_at (type, addr);
823
824 /* The first dynamic check specified in 5.2.7. */
825 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
826 {
827 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
828 return tem;
829 result = NULL;
830 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
831 value_contents_for_printing (tem),
832 value_embedded_offset (tem),
833 value_address (tem), tem,
834 rtti_type, addr,
835 arg_type,
836 &result) == 1)
837 return value_cast (type,
838 is_ref ? value_ref (result) : value_addr (result));
839 }
840
841 /* The second dynamic check specified in 5.2.7. */
842 result = NULL;
843 if (is_public_ancestor (arg_type, rtti_type)
844 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
845 value_contents_for_printing (tem),
846 value_embedded_offset (tem),
847 value_address (tem), tem,
848 rtti_type, &result) == 1)
849 return value_cast (type,
850 is_ref ? value_ref (result) : value_addr (result));
851
852 if (TYPE_CODE (resolved_type) == TYPE_CODE_PTR)
853 return value_zero (type, not_lval);
854
855 error (_("dynamic_cast failed"));
856 }
857
858 /* Create a value of type TYPE that is zero, and return it. */
859
860 struct value *
861 value_zero (struct type *type, enum lval_type lv)
862 {
863 struct value *val = allocate_value (type);
864
865 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
866 return val;
867 }
868
869 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
870
871 struct value *
872 value_one (struct type *type)
873 {
874 struct type *type1 = check_typedef (type);
875 struct value *val;
876
877 if (TYPE_CODE (type1) == TYPE_CODE_DECFLOAT)
878 {
879 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
880 gdb_byte v[16];
881
882 decimal_from_string (v, TYPE_LENGTH (type), byte_order, "1");
883 val = value_from_decfloat (type, v);
884 }
885 else if (TYPE_CODE (type1) == TYPE_CODE_FLT)
886 {
887 val = value_from_double (type, (DOUBLEST) 1);
888 }
889 else if (is_integral_type (type1))
890 {
891 val = value_from_longest (type, (LONGEST) 1);
892 }
893 else if (TYPE_CODE (type1) == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
894 {
895 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
896 int i;
897 LONGEST low_bound, high_bound;
898 struct value *tmp;
899
900 if (!get_array_bounds (type1, &low_bound, &high_bound))
901 error (_("Could not determine the vector bounds"));
902
903 val = allocate_value (type);
904 for (i = 0; i < high_bound - low_bound + 1; i++)
905 {
906 tmp = value_one (eltype);
907 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
908 value_contents_all (tmp), TYPE_LENGTH (eltype));
909 }
910 }
911 else
912 {
913 error (_("Not a numeric type."));
914 }
915
916 /* value_one result is never used for assignments to. */
917 gdb_assert (VALUE_LVAL (val) == not_lval);
918
919 return val;
920 }
921
922 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack. */
923
924 static struct value *
925 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
926 {
927 struct value *val;
928
929 if (TYPE_CODE (check_typedef (type)) == TYPE_CODE_VOID)
930 error (_("Attempt to dereference a generic pointer."));
931
932 val = value_from_contents_and_address (type, NULL, addr);
933
934 if (!lazy)
935 value_fetch_lazy (val);
936
937 return val;
938 }
939
940 /* Return a value with type TYPE located at ADDR.
941
942 Call value_at only if the data needs to be fetched immediately;
943 if we can be 'lazy' and defer the fetch, perhaps indefinately, call
944 value_at_lazy instead. value_at_lazy simply records the address of
945 the data and sets the lazy-evaluation-required flag. The lazy flag
946 is tested in the value_contents macro, which is used if and when
947 the contents are actually required.
948
949 Note: value_at does *NOT* handle embedded offsets; perform such
950 adjustments before or after calling it. */
951
952 struct value *
953 value_at (struct type *type, CORE_ADDR addr)
954 {
955 return get_value_at (type, addr, 0);
956 }
957
958 /* Return a lazy value with type TYPE located at ADDR (cf. value_at). */
959
960 struct value *
961 value_at_lazy (struct type *type, CORE_ADDR addr)
962 {
963 return get_value_at (type, addr, 1);
964 }
965
966 /* Called only from the value_contents and value_contents_all()
967 macros, if the current data for a variable needs to be loaded into
968 value_contents(VAL). Fetches the data from the user's process, and
969 clears the lazy flag to indicate that the data in the buffer is
970 valid.
971
972 If the value is zero-length, we avoid calling read_memory, which
973 would abort. We mark the value as fetched anyway -- all 0 bytes of
974 it.
975
976 This function returns a value because it is used in the
977 value_contents macro as part of an expression, where a void would
978 not work. The value is ignored. */
979
980 int
981 value_fetch_lazy (struct value *val)
982 {
983 gdb_assert (value_lazy (val));
984 allocate_value_contents (val);
985 if (value_bitsize (val))
986 {
987 /* To read a lazy bitfield, read the entire enclosing value. This
988 prevents reading the same block of (possibly volatile) memory once
989 per bitfield. It would be even better to read only the containing
990 word, but we have no way to record that just specific bits of a
991 value have been fetched. */
992 struct type *type = check_typedef (value_type (val));
993 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
994 struct value *parent = value_parent (val);
995 LONGEST offset = value_offset (val);
996 LONGEST num;
997 int length = TYPE_LENGTH (type);
998
999 if (!value_bits_valid (val,
1000 TARGET_CHAR_BIT * offset + value_bitpos (val),
1001 value_bitsize (val)))
1002 error (_("value has been optimized out"));
1003
1004 if (!unpack_value_bits_as_long (value_type (val),
1005 value_contents_for_printing (parent),
1006 offset,
1007 value_bitpos (val),
1008 value_bitsize (val), parent, &num))
1009 mark_value_bytes_unavailable (val,
1010 value_embedded_offset (val),
1011 length);
1012 else
1013 store_signed_integer (value_contents_raw (val), length,
1014 byte_order, num);
1015 }
1016 else if (VALUE_LVAL (val) == lval_memory)
1017 {
1018 CORE_ADDR addr = value_address (val);
1019 int length = TYPE_LENGTH (check_typedef (value_enclosing_type (val)));
1020
1021 if (length)
1022 read_value_memory (val, 0, value_stack (val),
1023 addr, value_contents_all_raw (val), length);
1024 }
1025 else if (VALUE_LVAL (val) == lval_register)
1026 {
1027 struct frame_info *frame;
1028 int regnum;
1029 struct type *type = check_typedef (value_type (val));
1030 struct value *new_val = val, *mark = value_mark ();
1031
1032 /* Offsets are not supported here; lazy register values must
1033 refer to the entire register. */
1034 gdb_assert (value_offset (val) == 0);
1035
1036 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
1037 {
1038 frame = frame_find_by_id (VALUE_FRAME_ID (new_val));
1039 regnum = VALUE_REGNUM (new_val);
1040
1041 gdb_assert (frame != NULL);
1042
1043 /* Convertible register routines are used for multi-register
1044 values and for interpretation in different types
1045 (e.g. float or int from a double register). Lazy
1046 register values should have the register's natural type,
1047 so they do not apply. */
1048 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
1049 regnum, type));
1050
1051 new_val = get_frame_register_value (frame, regnum);
1052 }
1053
1054 /* If it's still lazy (for instance, a saved register on the
1055 stack), fetch it. */
1056 if (value_lazy (new_val))
1057 value_fetch_lazy (new_val);
1058
1059 /* If the register was not saved, mark it optimized out. */
1060 if (value_optimized_out (new_val))
1061 set_value_optimized_out (val, 1);
1062 else
1063 {
1064 set_value_lazy (val, 0);
1065 value_contents_copy (val, value_embedded_offset (val),
1066 new_val, value_embedded_offset (new_val),
1067 TYPE_LENGTH (type));
1068 }
1069
1070 if (frame_debug)
1071 {
1072 struct gdbarch *gdbarch;
1073 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1074 regnum = VALUE_REGNUM (val);
1075 gdbarch = get_frame_arch (frame);
1076
1077 fprintf_unfiltered (gdb_stdlog,
1078 "{ value_fetch_lazy "
1079 "(frame=%d,regnum=%d(%s),...) ",
1080 frame_relative_level (frame), regnum,
1081 user_reg_map_regnum_to_name (gdbarch, regnum));
1082
1083 fprintf_unfiltered (gdb_stdlog, "->");
1084 if (value_optimized_out (new_val))
1085 fprintf_unfiltered (gdb_stdlog, " optimized out");
1086 else
1087 {
1088 int i;
1089 const gdb_byte *buf = value_contents (new_val);
1090
1091 if (VALUE_LVAL (new_val) == lval_register)
1092 fprintf_unfiltered (gdb_stdlog, " register=%d",
1093 VALUE_REGNUM (new_val));
1094 else if (VALUE_LVAL (new_val) == lval_memory)
1095 fprintf_unfiltered (gdb_stdlog, " address=%s",
1096 paddress (gdbarch,
1097 value_address (new_val)));
1098 else
1099 fprintf_unfiltered (gdb_stdlog, " computed");
1100
1101 fprintf_unfiltered (gdb_stdlog, " bytes=");
1102 fprintf_unfiltered (gdb_stdlog, "[");
1103 for (i = 0; i < register_size (gdbarch, regnum); i++)
1104 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
1105 fprintf_unfiltered (gdb_stdlog, "]");
1106 }
1107
1108 fprintf_unfiltered (gdb_stdlog, " }\n");
1109 }
1110
1111 /* Dispose of the intermediate values. This prevents
1112 watchpoints from trying to watch the saved frame pointer. */
1113 value_free_to_mark (mark);
1114 }
1115 else if (VALUE_LVAL (val) == lval_computed
1116 && value_computed_funcs (val)->read != NULL)
1117 value_computed_funcs (val)->read (val);
1118 else if (value_optimized_out (val))
1119 /* Keep it optimized out. */;
1120 else
1121 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
1122
1123 set_value_lazy (val, 0);
1124 return 0;
1125 }
1126
1127 void
1128 read_value_memory (struct value *val, int embedded_offset,
1129 int stack, CORE_ADDR memaddr,
1130 gdb_byte *buffer, size_t length)
1131 {
1132 if (length)
1133 {
1134 VEC(mem_range_s) *available_memory;
1135
1136 if (get_traceframe_number () < 0
1137 || !traceframe_available_memory (&available_memory, memaddr, length))
1138 {
1139 if (stack)
1140 read_stack (memaddr, buffer, length);
1141 else
1142 read_memory (memaddr, buffer, length);
1143 }
1144 else
1145 {
1146 struct target_section_table *table;
1147 struct cleanup *old_chain;
1148 CORE_ADDR unavail;
1149 mem_range_s *r;
1150 int i;
1151
1152 /* Fallback to reading from read-only sections. */
1153 table = target_get_section_table (&exec_ops);
1154 available_memory =
1155 section_table_available_memory (available_memory,
1156 memaddr, length,
1157 table->sections,
1158 table->sections_end);
1159
1160 old_chain = make_cleanup (VEC_cleanup(mem_range_s),
1161 &available_memory);
1162
1163 normalize_mem_ranges (available_memory);
1164
1165 /* Mark which bytes are unavailable, and read those which
1166 are available. */
1167
1168 unavail = memaddr;
1169
1170 for (i = 0;
1171 VEC_iterate (mem_range_s, available_memory, i, r);
1172 i++)
1173 {
1174 if (mem_ranges_overlap (r->start, r->length,
1175 memaddr, length))
1176 {
1177 CORE_ADDR lo1, hi1, lo2, hi2;
1178 CORE_ADDR start, end;
1179
1180 /* Get the intersection window. */
1181 lo1 = memaddr;
1182 hi1 = memaddr + length;
1183 lo2 = r->start;
1184 hi2 = r->start + r->length;
1185 start = max (lo1, lo2);
1186 end = min (hi1, hi2);
1187
1188 gdb_assert (end - memaddr <= length);
1189
1190 if (start > unavail)
1191 mark_value_bytes_unavailable (val,
1192 (embedded_offset
1193 + unavail - memaddr),
1194 start - unavail);
1195 unavail = end;
1196
1197 read_memory (start, buffer + start - memaddr, end - start);
1198 }
1199 }
1200
1201 if (unavail != memaddr + length)
1202 mark_value_bytes_unavailable (val,
1203 embedded_offset + unavail - memaddr,
1204 (memaddr + length) - unavail);
1205
1206 do_cleanups (old_chain);
1207 }
1208 }
1209 }
1210
1211 /* Store the contents of FROMVAL into the location of TOVAL.
1212 Return a new value with the location of TOVAL and contents of FROMVAL. */
1213
1214 struct value *
1215 value_assign (struct value *toval, struct value *fromval)
1216 {
1217 struct type *type;
1218 struct value *val;
1219 struct frame_id old_frame;
1220
1221 if (!deprecated_value_modifiable (toval))
1222 error (_("Left operand of assignment is not a modifiable lvalue."));
1223
1224 toval = coerce_ref (toval);
1225
1226 type = value_type (toval);
1227 if (VALUE_LVAL (toval) != lval_internalvar)
1228 fromval = value_cast (type, fromval);
1229 else
1230 {
1231 /* Coerce arrays and functions to pointers, except for arrays
1232 which only live in GDB's storage. */
1233 if (!value_must_coerce_to_target (fromval))
1234 fromval = coerce_array (fromval);
1235 }
1236
1237 CHECK_TYPEDEF (type);
1238
1239 /* Since modifying a register can trash the frame chain, and
1240 modifying memory can trash the frame cache, we save the old frame
1241 and then restore the new frame afterwards. */
1242 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1243
1244 switch (VALUE_LVAL (toval))
1245 {
1246 case lval_internalvar:
1247 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1248 return value_of_internalvar (get_type_arch (type),
1249 VALUE_INTERNALVAR (toval));
1250
1251 case lval_internalvar_component:
1252 set_internalvar_component (VALUE_INTERNALVAR (toval),
1253 value_offset (toval),
1254 value_bitpos (toval),
1255 value_bitsize (toval),
1256 fromval);
1257 break;
1258
1259 case lval_memory:
1260 {
1261 const gdb_byte *dest_buffer;
1262 CORE_ADDR changed_addr;
1263 int changed_len;
1264 gdb_byte buffer[sizeof (LONGEST)];
1265
1266 if (value_bitsize (toval))
1267 {
1268 struct value *parent = value_parent (toval);
1269
1270 changed_addr = value_address (parent) + value_offset (toval);
1271 changed_len = (value_bitpos (toval)
1272 + value_bitsize (toval)
1273 + HOST_CHAR_BIT - 1)
1274 / HOST_CHAR_BIT;
1275
1276 /* If we can read-modify-write exactly the size of the
1277 containing type (e.g. short or int) then do so. This
1278 is safer for volatile bitfields mapped to hardware
1279 registers. */
1280 if (changed_len < TYPE_LENGTH (type)
1281 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1282 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1283 changed_len = TYPE_LENGTH (type);
1284
1285 if (changed_len > (int) sizeof (LONGEST))
1286 error (_("Can't handle bitfields which "
1287 "don't fit in a %d bit word."),
1288 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1289
1290 read_memory (changed_addr, buffer, changed_len);
1291 modify_field (type, buffer, value_as_long (fromval),
1292 value_bitpos (toval), value_bitsize (toval));
1293 dest_buffer = buffer;
1294 }
1295 else
1296 {
1297 changed_addr = value_address (toval);
1298 changed_len = TYPE_LENGTH (type);
1299 dest_buffer = value_contents (fromval);
1300 }
1301
1302 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1303 }
1304 break;
1305
1306 case lval_register:
1307 {
1308 struct frame_info *frame;
1309 struct gdbarch *gdbarch;
1310 int value_reg;
1311
1312 /* Figure out which frame this is in currently. */
1313 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1314 value_reg = VALUE_REGNUM (toval);
1315
1316 if (!frame)
1317 error (_("Value being assigned to is no longer active."));
1318
1319 gdbarch = get_frame_arch (frame);
1320 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval), type))
1321 {
1322 /* If TOVAL is a special machine register requiring
1323 conversion of program values to a special raw
1324 format. */
1325 gdbarch_value_to_register (gdbarch, frame,
1326 VALUE_REGNUM (toval), type,
1327 value_contents (fromval));
1328 }
1329 else
1330 {
1331 if (value_bitsize (toval))
1332 {
1333 struct value *parent = value_parent (toval);
1334 int offset = value_offset (parent) + value_offset (toval);
1335 int changed_len;
1336 gdb_byte buffer[sizeof (LONGEST)];
1337 int optim, unavail;
1338
1339 changed_len = (value_bitpos (toval)
1340 + value_bitsize (toval)
1341 + HOST_CHAR_BIT - 1)
1342 / HOST_CHAR_BIT;
1343
1344 if (changed_len > (int) sizeof (LONGEST))
1345 error (_("Can't handle bitfields which "
1346 "don't fit in a %d bit word."),
1347 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1348
1349 if (!get_frame_register_bytes (frame, value_reg, offset,
1350 changed_len, buffer,
1351 &optim, &unavail))
1352 {
1353 if (optim)
1354 error (_("value has been optimized out"));
1355 if (unavail)
1356 throw_error (NOT_AVAILABLE_ERROR,
1357 _("value is not available"));
1358 }
1359
1360 modify_field (type, buffer, value_as_long (fromval),
1361 value_bitpos (toval), value_bitsize (toval));
1362
1363 put_frame_register_bytes (frame, value_reg, offset,
1364 changed_len, buffer);
1365 }
1366 else
1367 {
1368 put_frame_register_bytes (frame, value_reg,
1369 value_offset (toval),
1370 TYPE_LENGTH (type),
1371 value_contents (fromval));
1372 }
1373 }
1374
1375 if (deprecated_register_changed_hook)
1376 deprecated_register_changed_hook (-1);
1377 break;
1378 }
1379
1380 case lval_computed:
1381 {
1382 const struct lval_funcs *funcs = value_computed_funcs (toval);
1383
1384 if (funcs->write != NULL)
1385 {
1386 funcs->write (toval, fromval);
1387 break;
1388 }
1389 }
1390 /* Fall through. */
1391
1392 default:
1393 error (_("Left operand of assignment is not an lvalue."));
1394 }
1395
1396 /* Assigning to the stack pointer, frame pointer, and other
1397 (architecture and calling convention specific) registers may
1398 cause the frame cache and regcache to be out of date. Assigning to memory
1399 also can. We just do this on all assignments to registers or
1400 memory, for simplicity's sake; I doubt the slowdown matters. */
1401 switch (VALUE_LVAL (toval))
1402 {
1403 case lval_memory:
1404 case lval_register:
1405 case lval_computed:
1406
1407 observer_notify_target_changed (&current_target);
1408
1409 /* Having destroyed the frame cache, restore the selected
1410 frame. */
1411
1412 /* FIXME: cagney/2002-11-02: There has to be a better way of
1413 doing this. Instead of constantly saving/restoring the
1414 frame. Why not create a get_selected_frame() function that,
1415 having saved the selected frame's ID can automatically
1416 re-find the previously selected frame automatically. */
1417
1418 {
1419 struct frame_info *fi = frame_find_by_id (old_frame);
1420
1421 if (fi != NULL)
1422 select_frame (fi);
1423 }
1424
1425 break;
1426 default:
1427 break;
1428 }
1429
1430 /* If the field does not entirely fill a LONGEST, then zero the sign
1431 bits. If the field is signed, and is negative, then sign
1432 extend. */
1433 if ((value_bitsize (toval) > 0)
1434 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1435 {
1436 LONGEST fieldval = value_as_long (fromval);
1437 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1438
1439 fieldval &= valmask;
1440 if (!TYPE_UNSIGNED (type)
1441 && (fieldval & (valmask ^ (valmask >> 1))))
1442 fieldval |= ~valmask;
1443
1444 fromval = value_from_longest (type, fieldval);
1445 }
1446
1447 /* The return value is a copy of TOVAL so it shares its location
1448 information, but its contents are updated from FROMVAL. This
1449 implies the returned value is not lazy, even if TOVAL was. */
1450 val = value_copy (toval);
1451 set_value_lazy (val, 0);
1452 memcpy (value_contents_raw (val), value_contents (fromval),
1453 TYPE_LENGTH (type));
1454
1455 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1456 in the case of pointer types. For object types, the enclosing type
1457 and embedded offset must *not* be copied: the target object refered
1458 to by TOVAL retains its original dynamic type after assignment. */
1459 if (TYPE_CODE (type) == TYPE_CODE_PTR)
1460 {
1461 set_value_enclosing_type (val, value_enclosing_type (fromval));
1462 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1463 }
1464
1465 return val;
1466 }
1467
1468 /* Extend a value VAL to COUNT repetitions of its type. */
1469
1470 struct value *
1471 value_repeat (struct value *arg1, int count)
1472 {
1473 struct value *val;
1474
1475 if (VALUE_LVAL (arg1) != lval_memory)
1476 error (_("Only values in memory can be extended with '@'."));
1477 if (count < 1)
1478 error (_("Invalid number %d of repetitions."), count);
1479
1480 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1481
1482 VALUE_LVAL (val) = lval_memory;
1483 set_value_address (val, value_address (arg1));
1484
1485 read_value_memory (val, 0, value_stack (val), value_address (val),
1486 value_contents_all_raw (val),
1487 TYPE_LENGTH (value_enclosing_type (val)));
1488
1489 return val;
1490 }
1491
1492 struct value *
1493 value_of_variable (struct symbol *var, const struct block *b)
1494 {
1495 struct frame_info *frame;
1496
1497 if (!symbol_read_needs_frame (var))
1498 frame = NULL;
1499 else if (!b)
1500 frame = get_selected_frame (_("No frame selected."));
1501 else
1502 {
1503 frame = block_innermost_frame (b);
1504 if (!frame)
1505 {
1506 if (BLOCK_FUNCTION (b) && !block_inlined_p (b)
1507 && SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)))
1508 error (_("No frame is currently executing in block %s."),
1509 SYMBOL_PRINT_NAME (BLOCK_FUNCTION (b)));
1510 else
1511 error (_("No frame is currently executing in specified block"));
1512 }
1513 }
1514
1515 return read_var_value (var, frame);
1516 }
1517
1518 struct value *
1519 address_of_variable (struct symbol *var, struct block *b)
1520 {
1521 struct type *type = SYMBOL_TYPE (var);
1522 struct value *val;
1523
1524 /* Evaluate it first; if the result is a memory address, we're fine.
1525 Lazy evaluation pays off here. */
1526
1527 val = value_of_variable (var, b);
1528
1529 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1530 || TYPE_CODE (type) == TYPE_CODE_FUNC)
1531 {
1532 CORE_ADDR addr = value_address (val);
1533
1534 return value_from_pointer (lookup_pointer_type (type), addr);
1535 }
1536
1537 /* Not a memory address; check what the problem was. */
1538 switch (VALUE_LVAL (val))
1539 {
1540 case lval_register:
1541 {
1542 struct frame_info *frame;
1543 const char *regname;
1544
1545 frame = frame_find_by_id (VALUE_FRAME_ID (val));
1546 gdb_assert (frame);
1547
1548 regname = gdbarch_register_name (get_frame_arch (frame),
1549 VALUE_REGNUM (val));
1550 gdb_assert (regname && *regname);
1551
1552 error (_("Address requested for identifier "
1553 "\"%s\" which is in register $%s"),
1554 SYMBOL_PRINT_NAME (var), regname);
1555 break;
1556 }
1557
1558 default:
1559 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1560 SYMBOL_PRINT_NAME (var));
1561 break;
1562 }
1563
1564 return val;
1565 }
1566
1567 /* Return one if VAL does not live in target memory, but should in order
1568 to operate on it. Otherwise return zero. */
1569
1570 int
1571 value_must_coerce_to_target (struct value *val)
1572 {
1573 struct type *valtype;
1574
1575 /* The only lval kinds which do not live in target memory. */
1576 if (VALUE_LVAL (val) != not_lval
1577 && VALUE_LVAL (val) != lval_internalvar)
1578 return 0;
1579
1580 valtype = check_typedef (value_type (val));
1581
1582 switch (TYPE_CODE (valtype))
1583 {
1584 case TYPE_CODE_ARRAY:
1585 return TYPE_VECTOR (valtype) ? 0 : 1;
1586 case TYPE_CODE_STRING:
1587 return 1;
1588 default:
1589 return 0;
1590 }
1591 }
1592
1593 /* Make sure that VAL lives in target memory if it's supposed to. For
1594 instance, strings are constructed as character arrays in GDB's
1595 storage, and this function copies them to the target. */
1596
1597 struct value *
1598 value_coerce_to_target (struct value *val)
1599 {
1600 LONGEST length;
1601 CORE_ADDR addr;
1602
1603 if (!value_must_coerce_to_target (val))
1604 return val;
1605
1606 length = TYPE_LENGTH (check_typedef (value_type (val)));
1607 addr = allocate_space_in_inferior (length);
1608 write_memory (addr, value_contents (val), length);
1609 return value_at_lazy (value_type (val), addr);
1610 }
1611
1612 /* Given a value which is an array, return a value which is a pointer
1613 to its first element, regardless of whether or not the array has a
1614 nonzero lower bound.
1615
1616 FIXME: A previous comment here indicated that this routine should
1617 be substracting the array's lower bound. It's not clear to me that
1618 this is correct. Given an array subscripting operation, it would
1619 certainly work to do the adjustment here, essentially computing:
1620
1621 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1622
1623 However I believe a more appropriate and logical place to account
1624 for the lower bound is to do so in value_subscript, essentially
1625 computing:
1626
1627 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1628
1629 As further evidence consider what would happen with operations
1630 other than array subscripting, where the caller would get back a
1631 value that had an address somewhere before the actual first element
1632 of the array, and the information about the lower bound would be
1633 lost because of the coercion to pointer type. */
1634
1635 struct value *
1636 value_coerce_array (struct value *arg1)
1637 {
1638 struct type *type = check_typedef (value_type (arg1));
1639
1640 /* If the user tries to do something requiring a pointer with an
1641 array that has not yet been pushed to the target, then this would
1642 be a good time to do so. */
1643 arg1 = value_coerce_to_target (arg1);
1644
1645 if (VALUE_LVAL (arg1) != lval_memory)
1646 error (_("Attempt to take address of value not located in memory."));
1647
1648 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1649 value_address (arg1));
1650 }
1651
1652 /* Given a value which is a function, return a value which is a pointer
1653 to it. */
1654
1655 struct value *
1656 value_coerce_function (struct value *arg1)
1657 {
1658 struct value *retval;
1659
1660 if (VALUE_LVAL (arg1) != lval_memory)
1661 error (_("Attempt to take address of value not located in memory."));
1662
1663 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1664 value_address (arg1));
1665 return retval;
1666 }
1667
1668 /* Return a pointer value for the object for which ARG1 is the
1669 contents. */
1670
1671 struct value *
1672 value_addr (struct value *arg1)
1673 {
1674 struct value *arg2;
1675 struct type *type = check_typedef (value_type (arg1));
1676
1677 if (TYPE_CODE (type) == TYPE_CODE_REF)
1678 {
1679 /* Copy the value, but change the type from (T&) to (T*). We
1680 keep the same location information, which is efficient, and
1681 allows &(&X) to get the location containing the reference. */
1682 arg2 = value_copy (arg1);
1683 deprecated_set_value_type (arg2,
1684 lookup_pointer_type (TYPE_TARGET_TYPE (type)));
1685 return arg2;
1686 }
1687 if (TYPE_CODE (type) == TYPE_CODE_FUNC)
1688 return value_coerce_function (arg1);
1689
1690 /* If this is an array that has not yet been pushed to the target,
1691 then this would be a good time to force it to memory. */
1692 arg1 = value_coerce_to_target (arg1);
1693
1694 if (VALUE_LVAL (arg1) != lval_memory)
1695 error (_("Attempt to take address of value not located in memory."));
1696
1697 /* Get target memory address. */
1698 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1699 (value_address (arg1)
1700 + value_embedded_offset (arg1)));
1701
1702 /* This may be a pointer to a base subobject; so remember the
1703 full derived object's type ... */
1704 set_value_enclosing_type (arg2,
1705 lookup_pointer_type (value_enclosing_type (arg1)));
1706 /* ... and also the relative position of the subobject in the full
1707 object. */
1708 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1709 return arg2;
1710 }
1711
1712 /* Return a reference value for the object for which ARG1 is the
1713 contents. */
1714
1715 struct value *
1716 value_ref (struct value *arg1)
1717 {
1718 struct value *arg2;
1719 struct type *type = check_typedef (value_type (arg1));
1720
1721 if (TYPE_CODE (type) == TYPE_CODE_REF)
1722 return arg1;
1723
1724 arg2 = value_addr (arg1);
1725 deprecated_set_value_type (arg2, lookup_reference_type (type));
1726 return arg2;
1727 }
1728
1729 /* Given a value of a pointer type, apply the C unary * operator to
1730 it. */
1731
1732 struct value *
1733 value_ind (struct value *arg1)
1734 {
1735 struct type *base_type;
1736 struct value *arg2;
1737
1738 arg1 = coerce_array (arg1);
1739
1740 base_type = check_typedef (value_type (arg1));
1741
1742 if (VALUE_LVAL (arg1) == lval_computed)
1743 {
1744 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1745
1746 if (funcs->indirect)
1747 {
1748 struct value *result = funcs->indirect (arg1);
1749
1750 if (result)
1751 return result;
1752 }
1753 }
1754
1755 if (TYPE_CODE (base_type) == TYPE_CODE_PTR)
1756 {
1757 struct type *enc_type;
1758
1759 /* We may be pointing to something embedded in a larger object.
1760 Get the real type of the enclosing object. */
1761 enc_type = check_typedef (value_enclosing_type (arg1));
1762 enc_type = TYPE_TARGET_TYPE (enc_type);
1763
1764 if (TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_FUNC
1765 || TYPE_CODE (check_typedef (enc_type)) == TYPE_CODE_METHOD)
1766 /* For functions, go through find_function_addr, which knows
1767 how to handle function descriptors. */
1768 arg2 = value_at_lazy (enc_type,
1769 find_function_addr (arg1, NULL));
1770 else
1771 /* Retrieve the enclosing object pointed to. */
1772 arg2 = value_at_lazy (enc_type,
1773 (value_as_address (arg1)
1774 - value_pointed_to_offset (arg1)));
1775
1776 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1777 }
1778
1779 error (_("Attempt to take contents of a non-pointer value."));
1780 return 0; /* For lint -- never reached. */
1781 }
1782 \f
1783 /* Create a value for an array by allocating space in GDB, copying the
1784 data into that space, and then setting up an array value.
1785
1786 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1787 is populated from the values passed in ELEMVEC.
1788
1789 The element type of the array is inherited from the type of the
1790 first element, and all elements must have the same size (though we
1791 don't currently enforce any restriction on their types). */
1792
1793 struct value *
1794 value_array (int lowbound, int highbound, struct value **elemvec)
1795 {
1796 int nelem;
1797 int idx;
1798 unsigned int typelength;
1799 struct value *val;
1800 struct type *arraytype;
1801
1802 /* Validate that the bounds are reasonable and that each of the
1803 elements have the same size. */
1804
1805 nelem = highbound - lowbound + 1;
1806 if (nelem <= 0)
1807 {
1808 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1809 }
1810 typelength = TYPE_LENGTH (value_enclosing_type (elemvec[0]));
1811 for (idx = 1; idx < nelem; idx++)
1812 {
1813 if (TYPE_LENGTH (value_enclosing_type (elemvec[idx])) != typelength)
1814 {
1815 error (_("array elements must all be the same size"));
1816 }
1817 }
1818
1819 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1820 lowbound, highbound);
1821
1822 if (!current_language->c_style_arrays)
1823 {
1824 val = allocate_value (arraytype);
1825 for (idx = 0; idx < nelem; idx++)
1826 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1827 typelength);
1828 return val;
1829 }
1830
1831 /* Allocate space to store the array, and then initialize it by
1832 copying in each element. */
1833
1834 val = allocate_value (arraytype);
1835 for (idx = 0; idx < nelem; idx++)
1836 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1837 return val;
1838 }
1839
1840 struct value *
1841 value_cstring (char *ptr, int len, struct type *char_type)
1842 {
1843 struct value *val;
1844 int lowbound = current_language->string_lower_bound;
1845 int highbound = len / TYPE_LENGTH (char_type);
1846 struct type *stringtype
1847 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1848
1849 val = allocate_value (stringtype);
1850 memcpy (value_contents_raw (val), ptr, len);
1851 return val;
1852 }
1853
1854 /* Create a value for a string constant by allocating space in the
1855 inferior, copying the data into that space, and returning the
1856 address with type TYPE_CODE_STRING. PTR points to the string
1857 constant data; LEN is number of characters.
1858
1859 Note that string types are like array of char types with a lower
1860 bound of zero and an upper bound of LEN - 1. Also note that the
1861 string may contain embedded null bytes. */
1862
1863 struct value *
1864 value_string (char *ptr, int len, struct type *char_type)
1865 {
1866 struct value *val;
1867 int lowbound = current_language->string_lower_bound;
1868 int highbound = len / TYPE_LENGTH (char_type);
1869 struct type *stringtype
1870 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1871
1872 val = allocate_value (stringtype);
1873 memcpy (value_contents_raw (val), ptr, len);
1874 return val;
1875 }
1876
1877 \f
1878 /* See if we can pass arguments in T2 to a function which takes
1879 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1880 a NULL-terminated vector. If some arguments need coercion of some
1881 sort, then the coerced values are written into T2. Return value is
1882 0 if the arguments could be matched, or the position at which they
1883 differ if not.
1884
1885 STATICP is nonzero if the T1 argument list came from a static
1886 member function. T2 will still include the ``this'' pointer, but
1887 it will be skipped.
1888
1889 For non-static member functions, we ignore the first argument,
1890 which is the type of the instance variable. This is because we
1891 want to handle calls with objects from derived classes. This is
1892 not entirely correct: we should actually check to make sure that a
1893 requested operation is type secure, shouldn't we? FIXME. */
1894
1895 static int
1896 typecmp (int staticp, int varargs, int nargs,
1897 struct field t1[], struct value *t2[])
1898 {
1899 int i;
1900
1901 if (t2 == 0)
1902 internal_error (__FILE__, __LINE__,
1903 _("typecmp: no argument list"));
1904
1905 /* Skip ``this'' argument if applicable. T2 will always include
1906 THIS. */
1907 if (staticp)
1908 t2 ++;
1909
1910 for (i = 0;
1911 (i < nargs) && TYPE_CODE (t1[i].type) != TYPE_CODE_VOID;
1912 i++)
1913 {
1914 struct type *tt1, *tt2;
1915
1916 if (!t2[i])
1917 return i + 1;
1918
1919 tt1 = check_typedef (t1[i].type);
1920 tt2 = check_typedef (value_type (t2[i]));
1921
1922 if (TYPE_CODE (tt1) == TYPE_CODE_REF
1923 /* We should be doing hairy argument matching, as below. */
1924 && (TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (tt1)))
1925 == TYPE_CODE (tt2)))
1926 {
1927 if (TYPE_CODE (tt2) == TYPE_CODE_ARRAY)
1928 t2[i] = value_coerce_array (t2[i]);
1929 else
1930 t2[i] = value_ref (t2[i]);
1931 continue;
1932 }
1933
1934 /* djb - 20000715 - Until the new type structure is in the
1935 place, and we can attempt things like implicit conversions,
1936 we need to do this so you can take something like a map<const
1937 char *>, and properly access map["hello"], because the
1938 argument to [] will be a reference to a pointer to a char,
1939 and the argument will be a pointer to a char. */
1940 while (TYPE_CODE(tt1) == TYPE_CODE_REF
1941 || TYPE_CODE (tt1) == TYPE_CODE_PTR)
1942 {
1943 tt1 = check_typedef( TYPE_TARGET_TYPE(tt1) );
1944 }
1945 while (TYPE_CODE(tt2) == TYPE_CODE_ARRAY
1946 || TYPE_CODE(tt2) == TYPE_CODE_PTR
1947 || TYPE_CODE(tt2) == TYPE_CODE_REF)
1948 {
1949 tt2 = check_typedef (TYPE_TARGET_TYPE(tt2));
1950 }
1951 if (TYPE_CODE (tt1) == TYPE_CODE (tt2))
1952 continue;
1953 /* Array to pointer is a `trivial conversion' according to the
1954 ARM. */
1955
1956 /* We should be doing much hairier argument matching (see
1957 section 13.2 of the ARM), but as a quick kludge, just check
1958 for the same type code. */
1959 if (TYPE_CODE (t1[i].type) != TYPE_CODE (value_type (t2[i])))
1960 return i + 1;
1961 }
1962 if (varargs || t2[i] == NULL)
1963 return 0;
1964 return i + 1;
1965 }
1966
1967 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1968 and *LAST_BOFFSET, and possibly throws an exception if the field
1969 search has yielded ambiguous results. */
1970
1971 static void
1972 update_search_result (struct value **result_ptr, struct value *v,
1973 int *last_boffset, int boffset,
1974 const char *name, struct type *type)
1975 {
1976 if (v != NULL)
1977 {
1978 if (*result_ptr != NULL
1979 /* The result is not ambiguous if all the classes that are
1980 found occupy the same space. */
1981 && *last_boffset != boffset)
1982 error (_("base class '%s' is ambiguous in type '%s'"),
1983 name, TYPE_SAFE_NAME (type));
1984 *result_ptr = v;
1985 *last_boffset = boffset;
1986 }
1987 }
1988
1989 /* A helper for search_struct_field. This does all the work; most
1990 arguments are as passed to search_struct_field. The result is
1991 stored in *RESULT_PTR, which must be initialized to NULL.
1992 OUTERMOST_TYPE is the type of the initial type passed to
1993 search_struct_field; this is used for error reporting when the
1994 lookup is ambiguous. */
1995
1996 static void
1997 do_search_struct_field (const char *name, struct value *arg1, int offset,
1998 struct type *type, int looking_for_baseclass,
1999 struct value **result_ptr,
2000 int *last_boffset,
2001 struct type *outermost_type)
2002 {
2003 int i;
2004 int nbases;
2005
2006 CHECK_TYPEDEF (type);
2007 nbases = TYPE_N_BASECLASSES (type);
2008
2009 if (!looking_for_baseclass)
2010 for (i = TYPE_NFIELDS (type) - 1; i >= nbases; i--)
2011 {
2012 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2013
2014 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2015 {
2016 struct value *v;
2017
2018 if (field_is_static (&TYPE_FIELD (type, i)))
2019 {
2020 v = value_static_field (type, i);
2021 if (v == 0)
2022 error (_("field %s is nonexistent or "
2023 "has been optimized out"),
2024 name);
2025 }
2026 else
2027 v = value_primitive_field (arg1, offset, i, type);
2028 *result_ptr = v;
2029 return;
2030 }
2031
2032 if (t_field_name
2033 && (t_field_name[0] == '\0'
2034 || (TYPE_CODE (type) == TYPE_CODE_UNION
2035 && (strcmp_iw (t_field_name, "else") == 0))))
2036 {
2037 struct type *field_type = TYPE_FIELD_TYPE (type, i);
2038
2039 if (TYPE_CODE (field_type) == TYPE_CODE_UNION
2040 || TYPE_CODE (field_type) == TYPE_CODE_STRUCT)
2041 {
2042 /* Look for a match through the fields of an anonymous
2043 union, or anonymous struct. C++ provides anonymous
2044 unions.
2045
2046 In the GNU Chill (now deleted from GDB)
2047 implementation of variant record types, each
2048 <alternative field> has an (anonymous) union type,
2049 each member of the union represents a <variant
2050 alternative>. Each <variant alternative> is
2051 represented as a struct, with a member for each
2052 <variant field>. */
2053
2054 struct value *v = NULL;
2055 int new_offset = offset;
2056
2057 /* This is pretty gross. In G++, the offset in an
2058 anonymous union is relative to the beginning of the
2059 enclosing struct. In the GNU Chill (now deleted
2060 from GDB) implementation of variant records, the
2061 bitpos is zero in an anonymous union field, so we
2062 have to add the offset of the union here. */
2063 if (TYPE_CODE (field_type) == TYPE_CODE_STRUCT
2064 || (TYPE_NFIELDS (field_type) > 0
2065 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
2066 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
2067
2068 do_search_struct_field (name, arg1, new_offset,
2069 field_type,
2070 looking_for_baseclass, &v,
2071 last_boffset,
2072 outermost_type);
2073 if (v)
2074 {
2075 *result_ptr = v;
2076 return;
2077 }
2078 }
2079 }
2080 }
2081
2082 for (i = 0; i < nbases; i++)
2083 {
2084 struct value *v = NULL;
2085 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
2086 /* If we are looking for baseclasses, this is what we get when
2087 we hit them. But it could happen that the base part's member
2088 name is not yet filled in. */
2089 int found_baseclass = (looking_for_baseclass
2090 && TYPE_BASECLASS_NAME (type, i) != NULL
2091 && (strcmp_iw (name,
2092 TYPE_BASECLASS_NAME (type,
2093 i)) == 0));
2094 int boffset = value_embedded_offset (arg1) + offset;
2095
2096 if (BASETYPE_VIA_VIRTUAL (type, i))
2097 {
2098 struct value *v2;
2099
2100 boffset = baseclass_offset (type, i,
2101 value_contents_for_printing (arg1),
2102 value_embedded_offset (arg1) + offset,
2103 value_address (arg1),
2104 arg1);
2105
2106 /* The virtual base class pointer might have been clobbered
2107 by the user program. Make sure that it still points to a
2108 valid memory location. */
2109
2110 boffset += value_embedded_offset (arg1) + offset;
2111 if (boffset < 0
2112 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
2113 {
2114 CORE_ADDR base_addr;
2115
2116 v2 = allocate_value (basetype);
2117 base_addr = value_address (arg1) + boffset;
2118 if (target_read_memory (base_addr,
2119 value_contents_raw (v2),
2120 TYPE_LENGTH (basetype)) != 0)
2121 error (_("virtual baseclass botch"));
2122 VALUE_LVAL (v2) = lval_memory;
2123 set_value_address (v2, base_addr);
2124 }
2125 else
2126 {
2127 v2 = value_copy (arg1);
2128 deprecated_set_value_type (v2, basetype);
2129 set_value_embedded_offset (v2, boffset);
2130 }
2131
2132 if (found_baseclass)
2133 v = v2;
2134 else
2135 {
2136 do_search_struct_field (name, v2, 0,
2137 TYPE_BASECLASS (type, i),
2138 looking_for_baseclass,
2139 result_ptr, last_boffset,
2140 outermost_type);
2141 }
2142 }
2143 else if (found_baseclass)
2144 v = value_primitive_field (arg1, offset, i, type);
2145 else
2146 {
2147 do_search_struct_field (name, arg1,
2148 offset + TYPE_BASECLASS_BITPOS (type,
2149 i) / 8,
2150 basetype, looking_for_baseclass,
2151 result_ptr, last_boffset,
2152 outermost_type);
2153 }
2154
2155 update_search_result (result_ptr, v, last_boffset,
2156 boffset, name, outermost_type);
2157 }
2158 }
2159
2160 /* Helper function used by value_struct_elt to recurse through
2161 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2162 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2163 TYPE. If found, return value, else return NULL.
2164
2165 If LOOKING_FOR_BASECLASS, then instead of looking for struct
2166 fields, look for a baseclass named NAME. */
2167
2168 static struct value *
2169 search_struct_field (const char *name, struct value *arg1, int offset,
2170 struct type *type, int looking_for_baseclass)
2171 {
2172 struct value *result = NULL;
2173 int boffset = 0;
2174
2175 do_search_struct_field (name, arg1, offset, type, looking_for_baseclass,
2176 &result, &boffset, type);
2177 return result;
2178 }
2179
2180 /* Helper function used by value_struct_elt to recurse through
2181 baseclasses. Look for a field NAME in ARG1. Adjust the address of
2182 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
2183 TYPE.
2184
2185 If found, return value, else if name matched and args not return
2186 (value) -1, else return NULL. */
2187
2188 static struct value *
2189 search_struct_method (const char *name, struct value **arg1p,
2190 struct value **args, int offset,
2191 int *static_memfuncp, struct type *type)
2192 {
2193 int i;
2194 struct value *v;
2195 int name_matched = 0;
2196 char dem_opname[64];
2197
2198 CHECK_TYPEDEF (type);
2199 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2200 {
2201 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2202
2203 /* FIXME! May need to check for ARM demangling here. */
2204 if (strncmp (t_field_name, "__", 2) == 0 ||
2205 strncmp (t_field_name, "op", 2) == 0 ||
2206 strncmp (t_field_name, "type", 4) == 0)
2207 {
2208 if (cplus_demangle_opname (t_field_name, dem_opname, DMGL_ANSI))
2209 t_field_name = dem_opname;
2210 else if (cplus_demangle_opname (t_field_name, dem_opname, 0))
2211 t_field_name = dem_opname;
2212 }
2213 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2214 {
2215 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
2216 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2217
2218 name_matched = 1;
2219 check_stub_method_group (type, i);
2220 if (j > 0 && args == 0)
2221 error (_("cannot resolve overloaded method "
2222 "`%s': no arguments supplied"), name);
2223 else if (j == 0 && args == 0)
2224 {
2225 v = value_fn_field (arg1p, f, j, type, offset);
2226 if (v != NULL)
2227 return v;
2228 }
2229 else
2230 while (j >= 0)
2231 {
2232 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2233 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2234 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, j)),
2235 TYPE_FN_FIELD_ARGS (f, j), args))
2236 {
2237 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2238 return value_virtual_fn_field (arg1p, f, j,
2239 type, offset);
2240 if (TYPE_FN_FIELD_STATIC_P (f, j)
2241 && static_memfuncp)
2242 *static_memfuncp = 1;
2243 v = value_fn_field (arg1p, f, j, type, offset);
2244 if (v != NULL)
2245 return v;
2246 }
2247 j--;
2248 }
2249 }
2250 }
2251
2252 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2253 {
2254 int base_offset;
2255 int skip = 0;
2256 int this_offset;
2257
2258 if (BASETYPE_VIA_VIRTUAL (type, i))
2259 {
2260 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2261 struct value *base_val;
2262 const gdb_byte *base_valaddr;
2263
2264 /* The virtual base class pointer might have been
2265 clobbered by the user program. Make sure that it
2266 still points to a valid memory location. */
2267
2268 if (offset < 0 || offset >= TYPE_LENGTH (type))
2269 {
2270 gdb_byte *tmp;
2271 struct cleanup *back_to;
2272 CORE_ADDR address;
2273
2274 tmp = xmalloc (TYPE_LENGTH (baseclass));
2275 back_to = make_cleanup (xfree, tmp);
2276 address = value_address (*arg1p);
2277
2278 if (target_read_memory (address + offset,
2279 tmp, TYPE_LENGTH (baseclass)) != 0)
2280 error (_("virtual baseclass botch"));
2281
2282 base_val = value_from_contents_and_address (baseclass,
2283 tmp,
2284 address + offset);
2285 base_valaddr = value_contents_for_printing (base_val);
2286 this_offset = 0;
2287 do_cleanups (back_to);
2288 }
2289 else
2290 {
2291 base_val = *arg1p;
2292 base_valaddr = value_contents_for_printing (*arg1p);
2293 this_offset = offset;
2294 }
2295
2296 base_offset = baseclass_offset (type, i, base_valaddr,
2297 this_offset, value_address (base_val),
2298 base_val);
2299 }
2300 else
2301 {
2302 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2303 }
2304 v = search_struct_method (name, arg1p, args, base_offset + offset,
2305 static_memfuncp, TYPE_BASECLASS (type, i));
2306 if (v == (struct value *) - 1)
2307 {
2308 name_matched = 1;
2309 }
2310 else if (v)
2311 {
2312 /* FIXME-bothner: Why is this commented out? Why is it here? */
2313 /* *arg1p = arg1_tmp; */
2314 return v;
2315 }
2316 }
2317 if (name_matched)
2318 return (struct value *) - 1;
2319 else
2320 return NULL;
2321 }
2322
2323 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2324 extract the component named NAME from the ultimate target
2325 structure/union and return it as a value with its appropriate type.
2326 ERR is used in the error message if *ARGP's type is wrong.
2327
2328 C++: ARGS is a list of argument types to aid in the selection of
2329 an appropriate method. Also, handle derived types.
2330
2331 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2332 where the truthvalue of whether the function that was resolved was
2333 a static member function or not is stored.
2334
2335 ERR is an error message to be printed in case the field is not
2336 found. */
2337
2338 struct value *
2339 value_struct_elt (struct value **argp, struct value **args,
2340 const char *name, int *static_memfuncp, const char *err)
2341 {
2342 struct type *t;
2343 struct value *v;
2344
2345 *argp = coerce_array (*argp);
2346
2347 t = check_typedef (value_type (*argp));
2348
2349 /* Follow pointers until we get to a non-pointer. */
2350
2351 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2352 {
2353 *argp = value_ind (*argp);
2354 /* Don't coerce fn pointer to fn and then back again! */
2355 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2356 *argp = coerce_array (*argp);
2357 t = check_typedef (value_type (*argp));
2358 }
2359
2360 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2361 && TYPE_CODE (t) != TYPE_CODE_UNION)
2362 error (_("Attempt to extract a component of a value that is not a %s."),
2363 err);
2364
2365 /* Assume it's not, unless we see that it is. */
2366 if (static_memfuncp)
2367 *static_memfuncp = 0;
2368
2369 if (!args)
2370 {
2371 /* if there are no arguments ...do this... */
2372
2373 /* Try as a field first, because if we succeed, there is less
2374 work to be done. */
2375 v = search_struct_field (name, *argp, 0, t, 0);
2376 if (v)
2377 return v;
2378
2379 /* C++: If it was not found as a data field, then try to
2380 return it as a pointer to a method. */
2381 v = search_struct_method (name, argp, args, 0,
2382 static_memfuncp, t);
2383
2384 if (v == (struct value *) - 1)
2385 error (_("Cannot take address of method %s."), name);
2386 else if (v == 0)
2387 {
2388 if (TYPE_NFN_FIELDS (t))
2389 error (_("There is no member or method named %s."), name);
2390 else
2391 error (_("There is no member named %s."), name);
2392 }
2393 return v;
2394 }
2395
2396 v = search_struct_method (name, argp, args, 0,
2397 static_memfuncp, t);
2398
2399 if (v == (struct value *) - 1)
2400 {
2401 error (_("One of the arguments you tried to pass to %s could not "
2402 "be converted to what the function wants."), name);
2403 }
2404 else if (v == 0)
2405 {
2406 /* See if user tried to invoke data as function. If so, hand it
2407 back. If it's not callable (i.e., a pointer to function),
2408 gdb should give an error. */
2409 v = search_struct_field (name, *argp, 0, t, 0);
2410 /* If we found an ordinary field, then it is not a method call.
2411 So, treat it as if it were a static member function. */
2412 if (v && static_memfuncp)
2413 *static_memfuncp = 1;
2414 }
2415
2416 if (!v)
2417 throw_error (NOT_FOUND_ERROR,
2418 _("Structure has no component named %s."), name);
2419 return v;
2420 }
2421
2422 /* Search through the methods of an object (and its bases) to find a
2423 specified method. Return the pointer to the fn_field list of
2424 overloaded instances.
2425
2426 Helper function for value_find_oload_list.
2427 ARGP is a pointer to a pointer to a value (the object).
2428 METHOD is a string containing the method name.
2429 OFFSET is the offset within the value.
2430 TYPE is the assumed type of the object.
2431 NUM_FNS is the number of overloaded instances.
2432 BASETYPE is set to the actual type of the subobject where the
2433 method is found.
2434 BOFFSET is the offset of the base subobject where the method is found. */
2435
2436 static struct fn_field *
2437 find_method_list (struct value **argp, const char *method,
2438 int offset, struct type *type, int *num_fns,
2439 struct type **basetype, int *boffset)
2440 {
2441 int i;
2442 struct fn_field *f;
2443 CHECK_TYPEDEF (type);
2444
2445 *num_fns = 0;
2446
2447 /* First check in object itself. */
2448 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2449 {
2450 /* pai: FIXME What about operators and type conversions? */
2451 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2452
2453 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2454 {
2455 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2456 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
2457
2458 *num_fns = len;
2459 *basetype = type;
2460 *boffset = offset;
2461
2462 /* Resolve any stub methods. */
2463 check_stub_method_group (type, i);
2464
2465 return f;
2466 }
2467 }
2468
2469 /* Not found in object, check in base subobjects. */
2470 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2471 {
2472 int base_offset;
2473
2474 if (BASETYPE_VIA_VIRTUAL (type, i))
2475 {
2476 base_offset = baseclass_offset (type, i,
2477 value_contents_for_printing (*argp),
2478 value_offset (*argp) + offset,
2479 value_address (*argp), *argp);
2480 }
2481 else /* Non-virtual base, simply use bit position from debug
2482 info. */
2483 {
2484 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2485 }
2486 f = find_method_list (argp, method, base_offset + offset,
2487 TYPE_BASECLASS (type, i), num_fns,
2488 basetype, boffset);
2489 if (f)
2490 return f;
2491 }
2492 return NULL;
2493 }
2494
2495 /* Return the list of overloaded methods of a specified name.
2496
2497 ARGP is a pointer to a pointer to a value (the object).
2498 METHOD is the method name.
2499 OFFSET is the offset within the value contents.
2500 NUM_FNS is the number of overloaded instances.
2501 BASETYPE is set to the type of the base subobject that defines the
2502 method.
2503 BOFFSET is the offset of the base subobject which defines the method. */
2504
2505 static struct fn_field *
2506 value_find_oload_method_list (struct value **argp, const char *method,
2507 int offset, int *num_fns,
2508 struct type **basetype, int *boffset)
2509 {
2510 struct type *t;
2511
2512 t = check_typedef (value_type (*argp));
2513
2514 /* Code snarfed from value_struct_elt. */
2515 while (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_CODE (t) == TYPE_CODE_REF)
2516 {
2517 *argp = value_ind (*argp);
2518 /* Don't coerce fn pointer to fn and then back again! */
2519 if (TYPE_CODE (value_type (*argp)) != TYPE_CODE_FUNC)
2520 *argp = coerce_array (*argp);
2521 t = check_typedef (value_type (*argp));
2522 }
2523
2524 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2525 && TYPE_CODE (t) != TYPE_CODE_UNION)
2526 error (_("Attempt to extract a component of a "
2527 "value that is not a struct or union"));
2528
2529 return find_method_list (argp, method, 0, t, num_fns,
2530 basetype, boffset);
2531 }
2532
2533 /* Given an array of arguments (ARGS) (which includes an
2534 entry for "this" in the case of C++ methods), the number of
2535 arguments NARGS, the NAME of a function whether it's a method or
2536 not (METHOD), and the degree of laxness (LAX) in conforming to
2537 overload resolution rules in ANSI C++, find the best function that
2538 matches on the argument types according to the overload resolution
2539 rules.
2540
2541 METHOD can be one of three values:
2542 NON_METHOD for non-member functions.
2543 METHOD: for member functions.
2544 BOTH: used for overload resolution of operators where the
2545 candidates are expected to be either member or non member
2546 functions. In this case the first argument ARGTYPES
2547 (representing 'this') is expected to be a reference to the
2548 target object, and will be dereferenced when attempting the
2549 non-member search.
2550
2551 In the case of class methods, the parameter OBJ is an object value
2552 in which to search for overloaded methods.
2553
2554 In the case of non-method functions, the parameter FSYM is a symbol
2555 corresponding to one of the overloaded functions.
2556
2557 Return value is an integer: 0 -> good match, 10 -> debugger applied
2558 non-standard coercions, 100 -> incompatible.
2559
2560 If a method is being searched for, VALP will hold the value.
2561 If a non-method is being searched for, SYMP will hold the symbol
2562 for it.
2563
2564 If a method is being searched for, and it is a static method,
2565 then STATICP will point to a non-zero value.
2566
2567 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2568 ADL overload candidates when performing overload resolution for a fully
2569 qualified name.
2570
2571 Note: This function does *not* check the value of
2572 overload_resolution. Caller must check it to see whether overload
2573 resolution is permitted. */
2574
2575 int
2576 find_overload_match (struct value **args, int nargs,
2577 const char *name, enum oload_search_type method,
2578 int lax, struct value **objp, struct symbol *fsym,
2579 struct value **valp, struct symbol **symp,
2580 int *staticp, const int no_adl)
2581 {
2582 struct value *obj = (objp ? *objp : NULL);
2583 struct type *obj_type = obj ? value_type (obj) : NULL;
2584 /* Index of best overloaded function. */
2585 int func_oload_champ = -1;
2586 int method_oload_champ = -1;
2587
2588 /* The measure for the current best match. */
2589 struct badness_vector *method_badness = NULL;
2590 struct badness_vector *func_badness = NULL;
2591
2592 struct value *temp = obj;
2593 /* For methods, the list of overloaded methods. */
2594 struct fn_field *fns_ptr = NULL;
2595 /* For non-methods, the list of overloaded function symbols. */
2596 struct symbol **oload_syms = NULL;
2597 /* Number of overloaded instances being considered. */
2598 int num_fns = 0;
2599 struct type *basetype = NULL;
2600 int boffset;
2601
2602 struct cleanup *all_cleanups = make_cleanup (null_cleanup, NULL);
2603
2604 const char *obj_type_name = NULL;
2605 const char *func_name = NULL;
2606 enum oload_classification match_quality;
2607 enum oload_classification method_match_quality = INCOMPATIBLE;
2608 enum oload_classification func_match_quality = INCOMPATIBLE;
2609
2610 /* Get the list of overloaded methods or functions. */
2611 if (method == METHOD || method == BOTH)
2612 {
2613 gdb_assert (obj);
2614
2615 /* OBJ may be a pointer value rather than the object itself. */
2616 obj = coerce_ref (obj);
2617 while (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_PTR)
2618 obj = coerce_ref (value_ind (obj));
2619 obj_type_name = TYPE_NAME (value_type (obj));
2620
2621 /* First check whether this is a data member, e.g. a pointer to
2622 a function. */
2623 if (TYPE_CODE (check_typedef (value_type (obj))) == TYPE_CODE_STRUCT)
2624 {
2625 *valp = search_struct_field (name, obj, 0,
2626 check_typedef (value_type (obj)), 0);
2627 if (*valp)
2628 {
2629 *staticp = 1;
2630 do_cleanups (all_cleanups);
2631 return 0;
2632 }
2633 }
2634
2635 /* Retrieve the list of methods with the name NAME. */
2636 fns_ptr = value_find_oload_method_list (&temp, name,
2637 0, &num_fns,
2638 &basetype, &boffset);
2639 /* If this is a method only search, and no methods were found
2640 the search has faild. */
2641 if (method == METHOD && (!fns_ptr || !num_fns))
2642 error (_("Couldn't find method %s%s%s"),
2643 obj_type_name,
2644 (obj_type_name && *obj_type_name) ? "::" : "",
2645 name);
2646 /* If we are dealing with stub method types, they should have
2647 been resolved by find_method_list via
2648 value_find_oload_method_list above. */
2649 if (fns_ptr)
2650 {
2651 gdb_assert (TYPE_DOMAIN_TYPE (fns_ptr[0].type) != NULL);
2652 method_oload_champ = find_oload_champ (args, nargs, method,
2653 num_fns, fns_ptr,
2654 oload_syms, &method_badness);
2655
2656 method_match_quality =
2657 classify_oload_match (method_badness, nargs,
2658 oload_method_static (method, fns_ptr,
2659 method_oload_champ));
2660
2661 make_cleanup (xfree, method_badness);
2662 }
2663
2664 }
2665
2666 if (method == NON_METHOD || method == BOTH)
2667 {
2668 const char *qualified_name = NULL;
2669
2670 /* If the overload match is being search for both as a method
2671 and non member function, the first argument must now be
2672 dereferenced. */
2673 if (method == BOTH)
2674 args[0] = value_ind (args[0]);
2675
2676 if (fsym)
2677 {
2678 qualified_name = SYMBOL_NATURAL_NAME (fsym);
2679
2680 /* If we have a function with a C++ name, try to extract just
2681 the function part. Do not try this for non-functions (e.g.
2682 function pointers). */
2683 if (qualified_name
2684 && TYPE_CODE (check_typedef (SYMBOL_TYPE (fsym)))
2685 == TYPE_CODE_FUNC)
2686 {
2687 char *temp;
2688
2689 temp = cp_func_name (qualified_name);
2690
2691 /* If cp_func_name did not remove anything, the name of the
2692 symbol did not include scope or argument types - it was
2693 probably a C-style function. */
2694 if (temp)
2695 {
2696 make_cleanup (xfree, temp);
2697 if (strcmp (temp, qualified_name) == 0)
2698 func_name = NULL;
2699 else
2700 func_name = temp;
2701 }
2702 }
2703 }
2704 else
2705 {
2706 func_name = name;
2707 qualified_name = name;
2708 }
2709
2710 /* If there was no C++ name, this must be a C-style function or
2711 not a function at all. Just return the same symbol. Do the
2712 same if cp_func_name fails for some reason. */
2713 if (func_name == NULL)
2714 {
2715 *symp = fsym;
2716 do_cleanups (all_cleanups);
2717 return 0;
2718 }
2719
2720 func_oload_champ = find_oload_champ_namespace (args, nargs,
2721 func_name,
2722 qualified_name,
2723 &oload_syms,
2724 &func_badness,
2725 no_adl);
2726
2727 if (func_oload_champ >= 0)
2728 func_match_quality = classify_oload_match (func_badness, nargs, 0);
2729
2730 make_cleanup (xfree, oload_syms);
2731 make_cleanup (xfree, func_badness);
2732 }
2733
2734 /* Did we find a match ? */
2735 if (method_oload_champ == -1 && func_oload_champ == -1)
2736 throw_error (NOT_FOUND_ERROR,
2737 _("No symbol \"%s\" in current context."),
2738 name);
2739
2740 /* If we have found both a method match and a function
2741 match, find out which one is better, and calculate match
2742 quality. */
2743 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2744 {
2745 switch (compare_badness (func_badness, method_badness))
2746 {
2747 case 0: /* Top two contenders are equally good. */
2748 /* FIXME: GDB does not support the general ambiguous case.
2749 All candidates should be collected and presented the
2750 user. */
2751 error (_("Ambiguous overload resolution"));
2752 break;
2753 case 1: /* Incomparable top contenders. */
2754 /* This is an error incompatible candidates
2755 should not have been proposed. */
2756 error (_("Internal error: incompatible "
2757 "overload candidates proposed"));
2758 break;
2759 case 2: /* Function champion. */
2760 method_oload_champ = -1;
2761 match_quality = func_match_quality;
2762 break;
2763 case 3: /* Method champion. */
2764 func_oload_champ = -1;
2765 match_quality = method_match_quality;
2766 break;
2767 default:
2768 error (_("Internal error: unexpected overload comparison result"));
2769 break;
2770 }
2771 }
2772 else
2773 {
2774 /* We have either a method match or a function match. */
2775 if (method_oload_champ >= 0)
2776 match_quality = method_match_quality;
2777 else
2778 match_quality = func_match_quality;
2779 }
2780
2781 if (match_quality == INCOMPATIBLE)
2782 {
2783 if (method == METHOD)
2784 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2785 obj_type_name,
2786 (obj_type_name && *obj_type_name) ? "::" : "",
2787 name);
2788 else
2789 error (_("Cannot resolve function %s to any overloaded instance"),
2790 func_name);
2791 }
2792 else if (match_quality == NON_STANDARD)
2793 {
2794 if (method == METHOD)
2795 warning (_("Using non-standard conversion to match "
2796 "method %s%s%s to supplied arguments"),
2797 obj_type_name,
2798 (obj_type_name && *obj_type_name) ? "::" : "",
2799 name);
2800 else
2801 warning (_("Using non-standard conversion to match "
2802 "function %s to supplied arguments"),
2803 func_name);
2804 }
2805
2806 if (staticp != NULL)
2807 *staticp = oload_method_static (method, fns_ptr, method_oload_champ);
2808
2809 if (method_oload_champ >= 0)
2810 {
2811 if (TYPE_FN_FIELD_VIRTUAL_P (fns_ptr, method_oload_champ))
2812 *valp = value_virtual_fn_field (&temp, fns_ptr, method_oload_champ,
2813 basetype, boffset);
2814 else
2815 *valp = value_fn_field (&temp, fns_ptr, method_oload_champ,
2816 basetype, boffset);
2817 }
2818 else
2819 *symp = oload_syms[func_oload_champ];
2820
2821 if (objp)
2822 {
2823 struct type *temp_type = check_typedef (value_type (temp));
2824 struct type *objtype = check_typedef (obj_type);
2825
2826 if (TYPE_CODE (temp_type) != TYPE_CODE_PTR
2827 && (TYPE_CODE (objtype) == TYPE_CODE_PTR
2828 || TYPE_CODE (objtype) == TYPE_CODE_REF))
2829 {
2830 temp = value_addr (temp);
2831 }
2832 *objp = temp;
2833 }
2834
2835 do_cleanups (all_cleanups);
2836
2837 switch (match_quality)
2838 {
2839 case INCOMPATIBLE:
2840 return 100;
2841 case NON_STANDARD:
2842 return 10;
2843 default: /* STANDARD */
2844 return 0;
2845 }
2846 }
2847
2848 /* Find the best overload match, searching for FUNC_NAME in namespaces
2849 contained in QUALIFIED_NAME until it either finds a good match or
2850 runs out of namespaces. It stores the overloaded functions in
2851 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. The
2852 calling function is responsible for freeing *OLOAD_SYMS and
2853 *OLOAD_CHAMP_BV. If NO_ADL, argument dependent lookup is not
2854 performned. */
2855
2856 static int
2857 find_oload_champ_namespace (struct value **args, int nargs,
2858 const char *func_name,
2859 const char *qualified_name,
2860 struct symbol ***oload_syms,
2861 struct badness_vector **oload_champ_bv,
2862 const int no_adl)
2863 {
2864 int oload_champ;
2865
2866 find_oload_champ_namespace_loop (args, nargs,
2867 func_name,
2868 qualified_name, 0,
2869 oload_syms, oload_champ_bv,
2870 &oload_champ,
2871 no_adl);
2872
2873 return oload_champ;
2874 }
2875
2876 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2877 how deep we've looked for namespaces, and the champ is stored in
2878 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2879 if it isn't. Other arguments are the same as in
2880 find_oload_champ_namespace
2881
2882 It is the caller's responsibility to free *OLOAD_SYMS and
2883 *OLOAD_CHAMP_BV. */
2884
2885 static int
2886 find_oload_champ_namespace_loop (struct value **args, int nargs,
2887 const char *func_name,
2888 const char *qualified_name,
2889 int namespace_len,
2890 struct symbol ***oload_syms,
2891 struct badness_vector **oload_champ_bv,
2892 int *oload_champ,
2893 const int no_adl)
2894 {
2895 int next_namespace_len = namespace_len;
2896 int searched_deeper = 0;
2897 int num_fns = 0;
2898 struct cleanup *old_cleanups;
2899 int new_oload_champ;
2900 struct symbol **new_oload_syms;
2901 struct badness_vector *new_oload_champ_bv;
2902 char *new_namespace;
2903
2904 if (next_namespace_len != 0)
2905 {
2906 gdb_assert (qualified_name[next_namespace_len] == ':');
2907 next_namespace_len += 2;
2908 }
2909 next_namespace_len +=
2910 cp_find_first_component (qualified_name + next_namespace_len);
2911
2912 /* Initialize these to values that can safely be xfree'd. */
2913 *oload_syms = NULL;
2914 *oload_champ_bv = NULL;
2915
2916 /* First, see if we have a deeper namespace we can search in.
2917 If we get a good match there, use it. */
2918
2919 if (qualified_name[next_namespace_len] == ':')
2920 {
2921 searched_deeper = 1;
2922
2923 if (find_oload_champ_namespace_loop (args, nargs,
2924 func_name, qualified_name,
2925 next_namespace_len,
2926 oload_syms, oload_champ_bv,
2927 oload_champ, no_adl))
2928 {
2929 return 1;
2930 }
2931 };
2932
2933 /* If we reach here, either we're in the deepest namespace or we
2934 didn't find a good match in a deeper namespace. But, in the
2935 latter case, we still have a bad match in a deeper namespace;
2936 note that we might not find any match at all in the current
2937 namespace. (There's always a match in the deepest namespace,
2938 because this overload mechanism only gets called if there's a
2939 function symbol to start off with.) */
2940
2941 old_cleanups = make_cleanup (xfree, *oload_syms);
2942 make_cleanup (xfree, *oload_champ_bv);
2943 new_namespace = alloca (namespace_len + 1);
2944 strncpy (new_namespace, qualified_name, namespace_len);
2945 new_namespace[namespace_len] = '\0';
2946 new_oload_syms = make_symbol_overload_list (func_name,
2947 new_namespace);
2948
2949 /* If we have reached the deepest level perform argument
2950 determined lookup. */
2951 if (!searched_deeper && !no_adl)
2952 {
2953 int ix;
2954 struct type **arg_types;
2955
2956 /* Prepare list of argument types for overload resolution. */
2957 arg_types = (struct type **)
2958 alloca (nargs * (sizeof (struct type *)));
2959 for (ix = 0; ix < nargs; ix++)
2960 arg_types[ix] = value_type (args[ix]);
2961 make_symbol_overload_list_adl (arg_types, nargs, func_name);
2962 }
2963
2964 while (new_oload_syms[num_fns])
2965 ++num_fns;
2966
2967 new_oload_champ = find_oload_champ (args, nargs, 0, num_fns,
2968 NULL, new_oload_syms,
2969 &new_oload_champ_bv);
2970
2971 /* Case 1: We found a good match. Free earlier matches (if any),
2972 and return it. Case 2: We didn't find a good match, but we're
2973 not the deepest function. Then go with the bad match that the
2974 deeper function found. Case 3: We found a bad match, and we're
2975 the deepest function. Then return what we found, even though
2976 it's a bad match. */
2977
2978 if (new_oload_champ != -1
2979 && classify_oload_match (new_oload_champ_bv, nargs, 0) == STANDARD)
2980 {
2981 *oload_syms = new_oload_syms;
2982 *oload_champ = new_oload_champ;
2983 *oload_champ_bv = new_oload_champ_bv;
2984 do_cleanups (old_cleanups);
2985 return 1;
2986 }
2987 else if (searched_deeper)
2988 {
2989 xfree (new_oload_syms);
2990 xfree (new_oload_champ_bv);
2991 discard_cleanups (old_cleanups);
2992 return 0;
2993 }
2994 else
2995 {
2996 *oload_syms = new_oload_syms;
2997 *oload_champ = new_oload_champ;
2998 *oload_champ_bv = new_oload_champ_bv;
2999 do_cleanups (old_cleanups);
3000 return 0;
3001 }
3002 }
3003
3004 /* Look for a function to take NARGS args of ARGS. Find
3005 the best match from among the overloaded methods or functions
3006 (depending on METHOD) given by FNS_PTR or OLOAD_SYMS, respectively.
3007 The number of methods/functions in the list is given by NUM_FNS.
3008 Return the index of the best match; store an indication of the
3009 quality of the match in OLOAD_CHAMP_BV.
3010
3011 It is the caller's responsibility to free *OLOAD_CHAMP_BV. */
3012
3013 static int
3014 find_oload_champ (struct value **args, int nargs, int method,
3015 int num_fns, struct fn_field *fns_ptr,
3016 struct symbol **oload_syms,
3017 struct badness_vector **oload_champ_bv)
3018 {
3019 int ix;
3020 /* A measure of how good an overloaded instance is. */
3021 struct badness_vector *bv;
3022 /* Index of best overloaded function. */
3023 int oload_champ = -1;
3024 /* Current ambiguity state for overload resolution. */
3025 int oload_ambiguous = 0;
3026 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
3027
3028 *oload_champ_bv = NULL;
3029
3030 /* Consider each candidate in turn. */
3031 for (ix = 0; ix < num_fns; ix++)
3032 {
3033 int jj;
3034 int static_offset = oload_method_static (method, fns_ptr, ix);
3035 int nparms;
3036 struct type **parm_types;
3037
3038 if (method)
3039 {
3040 nparms = TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (fns_ptr, ix));
3041 }
3042 else
3043 {
3044 /* If it's not a method, this is the proper place. */
3045 nparms = TYPE_NFIELDS (SYMBOL_TYPE (oload_syms[ix]));
3046 }
3047
3048 /* Prepare array of parameter types. */
3049 parm_types = (struct type **)
3050 xmalloc (nparms * (sizeof (struct type *)));
3051 for (jj = 0; jj < nparms; jj++)
3052 parm_types[jj] = (method
3053 ? (TYPE_FN_FIELD_ARGS (fns_ptr, ix)[jj].type)
3054 : TYPE_FIELD_TYPE (SYMBOL_TYPE (oload_syms[ix]),
3055 jj));
3056
3057 /* Compare parameter types to supplied argument types. Skip
3058 THIS for static methods. */
3059 bv = rank_function (parm_types, nparms,
3060 args + static_offset,
3061 nargs - static_offset);
3062
3063 if (!*oload_champ_bv)
3064 {
3065 *oload_champ_bv = bv;
3066 oload_champ = 0;
3067 }
3068 else /* See whether current candidate is better or worse than
3069 previous best. */
3070 switch (compare_badness (bv, *oload_champ_bv))
3071 {
3072 case 0: /* Top two contenders are equally good. */
3073 oload_ambiguous = 1;
3074 break;
3075 case 1: /* Incomparable top contenders. */
3076 oload_ambiguous = 2;
3077 break;
3078 case 2: /* New champion, record details. */
3079 *oload_champ_bv = bv;
3080 oload_ambiguous = 0;
3081 oload_champ = ix;
3082 break;
3083 case 3:
3084 default:
3085 break;
3086 }
3087 xfree (parm_types);
3088 if (overload_debug)
3089 {
3090 if (method)
3091 fprintf_filtered (gdb_stderr,
3092 "Overloaded method instance %s, # of parms %d\n",
3093 fns_ptr[ix].physname, nparms);
3094 else
3095 fprintf_filtered (gdb_stderr,
3096 "Overloaded function instance "
3097 "%s # of parms %d\n",
3098 SYMBOL_DEMANGLED_NAME (oload_syms[ix]),
3099 nparms);
3100 for (jj = 0; jj < nargs - static_offset; jj++)
3101 fprintf_filtered (gdb_stderr,
3102 "...Badness @ %d : %d\n",
3103 jj, bv->rank[jj].rank);
3104 fprintf_filtered (gdb_stderr, "Overload resolution "
3105 "champion is %d, ambiguous? %d\n",
3106 oload_champ, oload_ambiguous);
3107 }
3108 }
3109
3110 return oload_champ;
3111 }
3112
3113 /* Return 1 if we're looking at a static method, 0 if we're looking at
3114 a non-static method or a function that isn't a method. */
3115
3116 static int
3117 oload_method_static (int method, struct fn_field *fns_ptr, int index)
3118 {
3119 if (method && fns_ptr && index >= 0
3120 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3121 return 1;
3122 else
3123 return 0;
3124 }
3125
3126 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3127
3128 static enum oload_classification
3129 classify_oload_match (struct badness_vector *oload_champ_bv,
3130 int nargs,
3131 int static_offset)
3132 {
3133 int ix;
3134 enum oload_classification worst = STANDARD;
3135
3136 for (ix = 1; ix <= nargs - static_offset; ix++)
3137 {
3138 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3139 or worse return INCOMPATIBLE. */
3140 if (compare_ranks (oload_champ_bv->rank[ix],
3141 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3142 return INCOMPATIBLE; /* Truly mismatched types. */
3143 /* Otherwise If this conversion is as bad as
3144 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3145 else if (compare_ranks (oload_champ_bv->rank[ix],
3146 NS_POINTER_CONVERSION_BADNESS) <= 0)
3147 worst = NON_STANDARD; /* Non-standard type conversions
3148 needed. */
3149 }
3150
3151 /* If no INCOMPATIBLE classification was found, return the worst one
3152 that was found (if any). */
3153 return worst;
3154 }
3155
3156 /* C++: return 1 is NAME is a legitimate name for the destructor of
3157 type TYPE. If TYPE does not have a destructor, or if NAME is
3158 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3159 have CHECK_TYPEDEF applied, this function will apply it itself. */
3160
3161 int
3162 destructor_name_p (const char *name, struct type *type)
3163 {
3164 if (name[0] == '~')
3165 {
3166 const char *dname = type_name_no_tag_or_error (type);
3167 const char *cp = strchr (dname, '<');
3168 unsigned int len;
3169
3170 /* Do not compare the template part for template classes. */
3171 if (cp == NULL)
3172 len = strlen (dname);
3173 else
3174 len = cp - dname;
3175 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3176 error (_("name of destructor must equal name of class"));
3177 else
3178 return 1;
3179 }
3180 return 0;
3181 }
3182
3183 /* Given TYPE, a structure/union,
3184 return 1 if the component named NAME from the ultimate target
3185 structure/union is defined, otherwise, return 0. */
3186
3187 int
3188 check_field (struct type *type, const char *name)
3189 {
3190 int i;
3191
3192 /* The type may be a stub. */
3193 CHECK_TYPEDEF (type);
3194
3195 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
3196 {
3197 const char *t_field_name = TYPE_FIELD_NAME (type, i);
3198
3199 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
3200 return 1;
3201 }
3202
3203 /* C++: If it was not found as a data field, then try to return it
3204 as a pointer to a method. */
3205
3206 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
3207 {
3208 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
3209 return 1;
3210 }
3211
3212 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
3213 if (check_field (TYPE_BASECLASS (type, i), name))
3214 return 1;
3215
3216 return 0;
3217 }
3218
3219 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3220 return the appropriate member (or the address of the member, if
3221 WANT_ADDRESS). This function is used to resolve user expressions
3222 of the form "DOMAIN::NAME". For more details on what happens, see
3223 the comment before value_struct_elt_for_reference. */
3224
3225 struct value *
3226 value_aggregate_elt (struct type *curtype, char *name,
3227 struct type *expect_type, int want_address,
3228 enum noside noside)
3229 {
3230 switch (TYPE_CODE (curtype))
3231 {
3232 case TYPE_CODE_STRUCT:
3233 case TYPE_CODE_UNION:
3234 return value_struct_elt_for_reference (curtype, 0, curtype,
3235 name, expect_type,
3236 want_address, noside);
3237 case TYPE_CODE_NAMESPACE:
3238 return value_namespace_elt (curtype, name,
3239 want_address, noside);
3240 default:
3241 internal_error (__FILE__, __LINE__,
3242 _("non-aggregate type in value_aggregate_elt"));
3243 }
3244 }
3245
3246 /* Compares the two method/function types T1 and T2 for "equality"
3247 with respect to the methods' parameters. If the types of the
3248 two parameter lists are the same, returns 1; 0 otherwise. This
3249 comparison may ignore any artificial parameters in T1 if
3250 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3251 the first artificial parameter in T1, assumed to be a 'this' pointer.
3252
3253 The type T2 is expected to have come from make_params (in eval.c). */
3254
3255 static int
3256 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3257 {
3258 int start = 0;
3259
3260 if (TYPE_NFIELDS (t1) > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3261 ++start;
3262
3263 /* If skipping artificial fields, find the first real field
3264 in T1. */
3265 if (skip_artificial)
3266 {
3267 while (start < TYPE_NFIELDS (t1)
3268 && TYPE_FIELD_ARTIFICIAL (t1, start))
3269 ++start;
3270 }
3271
3272 /* Now compare parameters. */
3273
3274 /* Special case: a method taking void. T1 will contain no
3275 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3276 if ((TYPE_NFIELDS (t1) - start) == 0 && TYPE_NFIELDS (t2) == 1
3277 && TYPE_CODE (TYPE_FIELD_TYPE (t2, 0)) == TYPE_CODE_VOID)
3278 return 1;
3279
3280 if ((TYPE_NFIELDS (t1) - start) == TYPE_NFIELDS (t2))
3281 {
3282 int i;
3283
3284 for (i = 0; i < TYPE_NFIELDS (t2); ++i)
3285 {
3286 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3287 TYPE_FIELD_TYPE (t2, i), NULL),
3288 EXACT_MATCH_BADNESS) != 0)
3289 return 0;
3290 }
3291
3292 return 1;
3293 }
3294
3295 return 0;
3296 }
3297
3298 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3299 return the address of this member as a "pointer to member" type.
3300 If INTYPE is non-null, then it will be the type of the member we
3301 are looking for. This will help us resolve "pointers to member
3302 functions". This function is used to resolve user expressions of
3303 the form "DOMAIN::NAME". */
3304
3305 static struct value *
3306 value_struct_elt_for_reference (struct type *domain, int offset,
3307 struct type *curtype, char *name,
3308 struct type *intype,
3309 int want_address,
3310 enum noside noside)
3311 {
3312 struct type *t = curtype;
3313 int i;
3314 struct value *v, *result;
3315
3316 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
3317 && TYPE_CODE (t) != TYPE_CODE_UNION)
3318 error (_("Internal error: non-aggregate type "
3319 "to value_struct_elt_for_reference"));
3320
3321 for (i = TYPE_NFIELDS (t) - 1; i >= TYPE_N_BASECLASSES (t); i--)
3322 {
3323 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3324
3325 if (t_field_name && strcmp (t_field_name, name) == 0)
3326 {
3327 if (field_is_static (&TYPE_FIELD (t, i)))
3328 {
3329 v = value_static_field (t, i);
3330 if (v == NULL)
3331 error (_("static field %s has been optimized out"),
3332 name);
3333 if (want_address)
3334 v = value_addr (v);
3335 return v;
3336 }
3337 if (TYPE_FIELD_PACKED (t, i))
3338 error (_("pointers to bitfield members not allowed"));
3339
3340 if (want_address)
3341 return value_from_longest
3342 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3343 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3344 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3345 return allocate_value (TYPE_FIELD_TYPE (t, i));
3346 else
3347 error (_("Cannot reference non-static field \"%s\""), name);
3348 }
3349 }
3350
3351 /* C++: If it was not found as a data field, then try to return it
3352 as a pointer to a method. */
3353
3354 /* Perform all necessary dereferencing. */
3355 while (intype && TYPE_CODE (intype) == TYPE_CODE_PTR)
3356 intype = TYPE_TARGET_TYPE (intype);
3357
3358 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3359 {
3360 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3361 char dem_opname[64];
3362
3363 if (strncmp (t_field_name, "__", 2) == 0
3364 || strncmp (t_field_name, "op", 2) == 0
3365 || strncmp (t_field_name, "type", 4) == 0)
3366 {
3367 if (cplus_demangle_opname (t_field_name,
3368 dem_opname, DMGL_ANSI))
3369 t_field_name = dem_opname;
3370 else if (cplus_demangle_opname (t_field_name,
3371 dem_opname, 0))
3372 t_field_name = dem_opname;
3373 }
3374 if (t_field_name && strcmp (t_field_name, name) == 0)
3375 {
3376 int j;
3377 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3378 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3379
3380 check_stub_method_group (t, i);
3381
3382 if (intype)
3383 {
3384 for (j = 0; j < len; ++j)
3385 {
3386 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3387 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3388 intype, 1))
3389 break;
3390 }
3391
3392 if (j == len)
3393 error (_("no member function matches "
3394 "that type instantiation"));
3395 }
3396 else
3397 {
3398 int ii;
3399
3400 j = -1;
3401 for (ii = 0; ii < len; ++ii)
3402 {
3403 /* Skip artificial methods. This is necessary if,
3404 for example, the user wants to "print
3405 subclass::subclass" with only one user-defined
3406 constructor. There is no ambiguity in this case.
3407 We are careful here to allow artificial methods
3408 if they are the unique result. */
3409 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3410 {
3411 if (j == -1)
3412 j = ii;
3413 continue;
3414 }
3415
3416 /* Desired method is ambiguous if more than one
3417 method is defined. */
3418 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3419 error (_("non-unique member `%s' requires "
3420 "type instantiation"), name);
3421
3422 j = ii;
3423 }
3424
3425 if (j == -1)
3426 error (_("no matching member function"));
3427 }
3428
3429 if (TYPE_FN_FIELD_STATIC_P (f, j))
3430 {
3431 struct symbol *s =
3432 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3433 0, VAR_DOMAIN, 0);
3434
3435 if (s == NULL)
3436 return NULL;
3437
3438 if (want_address)
3439 return value_addr (read_var_value (s, 0));
3440 else
3441 return read_var_value (s, 0);
3442 }
3443
3444 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3445 {
3446 if (want_address)
3447 {
3448 result = allocate_value
3449 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3450 cplus_make_method_ptr (value_type (result),
3451 value_contents_writeable (result),
3452 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3453 }
3454 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3455 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3456 else
3457 error (_("Cannot reference virtual member function \"%s\""),
3458 name);
3459 }
3460 else
3461 {
3462 struct symbol *s =
3463 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3464 0, VAR_DOMAIN, 0);
3465
3466 if (s == NULL)
3467 return NULL;
3468
3469 v = read_var_value (s, 0);
3470 if (!want_address)
3471 result = v;
3472 else
3473 {
3474 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3475 cplus_make_method_ptr (value_type (result),
3476 value_contents_writeable (result),
3477 value_address (v), 0);
3478 }
3479 }
3480 return result;
3481 }
3482 }
3483 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3484 {
3485 struct value *v;
3486 int base_offset;
3487
3488 if (BASETYPE_VIA_VIRTUAL (t, i))
3489 base_offset = 0;
3490 else
3491 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3492 v = value_struct_elt_for_reference (domain,
3493 offset + base_offset,
3494 TYPE_BASECLASS (t, i),
3495 name, intype,
3496 want_address, noside);
3497 if (v)
3498 return v;
3499 }
3500
3501 /* As a last chance, pretend that CURTYPE is a namespace, and look
3502 it up that way; this (frequently) works for types nested inside
3503 classes. */
3504
3505 return value_maybe_namespace_elt (curtype, name,
3506 want_address, noside);
3507 }
3508
3509 /* C++: Return the member NAME of the namespace given by the type
3510 CURTYPE. */
3511
3512 static struct value *
3513 value_namespace_elt (const struct type *curtype,
3514 char *name, int want_address,
3515 enum noside noside)
3516 {
3517 struct value *retval = value_maybe_namespace_elt (curtype, name,
3518 want_address,
3519 noside);
3520
3521 if (retval == NULL)
3522 error (_("No symbol \"%s\" in namespace \"%s\"."),
3523 name, TYPE_TAG_NAME (curtype));
3524
3525 return retval;
3526 }
3527
3528 /* A helper function used by value_namespace_elt and
3529 value_struct_elt_for_reference. It looks up NAME inside the
3530 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3531 is a class and NAME refers to a type in CURTYPE itself (as opposed
3532 to, say, some base class of CURTYPE). */
3533
3534 static struct value *
3535 value_maybe_namespace_elt (const struct type *curtype,
3536 char *name, int want_address,
3537 enum noside noside)
3538 {
3539 const char *namespace_name = TYPE_TAG_NAME (curtype);
3540 struct symbol *sym;
3541 struct value *result;
3542
3543 sym = cp_lookup_symbol_namespace (namespace_name, name,
3544 get_selected_block (0), VAR_DOMAIN);
3545
3546 if (sym == NULL)
3547 {
3548 char *concatenated_name = alloca (strlen (namespace_name) + 2
3549 + strlen (name) + 1);
3550
3551 sprintf (concatenated_name, "%s::%s", namespace_name, name);
3552 sym = lookup_static_symbol_aux (concatenated_name, VAR_DOMAIN);
3553 }
3554
3555 if (sym == NULL)
3556 return NULL;
3557 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3558 && (SYMBOL_CLASS (sym) == LOC_TYPEDEF))
3559 result = allocate_value (SYMBOL_TYPE (sym));
3560 else
3561 result = value_of_variable (sym, get_selected_block (0));
3562
3563 if (result && want_address)
3564 result = value_addr (result);
3565
3566 return result;
3567 }
3568
3569 /* Given a pointer or a reference value V, find its real (RTTI) type.
3570
3571 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3572 and refer to the values computed for the object pointed to. */
3573
3574 struct type *
3575 value_rtti_indirect_type (struct value *v, int *full,
3576 int *top, int *using_enc)
3577 {
3578 struct value *target;
3579 struct type *type, *real_type, *target_type;
3580
3581 type = value_type (v);
3582 type = check_typedef (type);
3583 if (TYPE_CODE (type) == TYPE_CODE_REF)
3584 target = coerce_ref (v);
3585 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3586 target = value_ind (v);
3587 else
3588 return NULL;
3589
3590 real_type = value_rtti_type (target, full, top, using_enc);
3591
3592 if (real_type)
3593 {
3594 /* Copy qualifiers to the referenced object. */
3595 target_type = value_type (target);
3596 real_type = make_cv_type (TYPE_CONST (target_type),
3597 TYPE_VOLATILE (target_type), real_type, NULL);
3598 if (TYPE_CODE (type) == TYPE_CODE_REF)
3599 real_type = lookup_reference_type (real_type);
3600 else if (TYPE_CODE (type) == TYPE_CODE_PTR)
3601 real_type = lookup_pointer_type (real_type);
3602 else
3603 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3604
3605 /* Copy qualifiers to the pointer/reference. */
3606 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3607 real_type, NULL);
3608 }
3609
3610 return real_type;
3611 }
3612
3613 /* Given a value pointed to by ARGP, check its real run-time type, and
3614 if that is different from the enclosing type, create a new value
3615 using the real run-time type as the enclosing type (and of the same
3616 type as ARGP) and return it, with the embedded offset adjusted to
3617 be the correct offset to the enclosed object. RTYPE is the type,
3618 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3619 by value_rtti_type(). If these are available, they can be supplied
3620 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3621 NULL if they're not available. */
3622
3623 struct value *
3624 value_full_object (struct value *argp,
3625 struct type *rtype,
3626 int xfull, int xtop,
3627 int xusing_enc)
3628 {
3629 struct type *real_type;
3630 int full = 0;
3631 int top = -1;
3632 int using_enc = 0;
3633 struct value *new_val;
3634
3635 if (rtype)
3636 {
3637 real_type = rtype;
3638 full = xfull;
3639 top = xtop;
3640 using_enc = xusing_enc;
3641 }
3642 else
3643 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3644
3645 /* If no RTTI data, or if object is already complete, do nothing. */
3646 if (!real_type || real_type == value_enclosing_type (argp))
3647 return argp;
3648
3649 /* In a destructor we might see a real type that is a superclass of
3650 the object's type. In this case it is better to leave the object
3651 as-is. */
3652 if (full
3653 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3654 return argp;
3655
3656 /* If we have the full object, but for some reason the enclosing
3657 type is wrong, set it. */
3658 /* pai: FIXME -- sounds iffy */
3659 if (full)
3660 {
3661 argp = value_copy (argp);
3662 set_value_enclosing_type (argp, real_type);
3663 return argp;
3664 }
3665
3666 /* Check if object is in memory. */
3667 if (VALUE_LVAL (argp) != lval_memory)
3668 {
3669 warning (_("Couldn't retrieve complete object of RTTI "
3670 "type %s; object may be in register(s)."),
3671 TYPE_NAME (real_type));
3672
3673 return argp;
3674 }
3675
3676 /* All other cases -- retrieve the complete object. */
3677 /* Go back by the computed top_offset from the beginning of the
3678 object, adjusting for the embedded offset of argp if that's what
3679 value_rtti_type used for its computation. */
3680 new_val = value_at_lazy (real_type, value_address (argp) - top +
3681 (using_enc ? 0 : value_embedded_offset (argp)));
3682 deprecated_set_value_type (new_val, value_type (argp));
3683 set_value_embedded_offset (new_val, (using_enc
3684 ? top + value_embedded_offset (argp)
3685 : top));
3686 return new_val;
3687 }
3688
3689
3690 /* Return the value of the local variable, if one exists. Throw error
3691 otherwise, such as if the request is made in an inappropriate context. */
3692
3693 struct value *
3694 value_of_this (const struct language_defn *lang)
3695 {
3696 struct symbol *sym;
3697 struct block *b;
3698 struct frame_info *frame;
3699
3700 if (!lang->la_name_of_this)
3701 error (_("no `this' in current language"));
3702
3703 frame = get_selected_frame (_("no frame selected"));
3704
3705 b = get_frame_block (frame, NULL);
3706
3707 sym = lookup_language_this (lang, b);
3708 if (sym == NULL)
3709 error (_("current stack frame does not contain a variable named `%s'"),
3710 lang->la_name_of_this);
3711
3712 return read_var_value (sym, frame);
3713 }
3714
3715 /* Return the value of the local variable, if one exists. Return NULL
3716 otherwise. Never throw error. */
3717
3718 struct value *
3719 value_of_this_silent (const struct language_defn *lang)
3720 {
3721 struct value *ret = NULL;
3722 volatile struct gdb_exception except;
3723
3724 TRY_CATCH (except, RETURN_MASK_ERROR)
3725 {
3726 ret = value_of_this (lang);
3727 }
3728
3729 return ret;
3730 }
3731
3732 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3733 elements long, starting at LOWBOUND. The result has the same lower
3734 bound as the original ARRAY. */
3735
3736 struct value *
3737 value_slice (struct value *array, int lowbound, int length)
3738 {
3739 struct type *slice_range_type, *slice_type, *range_type;
3740 LONGEST lowerbound, upperbound;
3741 struct value *slice;
3742 struct type *array_type;
3743
3744 array_type = check_typedef (value_type (array));
3745 if (TYPE_CODE (array_type) != TYPE_CODE_ARRAY
3746 && TYPE_CODE (array_type) != TYPE_CODE_STRING)
3747 error (_("cannot take slice of non-array"));
3748
3749 range_type = TYPE_INDEX_TYPE (array_type);
3750 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3751 error (_("slice from bad array or bitstring"));
3752
3753 if (lowbound < lowerbound || length < 0
3754 || lowbound + length - 1 > upperbound)
3755 error (_("slice out of range"));
3756
3757 /* FIXME-type-allocation: need a way to free this type when we are
3758 done with it. */
3759 slice_range_type = create_range_type ((struct type *) NULL,
3760 TYPE_TARGET_TYPE (range_type),
3761 lowbound,
3762 lowbound + length - 1);
3763
3764 {
3765 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3766 LONGEST offset =
3767 (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3768
3769 slice_type = create_array_type ((struct type *) NULL,
3770 element_type,
3771 slice_range_type);
3772 TYPE_CODE (slice_type) = TYPE_CODE (array_type);
3773
3774 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3775 slice = allocate_value_lazy (slice_type);
3776 else
3777 {
3778 slice = allocate_value (slice_type);
3779 value_contents_copy (slice, 0, array, offset,
3780 TYPE_LENGTH (slice_type));
3781 }
3782
3783 set_value_component_location (slice, array);
3784 VALUE_FRAME_ID (slice) = VALUE_FRAME_ID (array);
3785 set_value_offset (slice, value_offset (array) + offset);
3786 }
3787 return slice;
3788 }
3789
3790 /* Create a value for a FORTRAN complex number. Currently most of the
3791 time values are coerced to COMPLEX*16 (i.e. a complex number
3792 composed of 2 doubles. This really should be a smarter routine
3793 that figures out precision inteligently as opposed to assuming
3794 doubles. FIXME: fmb */
3795
3796 struct value *
3797 value_literal_complex (struct value *arg1,
3798 struct value *arg2,
3799 struct type *type)
3800 {
3801 struct value *val;
3802 struct type *real_type = TYPE_TARGET_TYPE (type);
3803
3804 val = allocate_value (type);
3805 arg1 = value_cast (real_type, arg1);
3806 arg2 = value_cast (real_type, arg2);
3807
3808 memcpy (value_contents_raw (val),
3809 value_contents (arg1), TYPE_LENGTH (real_type));
3810 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3811 value_contents (arg2), TYPE_LENGTH (real_type));
3812 return val;
3813 }
3814
3815 /* Cast a value into the appropriate complex data type. */
3816
3817 static struct value *
3818 cast_into_complex (struct type *type, struct value *val)
3819 {
3820 struct type *real_type = TYPE_TARGET_TYPE (type);
3821
3822 if (TYPE_CODE (value_type (val)) == TYPE_CODE_COMPLEX)
3823 {
3824 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3825 struct value *re_val = allocate_value (val_real_type);
3826 struct value *im_val = allocate_value (val_real_type);
3827
3828 memcpy (value_contents_raw (re_val),
3829 value_contents (val), TYPE_LENGTH (val_real_type));
3830 memcpy (value_contents_raw (im_val),
3831 value_contents (val) + TYPE_LENGTH (val_real_type),
3832 TYPE_LENGTH (val_real_type));
3833
3834 return value_literal_complex (re_val, im_val, type);
3835 }
3836 else if (TYPE_CODE (value_type (val)) == TYPE_CODE_FLT
3837 || TYPE_CODE (value_type (val)) == TYPE_CODE_INT)
3838 return value_literal_complex (val,
3839 value_zero (real_type, not_lval),
3840 type);
3841 else
3842 error (_("cannot cast non-number to complex"));
3843 }
3844
3845 void
3846 _initialize_valops (void)
3847 {
3848 add_setshow_boolean_cmd ("overload-resolution", class_support,
3849 &overload_resolution, _("\
3850 Set overload resolution in evaluating C++ functions."), _("\
3851 Show overload resolution in evaluating C++ functions."),
3852 NULL, NULL,
3853 show_overload_resolution,
3854 &setlist, &showlist);
3855 overload_resolution = 1;
3856 }